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ABSTRACT 

Methods to control thatch layers in mature turfgrasses have relied on sand-topdressing 

and/or mechanical removal.  Mechanical removal of thatch through vertical mowing and 

aerification is effective but disruptive to playing surfaces compared to sand topdressing.  As a 

result, many turf managers have opted to implement sand-topdressing regiments as their primary 

method for reducing thatch buildup.  This research was conducted to 1) determine the effect of 

cultivar on thatch decomposition and 2) examine the effect of sand topdressing on thatch 

microenvironment and decomposition.  Sand topdressing treatments consisting of sterilized or 

non-sterilized sand applied at 0.4 cm 14 d
-1

 or as a single application at 1.2 cm and an untreated 

control to two hybrid bermudagrasses (Cynodon dactylon L.), „Tifway‟ and „Celebration‟ from 

May to September in 2008 and 2009.  At the initiation of the experiment, Celebration had twice 

the thatch layer of „Tifway‟.  The only treatment that reduced thatch was sand applied every 14 

d
-1

 reduced thatch 21% to 34% and 20% to 30% for „Tifway‟ and‟ Celebration‟, respectively.  In 

contrast, a single sand topdressing application led to net accumulations of 20% to 30% compared 

to accumulations of 29% to 38% increases in untreated plots.  Sand applied more frequently 

resulted in higher microorganism populations and had no detrimental effect on turfgrass quality.  

Routine sand applications increased thatch relative humidity (RH) compared to untreated 

controls for both hybrid-bermudagrass cultivars.  Laboratory experiments were conducted to 

examine the effect of temperature, 20 C and 30 C, and RH (80%, 90%, 95%, >99%) on „Tifway‟ 

and „Celebration‟ thatch decomposition.  Increasing temperature and RH resulted in 189% to 

397% increase in microbial degradation.  Failure to provide adequate moisture reduced microbial 

activity and led to declines of 170% to 243% in decomposition when thatch was subjected to 

drying conditions.  Because thatch tissue composition and response to changes in temperature 

and RH were similar between cultivars, newer more vigorous hybrid-bermudagrass such as 
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„Celebration‟ will require a frequent sand topdressing regiment in conjunction with mechanical 

removal for acceptable thatch control. 
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CHAPTER 1:  LITERATURE REVIEW 

Thatch Characteristics  

 Turfgrass thatch is defined as a loose intermingled organic layer of dead and living 

shoots, stems, and roots that develops between the green vegetation and the soil surface 

(Waddington 1992, Ledeboer et al. 1967). The rate at which thatch accumulates is directly 

proportional to the imbalance of plant tissue deposition and organic matter decomposition.  

Factors such as species, cultivar, environment and cultural and chemical practices will affect 

these processes and thus thatch development (Kerek et al. 2002).   

Advantages and Disadvantages of Thatch 

In general, thatch is viewed as having a negative impact on turfgrass growth.  However, 

depending upon the turfgrass species and function as well as depth, thatch can have several 

benefits.  Appropriate thatch levels provide better surface resiliency; increased wear tolerance, 

moderation of temperature fluctuations, reduced weed populations, increased pesticide 

degradation and support a diverse microbial population (Beard 1973, Murrary et al. 1977, 

Havardi 1984, Rogers and Waddington 1990, Gardner and Branham 2001).  On athletic fields, 

thatch has been shown to act as a cushion for contact sports, an extremely important function in 

terms of athletic safety (Smith 1979).  

 An excessive thatch layer can reduce turf aesthetics, while potentially increasing disease 

and other pest pressures (McCarty et al. 2005).  Other drawbacks include uneven playing 

surfaces which can increase the risk of scalping during mowing and reduce player safety (Smith 

1979).  Shallow rooting and fluctuations in temperature have also been noted, which have been 

shown to reduce turfgrass drought, heat and cold tolerances. (Murray et al. 1977,  Smith 1979,  
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White et al. 1984,  McCarty et al. 2005,  Volk 1972,  Meinhold et al. 1973)  Thatch can also lead 

to an excess in water holding capacity and poor infiltration rates.  Once a thatch layer becomes 

wet it will begin to hold large amounts of water leading to decreased water movement while 

creating a favorable environment for disease-causing organisms, shallow rooting, and spongy 

turf (Harivandi 1984).  Because of the various drawbacks associated with excessive thatch, turf 

managers must continuously implement practices to maintain thatch at acceptable levels. 

Turfgrass Species And Thatching Tendency  

Differences in thatch accumulation between turfgrass species and cultivars have been 

reported on extensively (Sherman et al. 1980, Beard 1992).  Species that exhibit vigorous, 

prostrate growth habits produce more stem tissues, in the form of stolons and/or rhizomes, 

generally have greater thatch buildup (Harivandi 1984).  Cool-season turfgrass species such as 

creeping bentgrass (Agrostis palustris), Kentucky bluegrass (Poa pratensis), and creeping red 

fescue (Festuca rubra) are more prone to thatch development compared to bunch-type 

turfgrasses such as tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne) 

(cites).  Warm-season turfgrasses with greater thatching tendencies include bermudagrass 

(Cynodon dactylon), seashore paspalum (Paspalum notatum), zoysiagrass (Zoysia japonica), and 

St. Augustinegrass (Stenotaphrum secundatum) (Landschoot 1997).  These warm-season 

turfgrasses have prostrate growth habits but vary in terms of thatching due to differences in plant 

vigor.  Of course, environmental factors, cultural practices, or breeding efforts that alter turfgrass 

growth will impact a species‟ rate of thatch development. 

Although the rate of thatch accumulation is largely dependent on species, composition of 

plant tissues is a significant factor regarding tissue degradation.  Of the non-decomposed 



 

3 

turfgrass organic matter, approximately 25% of the tissue is comprised of lignin with the 

remaining 75% composed of cellulose and hemicellulose compounds (Landschoot 1997, 

Breitenbeck et al. 1986).  Tissues with higher lignin concentrations are more resistant to 

microbial degradation due to the imbalance of carbon and nitrogen (Mancino et al. 1993, 

Meinhold et al. 1973).  Meinhold et al. (1973) reported a direct relationship between increasing 

lignin concentrations and thatch accumulation for „Tifgreen‟ bermudagrass.  Duble and Weaver 

(1974) confirmed Meinhold‟s findings with research that showed bermudagrass maintained at a 

height of 25 mm compared to 6 mm had more thatch accumulation as a result of greater lignin 

concentrations.  Therefore, turfgrass species or cultivars that produce highly concentrated lignin 

tissues are subject to slower degradation rates and prone to thatch accumulation.  

Nitrogen Effects On Thatch Accumulation 

Plant growth is greatly affected by nitrogen fertilization.  Supplemental nitrogen 

applications enhance turfgrass growth which in turn increases sward density and tissue 

production (Beard 1993).  If plant stem production as a result of nitrogen application outpaces 

organic matter decomposition, nitrogen applications can enhance thatch accumulation.  In fact, it 

has been shown on nitrogen deficient soils that nitrogen additions slightly increased thatch 

accumulation (Carrow et al. 1987).   

Most research examining nitrogen effects on thatch accumulation have focused on the 

effects of nitrogen as it pertains to plant growth and turf quality (Meinhold et al. 1973 and Smith 

1979). Several studies have evaluated nitrogen fertilizer forms effects on thatch deposition.  

Meinhold et al. (1973) reported a 30% increase in bermudagrass thatch with higher nitrogen rates 

as well as differences in thatch accumulation between turfs receiving ammonium sulfate versus 
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milorganite.  They suggested the properties of Milorganite® controlled the release of nitrogen so 

that growth flushes exhibited by grass fertilized with water soluble nitrogen fertilizers did not 

occur.  In a study examining nitrogen forms at various application rates, White and Dickens 

(1984) found sewage sludge applied at 1020 kg of N ha
-1

 yr
-1

 increased bermudagrass thatch 

accumulation compared to application of 580 kg of N ha
-1

 yr
-1

 ammonium nitrate.  Sartain (1985) 

found similar results as reported by White and Dickens (1984) and Meinhold et al. (1973) 

regarding the slow-release N forms such as IBDU.  IBDU did not contribute to bermudagrass 

thatch accumulation compared to fertilization using ammonium sulfate.     

Kock (1978) reported fertilizers that decreased thatch pH increased thatch accumulation 

due to an alteration in microbial activity.  Schmidt (1978) supported Kock‟s findings with 

research that showed increased thatch at pH 4 compared to pH 5.  Further investigations by 

Potter et al. (1985) resulted in a correlation between acidifying nitrogen fertilizers, increasing 

fertilizer application rates, and lower earthworm populations.  Thatch decomposition of 

Kentucky bluegrass by earthworm activity was slowed due to less favorable micro-

environmental conditions, specifically lower pHs.  Therefore, the impact a fertilizer has on 

microenvironment conditions can greatly reduce fauna decomposition.          

In general, fertilization management practices to reduce thatch accumulation have 

focused on nitrogen rates and forms to prevent excessive turfgrass growth.  In a summary of 

thatch studies by Waddington (1993), he suggests the totality of the research indicates increased 

fertilization (2x to 3x) above optimal levels do not result in greater thatch applications.  

However, in the case of dense, ultradwarf bermudagrasses, researchers have shown a strategy of 

more frequent reduced rates of nitrogen resulted in less thatch build-up compared to higher 

nitrogen rates applied less frequently (Hollingsworth et al. 2005).  Because of the thatching 
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tendency of these grasses, many turfgrass managers have adopted a spoon feeding type of 

strategy to curb thatch accumulation. 

In addition to affecting plant growth, nitrogen also plays a pivotal role in organic matter 

decomposition.  Available nitrogen within the soil and plant tissues can severely limit the 

activity of microbial decomposers.  Lower carbon to nitrogen tissue ratios will lead to an 

increase in microbial degradation and thus reduced thatch amounts (Kopp et al. 2004)  Plant 

tissues with a carbon to nitrogen ratios equal to or greater than 30:1 are considered highly 

resistant to microbial degradation (Camberato 2001).  Therefore, depending on nitrogen status of 

the thatch or soil, microbial activity can benefit from supplemental nitrogen (Puhulla et al. 1999).     

The effect of nitrogen on plant growth, thatch accumulation and thatch decomposition is 

complex.  Because most turfgrass studies have focused on nitrogen as it effects plant growth, 

more specific studies are needed to address nitrogen effects on microbial degradation of turfgrass 

thatch.     

Thatch Decomposition 

Most thatch is decomposed by microbial activity.  The rate at which organic matter is 

broken-down will depend on several factors such as fluctuations in microbial populations and 

activity as result of environment.  Compared to underlying soils, thatch layers tend to provide a 

more desirable environment for microorganisms (Islam et al. 2004).  Elliot and Des Jardins 

(1999) reported turfgrasses grown on sandy soils had high populations of bacteria followed by 

fungi and actinomyces.  As discussed earlier, soil pH can have a dramatic effect on earthworms, 

but also greatly affects microbial activity.  Microorganisms grow and perform best in 

environments with temperatures between 60 and 85 F, neutral to slightly basic pHs, conditions 
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with a balance of inorganic nutrients, particularly nitrogen,  air and water filled pore spacing (50-

60% water holding capacity), and an abundance of organic substances (Zuberer 1997).  

Modification in any one of these factors can alter microbial growth and activity such as 

compacted and poorly structured soils that contain low amounts of microbial activity (Kerek et 

al. 2002, Landschoot 1997).  

Another factor worth discussing is the effect of fungicides on thatch decomposition.  

Early research by Smiley and Craven (1978) showed chemicals with fungicidal properties 

affected thatch layers.  Halisky et al. (1981) and Goss et al. (1980) reported greater thatch 

accumulation for Kentucky bluegrass and creeping bentgrass, respectively, with certain 

fungicides.  Conversely, Meinhold (1973) found decreasing thatch levels on bermudagrass 

treated with fungicides.  He posited that fungicides acted as a nutrient source.  Other reseachers 

have reported changes in decomposition between leaves and stem tissues after fungicide 

applications (Duble and Weaver, 1974).  Because many of the fungicides tested regarding thatch 

have been removed from the market we have no means to conduct experiments in order to 

determine the effectiveness of these products. Currently labeled fungicides are believed to have 

no effect or slightly positive effects on thatch decomposition.     

Methods for Reducing Thatch 

Mechanical 

 For most highly managed turfgrasses, thatch layers are reduced through a combination of 

cultural and mechanical practices.  Numerous studies have shown cultural practices can remove 

excessive thatch or prevent the build-up of unacceptable thatch conditions (Smith 1979, Eggens 

1980, Beard 1993, McCarty et al. 2005).   
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Mechanical thatch removal can be accomplished through core cultivation, vertical 

mowing, sand topdressing or a combination of these practices.  Carrow et al. (1987) reported an 

8% decline in „Tifway‟ bermudagrass thatch with vertical mowing twice a year and a 44 to 62% 

decrease with sand topdressing.  Dunn et al. (1981) reported decreases of 12 to 18% in thatch 

depth for zoysiagrass over five years with vertical mowing.  Greater reductions in thatch were 

reported by Weston and Dunn (1985) on bermudagrass when both vertical mowing and core 

cultivation were implemented.  Today core-aerification is used to help control thatch as well as 

reduce compaction. 

Unfortunately, mechanical thatch removal as a means of thatch control is extremely 

disruptive to the turf surface. Any reduction in less disruptive mechanical methods would be 

desirable. (McCarty et al. 2005)  As a result, there has been a greater reliance on sand 

topdressing as a means to control thatch.  White (1984) reported that topdressing is the most 

effective cultural practice for controlling large amounts of thatch accumulation. Other studies 

have supported these findings that topdressing with sand is an extremely effective mechanical 

method for thatch control (Murrary et al. 1977, Turgeon 1986, McCarty 2005, Carrow et al. 

1987).  Today, topdressing is an integral component of many turfgrass managers thatch control 

programs.  However, guidelines for rates of sand application, amendments to topdressing, and 

frequency vary greatly. 

Nutritional and Chemical Effects on Thatch Accumulation 

 Nutrients such as calcium, potassium, and phosphorus may affect thatch accumulation or 

decomposition.  As is the case with nitrogen, most studies evaluating these macro- and micro-

nutrients have focused on plant growth.  Unfortunately many of these studies have shown the 
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addition of these nutrients have little to no effect on the rates of thatch accumulation (McCarty et 

al. 2005).  Only under extremely deficient conditions would supplemental additions of these 

nutrients probably alter thatch conditions. 

Methods to accelerate thatch decomposition have involved the use of chemical products 

such as wetting agents and introduction of micro-organisms.  Loadeboer and Skogley (1967) 

believe thatch degradation without disrupting the soil surface would be tremendous for the 

turfgrass industry.  Wetting agent applications, typically used for soil moisture retention, were 

hypothesized to help the thatch retain water for increased microbial decomposition.  However, 

studies showed these chemicals tended to promote plant growth resulting in greater thatch 

accumulation or no change (Callahan et al. 1998).  Other researchers have focused on 

supplemental microbial additions.  The premise for biological application is that through the 

introduction of advantageous microorganisms, thatch degradation will be increased with higher 

decomposing microbial populations.  To date most biological studies for accelerating thatch 

decomposition have had varied success. Gibeault et al. (1976) found no significant reduction in 

thatch with three biological dethatching materials.  Sartain and Volk (1984), who evaluated 

several white-rot fungi on various turfgrass species for thatch decomposition, reported variable 

success dependent on fungi and grass species.  In a more current study evaluating the application 

of the commercially available product, Thatch-X
®

, McCarty et al. (2005) reported Thatch-X
® 

was an ineffective means for promoting thatch degradation when compared to more traditional 

methods.   
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Methods for Thatch Measurement 

 Several methods for thatch measurement have been used by researchers.  Early methods 

focused on thatch depth, as measured from the top of the thatch layer to the soil surface, for 

assessing changes in thatch levels.  Although this method is rather simple, it may fail to 

adequately describe changes in thatch composition.  Other researchers have relied on digestion, 

loss-on-ignition, or oven-dry weights of the organic fraction as a method to more fully 

characterize changes within the thatch layer (Callahan et al. 1997).   

In order to simplify the process, Volk (1972) developed the „thatchmeter‟ for a rapid 

method to measure thatch conditions. This instrument was made up of a base with a lever that 

could be loaded over a vertical cylinder.  Changes in thatch or comparisons in thatch were the 

depression differences between samples.  The thatchmeter does appear to be accurate and much 

faster compared to other methods (Callahan et al. 1997).  However, more studies are needed to 

establish reliable limits for the thatchmeter as an established method for thatch measurement. 

(Volk 1972) 
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CHAPTER 2. THATCH DECOMPOSITION OF TWO BERMUDAGRASS 

CULTIVARS 

 

Introduction 

Managing turfgrass thatch, a loose intermingled organic layer of dead and living shoots, 

stems, and roots that develops between vegetation and the soil surface, is a continuous cultural 

challenge in maintaining fine warm-season turfgrasses (Ledeboer et al. 1964, McCarty et al. 

2005).  Excessive thatch reduces turf aesthetics and increases disease and pest pressures 

(McCarty et al. 2005).  Other drawbacks include uneven playing surfaces that can lead to 

scalping and poor player safety (Smith 1979), shallow rooting; excess water holding capacity; 

decreased water infiltration rates, increased pesticide and nutrient binding, and greater 

temperature fluctuations that reduce plant drought, heat and cold tolerances. (Harivandi, 1984; 

Murray et al., 1977,  Smith 1979,  White et al, 1984,  McCarty et al. 2005,  Volk 1972,  

Meinhold et al. 1973).   

Differences in thatch accumulation between turfgrass species and cultivars have been 

reported (Sherman et al., 1980; Beard, 1992).  Warm-season turfgrass species such as 

bermudagrass (Cynodon dactylon), zoysiagrass (Zoysia japonica) and St. Augustine 

(Stenotaphrum secundatum) that exhibit vigorous, prostrate growth habits, in the form of stolons 

and/or rhizomes, are more susceptible to thatch accumulation (Harivandi 1984).  Therefore, as 

more vigorous hybrid-bermudagrass cultivars are introduced, more intense management 

practices will be needed to maintain acceptable thatch levels. 

Current cultural practices to reduce thatch accumulation rely on mechanical removal 

and/or sand topdressing regiments.  Mechanical removal of thatch through vertical slicing or 

hollow-tine aeration has been reported as effective but disruptive to playing surfaces (Smith 
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1979, Eggens 1980, Beard 1993, McCarty et al. 2005).  As a result, turf managers may fail to 

implement mechanical practices as often as required to prevent excessive thatch accumulation.   

Sand topdressing, a less disruptive alternative compared to mechanical thatch removal, 

has been shown to be an effective cultural practice for controlling large amounts of 

bermudagrass thatch (White et al. 1984).  Numerous studies have supported these findings 

showing frequent topdressing applications as one of the most effective non-mechanical methods 

for reducing thatch accumulation (Murrary et al. 1977, Turgeon 1986, McCarty 2005, Carrow et 

al. 1987).  Although, sand topdressing to reduce thatch accumulation has been widely adopted by 

turf managers, very little research has specifically addressed the causal effect of sand to reduce 

thatch accumulation.   

Many researchers hypothesize topdressing with sand introduces microorganisms that aid 

in thatch degradation; alters the micro-environment so that conditions are more conducive for 

higher microbial activity; or dilutes the thatch layer through the continual deposit of soil (Beard, 

174).  Because topdressing regiments vary greatly from turf manager to turf manager, insight 

into the causal effect of sand to accelerate turfgrass thatch decomposition will allow design of 

more efficient and effective topdressing programs.  The objectives of this study were to 1) 

evaluate the influence of cultivar on hybrid-bermudagrass thatch decomposition 2) Determine 

micro-environmental effects of sand topdressing within the thatch layer  3)  investigate effects of 

changes in micro-environmental conditions on thatch decomposition.  

Materials and Methods 

Site Description          

 Field studies in 2008 and 2009 were conducted on two mature bermudagrass cv. „Tifway‟ 
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and „Celebration‟ swards growing on an Oliver silt loam (fine-silty, mixed, thermic, Typic 

Fragiudalf) soil at the Louisiana State University Agricultural Center Burden Research Station 

located in Baton Rouge, LA.  Hybrid-bermudagrass cultivars chosen for the study represent the 

most commonly grown hybrid-bermudagrass, „Tifway‟, and more recently introduced cultivar 

„Celebration‟.   

Each hybrid-bermudagrass cultivar was established vegetatively from sprigs at 500 bu. 

ha
-1

 in June 2004.  General maintenance prior to and throughout the study included mowing at 

2.5 cm 3 times wk
-1

 using a reel-mower, fertility of 250 kg N ha
-1

 yr
-1

 and irrigation applied as 

needed to prevent drought stress.  No mechanical cultural practices to reduce thatch were 

performed between establishment and initiation of the field and laboratory experiments.  Six 

months prior to the study all pesticide applications were ceased. 

Field Experiment  

 In each bermudagrass cultivar, 3 m x 3 m plots received sand topdressing treatments 

consisting of sterilized or un-sterilized sand applied at 0.4 cm 14 d
-1

 or as a single application at 

1.2 cm and an untreated control.  Sand topdressing met United States Golf Association green 

complex specifications with 84% being a medium texture and <3% clay or silt fractions (USGA, 

2004).  Sterilized sand treatments were sterilized in an autoclaved (Market Forge Sterilmatic, 

Everett, MA) at 125 C at 7 kg cm
-2

 for 2 hours.  All sand treatments were applied using a drop 

spreader within 1 hr post-sand sterilization with sand lightly brushed into the canopy using a flat 

bristled broom. 
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Data Collected   

Thatch depth was recorded at the initiation of the study in May and again in September in 

2008 and 2009.  For thatch depth, cores (15 cm diameter) were harvested with thatch depth 

measured in mm.  Turfgrass quality, a measurement of texture, color, density and uniformity, 

was recorded from May to September of each year using the National Turfgrass Evaluation 

Program (NTEP) rating scale of 1 to 9, 1 = bare soil or dead grass, 6 = acceptable quality  and 9 

= ideal quality.   

Relative humidity was measured for 56 d beginning 15 May and ending 12 July for each 

year in thatch layers receiving unsterilized sand top-dressing treatments for the hybrid-

bermudagrass cv „Celebration‟.  Relative humidity sensors (EM-50 datalogger, Decagon Devices 

Inc., Pulham, WA) were placed within the bottom third of the „Celebration‟ thatch layer but just 

above the soil surface.  Data was recorded daily every 60 minutes for the duration of the 

experiment.  Both Air temperatures and precipitation were also recorded daily throughout the 

experiment.     

In addition to RH measurements, thatch microbes were enumerated using the most 

probable number (MPN) technique in April and July 2009 on „Celebration‟ hybrid-bermudagrass 

(Coyne and Thompson 2006).  Thatch was collected 4 days after sand topdressings treatments 

were applied in July. One gram samples of thatch were diluted in 50 mL of phosphate buffer 

followed by serial dilutions.  One mL of each dilution was placed on nutrient agar plates with all 

plate dilutions replicated three times.  Plates were incubated at 22 C for 7 d before analyses.  The 

procedure was only used to enumerate the microorganism population and did not differentiate 

microorganism species.   
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Thatch Chamber Experiments 

Thatch Collection and Storage 

Chamber experiments were conducted to assess temperature and RH effects on microbial 

decomposition of bermudagrass thatch.  Microbial decomposition was measured as a function of 

C-CO2 production.  Bermudagrass thatch used for the experiments was collected adjacent to field 

trials from mature „Tifway‟ and „Celebration‟ bermudagrasses.  Thatch was collected in May 

2008 and 2009 using a vertical mower set to a depth of 5 cm.  Samples were hand-shaken to 

remove adhering soil and debris, air-dried for 24 to 48 hrs, and placed in polyethylene bags for 

storage at 4 C.  Five gram tissue samples for each cultivar were measured for lignin, cellulose, 

hemicelluloses concentrations at the LSU Agricultural Center Southeastern Research Station 

Forages Laboratory. 

Temperature and Relative Humidity Chamber Experiment  

In order to evaluate temperature and RH effects on bermudagrass thatch decomposition, 

20 g of each bermudagrass cultivar was placed within desiccators containing 500 mL glycerol-

water solutions at 80%, 90%, 95% or >99% RH.  Glycerol-water solution ratios were adjusted to 

achieve each RH based on the procedures outlined in ASTM-D5032-97 (2003).  Equations for 

the preparation of glycerol-water solutions for each RH are as follows:     

 

SG = [-0.189(RH) + 19.9]
0.0806 

  SG: specific gravity of glycerol-water solution needed to produce specific RH 

  RH: Desired percent of relative humidity  
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Gw = 383 (SG) – 383 

  Gw: % glycerol by weight in the solution 

 

Gv = (GW WT)/(100 x 1.262) 

  GV: volume of glycerol (ml) 

  WT: total weight of the solution (g) 

 

Hv =[(100-GW)WT]/(100x1.0) 

  HV: volume of water (ml) 

 

Incubation temperatures were 20 C and 30 C for all RH.  To ensure RHs were achieved by the 

glycerol-water solutions, RH was recorded using humidity sensors attached to an EM-50 

datalogger (Decagon Devices Inc., Pulham, WA) for 14 d (data not presented).     

After 14 d acclimation to treatment environmental conditions, 1 g fresh weight thatch 

from each temperature and RH treatment combination were dried at 60 C for 48 hrs to determine 

tissue water content.  Fresh weight thatch samples equivalent to 1 g dry weight from each 

temperature and RH combination were placed into 473 mL air-tight containers fitted with a 

rubber septum for periodic air sampling (Martin and Beard 1975).  In each container, 50 mL 

glycerol-water solutions were used to maintain RH of 80%, 90%, 95% or >99%.  Containers 

were sealed, flushed with CO2-free air and returned to respective temperature regiments of 20 C 

or 30 C.  Each temperature and relative humidity combination was replicated three times for a 

total of 48 containers each experiment.   

 During the 21 day incubation period, headspace was sampled every three to four days and 

analyzed for CO2.  Carbon dioxide was analyzed by gas chromatography (Varian 3800, Varian 
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Inc., Palo Alto, CA) using a 27.5 m x 0.53 mm long capillary column coated with poraplot-Q.  

The injector and detector temperatures were maintained at 60 C and 250 C, respectively.  The 

gas chromatographer was calibrated using CO2 standards purchased from Scotty‟s specialty 

gases (Scotty Gas, Plumsteadville, PA).  Carbon dioxide production was calculated as the area 

under the curve and expressed as mg CO2-C g biomass
-1

.  After each air sampling, glycerin-water 

solutions were replenished and the headspace flushed with CO2-free air before containers were 

returned to respective chambers.   

Wetting and Drying Cycle Experiment 

 A second chamber experiment was conducted to determine the effect of wetting and 

drying cycles on microbial decomposition of thatch.  Twenty grams of thatch was acclimated to 

>99 % RH at 30 C in desiccators filled with the appropriate glycerol-water solution.  The 

temperature and RH selected for these experiments were based on results from the temperature 

and RH experiment examining thatch decomposition. 

  After 14 d acclimation to treatment environmental conditions, 2 g fresh weight thatch 

was dried at 60 C for 48 hrs to determine tissue water content.  Fresh weight thatch samples 

equivalent to 1 g dry weight were placed into 473 mL air-tight containers fitted with a rubber 

septum for air sampling every 3 d for a period of 21 d.  In one-half of the thatch samples, tissue 

was continuously under a >99 % RH environment while the remaining samples were adjusted 

every 3 d to ~200 % water tissue content through the addition of water to simulate irrigation or 

precipitation post CO2 sampling.  Carbon dioxide was analyzed and quantified using gas 

chromatography as describe previously.  After each sampling and tissue water content adjusted, 
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tissues were enclosed in air-tight containers with each container‟s headspace flushed with CO2-

free air for 5 min before being returned to 30 C.   

Data Analysis  

 Field data from the five sand topdressing treatments applied to two hybrid bermudagrass 

cultivars were arranged as a 2 x 3 factorial design with 3 replications. Data were analyzed 

according to the Analysis of Variance (ANOVA; α=0.05) using the mixed procedure in the 

statistical software SAS (SAS Institute, 2000).  Post-hoc testing was performed using a Fisher‟s 

protected least significant difference (Fisher‟s LSD; α=0.05) with the exception of RH data that 

is presented graphically with standard error bars.  Laboratory experiments were analyzed as 

completely randomized design using the general linear method in the statistical software SAS 

(SAS Institute, 2000).  Post-hoc testing was performed using a Fisher‟s protected least 

significant difference (Fisher‟s LSD; α=0.05). 

Results 

Field Experiments 

 Initial thatch for „Celebration‟ was generally twice that of „Tifway‟ with thatch increasing 

over each growing season for single sand topdressing applications and untreated controls (table 

2.1 and 2.2).  Over the sixteen month study, untreated control thatch increased from 27 mm to 35 

mm and 44 mm to 61 mm for „Tifway‟ and „Celebration‟, respectively, representing a 30% and 

38% increase in thatch accumulation.  During this same time period, sand applied every 14 d
-1

 

reduced thatch 21% to 34% for „Tifway‟ and 20% to 30% for „Celebration‟, showing sand 

applications applied routinely result in the greatest amount of thatch decomposition. 
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Table 2.1. ANOVA table for temperature and relative humidity  

experiments. 

Effect Degrees of Freedom F Value Pr > F 

    Experiment 1 37.8 0.0035 

Cultivar 1 2.56 0.115 

Cultivar*exp 1 0.04 0.8473 

Temperature 1 45.52 <.0001 

Temperature*exp 1 2.3 0.135 

Cultivar*temperature 1 0.92 0.3407 

Cultivar*temperature*exp 1 1.23 0.2721 

Relative humidity 3 34.71 <.0001 

Relative humidity*exp 3 0.66 0.5818 

Cultivar*relative humidity 3 1.04 0.381 

Cultivar*relative humidity*exp 3 0.11 0.9559 

Temperature*relative humidity 3 2.16 0.1015 

Temperature*relative humidity*exp 3 1.26 0.2959 

Cultivar*temperature*relative humidity 3 0.09 0.9672 

Cultivar*temperature*relative humidity*exp 3 0.17 0.9188 
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Table 2.2.  Effect of sand topdressing on thatch depth of two hybrid-bermudagrass cultivars growing in  

Baton Rouge, Louisiana from 2008 to 2009. 

Cultivar   Treatment   Application frequency 2008 

 

2009 

      

May September   May   September 

            Thatch depth   Thatch depth 

      

------------------mm------------------ 

 

------------------mm------------------ 

                

                Tifway 

 

Unsterilized 

 

14 days regiment 

 

29 a 25 a 

 

23 b 

 

19 c 

  

Sterilized 

 

14 days regiment 

 

28 a 26 a 

 

23 ab 

 

22 c 

  

Unsterilized 

 

Single application 

 

24 a 27 a 

 

23 ab 

 

30 ab 

  

Sterilized 

 

Single application 

 

23 a 26 a 

 

20 b 

 

28 b 

  

Untreated control 

   

27 a 30 a 

 

26 a 

 

35 a 

                Celebration 

 

Unsterilized 

 

14 days regiment 

 

41 a 42 b 

 

39 b 

 

33 b 

  

Sterilized 

 

14 days regiment 

 

43 a 39 b 

 

38 b 

 

30 b 

  

Unsterilized 

 

Single application 

 

43 a 54 a 

 

49 a 

 

57 a 

  

Sterilized 

 

Single application 

 

42 a 53 a 

 

45 a 

 

54 a 

    Untreated control       44 a 49 a   44 ab   61 a 

Topdressing treatments were 0.4 cm 14 d
-1,

 a single application at 1.2 cm yr
-1, 

or an untreated control.   

     Sterilized sand treatments were autoclaved at at 125 C at 7 kg cm-2 for 2 hours. 
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„Tifway‟ and „Celebration‟ treatments that received single topdressing sand applications at the 

beginning of the study had increased thatch of 20% to 22% and 29% to 32%, respectively.  Over 

extended periods of time single sand applications tend to leach from the thatch layer into to soil 

surface.  Because of this leaching the sand can no longer act as an insulator for the thatch layer 

leading to a decrease in temperature and RH resulting in less decomposition No differences in 

thatch decomposition occurred between sand topdressing treatments following the same 

application frequency.   

In 2009, microbial populations increased for all treatments with warmer temperatures in 

July compared to April (table 2.3).  The more frequent sand topdressing regiments had higher 

microbial populations followed by single sand applications and untreated controls.  Throughout 

the study sand topdressing was never detrimental to the turf (table 2.4).   Therefore, turf quality 

data were combined over years with enhancement or detriment to turf during the growing 

seasons. 

Measurements recorded for RH exhibited increased thatch RH shortly after sand 

topdressing was applied (figures 2.1 and 2.2).  For all treatments a pattern of higher RH during 

night occurred with subsequent decreases in RH with increased temperature from solar radiation.  

However, sand topdressing treatments maintained higher thatch microenvironmental RHs 

compared to untreated controls for extended periods during first 12 h as well as achieved higher 

RH during early evening hours compared to untreated controls 3 days application.  Within 45 d, 

the effects of the single sand topdressing application had dissipated with thatch RH mimicking 

untreated controls.  Only the more frequent sand topdressing regiment was able to affect thatch at 

an extended period with subsequent topdressing applications.



 

23 

Table 2.3.  Effect of sand topdressing regiment on turfgrass quality of two hybrid-bermudagrass cultivars.  Quality rating data are 

pooled 

 for 2008 and 2009. 

            

  

Cultivar   Treatment   Application    Quality Rating† 

         Frequency   May June July August September 

                Tifway 

 

Unsterilized 

 

14 days regiment 

 

7.0 a 8.0 a 7.2 ab 7.2 a 7.0 a 

  

Sterilized 

 

14 days regiment 

 

7.2 a 7.7 a 8.0 a 7.7 a 7.0 a 

  

Unsterilized 

 

Single application 

 

7.7 a 7.7 a 7.7 a 7.0 a 7.0 a 

  

Sterilized 

 

Single application 

 

7.0 a 7.2 a 7.0 b 7.0 a 7.2 a 

  

Untreated control 

   

7.2 a 7.2 a 7.7 a 7.2 a 7.0 a 

                Celebration Unsterilized 

 

14 days regiment 

 

8.0 b 7.2 a 7.7 a 7.0 a 7.0 a 

  

Sterilized 

 

14 days regiment 

 

7.7 ab 8.0 b 7.2 a 6.7 a 7.2 a 

  

Unsterilized 

 

Single application 

 

7.2 a 7.7 ab 7.7 a 7.2 a 7.0 a 

  

Sterilized 

 

Single application 

 

7.7 ab 7.0 a 7.2 a 7.0 a 7.2 a 

    Untreated control       8.0 b 7.0 a 7.2 a 7.0 a 7.2 a 

† Quality ratings are based on the NTEP scale of 1 to 9; 1 = bare soil; 6 = minimally acceptable; and 9 = highest quality. 

   Topdressing treatments were 0.4 cm 14 d
-1,

 a single application at 1.2 cm yr
-1, 

or an untreated control.   

     Sterilized sand treatments were autoclaved at at 125 C at 7 kg cm-2 for 2 hours. 
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Table 2.4.  Changes in microorganism populations in the thatch 

of „Celebration‟ hybrid-bermudagrass         

Cultivar   Treatment   Application frequency   2009 

      

April July 

            MPN† 

      

-------------x 10
5
------------- 

          Tifway 

 

Unsterilized 

 

14 days regiment 

 

1.7 a 3.6 a 

  

Sterilized 

 

14 days regiment 

 

1.3 a 3.7 a 

  

Unsterilized 

 

Single application 

 

1.5 a 3.1 b 

  

Sterilized 

 

Single application 

 

1.4 a 3.2 ab 

  

Untreated control 

   

1.3 a 2.7 b 

          Celebration 

 

Unsterilized 

 

14 days regiment 

 

1.8 ab 3.4 a 

  

Sterilized 

 

14 days regiment 

 

1.6 b 3.1 a 

  

Unsterilized 

 

Single application 

 

1.5 b 3.2 a 

  

Sterilized 

 

Single application 

 

2.0 a 2.9 a 

    Untreated control       1.9 a 2.4 b 

† MPN is most probable number for the enumeration of microorganisms 

   Topdressing treatments were 0.4 cm 14 d
-1,

 a single application at 1.2 cm yr
-1, 

or an untreated control.   

Sterilized sand treatments were autoclaved at at 125 C at 7 kg cm-2 for 2 hours. 
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Figure 2.1.  Effect of sand topdressing on thatch relative humidity of hybrid-bermudagrass cv 

„Celebration‟ for a 24 hour periods for 15 May 2008 (day 3) and 29 June 2008 (day 45).  Sand 

topdressing treatments included 0.4 cm 14 d
-1

, a single application at 1.2 cm year
-1

, and an 

untreated control were initiated 1 May 2008.  
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Figure 2.2 Effect of sand topdressing on thatch relative humidity of hybrid-bermudagrass cv 

„Celebration‟ for a 24 hour periods for 15 May 2009 (day 3) and 29 June 2009 (day 45).  Sand 

topdressing treatments included 0.4 cm 14 d
-1

, a single application at 1.2 cm year
-1

, and an 

untreated control were initiated 1 May 2009.
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Chamber Experiments 

Influence of Temperature and Relative Humidity on Thatch Decomposition  

 Thatch decomposition was affected by changes in RH and temperature but not 

bermudagrass cultivar (table 2.1).  This lack of difference in thatch decomposition between 

cultivars may be due impart to tissue composition similarities with ranges of 38% to 41% 

hemicelluloses, 21% to 23% cellulose and 11% to 12% lignin across cultivars (table 2.5).  

However, as RH increased at each temperature regiment, cultivars exhibited a pattern of 

increasing thatch decomposition.  Increasing RH from 80% to >99% at 30 C, resulted in 189% to 

397% increase in C-CO2 production or 34.2 to 98.9 µg C-CO2 g biomass
-1

and 19.7 to 98.0 µg C-

CO2 g biomass
-1

 for „Tifway‟ and „Celebration‟, respectively.  „Tifway‟ and „Celebration‟ thatch 

at 20 C resulted in 241% to 312% or 14.8 to 60.34 µg C-CO2 g biomass
-1

and 15.2 to 51.8 µg C-

CO2 g biomass
-1

 for „Tifway‟ and „Celebration‟, respectively. (figure 2.3)   

Table 2.5. Thatch tissue composition of hybrid-bermudagrass cultivars in  

2008 and 2009  

    May-08   May-09 

  

Celebration Tifway 

 

Celebration Tifway 

    % Composition % Composition   % Composition % Composition 

Hemicellulose 

 

38.34 38.27  NS
*
 

 

37.89 41.17  NS
*
 

Cellulose 

 

23.21 22.65  NS
*
 

 

22.02 21.15  NS
*
 

Lignin   11.64 12.52  NS
*
   12.47 12.86  NS

*
 

*
Not Significant  
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Higher water tensions from less humid environments reduced tissue water contents as exhibited 

in table 2.6.  As tissue water content was reduced, microbial activity was negatively affected as 

measured through CO2 production.  
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Figure 2.3.  Effect of two temperatures. 20 and 30 C, and relative humidity (80%, 90%, 95%, 100%) on 

CO2 evolved during hybrid-bermudagrass decomposition for 21 days in enclosed chambers.
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Table 2.6.  Percent Moisture of hybrid-bermudagrass thatch at four relative humidities  

at 20 C 

Relative Humidity 

 

Celebration 

 

Tifway 

  

 

Wet Dry  Moisture 

 

Wet Dry  Moisture 

   

----------g------- -------%------- 

 

--------g-------- -------%------- 

80% 

 

1 0.74 26.00 

 

1 0.71 29.00 

90% 

 

1 0.66 34.00 

 

1 0.66 34.00 

95% 

 

1 0.60 40.00 

 

1 0.63 37.00 

>99%   1 0.49 51.00   1 0.54 46.00 

 

Increasing temperature from 20 to 30 C affected thatch decomposition.  Thatch 

decomposition at 30 C exhibited a pattern of greater C-CO2 production compared to 20 C.  

However, the mass of C-CO2 evolved at each RH combination at 30 C compared to 20 C were 

significantly higher; with the exception at 80% RH of 14.8 and 19.7 mg C-CO2 at 20 and 30 C, 

respectively, for each cultivar.  In general, warmer temperatures coupled with higher RH resulted 

in higher thatch decomposition compared to the cooler temperature and corresponding RHs. 

Effects of Wetting and Drying Cycles on Thatch Decomposition 

Because micro-environmental conditions fluctuate within a thatch layer, as demonstrated 

in the field experiments, the effect of wetting and dry cycles were examined.  Hybrid-

bermudagrass cultivar had no effect on thatch decomposition, but decomposition was highly 

influenced by interplay between tissue water content and water tension (table 2.7). Thatch 

maintained at a continuously high RH environment resulted in higher microbial activity (figure 

2.4).  Thatch tissue placed in growth chambers controlled at 30 C exhibited increases of 170% 

and 243% C-CO2 evolved across hybrid-bermudagrasses compared to thatch tissues wetted every 

3d and subjected to higher water tension.   
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Table 2.7.  ANOVA table for the wet/dry cyclic  

experiments. 

Treatment  Degrees of Freedom F Value Pr > F 

Experiment 1 1.95 0.2349 

Cultivar 1 0.72 0.4139 

Cultivar*exp 1 0.01 0.9228 

Wet/Dry cycle 1 18.27 0.0011 

Cycle*exp 1 0.02 0.8841 

Cultivar*cycle 1 1.58 0.2332 

Cultivar*cycle*exp 1 0 0.8318 
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Figure 2.4.  Effect of wet/dry cycle on CO2 evolved from hybrid-bermudagrass thatch 

decomposition for 21 days.  Drying thatch was wetted to 200% moisture content every 3 day and 

the continuously wet tissue was subject to >99% relative humidity. 
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Discussion 

Concurring with previous studies evaluating sand topdressing effects on thatch 

decomposition, we also found sand topdressing enhanced thatch decomposition.  In field trials, 

routine sand topdressing reduced or limited each hybrid-bermudagrass cultivars‟ thatch layer 

without compromising turf quality.  White et al (1984) reported sand topdressing as the most 

effective method to reduce large amounts of thatch in bermudagrass for this extremely vigorous 

growing stoloniferious and rhizotamous turfgrass species.  Several other studies have supported 

these findings that topdressing with sand is an extremely effective cultural practice for thatch 

control for various species (Murrary et al. 1977, Turgeon 1986, McCarty 2005, Carrow et al.  

1987).  Even though „Celebration‟ had a deeper thatch layer compared to „Tifway‟ at the 

initiation of the study, each cultivar had greater thatch decomposition occur with the more 

frequent sand topdressing applications compared to control or single sand applications per year.  

The practice of ultradwarf hybrid-bermudagrass being topdressed more frequently with light 

sand applications compared to heavier infrequent sand topdressings is highly recommended 

(McCarty and Canegallo 2005).  The unsustained effects of single sand top-dressing applications 

to enhance microbial thatch decomposition may be due to sand particles leaching through the 

thatch thereby lessening sands affect on the micro-environment.   

Based on thatch microenvironmental measurement of RH, more frequent applications of 

sand provided a more humid environment compared to the single heavier sand topdressing 

application and untreated control.  Relative humidities were consistently higher for sand 

topdressing treatments compared to controls soon after application.  The re-application of sand 

every 14 d helped to restore higher thatch RHs compared to the single sand topdressing 

application.  Based on empirical calculations, RH of soil air at the permanent wilting point at -10 
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MPa at 20 C remains at 92% (Brady and Heil, 2007). Therefore, application of sand provides a 

mechanism in which the thatch microenvironment maintains higher RH that is more conducive 

for microorganism growth and higher thatch tissue water contents for greater thatch 

decomposition.      

To examine the effects of temperature and RH on microbial thatch decomposition and 

tissue water content of hybrid-bermudagrass cultivars, laboratory showed higher water tensions 

from less humid environments reduced tissue water contents, a factor that decreased microbial 

activity as measured through CO2 production.  The effect of water tension was more pronounced 

at 30 C compared to 20 C.  The positive effects of increasing temperatures and moisture on 

microbial decomposition have been well-documented in other biological studies especially when 

evaluating decomposition of leaf litter or compost (Ibrahim et al., 2010; Cisneros-Dozal et al., 

2007; Howard and Howard, 1979).  Microorganism populations and thus activity have been 

shown to be highly subject to environmental conditions (Howard and Howard, 1979).  In fact, 

differences in temperature and RH may partially explain why stimulation of thatch 

decomposition by commercial available inoculums has not consistently resulted in reducing 

thatch.  

 In field studies, the effect of sand sterilization treatments indicate changes in micro-

environment are sufficient to support increased activity and population increases of existing 

thatch microbes, and that sand applications do not appear to be a major source for microorganism 

introduction.  Mancino et al. (1993) showed continual changes in microorganism populations and 

species over seasons in creeping bentgrass (Agrostis Palustrus L.) thatch and soil of a USGA 

built putting green.  However, other factors such as pH and nutrient availability have also been 

reported to affect grass tissue decomposition (Beard, 1983).  Potter et al (1990) reported use of 



 

33 

nitrogen fertilizers and certain pesticides had a negative impact on earthworm activity.  

Therefore, failure to provide a suitable environment for degrading microorganisms and fauna not 

only leads to decreased microbial populations but decreased activity that equates to slower thatch 

decomposition.   

Unlike chamber experiments that simulate constant temperature and RH environments, 

micro-environments within the thatch are continually changing as a result of weather and cultural 

practices.  Therefore, the application of sand topdressing alone may not be sufficient to achieve 

desired thatch control.  Griffin (1981) stated moisture was often the most limiting factor for 

microbial decomposition of organic matter.  Irrigation management may have an integral role in 

determining the efficacy of sand to degrade thatch.  Based on the wet/dry cycle chamber 

experiments, thatch subjected to a constant high RH environment resulted in greater 

decomposition compared to thatch tissue subjected to cyclic wet/dry.  This suggests thatch 

decomposition of highly managed turfgrass is most limited by water availability.  Data from the 

dry/wet cyclic experiments emphasize thatch environments with lower water tensions result in 

tissues with higher water contents and accelerated microbial degradation of thatch.  In studies 

evaluating composting, Richard et al (2002) demonstrated how moisture could affect 

decomposition of various organic substrates.   

Therefore, if one chooses to use sand topdressing as a means to accelerate thatch 

decomposition, water management will be important to maintaining thatch RH and enhancing 

thatch decomposition.  As demonstrated in the field, RH measurements of thatch with sand 

demonstrates that sand only provides a media to prolong higher moisture within the thatch.  

Higher RH associated with applications of sand can contribute to sands ability to absorb moisture 

from soils.  Sands finer particle size decreases pore spacing allowing for more moisture to be 
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absorbed hence leading to a spike in RH within the thatch layer.  Breitenbeck and Wells (1986) 

reported a 3 d lag period before microbial decomposition resumed if dry cycles were introduced 

during microbial decomposition.  However, experiments that have attempted to provide high 

moisture environments in the field have not always lead to results of decreased thatch layers.  Fu 

and Dernoeden (2008) reported thatch increased for creeping bentgrass greens maintained under 

a light frequent irrigation regiment compared to deep infrequent irrigation most likely due to 

better plant growth and higher tissue deposition.      

Although we have shown the complexity of moisture and temperature have on thatch 

decomposition within the field and laboratory, Berndt (2008) demonstrated the ability to 

described hybrid-bermudagrass thatch decomposition using a double exponential model for 

chamber experiments held under mesophilic conditions (22-23 C).  He attributed differences in 

decay between the two hybrid-bermudagrass cultivars, „Tifeagle‟ and „Tifdwarf‟, to be a result of 

C:N ratios and possibly tissue composition.  Breitenbeck and Wells (1986) also reported 

differences in tissue composition to be a factor when describing decomposition of several warm-

season turfgrass species thatch in chamber experiments.  Although, no differences in thatch 

decomposition were evident between the hybrid-bermduagrass cultivars for the chamber 

experiments, which may be partially explained by the similarities in tissue composition of more 

degradable and recalcitrant constituents; field studies showed a greater cultivar difference in 

thatch layers.  Given the similarities of „Celebration‟ and „Tifway‟ tissue composition and 

decomposition to changes in temperature and RH in chamber experiments, one may conclude 

„Celebration‟‟s deeper initial thatch layer and less magnitude in thatch depth from sand 

topdressing is the result of „Celebration‟‟s more aggressive growth and thatch deposition rate.  A 
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similar type of thatching tendencies between cultivars has been reported for creeping bentgrass 

(Carrow, 2004).   

Other considerations such as nutrients, pH and soil aeration must be accounted for when 

developing a thatch management program.  Thatch management of more aggressive hybrid-

bermudagrass cultivars may require more frequent sand topdressing regiments in addition to 

more frequent mechanical removal. Further studies are needed to evaluate the interaction of 

various management practices such nitrogen source and rate, irrigation management, and 

inoculums effects on thatch decomposition. 

Conclusion 

The rate at which thatch accumulates can be calculated as directly proportional to the 

imbalance of plant tissue production and organic matter decomposition.  However, the 

interactions of various factors that affect thatch decomposition have been shown to be complex.  

Factors such as cultivar, environment and sand topdressing frequency will affect the 

decomposition process and thus thatch accumulation.  This study focused only on understanding 

the influence sand topdressing regiments have in accelerating thatch decomposition of two 

hybrid-bermudagrasses by relating changes in microenvironment from sand topdressing 

application frequency.  The more frequent sand topdressing is applied, the greater and more 

prolonged affect sand has on thatch RH for greater decomposition.  Increasing temperature 

significantly enhances the decomposition as RH and tissue water content are increased.  

However, the cultural practice of sand topdressing application may not be sufficient to control 

newer hybrid-bermudagrass cultivars.  Combinations of sand topdressing and mechanical 

removal will be necessary to achieve suitable thatch layers. 
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APPENDIX  

ENVIORMENTAL DATA 

 

May 2008 – September 2008 Environmental Data in Baton Rouge, LA 

 

Figure A.1.  Environmental data consisting of monthly precipitation and monthly temperature for  

Baton Rouge, LA from May, 2008 through September, 2008 
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May 2009-September 2009 Environmental Data for Baton Rouge, LA 

 

Figure A.2. Environmental data consisting of monthly precipitation and monthly temperature for 

Baton Rouge, LA from May, 2009 through September, 2009. 
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