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Civil and Environmental Engineering

Seismically induced rock slope failures have resulted in billions of dollars of economic dam-

age and enormous loss of life throughout the world. Accurate prediction of the triggering

and run out of these failures is elusive for a variety of reasons, including knowledge of the

physical modes of failure. Simplified tools that are prevalent in soil slope engineering are rel-

atively non-existent in rock slope engineering. Current state of art in rock slope engineering

requires complex and computationally expensive numerical models to evaluate the seismic

performance or rock slopes, which inhibits extensive evaluations to be conducted.

This research explores the potential failure modes of an idealized rigid rock block and

expands the modes typically considered to include not only sliding but also toppling (pure

forward rotation), confined toppling (constrained forward toppling) and slumping (combined

backward rotation and translation). The yield acceleration (or minimum inertial acceleration

to cause block movement) for slumping, similar to toppling, is found to be lower than for

pure translational sliding. These yield accelerations indicate the initial modes of rock block

failure; however, they do not always predict the ultimate failure mode. To predict the final

failure modes, the results of discrete element numerical analyses were compared to pseudo

static yield acceleration to develop a seismic failure mode chart based on block geometry

and interface friction.



For co-seismic displacement predictions, simplified models predicting ultimate displace-

ment of a mass under seismic conditions are limited to purely translating, sliding blocks

(i.e. Newmark’s sliding block method). This dissertation introduces additional non-linear,

time-dependent models to predict ultimate displacement in toppling and slumping modes

as well. Similarities of the dynamic response of rocking, toppling, and slumping systems

are exposed and allow knowledge from the well-established literature of rocking blocks to be

leveraged. The parameters of these non-linear models are combined such that mapping of

more complex systems to these simple models can be performed. Important findings from

these new methods are that the magnitude of seismically-induced displacement is dependent

on the size and shape of the block (or failure mass) and the displacement dependent yield

accelerations. In addition, by establishing a failure criteria for the different modes of failure,

ground motion characteristics (mean period and intensity) can be used to predict the likeli-

hood of failure. Design charts are developed to allow seismic toppling and slumping failures

to be integrated into PBEE evaluations or real-time regional assessments.
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Chapter 1

INTRODUCTION

The theory of plate tectonics fundamentally changed our understanding of how the physi-

cal environment is formed and reformed. Ironically, this process which produces phenomenal

mountain landscapes, also produces powerful ground shaking that leads to their demise.

While the prediction of the strength and timing of earthquakes is a challenging task, the

consequences of their inevitable arrival are well-known and reiterated on an all to frequent

schedule. The consequences of these natural disasters range from the liquefaction of sedi-

ments in seemingly benign environments to dramatic landsliding of rock and soil slopes alike.

Landslide related natural disasters have caused billions of dollars of economic damage and

have been responsible for enormous loss of life throughout the world (Keefer and Larsen,

2007).

Seismically induced rock slope failures have the potential to result in sudden, catastrophic

consequences. Although a rock slope failure can be a relatively quick event, the consequences

of rock slope failures can be long lasting as they permanently alter the natural environment,

such as blocking streams and filling valleys (Hewitt et al., 2008) and destroying the built

environment. The following earthquake induced disasters illustrate the impact of rock slope

failures during earthquakes:

• 2015 Gorkha earthquake (Nepal) (Chiaro et al., 2015; Moss et al., 2015):

The Gorkha district of Nepal was struck by a series of Mw=7.8, Mw=6.7, and Mw=6.8

earthquakes. These earthquakes resulted in 8,674 fatalities and many more injured.

Extensive landsliding and rockfall was observed in the mountainous regions impacting

homes and blocking roads, hampering rescue efforts. Figure 1.1 shows an example of

rockfall on a local road.
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length of 300 m, the road connecting Baluwa village with
Barpak village was completely covered by debris and large
blocks (Photo 25(b)), which traveled a slope distance of about
100 m. A temporary and unsafe trail was created through the
debris (Photo 25(b)). There were still a great number of
obvious unstable rock formations that may fall at any time
during aftershocks. In addition, local residents reported that a
number of large fissures (parallel to the sliding direction)
appeared on the ground surface at the margin of the landslide.
Such fissures may be caused by increased levels of ground
shaking due to topographic amplification, and are an indication
of potential slope failure in the case of strong aftershocks and/
or rainfall.

5.3. Rock fall

Rocks adjacent to the road failed and interrupted the smooth
passage of the road (Photo 26). At the time of the survey, the
road had been temporarily cleared.

Photo 27 shows the case of a weathered rock formation.
Rock masses of various size were observed near the edge of
the rock fall, indicating that many rocks were involved in the
fall or that the main rock broke into pieces during its fall down
along the slope.

6. Pokhara

Pokhara is located approximately 70 km southwest of the
epicentral area as shown in Fig. 4. According to the USGS, the
PGA in Pokhara Valley was not high as compared with that in
Kathmandu city. No damage to buildings in Pokhara city and
only minor damage to masonry houses in the rural area was
observed (Photo 28).
In the Armala area located north of Pokhara city, there has

been a process of sinkhole formation since November 2013.
Geotechnical and geophysical surveys conducted by Pokhrel
et al. (in press) in June and November 2014 indicated the
presence of weak soil layers and hidden cavities in the subsoil,
which may potentially develop into large sinkholes when
disturbed by strong ground shaking. Following the Gorkha
earthquake, muddy water was observed at the outlet of the Kali
River in the Armala area (Photo 29), indicating that the
earthquake had altered the subsoil conditions in some ways.
Nevertheless, a field survey confirmed that no new sinkholes
were formed and the size of existing sinkholes did not change
(Photo 30). However, the muddy water indicates a high
content of silt and fines in the water and, and thus a process
of erosion occurring in the subsoil. For this reason, the
formation of new sinkholes may be anticipated in the near
future, especially during the rainy season starting in June.

Photo 26. Large-size rock fall nearby Chanaute. (2817′00.33″N, 84140′21.07″E).

Photo 27. Rock fall and temporary cleared road. (2815′41.79″N, 84139′31.60″E).

Photo 28. Minor damage to masonry houses in Pokhara Valley. (28116′9.80″
N, 83158′45.52″E).

Photo 29. Muddy water observed in the Armala area, Pokhara Valley. (28116′
49.13″N, 83159′12.95″E).

G. Chiaro et al. / Soils and Foundations 55 (2015) 1030–1043 1041

Figure 1.1: Rockfall during 2015 Gorkha earthquake in Nepal

.

• 2010 & 2011 Canterbury earthquake sequence (New Zealand) (Massey et al.,

2012, 2014): This series of earthquakes resulted in more than 5,000 mapped rockfalls

among 800+ dwellings in Christchurch, New Zealand. In some cases, homes were

struck and/or penetrated by boulders greater than a meter in dimension. Some failures

resulted in dislodged building-sized boulders colliding with buildings (Figure 1.2a) or

landslides comprised of hundreds of car-sized boulders (Figure 1.2b).

• 2008 Wenchuan earthquake (China) (Tang et al., 2011; Xu et al., 2009):

There were estimated to be over 56,000 landslides resulting in over 250 landslide dams

(Figure 1.3a). Damage was caused to a wide variety of civil infrastructure including

bridges, buildings, dams, irrigation channels, and entire towns. Over 20,000 deaths

were directly attributed to landslides. Large boulders were dislodged from surrounding

slopes and displaced to the valley floors (Figure 1.3b).
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(a) Photo: Hannah Johnston/Getty Images

(b) Photo: Martin Hunter/Getty Images

Figure 1.2: Rockfall during 2011 Canterbury earthquake

.
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(a) Lake formed by rock landslide dam (Photo: AP)

(b) Large rock ejecta (Photo: AP)

Figure 1.3: Rockfall during 2008 Wenchuan earthquake

.
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• 1970 Ancash earthquake (Peru) (Plafker et al., 1971; Keefer and Larsen,

2007): A massive rock slope failure inundated the villages of Yungay and Ranrahirca

with the number of fatalities exceeding 25,000. Evidence, common to many natural

disasters, indicates that this was not the first and will likely not be the last earthquake

induced landslide to hit this area.

Prediction of system behavior to earthquake loading is a complex problem in civil en-

gineering. There is no exception for rock slopes given their inherent natural variability in

composition and geometric arrangement. Seismic stability evaluations in geotechnical engi-

neering are common place, however those for rock slopes lag behind relative to other areas

of geotechnical and civil engineering (e.g. soil slope stability, liquefaction, and structural re-

sponse). Seismic rock slopes methods are in great need for advancement to meet the current

risk-based seismic engineering environment.

1.1 Thesis Organization

The concepts and methods of analysis presented in this thesis form the beginning of the trek

to decipher the seismic response of fractured rock slopes. The following chapter provides a

general primer on the landscape of the current state of practice and art of rock slope behavior

during earthquakes. Those familiar with rock slope engineering, can likely skip this chapter

and move directly to subsequent chapter topics where the current state of research will be

reiterated.

Chapters 3, 4, and 5, which constitute the original work of this thesis, were written

with the intent for direct submission to peer-reviewed journals and thus are self contained.

However, it is beneficial to the reader to move through each chapter in succession as the

research concepts build upon each other.

Based on the complex geometric composition of rock slopes, this dissertation focuses

on developing a fundamental understanding of the physics dominating rock slope failures.

Chapter 3 sets out to expand the identification of pseudo static failure modes and yield
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accelerations of more diverse discrete rock block shapes compared to current methods that

are built on rectangular shapes. Chapter 4 builds on the abundant rocking block literature

and modifies it to address seismic rock block toppling failures. Methods are developed to

evaluate the time-dependent response of toppling rock blocks. These methods are used to

evaluate a large database of ground motions and develop probabilistic failure criteria based

on ground motion intensity parameters. Chapter 5 develops and explores a slumping block

model and discovers mathematical similarities to the toppling block. As with the toppling

rock block, methods are developed for time-dependent ground motion simulations and prob-

abilistic failure criteria are established. Lastly, thoughts of future research opportunities

stemming from this dissertation are presented in Chapter 6.
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Chapter 2

SEISMIC ROCK SLOPE ENGINEERING LITERATURE
REVIEW

There are many factors that may induce rock slope failures, such as ground water flow,

precipitation, deteriorating rock fractures, undercutting of slopes, human activity, and earth-

quakes. The mechanisms of how most of these factors lead to rock slope failures are relatively

well understood. However, the methods for predicting these failures, especially for earth-

quaking loading, are sparse. Compared to seismic soil slope engineering, seismic rock slope

engineering lags behind in the ability to identify basic failure mechanisms by simplified

methods and provide quantitative, risk-based evaluations.

Seismic slope engineering analyses generally include the following steps to predict perfor-

mance during earthquakes: determining controlling failure modes, predicting the triggering

of motion, estimating displacement during motion, final deformation, and evaluating dis-

placement to natural or artificial failure criteria. For rock slope failures, geometry, persis-

tence, and strength of rock mass discontinuities will play a dominant role (Eberhardt, 2008).

These discontinuity characteristics control failure modes such as sliding, toppling, slumping,

or variants of these modes (Hoek and Bray (1977), Goodman and Kieffer (2000), and Sitar

et al. (2005) among others). Once the likely co-seismic failure modes are identified, the next

step is to predict the triggering of slope displacement by specific earthquake scenarios. The

earthquake scenarios to be evaluated are usually prescribed by ground motion amplitude

and frequency or time histories of ground accelerations. If triggering of slope movement is

established to occur during an earthquake, engineers must be able to estimate the potential

displacements or magnitude of failure. With displacement predictions, communities and gov-

ernment agencies are able to make risk-based decisions of how to mitigate the consequences
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of failure either by engineering stabilization solutions or preparing for disaster responses.

This final analytical step is arguably the most important, yielding quantitative predictions

of failure likelihood that can be ingested in a performance-based earthquake engineering

(PBEE) process.

This chapter provides a general overview of seismically induced rock slope failure evidence

and the current state of evaluating the failure modes, triggering predictions, and estimates

of displacements and consequences of failure. Additional details will be provided in each of

the following chapters where necessary. The subject of static slope stability has drawn the

attention of many authors (e.g. Hoek and Bray, 1977; Hoek et al., 2000, among others), and

in general, will not be repeated here unless the discussion benefits. This is not to say that

this text can be read without an understanding of these methods. The reader not familiar

in basic rock slope stability methods should refer to the above-mentioned text.

2.1 Empirical Prediction of Rock Slope Failures During Earthquakes

Earthquake induced rock slope failures and resulting landslides are not a new phenomenon.

Accounts of these spectacular events have been documented and evaluated throughout the

literature (Cluff (1971); Plafker et al. (1971); Wilson and Keefer (1983); Jibson et al. (2006);

Keefer et al. (2006); Aydan et al. (2009); Alfaro et al. (2012), among others). The factors that

determine the difference between which slopes fail or remain stable are numerous. The first

major effort to catalog earthquake induced landslides and their attributes was undertaken by

Keefer (1984) who evaluated 40 major earthquake case histories world-wide. From this work,

14 types of rock and soil landslides caused by earthquakes were identified and are summarized

in Table 2.1. Landslide types related to rock that were identified include slides, topples, and

slumps. Several rock slope characteristics were identified to contribute to their failures with a

major factor being the geometry and frictional characteristics of discontinuities and fractures.

One relationship uncovered by Keefer is that the area affected by landslides can be related to

the earthquake magnitude. This relationship provides an indication of a limiting earthquake

intensity to induce slope failures. Keefer’s work was followed by Rodŕıguez et al. (1999)
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Table 2.1: Types of coseismic landslides (Keefer, 1984)

Relative abundance Landslide type

of landslides

Very abundant Rock falls

100,000 Disrupted soil slides

Rock slides

Abundant Soil lateral spreads

10,000 to 100,000 Soil slumps

Soil block slides

Soil avalanches

Moderately Common Soil falls

1,000 to 10,000 Rapid soil flows

Rock slumps

Uncommon Subaqueous landslides

100 to 1,000 Slow earth flows

Rock block slides

Rock avalanches

who extended the database to a total of 76 earthquake case histories and whose results

reinforced the conclusions of Keefer’s work. Keefer (2013) provides the latest summary of

these cataloged studies as shown in Figure 2.1

Additional researchers have shown Keefer’s relationship to be applicable over a wide

range of seismic and geologic settings. For instance, Aydan et al. (2009) provides a well

documented case history that summarizes observed sliding, toppling, and slumping failures
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distributions in several recent earthquakes show that in many
cases, most landslides occur in zones of high landslide con-
centration near the earthquake-generating fault ruptures
(Harp and Jibson, 1996; Fukuoka et al., 1997; Bozzano et al.,
1998; Esposito et al., 2000; Keefer, 2000, 2002; Bommer and
Rodrı́guez, 2002; Hancox et al., 2002; Jibson et al., 2004).
Other measures of the overall distribution of landslides trig-
gered by earthquakes are maximum distances from epicenters
or fault ruptures at which landslides have been triggered,
which are as great as several hundred kilometers for the largest
earthquakes (Figure 6), and minimum shaking intensities
associated with landslide occurrence (Figure 7).

Keefer (1984a) did not find any significant differences in
measures of landslide distribution attributable to regional
differences in seismic attenuation, and in a detailed regional
study of earthquake-induced landslides in Central America,
Bommer and Rodrı́guez (2002) concluded that areas affected
by landslides there were similar to those in other parts of
the world. In contrast, Hancox et al. (2002) found that areas
affected by landslides and maximum epicentral distances
for landslides in New Zealand earthquakes tended to be
smaller on average than indicated by the worldwide data,
whereas minimum earthquakes magnitudes and minimum
shaking intensities associated with landslide occurrence
there tended to be higher. Suggestions that some regions may
rather produce earthquake-triggered landslides over anomal-
ously large areas and great distances come from studies
of a few recent events in the Colorado Plateau region
of western North America (Harp et al., 1993; Jibson and Harp,
1996), and Quebec in eastern North America (Rodrı́guez et al.,
1999).

Keefer, 1984
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Figure 2.1: Area in square kilometers affected by landslides versus earthquake magnitude

(Keefer, 2013)

.

and makes a direct comparison to the findings of Keefer (1984). From these studies it is

clear that there is an intimate relationship between earthquakes and slope characteristics.

2.2 Modes of Failure

In order to simplify the infinite number of rock block shapes and potential failure modes,

simplified conceptual models are often adopted. An extensive list of conceptual rock slope

failure modes are discussed in Goodman and Kieffer (2000). A few of these conceptual

examples that demonstrate blocky, non-fracturing failure modes are shown in Figure 2.2.

These figures show rock slope failures that consist of one block or a complex network of

many blocks. The failures are grouped here into the general categories of dominant failure

modes identified by Keefer (1984); sliding, toppling, and slumping. It is interesting to note
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(a) sliding (b) sliding

(c) topple (d) topple

(e) slump (f) slump

Figure 2.2: Conceptual, non-fracturing, blocky failure modes of rock slopes (Goodman and

Kieffer, 2000)

that these three categories represent the total possible combinations of translational and

rotational rigid body motion with slumping, and as will be shown in Chapter 3, some forms

of toppling being the modes that undergo both types of motion. In addition, the failures

composed of many blocks appear to be more complex variants of the single block failure

modes.
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2.2.1 Mode Determination

Kinematic failure modes, such as toppling, sliding, and wedge failure, are generally identified

using methods based on stereographic projections (Goodman, 1989). These methods are

well established and are integrated into numerous commercially available software programs.

However, these methods make a fundamental assumption of a vertical gravity field. It will

be shown in the Chapter 3 that this assumption is only appropriate for static loading.

The most prominent design charts currently available for single block failure modes are

limited to blocks formed by orthogonal joint sets. A succinct literature review of these charts

is discussed by Yagoda-Biran and Hatzor (2013) and is summarized here. Ashby (1971) and

Hoek and Bray (1977) presented the first chart (Figure 2.3a) that established the static limit

equilibrium failure modes. They also identified dynamic failure modes when the block is in

motion relative to the fracture planes. The chart was revised by Bray and Goodman (1981)

(Figure 2.3b) based on DEM modeling by Voegele (1979) that indicated that the sliding and

sliding & toppling boundary should be modified. The dynamic failure modes were again

modified by Sagaseta (1986) (Figure 2.3c) to reflect the appropriate application of inertial

forces.

Modes of failure for discontinuous rock slopes were investigated by Aydan et al. (1989).

In this study, rock slopes with various configurations of discontinuities (i.e. through-going

or step-wise continuous) were evaluated for sliding, toppling and combined sliding-toppling

modes of failure. Tilt tables and base friction machines were used to verify their analysis.

The geometries and discretization of modes are shown in Figure 2.4. These studies showed

that multiple blocks could combine to form the basic modes identified by the simplified

charts.

While these studies discuss dynamic motion, they should not be confused with initiation

of motion under seismic forces. These charts instead delineate boundaries between statically

stable and unstable, rectangular blocks under gravitational loading. The dynamic motion

represents the scenario where a block begins motion in statically unstable conditions. This
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results suggest toppling only. This led Yeung [7] to treat boundary
4 as a dynamic boundary as well. The analytical solution for
boundary 4 as derived by Yeung [7] is presented in the next
paragraph, with incorporation of dynamic effects into the solution.

When a block is on the verge of toppling, the hinge (center of
rotation; Fig. 4) tends to move upslope. This movement may
prevent sliding, even when permissible by virtue of kinematics,
namely when ϕoα. Boundary 4 distinguishes between toppling

with and without sliding, therefore the analytical solution derived
by Yeung [7] assumes limiting friction (ϕ¼α). Fig. 4 schematically
describes the state of forces acting on the block at boundary 4.

The block is under pure rotation, therefore its angular accel-
eration €θ at the hinge and at the centroid is identical. The forces
acting on the block are its weight mg, acting at the centroid, the
normal from the incline N, and the limiting friction force N tan ϕ,
both acting at the hinge. Applying Newton's second law, both
parallel and perpendicular to the slope, and taking moments about
the centroid of the block, three equations with four variables
( €θ, €u, ϕ and N) can be written as

mg sin α�N tan ϕ¼m €u cos δ ð1Þ

N�mg cos α¼m €u sin δ ð2Þ

N tan ϕ
h
2
�N

b
2
¼ 1
12

mðh2þb2Þ €θ ð3Þ

The following equation relates €θ and €u:

€u¼ 1
2
€θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þb2

q
ð4Þ

Solving the set of equations yields the following equation for a
friction angle satisfying boundary 4, with any combination of α
and δː

tan ϕ¼ 3 sin δ cos ðα�δÞþ sin α
3 cos δ cos ðα�δÞþ cos α

ð5Þ

or

tan α¼ 3 cos 2δ tan ϕ�3 sin δ cos δþ tan ϕ
3 sin 2δ�3 sin δ cos δ tan ϕþ1

ð6Þ

A modified chart for different modes after correction of boundary
4 for dynamic LEA is presented in Fig. 5 following Yeung [7],
for the case of ϕ¼301. With the modified boundary 4 Yeung has
obtained good agreement between 2D-DDA and the modified
kinematic chart.

In a classic paper Goodman and Bray [12] further developed a
static LEA solution for the toppling failure of multiple blocks, when
the slope is represented by a series of blocks resting on a stepped
basal discontinuity. They distinguished between three modes:
block toppling, flexural toppling, and both block and flexural
toppling. Following Goodman and Bray, flexural toppling and
block toppling have been further investigated by many groups,
both analytically [13–19], experimentally [13,20] and numerically
[16,21,22]. The mode of block slumping has also been studied
analytically, experimentally and numerically by [23].

Fig. 1. Sign convention for the block on an inclined plane model used in this paper.

Fig. 2. Kinematic conditions for sliding and toppling for a block on an inclined
plane – static analysis; after [1].

Fig. 3. Kinematic conditions for sliding and toppling with the modified boundary 3;
after [4].

Fig. 4. The dynamics of the block at boundary 4. The block is toppling, hence it has
rotational acceleration from which linear acceleration €u is derived, and is on the
verge of sliding. The rotation hinge is marked with a star; after [7].
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(a) Ashby (1971); Hoek and Bray (1977)

& Y 

W~i 

• - .  

R 

Q 

a) Gravity" ~ j  

a< ( jb  , / ~ < ~  , ~ > arctan(b/h) 

Velocity Trior~le 
- U  

Vr 

b ) Base friction : 

a < 4, , /3 < 4,, 13 > °=to. (b/h) 
Fig. 14. Toppling without sliding, dynamic case: (a) gravity: {b) base 

friction. 

n 

464 J. \V. Bray and R. E. Goodman 

X 

a ) Gravity 

Jl v e ~  
y ~ . ~ d i ~ , ~ n  

v,. 

m 

0 -x 

b } Bm~ friction 

Fig. 16. Toppling without sliding, dynamic case: (a) gravity; (b) base 
friction. 

If ~ and t are constant through the block, 

i 

"3^ oaO 

i i  

¢o'Y ~ "  ~dthout dp 
/ 8<G<  

dynamic slip 
wltho.t topp~ 

>4, 

dynamic slldlng 
and toppllng 

° - 4 ,  

Fig. 15. Kinematic conditions for toppling and sliding in base friction 
models and under gravity. 

0 fa x dA 
I ' c a  

- = (17) 

g fa~,. r2 dA 

where x = r cos 0. 
The case of the base friction model  is considerably 

more complicated because the direction of the base fric- 
tion force (dFb) through an element of area (dA) varies 
with r and 0. Figure 16b shows a block identical to the 
one considered above but lying on a. base friction 
machine. The belt moves with velocity v under the 
whole block. An element of  area centered at r, 0 has 
absolute velocity 6 directed perpendicular to a radius 
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each situation, and then by substituting the resulting values of the unknowns  
in the respective limiting conditions. The results are: 

- -  Stability: 
tan ~ tan ~ (11 a) 

b 
tan ~ < )7 (11 b) 

- -  Sliding only: 

- -  Toppling only: 

tan ~ >  tan ~ (12a) 

b 
)7 > tan ~ (12b) 

b 
tan ~ > T (13 a) 

4-tane.[l+ (b)~]-3.(tan~ - b )  

4 . [ 1 +  b z b .( ta n (;) 
< tan 4 (13 b) 

- -  Sliding and toppling: 
b 
b ~ tan q, 

4.tan~-[l+(hb--)2]-3.(tab~ - b )  
2 b . 

(14a) 

t a n  ~ (14b)  

b / h  
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Fig. 5. Stability chart. Correct solution 

In Fig. 5 the above results have been plotted. As can be seen, the limit 
between the regions of toppling with and wi thout  sliding is a curve whose  
shape depends on the absolute value of the friction angle. It intercepts the 

(c) Sagaseta (1986)

Figure 2.3: Rectangular block static stability boundaries and dynamic motion charts. Note

that dynamic motion does not equate to seismic failure modes.
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166 ~. Aydan et al.: 

such slopes depends upon  the.spatial orientations of discontinuity sets with 
respect to slope geometry, their continuity and their mechanical properties. 
As long as the rock material itself does not break up under  induced state of 
stress, and two sets of discontinuity whose strikes are parallel or nearly 
parallel to the axis of the slope exist, the possible forms of instability are 
(Fig. 2): 

1. Sliding failure. 
2. Toppling failure. 
3. Combined sliding and toppling failure. 

SLIDING 

/ 

�9 \ /  

SLIDING T O P P L I N G  

T O P P L I N G  

Fig. 2 

T O P P L I N G  & SLIDING 

\ 
X 
\ 

The above instability forms may appear depending upon the discon- 
tinuity pattern, their inclination, frictional properties and the geometry of 
slopes, and can be schematically illustrated as in Fig. 3 in the plane of 
slope angle i and the inclination c~ of the throughgoing discontinuity set. 
The combined sliding and toppling failure may involve three possible 
modes:  

(i) Mode 1: Some columns slide while others tilt, and 
(ii) Mode 2: Columns slide on the base plane while they tilt, 

(iii) Mode 3: Some columns slide and some tilt while the rest of columns 
slide and tilt. 
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However, in this paper we are primarily concerned with Mode 2 type of  the 
combined sliding and toppling failure of  slopes. To investigate the stability 
of  slopes against the above forms of instability, we assume that the poten- 
tially unstable region of  the slope, bounded by the upper and lower slope 
surfaces and a critical failure plane called "basal plane", consists of  a 
column or a number of  columns (Fig. 4). The inclination (6b) of  this plane 
depends on the geometrical positions of  blocks relative to each other. 

B A S A L  P L A N E  U P P E R  S L O P E  
, S U R F A C E  

L O W E R  S L O P E  

Fig.  4 

The dynamic-equilibrium equations for each column are then written 
as (Fig. 5)" 

(b) Failure mode chart

Figure 2.4: Effective failure modes of a rock mass (Aydan et al., 1989).
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In this section a mode analysis for the block on an incline problem
with horizontal force F ¼ kW is derived.

3.1. Boundary 1: between toppling and stable modes

The forces acting on the block at this boundary are W, F, N
and the frictional resistance. At the onset of toppling the normal
and the frictional forces act at the hinge, therefore they do not
contribute to the moments acting on the block. In order for
the block to remain stable against toppling, the line of action of
the resultant of F and W must pass through the hinge, and so it
produces no moments as well. In other words, the stabilizing
moments have to be equal to the driving moments at a state of
limiting equilibrium

1
2
bW cos α¼ 1

2
hW sin αþ1

2
hF cos αþ1

2
bF sin α ð8Þ

Inserting the definition of β into Eq. (8) yields

b
h
¼ sin αþ cos α tan β

cos α� sin α tan β
¼ tan αþ tan β
1� tan α tan β

¼ tan ðαþβÞ ð9Þ

Therefore at the point of limiting equilibrium with respect to
toppling

δ¼ αþβ ð10Þ
If δoαþβ, the block will topple. If δ4αþβ, the block will not
topple.

3.2. Boundary 2: between sliding and stable modes

At the point of imminent sliding friction is limiting, therefore
the force preventing sliding at the point of limiting equilibrium
with respect to sliding is N tan ϕ. Force equilibrium parallel to the
sliding direction yields

N tan ϕ¼ F cos αþW sin α ð11Þ
Force equilibrium perpendicular to the sliding direction yields

N¼W cos α�F sin α ð12Þ
Inserting Eq. (12) into Eq. (11), and using results from Eq. (9), yields

tan ϕ¼ F cos αþW sin α
W cos α�F sin α

¼ sin αþ cos α tan β
cos α� sin α tan β

¼ tan ðαþβÞ

ð13Þ
Therefore the limiting condition for sliding is ϕ¼ αþβ.

3.3. Boundary 3: between sliding and slidingþtoppling modes

Bray and Goodman [4] treated boundary 3 as a dynamic one,
since the block is both sliding and on the verge of toppling.
According to Newton's second law, the force equilibrium in the

downslope direction is

F cos αþW sin α�N tan ϕ¼m €u ð14Þ
Force equilibrium perpendicular to the slope yields

N¼W cos α�F sin α ð15Þ
Finding €u from Eqs. (14) and (15), and using Eq. (7), yields

m €u¼ F cos αþW sin α� tan ϕðW cos α�F sin αÞ
¼W ½ tan β cos αþ sin α� tan ϕð cos α� tan β sin αÞ�

ð16Þ
Since the block is on the verge of rotating, the sum of moments
about the hinge is (see Fig. 7)

h
2
F cos αþb

2
F sin αþh

2
W sin α¼ b

2
W cos αþh

2
m €u ð17Þ

Substituting Eq. (16) into Eq. (17) yields

b=h¼ tan ϕ δ¼ϕ ð18Þ
Therefore, the limiting condition for dynamic equilibrium for
boundary 3 is δ¼ϕ.

3.4. Boundary 4: between toppling and slidingþtoppling modes

Yeung [7] treated boundary 4 as a dynamic boundary because
at this boundary the block is toppling and on the verge of sliding.
According to Newton's second law, force equilibrium in the down-
slope direction yields

F cos αþW sin α�N tan ϕ¼m €u cos δ ð19Þ
and the force equilibrium perpendicular to the slope yields

F sin αþN�W cos α¼m €u sin δ ð20Þ
Taking moments about the centroid (since at the onset of sliding
the angular acceleration is uniform about the block) will again
yield Eq. (3). Solving Eqs. (3), (4), (19) and (20) yields

tan ϕ¼ 3 sin δ cos ½δ�ðαþβÞ�þ sin ðαþβÞ
3 cos δ cos ½δ�ðαþβÞ�þ cos ðαþβÞ

¼ 3 sin δ cos ðδ�ψ Þþ sin ψ
3 cos δ cos ðδ�ψ Þþ cos ψ

ð21Þ

The complete derivation of boundary 4 is provided in the
Appendix.

To summarize, in the case where a horizontal force of size
F ¼ kW acts on the centroid of the block, the boundaries of
the failure modes become a function of three angles: ϕ, δ and
ψ¼αþβ, instead of α for the case of gravitational loading alone.
Alternatively, if using k instead of β is preferable in the definition
of ψ, then

ψ ¼ tan�1 kþ tan α
1�k tan α

ð22Þ

4. Verification of the dynamic toppling and sliding
boundaries with DDA

As mentioned earlier, Yeung [7] verified the 2D-DDA with the
analytical solutions of mode analysis under gravitational loading.
He found that the 2D-DDA results agreed well with the analytical
solution for sliding or toppling and has utilized the DDA results to
modify the dynamic boundary between toppling and slidingþtop-
pling (boundary 4). Here we use both 2D and 3D-DDA to verify our
pseudo-static analysis which considers an additional inertia force.
DDA basics will not be reviewed here; the fundamentals of DDA
have been published by Shi and Goodman [11]; for a comprehen-
sive review see [24]. The extension of DDA to three dimensions has
been published by Shi [25] and will not be reviewed here either.

Fig. 7. Force diagram for a block on an incline with pseudo-static force F. The hinge
of rotation is marked by a star.
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(a) Geometry

inclination angle of 101, and the angle ψ was altered by the force F.
A few simulations were performed with different inclination
angles, to make sure results of the simulations are repeated.

4.3. Verification of the mode analysis charts with 3D-DDA
for pseudo-static force

A similar process of verification was performed with the
3D-DDA. The physical and numerical control parameters are
identical to the ones used in the gravitational loading verification
in Section 4.1, and are listed in Table 1. The analyses performed in
this section are listed in Table 6, and results are plotted in Fig. 11.

Table 5 (continued )

ψ(αþβ) ϕ δ Mode predicted by
analytical solution

Mode obtained
by DDA

10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling
30 20 17.22 slidingþtoppling slidingþtoppling
40 20 12.95 slidingþtoppling slidingþtoppling
50 20 7.07 slidingþtoppling slidingþtoppling
60 40 33.02 slidingþtoppling slidingþtoppling
70 50 42.92 slidingþtoppling slidingþtoppling
80 62 53.06 toppling slidingþtoppling
20 10 6.05 toppling toppling
30 20 16.17 toppling toppling
40 20 11.97 toppling toppling
50 20 6.05 toppling toppling
60 40 32.05 toppling toppling
70 50 41.99 toppling toppling
80 62 52.00 toppling toppling
18 30 29.00 stable stable
50 30 29.00 slidingþtoppling slidingþtoppling
40 30 29.00 slidingþtoppling slidingþtoppling
35 30 29.00 slidingþtoppling slidingþtoppling
32 30 29.00 toppling toppling
50 35 29.00 toppling toppling

Table 6
Analytical mode analysis vs. 3D-DDA with horizontal force F.

ψ(αþβ) ϕ δ Mode predicted
by analytical solution

Mode obtained
by DDA

29 80 30.96 stable stable
29.5 80 30.96 stable stable
30 80 30.96 stable stable
30.5 80 30.96 stable stable
30.9 80 30.96 stable stable
31 80 30.96 toppling toppling
31.5 80 30.96 toppling toppling
32 80 30.96 toppling toppling
32.5 80 30.96 toppling toppling
33 80 30.96 toppling toppling
27 28 30.96 stable stable
27.5 28 30.96 stable stable
27.8 28 30.96 stable stable
28.2 28 30.96 sliding sliding
28.5 28 30.96 sliding sliding
29 28 30.96 sliding sliding
60 40 30.96 toppling toppling
60.5 40 30.96 toppling toppling
61 40 30.96 toppling toppling
61.5 40 30.96 toppling toppling
62 40 30.96 toppling toppling
62.5 40 30.96 toppling toppling
63 40 30.96 toppling toppling
63.5 40 30.96 slidingþtoppling slidingþtoppling
64 40 30.96 slidingþtoppling slidingþtoppling
64.5 30 30.96 slidingþtoppling slidingþtoppling
65 30 30.96 slidingþtoppling slidingþtoppling
65.5 30 30.96 slidingþtoppling slidingþtoppling
55 30 30.96 sliding sliding
55 30 30.54 sliding sliding
55 30 30.11 sliding sliding
55 30 29.68 slidingþtoppling slidingþtoppling
55 50 19.80 toppling toppling
20 21 20.30 toppling toppling
20 21 30.96 stable stable
20 21 40.03 stable stable
20 21 50.19 stable stable
20 21 60.11 stable stable
20 21 71.57 stable stable
20 19 20.30 sliding sliding
20 19 30.96 sliding sliding
20 19 40.03 sliding sliding
20 19 50.19 sliding sliding
20 18.9 60.11 sliding sliding
20 19 71.57 sliding sliding
20 80 20.30 stable stable
30 80 30.96 stable stable
40 80 40.70 stable stable
50 80 50.19 stable stable
60 80 60.40 stable stable
70 80 70.35 stable stable
20 80 19.80 toppling toppling
30 80 29.25 toppling toppling
40 80 39.35 toppling toppling
50 80 49.24 toppling toppling
60 80 59.53 toppling toppling
70 80 69.68 toppling toppling
10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling

Fig. 10. Results of 2D-DDA verification analysis with the analytical solution, with
the application of external force.
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(b) Geometry

Figure 2.5: Pseudo-static rectangular block failure modes (Yagoda-Biran and Hatzor, 2013).

situation is more representative of blocks whose fractures undergo strength loss rather than

experience an inertial loading induced by an earthquake.

Given the earthquake loading limitation, Yagoda-Biran and Hatzor (2013) showed that

the seismic inertial force could be thought of as adding additional slope angle to the static

charts thus expanding the charts applicability to include earthquake loading. The slope

angle, α is effectively increased by the angle, β, formed by the resultant force acting on the

block (weight force and inertia force) relative to vertical. The modified chart is shown in

Figure 2.5 where the parameter ψ = α + β. Despite this advancement, this seismic failure

chart still possess the primary assumption of its ancestors, namely it is applicable only to

rectangular rock blocks.

2.2.2 Example Slopes

An example of a complex slope that could give rise to these modes of failure as they occur in

nature is demonstrated through images taken by Wartman (2007) during site reconnaissance

of the 2007 Pisco, Peru earthquake (Figure 2.6). These images illustrate the complex network
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of discontinuities present in natural rock slopes and that there are many opportunities for

differing local failure modes to occur within a single slope. In addition, these images reiterate

that rock blocks formed by the discontinuities are not restricted to rectangular shapes.

2.3 Seismic Triggering of Rock Slope Failure

The current analytical methods available to evaluate the triggering of seismic rock slope

failure can be broken down into two categories: empirical predictive models and pseudo-

static limit equilibrium methods (LEM). For the purpose of modern probabilistic seismic risk

evaluations and based on the author’s experience with methods in soil and slope engineering,

the methods in these categories lag behind those used in other areas of civil engineering. In

other cases, these methods do not sufficiently capture the basic range of potential failure

modes identified by Keefer (1984).

2.3.1 Empirical Prediction Methods

Empirical predictive models for rock slope failures have been derived based on general slope

geometric and geomorphological characteristics for landslides observed to fail during earth-

quakes. Since these models result from observing failures, the ability to predict how likely

certain slope parameters predict failure depends on the data collected in the field. It is often

the case that rock slope failures are catastrophic, limiting the ability to collect information

on the state of the rock slope immediately preceding failure. Therefore, these models tend

to be exclusively qualitative and require substantial experience and judgment to be applied.

One of the first methods was developed from Keefer’s landslide database (Keefer, 1984) to

provide a simple decision making chart as to the level of risk for landsliding (see Figure 2.7).

Another type of empirical model, a weighted classification system, was used by Harp and

Noble (1993) to evaluate landslides within a specific mountain range. In this model, weights

are applied to various slope parameters based on experience to produce a classification system

that could be used to evaluate the likelihood of slope failure on a regional scale. The Harp

and Noble (1993) model, like the Keefer (1993) model, can only be used for a very coarse,
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(a) Blocky slope with indications of missing rock blocks where toppling,

sliding, and slumping failure modes are suspected.

(b) Blocky slope with indications of rock blocks where sliding and slumping

modes are suspected.

Figure 2.6: Complex rock slope pictured after 2007 Pisco, Peru Earthquake (Photos: J.

Wartman)

.
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Figure 2.7: Empirical landslide risk decision tree (Keefer, 1993)

qualitative evaluation of landslide risk. While these models can be insightful, additional

analysis for specific rock slopes is certain to be required for any engineering application.

2.3.2 Pseudo-static Limit Equilibrium and Yield Acceleration

Pseudo-static LEM methods are well understood and applied throughout civil engineering.

These methods approximate dynamic behavior by including a representative inertial force

into static analyses methods giving rise to the term pseudo-static. The inertial force is gen-

erally a fraction of the static weight and is chosen either based on theory or, more commonly,

based on empirical evidence. These forces are then used to determine the minimally stable

configuration of geometry and strength (i.e. limit equilibrium).

Pseudo-static LEM is generally used to provide a binary outcome/boundary of whether

failure will or will not occur and an estimate of a factor of safety against failure. These

methods are often applied to determine a seismic factor of safety for a given applied con-

stant pseudo static inertial acceleration. Alternatively, a critical yield acceleration can be

determined which indicate the maximum pseudo-static acceleration that can be tolerated be-

fore the onset of failure/motion (or when a factor of safety equals unity). A major limitation



19

of LEM is that it does not provide any indication of displacement or degree of consequences

for slope failure required by PBEE analyses.

For a simplified, two-dimensional, rectangular block sliding on a single surface, block top-

pling about its corner or both, the critical yield accelerations can be easily determined from

statics (Sagaseta, 1986). For blocks sliding on multiple surfaces that induce back rotation,

such as the slumping block, the problem of resolving the force diagram for stable configura-

tions becomes indeterminate and requires iterative techniques and additional assumptions.

Kieffer (1998) provides an iterative technique to determine a factor of safety for single and

multiple slumping blocks in which a pseudo static force is included. This method could be

used to determine the yield acceleration for many block shapes but would require an iterative

analysis for each shape that is not likely to be undertaken by practicing engineers. At this

time, there is no closed-form solution for the critical yield acceleration for slumping.

2.4 Displacement Methods

Methods that produce displacement estimates based on analytical models lend themselves

to be more useful in seismic risk analyses given their quantitative nature. The complexity of

these methods range from single block elements with basic principles of physics to numerical

methods incorporating complex contact algorithms. In this section, a review of the most

prominent methods is organized based on their level of analytic complexity.

2.4.1 Single Block Models

Methods based on single block models employ basic physics principles applied to simple

geometries that are intended to approximate complex systems. Analogous to single degree

oscillating systems, single block models can provide a rich understanding of emergent com-

plex behavior resulting from dynamic loading. Single block models are also used to provide

a quantitative displacement response to earthquake loading. Depending on the specific for-

mulation of the model, this response can be informative as to the relative magnitude of slope

deformation, or damage potential, that can be expected from various earthquakes. For exam-
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ple, Gazetas et al. (2012) used single block models to evaluate the destructiveness potential

of the recorded 2011 Christchurch earthquake ground motions.

Sliding Block

Newmark (1965), Goodman and Seed (1966), and Seed and Goodman (1964) made famous

the sliding block model to estimate displacements of earth dams and sand embankments

from loading by earthquake ground motions. The sliding block (Figure 2.8) is assumed

to slide with a rigid, perfectly plastic frictional contact between itself and an accelerating

plane. This means that the block’s movement is equal to the base plane until the yield
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when it is subjected to the influence of dynamic forces from an earthquake. The calculation 
is based on the assumptions that the whole moving mass moves as a single rigid body with 
resistance mobilized along the sliding surface. 

Consider the rigid body having a weight W, and a mass M, shown in Fig. 16, having a 
motion x. The motion of the ground on which the mass rests is designated by y(t), where y 
is a function of time t. The relative motion of the mass, compared with the ground, is 
designated by u, where 

u = x-y. {21) 

The resistance to motion is accounted for by a shearing resistance, which can be expressed 
as being proportional to the weight W, of magnitude NW. This corresponds to an acceleration 
of the ground of magnitude N g that would cause the mass to move relative to the ground. 

D�·->+· 
1/lllll//lll/17; I I 1111!117 !� 

. y(t) 

Fig. 16. Rigid block on a moving support 

Agt------, 
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time, ·t 

Fig. 17. Rectangular block acceleration pulse 

In Fig. 17, the accelerating forces acting on the mass M are shown. The acceleration 
considered is a single pulse of magnitude Ag, lasting for a time interval t0• It would be possible 
to consider a sinusoidal pulse, but this complicates the expressions unnecessarily. The 
resisting acceleration, N g, is shown by the dashed line in Fig. 17. The accelerating force 
lasts only for the short time interval indicated, but the decelerating force lasts until the direc
tion of motion changes. 

In Fig. 18, the velocities are shown as a function of time for both the accelerating force 
and the resisting force. The maximum velocity for the accelerating force has a magnitude V 
given by the expression 

V = Agt0• 

After the time t0 is reached, the velocity due to the accelerating force remains constant. The 
velocity due to the resisting acceleration has the magnitude Ngt. At a time tm, the two 

� 
u 
0 

> 

Time. t 

Fig.18. Velocity response to rectangular 
block acceleration 

Figure 2.8: Sliding block schematic(Newmark (1965))

acceleration (assumed constant) is exceeded at which time the block begins sliding relative

to the plane. The block slides with an absolute acceleration equal to the yield acceleration

and continues sliding until the relative velocity between the block and plane equals zero. After

the block stops sliding its motion again mirrors the base plane and the cycle of analyzing the

yield acceleration repeats. The relative displacement of the block is determined by double

integrating the time history of relative acceleration between the block and plane. Strenk and

Wartman (2011) provide an illustrative example of the sliding block calculation (see Figure

2.9).

The sliding block model has been shown to be applicable to systems that undergo pure

translational motion such as tetrahedral wedge sliding (Ling et al. (1997); Aydan et al.

(2009); Bakun-Mazor et al. (2011)). Jibson (1993) reinforces the use of the sliding block

model for the seismic evaluation of landslides and, in general, indicated that this is the most
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Figure 2.9: Sample calculation of sliding block method (Strenk and Wartman (2011))

commonly used model for assessing the displacement potential of slopes from earthquake

ground motions. Kramer and Smith (1997) and Wartman et al. (2003) showed that the

rigid assumption limits the applicability of the rigid block and rigid interface to natural

soil slopes. To overcome this limitation, Kramer and Smith (1997) described a method to

calculate the displacement response of a compliant (flexible) slope on a rigid contact. Based

on the author’s experience, both the rigid and compliant sliding block system are used widely

throughout the geotechnical engineering field.
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Rocking Block

The rocking block model consists of a rectangular block on an accelerating plane where the

block is allowed to rotate about either of its edges with no sliding allowed (see Figure 2.10).

Early use of this model can be traced to Japan in 1881, originating from the desire to

therefore

FST~
MR

MT
~

b

h

cos h{ aH
g sin h

sin hz aH
g cos h

 !

ð4Þ

Values of FST , 1 indicate that toppling may occur,
whereas values of FST $ 1 indicate stability. As

discussed below, however, FST , 1 is a necessary but
not sufficient condition for toppling because the
frequency of vibration also needs to be considered.
Setting Eq. 4 to unity and solving for aH yields the
pseudo-static horizontal acceleration required for
toppling of a rock on a sloping surface:

aT~g
b=hð Þ cos h{ sin h

cos hz b=hð Þ sin h
ð5Þ

Under the special condition of aH 5 0, Eq. 4
correctly reduces to the static factor of safety (West,
1996)

FST~
b

h
cot h ð6Þ

For the special condition of a horizontal surface (h 5
0), Eq. 4 reduces to

FST~
b

h

g

aH
ð7Þ

and Eq. 5 reduces to the quasi-static or pseudo-static
acceleration required for toppling (e.g., Anooshehpoor
and Brune, 2002).
Figure 2 shows maximum stable b/h ratios for a

range of slope angles and horizontal acceleration
values calculated by setting FST 5 1. As such, they
provide a first estimate of the limiting b/h values. The
shapes of rocks susceptible to toppling range from tall
and slender rock prisms for gentle slopes and little
horizontal acceleration to short and wide rock slabs
for steep slopes and large horizontal acceleration. As
either acceleration or slope angle, or any combination
of the two, increases, the b/h ratio required for
stability increases significantly.
Figure 2 includes no consideration of the potential

for sliding as opposed to toppling and that there may
be cases, especially for tabular rocks with b/h .. 1,
in which sliding may be more likely than toppling.
For example, consider the case of a rock slab with b/h
< 2 resting on a h 5 40u slope, which would require
aH $ 0.4g in order for toppling to be possible
according to Eq. 4. The stability of the slab with
respect to sliding will be controlled by the shear
strength along the soil-rock interface. For the simple
case of a dry frictional soil, the relationship among
slope angle, frictional strength, and the horizontal
acceleration above which incremental sliding will
begin is given by the Newmark (1965) yield acceler-
ation

aY~
tanw

tan h
{1

! "

g sin h ð8Þ

Table 1. List of variables used in this note.

aH Horizontal acceleration
aP Peak horizontal acceleration
aY Newmark yield acceleration
b Width of the rock
FST,S Factor of safety against toppling, factor of safety against

sliding
f Frequency of time-dependent shaking
fmax Maximum frequency (above which toppling should not

occur)
g Magnitude of gravitational acceleration (32 ft/s2 or 9.81

m/s2)
H Horizontal force
h Height of rock
Lv Rotational arc length
MT,R Toppling moment, resisting moment
m Mass of rock
r Radius of rotation
t Time
W Weight of the rock
x, z Horizontal unit vector, vertical unit vector
p 3.14159265…
h Slope angle
w Angle of internal friction
v Angle of rotation

Figure 1. Schematic illustration of the variables used to analyze
vibration-induced toppling of an isolated rock resting on a slope
and subject to horizontal acceleration.

Haneberg

42 Environmental & Engineering Geoscience, Vol. XV, No. 1, February 2009, pp. 41–45

Figure 2.10: Rectangular rocking block (Haneberg (2009))

back-calculate the peak ground acceleration (PGA) for earthquakes based on overturned

tombstones (Ishiyama, 1980). Housner (1963) made this method popular with his analytical

evaluation of tall slender structures from the 1960 Chilean earthquake. The general form of

this model is comparative to the evaluation of precarious rock blocks (Brune et al. (1996); Shi

et al. (1996); Anooshehpoor et al. (2004)). Makris and Konstantinidis (2003) used this model

to develop a rocking spectrum, analogous to a traditional single degree oscillator response

spectrum, to estimate the toppling potential for various block sizes due to earthquake ground

motions (see Figure 2.11).

While the rocking block literature is fairly mature, it does not fit well with the problem of

toppling of a rock slope in its current state. For rock toppling applications, Haneberg (2009)
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Rocking Spectra

0

0.1

0.2

0.3

0.4

θ
(r

ad
)

α =10deg = 0.175rad

α = 15deg = 0.262rad

α = 20deg = 0.349rad

10°

0

2π/p (sec)

1 2 3 4 5 6 7 8

Figure 2.11: Example rocking block spectrum (Makris and Konstantinidis, 2003))

considered a toppling block loaded by a single half-sine pulse. The model was used to develop

design charts to determine the required loading (PGA at a given frequency) to overturn a

rock block. This work showed that the toppling response of a rock block is sensitive to it’s

rectangular shape and the loading frequency and amplitude. While the results are intriguing,

the underlying assumptions require some scrutiny and the results will be shown in some cases

to be conservative. In addition, this method is not capable of evaluating the loading from an

earthquake time history. These limitations in the rocking block methods applicability and

Haneberg’s assumptions will be addressed in Chapter 4.

Slumping Block

There are no known simple single block displacement models known to the author that are

capable of predicting seismic deformation of a slumping rock block. Sliding block (translation

only) models are more commonly applied to translational and slumping slope failures (Jibson,

1993). However, researchers have shown that ignoring rotation causes displacements to be

under predicted (You and Michalowski, 1999; Michalowski, 2007). The consideration of

rotation has been studied in soil slopes by many (Sarma, 1981; Chang et al., 1984; Sawada

and Nomachi, 1985; Ling and Leshchinsky, 1995; Ling et al., 1997; Siddharthan and El-
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Gamal, 1998; Zeng and Steedman, 2000; Michalowski, 2007; Zeng and He, 2013), but these

methods have not been translated to rock slopes.

2.4.2 Advanced Methods

Multi-Block Models

Single block models represent simple models evaluated with relatively simple first principles

from physics. Their behavior is intentionally limited for ease of calculation and interpreta-

tion, however this is not necessarily required. Tonon (2007) presents an incremental-iterative

algorithm for analyzing general failure modes of rock blocks subject to generic forces. This

model is truly comprehensive with the ability to model large deformations and rotations and

non-linear contact behavior between the block and the plane. These attributes make the

model capable of detecting any failure mode of the block. However, this model was devel-

oped for the situations of the rapid removal of constraints leading to dynamic motion rather

than applied earthquake loading; thus it is not easily applied to the earthquake problem.

Another comprehensive model is one developed by Michalowski (2007). This model

is capable of evaluating multiple blocks sliding along a curved base plane. Michalowski

(2007) concludes that the rotational component of the block’s permanent deformation path

is important to capture the maximum potential for sliding. While these two methods allow

for more detail, the cost of these complex models is the loss of a simple, intuitive model that

encompasses the influence of geometry and dynamic response from seismic loading.

Numerical Methods (FEM, FDM, DEM, and DDA)

As with most problems in engineering, advanced numerical methods such as the finite element

method (FEM), finite difference methods (FDM), discrete element method (DEM), and

discontinuous deformation analysis (DDA) can be used to model blocky systems with complex

geometric layouts and fracture constitutive behavior. These methods can be generally parsed

into two categories: Continuum and Discontinuum. The applicability of these numerical
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techniques have been well discussed in the literature (Coggan et al., 1998; Eberhardt, 2003,

2006; Stead et al., 2006; Eberhardt, 2008) and are summarized below.

Continuum models (e.g. FEM or FDM) are most applicable in materials such as massive,

intact rocks or heavily jointed rock. Continuum models utilize FEM or FDM to solve the

differential equations of equilibrium with various constitutive models to relate stresses and

strains. The problem domain is represented by a mesh of elements that assume continuity of

displacement across the element. The modeling of intact rocks is generally only valid up to the

point of failure. Once failure occurs, the rock forms fractures which produce discontinuous

deformations and the assumption of continuous deformation is void. The accuracy and

appropriateness of modeling heavily jointed rock is dependent on the information being

sought. In general, the calculation of macro scale deformation, stress distribution, and

failure location is feasible. However, local details near the fractures would be inaccurate.

The ability to model heavily jointed systems would be highly dependent on the choice of

constitutive model and selection of model parameters that approximate the global behavior.

DEM and DDA are by far the most popular numerical methods used in rock engineering

research and consulting practice given their formulation to specifically evaluate the inter-

action between multiple rock blocks. Discontinuum models are most applicable when the

response of a slope is controlled by the orientation, spacing, persistence and interface re-

sponse of the rock joints (Einstein et al., 1983). The problem domain is represented by an

assemblage of interacting, discrete shapes created by the distribution of fracture geometries.

Similar to FEM and FDM used to solve continuum models, discontinuum models utilize the

universal distinct element code (UDEC), DDA, or particle flow codes (PFC) to solve the

equations of equilibrium and interaction between blocks. These types of models are com-

monly referred to as DEM. With this type of modeling the accuracy of the model is governed

by the appropriate definition of fracture geometry and choice of joint interface constitutive

model and parameters. The explicit modeling of the discontinuities provides more realistic

distribution of stresses and displacements and in some cases drives the development of the

non-linear failure mechanisms and rock mass response (Eberhardt, 2003).



26

Discontinuum models have been used to evaluate the seismic stability of rock slopes by

many researchers (Chuhan et al., 1997; Hatzor, 1999; Havenith et al., 2003; Hatzor, 2003;

Bhasin and Kaynia, 2004; Hatzor et al., 2004; Pekau and Yuzhu, 2004; Wang et al., 2006;

Wu, 2010). Discontinuum models will be used in this thesis considering that the problems

being modeled consist of relatively few distinct blocks. In particular, because of ease of access

and familiarity in the rock slope engineering community, the DEM program universal distinct

element code UDEC will be used for the discontinuum modeling throughout this thesis. The

numerical model results will be used for pseudo-static failure mode determinations of rock

blocks and non-linear, time dependent, seismic responses of various rock block configurations.

In addition, the time dependent solutions from UDEC will serve as the target (or known)

solutions for various problems evaluated in this thesis.
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Chapter 3

PSEUDO-STATIC FAILURE MODES AND YIELD
ACCELERATIONS IN ROCK SLOPES

Rock slope failures have contributed greatly to the economic and human loss experienced

during seismic events throughout the world. Accounts of these spectacular events have been

documented and evaluated throughout the literature (Cluff (1971); Plafker et al. (1971);

Wilson and Keefer (1983); Jibson et al. (2006); Keefer et al. (2006); Aydan et al. (2009);

Lanzo et al. (2010); Alfaro et al. (2012); Massey et al. (2014), among others). A database

of earthquake induced landslide failures compiled by Keefer (1984), and reinforced by others

(Rodŕıguez et al., 1999; Keefer, 2013), clearly indicates that failure modes, observed in

the field following earthquakes, include sliding, toppling, and slumping. Methods based on

simplified, discrete, single block models such as a rectangular block on a plane or wedge

blocks are commonly used to approximate the behavior of rock slopes and determine the

factor of safety against failure (Hoek and Bray, 1977; Yagoda-Biran and Hatzor, 2013).

These models assume rectangular blocks on a plane or sliding prismatic three-dimensional

(3D) wedge blocks. A major limitation common to rectangular and wedge shaped blocks is

that the assumed geometry and boundary conditions restrict the potential failure modes to

sliding or toppling. This chapter will expand the geometry assumptions so that new failure

modes will be kinematically admissible.

In order for additional failure modes to be considered, non-rectangular shapes need to

be considered. Kieffer (1998) considered blocks in static loading that are parallelogram

in shape and require a second plane to provide static stability and thus fail in a slumping

mode of failure (simultaneous sliding and back rotation). While this was a big advance in the

evaluation of rock block failure modes, the implementation of this model was limited to factor
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of safety evaluations against slumping modes of failure. Tonon (2007) introduced a model

that is capable of evaluating complex block geometries which does not restrict potential

failure modes, however this model requires a block specific evaluation and is most applicable

to problems with a quick reduction in strength rather than quick (seismic) loading.

In this chapter a simple, yet broadly applicable, two-dimensional (2D) single block frame-

work is introduced that does not restrict the geometry to orthogonal fracture sets. This

formulation allows for the slumping failure mode to naturally occur and can identify a new

single block failure mode, confined toppling. Through the use of simple failure mode charts,

this framework can be easily applied by a wide range of practitioners including geologists

performing pre- and post-failure field reconnaissance and design engineers. In addition to

the identification of new failure modes, this formulation allows for the calculation of the

corresponding pseudo-static accelerations that lead to block motion. Seismic yield acceler-

ation equations are presented for all four modes of failure: sliding, toppling, slumping, and

confined toppling. The equations for slumping and confined toppling are derived for the first

time.

Although the model may be simple in its formulation and implementation, it is quite

powerful in allowing for significant implications to be developed. Complex shaped blocks can

be easily evaluated knowing just their centers of mass and contact points with supporting

fractures. The failure mode of discrete rock blocks are shown to not be dependent on the

inclination of the primary fracture in which the block rests upon and the scale of the block

itself. Seismic failure modes are demonstrated to be different from those induced by static

forces alone and can even change modes depending on the amount of displacement during

the ground motion. In addition, it is shown that the characteristics of an earthquake ground

motion acting on these blocks in combination with geometric variability can influence the

abundance of failure types observed in the field. Finally, two example mode and yield

acceleration evaluations of actual rock slopes are presented.
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3.1 Existing Failure Mode Charts

The most prominent design charts currently available for single block failure modes are

limited to blocks formed by orthogonal joint sets. A succinct literature review of these charts

is discussed by Yagoda-Biran and Hatzor (2013) and is summarized here. Ashby (1971) and

Hoek and Bray (1977) presented the first chart (Figure 3.1a) that established the static limit

equilibrium failure modes. They also identified dynamic failure modes when the block is in

motion relative to the fracture planes. The chart was revised by Bray and Goodman (1981)

(Figure 3.1b) based on DEM modeling by Voegele (1979) that indicated that the sliding and

sliding & toppling boundary should be modified. The dynamic failure modes were again

modified by Sagaseta (1986) (Figure 3.1c) to reflect the appropriate application of inertial

forces.

Modes of failure for discontinuous rock slopes were investigated by Aydan et al. (1989).

In this study, rock slopes with various configurations of discontinuities (i.e. through-going

or step-wise continuous) were evaluated for sliding, toppling and combined sliding-toppling

modes of failure. Tilt tables and base friction machines were used to verify their analysis.

The geometries and discretization of modes are shown in Figure 3.2. These studies showed

that multiple blocks could combine to form the basic modes identified by the simplified

charts.

While these studies discuss dynamic motion, they should not be confused with initiation

of motion under seismic forces. These charts instead delineate boundaries between statically

stable and unstable, rectangular blocks under gravitational loading. The dynamic motion

represents the scenario where a block begins motion in statically unstable conditions. This

situation is more representative of blocks whose fractures undergo strength loss rather than

experience an inertial loading induced by an earthquake.

Given the earthquake loading limitation, Yagoda-Biran and Hatzor (2013) showed that

the seismic inertial force could be thought of as adding additional slope angle to the static

charts thus expanding the charts applicability to include earthquake loading. The slope
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results suggest toppling only. This led Yeung [7] to treat boundary
4 as a dynamic boundary as well. The analytical solution for
boundary 4 as derived by Yeung [7] is presented in the next
paragraph, with incorporation of dynamic effects into the solution.

When a block is on the verge of toppling, the hinge (center of
rotation; Fig. 4) tends to move upslope. This movement may
prevent sliding, even when permissible by virtue of kinematics,
namely when ϕoα. Boundary 4 distinguishes between toppling

with and without sliding, therefore the analytical solution derived
by Yeung [7] assumes limiting friction (ϕ¼α). Fig. 4 schematically
describes the state of forces acting on the block at boundary 4.

The block is under pure rotation, therefore its angular accel-
eration €θ at the hinge and at the centroid is identical. The forces
acting on the block are its weight mg, acting at the centroid, the
normal from the incline N, and the limiting friction force N tan ϕ,
both acting at the hinge. Applying Newton's second law, both
parallel and perpendicular to the slope, and taking moments about
the centroid of the block, three equations with four variables
( €θ, €u, ϕ and N) can be written as

mg sin α�N tan ϕ¼m €u cos δ ð1Þ

N�mg cos α¼m €u sin δ ð2Þ

N tan ϕ
h
2
�N

b
2
¼ 1
12

mðh2þb2Þ €θ ð3Þ

The following equation relates €θ and €u:

€u¼ 1
2
€θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þb2

q
ð4Þ

Solving the set of equations yields the following equation for a
friction angle satisfying boundary 4, with any combination of α
and δː

tan ϕ¼ 3 sin δ cos ðα�δÞþ sin α
3 cos δ cos ðα�δÞþ cos α

ð5Þ

or

tan α¼ 3 cos 2δ tan ϕ�3 sin δ cos δþ tan ϕ
3 sin 2δ�3 sin δ cos δ tan ϕþ1

ð6Þ

A modified chart for different modes after correction of boundary
4 for dynamic LEA is presented in Fig. 5 following Yeung [7],
for the case of ϕ¼301. With the modified boundary 4 Yeung has
obtained good agreement between 2D-DDA and the modified
kinematic chart.

In a classic paper Goodman and Bray [12] further developed a
static LEA solution for the toppling failure of multiple blocks, when
the slope is represented by a series of blocks resting on a stepped
basal discontinuity. They distinguished between three modes:
block toppling, flexural toppling, and both block and flexural
toppling. Following Goodman and Bray, flexural toppling and
block toppling have been further investigated by many groups,
both analytically [13–19], experimentally [13,20] and numerically
[16,21,22]. The mode of block slumping has also been studied
analytically, experimentally and numerically by [23].

Fig. 1. Sign convention for the block on an inclined plane model used in this paper.

Fig. 2. Kinematic conditions for sliding and toppling for a block on an inclined
plane – static analysis; after [1].

Fig. 3. Kinematic conditions for sliding and toppling with the modified boundary 3;
after [4].

Fig. 4. The dynamics of the block at boundary 4. The block is toppling, hence it has
rotational acceleration from which linear acceleration €u is derived, and is on the
verge of sliding. The rotation hinge is marked with a star; after [7].
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(a) Ashby (1971); Hoek and Bray (1977)
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where x = r cos 0. 
The case of the base friction model  is considerably 

more complicated because the direction of the base fric- 
tion force (dFb) through an element of area (dA) varies 
with r and 0. Figure 16b shows a block identical to the 
one considered above but lying on a. base friction 
machine. The belt moves with velocity v under the 
whole block. An element of  area centered at r, 0 has 
absolute velocity 6 directed perpendicular to a radius 

Fig. 17. Trigonometric functions of/3. 

(b) Bray and Goodman (1981)
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each situation, and then by substituting the resulting values of the unknowns  
in the respective limiting conditions. The results are: 

- -  Stability: 
tan ~ tan ~ (11 a) 

b 
tan ~ < )7 (11 b) 

- -  Sliding only: 

- -  Toppling only: 

tan ~ >  tan ~ (12a) 

b 
)7 > tan ~ (12b) 

b 
tan ~ > T (13 a) 

4-tane.[l+ (b)~]-3.(tan~ - b )  

4 . [ 1 +  b z b .( ta n (;) 
< tan 4 (13 b) 

- -  Sliding and toppling: 
b 
b ~ tan q, 

4.tan~-[l+(hb--)2]-3.(tab~ - b )  
2 b . 

(14a) 

t a n  ~ (14b)  

b / h  
ten 
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Fig. 5. Stability chart. Correct solution 

In Fig. 5 the above results have been plotted. As can be seen, the limit 
between the regions of toppling with and wi thout  sliding is a curve whose  
shape depends on the absolute value of the friction angle. It intercepts the 

(c) Sagaseta (1986)

Figure 3.1: Rectangular block static stability boundaries and dynamic motion charts. Note

that dynamic motion does not equate to seismic failure modes.
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166 ~. Aydan et al.: 

such slopes depends upon  the.spatial orientations of discontinuity sets with 
respect to slope geometry, their continuity and their mechanical properties. 
As long as the rock material itself does not break up under  induced state of 
stress, and two sets of discontinuity whose strikes are parallel or nearly 
parallel to the axis of the slope exist, the possible forms of instability are 
(Fig. 2): 

1. Sliding failure. 
2. Toppling failure. 
3. Combined sliding and toppling failure. 
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/ 

�9 \ /  

SLIDING T O P P L I N G  

T O P P L I N G  

Fig. 2 
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\ 

The above instability forms may appear depending upon the discon- 
tinuity pattern, their inclination, frictional properties and the geometry of 
slopes, and can be schematically illustrated as in Fig. 3 in the plane of 
slope angle i and the inclination c~ of the throughgoing discontinuity set. 
The combined sliding and toppling failure may involve three possible 
modes:  

(i) Mode 1: Some columns slide while others tilt, and 
(ii) Mode 2: Columns slide on the base plane while they tilt, 

(iii) Mode 3: Some columns slide and some tilt while the rest of columns 
slide and tilt. 
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However, in this paper we are primarily concerned with Mode 2 type of  the 
combined sliding and toppling failure of  slopes. To investigate the stability 
of  slopes against the above forms of instability, we assume that the poten- 
tially unstable region of  the slope, bounded by the upper and lower slope 
surfaces and a critical failure plane called "basal plane", consists of  a 
column or a number of  columns (Fig. 4). The inclination (6b) of  this plane 
depends on the geometrical positions of  blocks relative to each other. 

B A S A L  P L A N E  U P P E R  S L O P E  
, S U R F A C E  

L O W E R  S L O P E  

Fig.  4 

The dynamic-equilibrium equations for each column are then written 
as (Fig. 5)" 

(b) Failure mode chart

Figure 3.2: Effective failure modes of a rock mass (Aydan et al., 1989).
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In this section a mode analysis for the block on an incline problem
with horizontal force F ¼ kW is derived.

3.1. Boundary 1: between toppling and stable modes

The forces acting on the block at this boundary are W, F, N
and the frictional resistance. At the onset of toppling the normal
and the frictional forces act at the hinge, therefore they do not
contribute to the moments acting on the block. In order for
the block to remain stable against toppling, the line of action of
the resultant of F and W must pass through the hinge, and so it
produces no moments as well. In other words, the stabilizing
moments have to be equal to the driving moments at a state of
limiting equilibrium

1
2
bW cos α¼ 1

2
hW sin αþ1

2
hF cos αþ1

2
bF sin α ð8Þ

Inserting the definition of β into Eq. (8) yields

b
h
¼ sin αþ cos α tan β

cos α� sin α tan β
¼ tan αþ tan β
1� tan α tan β

¼ tan ðαþβÞ ð9Þ

Therefore at the point of limiting equilibrium with respect to
toppling

δ¼ αþβ ð10Þ
If δoαþβ, the block will topple. If δ4αþβ, the block will not
topple.

3.2. Boundary 2: between sliding and stable modes

At the point of imminent sliding friction is limiting, therefore
the force preventing sliding at the point of limiting equilibrium
with respect to sliding is N tan ϕ. Force equilibrium parallel to the
sliding direction yields

N tan ϕ¼ F cos αþW sin α ð11Þ
Force equilibrium perpendicular to the sliding direction yields

N¼W cos α�F sin α ð12Þ
Inserting Eq. (12) into Eq. (11), and using results from Eq. (9), yields

tan ϕ¼ F cos αþW sin α
W cos α�F sin α

¼ sin αþ cos α tan β
cos α� sin α tan β

¼ tan ðαþβÞ

ð13Þ
Therefore the limiting condition for sliding is ϕ¼ αþβ.

3.3. Boundary 3: between sliding and slidingþtoppling modes

Bray and Goodman [4] treated boundary 3 as a dynamic one,
since the block is both sliding and on the verge of toppling.
According to Newton's second law, the force equilibrium in the

downslope direction is

F cos αþW sin α�N tan ϕ¼m €u ð14Þ
Force equilibrium perpendicular to the slope yields

N¼W cos α�F sin α ð15Þ
Finding €u from Eqs. (14) and (15), and using Eq. (7), yields

m €u¼ F cos αþW sin α� tan ϕðW cos α�F sin αÞ
¼W ½ tan β cos αþ sin α� tan ϕð cos α� tan β sin αÞ�

ð16Þ
Since the block is on the verge of rotating, the sum of moments
about the hinge is (see Fig. 7)

h
2
F cos αþb

2
F sin αþh

2
W sin α¼ b

2
W cos αþh

2
m €u ð17Þ

Substituting Eq. (16) into Eq. (17) yields

b=h¼ tan ϕ δ¼ϕ ð18Þ
Therefore, the limiting condition for dynamic equilibrium for
boundary 3 is δ¼ϕ.

3.4. Boundary 4: between toppling and slidingþtoppling modes

Yeung [7] treated boundary 4 as a dynamic boundary because
at this boundary the block is toppling and on the verge of sliding.
According to Newton's second law, force equilibrium in the down-
slope direction yields

F cos αþW sin α�N tan ϕ¼m €u cos δ ð19Þ
and the force equilibrium perpendicular to the slope yields

F sin αþN�W cos α¼m €u sin δ ð20Þ
Taking moments about the centroid (since at the onset of sliding
the angular acceleration is uniform about the block) will again
yield Eq. (3). Solving Eqs. (3), (4), (19) and (20) yields

tan ϕ¼ 3 sin δ cos ½δ�ðαþβÞ�þ sin ðαþβÞ
3 cos δ cos ½δ�ðαþβÞ�þ cos ðαþβÞ

¼ 3 sin δ cos ðδ�ψ Þþ sin ψ
3 cos δ cos ðδ�ψ Þþ cos ψ

ð21Þ

The complete derivation of boundary 4 is provided in the
Appendix.

To summarize, in the case where a horizontal force of size
F ¼ kW acts on the centroid of the block, the boundaries of
the failure modes become a function of three angles: ϕ, δ and
ψ¼αþβ, instead of α for the case of gravitational loading alone.
Alternatively, if using k instead of β is preferable in the definition
of ψ, then

ψ ¼ tan�1 kþ tan α
1�k tan α

ð22Þ

4. Verification of the dynamic toppling and sliding
boundaries with DDA

As mentioned earlier, Yeung [7] verified the 2D-DDA with the
analytical solutions of mode analysis under gravitational loading.
He found that the 2D-DDA results agreed well with the analytical
solution for sliding or toppling and has utilized the DDA results to
modify the dynamic boundary between toppling and slidingþtop-
pling (boundary 4). Here we use both 2D and 3D-DDA to verify our
pseudo-static analysis which considers an additional inertia force.
DDA basics will not be reviewed here; the fundamentals of DDA
have been published by Shi and Goodman [11]; for a comprehen-
sive review see [24]. The extension of DDA to three dimensions has
been published by Shi [25] and will not be reviewed here either.

Fig. 7. Force diagram for a block on an incline with pseudo-static force F. The hinge
of rotation is marked by a star.
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(a) Geometry

inclination angle of 101, and the angle ψ was altered by the force F.
A few simulations were performed with different inclination
angles, to make sure results of the simulations are repeated.

4.3. Verification of the mode analysis charts with 3D-DDA
for pseudo-static force

A similar process of verification was performed with the
3D-DDA. The physical and numerical control parameters are
identical to the ones used in the gravitational loading verification
in Section 4.1, and are listed in Table 1. The analyses performed in
this section are listed in Table 6, and results are plotted in Fig. 11.

Table 5 (continued )

ψ(αþβ) ϕ δ Mode predicted by
analytical solution

Mode obtained
by DDA

10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling
30 20 17.22 slidingþtoppling slidingþtoppling
40 20 12.95 slidingþtoppling slidingþtoppling
50 20 7.07 slidingþtoppling slidingþtoppling
60 40 33.02 slidingþtoppling slidingþtoppling
70 50 42.92 slidingþtoppling slidingþtoppling
80 62 53.06 toppling slidingþtoppling
20 10 6.05 toppling toppling
30 20 16.17 toppling toppling
40 20 11.97 toppling toppling
50 20 6.05 toppling toppling
60 40 32.05 toppling toppling
70 50 41.99 toppling toppling
80 62 52.00 toppling toppling
18 30 29.00 stable stable
50 30 29.00 slidingþtoppling slidingþtoppling
40 30 29.00 slidingþtoppling slidingþtoppling
35 30 29.00 slidingþtoppling slidingþtoppling
32 30 29.00 toppling toppling
50 35 29.00 toppling toppling

Table 6
Analytical mode analysis vs. 3D-DDA with horizontal force F.

ψ(αþβ) ϕ δ Mode predicted
by analytical solution

Mode obtained
by DDA

29 80 30.96 stable stable
29.5 80 30.96 stable stable
30 80 30.96 stable stable
30.5 80 30.96 stable stable
30.9 80 30.96 stable stable
31 80 30.96 toppling toppling
31.5 80 30.96 toppling toppling
32 80 30.96 toppling toppling
32.5 80 30.96 toppling toppling
33 80 30.96 toppling toppling
27 28 30.96 stable stable
27.5 28 30.96 stable stable
27.8 28 30.96 stable stable
28.2 28 30.96 sliding sliding
28.5 28 30.96 sliding sliding
29 28 30.96 sliding sliding
60 40 30.96 toppling toppling
60.5 40 30.96 toppling toppling
61 40 30.96 toppling toppling
61.5 40 30.96 toppling toppling
62 40 30.96 toppling toppling
62.5 40 30.96 toppling toppling
63 40 30.96 toppling toppling
63.5 40 30.96 slidingþtoppling slidingþtoppling
64 40 30.96 slidingþtoppling slidingþtoppling
64.5 30 30.96 slidingþtoppling slidingþtoppling
65 30 30.96 slidingþtoppling slidingþtoppling
65.5 30 30.96 slidingþtoppling slidingþtoppling
55 30 30.96 sliding sliding
55 30 30.54 sliding sliding
55 30 30.11 sliding sliding
55 30 29.68 slidingþtoppling slidingþtoppling
55 50 19.80 toppling toppling
20 21 20.30 toppling toppling
20 21 30.96 stable stable
20 21 40.03 stable stable
20 21 50.19 stable stable
20 21 60.11 stable stable
20 21 71.57 stable stable
20 19 20.30 sliding sliding
20 19 30.96 sliding sliding
20 19 40.03 sliding sliding
20 19 50.19 sliding sliding
20 18.9 60.11 sliding sliding
20 19 71.57 sliding sliding
20 80 20.30 stable stable
30 80 30.96 stable stable
40 80 40.70 stable stable
50 80 50.19 stable stable
60 80 60.40 stable stable
70 80 70.35 stable stable
20 80 19.80 toppling toppling
30 80 29.25 toppling toppling
40 80 39.35 toppling toppling
50 80 49.24 toppling toppling
60 80 59.53 toppling toppling
70 80 69.68 toppling toppling
10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling

Fig. 10. Results of 2D-DDA verification analysis with the analytical solution, with
the application of external force.
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(b) Geometry

Figure 3.3: Pseudo-static rectangular block failure modes (Yagoda-Biran and Hatzor, 2013).

angle, α is effectively increased by the angle, β, formed by the resultant force acting on the

block (weight force and inertia force) relative to vertical. The modified chart is shown in

Figure 3.3 where the parameter ψ = α + β. Despite this advancement, this seismic failure

chart still possess the primary assumption of its ancestors, namely it is applicable only to

rectangular rock blocks.

3.2 Geometry

3.2.1 Fractured Rock Slopes

The formation of a fractured rock slope is the result of many complex processes working

in seemingly random sequences. Fortunately for the rock slope engineer, the end result

of these processes, whether the final result is a slope with a complex failure network or a

homogeneous intact rock slope, is the primary concern. On their own, discrete blocks can

fail catastrophically and impart great damage to civil structures and result in great loss of

life and thus are worthy of analysis. The main focus of this chapter is that of fractured rock

slopes and the discrete blocks these fractures form.
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The range of discrete rock block geometries found on rock slopes is the result of the

intersections formed by fractures throughout the rock mass. In some cases these fracture

networks create orthogonal intersections that form rectangular blocks. However, when the

fractures intersect each other at arbitrary angles then many more block geometries become

possible. As a matter of nomenclature, the fracture set closest to a horizontal orientation

is termed the base fracture, while the other fracture set is termed the back fracture. For

example, Figure 3.4 slopes in nature with two predominate fracture sets. These figures

illustrate slopes where the base fracture set is dipping out of the slope (daylighting fracture)

while the back fracture set is oriented either side of vertical. The discrete blocks formed by

these intersecting fracture sets at the slope surface are highlighted. If the fractures within

each set have strikes that differ by more than 20 degrees, then more general polygons are

formed and two dimensional assumptions may no longer apply (Goodman, 1989).

In addition to discrete block failures, these discrete blocks can interact with each other

and create complex emergent behavior (Aydan et al., 1989). Similar to discrete blocks,

the failure of multi-block slopes during earthquakes can be catastrophic (Massey et al.,

2012). Currently, for seismic loading, these slopes are evaluated with either simplified failure

charts based on rectangular-shaped blocks (Yagoda-Biran and Hatzor, 2013) or slope specific

numerical analyses (Pal et al., 2011; Wu, 2010; Bhasin and Kaynia, 2004; Chuhan et al.,

1997).

3.2.2 Discrete Rock Blocks

Throughout civil engineering fundamental exploration of simple systems has provided in-

valuable insight into complex structures. Examples of simple systems include the single

degree of freedom oscillator and the Newmark sliding block (Newmark, 1965). As mentioned

previously, rectangular blocks on a slope are commonly used to assess failure modes of rock

slopes. The study of simple block geometries will be continued here with an expansion of

geometry assumptions.
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(a) Blocky slope with indications of missing rock blocks where toppling

and slumping failure modes are suspected.

(b) Blocky slope with indications of rock blocks where sliding and slumping

modes are suspected.

Figure 3.4: Complex rock slope pictured after 2007 Pisco, Peru Earthquake (Photos: J.

Wartman).
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Block Parameters (Aspect Ratio and Relative Orientation)

First, consider single, discrete rock blocks that are formed on the outer most portions of

the slope highlighted in Figure 3.4. The blocks are redrawn in Figure 3.5 with additional

geometric detail. The blocks are detailed from the perspective of geologists and engineers

who evaluate fracture networks primarily from core logs or surface mapping where relative

fracture orientations and fracture spacing are a natural choice of parameters to quantify

rock block geometries. The strikes of the fractures within each fracture set are assumed

to be within 20 degrees resulting in a parallelogram shape that can be evaluated with 2D

assumptions. The block rests on a base fracture plane inclined at an angle β with respect

to horizontal. The angle formed between the base and back fracture is termed the relative

fracture angle, γ. The perpendicular spacing between the base fractures is denoted as S1

while the perpendicular spacing between back fractures is denoted as S2.

The block is assumed to be in contact with the fractures at points 1 and 3, as shown

in Figure 3.5. Contact 1 is located at the heel of the block near the intersection of the two

fractures and can act either along the base plane or back plane depending on movement of

the block. In some cases, contact 1 acts to provide primary weight support by contact with

the base fracture while in other cases it acts as a lateral support force through contact with

the back fracture. Contact 2 is located along the back fracture and acts as a lateral support

force in some circumstances. Contact 3 is located where the toe of the block intersects the

base fracture plane and provides primary weight support to the block. Point 4 is not in

contact with a fracture but is defined for the purposes of defining the block geometry. The

edges of the block are not necessarily assumed to be perfectly planar but it is assumed that

the block makes contact with the fractures in only three contact locations.

Three position vectors, r1, r2, and r3, are identified as the vectors from the center of

mass, C, to the three corners in contact with the two fracture planes. Since the block is a

parallelogram and assuming a uniform density distribution throughout the block, r2 = −r3
and r1 = −r4. With these relationships, the geometry of this 2D discrete rock block is
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Figure 3.5: Discrete rock block geometry parameterized by joint spacing and relative fracture

angle.

completely described by r1 and r3. The position vectors will prove to be useful later when

pseudo-static failure modes and minimum accelerations levels that initiate failure are eval-

uated; thus, their relationship with respect to these measured field parameters are explored

in some detail here.

The components of the position vectors, relative to a reference frame formed by the base

fracture and its normal, can be determined from the parameters S1, S2, and γ. To determine

the position vector components, the vectors that describe the back and base fracture planes
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originating at contact 1 (h and b, respectively) are first described as,

b =

[
S2

sin(γ)
, 0

]
(3.1a)

h =

[
− S1

tan(γ)
, S1

]
. (3.1b)

Note that for brevity, the third component of the vector is dropped since it equals zero.

Factoring out the length of S1

b = S1

[
S2

S1

csc(γ), 0

]
(3.2a)

h = S1 [− cot(γ), 1] . (3.2b)

S1 is left in the fraction to emphasize the aspect ratio S2

S1
and scaling effect of S1. Now, the

position vectors can be written in terms of b and h.

2r1 = − [b+ h] (3.3a)

2r3 = [b− h] (3.3b)

Expanding these equations with the components of b and h,

2r1 = S1

[
cot(γ)− S2

S1

csc(γ),−1
]

(3.4a)

2r3 = S1

[
cot(γ) +

S2

S1

csc(γ),−1
]
. (3.4b)

Since r1 and r3 completely describe the geometry of the block, then using equations, the entire

shape of a block is described by the fracture spacings and relative fracture angle. A feature of

writing the equations in this manner is that the vector components in the bracket describes

a unit block, which could be expected since the cross product of two vectors describe the

area of a shape. Since both vectors are multiplied by the value of S1, it acts to scale the fixed

geometric shape of the unit block to a given size. With the position vector Equations (3.4a

& 3.4b), the shape of the blocks can be visualized based on values of S2

S1
and γ as shown in

Figure 3.6.
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Block angle parameters

For reasons that will be made clearer in subsequent sections, it is useful to adopt a different set

of parameters to describe the block shape. Figure 3.7 shows the same block as in Figure 3.5

but with this different geometric detailing. The back block angle, α1, and the forward block

C

r1
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r3

r4

β P

α1 α3

n̂1⊥

b

h

1

2

3

4

Figure 3.7: Discrete rock block geometry parameterized by forward and backward block

angles, α1 and α3.

angle, α3, are defined as the angles formed by r1 and r3, respectively, as measured with

respect to the outward unit normal (n̂1⊥) of the base fracture. These angles are considered

positive if the position vector (r1 or r3) is oriented downslope of the base fracture normal

(n̂1⊥). For the block shown in Figure 3.7, α1 is negative and α3 is positive.
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The components of the position vectors are easily determined from these newly defined

parameters, α1 and α3 as

r1 = r1 [sin(α1),− cos(α1)] (3.5a)

r3 = r3 [sin(α3),− cos(α3)] . (3.5b)

Note that r1 = ‖r1‖ and r3 = ‖r3‖ are scalar lengths. These lengths can be related to each

other using their relationship to the length of the line from point C to point P.

‖C − P‖ = r1 cos(α1) = r3 cos(α3) (3.6)

Rearranging,

r3 = r1
cos(α1)

cos(α3)
. (3.7)

Substituting equation (3.7) in to equation (3.5b),

r1 = r1 [sin(α1),− cos(α1)] (3.8a)

r3 = r1
cos(α1)

cos(α3)
[sin(α3),− cos(α3)] . (3.8b)

Using these equations, the unit block shape can be completely described by the backward

and forward angles. Since all vectors are multiplied by the scalar r1, it scales the block. As

with S1, various values of r1 or r2 only change the overall size of the block and do not change

the shape of the block. Based on equations (3.8a) and (3.8b), the shape of the blocks can

be visualized based on values of α1 and α3 as shown in Figure 3.8. Note that the dashed

diagonal line representing α1 = −α3 describes blocks that are rectangular in shape. This

line is also a mirror line separating blocks with shapes leaning forward (left of the dashed

line) and blocks leaning backward (right of the dashed line).

Relationships between block parameter sets

For practical purposes, and as will be shown later, it is necessary to be able to work in either

parameter set. For this reason, the two parameter sets are mapped to each other using the
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coordinates of the position vector derived previously. First to determine the relative angle,

γ, h is constructed using r1 and r3,

h = −(r1 + r3). (3.9)

Substituting in the components of r1 and r3 from Equations (3.8a) and (3.8b),

h = −r1
[
sin(α1) + sin(α3)

cos(α1)

cos(α3)
,− cos(α1) + cos(α3)

cos(α1)

cos(α3)

]
. (3.10)

Simplifying and rearranging,

h = r1 [− cos(α1)(tan(α1) + tan(α3)), 2 cos(α1)] . (3.11)

The relative fracture angle can now be determined based on the components of h. The

negative of the x-component of h is used since it is negative itself when γ < 90.

γ = tan−1

(
hy
−hx

)
γ = tan−1

(
2

−(tan(α1) + tan(α3))

)
. (3.12)

Now, the fracture spacings can be determined by comparing the y-component of the back

vector and the x-component of base vector.

bx =
S2

sin(γ)
= r1

(
cos(α1)

cos(α3)
sin(α3)− sin(α1)

)
(3.13a)

hy = S1 = 2r1 cos(α1) (3.13b)

Dividing these two equations determines the aspect ratio.

bx sin(γ)

hy
=
S2

S1

=
(tan(α3)− tan(α1)) sin(γ)

2
(3.14)

Alternatively, α1 and α3 can be determined from the components of r1 and r3 in terms of γ

and S2

S1
.

α1 = tan−1

(
r1x
−r1y

)
= tan−1

(
cot(γ)− S2

S1
csc(γ)

−1

)
(3.15a)

α3 = tan−1

(
r3x
−r3y

)
= tan−1

(
cot(γ) + S2

S1
csc(γ)

−1

)
(3.15b)
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From these equations, the contour plots in Figure 3.9 are presented to illustrate the relation-

ship between the two parameters sets.

3.3 Failure Modes

3.3.1 Static Limit Equilibrium

It can be seen that the blocks on the natural rock slopes in Figure 3.4 are not rectangular

thus the failure charts in Figure 3.1 are not applicable. To determine the static stability of

the blocks in Figure 3.4, three potential free body diagrams in Figure 3.10 are considered.

Note that the analysis of non-rectangular discrete blocks in this chapter will concentrate on

the pseudo-static limit equilibrium failure modes and not dynamic modes as the previous

charts describe. In this Figure, W is the static weight vector of the block while R1 and R2

are the reaction force vectors acting on the block. Note that although it is possible for water

pressure to be present within the fractures, the purpose of this work is to evaluate the role

that simple fracture geometries and earthquake loading play in the failure of discrete rock

blocks. Water pressures acting within the fractures are not considered.

The first state considered (Figure 3.10a) is the scenario where the weight vector is oriented

between the position vectors r1 and r3. In this case, there is only one reaction force (R1),

which acts at some point located along the base of the block. The exact point where the

force acts depends on the geometry and mobilized friction angle and can be determined by

projecting W onto the base plane. In limit equilibrium, the angle the base reaction force

forms with the base fracture is equal to the ultimate friction angle. In addition, the block

does not require the back plane for stability thus any potential reaction force at contact 2

can be assumed to be zero. This is essentially the classic problem introduced in introductory

physics of a block on a frictional plane and is a more general block than the rectangular

block considered by most rock slope stability researchers.

The second state considered (Figure 3.10b) is the scenario where W lies on the upslope

side (left in the figure) of r1. When W acts, by itself, on the upslope side of r1, it creates a
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Figure 3.10: Static, limit equilibrium, free body diagrams for statically stable block config-

urations. Note that the scenario (not shown) where the weight vector is outside the toe of

the block and the relative fracture angle (γ) is less than 90 degrees is statically unstable.
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counter-clockwise torque about the block heel, thus a second reaction force (R2), is required

in addition to R1 for static stability. Kieffer (1998) investigated this scenario with the as-

sumption that this geometry leads to a slumping mode of failure. As Kieffer (1998) discussed,

this system is statically indeterminate given that there are four unknowns (the orientation

and magnitude of each reaction force) and only three available equations of motion. Kieffer

(1998) introduced a fourth equation, a fictitious support force of zero magnitude applied to

the block to produce a statically determinate problem. An iterative calculation was used to

determine the mobilized friction angle using the force and moment equilibrium equations.

The mobilized friction angle was compared to the ultimate friction angle and a factor of

safety against failure was calculated factor of safety, FS= φmobilized/φultimate.

The third state considered (Figure 3.10c) is the scenario where the back fracture plane

forms an acute angle with the base fracture plane from the perspective of the block (i.e.

γ > 90). For the scenario where W lies within the base of the block, the free body diagram

in Figure 3.10a is sufficient. However, when W is oriented downhill of r3 (right in the figure),

it creates a clock-wise torque about the block toe, thus the block requires support from the

back fracture plane to remain stable. Unlike the scenario shown in Figure 3.10b, the reaction

forces applied to the block in Figure 3.10c are located at contacts 1 and 3. The reaction force

(R2) on the back fracture plane acts to resist the heel of the block from sliding upward. The

reaction force (R1) on the base plane acts to resist the base of the block from sliding out.

Absent of the back plane, a block in this scenario is statically unstable and would topple (or

topple & slide) as discussed in Sagaseta (1986). Although this statically unstable scenario

was initially evaluated for base friction models (Bray and Goodman, 1981) and is interesting

from a dynamics standpoint, it is not likely to be encountered in nature as they will have

already failed.

3.3.2 Pseudo-Static Limit Equilibrium and Failure Modes

In this section, the scenario where the discrete block is acted on by seismic forces will

be considered. During seismic loading, the ground is assumed to undergo translational
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displacement in the horizontal and vertical directions. If the ground is assumed rigid, the

base and back fractures adopt these same displacements. In addition, assuming that the

frictional contacts made between the discrete rock block and two planes and the block itself

are also rigid, the block has the same displacements as the supporting fractures.

Applying D’Alembert’s principal (Chopra, 2000), the seismic force can be analyzed as

an inertial force, FI , acting at the block’s center of mass. This inertial force is equal to

the mass of the block multiplied by the magnitude of the ground acceleration, but acts in

the opposite direction (i.e. FI = −müg). The inertial force can then be evaluated along

with the other external forces considered in the static equilibrium section in the traditional

manner of force and moment equilibrium. This form of analysis is commonly referred to as a

pseudo-static analysis. Since earthquake ground motions are commonly expressed in terms of

horizontal and vertical accelerations, FI is decomposed into horizontal
(
− ühg

g
mg = −khmg

)
and vertical inertial forces

(
− üvg

g
mg = −kvmg

)
, where mg is the weight of the block. For

simplicity, these inertial forces will be added to the components of the weight vector to form

a new resultant vector (RI = mg [khĝ⊥, (1 + kv) ĝ]).

When the block is in force and moment equilibrium and on the verge of motion relative

to the base and back fracture planes, then the block is considered at the limit of equilibrium.

For the block to be on the verge of motion, then the shear forces acting on the fracture planes

must also be at their limit. If a Coulomb sliding law is assumed to describe this limit, then

the shear forces along the fractures are τi = Ni tan(φi). This means that at limit equilibrium,

the reaction forces act at an angle of φ from a line perpendicular to the plane on which they

act. Note that in assuming limit equilibrium, the block acceleration relative to the fracture

planes is zero and thus the inertial forces (FI = −müg) still holds.

Combining pseudo-static forces with the concept of limit equilibrium for blocks formed by

two fracture sets of varying orientation, seismic failure modes and the minimum ground mo-

tion accelerations that initiate block motion can be determined. Very recently, the Sagaseta

(1986) charts were updated to include seismic inertial forces by Yagoda-Biran and Hatzor

(2013) where the seismic force is converted to an equivalent base fracture angle. This equiva-
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lent angle can be added to the base fracture angle to form a new parameter that replaces the

base angle parameter used on the x-axis of the failure chart (Figure 3.3). While this is dy-

namic motion, it should not be confused with initiation of motion under seismic forces. Since

these charts assume rectangular blocks, they have limited applicability to the wider range of

geometries observed in nature and preclude the evaluation of some failure modes. To over-

come these limitations the free body diagrams of non-orthogonal discrete blocks discussed

in the previous section will now be revisited.

Toppling

The first set of free body diagram examines the scenarios where the orientation of RI is

downhill of, but not equal to r3. These scenarios can occur for both base supported and

base and back supported blocks as shown in Figure 3.11. In order for RI to achieve this

orientation, the friction limit along the base fracture plane must not have been reached and

the block has not slid. With RI outside of r3, the reaction force R3 acts at the block toe.

Sum of moments about the block toe indicates that there is a net clock-wise torque meaning

the block’s initial motion will be to rotate about the block toe. The trajectory of the block’s

center of mass follows a circle centered at contact 3 with a radius equal to the length of r3

as shown in Figure 3.11. This motion can lead to the toppling mode of failure depending

on the ground motion magnitude, frequency content, and duration, which will be discussed

in subsequent chapters. The toppling mode of failure occurs when the block overturns and

does not return to its original static position.

Confined Toppling

The blocks drawn in Figure 3.11 depict blocks formed by fractures with γ <= 90. As

discussed previously, when γ > 90 the blocks are in a confined scenario where reaction forces

act at the heel (contact 1) and toe (contact 3) of the block as shown in Figure 3.12. Like

the toppling case described above, the torque created by RI creates a tendency for the block

to want to rotate about contact 3. However, with the resistance provided at the heel of the
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Figure 3.11: Pseudo-static toppling failure mode and failure path.

block rotation is resisted. When the block is in limit equilibrium, contact 1 will begin to

slide up the back fracture plane while contact 3 slides out along the base fracture plane.

In order for the block contacts 1 and 3 to slide along the fracture planes as described, the

block must also rotate clockwise hence the term confined toppling (see Figure 3.12). Once

the block has displaced sufficiently such that the heel can no longer make physical contact

with the back fracture, the block will transition into a toppling mode of failure. This loss of

contact occurs when the base of the block is perpendicular to the back fracture plane and

the path of contact 1 is tangent to the back fracture plane. From trigonometry, this scenario

is determined to occur after the block has rotated an angle of 90− γ.

Sliding

The next set of free body diagrams consider the scenarios where the orientation of RI is

between r1 and r3. As before, these scenarios can occur for both base supported and base

and back supported blocks as shown in Figure 3.13. In these scenarios, the friction limit



50

C

r1

r2

r3

r4

RI

R1

R2

φ

φ
path

1

2

3

Figure 3.12: Pseudo-static confined toppling failure mode and failure path.

of the base joint has been reached before RI exceeded the orientation of r3 thus averting

toppling. The reaction force R1 acts equal and opposite of RI . The point at which R1

acts can be determined by projecting RI on to the base plane. Since the friction limit has

been reached, R1 is also oriented at an angle of φ relative to the inward normal of the base

plane. Since R1 and RI are equal and opposite, RI is oriented at the same angle φ from the

outward normal of the base fracture plane. Or, relative to W, RI is rotated at an angle of

φ−α counter-clockwise. While sum of the moments and forces are zero, the amount of shear

force on the base fracture plane that can be transmitted to the block by friction is limited to

the normal force multiplied by tanφ. When this frictional force is divided by the mass of the

block, the resulting acceleration is constant. This implies that that the acceleration of the

block will no longer match that of the joint’s acceleration. Relative to the base joint’s frame

of reference, the block will begin to translate down the base plane as shown in Figure 3.13.

This mode of failure is termed sliding. Note, that when the orientation of RI is equal to r3,

that the sum of moments are still zero therefore the block will still only slide.
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Figure 3.13: Pseudo-static sliding failure mode and failure path.

Slumping

The final free body diagram considers the scenario where the orientation of RI is uphill

of r3. This scenario can only occur when static back-support is provided to the block by

the back fracture plane as shown in Figure 3.14. Since back support is required, R2 must

always be positive and non-zero. Considering the block is at limit equilibrium, the friction

limit has been reached, thus R1 and R2 are oriented at an angle φ relative to the inward

normal of the respective planes on which they act. Similar to the sliding case, the sum of

moments and forces are equal to zero, but since the shear forces are limited by friction, the

acceleration of the block will not match the fracture planes’ acceleration thus block motion is

initiated. The block maintains contact with the base fracture plane at contact 1 and since the

block requires back-support it maintains contact with the back plane at contact 2. These

two contacts constitute a kinematic constraint and thus constrain the block to have only

1 degree of freedom. With these constraints the block must also rotate counter-clockwise

causing motion in the curved path shown in Figure 3.14 (i.e. slumping). The constraints
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also allow for the translational degrees of freedom to be related to rotation, thus effectively

reducing the total degrees of freedom in the system to one.

Pseudo-Static Limit Equilibrium Limitations

The following limitations apply to the pseudo-static limit equilibrium evaluations above:

• In comparison to an analysis that considers changing ground acceleration (time history

analysis), the pseudo-static limit equilibrium analysis represents the mode of movement

at the onset of block motion relative to the fracture planes. Describing the changes in

block motion throughout a time history analysis is not provided here.

• The vertical acceleration is assumed to not overcome gravity, thus 1 + kv is assumed

to be greater than zero meaning that the block stays in contact with at least the base

fracture plane and does not eject or jump from the slope.

• These analyses do not provide any indication of displacement or degree of consequences

for slope failure, however these subjects will be discussed in subsequent chapters.
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3.3.3 Pseudo-Static Failure Mode Transitions

In the previous sections, the combinations of possible inertial force orientations relative to

the position vectors were described and shown to indicate the possible pseudo-static modes

of failure. There are two transition points that correspond to the scenarios when RI is

oriented in the same direction as r1 or r3. The orientation of RI relative to the base plane

in these cases is α1 and α3, respectively. Since the sliding mode forms the boundary for each

transition point, the free body diagram for this mode can be used to evaluate each transition

point. As determined before, for sliding, R1 acts at the angle of φ relative to the inward

normal of the base plane and since RI is equal and opposite it acts at the same angle φ

relative to the outward normal of the base plane. Therefore, at the transition points, where

RI has the same orientation as r1 or r3, α1 = φ or α3 = φ, respectively. These transitions

form the boundaries of slumping to sliding and sliding to toppling. In addition to these

transition points, is the scenario where the block undergoes confined toppling. As mentioned

before, this scenario arises when the back fracture plane overhangs the block (i.e. γ > 90) or

when α1 < −α3 < φ.

With these transition relationships, Figure 3.15a is presented which allows the pseudo-

static failure modes to be determined given a known block geometry and joint friction. For

comparison purposes, if the back fracture is not present, the chart would reduce to that

shown in Figure 3.15b where the slumping and confined toppling are no longer applicable.

Note that a line α1 = −α3 in both charts corresponds to rectangular blocks and is equivalent

to the limit equilibrium modes predicted from Figure 3.1 where δ = α3 = −α1. The dynamic

portions of the Hoek and Bray (1977) family of charts is orthogonal to these new charts and

thus not visible.

There are several key observations of this analysis:

• The chart is generic for any block shape since the only geometric information used to

determine these failure modes were the position vectors.
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Figure 3.15: Pseudo-static limit equilibrium failure modes.
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• It is clear from this comparison that rectangular block mode charts are very limited in

the geometries they represent and failure modes they predict.

• Since the angle of the base fracture was not used to determine these transition points,

the angle of the base fracture does not determine the pseudo-static mode of failure.

• The slumping failure mode for statically loaded blocks is only applicable for seismic

loading when the friction angle is greater than α1 otherwise the block will slide or

topple.

3.4 Pseudo-Static Yield Accelerations

For each failure mode identified in Section 3.3.2 and determined from Figure 3.15, a minimum

inertial acceleration can be determined which sets the block into motion. This acceleration

has been determined by previous researchers for sliding (Seed and Goodman, 1964; Newmark,

1965; Goodman and Seed, 1966) and toppling modes (Sagaseta, 1986; Yagoda-Biran and

Hatzor, 2013, among others). For the sake of review and completeness, the derivations

of these minimum inertial acceleration equations are presented below. In addition, the

minimum inertial acceleration required for slumping and confined toppling motion to initiate

is derived for the first time. Lastly, for clarity, the minimum inertial acceleration to initiate

the four modes of failure will be given a unique name.

3.4.1 Toppling

The minimum horizontal inertial acceleration required for a block to lift off its base and

rotate about its toe has been described by Sagaseta and Yagoda-Biran and Hatzor, among

others. This acceleration will be referred to as the static rocking acceleration, kr. When

RI is within the base of the block, rotation about the block toe is resisted by the weight of

the block. As kh increases, the line of action of the reaction force, R1, acting on the base

fracture plane and RI approach the scenario where they pass through contact 3. Ultimately,
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the reaction force from the base fracture plane will act at contact 3 while RI continues to

move beyond (to the right of) contact 3, at which point, rotational motion of the block is

initiated. The value of kh that aligns RI with r3 can be determined by geometry.

kr = kh = (1 + kv) tan(α3 − α) (3.16)

For kh to reach this value, there needs to be sufficient frictional resistance between the base

fracture plane and the block such that sliding does not occur at lower values of kh.

3.4.2 Sliding

The minimum horizontal inertial acceleration required for a block to begin sliding was

brought to mainstream popularity in the civil engineering community by Newmark (1965),

Goodman and Seed (1966), and Seed and Goodman (1964). For sliding systems, this accel-

eration is commonly referred to as the sliding yield acceleration, ky.

In Newmark (1965), a block sliding on a horizontal plane was evaluated. For this level

ground scenario, the normal force N is equal and opposite of W. The maximum sliding

resistance available to the block based on a Coulomb sliding law is τ = N tan(φ) = mg tan(φ).

The horizontal inertial force is counteracted solely by the sliding resistance acting on the

block. Therefore, when the block is at a limit equilibrium state, kh = tan(φ). Because the

frictional force is at a maximum and no more force can be transferred to the block, the

block’s inertial force and yield acceleration will remain constant. Generally this is explained

in terms of FS in which the yield acceleration is defined as the value of horizontal inertial

acceleration which results in a FS= 1. As the value of kh exceeds ky, the block and fracture

planes will have different accelerations resulting in relative movement along the base fracture.

Seed and Goodman (1964) went a step further and evaluated a block acting on an inclined

plane. From their work, the equation for the yield acceleration is

ky = kh = (1 + kv) tan(φ− α). (3.17)
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3.4.3 Slumping

This section presents the determination of the minimum horizontal acceleration to initiate

motion for the slumping case shown in Figure 3.14. Since each reaction force (R1 and R2) is

comprised of two unknowns, magnitude and orientation, there are a total of four unknowns

and thus the system appears to be statically indeterminate. However, as the horizontal

acceleration increases so does the angle of the reaction forces relative to the normal vector

of each fracture plane. When the block is in a limit equilibrium state, the maximum shear

component of each reaction has been reached. For purely frictional behavior this means that

the orientation of the reaction force is also limited and forms an angle of φ relative to the

normal vector of each plane. This assumption reduces the number of unknowns contributed

from the reaction forces to two, making the system statically determinate.

The factor of safety approach described in the sliding section is used to solve for the kh

that would result in a FS= 1. The approach used by Kieffer (1998) to determine the factor

of safety of slumping blocks appears similar but is not. In Kieffer’s analysis the mobilized

friction angle is solved for assuming a fictitious support force and iterating (by changing the

friction angle) until that support force is zero. The factor of safety is then calculated as

the ratio of the tangents of the peak friction angle to the mobilized friction angle. Iteration

is required because Kieffer’s equations were transcendental. If Kieffer’s method is used for

seismic loading, the fictitious force is the inertial force. However, since it is of interest to

determine the critical inertial force to induce motion instead of a factor of safety, an iterative

method is not necessary. Since the block is in limit equilibrium, the orientation of the

reaction forces is fixed. For Coulomb sliding, this orientation is the friction angle. Therefore,

all that is required is to consider kh as a third unknown and use sum of forces and moments

to form three equations that can be solved simultaneously.
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The three equilibrium equations are shown below, noting that the sum of vector forces

contributes two equations.

R1 +R2 +W + khmgĝ⊥ + kvmgĝ = 0 (Sum of forces) (3.18)

ẑ · (r1 ×R1) + ẑ · (r2 ×R2) = 0 (Sum of moments about C) (3.19)

Equations 3.18 and 3.19 can be expanded to expose the scalar unknowns R1, R2, and kh:

R1R̂1 +R2R̂2 + (1 + kv)mgĝ + khmgĝ⊥ = 0 (3.20)

R1ẑ · (r1 × R̂1) +R2ẑ · (r2 × R̂2) = 0. (3.21)

The vector equation, 3.20, can be expanded into the two scalar equations below:

R1(R̂1 · ĝ⊥) +R2(R̂2 · ĝ⊥) + khmg = 0 (3.22)

R1(R̂1 · ĝ) +R2(R̂2 · ĝ) + (1 + kv)mg = 0 (3.23)

Solving Equations 3.21, 3.22, and 3.23 simultaneously results in the minimum horizontal in-

ertial acceleration required to initiate block slumping termed the slumping yield acceleration,

ks:

ks = (1 + kv)
(R̂1 · x̂)(ẑ · (r2 × R̂2))− (R̂2 · x̂)(ẑ · (r1 × R̂1))

(R̂2 · ŷ)(ẑ · (r1 × R̂1))− (R̂1 · ŷ)(ẑ · (r2 × R̂2))
. (3.24)

Simplifying the equation further by factoring out r1 and r2 and multiplying by (1/r1)/(1/r1),

ks = (1 + kv)
r2
r1
(R̂1 · x̂)(ẑ · (r̂2 × R̂2))− (R̂2 · x̂)(ẑ · (r̂1 × R̂1))

(R̂2 · ŷ)(ẑ · (r̂1 × R̂1))− r2
r1
(R̂1 · ŷ)(ẑ · (r̂2 × R̂2))

. (3.25)

The position vectors and magnitudes represent the block geometry while the reaction forces

represent limiting resistance (e.g. ultimate friction angle) on the two fracture planes. Fur-

thermore, from the normalization by r1, it can be seen that the scale of the block does not

influence the slumping yield acceleration. In the end, only the block’s shape and resistance

along the contacts controls the yield acceleration.
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3.4.4 Confined Toppling

This section presents the determination of the minimum horizontal acceleration to initiate

motion for the toppling case shown in Figure 3.12. As was the case with slumping, each

reaction force is comprised of two unknowns, magnitude and orientation, thus there are a

total of four unknowns, meaning the system is statically indeterminate. As kh increases so

does the angle of the reaction forces relative to the normal vector of each plane. When the

block is in a limit equilibrium state, the maximum shear component of each reaction has

been reached. For purely frictional behavior this means that the orientation of the reaction

force is also limited and forms an angle of φ relative to the normal vector of each plane.

As with slumping, this assumption reduces the number of unknowns contributed from the

reaction forces to two. The only difference between this case of confined toppling and the

case of slumping is that the location of the reaction forces is different. The base reaction

force (R1) is now located at the toe of the block and the back reaction force (R2) is located

at the heel of the block.

The yield acceleration for confined toppling can be solved in the same manner as for

slumping. The sum of forces and moment equations are shown below, noting that the sum

of vector forces contributes two equations.

R1 +R2 +W + khmgĝ⊥ + kvmgĝ = 0 (Sum of forces) (3.26)

ẑ · (r1 ×R2) + ẑ · (r3 ×R1) = 0 (Sum of moments about C) (3.27)

Notice that the only differences between equations (3.27) and (3.19) are the cross products.

Since the procedure to solve for the critical kh is the same as for slumping, r1×R2 and r3×R1

is substituted for r1 ×R1 and r2 ×R2 in Equation (3.25) and thus the full derivation is not

presented. This substitution results in the minimum kh required to initialize the confined

toppling failure mode termed the constrained toppling yield acceleration, kct:

kct = (1 + kv)
(R̂1 · x̂)(ẑ · (r3 ×R1))− (R̂2 · x̂)(ẑ · (r1 ×R2))

(R̂2 · ŷ)(ẑ · (r1 ×R2))− (R̂1 · ŷ)(ẑ · (r3 ×R1))
. (3.28)
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Simplifying further as before,

kct = (1 + kv)
r3
r1
(R̂1 · x̂)(ẑ · (r̂3 ×R1))− (R̂2 · x̂)(ẑ · (r̂1 ×R2))

(R̂2 · ŷ)(ẑ · (r̂1 ×R2))− r3
r1
(R̂1 · ŷ)(ẑ · (r̂3 ×R1))

. (3.29)

3.4.5 Interpretation of Yield Equations

Initial Yield Acceleration

Unlike the determination of pseudo-static failure modes, the magnitude of the horizontal yield

acceleration for each failure mode is dependent on the inclination of the base fracture plane.

As Yagoda-Biran and Hatzor (2013) explains, the slope can be thought of as an inertial force

itself. A series of contour plots of the pseudo-static yield equations, (3.16), (3.17), (3.25),

and (3.29) relative to α1 & α3, for friction angles ranging from 30 to 60 degrees are shown

in Figures 3.16 through 3.19. A few trends are noted:

• Equation (3.16) shows a near linear relationship relative to α3, because the tangent

function for small angles can be approximated by the angle itself. This apparent linear

relationship is especially visible with the increase in base angle. As the base angle

approaches α3, α3 − β becomes small.

• Equation (3.17) is the most familiar in earthquake engineering which indicates for any

geometric scenario where sliding controls and when the fracture friction angle and

orientation are fixed, the sliding yield acceleration is constant.

• Equation (3.25) is equal to the sliding yield acceleration near the transition boundary

(α1 = φ) and decreases away from the transition boundary. This equation is non-

linear, demonstrating a minimum near the middle of the α1 = α3 boundary. This

implies that for a slumping block and given friction angle, there is an unique relative

angle and spacing between the base and back fracture planes where the slumping yield

acceleration is at its minimum.
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Figure 3.17: Yield accelerations for φ = 40◦.
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• This observation of a minimum can be rationalized by investigating the effects of chang-

ing α1. As mentioned in Section 3.3.3, when α1 < φ, the sliding mode controls. As

α1 approaches and exceeds φ, support from the back fracture plane is required for

static stability. The increase in the normal force on the back fracture plane reduces

the normal force on the base fracture plane and since shear resistance is based on this

normal force, the same trend occurs. The orientation of the shear resistance on the

base fracture plane is the most productive at resisting horizontal acceleration than that

of the back fracture plane, therefore the transfer of shear resistance from the base to

back fracture plane reduces the overall horizontal resistance of the system. However,

as α3 approaches 90◦, the base fracture plane and back fracture plane approach the

same angle. Ignoring the fact that the block’s volume is also decreasing to zero, in

the limit as α3 approaches 90
◦, the reaction vectors on both planes approach the same

orientation, which is the scenario for the sliding mode of failure, thus ks approaches

ky.

• The lower yield acceleration of the slumping block keeps in step with that of a log-

spiral failure surface (Chang et al., 1984) and multi-block models (Michalowski, 2007).

The interesting connection between these previous results and those of the slumping

block is that they are all systems undergoing back rotations. The previous discussion

regarding the distribution of shear forces on steeper planes provides a clear indicator

why these models behave similarly.

• Since the only controlling factor in determining the failure modes is the orientation of

RI relative to α1 and α3, this criterion is applicable to wide array of fracture conditions.

This includes fractures with shear resistance described by other models (e.g. Barton-

Bandis) or systems with water pressures. For example, if the shear resistance of a

fracture set is determined to be some value τ , then φ in the equations α1 = φ & α3 = φ

in Figure 3.15 is replaced with an equivalent friction angle φeq = τ/N . For a fracture
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set with shear resistance described by φ, C in the Coulomb sense, then,

τ

N
= tan(φeq) (3.30)

τ

N
= tan(φ) +

cL

N
, (3.31)

where L is the block base length and N is the normal force. Given the parallelogram

shape, N = ρgLS1, therefore

τ

N
= tan(φ) +

c

ρgS1

. (3.32)

Substituting for S1,

τ

N
= tanφ+

c

2ρgr1 cos(α1)
= tanφeq. (3.33)

An equivalent friction angle is then

φeq = tan−1

(
tanφ+

c

2ρgr1 cos(α1)

)
. (3.34)

It can be seen in equation (3.34) that α1 or α3 cannot be directly equal to the friction

angle. In this case, the modes become a function of the scale of the block.

• For all failure modes, increasing the base angle reduces the magnitude (PGA) of the

earthquake that induces motion.

• For the toppling, sliding, and slumping failure modes, as the base angle increases and

exceeds the friction angle, the yield equations become negative (white in the figures)

which means that the specific geometry is not statically stable. In the case of confined

toppling, certain geometries remain statically stable even though the base angle exceeds

the friction angle.

Yield Acceleration After Relative Block Movement

Motion of the block relative to the base and back fracture plane can cause changes in the ge-

ometries that existed at the point of limit equilibrium and therefore change the failure mode.
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For the sliding mode, the block moves downhill of the back fracture plane, however since the

resistance to block movement is provided solely by the base fracture plane, this change in

geometry does not result in a change to the yield acceleration. This is the same result as for

blocks traditionally analyzed by Newmark’s method (Jibson, 1993). Reduced yield accelera-

tions associated with block displacement have been considered by some researchers in certain

scenarios such as liquefaction and post peak shear resistance but will not be discussed here.

For cases where the blocks require back-support under static conditions but fail in a

sliding mode under seismic conditions (0 < α1 < φ < α3), the mode of failure can switch

from sliding to slumping. This occurs after the block slides and the ground motion reverses

direction such that the inertia force is oriented up hill, the forces on the block cause it to

rock backward. Since the block has translated away from the back fracture, the block must

rotate past its original orientation in order to make contact with the back fracture plane.

This additional orientation increases α1 and α3 at the same rate. With continued sliding

displacement and increased back rotation, α1 will exceed φ and the slumping mode will take

over.

For the toppling mode, rotation of the block causes α3 and α1 to decrease and thus based

on equation (3.16) the rocking acceleration also decreases. However, if the block does not

topple, the rocking acceleration does not remain in a decreased state as the block ultimately

returns to its initial geometry. Some scenarios can be imagined where the rocking acceleration

would remain reduced without the block toppling. For instance, if debris fell between the

block and the fracture planes as the block rotated forward, the block would be restricted

from returning to its initial geometry and would remain in a rotated state.

When a single block undergoes slumping motion it rotates “backward” causing α1 and

α3 to increase at the same rate. Since r̂1 and r̂2 are dependent on α1 and α3 (and tied to

the rotation of the block), they change orientation. The relationship between the slumping

acceleration and block rotation can be determined by evaluating equation (3.25) with the

vectors r̂1 and r̂2 rotated at various angles, θ from their initial orientations. The rotation

of the block is limited to γ as rotation beyond this point results in the block being oriented
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such that the plane originally in contact with the back fracture is now in contact with

the base fracture plane. In this case, a re-evaluation of the block geometry indicates that

the block will slide. An example of the relationship between rotation and slumping yield

acceleration is shown in Figure 3.20a. Note that the magnitude of rotation that the block can

rotate decreases as the friction angle increases. In addition, the change in yield acceleration

decreases as the back fracture orientation approaches that of the base plane, which at its

limit is the sliding block scenario.

Another scenario can be envisioned where multiple blocks stacked side-by-side, slump, as

typically analyzed by Kieffer. If these blocks are slumping (i.e. rotating backward) at the

same time, then the orientation of position vectors and back reaction force for the leading

block is changing. An example of varying the orientation of R̂2 as a percentage of θ is shown

line in Figure 3.20b where the trailing block is assumed to rotate a fraction of the amount

that the leading block rotates. Notice that the yield acceleration for the leading block in a

multi-block system does not decrease as much as for a lone slumping block. Depending on

the amount of rotation of the back fracture plane, the yield acceleration can actually begin

to to increase, which is generally the case in most complex landslides.

A block with confined toppling motion rotates forward causing α1 and α3 to decrease,

and for the same reasons as for slumping, the orientation of r̂1 and r̂2 also change. Applying

equation (3.29) where r̂1 and r̂2 are rotated by various angles, θ from their initial orientations

results in a decreasing yield acceleration as is shown in Figure 3.21. The block can rotate

forward by a maximum amount of γ − 90 at which time the block has displaced sufficiently

such that it loses contact with the back fracture and transitions to a pure toppling mode.

At this point, a re-evaluation of failure mode indicates that since α3 is already negative

and there is no longer back support, the block changes to the toppling mode. The yield

acceleration instantaneously becomes negative meaning the block is statically unstable. The

block can continue to rotate to a total rotation of 180− γ before the block contacts the base

fracture plane on its outward side.
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Figure 3.20: Slumping yield acceleration (ks) as function of back rotation for single and

multiple slumping blocks.
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3.5 Experimental and Numerical Verification

Verification of the failure mode relationships and yield acceleration equations is performed

through the use of centrifuge experiments and numerical analysis.

3.5.1 Verification by Centrifuge Experiments

Centrifuge experiments were conducted by Applegate and Wartman (2011, 2012, 2013) in

which discrete gypsum blocks of differing geometries were subject to sinusoidal and earth-

quake like horizontal accelerations. Experiments that tested single blocks were selected and

evaluated relative to the analytical failure mode and yield acceleration relationships. The

friction angle of the fractures was estimated based on blocks that were designed specifically to

slide. In test 11, a sliding block, set on a base fracture plane set to 20 degrees, began sliding

at approximately 0.48g’s. Applying equation (3.17), the friction angle is back-calculated to
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be approximately 45.6 degrees. Additional characterization of the blocks are documented in

a experimental study by Smith et al. (2013). Although the Smith study found lower friction

angles for the blocks, the friction angles measured in the centrifuge was deemed to be more

representative of the centrifuge experiments since they were directly measured. The blocks

were assumed to behave rigidly for purposes of the evaluations performed in this section.

Centrifuge tests 1, 2, 3, 4, & 11 were selected for analysis as blocks showed signs of

motion relative to the base fracture plane based on high speed video observations. Two

block shapes were tested, rectangular blocks and parallelogram blocks which were intended

to exhibit toppling and slumping failure modes respectively. The geometries of the toppling

blocks consisted of rectangular shapes while the blocks that were intended to slump blocks

are shown in Figure 3.22. Notice that the slumping blocks that were parallelogram in shape

required one modification of cutting the points of the block to prevent them from breaking

off. The geometry was reported based on the measurements H and B.

For toppling blocks, α3 = tan−1(B/H) and since the block is rectangular, α1 = −α3.

Given the modification to the slumping geometry, S1 and S2 are calculated as follows:

S1 = (H + 0.4 sin(45◦)) sin(45◦) (3.36)

S2 = B. (3.37)

Based on equations (3.4a) and (3.4b), α1 and α3 are calculated as follows:

α1 = tan−1

(
r1x
−r1y

)
= tan−1

(
cot(γ)− S2

S1

csc(γ)

)
(3.39)

α3 = tan−1

(
r3x
−r3y

)
= tan−1

(
cot(γ) +

S2

S1

csc(γ)− 0.4cm

)
. (3.40)

The results of these experiments compared to the predictions of Figure 3.15 are presented

in table 3.1. Excellent agreement was reached for the blocks designed to topple with the

deviations in yield acceleration possibly associated to the precision at which the base of the

blocks could be made flat such that the outside corners of the blocks were the only contact

points with the base fracture plane.
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(a) Toppling blocks with varying aspect ratios that represent tests 1, 2, 3,

and 4 block geometries.

(b) Sliding blocks with varying aspect ratio that undergo sliding in back

supported configuration (represents test 11).

Figure 3.22: Block shapes in centrifuge experiments by Applegate and Wartman (2013). See

Table 3.1.
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Table 3.1: Summary of centrifuge results for single discrete blocks.

Test
B H S1 S2 α1 α3 β Predicted Observed

(cm) (cm) (cm) (cm) (deg) (deg) (deg) yield acc. mode yield acc. mode

1
2.57 4.64 - - -29.0 29.0 20 0.16 topple 0.22 +

− 0.2? topple?

2.57 5.74 - - -24.1 24.1 20 0.07 topple 0.09 +
− 0.2 topple

2

2.57 5.74 - - -24.1 24.1 20 0.07 topple 0.07 +
− 0.2 topple

2.57 5.74 - - -24.1 24.1 20 0.07 topple 0.07 +
− 0.2 topple

2.57 4.64 - - -29.0 29.0 20 0.16 topple 0.18 +
− 0.2 topple

3 2.57 4.64 - - -29.0 24.1 25 0.07 topple 0.08 +
− 0.2 topple

4
2.57 5.74 - - -24.1 24.1 25 0.00 topple 0.00 to 0.05 topple

2.57 4.64 - - -29.0 29.0 25 0.07 topple 0.05 to 0.20 topple

11
2.88 10.68 7.75 2.88 25.4 48.4 20 0.48 slide 0.48 +

− 0.2 slide*

2.90 7.20 5.29 2.90 12.6 54.0 20 0.48 slide 0.48 +
− 0.2 slide*

* Initial block movement was sliding, then when the ground motion reversed direction, the block went

back to a slump-like position as predicted.

The blocks that were initially designed to slump in test 5, actually exhibited the sliding

mode as indicated in Table 3.1. The reasons for this discrepancy is that the chamfering of the

block corner caused the blocks to be constructed with an α1 such that the slumping criteria

(α1 > φ) was not met. In addition, the higher observed friction angle observed between the

block and fracture plane during the centrifuge testing made slumping criteria more difficult

to meet. The sliding, toppling modes and yield accelerations are correctly predicted by the

failure mode chart based on the blocks’ as-built measurements and measured friction angle in

the centrifuge. Although observations of slumping behavior were desired, this test provided

the following insight and verification:
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• Blocks identified to slump by strength reduction analyses for static loading with (0 <

α1 < φ) will actually slide or topple under seismic loading.

• Once these blocks have translated in the sliding mode, they return to a “slump-like”

configuration when the ground motion subsides.

3.5.2 Comparison by DEM (UDEC) Analysis

Since the centrifuge tests could only provide a partial verification of the failure mode chart

and yield equations, an extensive parametric analysis was performed using the distinct ele-

ment method (DEM) as implemented by UDEC Version 5.0. A UDEC model was developed

to verify the failure mode and yield acceleration of single blocks predicted by the pseudo-

static mode and yield equations presented in the previous sections of this chapter. A sample

of the general model geometry is shown in Figure 3.23 which is based on the geometry shown

in Figure 3.7. The base block that forms the base and back fracture planes is modeled as a

rigid block with two surfaces on which the discrete rigid block interacts. To simplify model-

ing, the block is assumed to be a parallelogram. The geometry of the discrete block and the

fracture planes are fully described by specifying the block angles and the base angle. The

parametric study consisted of the array of parameters shown in Table 3.2.

Table 3.2: Range of parameters used in UDEC verification.

Parameter Vector of values

α1 and α3 [-80 to 80, by 10’s]

φ [35, 55]

β [-10, 0, 20]

scale [1 and 2]
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   UDEC (Version 5.00)
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Figure 3.23: Typical UDEC model geometry for parametric study.

UDEC is implemented with rounded corners at all block corners to “smooth” calculations

and model behavior. The rounding of the block was set to 1% of the smallest block length

based on modelling performed by Lanaro et al. (1997). Note that the rounding of the block

corner causes the contact points to be slightly shifted, thus the modeled α1 and α3 are slightly

different than intended. More precise results could be obtained by reducing the rounding

percentage, however, this reduction would negatively impact simulation run times and would

not change the ultimate conclusions of this analysis.

The joint constitutive relationship used in the model is the Coulomb slip model with

cohesion set to zero. A summary of non-default model parameters are shown in table 3.3.

Density does not factor into the failure mode and yield equations, but is a necessary param-

eter to be set in UDEC since density is needed for the equations of motion. In addition,

the analytical solutions assume rigid contact between the block and fracture planes when
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Table 3.3: Fixed parameters used in UDEC verification

Rigid block parameters

Density 2700 kg/m3

Rounding 1.0%

Joint parameters

Cohesion 0

Joint Normal Stiffness 6.56e10 N/m

Joint Shear Stiffness 6.56e10 N/m

the shear resistance is below the limit state. However, since UDEC solves the equations

of motion using springs, joint normal and shear stiffnesses is required, but also does not

significantly influence the results so long as the values approximate relatively stiff behavior.

Pseudo-static loading was simulated by first stepping the model to static equilibrium

under a vertical gravity field and then applying an additional horizontal component to the

gravity field. This method is equivalent to having W oriented vertically and applying kh.

The magnitude of kh was increased in 0.01m/s2 increments. With each horizontal loading

increment the model was cycled to equilibrium where equilibrium was determined when the

unbalanced forces were less than 1.0Newton. When the translational or rotational compo-

nents of displacement became unstable, then the model was halted and the current magnitude

of kh was noted, along with the mode of failure. The mode of failure was determined by

evaluating the shear (τi) and normal (Ni) forces of the i
th contacts. The logic used to detect

the yield points and failure modes is summarized in pseudo code in Algorithm 1. A contact

was deemed to lose contact if the normal force was less than 1 Newton. A contact was

deemed slipping if the shear force at the contact was within 0.5% of yield.
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Algorithm 1 UDEC logic used to detect yield points and failure modes

if contact 2 has lost contact then

if contact 3 is the only contact then

mode← Topple

else if contact 3 is slipping & contact 1 is slipping on base fracture then

mode← Slide

else if contact 3 is slipping & contact 1 is slipping on back fracture then

mode← Confined Topple

else

mode← No Failure

end if

else if contact 1 & 2 are slipping & contact 3 has lost contact then

mode← Slumping

else

mode← No Failure

end if

The failure modes determined from the UDEC simulations are summarized in Figure 3.24

by overlaying the results onto the pseudo-static failure mode chart presented previously in

Figure 3.15. Notice that although slope angle and block scale was varied, it did not control

the mode of failure. Similarly, pseudo-static yield accelerations calculated from the UDEC

simulations are are summarized in Figure 3.25. The relative error of the results are generally

within five percent error with the exception of a few points which are attributed to the

rounded corners. The absolute error of the results are less than 0.02g. The slide and slump

modes have the lowest absolute error because the yield acceleration is controlled mostly

by the frictional resistance on the fracture. UDEC underpredicts the yield acceleration

for slumping and toppling and overpredicts for the confined toppling modes. In addition,
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for confined toppling, a few simulations deviated significantly appearing as outliers. These

deviations are likely a result of the following:

• The tolerance used in the mode detection algorithm to detect slip, rotation, and lift-off

of a block contact.

• The rounding approximation of the block corners used in UDEC that cause the position

vectors to have a slightly different orientation in comparison to the idealized block

model.

• Numerical errors associated with the discrete time stepping scheme in the finite differ-

ence calculations of UDEC .

• The precision settings used in UDEC to detect the creation/deletion of contacts and

initiation of sliding.

This error may be undesirable for this comparison modeling, however for problems encoun-

tered in nature, the rounded edge may provide a better approximation. In these cases where

the corner is rounded, care should be taken when using the simplified block model to cor-

rectly identify the contact points and calculation of the position vectors. Overall, the UDEC

results shown in Figures 3.24 and 3.25 demonstrate excellent agreement and provide confi-

dence not only in the mode and yield acceleration relationships, but in the ability of UDEC

to capture the initiation of block motion relative to the fracture planes.

3.6 Application and Examples

3.6.1 Application of Mode and Yield Criterion

Application of the pseudo-static failure mode and yield acceleration criterion begins with

the task of collecting rock fracture data. A comprehensive procedure for this application is

provided below.
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Figure 3.24: Comparison of predicted failure modes to UDEC verification results.
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1. Collect rock slope fracture data including fracture orientations, dips and spacing.

2. Identify three dominant fracture sets that form release planes and can create discrete

rock blocks.

3. Identify the shape of the discrete rock blocks for the two dimensional approximation.

4. Identify the center of mass of the discrete rock block.

5. Calculate geometric parameters α1 & α3 and r1, r2, & r3. Recall that these param-

eters are relative to the fracture with an orientation (positive or negative) nearest to

horizontal and the orientation of the open face of the slope.

6. Determine pseudo-static failure mode by plotting α1 & α3 on Figure 3.15.

7. Determine pseudo-static yield accelerations using Equations (3.17),(3.16),(3.25), or

(3.29).

The above procedure is easy to apply for joint sets that form parallelograms as the geometric

relationships derived in this chapter can be used, however, the procedure is not limited

to these shapes. Since the failure mode and yield equations were derived based on the

position vectors r1, r2, & r3, then blocks of random polygon shape can also be analyzed by

identifying the three contact points. Different techniques/relationships for determining the

block geometry would be necessary for odd shaped blocks. However, the procedure is limited

to blocks that have three contact points with two intersecting fracture planes.

Programs that can perform a comprehensive evaluation of discrete fracture networks,

could be used to evaluate and identify discrete rock blocks relative to an open slope face and

calculate their potential failure modes and yield accelerations. Simple algorithms could also

be developed for use in geographic information system (GIS) programs to provide a regional

evaluation of seismic block failure modes and yield accelerations. Site specific ground-based
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LIDAR could be used to characterize the jointing in the rock slope and allow for the identi-

fication of specific modes and yield accelerations for discrete rock blocks.

3.6.2 Example 1: Isolated Blocks

The first example demonstrates how to identify pseudo-static failure modes of rock blocks on

a slope is taken from a fractured rock mass and is shown in Figure 3.26a. Two rock blocks are

individually identified and approximated by four-sided polygon shapes. The contact between

the rock block and the fractures are identified as points 1, 2, and 3. The position vectors are

drawn from the center of mass to contacts 1 and 3. A line is drawn from the center of mass

perpendicular to the base fracture. Finally, an inter-fracture friction angle of 40 degrees is

assumed. With this information, the blocks’ failure modes can be determined by plotting

the backward and forward block angles on a failure mode chart with the friction angle set

appropriately. Figure 3.26b shows the failure mode chart with the two blocks indicated on

it. From the chart it can be seen that the failure modes for each of these blocks is likely

toppling. However, notice that the right block is near the boundary between toppling and

sliding. Also, if the friction angle happened to be less than assumed, then the left block

would undergo a sliding failure.

3.6.3 Example 2: Mount Healy Schist Rock Slope

The second example demonstrates how to identify pseudo-static failure modes of rock blocks

on a slope is taken from a slope in Mount Healy, Alaska in a fractured schist and is shown

in Figure 3.27a. The same procedures of identifying and approximating rock blocks used in

the first example are followed for this example. As before, two blocks are identified for mode

analysis. The inter-fracture friction angle is assumed to be 40 degrees. Figure 3.27b shows

the failure mode chart with the two blocks indicated. From the chart it can be seen that

the failure mode for the right block is sliding while the left block is slumping. Similar to

the first example, if the friction angle is lower than assumed, then the right block’s failure

mode would also be slumping. Recall, that since the right block requires back support under
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Figure 3.26: Example 1: Pseudo-static mode determination for isolated blocks.

static forces, even though the block will initially slide in an earthquake, when the block’s

motion stops, it will rotate back against the back fracture in a slump position. After several

cycles of this behavior, the block will be rotated back sufficiently such that in the next and

subsequent cycles of earthquake loading, the block will undergo slumping failure. This mode

path is shown on Figure 3.27b.

3.6.4 Example 3: Variable Rock Mass

The third example is presented, as a simple demonstration, of how this procedure can be used

for a set of fracture data. Assume that the fracture statistics shown in Table 3.4 have already

been determined. The friction angle describing the shear resistance between the fracture

planes and discrete block is assumed to be φ = 40◦. Fracture set 1 is identified as the base

fracture plane since its orientation is nearest to horizontal. For this example, 20,000 random
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Figure 3.27: Example 2: Pseudo-static mode determination for fractured rock slope.
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Table 3.4: Example: Fracture set parameters for variable rock mass.

Fracture Set Parameter Mean Standard deviation

1
Orientation 20.0 5.0

Spacing (or S1) 1.0 0.1

2
Orientation 45.0 5.0

Spacing (or S2) 0.6 0.1

realizations of each parameter based on the fracture statistics are evaluated. The parameters

α1 and α3 are determined by calculating γ (subtracting the orientation of fracture set 1 from

set 2) and then applying Equations (3.15a) and (3.15b). A two-dimensional histogram of the

failure modes determined from α1 and α3 is shown in Figure 3.28a. The mean α1 and α3 for

the data set is indicated by the red dot. Although the mean falls within the sliding mode of

failure, the variability in fracture geometry makes it possible for both sliding and slumping

modes to occur. The histogram is not circular in shape since the distributions are Gaussian

only in γ and S2

S1
.

The yield acceleration of each sample is then calculated and parsed based on the specific

mode of failure. Histograms and cumulative distributions of the yield accelerations for each

mode of failure is shown in Figure 3.28b. Both plots indicate that if all samples are realized

then more slides than slumps would be expected. This would only occur if the horizontal PGA

(HPGA) of an earthquake exceeded approximately 0.4g’s. If the HPGA of an earthquake

was less than approximately 0.4g’s then the analysis suggests that slumps would be the most

abundant failure mode observed in the field.

While different trends would be seen for the geometry of different fracture sets, an inter-

esting implication can be drawn from this specific example. Most earthquake reconnaissance

occurs for large magnitude earthquakes which also typically have large PGA’s. Since the
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Figure 3.28: Example 3: Variable rock mass.
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cumulative plot in Figure 3.28b indicates that the abundance of a failure mode depends

on PGA, then empirical relationships based on earthquake reconnaissance of large earth-

quakes would be potentially biased in their prediction of the dominant failure mode of rock

blocks for specific geometries. Although these trends are interesting, they are not conclusive

since there are additional factors that influence the failure of discrete blocks such as time

dependent behavior that will be further evaluated in subsequent chapters.

3.7 Discussion and Conclusions

The relationships and examples presented in this chapter allow for a substantial expansion

of the understanding of rock block failures during earthquakes. The mode chart presented in

Figure 3.15 expands the identification of potential pseudo-static failure modes for blocks that

includes those formed by non-orthogonal fracture sets. The chart is generic for any block

shape since the only geometric information used to determine these failure modes were the

position vectors. With non-orthogonal fractures, the geometry for the slumping failure mode

is now delineated. In addition, a new static and seismic failure mode, confined toppling, is

identified. Some of the key inferences that can be drawn from this formulation to determine

pseudo-static failure modes include:

• The angle of the base fracture is not needed to determine the pseudo-static failure

mode for blocks on a frictional fracture plane.

• The scale of a block does not contribute to the determination of failure mode or yield

acceleration when the fracture’s shear resistance is described by a friction only relation-

ship. However, this is not the case for blocks having fracture shear resistance that is

best described by friction and cohesion parameters, such as rocks types where fracture

gouge forms or chemical bonding occurs.
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• Although blocks with 0 < α1 < φ require back support and are determined by Kieffer

(1998) to slump under static loading, during seismic loading a subset of these blocks

do not slump and either slide or topple.

• The failure mode for statically determined slumping blocks are not necessarily appli-

cable to blocks under seismic loading.

• Since the only controlling factor in determining the pseudo-static failure mode is the

orientation of RI relative to α1 and α3, this criteria can be applied to other scenarios

where the shear resistance of the fracture planes described by any means or additional

external loading such as water pressures are considered. This task can be made easier

by evaluating the sliding free body diagram at the two transition points to determine

the set of values that best describes the transition points for all modes.

• The orientation of fracture sets relative to an open slope face and the friction angle of

the fractures are the main determinants of the seismic mode of failure.

The lower bound seismic accelerations that initiate block motion relative to the fracture

planes supporting the block were evaluated. The yield acceleration equations for slumping

and confined toppling were derived for the first time. The yield accelerations for toppling,

confined toppling and slumping show a non-linear relationship with their geometry whereas

the yield acceleration for sliding is constant. Between the sliding, toppling and slumping

failure modes, the sliding yield acceleration is always the greatest, however, the confined

toppling yield acceleration can exceed all three. Key inferences drawn from the yield equa-

tions include:

• The pseudo-static modes can change because of slight changes in geometry or friction

angle whereas the yield accelerations are equal at the sliding/slumping, sliding/top-

pling, and sliding/confined toppling transition points. The exceptions to this rule are

the transition points from toppling to confined toppling where a discontinuous change
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in yield acceleration occurs and confined toppling yield acceleration is greater than

toppling yield acceleration.

• Although slumping may resemble sliding in that shearing occurs on the fractures and

it may be tempting to use the sliding yield acceleration as a proxy, there is significant

differences between the two. For example the sliding yield acceleration for a given φ

is the upper bound value for blocks that slump, a similar conclusion as Michalowski

(2007). Once relative block motion takes place, the slumping, toppling, and confined

toppling yield accelerations begins to decrease where as the sliding yield acceleration

remains constant. Slumping, toppling, and confined toppling motion involves rotation

which will make the displacement response dependent on the block’s moment of inertia.

In addition, slumping and confined toppling block follows a curved path whereas the

path for a sliding block is linear. Thus, global displacement of a slumping or confined

toppling block will depend on the non-linearity of the curved path, which itself is

dependent on the geometry of the block.

• Blocks that are predicted to fail in the confined toppling mode and with α3 < 0

(meaning the center of mass overhangs the block toe) fail catastrophically once the

block rotation exceeds 90− γ since the block no longer experiences resistance from the

back fracture plane and is in a precarious position.

• The likelihood of a mode occurring is based on the likelihood of a specific joint orien-

tation, spacing, and open slope face orientation. As different rock types might have

different typical geometries of joint set formation, different types of rocks may have

different dominant modes of failure under seismic loading. For example, in rocks that

typically show columnar jointing, such as basalts the expected modes of failure will be

sliding or toppling depending on the relative spacing of those fractures. In rocks such

as slates that have relatively small fracture spacing and secondary joints at conjugate

angles, slumping and sliding failures would be expected. Geologic locations on a re-



90

gional scale may also pay an important role in the expected failure modes since the

rocks would be subject to similar geologic processes that may cause similar fracture

sets.
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Chapter 4

DISPLACEMENT RESPONSE OF TOPPLING ROCK BLOCKS

Rock slope failures have contributed greatly to the economic and human loss experienced

during seismic events throughout the world. Accounts of these spectacular events have been

documented and evaluated throughout the literature (Cluff (1971); Plafker et al. (1971);

Wilson and Keefer (1983); Jibson et al. (2006); Keefer et al. (2006); Aydan et al. (2009);

Lanzo et al. (2010); Alfaro et al. (2012); Massey et al. (2014), among others). A database

of earthquake induced landslide failures compiled by Keefer (1984), and reinforced by others

(Rodŕıguez et al., 1999; Keefer, 2013), clearly indicates that failure modes, observed in the

field following earthquakes, include sliding, toppling, and slumping. Rock fall failures experi-

enced during the recent (2010 to 2011) sequence of earthquakes in Christchurch, New Zealand

highlights the magnitude of destruction to the built environment and forced abandonment

of a large area of settled land (Massey et al., 2014).

Methods for seismic triggering of rock slope failures rely on charts for rectangular blocks

that are applicable to only sliding and toppling modes (Yagoda-Biran and Hatzor, 2013) and

was expanded for irregularly shaped blocks applicable to four failure modes (sliding, toppling,

slumping, and confined toppling) in Chapter 3. Simplified, seismically-induced displacement

methods, used to evaluate rock slope failure scenarios in a performance-based earthquake

engineering (PBEE) framework, are commonly limited to a sliding block that is used to

represent all modes (Jibson, 2011). However, the toppling mode of failure fundamentally

differs from sliding block models in several ways. First, the toppling mode involves rotation

of the rock mass while the sliding model is translational. Second, the sliding block model is

used to assess damage potential based on accumulated displacement; however, the response of

a typical toppling block is expected to result in failure or relatively no movement. Lastly, the
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rotational response of a rock is expected to be dependent on the size and contact conditions

of the rock.

In this chapter, the well-researched rocking block model is modified and applied to the

toppling of rocks slopes during earthquakes. Rocking block equations are re-derived with

reference to the critical acceleration that initiates toppling. The assumptions made in deriv-

ing the equations of motion are evaluated relative to centrifuge testing. Parametric analyses

are performed and consist of the excitation of a broad range of slumping block geometries by

527 unique recorded earthquake ground motions from the Pacific Earthquake Engineering

Research Database (PEER) database. The results of a parametric study which considers

varying block shapes subject to horizontal and vertical earthquake ground motions are pre-

sented. Relationships in the literature for rock block toppling under simplified loading are

shown to be representative of block behavior when subject to earthquake ground motions by

utilizing the mean period (Tm) and intensity measures such as peak ground velocity (PGV)

of the earthquake. The results of this parametric study are used to statistically predict the

failure of slumping blocks based on basic ground motion parameters (PGA, PGV, PGD,

Tm) and block and joint interface characteristics. A new relationship is presented that seg-

regates the block and earthquake parameters giving rise to a probabilistic state parameter.

This parameter can be used to predict the likelihood of rock block toppling failure during

a given earthquake. The characteristics of the ground motion acceleration pulses that lead

to overturning are discussed. A simple chart-based method and equations are presented for

the evaluation of seismic rock block toppling failures. Finally, this method is used to ex-

plore and offer potential explanations for observations of rockfall during the 2011 Canterbury

earthquake sequence.

4.1 Seismic Rock Block Toppling Review

In this section the reader is presented with a summary on the current literature of predicting

rock toppling during seismic events. Detailed review of key aspects of the literature will be

provided throughout the chapter when necessary.
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4.1.1 Rocking Blocks

As shown in Figure 3.4, it is common to find blocks on slopes that are bounded by other

blocks and thus they must fail by toppling forward (assuming another mode of failure does

not control). This forward toppling failure mode is one of the primary failure modes for the

generic rocking block and has been extensively researched. This existing research forms a

fundamental basis of this chapter and the evaluation toppling of rock blocks under seismic

loading.

A mass in contact with a plane at two distinct points (i.e. a rocking block) represents

a system encountered in many branches of engineering and architecture. The rocking block

literature is relatively mature, indicated by the use of these systems in Japan in 1881 with

the desire to back-calculate the peak ground acceleration (PGA) for earthquakes based on

overturned tombstones (Ishiyama, 1980). Examples of some of these systems include mechan-

ical equipment (Makris and Konstantinidis, 1998), museum pieces (Di Egidio and Contento,

2009), ancient structures (Hinzen, 2009), water towers (Housner, 1963), and precarious rocks

(Brune et al., 1996), among others. Many researchers (e.g. Housner (1963), Aslam et al.

(1978), Yim et al. (1980), Ishiyama (1982), Hogan (1989), among others) have shown by

analysis and experiment that the response of the rocking block is sensitive to its physical

characteristics and initial conditions, which often gives rise to complex non-linear and even

bifurcating behavior.

Forward Toppling by Simple Pulse Ground Motions

Rocking blocks have been evaluated throughout the literature for simplified (sinusoidal) and

complex ground motions. Solutions to these problems are obtained either by numerical

integration or closed-form methods of the linearized equation of motion. However, lineariza-

tion introduces error into these solution and can significantly effect the outcome (Allen and

Duan, 1995). Results of these analyses have been interpreted using techniques ranging from

statistics (Yim et al., 1980), dynamical chaos theory such as state planes and Poincaré maps
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(Hogan, 1989), approximation with simplified ground motion pulses (Makris and Konstan-

tinidis, 1998), characterizations with a rocking spectrum (Makris and Konstantinidis, 2003),

evaluating “resonating” input motions to maximize energy input (Dejong, 2009), integrating

earthquake ground motions (Gelagoti et al., 2012), and parametric experiments (e.g. Aslam

et al. (1978), Wong and Tso (1989), Winkler et al. (1995), Taniguchi (2004) and Peña et al.

(2008)).

For the closed-form, linearized equations of motion, several pulse-like dynamic loadings

have been considered. Single cycle, half and full sine pulse motions are the most prevalent

throughout the literature. One of the first to consider the half sine pulse loading was Housner

(1963) who incorrectly assumed (Shi et al., 1996) that failure occurred by the end of the pulse.

Anooshehpoor et al. (1999) described the boundary of when rocking failure occurred relative

to the end of the pulse. Up to this point all concentration had been paid toward the minimum

acceleration required to overturn a block, which required rocking behavior of the block. The

boundaries of minimum acceleration to induce failure by either forward toppling or rocking

were shown by Zhang and Makris (2001). They showed that the forward toppling mode had

a higher critical toppling acceleration than for block rocking.

Housner (1963) evaluated ground motions with a sine pulse shape, while Yim et al.

(1980) evaluated rectangular pulses. Both were later shown to have incorrectly characterized

the critical toppling acceleration. The correct solution to the half-sine pulse loading was

presented by Shi et al. (1996). This was followed by the correct solution to the full-sine pulse

(Anooshehpoor et al., 1999). The list of solutions for pulses was expanded by Makris and

Roussos (2000) to include other cycloidal motions (using hyperbolic trig functions) along

with the sine and half-sine pulses. The solutions for the full sine and half sine pulses were

again studied by Dimitrakopoulos and DeJong (2012) however, this time by using exponential

functions. Finally, Voyagaki et al. (2013b) introduced lobe type pulses which could represent

a wide range of pulse shapes from triangular to full square pulses.
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Toppling From Earthquake Ground Motions

Substantial research effort has also been applied toward the toppling of rocking blocks by

earthquake ground motions. The chaotic and sensitive nature of the rocking block’s re-

sponse has been well documented (Yim et al., 1980; Hogan, 1989; Allen and Duan, 1995,

e.g. ) severely hampering the use of deterministic analyses. However, when viewed from a

probabilistic point of view and evaluating many earthquake loadings, trends begin to emerge

and probabilistic predictions can be attempted, although they are still imprecise (Yim et al.,

1980).

A probabilistic view was taken by Purvance (2005) who took a statistical look at precar-

iously balanced rocks (PBR’s) by executing a large number of simulations of various block

sizes and synthetic earthquake motions with carefully controlled characteristics. This re-

search showed trends of PGA and PGV relative to block shape. Others have also shown

general trends with ground motion intensity measures like PGA, PGV, Arias Intensity (Im),

and cumulative absolute velocity (CAV) (Sorrentino et al., 2006; Gazetas et al., 2012).

4.1.2 Precariously Balanced Rocks

In the study area of paleoseismology, toppling blocks have been utilized for the purpose

of estimating the characteristics of past ground motions. This concept was introduced by

Brune et al. (1996) who hypothesized the concept of using the rocking block model to evaluate

precariously balanced rocks of a known age found in select geologic regions to be an indicator

of the likelihood of earthquake accelerations. Subsequently, Brune and his research group

expanded the rocking block model understanding and applied it to precariously balanced

rocks (i.e. asymmetric blocks on an oscillating inclined plane) (Shi et al., 1996; Anooshehpoor

et al., 1999; Anooshehpoor and Brune, 2002; Anooshehpoor et al., 2004; Purvance, 2005).
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4.1.3 Rock Slope Engineering

For static evaluation of block stability, the most commonly used charts to determine toppling

failure are those by Bray and Goodman (1981) shown in Figure 4.1a. For seismic triggering

evaluation, Yagoda-Biran and Hatzor (2013) adapted these chart solutions by converting

earthquake ground accelerations into a pseudo slope angle which could then be used in

combination with static parameters to predict the dynamic mode of failure of a rectangular

block (Figure 4.1b). In Chapter 3 a new chart (Figure 3.15) was presented to allow for

the determination of seismic failure modes of various two dimensional (2D) block shapes.

However, the charts in Figure 4.1 are limited to a pseudo-static understanding (i.e. triggering)

of block toppling by earthquake ground motion and are not capable of making a prediction

of whether a specific ground motion would result in a toppling failure. In addition, the

size and shape of the block is not accounted for and will be shown to be a significant non-

consideration.

Haneberg (2009) presented an analysis in an effort to understand the interaction of a rock

block shape with the frequency and amplitude content of an earthquake ground motion. This

analysis includes the following assumptions:

1. The motion of the center of mass of a toppling block is of the form θ̈ = A sin(2πft),

where θ̈ is the angular acceleration of the block about its toe, A is the amplitude of

loading, and f is the frequency of loading.

2. The block fails within the first lobe (half cycle) of a sine wave (i.e. time at failure=

1/2f).

3. The block fails when the center of mass is past the toe of the block.

This work showed that the toppling response of a rock block is sensitive to its shape and

the ground motion frequency and amplitude. While the results are intriguing, the under-

lying assumptions require some scrutiny. It is clear from the rocking block literature that
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inclination angle of 101, and the angle ψ was altered by the force F.
A few simulations were performed with different inclination
angles, to make sure results of the simulations are repeated.

4.3. Verification of the mode analysis charts with 3D-DDA
for pseudo-static force

A similar process of verification was performed with the
3D-DDA. The physical and numerical control parameters are
identical to the ones used in the gravitational loading verification
in Section 4.1, and are listed in Table 1. The analyses performed in
this section are listed in Table 6, and results are plotted in Fig. 11.

Table 5 (continued )

ψ(αþβ) ϕ δ Mode predicted by
analytical solution

Mode obtained
by DDA

10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling
30 20 17.22 slidingþtoppling slidingþtoppling
40 20 12.95 slidingþtoppling slidingþtoppling
50 20 7.07 slidingþtoppling slidingþtoppling
60 40 33.02 slidingþtoppling slidingþtoppling
70 50 42.92 slidingþtoppling slidingþtoppling
80 62 53.06 toppling slidingþtoppling
20 10 6.05 toppling toppling
30 20 16.17 toppling toppling
40 20 11.97 toppling toppling
50 20 6.05 toppling toppling
60 40 32.05 toppling toppling
70 50 41.99 toppling toppling
80 62 52.00 toppling toppling
18 30 29.00 stable stable
50 30 29.00 slidingþtoppling slidingþtoppling
40 30 29.00 slidingþtoppling slidingþtoppling
35 30 29.00 slidingþtoppling slidingþtoppling
32 30 29.00 toppling toppling
50 35 29.00 toppling toppling

Table 6
Analytical mode analysis vs. 3D-DDA with horizontal force F.

ψ(αþβ) ϕ δ Mode predicted
by analytical solution

Mode obtained
by DDA

29 80 30.96 stable stable
29.5 80 30.96 stable stable
30 80 30.96 stable stable
30.5 80 30.96 stable stable
30.9 80 30.96 stable stable
31 80 30.96 toppling toppling
31.5 80 30.96 toppling toppling
32 80 30.96 toppling toppling
32.5 80 30.96 toppling toppling
33 80 30.96 toppling toppling
27 28 30.96 stable stable
27.5 28 30.96 stable stable
27.8 28 30.96 stable stable
28.2 28 30.96 sliding sliding
28.5 28 30.96 sliding sliding
29 28 30.96 sliding sliding
60 40 30.96 toppling toppling
60.5 40 30.96 toppling toppling
61 40 30.96 toppling toppling
61.5 40 30.96 toppling toppling
62 40 30.96 toppling toppling
62.5 40 30.96 toppling toppling
63 40 30.96 toppling toppling
63.5 40 30.96 slidingþtoppling slidingþtoppling
64 40 30.96 slidingþtoppling slidingþtoppling
64.5 30 30.96 slidingþtoppling slidingþtoppling
65 30 30.96 slidingþtoppling slidingþtoppling
65.5 30 30.96 slidingþtoppling slidingþtoppling
55 30 30.96 sliding sliding
55 30 30.54 sliding sliding
55 30 30.11 sliding sliding
55 30 29.68 slidingþtoppling slidingþtoppling
55 50 19.80 toppling toppling
20 21 20.30 toppling toppling
20 21 30.96 stable stable
20 21 40.03 stable stable
20 21 50.19 stable stable
20 21 60.11 stable stable
20 21 71.57 stable stable
20 19 20.30 sliding sliding
20 19 30.96 sliding sliding
20 19 40.03 sliding sliding
20 19 50.19 sliding sliding
20 18.9 60.11 sliding sliding
20 19 71.57 sliding sliding
20 80 20.30 stable stable
30 80 30.96 stable stable
40 80 40.70 stable stable
50 80 50.19 stable stable
60 80 60.40 stable stable
70 80 70.35 stable stable
20 80 19.80 toppling toppling
30 80 29.25 toppling toppling
40 80 39.35 toppling toppling
50 80 49.24 toppling toppling
60 80 59.53 toppling toppling
70 80 69.68 toppling toppling
10 5.8 6.84 sliding sliding
20 6 6.84 sliding sliding
30 16 16.70 sliding sliding
40 26 26.57 sliding sliding
50 35 35.75 sliding sliding
60 43 43.53 sliding sliding
70 54 54.46 sliding sliding
80 63 63.43 sliding sliding
10 8 6.84 slidingþtoppling slidingþtoppling
20 8 6.84 slidingþtoppling slidingþtoppling
30 17 16.70 slidingþtoppling slidingþtoppling
40 27 26.57 slidingþtoppling slidingþtoppling
50 36 35.75 slidingþtoppling slidingþtoppling
60 44 43.53 slidingþtoppling slidingþtoppling
70 55 54.46 slidingþtoppling slidingþtoppling
80 64 63.43 slidingþtoppling slidingþtoppling
20 10 7.07 slidingþtoppling slidingþtoppling

Fig. 10. Results of 2D-DDA verification analysis with the analytical solution, with
the application of external force.
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(b) Seismic: rectangular (Yagoda-Biran and Hat-

zor, 2013)
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Figure 4.1: Existing failure mode charts for rock blocks
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Assumption 1 (the center of mass acceleration as equal to a sinusoidal ground acceleration)

is incorrect. The inertial acceleration that the block feels as the slope accelerates produces a

torque on the block about its toe, thus motion of the center of mass is the result of angular

motion. Angular motion in this case would be a function of the ground motion, the moment

arm from the block toe to the center of mass, and the moment of inertia about the toe.

Assumption 2 ignores the fact that the block can have momentum at the end of the first

half cycle which can cause the block to continue on the path to overturning even though the

ground motion has ceased (Shi et al., 1996). Assumption 3 is correct for the ground motion

considered which has only a single lobe of perturbing acceleration. However, outside this

specific case, such as for earthquake ground motions, this assumption incorrect (Voyagaki

et al., 2013b).

4.2 Rocking Motion Relative to Toppling Yield Acceleration

In this section, the traditional equations of motion for a toppling block will be rewritten in

terms of the toppling yield acceleration kr. Writing the equations of motion in this fashion

allows for a more intuitive visualization of rocking block behavior. In addition it allows for

an analogy to be made to the Newmark sliding block model when this model applied to

toppling rock blocks.

Consider a two-dimensional, asymmetric, rigid mass on a rigid, oscillating plane inclined

at an angle β from horizontal (Figure 4.2). The mass is in contact with the plane at two

points, O1 and O2. Let r1 and r2 be the respective vectors from O1 and O2 to the center of

mass. The angles formed by r1 and r2 with respect to a vertical plane passing through each

base point are ψ1 and ψ2, respectively. Clockwise, in-plane rotation of the block about point

O2 constitutes positive angular displacement, +θ, while counter-clockwise rotation about O1

constitutes negative angular displacement, −θ.

The forces acting on the block include the gravitational force (mg), the horizontal in-

ertial force (khmg), and the vertical inertial force (kvmg). These forces, normalized by the

gravitational force, are shown in Figure 4.3. The frictional force acting between the plane
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Figure 4.2: Asymmetric mass in contact with an inclined plane at two points, O1 and O2.
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Figure 4.3: Free body diagram of a mass on an accelerating inclined plane rocking about

point O2.
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and block is omitted since the force passes through each edge of the block and would result

in zero moment.

For simplicity, the subscript i will be used to refer to rotations about point Oi and

block properties and motion relative to the i -th rocking corner (Shi et al., 1996). Assuming

zero vertical ground motion and no sliding between the plane and the block, block rocking

motion will begin when the horizontal inertial acceleration coefficient, kh = ühg/g exceeds

the horizontal pseudo-static rocking acceleration coefficient, krsi. This acceleration can be

defined by the block geometry such that krsi = tan(ψi). Considering further the inertial

reaction to the vertical inertial acceleration coefficient, kv = üvg/g, rocking motion will

begin when kh exceeds (1 + kv) krsi. For the case where θ = 0, the vector force diagram

shown in Figure 4.4 illustrates these threshold coefficients for rocking on edges 01 and O2.

C

1

kv

r2r1

krs2

(1 + kv)krs2

ψ2

krs1

(1 + kv)krs1

ψ1

Figure 4.4: Force vector diagram illustrating the horizontal pseudo-static rocking acceleration

coefficients for the block in Figure 4.3 where θ = 0.

The left-hand vector force diagram in Figure 4.5 resulting from the free body diagram in

Figure 4.3 allows for the traditional equations of angular motion to be derived as

Iiθ̈ = mgkh︸ ︷︷ ︸
horizontal force

ri cos(ψi − θ)︸ ︷︷ ︸
moment arm

−mg(1 + kv)︸ ︷︷ ︸
vertical force

ri sin(ψi − θ)︸ ︷︷ ︸
moment arm

(4.1)
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(ψ2 − θ)

Figure 4.5: Force vector diagram illustrating the horizontal rocking acceleration coefficient

for the block in Figure 4.3 rocking about point O2.

where Ii is moment of inertia about point Oi and θ̈ is angular acceleration. This equation is

generally rewritten by substituting p2i = mgri/Ii, yielding

θ̈ = p2i kh cos(ψi − θ)− p2(1 + kv) sin(ψi − θ) (4.2)

The parameter p has the units of 1/s and can be thought of as a frequency parameter of the

block (Housner, 1963). Evaluating Equation (4.2) requires solving a non-linear, discontinu-

ous, second order, differential equation. Since a closed form solution cannot be obtained for

this equation, most of the research into rocking blocks have taken the approach to linearize

this equation assuming sin(ψ− θ) ≈ ψ− θ and cos(ψ− θ) ≈ 1 for small angles of ψ resulting

in:

θ̈ = p2i kh − p2i (1 + kv)(ψi − θ) (4.3)

For a block that rocks from edge to edge, Equation (4.3) could also be rewritten for motion

when the block is rotating about O1 by substituting the subscripts. Furthermore, Shi et al.

(1996) went on to derive the behavior of a generic asymmetric block when it transitions

from rocking about O2 to O1 by defining a coefficient of restitution using the conservation
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of angular momentum (as was originally done by Housner (1963)) to relate the angular

velocity before and after impact. The coefficient of restitution will be discussed further in

Section 4.3.1.

Alternatively, the force diagram could be split into two sets of forces that produce zero and

non-zero net torques (or angular acceleration), respectively. To facilitate splitting the forces

into two sets, krsi is examined. As the mass rotates about either base point, it can be seen that

krsi is only applicable when θ = 0. A more general term, instantaneous horizontal rocking

acceleration coefficient (kri), is used to define the horizontal inertial acceleration coefficient

(assuming kv = 0) that produces zero net torque and thus zero angular acceleration acting

on the block for all θ.

kri = tan(ψi − θ) (4.4)

The left side of the force vector diagram in Figure 4.5 is now broken down into two sets

of normalized forces. The first set of forces are W = 1, kv, and (1 + kv)kr2 whose resultant

acts along r2 and thus result in zero angular acceleration. The second set of forces includes

the remaining normalized incremental inertial acceleration force (kinc), which results in non-

zero angular acceleration. Since the equations of rotational motion need only consider the

portion of the force diagram that results in a non-zero angular acceleration, the motion of

the rocking block can now be written in terms of a single force. From the right side of force

vector diagram in Figure 4.5 it can be seen that kinc = kh − (1 + kv)kr2. Accounting for

rocking on either edges, kinc is expressed as

kinc = kh − (1 + kv)kri (4.5)

which creates a non-zero torque of ri × mgkinc. The parameter kri is defined as the state

variable that allows the block behavior relative to the input motion to be visualized. An

alternative equation of motion can now be stated as

Iiθ̈ = mgkinc︸ ︷︷ ︸
Force

ri cos(ψi − θ)︸ ︷︷ ︸
Moment Arm

(4.6)

where ri cos(ψi − θ) will be referred to as the moment arm, Rmom.
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Equation (4.6) has been derived relative to a horizontal force that causes zero torque. In

general, the derivation could be made relative to a force with any particular fixed orientation.

The horizontal orientation was chosen because in the simplified case when there is only

horizontal loading, krsi remains constant. This orientation is familiar and the visualization

described in subsequent sections is more intuitive. If the orientation is not fixed and taken, for

example, at an orientation perpendicular to ri, then the interpretation would be complicated

by a vector that changes orientation since ri varies with θ. It is noted that by multiplying

the right hand side of Equation (4.6) by cos(ψi − θ)/ cos(ψi − θ) and rearranging terms it

can be shown to be equivalent to the well-established Equation (4.1).

4.2.1 Interpretation of Perturbing and Restoring Forces from kri

In order to understand the behavior of a rocking block it is important to know whether the

net forces are acting on the block as either perturbing or restoring forces. A perturbing

and restoring force is one that produces θ̈ away from and toward the static equilibrium

configuration, respectively. This section is dedicated to understanding how kri allows for

these forces to be interpreted. The relationship of how these two forces lead to or prevent

toppling of blocks is demonstrated by example in subsequent sections.

Of all terms in Equation (4.6), kinc is the only term that may be positive or negative and

thus determines the sign of θ̈ of the block. However, the sign of kinc alone does not give a

direct indication of whether the net force acting on the block at any given time is perturbing

or restoring in nature. To determine the nature of the net force, the sign of kri relative to

kinc needs to be evaluated. When these two parameters (and by association θ̈ and θ) are of

the same sign, then the net force is perturbing and when they are of opposite sign the net

force is restoring.

While a plot of θ̈ and θ versus time could reveal the nature of the net force, it is more

instructive to plot kh and (1 + kv)kri versus time because the block response can be directly

compared to uhg. The usefulness of interpreting the rocking block response in this manner

is demonstrated through three loading and geometric cases. For reference, the equations of
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motions for all examples in this section were solved using a forward Euler finite difference

method along with a predictor-corrector method to resolve block impacts. Although more

rigorous methods of numerical integration can be used for more accuracy, they are not

necessary to demonstrate the use of the state parameter and methods of interpretation

described in this paper.

Case 1: β = 0, uhg = f(t) and uvg = 0

For simplicity, assume that ühg(t) =
1
2
sin(4πt), üvg(t) = 0 and β = 0. Since it was assumed

earlier that there is no sliding between the block and the plane, kh = uhg. Also, since kv = 0,

then (1+ kv)kri = kri. Figure 4.6 shows a plot of kh and kri versus time. It is also useful, for

reference, to plot a horizontal line at the constant value of krs for each block edge. Recall that

when the block is rocking on edge O2, kri is positive and when the block is rocking on edge

O1, kri is negative. Rocking motion begins when kh first exceeds the bounds of krsi, which,

for this example, happens to be in the positive direction. As implied by Equation (4.5),

when the block is on edge 2 and kh > kri, kinc is positive and the net force is perturbing.

When kh < kri, kinc is negative and the net force is restoring. This interpretation is mirrored

about the x-axis when the block is rocking on edge O1. This means when kh < kri, kinc is

negative and the net force is perturbing and when kh > kri, kinc is positive and the net force

is a restoring force.

As indicated by Equation (4.4), kri is dependent on θ and ψi, therefore, it provides an

analog to θ and its time derivatives. The relative magnitude of θ and Rmom can be estimated

based on the deviation of kri relative to krsi. When the block is in the seated, equilibrium

position, kri = krsi meaning that θ = 0 and Rmom is at its minimum. As the block rocks

away from the equilibrium position, |kri| decreases and thus |θ| and Rmom increase. When

kri = 0 then θ has reached the toppling angle, ψi, and Rmom is at its maximum. If the

block does not topple then the block begins rocking back toward the equilibrium position.

In this case, kri begins increasing until its value is equal to krsi at which point the block will

undergo a rocking impact and switch rocking edges. These relationships are also shown in
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Figure 4.6: Comparison between kh and kri for a symmetric block on a level plane. The

motion of the plane consists of ühg(t) =
1
2
sin(4πt) and üvg(t) = 0.

Figure 4.6. From these relationships, a sense of the magnitude of the perturbing or restoring

torque, kinc×Rmom, and thus θ̈ can be visualized by interpreting the relative magnitudes of

kinc and Rmom.

Parameter kri is always non-zero, except when the block reaches the critical toppling

angle, ψi, at which time kri = 0 where the block is in a precarious position and will most

likely topple. However, there are two cases in which kri can equal zero or appear to equal

zero, but the block does not topple. The first case is shown toward the right hand side of the

plot in Figure 4.6 and corresponds to a rocking impact as the block switches rocking edges.

At this moment the plot of kri forms a vertical line and appears to momentarily equal zero,

which is not the case. This vertical line is actually a discontinuity point in the plot of kri and

the value of kri remains non-zero but switches sign. The second, and more rare case, was
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reported by Plaut et al. (1996) where the block may rotate beyond ψi momentarily without

the result of toppling. Although not shown in Figure 4.6, in this scenario the plot of kri

would momentarily cross and then return about the x-axis (acceleration= 0) at subvertical

and likely near horizontal orientations. A plot of this nature would likely take the form of

an extrema in a parabolic function.

As indicated previously, kri is also an analog for the time derivatives of θ. The general

slope of kri is related to θ̇. This is informative in providing a relative indication of θ̇ through-

out rocking and more importantly, before and after an impact. The coefficient of restitution,

e, can be visualized as a change in slope of θ̇ before and after impact. For e = 1, θ̇− = θ̇+,

while for e < 1, θ̇− > θ̇+, where the superscripts “−” and “+” indicate the moments before

and after impact, respectively. As will be discussed in later sections, understanding θ̇ before

and after impact is crucial in explaining the toppling behavior of blocks.

Case 2: β = 0, uhg = f(t) and uvg = f(t)

This next example explores the effects of a vertical motion which can be clearly seen in

Equation (4.5). The vertical motion essentially acts to create an effective, instantaneous

change of kri or for θ = 0, krsi. A change in krsi means that the block takes on instantaneous

attributes of broader or more slender blocks throughout the vertical motion. The effects of the

vertical motion are illustrated in Figure 4.7, where the rocking response of a symmetric block

to horizontal and vertical earthquake motions is shown. The horizontal (North) and vertical

ground motion were taken from station TCU075 of the 1999 Chi Chi, Taiwan earthquake

(PEER, 2010). Parameters kh, kri, and (1 + kv)kri are plotted versus time to allow for

interpretation of Rmom, θ, and θ̇ and kinc, respectively, as described in previous sections. An

effective increase in |kri| reduces |kinc| if it is a perturbing force and increases |kinc| if it is a

restoring force. In this example, before and after impact, the effective |kri| is increased by the

upward vertical ground motion to a point higher than the original krsi which creates a larger

restoring force than would have occurred without vertical motion. Of course, the opposite

could have occurred if a downward vertical motion had occurred at the time before and
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Figure 4.7: Demonstrating the effects of vertical ground motion for a symmetric rocking

block on a level plane. The motion of the plane is based on the 1999 Chi-Chi earthquake.

after impact. Ostensibly, the influence of vertical motion does not appear to be significant

and kri appears to be a reasonable approximation for (1 + kv)kri. While it may seem to be

a reasonable approximation, had the vertical motion been different, it would have caused

dramatically different behavior by changing the instance and quantity of impacts. These

differences would change the path of behavior. The vertical ground motion can now be seen

as a another source of non-linearity in which the timing of the interaction between kri with

kh, and therefore the overall response, is altered.

Case 3: β 6= 0, uhg = f(t) and uvg = 0

This final example examines the scenario where the block is on an inclined plane and ühg =

sin(t). From Figure 4.2, ψi is dependent on β. With any non-zero β, krs1 will no longer
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Figure 4.8: Interpreting the effects of a symmetric block rocking on a sloping plane (β = 3◦).

The motion of the plane consists of ühg(t) = sin(t) and üvg(t) = 0.

be equal in magnitude to krs2 and kinc and kri will be substantially effected. Figure 4.8

illustrates the effect of slope angle on the analysis of a rocking block. For rocking in the

uphill direction, krs and kr are increased relative to the level ground scenario (β = 0). During

a given ground motion, the larger kri in the uphill direction will reduce the magnitude of

perturbing forces and increase the magnitude of restoring forces, along with reducing uphill

rotations. The opposite effects are seen for downhill rotations as a result of a reduced kri

relative to the level ground scenario.

4.2.2 Influence of Moment of Inertia, Ii

Makris and Konstantinidis (1998) made the observation that small scale blocks (small Ii) are

sensitive to peak ground accelerations, while large scale blocks (large Ii) are more sensitive
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Figure 4.9: Influence of block scale on rocking response, Ii vs kri.

to incremental ground velocity. This can be explained by examining Equation (4.6) where it

can be seen that θ̈ is inversely proportional to Ii. The influence of Ii can be seen in kri in the

form of an increasingly “muted” response to loading as Ii increases. This muted response

can have many secondary consequences on the system such a decrease in θ for many systems

for a given loading. The effects of scale are shown in Figure 4.9 where a higher Ii decreases

the rocking period and causes impacts to take place sooner. With broadband motions, like

earthquakes, a higher Ii can work for either stability or instability as it tends to preserve

the current state of θ̇. If the block system is near the static equilibrium position and moving

slowly (small |θ| & |θ̇|) (a common position since nearly all practical systems analyzed start

at static equilibrium) then a large Ii will tend to keep the block stable. If the ground motion

loading causes the block to accumulate significant rotation (high |θ|) with slow motion (low

|θ̇|), then the large Ii tends to hold the block in a sensitive position where a small change
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Figure 4.10: Earthquake example: Rectangular block with aspect ratio (base/height)=0.1,

height=10.0m, β = −1.5◦, input motion=1999 Chi Chi earthquake.

in θ could result in toppling. When the block manages to accrue significant speed (high |θ̇|)

toward toppling, a large Ii will mute θ̈ which reduces the tendency of the block to reverse

direction and avoid a toppling result. Thus, a large Ii value serves, in effect, as a non-linear,

low-pass filter of the ground motion. For small Ii, acceleration pulses that exceed krsi result

in high |θ̈| and |θ̇|, which often results in near instantaneous overturning if the pulse is of

sufficient duration.

4.2.3 Visualizing Behavior of Earthquake Ground Motion with kri

An application of the use of kri to visualize and explain the behavior of a rocking block

on an inclined plane with an earthquake input motion is shown in Figure 4.10. In this

case, a slender rectangular block with an aspect ratio (base/height) equal to 0.1 and height
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equal to 10 meters is modeled on a plane inclined at an angle of β = −1.5◦. With β < 0,

edge 1 is now on the downhill side of the block, thus krs1 ≈ −0.074 and krs2 ≈ 0.127.

As with the examples before, horizontal lines are plotted at these krsivalues. The inclined

plane is accelerated according to the TCU075-N component of the 1999 Chi Chi earthquake.

Assuming no sliding between the block and the plane, kh equals the input time history applied

to the plane. The equations of motion are solved, then the time history of kh and kri are

added to Figure 4.10. According to the rules applied in the previous sections, interpretation

of the block rocking response can now be made.

Rocking of the block begins with an inertial acceleration pulse in the downhill direction.

kinc resulting from this acceleration pulse produces a perturbing force that is relatively small

and of short duration. Consequently, the block rocks back and forth at high frequency and

low amplitude, until the next downhill kh that exceeds krs1 arrives and instigates a more

substantial rocking amplitude. For the next five seconds of ground motion, the block’s

maximum downhill θ changes little with small perturbing forces and restoring forces that are

similar to those under only the influence of gravity. At 32 seconds, there is a set of kh pulses

that exceed kri, which increases θ and prolong the rotated state of the block. In the next five

seconds, the maximum rotation of the block in both the downhill and uphill directions builds

more rapidly, primarily under the influence of large restoring forces. At about 36.5 and 38.5

seconds, the block is rotated in the uphill direction and the restoring forces are larger than

those caused by gravity. These large restoring forces create large |θ̇| before the impacts.

As the block rotates in the downhill direction at about 37.5 and 40.5 seconds, the restoring

forces are smaller than those caused by gravity resulting in large |θ|. This combination of

events leads to an increase of |θ̇| through the impacts and larger overall |θ|. As the block

goes through the last impact before toppling, it can be seen that the previous |θmax| and

|θ̇−| are relatively large compared to previous impacts. After the last impact, there is a mix

of small restoring and perturbing forces that result in high frequency θ̈ in both directions,

which do little in the way of reducing |θ̇| and thus the block overturns.
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Figure 4.11: Earthquake example: Rectangular block with aspect ratio (base/height)=0.1,

height=0.5m, β = −1.5◦, input motion=1999 Chi Chi earthquake.

This case illustrates the mechanisms leading to the overturning of the block. The per-

turbing forces serve to overcome the first criteria of block overturning, that being exceeding

krsi to begin the block rocking. Once rocking, the influence of the restoring forces take over to

increase the rocking amplitude and rocking speed of the block with each subsequent impact.

The block rocks until the combination of restoring and perturbing forces in the downhill

direction produce an insufficient θ̈ to reduce and reverse θ̇ and thus the block overturns.

When this example is rerun for a smaller scale block with a height = 0.5 meters (Figure

4.11), toppling occurs primarily as a result of the initial inertial forces that produce large

angular acceleration because of the reduced moment of inertia of the block.

The result of this previous example may seem counter intuitive at first, but can be

understood by envisioning a free rocking block with different initial conditions. If the initial
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conditions of a free rocking block are set with a large enough non-zero θ or θ̇, the restoring

force (gravity) will not be sufficient to prevent the block from overturning in the opposite

direction. Each rock of the block throughout the ground motion can be thought of as

essentially a small free rocking experiment with an initial θ or θ̇ and restoring force that is

more or less than the static gravitational restoring force.

4.3 Model for Toppling of Rock Blocks From Slopes

The equations of motion derived in the previous section are applicable to a 2D rigid block

that rocks back and forth on two corners. As mentioned in Section 4.1, in the realm of

paleoseismicity, these equations have been used to evaluate precarious (free-standing) rock

blocks (PRB’s) in nature to estimate ground motion parameters of paleo-earthquakes. As

Brune et al. (1996) discusses, PRB’s are a relatively special formation that occur in arid

regions that have been geologically “quiet” (e.g. no glaciation, earthquakes, and avalanches)

for at least 10,000 years. While the use of PRB’s is useful for paleoseismology constraints on

earthquakes, the occurrence of PRB’s in rock slope engineering is not very common. A more

common configuration is that of rock blocks that can not rotate backward or are “seated”

on fractured rock slopes as shown in Figures 3.4 and 4.12.

The motion of a PRB during forward toppling is similar to “seated” blocks albeit with

some key differences. In this section, the full rocking block equations are modified to form

a Toppling Block Model (TBM), derived from the traditional rocking block model, that is

suitable for rock falls that originate from seated blocks toppling forward. Furthermore, the

parameters of these equations are explored in the context of rock block geometries studied

in Chapter 3. Since rock blocks rarely conform to the slender assumption used for rocking

blocks, the non-linear equations of motion are required. These are solved numerically in a

robust manner using event detections to handle the discontinuous nature of the equations.

Furthermore, an algorithm is developed to determine the minimum acceleration to induce

forward toppling failure given loading by an earthquake ground motion. This algorithm will

be used in Section 4.3.1 for simulations of rock block toppling by earthquake ground motion.
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Figure 4.12: Seated rock block that can only rotate forward.

4.3.1 Toppling Block Model Assumptions

The TBM is derived from the rocking block model with additional assumptions in order

to approximate the response of a rock block toppling from a slope face. The additional

assumptions are as follows:

1. The block has been identified by pseudo-static methods (see Chapter 3) to have a

critical failure mode of toppling.

2. The only permissible modes of rigid body motion are rest and rotation about the

downhill corner.

3. If the block does not fail and returns to its equilibrium position, its motion stops (i.e.

the block does not rebound), therefore it only rocks in the forward direction.

4. There is zero interaction and resistance from any neighboring blocks
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The first two assumptions made for the TBM are discussed in more detail below. As a

reminder, the assumptions associated with traditional rocking block model remain:

1. The block and fractures are rigid.

2. Impacts occur instantaneously meaning that the bottom of the block is flat or concave

causing the point of rotation to change instantaneously.

3. Block motion is 2D in-plane rigid body motion with loading in-plane.

4. The block rotates about a point meaning the block corner is not rounded and does not

undergo degradation during rotation.

5. There is zero resistance to rotation about the toe of the block (i.e. a perfect hinge).

Assumption: Rest or Rotational Motion Only

Ishiyama (1982) described various modes of block motion that are possible for a block resting

on a plane, which include:

Rest & Rotation. These modes are allowed.

Slide. The pure slide mode has already been excluded by the assumption that the block

has been identified by pseudo-static methods to topple (krs < ky).

Slide-rotation. During base excitation, when pure rotation is the mode of block move-

ment, the inertial acceleration of the block is not limited and is allowed to increase

(unlike the case of sliding where base isolation occurs). This means that the remaining

block motion that could violate the assumption of pure rocking is that of simultaneous

sliding and rocking. Although one might expect the block to begin sliding once ky is

exceeded, this is not the case. Depending on the ratio of kr to ky, ky to PGA, θ̈, and

θ the block will enter a slide-rock mode as some value of kh greater than ky Sagaseta
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(1986), Shenton III (1996), Pompei et al. (1998), Zhang and Makris (2001), Taniguchi

(2002), and Yagoda-Biran and Hatzor (2013), each describe various combinations of

horizontal and vertical ground acceleration, friction coefficient, block width to height

ratio, and reaction forces to form a criteria of when slide-rock would begin. In general,

the block will enter the slide-rock mode at a ratio of kh to ky of between one and four.

Translation-jump & Rotation-jump. The jump modes, which occur when kv < 0, are

explicitly not analyzed in this thesis.

Assumption: Block Motion Stops Upon Impact With Seat

Obviously, for the rigid blocks shown in Figure 3.4, the block is incapable of rocking back

and forth between its toe edge and heel edge like the traditional toppling block because

of the kinematic barrier of the back fracture. This barrier means that the impact created

by the block returning to its original position is made different by the presence of the back

fracture and thus the continuation of motion before and after impact needs to be reevaluated.

For the traditional rocking block, the block instantaneously transitions from rotating about

one corner to rotating about the other edge. For example from edge O1 to O2 as shown

in Figure 4.2 or vice versa. Housner (1963) showed for rectangular blocks (ψ2 = −ψ1),

that the change in kinetic energy (i.e. ∆θ̇) after the impact can be directly related to the

geometry of the block through conservation of angular momentum and assuming a perfectly

inelastic collision (a smooth transition from edge to edge). The angular velocity after impact

considering only geometry was shown to be

˙θ+ =

(
1− mr2

Icm
(1− cos(2ψ))

)
˙θ− (4.7)

Equation (4.7) always results in a lower post impact angular velocity continuing in the same

direction. Shi et al. (1996) performed a similar analysis for asymmetric blocks showing that

the asymmetric shape of a block changes the reduction of angular velocity depending on the

direction of rocking.
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Considering the block returning to a seated position, the only option for the block to

continue motion is for it to transition from rotating about its toe to rotating about the top

corner in contact with the back fracture. Just before the impact, the velocity vector at the

center of mass, u̇cm, is pointing in toward the seat oriented perpendicular to rtoe/cm, thus

u̇cm = rθ̇. Following the same procedure as Housner, the angular momentum about the top

corner of the block before impact is

H−
tc = Hcm + rcm/top ×mu̇cm (4.8)

H−
tc =

˙θ−(Icm −mr2), (4.9)

where Icm is the moment of inertia about the center of mass. Just after the impact, if the

block attempts to transition to rotating about the top corner, u̇cm will reverse direction,

therefore the angular momentum after the impact is

H+
tc = Hcm + rcm/tc ×mu̇cm (4.10)

H+
tc =

˙θ+(Icm +mr2). (4.11)

From these two equations the angular velocity after the impact is determined as

˙θ+ =

(
Icm −mr2

Icm +mr2

)
˙θ−. (4.12)

For parallelogram shapes, Icm is equal to a fraction of mr2, therefore the numerator will

always be negative. This means that the angular velocity of the block after the impact tries

to rotate the block back into the seat essentially keeping the block pinned into the seat.

Repeating this analysis assuming that the pivot point of the block transitions back to the

toe yields the same result of an angular acceleration in the direction of rotating the block

into the seat. From this logic, it is assumed that the when the block impacts the seat, it will

come to rest.

4.3.2 Toppling Block Model Equations of Motion

With the above assumptions, the toppling block model is developed in the rigid plastic

framework similar to the Newmark sliding block model, meaning that the block remains
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at rest relative to the base until the base acceleration exceeds the rocking criteria. Once

in motion, the block remains in motion as long as the block is rotated away from its static

position (θ > 0). The non-linear equations of motion for a forward toppling block are written

as:

θ̈ = p2 cos(θc − θ) (ühg − (1 + kv)kr) when, ühg > (1 + kv)kr or θ > 0 (4.13)

θ̈ = 0 all other times, (4.14)

where the critical angle θc = ψ = α3 − β and kr = tan(θc − θ). These equations are similar

to the equations for the sliding block model which are

ẍ = ühg − (1 + kv)ky when, ühg > ky or ẋ > 0 (4.15)

ẍ = 0 all other times, (4.16)

where x is relative to the base. However, there are few differences to note:

1. The critical acceleration kr for toppling is non-linear and dependent on geometry and

friction while ky for sliding is constant and dependent only on friction.

2. The toppling equation is scaled by p2 which will result in different responses depending

on the geometry of the block, while the response in the sliding block model is scale

independent for Coulomb-friction surfaces.

3. The toppling block motion does not stop until the block returns to its initial position,

while the sliding block motion does not stop until the relative velocity between the

block and base fracture is zero.

4. The final outcome for the toppling model is either a block that is at rest in its initial

state or a block that has toppled. The sliding block model results in some permanent

displacement.
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4.3.3 Solution by Numerical Integration

Given that these equations are non-linear and discontinuous, they will need to be solved by

numerical methods. Many researchers attempt to solve these equations using a numerical

integrator which assumes continuity, such as Matlab’s ODE45 solver. While their simulations

may be stable (in that a solution is calculated), error is introduced every time integration is

performed across a discontinuity in the equations and grows as the time step of integration

increases. Alternatively, if care is taken to have an integration point on each side of the

discontinuity, then the errors associated with integration can be reduced and larger time

steps can be taken without introducing significant error. This is the approach taken for

the simulations presented in this chapter. The equations of motion are solved by using

the Sundials Fortran solver, CVode, interfaced with Python using the package Assimulo

(Fredriksson et al., 2014; Andersson et al., 2015). Assimulo provides an interface to specify

discontinuities through events that will be detected by the numerical solver. When an event is

detected, changes to the equations of motion or model state are necessary. In this scenario,

the numerical integrator stops and reevaluates the previous time step at finer increments

until the location of the discontinuity in time is determined within a specified error. In the

mathematical literature this is referred to as root finding.

There are several states of the model that are monitored for events as follows:

Event 1 [ühg > (1 + kv)kr]:

This fundamental event is triggered when the ground motion exceeds the block’s rocking

acceleration and the nonzero equations of motion should be used. If the ground motion

falls below the rocking acceleration there is no effect on whether the equations of motion

should be switched or not. Ceasing of rocking motion depends on Event 2 described

next.

Event 2 [θ]:

Once rotational motion of the block begins as described by Event 1 then the block will
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have a positive angular displacement. As long as θ is positive, the block is on edge

and should remain in motion. When θ decreases to zero, meaning the block is back

to its original static configuration, then the block’s angular displacement and velocity

are set to zero. The equations of motion are set to zero if at the same time the ground

motion is also below the rocking acceleration.

Event 3 [kr < ühg,restore,remaining AND θ̇ > 0]:

Voyagaki et al. (2013a) shows that the block’s instantaneous equilibrium position occurs

when

g sin(ψ − θ(t)) = ühg(t) cos(ψ − θ(t)), (4.17)

linearized as

θ(t) = ψ − ühg(t)/g. (4.18)

Note that although this criteria has been linearized, it still indicates that the block

can rotate beyond θc and be brought back by downhill ground motion. As a reminder,

downhill ground motion will create an inertial force in the uphill direction. If the nota-

tion of kr is used, then the criteria for instantaneous equilibrium without linearization

becomes

kr =
ü+hg(t)

g
(4.19)

where ü−hg(t)/g is the peak down hill acceleration. Furthermore, if the entire ground

motion is considered, then the block is not guaranteed to overturn until at any point

in time kr is less than the peak down accelerations remaining in the time history and

the block has a forward velocity θ̇ > 0). This event is based on this criteria which

signals that the block is in an irrecoverable position and terminates the simulation.

It is possible that overturning is inevitable at an earlier point in time, however, that

cannot be determined without also evaluating the frequency of the motion.
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4.3.4 Solving for Critical Toppling Yield Acceleration

As was previously discussed, the minimum peak acceleration magnitude that will overturn

a block has been sought after since the beginning of the rocking block literature. Generally,

this is accomplished by performing a series of simulations in which the peak amplitude of

a signal, such as a sine wave that lasts for one cycle, is increased until overturning of the

block is detected. This approach is sound, except for the case of earthquake ground motions

where it is desired to keep the input signal fixed. In this case, krs can be systematically

reduced until a block exhibits overturning (threshold) response in a similar approach that

was pioneered for earth dams by Makdisi and Seed (1978). When this approach is applied

for sliding block models, the threshold response becomes asymptotic relative to changes in

the critical acceleration (Strenk and Wartman, 2011). This behavior has also been shown to

be true for the rocking block (Sorrentino et al., 2006).

To search for this asymptote, it is necessary to make small changes in krs between suc-

cessive simulations, however these small steps can result in a large number of simulations.

Optimization can be gain by taking large steps in krs while the threshold response is small

and then decreasing the steps in krs as the change in threshold response becomes relatively

large. Initial simulations are performed at high values of krs/PGA to establish an initial

trend, in this case krs/PGA = [0.99, 0.95]. From this point spline interpolation log(θn) vs

krs/PGA is used to predict the next target simulation point based on a series of preset target

θn values, where θn = θ/θc. It is inevitable that the asymptote will be “overshot” and in the

case of toppling blocks which means large irrecoverable angular displacements. In this sce-

nario, it is useful to “backup” the search by increasing krs in very small increments until the

block exhibits a non-overturning response again. Lastly, since some changes in krs may result

in large unexpected changes in the threshold response, it is prudent to “fill-in” simulations

between this large jump. Figure 4.13 demonstrates this concept by example. The initial

points represent the initial stepping by reducing krs/PGA until the failure farthest failure

point is reached. At this time krs/PGA is increased in very small increments producing
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Figure 4.13: Solution scheme to determine critical kr/PGA

more failure points until a non-failure point is found. Finally, simulations at the green circle

points are performed to provided better definition of the curve. The horizontal and vertical

dashed lines mark the parameters which represent the interpreted boundary between failure

and stability.

4.3.5 Model Verification

Model verification was performed by comparing the results of the numerical model developed

above with published closed-form solutions for blocks to illustrate over rotation and correct

prediction for various pulses. Closed-form solutions are only available for the linearized form

of the rocking equations. For the purpose of verification, the equations of motion in the

toppling model are set to linear mode which makes kr = tan(θc − θ) ≈ θc − θ and the

moment arm factor cos(θc − θ) ≈ 1. Note that although kr is linearized in the equations
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of motion, results are still presented in terms of krs = tan(θc) There are many researchers

who have presented closed-form solutions to the rocking block equations subject to various

simplified loading (e.g. Housner (1963); Yim et al. (1980); Shi et al. (1996); Anooshehpoor

et al. (1999); Makris and Roussos (2000); Zhang and Makris (2001); Özer and Alışverişci

(2005); Dimitrakopoulos and DeJong (2012); Voyagaki et al. (2013b,a)). Voyagaki et al.

(2013a) will be used for verification since it provides the most comprehensive set of closed-

form solutions for various pulse loadings and also includes the ability for rotation beyond

θc.

Consider the closed form solution for the normalized peak amplitude (θn) and critical

krs/PGA to a rectangular wave from Voyagaki et al. (2013a):

ψ

PGA
=
(
1− e−f

)2
(4.20a)

θn = 1 +
e2f −

(
1− 2ef + 2e3f

)1/2
(ef − 1)2

(4.20b)

where f = 1/2
p
T . If Equation (4.20a) is written in terms of krs, then:

krs
PGA

=
tan
((

1− e−f
)2
PGA

)
PGA

(4.21)

Now consider a series of blocks with p2 = [1.0, 1.7, 2.8, 4.6, 7.7, 12.9, 21.5, 35.9, 59.9, 100.0]

subject to a rectangular wave with peak amplitude, PGA = 1, and period, T = 1/3. The

minimum value of krs/PGA determined from the asymptote search compared to the closed-

form solution is shown in Figure 4.14. The red dotted line and dots represents the predicted

boundary made by Voyagaki for the linearized solution. For these simulations as krs/PGA

gets larger the blocks are also becoming less slender. Excellent agreement is seen between the

numerical simulations using the search algorithm and the closed-form, analytical solution.

From this plot, the ”excess” rotation (θmax/ψ > 1) for a full rectangular pulse can be seen

by the end of the plot lines that indicate where the block became unstable as predicted by

Voyagaki et al. (2013a). Notice for non-slender blocks that as kr/PGA → 0, θmax/ψ does
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Figure 4.14: Verification of rectangular wave (linear solution).

not approach zero. This is because the moment arm for the block should be cos(ψ) which is

less than the linearized ψ.

4.3.6 Selection of Non-Linear Simulation Over Linear

The linear solution to rocking blocks is used throughout the literature since most researchers

limit their research to slender blocks. For the evaluation of rock block toppling in slopes,

the slender block assumption will be violated quite often; therefore, it is necessary to use

a non-linear solution. A comparison between the non-linear and linear solution is shown

in Figure 4.15. The solid and dashed lines represent the non-linear and linear numerical

solutions, respectively. As expected, as the blocks become non slender, the linear solution

becomes inaccurate and unconservative, predicting higher kr
PGA

than the non-linear solution.

These results verify the conclusion made by Dimitrakopoulos and DeJong (2012) who showed
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Figure 4.15: Comparison of kr/PGA for the linear and non-linear solution.

through dimensionless analysis that it was necessary to use the non-linear equations in order

to accurately predict self-similar response for rocking blocks.

4.3.7 Validation by Centrifuge Modeling

Validation of the toppling block model is based on centrifuge experiments conducted by

Applegate and Wartman (2011, 2012, 2013). Horizontal and vertical accelerations of as

measured by accelerometers at the base of the ramp are shown in Figure 4.16a. The block

response as modeled with the toppling block model is shown in Figure 4.16b. Overturn-

ing occurs at about four seconds into the time history which matches the response in the

centrifuge as confirmed by high speed video evidence.
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4.3.8 Response to Simple Sinusoidal Pulses

The model performance is demonstrated by evaluating a rock block given simple ground

motion loadings approximated by a sinusoidal-like shape as shown in Figure 4.17. The

first half of the sinusoidal shapes have a peak acceleration amplitude in the uphill direction

(PGA+) of 1.0g and period of 0.5 seconds. The second half have a varying degree of amplitude

ranging from 0 to 1.5g. The upper bound of 1.5g (≈ 1/0.65) was chosen based on the widely

prevalent use of 0.65 in geotechnical earthquake engineering. After one period (or one cycle)

of motion, the ground motion is set to zero for five additional seconds to allow the block to

“finish” its motion. These loading pulses are shown in Figure 4.17a as the solid lines labeled

by the magnitude of the reversals.

Consider a block with the property, p2 = 2 and property krs set such that the approx-

imate maximum amplitude of rocking is achieved without toppling. For each of the sine

pulses shown, the critical value of kr is different resulting essentially into the analysis of

blocks that become progressively more slender as the reversal increases. The normalized

angular displacement (θn = θ/θc) and angular velocity response is shown in Figures 4.17b

and 4.17c. As Voyagaki et al. (2013b) discussed, these examples illustrate that the blocks

are capable of rotating beyond θc if sufficient downhill acceleration occurs while the block

is in that precarious position. It is interesting to note that only for reversal pulses greater

than −0.65PGA+ does the block rotate beyond θc and return safely to the seated position.

In addition, if the reversal pulse were allowed to increase without limit (PGA− →∞) then

the equations of motion would allow θ → ∞ and still allow the block to return to its seat.

Naturally, any rotation calculated beyond the amount that results in the block fully over-

turned onto its face is meaningless. Also if the rotation exceeds a point such that block’s

pseudo-static failure mode in the opposite direction is sliding then the block will not be able

to rotate back to its seat.
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Figure 4.17: Toppling model response to sinusoidal-like ground motion input
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4.3.9 Response to Earthquake Ground Motion

The response of a forward toppling rock block to a sample earthquake ground motion is

shown in Figure 4.18. In each plot, the block’s response from several simulations are shown

as the block’s kr is gradually decreased until a failure condition is reached. In one case

(Figure 4.18d), two failure simulations are shown to illustrate that for very small changes

is kr the block can fail at different moments in the time history. From a deterministic

point of view, this represents the chaos that is expected from toppling rock blocks. It is

also interesting to see that for large blocks that react slowly because of their large moment

of inertia that their subcritical response easily spans many pulses of velocity while smaller

blocks rarely span multiple pulses. Ultimately, when compared to both the acceleration and

velocity time histories it can be seen by inspection that the largest ground motion pulses

lead to overturning of the block.

4.4 Effects of Rock Block Geometry on Toppling Model Parameters

It is quite common, given the wide range of the number, orientation, and spacing of fractures

in any particular rock slope to have block shapes that vary greatly. Therefore it is prudent

to evaluate how the parameters of p2, α3, and block scale, represented by r3, interact.

To investigate this relationship, first consider a rectangular shape. It was discussed

previously that p2 = 3g
4r3

, therefore p2 is only a function of r3 which can be thought of as the

scale of the block. Note that there is no dependence on the slenderness of the block. This

result is expected if the definition of mass moment of inertia in Equation (4.22) is considered

for a rigid body,

Ip =

∫
ρ(r)r2dA (4.22)

where, Ip is the mass moment of inertia about some point p, r is the vector from the point of

rotation to a point p on the body. If the density and the shape is considered constant then

ρ(r) = m/A, so m/A can be brought outside the integral resulting in Equation (4.23)

Ip = m/A

∫
r2dA. (4.23)
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Figure 4.18: Forward toppling response to earthquake ground motion. The dark time history

is the velocity normalized to PGV while the gray time history is the acceleration normalized

to PGA. The yellow to red lines represent the block’s rotational response as the block’s kr

is reduced until failure occurs. The failure run is shown as the thick green line.
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If it is assumed that fsr = r3r̂, where fs =
r3
||r|| , then

Ip = mr23/A

∫
r̂2dA

fs
. (4.24)

Since the length of r̂ = 1, the integral evaluates to A
Fs
, thus

Ip =
mr23
Fs

(4.25)

where Fs is the sum of r3
r
which is solely dependent on the shape. Alternatively, Ip of an

N-sided polygon can be calculated using the known vertices P1 . . . Pn as

Ip =
m

6

N∑
n=1

‖Pn+1 ×Pn‖((Pn+1 ·Pn+1) + (Pn+1 ·Pn) + (Pn ·Pn))

N∑
n=1

‖Pn+1 ×Pn‖
(4.26)

If the point p is considered the point about which the block would topple, then the calculation

of p2 is

p2 =
mgr3
Ip

=
mgr3Fs

mr23
=
gFs

r3
(4.27)

Note that there is no dependence on the slenderness. This equations means that for a

constant shape, p2 only changes as the scale of the block changes. Comparing this equation

to that of the rectangle by Housner (1963), it can be seen by inspection that Fs = 3/4.

Since the pseudo-static yield accelerations were evaluated previously for parallelogram

shapes, p2 will be evaluated numerically for these same shapes. The parallelogram can be

completely described by the angles α1, α3, and either r1 or r3. Figure 4.19 presents the

results of calculating p2 for parallelograms for the parameter ranges of α3 = [5◦,25◦,45◦],

10 values of α1 between −α3 and α3, and r3 = [0.1m,1.0m,10.0m,100.0m]. It can be seen

that p2 is relatively constant for a constant scale r3, similar to the rectangular block. There

is some variance with α1, where the maximum deviation in p2 relative to the special case

where the parallelogram is equivalent to a rectangle is approximately 0.01%, 2.26%, 6.61%

for α3 = 5◦, 25◦, 45◦, respectively. The Fs for these blocks ranges between 3/4 and 1. In most

cases this error is small enough that r3 of the parallelogram could be used to calculate p2
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directly based on the rectangle formula. However, it is relatively trivial to calculate the exact

p2. A similar calculation performed for various trapezoidal shapes, indicates that 2 ≤ Fs ≥ 5.

In any case, this result shows that many shapes have similar p2 such that it is not necessary

to evaluate every possible block shape but the range of possible p2.

The implication of this discussion, is that if the joint structure of a slope is relatively

constant, then for blocks whose primary failure mode is toppling, only one calculation per

shape is necessary to determine Fs. This factor could be applied to all similar shapes on the

slope. In subsequent sections, it will be come evident that this knowledge will allow for the

analysis of a rock slope system with two block parameters, two earthquake parameters, and

a design chart.

4.5 Rock Block Toppling Response to Earthquake Ground Motions

In this section, a parametric analysis is performed with the toppling block model in which

p2 and the earthquake ground motion are varied. Since p2 was previously related to various

geometries it is only necessary to evaluate a representative range of p2, not an infinite number

of different block shapes and associated parameters. For each parametric combination, the

search algorithm outlined in the previous section is used to find the critical kr/PGA that

results in toppling.

4.5.1 Earthquake Ground Motion Simulations

Earthquake Time Histories

Unique earthquake time histories (537 horizontal motions and 104 vertical motions) were

selected from various sources. Additional information about the ground motions (e.g. mag-

nitude, distance, PGA) is provided in Appendix A. In general, several suites of ground

motions were selected as follows:

PEER

This set of motions consist of 427 horizontal components and 104 associated vertical
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motions (when available). They include all the motions from the PEER strong ground

motion database (PEER, 2010) with a site shear wave velocity greater than 600m/s.

The shear wave velocity boundary was chosen with the idea that the time histories

would be more related to rock-like geologic profiles.

Baker

Broadband and pulse-like motions (40 each) were selected based on sets 2 and 3 of

the motions developed by Baker et al. (2011). The purpose of these motion sets is to

assess whether the spectral shape of a ground motion produces a unique signature in

the results.

Spectrally Matched

This set of 30 motions were spectrally matched and developed by Astaneh (2013) and

are unpublished. The purpose of this motion set is to assess whether spectrally matched

motions produce a different response pattern than unmatched motions.

All motions were derived from the PEER database and thus are associated to a NGA refer-

ence number. Eight combinations of each ground motion set were evaluated and consisted of

two horizontal components, horizontal with and without vertical, and horizontal time history

polarity. The possible combinations are summarized in Table 4.1 below. In some cases, when

the complimentary vertical motion for a ground motion set was not available or inconsistent

with the horizontal components (i.e. different signal length) then the horizontal with vertical

combinations were omitted.

Geometries

A range of values for p2 = [30.0, 10.0, 3.0, 1.0, 0.3, 0.1]
(

1
sec2

)
were chosen to represent a

range of block sizes. For rectangular blocks, this would represent a range of ||r3|| =

[0.25, 0.74, 2.45, 7.36, 24.53, 73.57](m), respectively. For parallelogram blocks with α3 from
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Table 4.1: Possible earthquake simulation combinations.

Combination Component Vertical Polarity

1 1 No Forward

2 1 Yes Forward

3 2 No Forward

4 2 Yes Forward

5 1 No Reverse

6 1 Yes Reverse

7 2 No Reverse

8 2 Yes Reverse

0 to 45◦, ||r3|| ≈ [0.33, 0.98, 3.27, 9.81, 32.7, 98.1](m), respectively. For each value of p2,

simulations for each of the eight combinations per ground motion were performed.

Simulations

For each time history and geometry combinations, the search algorithm described in Sec-

tion 4.3.4 was used to determine the critical kr that results in toppling. The total number of

combinations totaled 11, 278 requiring a total number of simulations of 259, 749 to determine

the critical kr. For computational purposes, the lower limit of kr/PGA was set to 0.01. The

relationships of kr
PGA

versus θ
θc

were recorded for each simulations. In addition the entire

time dependent response of each simulation was recorded. The results of these simulations

were parsed and uploaded to a MYSQL database for further processing and visualization.

In some cases for very large blocks (low p2), the limit set on kr/PGA ended the simulations

before the critical kr could be determined. In these scenarios the results of these simulations
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were recorded but omitted from the evaluation of “failed” blocks. Table 4.2 summarizes

some basic statistics about the number of combinations that determined a critical kr.

Table 4.2: Toppling simulation summary statistics

PEER Baker-Broadband Baker-Pulse Spectrally-Matched

Total simulations 7029 1848 1882 355

Simulations with vertical 2258 912 929 0

Simulations w/o vertical 4771 936 953 355

Unique NGA motions 222 40 40 30

Unique earthquakes 222 40 40 30

Unique horizontal motions 427 80 80 30

Unique vertical motions 104 39 39 0

4.5.2 Simulation Results

A histogram of the results from all ground motion sources plotted in terms of the typical

dimensionless parameters for rocking blocks (kr/PGA and ωm/p) are shown in Figure 4.20.

The non-linear simulation data is compared to the closed-form solutions of the linear equa-

tions of motion for various pulse shapes by Voyagaki et al. (2013b). For each plot, the safe

zone (the zone where combinations of block and ground motion parameters result in no

toppling) is located above the data/lines. The data does not coalesce along a line for two

reasons:

1. The ground motion parameters ωm = 2π/Tm and PGA are being used as proxies for

motion frequency and amplitude, which is an approximation for an earthquake.
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Figure 4.20: Simulation results using dimensionless parameters.
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2. As Makris and Roussos (2000) indicated, small blocks (large p2) react more to acceler-

ation pulses while large blocks (small p2) react more to accumulated acceleration (i.e.

velocity pulses).

A rectangular lobe motion represents the maximum amount of energy that can be exerted

for a motion with a fixed period and amplitude since the acceleration is instantaneously at

its maximum for the entire period. If the ground motion’s PGA and Tm is conservatively

assumed to be in the form of a rectangular lobe, then the rectangular lobe represents the

upper bound of the data as shown in Figure 4.20. It can be seen that when evaluating the

density of the data, the triangular and sine lobe performs rather well at bounding the bulk

of the data. Intuitively it is expected that a sine lobe would provide a more meaningful

upper bound and indeed seems to represent an approximate +2σ boundary of the data. The

triangular lobe falls closer to the mean of the data possibly because it is more representative

of an acceleration pulse that may rise and drop quickly, especially when the ground motion

signal is discretized at fixed time steps. The equation by Haneberg coalesces around the

other equations plotted for large frequencies or small block sizes, however it conservatively

diverges for low frequencies or larger blocks.

4.5.3 Reinterpretation of Simulation Data

Although the closed-form solutions for simple pulses are non-linear in both linear and log

space, the simulation data (kr/PGA versus ωm/p) appears to be approximately linear in log

space as shown in Figure 4.20b. Based on the visually apparent linear relationship shown

in Figure 4.20b, it will be assumed that kr/PGA has a linear relationship with ωm/p in log

space (i.e. log kr
PGA

= C +M log ωm

p
). With an assumed linear relationship, it is possible to

rearrange the terms of the linear equations below

log
kr

PGA
= C +M log

ωm

p
(4.28)
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Dropping the constant, C and pulling M into the log(), which inverts the fraction on the

right side since M is negative,

log
kr

PGA
= log

pM

ωM
m

(4.29)

where the absolute value of M is now being used for M . Now rearranging the terms so that

all the block parameters and earthquake parameters are on separate sides of the equation

log
kr
pM

= log
PGA

ωM
m

. (4.30)

Finally, applying the common dynamics relationship for simple harmonic acceleration, ve-

locity, and displacement amplitudes of trigonometric functions, A = V ω = Dω2 yields

log
kr
pM

= log
PGA

ωM
m

= logPGV = logPGDωm. (4.31)

Equation (4.31) now suggests that the critical block parameters (kr and p) can be directly

related to the ground motion parameters to be used in a predictive manner.

Assuming M=1, the simulation data is now replotted in Figures 4.21 through 4.23 in

light of the relationships in Equation (4.31). For each parameter, a hexbin plot of the data

with the counts of each bin colored in a log scale is shown. Histograms of the ground motion

and block parameters are plotted along the abscissa and ordinate axis to further illuminate

the density of the data. Furthermore, histograms of each ground motion set are shown. The

variability of the results visually appear to increase with the increase in each ground motion

parameter (GMP). For this reason a weighted linear least squares (WLS) fit was performed

on each data set for each GMP. Since the variance is unknown, the weights used for each fit

were determined by an iterative evaluation of the fitted variance. First the data was split

into bins and the variance of each bin calculated as shown in Figures 4.21a to 4.23a. From

these plots, the relationship between the GMP and variance was determined to be linear

relative to PGA and PGV and quadratic relative to PGD. After applying weights, the mean

WLS fit is plotted as a solid line, while the 2.5% and 97.5% probability of failure lines are

dashed. The resulting regression equations are shown in each figure.
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Figure 4.21: Earthquake simulation results for PGA and Tm.
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Figure 4.22: Earthquake simulation results for PGV.
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Figure 4.23: Earthquake simulation results for PGD and Tm.
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These plots in Figures 4.21 through 4.23 confirm that for practical purposes the critical

block size can be linearly related to the ground motion parameters. The parameters PGV

and TmPGA/2π are the best predictors of the boundary between safe blocks and blocks that

will overturn. By visual inspection, it appears that PGV has the more defined boundary and

is consistent with recommendations by Sorrentino et al. (2006). The parameter 2πPGD/Tm

also shows a linear trend along the upper boundary however the variance increases dramat-

ically with increase in PGD making it the least skillful predictor overall. It is interesting

to see that there is virtually a 1:1 relationship between the block shape and PGV. For this

reason, krg/p is now referred to as the critical block toppling velocity.

In order to further understand the reason for the variability, simulations with simple

sine wave, rectangular, and triangular pulse loadings are performed. Figure 4.24 shows the

comparison to the probability of failure boundaries from the earthquake simulations. Both

sets of results have similar variability. The primary reason for this agreement is that the

period of the simple pulses was limited to the variability in the ground motions (i.e. Tm=0.07-

1.7 seconds). If larger periods are used then the simple motion results extend downward.

Furthermore, it can be seen that with changes in PGA, the results shift down and to the

left along the same path as the earthquake simulations. The results of the earthquake

simulations, segregated by ground motion set, are shown in Figure 4.25 along with the WLS

fit for all the data combined. It appears that differences in the ground motion set does

not impact the likelihood of failure. These comparisons highlight the fact that it is the

randomness of the ground motion and banded frequency content that focus the results in

the linear relationship shown by the earthquake simulations.

Results for Vertical Motions

The previous results are now plotted with and without the vertical motions as shown in

Figure 4.26. The histograms of the input and output are very similar in shape and extent.

This plot suggests that the consideration of vertical motion in a probabilistic sense does not
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(b) Broadband ground motion set
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(c) Pulse-like ground motion set
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Figure 4.25: Earthquake simulation results for each ground motion set.
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Figure 4.26: Earthquake simulation results with and without vertical motions.
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change the outcome. Of course on a case-by-case, deterministic basis, the vertical motion

will change the outcome of the analysis.

4.6 Example Application - Christchurch 2011

The usefulness of the toppling block relationships presented previously is now demonstrated

by evaluation of earthquake induced rock toppling case history. From September 2010 to

December 2011, a series of earthquakes ranging in moment magnitude of 5.9 to 7.1 occurred

near the city of Christchurch, New Zealand (Bradley et al., 2014). Geotechnical failures

ranged from liquefaction in the valley sediments to rockfall in the Port Hills area southeast

of the city.

4.6.1 Rockfall Survey and Source Geology

Following the earthquakes, the Christchurch city council and GNS Science conducted dam-

age surveys which included the mapping and measurement of rockfall throughout the Port

Hills area (Massey et al., 2014). The abundance of surveyed rockfall relative to the many

earthquake events is summarized in Table 4.3. The ground motion characteristics (PGA and

PGV) are also presented in Table 4.3 for two nearby ground motion stations. Heathcote Val-

ley School (HVSC) ground motion station is a shallow soil site and Lyttleton Port (LPCC)

ground motion station is a rock site. Each station is located at the base of the hills and are

located on the East and West flanks of Port Hills, respectively. In the rockfall survey study,

a relationship between boulder volume and boulder abundance was developed in which the

mean boulder size was ≈ 1m3 while the 95th percentile size was ≈ 3 m3.

The source rock type of these rockfalls is primarily the blocky, basalt lava flow and breccia

of the Lyttleton Volcanic Group (Massey et al., 2014). In his master’s thesis, McDowell

(1989) characterized slopes and geology within Port Hills area. For lava formations, he notes

that the top surface of blocks dip at about 30◦ matching surrounding slopes and is formed

with perpendicular joints. In some areas, McDowell indicates that jointing or fractures

were blast induced from mining operations around the Port Hills area. Within the loess
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Table 4.3: Port Hills rockfall abundance surveyed from the 2010-2011 Canter-

bury earthquake sequence.

Date Moment1 PGA1 PGV1 GeoNet Strong Rockfall2

(NZ) Magnitude (g) (cm/s) Motion Site Abundance

4 Sept 2010 7.1
0.61 28.8 HVSC

Few
0.29 19.1 LPCC

22 Feb 2011 6.2
1.41 81.4 HVSC

Widespread
0.92 45.6 LPCC

13 June 2011 6.0
0.91 53.3 HVSC

Many
0.64 32.6 LPCC

23 Dec 2011 5.9
0.44 22.3 HVSC

Some
0.44 22.8 LPCC

1 Per Bradley et al. (2014).

2 These are descriptive terms used by Massey et al. (2014). They indicated

that a majority of the rockfall observed occurred during the 22 February

2011 earthquake. The descriptions for rockfall abundance is interpreted as

Few < Some < Many < Widespread.

formations, he notes that planes in which toppling occurs are typically about 20◦. From this

information, an evaluation of the expected abundance of boulder sizes deposited as a result

of earthquake rock toppling can be performed.
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4.6.2 Analysis

Geometry

First the general geometry of the source rock blocks is estimated. Since it was previously

shown that all parallelograms of a constant scale and α3 have approximately equal p2, then

a cubic geometry can be assumed to determine the volume of the block. The cuboid shape

is chosen because of the ease of relating block dimensions to its volume. Assume a cuboid,

where all sides are perpendicular, the two base widths (b) are equal but not necessarily equal

to the height (h).

r3 = |r3| (4.32)

b = 2r3 sin(α3) (4.33)

h = 2r3 cos(α3) (4.34)

The volume (V) in terms of r3 and α3 is

V = b2h (4.35)

V = 8r23 sin
2(α3) cos(α3). (4.36)

Rearranging the relationship for rectangles, p2 = 3g/4r3 to r3 = 3g/4p2, combining into the

volume equation and solving for p,

V =
9g2 sin2(α3)

2p4
(4.37)

p =

(
9g2 sin(2α3)

2V

)1/4

. (4.38)

Assuming that the cuboid is a cube (α3 = 45◦) and the slope angle is 20◦, then kr = tan(25◦).

It could also be reasonable to assume that the base joint angle is zero. In this scenario, for

kr to remain the same value, then α3 = 25◦ translating to a height to width ratio of about

2 : 1, which is also a reasonable assumption. Combining this range of kr with Equation 4.38,

the relationship between krg/p and block volume range between 0.01m3 and 100m3 is shown

in Figure 4.27.
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Figure 4.27: Relationship between krg
p

and the volume of a cuboid block.

Ground Motions

The ground motions recorded in the 21 February earthquake were previously summarized in

Table 4.3. The PGV at the LPCC station is lower than that of the HVSC station and is

possibly attributed to the source to site distance and directivity of the ground motion toward

Christchurch. These two stations will be assumed to give a range of typical ground motions

experienced at the base of Port Hills. Since most of the rockfall originated from well above

these stations, it would be expected that the ground motions in these source areas would be

amplified relative to the measuring stations due to topographic amplification (Ashford et al.,

1997; Harp and Jibson, 2002; Murphy, 2006). Analytical, numerical and experimental data of

topographic amplification indicates that for peaks with 30◦ to 45◦ slopes, an amplification of

100% to 200% is possible. (Pagliaroli et al., 2011) This is also supported by recent centrifuge
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data of dense soil slopes (Dafni and Wartman, 2014). An amplification factor of 1.5 is

assumed for the upper bound PGV used in this analysis.

4.6.3 Results

The block volume ranges indicated above, represented by krg/p’s, along with the estimated

PGV ranges are plotted relative to the confidence intervals determined from the toppling

model simulations in Figure 4.28. It can be seen that the intersection of the 2.5% confidence

line with the maximum assumed PGV limits for the 22 February earthquake indicates a

maximum block volume of approximately 20 − 30m3 which is near the top range of block

sizes surveyed. The remaining earthquakes, 13 June 2011, 4 September 2010, 23 December

2011, progressively increment to the left in the plot because of smaller observed PGV. The

reduced PGV indicates that the maximum block size being triggered would decrease and an

increasing number of blocks would not fail. This result supports the qualitative observation

of rockfall abundance observed after each earthquake.

Furthermore, a lower bound critical block velocity means there is a corresponding min-

imum PGV of about 20 cm/s for which topples would have been observed. The minimum

PGV translates to the toppling being limited in areal extent. Given the other ground mo-

tion parameters that could be used, a minimum PGA and Tm is also implied. Massey et al.

(2014) observed that rockfall was not observed for PGA’s of less than 0.3g. Assuming mean

period of about 0.3 secs (Bradley et al., 2014), then TmPGA/2π ≈ 14cm/s which is close to

the minimum PGV indicated above. These results illustrate how the rock geometry/geology

can control the lower and upper bound accelerations observed at rockfall sites.

This analysis can be taken a step further by assuming a distribution of source block sizes

and PGV’s and then using the probability of failure determined from the toppling block

simulations to estimate the likelihood for a given block to fail. To demonstrate this concept,

four sets of analyses were performed in which a uniform and normal distribution for each

block size and PGV were assumed. The input assumptions are summarized in Table 4.4. A
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Figure 4.28: Estimated block geometry range for rock blocks in the Port Hills area exposed

to estimated PGV values during the Canterbury earthquakes along with the 2.5% and 97.5%

confidence intervals determined from toppling model simulations.
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Table 4.4: Assumed distributions of source block volumes and ground motion PGV’s

Analysis Block Volumes (m3) PGV (cm/s)

1

Uniform: Uniform:

min=0.01 min=18

max=1000 max=164

2

Uniform: Log Normal:

min=0.01 µ = 70

max=1000 σ = 100.12

3

Log Normal: Uniform:

µ = 10 min=18

σ = 101.0 max=164

4

Log Normal: Log Normal:

µ = 10 µ = 70

σ = 101.0 σ = 100.12

Monte Carlo simulation was performed for each permutation of these assumptions in which

the sampled block size and PGV was evaluated for probability of failure.

The resulting gradations of fallen rock from these analysis are shown in Figure 4.29.

These results illustrate that for toppling modes the ground motion characteristics act to

segregate the source rock based on its geometric properties and the earthquake parameters.

This similarity can also be seen when plotted in the form of a histogram for block sizes in

Figure 4.30. The shape of the predicted size distribution curves to the surveyed curves is

remarkable. In some instances, the simulated data departs from the surveyed data for block

volumes between 1 and 10m3, which is attributed to sampling bias as indicated by Massey

et al. (2014). The influence of the existing source rock and PGV distributions can be seen
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to shift the curves from right to left. Given the likely sampling bias for small blocks (<1

m3), it is not possible to conclude which scenario of PGV or source rock is more or less

likely. However, these results suggest that the block shapes and earthquake characteristics

contribute significantly to earthquake induced rock topples. Although a specific block shape

and slope angle was assumed and has not been directly verified, these results illustrate

that a similar regional analysis could be easily performed. Furthermore, with site-specific

information, the analysis could be used to more definitively conclude the role of earthquake

induced toppling in the site’s overall rockfall hazard.

4.7 Example Toppling Evaluation

The following steps describe the procedures to evaluate the likelihood of toppling failure of

a single block from seismic loading.

1. Determine the expected direction of block movement. For rock blocks on a slope this

direction is generally away from the slope. More precisely for a toppling block, it is the

direction in which the block will rotate about one of its edges away from the slope. It

is possible that there will be multiple edges where rotation is kinematically admissible.

It is recommended to evaluate all permissible edges.

2. Set up problem geometry parallel to the direction of block motion such that 2D as-

sumptions are most applicable.

3. Outline the geometry of the shape taking note of contact points between the shape

and its foundation.

4. Determine the contact points between the block and the supporting fractures.

5. Confirm that toppling is the controlling mode of failure (See Chapter 3).

6. Calculate the toppling yield acceleration, kr with respect to the overturning point.
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Figure 4.29: Estimated rockfall depositional size gradation based on uniform and log-normal

source rock distribution. Survey data collected for the Canterbury earthquakes is shown in

gray for comparison (Massey et al., 2014).



156

0.1 1 10 100

Boulder Volume (m3)

100

101

102

103

104

105

B
ou

ld
er

F
re
q
u
en
cy

N
or
m
al
iz
ed

to
N

=
3
,7
60

Massey Data

Uniform PGV

Source (Uniform PGV)

Log-Normal PGV

Source (Log-Normal PGV)

(a) Uniform source rock

0.1 1 10 100

Boulder Volume (m3)

100

101

102

103

104

105

B
ou

ld
er

F
re
q
u
en
cy

N
or
m
al
iz
ed

to
N

=
3
,7
60

Massey Data

Uniform PGV

Source (Uniform PGV)

Log-Normal PGV

Source (Log-Normal PGV)

(b) Log-Normal source rock

Figure 4.30: Estimated frequency of rockfall depositional size based on uniform and log-

normal source rock distribution compared to survey data collected for the Canterbury earth-

quakes (Massey et al., 2014). Survey data approximated from publication figures.
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7. Determine if toppling will be triggered based on the calculated kr. If not then the

analysis ends here with a block that does not topple.

8. Calculate p2 with respect to the overturning point. Note that this value changes de-

pending on the overturning point being evaluated.

9. Calculate krg/p.

10. Determine the probabilistic or deterministic likelihood of toppling using either charts

or evaluating a specific ground motion.

A Determine ground motion parameters (PGA, PGV, PGD, and Tm) and then use

charts (Figures 4.21 through 4.23) to determine the likelihood of toppling. This

is only necessary if a specific hazard is to be evaluated.

B Perform the non-linear, time history analysis using the Python package developed

in this thesis.

A simple example is now presented to illustrate the use of the above-described procedures.

The geometry for the example is drawn from Threatening Rock, a large monolithic rock in

the Chaoco National Park in New Mexico that failed in 1941. Although Threatening Rock

failed from erosional and rainfall processes, it still provides an interesting academic exercise

(Schumm and Chorley, 1964).

According to Schumm and Chorley (1964), Threatening Rock is approximately 40 feet

wide, 100 feet tall, and 150 feet long. The first step in the example is to determine the

geometric properties of the block as shown in Figure 4.31. The shape is approximated with

a polygon, in this case a quadrilateral. The overturning point is shown as point “O”. The

p2 parameter with respect to point “O” is calculated with knowledge of the block’s vertices

to be approximately 0.43s2. The yield acceleration is determined based on the orientation

of the vector r3 and is kr = tan−1(r3x/r3y) = 0.128g. Entering Figure 4.21 with the ratio

krg/p = 191cm/s, the block is predicted to not overturn if TmPGA/2π ≤ 190 cm/s, while
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Figure 4.31: Seismic toppling evaluation of Threatening Rock.
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it has a 100% chance of overturning if TmPGA/2π ≥ 500 cm/s. According to the 2008

USGS PSHA for a return period of 2, 475 and 4, 950 years, the PGA for the Chaoca canyon

is approximately 0.07g and 0.125g, respectively. Assuming a typical mean period from the

PEER database (0.07s to 1.7s), the TmPGA/2π ranges from 0.76 to 2.4 cm/s. Based on this

analysis, it would require a relatively rare seismic event to trigger motion and even if the

motion was triggered it is not likely that Threatening rock would have been overturned by

a seismic event.

As mentioned previously, Threatening Rock failed in 1941, therefore the likelihood of

seismic failure is not observable. However, the geology in the Chaoco Canyon is known

for geologic formations similar to Threatening Rock. For example, consider the rock in

Figure 4.32 observed by visitors to the National Park. Following the same procedures as

before, the actual rock block is approximated by a polygon shape. The yield acceleration,

0.095g, and frequency parameter, 0.42 s−2, is smaller than the original Threatening Rock.

Entering Figure 4.21 with the ratio kr/p = 143 cm/s, the block is predicted to not overturn if

TmPGA/2π ≤ 140 cm/s, while it has a 100% chance of overturning if TmPGA/2π ≥ 300 m/s.

From this analysis, this block is more likely (than Threatening Rock) to have toppling motion

triggered and possibly fail. However, given the return periods of the estimated motion, the

likelihood of failure by seismic motion is still rare.

Alternatively the velocity range determined from the ground motion parameters can be

thought of as a velocity hazard at the site. In order for Threatening Rock’s or another large

rock’s critical block velocity to fall below these values, the block would need to be severely

undermined to reduce kr and/or be much smaller in size. This highlights the role that

earthquakes play in the lasting existence of these geologic formations. It suggests that larger,

more ominous rocks are more likely to be observed than smaller ones. This knowledge and

analysis procedure could be used for paleoseismic studies in similar geologic environments.
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Figure 4.32: Seismic toppling evaluation of block similar to Threatening Rock.
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4.8 Discussion and Conclusion

In this chapter, the extensive rocking block literature has been leveraged to develop a model

adapted to seismically induced rock block toppling problems. The rocking block equations of

motion were reformulated in terms of the toppling yield accelerations. Assumptions appro-

priate for rock block toppling were added and evaluated to constrain the rocking equations.

The resulting rock block toppling model numerically solves the non-linear, discontinuous

equations of motion for a given rock geometry relative to earthquake ground motion time

history input.

An extensive, robust parametric study was conducted to evaluate numerous geometric

rock shapes relative to over 800 earthquake time history records. Assumptions of these

simulations include: (1) 2D in-plane motion, (2) Loading in-plane, (3) Zero corner roundness

or degradation, (4) Zero resistance about toe of block, (5) Zero resistance along the sides

of the block, and (6) Vertical motion (up) < 1g (i.e. blocks do not jump). This study has

resulted in the following advances in seismically induced rock block toppling analysis:

1. Various shaped parallelogram blocks have been evaluated to show that for a given block

shape, kr and p2 have little variability. This means that representative values can be

used to approximate a wide range of block shapes in a toppling evaluation.

2. Simulation results were interpreted such that block and earthquake parameters are

segregated, which allows for PBEE or reliability analyses to be easily performed.

3. An essentially, statistically linear (safe) boundary between toppling and non-toppling

blocks has been found.

4. The response threshold of toppling blocks is shown to be dependent on earthquake

magnitude and frequency parameters. The various sources and factors that influence

earthquake time histories (e.g. fault type, Magnitude, and distance) are only important
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in so much as those sources/factors influence peak acceleration, velocity, or displace-

ment amplitude and mean period of the motion.

5. The safe boundary is virtually invariant relative to the inclusion of vertical motions.

However, vertical motion does change the outcome on a earthquake by earthquake and

block by block basis.

6. The safe boundary implies that the block parameter can be used as a statistical state

parameter for rock block toppling. The block parameter is termed the critical block

toppling velocity and is expressed as krg/p. Commonly used ground motion parame-

ters, PGA, PGV, PGD, and Tm, are used to represent the earthquake.

7. The behavior of a forward toppling block is better behaved than rocking block rela-

tionships because the non-linearity of the impact (coefficient of restitution) is removed.

8. According to Kounadis et al. (2012), multiple block systems failing in the forward mode

(no impacts) behave as a single block so the method could be applied to multiple block

systems. As blocks are stacked on top of each other, the kr of the system is reduced

since the width of the stack does not change but the distance from the center of mass to

the block toe increases. On the other hand, the frequency parameter, p2, is increasing,

meaning stacked blocks can cause otherwise stable blocks to fail.

9. Through the Christchurch example, the toppling block model is shown to be useful for

regional analyses. The parametric study results were used to show that block geome-

tries and earthquake parameters act together to form the observed size distribution

of failed rock blocks. Note that these results were obtained without the Christchurch

ground motions being used in the parametric study.

10. Another example of Chaoca Canyon illustrates how the toppling block model could

be used for paleoseismic studies. The toppling block failure relationships are able to
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predict minimum amplitude and period of the earthquake instead of just a minimum

amplitude predicted by methods for precarious rocking blocks. In addition, the toppling

block model would not be restricted to the very limited geologic locations that are home

to precarious blocks.

11. Design charts and regression equations are provided to allow for quick assessment of

earthquake rock block toppling failure.
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Chapter 5

DISPLACEMENT RESPONSE OF SLUMPING ROCK BLOCKS

Rock slope failures have contributed greatly to the economic and human loss experienced

during seismic events throughout the world. Accounts of these spectacular events have been

documented and evaluated throughout the literature (Cluff (1971); Plafker et al. (1971);

Wilson and Keefer (1983); Jibson et al. (2006); Keefer et al. (2006); Aydan et al. (2009);

Lanzo et al. (2010); Alfaro et al. (2012); Massey et al. (2014), among others). The static

stability of rock slopes is often evaluated using single block models (sliding, toppling, and

slumping described in Ashby (1971); Hoek and Bray (1977); Bray and Goodman (1981);

Sagaseta (1986); Kieffer (1998)) and are intended to represent the range of more complex

behavior described in Goodman and Kieffer (2000). Methods for seismic triggering of rock

slope failures rely on charts for rectangular blocks that are applicable to only sliding and

toppling modes (Yagoda-Biran and Hatzor, 2013) and was expanded for irregularly shaped

blocks applicable to four failure modes (sliding, toppling, slumping, and confined toppling) in

Chapter 3. Simplified, seismically-induced displacement methods, used to evaluate rock slope

failure scenarios in a performance-based earthquake engineering (PBEE) framework, are

limited to a sliding block that is used to represent all modes (Jibson, 2011). The sliding block

model, however, has limited abilities to predict the actual observed failures without extensive

judgment of yield acceleration (Dreyfus et al., 2013). In addition, the internal structure of

rock slopes has been identified as a key player in defining threshold behavior (Harp and

Wilson (1995); Sitar et al. (2005)), yet the sliding block model has no means to capture this

influence. While the new toppling model presented in Chapter 4 independently captured

the toppling mode of failure, the slumping mode remains unaddressed. The slumping mode

of failure has the potential to capture a non-linear yield acceleration dependent on fracture
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strength and structure (Chapter 3, Michalowski (2007)) Currently, rock slope engineering

problems rely on more complex, site specific methods such as numerical models to estimate

seismic displacements (Eberhardt, 2003).

In this chapter, a slumping block model is developed, investigated, and implemented

to overcome the mode and analytical limitations and provide a means to estimate seismic

slumping displacements. The equations of motion for a rigid slumping block displacing on

two fracture planes are derived. A robust algorithm is developed to numerically solve the

non-linear, discontinuous equations of motion for time dependent loading by an earthquake.

Features of these equations are explored with dimensionless parameters to understand which

parameters have the greatest influence over the response of slumping blocks. Similarities

between the slumping block and rocking block equations are found. Sliding block models are

shown to only capture the center of mass displacement with a well-chosen yield acceleration,

which is not parallel to the typically assumed base fracture plane. The yield acceleration of

a slumping block, which is dependent on its absolute displacement and boundary conditions,

is shown to either decrease or increase depending on whether it acts alone or in a group of

neighboring blocks.

Parametric analyses are performed and consist of the excitation of a broad range of

slumping block geometries by 427 unique recorded earthquake ground motions from the

PEER database. The results of this parametric study are used to statistically predict the

failure of slumping blocks based on basic ground motion parameters (PGA, PGV, PGD, Tm)

and block and joint interface characteristics. It is shown that as slumping blocks increase in

size, the likelihood of failure decreases under a given earthquake. In addition, the parametric

results suggest that a static factor of safety near unity is required for large slopes to undergo

significant slumping deformation during earthquakes. Finally, the slumping block model is

used to understand the behavior of more complex arrangements of rock blocks that exhibit

slumping failure. A promising path forward is exposed for use of the slumping block model

to predict complex slope slumping failures.
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5.1 Review of Slumping Blocks and Deformation Predictions

In this section the reader is presented with a summary on the current literature of slumping

blocks and the prediction of rock slumping displacements during seismic events. Additional

details of relevant literature will be provided throughout the chapter when necessary.

5.1.1 Slumping

Rock slumping has been thoroughly described by Kieffer (1998). In this description, Kieffer

separates slumps into five classes; (1) flexure slumping, (2) block flexure slumping, (3) block

slumping, (4) kink band slumping, and (5) toppling induced slumping. The classes of slump-

ing considered in this chapter are shown in Figure 5.1. According to Kieffer (1998), slumping

676 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / AUGUST 2000

FIG. 2. (a–e) Rock Slumping; (f–h) Toppling

contain many more significant fractures. Some of the weaker
rock types will continue to degrade because of disturbance
during construction and thereafter under the action of water,
ice, and chemical reactions in warm and moist climates.

Although water flows tend to be intercepted in the under-
ground and surface excavation, surficial materials may yield
far more subsurface water due to an increased degree of frac-
turing and greater permeability. Surface waters further com-
pound the troubles that ground water can present to the surface
excavation. In the underground and surface environments, the
hydraulic pressure of water in fractures and internal pore pres-
sures within soil-like porous fault gouge, fissured rocks, or soft
sedimentary rocks, can markedly destabilize a rock mass. Dur-
ing rain storms, surface cuts may also have to contend with
effects of loss of capillarity or softening of clay minerals,
while internal or external erosion of silty sediments and sap-
rolite can trigger rapid slope destruction.

RECOGNITION OF ROCK SLOPE HAZARDS

Within a rock mass exposed to view, certain observable fea-
tures warn of potential hazard, and others of hazard already
developed. Fortunately, most slope problems materialize dur-
ing the construction period and can be rectified with appro-
priate redesign or construction expedience, especially if the
failure mode is properly identified. However, others may de-
velop only after a long time, during which successive stages
in a progression of events slowly and surreptitiously move the
slope toward danger or eventual collapse.

Wherever one can see a rock face exposed along the surface
of a fault, bedding plane, joint, or other discontinuity, as
shown in Fig. 1(a), it follows that what once covered this
surface has been removed. That simple observation identifies
the particular structural feature as a proven slide or release
feature. The blocks that moved from the surface might have
done so by erosion, sliding, or rotation. The agents that caused
this may have vanished long ago, but the detail always merits
inspection. Similarly, discontinuities arranged in a stair-
stepped configuration, as shown in Fig. 1(b), suggest that pre-
viously overlying columns had toppled there in the past, pos-
sibly during construction, and therefore identify a toppling
tendency if the geometric conditions that foster it are rejuve-
nated.

Various kinds of tension cracks can be recognized in slopes.
Movements of a deformable block along a preexisting or a
new shear surface, as shown in Fig. 1(c), may open one or
more linear or arcuate ground cracks. In sheet-jointed granite
or massive sandstone formations, arcuate tension cracks pre-
cede slab detachment and ‘‘arches’’ form where slabs release
in tension. In both instances, the formation of the tension crack
means that the resisting force previously sustained by tensile
stresses in the rock slab have been lost, and replaced by in-
creasing shear resistance on the underlying sliding surfaces. In
base friction models, it is possible to observe the additional
sliding and internal deformation simultaneously with the for-
mation of the tensile crack. Incipient movement of a sliding
block will open along joints and separate from these ‘‘release
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(a) Flexural slumping

(b) Block slumping (c) Block flexure slumping

Figure 5.1: Conceptual, non-fracturing, blocky failure modes (after Goodman and Kieffer

(2000)).

of the types shown in Figure 5.1 can be typically found in strong and hard slates, phyllites,

schists, gneiss, granite and layered sedimentary rocks. While these images illustrate slumps
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comprised of multiple blocks, rock slumping failures can simply be a single block dislodging

from a rock slope. For the purposes of this chapter a slumping block or slumping failure

will primarily refer to a single block that displaces along two fractures by translating and

rotating backward. However, examples will also be presented to illustrate how the single

slumping block can approximate multiple block systems.

5.1.2 General Displacement Methods of Single Block Models

Methods based on single block models employ basic physics principles applied to simple

geometries that are intended to approximate complex systems. Analogous to single degree

oscillating models, single block models can provide a rich understanding of emergent com-

plex behavior resulting from dynamic loading (Kramer and Smith, 1997; Gazetas et al.,

2012). Single block models can provide an assessment tool to quantify failure potential from

earthquake loading as shown in Chapter 4 and summarized in Jibson (2011).

In general, the author is unaware of any empirical methods for slumping failure modes in

rock slopes that account for the rotational response of the failure mass. Sliding block models

are the most commonly used models for assessing the displacement potential of slopes from

earthquake ground motions. Newmark (1965), Goodman and Seed (1966), and Seed and

Goodman (1964) brought fame to the sliding block model by estimating displacements of

earth dams and sand embankments from earthquake loading. The sliding block model has

been shown to be applicable to rock systems that undergo pure translational motion such as

tetrahedral wedge sliding (Aydan et al., 2009; Bakun-Mazor et al., 2011). In these models,

a block is assumed to slide with a rigid, perfectly plastic frictional contact between itself

and an accelerating plane. This means that the block’s movement mimics the base plane

until the yield acceleration is exceeded and the block begins sliding relative to the plane.

The block slides with an absolute acceleration equal to the yield acceleration and continues

sliding until the relative velocity between the block and sliding plane equals zero. After the

block stops sliding it motion again mimics the base plane and this logical cycle repeats. The

relative displacement of the block is determined by double integrating the time history of
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relative acceleration between the block and plane. The equations of motion for the sliding

block model is summarized with Equation 5.2

ẍ =

(
ühg
g
− (1 +

üvg
g

)ky

)
g for ühg > ky or ẋ > 0 (5.1)

ẍ = 0 for ühg ≤ ky and ẋ = 0 (5.2)

An illustrative example of the sliding block calculation is shown in Figure 5.2. Jibson

(1993) describes the use of this model for the seismic evaluation of landslides. A comprehen-

Figure 5.2: Sample calculation of sliding block method (Strenk and Wartman (2011))



169

sive summary of existing sliding block models and their predictions is provided by Meehan

and Vahedifard (2013)

As was shown in Chapter 3, the slumping block yield acceleration is dependent on the

moment of inertia of the block. This inevitably means that a displacement method for

slumping blocks will require the rotation of the block to be accounted for. A similar con-

clusion was made by Prater (1979) for soil slopes excited by earthquake ground motion and

sliding on a logarithmic failure plane. In this soil case, he states that the motion is depen-

dent on the moment of inertia and calculation of the rotational motion is required. Once

set in motion, the failing mass continues to rotate until the rotational velocity of the mass

becomes zero. This is the same concept as used to evaluate a sphere sliding on a surface and

rotating backward. Finally, after the relative behavior is determined for a given earthquake

ground motion, suitable numerical integration techniques can be used to determine total

displacements.

The consideration of rotation has been studied by many (Sarma, 1981; Chang et al., 1984;

Sawada and Nomachi, 1985; Ling and Leshchinsky, 1995; Ling et al., 1997; Siddharthan and

El-Gamal, 1998; Zeng and Steedman, 2000; Michalowski, 2007; Zeng and He, 2013). All

except Siddharthan and El-Gamal (1998) neglect the changing position, compliant behav-

ior, and effects on the normal forces of the failure mass. These exclusions are shown by

Siddharthan and El-Gamal (1998) to be unconservative assumptions.

5.1.3 Methods for Slumping Failure Prediction

Sliding block (translation only) models are commonly applied to translational and slumping

slope failures (Jibson, 1993). The sliding block model is used to develop regression models and

empirical relationships for slopes in various geomaterials (Bartlett and Youd, 1992; Jibson,

1993, 2007; Saygili and Rathje, 2008; Rathje and Antonakos, 2011). These regression models

typically relate ground motion intensity measures (e.g. PGA, PGV, Mw, and Distance) to a

translational displacement response. However, researchers have shown that ignoring rotation

causes displacements to be under predicted (You and Michalowski, 1999; Michalowski, 2007).
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This under prediction was attributed to a reduction in yield acceleration, although it will

be shown later that the displacement constraints formed by the fractures also contributes to

these differences. In addition, Meehan and Vahedifard (2013) showed that these and other

models consistently underpredicts the deformation measured in the field. Comparison of

empirical models to field data have been performed by Dreyfus et al. (2013) and concluded

that the yield acceleration of the slope and the triggering earthquake intensity are key factors

in predicting performance of slopes during earthquakes. Another limitation to empirical

regression models is that they represent the site specific characteristics of the included data

thus making it difficult to extrapolate the results to other sites.

At the computational extreme, numerical models (e.g. discrete element method (DEM)

and discontinuous deformation analysis (DDA)) can be used, however, these analyses are

usually very site specific and thus the results are difficult to generalize. Prediction of slope

movement have also been developed based on numerical models that evaluate general slope

shapes excited by various earthquake ground motions (Makdisi and Seed, 1978; Bray and

Travasarou, 2009).

5.2 Slumping Behavior of a Rigid Block

In this section, the displacement behavior of a slumping block will be investigated. As

discussed in Chapter 3, the slumping block differs from a sliding block since it is in contact

with multiple planes which constrain its motion. This difference results in a block that must

undergo translational and rotational motion simultaneously in order for displacement of the

block to occur. An illustration of a slumping block at positions before and after motion has

occurred is shown in Figure 5.3. From this understanding of a slumping block’s motion, the

equations of motion for a slumping block can be derived.

5.2.1 Equation of Motion

Consider a rigid block in two-dimensional (2D) plane motion relative to a rigid, oscillating

base. The base is formed by two fracture planes referred to as the base and back fracture
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planes. The geometry of the block relative to the fracture planes is assumed appropriately

such that the slumping mode of movement controls (see Chapter 3). Finally, the block is

assumed to be statically stable. It is this last assumption where the slumping block deviates

from a sliding ladder in friction contact that are always assumed to begin in a statically

unstable condition (Majumdar and Roy, 2012). As was shown in Chapter 3, this assumption

means that the block remains in contact with the base and back fractures at contact points 1

and 2 at all times, unlike the sliding ladder. Should the slumping yield acceleration decrease

to a value less than zero, then it is possible that the block may come out of contact with

the back fracture. However, from an engineering standpoint, this discrepancy is generally

uninteresting since block failure is guaranteed.

The free body diagram of a block in motion relative to the base is shown in Figure 5.4a.

The forces acting on the block (R1, R2, W , −müvg and −mühg) are shown in red. The
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resultant force and torque acting on the block (Iθ̈ and mücm) are shown in green. It is of

primary interest to determine Iθ̈ and mücm which represent the motion of the block.

In order to further simplify the free body diagram in Figure 5.4a, the principle of super-

position is used. In Chapter 3, a free body diagram was evaluated to determine the slumping

yield acceleration and is shown on the left side of Figure 5.4b. Subtracting this free body

diagram from the diagram in Figure 5.4a, results in the remaining free body diagram on the

right of Figure 5.4b. Since the free body diagram on the left side of Figure 5.4b is at limit

equilibrium (Iθ̈ = mücm = 0), then Iθ̈ and mücm for the free body diagrams in Figure 5.4a

and the right side of Figure 5.4b must be equal. Separation of these forces simplifies the

equations of motion and will be shown later to be a critical step in forming a comparison to

rock blocks that facilitates further investigation.

The equations for sum of forces and moments about the center of mass for the free body

diagram on the right side of Figure 5.4b, noting that the sum of vector forces contributes

two equations, are

∆R1 +∆R2 + (−ühg/g − ks)mgĝ⊥ = mücm (5.3a)

(r1 ×∆R1) + (r2 ×∆R2) = Icmθ̈. (5.3b)

Assuming a set of orthogonal basis vectors (x̂ = ĝ⊥ and ŷ = ĝ), factoring out ∆R1, ∆R2,

r1, and r2, and substituting mk2 = Icm, where k = radius of gyration, yields

∆R1

(
R̂1 · x̂

)
+∆R2

(
R̂2 · x̂

)
+ kincmg = mẍcm (5.4a)

∆R1

(
R̂1 · ŷ

)
+∆R2

(
R̂2 · ŷ

)
= mÿcm (5.4b)

∆R1r1

(
r̂1 × R̂1

)
+∆R2r2

(
r̂2 × R̂2

)
= mk2θ̈ (5.4c)

where kinc = −ühg/g − ks.

Acceleration Constraints

In this form these equations have five unknowns: ∆R1, ∆R2, ẍcm, ÿcm, and θ̈. However,

since the motion of the block is constrained by the back and base fracture planes, ẍcm and
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müv,g

R1

R2

mücm
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ÿcm can be related to θ̈. This relationship reduces the total unknowns to three ∆R1, ∆R2,

and θ̈ making the system statically determinant. The relationship between ẍcm, ÿcm and θ̈ is

determined by evaluating the relative accelerations of points on the rigid body (1, 2, and C′)

as shown in Figure 5.5a. First, the acceleration of contact point 2 relative to contact point 1

(a2/1), is determined using the relationship a2 = a1+a2/1 as shown in the left vector diagram

in Figure 5.5b. A difference in a2 and a1 is contributed solely to angular acceleration, thus

a2/1 = lθ̈. Since the orientations of a1 and a2 act parallel to the base and back fracture

planes and a2/1 acts perpendicular to the back of the block, the law of sines can be used to

determine their magnitudes as

sin(90− θ)
||a1||

=
sin(γ)

lθ̈
=

sin(90− γ + θ)

||a2||
. (5.5)

Therefore,

||a1|| = lθ̈
cos θ

sin γ
(5.6a)

||a2|| = lθ̈
cos (γ − θ)

sin γ
. (5.6b)

The acceleration of the center of mass is obtained by evaluating its relationship to a1 with

the equation ücm = a1 + acm/1. As with a2/1, the magnitude of acm/1 is attributed to

the block’s angular acceleration. Given that the orientation of acm/1 is perpendicular to

r1, acm/1 = ||r1||θ̈. From the vector diagram shown in Figure 5.5b, the center of mass

acceleration is

ücm = lθ̈
cos θ

sin γ
â1 + ||r1||θ̈âcm/1 (5.7a)

ücm = lθ̈
cos θ

sin γ
(cos(β)x̂− sin(β)ŷ)

+ ||r1||θ̈ (− cos(α1 − β + θ)x̂− sin(α1 − β + θ)ŷ) . (5.7b)
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ücm

a2/1

acm/1

θ̈

r1

l

θ

γ − θ
α1 + θ

2

1

(a) Rigid body accelerations for constrained motion

a1

a2
a2/1

γ

90− θ

90− γ + θ

a1

acm/1
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Substituting the components x̂ and ŷ for ẍcm and ÿcm, respectively, from this equation into

equations 5.4a to 5.4c yields

∆R1

(
R̂1 · x̂

)
+∆R2

(
R̂2 · x̂

)
+ kincmg = mXcθ̈ (5.8a)

∆R1

(
R̂1 · ŷ

)
+∆R2

(
R̂2 · ŷ

)
= mYcθ̈ (5.8b)

∆R1r1

(
r̂1 × R̂1

)
+∆R2r2

(
r̂2 × R̂2

)
= mk2θ̈ (5.8c)

where, the constraints imposed by the base and back fractures, Xc and Yc, are

Xc = l
cos θ

sin γ
cos(β)− ||r1|| cos(α1 − β + θ) (5.9a)

Yc = −l
cos θ

sin γ
sin(β)− ||r1|| sin(α1 − β + θ). (5.9b)

Constrained Equations of Motion

Solving these three equations for the three unknowns, ∆R1, ∆R2, and θ̈ yields the equation of

angular motion for the slumping block and the dynamic change in reaction force magnitudes.

θ̈ =
gkincA

YcA+XcB + k2C
(5.10a)

∆R1 =
−mgkinc

[(
R̂2 · ŷ

)
k2 −

(
r̂2 × R̂2

)
Br2

]
r1 (YcA+XcB + k2C)

(5.10b)

∆R2 =
mgkinc

[(
R̂1 · ŷ

)
k2 −

(
r̂1 × R̂1

)
Br1

]
r1 (YcA+XcB + k2C)

(5.10c)

where,

A =
r2
r1

(
R̂1 · ŷ

)(
r̂2 × R̂2

)
−
(
R̂2 · ŷ

)(
r̂1 × R̂1

)
(5.11a)

B =
(
R̂2 · x̂

)(
r̂1 × R̂1

)
− r2
r1

(
R̂1 · x̂

)(
r̂2 × R̂2

)
(5.11b)

C =
[(

R̂1 · x̂
)(

R̂2 · ŷ
)
−
(
R̂1 · ŷ

)(
R̂2 · x̂

)] 1

r1
. (5.11c)

If these parameters are further consolidated into a single parameter, then Equation 5.10a

can be simplified to the form

θ̈ = q2 (kinc) (5.12)
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where

q2 =
gA

YcA+XcB + k2C
. (5.13)

Equation 5.12 in its condensed form is remarkably similar to the rocking block equation

(Equation 4.2) and possesses the same units. The significance of this similarity will be

expanded in Section 5.3.4.

5.2.2 Similarity to Other Seismic Displacement Models

The form of Equation 5.12 is similar to other seismic displacement models. In particular,

the differences can be narrowed down to variations in the parameter q2. Table 5.1 shows

the equivalent q2 for derivations of slope displacements assuming a log-spiral failure surface.

In addition, Siddharthan and El-Gamal (1998)(circular failure surface for dry cohesionless

Table 5.1: Similarity of slumping block equation to other seismic displacement models with

a rotation component. The specific references should be consulted for the meaning and

expansion of all symbols.

Failure type Reference equivalent q2

Log-Spiral Prater (1979) (equation 18) Mg+Mc

I

Circular Sarma (1981) (equation 3) gWd sin θo+θ
I

Log-Spiral Chang et al. (1984) (equation 27)
gγ

[
r3o(f4−f5−f6)+Xpr2ofq

]
W3l2

Log-Spiral Ling and Leshchinsky (1995) (equation 12) gRcg,y

R2
cg

Log-Spiral Ling et al. (1997) (equation 7) g cos βcg

rcg

slopes) and Zeng and He (2013) (circular failure surface for saturated clay slopes) show

potential to be written in the form of the slumping block Equation 5.12. However, the

equations would need to be reworked considerably and is beyond the scope of this discussion.

These similarities may make it possible to apply the results shown later in this chapter to
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slopes of a wide variety of geometries and strength that undergo rotation and translational

motion.

5.2.3 Behavior of Equation of Motion Parameters

Equation 5.12 is a function of the block geometry, fracture interface strength limit, and the

orientations of the base and back fractures. In order to investigate the behavior of slumping

blocks under seismic excitation, it is desirable to have a comprehensive understanding of the

effect that differing block and fracture geometries and friction angles have on the param-

eters of Equation 5.12. As the block displaces during seismic excitation, it translates and

rotates backward. Consequently, the block’s geometric vectors will also rotate causing the

parameters in the equations of motion to change.

The changes to the equations of motion invoked as the slumping block rotates are now

evaluated. Consider a slumping block with parameters α1 = 65◦, α3 = 75◦, scale = 1 meter,

and φ = 55◦. This block has a relative fracture angle, ≈ γ = 19◦, which is also equal to the

maximum rotation the block can undergo before the block is fully rotated onto its back. Fig-

ure 5.6 shows the percent change of the components of Equation 5.10a (A,B,C,Xc, Yc, k
2, ks)

as the block displaces toward a slumping failure (θ/γ = 1.0). Obviously, k2 remains constant

since it is a property of the block shape. The parameter C is a function of the orientations

of the reaction forces acting relative to the base and back fractures. Since the orientation of

the base and back fractures and the friction coefficient along the fractures are held constant

in this example, C is also constant. Using the definitions of A and B above and recalling

Equation (3.25), it can be seen that ks = (1 + kv)A/B. The parameters A,B,Xc, Yc, k
2, ks

are all functions of the geometric unit vectors r̂1 or r̂2 and thus change with θ. Also shown

in Figure 5.6 as thicker lines, are the simplified parameters from Equation 5.12, ks and

q2. The percent change for these two parameters is modest in comparison with the other

parameters shown. Figure 5.6 provides a positive indication that the consolidation of the

equation of motion to the form in Equation (5.12) was appropriate. Additional support of

this consolidation is provided in subsequent sections.
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2 are highlighted as they will be shown as important predictors of seismic behavior.

5.2.4 Correlation of q2 and ks with Geometry and Friction Angle

The relationship between the parameters q2 and ks and the block geometry and fracture

interface friction angle is evaluated for the full possible rotation of the block. Recall, that

the two sets of parameters that can be used to describe a parallelogram are α1, α3 and

S2

S1
, γ (see Section 3.2). Two base slumping blocks are evaluated with each of the defining

parameters varied individually holding all others constant. For the α1, α3 set, the base

slumping block parameters are α1 = 55◦, α3 = 75◦, scale= 1.0m, slope= 0◦, φ = 45◦. For

the S2

S1
, γ set, the base slumping block parameters are S2

S1
= 0.1, γ = 20◦, scale= 1.0m,

slope= 20◦, φ = 40◦. Figures 5.7 and 5.8 present the results of the α1, α3 and S2

S1
, γ sets,

respectively. Each figure shows values of q2 and ks calculated for all possible block rotations
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(θ = 0 to γ) for various geometric parameters. These figures illustrate which geometric

parameters have the largest influence over q2 and ks.

The influence of the geometric parameters on ks were evaluated in Chapter 3 and are

discussed again here. The parameters with the biggest influence over ks are the slope angle

and friction angle. An increase in slope angle results in an increase in driving force and

reduction in normal forces, and by relation, reduction in resisting forces, causing ks,0 to

decrease. An increase in φ also results in an increase in resisting forces causing ks,0 to

increase. Increases in α3 and s2/s1 and decreases in α1 and γ also cause ks to increase.

The change in these parameters effectively move the block’s center of mass relative to a

distance perpendicular to the back fracture plane. Changing the center of mass location

changes the moments acting on the block and thus the distribution of normal forces acting

on each fracture plane. As the center of mass moves further from the back fracture plane,

ks increases.

From Figures 5.7 and 5.8 it can be seen that the parameter with the largest influence on

variability in q2 is the scale of the block. This variability is expected since the constraints

Xc, Yc, and k
2/C have units of length. An order of magnitude increase in scale results in an

order of magnitude increase of q2. To a lesser degree, the parameters α3, α1 and s2/s1, γ also

change the values of q2 as they control the shape of the block and orientation of the fracture

planes.

Based on the relationships between geometry on ks and q
2, the following conclusions can

be made:

• The scale of the block is strongly correlated to q2 while it has zero correlation with ks.

• Parameters representing the shape of the block have comparable correlation between

both q2 and ks.

• Friction angle and slope angle are strongly correlated with ks and weakly correlated

with q2.
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5.2.5 Variability of q2 and ks with Block Rotation

If, over a wide range of geometric parameters, the parameters, q2 and ks, demonstrate similar

behavior as the block rotates, then it may be possible to use their values at θ = 0 to represent

their characteristic behaviors during seismic excitation. The data shown in Figures 5.7

and 5.8 is now replotted with θ normalized by the maximum rotation, γ, and the percent

change in ks and q2. For the parameter ks, the change in ks as θ increases is plotted, thus

∆ks = (ks,θ/ks,0 − 1) ∗ 100%. For the parameter q2, the percent change in the value is

plotted, thus ∆q2 = (q2θ/q
2
0 − 1) ∗ 100%. These plots are shown in Figures 5.9 and 5.10 for

the α1, α3 and S2

S1
, γ sets, respectively. The plots where the geometric parameters which

influence ks the most (β and φ) show consistent responses in both ks and q2. Based on

these observations, if the shape is held constant, then ks and q
2 are represented well by their

θ = 0 values. The parameters that influence shape the most show less consistency. Because

of this inconsistency, blocks of different shapes will likely have different dynamic responses.

The largest divergences occur when the block goes from a skinny slumping block to a fat

slumping block. The wider the slumping block the more non-linearity in the response of the

block. In addition, a block with a large angle to rotate through (large γ) also exhibits high

non-linearity. This behavior similar to the rocking block problem.

5.3 Slumping Block Model

With the slumping block equations established, termed the Slumping Block Model (SBM)

is presented. The SBM is formed in a rigid-plastic model framework similar to that of

the Newmark sliding block and toppling block model presented in Chapter 4. This model

represents the fundamental behavior of a simultaneously translating and rotating rigid block.

Furthermore, the SBM model will be used in Section 5.5 to serve as a proxy for more complex

systems.
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5.3.1 Solution by Numerical Integration

Given that the slumping equations are non-linear and discontinuous, they will need to be

solved by numerical methods. It is common for equations such as these to be solved using a

numerical integrator that assumes continuity, such as Matlab’s ODE45 or Python’s ODEINT

functions that utilize legacy FORTRAN solvers. While a solution may be calculated, these

simulations may not be stable. Error is introduced where time integration is performed

across a discontinuity in the equations and grows as the time step of integration increases.

Alternatively, if care is taken to have an integration point on each side of the discontinuity,

then the errors associated with discontinuity can be reduced and larger time steps can be

taken reducing error and simulation time. This is the approach taken for the simulations

presented in this chapter.

The equations of motion are solved by using the Sundials Fortran solver, CVode, inter-

faced with Python using the package Assimulo (Fredriksson et al., 2014; Andersson et al.,

2015). Assimulo provides an interface to specify discontinuities in the equations of motion

through event detection by the numerical solver. When an event is detected, changes to the

equations of motion or model state are necessary. In this scenario, the numerical integrator

stops and reevaluates the previous time step at finer increments until the location of the

discontinuity in time is determined within a specified error. In mathematical terms this is

referred to as root finding.

There are several states of the model that are monitored for discontinuous events as

follows:

Event 1 - Yield acceleration exceeded [ühg > (1 + kv)ks]:

This event is triggered when the ground motion exceeds the block’s critical slumping

acceleration and the nonzero equations of motion should be used. If the ground motion

falls below the slumping acceleration there is no effect on whether the equations of

motion should be switched or not. Ceasing of rocking motion depends on event 2

described next.
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Event 2 - Angular velocity approaches zero [θ̇ → 0]:

Once motion of the block begins as described by event 1 then the block will have a

positive angular velocity. As long as θ̇ is positive, the block remains in motion. When

θ̇ decreases to zero, the block no longer has motion relative to the base plane. The

block’s angular displacement and velocity are set to zero. The equations of motion

are set to zero if, at the same time, the ground motion is also below the slumping

acceleration.

Event 3 - Full rotation occurs [θ = γ]:

This event triggers the end of the simulation when the block has fully rotated backward.

In all cases, once the block has rotated onto its back, the new mode of failure is sliding.

Although not evaluated in this chapter, if this event occurs before the time history is

complete and the base fracture plane is long enough, the movement of the block could

be evaluated using a traditional sliding block analysis.

5.3.2 Model Validation

Model validation was performed by comparing results of the slumping model with results

from simulations using the DEM software UDEC. The test block geometry consists of a

parallelogram (γ = 30◦, s2/s1 = 0.1, scale=91.47cm) founded on an inclined base fracture

plane (α = 20◦) and joint interface friction angle of φ = 31◦ as shown in Figure 5.11. The

UDEC parameters used in this simulation are summarized in Table 5.2.

UDEC uses springs to calculate reaction forces between blocks thus sudden changes in

accelerations will induce transient oscillations into the model. Since the slumping model is

a rigid-plastic model, for comparison purposes, these transient oscillations are undesirable.

Therefore it is necessary to gradually increase the loading amplitude. The inclined plane is

accelerated with a ground motion represented by a constant frequency (1hz) sine wave with

an amplitude that linearly increases from zero to a peak amplitude of 0.2g’s over two cycles

and then remains at 0.2g’s until the block fails.
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Table 5.2: UDEC parameters for slumping block validation

Parameter Value

Block type Rigid

Rounding 2% smallest dimension

Density 2, 700 kg/m3

Joint shear stiffness 6.56e10 N/m

Joint normal stiffness 6.56e10 N/m

Damping Type Stiffness Proportional

Damping Frequency 4.0 hz

Damping Portion 0.1%
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Figure 5.12: Validation of slumping block model (SBM) with DEM. Shaded region indicates

when ks ≤ 0.

The calculated responses for the simplified and DEM models are shown in Figure 5.12.

The agreement between the two simulations is excellent. The top plot shows the horizontal

acceleration response of the block’s center of mass relative to the input time history. Note
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that the block’s acceleration is actually opposite of the base motion, but for comparison

purposes the negative base ground motion is plotted to provide an intuitive understanding

that the ground motion and block’s inertial acceleration are related. This plot can be in-

terpreted very much like a classic sliding block analysis. When the block’s response is not

tracing the input motion, the block is in a slumping motion. The acceleration at the onset

of motion is exactly the slumping yield acceleration. However, unlike sliding block models,

the center of mass acceleration does not remain constant throughout block motion because

of the rotational component of motion. In addition, the horizontal acceleration of the block

after the onset of motion does not represent the current yield acceleration. This concept can

be seen by comparing the block’s horizontal acceleration to the dashed line which represents

the rotation dependent slumping yield acceleration based on Equation 3.25. At about 5.8

seconds (gray shaded region), ks falls below zero and the block stays in continuous motion.

The second plot shows the angular velocity of the block which has positive values only

when the block is in motion. The shape of this curve is similar to that of both sliding

and toppling blocks with the difference being that for a sliding block this would be relative

horizontal velocity. The scenario where ks < 0 is indicated by θ̇ > 0 for the rest of the

simulation.

The third plot shows the normalized angular displacement where a value of unity indicates

that the block has fully rotated backward. Similar to a sliding block, the displacement of

the block accumulates with each cycle of motion.

In the lower plot, the difference between the two analyses ((θSBM−θUDEC)/θSBM×100%)

is shown. At the beginning of the analyses the difference is large because of the accuracy

in integrating the small increments of motion. As the motion during each cycle becomes

larger, the difference goes down to about 1%. Once the ks of the block drops below zero, the

difference begins to rise again. It is suspected that this difference could be attributed to the

rounded corners, springs, and damping used in UDEC.
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5.3.3 Comparison to Sliding Block Analysis

As indicated in the previous section, the slumping block model shares characteristics with

both the sliding block and toppling rock block models. To illustrate the similarities with

the sliding block model, three simulations were performed with blocks of the same geometry

but different scales. The full results of both translational and rotational motion are shown

in Figure 5.13. The translational motion is shown in the top three axes while the rotational

motion is shown in the bottom three axes. As expected, the influence of the different block

scales results in a dramatic difference in rotational response. The smaller block experiences

large angular accelerations and thus slumps rather quickly compared to the larger blocks.

However, the horizontal translational behavior of all the blocks travel similar paths. Since all

blocks have the same geometry, the initial ks’s are equal. However, the drop in subsequent

ks as the blocks rotate is more dramatic for the small block versus large block since the small

block experiences more rotation. Although subtle, the duration of motion for each cycle of

motion for the small size blocks are slightly larger than the large block. The beginning of

each cycle of motion is marked by the beginning of relative block motion from a state of

zero relative block motion with respect to the base plane. This is the result of the slumping

block’s motion being maintained as long as there is angular motion and since the small blocks

have a higher angular velocity, the motion lasts longer.

As the angular velocity decreases and the change in ks is minimal, the translational

response of the block approaches the sliding block response. This similarity is generally the

case for blocks that are large relative to the magnitude and duration of the ground motion

since the rotational response of the block is small and the path of the center of mass is linear

(Figure 5.14). The path of the center of mass for each block is shown and compared to that

of the sliding block model, assuming slumping movement parallel to the base plane. The

horizontal motion is similar in total magnitude but the vertical motion is not as accurate

because the true path of the center of mass is not parallel to the base plane (as was shown

previously).
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This comparison indicates that an approximation of the slumping block response could

be made by performing a sliding block analysis with the appropriate yield acceleration. The

similarity is only with respect to the block’s horizontal response which is at its center of

mass since the sliding block model can only describe one degree of freedom of the motion.

However, as shown in Equation (5.7b), translational and rotational motion are related by

the boundary conditions which direct the block’s motion on a unique path. This relationship

can be used to calculate the vertical and rotational component of the block’s motion from

the horizontal response provided by the sliding block model to yield an approximation of the

full motion. However, once the total motion was calculated, the duration of motion would

need to be truncated if the normalized rotation of the block exceeded 1.0. The error in this

approximation would increase as the block’s rotational velocity or displacement becomes

relatively large and the path of the center of mass deviates from a linear path.
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Other block models (Crawford and Curran, 1982) show displacement dependent reduction

in yield acceleration for a sliding block with rate-dependent friction. The slumping block

achieves similar behavior purely through geometry. The signature of the sliding block with

rate dependent friction and slumping block are similar. Care should be exercised that the

true motion of the rock mass is determined so that an appropriate model (e.g. slumping block

or rate dependent friction sliding block) is used when back calculating friction coefficients

from field and laboratory observations.

5.3.4 Dimensionless Analysis of Slumping Blocks

As mentioned previously, the equation of motion for the slumping block (Equation 5.12) is

similar to the toppling block Equation (Equation 4.2). For convenience, they are restated

here in their simplified forms

θ̈ = p2 cos(θc − θ)kinc (Slumping)

θ̈ = q2kinc. (Toppling)

Both p and q have the same units (1/s) and represent a natural frequency of the block.

The slumping block does not oscillate in the traditional sense but the parameter q still

represents a natural response to periodic loading and will be used to normalize the time

dimension. Given these mathematical similarities, the extensive rocking block literature can

be used as a guide for investigating the behavior of slumping blocks. A dimensionless analysis

of rocking blocks performed by Dimitrakopoulos and DeJong (2012) yielded the following

dimensionless parameters, θ̈
p2PGA

, θ̇
pPGA

, θ
PGA

, ωg/p, kr/PGA, pt, which should be applicable

to the slumping block. For applicability to the slumping block, q and ks are substituted for

p and kr, respectively.

Four sets of evaluations were performed to demonstrate the behavior described in the

previous sections with results presented with dimensionless parameters. The block parame-

ters used in these evaluations and the corresponding figure references are shown in Table 5.3.

As was indicated in the previous section, scale does not change the behavior of ks and q2
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Table 5.3: Block parameters used in dimensionless evaluations

Varied Scale Slope φ s2
s1

γ

Parameter Block (cm) (deg) (deg) (deg)

Default 100 20.0 35.0 0.1 30.0

Scale 0.1x Scale 10

(Figure 5.15) 1x Scale 100

10x Scale 1000

Slope and Friction Block 2 0.0 20.0

(Figure 5.16) Block 3 10.0 25.0

Block 1 20.0 35.0

Aspect Ratio Block 1 0.1

(Figure 5.17) Block 6 0.3

Block 7 0.5

Relative Fracture Angle Block 1 30.0

(Figure 5.18) Block 4 40.0

Block 5 50.0

with respect to θ, therefore the responses of the three different sized blocks are identical in

dimensionless space (Figure 5.15). Similarly, the slope and friction angles and block aspect

ration (S2

S1
) have only a modest affect on ks and q2 with respect to θ thus the responses are

practically similar (Figures 5.16 and 5.17, respectively). However, for the simulations where

γ is varied the block responses deviate substantially from each other as the blocks rotate and

θ increases (Figure 5.18). From this analysis it can be concluded that self-similar slumping

block behavior is best evaluated when the block shape is held relatively constant.
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5.4 Slumping Response to Random Earthquake Ground Motions

The response of slumping blocks to earthquake ground motions and the ability to predict

that response is investigated in this section. Given the varying characteristics of ground

motions, such as seemingly random accelerations in the time-domain and the non-linearity of

slumping block equations, it is expected that the response of a slumping block will differ from

one ground motion to the next. In addition, natural variations in the slumping geometry

and fracture friction are also expected to increase the variability of responses. However,

there are many problems in seismic engineering (e.g. sliding blocks, rocking blocks, and

liquefaction) that are better understood if viewed statistically. Therefore, the statistical

response of slumping blocks to numerous ground motions is evaluated.

5.4.1 Solving for Critical ks

If the parameter q2 is assumed to be constant, then the equation of motion is similar in struc-

ture to that of the rocking block. This means it is likely that the dimensionless parameters,

ωm/p and ks/PGA be used to evaluate rocking blocks, can be used to evaluate slumping

blocks. As with sliding and toppling blocks, it is desirable to determine the minimum peak

acceleration magnitude that will cause slumping behavior. Generally, this is accomplished

by performing a series of simulations in which the peak amplitude of a signal, such as a

sine wave that lasts for one cycle, is increased until a given failure criteria is reached. This

approach is sound, except for the case of earthquake ground motions where it is desired to

keep the input signal fixed. In this case, ks must be systematically reduced until a block

exhibits the desired threshold response in a similar approach that was pioneered for earth

dams by Makdisi and Seed (1978). When this approach is applied for sliding block models,

the threshold response (displacement) becomes asymptotic relative to changes in the critical

acceleration ratio (ky/PGA) (Strenk and Wartman, 2011). In Chapter 4, this behavior has

also been shown to be true for the rocking block for normalized angular displacement (θ/θn)
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versus the critical acceleration ratio (kr/PGA). For the slumping block, the normalized

angular displacement (θn = θ/γ) versus critical acceleration ratio (ks/PGA) is evaluated.

To search for this asymptote, it is necessary to make small changes in ks between suc-

cessive simulations. However, these small steps can result in a large number of simulations.

Optimization is gained by taking large steps in ks while the threshold response is small and

then decreasing the steps in ks as the change in threshold response becomes relatively large.

Initial simulations are performed at high values of ks/PGA to establish a trend, in this case

ks/PGA = [0.99, 0.95]. From this point, spline interpolation of log(θn) vs ks/PGA is used to

predict the next target simulation point based on preset target θn values between 0.01 and

2.0. It is inevitable that the asymptote will be “overshot” and in the case of slumping blocks

this means an indication of failure at a lower ks/PGA than critical. In this scenario, it is

useful to “backup” the simulation by increasing ks in very small increments (0.001g) until

the block exhibits a non-failure response again. Lastly, since some changes in ks may result

in large unexpected changes in the threshold response, it is prudent to “fill-in” simulations

between these large jumps for better definition of this curve. Figure 5.19 demonstrates this

concept by example. The initial points represent the initial stepping by reducing ks/PGA

until a failure point is reached. Once failure is detected, ks/PGA is increased in very small

increments producing more failure points until a non-failure point is found. Finally, simula-

tions at the green circle points are performed to provided better definition of the curve. The

horizontal and vertical dashed lines mark the parameters which represent the interpreted

boundary between failure and stability. The kink in the leftmost curve represents a situation

where the block’s yield acceleration drops below zero and a run-out failure occurs.

5.4.2 Solving for Critical ks at Threshold Behaviors

Before a critical ks can be determined, failure must first be defined by a specific threshold

criteria. For a slumping block there are two natural criteria that could be used.
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Figure 5.19: Solution scheme to determine critical ks/PGA

Full rotation:

The criteria of full rotation arises from the fact that when the block rotates through an

angle equal to γ, the block is no longer in contact with the back fracture plane and is

sliding solely on the base fracture plane. In this scenario, a reevaluation of pseudo static

failure mode (new α1 and α3) indicates that the critical mode of failure is sliding, so

slumping displacement criteria no longer apply. For this threshold behavior, the failure

criteria is defined as the scenario where θ/γ ≥ 1 and is shown in Figure 5.20a.

Heel displacement:

The criteria of heel displacement is based on the scenario where the block is situated

on a slope such as shown in Figure 5.20b. In this case, the length of the base fracture

is equal to the base of the block and is thus is not long enough for the block to
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undergo full rotation. Once the block rotates such that the heel of the block displaces

a distance equal to the block’s base length then the block will be in contact with the

fractures only along its back contacts. This configuration is considered to be unstable

and an indicator of failure. For this threshold behavior, the failure criteria is defined

as the scenario where dheel/lback ≤ 1 and is shown in Figure 5.20b. Note that the heel

displacement criteria always requires less displacement of the slumping block than that

of the full rotation criteria.

In order to determine the critical ks for these threshold criteria, a procedure is used similar

to that used in Makdisi and Seed (1978) and Chapter 4. The parameter ks is reduced until

the block reaches the full rotation threshold criteria.

5.4.3 Solving for Critical ks for Various Block Shapes

It is desirable that ks be reduced while minimizing the impacts on the block response char-

acteristics discussed previously. However, reducing ks using block parameters and friction

angle can cause the functional shape of ks and q
2 to change. To measure these effects, a new

parameter is introduced that measures the reduction in ks and is defined as

ks,red =
ks,θ=γ − ks,θ=0

γ
. (5.14)

The parameters which represent different block shapes and responses, q2 and ks,red, should

also be varied independently while minimizing changes in ks. An analysis is performed to

evaluate which block parameters, including joint friction angle, have the most influence over

the motion parameters ks, q
2, and ks,red. The block parameters are varied individually to

gauge their influence on the motion parameters. The results of this analysis are shown in

Figure 5.21. From this figure it can be seen that φ and slope affect ks and ks,red, but have

very little influence over q2. Since φ appears to have the most influence over ks, it will be used

to reduce ks. The parameters α3 and scale the most influence over the values of q2. Since

scale has a directly proportional relationship with q2, it will be used to vary q2. Although φ
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changes ks,red, that change is related to ks. For this reason, α3 is used to independently vary

ks,red.

5.4.4 Earthquake Ground Motion Simulations

Earthquake Time Histories

Unique earthquake time histories (537 horizontal motions) were selected from various sources.

Additional information about the ground motions (e.g. magnitude, distance, PGA) is pro-

vided in Appendix A. In general, several suites of ground motions were selected as follows:

PEER

This set of motions consist of 427 horizontal components. They include all the motions
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from the PEER strong ground motion database (PEER, 2010) with a site shear wave

velocity greater than 600m/s. The shear wave velocity boundary was chosen with the

idea that the time histories would be more related to rock-like geologic profiles.

Baker

Broadband and pulse-like motions (40 each) were selected based on sets 2 and 3 of

the motions developed by Baker et al. (2011). The purpose of these motion sets is to

assess whether the spectral shape of a ground motion produces a unique signature in

the results.

Spectrally Matched

This set of 30 motions were spectrally matched and developed by Astaneh (2013) and

are unpublished. The purpose of this motion set is to assess whether spectrally matched

motions produce a different response pattern than unmatched motions.

All motions were derived from the PEER database and thus are associated to a NGA refer-

ence number. Four combinations of each ground motion set were evaluated and consisted of

two horizontal components and horizontal time history polarity. The possible combinations

are summarized in Table 5.4 below. Since it has been shown in Chapter 4 that vertical

motion does not have a substantial statistical influence, vertical motions were not evaluated.

Geometries

A range of values for block scale ||r1|| = [10.0, 1.0, 0.1](cm) and α3 = [65, 75, 85](deg) were

chosen to represent a broad range of block sizes and boundary conditions. The slope angle

(β) and block property (α1) were fixed at zero and 62.0, respectively since they have minimal

influence over the equation of motion parameters. In terms of the parameters in the equation

of motion, the variation of these geometries produce q = 1.53 to 53.81 (1/sec) and ks = 0.0001
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Table 5.4: Possible earthquake simulation combinations.

Combination Component Polarity

1 1 Forward

2 2 Forward

3 1 Reverse

4 2 Reverse

to 1.22 (g). For each value of q2 and α3, simulations for each of the four permutations per

ground motion were performed.

Simulations

For each time history and geometry permutation, the search algorithm described previously

was used to determine the critical ks that results in full rotation. The total number of

permutations totaled 10, 713 requiring a total number of simulations of 186, 811 to determine

the critical ks. For practical purposes, the lower limit of ks/PGA was set to 0.01. This limit

is assumed to not be critical since values of ks/PGA below 0.01 essentially indicate inevitable

failures. The relationships of ks
PGA

versus θ
γ
were recorded for each simulations. In addition,

the entire time dependent response of each simulation was recorded. The results of these

simulations were parsed and loaded into a MYSQL database for further processing and

visualization. In some cases for very large blocks (low q2), the limit set on ks/PGA ended

the simulations before the critical ks could be determined. In these scenarios the results of

these simulations were recorded but omitted from the evaluation of “failed” blocks. Table 5.5

summarizes some basic statistics about the number of permutations that determined a critical

ks/kmax.
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Table 5.5: Slumping simulation summary statistics

Baker Baker Spectrally

PEER Broadband Pulse Matched

Total simulations 7300 1433 1440 540

Unique NGA motions 222 40 40 30

Unique earthquakes 222 40 40 30

Unique horizontal motions 427 80 80 30

5.4.5 Simulation Results

Hexabin plots (2D histograms) of the simulation results for both failure criteria and all ground

motion sources are plotted in terms of the dimensionless parameters discussed previously

(ks/PGA and ωm/q) as shown in Figures 5.22 and 5.23. For each plot, the safe zone (the

zone where combinations of block and ground motion parameters result in no slumping

failure) is located above the data/lines. The data does not coalesce along a linear line for

two reasons:

1. The ground motion parameters ωm = 2π/Tm and PGA are being used as proxies for

motion frequency and amplitude which is an approximation for an earthquake.

2. Similarly to rocking blocks, as Makris and Roussos (2000) indicated, small blocks

(large q2) react more to acceleration pulses while large blocks (small q2) react more to

accumulated acceleration (i.e. velocity pulses).

3. The block parameters ks and q2 at zero rotation (θ = 0) are being used as proxies

for the block’s characteristics. As mentioned previously, the initial values of ks and q
2
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are consistent between various blocks, however as θ increases the parameters become

non-linear, and the consistency breaks down.

5.4.6 Reinterpretation of Simulation Data

In Chapter 4 for rock block toppling problems, it was shown that the dimensionless param-

eters could be rearranged such that the earthquake parameters and block parameters were

segregated. Since, the toppling block and slumping block have similar equations of motion,

the simulation data is now replotted with the rearranged parameters ksg/q (deemed the

critical block velocity because of its units) and TmPGA/2π, PGV, 2πPGD/Tm. Simulation

data for full rotation failure is shown in Figures 5.24 through 5.26, and simulation data for

heel displacement failure is shown in Figures 5.27 through 5.29.

For each ground motion parameter (GMP), a hexabin plot of the data with the bin counts

colored in a log scale is shown. Histograms of each ground motion set and associated critical

block parameters are plotted along the abscissa and ordinate axis to further illuminate the

density of the data.

The variability of the results visually appear to increase with the increase in each GMP.

For this reason a weighted linear least squares (WLS) fit was performed on each data set

for each GMP. Since the variance is unknown, the weights used for each fit were determined

by an iterative evaluation of the fitted variance. First the data was split into bins and the

variance of each bin calculated as shown in Figures 5.24a to 5.26a and Figures 5.24a to

5.26a. From these plots, the relationship between the GMP and variance was determined to

be linear relative to PGA and PGV and quadratic relative to PGD. After applying weights,

the mean WLS fit is plotted as a solid line, while the 2.5% and 97.5% probability of failure

lines are dashed. The resulting regression equations are shown in each figure.

To further evaluate this, the results of the earthquake simulations segregated by ground

motion set are shown in Figure 5.30 along with the WLS fit for all the data. It visually

appears that differences in the ground motion set does not impact the likelihood of failure.

As with toppling blocks, these evaluations highlight that it is the ground motion shape and
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Figure 5.24: Earthquake simulation results (full rotation failure) for PGA and Tm.
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Figure 5.25: Earthquake simulation results (full rotation failure) for PGV.
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Figure 5.26: Earthquake simulation results (full rotation failure) for PGD and Tm.
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Figure 5.27: Earthquake simulation results (heel displacement failure) for PGA and Tm.
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Figure 5.28: Earthquake simulation results (heel displacement failure) for PGV.
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Figure 5.29: Earthquake simulation results (heel displacement failure) for PGD and Tm.
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Figure 5.30: Earthquake simulation results for each ground motion set.
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limited mean frequency content that focus the results in the linear relationship shown by the

earthquake simulations.

These plots confirm that the critical block size can be linearly related to the ground

motion parameters from a statistical standpoint. In fact, the boundary of nearly zero percent

probability of failure occurs when ksg/q ≈ TmPGA/2π ≈ PGV ≈ 2πPGD/Tm. From

these distributions, it can be seen from the narrower confidence intervals that PGV and

TmPGA/2π are the best predictors of the boundary between safe blocks and blocks that

will overturn. However, the PGV relationship requires one less parameter and has virtually

the same skill predicting the critical block shape giving it an advantage over PGA. The

parameter 2πPGD/Tm also shows a linear trend, but as can be seen, there is much more

scatter and the heteroskedacity is visually significant.

5.5 Multiple Block Systems Represented by Slumping Blocks

The slumping block model has several key characteristics that are potentially useful in repre-

senting the behavior of more complex block shapes and fractured rock slopes in a simplified

manner. These characteristics of the slumping block model are yield acceleration, moment of

inertia, and boundary conditions that influence the path of motion. Several researchers have

explicitly evaluated multiple block systems (Enoki et al., 2005; Michalowski, 2007; Stam-

atopoulos et al., 2011), however the generality of their methods were not expanded on. Here,

three examples of multiple block systems are evaluated with the simple slumping block model

and compared to a known solution to illustrate this connection. The examples are inspired

by the conceptual slopes in Figure 5.1. Since it has been shown in Chapter 3 that UDEC can

provide a reasonable approximation to single block systems subject to earthquake loading

its use will be extended to multiple blocks. This step is supported by Eberhardt (2003),

Havenith et al. (2003), and Hatzor et al. (2004) whom have used DEM modeling to evalu-

ate seismic response of rock slopes. The target solution for these examples of multi-block

systems will be approximated through the use of DEM modeling.
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5.5.1 DEM (UDEC) Model as Target Solution

For this example, the vertically stacked blocks are modeled in UDEC. The parameters of

the model are listed in Table 5.6. The translational and angular motion (velocity and dis-

Table 5.6: UDEC parameters for vertically and horizontally stacked block simulations

Parameter Value

Block type Rigid

Rounding 2% smallest dimension

Density 2, 700 kg/m3

Joint shear stiffness 6.56e10 N/m

Joint normal stiffness 6.56e10 N/m

Joint friction angle 40.0◦

Damping Type Stiffness Proportional

Damping Frequency 4.0 hz

Damping Portion 0.1%

placement) of the lowermost block is recorded throughout the simulation. Acceleration is

calculated by numerically calculating the derivative of velocity by finite difference. Central

difference estimation is used except at the beginning and end of the time history and at any

discontinuities which occur when the motion stops and starts.

5.5.2 Vertically Stacked Rock Blocks

The first example consists of a prototypical slumping block that is sliced into three equally

shaped blocks by a joint structure parallel to the base fracture. This joint structure produces

blocks that are vertically stacked on top of each other as shown in Figure 5.31. The input

parameters for the larger block before it is split and the individual blocks are summarized
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Figure 5.31: Geometry of three vertically stacked blocks

in Table 5.7. The rotations and vertical motion of the base and back fractures are fixed

to zero movement while horizontal translation is used to simulate an input ground motion.

The input ground motion is prescribed as a one hertz sine wave that has a linear increase

in amplitude for the first two full cycles and then maintains a constant amplitude of 0.5g to

the end of the simulation.

Table 5.7: Input parameters for the global geometry and lowermost block in the vertically

stacked block simulation.

Global Individual Block

Parameter Geometry Geometry

Slope 20◦ 20◦

γ 30◦ 30◦

S1 1.0m 0.33m

S2 0.1m 0.1m

φ 40◦ 40◦
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Simplified Model

In order to model this system with the simplified model, the following system behaviors need

to be determined:

Pseudo-static yield acceleration of key block:

The yield acceleration of the vertically stacked blocks is controlled by the lowermost

block. The lower block is the key block which must displace before the system as

a whole can move. Although the individual geometry of the lower block suggests

slumping, the yield acceleration cannot be determined from the equations of a single

block presented in Chapter 3. The blocks above the lower block change the free body

diagram of the lower block relative to a lone block and act as a surcharge loading to the

lower block. This surcharge acts to drive the system toward failure thus lowering the

pseudo-static yield acceleration. A similar conclusion was made by Michalowski (2007)

for multiple block systems. For this simulation, the yield acceleration was determined

by matching the acceleration at which movement begins in the UDEC simulation by

trial & error adjustment of φ. A φ = 31◦ used with the geometry of the lower block

produces a yield acceleration of approximately 0.12g that provides a good visual match

to the UDEC solution.

Controlling inertial properties:

The rate at which the system displaces is dependent on the blocks that control the

dominant rotation in the system. In this case, it is again the lower block that undergoes

the most displacement and thus its moment of inertia will control the rate at which

displacement accrues in this system. Therefore, the lower block’s geometry is used in

the slumping block approximation.

Boundary conditions:

The boundary conditions relative to the key block consist of the back and base frac-
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tures. Throughout deformation of the blocky system, the orientations of these fractures

remain constant and thus there is no additional influence expected.

Results

The results of both the UDEC solution and simplified model solution are shown in Fig-

ure 5.32. It can be seen that with the use of the appropriate slumping yield acceleration

(i.e. friction angle and block geometries), the simplified slumping block simulation approxi-

mates the UDEC solution very well. In the first cycle of block motion, the acceleration of

the UDEC block has a different shape compared to the slumping block simulation, but on

average has approximately the same yield acceleration. During the first half of the second

cycle the bottom block is slumping while the block above it is also slumping. In the second

half of the cycle, the upper block stops slumping but the lower block continues slumping.

This transition is visually represented by the discontinuity in the lower block’s horizontal

acceleration. In the third acceleration cycle, the bottom block fully rotates onto its back and

then is pushed by the blocks above it over the remainder of this cycle. In the next cycle, the

middle block rotates onto its back and itself is being pushed by the upper block. Eventually

all three blocks are on their backs and undergo classic sliding failure. The transition for each

block from slumping to forced sliding can be seen by the jump in the lower block’s horizontal

acceleration. Ultimately, when all the blocks are on their backs, their horizontal acceleration

during sliding exhibits the classic sliding block characteristics.

5.5.3 Three Horizontally Stacked Rock Blocks

The second example consists of a prototypical slumping block that is sliced into three equally

shaped blocks by a joint structure parallel to the back fracture. This joint structure produces

blocks that are horizontally stacked next to each other as shown in Figure 5.33. The input

parameters for the combined block shape before they are sliced equally are summarized in

Table 5.8. The rotations of the base and back fractures are fixed to zero movement while
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Figure 5.32: Example 1: Comparison of UDEC to simplified model for three vertically

stacked blocks.
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Figure 5.33: Geometry of three horizontally stacked blocks.

horizontal translation is used to simulate an input ground motion. The input ground motion

is the same as for the previous example.

Table 5.8: Input parameters for the combined geometry in the three horizontally stacked

block simulation.

Global

Parameter Geometry

Slope 10◦

α1 20◦

α3 30◦

Scale 1.5m

φ 40◦
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Simplified Model

In order to model this system with the simplified model the following system behavior needs

to be determined:

Pseudo-static yield acceleration of key block:

The yield acceleration of the horizontally stacked blocks is controlled by the combined

shape of the stacked blocks. The geometry of these blocks and interface friction angle

suggests slumping and the yield acceleration can be determined from the standard yield

equations of a single block presented in Chapter 3.

Controlling inertial properties:

The rate at which the system displaces is dependent on the blocks that contribute to

the dominant rotation in the system. In this case, it is the combined shape of the three

blocks that undergo the most displacement and thus its moment of inertia will control

the rate at which displacement accrues in this system.

Boundary conditions:

The boundary conditions relative to all the blocks consist of the orientation of the back

and base fracture. Throughout deformation of this blocky system, the orientations of

the fractures remain constant.

Results

The results of both the UDEC solution and simplified model solution are shown in Fig-

ure 5.34. It can be seen that by using the combined geometry of the blocks and interface

friction angle, the slumping block simulation approximates the UDEC solution very well.

The combined movement of the blocks throughout the earthquake mimics a single block.

However, there is some small relative inter-block movement/sliding occurring which causes

the multi-block system to deviate from single slumping block motion. To accommodate this

relative motion, the friction angle in the simplified simulation was reduced to φ = 39◦ in the
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slumping block simulations. Once the blocks have rotated fully onto their backs they change

to a sliding mode which is indicated in the UDEC simulation where the forward block’s

horizontal acceleration jumps up to the sliding yield acceleration.

5.5.4 Ten Horizontally Stacked Rock Blocks

The third example consists of a ten prototypical slumping blocks that are stacked hori-

zontally. This configuration produces blocks arranged as shown in Figure 5.35. The input

parameters for the individual blocks, which all have equal dimension, that form the combined

shape are summarized in Table 5.9. The rotations of the base and back fractures are fixed

to zero movement while horizontal translation is used to simulate an input ground motion.

The input ground motion is the same as for the previous example. Note that the outer-most

block will be influenced by movement of blocks behind it.

Table 5.9: Input parameters for the individual blocks that form the ten horizontally stacked

block simulation.

Individual Block

Parameter Geometry

Slope 10◦

α1 20◦

α3 30◦

Scale 1.5m

φ 40◦

Simplified Model

In order to model this system with the simplified model the following system behavior needs

to be determined:
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Figure 5.34: Example 2: Comparison of UDEC to simplified model for three horizontally

stacked blocks
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Figure 5.35: Geometry of ten horizontally stacked blocks.

Pseudo-static yield acceleration of outer-most block:

The yield acceleration of the horizontally stacked blocks is controlled by the outer-most

block. This block is the key block which must move before the system as a whole can

move. The geometry of this block and interface friction angle suggests the slumping

yield acceleration can be determined from the standard yield equations of a single

slumping block presented in Chapter 3.

Controlling inertial properties:

The rate at which the system displaces is dependent on the blocks that represent

the dominant rotation in the system. It appears that the inertial properties of the

outer-most block would control the rate at which displacement accrues in this system.

However, through iterative evaluation, a reasonable approximation of the inertial prop-

erty of the system is achieved by using the geometry of the outer-most, single block

that is scaled up by a factor of two.
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Boundary conditions:

The boundary conditions relative to the key block consist of the orientation of the

block behind it and the base fracture. Throughout deformation of the system, the

orientation of the base fracture remains constant. However, the block behind the key

block undergoes rotational deformation causing its orientation to change. This change

in orientation causes the yield acceleration to remain relatively constant as opposed

to a single slumping block whose yield acceleration decreases. To accommodate this

change, the equations of motion for the slumping block are modified such that the

orientation of the back fracture changes as a linear function of (0.2 times) the key

block’s own rotation.

Results

The results of both the UDEC solution and simplified model solution are shown in Fig-

ure 5.36. Slumping block simulations are shown for a basic block equivalent to the outer-

most block and combinations of modified boundary conditions and moment of inertia. The

modification to the boundary condition causes the outer-most block’s yield acceleration to

be more constant instead of decreasing. The modification of the inertia properties causes

the angular velocity to be dramatically reduced. It can be seen that with both modifica-

tions accounting for the effective inertial properties of the system and the changing boundary

conditions, the slumping block simulation approximates the UDEC solution reasonably well.

The deviations from the single slumping block are based on unique characteristics of

block motion for this system. The blocks undergo slumping motion like the three block

system but there is significantly more relative inter-block movement. This movement causes

the system’s shape to change in a pure shear like manner. The change in shape effectively

retards the angular motion (i.e. exhibits a lower q) and changes the yield acceleration as a

function of movement. Since q2 contains the boundary conditions and inertial properties,

ultimately the best approximation would be obtained by choosing a functional form of q2

that is non-linear and specific to the problem. This signifies that the motion of complex rock
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ücm

PGA

Input

UDEC

Single Block

Single Block (
θb
θ

= 0.2)

Single Block (2x)

Single Block (2x,
θb
θ

= 0.2)

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
n
gu

la
re

V
el
o
ci
ty
,
θ̇

0 2 4 6 8 10 12 14

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

A
n
gu

la
r
D
is
p
.,

θ γ

Figure 5.36: Example 3: Comparison of UDEC to simplified model for ten horizontally

stacked blocks. θ is the rotation of the block and θb is the rotation of the block behind it.

2x refers to a block that is twice as big as the single block.
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slopes could be approximated by the general slumping equation of motion θ̈ = q2kinc with

appropriate q2 and ks. Translational motion would be related to the angular motion using a

function unique to the failure path of the problem.

5.6 Discussion and Conclusion

In this chapter, a non-linear, time history model and algorithm has been developed to eval-

uate earthquake-induced slumping of rock blocks. The model incorporates the size of the

rock block, rotational motion of the rock block and the boundary conditions that guide its

failure path. There is direct applicability of this model to the failure of slumping rock blocks

from slopes. It is shown that the block’s geometric characteristics (shape and size), fracture

strength, and ground motion characteristics (magnitude and duration) control the likelihood

of slumping failure.

Evaluation of the equation of motion parameters throughout the slumping motion allowed

parameters to be lumped together simplifying the equations of motion. In the simplified

form, the equations of motion are strikingly similar to the rocking block equations. The

dimensionless rocking block parameters ( θ̈
p2PGA

, θ̇
pPGA

, θ
PGA

, ωg/p, kr/PGA, and pt) are

applicable to the slumping block when the slumping block’s dynamic frequency parameter

q, yield acceleration ks, and ground motion frequency ωg are substituted for the rocking

block’s frequency parameter p, yield acceleration kr, and ground motion mean frequency

ωm = 2π/Tm. This finding suggests that the extensive knowledge in the dynamic rocking

block literature can be analogously applied to the slumping block problem.

Two natural failure criteria were determined from the geometric configuration of the

slumping block. These consist of either full rotation of the block onto its back or sufficient

rotation such that the heel of the block travels a distance along the base fracture equal to its

base length. Both criteria are in terms of a rotation normalized by the block shape. These

criterion provide a stable basis for describing the normalized behavior of slumping blocks

during earthquakes. However, for a given block shape and normalized rotation, as the scale

of the block increases, the relative displacement on the fracture planes also increases. This
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feature of a rotational system means that a normalized rotational displacement may not be

an appropriate failure criteria and highlights the importance to define what is considered

the critical displacement of a slumping rock block. For instance, if absolute joint interface

displacement is critical (e.g. post peak behavior) then the sliding block model estimate

of displacement is a poor index of a rotating slope’s damage potential since the actual

deformation on the rock joints is dependent on the amount of rotational motion and block

size.

Sliding block models are shown to represent well the horizontal motion of the slumping

block’s center of mass along the center of mass displacement path, which incidentally is not

parallel to the base fracture plane as is the case in sliding block models. The observation is

similar to the observations discussed in Jibson et al. (2000) and Dreyfus et al. (2013) which

stated that the sliding block models correlates well with non-planar slopes. However, this is a

source of error when estimating rotating systems with the sliding block which only calculates

translational displacement. Since the block is always rotating backward, the center of mass

displacement would not accurately represent the displacement as measured at the top, toe,

or anywhere else along the slip plane of a slope or block. Since slope displacements are

rarely made at the center of mass, this is a possible explanation for the conclusion made

by Meehan and Vahedifard (2013) who showed that sliding block displacement relationships

predominately underestimate the displacement of landslides. It is possible that the full

motion could be better described and predictive equations made more accurate by utilizing

the relationship between the slumping mass rotation and translation created by boundary

conditions.

A parametric analysis consisting of exciting a broad range of slumping block geometries by

over 647 recorded earthquake ground motion time histories was conducted. An investigation

into the results of this analysis leads to the following conclusions:

1. A probabilistic design chart is presented relating block geometry and yield character-

istics to ground motion parameters and predicting the boundary between failure and
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safety. Peak ground acceleration and ground motion frequency content are required

to define the failure boundary. Since acceleration can be integrated to determine dis-

placements, PGV alone can also define the failure boundary since it is the integral

of PGA and ground motion frequency. The predictive ability of PGA and mean pe-

riod, Tm (Rathje et al., 1998) or PGV are virtually identical and thus either are rec-

ommended. A rule of thumb can be adopted that the safe boundary is defined by

pgaTm/2π = pgv = ksg/q in the units of cm/s. The limiting factor in this prediction

is likely the uncertainty in the ground motion and definition of geometric parameters

themselves. Alternatively, PGD can be used. However, since displacement requires

two integrations, the frequency content is accounted for twice and thus needs to be

divided by the mean period. The downside of PGD is that it has much less predictive

capabilities than the other ground motion parameters.

2. The design chart shows that the two natural failure criteria for the slumping block

have very similar failure boundary.

3. Failure of the slumping block is best evaluated from a statistical point of view. The

response of slumping block can be sensitive to various individual ground motions with

similar ground motion parameters, however the likelihood of failure is best estimated

using a suite of ground motions.

4. For relatively large blocks, one of two scenarios must be met to induce failure. Either

the ground motion must be relatively large in amplitude or duration, or the yield

acceleration of the block must be near zero. Since ground motions considered in typical

designs have a maximum limit, this implies that there is a critical upper bound block

size that can only fail if its static factor of safety is near unity. This conclusion is

similar to (moore2012) who discussed the deterioration of rock slope from successive

earthquakes. However, it should be noted that this conclusion likely does not apply for

joint interfaces that are prone to post-peak behavior and small displacements that lead
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to catastrophic failure. Small blocks, on the other hand, have a much lower threshold

of ground motion intensity and duration to initiate failure owing to their high q2 values.

This size dependent behavior indicates that the size of failed slumping blocks would

increase as the ground motion intensity and duration increases as was shown to be the

case for toppling blocks (see Chapter 4).

5. The chart supports the trends noted by Jibson and Harp (2012) that short (high

frequency) motions cause small failures.

Several examples were presented of slopes composed of multiple blocks. During yield, each

of these slopes exhibits characteristics of slumping behavior: translation and back rotation.

Investigation into these examples leads to the following conclusions:

1. The slumping block model could be used and potentially calibrated to model and

represent more complex slide masses composed of multi discrete blocks that yield and

deform with slump-like characteristics.

2. The model gives insights into the behaviors occurring during the failure of slumping

masses including how the moment of inertia, boundary conditions or fracture geometry,

and yield acceleration of the mass influences the deformation behavior.

3. It is expected that each unique block or blocky system will have a unique acceleration

shape or signature depending on its specific configuration.
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Chapter 6

RECOMMENDATIONS FOR FUTURE RESEARCH

The research presented in this dissertation has opened many doors to further research in

seismic rock slope engineering. There are immediately obvious research paths that go beyond

this research that will be discussed below. While details always matter, future researchers

are advised to not get too distracted by the seemingly infinite rock slope geometries, joint

geometries, and many other factors encountered in the field, but rather stay focused on the

big picture. An attempt was made by the author to parametrically evaluate as much of this

variability, however this quickly proved to be futile. Reducing the rock slope problem into

simple models as was done in this thesis was required to illuminate the path ahead.

6.1 Pseudo-Static Failure Modes

Pseudo-static failure mode charts were developed in Chapter 3 that expanded the modes of

failure and block geometries for seismically-induced rock failure evaluations. These charts

should be adapted to stereonet-based methods so that the practicing rock slope engineer

can evaluate large quantities of data produced from field studies and LIDAR-based mapping

of rock slopes. Modification factors representing the influences of groundwater, neighboring

blocks, three dimensionality, and various strength conditions along joints should be devel-

oped.

6.2 Seismically-Induced Toppling Failure

In Chapter 4, constraints inherent in a rock slope brought some level of calm to the chaotic

rocking block problem. The constraint of a block coming to rest after impact into its seat

should be experimentally investigated. It is easily imagined that rock fracture undulations
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may causes changes to the block’s motion, perhaps keeping it in motion. In addition, toppling

methods could be very sensitive to rounding or crushing of the rotation edge. This sensitivity

could likely be related to rock type and rock mass strength allowing adjustment factors to

be developed for various geologic conditions.

The critical toppling block velocity, krg/p proved to be very powerful, such that it may be

able to predict outcomes for the rocking block problem. The algorithms used in this research

could be easily adapted to explore the rocking block problem. A regional hazard analysis

should be undertaken using the critical toppling block velocity where toppling modes are

known to dominate. These maps could be used in early warning systems such as the PAGER

system developed by the USGS. Furthermore, using existing maps and data, locations could

be identified for further site-specific evaluations.

6.3 Seismically-Induced Slumping Failure

In Chapter 5, a connection was made between the rocking block literature and slumping

block. This allowed for the expansive rocking block literature to be leveraged. It is envisioned

that slumping block frequency parameters (q) and slumping yield accelerations (ks) could

be determined for various rock slopes. Rock slopes with the various combination of joint

geometries and strengths could be split into various bins with similar parametric values.

The influences of groundwater and other environmental factors could be included as well.

These inclusions would allow for rock slope engineers and/or public agencies to make broad

generalizations about seismic rock slope stability.

Further exploration of various failure definitions are warranted given the sensitivity of

joint strength to absolute deformation. In addition, different engineering applications may

have different thresholds for critical behavior. It is expected that investigating different

displacement thresholds will lead to families of threshold curves.

A limitation of the sliding block model was shown for systems that have a rotational

component. A study between the sliding block and slumping block model should be con-
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ducted to explore other potential deficiencies in the sliding block model and whether those

deficiencies lead to the inaccuracies seen with the sliding block.

Finally, the slumping block model is not limited to rock slopes and could be easily used to

explore soil slopes. Some relationships to existing soil slope models were presented. Similar

to rock slopes, various soil slopes could be characterized by the parameters established for

slumping blocks.

6.4 Seismically-Induced Confined Toppling Failure

A similar study as was performed for the slumping block in Chapter 5 should be undertaken

for confined toppling failure. Given that the confined toppling equations are very similar

to the slumping equations, positive outcomes are highly probable. It is suspected that the

confined toppling model would map well onto rock slopes that undergo complex modes of

toppling, such as flexural toppling.
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Appendix A

GROUND MOTIONS

Ground motions used throughout this thesis are documented in this Appendix. 800

unique earthquake time histories were selected from various sources. The sources for the

suites of ground motions that were collected are summarized as follows:

PEER

This set of motions consist of 427 horizontal components and 104 associated vertical

motions (when available). They include all the motions from the PEER strong ground

motion database (NGA-West 1) PEER (2010) with a site shear wave velocity greater

than 600m/s.

Baker

40 Broadband and 40 pulse-like motions were selected based on sets 2 and 3 of the

motions developed by Baker et al. (2011).

Spectrally Matched

This set of 30 spectrally-matched motions were selected. These motions were developed

by Astaneh (2013) and are unpublished.

All motions are derived from the PEER database and thus are associated with a NGA

reference number and meta data. In addition to the NGA metadata, various properties of the

acceleration time histories were calculated for use in analyses. These properties include PGA,

PGV, PGD, time history duration, Tm (Rathje et al., 1998), and Tc and shape factor “d”

(Kramer, 1996). Definitions of these parameters is shown in the main glossary. Histograms
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of these parameters for each motion within the four sets are presented in Figure A.1. The

metadata from these histograms are presented in Tables A.1, A.2, A.3, and A.4.
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Figure A.1: Histograms of ground motion metadata
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