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Abstract

Seismic Rock Slope Failure Modes and Time-Dependent Displacements Using Single Block
Methods

Matthew D. Gibson

Chair of the Supervisory Committee:
Associate Professor Joseph Wartman
Civil and Environmental Engineering

Seismically induced rock slope failures have resulted in billions of dollars of economic dam-
age and enormous loss of life throughout the world. Accurate prediction of the triggering
and run out of these failures is elusive for a variety of reasons, including knowledge of the
physical modes of failure. Simplified tools that are prevalent in soil slope engineering are rel-
atively non-existent in rock slope engineering. Current state of art in rock slope engineering
requires complex and computationally expensive numerical models to evaluate the seismic
performance or rock slopes, which inhibits extensive evaluations to be conducted.

This research explores the potential failure modes of an idealized rigid rock block and
expands the modes typically considered to include not only sliding but also toppling (pure
forward rotation), confined toppling (constrained forward toppling) and slumping (combined
backward rotation and translation). The yield acceleration (or minimum inertial acceleration
to cause block movement) for slumping, similar to toppling, is found to be lower than for
pure translational sliding. These yield accelerations indicate the initial modes of rock block
failure; however, they do not always predict the ultimate failure mode. To predict the final
failure modes, the results of discrete element numerical analyses were compared to pseudo
static yield acceleration to develop a seismic failure mode chart based on block geometry

and interface friction.



For co-seismic displacement predictions, simplified models predicting ultimate displace-
ment of a mass under seismic conditions are limited to purely translating, sliding blocks
(i.e. Newmark’s sliding block method). This dissertation introduces additional non-linear,
time-dependent models to predict ultimate displacement in toppling and slumping modes
as well. Similarities of the dynamic response of rocking, toppling, and slumping systems
are exposed and allow knowledge from the well-established literature of rocking blocks to be
leveraged. The parameters of these non-linear models are combined such that mapping of
more complex systems to these simple models can be performed. Important findings from
these new methods are that the magnitude of seismically-induced displacement is dependent
on the size and shape of the block (or failure mass) and the displacement dependent yield
accelerations. In addition, by establishing a failure criteria for the different modes of failure,
ground motion characteristics (mean period and intensity) can be used to predict the likeli-
hood of failure. Design charts are developed to allow seismic toppling and slumping failures

to be integrated into PBEE evaluations or real-time regional assessments.
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Chapter 1
INTRODUCTION

The theory of plate tectonics fundamentally changed our understanding of how the physi-
cal environment is formed and reformed. Ironically, this process which produces phenomenal
mountain landscapes, also produces powerful ground shaking that leads to their demise.
While the prediction of the strength and timing of earthquakes is a challenging task, the
consequences of their inevitable arrival are well-known and reiterated on an all to frequent
schedule. The consequences of these natural disasters range from the liquefaction of sedi-
ments in seemingly benign environments to dramatic landsliding of rock and soil slopes alike.
Landslide related natural disasters have caused billions of dollars of economic damage and
have been responsible for enormous loss of life throughout the world (Keefer and Larsen,
2007).

Seismically induced rock slope failures have the potential to result in sudden, catastrophic
consequences. Although a rock slope failure can be a relatively quick event, the consequences
of rock slope failures can be long lasting as they permanently alter the natural environment,
such as blocking streams and filling valleys (Hewitt et al., 2008) and destroying the built
environment. The following earthquake induced disasters illustrate the impact of rock slope

failures during earthquakes:

e 2015 Gorkha earthquake (Nepal) (Chiaro et al., 2015; Moss et al., 2015):
The Gorkha district of Nepal was struck by a series of M, =7.8, M,,=6.7, and M,,=6.8
earthquakes. These earthquakes resulted in 8,674 fatalities and many more injured.
Extensive landsliding and rockfall was observed in the mountainous regions impacting
homes and blocking roads, hampering rescue efforts. Figure 1.1 shows an example of

rockfall on a local road.



Figure 1.1: Rockfall during 2015 Gorkha earthquake in Nepal

e 2010 & 2011 Canterbury earthquake sequence (New Zealand) (Massey et al.,
2012, 2014): This series of earthquakes resulted in more than 5,000 mapped rockfalls
among 800+ dwellings in Christchurch, New Zealand. In some cases, homes were
struck and/or penetrated by boulders greater than a meter in dimension. Some failures
resulted in dislodged building-sized boulders colliding with buildings (Figure 1.2a) or

landslides comprised of hundreds of car-sized boulders (Figure 1.2b).

e 2008 Wenchuan earthquake (China) (Tang et al., 2011; Xu et al., 2009):
There were estimated to be over 56,000 landslides resulting in over 250 landslide dams
(Figure 1.3a). Damage was caused to a wide variety of civil infrastructure including
bridges, buildings, dams, irrigation channels, and entire towns. Over 20,000 deaths
were directly attributed to landslides. Large boulders were dislodged from surrounding

slopes and displaced to the valley floors (Figure 1.3b).



(b) Photo: Martin Hunter/Getty Images

Figure 1.2: Rockfall during 2011 Canterbury earthquake
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(b) Large rock ejecta (Photo: AP)

Figure 1.3: Rockfall during 2008 Wenchuan earthquake



e 1970 Ancash earthquake (Peru) (Plafker et al., 1971; Keefer and Larsen,
2007): A massive rock slope failure inundated the villages of Yungay and Ranrahirca
with the number of fatalities exceeding 25,000. Evidence, common to many natural
disasters, indicates that this was not the first and will likely not be the last earthquake

induced landslide to hit this area.

Prediction of system behavior to earthquake loading is a complex problem in civil en-
gineering. There is no exception for rock slopes given their inherent natural variability in
composition and geometric arrangement. Seismic stability evaluations in geotechnical engi-
neering are common place, however those for rock slopes lag behind relative to other areas
of geotechnical and civil engineering (e.g. soil slope stability, liquefaction, and structural re-
sponse). Seismic rock slopes methods are in great need for advancement to meet the current

risk-based seismic engineering environment.
1.1 Thesis Organization

The concepts and methods of analysis presented in this thesis form the beginning of the trek
to decipher the seismic response of fractured rock slopes. The following chapter provides a
general primer on the landscape of the current state of practice and art of rock slope behavior
during earthquakes. Those familiar with rock slope engineering, can likely skip this chapter
and move directly to subsequent chapter topics where the current state of research will be
reiterated.

Chapters 3, 4, and 5, which constitute the original work of this thesis, were written
with the intent for direct submission to peer-reviewed journals and thus are self contained.
However, it is beneficial to the reader to move through each chapter in succession as the
research concepts build upon each other.

Based on the complex geometric composition of rock slopes, this dissertation focuses
on developing a fundamental understanding of the physics dominating rock slope failures.

Chapter 3 sets out to expand the identification of pseudo static failure modes and yield



accelerations of more diverse discrete rock block shapes compared to current methods that
are built on rectangular shapes. Chapter 4 builds on the abundant rocking block literature
and modifies it to address seismic rock block toppling failures. Methods are developed to
evaluate the time-dependent response of toppling rock blocks. These methods are used to
evaluate a large database of ground motions and develop probabilistic failure criteria based
on ground motion intensity parameters. Chapter 5 develops and explores a slumping block
model and discovers mathematical similarities to the toppling block. As with the toppling
rock block, methods are developed for time-dependent ground motion simulations and prob-
abilistic failure criteria are established. Lastly, thoughts of future research opportunities

stemming from this dissertation are presented in Chapter 6.



Chapter 2

SEISMIC ROCK SLOPE ENGINEERING LITERATURE
REVIEW

There are many factors that may induce rock slope failures, such as ground water flow,
precipitation, deteriorating rock fractures, undercutting of slopes, human activity, and earth-
quakes. The mechanisms of how most of these factors lead to rock slope failures are relatively
well understood. However, the methods for predicting these failures, especially for earth-
quaking loading, are sparse. Compared to seismic soil slope engineering, seismic rock slope
engineering lags behind in the ability to identify basic failure mechanisms by simplified
methods and provide quantitative, risk-based evaluations.

Seismic slope engineering analyses generally include the following steps to predict perfor-
mance during earthquakes: determining controlling failure modes, predicting the triggering
of motion, estimating displacement during motion, final deformation, and evaluating dis-
placement to natural or artificial failure criteria. For rock slope failures, geometry, persis-
tence, and strength of rock mass discontinuities will play a dominant role (Eberhardt, 2008).
These discontinuity characteristics control failure modes such as sliding, toppling, slumping,
or variants of these modes (Hoek and Bray (1977), Goodman and Kieffer (2000), and Sitar
et al. (2005) among others). Once the likely co-seismic failure modes are identified, the next
step is to predict the triggering of slope displacement by specific earthquake scenarios. The
earthquake scenarios to be evaluated are usually prescribed by ground motion amplitude
and frequency or time histories of ground accelerations. If triggering of slope movement is
established to occur during an earthquake, engineers must be able to estimate the potential
displacements or magnitude of failure. With displacement predictions, communities and gov-

ernment agencies are able to make risk-based decisions of how to mitigate the consequences



of failure either by engineering stabilization solutions or preparing for disaster responses.
This final analytical step is arguably the most important, yielding quantitative predictions
of failure likelihood that can be ingested in a performance-based earthquake engineering
(PBEE) process.

This chapter provides a general overview of seismically induced rock slope failure evidence
and the current state of evaluating the failure modes, triggering predictions, and estimates
of displacements and consequences of failure. Additional details will be provided in each of
the following chapters where necessary. The subject of static slope stability has drawn the
attention of many authors (e.g. Hoek and Bray, 1977; Hoek et al., 2000, among others), and
in general, will not be repeated here unless the discussion benefits. This is not to say that
this text can be read without an understanding of these methods. The reader not familiar

in basic rock slope stability methods should refer to the above-mentioned text.
2.1 Empirical Prediction of Rock Slope Failures During Earthquakes

Earthquake induced rock slope failures and resulting landslides are not a new phenomenon.
Accounts of these spectacular events have been documented and evaluated throughout the
literature (Cluff (1971); Plafker et al. (1971); Wilson and Keefer (1983); Jibson et al. (2006);
Keefer et al. (2006); Aydan et al. (2009); Alfaro et al. (2012), among others). The factors that
determine the difference between which slopes fail or remain stable are numerous. The first
major effort to catalog earthquake induced landslides and their attributes was undertaken by
Keefer (1984) who evaluated 40 major earthquake case histories world-wide. From this work,
14 types of rock and soil landslides caused by earthquakes were identified and are summarized
in Table 2.1. Landslide types related to rock that were identified include slides, topples, and
slumps. Several rock slope characteristics were identified to contribute to their failures with a
major factor being the geometry and frictional characteristics of discontinuities and fractures.
One relationship uncovered by Keefer is that the area affected by landslides can be related to
the earthquake magnitude. This relationship provides an indication of a limiting earthquake

intensity to induce slope failures. Keefer’s work was followed by Rodriguez et al. (1999)



Table 2.1: Types of coseismic landslides (Keefer, 1984)

Relative abundance  Landslide type

of landslides

Very abundant Rock falls

100,000 Disrupted soil slides
Rock slides

Abundant Soil lateral spreads

10,000 to 100,000 Soil slumps
Soil block slides

Soil avalanches

Moderately Common Soil falls
1,000 to 10,000 Rapid soil flows

Rock slumps

Uncommon Subaqueous landslides
100 to 1,000 Slow earth flows
Rock block slides

Rock avalanches

who extended the database to a total of 76 earthquake case histories and whose results
reinforced the conclusions of Keefer’s work. Keefer (2013) provides the latest summary of
these cataloged studies as shown in Figure 2.1

Additional researchers have shown Keefer’s relationship to be applicable over a wide
range of seismic and geologic settings. For instance, Aydan et al. (2009) provides a well

documented case history that summarizes observed sliding, toppling, and slumping failures
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Figure 2.1: Area in square kilometers affected by landslides versus earthquake magnitude

(Keefer, 2013)

and makes a direct comparison to the findings of Keefer (1984). From these studies it is

clear that there is an intimate relationship between earthquakes and slope characteristics.

2.2 DModes of Failure

In order to simplify the infinite number of rock block shapes and potential failure modes,
simplified conceptual models are often adopted. An extensive list of conceptual rock slope
failure modes are discussed in Goodman and Kieffer (2000). A few of these conceptual
examples that demonstrate blocky, non-fracturing failure modes are shown in Figure 2.2.
These figures show rock slope failures that consist of one block or a complex network of
many blocks. The failures are grouped here into the general categories of dominant failure

modes identified by Keefer (1984); sliding, toppling, and slumping. It is interesting to note
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(a) sliding (b) sliding

(c) topple (d) topple

(e) slump (f) slump

Figure 2.2: Conceptual, non-fracturing, blocky failure modes of rock slopes (Goodman and

Kieffer, 2000)

that these three categories represent the total possible combinations of translational and
rotational rigid body motion with slumping, and as will be shown in Chapter 3, some forms
of toppling being the modes that undergo both types of motion. In addition, the failures
composed of many blocks appear to be more complex variants of the single block failure

modes.



12

2.2.1 Mode Determination

Kinematic failure modes, such as toppling, sliding, and wedge failure, are generally identified
using methods based on stereographic projections (Goodman, 1989). These methods are
well established and are integrated into numerous commercially available software programs.
However, these methods make a fundamental assumption of a vertical gravity field. It will
be shown in the Chapter 3 that this assumption is only appropriate for static loading.

The most prominent design charts currently available for single block failure modes are
limited to blocks formed by orthogonal joint sets. A succinct literature review of these charts
is discussed by Yagoda-Biran and Hatzor (2013) and is summarized here. Ashby (1971) and
Hoek and Bray (1977) presented the first chart (Figure 2.3a) that established the static limit
equilibrium failure modes. They also identified dynamic failure modes when the block is in
motion relative to the fracture planes. The chart was revised by Bray and Goodman (1981)
(Figure 2.3b) based on DEM modeling by Voegele (1979) that indicated that the sliding and
sliding & toppling boundary should be modified. The dynamic failure modes were again
modified by Sagaseta (1986) (Figure 2.3c) to reflect the appropriate application of inertial
forces.

Modes of failure for discontinuous rock slopes were investigated by Aydan et al. (1989).
In this study, rock slopes with various configurations of discontinuities (i.e. through-going
or step-wise continuous) were evaluated for sliding, toppling and combined sliding-toppling
modes of failure. Tilt tables and base friction machines were used to verify their analysis.
The geometries and discretization of modes are shown in Figure 2.4. These studies showed
that multiple blocks could combine to form the basic modes identified by the simplified
charts.

While these studies discuss dynamic motion, they should not be confused with initiation
of motion under seismic forces. These charts instead delineate boundaries between statically
stable and unstable, rectangular blocks under gravitational loading. The dynamic motion

represents the scenario where a block begins motion in statically unstable conditions. This
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Figure 2.5: Pseudo-static rectangular block failure modes (Yagoda-Biran and Hatzor, 2013).

situation is more representative of blocks whose fractures undergo strength loss rather than
experience an inertial loading induced by an earthquake.

Given the earthquake loading limitation, Yagoda-Biran and Hatzor (2013) showed that
the seismic inertial force could be thought of as adding additional slope angle to the static
charts thus expanding the charts applicability to include earthquake loading. The slope
angle, « is effectively increased by the angle, 3, formed by the resultant force acting on the
block (weight force and inertia force) relative to vertical. The modified chart is shown in
Figure 2.5 where the parameter ¢y = a + 3. Despite this advancement, this seismic failure
chart still possess the primary assumption of its ancestors, namely it is applicable only to

rectangular rock blocks.

2.2.2  Example Slopes

An example of a complex slope that could give rise to these modes of failure as they occur in
nature is demonstrated through images taken by Wartman (2007) during site reconnaissance

of the 2007 Pisco, Peru earthquake (Figure 2.6). These images illustrate the complex network



16

of discontinuities present in natural rock slopes and that there are many opportunities for
differing local failure modes to occur within a single slope. In addition, these images reiterate

that rock blocks formed by the discontinuities are not restricted to rectangular shapes.
2.3 Seismic Triggering of Rock Slope Failure

The current analytical methods available to evaluate the triggering of seismic rock slope
failure can be broken down into two categories: empirical predictive models and pseudo-
static limit equilibrium methods (LEM). For the purpose of modern probabilistic seismic risk
evaluations and based on the author’s experience with methods in soil and slope engineering,
the methods in these categories lag behind those used in other areas of civil engineering. In

other cases, these methods do not sufficiently capture the basic range of potential failure

modes identified by Keefer (1984).

2.3.1 Empirical Prediction Methods

Empirical predictive models for rock slope failures have been derived based on general slope
geometric and geomorphological characteristics for landslides observed to fail during earth-
quakes. Since these models result from observing failures, the ability to predict how likely
certain slope parameters predict failure depends on the data collected in the field. It is often
the case that rock slope failures are catastrophic, limiting the ability to collect information
on the state of the rock slope immediately preceding failure. Therefore, these models tend
to be exclusively qualitative and require substantial experience and judgment to be applied.

One of the first methods was developed from Keefer’s landslide database (Keefer, 1984) to
provide a simple decision making chart as to the level of risk for landsliding (see Figure 2.7).
Another type of empirical model, a weighted classification system, was used by Harp and
Noble (1993) to evaluate landslides within a specific mountain range. In this model, weights
are applied to various slope parameters based on experience to produce a classification system
that could be used to evaluate the likelihood of slope failure on a regional scale. The Harp

and Noble (1993) model, like the Keefer (1993) model, can only be used for a very coarse,
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(a) Blocky slope with indications of missing rock blocks where toppling,

sliding, and slumping failure modes are suspected.

(b) Blocky slope with indications of rock blocks where sliding and slumping

modes are suspected.

Figure 2.6: Complex rock slope pictured after 2007 Pisco, Peru Earthquake (Photos: J.

Wartman )
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Figure 2.7: Empirical landslide risk decision tree (Keefer, 1993)

qualitative evaluation of landslide risk. While these models can be insightful, additional

analysis for specific rock slopes is certain to be required for any engineering application.

2.3.2 Pseudo-static Limit Equilibrium and Yield Acceleration

Pseudo-static LEM methods are well understood and applied throughout civil engineering.
These methods approximate dynamic behavior by including a representative inertial force
into static analyses methods giving rise to the term pseudo-static. The inertial force is gen-
erally a fraction of the static weight and is chosen either based on theory or, more commonly,
based on empirical evidence. These forces are then used to determine the minimally stable
configuration of geometry and strength (i.e. limit equilibrium).

Pseudo-static LEM is generally used to provide a binary outcome/boundary of whether
failure will or will not occur and an estimate of a factor of safety against failure. These
methods are often applied to determine a seismic factor of safety for a given applied con-
stant pseudo static inertial acceleration. Alternatively, a critical yield acceleration can be
determined which indicate the maximum pseudo-static acceleration that can be tolerated be-

fore the onset of failure/motion (or when a factor of safety equals unity). A major limitation
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of LEM is that it does not provide any indication of displacement or degree of consequences
for slope failure required by PBEE analyses.

For a simplified, two-dimensional, rectangular block sliding on a single surface, block top-
pling about its corner or both, the critical yield accelerations can be easily determined from
statics (Sagaseta, 1986). For blocks sliding on multiple surfaces that induce back rotation,
such as the slumping block, the problem of resolving the force diagram for stable configura-
tions becomes indeterminate and requires iterative techniques and additional assumptions.
Kieffer (1998) provides an iterative technique to determine a factor of safety for single and
multiple slumping blocks in which a pseudo static force is included. This method could be
used to determine the yield acceleration for many block shapes but would require an iterative
analysis for each shape that is not likely to be undertaken by practicing engineers. At this

time, there is no closed-form solution for the critical yield acceleration for slumping.
2.4 Displacement Methods

Methods that produce displacement estimates based on analytical models lend themselves
to be more useful in seismic risk analyses given their quantitative nature. The complexity of
these methods range from single block elements with basic principles of physics to numerical
methods incorporating complex contact algorithms. In this section, a review of the most

prominent methods is organized based on their level of analytic complexity.

2.4.1 Single Block Models

Methods based on single block models employ basic physics principles applied to simple
geometries that are intended to approximate complex systems. Analogous to single degree
oscillating systems, single block models can provide a rich understanding of emergent com-
plex behavior resulting from dynamic loading. Single block models are also used to provide
a quantitative displacement response to earthquake loading. Depending on the specific for-
mulation of the model, this response can be informative as to the relative magnitude of slope

deformation, or damage potential, that can be expected from various earthquakes. For exam-
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ple, Gazetas et al. (2012) used single block models to evaluate the destructiveness potential

of the recorded 2011 Christchurch earthquake ground motions.

Sliding Block

Newmark (1965), Goodman and Seed (1966), and Seed and Goodman (1964) made famous
the sliding block model to estimate displacements of earth dams and sand embankments
from loading by earthquake ground motions. The sliding block (Figure 2.8) is assumed
to slide with a rigid, perfectly plastic frictional contact between itself and an accelerating

plane. This means that the block’s movement is equal to the base plane until the yield

W=Mg —_—— X=Yy-+u

7777777777777 777 7/

y(t)

Figure 2.8: Sliding block schematic(Newmark (1965))

acceleration (assumed constant) is exceeded at which time the block begins sliding relative
to the plane. The block slides with an absolute acceleration equal to the yield acceleration
and continues sliding until the relative velocity between the block and plane equals zero. After
the block stops sliding its motion again mirrors the base plane and the cycle of analyzing the
yield acceleration repeats. The relative displacement of the block is determined by double
integrating the time history of relative acceleration between the block and plane. Strenk and
Wartman (2011) provide an illustrative example of the sliding block calculation (see Figure
2.9).

The sliding block model has been shown to be applicable to systems that undergo pure
translational motion such as tetrahedral wedge sliding (Ling et al. (1997); Aydan et al.
(2009); Bakun-Mazor et al. (2011)). Jibson (1993) reinforces the use of the sliding block

model for the seismic evaluation of landslides and, in general, indicated that this is the most
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commonly used model for assessing the displacement potential of slopes from earthquake

ground motions. Kramer and Smith (1997) and Wartman et al. (2003) showed that the

rigid assumption limits the applicability of the rigid block and rigid interface to natural

soil slopes. To overcome this limitation, Kramer and Smith (1997) described a method to

calculate the displacement response of a compliant (flexible) slope on a rigid contact. Based

on the author’s experience, both the rigid and compliant sliding block system are used widely

throughout the geotechnical engineering field.
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Rocking Block

The rocking block model consists of a rectangular block on an accelerating plane where the

block is allowed to rotate about either of its edges with no sliding allowed (see Figure 2.10).

Early use of this model can be traced to Japan in 1881, originating from the desire to

critical position
beyond which
toppling occurs

W,

center of
mass

| center of
rotation

Figure 2.10: Rectangular rocking block (Haneberg (2009))

back-calculate the peak ground acceleration (PGA) for earthquakes based on overturned
tombstones (Ishiyama, 1980). Housner (1963) made this method popular with his analytical
evaluation of tall slender structures from the 1960 Chilean earthquake. The general form of
this model is comparative to the evaluation of precarious rock blocks (Brune et al. (1996); Shi
et al. (1996); Anooshehpoor et al. (2004)). Makris and Konstantinidis (2003) used this model
to develop a rocking spectrum, analogous to a traditional single degree oscillator response
spectrum, to estimate the toppling potential for various block sizes due to earthquake ground
motions (see Figure 2.11).

While the rocking block literature is fairly mature, it does not fit well with the problem of
toppling of a rock slope in its current state. For rock toppling applications, Haneberg (2009)
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Figure 2.11: Example rocking block spectrum (Makris and Konstantinidis, 2003))

considered a toppling block loaded by a single half-sine pulse. The model was used to develop
design charts to determine the required loading (PGA at a given frequency) to overturn a
rock block. This work showed that the toppling response of a rock block is sensitive to it’s
rectangular shape and the loading frequency and amplitude. While the results are intriguing,
the underlying assumptions require some scrutiny and the results will be shown in some cases
to be conservative. In addition, this method is not capable of evaluating the loading from an
earthquake time history. These limitations in the rocking block methods applicability and

Haneberg’s assumptions will be addressed in Chapter 4.

Slumping Block

There are no known simple single block displacement models known to the author that are
capable of predicting seismic deformation of a slumping rock block. Sliding block (translation
only) models are more commonly applied to translational and slumping slope failures (Jibson,
1993). However, researchers have shown that ignoring rotation causes displacements to be
under predicted (You and Michalowski, 1999; Michalowski, 2007). The consideration of
rotation has been studied in soil slopes by many (Sarma, 1981; Chang et al., 1984; Sawada
and Nomachi, 1985; Ling and Leshchinsky, 1995; Ling et al., 1997; Siddharthan and El-
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Gamal, 1998; Zeng and Steedman, 2000; Michalowski, 2007; Zeng and He, 2013), but these

methods have not been translated to rock slopes.

2.4.2  Advanced Methods
Multi-Block Models

Single block models represent simple models evaluated with relatively simple first principles
from physics. Their behavior is intentionally limited for ease of calculation and interpreta-
tion, however this is not necessarily required. Tonon (2007) presents an incremental-iterative
algorithm for analyzing general failure modes of rock blocks subject to generic forces. This
model is truly comprehensive with the ability to model large deformations and rotations and
non-linear contact behavior between the block and the plane. These attributes make the
model capable of detecting any failure mode of the block. However, this model was devel-
oped for the situations of the rapid removal of constraints leading to dynamic motion rather
than applied earthquake loading; thus it is not easily applied to the earthquake problem.
Another comprehensive model is one developed by Michalowski (2007). This model
is capable of evaluating multiple blocks sliding along a curved base plane. Michalowski
(2007) concludes that the rotational component of the block’s permanent deformation path
is important to capture the maximum potential for sliding. While these two methods allow
for more detail, the cost of these complex models is the loss of a simple, intuitive model that

encompasses the influence of geometry and dynamic response from seismic loading.

Numerical Methods (FEM, FDM, DEM, and DDA)

As with most problems in engineering, advanced numerical methods such as the finite element
method (FEM), finite difference methods (FDM), discrete element method (DEM), and
discontinuous deformation analysis (DDA) can be used to model blocky systems with complex
geometric layouts and fracture constitutive behavior. These methods can be generally parsed

into two categories: Continuum and Discontinuum. The applicability of these numerical
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techniques have been well discussed in the literature (Coggan et al., 1998; Eberhardt, 2003,
2006; Stead et al., 2006; Eberhardt, 2008) and are summarized below.

Continuum models (e.g. FEM or FDM) are most applicable in materials such as massive,
intact rocks or heavily jointed rock. Continuum models utilize FEM or FDM to solve the
differential equations of equilibrium with various constitutive models to relate stresses and
strains. The problem domain is represented by a mesh of elements that assume continuity of
displacement across the element. The modeling of intact rocks is generally only valid up to the
point of failure. Once failure occurs, the rock forms fractures which produce discontinuous
deformations and the assumption of continuous deformation is void. The accuracy and
appropriateness of modeling heavily jointed rock is dependent on the information being
sought. In general, the calculation of macro scale deformation, stress distribution, and
failure location is feasible. However, local details near the fractures would be inaccurate.
The ability to model heavily jointed systems would be highly dependent on the choice of
constitutive model and selection of model parameters that approximate the global behavior.

DEM and DDA are by far the most popular numerical methods used in rock engineering
research and consulting practice given their formulation to specifically evaluate the inter-
action between multiple rock blocks. Discontinuum models are most applicable when the
response of a slope is controlled by the orientation, spacing, persistence and interface re-
sponse of the rock joints (Einstein et al., 1983). The problem domain is represented by an
assemblage of interacting, discrete shapes created by the distribution of fracture geometries.
Similar to FEM and FDM used to solve continuum models, discontinuum models utilize the
universal distinct element code (UDEC), DDA, or particle flow codes (PFC) to solve the
equations of equilibrium and interaction between blocks. These types of models are com-
monly referred to as DEM. With this type of modeling the accuracy of the model is governed
by the appropriate definition of fracture geometry and choice of joint interface constitutive
model and parameters. The explicit modeling of the discontinuities provides more realistic
distribution of stresses and displacements and in some cases drives the development of the

non-linear failure mechanisms and rock mass response (Eberhardt, 2003).
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Discontinuum models have been used to evaluate the seismic stability of rock slopes by
many researchers (Chuhan et al., 1997; Hatzor, 1999; Havenith et al., 2003; Hatzor, 2003;
Bhasin and Kaynia, 2004; Hatzor et al., 2004; Pekau and Yuzhu, 2004; Wang et al., 20006;
Wu, 2010). Discontinuum models will be used in this thesis considering that the problems
being modeled consist of relatively few distinct blocks. In particular, because of ease of access
and familiarity in the rock slope engineering community, the DEM program universal distinct
element code UDEC' will be used for the discontinuum modeling throughout this thesis. The
numerical model results will be used for pseudo-static failure mode determinations of rock
blocks and non-linear, time dependent, seismic responses of various rock block configurations.
In addition, the time dependent solutions from UDEC will serve as the target (or known)

solutions for various problems evaluated in this thesis.
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Chapter 3

PSEUDO-STATIC FAILURE MODES AND YIELD
ACCELERATIONS IN ROCK SLOPES

Rock slope failures have contributed greatly to the economic and human loss experienced
during seismic events throughout the world. Accounts of these spectacular events have been
documented and evaluated throughout the literature (Cluff (1971); Plafker et al. (1971);
Wilson and Keefer (1983); Jibson et al. (2006); Keefer et al. (2006); Aydan et al. (2009);
Lanzo et al. (2010); Alfaro et al. (2012); Massey et al. (2014), among others). A database
of earthquake induced landslide failures compiled by Keefer (1984), and reinforced by others
(Rodriguez et al., 1999; Keefer, 2013), clearly indicates that failure modes, observed in
the field following earthquakes, include sliding, toppling, and slumping. Methods based on
simplified, discrete, single block models such as a rectangular block on a plane or wedge
blocks are commonly used to approximate the behavior of rock slopes and determine the
factor of safety against failure (Hoek and Bray, 1977; Yagoda-Biran and Hatzor, 2013).
These models assume rectangular blocks on a plane or sliding prismatic three-dimensional
(3D) wedge blocks. A major limitation common to rectangular and wedge shaped blocks is
that the assumed geometry and boundary conditions restrict the potential failure modes to
sliding or toppling. This chapter will expand the geometry assumptions so that new failure
modes will be kinematically admissible.

In order for additional failure modes to be considered, non-rectangular shapes need to
be considered. Kieffer (1998) considered blocks in static loading that are parallelogram
in shape and require a second plane to provide static stability and thus fail in a slumping
mode of failure (simultaneous sliding and back rotation). While this was a big advance in the

evaluation of rock block failure modes, the implementation of this model was limited to factor
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of safety evaluations against slumping modes of failure. Tonon (2007) introduced a model
that is capable of evaluating complex block geometries which does not restrict potential
failure modes, however this model requires a block specific evaluation and is most applicable
to problems with a quick reduction in strength rather than quick (seismic) loading.

In this chapter a simple, yet broadly applicable, two-dimensional (2D) single block frame-
work is introduced that does not restrict the geometry to orthogonal fracture sets. This
formulation allows for the slumping failure mode to naturally occur and can identify a new
single block failure mode, confined toppling. Through the use of simple failure mode charts,
this framework can be easily applied by a wide range of practitioners including geologists
performing pre- and post-failure field reconnaissance and design engineers. In addition to
the identification of new failure modes, this formulation allows for the calculation of the
corresponding pseudo-static accelerations that lead to block motion. Seismic yield acceler-
ation equations are presented for all four modes of failure: sliding, toppling, slumping, and
confined toppling. The equations for slumping and confined toppling are derived for the first
time.

Although the model may be simple in its formulation and implementation, it is quite
powerful in allowing for significant implications to be developed. Complex shaped blocks can
be easily evaluated knowing just their centers of mass and contact points with supporting
fractures. The failure mode of discrete rock blocks are shown to not be dependent on the
inclination of the primary fracture in which the block rests upon and the scale of the block
itself. Seismic failure modes are demonstrated to be different from those induced by static
forces alone and can even change modes depending on the amount of displacement during
the ground motion. In addition, it is shown that the characteristics of an earthquake ground
motion acting on these blocks in combination with geometric variability can influence the
abundance of failure types observed in the field. Finally, two example mode and yield

acceleration evaluations of actual rock slopes are presented.
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3.1 Existing Failure Mode Charts

The most prominent design charts currently available for single block failure modes are
limited to blocks formed by orthogonal joint sets. A succinct literature review of these charts
is discussed by Yagoda-Biran and Hatzor (2013) and is summarized here. Ashby (1971) and
Hoek and Bray (1977) presented the first chart (Figure 3.1a) that established the static limit
equilibrium failure modes. They also identified dynamic failure modes when the block is in
motion relative to the fracture planes. The chart was revised by Bray and Goodman (1981)
(Figure 3.1b) based on DEM modeling by Voegele (1979) that indicated that the sliding and
sliding & toppling boundary should be modified. The dynamic failure modes were again
modified by Sagaseta (1986) (Figure 3.1c) to reflect the appropriate application of inertial
forces.

Modes of failure for discontinuous rock slopes were investigated by Aydan et al. (1989).
In this study, rock slopes with various configurations of discontinuities (i.e. through-going
or step-wise continuous) were evaluated for sliding, toppling and combined sliding-toppling
modes of failure. Tilt tables and base friction machines were used to verify their analysis.
The geometries and discretization of modes are shown in Figure 3.2. These studies showed
that multiple blocks could combine to form the basic modes identified by the simplified
charts.

While these studies discuss dynamic motion, they should not be confused with initiation
of motion under seismic forces. These charts instead delineate boundaries between statically
stable and unstable, rectangular blocks under gravitational loading. The dynamic motion
represents the scenario where a block begins motion in statically unstable conditions. This
situation is more representative of blocks whose fractures undergo strength loss rather than
experience an inertial loading induced by an earthquake.

Given the earthquake loading limitation, Yagoda-Biran and Hatzor (2013) showed that
the seismic inertial force could be thought of as adding additional slope angle to the static

charts thus expanding the charts applicability to include earthquake loading. The slope
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Figure 3.3: Pseudo-static rectangular block failure modes (Yagoda-Biran and Hatzor, 2013).

angle, « is effectively increased by the angle, 3, formed by the resultant force acting on the
block (weight force and inertia force) relative to vertical. The modified chart is shown in
Figure 3.3 where the parameter ¢» = o + 3. Despite this advancement, this seismic failure
chart still possess the primary assumption of its ancestors, namely it is applicable only to

rectangular rock blocks.
3.2 Geometry

3.2.1 Fractured Rock Slopes

The formation of a fractured rock slope is the result of many complex processes working
in seemingly random sequences. Fortunately for the rock slope engineer, the end result
of these processes, whether the final result is a slope with a complex failure network or a
homogeneous intact rock slope, is the primary concern. On their own, discrete blocks can
fail catastrophically and impart great damage to civil structures and result in great loss of
life and thus are worthy of analysis. The main focus of this chapter is that of fractured rock

slopes and the discrete blocks these fractures form.
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The range of discrete rock block geometries found on rock slopes is the result of the
intersections formed by fractures throughout the rock mass. In some cases these fracture
networks create orthogonal intersections that form rectangular blocks. However, when the
fractures intersect each other at arbitrary angles then many more block geometries become
possible. As a matter of nomenclature, the fracture set closest to a horizontal orientation
is termed the base fracture, while the other fracture set is termed the back fracture. For
example, Figure 3.4 slopes in nature with two predominate fracture sets. These figures
illustrate slopes where the base fracture set is dipping out of the slope (daylighting fracture)
while the back fracture set is oriented either side of vertical. The discrete blocks formed by
these intersecting fracture sets at the slope surface are highlighted. If the fractures within
each set have strikes that differ by more than 20 degrees, then more general polygons are
formed and two dimensional assumptions may no longer apply (Goodman, 1989).

In addition to discrete block failures, these discrete blocks can interact with each other
and create complex emergent behavior (Aydan et al., 1989). Similar to discrete blocks,
the failure of multi-block slopes during earthquakes can be catastrophic (Massey et al.,
2012). Currently, for seismic loading, these slopes are evaluated with either simplified failure
charts based on rectangular-shaped blocks (Yagoda-Biran and Hatzor, 2013) or slope specific
numerical analyses (Pal et al., 2011; Wu, 2010; Bhasin and Kaynia, 2004; Chuhan et al.,
1997).

3.2.2 Discrete Rock Blocks

Throughout civil engineering fundamental exploration of simple systems has provided in-
valuable insight into complex structures. Examples of simple systems include the single
degree of freedom oscillator and the Newmark sliding block (Newmark, 1965). As mentioned
previously, rectangular blocks on a slope are commonly used to assess failure modes of rock
slopes. The study of simple block geometries will be continued here with an expansion of

geometry assumptions.
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(a) Blocky slope with indications of missing rock blocks where toppling

and slumping failure modes are suspected.

(b) Blocky slope with indications of rock blocks where sliding and slumping

modes are suspected.

Figure 3.4: Complex rock slope pictured after 2007 Pisco, Peru Earthquake (Photos: J.

Wartman).
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Block Parameters (Aspect Ratio and Relative Orientation)

First, consider single, discrete rock blocks that are formed on the outer most portions of
the slope highlighted in Figure 3.4. The blocks are redrawn in Figure 3.5 with additional
geometric detail. The blocks are detailed from the perspective of geologists and engineers
who evaluate fracture networks primarily from core logs or surface mapping where relative
fracture orientations and fracture spacing are a natural choice of parameters to quantify
rock block geometries. The strikes of the fractures within each fracture set are assumed
to be within 20 degrees resulting in a parallelogram shape that can be evaluated with 2D
assumptions. The block rests on a base fracture plane inclined at an angle 5 with respect
to horizontal. The angle formed between the base and back fracture is termed the relative
fracture angle, v. The perpendicular spacing between the base fractures is denoted as S
while the perpendicular spacing between back fractures is denoted as S,.

The block is assumed to be in contact with the fractures at points 1 and 3, as shown
in Figure 3.5. Contact 1 is located at the heel of the block near the intersection of the two
fractures and can act either along the base plane or back plane depending on movement of
the block. In some cases, contact 1 acts to provide primary weight support by contact with
the base fracture while in other cases it acts as a lateral support force through contact with
the back fracture. Contact 2 is located along the back fracture and acts as a lateral support
force in some circumstances. Contact 3 is located where the toe of the block intersects the
base fracture plane and provides primary weight support to the block. Point 4 is not in
contact with a fracture but is defined for the purposes of defining the block geometry. The
edges of the block are not necessarily assumed to be perfectly planar but it is assumed that
the block makes contact with the fractures in only three contact locations.

Three position vectors, rq, ry, and rs, are identified as the vectors from the center of
mass, C, to the three corners in contact with the two fracture planes. Since the block is a
parallelogram and assuming a uniform density distribution throughout the block, ro = —rj

and r; = —ry. With these relationships, the geometry of this 2D discrete rock block is
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Figure 3.5: Discrete rock block geometry parameterized by joint spacing and relative fracture

angle.

completely described by r; and r3. The position vectors will prove to be useful later when
pseudo-static failure modes and minimum accelerations levels that initiate failure are eval-
uated; thus, their relationship with respect to these measured field parameters are explored
in some detail here.

The components of the position vectors, relative to a reference frame formed by the base
fracture and its normal, can be determined from the parameters Sp, S5, and . To determine

the position vector components, the vectors that describe the back and base fracture planes
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originating at contact 1 (h and b, respectively) are first described as,

b= [Slfﬁo] (3.1a)
h = [_taiﬁ’&} . (3.1b)

Note that for brevity, the third component of the vector is dropped since it equals zero.

Factoring out the length of Sy

1

b=25 {% cse(), O} (3.2a)
h =S5 [ cot(v), 1]. (3.2b)

S is left in the fraction to emphasize the aspect ratio g—f and scaling effect of S;. Now, the

position vectors can be written in terms of b and h.

or, = — [b + h] (3.3a)
or; = [b— h] (3.3b)

Expanding these equations with the components of b and h,

o, = 8, [cotw) - %csc(’y), —1} (3.4a)

2rs = 51 [cot(y) + % cse(), —1} : (3.4Db)

1
Since ry and r3 completely describe the geometry of the block, then using equations, the entire
shape of a block is described by the fracture spacings and relative fracture angle. A feature of
writing the equations in this manner is that the vector components in the bracket describes
a unit block, which could be expected since the cross product of two vectors describe the
area of a shape. Since both vectors are multiplied by the value of S, it acts to scale the fixed
geometric shape of the unit block to a given size. With the position vector Equations (3.4a
& 3.4b), the shape of the blocks can be visualized based on values of “Sq—j and v as shown in

Figure 3.6.
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Block angle parameters

For reasons that will be made clearer in subsequent sections, it is useful to adopt a different set
of parameters to describe the block shape. Figure 3.7 shows the same block as in Figure 3.5

but with this different geometric detailing. The back block angle, a4, and the forward block

Figure 3.7: Discrete rock block geometry parameterized by forward and backward block

angles, a; and ag.

angle, ag, are defined as the angles formed by r; and rs, respectively, as measured with
respect to the outward unit normal (i1, ) of the base fracture. These angles are considered
positive if the position vector (r; or r3) is oriented downslope of the base fracture normal

(fi;, ). For the block shown in Figure 3.7, a; is negative and «g is positive.
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The components of the position vectors are easily determined from these newly defined

parameters, a; and a3 as

ry = ry [sin(aq), — cos(aq)] (3.5a)
r3 = 73 [sin(as), — cos(ag)] . (3.5b)
Note that r; = ||r1|| and r3 = ||r3|| are scalar lengths. These lengths can be related to each

other using their relationship to the length of the line from point C to point P.

|C' — P|| = ry cos(ay) = 73 cos(as) (3.6)
Rearranging,
cos(ay)
= : 3.7
e cos(ag) (3.7)

Substituting equation (3.7) in to equation (3.5b),

ry =7 [sin(aq), — cos(ay)] (3.8a)
r:rwsina — cos(a
= i), cos(a)]. (3.50)

Using these equations, the unit block shape can be completely described by the backward
and forward angles. Since all vectors are multiplied by the scalar 7, it scales the block. As
with 57, various values of r; or 5 only change the overall size of the block and do not change
the shape of the block. Based on equations (3.8a) and (3.8b), the shape of the blocks can
be visualized based on values of a; and a3 as shown in Figure 3.8. Note that the dashed
diagonal line representing oy = —ag3 describes blocks that are rectangular in shape. This
line is also a mirror line separating blocks with shapes leaning forward (left of the dashed

line) and blocks leaning backward (right of the dashed line).

Relationships between block parameter sets

For practical purposes, and as will be shown later, it is necessary to be able to work in either

parameter set. For this reason, the two parameter sets are mapped to each other using the
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coordinates of the position vector derived previously. First to determine the relative angle,

v, h is constructed using r; and rs,
h=—(r; +r3). (3.9)

Substituting in the components of r; and r3 from Equations (3.8a) and (3.8b),

_ : _ cos(aq) cos(a)
h = —r; |sin(aq) + 31n(a3)cos<a3), cos(aq) + COS(ag)cos(ozg) (3.10)
Simplifying and rearranging,
h = ry [ cos(ay)(tan(ay ) + tan(as)), 2 cos(ay)] . (3.11)

The relative fracture angle can now be determined based on the components of h. The

negative of the x-component of h is used since it is negative itself when v < 90.

h
— tan—! v
=t (2)

v =tan"

1 <—(tan(a1)2+ tan(a3))) ' (3.12)

Now, the fracture spacings can be determined by comparing the y-component of the back

vector and the x-component of base vector.

_ =7 cos(ar) sin(as) — sin(a a
b = sin(7) N (cos(ag) () ( 1>> (3:132)
hy = Sl = 27"1 COS(Oél) (313b)

Dividing these two equations determines the aspect ratio.

bysin(y) 8>  (tan(as) — tan(oy)) sin(y)
: _ E _ 5 (3.14)

Alternatively, a; and ag can be determined from the components of r; and r3 in terms of

Sa
and 5

a; = tan™! ( Mz > = tan~! (COtm ki CSC(V)) (3.15a)

—1

cot + 22 cse
a3 = tan™? ( T2 ) = tan " ( () + 5} (V)> (3.15b)
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From these equations, the contour plots in Figure 3.9 are presented to illustrate the relation-

ship between the two parameters sets.
3.3 Failure Modes

3.3.1 Static Limit Equilibrium

It can be seen that the blocks on the natural rock slopes in Figure 3.4 are not rectangular
thus the failure charts in Figure 3.1 are not applicable. To determine the static stability of
the blocks in Figure 3.4, three potential free body diagrams in Figure 3.10 are considered.
Note that the analysis of non-rectangular discrete blocks in this chapter will concentrate on
the pseudo-static limit equilibrium failure modes and not dynamic modes as the previous
charts describe. In this Figure, W is the static weight vector of the block while Ry and R
are the reaction force vectors acting on the block. Note that although it is possible for water
pressure to be present within the fractures, the purpose of this work is to evaluate the role
that simple fracture geometries and earthquake loading play in the failure of discrete rock
blocks. Water pressures acting within the fractures are not considered.

The first state considered (Figure 3.10a) is the scenario where the weight vector is oriented
between the position vectors r; and r3. In this case, there is only one reaction force (Ry),
which acts at some point located along the base of the block. The exact point where the
force acts depends on the geometry and mobilized friction angle and can be determined by
projecting W onto the base plane. In limit equilibrium, the angle the base reaction force
forms with the base fracture is equal to the ultimate friction angle. In addition, the block
does not require the back plane for stability thus any potential reaction force at contact 2
can be assumed to be zero. This is essentially the classic problem introduced in introductory
physics of a block on a frictional plane and is a more general block than the rectangular
block considered by most rock slope stability researchers.

The second state considered (Figure 3.10b) is the scenario where W lies on the upslope

side (left in the figure) of ri. When W acts, by itself, on the upslope side of ry, it creates a
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~ox R,

(a) Base supported block (b) Base and back supported block

(c) Confined block

Figure 3.10: Static, limit equilibrium, free body diagrams for statically stable block config-
urations. Note that the scenario (not shown) where the weight vector is outside the toe of

the block and the relative fracture angle (7) is less than 90 degrees is statically unstable.
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counter-clockwise torque about the block heel, thus a second reaction force (Ry), is required
in addition to Ry for static stability. Kieffer (1998) investigated this scenario with the as-
sumption that this geometry leads to a slumping mode of failure. As Kieffer (1998) discussed,
this system is statically indeterminate given that there are four unknowns (the orientation
and magnitude of each reaction force) and only three available equations of motion. Kieffer
(1998) introduced a fourth equation, a fictitious support force of zero magnitude applied to
the block to produce a statically determinate problem. An iterative calculation was used to
determine the mobilized friction angle using the force and moment equilibrium equations.
The mobilized friction angle was compared to the ultimate friction angle and a factor of
safety against failure was calculated factor of safety, FS= ¢nobitized/ Puttimate-

The third state considered (Figure 3.10c) is the scenario where the back fracture plane
forms an acute angle with the base fracture plane from the perspective of the block (i.e.
v > 90). For the scenario where W lies within the base of the block, the free body diagram
in Figure 3.10a is sufficient. However, when W is oriented downhill of r3 (right in the figure),
it creates a clock-wise torque about the block toe, thus the block requires support from the
back fracture plane to remain stable. Unlike the scenario shown in Figure 3.10b, the reaction
forces applied to the block in Figure 3.10c are located at contacts 1 and 3. The reaction force
(R2) on the back fracture plane acts to resist the heel of the block from sliding upward. The
reaction force (Ry) on the base plane acts to resist the base of the block from sliding out.
Absent of the back plane, a block in this scenario is statically unstable and would topple (or
topple & slide) as discussed in Sagaseta (1986). Although this statically unstable scenario
was initially evaluated for base friction models (Bray and Goodman, 1981) and is interesting
from a dynamics standpoint, it is not likely to be encountered in nature as they will have

already failed.

3.8.2  Pseudo-Static Limit Equilibrium and Failure Modes

In this section, the scenario where the discrete block is acted on by seismic forces will

be considered. During seismic loading, the ground is assumed to undergo translational
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displacement in the horizontal and vertical directions. If the ground is assumed rigid, the
base and back fractures adopt these same displacements. In addition, assuming that the
frictional contacts made between the discrete rock block and two planes and the block itself
are also rigid, the block has the same displacements as the supporting fractures.

Applying D’Alembert’s principal (Chopra, 2000), the seismic force can be analyzed as
an inertial force, F;, acting at the block’s center of mass. This inertial force is equal to
the mass of the block multiplied by the magnitude of the ground acceleration, but acts in
the opposite direction (i.e. F; = —miiy). The inertial force can then be evaluated along
with the other external forces considered in the static equilibrium section in the traditional
manner of force and moment equilibrium. This form of analysis is commonly referred to as a
pseudo-static analysis. Since earthquake ground motions are commonly expressed in terms of
horizontal and vertical accelerations, F; is decomposed into horizontal (—%mg = —khmg>
and vertical inertial forces <—%mg = —kvmg>, where mg is the weight of the block. For
simplicity, these inertial forces will be added to the components of the weight vector to form
a new resultant vector (R; = mg kg, (1 + ky) g]).

When the block is in force and moment equilibrium and on the verge of motion relative
to the base and back fracture planes, then the block is considered at the limit of equilibrium.
For the block to be on the verge of motion, then the shear forces acting on the fracture planes
must also be at their limit. If a Coulomb sliding law is assumed to describe this limit, then
the shear forces along the fractures are 7; = N; tan(¢;). This means that at limit equilibrium,
the reaction forces act at an angle of ¢ from a line perpendicular to the plane on which they
act. Note that in assuming limit equilibrium, the block acceleration relative to the fracture
planes is zero and thus the inertial forces (F; = —mii,) still holds.

Combining pseudo-static forces with the concept of limit equilibrium for blocks formed by
two fracture sets of varying orientation, seismic failure modes and the minimum ground mo-
tion accelerations that initiate block motion can be determined. Very recently, the Sagaseta
(1986) charts were updated to include seismic inertial forces by Yagoda-Biran and Hatzor

(2013) where the seismic force is converted to an equivalent base fracture angle. This equiva-
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lent angle can be added to the base fracture angle to form a new parameter that replaces the
base angle parameter used on the x-axis of the failure chart (Figure 3.3). While this is dy-
namic motion, it should not be confused with initiation of motion under seismic forces. Since
these charts assume rectangular blocks, they have limited applicability to the wider range of
geometries observed in nature and preclude the evaluation of some failure modes. To over-
come these limitations the free body diagrams of non-orthogonal discrete blocks discussed

in the previous section will now be revisited.

Toppling

The first set of free body diagram examines the scenarios where the orientation of R; is
downhill of, but not equal to r3. These scenarios can occur for both base supported and
base and back supported blocks as shown in Figure 3.11. In order for R; to achieve this
orientation, the friction limit along the base fracture plane must not have been reached and
the block has not slid. With R; outside of rs, the reaction force R3 acts at the block toe.
Sum of moments about the block toe indicates that there is a net clock-wise torque meaning
the block’s initial motion will be to rotate about the block toe. The trajectory of the block’s
center of mass follows a circle centered at contact 3 with a radius equal to the length of r3
as shown in Figure 3.11. This motion can lead to the toppling mode of failure depending
on the ground motion magnitude, frequency content, and duration, which will be discussed
in subsequent chapters. The toppling mode of failure occurs when the block overturns and

does not return to its original static position.

Confined Toppling

The blocks drawn in Figure 3.11 depict blocks formed by fractures with v <= 90. As
discussed previously, when v > 90 the blocks are in a confined scenario where reaction forces
act at the heel (contact 1) and toe (contact 3) of the block as shown in Figure 3.12. Like
the toppling case described above, the torque created by R creates a tendency for the block

to want to rotate about contact 3. However, with the resistance provided at the heel of the
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(a) Base supported block (b) Base and back supported block

Figure 3.11: Pseudo-static toppling failure mode and failure path.

block rotation is resisted. When the block is in limit equilibrium, contact 1 will begin to
slide up the back fracture plane while contact 3 slides out along the base fracture plane.
In order for the block contacts 1 and 3 to slide along the fracture planes as described, the
block must also rotate clockwise hence the term confined toppling (see Figure 3.12). Once
the block has displaced sufficiently such that the heel can no longer make physical contact
with the back fracture, the block will transition into a toppling mode of failure. This loss of
contact occurs when the base of the block is perpendicular to the back fracture plane and
the path of contact 1 is tangent to the back fracture plane. From trigonometry, this scenario

is determined to occur after the block has rotated an angle of 90 — ~.

Sliding

The next set of free body diagrams consider the scenarios where the orientation of R; is
between r; and r3. As before, these scenarios can occur for both base supported and base

and back supported blocks as shown in Figure 3.13. In these scenarios, the friction limit
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Figure 3.12: Pseudo-static confined toppling failure mode and failure path.

of the base joint has been reached before R; exceeded the orientation of r3 thus averting
toppling. The reaction force R; acts equal and opposite of R;. The point at which R;
acts can be determined by projecting R; on to the base plane. Since the friction limit has
been reached, R, is also oriented at an angle of ¢ relative to the inward normal of the base
plane. Since R; and R are equal and opposite, Ry is oriented at the same angle ¢ from the
outward normal of the base fracture plane. Or, relative to W, R is rotated at an angle of
¢ — a counter-clockwise. While sum of the moments and forces are zero, the amount of shear
force on the base fracture plane that can be transmitted to the block by friction is limited to
the normal force multiplied by tan ¢. When this frictional force is divided by the mass of the
block, the resulting acceleration is constant. This implies that that the acceleration of the
block will no longer match that of the joint’s acceleration. Relative to the base joint’s frame
of reference, the block will begin to translate down the base plane as shown in Figure 3.13.
This mode of failure is termed sliding. Note, that when the orientation of R; is equal to rj,

that the sum of moments are still zero therefore the block will still only slide.
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(a) Base supported block (b) Base and back supported block

Figure 3.13: Pseudo-static sliding failure mode and failure path.

Slumping

The final free body diagram considers the scenario where the orientation of Ry is uphill
of r3. This scenario can only occur when static back-support is provided to the block by
the back fracture plane as shown in Figure 3.14. Since back support is required, Ry must
always be positive and non-zero. Considering the block is at limit equilibrium, the friction
limit has been reached, thus R; and Ry are oriented at an angle ¢ relative to the inward
normal of the respective planes on which they act. Similar to the sliding case, the sum of
moments and forces are equal to zero, but since the shear forces are limited by friction, the
acceleration of the block will not match the fracture planes’ acceleration thus block motion is
initiated. The block maintains contact with the base fracture plane at contact 1 and since the
block requires back-support it maintains contact with the back plane at contact 2. These
two contacts constitute a kinematic constraint and thus constrain the block to have only
1 degree of freedom. With these constraints the block must also rotate counter-clockwise

causing motion in the curved path shown in Figure 3.14 (i.e. slumping). The constraints
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Figure 3.14: Pseudo-static slumping failure mode and failure path.

also allow for the translational degrees of freedom to be related to rotation, thus effectively

reducing the total degrees of freedom in the system to one.

Pseudo-Static Limit Equilibrium Limitations

The following limitations apply to the pseudo-static limit equilibrium evaluations above:

e In comparison to an analysis that considers changing ground acceleration (time history
analysis), the pseudo-static limit equilibrium analysis represents the mode of movement
at the onset of block motion relative to the fracture planes. Describing the changes in

block motion throughout a time history analysis is not provided here.

e The vertical acceleration is assumed to not overcome gravity, thus 1 + k, is assumed
to be greater than zero meaning that the block stays in contact with at least the base

fracture plane and does not eject or jump from the slope.

e These analyses do not provide any indication of displacement or degree of consequences

for slope failure, however these subjects will be discussed in subsequent chapters.
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3.3.3 Pseudo-Static Failure Mode Transitions

In the previous sections, the combinations of possible inertial force orientations relative to
the position vectors were described and shown to indicate the possible pseudo-static modes
of failure. There are two transition points that correspond to the scenarios when R; is
oriented in the same direction as r; or r3. The orientation of R; relative to the base plane
in these cases is oy and ag, respectively. Since the sliding mode forms the boundary for each
transition point, the free body diagram for this mode can be used to evaluate each transition
point. As determined before, for sliding, R; acts at the angle of ¢ relative to the inward
normal of the base plane and since R; is equal and opposite it acts at the same angle ¢
relative to the outward normal of the base plane. Therefore, at the transition points, where
R; has the same orientation as r; or r3, ay = ¢ or ag = ¢, respectively. These transitions
form the boundaries of slumping to sliding and sliding to toppling. In addition to these
transition points, is the scenario where the block undergoes confined toppling. As mentioned
before, this scenario arises when the back fracture plane overhangs the block (i.e. v > 90) or
when a; < —ag < ¢.

With these transition relationships, Figure 3.15a is presented which allows the pseudo-
static failure modes to be determined given a known block geometry and joint friction. For
comparison purposes, if the back fracture is not present, the chart would reduce to that
shown in Figure 3.15b where the slumping and confined toppling are no longer applicable.
Note that a line a; = —ag in both charts corresponds to rectangular blocks and is equivalent
to the limit equilibrium modes predicted from Figure 3.1 where § = a3 = —a;. The dynamic
portions of the Hoek and Bray (1977) family of charts is orthogonal to these new charts and
thus not visible.

There are several key observations of this analysis:

e The chart is generic for any block shape since the only geometric information used to

determine these failure modes were the position vectors.
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e [t is clear from this comparison that rectangular block mode charts are very limited in

the geometries they represent and failure modes they predict.

e Since the angle of the base fracture was not used to determine these transition points,

the angle of the base fracture does not determine the pseudo-static mode of failure.

e The slumping failure mode for statically loaded blocks is only applicable for seismic
loading when the friction angle is greater than «a; otherwise the block will slide or

topple.

3.4 Pseudo-Static Yield Accelerations

For each failure mode identified in Section 3.3.2 and determined from Figure 3.15, a minimum
inertial acceleration can be determined which sets the block into motion. This acceleration
has been determined by previous researchers for sliding (Seed and Goodman, 1964; Newmark,
1965; Goodman and Seed, 1966) and toppling modes (Sagaseta, 1986; Yagoda-Biran and
Hatzor, 2013, among others). For the sake of review and completeness, the derivations
of these minimum inertial acceleration equations are presented below. In addition, the
minimum inertial acceleration required for slumping and confined toppling motion to initiate
is derived for the first time. Lastly, for clarity, the minimum inertial acceleration to initiate

the four modes of failure will be given a unique name.

3.4.1 Toppling

The minimum horizontal inertial acceleration required for a block to lift off its base and
rotate about its toe has been described by Sagaseta and Yagoda-Biran and Hatzor, among
others. This acceleration will be referred to as the static rocking acceleration, k.. When
R is within the base of the block, rotation about the block toe is resisted by the weight of
the block. As kj increases, the line of action of the reaction force, R, acting on the base

fracture plane and R approach the scenario where they pass through contact 3. Ultimately,
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the reaction force from the base fracture plane will act at contact 3 while R; continues to
move beyond (to the right of) contact 3, at which point, rotational motion of the block is

initiated. The value of k;, that aligns R; with r3 can be determined by geometry.
k. =kn = (1+ k,)tan(as — «) (3.16)

For kj, to reach this value, there needs to be sufficient frictional resistance between the base

fracture plane and the block such that sliding does not occur at lower values of kj,.

3.4.2  Sliding

The minimum horizontal inertial acceleration required for a block to begin sliding was
brought to mainstream popularity in the civil engineering community by Newmark (1965),
Goodman and Seed (1966), and Seed and Goodman (1964). For sliding systems, this accel-
eration is commonly referred to as the sliding yield acceleration, k.

In Newmark (1965), a block sliding on a horizontal plane was evaluated. For this level
ground scenario, the normal force N is equal and opposite of W. The maximum sliding
resistance available to the block based on a Coulomb sliding law is 7 = N tan(¢) = mg tan(¢).
The horizontal inertial force is counteracted solely by the sliding resistance acting on the
block. Therefore, when the block is at a limit equilibrium state, k, = tan(¢). Because the
frictional force is at a maximum and no more force can be transferred to the block, the
block’s inertial force and yield acceleration will remain constant. Generally this is explained
in terms of F'S in which the yield acceleration is defined as the value of horizontal inertial
acceleration which results in a FS= 1. As the value of kj, exceeds k,, the block and fracture
planes will have different accelerations resulting in relative movement along the base fracture.

Seed and Goodman (1964) went a step further and evaluated a block acting on an inclined

plane. From their work, the equation for the yield acceleration is

ky=ky, = (1+k,)tan(¢ — ). (3.17)
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3.4.3  Slumping

This section presents the determination of the minimum horizontal acceleration to initiate
motion for the slumping case shown in Figure 3.14. Since each reaction force (R; and Ry) is
comprised of two unknowns, magnitude and orientation, there are a total of four unknowns
and thus the system appears to be statically indeterminate. However, as the horizontal
acceleration increases so does the angle of the reaction forces relative to the normal vector
of each fracture plane. When the block is in a limit equilibrium state, the maximum shear
component of each reaction has been reached. For purely frictional behavior this means that
the orientation of the reaction force is also limited and forms an angle of ¢ relative to the
normal vector of each plane. This assumption reduces the number of unknowns contributed
from the reaction forces to two, making the system statically determinate.

The factor of safety approach described in the sliding section is used to solve for the kj,
that would result in a FS= 1. The approach used by Kieffer (1998) to determine the factor
of safety of slumping blocks appears similar but is not. In Kieffer’s analysis the mobilized
friction angle is solved for assuming a fictitious support force and iterating (by changing the
friction angle) until that support force is zero. The factor of safety is then calculated as
the ratio of the tangents of the peak friction angle to the mobilized friction angle. Iteration
is required because Kieffer’s equations were transcendental. If Kieffer’s method is used for
seismic loading, the fictitious force is the inertial force. However, since it is of interest to
determine the critical inertial force to induce motion instead of a factor of safety, an iterative
method is not necessary. Since the block is in limit equilibrium, the orientation of the
reaction forces is fixed. For Coulomb sliding, this orientation is the friction angle. Therefore,
all that is required is to consider kj, as a third unknown and use sum of forces and moments

to form three equations that can be solved simultaneously.
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The three equilibrium equations are shown below, noting that the sum of vector forces

contributes two equations.

R; + Ry + W + kymgg| + kymgg = 0 (Sum of forces) (3.18)

Z-(r1 xRy)+2Z-(r2 x Ry) =0 (Sum of moments about C) (3.19)
Equations 3.18 and 3.19 can be expanded to expose the scalar unknowns R, Ry, and kj,:

R1R1 + R2R2 + (14 ky)mgg + kymgg, =0 (3.20)

Riz- (ry x Ry) + Roz - (ry x Ry) = 0. (3.21)

The vector equation, 3.20, can be expanded into the two scalar equations below:

~

Ri(Ri-8,)+Ry(Ry-&,) + kpmg =0 (3.22)
Ri(Ry-8) + Ra(Ro - &) + (14 ky)mg =0 (3.23)

Solving Equations 3.21, 3.22, and 3.23 simultaneously results in the minimum horizontal in-
ertial acceleration required to initiate block slumping termed the slumping yield acceleration,

kg:

A

o= (1 ) BB (12 X Re)) = (R %) (2 (11 x Ry))

Ry-9)(2- (r1 x Ri)) = (Ri-9)(2- (r2 x Ry))

b3

(3.24)

Simplifying the equation further by factoring out r; and ro and multiplying by (1/r1)/(1/r1),

ke = (1+ k)2 (3.25)

2(Ry - %)(2- (f2 x Ra)) — (Ra- %) (2 - (B1 x Ra))
Ry -9)(2- (f1 x R1)) — 2(Ri-9)(2- (F2 X Ry))
The position vectors and magnitudes represent the block geometry while the reaction forces
represent limiting resistance (e.g. ultimate friction angle) on the two fracture planes. Fur-
thermore, from the normalization by 7, it can be seen that the scale of the block does not
influence the slumping yield acceleration. In the end, only the block’s shape and resistance

along the contacts controls the yield acceleration.
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3.4.4  Confined Toppling

This section presents the determination of the minimum horizontal acceleration to initiate
motion for the toppling case shown in Figure 3.12. As was the case with slumping, each
reaction force is comprised of two unknowns, magnitude and orientation, thus there are a
total of four unknowns, meaning the system is statically indeterminate. As kj increases so
does the angle of the reaction forces relative to the normal vector of each plane. When the
block is in a limit equilibrium state, the maximum shear component of each reaction has
been reached. For purely frictional behavior this means that the orientation of the reaction
force is also limited and forms an angle of ¢ relative to the normal vector of each plane.
As with slumping, this assumption reduces the number of unknowns contributed from the
reaction forces to two. The only difference between this case of confined toppling and the
case of slumping is that the location of the reaction forces is different. The base reaction
force (R1) is now located at the toe of the block and the back reaction force (Ry) is located
at the heel of the block.

The yield acceleration for confined toppling can be solved in the same manner as for
slumping. The sum of forces and moment equations are shown below, noting that the sum

of vector forces contributes two equations.

R + Ry + W + kymgg | + k,mgg = 0 (Sum of forces) (3.26)

Z-(r; xRy) +2-(rs x Ry) =0 (Sum of moments about C) (3.27)

Notice that the only differences between equations (3.27) and (3.19) are the cross products.
Since the procedure to solve for the critical kj, is the same as for slumping, r; x R, and r3 x R4
is substituted for r; x R; and ry X Ry in Equation (3.25) and thus the full derivation is not
presented. This substitution results in the minimum kj, required to initialize the confined

toppling failure mode termed the constrained toppling yield acceleration, k;:

ket = (14 k) (R, X)(Z (3 x Ry)) = (R, X)(Z (11 x Rp)), (3.28)
(R2-9)(Z- (r1 X Ry)) — (Ry - 9)(2 - (r3 x Ry))
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Simplifying further as before,

:—(RlA' A}(z ;<f3 x Ri)) — (1?2 : %)(? : (1:°1 X Rz)). (3.20)
(R2-9)(Z- (f1 X Ry)) — 2(Ry - 9)(2 - (£3 x Ry))

3.4.5 Interpretation of Yield Equations
Initial Yield Acceleration

Unlike the determination of pseudo-static failure modes, the magnitude of the horizontal yield
acceleration for each failure mode is dependent on the inclination of the base fracture plane.
As Yagoda-Biran and Hatzor (2013) explains, the slope can be thought of as an inertial force
itself. A series of contour plots of the pseudo-static yield equations, (3.16), (3.17), (3.25),
and (3.29) relative to ay & ag, for friction angles ranging from 30 to 60 degrees are shown

in Figures 3.16 through 3.19. A few trends are noted:

e Equation (3.16) shows a near linear relationship relative to ag, because the tangent
function for small angles can be approximated by the angle itself. This apparent linear
relationship is especially visible with the increase in base angle. As the base angle

approaches az, az — 8 becomes small.

e Equation (3.17) is the most familiar in earthquake engineering which indicates for any
geometric scenario where sliding controls and when the fracture friction angle and

orientation are fixed, the sliding yield acceleration is constant.

e Equation (3.25) is equal to the sliding yield acceleration near the transition boundary
(y = ¢) and decreases away from the transition boundary. This equation is non-
linear, demonstrating a minimum near the middle of the a; = a3 boundary. This
implies that for a slumping block and given friction angle, there is an unique relative
angle and spacing between the base and back fracture planes where the slumping yield

acceleration is at its minimum.
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e This observation of a minimum can be rationalized by investigating the effects of chang-
ing a7. As mentioned in Section 3.3.3, when a7 < ¢, the sliding mode controls. As
ay approaches and exceeds ¢, support from the back fracture plane is required for
static stability. The increase in the normal force on the back fracture plane reduces
the normal force on the base fracture plane and since shear resistance is based on this
normal force, the same trend occurs. The orientation of the shear resistance on the
base fracture plane is the most productive at resisting horizontal acceleration than that
of the back fracture plane, therefore the transfer of shear resistance from the base to
back fracture plane reduces the overall horizontal resistance of the system. However,
as ag approaches 90°, the base fracture plane and back fracture plane approach the
same angle. Ignoring the fact that the block’s volume is also decreasing to zero, in
the limit as ag approaches 90°, the reaction vectors on both planes approach the same
orientation, which is the scenario for the sliding mode of failure, thus k, approaches

k,.

e The lower yield acceleration of the slumping block keeps in step with that of a log-
spiral failure surface (Chang et al., 1984) and multi-block models (Michalowski, 2007).
The interesting connection between these previous results and those of the slumping
block is that they are all systems undergoing back rotations. The previous discussion
regarding the distribution of shear forces on steeper planes provides a clear indicator

why these models behave similarly.

e Since the only controlling factor in determining the failure modes is the orientation of
R relative to a; and asz, this criterion is applicable to wide array of fracture conditions.
This includes fractures with shear resistance described by other models (e.g. Barton-
Bandis) or systems with water pressures. For example, if the shear resistance of a
fracture set is determined to be some value 7, then ¢ in the equations a; = ¢ & a3 = ¢

in Figure 3.15 is replaced with an equivalent friction angle ¢., = 7/N. For a fracture



66

set with shear resistance described by ¢, C' in the Coulomb sense, then,

— tan(6u) (3:30)

= tan(¢) + %, (3.31)

SRR

where L is the block base length and N is the normal force. Given the parallelogram

shape, N = pgLJ5, therefore

T c
— =tan(¢) + . 3.32
T = tan(@) + = (3.32)
Substituting for Sy,
T c
N ¢+ 2pgry cos(aq) anl Geq (3:33)
An equivalent friction angle is then
c
o =tan"! [t — . 3.34
Peq = ton ( O g, COS(%)> (334

It can be seen in equation (3.34) that a; or as cannot be directly equal to the friction

angle. In this case, the modes become a function of the scale of the block.

e For all failure modes, increasing the base angle reduces the magnitude (PGA) of the

earthquake that induces motion.

e For the toppling, sliding, and slumping failure modes, as the base angle increases and
exceeds the friction angle, the yield equations become negative (white in the figures)
which means that the specific geometry is not statically stable. In the case of confined
toppling, certain geometries remain statically stable even though the base angle exceeds

the friction angle.

Yield Acceleration After Relative Block Movement

Motion of the block relative to the base and back fracture plane can cause changes in the ge-

ometries that existed at the point of limit equilibrium and therefore change the failure mode.
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For the sliding mode, the block moves downhill of the back fracture plane, however since the
resistance to block movement is provided solely by the base fracture plane, this change in
geometry does not result in a change to the yield acceleration. This is the same result as for
blocks traditionally analyzed by Newmark’s method (Jibson, 1993). Reduced yield accelera-
tions associated with block displacement have been considered by some researchers in certain
scenarios such as liquefaction and post peak shear resistance but will not be discussed here.

For cases where the blocks require back-support under static conditions but fail in a
sliding mode under seismic conditions (0 < oy < ¢ < ag), the mode of failure can switch
from sliding to slumping. This occurs after the block slides and the ground motion reverses
direction such that the inertia force is oriented up hill, the forces on the block cause it to
rock backward. Since the block has translated away from the back fracture, the block must
rotate past its original orientation in order to make contact with the back fracture plane.
This additional orientation increases «; and g at the same rate. With continued sliding
displacement and increased back rotation, a; will exceed ¢ and the slumping mode will take
over.

For the toppling mode, rotation of the block causes as and a; to decrease and thus based
on equation (3.16) the rocking acceleration also decreases. However, if the block does not
topple, the rocking acceleration does not remain in a decreased state as the block ultimately
returns to its initial geometry. Some scenarios can be imagined where the rocking acceleration
would remain reduced without the block toppling. For instance, if debris fell between the
block and the fracture planes as the block rotated forward, the block would be restricted
from returning to its initial geometry and would remain in a rotated state.

When a single block undergoes slumping motion it rotates “backward” causing oy and
a3 to increase at the same rate. Since #; and ¥, are dependent on «; and a3 (and tied to
the rotation of the block), they change orientation. The relationship between the slumping
acceleration and block rotation can be determined by evaluating equation (3.25) with the
vectors T; and ¥y rotated at various angles, 6 from their initial orientations. The rotation

of the block is limited to 7 as rotation beyond this point results in the block being oriented
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such that the plane originally in contact with the back fracture is now in contact with
the base fracture plane. In this case, a re-evaluation of the block geometry indicates that
the block will slide. An example of the relationship between rotation and slumping yield
acceleration is shown in Figure 3.20a. Note that the magnitude of rotation that the block can
rotate decreases as the friction angle increases. In addition, the change in yield acceleration
decreases as the back fracture orientation approaches that of the base plane, which at its
limit is the sliding block scenario.

Another scenario can be envisioned where multiple blocks stacked side-by-side, slump, as
typically analyzed by Kieffer. If these blocks are slumping (i.e. rotating backward) at the
same time, then the orientation of position vectors and back reaction force for the leading
block is changing. An example of varying the orientation of R, as a percentage of 6 is shown
line in Figure 3.20b where the trailing block is assumed to rotate a fraction of the amount
that the leading block rotates. Notice that the yield acceleration for the leading block in a
multi-block system does not decrease as much as for a lone slumping block. Depending on
the amount of rotation of the back fracture plane, the yield acceleration can actually begin
to to increase, which is generally the case in most complex landslides.

A block with confined toppling motion rotates forward causing a; and as to decrease,
and for the same reasons as for slumping, the orientation of #; and 5 also change. Applying
equation (3.29) where ¥ and T3 are rotated by various angles, 6 from their initial orientations
results in a decreasing yield acceleration as is shown in Figure 3.21. The block can rotate
forward by a maximum amount of v — 90 at which time the block has displaced sufficiently
such that it loses contact with the back fracture and transitions to a pure toppling mode.
At this point, a re-evaluation of failure mode indicates that since as is already negative
and there is no longer back support, the block changes to the toppling mode. The yield
acceleration instantaneously becomes negative meaning the block is statically unstable. The
block can continue to rotate to a total rotation of 180 — v before the block contacts the base

fracture plane on its outward side.
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3.5 Experimental and Numerical Verification

Verification of the failure mode relationships and yield acceleration equations is performed

through the use of centrifuge experiments and numerical analysis.

3.5.1 Verification by Centrifuge Fxperiments

Centrifuge experiments were conducted by Applegate and Wartman (2011, 2012, 2013) in
which discrete gypsum blocks of differing geometries were subject to sinusoidal and earth-
quake like horizontal accelerations. Experiments that tested single blocks were selected and
evaluated relative to the analytical failure mode and yield acceleration relationships. The
friction angle of the fractures was estimated based on blocks that were designed specifically to
slide. In test 11, a sliding block, set on a base fracture plane set to 20 degrees, began sliding

at approximately 0.48g’s. Applying equation (3.17), the friction angle is back-calculated to
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be approximately 45.6 degrees. Additional characterization of the blocks are documented in
a experimental study by Smith et al. (2013). Although the Smith study found lower friction
angles for the blocks, the friction angles measured in the centrifuge was deemed to be more
representative of the centrifuge experiments since they were directly measured. The blocks
were assumed to behave rigidly for purposes of the evaluations performed in this section.

Centrifuge tests 1, 2, 3, 4, & 11 were selected for analysis as blocks showed signs of
motion relative to the base fracture plane based on high speed video observations. Two
block shapes were tested, rectangular blocks and parallelogram blocks which were intended
to exhibit toppling and slumping failure modes respectively. The geometries of the toppling
blocks consisted of rectangular shapes while the blocks that were intended to slump blocks
are shown in Figure 3.22. Notice that the slumping blocks that were parallelogram in shape
required one modification of cutting the points of the block to prevent them from breaking
off. The geometry was reported based on the measurements H and B.

For toppling blocks, a3 = tan™!(B/H) and since the block is rectangular, a; = —as.

Given the modification to the slumping geometry, S; and S, are calculated as follows:

S) = (H + 0.4sin(45°)) sin(45°) (3.36)
Sy = B. (3.37)

Based on equations (3.4a) and (3.4b), a; and a3 are calculated as follows:

a) = tan! ( Mz ) — tan~! (cot(v) - %cscw)) (3.39)

Ty 1
x S.

oz = tan™* ( ik ) = tan~! (Cot(V) + 22 ese(y) — O.4cm) . (3.40)
—T3y 51

The results of these experiments compared to the predictions of Figure 3.15 are presented
in table 3.1. Excellent agreement was reached for the blocks designed to topple with the
deviations in yield acceleration possibly associated to the precision at which the base of the
blocks could be made flat such that the outside corners of the blocks were the only contact

points with the base fracture plane.
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(a) Toppling blocks with varying aspect ratios that represent tests 1, 2, 3,

and 4 block geometries.

(b) Sliding blocks with varying aspect ratio that undergo sliding in back

supported configuration (represents test 11).

Figure 3.22: Block shapes in centrifuge experiments by Applegate and Wartman (2013). See
Table 3.1.



Table 3.1: Summary of centrifuge results for single discrete blocks.
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- B H St So Qaq Qg 8 Predicted Observed
est
(cm) (em) (cm) (cm) (deg) (deg) (deg) yield acc. mode  yield acc. mode
257 464 - - 290 290 20 0.16  topple 0.22 £0.27 topple?
1
257 574 - S 241 241 20 0.07  topple 0.09 £0.2 topple
2.57 5.74 - - =241 24.1 20 0.07 topple  0.07 £ 0.2  topple
2 257 574 - - 241 241 20 0.07  topple 0.07 £0.2  topple
257 464 - - 290 290 20 0.16  topple 0.18 £0.2 topple
3 257 464 - - 290 241 25 007  topple 0.08 % 0.2 topple
A 2.57 5.74 - - =241  24.1 25 0.00 topple 0.00 to 0.05  topple
257 464 - - 290 290 25 0.07  topple 0.051t00.20 topple
1 2.88 10.68 7.75 2.88 254 48.4 20 0.48 slide 0.48 £ 0.2 slide*
2.90 7.20 5.29  2.90 12.6 54.0 20 0.48 slide 0.48 £ 0.2 slide*

* Initial block movement was sliding, then when the ground motion reversed direction,

back to a slump-like position as predicted.

the block went

The blocks that were initially designed to slump in test 5, actually exhibited the sliding

mode as indicated in Table 3.1. The reasons for this discrepancy is that the chamfering of the

block corner caused the blocks to be constructed with an «; such that the slumping criteria

(cv; > ¢) was not met. In addition, the higher observed friction angle observed between the

block and fracture plane during the centrifuge testing made slumping criteria more difficult

to meet. The sliding, toppling modes and yield accelerations are correctly predicted by the

failure mode chart based on the blocks’ as-built measurements and measured friction angle in

the centrifuge. Although observations of slumping behavior were desired, this test provided

the following insight and verification:
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e Blocks identified to slump by strength reduction analyses for static loading with (0 <

a; < ¢) will actually slide or topple under seismic loading.

e Once these blocks have translated in the sliding mode, they return to a “slump-like”

configuration when the ground motion subsides.

3.5.2  Comparison by DEM (UDEC) Analysis

Since the centrifuge tests could only provide a partial verification of the failure mode chart
and yield equations, an extensive parametric analysis was performed using the distinct ele-
ment method (DEM) as implemented by UDEC Version 5.0. A UDEC model was developed
to verify the failure mode and yield acceleration of single blocks predicted by the pseudo-
static mode and yield equations presented in the previous sections of this chapter. A sample
of the general model geometry is shown in Figure 3.23 which is based on the geometry shown
in Figure 3.7. The base block that forms the base and back fracture planes is modeled as a
rigid block with two surfaces on which the discrete rigid block interacts. To simplify model-
ing, the block is assumed to be a parallelogram. The geometry of the discrete block and the
fracture planes are fully described by specifying the block angles and the base angle. The

parametric study consisted of the array of parameters shown in Table 3.2.

Table 3.2: Range of parameters used in UDEC' verification.

Parameter Vector of values

a; and a3 [-80 to 80, by 10’s]
& 35, 55]
3 -10, 0, 20]
scale [1 and 2]
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UDEC (Version 5.00)

L 4.000

LEGEND

15-Oct-2013 22:57:41
cycle 52892

time 5.584E+00 sec
| 2.000
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[ -2.000

{_-4.000

Itasca Consulting Group, Inc.

Minneapolis, Minnesota USA T T T T T T T T T
-4.000 -2.000 0.000 2.000 4.000

Figure 3.23: Typical UDEC model geometry for parametric study.

UDEC is implemented with rounded corners at all block corners to “smooth” calculations
and model behavior. The rounding of the block was set to 1% of the smallest block length
based on modelling performed by Lanaro et al. (1997). Note that the rounding of the block
corner causes the contact points to be slightly shifted, thus the modeled a; and a3 are slightly
different than intended. More precise results could be obtained by reducing the rounding
percentage, however, this reduction would negatively impact simulation run times and would
not change the ultimate conclusions of this analysis.

The joint constitutive relationship used in the model is the Coulomb slip model with
cohesion set to zero. A summary of non-default model parameters are shown in table 3.3.
Density does not factor into the failure mode and yield equations, but is a necessary param-
eter to be set in UDEC since density is needed for the equations of motion. In addition,

the analytical solutions assume rigid contact between the block and fracture planes when
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Table 3.3: Fixed parameters used in UDEC' verification

Rigid block parameters

Density 2700 kg/m?
Rounding 1.0%

Joint parameters

Cohesion 0
Joint Normal Stiffness 6.56e10 N/m
Joint Shear Stiffness  6.56e10 N/m

the shear resistance is below the limit state. However, since UDEC solves the equations
of motion using springs, joint normal and shear stiffnesses is required, but also does not
significantly influence the results so long as the values approximate relatively stiff behavior.

Pseudo-static loading was simulated by first stepping the model to static equilibrium
under a vertical gravity field and then applying an additional horizontal component to the
gravity field. This method is equivalent to having W oriented vertically and applying kj.
The magnitude of k;, was increased in 0.01m/s? increments. With each horizontal loading
increment the model was cycled to equilibrium where equilibrium was determined when the
unbalanced forces were less than 1.0Newton. When the translational or rotational compo-
nents of displacement became unstable, then the model was halted and the current magnitude
of k;, was noted, along with the mode of failure. The mode of failure was determined by
evaluating the shear (7;) and normal (NV;) forces of the i'" contacts. The logic used to detect
the yield points and failure modes is summarized in pseudo code in Algorithm 1. A contact
was deemed to lose contact if the normal force was less than 1 Newton. A contact was

deemed slipping if the shear force at the contact was within 0.5% of yield.
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Algorithm 1 UDEC logic used to detect yield points and failure modes

if contact 2 has lost contact then
if contact 3 is the only contact then
mode < Topple
else if contact 3 is slipping & contact 1 is slipping on base fracture then
mode < Slide
else if contact 3 is slipping & contact 1 is slipping on back fracture then
mode < Confined Topple
else
mode <— No Failure
end if
else if contact 1 & 2 are slipping & contact 3 has lost contact then
mode < Slumping
else
mode < No Failure

end if

The failure modes determined from the UDEC simulations are summarized in Figure 3.24
by overlaying the results onto the pseudo-static failure mode chart presented previously in
Figure 3.15. Notice that although slope angle and block scale was varied, it did not control
the mode of failure. Similarly, pseudo-static yield accelerations calculated from the UDEC
simulations are are summarized in Figure 3.25. The relative error of the results are generally
within five percent error with the exception of a few points which are attributed to the
rounded corners. The absolute error of the results are less than 0.02g. The slide and slump
modes have the lowest absolute error because the yield acceleration is controlled mostly
by the frictional resistance on the fracture. UDEC underpredicts the yield acceleration

for slumping and toppling and overpredicts for the confined toppling modes. In addition,
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for confined toppling, a few simulations deviated significantly appearing as outliers. These

deviations are likely a result of the following:

e The tolerance used in the mode detection algorithm to detect slip, rotation, and lift-off

of a block contact.

e The rounding approximation of the block corners used in UDEC' that cause the position
vectors to have a slightly different orientation in comparison to the idealized block

model.

e Numerical errors associated with the discrete time stepping scheme in the finite differ-

ence calculations of UDEC .

e The precision settings used in UDEC' to detect the creation/deletion of contacts and

initiation of sliding.

This error may be undesirable for this comparison modeling, however for problems encoun-
tered in nature, the rounded edge may provide a better approximation. In these cases where
the corner is rounded, care should be taken when using the simplified block model to cor-
rectly identify the contact points and calculation of the position vectors. Overall, the UDEC
results shown in Figures 3.24 and 3.25 demonstrate excellent agreement and provide confi-
dence not only in the mode and yield acceleration relationships, but in the ability of UDEC

to capture the initiation of block motion relative to the fracture planes.
3.6 Application and Examples

3.6.1 Application of Mode and Yield Criterion

Application of the pseudo-static failure mode and yield acceleration criterion begins with
the task of collecting rock fracture data. A comprehensive procedure for this application is

provided below.
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Figure 3.25: Comparison of predicted yield accelerations to UDEC' verification results.
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1. Collect rock slope fracture data including fracture orientations, dips and spacing.

2. Identify three dominant fracture sets that form release planes and can create discrete

rock blocks.
3. Identify the shape of the discrete rock blocks for the two dimensional approximation.
4. Identify the center of mass of the discrete rock block.

5. Calculate geometric parameters o; & ag and ry, ro, & r3. Recall that these param-
eters are relative to the fracture with an orientation (positive or negative) nearest to

horizontal and the orientation of the open face of the slope.
6. Determine pseudo-static failure mode by plotting oy & a3 on Figure 3.15.

7. Determine pseudo-static yield accelerations using Equations (3.17),(3.16),(3.25), or
(3.29).

The above procedure is easy to apply for joint sets that form parallelograms as the geometric
relationships derived in this chapter can be used, however, the procedure is not limited
to these shapes. Since the failure mode and yield equations were derived based on the
position vectors ry, ro, & r3, then blocks of random polygon shape can also be analyzed by
identifying the three contact points. Different techniques/relationships for determining the
block geometry would be necessary for odd shaped blocks. However, the procedure is limited
to blocks that have three contact points with two intersecting fracture planes.

Programs that can perform a comprehensive evaluation of discrete fracture networks,
could be used to evaluate and identify discrete rock blocks relative to an open slope face and
calculate their potential failure modes and yield accelerations. Simple algorithms could also
be developed for use in geographic information system (GIS) programs to provide a regional

evaluation of seismic block failure modes and yield accelerations. Site specific ground-based
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LIDAR could be used to characterize the jointing in the rock slope and allow for the identi-

fication of specific modes and yield accelerations for discrete rock blocks.

3.6.2 FExample 1: Isolated Blocks

The first example demonstrates how to identify pseudo-static failure modes of rock blocks on
a slope is taken from a fractured rock mass and is shown in Figure 3.26a. Two rock blocks are
individually identified and approximated by four-sided polygon shapes. The contact between
the rock block and the fractures are identified as points 1, 2, and 3. The position vectors are
drawn from the center of mass to contacts 1 and 3. A line is drawn from the center of mass
perpendicular to the base fracture. Finally, an inter-fracture friction angle of 40 degrees is
assumed. With this information, the blocks’ failure modes can be determined by plotting
the backward and forward block angles on a failure mode chart with the friction angle set
appropriately. Figure 3.26b shows the failure mode chart with the two blocks indicated on
it. From the chart it can be seen that the failure modes for each of these blocks is likely
toppling. However, notice that the right block is near the boundary between toppling and
sliding. Also, if the friction angle happened to be less than assumed, then the left block

would undergo a sliding failure.

3.6.3  FExample 2: Mount Healy Schist Rock Slope

The second example demonstrates how to identify pseudo-static failure modes of rock blocks
on a slope is taken from a slope in Mount Healy, Alaska in a fractured schist and is shown
in Figure 3.27a. The same procedures of identifying and approximating rock blocks used in
the first example are followed for this example. As before, two blocks are identified for mode
analysis. The inter-fracture friction angle is assumed to be 40 degrees. Figure 3.27b shows
the failure mode chart with the two blocks indicated. From the chart it can be seen that
the failure mode for the right block is sliding while the left block is slumping. Similar to
the first example, if the friction angle is lower than assumed, then the right block’s failure

mode would also be slumping. Recall, that since the right block requires back support under
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Figure 3.26: Example 1: Pseudo-static mode determination for isolated blocks.

static forces, even though the block will initially slide in an earthquake, when the block’s
motion stops, it will rotate back against the back fracture in a slump position. After several
cycles of this behavior, the block will be rotated back sufficiently such that in the next and
subsequent cycles of earthquake loading, the block will undergo slumping failure. This mode

path is shown on Figure 3.27b.

3.6.4 FExample 3: Variable Rock Mass

The third example is presented, as a simple demonstration, of how this procedure can be used
for a set of fracture data. Assume that the fracture statistics shown in Table 3.4 have already
been determined. The friction angle describing the shear resistance between the fracture
planes and discrete block is assumed to be ¢ = 40°. Fracture set 1 is identified as the base

fracture plane since its orientation is nearest to horizontal. For this example, 20,000 random



Distance (cm)
=~
jan)
o

Figure 3.27:

Distance (cm)

700 800 900 1000 1100

200 300 400 500 600

B

(a) Photo by J. Wartman

Backward Block Angle, a;

-90

0 o} 90

90

Slide

¢ Sﬁrgp

-

Forward Block Angle, ag
o
T

Mirror
Geometry

Left block
Right block
Right block (post-disp.)

-90

(b) Seismic failure mode chart.

As the right block displaces

the mode changes from sliding to slumping.
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Example 2: Pseudo-static mode determination for fractured rock slope.
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Table 3.4: Example: Fracture set parameters for variable rock mass.

Fracture Set Parameter Mean Standard deviation
Orientation 20.0 5.0
1
Spacing (or S7) 1.0 0.1
Orientation 45.0 5.0
2
Spacing (or Ss) 0.6 0.1

realizations of each parameter based on the fracture statistics are evaluated. The parameters
oy and ag are determined by calculating v (subtracting the orientation of fracture set 1 from
set 2) and then applying Equations (3.15a) and (3.15b). A two-dimensional histogram of the
failure modes determined from oy and ag is shown in Figure 3.28a. The mean a; and a3 for
the data set is indicated by the red dot. Although the mean falls within the sliding mode of
failure, the variability in fracture geometry makes it possible for both sliding and slumping
modes to occur. The histogram is not circular in shape since the distributions are Gaussian
only in v and g—f

The yield acceleration of each sample is then calculated and parsed based on the specific
mode of failure. Histograms and cumulative distributions of the yield accelerations for each
mode of failure is shown in Figure 3.28b. Both plots indicate that if all samples are realized
then more slides than slumps would be expected. This would only occur if the horizontal PGA
(HPGA) of an earthquake exceeded approximately 0.4g’s. If the HPGA of an earthquake
was less than approximately 0.4g’s then the analysis suggests that slumps would be the most
abundant failure mode observed in the field.

While different trends would be seen for the geometry of different fracture sets, an inter-
esting implication can be drawn from this specific example. Most earthquake reconnaissance

occurs for large magnitude earthquakes which also typically have large PGA’s. Since the
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cumulative plot in Figure 3.28b indicates that the abundance of a failure mode depends
on PGA, then empirical relationships based on earthquake reconnaissance of large earth-
quakes would be potentially biased in their prediction of the dominant failure mode of rock
blocks for specific geometries. Although these trends are interesting, they are not conclusive
since there are additional factors that influence the failure of discrete blocks such as time

dependent behavior that will be further evaluated in subsequent chapters.
3.7 Discussion and Conclusions

The relationships and examples presented in this chapter allow for a substantial expansion
of the understanding of rock block failures during earthquakes. The mode chart presented in
Figure 3.15 expands the identification of potential pseudo-static failure modes for blocks that
includes those formed by non-orthogonal fracture sets. The chart is generic for any block
shape since the only geometric information used to determine these failure modes were the
position vectors. With non-orthogonal fractures, the geometry for the slumping failure mode
is now delineated. In addition, a new static and seismic failure mode, confined toppling, is
identified. Some of the key inferences that can be drawn from this formulation to determine

pseudo-static failure modes include:

e The angle of the base fracture is not needed to determine the pseudo-static failure

mode for blocks on a frictional fracture plane.

e The scale of a block does not contribute to the determination of failure mode or yield
acceleration when the fracture’s shear resistance is described by a friction only relation-
ship. However, this is not the case for blocks having fracture shear resistance that is
best described by friction and cohesion parameters, such as rocks types where fracture

gouge forms or chemical bonding occurs.
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e Although blocks with 0 < a; < ¢ require back support and are determined by Kieffer
(1998) to slump under static loading, during seismic loading a subset of these blocks

do not slump and either slide or topple.

e The failure mode for statically determined slumping blocks are not necessarily appli-

cable to blocks under seismic loading.

e Since the only controlling factor in determining the pseudo-static failure mode is the
orientation of R; relative to a; and a3, this criteria can be applied to other scenarios
where the shear resistance of the fracture planes described by any means or additional
external loading such as water pressures are considered. This task can be made easier
by evaluating the sliding free body diagram at the two transition points to determine

the set of values that best describes the transition points for all modes.

e The orientation of fracture sets relative to an open slope face and the friction angle of

the fractures are the main determinants of the seismic mode of failure.

The lower bound seismic accelerations that initiate block motion relative to the fracture
planes supporting the block were evaluated. The yield acceleration equations for slumping
and confined toppling were derived for the first time. The yield accelerations for toppling,
confined toppling and slumping show a non-linear relationship with their geometry whereas
the yield acceleration for sliding is constant. Between the sliding, toppling and slumping
failure modes, the sliding yield acceleration is always the greatest, however, the confined
toppling yield acceleration can exceed all three. Key inferences drawn from the yield equa-

tions include:

e The pseudo-static modes can change because of slight changes in geometry or friction
angle whereas the yield accelerations are equal at the sliding/slumping, sliding/top-
pling, and sliding/confined toppling transition points. The exceptions to this rule are

the transition points from toppling to confined toppling where a discontinuous change
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in yield acceleration occurs and confined toppling yield acceleration is greater than

toppling yield acceleration.

Although slumping may resemble sliding in that shearing occurs on the fractures and
it may be tempting to use the sliding yield acceleration as a proxy, there is significant
differences between the two. For example the sliding yield acceleration for a given ¢
is the upper bound value for blocks that slump, a similar conclusion as Michalowski
(2007). Once relative block motion takes place, the slumping, toppling, and confined
toppling yield accelerations begins to decrease where as the sliding yield acceleration
remains constant. Slumping, toppling, and confined toppling motion involves rotation
which will make the displacement response dependent on the block’s moment of inertia.
In addition, slumping and confined toppling block follows a curved path whereas the
path for a sliding block is linear. Thus, global displacement of a slumping or confined
toppling block will depend on the non-linearity of the curved path, which itself is
dependent on the geometry of the block.

Blocks that are predicted to fail in the confined toppling mode and with a3 < 0
(meaning the center of mass overhangs the block toe) fail catastrophically once the
block rotation exceeds 90 — «y since the block no longer experiences resistance from the

back fracture plane and is in a precarious position.

The likelihood of a mode occurring is based on the likelihood of a specific joint orien-
tation, spacing, and open slope face orientation. As different rock types might have
different typical geometries of joint set formation, different types of rocks may have
different dominant modes of failure under seismic loading. For example, in rocks that
typically show columnar jointing, such as basalts the expected modes of failure will be
sliding or toppling depending on the relative spacing of those fractures. In rocks such
as slates that have relatively small fracture spacing and secondary joints at conjugate

angles, slumping and sliding failures would be expected. Geologic locations on a re-
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gional scale may also pay an important role in the expected failure modes since the
rocks would be subject to similar geologic processes that may cause similar fracture

sets.
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Chapter 4
DISPLACEMENT RESPONSE OF TOPPLING ROCK BLOCKS

Rock slope failures have contributed greatly to the economic and human loss experienced
during seismic events throughout the world. Accounts of these spectacular events have been
documented and evaluated throughout the literature (Cluff (1971); Plafker et al. (1971);
Wilson and Keefer (1983); Jibson et al. (2006); Keefer et al. (2006); Aydan et al. (2009);
Lanzo et al. (2010); Alfaro et al. (2012); Massey et al. (2014), among others). A database
of earthquake induced landslide failures compiled by Keefer (1984), and reinforced by others
(Rodriguez et al., 1999; Keefer, 2013), clearly indicates that failure modes, observed in the
field following earthquakes, include sliding, toppling, and slumping. Rock fall failures experi-
enced during the recent (2010 to 2011) sequence of earthquakes in Christchurch, New Zealand
highlights the magnitude of destruction to the built environment and forced abandonment
of a large area of settled land (Massey et al., 2014).

Methods for seismic triggering of rock slope failures rely on charts for rectangular blocks
that are applicable to only sliding and toppling modes (Yagoda-Biran and Hatzor, 2013) and
was expanded for irregularly shaped blocks applicable to four failure modes (sliding, toppling,
slumping, and confined toppling) in Chapter 3. Simplified, seismically-induced displacement
methods, used to evaluate rock slope failure scenarios in a performance-based earthquake
engineering (PBEE) framework, are commonly limited to a sliding block that is used to
represent all modes (Jibson, 2011). However, the toppling mode of failure fundamentally
differs from sliding block models in several ways. First, the toppling mode involves rotation
of the rock mass while the sliding model is translational. Second, the sliding block model is
used to assess damage potential based on accumulated displacement; however, the response of

a typical toppling block is expected to result in failure or relatively no movement. Lastly, the
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rotational response of a rock is expected to be dependent on the size and contact conditions
of the rock.

In this chapter, the well-researched rocking block model is modified and applied to the
toppling of rocks slopes during earthquakes. Rocking block equations are re-derived with
reference to the critical acceleration that initiates toppling. The assumptions made in deriv-
ing the equations of motion are evaluated relative to centrifuge testing. Parametric analyses
are performed and consist of the excitation of a broad range of slumping block geometries by
527 unique recorded earthquake ground motions from the Pacific Earthquake Engineering
Research Database (PEER) database. The results of a parametric study which considers
varying block shapes subject to horizontal and vertical earthquake ground motions are pre-
sented. Relationships in the literature for rock block toppling under simplified loading are
shown to be representative of block behavior when subject to earthquake ground motions by
utilizing the mean period (T,,) and intensity measures such as peak ground velocity (PGV)
of the earthquake. The results of this parametric study are used to statistically predict the
failure of slumping blocks based on basic ground motion parameters (PGA, PGV, PGD,
T.) and block and joint interface characteristics. A new relationship is presented that seg-
regates the block and earthquake parameters giving rise to a probabilistic state parameter.
This parameter can be used to predict the likelihood of rock block toppling failure during
a given earthquake. The characteristics of the ground motion acceleration pulses that lead
to overturning are discussed. A simple chart-based method and equations are presented for
the evaluation of seismic rock block toppling failures. Finally, this method is used to ex-
plore and offer potential explanations for observations of rockfall during the 2011 Canterbury

earthquake sequence.
4.1 Seismic Rock Block Toppling Review

In this section the reader is presented with a summary on the current literature of predicting
rock toppling during seismic events. Detailed review of key aspects of the literature will be

provided throughout the chapter when necessary.
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4.1.1 Rocking Blocks

As shown in Figure 3.4, it is common to find blocks on slopes that are bounded by other
blocks and thus they must fail by toppling forward (assuming another mode of failure does
not control). This forward toppling failure mode is one of the primary failure modes for the
generic rocking block and has been extensively researched. This existing research forms a
fundamental basis of this chapter and the evaluation toppling of rock blocks under seismic
loading.

A mass in contact with a plane at two distinct points (i.e. a rocking block) represents
a system encountered in many branches of engineering and architecture. The rocking block
literature is relatively mature, indicated by the use of these systems in Japan in 1881 with
the desire to back-calculate the peak ground acceleration (PGA) for earthquakes based on
overturned tombstones (Ishiyama, 1980). Examples of some of these systems include mechan-
ical equipment (Makris and Konstantinidis, 1998), museum pieces (Di Egidio and Contento,
2009), ancient structures (Hinzen, 2009), water towers (Housner, 1963), and precarious rocks
(Brune et al., 1996), among others. Many researchers (e.g. Housner (1963), Aslam et al.
(1978), Yim et al. (1980), Ishiyama (1982), Hogan (1989), among others) have shown by
analysis and experiment that the response of the rocking block is sensitive to its physical
characteristics and initial conditions, which often gives rise to complex non-linear and even

bifurcating behavior.

Forward Toppling by Simple Pulse Ground Motions

Rocking blocks have been evaluated throughout the literature for simplified (sinusoidal) and
complex ground motions. Solutions to these problems are obtained either by numerical
integration or closed-form methods of the linearized equation of motion. However, lineariza-
tion introduces error into these solution and can significantly effect the outcome (Allen and
Duan, 1995). Results of these analyses have been interpreted using techniques ranging from

statistics (Yim et al., 1980), dynamical chaos theory such as state planes and Poincaré maps



94

(Hogan, 1989), approximation with simplified ground motion pulses (Makris and Konstan-
tinidis, 1998), characterizations with a rocking spectrum (Makris and Konstantinidis, 2003),
evaluating “resonating” input motions to maximize energy input (Dejong, 2009), integrating
earthquake ground motions (Gelagoti et al., 2012), and parametric experiments (e.g. Aslam
et al. (1978), Wong and Tso (1989), Winkler et al. (1995), Taniguchi (2004) and Pena et al.
(2008)).

For the closed-form, linearized equations of motion, several pulse-like dynamic loadings
have been considered. Single cycle, half and full sine pulse motions are the most prevalent
throughout the literature. One of the first to consider the half sine pulse loading was Housner
(1963) who incorrectly assumed (Shi et al., 1996) that failure occurred by the end of the pulse.
Anooshehpoor et al. (1999) described the boundary of when rocking failure occurred relative
to the end of the pulse. Up to this point all concentration had been paid toward the minimum
acceleration required to overturn a block, which required rocking behavior of the block. The
boundaries of minimum acceleration to induce failure by either forward toppling or rocking
were shown by Zhang and Makris (2001). They showed that the forward toppling mode had
a higher critical toppling acceleration than for block rocking.

Housner (1963) evaluated ground motions with a sine pulse shape, while Yim et al.
(1980) evaluated rectangular pulses. Both were later shown to have incorrectly characterized
the critical toppling acceleration. The correct solution to the half-sine pulse loading was
presented by Shi et al. (1996). This was followed by the correct solution to the full-sine pulse
(Anooshehpoor et al., 1999). The list of solutions for pulses was expanded by Makris and
Roussos (2000) to include other cycloidal motions (using hyperbolic trig functions) along
with the sine and half-sine pulses. The solutions for the full sine and half sine pulses were
again studied by Dimitrakopoulos and DeJong (2012) however, this time by using exponential
functions. Finally, Voyagaki et al. (2013b) introduced lobe type pulses which could represent

a wide range of pulse shapes from triangular to full square pulses.
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Toppling From Farthquake Ground Motions

Substantial research effort has also been applied toward the toppling of rocking blocks by
earthquake ground motions. The chaotic and sensitive nature of the rocking block’s re-
sponse has been well documented (Yim et al., 1980; Hogan, 1989; Allen and Duan, 1995,
e.g. ) severely hampering the use of deterministic analyses. However, when viewed from a
probabilistic point of view and evaluating many earthquake loadings, trends begin to emerge
and probabilistic predictions can be attempted, although they are still imprecise (Yim et al.,
1980).

A probabilistic view was taken by Purvance (2005) who took a statistical look at precar-
iously balanced rocks (PBR’s) by executing a large number of simulations of various block
sizes and synthetic earthquake motions with carefully controlled characteristics. This re-
search showed trends of PGA and PGV relative to block shape. Others have also shown
general trends with ground motion intensity measures like PGA, PGV, Arias Intensity (Im),

and cumulative absolute velocity (CAV) (Sorrentino et al., 2006; Gazetas et al., 2012).

4.1.2  Precariously Balanced Rocks

In the study area of paleoseismology, toppling blocks have been utilized for the purpose
of estimating the characteristics of past ground motions. This concept was introduced by
Brune et al. (1996) who hypothesized the concept of using the rocking block model to evaluate
precariously balanced rocks of a known age found in select geologic regions to be an indicator
of the likelihood of earthquake accelerations. Subsequently, Brune and his research group
expanded the rocking block model understanding and applied it to precariously balanced
rocks (i.e. asymmetric blocks on an oscillating inclined plane) (Shi et al., 1996; Anooshehpoor

et al., 1999; Anooshehpoor and Brune, 2002; Anooshehpoor et al., 2004; Purvance, 2005).
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4.1.3  Rock Slope Engineering

For static evaluation of block stability, the most commonly used charts to determine toppling
failure are those by Bray and Goodman (1981) shown in Figure 4.1a. For seismic triggering
evaluation, Yagoda-Biran and Hatzor (2013) adapted these chart solutions by converting
earthquake ground accelerations into a pseudo slope angle which could then be used in
combination with static parameters to predict the dynamic mode of failure of a rectangular
block (Figure 4.1b). In Chapter 3 a new chart (Figure 3.15) was presented to allow for
the determination of seismic failure modes of various two dimensional (2D) block shapes.
However, the charts in Figure 4.1 are limited to a pseudo-static understanding (i.e. triggering)
of block toppling by earthquake ground motion and are not capable of making a prediction
of whether a specific ground motion would result in a toppling failure. In addition, the
size and shape of the block is not accounted for and will be shown to be a significant non-
consideration.

Haneberg (2009) presented an analysis in an effort to understand the interaction of a rock
block shape with the frequency and amplitude content of an earthquake ground motion. This

analysis includes the following assumptions:

1. The motion of the center of mass of a toppling block is of the form 0 = Asin(27 ft),
where 6 is the angular acceleration of the block about its toe, A is the amplitude of

loading, and f is the frequency of loading.

2. The block fails within the first lobe (half cycle) of a sine wave (i.e. time at failure=

1/2f).
3. The block fails when the center of mass is past the toe of the block.

This work showed that the toppling response of a rock block is sensitive to its shape and
the ground motion frequency and amplitude. While the results are intriguing, the under-

lying assumptions require some scrutiny. It is clear from the rocking block literature that
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Assumption 1 (the center of mass acceleration as equal to a sinusoidal ground acceleration)
is incorrect. The inertial acceleration that the block feels as the slope accelerates produces a
torque on the block about its toe, thus motion of the center of mass is the result of angular
motion. Angular motion in this case would be a function of the ground motion, the moment
arm from the block toe to the center of mass, and the moment of inertia about the toe.
Assumption 2 ignores the fact that the block can have momentum at the end of the first
half cycle which can cause the block to continue on the path to overturning even though the
ground motion has ceased (Shi et al., 1996). Assumption 3 is correct for the ground motion
considered which has only a single lobe of perturbing acceleration. However, outside this
specific case, such as for earthquake ground motions, this assumption incorrect (Voyagaki

et al., 2013b).
4.2 Rocking Motion Relative to Toppling Yield Acceleration

In this section, the traditional equations of motion for a toppling block will be rewritten in
terms of the toppling yield acceleration k.. Writing the equations of motion in this fashion
allows for a more intuitive visualization of rocking block behavior. In addition it allows for
an analogy to be made to the Newmark sliding block model when this model applied to
toppling rock blocks.

Consider a two-dimensional, asymmetric, rigid mass on a rigid, oscillating plane inclined
at an angle  from horizontal (Figure 4.2). The mass is in contact with the plane at two
points, O; and O,. Let r{ and ry be the respective vectors from O; and O, to the center of
mass. The angles formed by r; and ry with respect to a vertical plane passing through each
base point are 1 and 1, respectively. Clockwise, in-plane rotation of the block about point
O, constitutes positive angular displacement, +6, while counter-clockwise rotation about Oy
constitutes negative angular displacement, —6.

The forces acting on the block include the gravitational force (mg), the horizontal in-
ertial force (k,mg), and the vertical inertial force (k,mg). These forces, normalized by the

gravitational force, are shown in Figure 4.3. The frictional force acting between the plane
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Ung (t)

Figure 4.2: Asymmetric mass in contact with an inclined plane at two points, O; and Os.

Figure 4.3: Free body diagram of a mass on an accelerating inclined plane rocking about

point Os.
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and block is omitted since the force passes through each edge of the block and would result
in zero moment.

For simplicity, the subscript ¢ will be used to refer to rotations about point O; and
block properties and motion relative to the i-th rocking corner (Shi et al., 1996). Assuming
zero vertical ground motion and no sliding between the plane and the block, block rocking
motion will begin when the horizontal inertial acceleration coefficient, k), = ii,/g exceeds
the horizontal pseudo-static rocking acceleration coefficient, k,s. This acceleration can be
defined by the block geometry such that k,;; = tan(v;). Considering further the inertial
reaction to the vertical inertial acceleration coefficient, k, = i,4,/g, rocking motion will
begin when kj, exceeds (1 + k,) k.s;. For the case where § = 0, the vector force diagram

shown in Figure 4.4 illustrates these threshold coefficients for rocking on edges 0; and Os.

C
A\

< >

// (1 + kv)krsl (1 + kv)krs2 N
ry

Figure 4.4: Force vector diagram illustrating the horizontal pseudo-static rocking acceleration

coefficients for the block in Figure 4.3 where 6 = 0.

The left-hand vector force diagram in Figure 4.5 resulting from the free body diagram in

Figure 4.3 allows for the traditional equations of angular motion to be derived as

7\ J

L= mgk, Ti cos(i; — 0) — mg(lv—i— k) i sin(; — 0) (4.1)

vV vV
horizontal force  moment arm vertical force moment arm
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Figure 4.5: Force vector diagram illustrating the horizontal rocking acceleration coefficient

for the block in Figure 4.3 rocking about point Os.

where [; is moment of inertia about point O; and 6 is angular acceleration. This equation is

generally rewritten by substituting p? = mgr;/I;, yielding
0 = p’ky, cos(v; — 0) — p*(1 + k) sin(ey; — 6) (4.2)

The parameter p has the units of 1/s and can be thought of as a frequency parameter of the
block (Housner, 1963). Evaluating Equation (4.2) requires solving a non-linear, discontinu-
ous, second order, differential equation. Since a closed form solution cannot be obtained for
this equation, most of the research into rocking blocks have taken the approach to linearize
this equation assuming sin(¢) — ) ~ ¢ — 0 and cos(¢) — 0) ~ 1 for small angles of ¢ resulting
n:

0 = pikn — p}(1+ ky)(v; — ) (4.3)
For a block that rocks from edge to edge, Equation (4.3) could also be rewritten for motion
when the block is rotating about Oy by substituting the subscripts. Furthermore, Shi et al.
(1996) went on to derive the behavior of a generic asymmetric block when it transitions

from rocking about O, to O; by defining a coefficient of restitution using the conservation
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of angular momentum (as was originally done by Housner (1963)) to relate the angular
velocity before and after impact. The coefficient of restitution will be discussed further in
Section 4.3.1.

Alternatively, the force diagram could be split into two sets of forces that produce zero and
non-zero net torques (or angular acceleration), respectively. To facilitate splitting the forces
into two sets, k,; is examined. As the mass rotates about either base point, it can be seen that
k,si is only applicable when 6 = 0. A more general term, instantaneous horizontal rocking
acceleration coefficient (k,;), is used to define the horizontal inertial acceleration coefficient
(assuming k, = 0) that produces zero net torque and thus zero angular acceleration acting
on the block for all 6.

k.; = tan(y; — 0) (4.4)

The left side of the force vector diagram in Figure 4.5 is now broken down into two sets
of normalized forces. The first set of forces are W = 1, k,, and (1 + k,)k,2 whose resultant
acts along ry and thus result in zero angular acceleration. The second set of forces includes
the remaining normalized incremental inertial acceleration force (k;,.), which results in non-
zero angular acceleration. Since the equations of rotational motion need only consider the
portion of the force diagram that results in a non-zero angular acceleration, the motion of
the rocking block can now be written in terms of a single force. From the right side of force
vector diagram in Figure 4.5 it can be seen that k;,. = ky — (1 + ky,)ky2. Accounting for

rocking on either edges, k;,. is expressed as

which creates a non-zero torque of r; x mgk;,.. The parameter k,; is defined as the state
variable that allows the block behavior relative to the input motion to be visualized. An

alternative equation of motion can now be stated as

1,0 = mgkine cos(1; — 0) (4.6)
Force Moment Arm

where 7; cos(¢; — 6) will be referred to as the moment arm, R,,om,.
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Equation (4.6) has been derived relative to a horizontal force that causes zero torque. In
general, the derivation could be made relative to a force with any particular fixed orientation.
The horizontal orientation was chosen because in the simplified case when there is only
horizontal loading, k,s remains constant. This orientation is familiar and the visualization
described in subsequent sections is more intuitive. If the orientation is not fixed and taken, for
example, at an orientation perpendicular to r;, then the interpretation would be complicated
by a vector that changes orientation since r; varies with 6. It is noted that by multiplying
the right hand side of Equation (4.6) by cos(¢; — 0)/ cos(¢); — ¢) and rearranging terms it

can be shown to be equivalent to the well-established Equation (4.1).

4.2.1 Interpretation of Perturbing and Restoring Forces from k,;

In order to understand the behavior of a rocking block it is important to know whether the
net forces are acting on the block as either perturbing or restoring forces. A perturbing
and restoring force is one that produces  away from and toward the static equilibrium
configuration, respectively. This section is dedicated to understanding how k,; allows for
these forces to be interpreted. The relationship of how these two forces lead to or prevent
toppling of blocks is demonstrated by example in subsequent sections.

Of all terms in Equation (4.6), ki, is the only term that may be positive or negative and
thus determines the sign of 6 of the block. However, the sign of k;,. alone does not give a
direct indication of whether the net force acting on the block at any given time is perturbing
or restoring in nature. To determine the nature of the net force, the sign of k,; relative to
kine needs to be evaluated. When these two parameters (and by association 0 and 0) are of
the same sign, then the net force is perturbing and when they are of opposite sign the net
force is restoring.

While a plot of 6 and 6 versus time could reveal the nature of the net force, it is more
instructive to plot kj, and (1 + k,)k,; versus time because the block response can be directly
compared to up,. The usefulness of interpreting the rocking block response in this manner

is demonstrated through three loading and geometric cases. For reference, the equations of
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motions for all examples in this section were solved using a forward Euler finite difference
method along with a predictor-corrector method to resolve block impacts. Although more
rigorous methods of numerical integration can be used for more accuracy, they are not
necessary to demonstrate the use of the state parameter and methods of interpretation

described in this paper.

Case 1: =0, up, = f(t) and uyy =0

For simplicity, assume that diy,(t) = 3 sin(4nt), ii,e(t) = 0 and 3 = 0. Since it was assumed
earlier that there is no sliding between the block and the plane, k;, = uy,. Also, since k, = 0,
then (1+ k,)k.; = k,;. Figure 4.6 shows a plot of k;, and k,; versus time. It is also useful, for
reference, to plot a horizontal line at the constant value of k,., for each block edge. Recall that
when the block is rocking on edge O,, k,; is positive and when the block is rocking on edge
01, k,; is negative. Rocking motion begins when kj, first exceeds the bounds of k,;, which,
for this example, happens to be in the positive direction. As implied by Equation (4.5),
when the block is on edge 2 and kj, > k,;, ki, is positive and the net force is perturbing.
When kj, < k., kine is negative and the net force is restoring. This interpretation is mirrored
about the x-axis when the block is rocking on edge O;. This means when k;, < k,;, ki is
negative and the net force is perturbing and when kj, > k,;, ki, is positive and the net force
is a restoring force.

As indicated by Equation (4.4), k,; is dependent on 6 and 1);, therefore, it provides an
analog to # and its time derivatives. The relative magnitude of # and R,,,,, can be estimated
based on the deviation of k,; relative to k,;;. When the block is in the seated, equilibrium
position, k,; = k., meaning that § = 0 and R,,,,, is at its minimum. As the block rocks
away from the equilibrium position, |k,;| decreases and thus |0| and R,y increase. When
k.; = 0 then 6 has reached the toppling angle, ¥;, and R,,,, is at its maximum. If the
block does not topple then the block begins rocking back toward the equilibrium position.
In this case, k,; begins increasing until its value is equal to ks at which point the block will

undergo a rocking impact and switch rocking edges. These relationships are also shown in
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Figure 4.6: Comparison between kj, and k,; for a symmetric block on a level plane. The

motion of the plane consists of @y (t) = 1 sin(47t) and i, (t) = 0.

Figure 4.6. From these relationships, a sense of the magnitude of the perturbing or restoring
torque, kine X Rpom, and thus 6 can be visualized by interpreting the relative magnitudes of
kine and Ryom.-

Parameter k,; is always non-zero, except when the block reaches the critical toppling
angle, v;, at which time k,; = 0 where the block is in a precarious position and will most
likely topple. However, there are two cases in which k,; can equal zero or appear to equal
zero, but the block does not topple. The first case is shown toward the right hand side of the
plot in Figure 4.6 and corresponds to a rocking impact as the block switches rocking edges.
At this moment the plot of k,; forms a vertical line and appears to momentarily equal zero,
which is not the case. This vertical line is actually a discontinuity point in the plot of k,; and

the value of k,; remains non-zero but switches sign. The second, and more rare case, was
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reported by Plaut et al. (1996) where the block may rotate beyond ; momentarily without
the result of toppling. Although not shown in Figure 4.6, in this scenario the plot of k,;
would momentarily cross and then return about the x-axis (acceleration= 0) at subvertical
and likely near horizontal orientations. A plot of this nature would likely take the form of
an extrema in a parabolic function.

As indicated previously, k,; is also an analog for the time derivatives of 6. The general
slope of k,; is related to §. This is informative in providing a relative indication of 0 through-
out rocking and more importantly, before and after an impact. The coefficient of restitution,
e, can be visualized as a change in slope of 0 before and after impact. For e = 1, 6 = 9+,

W_»

while for e < 1, = > 0%, where the superscripts and “+” indicate the moments before
and after impact, respectively. As will be discussed in later sections, understanding 6 before

and after impact is crucial in explaining the toppling behavior of blocks.

Case 2: =0, upy = f(t) and uy, = f(t)

This next example explores the effects of a vertical motion which can be clearly seen in
Equation (4.5). The vertical motion essentially acts to create an effective, instantaneous
change of k,; or for § = 0, k,,;. A change in k,,; means that the block takes on instantaneous
attributes of broader or more slender blocks throughout the vertical motion. The effects of the
vertical motion are illustrated in Figure 4.7, where the rocking response of a symmetric block
to horizontal and vertical earthquake motions is shown. The horizontal (North) and vertical
ground motion were taken from station TCUQ75 of the 1999 Chi Chi, Taiwan earthquake
(PEER, 2010). Parameters ky, k.;, and (1 + k,)k,; are plotted versus time to allow for
interpretation of R,,,,, ¢, and 6 and kine, respectively, as described in previous sections. An
effective increase in |k,;| reduces |k;,.| if it is a perturbing force and increases |ki,| if it is a
restoring force. In this example, before and after impact, the effective |k,;| is increased by the
upward vertical ground motion to a point higher than the original £, which creates a larger
restoring force than would have occurred without vertical motion. Of course, the opposite

could have occurred if a downward vertical motion had occurred at the time before and
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Figure 4.7: Demonstrating the effects of vertical ground motion for a symmetric rocking

block on a level plane. The motion of the plane is based on the 1999 Chi-Chi earthquake.

after impact. Ostensibly, the influence of vertical motion does not appear to be significant
and k,; appears to be a reasonable approximation for (1 + k,)k,;. While it may seem to be
a reasonable approximation, had the vertical motion been different, it would have caused
dramatically different behavior by changing the instance and quantity of impacts. These
differences would change the path of behavior. The vertical ground motion can now be seen
as a another source of non-linearity in which the timing of the interaction between k,; with

kn, and therefore the overall response, is altered.

Case 3: B # 0, upg = f(t) and uyy =0

This final example examines the scenario where the block is on an inclined plane and iy, =

sin(t). From Figure 4.2, v; is dependent on f. With any non-zero 3, k.5 will no longer
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Figure 4.8: Interpreting the effects of a symmetric block rocking on a sloping plane (8 = 3°).

The motion of the plane consists of iy, (t) = sin(t) and t,4(t) = 0.

be equal in magnitude to k., and ki, and k,.; will be substantially effected. Figure 4.8
illustrates the effect of slope angle on the analysis of a rocking block. For rocking in the
uphill direction, k,; and k, are increased relative to the level ground scenario (5 = 0). During
a given ground motion, the larger k,; in the uphill direction will reduce the magnitude of
perturbing forces and increase the magnitude of restoring forces, along with reducing uphill
rotations. The opposite effects are seen for downhill rotations as a result of a reduced k,;

relative to the level ground scenario.

4.2.2  Influence of Moment of Inertia, I;

Makris and Konstantinidis (1998) made the observation that small scale blocks (small I;) are

sensitive to peak ground accelerations, while large scale blocks (large I;) are more sensitive
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Figure 4.9: Influence of block scale on rocking response, I; vs k,;.

to incremental ground velocity. This can be explained by examining Equation (4.6) where it
can be seen that 6 is inversely proportional to I;. The influence of I; can be seen in k,; in the
form of an increasingly “muted” response to loading as [I; increases. This muted response
can have many secondary consequences on the system such a decrease in 6 for many systems
for a given loading. The effects of scale are shown in Figure 4.9 where a higher I; decreases
the rocking period and causes impacts to take place sooner. With broadband motions, like
earthquakes, a higher I; can work for either stability or instability as it tends to preserve
the current state of 6. If the block system is near the static equilibrium position and moving
slowly (small |6] & [6]) (a common position since nearly all practical systems analyzed start
at static equilibrium) then a large I; will tend to keep the block stable. If the ground motion
loading causes the block to accumulate significant rotation (high |6|) with slow motion (low

]9]), then the large I; tends to hold the block in a sensitive position where a small change
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Figure 4.10: Earthquake example: Rectangular block with aspect ratio (base/height)=0.1,
height=10.0m, § = —1.5°, input motion=1999 Chi Chi earthquake.

in @ could result in toppling. When the block manages to accrue significant speed (high [6)])
toward toppling, a large [; will mute 6 which reduces the tendency of the block to reverse
direction and avoid a toppling result. Thus, a large I; value serves, in effect, as a non-linear,
low-pass filter of the ground motion. For small [;, acceleration pulses that exceed k,4; result
in high || and ||, which often results in near instantaneous overturning if the pulse is of

sufficient duration.

4.2.8  Visualizing Behavior of Earthquake Ground Motion with k,;

An application of the use of k,; to visualize and explain the behavior of a rocking block
on an inclined plane with an earthquake input motion is shown in Figure 4.10. In this

case, a slender rectangular block with an aspect ratio (base/height) equal to 0.1 and height
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equal to 10 meters is modeled on a plane inclined at an angle of f = —1.5°. With 5 < 0,
edge 1 is now on the downhill side of the block, thus k. =~ —0.074 and k. =~ 0.127.
As with the examples before, horizontal lines are plotted at these k, values. The inclined
plane is accelerated according to the TCUO75-N component of the 1999 Chi Chi earthquake.
Assuming no sliding between the block and the plane, kj, equals the input time history applied
to the plane. The equations of motion are solved, then the time history of k;, and k,; are
added to Figure 4.10. According to the rules applied in the previous sections, interpretation
of the block rocking response can now be made.

Rocking of the block begins with an inertial acceleration pulse in the downhill direction.
kine resulting from this acceleration pulse produces a perturbing force that is relatively small
and of short duration. Consequently, the block rocks back and forth at high frequency and
low amplitude, until the next downhill k;, that exceeds k,;; arrives and instigates a more
substantial rocking amplitude. For the next five seconds of ground motion, the block’s
maximum downhill 8 changes little with small perturbing forces and restoring forces that are
similar to those under only the influence of gravity. At 32 seconds, there is a set of kj pulses
that exceed k,;, which increases 6 and prolong the rotated state of the block. In the next five
seconds, the maximum rotation of the block in both the downhill and uphill directions builds
more rapidly, primarily under the influence of large restoring forces. At about 36.5 and 38.5
seconds, the block is rotated in the uphill direction and the restoring forces are larger than
those caused by gravity. These large restoring forces create large |0| before the impacts.
As the block rotates in the downhill direction at about 37.5 and 40.5 seconds, the restoring
forces are smaller than those caused by gravity resulting in large |0|. This combination of
events leads to an increase of |f| through the impacts and larger overall |f]. As the block
goes through the last impact before toppling, it can be seen that the previous |0,,..| and
|9*| are relatively large compared to previous impacts. After the last impact, there is a mix
of small restoring and perturbing forces that result in high frequency 6 in both directions,

which do little in the way of reducing ]9[ and thus the block overturns.
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Figure 4.11: Earthquake example: Rectangular block with aspect ratio (base/height)=0.1,
height=0.5m, § = —1.5°, input motion=1999 Chi Chi earthquake.

This case illustrates the mechanisms leading to the overturning of the block. The per-
turbing forces serve to overcome the first criteria of block overturning, that being exceeding
k.5 to begin the block rocking. Once rocking, the influence of the restoring forces take over to
increase the rocking amplitude and rocking speed of the block with each subsequent impact.
The block rocks until the combination of restoring and perturbing forces in the downhill
direction produce an insufficient 6 to reduce and reverse  and thus the block overturns.
When this example is rerun for a smaller scale block with a height = 0.5 meters (Figure
4.11), toppling occurs primarily as a result of the initial inertial forces that produce large
angular acceleration because of the reduced moment of inertia of the block.

The result of this previous example may seem counter intuitive at first, but can be

understood by envisioning a free rocking block with different initial conditions. If the initial
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conditions of a free rocking block are set with a large enough non-zero 6 or 6, the restoring
force (gravity) will not be sufficient to prevent the block from overturning in the opposite
direction. Each rock of the block throughout the ground motion can be thought of as
essentially a small free rocking experiment with an initial 6 or § and restoring force that is

more or less than the static gravitational restoring force.
4.3 Model for Toppling of Rock Blocks From Slopes

The equations of motion derived in the previous section are applicable to a 2D rigid block
that rocks back and forth on two corners. As mentioned in Section 4.1, in the realm of
paleoseismicity, these equations have been used to evaluate precarious (free-standing) rock
blocks (PRB’s) in nature to estimate ground motion parameters of paleo-earthquakes. As
Brune et al. (1996) discusses, PRB’s are a relatively special formation that occur in arid
regions that have been geologically “quiet” (e.g. no glaciation, earthquakes, and avalanches)
for at least 10,000 years. While the use of PRB’s is useful for paleoseismology constraints on
earthquakes, the occurrence of PRB’s in rock slope engineering is not very common. A more
common configuration is that of rock blocks that can not rotate backward or are “seated”
on fractured rock slopes as shown in Figures 3.4 and 4.12.

The motion of a PRB during forward toppling is similar to “seated” blocks albeit with
some key differences. In this section, the full rocking block equations are modified to form
a Toppling Block Model (TBM), derived from the traditional rocking block model, that is
suitable for rock falls that originate from seated blocks toppling forward. Furthermore, the
parameters of these equations are explored in the context of rock block geometries studied
in Chapter 3. Since rock blocks rarely conform to the slender assumption used for rocking
blocks, the non-linear equations of motion are required. These are solved numerically in a
robust manner using event detections to handle the discontinuous nature of the equations.
Furthermore, an algorithm is developed to determine the minimum acceleration to induce
forward toppling failure given loading by an earthquake ground motion. This algorithm will

be used in Section 4.3.1 for simulations of rock block toppling by earthquake ground motion.
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Figure 4.12: Seated rock block that can only rotate forward.

4.8.1 Toppling Block Model Assumptions

The TBM is derived from the rocking block model with additional assumptions in order
to approximate the response of a rock block toppling from a slope face. The additional

assumptions are as follows:

1. The block has been identified by pseudo-static methods (see Chapter 3) to have a

critical failure mode of toppling.

2. The only permissible modes of rigid body motion are rest and rotation about the

downhill corner.

3. If the block does not fail and returns to its equilibrium position, its motion stops (i.e.

the block does not rebound), therefore it only rocks in the forward direction.

4. There is zero interaction and resistance from any neighboring blocks
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The first two assumptions made for the TBM are discussed in more detail below. As a

reminder, the assumptions associated with traditional rocking block model remain:

1. The block and fractures are rigid.

2. Impacts occur instantaneously meaning that the bottom of the block is flat or concave

causing the point of rotation to change instantaneously.
3. Block motion is 2D in-plane rigid body motion with loading in-plane.

4. The block rotates about a point meaning the block corner is not rounded and does not

undergo degradation during rotation.

5. There is zero resistance to rotation about the toe of the block (i.e. a perfect hinge).

Assumption: Rest or Rotational Motion Only

Ishiyama (1982) described various modes of block motion that are possible for a block resting

on a plane, which include:

Rest & Rotation. These modes are allowed.

Slide. The pure slide mode has already been excluded by the assumption that the block
has been identified by pseudo-static methods to topple (ks < k).

Slide-rotation. During base excitation, when pure rotation is the mode of block move-
ment, the inertial acceleration of the block is not limited and is allowed to increase
(unlike the case of sliding where base isolation occurs). This means that the remaining
block motion that could violate the assumption of pure rocking is that of simultaneous
sliding and rocking. Although one might expect the block to begin sliding once £k, is
exceeded, this is not the case. Depending on the ratio of k, to k,, k, to PGA, 9, and

¢ the block will enter a slide-rock mode as some value of kj, greater than k, Sagaseta
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(1986), Shenton III (1996), Pompei et al. (1998), Zhang and Makris (2001), Taniguchi
(2002), and Yagoda-Biran and Hatzor (2013), each describe various combinations of
horizontal and vertical ground acceleration, friction coefficient, block width to height
ratio, and reaction forces to form a criteria of when slide-rock would begin. In general,

the block will enter the slide-rock mode at a ratio of kj, to k, of between one and four.

Translation-jump & Rotation-jump. The jump modes, which occur when k, < 0, are

explicitly not analyzed in this thesis.

Assumption: Block Motion Stops Upon Impact With Seat

Obviously, for the rigid blocks shown in Figure 3.4, the block is incapable of rocking back
and forth between its toe edge and heel edge like the traditional toppling block because
of the kinematic barrier of the back fracture. This barrier means that the impact created
by the block returning to its original position is made different by the presence of the back
fracture and thus the continuation of motion before and after impact needs to be reevaluated.
For the traditional rocking block, the block instantaneously transitions from rotating about
one corner to rotating about the other edge. For example from edge O; to Oy as shown
in Figure 4.2 or vice versa. Housner (1963) showed for rectangular blocks (¢o = —1)y),
that the change in kinetic energy (i.e. AH) after the impact can be directly related to the
geometry of the block through conservation of angular momentum and assuming a perfectly
inelastic collision (a smooth transition from edge to edge). The angular velocity after impact

considering only geometry was shown to be

b+ = (1 - 7}””“2 (1- cos(2z/J))) 6 (4.7)

cm

Equation (4.7) always results in a lower post impact angular velocity continuing in the same
direction. Shi et al. (1996) performed a similar analysis for asymmetric blocks showing that
the asymmetric shape of a block changes the reduction of angular velocity depending on the

direction of rocking.
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Considering the block returning to a seated position, the only option for the block to
continue motion is for it to transition from rotating about its toe to rotating about the top
corner in contact with the back fracture. Just before the impact, the velocity vector at the
center of mass, 1.y,, is pointing in toward the seat oriented perpendicular to rye/cm, thus
e = 76. Following the same procedure as Housner, the angular momentum about the top

corner of the block before impact is

Hé = Hem + Tem/top X MUep, (48)

H,, = 9.—(Icm — mrz), (4.9)

where I.,, is the moment of inertia about the center of mass. Just after the impact, if the
block attempts to transition to rotating about the top corner, 0., will reverse direction,

therefore the angular momentum after the impact is

H;Z = Hepm + Cem/te X MUy, (410)

H = 0+ (I, +mr?). (4.11)

From these two equations the angular velocity after the impact is determined as

. — 2 .
G — (fm_m) 4 (4.12)

Lo, + mr?
For parallelogram shapes, I, is equal to a fraction of mr?, therefore the numerator will
always be negative. This means that the angular velocity of the block after the impact tries
to rotate the block back into the seat essentially keeping the block pinned into the seat.
Repeating this analysis assuming that the pivot point of the block transitions back to the
toe yields the same result of an angular acceleration in the direction of rotating the block
into the seat. From this logic, it is assumed that the when the block impacts the seat, it will

come to rest.

4.3.2  Toppling Block Model Equations of Motion

With the above assumptions, the toppling block model is developed in the rigid plastic

framework similar to the Newmark sliding block model, meaning that the block remains



118

at rest relative to the base until the base acceleration exceeds the rocking criteria. Once
in motion, the block remains in motion as long as the block is rotated away from its static
position (6 > 0). The non-linear equations of motion for a forward toppling block are written

as:

0 = p® cos(0, — 0) (iipg — (1 + ky)k,) when, ipg > (1 + ky)k, or 6 >0 (4.13)

=0 all other times, (4.14)

where the critical angle 6. = ) = a3 — 8 and k, = tan(f. — 0). These equations are similar

to the equations for the sliding block model which are

T =tlpg — (14 ky)ky when, iip, > ky or & >0 (4.15)

=0 all other times, (4.16)
where x is relative to the base. However, there are few differences to note:

1. The critical acceleration k, for toppling is non-linear and dependent on geometry and

friction while £, for sliding is constant and dependent only on friction.

2. The toppling equation is scaled by p? which will result in different responses depending
on the geometry of the block, while the response in the sliding block model is scale

independent for Coulomb-friction surfaces.

3. The toppling block motion does not stop until the block returns to its initial position,
while the sliding block motion does not stop until the relative velocity between the

block and base fracture is zero.

4. The final outcome for the toppling model is either a block that is at rest in its initial
state or a block that has toppled. The sliding block model results in some permanent

displacement.
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4.3.8  Solution by Numerical Integration

Given that these equations are non-linear and discontinuous, they will need to be solved by
numerical methods. Many researchers attempt to solve these equations using a numerical
integrator which assumes continuity, such as Matlab’s ODE45 solver. While their simulations
may be stable (in that a solution is calculated), error is introduced every time integration is
performed across a discontinuity in the equations and grows as the time step of integration
increases. Alternatively, if care is taken to have an integration point on each side of the
discontinuity, then the errors associated with integration can be reduced and larger time
steps can be taken without introducing significant error. This is the approach taken for
the simulations presented in this chapter. The equations of motion are solved by using
the Sundials Fortran solver, CVode, interfaced with Python using the package Assimulo
(Fredriksson et al., 2014; Andersson et al., 2015). Assimulo provides an interface to specify
discontinuities through events that will be detected by the numerical solver. When an event is
detected, changes to the equations of motion or model state are necessary. In this scenario,
the numerical integrator stops and reevaluates the previous time step at finer increments
until the location of the discontinuity in time is determined within a specified error. In the
mathematical literature this is referred to as root finding.

There are several states of the model that are monitored for events as follows:

Event 1 [ip, > (14 k,)k,]:
This fundamental event is triggered when the ground motion exceeds the block’s rocking
acceleration and the nonzero equations of motion should be used. If the ground motion
falls below the rocking acceleration there is no effect on whether the equations of motion
should be switched or not. Ceasing of rocking motion depends on Event 2 described

next.

Event 2 [0]:
Once rotational motion of the block begins as described by Event 1 then the block will
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have a positive angular displacement. As long as 6 is positive, the block is on edge
and should remain in motion. When 6 decreases to zero, meaning the block is back
to its original static configuration, then the block’s angular displacement and velocity
are set to zero. The equations of motion are set to zero if at the same time the ground

motion is also below the rocking acceleration.

Event 3 [kr < uhg,restore,remaining AND 6 > 0].
Voyagaki et al. (2013a) shows that the block’s instantaneous equilibrium position occurs

when
gsin(y — 0(1)) = iy (t) cos( — 0(1), (4.17)

linearized as

0(t) = & — iing (1) /9. (4.18)

Note that although this criteria has been linearized, it still indicates that the block
can rotate beyond 6. and be brought back by downhill ground motion. As a reminder,
downhill ground motion will create an inertial force in the uphill direction. If the nota-
tion of k, is used, then the criteria for instantaneous equilibrium without linearization
becomes

k, =
9

where iy, (t)/g is the peak down hill acceleration. Furthermore, if the entire ground

(4.19)

motion is considered, then the block is not guaranteed to overturn until at any point
in time k, is less than the peak down accelerations remaining in the time history and
the block has a forward velocity § > 0). This event is based on this criteria which
signals that the block is in an irrecoverable position and terminates the simulation.
It is possible that overturning is inevitable at an earlier point in time, however, that

cannot be determined without also evaluating the frequency of the motion.
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4.8.4  Solving for Critical Toppling Yield Acceleration

As was previously discussed, the minimum peak acceleration magnitude that will overturn
a block has been sought after since the beginning of the rocking block literature. Generally,
this is accomplished by performing a series of simulations in which the peak amplitude of
a signal, such as a sine wave that lasts for one cycle, is increased until overturning of the
block is detected. This approach is sound, except for the case of earthquake ground motions
where it is desired to keep the input signal fixed. In this case, k,s can be systematically
reduced until a block exhibits overturning (threshold) response in a similar approach that
was pioneered for earth dams by Makdisi and Seed (1978). When this approach is applied
for sliding block models, the threshold response becomes asymptotic relative to changes in
the critical acceleration (Strenk and Wartman, 2011). This behavior has also been shown to
be true for the rocking block (Sorrentino et al., 2006).

To search for this asymptote, it is necessary to make small changes in k., between suc-
cessive simulations, however these small steps can result in a large number of simulations.
Optimization can be gain by taking large steps in k., while the threshold response is small
and then decreasing the steps in k,¢ as the change in threshold response becomes relatively
large. Initial simulations are performed at high values of k.;/PGA to establish an initial
trend, in this case k,s/PGA = [0.99,0.95]. From this point spline interpolation log(f,,) vs
k.s/ PG A is used to predict the next target simulation point based on a series of preset target
0, values, where 6, = 0/0.. It is inevitable that the asymptote will be “overshot” and in the
case of toppling blocks which means large irrecoverable angular displacements. In this sce-
nario, it is useful to “backup” the search by increasing k,, in very small increments until the
block exhibits a non-overturning response again. Lastly, since some changes in k,; may result
in large unexpected changes in the threshold response, it is prudent to “fill-in” simulations
between this large jump. Figure 4.13 demonstrates this concept by example. The initial
points represent the initial stepping by reducing k,.s/PGA until the failure farthest failure

point is reached. At this time k,;/PGA is increased in very small increments producing
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Figure 4.13: Solution scheme to determine critical k,./PGA

more failure points until a non-failure point is found. Finally, simulations at the green circle
points are performed to provided better definition of the curve. The horizontal and vertical
dashed lines mark the parameters which represent the interpreted boundary between failure

and stability.

4.3.5  Model Verification

Model verification was performed by comparing the results of the numerical model developed
above with published closed-form solutions for blocks to illustrate over rotation and correct
prediction for various pulses. Closed-form solutions are only available for the linearized form
of the rocking equations. For the purpose of verification, the equations of motion in the
toppling model are set to linear mode which makes k, = tan(d, — 0) ~ 6. — 0 and the

moment arm factor cos(f. — ) ~ 1. Note that although k, is linearized in the equations
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of motion, results are still presented in terms of k., = tan(f.) There are many researchers
who have presented closed-form solutions to the rocking block equations subject to various
simplified loading (e.g. Housner (1963); Yim et al. (1980); Shi et al. (1996); Anooshehpoor
et al. (1999); Makris and Roussos (2000); Zhang and Makris (2001); Ozer and Algverisci
(2005); Dimitrakopoulos and DeJong (2012); Voyagaki et al. (2013b,a)). Voyagaki et al.
(2013a) will be used for verification since it provides the most comprehensive set of closed-
form solutions for various pulse loadings and also includes the ability for rotation beyond
0.

Consider the closed form solution for the normalized peak amplitude (#,) and critical

k.s/PGA to a rectangular wave from Voyagaki et al. (2013a):

v _ —f\2
POA= (1—e) (4.20a)
2f — (1 - 2¢f + 2¢35)"?
g, =14 O (12 = ) (4.20b)
(ef =1)
where f = %T. If Equation (4.20a) is written in terms of ks, then:

k. tan ((1 - e_f)Z PGA)

= (4.21)

PGA PGA

Now consider a series of blocks with p? = [1.0, 1.7, 2.8, 4.6, 7.7, 12.9, 21.5, 35.9, 59.9, 100.0]
subject to a rectangular wave with peak amplitude, PGA = 1, and period, T = 1/3. The
minimum value of k,;/ PG A determined from the asymptote search compared to the closed-
form solution is shown in Figure 4.14. The red dotted line and dots represents the predicted
boundary made by Voyagaki for the linearized solution. For these simulations as k,;/ PG A
gets larger the blocks are also becoming less slender. Excellent agreement is seen between the
numerical simulations using the search algorithm and the closed-form, analytical solution.
From this plot, the ”excess” rotation (6,,q./1 > 1) for a full rectangular pulse can be seen
by the end of the plot lines that indicate where the block became unstable as predicted by
Voyagaki et al. (2013a). Notice for non-slender blocks that as k,./PGA — 0, 0,,4./% does
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Figure 4.14: Verification of rectangular wave (linear solution).

not approach zero. This is because the moment arm for the block should be cos() which is

less than the linearized .

4.8.6  Selection of Non-Linear Simulation Over Linear

The linear solution to rocking blocks is used throughout the literature since most researchers
limit their research to slender blocks. For the evaluation of rock block toppling in slopes,
the slender block assumption will be violated quite often; therefore, it is necessary to use
a non-linear solution. A comparison between the non-linear and linear solution is shown
in Figure 4.15. The solid and dashed lines represent the non-linear and linear numerical
solutions, respectively. As expected, as the blocks become non slender, the linear solution
becomes inaccurate and unconservative, predicting higher Pk—ch than the non-linear solution.

These results verify the conclusion made by Dimitrakopoulos and DeJong (2012) who showed
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Figure 4.15: Comparison of k,/PGA for the linear and non-linear solution.

through dimensionless analysis that it was necessary to use the non-linear equations in order

to accurately predict self-similar response for rocking blocks.

4.3.7 Validation by Centrifuge Modeling

Validation of the toppling block model is based on centrifuge experiments conducted by
Applegate and Wartman (2011, 2012, 2013). Horizontal and vertical accelerations of as
measured by accelerometers at the base of the ramp are shown in Figure 4.16a. The block
response as modeled with the toppling block model is shown in Figure 4.16b. Overturn-
ing occurs at about four seconds into the time history which matches the response in the

centrifuge as confirmed by high speed video evidence.
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Figure 4.16: Model verification based on centrifuge experiment of rock block toppling (File:
Topple 25deg Kocaeli 10l from Applegate and Wartman (2013)).
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4.3.8 Response to Simple Sinusoidal Pulses

The model performance is demonstrated by evaluating a rock block given simple ground
motion loadings approximated by a sinusoidal-like shape as shown in Figure 4.17. The
first half of the sinusoidal shapes have a peak acceleration amplitude in the uphill direction
(PGAT) of 1.0g and period of 0.5 seconds. The second half have a varying degree of amplitude
ranging from 0 to 1.5g. The upper bound of 1.5¢ (= 1/0.65) was chosen based on the widely
prevalent use of 0.65 in geotechnical earthquake engineering. After one period (or one cycle)
of motion, the ground motion is set to zero for five additional seconds to allow the block to
“finish” its motion. These loading pulses are shown in Figure 4.17a as the solid lines labeled
by the magnitude of the reversals.

Consider a block with the property, p* = 2 and property k,, set such that the approx-
imate maximum amplitude of rocking is achieved without toppling. For each of the sine
pulses shown, the critical value of k, is different resulting essentially into the analysis of
blocks that become progressively more slender as the reversal increases. The normalized
angular displacement (6, = 6/6.) and angular velocity response is shown in Figures 4.17b
and 4.17c. As Voyagaki et al. (2013b) discussed, these examples illustrate that the blocks
are capable of rotating beyond 6, if sufficient downhill acceleration occurs while the block
is in that precarious position. It is interesting to note that only for reversal pulses greater
than —0.65PG A" does the block rotate beyond 6, and return safely to the seated position.
In addition, if the reversal pulse were allowed to increase without limit (PGA~ — oo) then
the equations of motion would allow 6 — oo and still allow the block to return to its seat.
Naturally, any rotation calculated beyond the amount that results in the block fully over-
turned onto its face is meaningless. Also if the rotation exceeds a point such that block’s
pseudo-static failure mode in the opposite direction is sliding then the block will not be able

to rotate back to its seat.
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4.3.9 Response to Earthquake Ground Motion

The response of a forward toppling rock block to a sample earthquake ground motion is
shown in Figure 4.18. In each plot, the block’s response from several simulations are shown
as the block’s k, is gradually decreased until a failure condition is reached. In one case
(Figure 4.18d), two failure simulations are shown to illustrate that for very small changes
is k, the block can fail at different moments in the time history. From a deterministic
point of view, this represents the chaos that is expected from toppling rock blocks. It is
also interesting to see that for large blocks that react slowly because of their large moment
of inertia that their subcritical response easily spans many pulses of velocity while smaller
blocks rarely span multiple pulses. Ultimately, when compared to both the acceleration and
velocity time histories it can be seen by inspection that the largest ground motion pulses

lead to overturning of the block.

4.4 Effects of Rock Block Geometry on Toppling Model Parameters

It is quite common, given the wide range of the number, orientation, and spacing of fractures
in any particular rock slope to have block shapes that vary greatly. Therefore it is prudent
to evaluate how the parameters of p?, as, and block scale, represented by rs, interact.

To investigate this relationship, first consider a rectangular shape. It was discussed
previously that p? = 43793, therefore p? is only a function of r3 which can be thought of as the
scale of the block. Note that there is no dependence on the slenderness of the block. This
result is expected if the definition of mass moment of inertia in Equation (4.22) is considered

for a rigid body,
I, = /p(r)erA (4.22)
where, I, is the mass moment of inertia about some point p, r is the vector from the point of

rotation to a point p on the body. If the density and the shape is considered constant then
p(r) =m/A, so m/A can be brought outside the integral resulting in Equation (4.23)

I,=m/A / r2dA. (4.23)
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Figure 4.18: Forward toppling response to earthquake ground motion. The dark time history
is the velocity normalized to PGV while the gray time history is the acceleration normalized

to PGA. The yellow to red lines represent the block’s rotational response as the block’s k,

is reduced until failure occurs. The failure run is shown as the thick green line.
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If it is assumed that fir = r3t, where f, = ﬁ, then
#’dA
I, =mr3/A P (4.24)
Since the length of ¥ = 1, the integral evaluates to FAS, thus
2
I, = ”;;“3 (4.25)

where Fj is the sum of "2 which is solely dependent on the shape. Alternatively, I, of an
N-sided polygon can be calculated using the known vertices P, ... P, as

N
- Z ||Pn+1 X Pn||((Pn+1 ’ Pn-i-l) + (Pn-i-l : PN) + (Pn ' Pn))

— (4.26)
21 ||Pn+1 X Pn”

If the point p is considered the point about which the block would topple, then the calculation

Of p2 18
2 mgrs mgrs I;s gl;s
P = = =

— 4.27
I, mr? s ( )

Note that there is no dependence on the slenderness. This equations means that for a
constant shape, p? only changes as the scale of the block changes. Comparing this equation
to that of the rectangle by Housner (1963), it can be seen by inspection that Fy = 3/4.
Since the pseudo-static yield accelerations were evaluated previously for parallelogram
shapes, p? will be evaluated numerically for these same shapes. The parallelogram can be
completely described by the angles oy, a3, and either r; or r3. Figure 4.19 presents the
results of calculating p? for parallelograms for the parameter ranges of az = [5°,25°,45°],
10 values of «a; between —a3 and ag, and r3 = [0.1m,1.0m,10.0m,100.0m|. It can be seen
that p? is relatively constant for a constant scale rs, similar to the rectangular block. There
is some variance with a;, where the maximum deviation in p? relative to the special case
where the parallelogram is equivalent to a rectangle is approximately 0.01%, 2.26%, 6.61%
for aig = 5°,25°,45°, respectively. The Fj for these blocks ranges between 3/4 and 1. In most

cases this error is small enough that 73 of the parallelogram could be used to calculate p?
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directly based on the rectangle formula. However, it is relatively trivial to calculate the exact
p?. A similar calculation performed for various trapezoidal shapes, indicates that 2 < F, > 5.
In any case, this result shows that many shapes have similar p? such that it is not necessary
to evaluate every possible block shape but the range of possible p?.

The implication of this discussion, is that if the joint structure of a slope is relatively
constant, then for blocks whose primary failure mode is toppling, only one calculation per
shape is necessary to determine F§. This factor could be applied to all similar shapes on the
slope. In subsequent sections, it will be come evident that this knowledge will allow for the
analysis of a rock slope system with two block parameters, two earthquake parameters, and

a design chart.

4.5 Rock Block Toppling Response to Earthquake Ground Motions

In this section, a parametric analysis is performed with the toppling block model in which
p? and the earthquake ground motion are varied. Since p? was previously related to various
geometries it is only necessary to evaluate a representative range of p?, not an infinite number
of different block shapes and associated parameters. For each parametric combination, the
search algorithm outlined in the previous section is used to find the critical k,./PGA that

results in toppling.

4.5.1 Farthquake Ground Motion Simulations
FEarthquake Time Histories

Unique earthquake time histories (537 horizontal motions and 104 vertical motions) were
selected from various sources. Additional information about the ground motions (e.g. mag-
nitude, distance, PGA) is provided in Appendix A. In general, several suites of ground

motions were selected as follows:

PEER

This set of motions consist of 427 horizontal components and 104 associated vertical
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motions (when available). They include all the motions from the PEER strong ground
motion database (PEER, 2010) with a site shear wave velocity greater than 600m/s.
The shear wave velocity boundary was chosen with the idea that the time histories

would be more related to rock-like geologic profiles.

Baker
Broadband and pulse-like motions (40 each) were selected based on sets 2 and 3 of
the motions developed by Baker et al. (2011). The purpose of these motion sets is to
assess whether the spectral shape of a ground motion produces a unique signature in

the results.

Spectrally Matched
This set of 30 motions were spectrally matched and developed by Astaneh (2013) and
are unpublished. The purpose of this motion set is to assess whether spectrally matched

motions produce a different response pattern than unmatched motions.

All motions were derived from the PEER database and thus are associated to a NGA refer-
ence number. Eight combinations of each ground motion set were evaluated and consisted of
two horizontal components, horizontal with and without vertical, and horizontal time history
polarity. The possible combinations are summarized in Table 4.1 below. In some cases, when
the complimentary vertical motion for a ground motion set was not available or inconsistent
with the horizontal components (i.e. different signal length) then the horizontal with vertical

combinations were omitted.

Geometries

A range of values for p?> = [30.0,10.0,3.0,1.0,0.3,0.1}( L ) were chosen to represent a

sec?

range of block sizes. For rectangular blocks, this would represent a range of ||rz|| =

[0.25,0.74,2.45,7.36,24.53, 73.57|(m), respectively. For parallelogram blocks with a3 from
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Table 4.1: Possible earthquake simulation combinations.

Combination Component Vertical Polarity

1 1 No Forward
2 1 Yes Forward
3 2 No Forward
4 2 Yes Forward
5) 1 No Reverse
6 1 Yes Reverse
7 2 No Reverse
8 2 Yes Reverse

0 to 45°, ||r3|| ~ [0.33,0.98,3.27,9.81,32.7,98.1](m), respectively. For each value of p?,

simulations for each of the eight combinations per ground motion were performed.

Stmulations

For each time history and geometry combinations, the search algorithm described in Sec-
tion 4.3.4 was used to determine the critical k, that results in toppling. The total number of
combinations totaled 11, 278 requiring a total number of simulations of 259, 749 to determine
the critical k.. For computational purposes, the lower limit of k,/ PG A was set to 0.01. The
ey 0

PG Versus g were recorded for each simulations. In addition the entire
(&

relationships of
time dependent response of each simulation was recorded. The results of these simulations
were parsed and uploaded to a MYSQL database for further processing and visualization.
In some cases for very large blocks (low p?), the limit set on k./PGA ended the simulations

before the critical &, could be determined. In these scenarios the results of these simulations
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were recorded but omitted from the evaluation of “failed” blocks. Table 4.2 summarizes

some basic statistics about the number of combinations that determined a critical k,.

Table 4.2: Toppling simulation summary statistics

PEER Baker-Broadband Baker-Pulse Spectrally-Matched

Total simulations 7029 1848 1882 355
Simulations with vertical 2258 912 929 0
Simulations w/o vertical 4771 936 953 355

Unique NGA motions 222 40 40 30
Unique earthquakes — 222 40 40 30
Unique horizontal motions 427 80 80 30
Unique vertical motions 104 39 39 0

4.5.2  Simulation Results

A histogram of the results from all ground motion sources plotted in terms of the typical
dimensionless parameters for rocking blocks (k,/PGA and w,,/p) are shown in Figure 4.20.
The non-linear simulation data is compared to the closed-form solutions of the linear equa-
tions of motion for various pulse shapes by Voyagaki et al. (2013b). For each plot, the safe
zone (the zone where combinations of block and ground motion parameters result in no
toppling) is located above the data/lines. The data does not coalesce along a line for two

reasons:

1. The ground motion parameters w,, = 27/7T,, and PGA are being used as proxies for

motion frequency and amplitude, which is an approximation for an earthquake.
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2. As Makris and Roussos (2000) indicated, small blocks (large p*) react more to acceler-
ation pulses while large blocks (small p?) react more to accumulated acceleration (i.e.

velocity pulses).

A rectangular lobe motion represents the maximum amount of energy that can be exerted
for a motion with a fixed period and amplitude since the acceleration is instantaneously at
its maximum for the entire period. If the ground motion’s PGA and T, is conservatively
assumed to be in the form of a rectangular lobe, then the rectangular lobe represents the
upper bound of the data as shown in Figure 4.20. It can be seen that when evaluating the
density of the data, the triangular and sine lobe performs rather well at bounding the bulk
of the data. Intuitively it is expected that a sine lobe would provide a more meaningful
upper bound and indeed seems to represent an approximate +20 boundary of the data. The
triangular lobe falls closer to the mean of the data possibly because it is more representative
of an acceleration pulse that may rise and drop quickly, especially when the ground motion
signal is discretized at fixed time steps. The equation by Haneberg coalesces around the
other equations plotted for large frequencies or small block sizes, however it conservatively

diverges for low frequencies or larger blocks.

4.5.8  Reinterpretation of Stmulation Data

Although the closed-form solutions for simple pulses are non-linear in both linear and log
space, the simulation data (k,/PG A versus w,,/p) appears to be approximately linear in log
space as shown in Figure 4.20b. Based on the visually apparent linear relationship shown

in Figure 4.20b, it will be assumed that k,./PGA has a linear relationship with w,,/p in log

ky.
PG

space (i.e. log =C+ Mlog me) With an assumed linear relationship, it is possible to

rearrange the terms of the linear equations below

k, W
1OgPGA_C+MIOg? (4.28)
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Dropping the constant, C' and pulling M into the log(), which inverts the fraction on the

right side since M is negative,

pM

M
Wm

r

PGA

where the absolute value of M is now being used for M. Now rearranging the terms so that

log (4.29)

= log

all the block parameters and earthquake parameters are on separate sides of the equation

k. PGA
P

log (4.30)

Finally, applying the common dynamics relationship for simple harmonic acceleration, ve-

locity, and displacement amplitudes of trigonometric functions, A = Vw = Dw? yields

k.

pM

PGA
log iM =log PGV = log PG Dw,,. (4.31)
w

m

log

Equation (4.31) now suggests that the critical block parameters (k, and p) can be directly
related to the ground motion parameters to be used in a predictive manner.

Assuming M=1, the simulation data is now replotted in Figures 4.21 through 4.23 in
light of the relationships in Equation (4.31). For each parameter, a hexbin plot of the data
with the counts of each bin colored in a log scale is shown. Histograms of the ground motion
and block parameters are plotted along the abscissa and ordinate axis to further illuminate
the density of the data. Furthermore, histograms of each ground motion set are shown. The
variability of the results visually appear to increase with the increase in each ground motion
parameter (GMP). For this reason a weighted linear least squares (WLS) fit was performed
on each data set for each GMP. Since the variance is unknown, the weights used for each fit
were determined by an iterative evaluation of the fitted variance. First the data was split
into bins and the variance of each bin calculated as shown in Figures 4.21a to 4.23a. From
these plots, the relationship between the GMP and variance was determined to be linear
relative to PGA and PGV and quadratic relative to PGD. After applying weights, the mean
WLS fit is plotted as a solid line, while the 2.5% and 97.5% probability of failure lines are

dashed. The resulting regression equations are shown in each figure.
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These plots in Figures 4.21 through 4.23 confirm that for practical purposes the critical
block size can be linearly related to the ground motion parameters. The parameters PGV
and 7T, PGA/2r are the best predictors of the boundary between safe blocks and blocks that
will overturn. By visual inspection, it appears that PGV has the more defined boundary and
is consistent with recommendations by Sorrentino et al. (2006). The parameter 2r PGD/T,,
also shows a linear trend along the upper boundary however the variance increases dramat-
ically with increase in PGD making it the least skillful predictor overall. It is interesting
to see that there is virtually a 1:1 relationship between the block shape and PGV. For this
reason, k,.g/p is now referred to as the critical block toppling velocity.

In order to further understand the reason for the variability, simulations with simple
sine wave, rectangular, and triangular pulse loadings are performed. Figure 4.24 shows the
comparison to the probability of failure boundaries from the earthquake simulations. Both
sets of results have similar variability. The primary reason for this agreement is that the
period of the simple pulses was limited to the variability in the ground motions (i.e. T;,,=0.07-
1.7 seconds). If larger periods are used then the simple motion results extend downward.
Furthermore, it can be seen that with changes in PGA, the results shift down and to the
left along the same path as the earthquake simulations. The results of the earthquake
simulations, segregated by ground motion set, are shown in Figure 4.25 along with the WLS
fit for all the data combined. It appears that differences in the ground motion set does
not impact the likelihood of failure. These comparisons highlight the fact that it is the
randomness of the ground motion and banded frequency content that focus the results in

the linear relationship shown by the earthquake simulations.

Results for Vertical Motions

The previous results are now plotted with and without the vertical motions as shown in
Figure 4.26. The histograms of the input and output are very similar in shape and extent.

This plot suggests that the consideration of vertical motion in a probabilistic sense does not
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change the outcome. Of course on a case-by-case, deterministic basis, the vertical motion

will change the outcome of the analysis.

4.6 Example Application - Christchurch 2011

The usefulness of the toppling block relationships presented previously is now demonstrated
by evaluation of earthquake induced rock toppling case history. From September 2010 to
December 2011, a series of earthquakes ranging in moment magnitude of 5.9 to 7.1 occurred
near the city of Christchurch, New Zealand (Bradley et al., 2014). Geotechnical failures
ranged from liquefaction in the valley sediments to rockfall in the Port Hills area southeast

of the city.

4.6.1 Rockfall Survey and Source Geology

Following the earthquakes, the Christchurch city council and GNS Science conducted dam-
age surveys which included the mapping and measurement of rockfall throughout the Port
Hills area (Massey et al., 2014). The abundance of surveyed rockfall relative to the many
earthquake events is summarized in Table 4.3. The ground motion characteristics (PGA and
PGYV) are also presented in Table 4.3 for two nearby ground motion stations. Heathcote Val-
ley School (HVSC) ground motion station is a shallow soil site and Lyttleton Port (LPC