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Abstract  

Weeds cause significant yield loss in sweetpotato. Post-emergent herbicides cause damage to 

sweetpotato plant, which necessitates development of herbicide tolerant sweetpotato. An optimal tissue 

culture system is a prerequisite for in vitro screening of herbicide tolerant sweetpotato. Three 

Louisiana cultivars, ‘Beauregard’, ‘Orleans’, and ‘LA 07-146’, were tested to develop an efficient 

callus induction and plant regeneration system. 2, 4-D @ 0.23 µM was ideal for ‘Beauregard’ and 

‘Orleans’ callus induction and 0.45 µM 2, 4-D for callus induction in ‘LA 07-146’. Phytohormone-free 

media was found suitable for regeneration. Plants were regenerated from callus tissues that survived in 

vitro with 2 µM, 6 µM, 8 µM and 10 µM of halosulfuron methyl (active ingredient of herbicide 

Sandea
®

). The culture conditions identified through this study have applicability to wide use in 

somaclonal selection in sweetpotato.  

 Adventitious root emergence from original cuttings of sweetpotato marks the initial phase of 

storage root development. A better understanding of the mechanism of adventitious rooting in 

sweetpotato will be of immense importance to strategize breeding efforts to maximizing its marketable 

yield. In the present study, role of ethylene in adventitious rooting was investigated by application of 

3.8 ppm of 1-mcp to two sweetpotato cultivars, ‘Beauregard’ and ‘Evangeline’, known to have 

contrasting adventitious rooting in response to 1-mcp. Sequencing of suppression subtractive 

hybridization libraries from both cultivars indicated that genes involved in the cell wall and sugar 

biosynthesis pathway were differentially expressed by exogenous application of 1-mcp. Two 

component response regulator, fructose bisphosphate aldolase and arabinogalactan, were present in 

both cultivars. However, their expression pattern varied at different time points between ‘Beauregard’ 

and ‘Evangeline’. Genes coding for ascorbate oxidase and oxysterol-binding protein were upregulated 

in ‘Beauregard’ whereas two-component response regulator was upregulated in both ‘Beauregard’ and 

‘Evangeline’. Except for a slight upregulation of fructose-bisphosphate aldolase in ‘Beauregard’ and 

arabinogalactan in ‘Evangeline’ at 12 h time point, both genes showed downregulation in both 



x 

cultivars at all other time points. Most of the differentially expressed genes were shown to be involved 

in ethylene signaling. This study confirmed previous results that ethylene is involved in adventitious 

rooting in sweetpotato. 
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Chapter I. General Introduction  

Economic Importance of Sweetpotato  

Sweetpotato is an important food crop worldwide. Internationally it is ranked as the 7
th

 most 

important food crop (Kays, 2004). In the United States sweetpotato is consumed primarily as a 

seasonal vegetable. Sweetpotato is the state vegetable crop of North Carolina. It is estimated that the 

importance of sweetpotato will continue into the future as the global population grows. Sweetpotato, 

along with other root and tuber crops, are expected to contribute significantly to the global food 

security, especially among the poor in developing countries by the year 2020 (Scott et al., 2000). 

Within the U.S., sweetpotato is widely cultivated in Louisiana where 13 thousand acres were harvested 

with an economic production value of ~48 million dollars in 2010 to the state (USDA, 2011). Acreage 

has declined significantly since then. Competition from other high value commodities has been a 

contributing factor to this. The present investigation was undertaken to study two important factors that 

contribute to maximizing sweetpotato yield: (1) effective weed management; and (2) a better 

understanding of storage root formation.  

Weed Management in Sweetpotato   

Weeds cause a yield reduction of 14% to 68% in sweetpotato depending on the cultivar 

(LaBonte et al., 1999), and reduce the quality of sweetpotato due to their ability to divert nutrients, 

water and sunlight away from the crop (Smith and Miller, 2007). Prostrate growth habit of sweetpotato 

on the ground is a limitation to its weed management. A critical weed-free period of 2 to 6 weeks after 

transplanting was optimum for maximum yield and quality (Seem et al., 2003).  Mechanical measures, 

including hand weeding, have been used to control weeds in sweetpotato (Welker, 1967). The rising 

cost of labor is cost-prohibitive, but mechanical cultivation to reduce weed pressure is still widespread. 

Pre-emergence herbicides have been used in sweetpotato during the first two months of growing. 

Presently, only three post-emergence herbicides are recommended for sweetpotato in Louisiana (Smith 
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and Miller, 2007). Post-emergence herbicides for broadleaf weeds can cause damage to the 

sweetpotato plant (Dittmar and Stall, 2013). 

Use of Sandea in Sweetpotato Cultivation  

The herbicide Sandea
®
, with its ability to control many broadleaf weeds and nutsedges, has 

been of interest to sweetpotato growers. Sandea, classified as a Sulfonylurea, inhibits acetolactate 

synthase (ALS) and acetohydroxy synthase (AHAS), and affects the production of branched chain 

amino acids isoleucine, leucine and valine (Griffin, 2008). When applied before transplanting, Sandea
®
 

did not cause noticeable damage or yield reduction in sweetpotato while nutsedge control was at least 

90% (Main et al., 2005). In Louisiana, the combinations of Sandea
®
 with Valor

®
 (flumioxazin) or 

Command
®
 (clomazone) as pretransplant increased the yield of more marketable sizes (Smith et al., 

2006). Post-emergent application of Sandea
®
 caused 12.5% to 22.5% damage to sweetpotato canopy 

compared to the untreated checks after one week. However, the damage was reduced (6 %) after 2 

weeks of growth and no damage was visible after 3 weeks (Shankle et al., 2003). Although there was 

no significant yield loss, foliage damage diminished interest of the producers from using Sandea
®
 as a 

post-emergent application. Aapplication of Sandea
®
 over 13 g ha

-1
 damaged sweetpotato storage roots, 

but the cultivar ‘Beauregard’ showed much less damage than ‘Covington’, which was more sensitive 

to post-emergent applications (Dittmar et al., 2013). Thus, development of cultivars with enhanced 

resistance to Sandea
®
 would provide producers more flexibility in controlling weeds, especially 

nutsedges that may develop later in the season. 

Using Tissue Culture Techniques to Acquire Herbicide Tolerance   

Tissue culture techniques offer a unique opportunity for acquiring herbicide tolerance (HT) in 

sweetpotato either by genetic engineering, mutation or creating a system to screen existing cultivars 

and germplasm for innate HT. Callus-based screening for sethoxydim tolerance was successfully used 

in seashore paspalum (Heckart et al., 2010).  Development of an optimum tissue culture system 

involving callus induction and regeneration is a prerequisite for in vitro screening, mutagenesis and/or 
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genetic engineering for HT in sweetpotato. Protocols developed earlier in sweetpotato were genotype-

dependent (Kreuze et al., 2009). Therefore, there is a need to develop a reproducible and genotype-

independent culture medium-hormone recipe for efficient callus induction and regeneration in 

sweetpotato. The second chapter of this thesis reports the results of a study that was undertaken with an 

objective to develop an optimum callus induction and regeneration system for halosulfuron screening 

with an ultimate goal of developing HT sweetpotato. 

Adventitious Rooting in Sweetpotato 

 Adventitious root emergence from sweetpotato cuttings (slips) marks the initial phase of 

storage root development (Togari, 1950; Belehu et al., 2004). A better understanding of the mechanism 

underlying adventitious rooting in sweetpotato will be useful for development of better cultivars with 

improved marketable yield. Auxins and cytokinins play an important role in the thickening process of 

storage root formation from initial adventitious roots (Noh et al., 2010, Tanaka et al., 2005, Tanaka et. 

al. 2008, Solis et al., 2014). Hormones, such as zeatin riboside, dihydro-zeatin riboside and abscisic 

acid were shown to have important roles in storage root formation (Wang et al., 2005). Recently, gene 

expression analysis hinted the role of ethylene in sweetpotato root development (Firon et al., 2013). 

Adventitious root growth and epidermal cell death in rice were shown to be linked to the ethylene 

signaling pathway (Mergemann and Sauter, 2000). However, first evidence of involvement of ethylene 

in genotype-specific adventitious rooting of sweetpotato was reported by Villordon et al. (2012). 

Therefore, an understanding of the regulation of initial adventitious rooting by ethylene will help to 

improve quality and uniformity of cutting establishment (Villordon et al., 2012). 

Use of Ethylene Antagonists in Sweetpotato  

Ethylene antagonists, such as 1-methylcyclopropene (1-mcp), bind to ethylene receptors and 

affect plant’s ethylene perception. 1-mcp has been approved for use to increase the shelf-life of fruits, 

vegetables and cut flowers (Cheema et al., 2013; Watkins, 2006), but it has not been studied 

extensively in vegetables (Bower and Mitcham, 2001). Sprout growth and monosaccharide content in 



4 

sweetpotato roots was reduced by 625 nl/L of 1-mcp for 24 h (Cheema et al., 2013). Interestingly, 1-2 

ppm of 1-mcp was shown to affect the development and growth of sweetpotato adventitious roots in a 

genotype dependent fashion (Villordon et al., 2012).  ‘Beauregard’ showed significant reduction in the 

number and growth of adventitious roots, but root count was unaffected in ‘Evangeline’ with slight 

reduction in root growth. Histochemical analysis indicated that ethylene-induced cell death was 

inhibited by 1-mcp in ‘Beauregard’. Cell death and rudimentary adventitious root tip development was, 

nevertheless, persistent (Villordon et al., 2012). However, the genetic basis of the differential response 

of two cultivars ‘Beauregard’ and ‘Evangeline’ to lateral rooting by the application of 1-mcp is lacking 

(Villordon, et al., 2012). In apples, mode of the action of 1-mcp was shown to be related to delaying or 

suppression of the expression profile of genes involved in ethylene biosynthesis and reception 

(Varanasi et al., 2013). Therefore, molecular investigations into the response of sweetpotato to 1-mcp 

and its role in ethylene biosynthesis pathway could contribute to a better understanding of genetic 

regulation of agronomic traits like storage root development, flood tolerance, storage life and disease 

resistance. The third chapter of the thesis focuses on the study which was conducted with an objective 

to identify of genes that are differentially regulated by 1-mcp application in two sweetpotato cultivars 

‘Beauregard’ and ‘Evangeline’.  
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Chapter II. Development of an In Vitro Screening Method for Herbicide Tolerance in 

Sweetpotato (Ipomoea batatas)  

 

Introduction  

Sweetpotato is an important food crop worldwide. Among other biotic pests, weeds cause 14% 

to 68% reduction of yield depending on the cultivar (LaBonte et al., 1999) and quality of sweetpotato 

due to their ability to divert nutrients, water and sunlight away from the crop (Smith and Miller, 2007). 

Weed management in sweetpotato is difficult due to its prostrate vine growth. It is assumed that little 

weed control is needed after the first two months because of rapid canopy coverage (Titus, 2008). 

However, if weeds are not managed in that first two months, it can have a detrimental effect on the 

ability of the sweetpotato to out-compete weeds. A critical weed-free period of 2 weeks to 6 weeks 

after transplanting was found to be optimum for maximum yield and quality (Seem et al., 2003).  

Mechanical measures, often supplemented with hand weeding, have been used to control weeds in 

sweetpotato (Welker, 1967). The rising cost of labor has made hand pulling prohibitively expensive, 

but mechanical cultivation to reduce weed pressure is still widespread. Three mechanical cultivations 

are a part of an average weed control program in sweetpotato.  Registered pre-emergent herbicides 

exist for sweetpotato. Four pre-emergence herbicides: Command
®
, Dacthal

®
, Valor

®
 and Devrinol

®
 are 

recommended in Florida for controlling broadleaf and grass weeds (Dittmar and Stall, 2013).  

Command
®
, Valor

®
 and Dual Magnum

®
 are additionally registered for use in Louisiana for controlling 

broadleaf and grass weeds (Smith and Miller, 2007). Post-emergent broadleaf weed control is 

challenging as most herbicides for broadleaf weeds cause damage to the sweetpotato plant (Dittmar 

and Stall, 2013). 

The herbicide Sandea
®
, with its ability to control many broadleaf weeds and nutsedges, has 

been of interest to sweetpotato growers. Commercial grade Sandea
®
 75WG contains 75% 

halosulfuron-methyl as the active ingredient (Gowan Co, LLC, Yuma, AZ). The mode of action of this 

particular herbicide is the inhibition of acetolactate synthase (ALS) and acetohydroxy synthase 
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(AHAS) by blocking conversion of α-ketoglutarate to 2-acetohydroxybutyrate and conversion of 

pyruvate to 2-acetolactate, respectively (Griffin, 2008 ). It is classified as a Sulfonylurea with 4 d to 12 

d half-life, and affects the production of branched chain amino acids isoleucine, leucine and valine, the 

biosynthetic pathway that occurs within the chloroplast (Griffin, 2008). Sandea
®
 is readily absorbed by 

roots, shoots and foliage, and is easily translocated in the xylem and phloem to meristematic tissues of 

the plant. When applied as a pre-emergence herbicide, it suppresses weed emergence, whereas growth 

cessation occurs when applied post-emergent. It also leads to chlorosis or purpling and malformation 

of immature leaves, necrosis, and abnormal branching (Griffin, 2008). 

When applied before transplanting, Sandea
®
 did not cause noticeable damage or yield reduction 

in sweetpotato while nutsedge control was at least 90% (Main et al., 2005). In Louisiana, the 

combinations of Sandea
®

 with Valor
®
 (flumioxazin) or Command

®
 (clomazone) as pretransplant 

increased the yield of more marketable sizes (Smith et al., 2006). Post-emergence application of 

Sandea
®
 was shown to cause 12.5% to 22.5% damage to sweetpotato canopy compared to the 

untreated checks after one week. Damage lessened (6 %) after two weeks and no damage was visible 

after three weeks (Shankle et al., 2003). Although there was no significant yield loss, foliage damage 

diminished producer interest from using Sandea
®
 as a post-emergent application. In addition, research 

indicates that application of Sandea
®
 over 13 g ha

-1
 could damage the sweetpotato storage root, with 

the cultivar ‘Beauregard’ showing much less damage at higher doses of Sandea
®
 than ‘Covington’, 

which was more sensitive to post emergence applications (Dittmar et al., 2013). Thus, development of 

cultivars with improved resistance to Sandea
®
 would provide producers more flexibility in controlling 

weeds, especially nutsedges that may develop later in the season. 

A culture medium-vitamin recipe for micropropagation and maintenance of virus-free 

sweetpotato cultivars exists (Hoy and Clark, 2006); however, development of an optimum tissue 

culture system involving callus induction and regeneration is a prerequisite for in vitro screening, 

mutagenesis and/or genetic engineering for herbicide tolerance (HT). There are a few reports that 
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document sweetpotato’s response to tissue culture system (Golmirzaie and Toledo, 1998; Ahmed et al., 

2011). Both 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2,4,5-trichlorophenoxyacetic acid (2, 4, 5-T) 

have been used for callus induction, where the latter produced embryogenic callus in cultivars that did 

not respond as favorably to 2, 4-D (Al-Mazrooei et al., 1997; Sefasi et al., 2012). 2, 4-D was effective 

at low rate (2.3 µM) and started to have negative effect at rates above 13.57 µM (Oggema et al., 

2007a). The abaxial surface of the leaf formed more embryogenic callus than the adaxial surface (Liu 

and Cantliffe, 1984). Callus generation and indirect embryogenesis were considered advantageous over 

direct embryogenesis, which produces fewer regenerated plants, and abscisic acid was shown to 

enhance somatic embryogenesis (Liu, et al., 2001; Oggema et al., 2007b).  

 Compact and organized callus tissue was shown to regenerate better than loose and friable 

callus (Liu and Cantliffe, 1984). Phytohormone-free medium was generally used for callus 

regeneration (Liu and Cantliffe, 1984). A comprehensive analysis of various protocols has led to the 

conclusion that many of the protocols developed were genotype-dependent (Kreuze et al., 2009). 

Therefore, there is a need to develop a reproducible and genotype-independent tissue culture system 

i.e., standard medium-hormone recipe for efficient callus induction and regeneration in sweetpotato. 

Callus-based screening for sethoxydim tolerance was successfully used in seashore paspalum 

(Heckart et al., 2010).  The present study was undertaken to develop an optimum callus induction and 

regeneration system for halosulfuron screening with an ultimate goal of developing halosufuron 

resistant sweetpotato.  

Materials and Methods  

Plant material 

In vitro maintained virus-free plants of three sweetpotato cultivars, ‘Beauregard’, ‘LA 07-146’ 

and ‘Orleans’, were obtained from the Department of Plant Pathology and Crop Physiology at the 

Louisiana State University Agricultural Center (Courtesy of Mary Hoy). ‘Beauregard’ was chosen due 

to its widespread cultivation in the U.S. and elsewhere (Rolston et al., 1987); ‘LA 07-146’ was selected 
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because it is a high yielding cultivar with ideal qualities for the French fry industry; ‘Orleans’ is a new 

release similar to ‘Beauregard’ but has a better shape (LaBonte et al., 2012). 

The plant material was maintained in tissue culture in large magenta vessels (one on top of the 

other with a connector, Sigma-Aldrich, St. Louis, MO) on 40 ml to 50 ml of LS medium (Linsmaier 

and Skoog, 1965) using the protocol described by Hoy and Clark (2006). The large container allowed 

plants to develop larger leaves and thicker stems than when grown in culture tubes that tend to support 

adequate stem growth but substantially smaller leaves. At least two multiplication cycles were 

performed with stem cuttings of 2 cm to 3 cm (with at least two nodes) to generate plants with enough 

leaf and stem materials for use as explants. 

Callus induction 

A pilot experiment was conducted with leaf and stem tissues of two cultivars ‘Beauregard’ and 

‘LA 07-146’ that were placed in Petri dishes containing 25 mL of MS (Murashige and Skoog, 1962) 

medium supplemented with the following phytohormones:  2, 4-D (µM): 0.05, 0.09, 0.23, 0.45, 3.39, 

4.52, or 11.31; NAA (naphthalene acetic acid, µM): 2.69, 5.37, 13.43, or 26.85; IBA (indole butyric 

acid, µM): 0.49, 1.23, 2.46, 4.92, 6.15, 7.38, 8.61, 9.84, 14.76, 19.68, 24.60, 29.52, 34.44, 39.36, 

44.28, or 49.20; TDZ (thidiazuron, µM): 0.11; Combination (µM): 0.54 NAA + 9.29 KN (kinetin) + 

2.22 BAP (benzyl aminopurine),  0.54 NAA + 8.88 BAP,  0.54 NAA + 0.11 TDZ. The phytohormone 

concentrations were selected based on literature available on sweetpotato (Liu et al., 2001; Oggema et 

al., 2007a) and other crops, such as rice (Baisakh et al., 2001). 

The cultures were incubated under dark at 26±1C. The cultures with TDZ treatment and 

phytohormone combinations were incubated under a 12:12 h light:dark regime. Pilot experiment 

suggested that 2, 4-D was the best phytohormone and leaf tissue was better than stem cuttings as 

explant for callus induction (data not shown). Subsequently, 2, 4-D was used at various concentrations 

(0.23, 0.45, 1.13, 2.26, 3.39, or 0.45 µM) to establish its optimal level for callus induction from leaf 
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discs of ‘Beauregard’, ‘LA 07-146’ and ‘Orleans’. Five leaf explants were cultured per Petri dish in 

three replicates for each treatment and cultivar. The cultures were incubated under dark inside a growth 

room maintained at 26±1 C. Observations on callus induction were made every week. Compact 

creamy yellow (embryogenic) sections of the primary callus tissues were excised from the leaf 

explants and subcultured every three weeks on fresh medium with the same level of 2, 4-D. 

Screening of callus tissue for halosulfuron tolerance 

Embryogenic callus tissues propagated from medium with 0.23 µM
 
or 0.45 µM 2, 4-D 

(dependent upon the cultivar) were used for screening with halosulfuron. Callus tissues from all three 

cultivars were placed on MS medium supplemented with 0.45 µM
 
2, 4-D and halosulfuron at various 

concentrations (2, 4, 6, 8 and 10 µM). Cultures without halosulfuron served as the control. Cultures 

were incubated under continuous dark at 26±1 C.  The cultures were observed on a daily basis until a 

clearly visible browning of the tissues was noticed. Half of the surviving callus was subcultured on 

fresh herbicide supplemented callus induction medium and the other half was transferred to 

phytohormone-free medium for regeneration. In another experiment, leaf discs were also cultured on 

Petri dishes with callus induction medium supplemented with 0.23 µM 2, 4-D and different 

concentrations of halosulfuron to determine its effect on callus induction. Calli induced from 

halosulfuron-free as well as halosulfuron-supplemented medium were subcultured three times on 

respective fresh medium every 4 weeks. Each treatment was replicated three times with 20 callus 

tissues or leaf explants per replicate on herbicide-supplemented medium. Data on callus induction was 

averaged over replications and mean data for each treatment were compared using the least 

significance difference (LSD) method at P = 0.05 level of significance.  

Callus regeneration 

Three-month-old control callus and callus tissues that survived and grew well on the herbicide 

supplemented medium were harvested and transferred to phytohormone-free MS medium for 



10 

regeneration. In addition, callus tissues not exposed to the herbicide were also placed on regeneration 

medium that contained halosulfuron. Four callus tissues were placed in magenta vessels with 80 mL of 

medium. The cultures were kept under 12 h light period at 26±1 C. Upon regeneration, the green 

shoots were carefully separated from the callus tissues and transferred to fresh medium for further 

growth and rooting. The rooted plants were transplanted onto 4-inch pots filled with equal proportion 

of sand and peat moss following the protocol of Hoy and Clark (2006). The greenhouse was 

maintained at a day:night temperature regime of 29:22 C during Spring 2014.  

Results and Discussion  

Callus induction 

Both the cultivars, ‘Beauregard’ and ‘LA 07-146’, produced embryogenic as well as non-

embryogenic callus from leaf and stem explants. However, leaf explants produced more compact, 

creamy yellow (embryogenic) callus compared to stem explants, which produced either too hard or too 

friable callus.  Callus from stem tissue was hard and did not proliferate to an embryogenic culture (data 

not shown).  Leaf explants also had the advantage of generating more callus tissue since callus 

induction occurs at a higher frequency on the cut edges of the explants. 

 Callus induction was noticed within 7 to 14 days of culture of leaf explants on callus induction 

medium. Of the different 2, 4-D levels tested,  0.23 µM was found best with more than 95% rate of 

creamy yellow embryogenic callus for ‘Orleans and ‘Beauregard’.  2, 4-D at 0.45 µM was better for 

‘LA 07-146’ compared with 0.23 µM 2, 4-D.  The texture and color of callus induced from these two 

levels of 2, 4-D were superior to others with the resulting callus being embryogenic in nature and 

creamy yellow in color (Table 2.1; Figures 2.1, 2.2).  Most callus tissues formed from treatments 

above 0.45 µM 2, 4-D were non-embryogenic and at 4.52 µM 2, 4-D the callus was friable and 

difficult to handle. Similarly, the color of the treatments at higher levels of 2, 4-D was dull brown in 

color. These results differ significantly from those observed by Oggema et al. (2007a) where callus 
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induction was found effective at a rate of 2.26 µM 2, 4-D for a local Kenyan cultivar. Similarly, Liu 

and Cantliffe (1984) used 2.26 µM
 
as the lowest concentration of 2, 4-D. This may explain a 20% rate 

of generating embryogenic callus (at 4.52 µM 2, 4-D) as opposed to high rates achieved in the present 

study at 0.23 µM and 0.45 µM 2, 4-D. However, Sefaski et al (2012) obtained 40% to 75% callus 

induction at 0.90 µM
 
of 2, 4-D in six Ugandan sweetpotato cultivars, whereas the embryogenic callus 

was in the range of 10% to 35%. Varietal difference was not significant among the 2, 4-D treatments 

with respect to leaf weight after a week callus was induced, but the embryogenic nature of the callus 

differed significantly (Figure 2.1).  

Table 2.1 Weight per leaf (g) with the callus induced from it of sweetpotato cultivars ‘LA 07-

146’, ‘Orleans’, and ‘Beauregard’ cultured on various concentrations of 2, 4-D.  

2,4-D (µM) ‘LA 07-146’ ‘Orleans’ ‘Beauregard’ 

0 0.093±0.007
z
a 0.048±0.016a 0.06±0.0170a 

0.23  0.421±0.123bc 0.459±0.103b 0.641±0.092cd 

0.45 0.749±0.034c 0.986±0.095d 0.826±0.118d 

1.13 0.810±0.050cd 0.619±0.187bc 0.463±0.083bc 

2.26 0.928±0.166d 0.869±0.043cd 0.662±0.137cd 

3.39 0.864±0.104cd 0.618±0.030bc 0.303±0.058b 

4.52 0.331±0.026b 0.547±0.267bc 0.351±0.117b 
z
Values represent means (± SEM). Means within columns followed by a common letter are not 

significantly different based on Fisher’s least significant difference mean separation test (P = 

0.05). 

 

Callus regeneration 

Previous experiments have shown that ‘Beauregard’ callus has a poor regeneration potential 

(Mary Hoy, personal communication). The present experiment also confirmed that ‘Beauregard’ had a 

lower regeneration rate (37.5%) than ‘LA 07-146’ (77.8%), but was higher than ‘Orleans’ (13.9%) 

(Table 2.2).   As in the present study, regeneration has been achieved on hormone free basal media 

(Liu and Cantliffe, 1984).  However, high shoot regeneration frequency was obtained in F9 media that 

contained 0.91 µM zeatin riboside as compared to hormone-free media in Ugandan cultivars (Sefasi et 

al., 2012). 
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Figure 2.1. Color and texture of callus tissues of three sweetpotato cultivars after 4 weeks of culture 

under optimal 2, 4-D concentrations. a = ‘Orleans’, b = ‘Beauregard’ and c = ‘LA 07-146 at 0.23 µM 

2, 4-D’, d = ‘Orleans’, e = ‘Beauregard’ and f = ‘LA 07-146’ at 0.45 µM 2, 4-D.  

 

Figure 2.2. Visual differences of the callus of sweetpotato cultivars ‘Orleans’ (Or), ‘LA 07-146’, and 

‘Beauregard’ (Bx) in response to 2, 4-D concentrations ranging from 0 to 4.52 µM.   
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Table 2.2. Callus regeneration rates of sweetpotato cultivars ‘LA 07-146’, ‘Orleans’, and 

‘Beauregard’ induced from 0.23 µM 2, 4-D supplemented media after four weeks of transfer to 

phytohormone-free MS medium.  

Regeneration Number of calli No. of calli regenerated Percent regenerated 

‘LA 07-146’ 72 56 77.8 

‘Orleans’ 72 10 13.9 

‘Beauregard’ 72 27 37.5 

Halosufuron screening  

Callus induction and callus weight was not significantly affected when selection was performed 

on media containing halosulfuron up to a concentration of 10 µM (Table 2.3). However, when callus 

induced on herbicide-free media was subcultured on halosulfuron-containing media for seven weeks, 

the callus weight started to decline with increasing herbicide concentration, (Table 2.4). Also the callus 

started to turn brown to dark brown or black after 8 weeks of exposure to herbicide. 

Table 2.3. Weight per Leaf (g) of sweetpotato cultivars ‘LA 07-146’, ‘Orleans’ and 

‘Beauregard’on various halosulfuron concentrations after four weeks of inoculation on callus 

induction medium (MS medium supplemented with 0.23 µM 2, 4-D)  

Halosulfuron 

(µM) 
‘LA 07-146’ ‘Orleans’ ‘Beauregard’ 

0 0.345±0.054
z
ab 0.222±0.002b 0.252±0.008b 

2 0.329±0.063ab 0.190±0.001ab 0.230±0.016ab 

4 0.398±0.003b 0.194±0.012ab 0.256±0.040b 

6 0.313±0.016ab 0.176±0.011a 0.201±0.030a 

8 0.319±0.017ab 0.210±0.030ab 0.236±0.041ab 

10 0.294±0.005a 0.232±0.041b 0.238±0.004ab 
z
Values represent means (± SEM). Means within columns followed by a common letter are not 

significantly different based on Fisher’s least significant difference mean separation test (P = 0.05). 

 

Table 2.4. Weight of callus (g) of the sweetpotato cultivars ‘LA 07-146’, ‘Orleans’, and 

‘Beauregard’ after a second subculture on media containing various halosulfuron concentrations.  

Halosulfuron 

(µM) 

‘LA 07-146’ ‘Orleans’ ‘Beauregard’ 

0 0.521±0.080
z
b 0.409±0.142ab 0.538±0.104b 

2 0.409±0.065a 0.393±0.107ab 0.467±0.004b 

4 0.407±0.023a 0.399±0.000ab 0.305±0.001a 

6 0.476±0.025ab 0.218±0.012a 0.394±0.060ab 

8 0.625±0.193c 0.269±0.018ab 0.304±0.121a 

10 0.412±0.068a 0.239±0.019a 0.391±0.139ab 
z
Values represent means of two replications (± SEM). Means within columns followed by a 

common letter are not significantly different based on Fisher’s least significant difference mean 

separation test (P = 0.05). 
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Although effect of halosulfuron was not significant among the cultivars, regeneration was 

negatively affected. Callus tissues from all the cultivars that survived halosulfuron showed signs of 

regeneration within a week of transfer to hormone-free media (Figure 2.3). Shoots of ‘LA 07-146’ 

callus were able to develop further to full plantlet, whereas no plantlets were obtained from 

‘Beauregard’ and ‘Orleans’. The herbicide may have further affected the regenerability of these 

cultivars, which showed low regeneration potential even without herbicide. Interestingly, all of the 

plantlets from ‘LA 07-146’ were obtained from calli that were selected and regenerated under 

halosulfuron pressure. No viable plantlets were regenerated on halosulfuron-containing hormone-free 

media from callus tissues that were not previously exposed to halosulfuron during the callus induction 

or subculture stage. It is possible that the callus, which survived halosulfuron during culture either 

acquired tolerance or the herbicide led to somaclonal variation in the callus tissue.  

 

Figure 2.3. Regeneration of ’LA 07-146’ after 4 and 8 weeks of transfer to regeneration medium with 

no halosulfuron (a, c) compared to halosulfuron (b, d) in the media.  
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Of the plantlets obtained from ‘LA 07-146’ under halosulfuron pressure, three were from 2 µM, 

and one each from 6 µM, 8 µM and 10 µM. No plantlet could be produced from the callus under 4µM 

halosulfuron since all calli apparently turned non-embryogenic. This is a significant reduction when 

compared to the regeneration experiment without the herbicide (Table 2.2). All plantlets produced 

roots when transferred to fresh medium (Figure 2.4). The plantlets were multiplied subsequently on 

herbicide-free media. At least 15 putative herbicide tolerant plants were generated for each herbicide 

treatment and were subsequently transferred to the greenhouse.  The plants in the greenhouse will be 

tested for herbicide screening to determine if in vitro tolerance to halosulfuron corresponds to in vivo 

tolerance of plants to Sandea
®
. Clones of the plant materials are also being multiplied at the 

Sweetpotato Research Station, Chase, La. for field trials.  

 

Figure 2.4. Complete plantlets of ‘LA 07-146’ with roots produced from shoots regenerated on 

halosulfuron-supplemented media. a = 2µM, b = 6 µM, c = 8 µM, d = 10 µM.  

 

Conclusion 

 A successful protocol for callus induction was established for three cultivars, ‘Orleans’, 

‘Beauregard’ and ‘LA 07-146’ using an approach to developing somaclonal variants as an adjunct to 

improving existing cultivars. Nominal amounts of 2, 4-D (0.23 µM to 0.45 µM) were found sufficient 

for optimum callus induction. These levels of 2, 4-D were not tried or documented in prior reports. The 

present protocol was further demonstrated as an effective approach to somaclonal selection for 

herbicide tolerance in sweetpotato. 
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Chapter III. Identifying Ethylene Response Genes in Sweetpotato in Relation to Exogenous 

Application to 1-methylcyclopropene (1-mcp) 
 

Introduction 

  Sweetpotato is an important commodity worldwide and is an important part of the diet in the 

Southeast U. S. Sweetpotato has been a focus of research to delineate the complexity of the 

mechanisms underlying the formation of its storage roots. Adventitious root emergence from original 

cuttings (slips) is an indicator of plant establishment and initial phase of storage root development 

(Togari, 1950; Belehu et al., 2004; Villordon et al., 2009). Therefore, a better understanding of the 

mechanism of adventitious rooting in sweetpotato will help devise strategies to maximizing its 

marketable yield.  

Multiple hormones, including cytokinins and auxins, have been shown to play a role in root 

development in several plant species (Ruzicka et al., 2009). It was shown that auxins play an important 

role in the initial thickening of the storage root by regulating the expression of SDR1 gene (Noh et al., 

2010). Cytokinins were also shown to be involved in the thickening of the storage root at the primary 

cambium and meristems in the xylem, which consist of actively dividing cells (Tanaka et al., 2005) 

through the modulation of  gene expression at the proximal end, around the primary vascular cambium 

and in the thickest part of the root (Tanaka et al., 2008). Upregulation of genes responsive to auxin and 

cytokinins in developing storage root also implicate their role in adventitious rooting (Solis et al., 

2014). Other hormones, such as zeatin riboside , dihydro-zeatin riboside and abscisic acid have been 

shown to have important roles in tuberous roots formation and thickening in sweetpotato (Wang et al., 

2005). Recently, gene expression analysis also hinted the role of ethylene in sweetpotato root 

development (Firon et al., 2013). Adventitious root growth and epidermal cell death in rice were 

shown linked to the ethylene signaling pathway (Mergemann and Sauter, 2000). An understanding of 

the regulation of initial adventitious rooting by ethylene will be useful to improve quality and 

uniformity of cutting establishment (Villordon et al., 2012).   
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The gaseous phytohormone ethylene is known to play important roles in regulation of many 

physiological and biochemical processes of plants including seed germination, root initiation, 

abscission, senescence and fruit ripening, depending on the phenological state of the tissues it is acting 

on (Abeles et al., 1992). It also regulates cellular processes such as cell elongation and root hair 

formation (Tanimoto et al., 1995). In addition, it is one of the most important signaling molecules in 

plant’s defense response against biotic stresses (insects and microorganisms) and abiotic stresses, such 

as mechanical wounding, water and temperature stresses  (Wang et al., 2002). Generally, ethylene 

reduces the storage life of fruits and vegetables. In potato, ethylene was shown to extend tuber 

dormancy and inhibit sprout growth (Prange et al., 1998) for which it is used as a commercial 

sprouting inhibitor during postharvest storage. However, in sweetpotato ethylene induced multiple 

sprout initiation, but affected sprout growth, consistent with the results observed in potato (Prange et 

al., 2005). Involvement of ethylene in genotype-specific adventitious rooting was reported by 

Villordon et al. (2012). 

Ethylene perception in the plant cell can be negated by inhibitors that inhibit synthesis of a key 

enzyme in ethylene biosynthesis or by antagonists that bind to ethylene receptors.  Inhibitors, such as 

aminoethoxyvinylglycine (AVG) and antagonists, such as 1-methylcyclopropene (1-mcp) are used to 

increase the shelf-life of fruits and vegetables (Cheema et al., 2013). It extends storage life as well as 

prevents physiological disorders, such as superficial scald development in apples (Calvo and Candan, 

2001) and retains fruit firmness by suppression of ethylene biosynthesis (Varanasi et al., 2013). 1-mcp 

has been approved for use on various fresh fruits, vegetables and cut flowers (Watkins, 2006), but it 

has not been studied extensively in vegetables (Bower and Mitcham, 2001). Recently, Cheema et al. 

(2013) observed that sprout growth in sweetpotato roots was inhibited after their exposure to 625 nl/L 

of 1-mcp for 24 h, and 1-mcp-treated roots had reduced monosaccharide content in comparison to the 

untreated roots. 1-mcp at a concentration of 1 ppm to 2 ppm was shown to affect the development and 

growth of sweetpotato adventitious roots (Villordon et al., 2012).  The response to 1-mcp was 



18 

genotype-specific where both the number and growth of adventitious roots were significantly reduced 

in ‘Beauregard’, but root count was unaffected in ‘Evangeline’ with slight reduction in root growth. 

Histochemical analysis of the nodal tissue with trypan blue indicated that ethylene-induced cell death 

was inhibited by 1-mcp in ‘Beauregard’ although there was evidence of continual cell death and 

rudimentary adventitious root tip development (Villordon et al., 2012). This is significant since the 

majority of storage roots (86%) formed by ‘Beauregard’ have been shown to have their origin from 

adventitious roots that were extant at 5 to 7 DAT (Villordon et al., 2009). 

Regulation of expression of genes involved in various metabolic and cellular processes of plant 

cell by exogenous ethylene is well known (Zhong and Burns, 2003). However, studies on the effect of 

1-mcp on gene expression are limited. In apples, mode of the action of 1-mcp was shown to be related 

to the delay or suppression of the expression profile of genes involved in ethylene biosynthesis and 

reception (Varanasi et al., 2013). Molecular investigations into the response of sweetpotato to 1-mcp 

and its role in ethylene biosynthesis pathway could contribute to a better understanding of genetic 

regulation of agronomic traits like storage root development, flood tolerance, storage life and disease 

resistance. Genetic basis of the differential response of two cultivars ‘Beauregard’ and ‘Evangeline’ to 

lateral rooting by the application of 1-mcp is lacking (Villordon, et al., 2012). The present study 

reports on identification of genes that are differentially regulated by 1-mcp application in these two 

sweetpotato cultivars. 

Materials and Methods 

Growing sweetpotato cultivars in the greenhouse 

 Storage roots of two sweetpotato cultivars, ‘Beauregard’ and ‘Evangeline’ were obtained from 

the sweetpotato research station, Chase, LA and planted on one gallon pots filled with Miracle-Gro
®
 

(Scotts
®
: Marysville, OH) potting mix.  The pots were grown inside greenhouse facility maintained at 

a day:night temperature regime of 29:22 C. The pots were irrigated every other day to complete 



19 

saturation and fertilized with OsmocotePlus (N:P:K::15:9:12; Scotts Company LLC) ~3 g/pot once 

every 3 week or as necessary.  

Treatment with 1-mcp and tissue sampling  

 Six inches long slips with six to eight nodes were collected from one-month-old plants of 

‘Beauregard’ and ‘Evangeline’ grown inside the greenhouse. The selected slips for treatment were 

placed within closed 26 liter Sterilite
®
 (Sterilite Corporation: Townsend, MA) plastic storage 

containers with the Smartfresh
®

 activator solution, Smartfresh
®
 activator and 1-mcp pills (Rohm and 

Haas, Philadelphia, PA) that would release 3.8 ppm of 1-mcp.  The containers were completely sealed 

with adhesive tape to avoid escape of 1-mcp in its gaseous form (Figure 3.1). Five slips from each 

cultivar were collected after 6 h, 12 h, 24 h and 48 h of 1-mcp treatment. Five slips placed inside a 

closed container with no 1-mcp gas exchange served as the control.  Control and treated samples were 

immediately frozen in liquid nitrogen and stored at -80 °C until RNA extraction. All treatments and 

control slips were collected in three biological replications. 

 

Figure 3.1. Treatment of sweetpotato slips to gaseous 1-mcp. a = 1-mcp kit consisting of activator 

solution, activator tablet and 1-mcp pill (inside pouch); b = activator solution with 1-mcp pill (purple) 

and activator tablet (blue); c = sealed plastic containers containing slips exposed to 1-mcp gas.  
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RNA isolation and cDNA subtraction 

 Total RNA was extracted from nodal tissue of treated (different time points) and control slips 

of ‘Beauregard’ and ‘Evangeline’ using RNeasy Plant Mini Kit (Qiagen, Valencia, CA) following the 

manufacturer’s instructions. The quality and quantity of RNA were assessed using a ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE).  

 Equal amounts (5 µg) of RNA from individual time points were pooled for each replication and 

cultivar. Double strand cDNA was synthesized from 25 µg of control and treated RNA of the two 

cultivars using Superscript
TM

 double-strand cDNA synthesis kit (Invitrogen, Carlsbad, CA) and its 

instructions.  Two cDNA subtraction libraries (one each for ‘Beauregard’ and ‘Evangeline’) were 

prepared as per the method detailed in Khan et al. (2013). Briefly, 5 µg of double stranded cDNA was 

digested with RsaI. The digested cDNA from the 1-mcp-treated samples was ligated with two different 

adaptors and used as tester. Two rounds of forward subtractions were performed using cDNA from the 

control samples as a driver.  Differentially expressed upregulated genes were amplified by primary 

PCR with 27 cycles of 94 °C for 30 s, 66 °C for 30 s and 72 °C for 1.5 min. The primary PCR product 

were enriched by secondary PCR with 12 cycles of 94 °C for 30 s, 68 °C for 30 s and 72 °C for 1.5 

min.  

Cloning and sequencing of differentially expressed genes  

 The subtracted cDNA clones were cloned into pGEM-T Easy Vector (Promega, Madison, WI) 

and transformed into Escherichia coli DH5α cells following the method described by Ramanarao et al. 

(2011). One hundred ninety two white colonies containing the cDNA inserts were confirmed positive 

with M13 forward and reverse primers. Plasmids were extracted from the positive clones and single-

pass sequenced using an ABI 3130xl sequencing platform as described by Khan et al (2013). 

Sequence processing and bioinformatics analysis 

The vector and adapter sequence contaminants were cleaned from the sequences manually. The 

clean sequences, after excluding duplicated sequences, were assembled using the CAP3 program with 
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default parameter settings (Huang and Madan 1999). The resulting unigenes were functionally 

annotated through BLASTx and BLASTn-based (Altschul et. al. 1997) homology search against NCBI 

protein and nucleotide database (http://www.ncbi.nlm.nih.gov/) at e-value cut-off of 1e-06. The 

GOslim terms for biological process, molecular function, and cellular component associated with 

significant BLASTx hits were assigned to the unigenes using GOslim viewer (http://agbase. 

msstate.edu/cgi-bin/tools/goslimviewer_select.pl). Pathway analysis was performed using KEGG as 

described earlier (Khan et al., 2013). 

Transcript profiling of differentially expressed genes 

 The expression pattern of 10 genes was validated by semi-quantitative reverse transcription 

polymerase chain reaction (sqRT-PCR) following the method described earlier (Effendy et al., 2013). 

Gene-specific primers (Table 3.1) were designed using Primer3Plus web resource 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and were synthesized by 

Integrated DNA technologies (IDT Inc, Coralville, IA). First-strand cDNA was synthesized from 1 μg 

of the total RNA isolated from the control and treated (all time points) slips of both cultivars using 

iScript cDNA synthesis kit (Bio-Rad, Hercules, CA). One μl of the first-strand cDNA was amplified 

using gene-specific primers with the thermal profile as described earlier (Effendy et al., 2011). The 

amplification products were separated on 2 % agarose (Amresco, Solon, OH).  

 

Table 3.1. Primer sequences of the genes used for expression analysis of sweetpotato cultivars 

‘Beauregard’ and ‘Evangeline’ in response to 3.8 ppm 1-mcp application. Genes common between 

‘Beauregard’ and ‘Evangeline’ are shown in red font.  

Gene name Forward primer Reverse primer 

Two component response 

regulator CATATACACGGCCCGAACGA AATGCAATGACACCGGCAAC 

Oxysterol-binding protein TTGAACTCTGTCGACTCGGC CGAGCTGGAAGTGTATCGCT 

Fructose-bisphosphate 

aldolase GGCAATCTGAAGTGGAGGCT GCCTGTGCAGAAGTTTGGTG 

Hydrolase CCTCGGCGACTGACCATTTA CAGTTCCGGCTGAATCACCT 

Arabinogalactan protein TGAAATTCGGGCACGGAGAA ACTGCATGCGACTTCCATCA 

Ascorbate oxidase CATGCACTCTAGTCCTGCCC ACAGGCAGTGTTCATCTGGT 

Fructokinase AAAGGAATCACCAGCTCCCG ATGAGTCCGCTTTGTCCCTG 

http://www.ncbi.nlm.nih.gov/
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
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 The relative abundance of three genes that were common in both cultivars was determined 

using quantitative real-time PCR. qRT-PCR was carried out in triplicate in a 20 μl final reaction 

volume containing 2 μl of 10x diluted first-strand cDNA, 10 μl of iQ SYBR Green Supermix (Bio-

Rad, Hercules, CA) and 0.2 μM of each  primer in a MyiQ real-time PCR analysis system (Bio-Rad, 

Hercules, CA) as per Solis et al. (2014). A serial dilution of 100, 10, 1, 0.1 and 0.01 ng of 1
st
 strand 

cDNA was used for all genes to generate a standard curve by plotting the Ct (threshold cycle) values 

against log (ng) 1
st
 strand cDNA, and to ensure that the efficiencies of the individual transcripts were 

equal. The mRNA expression was normalized against the sweetpotato elongation factor (IbEF1α; 

Effendy et al., 2013) and calculated as a ratio using the 2
-ΔΔCt

 method (Pfaffl, 2001).  

Results and Discussion  

Phenotypic response of ‘Beauregard’ and ‘Evangeline’ to 1-mcp 

Phenotypic differences were observed among ‘Beauregard’ and ‘Evangeline’ slips treated with 1-mcp. 

A visible necrosis occurred on the young emerging shoot of ‘Beauregard’ slips as early as 6 h after 

exposure to 3.8 ppm 1-mcp, while Evangeline did not show this response (Figure 3.2). However, the 

older mature leaves of both cultivars experienced mild wilting after 24 h of 1-mcp application. Older 

leaves in both cultivars showed chlorophyll bleaching (chlorosis) after 48 h of 1-mcp application. 

Initiation of adventitious roots was observed in slips as early as 24 h after 1-mcp treatment. However, 

rooting was pronounced at 48 h in both 1-mcp-treated cultivars, where ‘Evangeline’ had six 

adventitious roots compared to ‘Beauregard’, which only had one adventitious root (Figure 3.3) 

Sequence characterization of 1-mcp-responsive genes in ‘Beauregard’ and ‘Evangeline’ 

 All sequenced subtracted cDNAs of ‘Beauregard’ and ‘Evangeline’ (192 each), after 

removing vector sequences and adaptors, produced quality sequences without any ambiguous or 

uncalled sequence. The average EST (Expressed Sequence Tag) length in ‘Beauregard’ was 567.8 bp 

(ranging between 236 bp and 1139 bp) whereas in ‘Evangeline’ it was 532.1 bp (range between 78 bp 

and 1078 bp). 
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Figure 3.2. Necrosis in sweetpotato cultivar ‘Beauregard’ with burning on the tip (left) and leaf (right)  

 

Figure 3.3. Difference in adventitious rooting of sweetpotato cultivars ‘Beauregard’ (left) and 

‘Evangeline’ (right) after 48 h of exposure to 3.8 ppm 1-mcp
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Assembly of the ‘Beauregard’ sequences resulted in 142 sequences forming 28 contigs and 50 singlets, 

thus totaling to 78 unigenes. Similarly, 139 out of 192 ‘Evangeline’ sequence assembled to form 

contigs whereas 53 were singlets, which totaled 94 unigenes. The average unigene length in 

‘Beauregard’ and ‘Evangeline’ were 625.1 bp and 544.8 bp, respectively.  

 Functional annotation of the ‘Beauregard’ and ‘Evangeline’ unigenes through BLAST analysis 

categorized 17 (out of 78) and 20 (out of 94) unigenes with no known function, which were described 

as either unknown proteins, expressed proteins or hypothetical proteins. Gene ontology analysis of the 

unigenes from ‘Evangeline’ showed overrepresentation of genes in the cellular processes (17%) 

followed by genes in biosynthetic process (11%). Of these, 34% had nucleic acid binding activities 

followed by catalytic activity (13%), transferase and hydrolase activity (12% each). A majority (22%) 

of the unigenes were localized in the plastids whereas 14% were membrane bound, 12% localized to 

plasmamembrane and 11% in the cytosol. In ‘Beauregard’, genes in the cellular processes (16%) and 

biosynthetic processes (9%) were comparable to ‘Evangeline’. Similarly, 35% of ‘Beauregard’ 

unigenes had nucleic acid binding activity, where the genes involved in catalytic (21%) and hydrolase 

(16%) activities were higher compared to ‘Evangeline’. Most unigenes (14%) were plastid localized 

but the coverage was much smaller compared to 22% in ‘Evangeline’. While plasmambrane bound 

genes of ‘Beauregard’ (11%) were comparable to ‘Evangeline’, 12% of unigenes in ‘Beauregard’ 

coded for proteins with extracellular localization, which was much higher than that of ‘Evangeline’ 

(5%).  However, analysis of the unigenes against the KEGG database revealed interesting results. In 

‘Beauregard’, 56 unigenes coded for enzymes that were represented in 39 different metabolic 

pathways. But, in 'Evangeline’, 77 unigenes were involved in synthesis of enzymes in 35 metabolic 

pathways. Only 15 pathways were common between ‘Beauregard’ (24 unigenes) and ‘Evangeline’ (33 

enzymes). This indicated that while a common set of genes were affected by 1-mcp application, the 

two cultivars showed differential representation of genes possibly being modulated by exogenous 

application of an ethylene antagonist.  
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Temporal expression of 1-mcp responsive genes in ‘Beauregard’ and ‘Evangeline’. 

 Expression of six 1-mcp induced ESTs from cDNA subtraction library of ‘Beauregard’ and 

four ESTs from cDNA subtraction library of ‘Evangeline’ was analyzed at different time points by 

(semi)quantitative PCR (Figures 3.4, 3.5). It also included three ESTs that were common in the two 

cDNA subtraction libraries. Among the common ESTs, two-component response regulator was 

induced within 6 h of 1-mcp treatment in both cultivars. However, its expression reduced after 12 h 

whereas it was maintained in ‘Evangeline’ with the highest upregulation at 48 h. Two component 

response regulators are known to be associated with different hormonal responses. Arabidopsis 

response regulators were shown to be responsible for fine tuning ethylene signaling pathway by 

triggering ethylene response factor (ERF) and downstream genes in Arabidopsis (Hass et al., 2004). 

Also, mutants of two component regulators such as ARR10 and ARR12 showed inhibition of root 

elongation in Arabdiopsis (Yokoyama, 2007). The accumulation of mRNA of fructose-bisphosphate 

aldolase was similar in both ‘Beauregard’ and ‘Evangeline’, where the accumulation was upregulated 

at 12 h of 1-mcp treatment and was downregulated at other time points. Fructose 1,6-bisphosphate 

aldolase is involved in glycolysis, gluconeogenesis, and calvin cycle. Out of eight fructose 1,6-

bisphosphosphate aldolase genes in Arabidopsis, two were shown to be induced by ethylene (Lu et al., 

2012). However, fructose bisphosphate aldoase was unregulated in Arabidopsis root in response to 

ethylene treatment (Mang et al., 2004). An EST encoding for arabinogalactan protein was 

downregulated in both cultivars upon exposure to 1-mcp. However the expression level was much 

higher at any given time in ‘Beauregard’ compared to ‘Evangeline’. Arabinogalactan proteins (AGPs) 

are highly glycosylated members of the superfamily of hydroxyproline-rich glycoproteins (HRGPs) 

found in cells throughout the plant kingdom and are mostly expressed in fruits (Fragkostefanakis et al., 

2012). In tomato, the AGP genes were shown to be upregulated in response to ethylene, abiotic stress, 

and during fruit ripening. These results indicated that although common genes are induced in response 
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to 1-mcp in ‘Beauregard’ and ‘Evangeline’, the difference in their expression kinetics could play an 

important role in the differential adventitious rooting of the two cultivars in response to 1-mcp.  

 Hydrolase showed upregulation of its mRNA at 6 h of 1-mcp treatment and was downregulared 

at 12 h and thereafter the mRNA concentration was either same or higher than the 0 h control (Figures 

3.4, 3.5).  

 
Figure 3.4. Expression analysis of 1-mcp induced genes at different time points after exposure to 3.8 

ppm 1-mcp in ‘Beauregard’ (upper panel) and ‘Evangeline’ (lower panel). Genes common to both 

cultivars are in red font.  
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Figure 3.5. Quantitative expression analysis of three genes that were represented in libraries of both 

‘Beauregard’ (left panel) and ‘Evangeline’ (right panel).   

 

Hydrolase (xyloglucan endotransglycosylase) is involved in cell wall loosing and cell elongation. 

Hydrolase was shown to be induced in maize in response to ethylene produced during flooding stress 

(Saab et al., 1996). At the same time, shoot elongation occured in Sagittaria pygmaea in response to 

ethylene-induced expression of hydrolase (Ookawara, 2005). Oxysterol binding protein and ascorbate 

oxidase were highly upregulated after 6 h of 1-mcp treatment and then showed a gradual declining 

trend in their mRNA accumulation over time. Ascorbate oxidase oxidizes ascorbic acid to 

monodehydro ascorbate. Spinach leaves treated with ethephon, an ethylene inhibitor, showed rapid 

reduction in ascorbic acid content, while ethylene insensitive mutants of Arabidopsis showed higher 

level of ascorbic acid content than wild plants upon treatment (Gergoff et al., 2010). More importantly, 
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ascorbate oxidase catalyzes the oxidative decarboxylation of auxin and thus upregulation of ascorbate 

oxidase may have some effects on root development (Kerk and Feldman, 2000). 

 In cultivar ‘Evangeline’ the EST coding for fructokinase showed downregulation in its mRNA 

concentration at all the time points after exposure to 1-mcp except at 12 h where it was slightly 

upregulated. Cross talk between fructose content and ethylene has been reported in many fruits 

(Mashmichi, 1995). Ethylene treatment induces enzyme of glycolysis like Fructose-2,6-bisphosphate, 

fructose-6-phosphate-2-kinase in Kiwi fruit (Stitt et al., 1986). However, in Arabidopsis ethylene-

responsive genes were shown to be suppressed by glucose/fructose treatment (Price et al., 2004). These 

results also showed that the genes involved in sugar biosynthesis were also affected by the ethylene 

antagonist, which can influence the adventitious root development by downregulating ethylene 

responsive genes . 

Conclusion  

 Despite increasingly accumulating evidence, specific role of plant hormones in adventitious 

rooting in sweetpotato is still not clear. Plant’s response to ethylene is in multitude, so it is likely that a 

complex interaction of gene regulation and expression may occur when sweetpotato is exposed to 

exogenous application of 1-mcp that interfere its perception to ethylene. Thus, the genes involved in 

adventitious rooting in response the ethylene antagonist will likely outnumber those attributed to 

ethylene-related processes described in the present investigation. The identification of more novel 

genes through highthroughput sequencing and gene expression strategies will enable a more complete 

picture of the physiological and molecular aspects of ethylene-adventitious regulation, and additional 

candidate genes for future manipulation for genetic manipulation in sweetpotato. 

 

  

http://www.sciencedirect.com/science/article/pii/S0304423806000161#bib14
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Chapter VI. Summary and Conclusion  

The following conclusions were deduced from the experiments conducted: 

 A successful protocol for callus induction and regeneration was established for three 

sweetpotato cultivars: ‘Beauregard’, ‘LA 07-146’ and ‘Orleans’.  

 2, 4-D at a concentration of 0.23 µM and 0.45 µM was found sufficient for optimum callus 

induction. 

 Although callus induction was successfully achieved in all three test cultivars, the low 

frequency of regeneration in ‘Beauregard’ and ‘Orleans’ suggested that other combinations of 

culture medium-vitamin recipe needed to be tested to identify an optimal regeneration medium. 

 The utility of the protocol was further demonstrated as an effective approach to somaclonal 

selection for herbicide tolerance in sweetpotato especially in ‘LA 07-146’. 

 Although plants were regenerated from callus that showed in vitro resistance to halosulfuron 

methyl (Sandea
®
), further testing of plant materials generated from this experiment need to be 

tested under field conditions to determine if tolerance exhibited in vitro is still expressed in the 

field.  

 The tissue culture protocol developed in the present study would have practical application in 

in vitro screening, mutagenesis and gene manipulation for improvement of sweetpotato 

cultivars.  

 Two sweetpotato cultivars, ‘Beauregard’ and ‘Evangeline’, differed in their response to 1-mcp 

with ‘Beauregard’ producing no or minimum adventitious root while ‘Evangeline’ was 

unresponsive with adventitious roots as early as 24 h after 1-mcp application. 

 A number of genes involved in sugar biosynthesis pathway, cell wall biogenesis, hormone 

signaling and general response regulation were identified to be differentially regulated in two 

sweetpotato cultivars ‘Beauregard’ and ‘Evangeline’ through a small scale suppression 

subtractive hybridization strategy. 
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 An EST encoding arabinogalactan protein was downregulated in both cultivars upon exposure 

to 1-mcp. However its expression level was much higher in ‘Beauregard’ compared to 

‘Evangeline’ except at 12 h time point. 

 Genes involved in sugar biosynthesis were also affected by the ethylene antagonist, which can 

influence the adventitious root development by downregulating ethylene responsive genes.  

 Although common genes were induced in response to 1-mcp in ‘Beauregard’ and ‘Evangeline’, 

the difference in their expression kinetics could play an important role in the differential 

adventitious rooting of the two cultivars in response to 1-mcp. 

 Considering the cascade of physio-biochemical processes ethylene is involved in plant, it is 

likely that the genes involved in adventitious rooting in response to the ethylene antagonist are 

many more than those attributed to ethylene-related processes described in the present 

investigation. This calls for highthroughput sequencing and gene expression strategies to 

identify more novel genes to understand the physiological and molecular aspects of ethylene-

adventitious regulation, and for future genetic manipulation in sweetpotato.   
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