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ABSTRACT 
 

  Surface water quality impairment is often associated with agricultural activities. In this 

study, the effects of three sugarcane residue management techniques, namely burning (BR), 

shredding (SR), and retention (RR) of residues on: surface water quality, carbon export, and 

chemical composition of organic matter in the runoff sediments were characterized. Separate 

studies were conducted to evaluate predictive relationships for biochemical oxygen demand 

(BOD) in agricultural effluents, and the effectiveness of bauxite residues (red and brown muds) 

in reducing soluble nutrient/pollutant release from manure-impacted soils. All the selected water 

quality parameters were determined using EPA-approved analytical methods. The RR technique 

exported lower total suspended solids (TSS), total phosphorus (TP), BOD5, and inorganic anion 

loads compared to the BR and SR techniques during the study period. Rainfall amount correlated 

with TSS, BOD5, total Kjeldahl nitrogen (TKN), TP, nitrate-N, and nitrite-N exports in each 

treatment, and runoff turbidity significantly correlated with TSS (R2 = 0.95, P < 0.001).The BR 

treatment exhibited higher total carbon (TC), total organic carbon (TOC), and particulate organic 

carbon (POC) export, and these parameters were also positively correlated to runoff turbidity and 

TSS (R2 = 0.42-0.87, P < 0.001). The pyrolysis-GC/MS analysis of the runoff sediments 

indicated higher intensity of lignin-derived compounds in the BR treatment than in the RR and 

SR treatments. Polysaccharide-derived compounds, dominated by levoglucosan, tended to 

decrease over the growing season in all the treatments, and were lower in the BR treatment. 

Examination of a wide range of simulated agricultural effluents showed that short-term BOD 

measurements (BOD2 and BOD5) significantly correlated with TOC, POC, and dissolved organic 

carbon (DOC) (R2 = 0.62-0.77, P < 0.001), as well as to nitrite-N and total N (R2 = 0.45-0.66, P < 

0.001), and improved relationships were obtained with multivariate regression analyses. 
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However, these relationships weaken progressively with increasing incubation times. Application 

of bauxite residues, especially 2% of the neutralized red muds, significantly (P < 0.05) reduced 

the soluble P, organic C, heavy metals, and also the BOD of runoff water from manure-impacted 

soils. Overall, appropriate management practices and amendment techniques could improve 

water quality in selected agricultural systems. 
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                                                                     CHAPTER 1    

                                                                INTRODUCTION                                                                                    

1.1 Introduction 

  Pollution from agricultural activities through surface runoff has been cited as a major 

source of water quality impairment in the U.S. (Foy and Withers, 1995; Daniel et al., 1998; 

USEPA, 2003). Over the years, the discharge of nutrients and sediments to natural waters has 

substantially increased due to increased fertilizer application to cropland (Howarth et al., 1996; 

Jordan and Weller, 1996; Pautler and Sims, 2000), increased concentration of livestock waste 

(Sims and Wolf, 1994; Mallin, 2000), and changes to land cover that aggravate erosion 

(Woodward and Foster, 1997). The principal components of agricultural runoff include 

sediments, nutrients, pesticides, salts and pathogens. These affect not only the diversity of 

aquatic life but limit the use of water for drinking, and also decrease the aesthetic value, 

generally constituting damages to water resources and water users (Shortle et al., 2001).  It has 

been documented that agricultural production in the U.S. negatively impacts water, soil, air, 

wildlife and human health at an estimated cost of $5.6 to $16.9 billion per year (Tegtmeier and 

Duffy, 2004).  

  Efforts have been made on developing and implementing management practices aimed at 

reducing nutrients, sediments and pesticides losses from agricultural activities. Such practices 

include crop nutrient management, pest management, irrigation water management, grazing and 

animal feeding operation managements, conservation tillage, conservation buffers, and erosion 

and sediment control (USEPA, 2007). The principles of these management practices might differ 

from one type of agricultural production to another but are all tied to the common goal of 

achieving a balance between water quality pro tection and maximizing agricultural output within 
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natural and economic limitations (USEPA, 2007). Various researchers   have also experimented 

the use of soil amendments such as gypsum (Moore and Miller, 1994; Phillips et al., 1998; Dou 

et al., 2003), alum (Moore and Miller, 1994; Moore et al., 1999; Kristen et al., 2004), and iron 

containing compounds as ferrous/ferric sulphate and ferrihydrite (Shreve et al.,1998; Wilson et 

al., 2004; Markis et al., 2005) to mitigate the environmental release of soluble nutrients such as 

phosphorus (P), and heavy metals as Cu, Pb and Zn from polluted sites. Recently, the use of 

bauxite wastes has been given attention, particularly in Europe (Australia) (Summers et al., 1996; 

Lopez et al., 1998; Lombi et al., 2002; Friesl et al., 2003). Despite all these efforts, the ever 

increasing agricultural demand resulting to increased pollutants release to natural waters through 

surface runoff,  has necessitated the need for further development and implementation of best 

management practices,  and also soil amendment techniques, especially those techniques that 

would involve the use of local prevalent waste materials. 

  Pollution from nonpoint sources has been estimated to cause a significant portion (40-

50%) of Louisiana water quality problems (Louisiana Department of Environmental Quality, 

2000).  Since the state is the national leader in fishery products (shrimps, crawfish, tuna, blue 

crab, etc), clean water is a necessity. Unfortunately, many sugarcane farms in south Louisiana 

are located in watershed with crawfish farms, and these farms often rely on surface water for 

their sole water supply (Sugarcane BMP, 2000). Since sugarcane production is a major 

contributor to the economy of Louisiana, management practices to reduce runoff of nutrients, 

sediments, organic residue and pesticides from sugarcane fields are necessary to improve water 

quality in the impaired waterways (Sugarcane BMP, 2000). However, the impacts of the 

commonly employed residue management technique (ground burning) and other often 

experimented techniques (shredding and full post-harvest retention) on surface water quality 
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have not been fully investigated. Of interest too, water quality standards are usually evaluated 

using important parameters as total suspended solids (TSS), total dissolved solids (TDS), 

biochemical oxygen demand (BOD), total organic carbon (TOC), inorganic anions, and nutrients 

(P and N). Hence, the understandings of the relationships within these key parameters would 

play a vital role in water quality assessment. 

  In this study, the impacts of three sugarcane residue management practices on surface 

water quality were assessed. Since carbon plays a vital role in pollutant export, and also serves as 

microbial substrate in aquatic systems, the effect of these residue management practices on 

carbon export and on the composition of organic matter in the runoff sediments were also 

addressed.  A separate study was conducted to explore the relationships between BOD and 

organic carbon, as well as other water quality variables. To curb the menace arising from 

increased manure and biosolid application to agricultural fields, the efficiency of bauxite waste 

on reducing soluble nutrients and other pollutants release from manure-affected soils was also 

evaluated. Overall, this study was chiefly centered on improving agricultural water quality. 

1.2 Objectives 

  In an attempt to improve the water quality in agricultural systems through the evaluation 

of best management practices and remediation techniques, the chief objectives of this work are to 

(I) evaluate the effects of three sugarcane residue management practices, namely ground burning 

of residue (BR), shredding of residue (SR), and full post-harvest retention of residue (RR), on the 

water quality of surface runoff over the growing season, (II) evaluate the impacts of these three 

sugarcane residue management techniques on the forms of carbon exported through surface 

water runoff , and also on the chemical composition of organic matter in the runoff sediment 

using pyrolysis-GC/MS, (III) evaluate the relationships between oxygen demand and other 
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related water quality parameters in water samples containing organic substrates from diverse 

sources, and thus develop predictive relationships for BOD measurements for typical agricultural 

effluents, and (IV) demonstrate the effectiveness of two bauxite residue materials (red and brown 

muds) on reducing reactive (soluble) nutrients and pollutants release to the environment, and also 

evaluates the overall impact on other water quality parameters of interest.  

1.3 Dissertation Format  

  This dissertation is formatted using the journal style. It is composed of an introduction 

and literature review which cover all the aspects of the study conducted. This is followed by four 

separate “journal articles”, each comprising its own introduction, materials and methods, results 

and discussion, conclusions, and references. There is a general conclusion at the end that covers 

the entire study. 

1.4 References 
 
Daniel, T.C., A.N. Sharpley, and J.L. Lemunyon. 1998. Agricultural phosphorus and 
  eutophication; A symposium overview. J. Environ. Qual. 27: 251-27 

Dou, Z., G.Y. Zhang, W.L. Stout, J.D. Toth, and J.D. Ferguson. 2003. Efficacy of alum and coal 
combustion by-products in stabilizing manure phosphorus. J. Environ. Qual. 32:1490–
1497. 

Foy, R.H., and P.J.A. Withers. 1995. The contribution of agricultural phosphorus to        
eutrophication. Proc. Fert. Soc. 365: 1-32. 

Friesl, W., E. Lombi. O. Horak, and W.W. Wenzel. 2003. Immobilization of heavy metals in 
soils using inorganic amendments in a greenhouse study.J. Plant Nutr. Soil Sci. 166, 191-
196. 

Howarth, R.W., J.R. Fruci, and D. Sherman. 1991. Inputs of Sediment and Carbon to an 
Estuarine Ecosystem: Influence of Land Use. Ecological Applications 1:27-39. 

Jordan, T.E., and D.E. Weller. 1996. Human contributions to terrestrial nitrogen flux. Bioscience 
46:655-664. 

Lombi, E., F.J. Zhao, G. Zhang, B. sun, W. Fitz, H. Zhang, and S. McGrath. 2002. In situ 
fixation of metals in soils using  bauxite residue: chemical assessment. Environ. Poll. 
435-443. 
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López, E., B. Soto, M. Arias, A. Núñez, D. Rubinos, and M.T. Barral. 1998. Adsorbent 
properties of red mud and its use for wastewater treatment. Water Research 32:1314-
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       CHAPTER 2  

        LITERATURE REVIEW 

2.1 Agriculture and Surface Water Quality  

2.1.1 Agricultural Runoff: A Nonpoint Source Pollution 

  Runoff from agricultural sources has been noted as a major nonpoint pollution source. 

Such runoff is of great concern because of the associated economic impact of both decreased 

crop yield resulting from nutrient imbalance in soils, and surface water quality impairment 

(Baker et al., 1992).  The primary agricultural sources of pollutant discharge into waterways 

include runoff and infiltration from animal feedlots, and runoff from croplands, pasture, and 

rangelands (Carpenter et al., 1998). Agricultural nutrients are often discharged from surface soils 

with nutrient concentrations in excess of agronomic needs (Reddy et al., 1980; Pautler and Sims, 

2000), or directly from animal manure that has been recently land-applied (Sauer et al., 2000; 

Edwards and Daniels, 1993). In either case, there is a resultant reduction in the amount of total 

nutrients retained in the soil with an increased amount of these nutrients and organic residues 

released to the nearby waterbodies. The transport of nutrients in runoff from agricultural lands to 

surface waters contributes to the accelerated eutrophication of the receiving surface waters 

(USEPA, 2003b). Eutrophication leads to increased growth of algae and aquatic weeds, and 

oxygen depletion caused by the microbial degradation of dead plant residues, and has been noted 

for limiting water use for drinking, recreation, and industry (Schindler, 1977; Edwards and 

Daniel, 1992). Damage to surface water quality, due to suspended sediments and excessive 

nutrients from agricultural lands in the U.S was estimated to range from $2.2 to $7.0 billion 

annually (Lovejoy et al., 1997). Also, of the approximately 22,000 impaired surface waterbodies 

in the United States, 11 % are due to agricultural nutrients (USEPA, 2003a). Since more 
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fertilizers and organic amendments are continuously applied to agricultural lands to enhance 

productivity, agricultural runoff remains a major environmental threat that needs to be addressed.  

2.1.2  Components of Agricultural Runoff 

  The principal components of agricultural runoff are sediments (suspended solids), and 

nutrients, particularly phosphorus (P) and nitrogen (N) (Correl, 1998).  Phosphorus and nitrogen 

are often considered as the nuclei of water quality impairment because of their role in 

eutrophication (Foy and Withers, 1995; Daniel et al., 1998). In general, high concentrations of N, 

P, organic C, and sediment have often been observed in runoff from agricultural soils with a 

history of prolonged organic amendments in the forms of animal manures and biosolids 

(Carpenter et al., 1998; Withers et al., 2002; Kleinman et al., 2004). Among tillage systems, 

higher P and sediment concentrations have been observed in runoff from no-till plots compared 

to runoff from ridge-till and chisel-plowed plots (Hansen et al., 2000; Daverede et al., 2003). 

From an agronomic perspective, nutrients runoff is often associated with suspended 

sediments/solids runoff. Suspended solids are insoluble solid particles that either float on the 

water surface or are in suspension, often causing turbidity (Sammori et al., 2004). As runoff from 

agricultural fields and other sources occurs, nutrients, pesticides, clays and small organic 

particles carried by water are washed into waterbodies, making them more turbid (Korsching and 

Nowak, 1983). In general, turbidity in water results from suspended matter, such as clay, silt, 

organic and inorganic matter, soluble colored organic compound, plankton and other 

microscopic organisms (APHA-AWWA-WPCF, 1989). It also correlates with pollutants in the 

aquatic environment because many pollutants (e.g. nitrogen, phosphorus, pesticides, and metals) 

attach to the particles. Thus, an increase in particle runoff from agricultural fields could result in 

an increase in other types of pollutants (Korsching and Nowak, 1983; Brady and Weil, 1999).
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  The P forms in surface water and wastewater can be measured as total P (TP), particulate 

P (PP), dissolved P (DP), and orthophosphate (PO   (PP) (APHA-AWWA-WPCF, 1989). The 

proportion of dissolved P (DP) to particulate P (PP) in surface runoff very much depend on the 

soil physical and chemical properties (Fleming and Cox, 1998) such as soil water status, 

differences in degree of slope of runoff path (Sharpley et al., 1981; Fleming and Cox, 1998), and 

other cultural practices such as the addition of phosphate fertilizers and manure (Sharpley et al., 

1981; McDowell and Sharpley, 2003). In a simulated rainfall experiment, the average total P 

concentrations in runoff were significantly lower from plots treated with poultry litter compared 

with inorganic fertilizer, and were 15.4 and 26.2 mg L-1, respectively. About 67% of TP in the 

runoff from the poultry litter plots was in the DP form, whereas DP account for 95% of TP in 

runoff from the fertilizer treatment plots. The proportion of DRP to PP in runoff has also been 

reported to vary from cultivated soils to grassland sites (Hansel et al., 2000). The major driving 

force for increased proportion of PP in surface runoff from grassland is the exposure of the soil 

to the erosive nature of rainfall impacting the soil surface which causes suspension of soil 

particles (Hansen et al., 2000). Hansel et al. (2000) further showed that DRP was the most 

dominant form of P lost in snowmelt runoff (averaging 75% of TP) from three different tillage 

systems, including moldboard plow, chisel plow and ridge till. In addition, the factors affecting 

the loss of P in runoff from agricultural sites include sediment loss, forms and concentration of 

soil P, and runoff volume (Sharpley et al., 1995; Cassell et al., 1998; Udeigwe et al., 2007). 

Parameters such as precipitation, runoff duration, antecedent moisture content, vegetative cover, 

and soil surface characteristics, also determine P loss on a watershed scale (Udawatta et al., 

2001; Edwards et al., 2000; McDowell and Sharpley, 2002). 

 Nitrogen forms commonly measured in surface waters and wastewater include nitrate 
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(NO3
-), nitrite (NO2

-), ammonia (NH3), and organic nitrogen (APHA-AWWA-WPCF, 1989; 

Sawyer et al., 1994). Most of the nitrogen present in freshly polluted water is in the form of 

organic N and ammonia. Organic N is the organically bound N which includes proteins, 

peptides, nucleic acids, urea, and other synthetic organic materials. Over time, the organic N 

present in the water is gradually converted to ammonia-N due to degradation, and if aerobic 

conditions exist, ammonia is subsequently converted to nitrites and nitrates (Sawyer et al., 1994). 

The change in N forms in polluted waters is illustrated in Fig. 2.1. The sum of organic N and 

ammonia present in a water system is determined as the total Kjeldahl nitrogen (TKN). This 

procedure converts nitrogen components of biological origin such as amino acids, proteins and 

peptides to ammonia, (USEPA, 1993; APHA-AWWA-WPCF, 1989).  

 

                                

Fig. 2.1   Changes in forms of nitrogen present in polluted water under aerobic conditions. 
                Adapted from Chemistry for Environmental Engineering by Sawyer et al., 1994. 
  
The organic Kjeldahl N is obtained by subtracting the free ammonia-N value from the total 

Kjeldah N.  Nitrate and nitrite are commonly measured using the ion chromatographic method 
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(EPA Method 300).  In most studies on water quality, total N is often approximated as the 

summation of nitrite-N, nitrate-N and TKN. The forms of nitrogen loads in runoff vary with land 

use. High loads of dissolved inorganic nitrogen (with >90% transported as NH4-N) were 

recorded in surface runoff from heavily grazed land (Heathwaite, 1996).  On the other hand, 68% 

of the N in farm yard manure was exported in the organic form (Heathwaite, et al., 1998).   

  The organic biodegradable materials (e.g. organic C) in runoff from agricultural fields 

have been noted for increased oxygen demand to the receiving waterbodies due to increased 

microbial degradation (Correll, 1998). Various studies have shown that the forms and amount of 

carbon export are influenced by the size and composition of organic matter pool, which is 

influenced by management practices such as liming (Anderson et al., 1994, 2000), mineral 

fertilization (Rochette and Gregorich, 1998; Chantigny et al., 2000), and organic amendment 

(Leinweber et al., 1995).  In general, higher export of organic C would be expected from areas of 

intensive agricultural practices, where as minimum and no-till conservation practices would limit 

carbon export by reducing sediment and nutrient losses (McDowell and McGregor, 1984). 

  To address the problem of eutrophication arising from excessive nutrients, algae growth, 

and turbidity, the Clean Water Action Plan (CWAP) in February 1998, called for Federal 

agencies, State and Tribal governments, and other stakeholders to work together to restore and 

protect the Nation’s water bodies through the reduction of nutrient enrichment of the Nation’s 

waters (USEPA, 1998). This was followed by the released of the National Strategy for the 

Development of Regional Nutrient Criteria by EPA in 1998.  The USEPA and USGS also 

worked to statistically derive national numeric criteria for N, P, chlorophyll a, and turbidity for 
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Table 2.1   Aggregate ecoregions nutrient criteria for rivers and streams‡ 

 

 

Table 2.2  Aggregate ecoregions nutrient criteria for lakes and reservoirs§ 

I II III IV V VI VII VIII IX X XI XII XIV
Parameter
Total P, µg L-1 47.00 10.00 21.88 23.00 67.00 76.25 33.00 10.00 36.56 128 10.00 40.00 31.25
Total N, mg L-1 0.31 0.12 0.38 0.56 0.88 2.18 0.54 0.38 0.69 0.76 0.31 0.90 0.71
Chlorophyll a, µg L-1 1.80 1.08 1.78 1.78 3.00 2.70 1.50 0.63 0.93S 2.10S 1.61S 0.40S 3.75S

Turbidity, FTU/NTU 4.25 1.30NTU 2.34 2.34 7.83 6.36 1.70NTU 1.30 5.70 17.50 2.30NTU 1.90NTU 3.04
‡ S, Spectrophotometric; T, Trichromatic method Louisiana
Compiled from the USEPA Ecoregional Nutrient Criteria Documents for Rivers and Streams (USEPA, 1998)

Aggregate Ecoregion

II III IV V VI VII VIII IX X XI XII XIII XIV
Parameter
Total P, µg L-1 8.75 17.00 20.00 33.00 37.50 14.75 8.00 20.00 8.00 10.00 17.50 8.00

Total N, mg L-1 0.10 0.40 0.44 0.56 0.78 0.66 0.24 0.36 unavailable 0.46 0.52 1.27 0.32
Chlorophyll, a µg L-1 1.90 3.40 2.00S 2.30S 8.59 2.63 2.43 4.93 2.79S 2.60 12.35T 2.90
Secchi, m 4.50 2.70 2.00 1.30 1.36 3.33 4.93 1.53 2.86 2.10 0.79 4.50
§ S, Spectrophotometric; T, Trichromatic method
Compiled from the USEPA Ecoregional Nutrient Criteria Documents for Lakes and Reservoirs (USEPA, 1998)

Aggregate Ecoregion
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rivers, streams, lakes, reservoirs, coastal estuaries, and wetlands using data from 14 ecoregions 

across the US (Table 2.2) (Louisiana Department of Environmental Quality, 2006).  The 

ecoregional approach to the development of criteria would also help States and Tribes to develop 

regional numerical nutrient criteria that better represent the physical, chemical, and biological 

conditions unique to specific ecoregions (Louisiana Department of Environmental Quality, 

2006). The Louisiana Department of Environmental Quality (LDEQ) submitted its first Nutrient 

Criteria Development Plan in December 2001 and continued working towards development of 

numeric nutrient criteria for Louisiana water body types. 

2.1.3 Relationships among Water Quality Variables 

  The development of predictive relationships between water quality variables is essential 

in water quality assessment.  These relationships facilitate the evaluation of interactive processes 

that affect water quality.   From agronomic perspective, sediment runoff is often associated with 

nutrient/pollutant runoff.  Thus, various studies have shown that increased particle runoff would 

result in increased pollutants load to the receiving waterbodies (Korsching and Nowak, 1983, 

Sammori et al., 2004; Udeigwe et al., 2007). Sediments in runoff constitute the major potential 

for pollution from surface water flow (Korsching and Nowak, 1983; Sammori et al., 2004) and 

have been shown to be highly correlated with nutrients such as N and P species as well as 

pesticides in agricultural runoff (Tetra Tech, 1994; Clausen, 1996; Turner et al. 2004; Udeigwe 

et al., 2007). For instance, runoff total P (TP) and particulate P (PP) have been documented to be 

highly correlated with TSS (R2 = 0.80, P < 0.001) from a site receiving manure application 

(Westerman and Bicudo, 2005). Likewise a highly significant relationship (R2 = 0.95, P < 0.001) 

was observed between TP/PP and TSS in runoff from nine different soils of varying clay 

contents (Udeigwe et al., 2007). Significant relationships have been observed between turbidity 
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and TSS for rivers (R2 = 0.43 to 0.73) (Weigel, 1994), and streams (R2 = 0.89 to 0.90) 

(Christensen et al., 2001). These close relationships between stream turbidity and suspended 

solids have been used to indirectly estimate suspended solid concentrations in rivers and streams 

(Grayson et al., 1996; Pavanelli and Bigi, 2005a, 2005b). With respect to agricultural runoff, a 

highly significant relationship (R2 = 0.98, P < 0.001) have also been observed between TSS and 

turbidity (Udeigwe et al., 2007). In addition, various efforts have been made on establishing 

simple relationships between and carbon and nitrogen forms in water, and BOD (Schaffer 1965; 

Robbin et al., 1969; Emery et al., 1971; Chandler et al., 1976; Constable et al., 1979). These 

researchers observed relationships of varying strengths (R2 of 0.47 to 0.78), and their studies 

indicated that the relationships are medium specific, varying from domestic wastewater to 

reservoirs, streams and rivers. However, insufficient information is available on these 

relationships in agricultural system.  

2.2 Sugarcane Production in Louisiana 

2.2.1 Residue Management Techniques 

  The primary areas of sugarcane (Saccharum spp) production in the U.S are in Louisiana, 

Florida, and Texas. About 900,000 acreages of sugarcane with  92% of the total acreage in 

Louisiana (420,000 acres) and Florida (396,000), and the remaining 8% in Texas and Hawaii 

were harvested in the U.S in 2007 (NASS, 2007).  In Louisiana, sugarcane production is one of 

the major industries in Louisiana with annual contribution to the economy valued at $600 

million. In an attempt to maximize yield and protect the environment, residue techniques have 

become a subject of interest in sugarcane production. Ground burning of the residue is a 

commonly employed practice by farmers, primarily due to its convenience. This technique 

entails the burning of the dry post-harvest residue on the rows in the open air before the 
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sugarcane resumes growth for the subsequent season of production cycle. Other residue 

management techniques being experimented include the post-harvest retention of residue on the 

soil surface (Richards, 2001), accelerated degradation of sugarcane residue by bacteria and fungi 

(Boopathy et al., 2001), and shredding of the residue to accelerate decomposition (Kennedy and 

Arceneaux, 2006). Shredding of the residue is achieved by the use of a mechanical shredder. The 

post harvest residues are shredded (8:1 ratio) to obtain a smaller particle size for accelerated 

decomposition. Full post-harvest retention allows for the complete withholding of the residues 

on the soil surfaces. However, the impacts of these practices on pollutant export and water 

quality have not been fully investigated. Of interest, majority of Louisiana sugarcane acreage is 

located in watersheds that contain water bodies designated as impaired and are included on the 

EPA 303-d list for the state. 

 2.2.2 Associated Environmental Issues 

  Sugarcane production, with many of its current residue management practices, has been 

noted to impact both air and water quality. The ground burning of residue, which is the approach 

often used in Louisiana, has been noted for air quality impairment and decreased soil fertility 

through loss of organic matter and nitrogen (Ceddia et al, 1999; Boopathy et. al., 2001; Graham 

et al., 2002). Open air burning is estimated to cause 21% of all air pollution problems in 

Louisiana (Parker, 1970).  The smoke from this open air burning contains particles of <10µm in 

size (PM10) (Givens, 1996). This PM10 has been reported as the major cause of respiratory 

ailments such as asthma and emphysema (Schwartz et al., 1993; Thurston et al., 1994). On the 

other hand, the post-harvest retention of residue on the soil surface reduces yield (Richards, 

2001), and may release chemicals that are harmful to weeds (Chou, 2001) and sugarcane 

(Richards, 2001). The yield reduction arises from (1) the residue acting as an insulating blanket 
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and reducing the emergence of shoot, and (2) the decaying residue releasing chemicals that can 

inhibit the germination or emergence of roots and shoot bud (Sugarcane BMP, 2000). To curb 

this environmental deterioration arising from these residue management techniques, particularly 

from the burning techniques, alternative approaches aimed at minimizing nutrients and sediment 

losses need to be evaluated and implemented.  

2.3 Organic Carbon and Oxygen Demand  

2.3.1 Carbon: Forms and Characterization 

  The organic biodegradable carbon carried by surface runoff from fields is one of the 

major components that define water quality. Carbon along with total sediment export has major 

influences on ecosystem metabolism (Gladden et al., 1988; Stross and Sokol, 1989), heavy metal 

and organic pollutant export from soils to surface waters (Tipping, 1993; Romkens and Dolfing, 

1998). The export of carbon through surface runoff has the ability of affecting the long-term 

dynamics of soil organic C pools (Hope et al., 1997). Nevertheless, organic C export from 

agricultural fields has not received much attention as nitrogen or phosphorus export. Previous 

studies have shown that the application of crop residues (Campbell et al., 1999; Franchini et al., 

2001) and animal manure (Rochette and Gregorich, 1998; Chantigny et al., 2002) to agricultural 

soils can result to an increase in soil organic C, thereby increasing the concentration in surface 

runoff. The organic C contained in organic amendments applied to agricultural fields could also 

be released directly during surface runoff to the receiving waterbodies, stimulating microbial 

population and increasing oxygen demand (Royer et al., 2007) Alternatively, agricultural 

nutrients, which are continuously released into waterbodies can stimulate the growth of aquatic 

plants (Edwards and Daniel, 1992; Heathman et al., 1995; Carpenter et al., 1998); this will in 

turn accelerate plant decay, leading to increased organic C concentration.  
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  Carbon fractions most often evaluated in water quality assessment include total carbon 

(TC), inorganic carbon (IC), total organic carbon (TOC), dissolved organic carbon (DOC), and 

particulate organic carbon (POC) (APHA-AWWA-WPCF; 1989). The inorganic C components 

include the carbonate, bicarbonate, and dissolved CO2. Total organic C represents all the carbon 

atoms covalently bounded in organic molecules (APHA-AWWA-WPCF; 1989). A filter size of 

0.45µm was traditionally used to separate the dissolved from the particulate fraction, however, 

the USGS recommended the pressure filtration technique using the 25 mm glass fiber filter 

medium with effective pore size of 0.7µm (USGS, 2000). The filtrate is analyzed for dissolved 

organic carbon (DOC). Particulate organic carbon (POC) will be determined as the difference 

between TOC and DOC. Dissolved organic carbon can also be measured directly in the solution 

of agricultural soils, and it is often expressed as water-extractable organic C (Chantigny, 2003; 

Zsolnay, 2003). 

  Particulate organic carbon (POC) has been considered as an active organic carbon pool 

that participates in the release of nutrients in cultivated areas (Cambardella and Elliott, 1992; 

Magid et al., 1996). Dissolved organic carbon (DOC) on the other hand often accounts for only a 

small proportion of the total organic carbon (McGill et al., 1986), but has a great influence on 

soil biological activity (Xu and Juma, 1993; Flessa et al., 2000). The DOC fraction serves as a 

chief source of microbial substrate (Jansson et al., 2000), and  also affects the transport of heavy 

metals and organic pollutants from the soil to surface water because of its ability to complex 

these materials (Tipping, 1993; Romkens and Dolfing, 1998),  

  The characterization of organic carbon present in soil and sediment samples is commonly 

carried out using such analytical techniques as nuclear magnetic resonance (NMR) spectroscopy 

(Oades et al., 1987; Chafetz et al., 1998; Wong et al. 2002), fourier transform infrared (FTIR) 
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spectroscopy (Solomon et al., 2005; Kalbitz et al., 2000; Francioso, 2000), and pyrolysis-gas 

chromatography/mass spectrometry  (Py-GC/MS) technique (Hatcher and Glifford, 1994; 

Chafetz et al., 2000; Faure et al., 2001). Characterization of organic matter is often carried out to 

assess the chemical nature of these materials and determine their environmental fate. Over the 

years, the Py-GC/MS technique which is typically applied using a pyrolyzer, a gas 

chromatography, and a mass spectrometer, has gained wide acceptance for structural analysis of 

complex biopolymers including lignins, lignocellulosics and humic materials (Chafetz et al., 

1998; Maldoveanu, 2001). Pyrolysis entails the chemical transformation of a sample when 

heated at a temperature significantly higher than ambient, primarily done to decompose many 

molecules (polymers) to smaller volatile and semi volatile molecules that can be easily analyzed 

using GC/MS (Maldoveanu, 1998). There have been significant improvements in Py-GC/MS 

instrumentation and techniques over the years. Such instrumentation improvements include the 

introduction of electronic pressure controllers for GC inlets, allowing the use of injection pulse, 

thus, leading to a better transfer of pyrolysate to the GC (Moldoveanu, 2001). Some notable 

advancement in the technique includes temperature modification, methylation to make the polar 

products volatile enough for gas chromatographic analysis, and improvement in using pyrolysis 

for quantification (Latimer, 2000).  

  Thermochemolysis using tetramethylammonium hydroxide (TMAH) is a technique that 

provides new detailed information on the structure and composition of soil organic matter.  

Highly polar oxygenated compounds such as polyhydric phenols, benzenecarboxylic acids, and 

hydroxybenzenecarboxylic acids require methylation of hydroxyl and carboxylic functional 

groups for effective gas chromatographic analysis (Hatcher et al., 1994). Various researchers 

have demonstrated that the TMAH thermochemolysis technique hydrolyzes and methylates 
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esters and ether linkages, assisting depolymerization and methylation, which makes most polar 

products volatile enough for gas chromatographic analysis (Hatcher et al., 1995; Hatcher and 

Minrad, 1996; McKinney and Hatcher, 1996; McKinney et al., 1996). The in situ methylation 

using TMAH has been widely used. This methylation is achieved by adding TMAH to the 

samples and conducting the pyrolysis in the presence of this reagent (Hatcher et al., 1994). This 

method has been used to characterize lignin (Hatcher et al., 1995, Clifford et al., 1995), cutan 

(McKinney et al., 1996), humic substances (Hatcher and Clifford, 1996; Martin et al., 1994), 

carbohydrates (Fabbri et al., 1999), and lipids (Challinor, 1996; Ishida et al., 1999). The resulting 

pyrolysis compounds are generally grouped into lignin-derived compounds, nitrogen-containing 

compounds, fatty acids/lipids, and compounds derived from polysaccharides.  

2.3.2 Biochemical Oxygen Demand 

  Biochemical oxygen demand, the measure of the oxygen consumed during the 

decomposition of organic matter, has been used as a tool to characterize water quality since 1870 

(Young and Clark, 1965). The BOD test is often used to determine the pollutant strength of 

runoff water, domestic and industrial wastes in terms of the amount of oxygen they will pose to 

the receiving natural waterbodies (Sawyer et al., 1994). Runoff from agricultural fields is a major 

source of pollutant input to natural waterbodies (USEPA, 1996; USGS 1999). Hence, alongside 

the risk of eutrophication caused by P loss, organic C and N contained in manures and biosolids 

which are released through surface runoff is notable for decreased oxygen concentration in the 

receiving waterbodies due to increased microbial degradation. Elevated level of BOD lowers the 

concentration of dissolved oxygen and this would have a profound effect on the diversity of 

aquatic life in a given body of water, as only low oxygen tolerant species would be supported.  

    Biochemical oxygen demand typically consists of two stages of decomposition: a 
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carbonaceous stage and a nitrogenous stage. The former represents the oxygen consumed in the 

conversion of organic carbon to carbon dioxide, while the later is for the conversion of organic 

nitrogen, ammonia, and nitrite to nitrate, and generally begins after 5-6 days (Delzer and 

Mckenzie, 1999), or after 8-10 (Sawyer et al., 1994). Nitrification is often inhibited in 

carbonaceous BOD tests (Constable et al., 1977, Delzer and Mckenzie, 1999).   In theory, an 

infinite time is needed for complete oxidation of organic material, but for practical purposes, the 

BOD5 (five-day BOD, at 20°C) is commonly used in assessing water quality.  However, this 

represents only a portion of the BOD and thus has limited use in water pollution assessment 

(Nemerow, 1974).  The ultimate BOD (BODu) which represents the oxygen demand for 

complete biological oxidation of organic matter is often used to obtain more BOD information. 

This BODu  measurement is tedious and involves multiple interval incubations and the  

 

 

 

 

  
 
 
 
 
 
 
 

Fig. 2.2    Changes in oxidizable organic matter (pollutant) during biological oxidation of 
                 polluted water. BODu = Ultimate BOD (mg L-1), k = BOD rate constant (d-1). 
           Adapted from Chemistry for Environmental Engineering (Sawyer et al., 1994) 
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employment of decay kinetics (Sawyer et al., 1994).  Typical oxygen demand, accompanying 

changes in oxidizable organic matter (pollutant) during biological oxidation of polluted water, 

generally follow the pattern illustrated in Figure 2.2. Large amounts of organic C are oxidized at 

the initial stage of oxidation.  As time goes, the oxidizable C becomes smaller until all oxidizable 

organic C is used. 

  The BOD curves which reflect the oxidation of organic matter can best be described by 

the first order kinetic equation (Metcalff and Eddy, 1991) as follows: 

BODt = BODu (1-e-kt)          [2] 

where 

BODt = BOD or the amount of oxygen consumed at time t (mg L-1) 

BODu = Ultimate BOD or total amount of oxygen consumed in the reaction (mg L-1) 

t = time elapsed since the start of the assay (d) 

k = BOD rate constant (d-1) 

It has been suggested that BOD reactions with k < 0.200 d-1 are better described by the first-order 

model, while those with k > 0.200 d-1 are better explained by the second-order model (Marske 

and Polkowski, 1972). 

2.4. Remediation of Nutrient-rich Soils 

2.4.1 Traditional Amendments 

  Reducing soluble nutrient runoff from agricultural soils, especially those affected by 

manure and biosolid application, is essential in lowering nutrient loads into receiving 

waterbodies. While various nutrient management plans have been developed to curb excessive 

and continuous application of animal manure and biosolids, different techniques are also 
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developed to remediate those soils that are already high in nutrients, especially P. 

  It is well known that soluble P in soils react with Al, Fe and Ca to form insoluble 

phosphate complexes, and these are greatly controlled and predicted by the pH of the soil 

solution (Beauchemin et al., 2003). Predicting the potential loss of phosphorus from agricultural 

soils to the environment could be based on the knowledge of both the chemical species of soil 

phosphorus and the chemistry of P release from these specific species (Beauchemin et al., 2003). 

Various researchers have shown that the addition of compounds containing Al, Fe and Ca can 

reduce soluble P, and thus potentially reduce P release to the environment (Stout et al., 1998; 

Dou et al., 2003; Kalbasi and Karthikeyan, 2004). Various compounds and products, such as 

alum, ferrous/ferric chloride and sulfates, Fe2O3, ferrihydrite, quick lime, slaked lime, caliche 

and gypsum have been demonstrated to decrease the amount of water soluble P released to the 

environment (Anderson et al.,1995;  Kalbasi and Karthikeyan, 2004; Moore and Miller, 1994; 

Dou et al., 2003).  For instance, Dao et al. (2001) reported a 39% and 48% reduction in soluble P 

in manure by the addition of Al-based by-products and Fe-based by-products respectively.   

Water extractable P in composted feedlot manure was also reduced by 50, 83 and 93% by the 

addition of caliche, gypsum, and alum respectively.  In the case of alum, it dissociates and the 

acidity produced reacts with NH3 in the litter to form NH4+ which then reacts with SO4
-
  to form 

(NH4)SO4, thereby increasing the N to P ration and the nutrient value of the litter as well as the 

reaction between P and Al. Alum dissociates and the acidity produced reacts with NH3 in the 

litter to form NH4+ which then reacts with SO4
-- to form (NH4)SO4, thereby increasing the N to P 

ratio and the nutrient value of the litter (Moore et al., 1999).  Nevertheless, with the increasing 

pollutant concentration in the waterbodies resulting from agricultural runoff, the need for 

remediation techniques, especially those that involve the use of local prevalent waste materials to 
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immobilize P, heavy metals and other pollutants in soils remains a promising technology. 

2.4.2  Bauxite Residues 

 Bauxite residues (red mud and brown mud), are by-products obtained from the leaching 

of bauxites to produce alumina and are known to contain measurable amounts of Al, Ca, and Fe.  

The difference in color arises from the operations generating the muds; red mud is sintered and 

leached to recover additional sodium aluminate (USEPA, 1984).The red and brown muds are 

precipitated from a caustic suspension of sodium aluminate in slurry and routed to large on-site 

surface impoundments known as red and brown mud lakes.  In these lakes, the red and brown 

muds settle to the bottom and the water is removed, treated, and either discharged or reused. The 

muds are accumulated and disposed in place, and allowed to dry, resulting to a solid with a very 

fine particle size (USEPA, 1984). These bauxite residue products, particularly red mud are 

produced in enormous amount and are of great environmental concern. The quantity of red mud 

generated varies from 55-65% of the bauxite processed, or 1-2.5 tons per ton of alumina 

produced, depending on the quality of the alumina (Paramguru, 2004).  In 2004, about 145 

million tons of red mud was projected to be mined globally (Paramguru, 2004). In Louisiana 

(USA) alone, over 20 million tons of red mud is deposited in three lakes and more than 1million 

ton year–1 is additionally produced (Kirkpatrick, 1996). 

  Red mud is characterized by a very high alkalinity and its primary constituents are 

crystalline hematite (Fe2O3), boehmite (Y-AlOOH), quartz (SiO2), sodalite (Na4Al3Si3O12Cl) and 

gypsum (CaSO4·2H2O) (Brunori et al., 2004). Brown mud when dry contains CaO (47%), SiO2 

(23%), Fe2O3 (10%), Al2O3 (5.5%), and Na2O (3.6%) (Whittaker et al., 1955). In general, these 

materials tend to exhibit high sorption capacity and offer the potential of reducing soluble P, and 

heavy metal (Cu2+, Zn2+, Ni2+ and Cd2+) release when incorporated into soils (Lopez et al., 1998).  
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  The disposal and potential for ruse of bauxite residues has been complicated, due to the 

fact that red mud produced from Bayer process is often high in pH, alkalinity, and sodium.  For 

this reason, neutralization to improve reuse seems to be a convenient means for the disposal of 

this industrial residue. Several methods for the neutralizing of red mud have been reported (Ho et 

al., 1985; Pradhan et al., 1998; Mconchie, 2002; Hanahan et al., 2004). The simplest although 

lengthy approach is through the infiltration of rainwater and atmospheric CO2, which will 

eventually lower the salt concentrations through leaching and reduce the pH to an equilibrium 

value of 8.3 (Ho et al., 1985). Furthermore, McConchie et al. (2002) recommended various 

approaches to optimize the neutralization of raw bauxite residues which include (a) addition of 

acids (usually waste sulphuric acid), (b) addition of large volumes of seawater, or calcium and 

magnesium-rich brines, or soluble calcium and magnesium salts (usually calcium and 

magnesium chloride), and (c) addition of gypsum and/or treating the wet red mud with large 

volumes of carbon dioxide. The resultant effects of the neutralization are the lowering of the pH 

to about 9.0, and/or converting most of the soluble alkalinity (hydroxides and carbonates) into 

low solubility mineral precipitates (McConchie et al., 2000), thereby making these residues safe 

for other environmental applications.  However, the use of neutralized bauxite residue in treating 

animal manure-impacted soils has not been fully evaluated.  

2.5 References 

American Public Health Association, American Water Work Association, and Water Pollution 
Control Federation.1989. Standard methods for the examination of water and wastewater 
Washington, DC. 

Anderson, G., E.G. Williams, and J.O. Moir .1974. A comparison of the sorption of inorganic 
phosphate and inositol-hexaphosphate by six acid soils. J Soil Sci 25: 51–62. 

Baker, D.E., and J.P. Sanft. 1992. Advances in agricultural nutrients runoff controls. Water Sci. 
Technol. 26:2685–2694. 



25 
 

Beauchemin S, D. Hesterberg, J. Chou, M. Beauchemin, R.R. Simard, and D. E. Sayers. 2003. 
Speciation of phosphorus in phosphorus-enriched agricultural soils using x-ray 
absorption near-edge structure spectroscopy and chemical fractionation. J. Environ. Qual. 
32: 1809-1819. 

Berthouex,  M. P., and C. L. Brown, Statistics for Environmental Engineers, CRC Press, Boca 
Raton, FL, 1994. 

Boopathy, R., T. Beary, P.J. Templet. 2001. Microbial decomposition of post-harvest residue. 
Bioscience Technology. 79: 29-33 

Cambardella, C.A., and E.T. Elliott. 1992. Particulate soil organic matter changes across a 
grassland cultivation sequence. Soil Sci. Soc. Am. J. 56:777–783. 

Campbell, C.A., V.O. Biederbeck, G. Wen, R.P. Zentner, J. Schoenau, and D. Hahn. 1999. 
Seasonal trends in selected soil biochemical attributes: Effects of crop rotation in the 
semiarid prairie. Can. J.Soil Sci. 79:73–84. 

Carpenter, S.R., N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, and V.H. Smith. 
1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological 
Applications 8:559-568. 

Chafetz, B.,Y. Chen, C. Edward, and G. Hatcher. 2000. Characterization of organic matter in 
soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci. 
Soc. Am J. 64: 583-589. 

Challinor, J.M. 1996. A rapid simple pyrolysis derivatization gas chromatography-mass 
spectrometry method for profiling of fatty acids in trace quantities of lipids. J. Anal. 
Appl. Pyrolysis 37:185–197. 

Chandler, R.L., J.C. O’Shaughnessy and F.C. Blank. 1976. Pollution monitoring with total 
organic carbon analysis. J. Water Pollut. Control Fed. 43, 2791. 

Chantigny, M.H. 2003. Dissolved and water-extractable organic matter in soils: A review on the 
influence of land use and management practices. Geoderma 113:357–380. 

Chantigny, M.H., D.A. Angers, and P. Rochette. 2002. Fate of carbon and nitrogen from animal 
manure and crop residues in wet and cold soils. Soil Biol. Biochem. 34:509–517. 

Chefetz, B., Y. Chen, C.E. Clapp, and P.G. Hatcher. 2000. Characterization of organic matter in 
soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci. 
Soc. Am. J 64:583-589. 



26 
 

Chefetz, B., Y. Hadar, and Y. Chen. 1998. Dissolved Organic Carbon Fractions Formed during 
Composting of Municipal Solid Waste: Properties and Significance. Acta hydrochim. 
hydrobiol 26:172-179. 

Clausen, J.C., W.E. Jokela, F.I. Potter Iii, and J.W. Williams. 1996. Paired Watershed 
Comparison of Tillage Effects on Runoff, Sediment, and Pesticide Losses. Journal of 
Environmental Quality 25:1000. 

Clifford, D.J., D.M. Carson, D.E. McKinney, J.M. Bortiatynski, and P.G. Hatcher. 1995. A new 
rapid technique for the characterization of lignin in vascular plants: Thermochemolysis 
with tetramethylammonium hydroxide (TMAH). Org. Geochem. 23:169–175. 

Constable, T.W., and R. M. Edward. 1979.  BOD/TOC correlations and their application to water 
quality evaluation.  Water, Air, & Soil Pollution. 1: 363-375 

Correl, D.L. 1998. The role of phosphorus in the eutrophication of receiving waters: A review. J. 
Environ. Qual. 28: 261-266. 

Cutrera, G., L. Manfredi, C.E. del Valle, and J.F. Gonzalez. 1999. On the determination of the 
kinetic parameters for the BOD test. Water S. A. 25:377-380. 

Daniel, T.C., A.N. Sharpley, and J.L. Lemunyon. 1998. Agricultural phosphorus and 
eutophication; A symposium overview. J. Environ. Qual. 27: 251-27 

Dao, T.H., L.J. Sikora, A. Hamasaki, and R.L. Chaney. 2001. Manure phosphorus extractability 
as affected by aluminum-and iron by-products and aerobic composting. J. Environ. Qual. 
30:1693–1698. 

Delzer, G.C., and S.W. McKenzie. 1999. Five-day biological oxygen demand. U.S. Geological 
Survey TWR1 Book 9. 

Dionex. 2001. Determination of inorganic anions in wastewater by ion chromatography. 
Application Note 135. 

Dou, Z., G.Y. Zhang, W.L. Stout, J.D. Toth, and J.D. Ferguson. 2003. Efficacy of alum and coal 
combustion by-products in stabilizing manure phosphorus. J. Environ. Qual. 32:1490–
1497. 

Edwards, A.C., Y. Cook, R. Smart, and A.J. Wade. 2000. Concentrations of nitrogen and 
phosphorus in streams draining the mixed land-use Dee Catchment, north-east Scotland. 
Journal of Applied Ecology 37:159-170. 



27 
 

Edwards, D.R., and T.C. Daniel. 1992. Potential runoff quality effects of poultry manure slurry 
applied to fescue plots. Trans. ASAE 35:1827-1832 

Emery, R.M., E.B. Welch, and R.F. Christman. 1974. J. Water Pollut. Control Fed. 43,1834. 

Fabbri, D., and R. Helleur. 1999. Characterization of the tetramethylammonium hydroxide 
thermochemolysis products of carbohydrates. J. Anal. Appl. Pyrolysis 49:277–293. 

Faure, P., L. Schlepp, L. Mansuy-Hult, M. Elie, E. Jarde, and M. Pelletier. 2006. Aromatization 
of organic matter induced by the presence of clays during flash pyrolysis-gas 
chromatography-mass spectrometry (PyGC-MS) A major analytical artifact. J. Anal. 
Appl. Pyrolysis 75: 1-10. 

Fleming, N.K., and J.W. Cox. 1998. Chemical losses off dairy catchments located on a texture-
contrast soil: carbon, phosphorus, sulfur, and other chemicals. Australian Journal of Soil 
Research 36:979-995. 

Flessa, H., Ludwig, B., Heil, B., Merbach, W. 2000. The origin of soil organic C, dissolved 
organic C and respiration in a long-term maize experiment in Halle, Germany, 
determined by 13C natural abundance. J. Plant Nutr. Soil Sci. 163: 157– 163. 

Foy, R.H., and P.J.A. Withers. 1995. The contribution of agricultural phosphorus to        
eutrophication. Proc. Fert. Soc. 365: 1-32. 

Franchini, J.C., F.J. Gonzalez-Vila, F. Cabrera, M. Miyazawa, and P.A. Pavan. 2001. Rapid 
transformations of plant water-soluble organic compounds in relation to cation 
mobilization in an acid Oxisol. Plant Soil 231:55–63. 

Francioso, O., C. Ciavatta, S. Sànchez-Cortés, V. Tugnoli, L. Sitti, and C. Gessa. 2000. 
Spectroscopic characterization of soil organic matter in long-term amendment trials. Soil 
Science 165:495. 

Givens, J.D., 1996. Air quality annual report. Louisiana Department of Environmental Quality, 
Baton Rouge, LA, pp. 25–46. 

Gladden, J.B., F.R.Cantelmo, J.M. Croom, and R.Shapot. 1988. Evaluation of the Hudson River 
ecosystem in relation to the dynamics of fish populations. American Fisheries Society 
Monograph. 4:37-52. 

Gray, J.R., G.D. Glysson, L.M. Turcios, and G.E. Schwarz. 2000. Comparability of suspended-
sediment concentration and total suspended solids data. Water-Resources Investigation 
Report 00-4191. USGS. 



28 
 

Grey, M., and C. Henry. 2002. Phosphorus and Nitrogen Runoff from a Forested Watershed 
Fertilized with Biosolids. Journal of Environmental Quality 31:926. 

Hatcher, P.G., and D.J. Clifford. 1994. Flash pyrolysis and in situ methylation of humic acids 
from soil. Org. Geochem 21:1081–1092. 

Hatcher, P.G., and R.D. Minard. 1996. Comparison of dehydrogenase polymer (DHP) lignin 
with native lignin from gymnosperm wood by thermochemolysis using 
tetramethylammonium hydroxide (TMAH). Org. Geochem. 24:593–600. 

Hatcher, P.G., M.A. Nanny, R.D. Minard, S.C. Dible, and D.M. Carson. 1995. Comparison of 
two thermochemolytic methods for the analysis of lignin in decomposing wood: The Cu 
Ooxidation method and the method of thermochemolysis with TMAH. Org. Geochem. 

Heathman, G.C., A.N. Sharpley, S.J. Smith, and J.S. Robinson. 1995. Land application of 
poultry litter and water quality in Oklahoma, U.S.A. Fert. Res. 40:165–173. 

Heathwaite, A.L. 1996. Contribution of nitrogen species and phosphorus fractions to stream 
water quality in agricultural catchments. Hydrological Processes 10:971-983. 

Heathwaite, A.L., P. Griffiths, and R.J. Parkinson. 1998. Nitrogen and phosphorus in runoff from 
grassland with buffer strips following application of fertilizers and manures. Soil Use and 
Management 14:142-148. 

Heckrath, G., P.C. Brooks, P.R. Poulton, and K.W.T. Goulding. 1995. Phosphorus loss in surface 
and subsurface hydrological pathways. Sci. Total Environ. 251: 253-258. 

Hope, D., M.F. Billett, and M.S. Cresser. 1997. Exports of organic carbon in two river systems in 
NE Scotland. Journal of Hydrology 193:61-82. 

Ishida, Y., S. Wakamatsu, H. Yokoi, H. Ohtani, and S. Tsuge. 1999. Compositional analysis of 
polyunsaturated fatty acid oil by one-step thermally assisted hydrolysis and methylation 
in the presence of trimethylsulfonium hydroxide. J. Anal. Appl. Pyrolysis 49: 267–276. 

Jansson, M., A. K. Bergstrom, P. Blomqvist and S. Drakare, 2000. Allochthonous organic carbon 
and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250-
3255. 

Kalbasi, M., and K.G. Karthikeyan. 2004. Phosphorus dynamics in soils receiving chemically 
treated dairy manure. J. Environ. Qual.33:2296–2305 

Kalbitz, K., S. Geyer, and W. Geyer. 2000. A comparative characterization of dissolved organic 
matter by means of original aqueous samples and isolated humic substances. 
Chemosphere 40:1305-1312. 



29 
 

Kelly A., L. Green, and E. Herron. 2004. pH and alkalinity. Contribution #4059 of the Rhode 
Island Agricultural Experiment Station with support from Rhode Island Cooperative 
Extension, Rhode Island Department of Environmental Management and Rhode Island 
Seagrant. 

Kennedy, C.W. and A.E.  Arceneaux. 2006. The effects of harvest residue management inputs on 
soil respiration and crop productivity of sugarcane. Proc. American Soc. Sugarcane 
Technol. 26: 125-136. 

Kirkpatrick, D.B. 1996. Red mud product development, Proc. “Light Metals’Conf., Anaheim, 
California, USA, 75–80. 

Korsching, P.F., and P.J. Nowak. 1983. Soil erosion awareness and use of conservation tillage 
for water quality control. Water Resour. Bull.19:459–462. 

Krysanova, V., D. Gerten, B. Klocking, and A. Becker. 1999. Factors affecting nitrogen export 
from diffuse sources: a modelling study in the Elbe basin. Impact of Land-Use Change on 
Nutrient Loads from Diffuse Sources:201–212. 

Latimer, R. P. 14th International Symposium on Analytical and Applied Pyrolysis, key lecture, 
Spain, April 2000. 

López, E., B. Soto, M. Arias, A. Núñez, D. Rubinos, and M.T. Barral. 1998. Adsorbent 
properties of red mud and its use for wastewater treatment. Water Research 32:1314-
1322. 

Louisiana Department of Environmental Quality.2006. Developing nutrient criteria for 
Louisiana. 

Lovejoy, S.B., J.G. Lee, T.O. Randhir, and B.A. Engel. 1997. Research needs for water quality 
management in the 21st century: A spatial decision support system. J. Soil Water 
Conserv. 52: 19-23. 

Magid, J. and C. Kjagaard. 2001. Recovering decomposing plant residues from the particulate 
soil organic matter fraction: size versus density separation. Biology and Fertility of Soils. 
33: 252-257 

Marske, D.M., and  L.B. Polkowski. 1972. Evaluation of methods of the BOD tests of 
endogenous respiration of bacteria. Sewage Ind. Wastes 25: 1163-1173. 

Martin, F., F.J. Gonzalez-Vila, J.C. del Rio, and T. Verdejo. 1994. Pyrolysis derivatization of 
humic substances: I. Pyrolysis of fulvic acids in the presence of tetramethylammonium 
hydroxide. J. Anal. Appl. Pyrolysis 28:71–80. 



30 
 

Mc Leod, R.V., and R.O. Hegg. 1984. Pasture Runoff Water Quality from Application of 
Inorganic and Organic Nitrogen Sources. Journal of Environmental Quality 13:122. 

McDowell, R., and A. Sharpley. 2002. Phosphorus Transport in Overland Flow in Response to 
Position of Manure Application. Journal of Environmental Quality 31:217. 

McDowell, R.W., and A.N. Sharpley. 2003. Uptake and Release of Phosphorus from Overland 
Flow in a Stream Environment. Journal of Environmental Quality 32:937. 

McGill, W.B., Cannon, K.R., Robertson, J.A., Cook, F.D., 1986. Dynamics of soil microbial 
biomass and water soluble organic C in Breton L after 50 years of cropping to rotations. 
Can. J. Soil Sci. 66: 1– 19. 

McKinney, D.E., and P.G. Hatcher. 1996. Characterization of peatified and coalified wood by 
tetramethylammonium hydroxide (TMAH) thermochemolysis. Int. J. Coal Geol. 32:217–
228. 

McKinney, D.E., J.M. Bortiatynski, D.M. Carson, D.J. Clifford, J.W. De Leeuw, and P.G. 
Hatcher. 1996. Tetramethylammonium hydroxide (TMAH) thermochemolysis of the 
aliphatic biopolymer cutan: Insights into the chemical structure. Org. Geochem. 24: 

Metcalf, Eddy, 1991. Wastewater Engineering, third ed. McGraw-Hill Inc., New York, USA. 

Moldoveanu. 1998. Analytical Pyrolysis of Natural Organic Polymers Elsevier Science. 

Moore, P.A., Jr., and D.M. Miller. 1994. Decreasing phosphorus solubility in poultry litter with 
aluminum, calcium and iron amendments. J. Environ. Qual. 23:325–330. 

Moore, P.A., T.C. Daniel, and D.R. Edwards. 1999. Reducing phosphorus runoff and improving 
poultry production with alum. Poult. Sci. 78:692–698. 

Murphy, J., and J. Riley. 1962. A modified single solution for the determination of phosphate in 
natural waters. Anal. Chim. Acta. 27, 31. 

Nemerow, N.L., 1974. Scientific Stream Pollution Analysis. McGraw-Hill. 

Nixon, S.W. 1995. Coastal marine eutrophication: a definition, causes and future options. 
Ophelia 41: 119-219. 

Novak, J.M., D.W. Watts, P.G. Hunt, and K.C. Stone. 2000. Phosphorus movement through a 
coastal plain soil after a decade of intensive swine manure application. J. of Environ. 
Qual. 29: 1310-1315. 



31 
 

Oades, J.M., A.M. Vassallo, A.G. Waters, and M.A. Wilson. 1987. Characterization of organic 
matter in particle size and density fractions from a red-brown earth by solid-state 13 C 
NMR. Australian Journal of Soil Research 25:71-82. 

Paramguru, R.K., P.C. Rath, and V.N. Misra. 2004. Trens in red mud utilization-A review. 
Mineral Processing and Extractive Metallurgy Review 26:1-29. 

Parker, V.C.1970. The Louisiana air control program. Paper Presented at the Conference on 
Aspects of Air Pollution Control, October 8-9, Ruston, LA.  

Pautler, M.C., and J.T. Sims. 2000. Relationships Between Soil Test Phosphorus, Soluble 
Phosphorus, and Phosphorus Saturation in Delaware Soils. Soil Science Society of 
America Journal 64:765. 

Pavanelli, D., and A. Bigi. 2005a. Indirect analysis methods to estimate suspended sediment 
concentration: Reliability and relationship of turbidity and settleable solids. Biosyst. Eng. 
90:75–83. 

Pavanelli, D., and A. Bigi. 2005b. A new indirect method to estimate suspended sediment 
concentration in a river monitoring programme.Biosyst. Eng. 92:513–520. 

Porter, P.S., and C.A. Sanchez. 1992. The effects of soil properties on the phosphorus sorption 
by everglades histosols. Soil Sci. 154: 387-398. 

Reddy, K.R., M.R. Overcash, R. Khaleel, and P.W. Westerman. 1980. Phosphorus adsorption-
desorption characteristics of two soils utilized for the disposal of animal wastes. J. of 
Environ. Qual. 9: 86-92. 

Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. p. 417–435. In 
D.L. Sparks (ed.) Methods of soil analysis. III. Chemical methods. SSSA, Madison, WI. 

Richard. E.P., Jr.2001. Management of chopper harvester-generated green cane trash blanket: A 
new concern for Louisiana. Proc. Inter. Soc. Sugar Cane Technol. 23(2): 52-62. 

Robbins, J.W., G.J. King and D.H. Howells. 1969. Total organic determinations in swine waste 
effluents.Presentation at the American Society of Agricultural Engineers Conference, 
Chicago, Illinois, 9-12. 

Rochette, P., and E.G. Gregorich. 1998. Dynamics of soil microbial biomass C, soluble organic 
C, and CO2 evolution after three years of manure application. Can. J. Soil Sci. 78:283–
290. 



32 
 

Romkens, P.F.A.M., Dolfing, J., 1998. Effect of Ca on the solubility and molecular size 
distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol. 32: 
363–369. 

Royer, I., D.A. Angers, M.H. Chantigny, R.R. Simard, and D. Cluis. 2007. Dissolved Organic 
Carbon in Runoff and Tile-Drain Water under Corn and Forage Fertilized with Hog 
Manure. Journal of Environmental Quality 36:855. 

Sammori, T., Y. Zulkifl i, K. Baharuddin, S. Noguchi, and N. Tani. 2004. Suspended solids 
discharge from small forested basin in humid tropics. Hydrol. Processes 18:721–738. 

Sauer, T.J., T.C. Daniel, D.J. Nichols, C.P. West. P.A. Moore, and G.L. Wheeler. 2000. Runoff 
water quality from poultry litter-treated pasture and forest sites. J. of Environ. Qual. 29: 
515-521. 

Sawyer, C.N., P.L. McCarty, and G.F. Parkin. 1994. Chemistry for Environmental Engineering. 
McGraw-Hill Inc. 

Schaffer, R.B., C.E.Van Hall, G.N. McDermott, D. Barth, V.A Stenger, S.J. Sebesta, and S.H. 
Griggs. 1965. Application of a carbon analyzer in waste treatment. J. Water Pollut. 
Control Fed. 37, 1545 

Schindler, D.W. 1977. Evolution of phosphorus limitation in lakes. Science (Washington, DC) 
195: 260-262. 

Schroeder, P.D., D.E. Radcliffe, M.L. Cabrera, and C. D. Belew. 2004. Relationship between 
soil test phosphorus and phosphorus in runoff: Effects of soil series variability. J. 
Environ.. Quality.33:1814-1821. 

Schwartz, J., Slater, D., Larson, T.V., Pierson, W.E. and Koenig, J.Q., 1993. Particulate air 
pollution and hospital emergency room visits for asthma in Seattle. Am. Rev. Respir. Dis. 
147, pp. 826–831 

Sharpley, A.N. 1995. Dependence of runoff phosphorus on extractable soil phosphorus. J. 
Environ. Qual. 23:437–451 

Sharpley, A.N., R.G. Menzel, S.J. Smith, E.D. Rhoades, and A.E. Olness. 1981. The Sorption of 
Soluble Phosphorus by Soil Material during Transport in Runoff from Cropped and 
Grassed Watersheds. Journal of Environmental Quality 10:211. 

Solomon, D., J. Lehmann, J. Kinyangi, B.Q. Liang, and T. Schafer. 2005. Carbon K-edge 
NEXAFS and FTIR-ATR spectroscopic investigation of organic carbon speciation in 
soils. Soil Science Society of America Journal 69:107-119. 



33 
 

Sparks, D.L. 2003. Environmental Soil Chemistry Academic Press. 

Stout, W.L., A.N. Sharpley, and H.B. Pionke. 1998. Reducing soil phosphorus solubility with 
coal combustion by-products. J. Environ. Qual. 27:111–118. 

Stross, R.G., and R.C. Sokol. 1989. Runoff and Flocculation Modify Underwater Light 
Environment of the Hudson River Estuary. Estuarine Coastal and Shelf Science ECSSD 3 
29. 

Sugarcane Production Best Management Practices.  2000.  Produced by LSU AgCenter 
Communications.  Extension Publication # 2833. 

Thomas, H.A. 1950. Graphical determination of BOD curve constants. Water Sewage Works 97 
123. 

Thurston, G.D., Ito, K., Hayes, C.G., Bates, D.V. and Lippmann, M., 1994. Respiratory hospital 
admissions and summer time haze air pollution in Toronto. Environ. Res. 65, pp. 271–
290 

Tipping, E. 1993. Modeling the competition between alkaline earth cations and trace metal 
species for binding by humic substances. Environmental Science & Technology 27:520-
529. 

Udawatta, R. P., P.P. Motavalli, and H.E. Garrett.2004. Phosphorus loss and runoff 
characteristics in three adjacent agricultural watersheds with claypan soils. 

Udeigwe, T.K., J.J. Wang, and H. Zhang. 2007. Predicting Runoff of Suspended Solids and 
Particulate Phosphorus for Selected Louisiana Soils Using Simple Soil Tests. Journal of 
Environmental Quality 36:1310. 

USEPA, 1997. Determination of inorganic anions in drinking water by ion chromatography. 
National Exposure Research Laboratory, Office of Research and Development, 
Cincinnati, Ohio. 

USEPA, 2003b. National Water Quality Inventory[Online]. Available at  
http://www.epa.gov/305b/2000report/(verified 14 Nov. 2003). USEPA, Washington, 
D.C. 

USEPA. 1993. Determination of total Kjeldahl  nitrogen by the  semi-automated colorimetry. 
Environmental Monitoring System Laboratory. Office of Research and Development, 
USEPA. Cincinnat, Ohio. 



34 
 

USEPA. 1996. Environmental indicators of water quality in the United States. EPA 841-R-96-
002. USEPA Office of Water (4503F), U.S Government Printing Office, Washington, 
D.C., USA 

USEPA. 1998. Report of the Federal Advisory Committee on the Total Maximum Daily Load 
(TMDL) Program: Th e National Advisory Council for Environmental Policy and 
Technology, EPA-100-R-98-006, 97 pp, 7 appendixes. U.S. Environmental Protection 
Agency, Cincinnati, OH. 

USEPA. 2003a. National Section 303(d) List Fact Sheet[Online]. Available at 
http://oaspub.epa.gov/waters/national_rept.control (verified 14 Nov. 2003).USEPA, 
Washington, D.C. 

USEPA. National Strategy for the Development of Regional Nutrient Criteria. 1998. 822-R-98-
002. http://www.epa.gov/waterscience/standards/nutstra3.pdf.\ 

USGS Office of Water Quality Technical Memorandum. 2000. Procedures for processing 
samples for carbon analysis 

Vadas, P.A., P.J.A. Kleinman, and A.N. Sharpley. 2004. A simple method to predict dissolved 
phosphorus in runoff surface-applied manures. J. Environ. Qual. 33:749–756. 

Vitousek, P.M., J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. 
Schlesinger, and D.G. Tilman. 1997. Technical Report: Human alteration of the global 
nitrogen cycle: sources and consequences. Ecological Applications 7:737-750. 

Weigel, F. 1984. Turbidity and suspended sediment in the Jordan River, Salt Lake County, Utah. 
USGS Water-Resources Investigation Report 84-4019. USGS, Washington, DC. 

Westerman, P.W., and J.R. Bicudo. 2005. Management considerations for organic waste use in 
agriculture. Bioresource Technology 96:215-221. 

Whittaker, C.W., W.H. Armiger, P.P. Chichilo, and W.M. Hoffman. 1955. " Brown Mud" from 
the Aluminum Industry as a Soil Liming Material. Soil Science Society of America 
Journal 19:288. 

Williams, W.D. 1966. Conductivity and the concentration of total dissolved solids in Australian 
lakes. Australian Journal of Marine and Freshwater Research 17:169-176. 

Wong, S., J.V. Hanna, S. King, T.J. Carroll, R.J. Eldridge, D.R. Dixon, B.A. Bolto, S. Hesse, G. 
Abbt-Braun, and F.H. Frimmel. 2002. Fractionation of natural organic matter in drinking 
water and characterization by 13C cross-polarization magic-angle spinning NMR 
spectroscopy and size exclusion chromatography. Environ Sci Technol 36:3497-3503. 



35 
 

Xu, J.G., Juma, N.G., 1993. Above- and below-ground transformation of photosynthetically 
fixed carbon by two barley (Hordeum vulgare L.) cultivars in a Typic Cryoboroll. Soil 
Biol. Biochem. 25, 1263– 1272. 

Young, J.C. and J.W. Clark, 1965. Second Order Equation for BOD. Journal of the Sanitary 
Engineering Division Proceedings of the American Society of Civil Engineers 
91(SA1):43-57 

Zsolnay, A. 2003. Dissolved organic matter: Artifacts, definitions, and functions. Geoderma 
113:187–209. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

CHAPTER 3 

SURFACE WATER QUALITY AS AFFECTED BY SUGARCANE RESIDUE 
MANAGEMENT TECHNIQUES 

3.1 Introduction 

  Surface runoff from agricultural fields is one of the main routes of nonpoint source 

pollution. Of the approximately 22, 000 impaired surface waterbodies in the United States, 11 % 

are due to nutrients released through agricultural activities (USEPA, 2003). In Louisiana, 40-

50% of the water quality problems are caused by nonpoint sources (LDEQ, 2006). The principal 

components of agricultural nonpoint source pollution are sediments (suspended solids), organic 

residues, pesticides, nutrients (particularly nitrogen (N) and phosphorus (P)), and bacteria 

(Correl, 1998).  Excessive nutrients and sediments carried in agricultural runoff can accelerate 

eutrophication of surface waters, which could cause aggravated water pollution problems to the 

receiving waterbodies (Foy and Withers, 1995; Daniel et al., 1998).  

  Water quality is commonly evaluated using important parameters such as total suspended 

solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), total organic 

carbon (TOC), inorganic anions, and nutrients (N and P). The fate of these parameters in surface 

runoff from agricultural fields is greatly influenced by organic/inorganic amendment application 

(Jordan and Weller, 1996; Carpenter et al., 1998; Rostagno and Sosebee, 2001), and other land-

cover changes that encourage sediment losses (Woodward and Foster, 1997; Turner et al., 2004). 

The concentrations of these parameters in surface runoff may vary depending on the type of the 

agricultural practices employed. Most often, high N, P, organic C, and sediments concentrations 

have been observed in runoff from soils receiving prolonged organic manure application 

(Carpenter et al., 1998; Withers et al., 2002; Kleinman et al., 2004). In general, relationships 

existing among these key parameters play a vital role in water quality assessment. For instance, 
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sediments in runoff constitute the major potential for pollution from surface water flow (BMP, 

2000), and have been shown to be highly correlated with nutrients such as N and P species as 

well as pesticides, such as atrazine and alachlor in agricultural runoff (Sauer and Daniels, 1987; 

Suppnick, 1992; Tetra Tech, 1994; Clausen 1996; Udeigwe et al., 2007). Alternatively, soluble 

chemicals and nutrients may be dissolved by runoff water and carried directly through surface 

runoff to receiving waterbodies. In addition, increased runoff of biodegradable materials such as 

organic C from agricultural fields would in turn lead to increased BOD of the receiving 

waterbodies (Constable, 1979; Emery et al., 1971). The magnitude and forms of pollutant export, 

from agricultural systems to surface waters, to a large extent, depend on the management 

practices employed (McDowell and McGregor, 1984; Schreiber and Neumaier, 1987; Martin, 

2002). 

  Sugarcane, a major raw crop, employs unique production and management practices. 

Harvesting and residue management are important part of production processes that have direct 

impacts on agronomic output and environmental quality. The most often employed residue 

management practice is the ground burning of post-harvest green cane residues before sugarcane 

growth resumes. Because of the air quality implication and the associated decrease in soil 

fertility through loss of organic matter and nitrogen upon burning (Ceddia et al, 1999; Graham et 

al., 2002), full post-harvest retention of the green cane residue has been increasingly adopted 

(Boopathy et. al., 2001) for the past 10 years. On the other hand, the post-harvest retention of 

residue on the soil surfaces has been shown to reduce yield (Richards, 2001), and may release 

chemicals that are harmful to weeds (Chou, 2001) and sugarcane (Richards, 2001). The yield 

reduction arises from (1) the residue acting as an insulating blanket that reduces the emergence 

of shoot and (2) the decaying residue releasing chemicals that could also inhibit the germination 
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or emergence of roots and shoot bud (Sugarcane BMP, 2000). Other residue management 

techniques such as accelerated degradation of sugarcane residue by bacteria and fungi (Boopathy 

et al., 2001), and shredding of the residue to accelerate decomposition (Kennedy and Arceneaux, 

2006) have been recently proposed. However, the impacts of all these various practices on 

pollutant export and water quality have not been fully investigated. Thus, the aim of this study 

was to evaluate the effects of three sugarcane residue management practices, namely ground 

burning of residue (BR), full post-harvest retention of residue (RR), and shredding of residue 

(SR), on the water quality of surface runoff over the growing season. 

3.2  Materials and Methods 

3.2.1 Study Site and Treatment Application 

  The study was carried out in a continuous sugarcane production site at the LSU Agcenter 

Iberia Research Station farm, Jeanerette, Louisiana. Soil at the site was a Baldwin silty clay loam 

(fine, smectitic, hyperthermic Chromic Vertic Epiaqualfs), a representative soil type for 

sugarcane production in Southern Louisiana. The study consisted of three residue management 

treatments: ground burning of residue (BR) (check), full post-harvest residue retention (RR), and 

shredding of the residue (SR). Ground burning of the residue was implemented by using a 

controlled fire to burn the dry post-harvest residues on the rows in the open air. The full post-

harvest residue retention treatment was carried out by leaving the residues completely in the field 

after harvest. Shredding treatment of the post-harvest residue was achieved by the use of a 

mechanical shredder mounted on a tractor. The dried residues were gathered and placed in the 

shredder to obtain a reduction in the size of the residue particle by an 8:1 ratio, after which the 

shredded residues were then evenly distributed. All the treatments were replicated two times in 

completely randomized design, consisting of equal plots of three 100ft rows (100 x 12ft)  
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Fig.3.1   A schematic field plan of the experimental design. BR, ground burning of residue; SR, shredding of residue; RR, full post-harvest 
              residue retention. 
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(Fig.3.1). The plot rows were of ‘raised bed’ type, designed to enhance directional flow of runoff 

water, minimizing lateral movement. Plots were bordered by additional crop rows to prevent 

contamination among adjacent treatments. Each plot was designed to discharge into its own 

water collection device with three rows draining into one outlet. 

3.2.2 Equipment and Runoff Water Collection 

  Runoff water samples from the rainfall events were collected using ISCO 6712 full-size 

automated samplers (ISCO, Lincoln, NE). The discharge end of each plot was connected with an 

area-velocity flow meter to activate and control the sampler to periodically withdraw composite 

sub-samples from the runoff. Effluent samples from each plot were collected in clean plastic 

bottles and effort was made to collect water samples within 24 hours of a rainfall event. Runoff 

samples from 24 rainfall events were collected from January, 2006 to September, 2007. 

Collected runoff samples were kept at 4°C in coolers packed with ice and transported to the 

laboratory. The runoff samples were quickly separated into subsamples and transferred to clean 

plastic bottles, immediately analyzed and/or stored in the refrigerator at 4°C till analyses. All 

runoff samples were subjected to the applicable holding time, preservation, and storage as listed 

in Table 3.1. 

3.2.3 Runoff Water Analysis 

   For the laboratory analyses, the various parameters, namely total suspended solids(TSS), 

turbidity, total dissolved solids (TDS),  total Kjeldahl nitrogen (TKN), nitrate-N, nitrite-N, 

chloride, bromide, sulphate, total phosphorus (TP), and five-day biochemical oxygen demand 

(BOD5) were determined for collected runoff samples using EPA approved analytical methods 

(see Table 3.1). Quality control (QC) measures were applied in the course of the sample analysis. 
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Table 3.1   Water sample analysis method, maximum holding time, preservation, and storage requirement 
 

Parameter Method Holding Time(d) Volume(ml) Container Preservation Storage
Total suspended solids (TSS) EPA 160.2 7 500 Plastic NA 4°C
Turbidity EPA 180.1 2 500 Plastic NA 4°C
Total dissolved solids (TDS) EPA 160.1 7 500 Plastic NA 4°C
Total kjeldahl nitrogen (TKN) EPA 351.2 28 500 Plastic H2SO4 to pH 2 4°C
Nitrate-N (NO3-N) EPA 300 28 500 Plastic H2SO4 to pH 2 4°C
Nitrite-N (NO2-N) EPA 300 28 500 Plastic H2SO4 to pH 2 4°C
Chloride (Cl-) EPA 300 28 500 Plastic NA 4°C
Bromide (Br-) EPA 300 28 500 Plastic NA 4°C
Sulphate (SO4

-2) EPA 300 28 500 Plastic NA 4°C
Total phosphorus (TP) EPA 365.2 28 500 Plastic H2SO4 to pH 2 4°C
Five-day biochemical oxygen demand (BOD5) EPA 405.1 2 500 Plastic NA 4°C
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3.2.4 Statistical Analyses 

  All statistical analyses were performed using the Statistical Analysis Software Version 

9.1 (SAS Institute, 2003).  Treatment means were evaluated using PROC GLM. Within pairs 

treatment comparison was done by PROC TTEST. The PROC REG procedure was used to 

establish the relationships among variables. 

3.3  Results and Discussion 

3.3.1 Rainfall Distribution and Runoff Characteristics 

  The mean annual rainfall of the study site was approximately1600 mm (NWSFO, 2007). 

Rainfall amounts on sampling days varied from 17.5 mm to 127 mm with averages of 35.0 and 

47.1 mm for 2006 and 2007 respectively (Fig. 3.2). The highest precipitation recorded during the 

2006 sampling period was 67 mm that occurred on July 11, whereas the 127-mm rainfall on June 

12 was the highest recorded in 2007 (Fig. 3.2). About 40% of the runoff events occurred between 

the months of June and July in both years. The rainfall recorded within this period also 

accounted for over 50% of the total rainfall amount recorded in each year.  

  The total runoff volumes over the study period (2006-2007) differed among the 

treatments, but were not statistically significant (P > 0.05) (Fig. 3.3). Total runoff volumes 

recorded were 58418, 57923, and 46578 liters for the BR, SR and RR treatments respectively. A 

closer look indicates that the SR treatment had the highest runoff volumes in half of the runoff 

events in 2006, while the BR had the highest runoff volumes in 67% of runoff events in 2007.  

The results could suggest a more pronounced effect on runoff volume upon successive burning 

practice. Burning induces a water-repellent layer caused by drying out of the mixture of partially 

decomposed organic matter of the upper soil horizon (DeBano et al., 1998, Robichaud, 2001). 

This alteration results to modification in infiltration rate, runoff, and rain-drop splash (Terry and  
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Fig. 3.2   Precipitation distribution over the study period (February, 2006 to September, 2007) 
 
 

 
Fig. 3.3   Runoff volume distribution for the three sugarcane residue management techniques over the study period (2006-2007) 
      BR, ground burning of residue; SR, shredding of residue; RR, full post-harvest residue retention 
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Fig. 3.4   Precipitation-runoff volume relationship for the 3 residue management techniques  
               over the study period for (A) BR, (B) RR, and (C) SR treatments. 
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Shakesby, 1993; DeBano, 1999), and the soil microclimate. The hydrophobic surface formed 

could decrease soil hydraulic conductivity by 10-40%, leading to the increased surface runoff as 

observed for the BR treatment in the second year of the study (2007).  Overall, ≥ 50% of the 

variability associated with runoff volumes recorded during the entire study for each treatment 

could be explained by precipitation (Fig. 3.4). Such direct relationship between runoff volume 

and rainfall amount as observed in this study is consistent with those reported for other soils and 

agricultural systems (Schaake et al., 1996; McCuen and Snyder 1986; Markus and Baker 1994). 

3.3.2 Management Impacts On Surface Water Quality and Pollutant Loads 

  The concentration averages and ranges of the various water quality parameters of surface 

runoff per rainfall event during the 2-year experimental period are summarized in Table 3.2. The 

three residue management practices evaluated showed similar impacts on the average TDS 

concentration (~360 mg L-1) during the study period. However, the BR treatment yielded higher 

average TSS concentration (1757 mg L-1), followed by the RR (1883 mg L-1), and then the SR 

(1629 mg L-1). The TSS trend also reflected on the turbidity, TP, and TKN, suggesting close 

relationships among these parameters (Udeigwe et al., 2007). On the other hand, the RR 

treatment exhibited slightly higher BOD5 and average total N (summation of TKN, NO3-N and 

NO2-N) than the BR and the SR treatments. The concurrent association between BOD5 and total 

N has been observed on a wide range of simulated waters (see chapter 5). It should be noted that 

due to the large differences in rainfall events which led to large differences in runoff volumes, 

the concentration ranges of these parameters were broad (Table 3.2). Similar variations in TSS, 

TDS and BOD5 concentrations over the growing season have been reported in runoff from corn, 

soybean and other agricultural fields (Jordan et al., 2003; Schreiber et al., 1987; Qu et al., 1999). 
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Table 3.2   Concentration average and range of selected runoff parameters from the three 
                  sugarcane residue management techniques (n = 24)‡  

 

This finding is consistent with those of other researchers who reported that variability in the 

runoff concentration of nutrients is explained by the interaction of climatic and soil factors 

(Cassell et al., 1998; Gburuk et al., 2002; Quinton et al., 2001; Edwards et al., 2000). Overall, 

there was no significant treatment effect on the runoff concentrations of all the selected water 

quality parameters (Table 3.2). 

 The effect of residue management schemes on water quality was further evaluated by 

comparing total loads exported per unit area during the entire period (Table 3.3). The total load 

values were expressed in kg ha-1. Among all the parameters evaluated, significant treatment 

effect was observed on TKN load (Table 3.3). Both RR and SR treatments exported significantly 

lower TKN than the BR treatment (P< 0.05). The lower TKN output from the RR and SR 

treatments could be partly attributed to lower total runoff volumes as well as the fact that these 

treatments, especially the RR, would tend to sequester soluble nitrogen than the BR treatment 

Treatment
Parameter BR RR SR
Runoff vol., L 2434 (301-8580) 1941 (263-7114) 2413 (387-8869)
Turbidity, NTU 1997 (398-5669) 1735 (207-3865) 1627 (182-3882)
TDS, mg L-1 360 (87-1275) 354 (80-1188) 360 (67-1227)
TSS, mg L-1 1957 (260-5840) 1883 (137-7347) 1629 (284-5657)
BOD5, mg L-1 6.28 (1.95-21.3) 7.26 (3.18-37.8) 6.21 (2.82-17.6)
TKN, mg L-1 2.50 (0.11-16.2) 2.11 (0.11-11.7) 1.63 (0.06-5.54)
TP, mg L-1 1.06 (0.03-3.39) 0.93 (0.03-3.47) 0.67 (0.02-2.70)
Nitrite-N, mg L-1 0.11 (0.00-0.78) 0.10 (0.00-0.31) 0.11 (0.00-0.37)
Nitrate-N, mg L-1 4.80 (0.15-19.8) 5.30 (0.16-22.7) 4.84 (0.08-24.4)
Chloride, mg L-1 8.74 (2.19-42.1) 9.05 (1.37-51.4) 10.78 (1.45-79.1)
Sulfate, mg L-1 8.27 (1.41-16.1) 7.21 (2.01-13.2) 6.44 (1.43-12.3)
‡BR, ground burning of residue; RR, full post-harvest residue retention; SR, shredding of residue; 
TSS, total suspended solids; TDS, total dissolved  solids; BOD5, five-day biochemical  oxygen demand;
TKN, total kjehdahl nitrogen;  TP, total phosphorus
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(Southwick et al., 2001).  Although not statistically different, the RR treatment exported lower 

TSS, TDS, BOD5, TP, nitrate-N, nitrite-N, chloride and sulfate among the three residue 

management practices. Both BR and SR exported higher total TSS, but the SR also yielded 

greater TDS, which reflected in more chlorides and sulfates. 

  To further illustrate the impact of the different residue management schemes on surface 

water quality, the cumulative loads from the runoff events before and after “layby” application 

for 2006 and 2007 seasons were compared in Fig. 3.5 and Fig. 3.6 respectively. “Layby” 

application is the last field cultivation in Spring for fertilizer and pesticide application. The 

application disturbs surface soil and could change the treatment responses. For this reason, 

cumulative export before and after “layby” application are separated in Fig. 3.5 and Fig. 3.6.  

Five key water quality parameters, namely TDS, TSS, BOD5, TKN and TP were selected for this 

comparison. For 2006, the SR technique, to some extent, exhibited higher TSS, TDS, BOD5 and 

TKN exports before the “layby” and this trend was fairly maintained after the “layby” 

application (Fig. 3.5). The BR treatment had higher TP export than the SR in 2006 before 

“layby” application, but was gradually surpassed by the SR treatment after “layby”. The trend 

suggests that “layby” application had no pronounced effect on the trend of these parameters 

except for TP, among the residue management practices. For 2007, the SR treatment also had 

higher TDS and BOD5 exports , whereas the BR technique exhibited higher export in TSS and 

TP before “layby”. However, after “layby” the BR had higher export in all the selected 

parameters, especially TSS, and this was likely caused by the intense precipitation of 127mm 

recorded on June 12, which led to a high runoff volume. These results suggest that the BR 

treatment was likely subjected to higher rates of soil erosion and runoff than the other treatments 

after “layby” cultivation under intense rainfall, a situation that occurs often in Southern  
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Table 3.3   Total Load in surface runoff from the three sugarcane residue management techniques. Each value is the sum of the loads 
                  from 24 runoff events (2006 and 2007) ‡  

 

 
 

 

 

 

TSS TDS BOD5 TKN Total P Nitrite-N Nitrate-N Chloride Sulfate
Treatment

BR 11051a 1495a 27.1a 11.7a 5.68a 0.60a 31.6a 33.5a 37.7a
RR 6855a 1435a 23.7a 7.5b 3.51a 0.41a 27.3a 27.4a 29.6a
SR 11007a 1950a 35.7a 7.4b 3.99a 0.73a 29.7a 47.2a 39.2a

‡BR, ground burning of residue; SR, shredding of residue; RR, full post-harvest residue retention; TSS, total suspended solids;
TDS, total  dissolved solids; BOD5, five-day biochemical  oxygen demand; TKN, total Kjehdahl nitrogen.
Mean values in a column (for a given year) with the same letter are not statistically different (Fisher's LSD, α = 0.05)

----------------------------------------------------------kg ha-1--------------------------------------------------
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Fig. 3.5  2006 cumulative pollutant export over the growing season for (A) total dissolved solids 
               (TDS), (B) total suspended solids (TSS), (C) five-day biochemical oxygen demand 
              (BOD5), (D) total Kjehdahl nitrogen (TKN), and  (E) total phosphorus (NS = no sample) 
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Fig.3.6   2006 cumulative pollutant export over the growing season for (A) total dissolved solids 
              (TDS), (B) total suspended solids (TSS), (C) five-day biochemical oxygen demand  
              (BOD5), (D) total Kjehdahl nitrogen (TKN), and  (E) total phosphorus.   
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Louisiana. Overall, while the burning of the post harvest residue likely created more water-

repellent surfaces that led to higher runoff loads in TSS assisted by high runoff volumes  

(Robichaud, 2000), shredding of residues tended to create more erodible materials as a result of 

reduced particle size, leading to higher runoff volumes and also higher TSS. In addition, between 

the RR and the SR treatments, shredding could also facilitate the release of soluble nutrients that 

could lead to higher loads in TDS. Notwithstanding, the behavior exhibited by the BR treatment 

after layby application in 2007 was not significantly different (P > 0.05). 

3.3.3 Relationships Among Water Quality Variables 

  The development of predictive relationships among water quality variables is an essential 

tool in water quality assessment. In this study, highly significant relationships existed between 

rainfall amount and the exports of TSS, BOD5, TKN, TP, nitrite-N, nitrate-N, and sulfate in each 

treatment (Table 3.4).  The strengths of these relationships between the various parameters and 

rainfall amount were generally stronger in the BR treatment. Comparison of the slope of the 

equations shows that an increase in rainfall amount by 1 unit would increase runoff TSS load by 

437 units for the BR treatment, and by 237 and 273 units for the RR and SR treatments 

respectively. Likewise, a unit increase in rainfall amount would increase TP in runoff by 0.31, 

0.16, and 0.14 units for the BR, RR, and SR treatments respectively. Furthermore, a unit increase 

in rainfall amount resulted to a 1.0 (for BR), 0.7(for RR), and 0.9 (for SR) unit increase in BOD5. 

Similar trend of response to rainfall amount was also noted for TKN, nitrate-N, and sulfate 

export (Table 3.4).  

  Various researchers have shown that increased sediment runoff would result in increased 

pollutants load to the receiving waterbodies (Korsching and Nowak, 1983, Sammori et al., 2004;  
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Table 3.4    Linear regression equations and coefficients (R2) for the relationships between load (of each runoff parameter) and 

       rainfall amount in each treatment (n = 24)‡  

 
 
 
 
 
 
 

Regression equation R 2 Regression equation R 2 Regression equation R 2

TDS TDS = 29.0(Ra) + 15.40    0.25* TDS = 34.23(Ra) + 4.48 0.23* TDS = 25.9(Ra) + 22.6 0.16
TSS TSS = 437(Ra) + 246    0.56** TSS = 237(Ra) + 96.6 0.58*** TSS = 273(Ra) - 72.4 0.40**
BOD5 BOD5 = 1.01(Ra) + 0.49    0.66*** BOD5 = 0.72(Ra) + 0.13 0.60*** BOD5 = 0.90(Ra) - 0.28 0.56**
TKN TKN = 0.59(Ra) - 0.47    0.50*** TKN = 0.24(Ra) - 0.07 0.37** TKN = 0.09(Ra) - 0.13 0.09
Total P (TP) TP = 0.31(Ra) - 0.26    0.43*** TP = 0.16 (Ra) - 0.10 0.42*** TP = 0.14(Ra) - 0.11 0.52***
Nitrite-N (NO3-N) NO3-N = 0.04(Ra) - 0.04    0.68*** NO2-N = 0.02 (Ra) - 0.02 0.61*** NO2-N = 0.03 (Ra) - 0.02 0.59***
Nitrate-N (NO2-N) NO2-N = 1.61(Ra) - 1.29    0.47*** NO3-N = 1.29(Ra) - 0.95 0.48*** NO3-N = 1.00(Ra) - 0.58 0.31*
Bromide (Br) Br = 0.11(Ra) - 0.12    0.65*** Br = 0.04(Ra) - 0.04 0.43*** Br = 0.05(Ra) - 0.07 0.53***
Chloride (Cl) Cl = 0.71(Ra) + 0.24    0.27* Cl = 0.40(Ra) + 0.49 0.16 Cl = 0.77(Ra) - 0.48 0.24*
Sulfate (SO4) SO4 = 1.19 (Ra) + 0.35    0.51*** SO4 = 0.72(Ra) + 0.08 0.31* SO4 = 0.80(Ra) + 0.12 0.24*
‡BR, ground burning of residue; SR, shredding of residue; RR, full post-harvest residue retention; TSS,total suspended solids; TDS, total dissolved solids; 
BOD5, five-day biochemical oxygen demand; TKN, total Kjehdahl nitrogen;
* Significant at 0.05 probability level
** Significant at 0.01 probability level
*** Significant at 0.001 probability level

BR RR SR
Rainfall amount (Ra)
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Udeigwe et al., 2007). A highly significant (R2 = 0.95, P < 0.001) linear relationship (Fig. 3.7) 

existed between TSS and turbidity of runoff waters during the entire study period.  This 

relationship suggests that TSS was the major contributor to the turbidity of these runoff waters, 

and turbidity could be used to estimate suspended solids concentration in surface runoff from 

sugarcane fields. The strength of the TSS-turbidity relationship obtained in this study was 

stronger than those obtained for river waters (R2 = 0.43 -73) (Weigel, 1994), and similar to those 

obtained for streams (R2 = 0.89 - 0.90) (Christensen et al., 2001). The relationships among the 

other water quality parameters evaluated were generally weak (R2 ≤ 0.26). Overall, these results 

suggest that under similar climatic and soil conditions, the BR treatment could be more sensitive 

to rainfall amount, leading to increased pollutant export to the receiving waterbodies. 

 

 

Fig. 3.7   Relationship between total suspended solids (TSS) and turbidity of surface runoff from  
               all three sugarcane residue management techniques.     
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3.4 Conclusions 

  This study evaluated the impacts of three sugarcane residue management techniques on 

the water quality of surface runoff. Runoff volumes recorded for each residue management 

practice showed no definite trend over the study period (2006-2007). Total runoff volumes 

recorded were 58418, 57923, and 46578 liters for the BR, SR and RR treatments respectively, 

but they were not statistically significant (P ≥ 0.05). The results from this study indicated that 

rainfall amount significantly explained ≥ 50% of the variability associated with runoff volume in 

each residue management practice. Runoff concentration of the various water quality parameters 

varied over the sampling period within each treatment. The BR treatment yielded higher average 

TSS concentration than the RR and SR treatments, and the TSS trend also reflected on the 

turbidity, TP, and TKN, suggesting close relationships among these parameters. Overall, the 

effects of these treatments on the runoff concentration of these parameters were not significantly 

different. Although not statistically different, the RR treatment exported lower TSS, TDS, BOD5, 

TP, nitrate-N, nitrite-N, chloride and sulfate among the three residue management practices. The 

latter was attributed to a combination of higher runoff volumes and the presence of easily-

washed burnt/shredded residue cover associated with the BR and SR techniques. Layby 

application did not impact pollutant export trend in 2006. However, the BR treatment exhibited a 

higher runoff volume and pollutant export after “layby” application in 2007, suggesting it was 

likely subjected to higher rates of soil erosion and runoff than the other treatments after “layby”.

 Rainfall amount was positively correlated with TSS, BOD5, TKN, total P, nitrite-N, 

nitrate-N and bromide load. The strength of these relationships between the various parameters 

and rainfall amount was generally higher in the BR treatment, particularly for BOD5, TKN, 

nitrite-N and sulfate. A significant linear relationship existed between runoff TSS and turbidity 
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measurements (R2 = 0.95, P < 0.001). Overall, the study revealed that neither of the two residue 

management techniques (RR and SR) designed was successful in mitigating the problems 

associated with the customary residue burning (BR) often employed by the farmers. However, 

the RR techniques reflected lower TSS, BOD5, TP and inorganic anions export during the study 

period. 
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CHAPTER 4 

IMPACTS OF SUGARCANE RESIDUE MANAGEMENT PRACTICES ON CARBON 
EXPORT AND PYROLYSIS GC/MS INVESTIGATION OF THE CHEMICAL 

COMPOSITION OF ORGANIC MATTER IN RUNOFF SEDIMENTS 

4.1 Introduction 

  Runoff of sediment and nutrients resulting from agricultural activities has been 

recognized as one of the main causes of surface water impairment in the U.S (USEPA, 2003). 

Nutrients released from agricultural fields to waterbodies can stimulate the growth and decay of 

aquatic plants, which could lead to increased organic carbon and oxygen demand (Edwards and 

Daniel, 1992; Heathman et al., 1995; Carpenter et al., 1998). Organic carbon is also exported 

directly from agricultural fields to waterbodies in particulate and dissolved forms resulting to 

increased microbial population and oxygen demand, leading to eutrophication.  The magnitude 

of this export among other factors, depends on the type of agricultural practice employed 

(McDowell and McGregor, 1984; Schreiber and Neumaier, 1987; Martin, 2002). 

  Carbon along with total sediment input has major influences on ecosystem metabolism 

and light penetration (Gladden et al., 1988; Stross and Sokol, 1989). Particulate organic carbon 

(POC) has been considered as an active organic carbon pool that participates in the release of 

nutrients in cultivated areas (Gambardella and Elliott, 1992; Magid et al., 1996). Dissolved 

organic carbon (DOC) on the other hand often accounts for only a small proportion of the total 

organic carbon (McGill et al., 1986), but has a great influence on soil biological activities (Xu 

and Juma, 1993; Flessa et al., 2000). The DOC fraction serves as a chief source of microbial 

substrate (Jansson et al., 2000), and  also affects the transport of heavy metals and organic 

pollutants from the soil to surface water because of its ability to complex these materials 

(Tipping, 1993; Romkens and Dolfing, 1998).  
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 Various studies have shown that the forms and amount of carbon export are influenced 

by the size and composition of organic matter pool, which is influenced by management 

practices such as liming (Anderson et al., 1994, 2000), mineral fertilization (Rochette and 

Gregorich, 1998; Chantigny et al., 2000), and organic amendment (Leinweber et al., 1995).  In 

general, higher export of organic carbon would be expected from areas of intensive agricultural 

practices, where as minimum and no-till conservation practices would limit carbon export by 

reducing sediment and nutrient losses (McDowell and McGregor, 1984). On the other hand, 

studies also revealed that more soluble nutrients, including carbon, were found in runoff from 

no-till practices, especially when crop residues were left on the soil surfaces (McDowell and 

McGregor, 1984). In both conventional and no till system, corn stover left after harvest 

contributed immensely to the total organic carbon (TOC) concentration in runoff (Schreiber and 

McGregor, 1979). The conflicting evidence on carbon export suggests that the exact factors   

influencing carbon mobility under different tillage systems is still unclear. This may indicate that 

that land use and management practices alone are insufficient when characterizing organic 

carbon export, since environmental and soil factor interact at the same time (Graeme et al., 1998) 

Despite the influence on water quality, organic carbon export from agricultural fields has not 

been given much attention as nutrients such as nitrogen or phosphorus export. While the effects 

of agricultural practices on soil organic matter composition have been documented in various 

agricultural systems (Dieckow et al., 2006), there is little information on management impacts on 

organic matter composition and structure in surface water runoff. The latter directly affects the 

water quality of aquatic systems (Romkens and Dolfing, 1998; Jansson et al., 2000) 

  Sugarcane production is one of the major industries in Louisiana with an annual 

contribution valued at $600 million (Sugarcane BMP, 2000). In an attempt to maximize yield 
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and protect the environment, residue management techniques have become a subject of research 

interest in sugarcane production. In general, the commonly employed residue management 

techniques are ground burning of residue, and full-post harvest retention of the residue. The 

ground burning of residue, which is most often used approach in Louisiana, has been noted for 

air quality impairment and decreased soil fertility through loss of organic matter and nitrogen 

(Boopathy et. al., 2001). On the other hand, the post-harvest retention of residue on the soil 

surface has been shown to reduce sugarcane yields (Richards, 2001).Other residue management 

techniques such as accelerated degradation of sugarcane residue by bacteria and fungi (Boopathy 

et al., 2001), and shredding of the residue to accelerate decomposition are also being 

experimented for economic benefit. However, the impacts of these management practices on 

pollutant export and surface water quality have not been fully investigated.  

 The chief objective of this study was to evaluate the impact of three sugarcane residue 

management practices namely ground burning (BR), full post-harvest retention (RR), and 

shredding of residue (SR) on the forms and amount of carbon exported in surface runoff. The 

forms of runoff carbon evaluated include total carbon (TC), total organic carbon (TOC), 

dissolved organic carbon (DOC), and particulate organic carbon (POC). Furthermore, the organic 

matter composition of the runoff sediments from the three residue management techniques was 

also characterized using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) 

techniques.  

4.2 Materials and Methods 

4.2.1 Study Site and Treatment Application 

  The study was carried out in a continuous sugarcane production site at the LSU Agcenter 

Iberia Research Station farm, Jeanerette, Louisiana. Soil at the site was Baldwin silty clay loam 
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(fine, smectitic, hyperthermic, chromic Vertic Epiaqualfs), a representative soil type for 

sugarcane production in Southern Louisiana. The study consisted of three residue management 

treatments: ground burning of residue (BR) (check), full post-harvest residue retention (RR), and 

shredding of the residue (SR). Ground burning of the residue was implemented by using a 

controlled fire to burn the dry post-harvest residues on the rows in an open air. The full post-

harvest residue retention treatment was carried out by leaving the residues completely in the field 

after harvest. Shredding treatment of the post-harvest residue was achieved by the use of a 

mechanical shredder mounted on a tractor. The dried residues were gathered and placed in the 

shredder to obtain a reduction in the size of the residue particle by an 8:1 ratio, after which the 

shredded residues were then evenly distributed. All the treatments were replicated two times in 

completely randomized design, consisting of equal plots of three 100ft rows (100 x 12ft) 

(Fig.3.1). The plot rows were of ‘raised bed’ type, designed to enhance directional flow of runoff 

water, minimizing lateral movement. Plots were bordered by additional crop rows to prevent 

contamination among adjacent treatments. Each plot was designed to discharge into its own 

water collection device with three rows draining into one outlet. 

 4.2.2 Soil Analysis 

  Soils were sampled on all the plots before treatments were imposed. The collected soil 

samples were analyzed for pH, cation exchange capacity, organic matter, available phosphorus, 

total nitrogen, and carbon using standard analytical methods. Core samples were taken from each 

treatment plot 4 months after treatment application at 4 different depths: 0-2.5cm, 2.5-7.5cm, 

7.5-15cm, and 15-30cm. The samples were analyzed for total carbon and nitrogen using Tru 

Spec TM Carbon/Nitrogen analyzer. For dissolved organic carbon determination, 10g sample was 

extracted with 30 ml distilled water. After shaking overnight in a reciprocal shaker, the resulting  
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Fig. 4.1   A schematic field plan of the experimental design. BR, ground burning of residue; SR, shredding of residue; RR, full post-harvest 
                residue retention. 
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suspension was centrifuged and filtered using a 0.45µm membrane filter (Whatman 25 mm 

GD/X Syringe Filter). An aliquot of the filtrate (20 ml) was analyzed for DOC using a Total 

Organic Carbon Analyzer (Shimadzu TOC-VCSH, Kyoto, Japan) 

4.2.3 Runoff Water Collection and Analysis 

  The runoff water from each plot was collected by using an ISCO 6712 full-size 

automated sampler (ISCO, Lincoln, NE). Discharge end of each plot was connected with an 

area-velocity flow meter to activate and control the sampler to periodically withdraw composite 

sub-samples from the runoff. Effluent samples from each plot were collected in clean plastic 

bottles within 24 hours of a rainfall event. A total of 12 runoff samples were collected from 

January-September, 2007. Collected samples were kept at 4°C in coolers packed with ice and 

transported to the laboratory for analysis. 

    The runoff samples were directly analyzed for total carbon (TC), and total organic 

carbon (TOC) using the Total Organic Carbon Analyzer. The instrument measured total carbon 

(TC), and inorganic carbon (IC), and TOC fraction was calculated as the difference between TC 

and IC. For the DOC analysis, the runoff water samples were passed through 25 mm glass fiber 

filters with effective pore size of 0.7 µm using a pressure filtration technique (USGS, 2000), and 

the filtrate was analyzed for dissolved organic carbon (DOC). Particulate organic carbon (POC) 

was calculated as the difference between TOC and DOC. 

4.2.4 Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC/MS) Analysis 

  Selected runoff samples collected in January, May, and September were also 

characterized for its organic carbon composition using Py-GC/MS. This technique has been 

widely used in characterizing the structure and composition of soil organic matter (Hatcher et al., 

1994; McKinney et al., 1996; Chafetz et al., 2000). The selected samples were centrifuged and 
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the sediment fraction separated and freeze dried. Resulting samples were treated with 

tetramethylammonium hydroxide (TMAH) at 1/10, w/w ratio, according to a  procedure 

described by Hatcher and Clifford (1994). Specifically, about 1mg of the dried runoff sediment 

sample was placed in a quartz tube and moistened with 10 µl of TMAH (25% w/w in methanol). 

The treated sample was left to dry for 24 hours and then inserted into the pyroprobe (Pyroprobe 

5000 Series, CDS Analytical Inc., Oxford, Pennsylvania, USA). Samples were then heated at 

620 °C for 20 s. Thermochemolytic products were separated by a Varian 3900 gas 

chromatograph (Varian Inc., Palo Alto, California, USA) coupled to a Varian 2000 ion trap mass 

spectrometer, using a Varian factorFour VF-5MS capillary column coated with poly (5% 

diphenyl/95% dimethyl) siloxane stationary phase (30 m, 0.25 mm i.d, 0.25 µm film thickness). 

The gas chromatograph oven temperature was programmed from 40 °C (for 2 minutes) to 300°C 

at 8°C for 10 minutes with a constant helium flow of 1.4 ml/min. Injector and detector were 

maintained at 300 and 280°C respectively. The mass spectrometer operated in a full scan mode 

in the m/z range of 45-600, and by electron impact ionization energy of 70ev at 1 scan s-1. 

Another set of samples without TMAH treatment were also analyzed. Identification of pyrolysis 

products was based on the comparison of the collected spectra with those of standard compounds 

in the NIST 2005 mass spectral library (National Institute of Standards and Technology, 

Gaithersburg, Maryland, USA), and already existing literature.  

 4.2.5 Statistical Analyses 

 All statistical analyses were performed using the Statistical Analysis Software Version 

9.1 (SAS Institute, 2003). Treatment effects on the amount and form of carbon in surface runoff 

were evaluated using PROC GLM, and relationships among variables were evaluated using 

PROC REG. 
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4.3 Results and Discussion 

4.3.1 Soil Characteristics 

  The soil type of the study site was a silty clay loam. Soil pH of the experimental plots 

ranged from 5.4 to 5.8 with an average of 5.6. Organic matter content ranged from 20.0 to 22.0 g 

kg-1 with an average of 21.3 g kg-1, while cation exchange capacity (CEC) ranged from 27.2 to 

33.3 cmol kg-1 with an average of 31.0 cmol kg-1. Total nitrogen (TN) ranged from 0.15 to 0.17% 

with an average of 0.16%. Mehlich III-extractable P ranged from 53 to 125 mg kg-1 with an 

average of 95 mg kg-1. Table 4.1 shows the effects of the residue management techniques on soil 

carbon and nitrogen levels. The results were based on core samples collected at different depths; 

five months after treatments were imposed. In general, TOC, DOC, and TN within each soil 

profile decreased from the surface layer down to the bottom depth (30 cm) in all the treatments 

(P < 0.05), a result consistent with that observed for most agricultural  soils  as reported by 

others (Paul et al., 2001; Tantely et al., 2006).  Major differences in TOC, DOC and TN among 

the different treatments occurred within the  0-2.5cm soil depth, and this  was likely due to the 

direct contact of surface layer with the treatments. The SR treatment yielded the highest TOC, 

DOC, and TN in the surface horizon (0-2.5 cm), followed by the RR, and then the BR treatment 

(Table 4.1). The differences among these treatments were more apparent in their DOC 

concentration. These results suggest that the shredding of the post-harvest residues facilitates 

decomposition and release of carbonaceous materials into the soil, leading to an increase in 

organic C than the residue retained without shredding. On the other hand, the lower TOC, DOC, 

and TN concentrations associated with the BR treatment was likely due to the emission of C and 

N to the atmosphere in the form of CO, CO2,CH4 and NOx during the process of burning  



68 
 

 
 
 
 
 
 
 
Table 4.1   Sugarcane residue treatment effect on selected soil properties at different sampling depths§ 

 

 

 

TOC DOC TN

Depth (cm) BR RR SR BR RR SR BR RR SR
0-2.5 13.05a 19.20a 24.50a 45.6aB‡ 61.7aB 88.6aA 1.52a   1.75a   1.79a

2.5-7.5 12.30a 11.80b 12.50b   38.6ab 31.7c 39.1b 1.57a   1.52b   1.50b
7.5-15 11.60a 12.00b 12.55b   37.5ab   34.6bc 40.2b 1.61a   1.50b   1.51b
15-30 9.27b 11.00b 10.75b 32.0b 44.9b 35.6b 1.34a   1.47b   1.37b

TC, Total Organic Carbon; TN, Total Nitrogen.
Mean values in a column within a treatment with the same lowercase letter and mean values in a row across treatments with the same 
uppercase letter are not statistically different (Fisher's LSD, α = 0.05)

§BR, ground burning of residue; SR, Shredding of residue; RR, full post-harvest residue retention; DOC, Dissolve Organic Carbon; 

----------------g/kg---------------- ----------------mg/kg---------------- ----------------g/kg----------------
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(Kuhlbusch, 1998). In a different study, Larsen et al. (1998) also reported that post-harvest 

sugarcane residue burning resulted to a greater loss in total carbon and labile carbon at a depth of 

0-1 cm than green trash management. The treatment effects on soil carbon and nitrogen were 

generally less apparent below 2.5 cm depth. The significant differences in C and N contents of 

the surface soils caused by these different residue management practices could influence carbon 

export through surface runoff.  

4.3.2 Runoff Characteristics 

  Rainfall amounts recorded varied from about 25 mm to 127 mm per event, with the 

highest amount of 127 mm recorded on July 13. The mean annual rainfall of the area was 

approximately1600 mm, and most of the rainfall (about 65%) occurred within April and 

September. In addition, the average monthly temperature of the study area during the sampling 

period was between 52 °F (January) to 83 °F (August), and average daily temperature variation 

was between 20°F -22°F from February to May and between 16°F – 18°F from July to 

September (NWSFO, 2007).  Runoff volumes from the treatment plots showed no definite trend 

over the sampling period (Fig. 4.1). However, the runoff volume was positively correlated to 

rainfall amount for each treatment (R2  ≥  0.75,  P< 0.01) (data not shown). Such direct 

relationship between runoff volume and rainfall amount as observed in this study has been 

reported by other researchers (Schaake et al., 1996; McCuen and Snyder 1986; Markus and 

Baker 1994). Over all, the BR treatment recorded higher runoff volumes in more than 60% of the 

rainfall events followed by the SR and the RR treatments.  This could be attributed to the less 

surface cover created by burning of cane residues, hence less water was trapped to infiltrate into 

the soil, thereby leading to an increased surface water runoff. On the other hand, the larger runoff 

volume could be also due to the hydrophobic or water-repellent soil condition created by the 
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burning of the crop residue which induced greater runoff rates. Total runoff volumes recorded 

for the BR, SR and SR were 30000, 24633 and 22121 L respectively during the study period of 

January to September, 2007 (Fig. 4.2). However, there was no significant treatment effect on 

runoff volumes. Nonetheless, lower runoff volume would be expected from the RR and SR 

treatments due to the strong water absorbing capacity of crop residues (Southwick, 2001). 

 

 

Fig. 4.2   Runoff volume recorded for the three sugarcane residue management schemes over the  
           study period (January to September, 2007). BR, ground burning of residue; SR, 
               shredding of residue; RR, full post-harvest residue retention. 

     

4.3.3 Residue Management Techniques Impacts on Carbon Export and Distribution 

  The concentration data of the various carbon forms exported in surface runoff for the 

three residue management techniques over the sampling period (January to September) are 

shown in Table 4.3. There was no observed seasonal trend in the concentrations of the different 

carbon forms evaluated.  A similar situation was also documented by  Howarth et al. (1991), who 

observed no clear seasonal pattern in TOC and total organic N of agricultural effluents from  

different land use managements. Total carbon concentration in runoff samples ranged from 18.0 
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Table 4.2    Concentrations of the various carbon forms exported in surface runoff for the three residue management schemes over the  
                   experimental period. Data presented are the averages of two replicate plots‡ 

  
           

TC TOC DOC POC TC TOC DOC POC TC TOC DOC POC
Sampling Date

J4 35.1 34.5 8.2 21.3 30.7 29.7 9.1 20.6 28.2 27.3 9.5 17.8
J21 18.9 17.8 7.9 9.9 19.0 17.9 9.4 8.6 22.0 21.5 12.5 9.0

M14 38.2 37.0 18.8 18.2 36.1 35.6 21.0 14.7 29.3 28.7 15.9 12.8
A10 30.2 29.4 9.5 19.8 34.7 33.9 11.3 22.6 35.2 34.4 10.9 23.6
M3 44.4 43.8 9.6 34.1 33.8 33.1 11.1 21.9 40.7 40.0 10.3 29.7
J12 31.2 30.7 7.1 23.6 27.1 26.5 7.5 19.0 31.9 31.3 7.8 23.5
J14 37.7 37.1 7.7 29.4 31.0 30.4 8.5 21.9 32.3 31.8 7.3 24.5
J19 33.8 32.9 6.3 26.7 43.6 42.9 6.5 26.4 34.8 34.2 6.1 28.1
J4 38.4 37.9 6.9 31.1 39.3 38.8 7.0 31.8 32.2 31.6 5.2 26.4

J15 25.8 25.3 5.1 20.2 23.3 22.6 5.4 17.3 26.6 26.0 5.0 21.0
J31 26.2 25.9 7.1 18.8 25.4 25.2 8.3 16.9 25.2 25.0 6.9 18.0
S11 24.6 24.1 7.8 16.2 20.7 20.1 7.8 12.2 17.9 17.5 7.0 10.4

Mean 32.0 31.4 8.5 22.4 30.4 29.7 9.4 19.5 29.7 29.1 8.7 20.4
‡BR, ground burning of residue; SR, Shredding of residue; RR, full post-harvest residue retention; TC, total carbon; 
TOC, total organic carbon; DOC, dissolved organic carbon; POC, particulate organic carbon

BR SR RR

----------------mg L-1------------------- ---------------mg L-1------------------ ----------------mg L-1-------------------
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to 44.0 mg L-1 with averages of 32.0, 30.0 and 29.0 mg L-1 for BR, SR and RR treatments, 

respectively. Runoff TOC constituted 94-99% of TC in all runoff samples, thus reflecting a 

similar trend to TC variation over the sampling period.  Particulate organic carbon, which 

constituted between 65-76% of TOC in all runoff samples, varied from 8.6 to 34.1 mg L-1 with a 

slightly higher average concentration of 22.4 mg L-1 for BR, 20.4 and 19.4 mg L-1for RR and SR 

treatments respectively. In this study, DOC constituted a smaller portion of TOC with a 

concentration of less than 10 mg L-1 in about 80% of all runoff samples. Average DOC 

concentrations over the sampling period were 9.4 mg L-1 for the SR treatment, 8.7 and 8.5 mg L-1 

for RR and BR treatments respectively, which are typical of the range of 0.10 to 20 mg L-1  

reported for fresh waters (Christian et al., 2002). The higher average DOC concentration 

observed in runoff from the SR treatment was likely a reflection of the significantly higher 

surface-soil DOC concentration observed in the SR plots (Table 4.1). Overall, the runoff 

concentrations of these different carbon forms were within the range expected in agricultural 

runoffs (Jordan et al., 2003). We did not observe any relationship between runoff concentrations 

of the various carbon forms and runoff volume within each treatment over the sampling period. 

The temporal variations in DOC and POC concentrations over the sampling period could be 

attributed to fluctuations in precipitation (Christian et al., 2002). 

  The amount of carbon exported per runoff event was calculated as a product of 

concentration and runoff volume per unit area of land, expressed in kg ha-1. Figure 4.3 shows the 

cumulative export of the various carbon forms over time (days after treatment application). 

Overall, TC export varied from 1.6 to 24.4 kg ha-1 for the BR treatment, 0.01 to 13.7 kg ha-1 for 

RR treatment, and 1.3 to 19.5 kg ha-1 for the SR treatment. This variation observed in TC export 

also reflected in the TOC, and POC export in each of the treatments. The first runoff collection 
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 Fig. 4.3.   Sugarcane residue management effects on cumulative carbon export over time for (A) total carbon (TC), (B) total organic  
                 carbon (TOC), (C) particulate organic carbon (POC), and (D) dissolved organic carbon (DOC) 
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was recorded on January 5, 2007 (51 days after treatment application) from an 86-mm rainfall 

event. This accounted for more than 20% of the TC exported in each of the treatments over the  

entire sampling period (Fig. 4.3A). The runoff recorded on June 13, 2007 (173 days after 

treatment application), likewise accounted for 23-30% of TC exported in each of the treatment. 

The impacts of these two runoff collections were also apparent on the TOC, POC and DOC 

exports (Fig.4.3B-D).  Our results revealed that the BR treatment exported more TC (89.2 kg ha-

1) in surface runoff than the SR and RR treatments which exported 66.5 and 58.9 kg ha-1 of TC 

respectively, over the study period. However, there was no significant treatment effect on TC 

export. The higher TC export from the BR treatment was likely due to the higher runoff volume, 

created by more water-repellant surfaces after residue burning (Robichaud, 2000),  and the 

presence of loose and  easily-washed burnt organic residues left on the soil surfaces (Southwick 

et al., 2001). Similar cumulative export trend was also observed for the TOC (Fig. 4.3B), and 

POC (Fig. 4.3C). In contrast, residue treatment effect was less apparent on the DOC export (Fig. 

4.3D). Nonetheless, the BR and SR had a slightly higher output of DOC than the RR.  

  The percent contribution of POC and DOC to TOC in each runoff event was graphed for 

each treatment (Fig.4. 4).  Within a treatment, there was no definite trend in distribution of POC 

and DOC from January to September.  A paired ttest result revealed that the % contribution of 

POC (and DOC) to TOC over the sampling period was not statistically different (P > 0.05) 

among the three treatments. This similarity in trend suggests that the distribution was more or 

less controlled by climatic factors such as rainfall amount and/ or rainfall intensity. 

4.3.4 Pyrolysis-GC/MS Analysis of Sediments in Runoff Water 

  Nutrients and pollutants in runoff are often associated with sediments (Korsching and 

Nowak, 1983, Sammori et al., 2004). The structural composition of the organic C associated with  
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Fig.4.4   Percent contribution of POC and DOC to TOC for each runoff collection over the  
            sampling period for (A) BR,  (B) RR and (C) SR management techniques.   
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sediments affects not only the interaction with nutrients and pollutants, but also the biochemical 

oxygen demand characteristics of the sediments. Our results indicate that a greater portion (65- 

75%) of carbon exported through surface runoff from sugarcane field was associated with 

sediment. Hence, an effort was made to characterize the main organic carbon compounds in the 

runoff sediments for each treatment using PyGC/MS analysis, and the results are summarized in 

Tables 4.3 and 4.4. Three sediment samples collected in January, May, and September, 2007, 

were characterized to assess the changes in organic C structural composition. For each sample, 

only the first 50 most intense peaks were selected and indentified. The main pyrolysis products 

were grouped into fatty acids (F), lignin-derived compounds (L), N-containing compounds (N), 

and polysaccharides (P). The relative abundance (%) of the main groups in each treatment 

observed over the sampling period is also summarized in Table 4.5. 

The fatty acid compounds indentified are mainly fatty acids methyl esters (FAMEs) and 

dimethyl esters. Dominant FAMEs observed in the BR treatment are 14-methyl pentadecanoic 

acid (F14), octadecanoic acid (F18), 2-(1-oxopropyl)-benzoic acid (F6), and 4-hydroxy-2-

butenoic acid methyl esters (F1).  Similar fatty acid compounds were also observed in the RR 

and SR treatments. The intensities of the identified fatty acid compounds were generally lower in 

the BR treatment, particularly in the sediment sampled in January (Fig. 4.5A, Table 4.5), likely 

because of the effect of burning. Residue burning generally results to the destruction of surface 

soil organic carbon accompanied by the release of large amounts of CO2, CH4 and NOx to the 

atmosphere (Kuhlbusch, 1998).  Combustion of soil organic material could also lead to the 

selective removal of some carbon units in the long chain fatty acids, thus yielding lower C- chain 

compounds, possibly due to thermal fragmentation of the long-chain molecules (Almendros et 

al., 1988; Tinoco, 2000 and Dettweiler et al., 2003). The intensity of the fatty-acid derived  
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Table 4.3  Main pyrolysis products identified by tetramethylammonium  
                 hydroxide (TMAH)  thermochemolysis-GC/MS in the runoff  
                 sediments of the three sugarcane residue treatments‡ 

     
Compound ID BR RR SR

Fatty acids
2-Butenoic acid, 4-hydroxy-, methyl ester F1 X X X
But-2-enedioic acid, dimethyl ester F2 X X
2-Butenedioic acid, dimethyl ester F3 X X X
Butanedioic acid, dimethyl ester F4 X X X
Hexanoic acid, 2-ethyl-, methyl ester F5 X
Benzoic acid, 2-(1-oxopropyl)-, methyl ester F6 X X X
Undecanoic acid, 10-methyl-, methyl este F7 X
Dodecanoic acid, methyl ester F8 X
Nonanedioic acid, dimethyl ester F9 X X X
Tridecanoic acid, 12-methyl-, methyl ester F10 X X X
Pentadecanoic acid, methyl ester F11 X X X
11-Hexadecenoic acid, methyl ester F12 X X
9-Hexadecenoic acid, methyl ester F13 X X X
Pentadecanoic acid, 14-methyl-, methyl ester F14 X X X
9-Octadecenoic acid, methyl ester F15 X X X
11-Octadecenoic acid, methyl ester F16 X X
10-Octadecenoic acid, methyl ester F17 X
Octadecanoic acid, methyl ester F18 X X X
Heptadecanoic acid, 16-methyl-, methyl ester F19 X X X

Lignin-derived compounds
4-(1-Propinyl)-2,6-dimethoxyphenol L1 X‡ X X
Methoxypropane L2 X X X
Acetic acid, methoxy-, methyl ester L3 X X X
Propanoic acid, 2-methoxy-, methyl ester L4 X X X
N(1)-[4-[4-Methoxyphenyl]-6-[trichlorome L5 X X
Benzene, 1-ethenyl-4-methoxy- L6 X X
Benzene, 1,4-dimethoxy- L7 X X X
1-Methoxy-1-methyl-1-silacyclohexane L8 X
2-Benzyl-3-methoxycyclopropanecarboxylic L9 X X X
Benzoic acid, 3-methoxy-, methyl ester L10 X X
1,2,4-Trimethoxybenzene L11 X X X
Benzoic acid, 4-methoxy-, methyl ester L12 X X X
1,2,3,4-Tetramethoxybenzene L13 X X X
Benzaldehyde, 3,4-dimethoxy- L14 X X
Benzoic acid, 3,4-dimethoxy-, methyl ester L15 X X X
2-Propenoic acid, 3-(4-methoxyphenyl)-, L16 X X X
Methyl p-methoxycinnamate, cis L17 X
Benzoic acid, 3,4,5-trimethoxy-, methyl ester L18 X X X

Nitrogen-Containing compounds
1,2-Propanediol, 3-(dimethylamino)- N1 X
2,3 Dihydroindole-2-one N2 X X
1H-Pyrrole, 1-methyl- N3 X X X
2-Hydroxy-3-[2-dimethylaminoethyl] N4 X X
2,4,6(1H,3H,5H)-Pyrimidinetrione, N5 X X
Indole N6 X X X
Benzonitrile N7 X X
Ethyldiethanolamine N8 X X X
Phenol, 3-(dimethylamino)- N9 X
1H-Isoindole-1,3(2H)-dione, 2-methyl- N10 X
‡BR, ground burning of residue; SR, Shredding of residue; RR, full post-harvest  residue
 retention; X, indicates the presence of the compound
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Table 4.4   Pyrolysis-GC/MS identification of polysaccharide-derived compounds   
                  in the runoff sediment from the three residue treatments‡.  
 

  
 
Table 4.5  Relative abundance (%) of the main groups of pyrolysis products observed in the runoff sediments from the three sugarcane 
                 residue management techniques

 

Compound ID BR RR SR

Furan, 3-methyl- P1 X‡ X X
Furan, 2-methyl- P2 X X
3-Furaldehyde P3 X X X
Phenol P4 X X
Phenol, 2-methyl- P5 X
Phenol, 4-methyl- P6 X X
D-Allose P7 X X
Levoglucosan P8 X X X
Acetic acid P9 X X X
Ascorbic acid P10 X X
Oxalic acid P11 X X X
‡BR, ground burning of residue; SR, Shredding of residue; RR, full
 post-harvest residue retention; X, indicates the presence of the compound

January May September January May September January May September
Compound
Fatty acids 8 10 17 13 11 13 10 18 16
Lignin-derived 43 28 27 18 23 36 27 16 18
Nitrogen-Containing 21 18 20 10 12 19 11 9 18

Polysaccharides 9.1 4.2 1.7 20.1 23.9 14.5 11.2 7.6 5.3
‡BR, ground burning of residue; SR, Shredding of residue; RR, full  post-harvest residue retention.

----------TMAH thermochemolysis ----------

-------Without TMAH-------

BR RR SR
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Fig. 4.5  Tetramethylammonium hydroxide (TMAH) thermochemolysis-GC/MS 
    chromatograms of runoff sediments from the BR treatment in (A) January, (B) 
              May, and (C) September, 2007. 

 (A)

 
 (B) 

 
 (C) 
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Fig.4.6  Tetramethylammonium hydroxide (TMAH) thermochemolysis-GC/MS chromatograms 
             of runoff sediments from the RR treatment in (A) January, (B) May,and (C) September,  
             2007 

 
 (A) 

 
 (C) 

 
 (B) 
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Fig. 4.7   Tetramethylammonium hydroxide (TMAH) thermochemolysis-GC/MS 
               chromatograms of runoff sediments from the SR treatment in (A) January, (B)  
               May, and (C) September, 2007. 

 
 (A) 

 
 (B) 

 
 (C) 
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compounds was observed to increase over time, particularly in the BR treatment. This could be 

attributed to the resurgence of the depleted fatty acid fraction (after burning), through the 

addition of aliphatic bioplymers from above-ground plants and plant roots (McKinney et al., 

1996). Other fatty acids compounds identified from the pyrolysis of these samples are listed in  

Table 4.3.  The series of short and long chain FAMEs (C6-C19) observed in this study have also 

been documented by other researchers as the characteristic fatty acid/lipid observed in TMAH 

assisted pyrolysis of surface soil organic matter (Chafetz et al., 2000; Chafetz et al., 2002 Faure 

et al., 2006). The presence of the long C-chain fatty acids is primarily due to the input of above 

ground plant aliphatic biopolymers such as cutin (McKinny et al., 1996), plant root aliphatic 

biopolymers such as suberin from plants, and microbial activity products (Chafetz et al., 2000).  

These would invariable lead to the presence of these long chain C-compounds in runoff 

sediments.  

  Furthermore, the dominant lignin-derived compounds found in the BR treatment are 4 (1-

propinyl) -2,6-dimethoxyphenol (L1),  4-(4-methoxyphenyl)-6-trichlorome (L5),  

methoxypropane (L2), and methoxy-acetic acid  methyl ester (L3). Less intense lignin-derived 

compounds include 1,4-dimethoxybenzene (L7), 1,2,3,4-tetramethoxybenzene (L13), 3,4,5-

trimethoxybenzoic acid methyl ester (L18),  3-methoxybenzoic acid methyl ester (L10), and 4-

methoxybenzoic acid  methyl ester (L12). The same dominant and less intense lignin-derived 

materials were also apparent in the RR and SR treatments (Table 4.3). Most of the lignin-derived 

compounds identified in these samples were also observed by other researchers in the TMAH 

thermochemolysis-GC/MS characterization of soil organic matter (Chafetz et al., 2000; Faure et 

al., 2006). The origin of these lignin-derived compounds in the runoff sediment could be traced 

to the surface soil organic matter, which principally contains lignin derived from plant materials 
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(Chafetz et al., 2000; Dieckow et al., 2006). Higher intensity of lignin-derived compounds was 

observed in the BR treatment, particularly in January (Fig. 4.5A, Table 4.5). This could be partly 

attributed to the fact that burning of soil organic carbon leads to preferential depletion of 

polysaccharide-derived compounds and enrichment of lignin derived compound (Neff et al., 

2005). The intensity of the lignin-derived compounds tends to decrease over time, particularly in 

the BR and SR treatments (Table 4.5, Figs 4.5 and 4.7). This decrease in intensity of these 

compounds could be ascribed to the transformation and decomposition of their building blocks 

during the process of humification (Chafetz et al., 2000).  

   Common N-containing compounds identified within all the treatments are 1-methyl-1H-

pyrrole (N3), indole (N6), ethyldiethanolamine (N8), and 3-(dimethylamino)-phenol (N9). The 

remaining identified compounds in each treatment are shown in Table 4.3. Most of the N-

containing compounds observed e.g 2-methyl-1H-isoindole-1,3(2H)-dione (N10), indole (N6), 

and 1-methyl-1H-pyrrole (N3) have been reported by other researchers as the characteristic N-

containing products of TMAH-GC/MS pyrolysis of soil organic matter (Chafetz et al., 2002; 

Fabbri et al., 2005; Dieckow et al., 2006 ). For proper identification of the polysaccharide-

derived compounds, samples without TMAH treatment were used (Maldoveanu, 2001;Fabbri et 

al., 2005; Dieckow et al., 2006 ), and the Py-GC/MS result is summarized in Table 4.4. The 

polysaccharide-derived compounds identified in these samples have also been documented by 

other researchers as the characteristic compounds observed in  Py-GC/MS analysis of soil 

organic matter (Fabbri et al., 2005; Dieckow et al., 2006), and cellulose (Moldoveanu, et al., 

2001). The dominant polysaccharide-derived compound was levoglucosan (P8), which 

constituted over 80% of all identified polysaccharide-derived compounds in each sample. 

Levoglucosan has been identified as one of the characteristic compounds obtained from the 
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pyrolysis of cellulose (Moldoveanu, 2001), and has been used as tracer for cellulose in biomass 

burning and atmospheric particles (Simoneit et al., 1999; Fraser and Lakshmanan, 2000). The 

BR treatment indicates a depleted polysaccharide pool (Table 4.5).  This could be attributed to 

burning which has been reported to have a profound effect on soil organic matter, causing the 

oxidation (Kuhlbusch,1998), and alteration (Almendros et al., 1997; Baldock and Smernik, 2002) 

of carbonaceous materials.  Our results further indicate that the polysaccharide pool observed in 

each of the treatments tends to decrease over the growing season, from January to September 

(Table 4.5), most likely due to the process of humification (Chafetz et al., 2000).  

  The results from this study suggest that even though the BR treatment might have higher 

concentration and export of TOC in runoff over the growing season, the runoff water samples 

might still pose lesser oxygen-demand threat compared to the RR and SR treatments. The latter 

could be attributed to the higher intensity of more recalcitrant materials (lignin) and lower 

intensity of easier microbial degradable materials (polysaccharide) observed in the BR treatment 

(Table 4.5).  This was further supported by the lower average BOD5 concentration observed in 

the BR treatment compared to those of the RR and SR in the early part of the season (Data not 

shown). 

4.3.5 Relationships Among the Carbon Forms and Other Water Quality Variables 

Linear and non-linear regression analyses were carried out to evaluate the relationships 

between carbon forms (TC, TOC, POC, and DOC) and other water quality variables (TSS and 

turbidity) (Figs 4.8 and 4.9). Particulate organic carbon was positively correlated to the turbidity 

of runoff water samples (P < 0.001, R2 = 0.87) (Fig. 4.8A). Likewise a similar nonlinear positive 

and significant relationship was also observed between POC and TSS (R2 = 0.73, P< 0.001) as 

shown in Fig. 4.8B. These relationships suggest that both turbidity and TSS measurements could 
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play significant roles in approximating carbon export in surface runoff from sugarcane fields. 

Total organic carbon was also, but to a lesser extent correlated with turbidity (R2 = 0.54, P< 

0.001), and TSS (R2 = 0.42, P< 0.001) (Fig. 4.9). The stronger relationships observed between 

POC and turbidity/TSS could be attributed to POC giving a better approximation of water-borne  

 

 

Fig. 4.8   Relationship between runoff POC and (A) turbidity, and (B) total suspended solids  
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Fig.4. 9   Relationship between runoff TOC and (A) turbidity, (B) total suspended solids (TSS) and ('C) POC    
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particulate matters than TOC (which includes the dissolved components). A highly significant 

correlation was also observed between TOC and POC (P <0.001, R2 = 0.80) (Fig.4.9C) another 

indication that most of the organic carbon exported was in the particulate form. In this study, 

DOC exhibited very poor relationships with turbidity and TSS.  

4.4 Conclusions 

This study evaluated the impact of sugarcane residue managements on the forms and 

amount of carbon (TC, TOC, POC and DOC) exported in surface runoff, and further 

characterized the organic C composition of the runoff sediments from the 3 residue management 

techniques using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) techniques.  

The characterization of the soil samples from the BR, RR and SR plots revealed that the 

BR treatment exhibited lower concentrations of TN, TOC and DOC at the surface layer due to 

the release of these as oxides to the atmosphere. Variability in runoff volume was explained by 

rainfall amount in each treatment. Overall, the BR treatment recorded higher runoff volumes in 

more than 60% of the runoff event, which subsequently resulted to higher TC, TOC, and POC 

export compared to the RR and SR treatments. However, this was not statistically different. 

Runoff TOC constituted 94-99% of TC, while POC constituted 65-76% of TOC in all runoff 

samples. The DOC concentration was less than 10 mg L-1 in about 80% of all the runoff samples. 

Percent contribution of POC and DOC to TOC in each runoff event over the sampling period 

was statistically same for the 3 treatments. Turbidity and TSS measurements of runoff water 

samples were positively correlated to POC and TOC (R2 ≥ 0.42, P < 0.001). These relationships 

suggest that both turbidity and TSS measurements could play a significant role in approximating 

losses of sediment-bound nutrients in surface runoff from sugarcane fields. Dissolved organic 

carbon exhibited a very poor relationship with turbidity and TSS (R2 < 0.13) 
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  The TMAH thermochemolysis Py-GC/MS analysis results revealed less qualitative 

differences in the organic C components of the runoff sediments from the 3 management 

practices evaluated. Most of the pyrolysis compounds observed in this study are characteristic 

compounds obtained from the Py-GC/MS analysis of surface soil organic carbon. Dominant 

FAMEs identified in all treatments include 14-methyl pentadecanoic acid (F14), octadecanoic 

acid (F18), 2-(1-oxopropyl)-benzoic acid (F6), and 4-hydroxy-2-butenoic acid methyl esters 

(F1). The dominant lignin-derived compounds found in all the treatments are 4 (1-propinyl) -2, 

6-dimethoxyphenol (L1), 4-(4-methoxyphenyl)-6-trichlorome (L5), methoxypropane (L2), and 

methoxy-acetic acid methyl ester (L3). Lignin-derived compounds were intense in the BR 

treatment compared to the RR and SR treatments, but the intensities decreased over the growing 

season, particularly in the BR and SR treatments, likely due to humification. Common N-

containing compounds identified within all the treatments are 1-methyl-1H-pyrrole (N3), indole 

(N6), ethyldiethanolamine (N8), and 3-(dimethylamino)-phenol (N9). The dominant 

polysaccharide-derived compound observed was levoglucosan (P8), and it constituted over 80% 

of all identified polysaccharide-derived compounds in each sample. The polysaccharide fraction 

was lower in the BR treatment, indicating the destructive effect of residue burning, and showed a 

decreasing trend over the growing season in all the treatments.  

  In summary, the residue management practices showed no clear significant differences in 

the amount and forms of carbon exported as observed in this study. However, burning of the 

post-harvest residue resulted to an increase in the lignin-derived compounds, and a depletion of 

the polysaccharide pool of the runoff sediments. For recommendation purposes, it is worthy to 

note that the BR treatment was more subjected to surface runoff   and could comparatively 
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export more carbonaceous materials in runoff. 

4.5 References 

Almendros G, Dorado J, Gonza´lez-Vila FJ, Martin F.  1997. Pyrolysis of carbohydrate-derived 
macromolecules: its potential in monitoring the carbohydrate signature of geopolymers. J 
Anal Appl Pyrolysis;40–41:599– 610. 

Andersson, S., Nilsson, S.I., Saetre, P., 2000. Leaching of dissolved organic carbon (DOC) and 
dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil 
Biol. Biochem. 32, 1 –10. 

Andersson, S., Valeur, I., Nilsson, S.I., 1994. Influence of lime on soil respiration, leaching of 
DOC, and C/S relationships in the mor humus of a haplic podzol. Environ. Int. 20, 81– 
88. 

Baldock JA, Smernik RJ.2002. Chemical composition and bioavailability of thermally altered 
Pinus resinosa (Red pine) wood. Org Geochem: 33:1093–109. 

Cambardella, C.A., and E.T. Elliott. 1992. Particulate soil organic matter changes across a 
grassland cultivation sequence. Soil Sci. Soc. Am. J. 56:777–783. 

Carpenter, S.R., N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, and V.H. Smith. 
1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Applic. 
3:559–568. 

Chafetz, B.,Y. Chen, C. Edward, and G. Hatcher. 2000. Characterization of organic matter in 
soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci. 
Soc. Am J. 64: 583-589. 

Chantigny, M.H., Angers, D.A., Beauchamp, C.J., 2000. Decomposition of de-inking paper 
sludge in agricultural soils as characterized by carbohydrate analysis. Soil Biol. Biochem. 
32, 1561–1570. 

Christian, V., L. Wood, B. Johnson,J. Robinson, H.W. Zhuc , and L. Kapland. 2002. Monitoring 
dissolved organic carbon in surface and drinking waters. J. Environ. Monit., 2002, 4, 43–
47. 

Dieckow, J., J. Meilniczuk, F.J. Gonzalez-Vila, H. Knicker and C. Bayer. 2006. No-till cropping 
systems and N fertilization influences on organic matter composition of physical 
fractions of a subtropical Acrisol as assessed by analytical pyrolysis (Py-GC/MS). 
Geordema 135: 260-268. 

Edwards, D.R., and T.C. Daniel. 1992. Potential runoff quality effects of poultry manure slurry 
applied to fescue plots. Trans. ASAE 35:1827–1832. 



90 
 

Fabbri, D., F. Sangiorgi, I. Vassura. 2004. Pryolysis-GC-MS to trace terrigenous organic matter 
in marine sediments: a comparison between pyrolytic  and lipid markers in Andriatic Sea. 
Analytica Chemica Acta. 530: 253-261. 

Faure, P., L. Schlepp, L. Mansuy-Hult, M. Elie, E. Jarde, and M. Pelletier. 2006. Aromatization 
of organic matter induced by the presence of clays during flash pyrolysis-gas 
chromatography-mass spectrometry (PyGC-MS) A major analytical artifact. J. Anal. 
Appl. Pyrolysis 75: 1-10. 

Flessa, H., Ludwig, B., Heil, B., Merbach, W. 2000. The origin of soil organic C, dissolved 
organic C and respiration in a long-term maize experiment in Halle, Germany, 
determined by 13C natural abundance. J. Plant Nutr. Soil Sci. 163: 157– 163. 

Fraser, M.P., and K. Lakshmanan. 2000. Using levoglucosan as a molecular marker for the long-
range transport of biomass combustion aerosols. Environmental Science & Technology 
34:4560-4564. 

Gladden, J.B., F.R.Cantelmo, J.M. Croom, and R.Shapot. 1988. Evaluation of the Hudson River 
ecosystem in relation to the dynamics of fish populations. American Fisheries Society 
Monograph. 4:37-52. 

Gonza´lez-Vila FJ, Tinoco P, Almendros G, Martı´n F. 2001. Py-CG-MS analysis of the 
formation and degradation stages of charred residues from lignocellulosic biomass. J 
Agric Food Chem 49:1128– 31. 

Heathman, G.C., A.N. Sharpley, S.J. Smith, and J.S. Robinson. 1995. Land application of 
poultry litter and water quality in Oklahoma, U.S.A. Fert. Res. 40:165–173. 

Howarth, R.W., J.R. Fruci, and D. Sherman. 1991. Inputs of Sediment and Carbon to an 
Estuarine Ecosystem: Influence of Land Use. Ecological Applications 1:27-39. 

Instruction Manual 6700 Portable Sampler. Revision 60-9003-411 D 7-98. 1997. ISCO, Lincoln, 
NE. 

Jansson, M., A. K. Bergstrom, P. Blomqvist and S. Drakare, 2000. Allochthonous organic carbon 
and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250-
3255. 

Jordan, T.E., D.F. Whigham, H.K. Hofmockel, and M.A.Petteck. 2003. Nutrient and sediment 
removal by a restored wetland receiving agricultural runoff. J. Environ. Qual. 32:1534–
1547 

Knicker H, Skjemstad JO.2000. Nature of organic carbon and nitrogen in physically protected 
organic matter of some Australian soils as revealed by solid-state 13C and 15N NMR 
spectroscopy. Aust J Soil Res;38:113– 27. 



91 
 

Kuhlbusch TAJ. 1998. Black carbon and the carbon cycle. Science. 280:1903– 4. 

Lal, R. 2003. Soil erosion and global soil budget. Environmental International. 29: 437-450. 

Larsen, P., and H. Tiessen. 1998. Soil carbon changes resulting from sugarcane trash 
management at two locations in Queensland, Australia, and in North-East Brazil. Aust. J. 
Soil Res 36:873-81. 

Leinweber, P., Schulten, H.-R., Ko¨rschens, M., 1995. Hot water extracted organic matter: 
chemical composition and temporal variations in a long-term field experiment. Biol. 
Fertil. Soils 20, 17– 23. 

Magid, J. and C. Kjagaard. 2001. Recovering decomposing plant residues from the particulate 
soil organic matter fraction: size versus density separation. Biology and Fertility of Soils. 
33: 252-257 

Markus, M., and Baker, D. 1994. The Fraser River: Streamflow forecasting and simulation 
computer package.Tech. Rep., Northern Colorado Water Conservancy District, Loveland, 
Colo. 

Martin, H.C. 2003. Dissolved and water extractable organic matter in soils: A review on the 
influence of landuse and management practices. Geordema 113: 357-380. 

McCuen, R. H., and Snyder, M. W. (1986). Hydrologic modeling: Statistical methods and 
applications. Prentice-Hall, Englewood Cliffs, N.J. 

McDowell, L.L., and K.C. MaGregor. 1984. Plant nutrient losses in runoff from conservation 
tillage corn. Soil Tillage Res.4: 79-91. 

McGill, W.B., Cannon, K.R., Robertson, J.A., Cook, F.D., 1986. Dynamics of soil microbial 
biomass and water soluble organic C in Breton L after 50 years of cropping to rotations. 
Can. J. Soil Sci. 66: 1– 19. 

National Weather Service Forecast Office. NOAA Online Weather Data for Jeanerette. Available 
online at http://www.weather.gov/climate/xmacis.php?wfo=lch. 

Neff, J.C., J.W. Harden, and G. Gleixner. 2005. Fire effects on soil organic matter content, 
composition, and nutrients in boreal interior Alaska. Canadian Journal of Forest 
Research/Revue Canadienne de Recherche Forestiere 35:2178-2187. 

Paul, K.I., P.J. Polglase, J.G. Nyakuengama, P.K. Khanna.2001. Change in soil carbon following 
afforestation. Forest Ecology and Management 168 (2002) 241–257. 

Robichaud, P.R.2000. Fire effects on infiltration rates after prescribed fire in Northern Rocky 
Mountain forests, USA.  Journal of Hydrology. 231-232: 220-229. 



92 
 

Rochette, P., Gregorich, E.G., 1998. Dynamics of soil microbial biomass C, soluble organic C 
and CO2 evolution after three years of manure application. Can. J. Soil Sci. 78, 283– 290. 

Romkens, P.F.A.M., Dolfing, J., 1998. Effect of Ca on the solubility and molecular size 
distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol. 32: 
363–369. 

Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K., Chen, F.,1996. Simple water balance model 
for estimating runoff at different spatial and temporal scales. J. Geophys. Res. 10 (D3), 
7461–7475. 

Schreiber, J.D., and E.E. Neumaier. 1987. Biochemical oxygen demand of agricultural runoff. J. 
Environ. Qual.16: 6-10. 

Simoneit, B.R.T., J.J. Schauer, C.G. Nolte, D.R. Oros, V.O. Elias, M.P. Fraser, W.F. Rogge, and 
G.R. Cass. 1999. Levoglucosan, a tracer for cellulose in biomass burning and 
atmospheric particles. Atmospheric Environment 33:173-182. 

Tantely Razafimbelo , Bernard Barthe`s a, Marie-Christine Larre´-Larrouy a, Edgar F. De Luca 
b, Jean-Yves Laurent a, Carlos C. Cerri b, Christian Feller .2006. Effect of sugarcane 
residue management (mulching versus burning) on organic matter in a clayey Oxisol 
from southern Brazil. Agriculture, Ecosystems and Environment 115 (2006) 285–289. 

Tipping, E. 1993. Modeling the competition between alkaline earth cations and trace metal 
species for binding by humic substances. Environmental Science & Technology 27:520-
529. 

USGS Office of Water Quality Technical Memorandum. 2000. Procedures for processing 
samples for carbon analysis. 

Xu, J.G., Juma, N.G., 1993. Above- and below-ground transformation of photosynthetically 
fixed carbon by two barley (Hordeum vulgare L.) cultivars in a Typic Cryoboroll. Soil 
Biol. Biochem. 25, 1263– 1272. 

 
 

 

 

 

 

 



93 
 

CHAPTER 5 

PREDICTING OXYGEN DEMAND IN TYPICAL AGRICULTURAL EFFLUENTS 

5.1 Introduction 

  The organic biodegradable carbon in surface runoff from fields is one of the major 

components that define water quality. It is traditionally measured using parameters such as 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon 

(TOC). Biochemical oxygen demand, which is the measure of the oxygen consumed during the 

decomposition of organic matter, has been used as a tool in the study of water quality since 1870 

(Young and Clark, 1965). Chemical oxygen demand, which is the quantity of a specified 

chemical oxidant that reacts with a sample under controlled conditions, is often used as a rapid 

indicator of pollutants in water (Sawyer et al., 1994). However, TOC and COD are often 

considered to provide little information on the biological nature of organic compound 

decomposition (Schreiber and Neumaier, 1987). Hence, BOD has been the oldest and most 

common method used in assessing biodegradable organic contaminants in water and wastewater 

(Karube et al., 1977a; Marsili, 1986; Marty et al., 1997). Various studies have shown that 

increased organic materials and sediments in runoff water from fields could increase the BOD 

concentration of the receiving waters (Constable, 1979; Choi, 2004). Elevated level of BOD 

lowers the concentration of dissolved oxygen, and this would have a profound effect on the 

diversity of aquatic life in a given waterbody, as only low-oxygen tolerant species would be 

supported. 

  Biochemical oxygen demand typically consists of two stages of decomposition: a 

carbonaceous stage and a nitrogenous stage. The former represents the oxygen consumed in the 

conversion of organic carbon to carbon dioxide, while the latter is for the conversion of organic 

nitrogen, ammonia, and nitrite to nitrate, and generally begins after 6 days (Delzer and 
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Mckenzie, 1999), or after 8-10 days (Sawyer et al., 1994). In general, the microbial oxidation of 

organic matter to carbon dioxide, water, and ammonia resulting in oxygen depletion can be 

represented by a fundamental quantitative relationship (Sawyer et al., 1994): 

C H O N  n  4  2  
3
4 O  CO 2  

3
2 H O NH                             1  

The above equation suggests that BOD tests may be considered as wet oxidation processes where 

the microbial organisms act as the medium for oxidation of the organic matter to carbon dioxide, 

water and ammonia. The oxidation of nitrogenous compounds by nitrifying bacteria resulting in 

the depletion of oxygen is represented by the equation below: 

2NH3 + 3O2     2NO  + 2H+ + 2H2O                                                                  [2] 

2NO  + O2 + 2H+       2NO  + 2H+                                                                    [3] 

Nitrification is often inhibited to separate carbonaceous BOD from that produced from the 

nitrogenous stage during the BOD tests (Constable et al., 1977, Delzer and Mckenzie, 1999). In 

theory, an infinite time is needed for complete oxidation of organic material, but for practical 

purposes, the BOD5 (five-day BOD, at 20°C) is traditionally used for many applications and 

water quality reports. However, BOD5 represents only a portion of the BOD and may have 

limited use in water pollution assessment (Nemerow, 1974).  The ultimate BOD (BODu), which 

represents the oxygen demand for complete biological oxidation of organic matter, is often 

determined to obtain more BOD information. 

  There are notably many limitations to BOD measurements. The BOD test is variable, and 

results are difficult to reproduce (Constable et al., 1977). This variability in BOD test is highly 

attributed to the fact that the rate of organic oxidation is substrate specific and the initial stage is 

sensitive to variables such as seed acclimation, dilution, pH and toxic substances (Hoover et al., 
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1953; Constable et al., 1977). Further studies revealed that the reliability of the test depends on 

environmental conditions such as nutrients, the types of microbes present, the concentration of 

dissolved oxygen and the water temperature (Karube et al., 1977b; Pasco et al., 2000; 

Shrivastava et al., 2000; Takahata et al., 2006). In addition to the variability associated with the 

test results, the conventional BOD measurement methods are also labor intensive and time 

consuming. While TOC measurement is a more reproducible, convenient and direct expression 

of total organic content than BOD and COD, it however, does not provide the same kind of 

information (Schreiber and Neumaier, 1987; Sawyer et al., 1994). 

  Efforts have been made in establishing simple relationships between BOD and TOC for 

domestic wastewaters, reservoirs (Schaffer 1965; Robbin et al., 1969; Constable et al., 1979); 

however, the results are most often medium specific. Biochemical oxygen demand has also been 

correlated to NO3-N, and PO4-P in river waters (Ferrier et al., 2000). However, extensive 

literature search showed that little information is available on the relationships between BOD of 

agricultural effluents and their carbon content along with nutrients, particularly nitrogen, which 

is an integral component of oxygen demand evaluation. The need for informative relationships 

between oxygen demand and other water quality variables, particularly within agricultural 

effluents, remains unsolved. Hence, the chief objective of this study was to evaluate the 

relationships between oxygen demand and other related water quality parameters in water 

samples containing organic substrates from primarily agricultural sources, and thus develop 

predictive relationships for BOD measurements for typical agricultural effluents. 

5.2 Materials and Methods 

5.2.1 Sample Preparation  

  Various sources of organic materials commonly encountered in agricultural fields were 
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selected and prepared to simulate a wide range of runoff water samples. Table 5.1 shows the 

selected materials, which include: animal manure (cattle and poultry), sewage sludge, crop 

residues (rice, sugarcane, soybean), grasses and wetland plant residues. These materials are 

potential sources of carbon and nitrogen commonly associated or applied to agricultural fields 

and often washed away through runoff from fields. Based on preliminary experiment, some of 

the materials namely cattle manure (CM), sewage sludge (SS), rice residue (RR), soybean 

residue (SB), grass (GR) and wetland plant residues (WR) were also combined (within similar 

category of materials) in proportions of 1:1 and 1:4. These combinations were aimed at 

generating additional organic source samples with a wide range of C/N ratios. A total of 47 

samples were generated. All organic source samples were air-dried and ground to pass through a 

2-mm sieve before being used for the preparation of the simulated effluents. The carbon and 

nitrogen in these organic samples were analyzed using a carbon/nitrogen analyzer (Tru Spec, 

Leco Corporation, Saint Joseph, Michigan) 

  A total of 46 water “suspension” samples were generated from the organic source 

materials by adding 1g each to 1L of deionized water. This solid to solution ratio was based on 

findings from a previous study (Udeigwe et al., 2007), and observations made from runoff from 

sugarcane fields (Unpublished data). The resulting suspension samples were thoroughly mixed 

and placed on a reciprocal shaker for 24 hours. The aim of this process was to generate effluent 

samples with a range of carbon and nitrogen levels typical of those obtained in agricultural 

runoff water samples. A subsample of each was used for the various BOD analyses, while a 

portion was preserved in the refrigerator at 4°C for further laboratory analysis of the various 

carbon fractions, total Kjeldahl nitrogen, and anions. 
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Table 5.1   Selected characteristics of the source materials. Data represent the mean  
                  values with the standard deviation of each given in parentheses ‡ 

  
   

5.2.2 Water Sample Analysis  

BOD Measurements and Kinetics 

  Biochemical oxygen demand was analyzed at different incubation times using EPA 

Method 401.5, as described in the Standard Methods for the Examination of Water and 

Wastewater (The American Public Health Association, American Water Work Association, and 

Water Pollution Control Federation, 1989). Appropriate amounts of  each resulting water sample 

(50, 30, 20, 15, 12, 10, 8, and 5ml for 2, 5,  10, 15, 20, 30, 45 and 60-day BOD, respectively)  

were measured into the 300 ml-BOD bottles, 4 ml of the seed solution added, and the remaining 

volume made up using dilution water. Dilution water was prepared by using reagent grade 

phosphate buffer salts, MgSO4, CaCl2, and FeCl3; and stored in an incubator maintained at 20°C. 

The seed solution was used to maintain an optimum population of microorganisms capable of 

oxidizing the organic matter in the sample. This was prepared using capsules of polyseed (an 

EPA approved seed inoculum), following the procedure described by the manufacturer 

Source material sample size Total C Total N C/N ratio

CM 7 32.7 (7.4) 2.37 (0.93) 14.8 (3.8)
CR 2 28.4 (1.6) 0.49 (0.06) 58.7 (4.1)
GR 5 41.4 (4.5) 1.78 (0.08) 23.4 (3.5)
PM 8 27.7 (3.3) 3.04 (0.81) 9.5 (2.1)
RR 4 33.7 (4.0) 0.87 (0.15) 39.0 (2.0)
SB 4 38.5 (2.9) 2.07 (0.02) 18.6 (1.6)
SR 4 21.4 (2.3) 0.43 (0.01) 50.0 (4.7)
SS 3 26.7 (3.2) 2.70 (0.26) 10.0 (2.2)
WR 9 17.3 (6.9) 0.91 (0.30) 18.7 (1.5)
‡CM, cattle manure; CR, corn residue; GR, grass residue; PM, poultry manure;
RR, rice plant residue; SB, soy bean residue; SR, sugarcane residue; SS, sewage   
sludge; and WR, wetland plant residues

----------------%-----------
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(InterLab, The Woodlands, Texas), and supported by the standard method (The American Public 

Health Association, American Water Work Association, and Water Pollution Control Federation, 

1989). Ten ml of the seed solution was also incubated in a separate bottle for the estimation of 

the seed control factor. The glucose-glutamic acid solution used as a check for the test procedure 

was prepared by dissolving 150 mg each of glucose and glutamic acid in 1 L of deionized water. 

Initial dissolved oxygen (DO) value was measured in each bottle immediately after making up 

the volume with the dilution water. All sample bottles were kept air tight with the stopper and 

placed in an incubator maintained at 20°C. Final dissolved oxygen value was measured for each 

bottle after the assigned time (t). All the DO values were measured using a dissolved oxygen 

meter (VWR Symphony, Thermo Electron Corporation, Beverly, Massachusetts). The BOD at a 

given time t (BODt ) was calculated using the dissolved oxygen values as follows:  

BOD
D D B B f

P                                                                                                         4  

where 

BODt = BOD or the amount of oxygen consumed at time t (mg L-1) 

D1 = sample initial dissolved oxygen (mg L-1) 

D2 = sample final dissolved oxygen (mg L-1) 

B1 = seed initial dissolved oxygen (mg L-1)  

B2 = seed final dissolved oxygen (mg L-1)  

P = volumetric fraction of sample used 

f = ratio of seed in sample to seed in seed control. 

  The BOD kinetic was also modeled using the first order kinetic equation (Metcalf and 

Eddy, 1991).  Since BOD reactions involve complex interaction between non-uniform organic 

substrates and a mixed microbial population, their kinetics would best be described by non-linear 
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regression models (Berthouex et al., 1994; Sawyer et al., 1994). The first order kinetic equation 

for BOD reaction can be described as:  

BODt = BODu (1-e-kt)           [5] 

where 

BODt = BOD or the amount of oxygen consumed at time t (mg L-1) 

BODu = Ultimate BOD or total amount of oxygen consumed in the reaction (mg L-1) 

t = time elapsed since the start of the assay (d) 

k = BOD rate constant (d-1) 

  Since microbial degradation of organic substrates may be characterized by a period of 

rapid activity and a period of slower activity, a double exponential model, comprising of two 

first order kinetic models (Mason et al., 2006), was also employed in describing oxygen uptake. 

However, the double exponential method offered no improvement over the simpler first order 

kinetic model.  

Carbon and Other Analyses 

  The water “suspension” samples were characterized for the various carbon fractions. 

Total carbon (TC), and inorganic carbon (IC) were analyzed directly using a Shimadzu total 

organic carbon analyzer (Shimadzu TOC-VCSH, Kyoto, Japan), and the TOC fraction was 

calculated by difference between TC and IC. For the dissolved organic carbon (DOC) fraction, 

the whole suspension sample was passed through a 25-mm glass fiber filter medium with 

effective pore size of 0.7 µm using a pressure filtration technique as described by USGS (2000), 

and the filtrate was analyzed by the carbon analyzer. Particulate organic carbon (POC) was 

determined by difference between TOC and DOC. 

  Total Kjeldahl Nitrogen (TKN) in the resulting water samples was determined by EPA 
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Method 351.4 (USEPA, 1978). Inorganic anions were determined using EPA Method 300.0 

(USEPA, 1993). Samples were passed through 0.45um filter and the filtrate analyzed for 

bromide (Br), chloride (Cl), fluoride (F), nitrate-N (NO3-N), nitrite-N (NO2-N), phosphate-P 

(PO4-P), and sulfate (SO4) using the ion chromatography (Dionex, 2001). In addition, the pH of 

each water sample was measured.   

5.2.3 Analyses of Data 

All analyses were performed using the Statistical Analysis Software (SAS Institute, 2002). The 

data obtained from the BOD measurements were fitted to the first order kinetic equation to 

derive BODu and k for each generated water sample using the non-linear PROC procedure. 

Single and multiple linear regression analyses were performed using the PROC REG procedure 

to establish the relationships between BOD measurements and the other measured water quality 

parameters.  

5.3 Results and Discussion 

5.3.1 Characteristics of Simulated Water Sample 

  The characteristics of the generated water samples from the different source materials are 

summarized in Table 5.2. The pH of the generated water samples varied from 3.7 to 7.0, with 

majority of the samples (about 94%) falling within 5.0 to 7.0. Total carbon varied from 12.6 to 

186 mg L-1 and was generally higher in the water samples generated from the animal manure and 

sewage sludge materials, particularly poultry manure. These materials are typical organic matter 

sources often applied to agricultural fields to improve the nutrient status. Lower TC values were 

observed in the samples generated from the corn and sugarcane residues (Table 5.2). A similar 

trend was also observed for TOC which ranged from 11.4 to 139 mg L-1 . On the average, TOC 

constituted about 90% of TC. Particulate organic carbon fraction varied from 7.6 to 101 mg L-1,  
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Table 5.2. Characteristics of water samples generated from the different source materials. Data represent the mean values with the 
                 standard deviation of each given in parentheses‡ 

 

Source sample size pH TC TOC DOC POC TKN NO2-N NO3-N TN PO4-P Cl SO4 BOD5

material

CM 7 6.7 (1.0) 68.9 (26.6) 61.7(24.2) 18.8 (8.9) 42.9 (19.6) 0.58 (0.33) 0.62 (0.17) 0.25 (0.31) 1.45 (0.38) 3.03 (1.30) 7.8 (4.9) 2.17 (2.16) 34.4 (15.3)

CR 2 5.5 (0.2) 15.8 (0.7) 14.6 (0.3) 6.7 (0.7) 7.9 (0.4) 0.41 (0.3) 0.40 (0.01) 0.13 (0.01) 0.94 (0.30) 0.46 (0.03) 9.7 (0.3) 0.31 (0.11) 30.2 (6.6)

GR 5 6.2 (0.3) 35.7 (6.9) 31.3 (8.0) 10.8 (2.1) 20.5 (6.0) 0.87 (0.9) 0.62 (0.14) 0.15 (0.01) 1.64 (0.96) 1.47 (0.21) 12.1 (1.2) 3.2 (0.29) 40.1 (11.3)

PM 8 6.6 (0.5) 144 (21.3) 120 (16.9) 42 (22.2) 77.8 (15.3) 21.8 (24.9) 0.85 (0.4) 0.19 (0.1) 22.6 (25.2) 6.93 (2.1) 15.1 (8.7) 19.1 (30.4) 66.1 (8.5)

RR 4 6.0 (0.4) 34.9 (9.9) 32.4 (9.7) 7.9 (1.5) 24.6 (10.5) 0.98 (0.8) 0.41 (0.05) 0.14 (0.00) 1.53 (0.71) 0.36 (0.24) 9.6 (0.7) 0.43 (0.02) 20.8 (6.5)

SB 4 6.2 (0.1) 60.9 (7.9) 57.4 (8.2) 10.3 (2.2) 47.0 (8.5) 0.88 (0.8) 0.55 (0.01) 0.13 (0.01) 1.56 (0.82) 0.67 (0.07) 9.3 (0.8) 0.56 (0.03) 48.4 (4.4)

SR 4 6.1 (0.2) 14.7 (1.8) 13.4 (1.8) 4.9 (0.1) 8.5 (1.7) 0.22 (0.1) 0.42 (0.03) 0.14 (0.00) 0.78 (0.09) 0.63 (0.37) 9.6 (0.7) 0.50 (0.19) 14.4 (3.7)

SS 3 5.5 (1.6) 86.4 (21.7) 80.4 (17.5) 7.5 (0.6) 72.9 (17.4) 1.16 (1.0) 0.54 (0.18) 0.14 (0.01) 1.83 (0.81) 0.39 (0.38) 9.6 (1.2) 5.74 (0.35) 50.2 (13.2)

WR 9 5.9 (0.3) 25.3 (3.3) 24.3 (3.4) 2.7 (0.9) 21.6 (3.4) 0.34 (0.3) 0.38 (0.05) 0.18 (0.08) 0.91 (0.37) 0.09 (0.19) 37.0 (25.0) 9.12 (4.94) 11.6 (3.2)
‡CM, cattle manure; CR, corn residue; GR, grass residue; PM, poultry manure; RR, rice plant residue; SB, soy bean residue; SR, sugarcane residue; SS, sewage sludge; and WR, wetland 
plant residues

-----------------------------------------------------------------------------------------mg L-1-------------------------------------------------------------------------------------------------------------
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and like TC was higher in the water samples generated from the manure and sludge materials 

(Table 5.2), and constituted between 43-93% of TOC in the water samples generated from these 

materials. The POC fractions observed in all the generated waters were consistent with those 

observed for typical agricultural runoff (Jordan et al., 2003). The water generated from the 

manures (poultry and cattle) exhibited a characteristically higher DOC concentration (20.3 to77. 

4 mg L-1) as compared to those generated from the sewage sludge and the other source materials 

(< 15.0 mg L-1). Dissolved organic C likely contains higher labile C which is easily used by 

microbes, and in the process would lead to increase in oxygen demand (Hendrickson et al., 

2007).  There has been little research available on the evaluation of DOC export from 

biosolid/manure-impacted soils. Our results suggest that field application of animal manure 

could result to the release of more dissolved, highly degradable, and low molecular weight 

organic compounds, and runoff from such fields could lead to a higher oxygen demand load to 

the receiving waterbodies. 

  Nitrogen forms including TKN (a combination of organically bound nitrogen and 

ammonia), NO2-N and NO3-N were also determined in the simulated waters (Table 5.2). The 

TKN concentration varied from 0.02 to 70.0 mg L-1, while NO2-N and NO3-N were generally 

below 1.00 mg L-1. Total nitrogen, approximated as the summation of TKN, NO2-N and NO3-N, 

ranged from 0.57 to 70.7 mg L-1. Overall, the values we obtained for these N forms were 

comparable to those observed for typical agricultural runoff (Ng Kee Kwong et al., 2002; 

Shuman, 2002),  Higher concentrations of the different forms of N were observed in the water 

samples generated from the poultry manure. Similar observations have been reported for runoff 

from fields receiving continuous application of animal manure or inorganic nitrogen fertilizers 

(Blevins et al., 1996). As expected, characteristically higher concentration of PO4-P was 
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observed in the water generated from the animal manures (3.2 to 10.2 mg L-1), whereas it was 

generally below 1.0 mg L-1 in the rest of the simulated water samples.  Chloride concentration 

varied from 0.01 to 68.1 mg L-1 and was > 50.0 mg L-1 in the samples generated from the 

wetland plant residues, particularly salt marsh (Table 5.2). The high chloride concentration is 

possibly due to the high background salt concentration often associated with these residues 

(Table 5.2). The sulfate concentration varied from 0.43 to 93.8 mg L-1, and was also higher in the 

water samples generated from the poultry manure samples (Table 5.2).  

  Five-day biochemical oxygen demand (BOD5),  the most commonly employed BOD 

measurement, varied from 7.0 to 76.4 mg L-1
 in the simulated water samples. Higher BOD5 

concentrations were also observed in water samples generated from the manure samples, and this 

could be partly attributed to the higher DOC concentration associated with these samples (Table 

5.2).  In summary, the characteristics of the simulated water samples are to a large degree typical 

of effluents obtained from agricultural systems. 

5.3.2 BOD Kinetics 

    Figure 5.1 shows the BOD kinetics of the representative water samples from each 

category of source material. The first order BOD decay model was used to describing the oxygen 

uptake by the microbial degradation of the organic materials. Coefficient of determination (R2) 

values for the fitted first-order kinetic models (Equation 2) of all the generated water samples 

ranged from 0.98 to 1.00, suggesting a very good description of BOD reactions.  Averages of 

ultimate BOD (BODu) and BOD rate constant (k) for each category of generated water samples 

are presented in Table 5.3. It has been suggested that BOD reactions with k < 0.200 d-1 as 

observed in this study are better described by the first-order model, while those with k > 0.200 d-

1 are better explained by the second-order model (Marske and Polkowski, 1972). Ultimate BOD 
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(BODu) ranged from 44.9 to 482 mg L-1. Among the source materials, BODu was lower in the 

water samples generated from the wetland plant residues (Table 5.3). The lower BODu 

associated with these samples could be partly attributed to the inhibitory effect of high chloride 

concentration (Cecan et al., 2001), and low DOC content of the source materials (Hendrickson et 

al., 2007). Higher BODu observed in the corn residue, despite the low TOC associated with these 

materials, most likely suggests that a greater portion of the total organic matter was highly 

degradable. The BOD rate constant (k) varied from 0.0069 to 0.085 d-1 with an overall average of  

 
Fig.5. 1.    Representative BOD kinetics for water samples generated from the different source 
                  materials. Relative percentage difference (RPD) for each data point was < 10%  
          

0.0271 mg L-1.This k range is consistent with the values obtained from agricultural runoff 

involving different tillage and cropping systems (Schreiber and Neumaier, 1987), and also 

consistent with the values obtained from typical wastewater (Sang and Yoon, 1995). 

  The differences among the BOD kinetic curves (Fig. 5.1) reflect the variability in the 

nature of the organic substrates present in these generated water samples. Variation in k has been 
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shown to relate to organic substrate (Sawyer et al. 1994; Hendrickson et al., 2007), as well as the 

ability of the microbial population to utilize it (Sawyer et al., 1994). In general, higher k values 

would be expected from the microbial degradation of simple substrates such as glucose, or from 

short-term BOD reactions since more of the short- chain compounds are utilized during this stage 

(Schreiber et al., 1984). Sawyer et al. (1994) reported that the BOD kinetic curves of most 

complex wastes containing both soluble and particulate organic matter, tend to be “composite” 

curves representing the summation of oxidations for each individual compound, leading to the  

Table 5.3  Biochemical oxygen demand parameters of the water samples   
                 generated from the different source materials. Data represent the  
                 mean values with the standard deviation of each given in parenthesis± 

    

bumps and valleys in the curve. There were no apparent bumps and valleys observed in the 

kinetic curves of each of the simulated waters, suggesting the presence of less complicated 

compounds.   Figure 5.1 shows that the water samples generated from the wetland plant residue 

(WR), sugarcane residue (SR), and rice residue (RR) had lower BOD and lower k of < 0.020 d-1, 

particularly in the SR and RR samples (Table 5.3), suggesting lower labile organic carbon in 

Source material sample size BODu k
mg L-1 d-1

CM 7 250 (39) 0.032 (0.003)
CR 2 463 (27) 0.014 (0.002)
GR 5 327 (74) 0.025 (0.010)
PM 8 285 (40) 0.033 (0.009)
RR 4 421 (148) 0.016 (0.005)
SB 4 307 (66) 0.029 (0.008)
SR 4 257 (47) 0.016 (0.005)
SS 3 252 (43) 0.031 (0.005)
WR 9 108 (66) 0.035 (0.025)
±CM, cattle manure; CR, corn residue; GR, grass residue; PM, poultry
 manure; RR, rice plant residue; SB, soy bean residue; SR, sugarcane 
 residue; SS, sewage sludge; and WR, wetland plant residues
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these samples. On the other hand, the generated water samples from the animal manure (PM and 

CM) source materials yielded higher BOD owing to the higher DOC content of the source 

materials as earlier indicated, and this also resulted in relatively higher k values (Table 5.2 and 

5.3).  

5.3.3 Relationships Between BOD Measurements and Other Parameters 

  The BOD tests at different incubation times were related to carbon and nitrogen 

chemistry, and to other characteristic parameters of the generated water samples. Figures 5.2 

shows the relationships between short-term BOD, measured after 2 days (BOD2), and the major 

carbon fractions determined. Most of the variability associated with BOD2 was reasonably 

explained by the different carbon fractions (R2 ≥ 0.65, P < 0.001), with significant and positive 

linear relationships observed between BOD2 and each of TC, TOC and POC (R2 ≥ 0.73, P < 

0.001) (Fig. 5.2A-C). These similar linear relationships could be attributed to the dominance of 

TOC and POC in TC (averages of 90 and 60%, respectively). Our findings on BOD and TOC 

relationships are comparable to the few studies reported by others (Emery et al., 1971; Chandler 

et al., 1976; Constable et al., 1979). These researchers observed relationships of varying 

strengths (R2 of 0.47 to 0.78), and their studies indicated that the relationships are medium 

specific, varying from domestic wastewater to reservoirs, streams and rivers (Emery et al., 1971; 

Chandler et al., 1976; Constable et al., 1979). A slightly weaker but significant nonlinear 

relationship was observed between BOD2 and DOC (R2 = 0.65, P< 0.001) (Fig. 5.2D), 

suggesting that DOC relates to BOD2 differently. Similar trends of relationships were also 

observed between the commonly used five-day BOD (BOD5) and the different carbon forms, 

except that these relationships were slightly weaker (R2 ≥ 0.62, P < 0.001) (Fig. 5.3). These 

weaker relationships could be partly attributed to the onset of nitrification, which normally sets 
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Fig.5.2   Relationship between 2-day biochemical oxygen demand measurement (BOD2) and the various carbon forms evaluated: (A) 
               total carbon (TC), (B) total organic carbon (TOC),  (C) particulate organic carbon (POC), and (D) dissolved organic carbon 
              (DOC) 
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Fig. 5.3   Relationship between 5-day biochemical oxygen demand measurement (BOD5) and the various carbon forms  
               evaluated: (A) total carbon (TC), (B) total organic carbon (TOC), (C) particulate organic carbon (POC), and (D) 
               dissolved organic carbon (DOC)   
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in from the fifth to the sixth day (Delzer and Mckenzie, 1999), thereby limiting the strength of 

carbon alone in explaining the variability associated with BOD.  

  The relationships between BOD determined at longer incubation periods and the different 

carbon fractions became even weaker. Although still significant at 0.01 level, the R2 values for 

the linear relationships between BOD60 and TOC, and between BOD60 and POC were only 0.20 

and 0.16 respectively (Table 5.4). These results indicated that TOC has less influence on long-

term BOD. These poor relationships could be partly attributed to other sources of variation such 

as organic C quality which could not be explained by the scope of this study. On the other hand, 

it is interesting to note that among all the C fractions evaluated, DOC explained more of the 

variability associated with BOD60 (R2 = 0.47, P < 0.001). A closer examination revealed that the 

water samples generated from the animal manure source materials, which had generally higher 

DOC, behaved differently from the rest of the generated water samples (Fig. 5.4). While 

significant nonlinear relationship [BOD60 = 123.70ln (DOC) – 37.17, R2 = 0.72, P < 0.001] 

existed between BOD60 and DOC within the water samples generated from the rest of the 

sources, no relationship was observed between BOD60 and DOC among the waters from the 

manure sources (Fig. 5.4). These results could imply that DOC has an insignificant influence on 

long-term BOD in the waters from manure sources. 

  Figure 5.5 shows the relationships between short-term BOD measurements and the 

different nitrogen fractions. Both BOD2 and BOD5 were significantly and positively related to 

TN, TKN and NO2-N in a logarithmic fashion (R2 ≥ 0.45, P < 0.001). These relationships were 

weaker than those observed between short-term BOD measurements and the different carbon 

forms, suggesting that N contributed less to the BOD2 and BOD5. Furthermore, the slightly 

higher or equal R2 values obtained for the relationships of BOD2 (or BOD5) with NO2-N than 
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with TKN and TN suggest that the oxidation of NO   to NO   may be the primary process of 

nitrification responsible for oxygen demand in these generated water samples (Fig.5.5 and Table 

5.4). For BOD60, like C, the influence of N becomes less significant (Table 5.4). The latter 

implies that besides C and N, other factors or processes might play dominant roles in influencing 

long-term BOD. 

 

Fig. 5.4   Relationship between 60-day biochemical oxygen demand (BOD60)   
     and dissolved organic carbon (DOC)   
 

  In addition to C and N fractions, the relationships between BOD measurements and other 

water quality parameters presented in Table 5.2 were also evaluated. It should be noted that in 

this study, carbonaceous and nitrogenous oxygen demands were not separately evaluated by the 

inhibition of nitrification as often done by others (Chandler et al., 1976; Constable et al., 1977; 

Delzer and Mckenzie, 1999). This was intended to evaluate the interactive effects of C and N as 

well as other parameters on BOD. Of all the parameters listed in Table 5.2, beside C and N 

fractions, only PO4-P and Cl showed significant relationships with BOD (Table 5.4). Highly  
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Fig. 5.5. Relationships between biochemical oxygen demand and nitrogen measurements: (A) Two-day BOD (BOD2) and total  
               nitrogen (TN), (B) Five-day BOD (BOD5) and total nitrogen (TN), (C) Two-day BOD (BOD2) and total kjeldahl nitrogen  
               (TKN),  (D) Five-day BOD (BOD5) and total Kjeldahl nitrogen (TKN), (E) Two-day BOD (BOD2) and nitrite-nitrogen 
               (NO2-N), (F) Five-day BOD (BOD5) and nitrite-nitrogen (NO2-N)        
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Table 5.4   Single and multiple regression equations and  
                  coefficients (R2) for the relationships between BOD  
                  measurements and other water quality parameters  
 

 

Regression equation R 2

Two-day BOD (BOD2)

BOD2  =  0.3498(TOC) - 1.121 0.77***
BOD2  = 0.49(POC) - 1.55 0.73***
BOD2  = 13.13ln(DOC) - 11.76 0.65***
BOD2  = 9.34ln(TN) +12.44 0.45***
BOD2  = 32.20ln(NO2-N) + 38.34 0.55***
BOD2  = 5.89ln(TKN) +19.95 0.42***
BOD2 = - 0.31(Cl) +22.83 0.12*
BOD2 = 3.77(PO4-P) + 9.88 0.42***
BOD2 = 0.12(SO4) + 16.29 0.04
BOD2 = 0.27(TOC) + 14.47ln(NO2-N) - 12.51 0.84***
BOD2 = 0.34(TOC) - 0.16(Cl) + 2.42 0.80***
BOD2 = 0.37(POC) + 16.83ln(NO2-N) + 14.09 0.83***
BOD2 = 0.47(POC) - 0.15(Cl)  + 1.86 0.76***
BOD2 = 9.18ln(DOC) + 15.51ln(NO2-N) + 7.05 0.72***
BOD2 = 0.27(TOC) + 13.13ln(NO2-N) - 0.12(Cl) - 13.87 0.85***
BOD2 = 0.36(POC) + 15.82ln(NO2-N) - 0.10(Cl) + 15.40 0.85***
BOD2 = 0.37(POC) +16.98ln(NO2-N) + 0.07(PO4-P) + 14.19 0.84***
BOD2 = 8.98ln(DOC) + 15.95ln(NO2-N) + 0.02(SO4) + 7.66 0.72***

Five-day BOD (BOD5)

BOD5  = 0.46(TOC) + 10.80 0.69***
BOD5  = 0.62(POC) + 11.01 0.62***
BOD5  = 17.98ln(DOC) - 5.05 0.65***
BOD5  = 27.66ln(TN) + 13.61 0.51***
BOD5  = 42.221ln(NO2-N) + 62.30 0.50***
BOD5  = 8.61ln(TKN) + 38.61 0.48***
BOD5 = - 0.43(Cl) + 42.34 0.12*
BOD5 = 5.06 (PO4-P) + 24.42 0.34***
BOD5 = 0.18(SO4) + 33.27 0.05
BOD5 = 0.34(TOC) + 19.35ln(NO2-N) + 29.03 0.76***
BOD5 = 0.36(TOC) + 4.86ln(TN) + 13.41 0.73***
BOD5 = 0.44(TOC) - 0.24(Cl) + 15.90 0.73***
BOD5 = 0.45(POC) + 23.57ln(NO2-N) - 32.90 0.73***
BOD5 = 13.46ln(DOC) + 17.77ln(NO2-N) + 16.50 0.70***
BOD5 = 0.34(TOC) + 17.36ln(NO2-N) - 0.18(Cl) + 31.03 0.78***
BOD5 = 0.35(TOC) + 4.32ln(TN) - 0.21(Cl) - 17.68 0.75***
BOD5 = 0.44(POC) + 21.99ln(NO2-N) -0.16(Cl) - 34.93 0.74***
BOD5 = 10.84ln(DOC) +25.30ln(NO2-N) + 0.20(SO4) + 25.38 0.75***

Sixty-day BOD (BOD60)

BOD60  = 0.91(TOC) - 147.39 0.20**
BOD60  = 1.16(POC) + 159 0.16**
BOD60  = 55.49ln(DOC) + 72.20 0.46***
BOD60  =22.02ln(TN) + 183.87 0.10*
BOD60  = 106.08ln(NO2-N) - 264.18 0.23**
BOD60  =17.65ln(TKN) + 203.16 0.15**
BOD60 = - 2.83(Cl) + 243.97 0.37***
BOD60  = 15.18ln(PO4-P) + 211.44 0.36***
BOD60 = -12.72ln(SO4) + 206.19 0.05
BOD60 = 0.70(TOC) - 2.51(Cl) - 201.66 0.49***
BOD60 = 40.96 ln(DOC) - 1.73(Cl) - 134.02 0.56***
BOD60 = 74.34ln(NO2-N) - 2.42(Cl) + 285.67 0.48***
BOD60 =8.50ln(PO4-P) - 2.58(Cl) - 224.07 0.43***
BOD60 = 11.52ln(SO4) - 3.44(Cl) + 246.33 0.41***
BOD60 = 36.26ln(DOC) + 16.53ln(NO2-N) - 1.78(Cl)  + 241.84 0.57***
BOD60 = 52.42(DOC) - 2.24(Cl) + 6.21ln(PO4-P) - 205.16 0.58***
* Significant at 0.05 probability level
** Significant at 0.01 probability level
*** Significant at 0.001 probability level
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significant and positive linear relationships between BOD and PO4-P were found for both short-

term and long-term BOD measurements (BOD2, BOD5, and BOD60). We speculate that the PO4-

P could have a nutritional effect on the microbial population, thereby enhancing oxygen demand. 

Positive correlation between BOD and PO4-P has also been reported by Ferrier et al. (2001) in 

the examination of water quality of Scottish Rivers.  On the other hand, Cl had a negative 

correlation with BOD as indicated by the negative slope of linear relationship. This negative 

relationship was even stronger and more significant for BOD60 than for BOD2 and BOD5. This 

could be attributed to the inhibitory effect of Cl ion on the activities of the microbial population, 

leading to decreased oxygen uptake (Cecan et al., 2001).  

  Multiple regression analyses revealed that ≥ 80% of the variability associated with BOD2 

could be explained by the combinations of TOC (or POC) with NO2-N, or TOC with Cl, while 

the same combinations explained ≥70 % of the variability associated with BOD5 (Table 5.4). The 

regression based on the 3-variable combinations showed very little improvement in R2 values, 

but , TOC, NO2-N and Cl combination showed a slightly better improvement, explaining 85 and 

78% of the variability associated with BOD2 and BOD5 respectively (Table 5.4). For long-term 

BOD, ≥ 43% of the variability associated with BOD60 could be explained by different 2-variable 

combinations of TOC (or DOC) and Cl, or PO4 and Cl with the largest variability explained by 

DOC and Cl (56%).  Similar to short-term BOD measurements, the 3-variable combinations 

offered little improvement in R2 values for the relationships between BOD60 and the different 

parameters. Overall, the results suggest that organic carbon and NO2-N are the dominant factors 

controlling the short-term oxygen demand behaviors in these simulated agricultural effluents. For 

long-term BOD, organic carbon (specifically DOC), NO2-N, along with Cl and PO4-P 

(supposedly environmental and nutritional components), may be the dominant factors controlling 
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oxygen demand. In addition, the poor correlations and low strength of multiple regressions of 

BODu with C, N and the other parameters investigated (data not shown), suggest that BODu 

may involve more intrinsic and dynamic interactions with the substrates, nutritional and 

environmental factors. The findings suggest that BODu could not be adequately predicted by 

simple C, N chemistry, as well as other water chemical properties of these simulated agricultural 

effluents. 

5.3.4 Relationships Between Long-Term and Short-Term BOD Measurements   

  The BOD5 is the most commonly used BOD measurement. However, BOD5 represents 

only a portion of the BOD, primarily the carbonaceous BOD since the nitrogenous BOD often 

begins after the fifth to sixth day of incubation (Delzer and Mckenzie, 1999). For this reason, 

BOD5 has been deemed to have limited use in water pollution assessment (Nemerow, 1974). On 

the other hand, BOD5, might be meaningful in domestic wastewater characterization, but 

provides little information about the BOD decay characteristics of leaves and logging debris 

which may decay slowly over a longer period of time (Emerald et al., 2004). Therefore, long 

term BOD measurements such as BOD60 or even BODu (derived from a series of measurements 

based on decay kinetic model) are sometimes employed to obtain more thorough biochemical 

oxygen demand information. As shown in Fig.5.6, a significant linear relationship exists between 

BODu and BOD60, suggesting that BOD60 may be the used to approximate BODu in these 

simulated agricultural effluents. 

  Figure 5.7 shows the relationship between long-term BOD (BOD60) and the commonly 

measured BOD5 for these simulated water samples, which was best described by a logarithmic 

relationship (R2 = 0.60, P < 0.001). A closer examination also indicated that BOD60 may be  
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Fig. 5.6   Relationship between ultimate BOD (BODu) and 60-day biochemical oxygen demand  
               (BOD60)  

linearly and positively related to BOD5 when the latter was < 30.0 mg L-1 [BOD60 = 7.51(BOD5) 

+ 20.60, R2 = 0.39, P < 0.01], but exhibited poor relationship for BOD5 values ≥ 30.0 mg L-1.  

 

Fig.5.7   Relationship between 60-day biochemical oxygen demand     
   (BOD60) and 5-day biochemical oxygen demand (BOD5)     
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Combining BOD5 with any of the parameters examined in Table 5.2 did not improve BOD60 

prediction (Data not shown). Using BOD5 along with any of the parameters examined in a 

multiple regression evaluation of BODu yielded predictions with generally low coefficients of  

determinations (R2 ≤ 0.29) (Data not shown). This could be expected as decay rate constant, k, 

which relates to the intrinsic characteristics of organic substrates such as C structure 

(Hendrickson et al., 2007) would be needed in order to make a better prediction of BODu. 

5.4 Conclusions 

  This study, based on simulated water samples from different sources of agricultural 

organic materials, demonstrated that short-term BOD measurements (BOD2 and BOD5) were 

significantly related to all the major carbon fractions namely TOC, POC and DOC (R2 = 0.62-

0.77, P< 0.001), and as well as to TN, TKN and NO2-N (R2 = 0.45-0.66, P< 0.001). These 

relations were best described by linear models for TOC and POC, but by logarithmic models for 

DOC, TKN, and NO2-N. On the other hand, long-term BOD (BOD60) was poorly correlated with 

these simple C and N fractions, with the exception of DOC, which accounted for 46% of the 

variability associated with BOD60. Phosphate exhibited a positive and linear relationship with 

both short-term and long-term BOD measurements (BOD2, BOD5, and BOD60), where as Cl 

exhibited an inhibitory effect on oxygen demand, particularly on the long-term BOD. 

Multivariate regression analyses revealed that a combination of each of TOC, POC, and DOC 

with NO2-N, and Cl or PO4-P would improve the predictions of both long-term and short-term 

BOD. In general, the strength of the relationships between BOD measurements and other water 

quality parameters progressively decreased with increasing incubation times. The BODu derived 

from the first order kinetics was highly correlated with BOD60 (R2= 0.81, P < 0.001), but had no 

significant relations with C and N fractions as well as other parameters. On the other hand, 
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BOD60 may be predicted by BOD5. In addition, the water samples generated from the animal 

manure source materials exhibited characteristically higher DOC output, suggesting more 

oxygen demand load to the receiving waterbodies by runoff from manure-impacted soils. 

Overall, these results based on the simulated waters suggested that C and N forms along with 

PO4-P and Cl are likely the most-dominant factors controlling the oxygen demand behavior of 

agricultural effluents.  
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CHAPTER 6 
 

THE EFFECTIVENESS OF BAUXITE RESIDUE IN IMPROVING WATER QUALITY 
OF SURFACE RUNOFF FROM MANURE-IMPACTED SOILS 

6.1 Introduction 

  Animal manures and biosolids have been used on agricultural soils for a long time as 

forms of amendments to add plant macro- and micronutrients, and organic matter to the soil. The 

former are raw wastes from farm animals such as cow, chicken or pigs, while biosolid, a by- 

product of municipal treatment plant, is a complex mixture of organic matter, (USEPA, 1995; 

Pechenham, 2005). Animal manures and biosolids contain measurable quantities of needed plant 

nutrients, especially nitrogen, calcium, magnesium, potassium, sodium, phosphorous, and 

carbon. The nitrogen and phosphorus levels of biosolids are comparable to manures, while the 

potassium content of biosolids is lower than manures (Pechenham, 2005). Despite containing 

trace metals such as cadmium, zinc, and copper, which are also comparable to manure, numerous 

researches have shown that biosolids provide greater benefit than the risks posed by the added 

metals (Lu and O’Connor, 2001; Rostagno and Sosebee, 2001; Pechenham, 2005). However, the 

long-term application of animal manures and biosolids to agricultural lands has led to the build 

up of nutrients in the receiving soils, because the crop requirement level is often exceeded 

(Sharpley et al., 1994, Kleinman et al., 2004). These excess nutrients, particularly P in surface 

soil, have the potential to be lost in leaching and runoff, therefore immensely contributing to the 

impairment of surface water quality (Sharpley et al., 1996; Sims et al., 2000).  

  Various studies have shown that the runoff of nutrients and organic materials from 

manure/biosolid-amended soils remains a major non-point source of water quality impairment 

(USEPA, 1996; Sharpley, 1996; Kleinman et al., 2004;). Phosphorus runoff from agricultural 

soils has been documented as the chief cause of accelerated eutrophication (National Research 
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Council, 1992; USEPA, 1996; USGS 1999). The increased land applications of manures and 

biosolids over the years are responsible for changes in soil P chemistry, and increase in soluble P 

pools (Iyamuremye et al., 1996; Eghball, 2002). Along with nutrients, organic matter (high 

carbon source) from land applications of manures and biosolids could also be released to the 

waterbodies through surface runoff, directly leading to increased oxygen demand due to 

increased microbial degradation. This affects the diversity of aquatic population since only low-

oxygen tolerant species would be supported (Correll, 1998). Thus, in response to these 

environmental deterioration arising from manure/biosolid application, nearly all states have 

implemented guidelines for land application of these materials, taking into account the P loss in 

runoff from amended soils (USDA and USEPA, 1999). Efforts have also been made to remediate 

P-rich soils by modifying the P chemistry (Moore and Miller, 1994; Anderson et al., 1995; Dou 

et al., 2003) 

  The mobility and solubility of P in soils is controlled by the chemistry of the soil 

solution. Soluble P in soil solution can react with Al, Ca and Fe to form insoluble P compounds. 

Various researchers have shown that the addition of compounds containing these elements can 

reduce soluble P concentration, and thus potentially reduce P release to the environment (Stout et 

al., 1998; Dou et al., 2003; Kalbasi and Karthikeyan, 2004). A range of pure compounds and by-

products including alum, quick lime, slaked lime, ferrous/ferric chlorides and sulfates, 

ferrihydrite, and gypsum have been demonstrated to decrease the amount of water soluble P 

released to the environment (Anderson et al.,1995;  Kalbasi and Karthikeyan, 2004; Moore and 

Miller, 1994; Dou et al., 2003).  While some of these techniques have been adopted in field 

managements, the continual use could depend on the economic outcome as influenced by the 

cost and availability of the chemical compounds and products (Torbert et al., 2005). Hence, there 
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is still an increasing need for cost effective alternative-amendment techniques, especially one 

that could involve the use of local abundant waste materials. 

  Bauxite wastes (Red mud and Brown mud), which are by-products obtained from the 

extraction of bauxites to produce alumina are known to contain appreciable amounts of Fe, Al, 

and Ca. The difference in color arises from the operations generating the muds; red mud is 

sintered and leached to recover additional sodium aluminate (USEPA, 1984). These products, 

particularly red mud are produced in enormous amount and are of great disposal concern. In 

Louisiana (USA) alone, Kaiser Aluminum and Chemical Company has about 20 million tons of 

red mud deposited in three lakes and more than 1 million ton year–1 is  additionally produced 

(Kirkpatrick, 1996).  In general, red mud is characterized by a very high alkalinity, and its 

primary constituents are crystalline hematite (Fe2O3), boehmite (Y-AlOOH), quartz (SiO2), 

sodalite (Na4Al3Si3O12Cl) and gypsum (CaSO4·2H2O) (Brunori et al., 2004). Brown mud on the 

other hand, is dominated by CaO, SiO2, Fe2O3, Al2O3, and Na2O (Whittaker et al., 1955). These 

materials tend to exhibit high P sorption capacity and offer the potential of reducing P losses 

when incorporated into soils (Lopez et al., 1998). Red mud aggregates have also been shown  to 

have maximum adsorption capacities of 19.72, 12.59, 10.95 and 10.57 mg g-1 for Cu2+, Zn2+, 

Ni2+ and Cd2+ respectively (Lopez et al., 1998). Furthermore, since Al and Ca ions have the 

ability of binding organic carbon, thereby reducing the availability of labile C or dissolved 

organic carbon in runoff (Ross and Bartlett, 1994), this could suggest another potential benefit of 

these Fe/Al/Ca-rich bauxite wastes. However, the potentials of these by-products on the fixation 

of P and C in manure and biosolid- impacted soils have not been fully investigated. Furthermore, 

little information is available on the effects of the potential use of these materials on other water 

quality parameters in surface runoff from such impacted soils. Thus, this study was carried out to 
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assess the effectiveness of these two bauxite waste materials on reducing soluble P release, and 

the overall impacts on other water quality parameters. 

6.2  Materials and Methods 

6.2.1 Sample Collection and Preparation 

  Soil samples were collected from three manure-impacted sites in the northern part of 

Louisiana. These sites are known to have received several years of poultry manure application. 

The soil samples include a Smithdale (Fine-loamy, siliceous, subactive, thermic Typic 

Hapludults, 32° 58’N; 92° 35’W), a Briley (Loamy, siliceous, semiactive, thermic Arenic 

Paleudults, 32° 15’N; 92° 35’W), and a Darley (Fine, kaolinitic, thermic Typic Hapludults, 32° 

39’N; 92° 25’W).  Representative surface soil (0-15cm) was collected from each poultry litter- 

impacted site. Collected soil samples were air dried, ground to pass through a 2-mm sieve, and 

saved for further laboratory analaysis. Bauxite wastes were collected from major aluminum 

producing companies, in Arkansas, Texas, and Louisiana, US. The wastes were comprised of 

two red mud samples, designated as A-red mud (ARM) and O-red mud (ORM), and a brown 

mud sample, designated as A-brown mud (ABM). The samples were either collected wet or dry. 

Collected samples were air dried, ground to pass through a 2-mm sieve, and the % moisture 

content of the fresh red mud also calculated. 

  Fresh red mud samples are highly alkaline in nature, limiting the uses and applications. 

Researchers have suggested various neutralization techniques which include the use of strong 

acid (Koumanova et al., 1997; Pradhan et al., 1998), gypsum (Barrow, 1984), and seawater 

(Glenister and Thornber, 1985; Somes et al., 1998; McConchie et al., 2002). These techniques 

are aimed at lowering the pH and/or replacing the soluble Na compounds with Ca and Mg-

derived compounds (thereby lowering the alkalinity) (McConchie et al., 2002). In this study, a 
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modification of the seawater neutralization approach was employed (McConchie et al., 2002).  A 

salt solution with a Ca and Mg concentrations of 412 mg L-1 and 1,290 mg L-1 respectively, was 

prepared using the chloride salts of these elements. These Ca and Mg concentrations represent 

the average level found in seawater (Kraukopf and Bird, 1995). About 1000g of red mud was 

treated with 13 L of the prepared salt solution following the procedure outlined by McConchie et 

al. (2002). The solid and liquid mixture was left in contact overnight. After optimum contact was 

assured, the solid fraction (red mud) was separated from the liquid fraction by settling. The 

resulting red mud has a pH of 8.10., while the resulting liquid fraction with a pH of 8.90 was 

neutralized using concentrated H2SO4 and discarded. Both the neutralized ALCOA red mud 

(NARM) and neutralized ORMET red mud (NORM) samples were then air dried and ground.  

 6.2.2 Soil and Bauxite Residue Characterization 

  Soil and bauxite residue samples were characterized for the various chemical and 

physical properties. The pH measurement was based on 1:2 solid (soil and amendment)-water 

suspension. Electrical conductivity was measured on 1:2 solid-water suspension as outlined by 

Rhoades (1996). Total C and N were analyzed using a Tru Spec TM Carbon/Nitrogen analyzer. 

Water extractable organic carbon was measured using a Total Organic Carbon Analyzer 

(Shimadzu TOC-VCSH, Kyoto, Japan), on aliquots resulting from 1:10 solid/water mixtures, 

shaken for 24 hours and filtered through 0.45µm filter. The filtrate was also analyzed for selected 

metals by the inductively coupled plasma atomic emission spectroscopy (ICP-AES) (SPECTRO 

CYRIOS, Spectro Analytical Instruments, Inc., Fitchburg, MA).  Total elemental analysis was 

carried out using the hydrofluoric, sulfuric, and perchloric acids digestion method (Jackson, 

1958), followed by ICP-AES analysis. Cation exchange capacity (CEC) was determined for the 

soil samples by saturating the soil with 1 M NH4OAc at pH 7 followed by distillation and 
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titration (Soil Survey Laboratory Methods Manual, 1996). Mehlich III extraction was also 

carried out on the soil samples and extractable Al, Ca, Fe, Mg, Na and P analyzed using the ICP-

AES.  Soil Particle size analysis was conducted using a pipette method described by Gee and 

Bauder (1986). All the analyses were carried out in replicates of two or three. 

6.2.3 Treatment Application and Analysis 

  Past studies have used different rates of bauxite residue application to soils, depending on 

the purpose (Summers et al., 1996; Lombi et al., 2002; Friesl et al., 2003). Summers et al. (1996) 

suggested that an application rate of 10-20t/ha (0.5-1.0%) would reduce P leaching, where as  

Friesl et al. (2003) recommended an application rate of 40t/ha (2%) for arable land of Lower 

Australia, indicating that higher application rates of 5% led to possible drawbacks due to 

indigenous pollutants such as As, Cr, and V.  Two application rates of 2 and 4%, equivalent to 

40t/ha and 80t/ha respectively, were examined in a laboratory study to evaluate the potential 

effect of bauxite residues on manure-impacted soils. Each of the manure-impacted soil was 

treated with the desired rate of bauxite residue amendment in a 250-ml plastic bottle to get a 

solid weight of 20g, and 200 ml of dionized water added (1: 10 solid/solution ratio). The 

resulting suspensions were placed on a reciprocal shaker (average speed of 170 oscillations per 

minute) and shaken for 48 hours to ensure complete mixing between the bauxite residue 

amendments and the soil solids.  

  After mixing, various characterizations were carried out on the suspensions to assess the 

potential impacts of the amendments on water quality parameters. The pH of the resulting 

suspensions was directly measured. In addition, suspensions were settled over night 

(approximately 8 hours), and the “soil suspension turbidity” to assess the flocculating effect of 

the bauxite residue amendments using a procedure described by Udeigwe et al. (2007) was 
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measured. For this, an aliquot of 20ml was drawn from about a 5-cm depth of the settled 

suspension and analyzed for turbidity using a turbidimeter based on a three-detector system 

(Model 2100N, Hach Co., Loveland, CO). Further, a 40-ml aliquot was also taken for five-day 

biochemical oxygen demand test (BOD5) using the dilution method (EPA 401.5) as described by 

the Standard Methods for the Examination of Water and Wastewater (1998).  

  Another portion of the each suspension was centrifuged and filtered through a 0.45 µm 

membrane filter. The filtrates were analyzed for reactive P by the molybdenum-blue method 

(Murphy and Riley, 1962), water extractable organic carbon (dissolved organic carbon, DOC) by 

the Total Organic Carbon Analyzer (Shimadzu TOC-VCSH), and water extractable Al, Ca, Cu, K, 

Na, Mg, and Zn by the ICP-AES.  Sodium adsorption ratios (SAR) were calculated using the Na, 

Ca and Mg results obtained from the ICP analysis. The remaining portion of each suspension 

was filtered using a Whatman filter paper (Grade # 42) and analyzed for EC. All analyses were 

conducted in duplicates with analytical process monitored using certified reference standards. 

6.2.4 Statistical Analyses 

   All statistical analyses were performed using the Statistical Analysis Software, version 

9.1 (SAS Institute, 2003). Treatment effects were evaluated using PROC GLM. Simple linear 

regressions between BOD5 and water extractable carbon, and between turbidity and SAR were 

evaluated using PROC REG.  

 6.3 Results and Discussion 

6.3.1 Soil and Amendments Characteristics 

  Selected chemical and physical properties of the soils used in this study are summarized 

in Table 6.1. The pH values for the three manure-impacted soils are 6.0, 6.1, and 7.0 for 

Smithdale, Briley, and Darely respectively, while the EC values were generally < 0.60 dS m-1.  
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Table 6.1   Chemical and physical properties of the manure-impacted soils used in the study 

   

Soil property Briley Darley Smithdale
pH (1:2) 6.1 7.0 6.0
Electrical conductivity (1:2), dS m-1 0.55 0.59 0.37
Cation exchange capacity, cmol kg-1 17.1 3.6 14.4
Total C, g kg-1 33.4 7.9 19.2
Total N, g kg-1 3.9 1.1 2.4
Water extractable organic C, mg kg-1 735 421 598
Water Extraction, mg kg  -1

Ca 83 71 55
K 239 340 155
Mg 38 47 24
Na 284 176 161
P 108 81 104
Mehlich III extraction, mg kg -1

Al 379 324 208
Ca 1270 389 813
Fe 219 182 209
Mg 153 81 73
Na 79 65 53
P 658 233 386
Total elemental analysis mg kg -1

Al 19770 11130 11245
As 5.92 3.55 5.96
B 26.1 2.7 8.95
Ca 2607 400 1430
Cd 1.90 1.18 1.37
Cr 19.4 1.10 4.69
Cu 106 19 118
Fe 12685 3127 4664
K 3330 3945 3928
Mg 902 368 433
Mn 215 500 269
Mo 132 90 105
Na 868 696 710
Ni 2.28 1.78 0.18
P 3174 457 1701
Pb 18.1 25.1 24.8
Zn 179 22.8 126
Particle size distribution, g kg -1

Sand 580 820 810
Silt 340 140 150
Clay 80 40 40

Soil
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The Briley soil exhibited higher total C, N, and most of inorganic metals, followed by the 

Smithdale, and then, the Darley soil.  The Briley also had higher clay content (80 g kg -1), than 

the Smithdale and the Darley soils, both of which had identical clay content of 40 g kg-1. Cation 

exchange capacity varied from 3.6 to 17.1 cmol kg -1 and was higher in the Smithdale and Briley 

soils (> 14.0 cmol kg -1) than in the Darley soil. The CEC trend observed in these soils was 

highly consistent with their Total C and water extractable organic C content (Table 6.1), 

suggesting that the CEC was primarily from soil organic matter. Water-extractable P ranged 

from 81 to 108 mg kg -1, while Mehlich-III extractable P ranged from 233 to 658 mg kg-1, with 

the highest concentration observed in the Briley, followed by the Smithdale, and then the Darley. 

These levels are higher than the optimum agronomic Mehlich-III P level of 50 mg kg-1 (Beegle, 

2002), and also greatly exceed the environmental P threshold values of 150 mg kg-1, as 

recommended by Sims et al. (2002), suggesting that runoff from these soils could posse a serious 

threat to the water quality of the receiving waterbodies.  Such results, along with the relatively 

higher content of selected heavy metals such as Cu ( ≥ 106 mg kg-1 for Briley and Smithdale) are 

typical of soils receiving pro-longed organic amendments (Madejón et al., 2006; Schroder et al., 

2008; Pen and Bryant, 2008).  

  Table 6.2 summarizes the chemical composition of the bauxite residues amendments used 

in this study. The  raw bauxite residues (ABM, ARM, and ORM)  had a pH ranging from  9.4 to 

10.5,  higher than 8.1 recorded for the red muds neutralized with simulated sea water (NORM 

and NARM). Similar result was reported by McConchie et al. (2000), who demonstrated that 

seawater neutralization of red mud converts the soluble hydroxides and carbonates to low 

solubility mineral precipitates, thereby lowering the basicity from pH of 13.0 to < 9.0. The 

neutralization process also increased the EC of the samples by 3 to 5 times more, and Ca and Mg  
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Table 6.2   Chemical composition of the bauxite residue amendments used in the study§ 

 

Soil property ORM NORM ARM NARM ABM
pH (1:2) 10.5 8.1 9.4 8.1 10.3
Electrical conductivity (1:2), dS m-1 6.34 21.0 1.90 10.7 0.33
Total C, g kg-1 7.4 6.6 12.8 10.1 33.4
Total N, g kg-1 0.36 0.29 0.28 0.23 0.34
Water extractable organic C, mg kg-1 266 58.5 187 52.6 96.1
Water Extraction, mg kg  -1

Ca 4.07 467 5.34 323 475
K 25.2 41.1 65.4 49.9 17.4
Mg 1.96 2577 0.83 1509 4.66
Na 7435 5625 3514 1954 793
P 14.1 0.38 2.68 0.49 2.98
Total elemental analysis, mg kg -1

Al 150725 135000 170325 160400 41600
As 10.6 10.0 74.5 72.8 38.6
B 502 487 1336 1350 173
Ca 11608 15255 20520 21480 178750
Cd 7.22 7.27 33.5 32.6 7.75
Cr 441 421 860 880 12.3
Cu 66.0 65.4 48.0 48.0 4.35
Fe 225100 227500 378350 360250 92175
Mg 430 4697 863 1988 1124
Mn 239 229 5215 5315 1564
Mo 739 713 1107 1122 513
Na 48120 47585 18135 15975 3004
Ni 5.62 4.84 342 343 24.1
P 404 390 2457 2310 958
Pb 48.5 40.3 109 95 116
Zn 12.31 13.4 270 257 21.0
§ ORM, ORMET red mud; NORM, neutralized ORMET red mud; ARM, ALCOA red mud; 
NARM, neutralized ALCOA red mud; ABM, ALCOA browm mud.

Amendment
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by several orders more (Table 6.2). These results were consistent with the findings of 

McConchie et al. (2000) and Hanahan et al. (2004), who showed that lowering the pH through 

seawater neutralization was accompanied by an increase in EC, due to increase in soluble Ca and 

Mg content, but a decrease in Na. In addition, the neutralization process also slightly decreased 

the  total C (10.1g kg-1 vs. 8.4 g kg-1),  and total N (0.32 g kg-1 vs. 0.26 g kg-1) for the averages of 

the two red muds (ARM and ORM  compared to NARM and NORM).  All the amendments were 

dominated by Al, Ca, Fe, and Na, as indicted by the total elemental analysis. The red mud 

samples had an average Al and Fe content of about 160,000 mg kg -1, and  30,000 mg kg -1 

respectively, while the ABM had a lower Al and Fe and content, but a very high Ca content of  

178,750 mg kg-1.  In addition, ABM contained more total C than the two red mud residues (33.4 

g kg-1 vs. 7.4 and 12.8 g kg-1).  The three amendments varied greatly in their P, K, Mn and heavy 

metal contents (Table 6.2). This variability could be associated with the original impurities 

present in the bauxite ore, details of the purification process, storage condition and age (USEPA, 

1984). 

6.3.2 Amendment Impacts on Extractable Phosphorus and Organic Carbon 

  Figure 6.1 summarizes the effects of the various bauxite residue amendments and rates on 

water-extractable P of the three manure-impacted soils used in this study. To exclude the dilution 

effect, the results were all based on the water-extractable P released per unit of original soil. For 

all the soils, the bauxite residues amendments significantly (P < 0.001) reduced the water-soluble 

P by 58-95% when compared to the untreated soils. Among the three raw bauxite residues, the 

2%-ARM yielded the greatest soluble P reduction followed by the 2%-ABM and then the 2%-

ORM. Between the two red muds (ARM and ORM), the higher reduction in soil soluble P by the 

ARM was likely due to the integrated effect of its higher Fe, Al and Ca content, as well as  
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Fig. 6.1   The effects of the various amendments and application rates on water-extractable P of 
                the three manure-impacted soils (A) Briley, (B) Darley, and (C) Smithdale   
                Within a soil, bars with the same lowercase letter are not statistically different (Fisher's 
                LSD, α = 0.05)           
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Fig. 6.2   The effects of the various amendments and application rates on water-extractable C of 
               the three manure-impacted soils (A) Briley, (B) Darley, and (C) Smithdale  
    Within a soil, bars with the same lowercase letter are not statistically different (Fisher's  
               LSD, α = 0.05)           

0 100 200 300 400 500 600 700 800

Control

2%-ORM

2%-ARM

2%-ABM

2%-NORM

2%-NARM

4%-NORM

4%-NARM

4%-ABM

Tr
ea

tm
en

t Darley

a

a

b

c

b c

b c

b c

bc

b c

0 100 200 300 400 500 600 700 800

Control

2%-ORM

2%-ARM

2%-ABM

2%-NORM

2%-NARM

4%-NORM

4%-NARM

4%-ABM
Tr

ea
tm

en
t Briley

a

c

d

b

d

d

d

c

d

0 100 200 300 400 500 600 700 800

Control

2%-ORM

2%-ARM

2%-ABM

2%-NORM

2%-NARM

4%-NORM

4%-NARM

4%-ABM

Water-extractable C (mg kg-1)

Tr
ea

tm
en

t

Smithdale

a

b

c

c

d

d

d

d

d

(A)

(B)

(C)



134 
 

lower pH and Na content compared to the ORM (Table 6.2). The reduction in P is likely due to 

reactions including surface adsorption onto Fe/Al-oxide and precipitations of Fe/Al-P and Ca-P 

compounds which might have contributed to the retention of soluble P (Laiti et al., 1996; Khare 

et al., 2005). On the other hand, the fact that the Fe/Al-dominated ARM  reduced more soluble P 

than the Ca-dominated ABM in two of the three soils at pH 7.0 to 7.3 (Table 6.3) suggests that 

Fe/Al-oxides likely play an insignificant role in retaining P under neutral or alkaline conditions. 

A similar result has been reported for calcareous soils (Harrell and Wang, 2006). For the ABM, 

the 4% application rate offered little or no improvement over the 2%.  The neutralized red muds 

(NARM and NORM) at 2% application rate yielded the largest reduction (≥ 82%) in water-

extractable P; 12% more than the raw red muds (NARM and NORM). Our results confirmed that 

the neutralization of the red muds enhanced the P sorption capacity. The brown mud was not 

neutralized due to the inherent low Na content of these bauxite residues (Table 6.2).  Increasing 

the application rate from 2% to 4% had no additional effect on soluble P reduction. This suggests 

that more than 2% (40 ton ha-1) field application may not be necessary when neutralized red mud 

or brown mud residues are used for reducing P leaching from P-rich soils. This result is 

significant as a high rate of field application of bauxite residues could cause adverse impact on 

soil quality (Summers et al., 1996; Lombi et al., 2002; Friesl et al., 2003).   

  The application of the bauxite residue amendments (with the exception of the 2%ORM 

on the Darley soil) significantly (P < 0.001) reduced the water-extractable (dissolved) organic 

carbon by 10-40% in the three soils evaluated with the ARM being more effective (Fig 6.2.). 

Both Al and Fe are known to bind readily with organic matter through surface complexation. 

Strong correlations (R2 ≥ 0.72) have been found between soil extractable Al/Fe and OM (Ross et 

al., 1996; Darke et al., 2000. These Al/Fe-OM complexes would likely lead to the reduction of 
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the dissolved organic carbon (DOC) concentration in these treated soils. On the other hand, the 

ORM, due to the high Na content (high dispersion) and soluble alkalinity (Table 6.2), exhibited 

the lowest reduction in water-extractable C. The neutralization using the simulated seawater 

significantly enhanced soluble C retention by the ORM but not by the ARM. There was no 

significant difference (P > 0.05) in soluble C reduction between the two neutralized red muds 

samples (NARM and NORM) at both 2% and 4% application rates. In addition, the 4% 

application rate offered not much improvement over the 2% application rate of the respective 

amendment. Our results strongly suggest that the 2% application rate of the neutralized red mud 

samples is likely adequate for reducing the release of DOC from these manure-impacted soils. 

Although not as effective as the impact on soluble P reduction, the results clearly indicate that 

these Fe,Al, and Ca-dominated bauxite residues could reduce the leaching of soluble C.  

 The need for controlling soluble P and C release from agricultural sites is of great 

environmental concern. The combined effect of these two factors to a great extent, determines 

the fate of surface water quality. Runoff soluble P leads to increased growth of aquatic plants and 

increased biomass decay which would in turn lead to increased oxygen demand. Although DOC 

accounts for only a small proportion of the total organic carbon, it has a great influence on the 

soil biological activity by serving  as a chief source of microbial substrate ((McGill et al., 1986; 

Xu and Juma, 1993; Jansson et al., 2000;  Flessa et al., 2000). The DOC also affects the transport 

of heavy metals and organic pollutants from the soil to surface water because of its ability to 

complex these materials (Tipping, 1993; Romkens and Dolfing, 1998).  Our results suggest that 

the application of the neutralized red muds  have the potential of reducing both the soluble P and 

organic C release from manure/biosolid-impacted soils to the receiving waterbodies. 
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6.3.3 Effect s of Amendments on Selected Heavy Metals 

  The effects of the various amendments and rates on water-extractable Cu and Zn, two 

commonly found metals in manure-impacted soils, are presented in Figs 6.3 and 6.4. The 

amendments exhibited significant (P < 0.05) reduction on both of the extractable metals in all the 

soils, excerpt for the Briley soil in which the 2%-ORM showed no significant reduction of water-

extractable Cu. Overall, the amendments reduced the water-extractable Cu by 2-98%,  and Zn by 

10-90% (Figs 3 and 4). In all cases, the 2%-ORM application rate was the least effective in 

reducing soluble metal release, especially Cu, likely due to its high background Cu 

concentration. The neutralization of the red muds, particularly the ORM, enhanced their 

effectiveness in reducing water-extractable Cu release, but had little effect on water-extractable 

Zn, likely suggesting different mechanisms for retaining these two metals. As earlier discussed, 

the neutralization process increases  the divalent cations such as Mg and Ca which could  in turn 

enhance the binding of clay (or metal oxide) and organic matter. Since Cu in manure-impacted 

soils are likely in complex with organic matter (Del Castilho, 1993; Han 2000), the enhanced 

clay-OM binding by  Mg and Ca could then increase soluble Cu retention, reducing its leaching. 

On the other hand, Zn in the manure-impacted soils is likely in the exchangeable and precipitated 

forms (Han, 2000) and would be less likely subjected to the effect of increased clay-OM binding 

caused by the neutralization of the red muds. As for the water-extractable Zn, increasing the 

application rate of the amendments from 2% to 4% had little or no impact on its reduction for all 

the bauxite residues (Fig. 6.4). These results are comparable to those of Lopez et al (1998) who 

reported 68% purification efficiency for Cu in secondary effluent from an urban sewage 

treatment plant that was percolated through red mud aggregates. The results were also consistent 

with those of Friesl et al. (2003) who reported a 95% reduction in labile Zn pool in a heavy metal  
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Fig. 6.3   The effects of the various amendments and application rates on water-extractable Cu of  
               the three manure-impacted soils (A) Briley, (B) Darley, and (C) Smithdale   
               Within a soil, bars with the same lowercase letter are not statistically different (Fisher's 
               LSD, α = 0.05)           
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Fig. 6.4   The effects of the various amendments and application rates on water-extractable Zn of  
                the three manure-impacted soils (A) Briley, (B) Darley, and ('C) Smithdale 
                Within a soil, bars with the same lowercase letter are not statistically different (Fisher's  
                LSD, α  = 0.05)          
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contaminated soil treated with red mud. On the other hand, Friesl et al. (2003), showed that the 

application of raw red mud increased labile C content. The latter was attributed to the indigenous 

contaminants in the original red muds and the > 4% application rates used. In this study, the 

efficiencies of all the bauxite residue amendments on soluble Zn reduction were lower in the 

Darley soil (10 to 25%), likely due to its low total Zn content of 22.8 mg kg -1, which was about 

the same with the level in the ABM, and 10 times less than the level in the ARM.  

  While the efficiency may differ for different soils, our results clearly showed that bauxite 

residues, particularly when neutralized could reduce both water-extractable Cu and Zn in animal 

manure or biosolid-impacted soils.  

6.3.4 Other Water Quality Related Variables 

  The effects of the various bauxite residue amendments and rates on some other 

parameters related to water quality are summarized in Table 6.3.  The results clearly indicate that 

these selected parameters were significantly impacted by the amendment applications. In 

general, the amendments increased the soil pH by 0.8 to 1.5 unit from those of the original soils. 

This pH increase was expected since the original amendments are of high pH (Table 6.2).  The 

impact on soil pH among the different amendments was however, small (≤ 0.6 pH), with the 

majority, especially at 2% application rate ≤ 0.3.  These results are consistent with those of 

others (Friesl et al., 2004; Brunori et al., 2005). The amendments also significantly (P < 0.001).  

increased the soil electrical conductivity (EC), an indicator of soluble salt concentration. As high 

as 2-fold increase in EC was observed in the soils treated with 4%-NORM and NARM 

amendments (Table 6.3). In general, the neutralized red mud samples had more impact due to 

their higher soluble salt content, and in all cases, the increase in soil EC were less than 0.38 dS 

m-1. 
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Table 6.3   The effects of the various amendments on selected water quality related parameters of the 3 soils  
                  used in the study. Data represent the mean values with the standard error for each given in parentheses§  

    

Treatment pH EC SAR Turbidity BOD5

dS m-1 NTU mg L-1

Briley 6.2 (0.03)d 0.21 (0.00)e 2.04 (0.00)c 2127 (21)e 19.9 (1.95)a
Briley + 2%-ORM 7.3 (0.00)b 0.35 (0.01)d 5.76 (0.27)a 4263 (36)b 17.6 (1.20)ab
Briley + 2%-ARM 7.1 (0.02)c 0.35 (0.00)d 1.59 (0.09)c 2540 (4)d 13.8 (0.23)bcd
Briley + 2%-NORM 7.1 (0.01)c 0.44 (0.02)c 3.76 (0.13)b 3254 (38)c 14.9 (1.61)bc
Briley + 2%-NARM 7.1 (0.02)c 0.40 (0.00)c 1.62(0.29)c 2190 (36)e 16.0 (1.01)abc
Briley + 4%-NORM 7.3 (0.02)b 0.59 (0.01)a 4.15 (0.10)b 4935 (60)a 14.4 (0.38)bc
Briley + 4%-NARM 7.3 (0.02)b 0.49 (0.00)b 1.68 (0.01)c 2717 (233)d 9.3 (0.86)d
Briley + 2%-ABM 7.3 (0.02)b 0.35 (0.03)d 0.97 (0.35)d 1937 (28)e 17.5 (2.66)ab
Briley + 4%-ABM 7.5 (0.00)a 0.40 (0.00)c 0.98 (0.03)d 1904 (104)e 12.7 (2.10)cd
Darley 6.5 (0.03)f 0.21 (0.00)f 1.26 (0.10)d 744 (18)e 14.2 (0.07)a
Darley + 2%-ORM 7.6 (0.02)b 0.35 (0.00)cd 6.96 (0.35)a 4265 (2)a 13.9 (0.82)a
Darley + 2%-ARM 7.3 (0.01)e 0.35 (0.00)cd 1.72 (0.05)c 1851 (15)c 9.4 (0.53)b
Darley + 2%-NORM 7.4 (0.01)d 0.38 (0.00)c 3.60 (0.12)b 3218 (122)b 11.1 (0.26)ab
Darley + 2%-NARM 7.3 (0.01)d 0.38 (0.00)c 1.27 (0.06)d 1320 (15)d 11.5 (0.22)ab
Darley + 4%-NORM 7.5 (0.00)c 0.55 (0.02)a 3.55 (0.09)b 1071 (114)d 10.0 (0.45)b
Darley + 4%-NARM 7.5 (0.00)c 0.45 (0.03)b 1.60 (0.42)cd 1001 (29)de 9.2 (2.25)b
Darley + 2%-ABM 7.6 (0.02)b 0.32 (0.01)de 1.31 (0.04)cd 1085 (224)d 12.7 (2.25)ab
Darley + 4%-ABM 7.9 (0.03)a 0.30 (0.01)e 1.42 (0.03)cd 1301 (113)d 9.0 (1.01)b
Smithdale 6.0 (0.03)f 0.21 (0.00)f 1.44 (0.04)d 708 (6)f 17.8 (1.73)a
Smithdale + 2%-ORM 7.3 (0.03)b 0.30 (0.04)de 7.83 (0.07)a 3792 (93)b 17.3 (0.04)a
Smithdale + 2%-ARM 7.0 (0.02)c 0.26 (0.01)e 1.40 (0.17)d 2256 (66)d 14.2 (0.75)ab
Smithdale + 2%-NORM 7.1 (0.04)d 0.36 (0.01)c 3.79 (0.12)c 3021 (15)c 14.7 (0.90)ab
Smithdale + 2%-NARM 7.1 (0.02)d 0.32 (0.00)d 1.44 (0.03)d 2094 (12)d 12.6 (1.35)bc
Smithdale + 4%-NORM 7.2 (0.02)c 0.54 (0.00)a 4.15 (0.03)b 4938 (138)a 7.9 (1.16)de
Smithdale + 4%-NARM 7.2 (0.00)c 0.45 (0.00)b 1.43 (0.07)d 1182 (21)e 10.4 (2.03)dc
Smithdale + 2%-ABM 7.2 (0.00)c 0.31 (0.01)d 0.52 (0.12)e 1029 (9)e 14.3 (0.86)ab
Smithdale + 4%-ABM 7.5 (0.00)a 0.33 (0.01)cd 0.75 (0.10)e 1184 (77)e 4.9 (0.11)e

demand. pH was measured on 1:10 soil-water mixture; SAR and EC were measured on the extract from 1:10 soil-water mixture; 
turbidity and BOD5 were measured on 1:10 soil-water mixture after 10-hour settling.
Mean values in a column (within a soil) with the same lowercase letter  are not statistically different (Fisher's LSD, α = 0.05)

§ ORM, ORMET red mud; NORM, neutralized ORMET red mud; ARM, ALCOA red mud; NARM, neutralized ALCOA red
mud; ABM, ALCOA browm mud; EC, electrical conductivity; SAR, sodium adsorption ratio; BOD5, five-day biochemical oxygen
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  Sodium adsorption ratio (SAR) which often approximates the degree of dispersion in soil 

system was highly affected (2-5 fold increase) by both 2%-ORM and the 4%-NORM 

amendments. This impact was associated with the high sodium content of the original ORMET 

red mud sample (Table 6.2).  The application of Ca-dominated brown mud at 2 and 4%, had little 

effect or even decreased the soil SAR, suggesting increased soil Ca and Mg levels by the  

application of these amendments (McConchie et al., 2000; Hanahan et al., 2004).Our results 

suggest that most of these amendments, particularly the ORMET red mud sources may lead to 

soil dispersion that could be sensitive enough to induce more particle runoff, leading to increased 

turbidity in the receiving waterbodies. This was further supported by a linear and significant 

relationship (R2 = 0.56, P < 0.001) between the turbidity (measured after 8-hour settling) and the 

SAR of the solid-water suspension (Fig. 6.5). The higher turbidity observed from the untreated 

Briley soil compared to the untreated Darley and Smithdale soils, which were about the same 

(Table 6.3), could be attributed to its higher clay content, and similar observation has been 

reported by Udeigwe et al. (2007). The results from the study suggest that among all the bauxite 

residue amendments evaluated, the 2% and 4%-ABM would tend to have the least impact on 

turbidity of runoff water from these manure-impacted soils (Table 6.3). 

  The effects of the bauxite residue amendments on five-day biochemical oxygen demand 

(BOD5) were also investigated and the results are presented in Table 6.3. Five-day BOD has 

often been used as a measure of the organic biodegradable materials present in a water system 

(Marsili, 1986; Sawyer et al., 1994; Marty et al., 1997). Past studies have shown different 

degrees of relationships between BOD5 and organic carbon in surface water and wastewater 

(Emery et al., 1971; Chandler et al., 1976; Constable et al., 1979). The BOD5 analysis conducted  
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Fig.6.5   Relationship between turbidity measurement on 1:10 soil-water suspension   
              and sodium adsorption ratio (SAR)  
 
 

 

Fig. 6.6   Relationship between five-day biochemical oxygen demand (BOD5)    
    measurement and water-extractable carbon from 1:10 soil-water suspension  
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on the water from the 1:10 solid (soil and amendment)-water mixture revealed that the 

amendments decreased the resulting BOD5, particularly with the neutralized red mud and 4%-

ABM amendments (Table 6.3). This reduction in BOD appeared to be associated with the same 

effect of amendments observed on DOC concentration as discussed earlier (Fig. 6.2). The latter 

was further supported by the significant linear relationship between BOD5 and DOC (R2 = 0.43, 

P < 0.001) in the water from the solid (soil and amendment)-water mixtures (Fig. 6.6).  The 

results suggest that these bauxite residue amendments could play a significant role in reducing 

the oxygen demand load posed by surface runoff from manure-impacted soils.  

6.4 Conclusions 

  This study demonstrates the effectiveness of the different bauxite residue materials and 

application rates on environmental P, C, and heavy metal release from manure-impacted soils, 

and also evaluates the overall impact on other selected water quality parameters. Chemical 

characterization of the amendments revealed they are high Fe, Ca and Al-containing materials, 

and of high pH, SAR and soluble salt concentration. The soils used in this study are of high P 

content and greatly exceeded the environmental P threshold value of 150 mg kg-1 (by Mehlich III 

extraction).  

    The results from the study revealed that the various bauxite residue amendments and 

application rates evaluated have the potential of reducing the water extractable (soluble) P, C, Cu 

and Zn levels of these manure-impacted soils. The effectiveness of these amendments to a large 

extent depends on their background elemental composition and pH. Neutralization of the red 

mud samples lowered the pH, increased the soluble Ca and Mg concentration, and enhanced their 

retention ability, particularly for P and Cu. The results further suggest that the 4% application 

rate of NORM, NARM and ABM offered no much improvement over the 2% application rate on 
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reducing extractable (soluble) P and C. However, the 4% application rate of the neutralized red 

muds offered a significant improvement over the 2% with respect to extractable Cu reduction 

With respect to Zn, the efficiency of the various amendments and rates were about the same, 

indicating that neutralization of the red mud showed no significant effect.  

  With respect to other water quality related variables examined, most of these 

amendments showed the potential of increasing the EC and SAR in runoff water from these soils 

(over 2 folds), particularly by the 4%-NARM and NORM application. Overall, the 2% and 4%-

ABM amendments had the least impacts on turbidity. The results from this study suggest that 

most of these amendments, particularly the ORMET red mud sources may lead to soil dispersion 

that could induce more particle runoff, leading to increased turbidity in the receiving 

waterbodies. Of interest, the BOD5 analysis conducted on the water from the 1:10 solid (soil and 

amendment)-water mixture revealed that oxygen demand was significantly reduced.  The latter 

was attributed to the complexation of OM which led to the reduction in dissolved organic C.  In 

summary, the findings from this study suggest that the 2% application of neutralized red mud to 

manure/biosolid-impacted soils could reasonably reduce the soluble P, organic C, heavy metals 

and to a reasonable extent the oxygen demand of runoff water from these impacted soils.  
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CHAPTER 7 

CONCLUSIONS 

  The implementation of best management practices and soil-remediation techniques, along 

with the development of predictive relationships among key water quality parameters in 

agricultural systems, are undeniably important. The first of this four-part study evaluated the 

effects of three sugarcane management techniques, namely ground burning of residue (BR), 

shredding of residue (SR), and full post-harvest retention of residue (RR), on the water quality of 

surface runoff over the growing seasons (2006-2007). The results from this study revealed that 

runoff volumes recorded from each residue management had no definite trend over the sampling 

period, and total runoff volume was not significantly different among the practices. Rainfall 

amount accounted for about 67% of the variability associated with runoff volume in the BR 

treatment and 50% in the RR and SR treatments. The BR treatment yielded higher average total 

suspended solids (TSS) concentration than the RR and SR treatments, and the TSS trend also 

reflected on the turbidity, total P, and total Kjeldahl N, suggesting close relationships among 

these parameters. On the other hand, the RR treatment exhibited a slightly higher average five- 

day biochemical oxygen demand (BOD5) and total N (summation of TKN, NO3-N and NO2-N) 

than the BR and the SR treatments. Overall, the runoff concentrations of these parameters were 

not significantly impacted by the treatments application. With respect to pollutant export, the RR 

treatment exported lower TSS, TDS, BOD5, TP, nitrate-N, nitrite-N, chloride and sulfate among 

the three residue management practices, but this was not significant. The latter finding could be 

attributed to a combination of higher runoff volumes and the presence of easily-washed 

burnt/shredded residue cover associated with the BR and SR treatments. “Layby” application had 

less impact on pollutant export trend in 2006. However, the BR treatments exhibited a higher 

runoff volume and pollutant export after “layby” application in 2007. Rainfall amount was 
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positively correlated with TSS, BOD5, TKN, total P, nitrite-N, and nitrate-N loads, with stronger 

correlations observed in the BR treatment. Runoff TSS was strongly correlated with turbidity 

measurements (R2 = 0.95, P < 0.001).  In summary, although there was no statistically significant 

difference among the residue management practices, the RR techniques comparatively exported 

lower TSS, BOD5, TP and inorganic anions during the study period. 

  Furthermore, the impacts of these three sugarcane residue management techniques on the 

forms and amount of carbon exported through surface water runoff, and also on the chemical 

composition of organic matter in the runoff sediments using pyrolysis-GC/MS were evaluated. 

The results of the soil characterization of the treatment plots revealed that the BR treatment 

exhibited lower concentrations of TN, TOC and DOC at the surface layer, partly attributed to the 

release of these as oxides to the atmosphere. Higher runoff volumes were observed in the BR 

treatment in more than 60% of the runoff events. Subsequently, these higher runoff volumes 

resulted in higher TC, TOC, and POC export compared to the RR and SR treatments, but this 

was not statistically different. In all the runoff samples, TOC constituted 94-99% of TC, while 

POC constituted 65-76% of TOC. The DOC concentration was less than 10 mg L-1 in about 80% 

of all runoff samples. A paired T-test result confirmed that the proportion of POC and DOC to 

TOC in runoff over the sampling period was not statistically different among the 3 treatments. 

Turbidity and TSS measurements of runoff water samples were positively correlated to POC and 

TOC, suggesting they can play significant roles in approximating carbon export in surface runoff 

from sugarcane fields. The TMAH thermochemolysis Py-GC/MS analysis of runoff sediments 

revealed that most of the pyrolysis compounds observed in this study were the characteristic 

compounds obtained from the Py-GC/MS analysis of surface soil organic matter. Dominant 

FAMEs identified in all treatments include 14-methyl pentadecanoic acid (F14), octadecanoic 
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acid (F18), 2-(1-oxopropyl)-benzoic acid (F6), and 4-hydroxy-2-butenoic acid methyl esters 

(F1). The dominant lignin-derived compounds found in all the treatments are 4 (1-propinyl) -2, 

6-dimethoxyphenol (L1), 4-(4-mxethoxyphenyl)-6-trichlorome (L5), methoxypropane (L2), and 

methoxy-acetic acid methyl ester (L3). Lignin-derived compounds were intense in the BR 

treatment compared to the other treatments, but tended to decrease over the growing season 

likely due to humification. The common N-containing compounds identified within all the 

treatments are 1-methyl-1H-pyrrole (N3), indole (N6), ethyldiethanolamine (N8), and 3-

(dimethylamino)-phenol (N9). Dominant polysaccharide-derived compound observed was 

Levoglucosan (P8), and it constituted over 80% of all identified polysaccharide-derived 

compounds in each sample. The polysaccharide pool decreased over the growing season in all 

the treatments, and was generally lower in the BR treatment, likely suggesting the destructive 

effect of residue burning. The results suggest that even though the BR treatment exhibited higher 

TOC concentration and load in runoff over the growing season, runoff waters from this treatment 

might still pose lesser oxygen-demand threat, due to the presence of more recalcitrant materials 

(lignin). In summary, there was no clear significant difference in carbon export among the three 

residue management techniques, however, the BR treatment tended to be more susceptible to 

runoff and comparatively exported more carbonaceous materials in runoff. 

  The succeeding part of this study evaluated the relationships between oxygen demand 

and other related water quality parameters for typical agricultural effluents using simulated water 

samples from different organic substrates sources. The results showed that  the short-term BOD 

measurements (BOD2 and BOD5) were significantly related to all the major carbon fractions 

namely TOC, POC and DOC (R2 = 0.62-0.77, P< 0.001), and as well as to TN, TKN and NO2-N 

(R2 = 0.45-0.66, P< 0.001).  On the other hand, long-term BOD (BOD60) was poorly correlated 
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with C and N fractions, with the exception of DOC which accounted for 46% of the variability 

associated with BOD60.  Phosphate exhibited a positive and linear relationship with both short-

term and long-term BOD measurements (BOD2, BOD5, and BOD60), and this was attributed to 

its nutritional effect.  On the other hand, Cl exhibited an inhibitory effect on oxygen demand, 

particularly on the long-term BOD. Furthermore, the multivariate regression analyses revealed 

that a combination of each of TOC, POC, and DOC with NO2-N, and Cl or PO4-P would 

improve the predictions of both long-term and short-term BOD.  In general, the strength of the 

relationships between BOD measurements and other water quality parameters progressively 

decreased with increasing incubation times. The BODu derived from the first order kinetics was 

highly correlated with BOD60 (R2= 0.81, P < 0.001), but had no significant relations with C and 

N fractions as well as other parameters. On the other hand, BOD60 may be predicted by BOD5. In 

addition, the water samples generated from the animal manure source materials exhibited 

characteristically higher DOC output, suggesting more oxygen demand load to the receiving 

waterbodies by runoff from manure-impacted soils. In summary, these results based on the 

simulated waters suggested that C and N forms along with PO4-P and Cl are likely the most-

dominant factors influencing the oxygen demand characteristics of agricultural effluents.  

  The final part of this study evaluated the effectiveness of two bauxite residue materials 

(red and brown muds) on reducing reactive (soluble) nutrients and pollutants release from animal 

manure-impacted soils. The results revealed that the various bauxite residue amendments and 

application rates evaluated have the potential of reducing the water extractable (soluble) P, C, Cu 

and Zn levels of these manure-impacted soils. The effectiveness of these amendments, to a large 

extent, depends on their background elemental composition and pH. Neutralization of the red 

mud samples lowered the pH, increased the soluble Ca and Mg concentration, and enhanced their 
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efficiencies, particularly on P and Cu. The results from this study revealed that the 4% 

application rate of NORM and NARM offered no improvement over the 2% application rate on 

extractable (soluble) P and C, and likewise, the 4% -ABM showed no significant improvement 

over the 2% application rate. The neutralization of the ORM greatly enhanced the efficiency on 

reducing extractable Cu, suggesting the role of Ca and Mg on clay-OM complexes, leading to 

increased Cu retention.  Among the neutralized red mud amendments, the 4% application rate 

offered a significant improvement over the 2% with respect to Cu. Furthermore, these 

amendments showed the potential of increasing the EC of runoff water from these soils (over 2 

folds), particularly by the 4%-NARM and NORM applications. The results from this study 

suggest that with the exception of the ABM amendments, most of these amendments, 

particularly the ORMET red mud sources may lead to soil dispersion that could induce more 

particle runoff, leading to increased turbidity in the receiving waterbodies. The application of the 

ABM and neutralized red muds also significantly reduced oxygen demand in the water from the 

1:10 solid-water mixture, due to lowered dissolved carbon resulting from the complexation of 

OM. In summary, the results suggest that the 2% application of neutralized red mud to 

manure/biosolid-impacted soils could reasonably reduce the soluble P, organic C, heavy metals 

(soluble Cu and Zn), and to a reasonable extent the oxygen demand of runoff water from these 

impacted soils.  

 In conclusion, this study was chiefly centered on evaluating management practices 

impacts on water quality. Among the three residue management practices evaluated, the RR 

exhibited lower pollutants discharge. Burning of the residue also indicated an alteration in carbon 

quality of the runoff sediments. The result from the simulated water samples revealed that C and 

N forms remain the dominant factors controlling oxygen demand in agricultural effluents. 
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Among the remediation techniques evaluated, the 2% application of the neutralized red muds 

could reduce soluble P, C, Zn, Cu release, and could also lower the oxygen demand load of 

runoff water from manure-impacted soils. 
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