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Although short- to medium-range streamflow forecasting is vital for many water management 

decisions the quality of streamflow forecasts in the United States has not improved over time. A 

possible explanation for this is that the current forecast systems, which rely on manual 

intervention on the part of forecasters, do not easily allow for testing of potential system 

upgrades and new methodologies. To transition from a semi-manual procedure to a fully 

automated procedure—and thereby allow hindcasting experiments to test new methods—forecast 

system must use an automated data assimilation (DA) framework. In this dissertation, I evaluate 

the capabilities of one DA method—the particle filter (PF) —for the assimilation of streamflow 

observations in basins with seasonal snow cover. Very few studies have explored the use of DA 



 

based solely on streamflow to update snow states. Studying DA based solely on streamflow in 

basins with seasonal snow cover is important because streamflow observations are much more 

widely available than observations of snow cover extent, depth or water content. I first use a 

synthetic experiment to examine the impacts of such DA on streamflow, snow states, and soil 

moisture states. PF-DA almost always improves simulated soil moisture and streamflow in two 

Pacific Northwest basins with seasonal snow, but it degrades the quality of snow water 

equivalent estimates during the mid-winter and in the basin for which snow is less of a control on 

runoff.  Next, I evaluate to what extent the improved initial hydrologic conditions lead to 

improvements in the 1- to 7-day lead-time forecasts. I find that PF of streamflow observations in 

basins with seasonal snow improves forecast performance in terms of accuracy during the spring 

and summer and in terms of reliability during spring and fall. Finally, I propose an Analog 

Resampling (AR) method, for use in the PF, that shows potential for expanding the spread of 

particles when the particle sample degenerates (i.e., when most weight is assigned to few 

particles). A set of exploratory analyses using AR suggests areas for future development of this 

method. 
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Chapter 1. INTRODUCTION  

1.1 BACKGROUND 

Short- to medium-range streamflow forecasts (at lead times of one to seven days) provide 

invaluable information for the management of water resources for a wide variety of applications, 

including flood control, irrigation, municipal and industrial use, environmental protection, and 

recreation. In the United States, official streamflow forecasts are issued by the National Weather 

Service (NWS) River Forecasting Centers (RFCs). These forecasts incorporate many sources of 

information, including hydrologic model simulations and numerical weather predictions. Model 

simulations are inherently erroneous due to model structural errors, parameter errors, and errors 

in forcing data. To minimize these errors, methods have been developed to incorporate additional 

information as it becomes available. These methods are known as data assimilation, and they aim 

to intelligently combine model simulations and observations, accounting for errors in each.  

Forecasters perform a direct data assimilation process in which they manually adjust 

model-based forecasts to account for discrepancies with observations [McEnery et al., 2005]. 

The primary benefit of this approach is that it directly leverages operator experience. One 

disadvantage to this approach is that it prohibits the use of past or current forecast performance 

as a predictor of future forecast performance and as a result, does not allow for objective 

evaluation of competing forecasting strategies. The reason for this is that personnel, data 

systems, and operator experience all change over time, and these factors impact the quality of 

forecasts that rely on manual intervention. The manual adjustments also make it impossible to 

evaluate changes to the system because they eliminate the possibility of hindcasting experiments 

[Raff et al., 2013]. The idea behind a hindcasting experiment is to perform a series of “forecasts” 
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for a historical period using the same techniques used in a real-time forecasting system. These 

hindcasts can then be used to develop metrics regarding forecast performance and to develop 

statistical post-processing techniques that correct for systematic errors in the forecast. Welles et 

al. [2007] argue that systematic verification of numerical weather predictions has directed 

research towards approaches that objectively improve forecasts. They suggest that the hydrologic 

forecasting community could benefit from a similar system of verification. 

 Automation of the forecasting process, including data assimilation, would allow 

forecasters to create a long record of past forecasts, over a range of climatic conditions and 

hydrologic events, that are consistent with the present operational system. Although an 

automated forecasting workflow, by definition, requires the automation of data, that step has yet 

to be adapted operationally in the United States for several reasons. Hartman [2014] explains 

four of these reasons as follows: 1) the changes made to improve short term forecasts may 

worsen long-term forecasts, and vice versa; 2) improved performance of a hydrologic model 

does not necessarily lead to improved forecasts; 3) forecasters may see data assimilation as a 

“black box” that they do not trust; and 4) forecasting centers may be concerned that future 

forecasters will no longer understand how the models operate, which may impact their ability to 

interpret the forecasts. To address the first three of these concerns, we developed a test-bed 

automated streamflow forecasting processes known as the System for Hydromet Analysis, 

Research and Prediction (SHARP) [Wood et al., 2016; Mendoza et al., 2017]. The approach 

demonstrated by SHARP is also known as ‘over-the-loop’ forecasting in that the forecaster 

interprets the forecast once it is issued and interacts with the forecasting system through methods 

development and systematic testing. This dissertation focuses on a single aspect of SHARP—

data assimilation—however, the demonstration project also involves automation of 
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meteorological forcing generation, downscaling of meteorological forecasts, streamflow forecast 

post-processing, and seasonal forecasts. 

 Among the approaches to automated data assimilation, particle filters (PFs) [Kitagawa et 

al., 1996] are popular for hydrologic applications because they work in nonlinear systems 

[Arulampalam et al., 2002] and maintain internally consistent model states and parameters 

[Salamon and Feyen, 2010]. While PFs based solely on the assimilation of streamflow 

observations have been applied in several hydrologic studies [Dumedah and Coulibaly, 2013; 

Moradkhani et al., 2005, 2006; Weerts and El Serafy, 2006], they have not been used to update 

snow states in basins that have seasonal snow. Chapters 2 and 3 of this dissertation address the 

implications of applying a PF based solely on streamflow observations in two basins with 

seasonal snow. PFs have two well-known problems: 1) sample degeneracy and 2) its 

consequence, sample impoverishment [Li et al., 2014]. Chapters 2 and 3 show this to be a 

problem in basins with seasonal snow, particularly when the model ensemble is biased relative to 

observed streamflow. Existing solutions to correct for sample impoverishment [Li et al., 2014] 

do not preserve the internal consistency of states (i.e., they have the potential to produce soil 

moisture and snow water equivalent time series that could not reasonably co-exist under current 

conditions). Chapter 4 proposes a new methodology based on historical analogs to limit sample 

impoverishment while preserving the internal consistency of states. 

1.2 OBJECTIVES AND RESEARCH QUESTIONS 

This dissertation explores the use of PF data assimilation to improve the simulated hydrologic 

states used to initialize streamflow forecasts. I focus on the application of the Sequential 

Importance Resampling Particle Filter (SIR-PF) [Arumpalam et al., 2002; Doucet et al., 2001] to 

assimilate streamflow observations to update simulated soil moisture, snow water equivalent, 
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and streamflow. The primary objective of this dissertation is to improve our understanding of the 

implications of and potential for PF data assimilation based solely on streamflow observations in 

basins with seasonal snow cover.  

Research Questions 

1) What effect does PF data assimilation based solely on streamflow observations have on 

simulated distributions of streamflow, soil moisture, and snow water equivalent? 

2) To what degree does SIR-PF data assimilation based solely on streamflow improve short- 

to medium-range (1-7 day) forecasts, in terms of accuracy and reliability? 

3) Can the use of hydrologic analogs during periods of poor ensemble performance improve 

PF data assimilation based solely on streamflow? 

1.3 APPROACH 

I address each of these three research questions in Chapters 2, 3, and 4, respectively. For 

Chapters 2 and 3, I compare results in two study basins in the Pacific Northwest, United States. 

The first of these is larger and primarily receives its precipitation in the form of snow, while the 

second, smaller basin receives a mixture of rain and snow. In Chapter 2, I perform a set of PF 

experiments that use synthetic observations of streamflow taken from a model simulation that is 

treated as “true”. This allows me to compare the simulated distribution of streamflow, soil 

moisture and snow water equivalent from the SIR-PF with the “true” states (Question 1). I use 

the Continuous Rank Probability Score (CRPS) [Hersbach, 2000] to evaluate each component 

probabilistically. I compare the SIR-PF results with two baselines: 1) a simulation that uses no 

data assimilation and 2) simulations that use a simpler ad-hoc non-sequential PF. In Chapter 3, I 

use real observations of naturalized streamflow in a SIR-PF to simulate hydrologic states for 

seven water years. I then use these states to initialize 1- to 7-day streamflow forecasts. I compare 
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the resulting forecasts—in terms of CRPS, 𝛼 reliability [Renard et al., 2010], mean absolute 

error, percent bias, and correlation—with forecasts that were initialized from simulations that did 

not use data assimilation (Question 2). Finally, I address Question 3 in Chapter 4, which 

describes two proposed approaches to resampling particles from historical analogs and applies 

them to five types of hydroclimatic conditions. The simulated hydrologic states and streamflow 

resulting from that exploratory analysis are compared to observed streamflow, states and 

streamflow simulated without data assimilation, and states and streamflow simulated using the 

SIR approach to resampling. 
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Chapter 2. ASSESSING ENSEMBLE PARTICLE FILTERS FOR THE 

ESTIMATION OF MODEL STATES FOR 

STREAMFLOW FORECASTING 

This chapter is in revision for submission to Water Resources Research as 

Clark, E. A., A. W. Wood, and B. Nijssen. Assessing ensemble particle filters for the estimation 

of model states for streamflow forecasting. Water Resources Research, in revision. 

 

Abstract 

Streamflow forecasts produced by the National Weather Service River Forecast Centers 

incorporate ancillary observations through supervised manual data assimilation (DA) to adjust 

model states used to initialize streamflow forecasts. Automation of DA is regarded as a critical 

step for advancement of operational streamflow prediction, as it improves consistency and 

reproducibility. The particle filter (PF) is an attractive method of DA because it does not require 

adjustments to model states and can be used for non-linear and non-Gaussian systems. Using a 

synthetic experiment, in which one simulation of states and streamflow is regarded as truth, we 

assess the ability of a recursive (sequential) PF versus a simpler non-sequential PF to maintain 

skillful moisture state ensembles while assimilating only streamflow. The resultant ensembles of 

daily hydrologic states from water year 2006 to 2015 in two watersheds – the Green River Basin 

upstream of Howard Hanson Dam and the South Fork Flathead River upstream of Hungry Horse 

Dam – were evaluated in terms of Continuous Rank Probability Score (CRPS). The sequential 

PF produced the best streamflow distributions at both sites; however, the difference in CRPS 

between sequential and non-sequential filters decreased when observations were given higher 
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weight relative to the model. Soil moisture distributions improved for all filters in both basins, 

due to the tight coupling of soil moisture to streamflow, but DA only consistently improved the 

snow water equivalent distribution in the Hungry Horse basin, underscoring the relatively 

stronger influence of snow melt on flow generation in that watershed versus the Howard Hanson 

basin. 

2.1 INTRODUCTION 

Short- to medium-range streamflow forecasts inform daily water system operational decisions 

throughout the world. These forecasts are uncertain due to a combination of unknown initial 

hydrologic conditions (IHCs), measurement errors, data interpolation errors, hydrologic model 

parameter uncertainty and structural errors, and uncertain quantitative precipitation forecasts and 

downscaling techniques [Cloke and Pappenberger, 2009; Wood and Lettenmaier, 2008]. In this 

study, we produce an ensemble of simulated watershed moisture states that reflect the 

uncertainties in initial conditions and that can be used to initialize model streamflow forecasts. 

One approach to improve the estimated distribution of IHCs is to incorporate observations into 

simulations through data assimilation (DA). The current operational streamflow forecasts from 

the National Weather Service (NWS) River Forecast Centers (RFCs), which are distributed via 

the Advanced Hydrologic Prediction Service (AHPS), uses a predominantly manual DA 

approach for hydrologic state updating [McEnery et al., 2005]. Because manual DA leverages 

the forecasters’ experience and judgment, the decision-making process evolves over time due to 

changes in experience, data systems, and personnel. For this reason, manual DA undermines the 

consistency and reproducibility of forecasts, which in turn limits development opportunities that 

require these characteristics. For instance, reproducibility enables consistent hindcasts to support 

forecast verification, statistical post-processing, and the benchmarking of new forecasting 
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strategies against existing ones. Automated DA methods also enable the use of higher 

dimensional, more complex models as well as greater forecast frequency and more forecast 

locations. Three methods of automated DA have gained popularity in hydrologic studies: 1) the 

Kalman filter and its variants, 2) particle filters (PFs), and 3) variational methods [McLaughlin, 

2002]. PFs are attractive to hydrologic modeling applications because they can be applied to 

nonlinear and non-Gaussian problems [Arulampalam et al., 2002] and because they do not 

require direct manipulation of model states [Salamon and Feyen, 2010]. 

Particle filters represent the posterior distribution of model states as an ensemble of 

individually weighted simulation outcomes (‘particles’). As with other ensemble-based methods, 

each particle represents a plausible model state (soil moisture, snow water equivalent, 

temperature, etc.) and tracks its evolution as propagated in time by a model. Each particle has a 

weight based on its likelihood of representing the true state given respective uncertainties in the 

hydrologic model and observations. Many previous studies in hydrology [for example, 

Moradkhani et al., 2005, 2006; Weerts and El Serafy, 2006; DeChant and Moradkhani, 2011a, 

2014; Salamon and Feyen, 2010] have applied PF using the method of Sequential Importance 

Resampling (SIR) to improve simulation performance. SIR, which is derived directly from Bayes 

theorem, combines a method called Sequential Importance Sampling (SIS), which estimates the 

posterior distribution based on the likelihood of a given state, with a resampling step to avoid 

sample degeneracy (see section 2.2.2). Sample degeneracy occurs when only a few particles are 

given the majority of the weight, such that the particle distribution cannot represent the posterior 

distribution.  SIS assumes that the true distribution of states is proportional to some known 

(importance) distribution [Doucet et al., 2001]. In practice, it is common to use a pre-specified 

prior distribution as the importance distribution. The weights in SIS are calculated recursively, 
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which allows the prior likelihood of states to influence the posterior weights. Particle resampling 

removes particles that perform poorly and spawns additional particles from the states of the best 

performing particles. A downside of SIR is that it can be challenging to interpret the recursive 

weights to analyze why a certain particle is excluded from the filter ensemble on a given day.  

In this paper, we focus on the practical implementation of the particle filter to estimate 

model states to improve, potentially, their application as IHCs for streamflow forecasting 

applications. We apply the SIR approach, and we also benchmark it through comparison to a 

non-sequential, non-recursive alternative to SIR that limits particle evaluation and weighting 

solely to the prior week’s performance. At each assimilation time, the non-sequential particle 

filter evaluates and selects particles to retain, cull or resample, as with the SIR filter.  There are 

four primary benefits to this approach: 1) intuitive weight interpretation; 2) greater user control; 

3) less sample degeneracy; 4) potentially lower computational burden. 

The objectives of this paper are two-fold.  First, we aim to evaluate the marginal benefits 

of SIR versus limited-memory non-sequential particle filter implementations to estimate 

ensemble distributions of hydrologic states (snow water equivalent and soil moisture) and 

streamflow, based solely on the assimilation of streamflow observations. Second, we wish to 

understand more broadly the ability of a streamflow-only assimilation to improve other key 

model moisture states, since these are critical for initializing streamflow forecasts. The methods 

examined here are designed to be suitable for deployment into a fully automated streamflow 

forecast system.  

The following section (2.2) describes the methodological approach. The data sources, 

study sites, and hydrologic model used in this study are described in section 2.3.  Section 2.4 

presents results for each of the experiments in terms of streamflow, soil moisture, and snow 
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water equivalent (SWE). A discussion of these results and their broader implications is included 

in section 2.5, and conclusions with an eye toward implementation are presented in section 2.6. 

2.2 APPROACH 

This study assimilates streamflow into an ensemble of watershed simulations.  Because the focus 

of this paper is on the particle filter performance and its impact on watershed states, which are 

rarely directly measurable, we perform an experiment in which one member of the ensemble of 

model simulations is randomly selected as truth – i.e., providing synthetic ‘observations’ of 

streamflow, and hydrologic states (snow water equivalent and soil moisture).  This experiment 

sheds light on the ability of DA to draw the model states closer to the model ‘truth’ while 

avoiding degeneracy.  

The key elements of the approach and workflow used to simulate model states are 

described in section 2.2.1. A description of the elements common to all particle filter methods 

employed in this study is given in section 2.2.2. Section 2.2.3 presents the details of each of six 

experiments conducted, and section 2.2.4 describes the metrics used to assess the results of each 

experiment.  

2.2.1 Hydrologic model state ensemble 

In this study, we represent errors in simulated watershed moisture states and streamflow using an 

ensemble of model states generated by running the model with an ensemble of meteorological 

forcing inputs. Because we do not perturb individual model states, the water balance remains 

consistent before and after resampling. Few hydrologic studies on data assimilation have 

included realistic meteorological forcing errors, and those that do typically employ satellite 
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precipitation error models [e.g., Moradkhani et al., 2006] that are unlikely to describe the error 

characteristics of forcings used in operational streamflow prediction practice.  

To our knowledge, this is the first hydrologic modeling paper that uses a particle filter in 

which errors in input precipitation and temperature are derived empirically from a probabilistic 

analysis of meteorological observations. Probabilistic interpolation of the station data was 

performed using spatial regression methods [Clark and Slater, 2006; Newman et al., 2015] to 

generate an ensemble of equiprobable gridded precipitation and temperature daily time series. 

This approach provides quantitative uncertainty estimates for the meteorological fields that can 

be leveraged in the DA. Ensemble spread represents uncertainty in the raw observations and in 

their spatial interpolation. 

Figure 2.1 outlines the general workflow used for simulating the ensembles of model 

states that represent the uncertainty in the hydrologic model attributable to errors in 

meteorological forcing data. In situ observations of daily precipitation and temperature were 

inputs to a spatial regression approach [Newman et al., 2015] used to create 𝑁/ equally probable 

daily meteorological model input time series (section 2.3.1), each of which was then used to 

force a hydrologic and channel routing model (section 2.3.2) to simulate daily hydrologic 

conditions. Daily streamflow and model states were saved for each ensemble member for use by 

an external DA analysis module. 
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Figure 2.1. Workflow to generate ensemble time series of hydrologic model states for open 

loop and data assimilation cases. In this study, observed streamflow is synthetic. 

 
The daily streamflow and model states from a single continuous simulation for each 

ensemble member constitute the open loop hydrologic conditions. In addition, a set of five DA 

experiments was conducted using different particle filter implementations (sections 2.2.2 and 

2.2.3). In all DA experiments, the hydrologic model was used to propagate hydrologic conditions 

for each ensemble member until an observation was available (essentially daily at our sites). 

Once an observation of streamflow becomes available, the DA technique updates the ensemble 

states (Fig. 2.1) that are then propagated through the hydrologic model until the next observation 

is available, at which point the states are once again updated. 
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2.2.2 Particle filters 

Particle filters are attractive for hydrologic modeling applications because they can be applied to 

nonlinear and non-Gaussian problems. We start with the forward model: 

 𝑥1 = 𝑓1(𝑥145, 𝑣145) (2.1) 

where 𝑥1 is the model state at time 𝑡, and 𝑓1 is a function of 𝑥145 (the model state at time 𝑡 − 1) 

and of 𝑣145 (the process noise at time 𝑡 − 1). Each of these elements can be either scalar or 

vector quantities. For most hydrologic models, the model states include soil moisture and where 

relevant, snow storage (snow water equivalent). The process noise is any type of uncertainty, 

such as uncertainty in model parameters, atmospheric forcings, and model physics. Only errors 

in forcing data are explicitly represented in the implementation presented here – thus, the process 

noise, 𝑣1, is incorporated by running the forward model with an ensemble of meteorological 

forcings. 

The goal of the particle filter is to estimate a probability distribution of simulated states, 

given an uncertain observation 𝑧1, 

 𝑧1 = ℎ1(𝑥1, 𝑛1)	 (2.2) 

where ℎ1 is a function that relates the model state to the observation (known as the “observation 

operator”), and 𝑛1 is the measurement error at time 𝑡. In this case, the measurements are 

observations of streamflow, but the same methodology could be applied to observations of 

additional hydrologic states and fluxes. In this paper, 𝑛1 is specified using a Gaussian function 

with mean 𝑥1 and standard deviation specified based on published streamflow gaging error 

estimates. As with Eqn. 2.1, the elements of Eqn. 2.2 can be scalar or vector quantities. 

Particles (e.g., hydrologic simulation ensemble members) are assigned weights 

proportional to each particle’s likelihood given the observations [Kitagawa, 1996] and 



 

 

14 

observational error. The particle weights define the posterior probability distribution function 

(𝑝1(𝑥) at time 𝑡) for model states 𝑥1 given the observations 𝑧5:1: 

 𝑝1 𝑥1|𝑧5:1 ≈ 𝑤1C
DE
CF5 𝛿 𝑥1 − 𝑥1C  (2.3) 

where 𝑤1C	and 𝑥1C are the normalized weight and state of particle 𝑖, respectively, for a total of 

𝑁/	particles, and 𝛿(∙) is the Dirac delta function [Kitagawa, 1996; Doucet et al., 2001; 

Arulampalam et al., 2002]. 

The general particle filter workflow (Fig. 2.2) starts with a series of 𝑁/ equally weighted 

particles, which we sample from the retrospective hydrologic conditions ensemble at time 𝑡J. 

Each particle is run forward, with the same weight, until the next time step for which there is an 

observation. At this point, new particle weights are calculated. The weighting functions used in 

this study are described in section 2.2.3. As the ensemble evolves, some particles may diverge 

significantly from the observations, in which case they are considered ineffective.  When there 

are too few effective particles, the ineffective particles are discarded and the remaining particles 

are resampled and given new weights, restoring 𝑁/ effective particles in the filter (see section 

2.2.2). The hydrologic model then propagates the particle states forward in time until the next 

observation or until the time at which a forecast will be initialized. How the states are used to 

initialize the forecast is outside of the scope of this study. 
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Figure 2.2. Particle filter flow chart.  

 
Two well-known issues in the application of particle filters are 1) sample degeneracy, 

which occurs when the weights of very few particles dominate, and its consequence, 2) sample 

impoverishment, which occurs when the filter only propagates these dominant particles into the 

future, rather than the entire distribution [Li et al., 2014]. Because of the dependency of weights 

in sequential schemes on their value at previous time steps, this problem is particularly notable in 

methods like Sequential Importance Sampling, but occurs in non-sequential particle filters as 

well. Resampling schemes have been developed to minimize sampling degeneracy; however, 

they do not necessarily combat sample impoverishment [Salamon and Feyen, 2010]. The number 
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of effective particles, 𝑁KLL, is used as a measure of sampling degeneracy [Kong et al., 1994; Liu 

and Chen, 1995]. 𝑁KLL can be estimated as follows [Doucet et al., 1999]: 

 𝑁KLL =
5

MN
OPQE

ORS

  (2.4) 

In this paper, we selected 𝑁//5 as the minimum number of effective particles required. Whenever 

𝑁KLL falls below this minimum, the particle distribution is resampled. 

The resampling algorithm used here is based on the resampling algorithm presented in 

Arulampalam et al. [2002], Moradkhani et al. [2005], and Weerts and El Serafy [2006]. The 

primary steps of the resampling scheme are outlined in Fig. A.1 (Appendix A). The algorithm 

creates a set of equally weighted particles that reflect the probability distribution from the 

particle weights prior to resampling. 

2.2.3 Experiments 

2.2.3.1 Open loop and synthetic truth 

In our experiments, we use 99 particles (𝑁/ = 99) plus one truth simulation. Each of 100 

meteorological ensemble members is used to force each of 100 hydrologic model simulations. As 

described in section 2.2.1, these meteorological ensemble members are equiprobable by design, 

so the distribution of the equally weighted resultant hydrologic states on each day represents that 

day’s prior distribution of IHCs. One member of the ensemble is taken as a synthetic “truth” for 

the entire duration of the simulation, and the remaining 99 members are used as the open loop 

(no DA) case. 
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2.2.3.2  Particle Filters 

As in Moradkhani et al. [2005], we use a likelihood function, 𝑝 𝑧1 𝑥1C , at time, 𝑡, for particle, 𝑖, 

that is a Gaussian function of the difference between the observed value, 𝑧1, and the modeled 

value, 𝑥1C, with a standard deviation of 𝜎1: 

 𝑝 𝑧1 𝑥1C = 5

VWXNP
𝑒
4
(ZN[\N

O )P

P]N
P  (2.5) 

We normalize the values of	𝑝 𝑧1 𝑥1C  to sum to unity before we use them in weight calculations. 

The standard deviation, 𝜎1, in Eqn. 2.5 represents the observational uncertainty. Eqn. 2.5 derives 

from an assumption that 𝑛1 in Eqn. 2.2 fits a Gaussian error distribution, 𝑁 0, 𝜎1V .  We use a 𝜎1 

value of 10% of the observed flow at time 𝑡, given that the U.S. Geological Survey (USGS) 

National Water Information System reports streamflow data quality from poor (>8% of the 

actual flow) to excellent (within 2% of the actual flow). The streamflow estimates in our study 

represent reservoir inflows that are less well measured than many streamflow locations.  To 

assess the sensitivity of this choice, we also conduct experiments with a 𝜎1 value of 25% of the 

observed flow.  

Doucet et al. [2001] present a discussion of Sequential Importance Sampling, which 

results in the following widely used equation for particle weights, in which the weight from the 

prior assimilation time is multiplied by the weight of the current assimilation time: 

 𝑤1C ∝ 𝑤145C ∙ 𝑝 𝑧1 𝑥1C  (2.6) 

Weights are normalized to sum to unity.  This method is prone to sample degeneracy [Li et al., 

2014]. Furthermore, this recursive behavior complicates the interpretation of particle weights on 

any given day because sporadic poor behavior that occurred several or many days prior could 
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result in low weights for a particle that otherwise performs well. That is, particles are heavily 

penalized for past poor behavior even though they may perform well for current conditions. 

To assess the impact of the long performance memory inherent in the recursive weight 

approach, we compare it with a simpler approach that has limited performance memory. Instead 

of calculating weights recursively, we calculate the weight each day as a function of model 

performance over a series of prior days, with more weight given to recent model performance. In 

this case, 

 𝑤1C ∝ 𝑝 𝑧1 𝑥1C1
_F14`aN 𝑒[4c 14_ ]	 (2.7) 

where 𝑛M1 is the number of days prior to 𝑡 that are included in the calculation of 𝑤1C, 𝑐 is an 

exponential decay constant that determines the degree of influence of each day on 𝑤1C. This 

essentially limits the performance memory to this resampling window of 𝑛M1 days. The 

exponential decay multiplier is shown in Fig. 2.3 for 𝑐 values of 0, 0.5, 1, and 25 day-1. Note that 

the 𝑝 𝑧1 𝑥1C  for all 7 days is weighted equally if	𝑐 equals 0, and only 𝑝 𝑧1 𝑥1C 	on the day prior to 

forecast is considered if	𝑐 is very large (𝑐 =25 in this example). 
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Figure 2.3. Dependence of decay function used in Eqn. 2.7 on choice of c. For larger c, 

performance on only the day prior to the forecast is used in weighting particles; while days 

further in the future have a larger impact on the weights with lower c.  

 
We can combine the likelihood function in Eqn. 2.5 with the weight functions in Eqns. 

2.6 and 2.7 to form the equations used to calculate weights for each particle filter 

implementation. Substituting Eqn. 2.5 into Eqn. 2.6 gives the proportional (non-normalized) 

weights, 𝑤1C∗, for the sequential Gaussian particle filter: 

 𝑤1C∗ = 𝑤145C ∙ 5

VWXNP
𝑒
4

ZN[\N
O P

P]N
P ∙ 5

VWXNP
𝑒
4

ZN[\N
g P

P]N
PDE

hF5

45

 (2.8) 

Substituting the same likelihood function (Eqn. 2.5) into Eqn. 2.7 results in the equation for 

proportional (non-normalized) weights used in the non-sequential Gaussian particle filter: 

 𝑤1C∗ = 𝑒4c(14_) ∙ 5

VWXNP
𝑒
4
(ZN[\N

O )P

P]N
P ∙ 5

VWXNP
𝑒
4

ZN[\N
g P

P]N
PDE

hF5

45

1
_F14`aN  (2.9) 
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In order to represent the probability distribution as defined in Eqn. 2.3, weights calculated in 

Eqns. 2.8-2.9 are normalized to sum to one as: 

 𝑤1C =
MN
O∗

MN
g∗QE

gRS
 (2.10) 

 

2.2.4 Evaluation of ensembles 

We use the continuous rank probability score (CRPS) [Hersbach, 2000] to compare the 

performance of the different PF methods. The CRPS is a widely-used metric for evaluating how 

well ensembles represent single-valued observations. The CRPS compares the cumulative 

probability distribution (CDF) of each simulated state 𝑠 on day 𝑡, 𝐹1k 𝑠	 , with that day’s “true” 

CDF (based on on observations), 𝐹1
l 𝑠 , where the superscripts 𝑠 and 𝑦 denote simulated and 

truth, respectively.  This value is calculated over 𝑛 days as: 

 CRPS	 = 5
`

𝐹1k 𝑠 − 𝐹1
l(𝑠) V𝑑𝑠s

k	F4s
`
1F5  (2.11)  

CRPS assumes that the observations are perfect, such that 𝐹1
l 𝑠  is defined as the Heaviside 

function conditioned on the observed hydrologic states, 𝑦1:	 

 𝐹1
l 𝑠 = 0, 𝑠 < 	𝑦1

1, 𝑠 ≥ 𝑦1
 (2.12)  

CRPSS penalizes distributions for bias and a large spread. It essentially measures the area 

between the simulated and observed distributions. Distributions that best match the observations 

will have CRPS values close to zero. 

To facilitate comparison across study sites and hydrologic variables, CRPS is converted 

to a skill score using the CRPS of a reference distribution, CRPSvKL: 

 CRPSS	 = 1 −	 wxyz
wxyz{|}

 (2.13) 
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In this study, we use the CRPS of the open loop case as CRPSvKL. Estimated IHC distributions 

with high probabilistic skill will have CRPSS close to one. If CRPSS is less than or equal to 

zero, the open loop distribution performs better than the particle filter. Results presented here are 

calculated in Python using the properscoring library [The Climate Corporation, 2015].  

2.3 CASE STUDIES 

We conducted a series of experiments using watershed simulations of inflows to two reservoirs 

in the Pacific Northwest (PNW) region in the United States (Fig. 2.4; Table 2.1). Hungry Horse 

reservoir is located on the South Fork Flathead River in Montana, and Howard Hanson Dam is 

located on the Green River in Washington State. Both basins are heavily forested, with forest 

making up 83% of the area above Hungry Horse [McCarthy et al., 2016] and 91% of the 

drainage area above Howard Hanson [Sumioka et al., 1998]. Both are headwater basins with 

minimal regulation above the respective reservoirs. Two primary differences in hydrologic 

response of these basins are the form of precipitation and the time of concentration (time to 

travel the hydraulically longest path from the basin boundary to the outlet). Precipitation in the 

basin above Hungry Horse, as in much of the PNW, is winter-dominant and falls primarily as 

snow. Above Howard Hanson, precipitation falls as a mixture of rain and snow with most of the 

runoff generated during fall (October through December) rain events. The time of concentration, 

as defined by the calibrated unit hydrograph, is on the order of 3.5 days at Hungry Horse, while 

the time of concentration at Howard Hanson is closer to 0.9 days. 
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Table 2.1. Physical properties of Green River Basin upstream of Howard Hanson Dam, and 

the South Fork Flathead River upstream of Hungry Horse Dam. Hydrologic variables correspond 

to basin-averaged means for the period October 1980 to September 2015. Precipitation is the 

mean of the gridded ensemble. Runoff is the simulated mean of the retrospective hydrologic 

ensemble. Potential evapotranspiration (PE) was calculated using the Priestley-Taylor method. 

  Howard Hungry 
  Hanson Horse 

Area (km²) 570 4200 
Basin average elevation (m.a.s.l.)  905 1773 
Mean annual precipitation, P (mm/yr) 1890 1043 
Simulated mean annual runoff, R (mm/yr) 1483 676 
Simulated mean annual runoff ratio (R/P) 0.78 0.65 
Simulated mean annual dryness index (PE/P) 0.63 1.22 
   

 

2.3.1 Meteorological Data 

In situ station observations of daily minimum and maximum temperature and precipitation were 

obtained from the Daily Global Historical Climatology Network and updated daily (GHNC-

Daily) [Menne et al., 2012a; 2012b]. For our study areas, this data set includes stations from the 

Community Collaborative Rain, Hail, and Snow network (CoCoRaHs), U.S. Natural Resources 

Conservation Service SNOwpack TELemetry (SNOTEL), the U.S. Cooperative Network, and 

Environment Canada.   

These station observations were interpolated following a spatial regression approach 

[Clark and Slater, 2006; Newman et al., 2015] to generate an ensemble of 100 realizations of 

equiprobable gridded precipitation and temperature daily time series at 1/16th degree latitude by 

longitude grid resolution. Each member of the gridded ensemble time series was areally averaged 

to the hydrologic response units for each basin using the Poly2Poly Python-based conservative 

regridding tools developed at NCAR (https://www.github.com/NCAR/Poly2Poly.git).  One week 
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of the basin-averaged daily meteorological forcing time series ensemble is shown in Fig. 2.4. 

Because station data poorly constrain estimates of spatially continuous (i.e., gridded) 

meteorological fields, the estimation process can result in vastly different behavior between 

ensemble members on any given day. For example, on 4 Jan. 2010, the ensemble at Hungry 

Horse reports precipitation between 0 and 45 mm and at Howard Hanson between 0 and 65 mm. 

Temperature estimates are more certain; however, the ensemble still shows a notable spread. 

Such results support the argument that additional constraints on basin hydrology, such as 

assimilation of streamflow observations, are needed to simulate realistic model states. 

 

 
Figure 2.4. An example of daily time series of precipitation, and minimum and maximum 

temperature at the Howard Hanson and Hungry Horse basins for 100 equally probable ensemble 

members.  Forcings for the first week in January 2010 are shown. 

 

2.3.2 Hydrologic modeling 

For the hydrologic and channel routing model, we used the Sacramento Soil Moisture 

Accounting model (SAC-SMA) [Burnash et al., 1973] and the Snow-17 model for snow 

accumulation and ablation [Anderson, 1973], with unit hydrograph flow routing. This combined 

modeling approach was first developed by the National Weather Service (NWS) and will be 
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referred to as the NWS models for the rest of this paper. Each study basin was simulated with 

two elevation bands, and the model parameters were calibrated for this study for the years 1981-

2008. The calibration used a forcing time series constructed by randomly selecting year-long 

segments from a different meteorological forcing ensemble member. This process was found to 

reduce model bias when the model was run with the entire forcing ensemble. The Multi-

Objective Complex evolution Optimization Model (MOCOM) [Yapo et al., 1998] was used to 

calibrate the model by minimizing two objective functions: average root-mean-square error in 

long-term monthly means and root-mean-square error of daily flows, relative to naturalized 

streamflow observations. Nash-Sutcliffe Efficiency scores of 0.70 and 0.86 for daily streamflow 

values were obtained for the Howard Hanson and Hungry Horse basin models, respectively, 

reflecting strong but not outstanding calibration quality. Observed naturalized daily flows from 

1980-2008 were obtained from the No-Regulation No-Irrigation (NRNI) streamflow dataset 

developed by the Columbia River Management Joint Operating Committee [CRMJOC, 2015] 

(Figs. A.2-A.3; Appendix A).   A ten-year model simulation period was used in the DA 

assessment, spanning 3,652 days between 1 October 2005 and 30 September 2015.   

2.4 RESULTS 

CRPSS values, calculated from daily streamflow, soil moisture and SWE, respectively, for water 

years 2007-2015, are shown in Fig. 2.5 for 𝜎1 = 0.10𝑧1 (more certain observations) and in Fig. 

2.6 for 𝜎1 = 0.25𝑧1 (less certain observations). For both sites, all particle filters improve the 

ensemble of simulated streamflow relative to the open loop simulations, and the sequential 

particle filter produces the highest CRPSS values for streamflow. The open loop case produces a 

more statistically reliable streamflow distribution than the filter in only two cases: 1) for 𝜎1 =

0.10𝑧1 with the intermediate memory non-sequential filter (𝑐 = 1) in water year 2012 at Hungry 



 

 

25 

Horse (Fig. 2.5), and 2) for 𝜎1 = 0.25𝑧1 with the long memory non-sequential filter (𝑐 = 0) in all 

water years at Howard Hanson (Fig. 2.6). As expected, all particle filters show a greater 

improvement in CRPSS for streamflow when smaller errors are assumed for the observations. 

Higher certainty in observations, however, does not translate into higher CRPSS for soil 

moisture and SWE in many cases.  The performance of the particle filters varies by year. 

 

 
Figure 2.5. CRPSS values for Howard Hanson (top row) and Hungry Horse (bottom row) for 

each simulation by year and overall, for different particle filters with σk	=0.10zt. Skill scores are 

calculated using the CRPS of the open loop case for the same period. Scores are shown for 

streamflow (left), soil moisture (center) and SWE (right).  
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Figure 2.6. CRPSS values for Howard Hanson (top row) and Hungry Horse (bottom row) for 

each simulation by year and overall, for different particle filters with σk	=0.25zt. Skill scores are 

calculated using the CRPS of the open loop case for the same period. Scores are shown for 

streamflow (left), soil moisture (center) and SWE (right). Note the color scale differs from that in 

Fig. 2.5.  

 
As with streamflow, the sequential filter produces better overall CRPSS for soil moisture 

than the non-sequential filters at both sites and for each level of assumed error in the 

observations. At Howard Hanson, all particle filters improve the CRPSS for soil moisture in all 

years when smaller observation error is used (Fig. 2.5), and all particle filters with higher 

observational error assumptions show minimal improvement in overall CRPSS (Fig. 2.6). While 

the overall CRPSS is higher for soil moisture at Howard Hanson for 𝜎~ = 0.10𝑧1, the highest 

CRPSS of soil moisture in 2015 is produced by non-sequential particle filters for 𝜎~ = 0.25𝑧1. 

Water year 2015 is one of the driest years of this period, and there are virtually no peaks in 
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streamflow after mid-April. Starting in mid-March 2015, the open loop case is biased high in 

streamflow and soil moisture (and SWE starting in January), suggesting that most of the 

meteorological ensemble members have more precipitation than actually happened during this 

period. Because the sequential filter matches streamflow very closely up until this point in time, 

it has not evolved states that have room to store the additional precipitation. The non-sequential 

filter maintains a larger spread in model states, and because it only accounts for the recent past in 

its weights, more readily drops those particles that could not absorb the excess precipitation. As 

the season progresses, there is very little streamflow, so there are no opportunities for the filters 

to further adjust, resulting in persisting bias in the sequential filter. 

At Hungry Horse, the open loop case never outperforms the filters in terms of CRPS of 

soil moisture when observations are assigned error of 0.25𝑧1 (Fig. 2.6) for all particle filters; for 

𝜎~ = 0.10𝑧1, the CRPS of soil moisture for the open loop case is slightly better than that of the 

non-sequential (𝑐 = 1) particle filter in 2012 only.  

For SWE, on the other hand, the sequential filter only outperforms the non-sequential 

filters when the streamflow observations have more error (Fig. 2.6). When the observations are 

assigned less error (Fig. 2.5), a non-sequential filter with intermediate memory (𝑐 = 0.5) 

performs best at Hungry Horse, and the open loop case and the long-memory non-sequential 

filter (𝑐 = 0) perform best at Howard Hanson. Regardless of the assumed observational error, 

the open loop case performs better, or as well as, most of the filters in most years at Howard 

Hanson in terms of CRPS for SWE. At Hungry Horse, the open loop case only outperforms three 

of the filters in 2015, and the sequential filter in 2009, if the observations are assigned less error. 

To gain insight into the behavior of the filters, daily time series showing the evolution of 

particle states and streamflow distributions during water year 2007 are plotted in Figs. 2.7-2.12 
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for 𝜎~ = 0.10𝑧1, which outperformed the 𝜎~ = 0.25𝑧1 filter configuration. The time series in 

Figs. 2.7-2.12 compare the ensemble distribution quantiles with the synthetic observation on 

each day of analysis. Because of resampling, the particle distribution on any given day may have 

evolved from only a subset of the particle distributions leading up to that day. For example, for 

the case of 𝑐 = 25 at Howard Hanson in Fig. 2.9, the high springtime SWE values are not 

included in any of the time series for the particles that remain by Aug. 1, 2007 because the 

particles corresponding to high springtime SWE were discarded in late May/early June. 

For water year 2007, which is representative of the overall CRPSS results at Howard 

Hanson, all particle filters succeed in reducing the magnitude of the first peak in November in 

the open loop simulations, as well as a smaller event in January, to better match observations 

(Fig. 2.7). The open loop ensemble median soil moisture is lower than the (synthetic) true soil 

moisture at the beginning of the water year (Oct. through Jan.; Fig. 2.8). All of the filters remove 

this bias (Fig. 2.8). For SWE, however, the shorter memory non-sequential particle filters 

accumulate more snow in the early (𝑐 = 1) or late season (𝑐 = 0.5 and 𝑐 = 25) in 2007 than in the 

synthetic truth (Fig. 2.9). The median SWE simulated with the longer memory non-sequential 

filter (𝑐 = 0) and the sequential filter track observed SWE better in this case, but the spread of 

particles in the sequential filter does not contain the observed SWE for much of the mid-winter 

(Fig. 2.9). 
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Figure 2.7. Daily streamflow time series at Howard Hanson for water year 2007, for particle 

filter runs with σk	=0.10zt. Colored bands show minimum and maximum ensemble values, the 

10th to 90th percentile, and the 25th to 75th percentile.   
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Figure 2.8. Daily soil moisture time series at Howard Hanson for water year 2007, for 

particle filter runs with σk	=0.10zt. Colored bands show minimum and maximum ensemble 

values, the 10th to 90th percentile, and the 25th to 75th percentile. 
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Figure 2.9. Daily SWE time series at Howard Hanson for water year 2007, for particle filter 

runs with σk	=0.10zt. Colored bands show minimum and maximum ensemble values, the 10th to 

90th percentile, and the 25th to 75th percentile. 

 

For water year 2013, which reflects the overall CRPSS pattern at Hungry Horse, the open 

loop ensemble median of streamflow matches the synthetic observation well overall, but misses 

the magnitude of the November peak entirely, as well as two smaller events in late January (Fig. 

2.10).  For the open loop ensemble, the soil moisture during and immediately prior to these 

events is also lower than the synthetic true soil moisture (Fig. 2.11). Because the open loop SWE 

is higher than the synthetic true SWE during the November and January events, at least part of 

the discrepancy in streamflow is due to excess snow accumulation in the open loop case. 

Applying any of the particle filters improves SWE because the streamflow events are closely tied 

to snowmelt. For example, to match higher streamflow in November, the particle filter favors 
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particles with lower snow accumulation (or higher melt) during that event (Fig. 2.12). The longer 

memory filters (sequential and non-sequential 𝑐 = 0) produce a better CRPSS for all variables in 

this basin (Fig. 2.5). This is because they produce a smaller spread than the shorter memory 

cases, and because the time of concentration for Hungry Horse is multiple (~3.5) days. When the 

observational errors are lower, the CRPSS is uniformly high relative to the open loop case for 

SWE for all filters because the range of simulations is too high to discard most particles. 

 

 
Figure 2.10. Daily streamflow time series at Hungry Horse for water year 2013, for particle 

filter runs with σk	=0.10zt. Colored bands shows minimum and maximum ensemble values, the 

10th to 90th percentile, and the 25th to 75th percentile. 
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Figure 2.11. Daily soil moisture time series at Hungry Horse for water year 2013, for particle 

filter runs with σk	=0.10zt. Colored bands shows minimum and maximum ensemble values, the 

10th to 90th percentile, and the 25th to 75th percentile. 
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Figure 2.12. Daily SWE time series at Hungry Horse for water year 2013, for particle filter 

runs with σk	=0.10zt. Colored bands shows minimum and maximum ensemble values, the 10th 

to 90th percentile, and the 25th to 75th percentile. 

2.5 DISCUSSION 

Even though the sequential filter outperforms the non-sequential filter in terms of CRPSS, the 

non-sequential filter improves upon the open loop case, and in some cases performs almost as 

well as the sequential filter. In nearly all cases, higher CRPSS in the sequential case can be 

attributed to a smaller ensemble spread. This small spread results directly from the recursive 

application of weights. 

The filter behavior at Hungry Horse differs from the behavior at Howard Hanson largely 

because snow accumulation and melt play a more important role in the timing of streamflow. At 

certain times of year, the streamflow timing and magnitude are more reflective of snow storage 
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at Hungry Horse than at Howard Hanson. Because most of the variability in streamflow at 

Howard Hanson is driven by rainfall events, the streamflow observations contain less 

information about snow storage.  

Although the time of concentration at Hungry Horse is 3 times that at Howard Hanson, 

both basins have short times of concentration relative to the daily model time step. As a result, 

all non-sequential filters perform similarly in terms of CRPSS of streamflow and soil moisture at 

both sites (Figs. 2.5-2.6). Because the time of concentration at Howard Hanson is less than one 

day, previous streamflow over extended periods adds little to and even degrades the estimation 

of current streamflow. As a result, if the observations are given lower weight in the assimilation 

(𝜎1 = 0.25𝑧1), equally weighting the past 7 days produces a less representative distribution of 

streamflow overall than using only the current day’s streamflow (Fig. 2.6). 

If streamflow observations are given lower weight, the particle filter maintains a larger 

spread of streamflow ensemble members, reflecting greater emphasis on simulated states. The 

CRPSS is penalized for wider spread when observations have more error, but the wider spread 

allows for a broad range of model simulations to continue even if they miss the observed flow on 

a given day. This range is important if the observed flow is inaccurate or contains limited 

information about individual hydrologic states, such as non-melting SWE or same-day soil 

moisture, which may influence runoff only at a lag. When streamflow observations are given 

more weight (lower error), the particle filters do not retain as many particles, and as a result, the 

particle filters are not able to recover if states such as SWE state diverge.  For this reason, the 

CRPSS for SWE is worse in some years at both sites for 𝜎1 = 0.10𝑧1 (Fig. 2.5) than for 𝜎1 =

0.25𝑧1 (Fig. 2.6). 
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Snyder et al. [2008] emphasize that resampling does not improve the current posterior 

distribution, but rather hopes to prevent future degeneracy by propagating more likely states. 

They demonstrate that sample degeneracy becomes increasingly problematic as the number of 

states grows. In the case of lumped models, like the NWS models used here, the number of states 

is constrained by using a small number of hydrologic response units; however, in hydrologic 

applications that use distributed models, the number of spatially distributed states can be quite 

large [Salamon and Feyen, 2010]. The non-sequential filters presented here require resampling 

approximately only 25% as frequently as the sequential filter at either site.  This means that the 

sample is less likely to degenerate for the non-sequential filter. This may be more valuable in 

real-world applications, in which model bias can cause the distribution of simulations to diverge 

farther from the observations than in this synthetic case.  

2.6 CONCLUSIONS 

Using synthetic data assimilation experiments and hydrologic simulations driven by 

meteorological ensemble forcings, we have assessed the performance of a recursive (SIR) 

particle filter methods in improving simulation performance.  We have evaluated the impact of 

the long memory assumptions of this filter in contrast to a non-sequential particle filter 

implementation with more direct control over the representation of system memory. We tested 

this framework with four representations of system memory against an open loop and sequential 

particle filter implementation. We also examined the sensitivity of these implementations to the 

error assigned to streamflow observations. The results of these experiments highlight the 

complexity of interactions between streamflow and hydrologic states, showing that the particle 

filter that produces the best estimates of prior streamflow does not always produce the best 

estimates of hydrologic state, particularly SWE. 
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The experiments presented here are motivated by the need to reduce state estimation 

errors in models used to initialize hydrological forecasts in an automated and reproducible 

manner.  With that goal in mind, the results are generally encouraging, particularly for soil 

moisture states, but also highlight areas of concern.  We have shown that assimilation of 

streamflow can improve simulated soil moisture and SWE state, depending on the basin 

characteristics, including concentration times and hydroclimate.  In basins where streamflow 

offers little information to constrain SWE, assimilation of streamflow observations alone may 

not be able to reduce the uncertainty in mid-winter to early spring SWE states, and may even 

degrade those systems. While this may not have a large impact on short- to medium-range 

forecasts in such systems, it could reduce the skill of seasonal water supply forecasts where snow 

becomes a critical predictor for future runoff.  

While the sequential particle filter generally outperformed the non-sequential filters 

proposed here, the non-sequential filters outperformed the open loop case, in terms of CRPSS, in 

most years for streamflow, soil moisture and SWE (except for SWE at Howard Hanson). The 

value of the non-sequential filters is enhanced if the streamflow observations have lower errors. 

The primary benefit to employing a non-sequential filter is that particle weights in a non-

sequential filter are easier to interpret because the user specifies which simulated values 

influence their calculation to what degree. The user can control and limit the degree to which 

simulation performance memory is accounted for in evaluating particle performance. 

We have also found that the use of a particle filter that is conditioned only on streamflow 

can degrade the quality of SWE states produced by a well-calibrated model that is run in open 

loop mode. This is particularly true if streamflow is driven by rainfall rather than snowmelt, as is 

the case at Howard Hanson. 
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This study did not attempt to calibrate model parameters through the DA process or 

estimate model structure and parameter uncertainty. If included, this added uncertainty would 

drive the particle filter to favor the observations more heavily. Because the non-sequential 

particle filter performed similar to the sequential filter when the observations were favored more 

heavily in the current simulation (𝜎1 = 0.10𝑧1), it is likely that incorporating model uncertainty 

would have led to a smaller discrepancy in CRPSS between the sequential and non-sequential 

filters; however, additional work is needed to examine this question. 

While we have shown improvements in distributions of streamflow and soil moisture 

states with the sequential particle filter, SWE states were more variable. Future work will 

examine the degree to which the filter’s changes to hydrologic moisture state distributions 

propagates into improved short- to medium-range streamflow forecasts in a real-world system.  

The variation of CRPSS for SWE with climate in the two basins studied here suggests that 

additional work should focus on a variety of hydroclimatological systems to provide greater 

insight on an aspect that remains particularly challenging. Based on the results presented here, 

the sequential particle filter provides a reasonable and automated approach to improve 

hydrologic states for use in the initialization of short- to medium-range streamflow forecasts, 

particularly in basins whose streamflow does not depend on snow. In basins where SWE is 

important, we recommend incorporating SWE observations as an additional constraint in the DA 

system, particularly when these states are also used in seasonal water supply forecasts.  



 

 

39 

Chapter 3. IMPLICATIONS OF STREAMFLOW DATA 

ASSIMILATION VIA A PARTICLE FILTER FOR 

STREAMFLOW FORECASTS IN WATERSHEDS 

WITH SEASONAL SNOWPACK 

This chapter will be submitted to Hydrology and Earth System Sciences as 

Clark, E. A., B. Nijssen, A. W. Wood, and M. P. Clark. Implications of streamflow data 

assimilation via particle filter on streamflow forecasts in basins with seasonal snow. 

Hydrology and Earth System Sciences, in preparation. 

 

Abstract 

Data assimilation (DA) has been widely studied as a key strategy to improve estimates of 

hydrologic states for use in hydrologic forecasting. Relatively few studies, however, have 

examined the performance of streamflow forecasts initialized with snow and soil moisture states 

that were updated only by the assimilation of streamflow observations. We employ the 

Sequential Importance Resampling Particle Filter (SIR-PF)—a DA method that can be used in 

non-linear and non-Gaussian systems without directly adjusting model states—to assimilate 

streamflow observations to improve probabilistic estimates (ensembles) of hydrologic model 

states. We then assess the accuracy and reliability of streamflow forecasts initialized with the 

resultant state distributions in two watersheds—the Green River Basin upstream of Howard 

Hanson Dam and the South Fork Flathead River upstream of Hungry Horse Dam—using 10 

years of daily 7-day lead ensemble forecasts. In both basins, we find that the SIR-PF DA 

improves forecast skill (measured via several metrics relative to a baseline open loop state 

initialization) when using as few as five IHC ensemble members, when only the members with 
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the largest PF weights are selected for forecast initialization. Forecasts initialized from the SIR-

PF with 25% uncertainty in its likelihood function outperform both open loop simulations and 

also the SIR-PF with 10% uncertainty, based on a range of metrics. Improvements due to DA 

decrease as a function of lead time, however, and at least one skill metric (correlation) is not 

improved through DA. The skill improvements are largest in spring and summer, which is 

consistent with improved SWE estimates during spring, when snow melt contributes most 

dynamically to streamflow. We also find significant year-to-year variations in DA performance, 

indicating that DA studies using shorter hindcast records may yield unreliable results. 

3.1 INTRODUCTION 

Short- to medium-range streamflow forecasts are a central information product that water 

managers use to determine how much water to store or release from reservoirs on a given day. 

The value of these forecasts decays rapidly as forecast latency increases. Therefore, it is 

important that streamflow forecasts be issued as close to real-time as possible. Streamflow 

forecasts (0-6 days) are primarily dependent on two factors: 1) how well we can predict the 

future meteorological conditions, and 2) how well we can estimate current watershed moisture 

storage conditions (primarily soil and snow). Measurements of soil moisture and snow water 

storage are sparse in both spatial density and temporal coverage. As a result, streamflow 

forecasters rely on hydrologic models forced by observed meteorology (e.g., air temperature, 

precipitation, and in some cases other model inputs) to simulate a watershed’s initial hydrologic 

conditions (IHCs) at the start of the forecast. These simulated IHCs, like all hydrologic model 

outputs, are subject to several sources of uncertainty, including errors in past forcings (e.g., 

precipitation and temperature), model structural errors, and numerical errors [e.g., Wagener and 
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Gupta, 2005]. The existence of these errors is well known, but their magnitude, which varies in 

time and space, is not. 

Data assimilation (DA) seeks to reduce simulation errors by incorporating additional 

watershed observations into model state estimates. Several methods of DA have been developed 

and tested in the field of hydrology, where the most popular methods of DA for prediction 

[McLaughlin, 2002; Liu et al., 2012] are variations on 1) the Ensemble Kalman Filter (EnKF) 

[Evensen, 2007], 2) the Particle Filter (PF) [Kitagawa et al., 1996], and 3) variational methods 

[Daley, 1991]. PFs are popular in hydrology because they do not require a Gaussian error 

distribution, they work well in non-linear systems [Arulampalam et al., 2002], and they do not 

modify the model states directly, thereby maintaining an internally consistent water balance 

[Salamon and Feyen, 2010]. A primary drawback of PFs is sample degeneracy, in which the 

majority of the weight is given to a very small subset of particles, such that the posterior 

distribution cannot be represented [Li et al., 2014]. To address this issue, Sequential Importance 

Resampling (SIR) PF methods resample the particles when sample degeneracy occurs [Doucet et 

al., 2001], but the side-effect of resampling is sample impoverishment, in which the ensemble 

spread is reduced for several time steps following the resampling [Li et al., 2014]. In hydrologic 

applications, the filter tends to collapse during periods of low variability in watershed conditions 

(e.g., during low-flow periods). Several additional methods have been developed to account for 

sample degeneracy and impoverishment, including residual resampling [Zhang et al., 2013], 

implicit equal-weights [Zhu et al., 2016], particle Markov chain Monte Carlo methods [Andrieu 

et al., 2010; Moradkhani et al., 2012], use of genetic algorithm operators [Yin and Zhu, 2015], 

hybrid PF-EnKF methods [Slivinski et al., 2015], and others. Despite these many methodological 

developments, PF methods remain relatively unused in hydrologic forecasting practice. 
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Forecasters remain concerned with the (perceived) computational burden of ensemble methods 

and remain unconvinced of the practical utility of PF methods. In this paper, we explore the 

utility of the simplest of these methods (SIR-PF) [Arulampalam et al., 2002; Moradkhani et al., 

2005; Weerts and El Serafy, 2006] for improving short-range streamflow forecasts in watersheds 

with seasonal snowpack. 

Several studies have demonstrated the use of PF to assimilate streamflow [Dumedah and 

Coulibaly, 2013; Moradkhani et al., 2005, 2006; Weerts and El Serafy, 2006], soil moisture 

[Montzka et al., 2011] or both [Yan and Moradkhani, 2016] for hydrologic state and/or model 

parameter estimation. These studies primarily test the method in basins that have little to no 

snow. Other studies have used PF to assimilate observations of snow water equivalent (SWE) 

[Leisenring and Moradkhani, 2010; DeChant and Moradkhani, 2011a], snow depth [Magnusson 

et al., 2017], and brightness temperature [DeChant and Moradkhani, 2011b; DeChant and 

Moradkhani, 2014] to improve hydrologic states in basins with seasonal snow cover. Still, few 

studies have assessed the benefits of assimilating only streamflow—the most readily available 

and accurately observed hydrologic variable in common observing systems—in basins where 

seasonal snow plays a strong role in the hydrologic cycle [Abaza et al., 2015]. In addition, these 

studies examine relatively short periods—the longest analysis periods are four [Dumedah and 

Coulibaly, 2013] and six years [DeChant and Moradkhani, 2014]. The former study focuses on 

parameter estimation and aggregate forecast performance, and the latter is a seasonal flow 

volume forecast experiment. As a result, neither discusses interannual variability in forecast 

performance. 

Among the few studies that have addressed the topic of the assimilation of only 

streamflow in basins with seasonal snow cover, Abaza et al. [2015] used an EnKF approach 
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based on streamflow observations in two basins with strong snowmelt signals in Quebec, 

Canada. They found that updating both soil moisture and snow states in the Hydrotel hydrologic 

model produced better streamflow forecast accuracy and reliability—at lead times from 0 to 240 

hours (10 days)—than updating either soil moisture or snow states separately. A forecast is 

reliable if the forecast and observations are statistically consistent (i.e., if the observed time 

series could have been drawn from the forecast distributions). The EnKF produced the greatest 

improvements relative to the open loop at short lead times (up to 2 days). Finally, Abaza et al. 

[2015] reported that a 50-member ensemble (created by randomly pairing 1 meteorological 

ensemble forecast member with each of 50 IHC ensemble members) could produce similar 

forecast performance as a 1000-member ensemble (with each of 20 meteorological forecast 

ensemble members paired with each of 50 IHC ensemble member). 

In Chapter 2 of this dissertation, we applied multiple PF realizations in a synthetic truth 

experiment that examined the effects of assimilating only streamflow on simulated streamflow, 

soil moisture, and SWE model states. Because the PF does not adjust states directly, but rather 

alters their relative weighting at each update step, and resamples which ensemble members 

(particles) continue to evolve, soil moisture and SWE state values for a given particle remain 

consistent with model dynamics and forcings. We found that while soil moisture and streamflow 

were almost always improved by the assimilation of streamflow, SWE states—which are directly 

linked to streamflow during spring melt—can be degraded by the assimilation of streamflow, 

particularly during the middle of winter when little snowmelt occurs. Like Abaza et al. [2015], 

we noted a difference in performance between basins: the basin in which snow was the dominant 

form of precipitation (Hungry Horse) yielded more improvement in SWE than the basin in which 

precipitation fell as a mixture of rain and snow (Howard Hanson). 
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This paper addresses two primary questions. First, does PF DA of streamflow 

observations improve short-term streamflow forecasts—in terms of accuracy and reliability—

relative to an open loop (no DA) case in basins with seasonal snow cover? And second, can we 

enhance the operational usability of PF DA by limiting the streamflow forecast ensemble size?  

To answer these questions, we perform a series of hindcast experiments in the same two 

basins in the Pacific Northwest of the U. S. as used in Chapter 2. One of the basins (Howard 

Hanson) has precipitation that is a mixture of rain and snow, while the other (Hungry Horse) 

primarily receives winter precipitation as snowfall. We perform two hindcasting experiments 

using the SIR-PF, with assumptions of 10% and 25% uncertainty (which determines the 

likelihood of each simulated ensemble member), and one experiment without DA (the open 

loop). Each experiment generates a time-varying ensemble of IHCs. Higher uncertainty in the 

likelihood function allows the PF to retain a wider spread of ensemble members and implies that 

the model simulation is given relatively more weight with respect to the observations. We pair 

the resultant IHCs with an ensemble of meteorological forecasts, whose spread represents the 

uncertainty in atmospheric conditions within numerical weather predictions (NWP). Daily 

streamflow hindcasts are made four times per month for lead times of 0 to 6 days for nine water 

years from 2006-2015. We first examine the change in streamflow hindcast performance when 

only a subset of IHC ensemble members is used to initialize the forecasts. The results are 

compared in terms of three deterministic measures based on the ensemble mean—mean absolute 

error, percent bias, and correlation—and two probabilistic measures – Continuous Rank 

Probability Score (CRPS) [Hersbach et al., 2000] and 𝛼 reliability [Renard et al., 2010]. These 

measures are also compared both year-round at increasing lead times and seasonally. It is 

important to consider seasonal metrics because of large differences in hydrodynamics during 
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different regimes such as fall and winter snow accumulation, fall rainstorms, spring snowmelt, 

and summer low flows. 

These methods are described in detail in section 3.2. Section 3.3 presents the results, 

including example forecast hydrographs, metrics as a function of the number of IHC ensemble 

members, the dependency of forecast performance on lead time and hydroclimate, and seasonal 

analyses. We discuss the implication of these results in section 3.4 and present concluding 

remarks and recommendations in section 3.5. 

3.2 METHODS 

3.2.1 System design 

A broad overview of the hindcast system design employed in this study (Fig. 3.1) is described 

here. Details about each component are presented in the sections that follow.	Hindcasting is a 

tool to evaluate forecast performance by reconstructing forecasts for a historic period. Hindcasts 

are historical forecasts, generated using the same forecast system and techniques from the real-

time system to be evaluated, including the same data sources, model parameters and code. 

Hindcasting addresses two issues in forecast evaluation: 1) verification metrics require a long 

record of forecasts; and 2) future observations are not available to evaluate current forecasts. The 

results presented in this paper are based on hindcasts, but because the methodology mirrors that 

of a real-time forecast system, we use the terms interchangeably.  
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Figure 3.1. Workflow for generating hindcasts. Initial conditions are taken either from open 

loop hydrologic states ensemble or hydrologic states ensemble updated with DA. Meteorological 

forecasts are downscaled and used to force hydrologic models. 
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 Streamflow forecasts are generated by a hydrologic model. Forecasts are initialized with 

an ensemble of simulated IHCs developed from an ensemble of meteorological forcings (section 

3.2.3), and then forced in the forecast period by an ensemble of downscaled meteorological 

reforecasts (section 3.2.4). For each forecast, we pair each meteorological reforecast with each 

IHC, so that the number of streamflow forecast simulations performed on each day is equal to 

the product of the number of meteorological forecast ensemble members and the number of IHC 

ensemble members. Both the base case, or open loop, and the DA cases rely on the ensemble of 

IHCs. In the open loop case, the IHCs are considered equiprobable (section 3.2.3.1), whereas in 

the DA case, the IHC ensemble members are assigned weights representative of their probability 

given a streamflow observation (section 3.2.3.2).  

3.2.2 Study sites 

The western U.S. depends on water storage in reservoirs and snowpack for irrigation, navigation, 

municipal and industrial uses, flood control, environmental flows and hydropower. Hungry 

Horse Reservoir and Howard Hanson Dam are located in mountain headwaters in the Pacific 

Northwest, U.S. (Fig. 3.2). Hungry Horse is fed by the North Fork Flathead River, a tributary to 

the Snake River. The North Fork Flathead River drains an area of 4200 km2 upstream of Hungry 

Horse, of which 83% is covered by forest [McCarthy et al., 2016]. One third of the 1070 

mm/year of precipitation at Hungry Horse falls between December and February (33%), and 

most of the 785 mm/year of runoff occurs during the spring (43%, March-May) and summer 

(42%, June-August). Howard Hanson is fed by the Green River, which is a tributary to the 

Duwamish River in the western Cascade Mountains. The Green River drains an area of 570 km2 

upstream of Howard Hanson, of which 91% is forested [Sumioka et al., 1998]. The Green River 

upstream of Howard Hanson receives water from both snowmelt and rainfall runoff. Fall 
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precipitation (September-November) accounts for 29% of the 1970 mm/year of precipitation, 

while another 37% occurs in December to February. Most of 1680 mm/year of runoff enters 

Howard Hanson in spring (38%) and winter (34%). This climatology is based on water years 

(October through September) 2007-2015 from the ensemble mean of precipitation observations 

described in section 3.2.3 and from streamflow observations. The primary differences between 

these basins are drainage area, and therefore time of concentration, and the main form of 

precipitation. 

 

Figure 3.2. Location map of study basins. 

 
Streamflow observations for assimilation and forecast evaluation were obtained from the 

U.S. Bureau of Reclamation AgriMet network for inflows to Hungry Horse 

(https://www.usbr.gov/pn-bin/arcread.pl?station=HGH) and from USACE Columbia Basin 

Water Management Division for inflows to Howard Hanson (http://www.nwd-

wc.usace.army.mil/dd/common/dataquery/www). Because the study basins are in the 

headwaters, both experience minimal human intervention (e.g., irrigation, groundwater 

pumping). 
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3.2.3 Watershed initial hydrologic conditions (IHCs) for forecasting 

Daily timestep hydrologic states are simulated using the Sacramento Soil Moisture Accounting 

model [Burnash et al., 1973] and the Snow-17 model for snow accumulation and ablation 

[Anderson, 1973], while drainage and melt are converted to streamflow using a unit hydrograph 

routing model. Because these three models are run in combination by the U.S. National Weather 

Service (NWS) River Forecast Centers (RFCs) in generating operational streamflow forecasts, 

we refer to the combination as the NWS models. They were selected specifically to evaluate the 

utility and feasibility of ensemble methods in operational settings. Each study basin is 

represented in the NWS models by two hydrologic response units based on elevation. The NWS 

models are run from 1970-2006 to “spin up” the model’s storage components; the particle filter 

is run for water year 2006 to allow the weights to adjust; and the hindcast analysis period spans 

water years 2007-2015. 

To represent uncertainty in IHCs, 100 NWS model simulations are forced with each of 

100 unique and equally probable gridded meteorological forcing ensemble members (Chapter 2). 

The forcings are derived using a real-time version of the Gridded Meteorological Analysis Tool 

(GMET) [Newman et al., 2015]. GMET performs a probabilistic interpolation of in situ 

observations of daily precipitation and temperature, based on spatial regression against location, 

elevation, aspect, latitude and longitude [Clark and Slater, 2006; Newman et al., 2015]. 

The ensemble state distribution is representative of the errors in both in situ observations 

of precipitation and temperature and in spatial interpolation. In situ observations of daily 

precipitation and minimum and maximum temperature are extracted from the Global Historical 

Climatology Network-Daily dataset [Menne et al., 2012a, 2012b]. Station data are quality 

controlled, gap-filled, and used to construct daily ensemble gridded 1/16° forcings from 1/1/1970 
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to present. Then, they are mapped through conservative regridding to the NWS model elevation 

zones.  

We construct a single forcing time series for calibration of the NWS models by randomly 

selecting year-long segments of different meteorological forcing ensemble members. As noted in 

in Chapter 2, this process reduces model bias when the model is run with the entire forcing 

ensemble. We calibrate model parameters in each basin over the period of 1981-2008 to 

naturalized streamflow observations from the No-Regulation No-Irrigation (NRNI) streamflow 

dataset developed by the Columbia River Management Joint Operating Committee [CRMJOC, 

2015]. We use the Multi-Objective Complex evolution Optimization Model (MOCOM) [Yapo et 

al., 1998] with a dual objective function that minimizes the maximum long-term mean monthly 

streamflow error and the root mean square error (RMSE) of daily streamflow. Nash-Sutcliffe 

Efficiency scores for daily streamflow values during the calibration period are acceptable but not 

outstanding—0.70 and 0.86 for the Howard Hanson and Hungry Horse basin models, 

respectively. 

3.2.3.1 Open loop 

The open loop (or no DA) simulation consists of 100 unique daily simulations of hydrologic 

states and fluxes. Each ensemble member in the open loop case uses a single meteorological 

forcing ensemble member for all days during both the spin-up and analysis periods. We subset 

this ensemble when selecting IHCs for forecasting based on the ensemble median simulated 

streamflow (section 3.2.4). 

3.2.3.2 Data assimilation 

In this study, we use the SIR-PF implementation described in Chapter 2 to assimilate streamflow 

into NWS model simulations. This implementation is adapted from Arulampalam et al. [2002], 
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Moradkhani et al. [2005], and Weerts and El Serafy [2006]. A brief overview of the technique is 

presented here. In SIR-PF, an ensemble of model simulations is run, as in the open loop case, to 

represent the system’s uncertainty. Each member is referred to as a “particle”, which is a 

weighted ensemble member. We use these terms interchangeably. The weights represent the 

relative contribution of each particle to the probability distribution of the ensemble, which is 

dependent on its agreement with observations. Kitagawa [1996], Doucet et al. [2001], and 

Arulampalam et al. [2002] show that the posterior probability function (𝑝1 x  at time 𝑡) for the 

modeled ensemble values (𝑥1), given the observations (𝑧5:1) can be approximated as: 

 𝑝1 𝑥1|𝑧5:1 ≈ 𝑤1C
DE
CF5 𝛿 𝑥1 − 𝑥1C ,  (3.1) 

where 𝑥1C and 𝑤1C are the states and normalized weights, respectively, at time 𝑡	for particle 𝑖, for a 

total of 𝑁/ particles, and 𝛿 ∙  is the Dirac delta function. In Eqn. 3.1, 𝑥1 is the vector of random 

variables that forms the x-axis of the probability distribution. The delta function equals one for 

𝑥1 equals 𝑥1C and zero for all other values. The resulting cumulative distribution function looks 

like a staircase with an increase in probability of height 𝑤1C at each 𝑥1 = 𝑥1C. 

New observations are compared to each ensemble member in turn and the likelihood of 

the observation given the simulated value is estimated. In this study, as in Moradkhani et al. 

[2005] and Chapter 2, the likelihood (𝑝1 𝑧1|𝑥1C ) of the observed streamflow (𝑧1) at time 𝑡, given 

the modeled streamflow for particle 𝑖, is calculated as a Gaussian function of the difference 

between the observed value and the modelled value, with a standard deviation of 𝜎1: 

 𝑝 𝑧1 𝑥1C = 5

VWXNP
𝑒
4
(ZN[\N

O )P

P]N
P . (3.2) 
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The standard deviation represents an estimate of the combined model and observational 

uncertainty and is varied as described in section 3.2.4. Next, in SIR-PF, the particle weights for 

time 𝑡 are calculated as function of the likelihood Eqn. 3.2) and the previous time step’s weight 

[Doucet et al., 2001]: 

 𝑤1C ∝ 𝑤145C ∙ 𝑝 𝑧1 𝑥1C . (3.3) 

Combining Eqns. 3.2 and 3.3, the new weight for each particle at each timestep, 𝑤1C∗, is 

 𝑤1C∗ = 𝑤145C ∙ 5

VWXNP
𝑒
4

ZN[\N
O P

P]N
P ∙ 5

VWXNP
𝑒
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 (3.4) 

which is then re-normalized so that all the ensemble weights sum to one: 

 𝑤1C =
MN
O∗

MN
g∗QE

gRS
.  (3.5) 

If the weights are highly disparate, such that all weight is given to a number of particles too 

small to represent the distribution (an effect known as sample degeneracy) [e.g., Li et al., 2014], 

particles are resampled. We calculate the number of effective particles (𝑁KLL, the number of 

particles that contribute meaningfully to the posterior distribution) as described in Doucet et al. 

[2001]: 

 𝑁KLL =
5

MN
OPQE

ORS

.  (3.6) 

In preliminary tests, we noted that frequent resampling produced overconfident 

ensembles (i.e., the ensemble spread was smaller than indicated by observations). This was 

particularly problematic in dry or cold periods when the streamflow was not variable and the 

observed streamflow was biased for prolonged periods. To avoid this, we choose to resample 

whenever 𝑁KLL falls below 𝑁//5 because it leads to less frequent resampling compared to 

resampling at every time step as in Moradkhani et al. [2005]. Alternative thresholds may be 
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appropriate as well. We follow the resampling method outlined in Chapter 2, which is based on 

the algorithm presented in Arulampalam et al. [2002], Moradkhani et al. [2005], and Weerts and 

El Serafy [2006]. This method reconstructs the posterior distribution of streamflow by 

resampling from the effective subset of particles with a frequency matching their weights. 

Particles with very low weights may be discarded during resampling, while the states of the 

highest weighted particles may be assigned to more than one particle in the resampled 

distributions. When more than one particle is assigned the same state during resampling, the new 

particles are assigned forcings from particles that were dropped during resampling. 

3.2.4 Hindcasts 

The hindcast system used in this study (Fig. 3.1) has been implemented as part of a System for 

Hydromet Analysis, Research and Prediction (SHARP) [Wood et al., 2016], leveraging several 

components that support experimentation in both historic and real-time ensemble prediction [for 

more details, see Chapter 2 and Mendoza et al., 2017]. Ensemble streamflow hindcasts are 

initialized with IHCs from section 3.2.3 and forced with an ensemble of meteorological 

reforecasts of precipitation and temperature from NOAA’s National Centers for Environmental 

Prediction (NCEP)’s Global Ensemble Forecast System (GEFS) [Buizza et al., 2005] Reforecast-

2 [Hamill et al., 2013]. As with the historic forcings, each of the 11 forecast ensemble members 

as well as the mean were regridded to a 1/16° spatial resolution using the Generalized Analog 

Regression Downscaling tool (GARD) [Gutmann et al., 2017] and conservatively mapped to 

polygons for two hydrologic response units for each basin. Hindcasts are generated for the 1st, 

8th, 16th, and 24st day of each month from water year 2006 to 2015, resulting in 432 total 

hindcasts with forecast lead times from 0-6 days. 
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Combining all 100 IHC ensemble members with all 11 GEFS ensemble members results 

in a total of 1100 streamflow forecast ensemble members. Ensemble size is a common constraint 

for operational real-time systems, so we test the performance of streamflow forecasts in which 

each of 11 meteorological forecasts is initialized with smaller ensembles of NIHC members, 

where NIHC varies from 1 to 100. In the open-loop case, we use the NIHC median IHC ensemble 

members (e.g., if NIHC=15, the ensemble members with rank 43-57 (out of 100) are used). 

Because ensemble distributions can be skewed, the median members do not necessarily have the 

flows that are closest to the ensemble median flow. In the DA cases, we use the NIHC IHC 

ensemble members with the highest particle weights. 

SIR-PF uses a likelihood function (Eqn. 3.2) to weight the IHC ensemble members. If the 

uncertainty 𝜎1 in this equation is high, a larger range of particles will be given higher weights 

than if the uncertainty is low. This term is often defined as the uncertainty in the streamflow 

observations. For most gauges in the U.S., observed daily average streamflow is estimated to be 

accurate to within 2% to >8% of true streamflow. With our implementation of the SIR-PF, it is 

not possible to maintain an ensemble that represents the true uncertainty of the forecasting 

system. If too many particles are dropped because of the tight uncertainty bounds, then the filter 

cannot adapt if the model later misrepresents the system. For these reasons, model bias and 

uncertainty also impact the likelihood of an observation given the simulated values. Because 

these factors are difficult to quantify, some experimentation is required to identify an adequate 

level of uncertainty. Therefore, in addition to determining a reasonable minimum NIHC, we also 

consider the impact of uncertainty on forecast performance by comparing hindcasts for which the 

combined observation and model uncertainty in the likelihood function (𝜎1 in Eqn. 3.2) is 10% 
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and 25%, respectively, of observed streamflow on day 𝑡. Higher uncertainty allows a larger 

subset of particles to be considered feasible as the ensemble evolves. 

3.2.5 Operational considerations 

Because the hindcasts are intended to test for performance implications of system changes (like 

the implementation of SIR-PF), it is important that they also reflect realistic operational settings. 

SHARP is an ‘over-the-loop’ forecasting system in which human forecasters do not directly 

adjust data or model outputs [Wood et al., 2016]. It follows the workflow in Fig. 3.1 to produce 

ensemble streamflow forecasts in real-time. The amount of computing time increases with each 

additional ensemble member, as does file input and output (I/O). Adding an IHC ensemble 

member increases computing time in generating the meteorological forcing ensemble and 

running the hydrologic model for spinup and forecast. When the SIR-PF is included, additional 

IHC ensemble members also slows the calculation of weights and the resampling steps. The 

NWS model is a relatively quick hydrologic model in terms of computation time, which was a 

factor in its selection for this study; however, in expanding to a regional domain, a more 

distributed, higher dimensional model would likely be able to better represent hydrologic 

variability.  

In the case of the NWS model, for each HRU, each additional IHC ensemble member 

adds one additional meteorological forcing file, one additional output file and three additional 

state files from the NWS model spinup. It also adds 11 (the number of meteorological forecast 

members) additional NWS output files from the hydrologic forecast. This is a total of 16 files per 

IHC ensemble member per HRU. In this paper, we consider only two basins with a total of four 

HRUs, but if we were to apply the NWS model across the U.S., increases in ensemble size would 

notably increase I/O. In this study, we used 100 IHC ensemble members because Newman et al. 
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[2015] demonstrated that an ensemble of this size represents the uncertainty in gridded forcing 

reasonably well.  

3.2.6 Evaluation metrics 

Forecast skill for this study is assessed in terms of three deterministic metrics: correlation 

(Pearson’s R), mean absolute error (MAE), and percent bias (PBIAS), and two probabilistic 

metrics: continuous ranks probability score (CRPS) [Hersbach, 2000] and a-reliability index 

[Renard et al., 2010]. Each metric is calculated for all forecasts (4 forecasts per month for 9 

years, totalling 432 forecast-observation pairs), each season (108 forecast-observation pairs per 

season), and each water year (48 forecast-observation pairs per year). All measures are also 

calculated as a function of the number of IHC ensemble members. 

Because most existing systems that ingest ensemble traces treat each ensemble member 

as equal, and because the subsetting of IHC members already accounts for particle weights, we 

calculate validation statistics as if all streamflow forecast members are equally likely. Therefore, 

the deterministic metrics are calculated from the ensemble mean forecast for each day. MAE, 

which represents the volumetric errors in the mean streamflow forecast, is calculated as the 

average absolute difference between the ensemble mean forecast and the observed streamflow. 

For ease of comparison between basins, we also calculate the relative MAE (rMAE) by dividing 

MAE by the mean of observed streamflow for the same forecast-observation pairs. Pearson’s R 

measures the degree of correlation in timing between observed streamflow and the ensemble 

mean forecast. Positive (negative) PBIAS shows an over- (under-) prediction of streamflow by 

the ensemble mean forecast. 

Probabilistic metrics are calculated based on the distribution of streamflow forecast 

ensemble members. CRPS assesses the ability of the forecast probability distribution to capture 



 

 

57 

the observed flow. It compares the forecast cumulative distribution function (𝐹1k 𝑠 ) to the 

distribution of observed flow (𝐹1
l(𝑠)) for each forecast-observation pair [Hersbach, 2000]:  

 CRPS	 = 5
`

𝐹1k 𝑠 − 𝐹1
l 𝑠

V
𝑑𝑠s

k	F4s
`
1F5 , (3.7) 

The observation in this case is assumed to be perfect, so the 𝐹1
l(𝑠) is represented by the 

Heaviside function: 

 𝐹1
l 𝑠 = 0, 𝑠 < 	𝑦1

1, 𝑠 ≥ 𝑦1
. (3.8)  

CRPS rewards a close match between the forecast mean and the observation and penalizes 

ensemble spread. To enable comparison between basins and seasons, we convert CRPS to a 

Continuous Ranked Probability Skill Score (CRPSS): 

 CRPSS = 1 − wxyz
wxyz{|}

, (3.9) 

where CRPSvKL is the CRPS of the corresponding open loop case. A perfect forecast has CRPSS 

of one. CRPSS is zero if there is no improvement from the open loop and negative if the forecast 

is worse. 

Forecast reliability depends on statistical consistency of the time series of observed 

streamflow with the predicted probability distributions. Reliability is often examined by plotting 

predictive quantile-quantile (Q-Q) plots of the theoretical p-values derived from the uniform 

distribution (𝑝lN
1� ) against the p-values of the observed streamflow (𝑝lN) [Laio and Tamea, 

2007]. 𝑝lN is derived from 𝐹1k 𝑠  for each forecast-observation pair. The 𝛼 index was developed 

to quantify the reliability of forecast probability distributions [Renard et al., 2010]. The index 𝛼 

measures the area between the forecast p-value curve and the 1:1 line. It varies between 0 (all 

observations outside of predicted range) and 1 (perfectly reliable) and is calculated as: 
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 𝛼 = 1 − 2 |𝑝lN −
`
1F5 𝑝lN

1� |/𝑛. (3.10) 

Unlike CRPS, which rewards a small ensemble spread, 𝛼 rewards an ensemble spread that is 

neither too narrow (overconfident) nor too wide (underconfident) than the total forecast 

uncertainty warrants. 

3.3 RESULTS 

When all 1100 streamflow forecast ensemble members are used, DA with 25% uncertainty 

improved forecasts—in terms of the total MAE over all seven days of lead time—relative to the 

open loop case for 60% of the forecasts at Hungry Horse and 55% of the forecasts at Howard 

Hanson. Example forecast hydrographs from the DA with 25% uncertainty and the open loop 

cases are shown for both study sites in Fig. 3.3. The upper panel shows the DA’s best forecast, 

based on rMAE, averaged over all lead times. The middle panel shows the forecast at each basin 

that was most improved by DA, based on CRPS, averaged over all lead times. The lower panel 

shows the forecast at each basin that was most degraded by DA based on CRPS, averaged over 

all lead times. Fig. 3.3 shows that the influence of IHCs (i.e., distance between open loop and 

DA hindcasts) decreases as the lead time increases. In some cases, all ensemble members are 

biased relative to observations (e.g., Fig. 3.3c). In these cases, SIR-PF can minimize the 

ensemble mean bias, but the degree of bias correction is limited because states are not perturbed 

by this method. In other cases, all initialization methods miss a high flow event (e.g., Fig. 3.3d, 

lead-2) because the meteorological forecast missed the related precipitation event. Still, in most 

cases, the ensemble spread is reduced by DA (Fig. 3.3a, c, d, e), and in many cases, the bias of 

the ensemble mean is also reduced (Fig. 3.3a, b, c, d).  
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Figure 3.3. Ensemble streamflow forecasts for Hungry Horse (left) and Howard Hanson 

(right) showing the distribution of all 1100 streamflow forecast ensemble members for the open 

loop case and DA with 25% uncertainty in the likelihood function. a) and b) show the 7-day 

forecasts with the lowest relative MAE after DA; c) and d) show forecasts for which CRPS was 

most improved by DA; and e) and f) show the forecasts for which CRPS was most degraded by 

DA. For the open loop case boxplots (orange), the midline is the median, the box edges are 25th 

and 75th percentiles, whiskers show 10th and 90th percentiles, and the remaining ensemble 

members are plotted as dots. For DA, progressively lighter shading indicates 25th and 75th 

percentiles, 10th and 90th percentiles, and the envelop of minimum and maximum flow. 
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Over 3287 days in water years 2007-2015, at Hungry Horse the particles were resampled 

704 times for DA with 10% uncertainty, but only 300 times when DA used 25% uncertainty. 

Similar frequencies of resampling occurred at Howard Hanson—784 times for 10% uncertainty 

and 298 times for 25% uncertainty. This means that the particle distribution degenerated roughly 

twice as often when we assumed 10% uncertainty (forcing the model to more closely reproduce 

observations) than when we assumed 25% uncertainty. Each time the particles are resampled, the 

ensemble spread decreases. More frequent resampling also requires more computer time, which 

we seek to limit in real-time forecasting systems.  

3.3.1 Sensitivity to the number of IHC ensemble members (IHC uncertainty) 

We compare CRPS for forecasts in which each of 11 meteorological forecasts was initialized 

with each of 1 to 100 IHC ensemble members (Fig. 3.4). At both study sites, in the open loop 

case, CRPS steadily decreases (improves) as more ensemble members are added. For DA with 

10%, CRPS is worse than that of the open loop if more than 30 IHC ensemble members at 

Hungry Horse are used. The same is true at Howard Hanson if forecasts are initialized with more 

than 50 IHC ensemble members. At both basins, the CRPS of DA with 25% outperforms that of 

the open loop case for any subset of IHC ensemble members. In addition, at both basins for DA 

at each level of uncertainty, the improvement in CRPS with number of IHC members is minimal 

beyond approximately five IHC ensemble members. These findings suggest that, in this case, no 

more than five IHC ensemble members are useful in initializing the streamflow forecast. For this 

reason, the remaining results are presented at five IHC ensemble members (55 streamflow 

forecast ensemble members). Reasons for these findings are discussed in section 3.4. 
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Figure 3.4. (Top to bottom) CRPS, MAE, PBIAS, Pearson’s R, and 𝛼 versus the number of 

IHC ensemble members used to initialize streamflow forecasts for Hungry Horse (left) and 

Howard Hanson (right). 

3.3.2 Sensitivity across lead-times, hydroclimate, and season 

Forecast verification metrics for both basins using five IHC ensemble members and 11 

meteorological ensemble members are shown in Figs. 3.5 and 3.6 for DA with 10% and 25% 

uncertainty levels in the PF likelihood function (Eqn. 3.2), as well as for the open loop, 

compared with the scores resulting from a perfect forecast. Because forecast variations lead to 

both positive and negative variations across a suite of skill metrics, we introduce multi-attribute 

diagrams (in the form of radar plots) summarizing five metrics at once. The axes in Figs. 3.5 and 
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3.6 are oriented such that the best value of each metric, except for PBIAS, is on the outer circle, 

with worse values toward the center of the circle. The dashed line indicates a perfect forecast. 

For PBIAS, the perfect forecast (PBIAS=0%) is located at the midpoint of the axis. On the 

PBIAS axis, deviation towards the center of the diagram is negative, while deviation towards the 

outer edge of the diagram is positive. CRPSS is zero where the open loop line crosses its axis, 

and deviation from this point towards the center is negative (worse than the open loop). 

Fig. 3.5 shows the forecast verification metrics calculated for all forecasts at lead times of 

0, 2, 4, and 6 days. In both basins, all metrics worsen as lead time increases. Correlation is the 

least sensitive metric to the method of selecting IHC ensemble members. At Hungry Horse, 

correlation is very high (close to 1) for all methods and lead times. At Howard Hanson, 

correlation declines from approximately 0.8 at lead-0 to 0.5 at lead-6 for all methods. 𝛼 varies 

more between methods than correlation, and is highest for DA with 25% at both basins for all 

lead times. PBIAS is negative at Howard Hanson positive at Hungry Horse for most lead times 

and initialization strategies. At Hungry Horse, PBIAS is best for DA with 25% at all lead times 

longer than 0 days; for lead-0, PBIAS is best for the open loop. At Howard Hanson, beyond lead-

0, for which DA with 10% has the best PBIAS, all methods have nearly equal PBIAS. At Hungry 

Horse, rMAE is improved by DA with 10% and 25% at lead-0; beyond lead-0, DA with 25% has 

the lowest rMAE, and by lead-6, DA no longer improves rMAE relative to the open loop. At 

Howard Hanson, all methods produce the same rMAE at lead times longer than 0 days; at lead-0, 

the two DA cases outperform the open loop. For CRPS in both basins at lead-0, DA with 10% 

performs similarly to DA with 25%, and both outperform the open loop. At Hungry Horse, DA 

with 25% has the lowest CRPS at all remaining lead times, but at Howard Hanson, CRPS is 

nearly the same for all methods after lead-0. 
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Figure 3.5. Multi-attribute verification plots showing CRPS, Pearson’s R, 𝛼, PBIAS, and 

MAE for Hungry Horse (left) and Howard Hanson (right), calculated at lead times of 0, 2, 4, and 

6 days ((top to bottom). All metrics calculated from five IHC ensemble members. 
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Metrics for each season are presented for five IHC ensemble members at a lead time of 2 

days in Fig. 3.6. Fig. 3.6 shows that the largest overall improvement in forecast performance due 

to the inclusion of DA occurs in the spring for both basins. Correlation is the least sensitive 

metric to the method of IHC selection in all seasons. This occurs because the meteorological 

forecast is so highly correlated with flows in this basin that IHCs have little influence. The only 

notable difference in correlation between methods occurs in the winter at Hungry Horse. 

Correlation is close to one at both basins during the summer and at Hungry Horse during spring. 

At both basins in winter and fall, CRPS and rMAE are also insensitive to method of IHC 

selection. DA improves them most in spring and summer at Hungry Horse. DA with 25% has the 

highest 𝛼 value in all cases except for summer at Howard Hanson, when 𝛼 is the same for all 3 

methods. In winter and spring, the highest 𝛼 at Howard Hanson is higher than the highest 𝛼 at 

Hungry Horse; while the highest 𝛼 is comparable between basins in summer and fall. The open 

loop outperforms DA with 10% at Hungry Horse in the summer for all metrics. For both basins, 

the open loop outperforms DA for PBIAS in winter.  
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Figure 3.6. Multi-attribute verification plots showing CRPSS, Pearson’s R, 𝛼, PBIAS, and 

rMAE for Hungry Horse (left) and Howard Hanson (right). Top to bottom: winter (DJF), spring 

(MAM), summer (JJA), and fall (SON). All metrics calculated at 2-day lead time initialized from 

five IHC ensemble members. 
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3.3.3 Interannual variability 

During most years, DA with 25% uncertainty improves two or more forecast metrics relative to 

the open loop case at both basins (Figs. 3.7 and 3.8). Differences in polygon shape in Figs. 3.7 

and 3.8 reflect the degree to which the performance of any given method varies from year to 

year.  
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Figure 3.7. Multi-attribute verification plots showing CRPSS, Pearson’s R, 𝛼, PBIAS, and 

rMAE for Hungry Horse for water years 2007-2015. All metrics calculated at 2-day lead time 

initialized from five IHC ensemble members. 
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Figure 3.8. Multi-attribute verification plots showing CRPSS, Pearson’s R, 𝛼, PBIAS, and 

rMAE for Howard Hanson for water years 2007-2015. All metrics calculated at 2-day lead time 

initialized from five IHC ensemble members. 

 
For example, the shape of the open loop polygon at Howard Hanson is smaller for 2010 

than for other years, reflecting worse performance in terms of rMAE, 𝛼, and R (Fig. 3.8). This is 

the only case in either basin that shows notable improvement in R due to DA, suggesting that 
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correlation improvements are only possible when the meteorological forecasts (the open loop 

case) are poorly correlated with observations. Howard Hanson’s second lowest annual flow and 

precipitation occurs in water year 2010 (Fig. 3.9). Interestingly, the lowest flow at Howard 

Hanson occurs in 2015, and there is almost no improvement in forecast performance due to DA 

that year (Fig. 3.9). The later year is much warmer than 2010. El Niño conditions persisted 

throughout 2015, while there was a switch from El Niño to La Niña during 2010. It is likely that 

the meteorological forecasts were unable to adapt quickly to this shift in 2010, leading to the 

poor performance.  

At Hungry Horse, DA with 10% uncertainty degrades at least two metrics (CRPSS and 

rMAE) relative to the open loop case in three of the nine years (Fig. 3.7); this only happens in 

2011 at Howard Hanson (Fig. 3.8). 2011 is the wettest water year in the study period for Howard 

Hanson (Fig. 3.9). In some years (2015 at Hungry Horse, 2008 at Howard Hanson), DA with 

10% uncertainty outperforms DA with 25% uncertainty in two or more metrics. At Hungry 

Horse, 2015—an El Niño period— was the driest water year during the study period and one of 

the warmest, while 2008—a La Niña period—was unremarkable at Howard Hanson (Fig. 3.9). 

These results suggest that the level of uncertainty necessary for good DA performance is not 

closely tied to climate variations. 
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Figure 3.9. Annual time series of total ensemble mean observed precipitation, annual average 

observed runoff, observed average ensemble mean temperature, CRPSS, Pearson’s R, 𝛼, PBIAS, 

and rMAE for Hungry Horse and Howard Hanson for water years 2007-2015. All metrics 

calculated at 2-day lead time initialized from five IHC ensemble members. 
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3.4 DISCUSSION 

Hindcast experiments allow us to evaluate decisions made in an automated forecast system. First, 

we evaluate the number of ensemble members needed to initialize streamflow forecasts in a 

given basin and forecast system (including hydrologic model and source of meteorological 

forecast). In the case of the NWS models at Hungry Horse and Howard Hanson, we found that 

regardless of the uncertainty level assumed in the DA, no more than five IHC ensemble members 

was necessary to initialize streamflow forecasts forced by GEFS data. The resultant 55 

streamflow forecast simulations required is likely to be more feasible than performing all 1100 

streamflow forecast simulations. Overall, this result was consistent across seasons and for all 

metrics.  

Too few IHC ensemble members underestimate the ensemble spread relative to observed 

behaviour, even with the uncertainty represented in the GEFS ensemble; therefore, an ensemble 

with too few members is less likely to capture the observations. Adding more members allows 

the ensemble mean to better match the observations, which improves PBIAS, MAE, and R. 

CRPS rewards forecasts that both match the ensemble mean and have a small spread; this means 

that there is a trade-off between gains in accuracy of the ensemble mean and the number of 

ensemble members. Because the ensemble mean does not match the observations better with 

more members (as shown by MAE and PBIAS, which worsened for large numbers of ensemble 

members), CRPS for the DA cases does not improve with more ensemble members. 𝛼 continued 

to improve, but more slowly in the DA cases, for more than five IHC ensemble members; 

however, getting that initial distribution that is likely to contain the observations (i.e., the closest 

match to ensemble mean) produced the biggest improvement in reliability as well. In the open 

loop case, the median ensemble members are used without any information about observed 
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streamflow. As the number of IHC ensemble members increases, the ensemble becomes more 

likely to contain the observation, thereby improving its probabilistic metrics. The open loop case 

outperforms the DA with 10% uncertainty case for high numbers of IHC ensemble members 

because the DA with 10% uncertainty produces an overconfident forecast, assuming less error 

than is actually present. 

Forecast performance relative to the open loop case depends on the level of uncertainty 

used in the likelihood function (Eqn. 3.2). DA with 25% uncertainty outperformed DA with 10% 

uncertainty in all forecast verification metrics in both study basins. This happens because the 

higher uncertainty allows a larger range of particle values to maintain weights high enough to 

avoid frequent resampling. The broader spread of the ensemble means that its chances of 

containing an observation at any given time are higher. If the observation falls inside the 

ensemble spread, the PF can more easily adjust ensemble weights to track biases like that shown 

in Fig. 3.3c. 

Of the metrics considered here, correlation of the ensemble mean streamflow forecast 

with observed streamflow is the least sensitive to the initialization method. This suggests that the 

correlation is strongly dependent on the meteorological forecast, and that much of the signal in 

the correlation metric is determined by regime or climatological variability, which the models 

capture fairly well. The other deterministic metrics (PBIAS and MAE) improve with DA, 

particularly if the uncertainty in the likelihood function is 25%. This means that DA improves 

the ensemble mean in most cases, particularly at short lead times. The impact of DA on these 

terms decreases as lead time increases because the forecasts are less sensitive to IHCs at longer 

lead times. At the shortest lead time, the percent improvement in CRPS is 35% and 19% for 
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Hungry Horse and Howard Hanson, respectively; and 66% of forecasts were improved for both 

CRPS and MAE at Hungry Horse, and 64% for Howard Hanson. 

At both study sites, reliability, as measured by 𝛼, is the metric most improved by DA 

(and therefore most sensitive to IHCs) at all lead times and in all seasons except for summer. In 

Chapter 2, we found that DA most improved simulated SWE during the spring (snowmelt) and 

fall (snow accumulation), and at Hungry Horse. During these dynamic snow seasons, the open 

loop forecasts are particularly unreliable, suggesting that the model simulations without DA do 

not adequately represent snow storage dynamics during these dynamic periods. Improved SWE 

states are most likely responsible for the improvements in all metrics during the spring and the 

larger improvements in forecasts during spring and summer at Hungry Horse relative to Howard 

Hanson. 

At Howard Hanson, PBIAS is negative at all lead times and in all seasons, and at Hungry 

Horse, PBIAS is positive in most cases. The time series (not shown) of PBIAS at Howard 

Hanson shows that most of the negative bias comes from a few isolated events during which the 

meteorological forecast misses high precipitation. The impact of these missed events is largest at 

longer lead times (Fig. 3.5) because GEFS forecasts are more accurate closer to the event. DA 

with 25% uncertainty reduces the magnitude of PBIAS in both basins during the spring, summer 

and fall, but at Hungry Horse during winter, DA, regardless of uncertainty level, degrades 

PBIAS. At Hungry Horse, winter streamflow is primarily generated by baseflow processes, 

while winter floods occur at Howard Hanson. Because the flows are more dynamic at Howard 

Hanson, the PF is better able to update the IHCs in winter than at Hungry Horse. At Hungry 

Horse, if the full ensemble has a large enough positive bias at the beginning of winter that the 

observation is lower than any ensemble members, no amount of resampling can create a 
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distribution that contains the observation. Because flows are not dynamic during the winter at 

Hungry Horse, the likelihood of increasing the ensemble spread to encompass the observed flow 

is low. 

Although the results averaged over all nine years for 2-day lead time show an 

improvement in PBIAS, CRPS, and 𝛼 for DA with 25% uncertainty and very little difference in 

these terms relative to the open loop case for DA with 10% uncertainty at both basins (Fig. 3.5), 

the relative changes due to DA vary from year to year (Figs. 3.7-3.8). If we had only considered 

water year 2011 for this experiment, we would conclude that the DA with 10% uncertainty 

performed worse than the open loop case in at least 3 metrics in both basins. 2011 was the 

wettest water year in both basins, which suggests that the NWS models struggle to estimate high 

flows, or that the GEFS reforecasts miss the timing or magnitude of large precipitation events. 

Either way, it is not representative of the other eight years. A longer period of analysis, with 

greater variability in climate, would be needed to attribute hindcast performance to specific 

climate patterns. 

3.5 CONCLUSIONS 

Automated DA methods perform critical adjustments to modeling system errors in real-time. 

They represent a key pathway toward skillful ‘over-the-loop’ hydrologic forecasting systems in 

which human forecasters are not required to make these adjustments. Automated DA also allows 

for reproducibility and scalability in monitoring and prediction systems. This enables the 

systematic testing of different implementation choices, as well as the generation of sufficient 

hindcasts to support robust forecast performance system evaluation. Research is still identifying 

key strategies for automated DA, which motivates this study assessing a number of choices that 

are necessary in implementing DA in a forecast system. If the SIR-PF is used, the forecast 
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system designer must decide how many particles to evolve, which likelihood function to use and 

how much uncertainty to assign it, how frequently or under which conditions to resample, and 

how to match IHC ensemble members with meteorological forecast ensemble members. In this 

study, we examine the uncertainty in the likelihood function in a SIR-PF and how to pair IHC 

ensemble members with meteorological forecast ensemble members. This study demonstrates 

the value of hindcasts as a tool to inform these choices before implementation in an operational 

system. We also examine the implications on 0- to 6-day lead time streamflow forecasts of using 

SIR-PF to update IHCs in two basins with seasonal snow. The primary findings of our hindcast 

experiments are as follows: 

• Because SIR-PF does not perturb model states, when the full ensemble is completely 

biased relative to observed streamflow, SIR-PF cannot produce an ensemble that contains 

the observed streamflow. At best, it can give higher weight to the least biased particle. 

Future work should consider potential avenues to correct for this bias. 

• No more than five IHC ensemble members are required to initialize streamflow forecasts 

when pairing SIR-PF results with GEFS forecasts in the two basins studied here. Further 

investigation is necessary to test the robustness of this result to hydrologic model, the 

number of particles evolved by the SIR-PF, meteorological forecast, and representation 

of IHC uncertainty (this study only considers the propagation of forcing uncertainties).  

• DA with 25% uncertainty in the likelihood function (Eqn. 3.2) outperforms DA with 10% 

uncertainty in all five forecast verification metrics at both study basins. 

• Improvements in forecast accuracy (CRPS, PBIAS, MAE) due to DA decline as lead 

time increases because the impact of IHCs declines over time; however, improvements in 

reliability (𝛼) are consistent across lead times. 
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• SIR-PF of streamflow observations in basins with seasonal snow improves forecast 

performance in terms of accuracy (CRPS, PBIAS, MAE) during the spring and summer 

and in terms of reliability (𝛼) during spring and fall. This is consistent with improved 

SWE estimates during seasons in which snow melt contributes to streamflow (spring and 

fall). 

• Similar to forecast performance, improvements due to DA vary from year-to-year, and 

the difference between DA with 10% uncertainty and DA with 25% uncertainty also 

varies from year-to-year. Hindcast studies based on short periods of time could easily 

over- or under-estimate the improvement in forecast performance due to DA. 

Based on these findings, we recommend using hindcasts to test for the appropriate level of 

uncertainty in a specific hindcast setting. It is likely higher than the true observational 

uncertainty because of modeling errors. Because of high interannual variability in performance, 

it is necessary to test these hindcasts over several years. We also recommend using hindcasts to 

determine the minimum number of IHC ensemble members required in the initialization of 

streamflow forecasts for a specific system design. Because of the potentially high additional 

computational and I/O costs of running more ensemble members in the forecast system and the 

need for extremely fast turn-around from data retrieval to useful real-time streamflow forecast, it 

is reassuring to find that the number of IHC ensemble members used to initialize forecasts can be 

smaller than that needed to represent the IHC distribution. For forecast systems in basins with 

seasonal snow cover, we recommend relying on DA more during spring when snow is actively 

contributing melt to runoff. This should improve forecasts in both the spring and summer in 

basins, like Hungry Horse, that have mostly winter precipitation. In basins that receive a mixture 
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of rain and snow, DA is appropriate during the most dynamic seasons, such as spring and fall at 

Howard Hanson. 
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Chapter 4. A CASE STUDY OF ANALOG RESAMPLING FOR 

PARTICLE FILTER DATA ASSIMILATION IN 

HYDROLOGIC STATE ESTIMATION 

This chapter is in preparation as 

Clark, E. A., A. W. Wood, B. Nijssen, and M. P. Clark. A case study of analog resampling for 

particle filter data assimilation in hydrologic state estimation. 

 

Abstract 

Streamflow forecasts depend on the quality of simulated hydrologic state estimates used to 

initialize a forecasting model, including snow water equivalent and soil moisture. Because of the 

uncertainties in hydrologic simulations, several studies have investigated the potential for 

improving estimated states by incorporating observations of hydrologic variables. The Sequential 

Importance Resampling Particle Filter (SIR-PF) is one approach to assimilate observations. It is 

attractive to hydrology applications because it works in nonlinear and non-Gaussian systems and 

also because it does not require the perturbation of states. The primary limitations on the SIR-PF 

are sample degeneracy and its consequence, sample impoverishment. Sample impoverishment 

occurs when the ensemble no longer contains enough diversity in states to accurately represent 

the true distribution of states. Existing approaches to limit sample impoverishment involve state 

perturbation, such that there is no longer a guarantee that the simulated streamflow, soil moisture 

and snow water equivalent could co-exist given their shared meteorological history. We present 

an alternative approach to SIR based on historical analogs to inflate sample spread without 

perturbing individual states. We demonstrate this approach — termed “Analog Resampling” 
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(AR) — for particle resampling based on streamflow observations during five hydroclimatically 

diverse events. Based on the behavior of AR compared to that of SIR-PF, we suggest several 

lines of future development, including: 1) evaluation of AR-PF methods in a continuous system; 

2) evaluation of the impacts of increased ensemble spread due to AR-PF on streamflow forecast 

reliability; 3) assessment of the impacts on forecast performance of sample correlation; and 4) 

identification of methods to account for shifting hydroclimate and interannual variability. 

4.1 INTRODUCTION 

Because measurements of snow water equivalent (SWE) and soil moisture are scarce, hydrologic 

models are widely used to estimate these conditions for use in initializing streamflow forecasts. 

Hydrologic models are imperfect [Clark et al., 2008, 2015; Haughton et al., 2016], and the 

meteorological data that drive them also contain errors [Chappell et al., 2012]. Data assimilation 

seeks to minimize the resulting model moisture state errors by incorporating additional 

observations. The Sequential Importance Resampling (SIR) Particle Filter (PF) [Kitagawa, 1996; 

Doucet et al., 2001], described in Chapters 2 and 3, is one approach to data assimilation that has 

been tested for hydrologic applications [Moradkhani et al., 2005, 2006; Weerts and El Serafy, 

2006]. The particle filter is attractive for hydrology applications because it works in non-linear 

and non-Gaussian systems. It also updates the probability distribution of streamflow and 

hydrologic states (soil moisture, SWE, etc.) without perturbing individual states [Salamon and 

Feyen, 2010]. This means that the resultant model realizations are internally consistent — each 

simulation of soil moisture, SWE and streamflow contains a realistic combination of conditions 

given the history of meteorological forcings. 

Unfortunately, the particle filter is also prone to an effect known as sample degeneracy, 

which can lead to sample impoverishment [Li et al., 2014]. Sample degeneracy occurs when the 
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majority of the particle weights are given to a few particles, such that most particles no longer 

contribute meaningful information to the posterior distribution. Several resampling methods have 

been developed to more evenly distribute the particle weight. In some resampling methods, like 

the SIR, particles are resampled from the discrete distribution of the current ensemble. This 

process assigns the same state to multiple particles, while it discards other states. The effect of 

resampling from a discrete population of particles is sample impoverishment, which occurs when 

nearly all the particles have the same state [Li et al., 2014]. Several methods attempt to 

counteract this effect and add diversity to particle states, but they also destroy the internal 

consistency of hydrologic states. For example, the process of roughening [e.g., Li et al., 2013] 

adds independent Gaussian noise to the states of each resampled particle, while regularization 

[Musso et al., 2001] approximates a continuous probability distribution from the discrete 

distribution of particle weights and then resamples particle states from that continuous 

distribution. Li et al. [2014] review several additional approaches to counteract sample 

impoverishment, none of which guarantee that individual particles will have internally consistent 

model states. 

In the case of the hydrologic simulations presented in Chapters 2 and 3, we noted that 

there were periods when the full ensemble of particles was biased relative to the observation. In 

this situation, the closest ensemble member is given the highest weight, and the sample 

degenerates. If the sample is impoverished and states are not perturbed, it can take many days for 

the ensemble to recover, particularly in hydrologically inactive periods. This is particularly true 

in our system because model state uncertainty is determined by meteorological forcings alone. In 

this case, if there is no rainfall in any of the ensemble members, particles that share the same 

state after resampling will continue to produce the same streamflow, unless differences in 
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temperature between forcing ensemble members are large enough to create a diversity of snow 

melt or evaporative conditions. 

In this paper, we propose an alternative method for particle resampling that expands the 

set of candidate particles to include simulated states from prior dates, through inclusion of 

historical analogs. The motivation for the approach—termed analog resampling (AR)—is two-

fold. First, sample degeneracy on the current date may arise from forcing errors (e.g., erroneous 

lack of rainfall) in the current meteorological analysis, yet watershed states and outputs that 

better match the current observations may have occurred in the past. Second, the possibility of 

leveraging an enhanced ensemble of past simulations to maintain an effective real-time filter 

may reduce the dimensionality and computational requirements for an operational PF 

implementation.  Ideally the AR particle filter (AR-PF) will reduce sample impoverishment by 

drawing on a much larger set of candidate simulations than would be possible in a single real-

time ensemble. 

Analog methods have been used in precipitation forecasting [Lorenz, 1969; Hamill and 

Whitaker, 2006; Hamill et al., 2006] and have also been applied to streamflow forecasting 

[Crochet, 2013; Koutsoyiannis et al., 2008; Yao and Georgakakos, 2001; Wood, 2012]. The AR-

PF differs from the recently proposed Analog Data Assimilation [Lguenstat et al., 2017], which 

replaces the forward model (or hydrology model in our application) with an analog forecast 

model. Here, we propagate states using a physically based hydrologic model. Analog methods 

are used to replace particles when sample degeneracy occurs. In that case, particles are replaced 

with an ensemble of historical simulations sampled from periods in which either the observed or 

the simulated streamflow is analogous to that of present observed streamflow. 
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Section 4.2 describes the analog approach for particle filter resampling, illustrated here 

using two possible strategies for analog identification and selection, both based only on 

streamflow metrics: one in which analogs are ranked based on matching current observed 

streamflow to both past observed and simulated streamflow and the other based on matching 

current observed streamflow to past simulated streamflow only. Exploratory results for one 

watershed are presented for five events representing a range of hydroclimatic conditions in 

section 4.3. In section 4.4, we discuss the implications of these results for future applications of 

the AR-PF, and section 4.5 presents some preliminary conclusions and plans for future work.  

4.2 METHODS 

Chapters 2 and 3 describe the streamflow hindcast and forecast system used in this research. The 

portion of the forecast workflow addressed in this chapter (Fig. 4.1) is data assimilation in the 

creation of weighted ensembles of hydrologic states. By comparing Fig. 4.1 to the SIR-PF 

workflow (Figs. 2.1 and 3.1), we can see that unlike the SIR-PF, the AR-PF requires an 

independent set of historical simulations to generate a catalog of potential streamflow analogs. 

The generation of this catalog is discussed in more detail in section 4.2.2. All other aspects of the 

workflow—including data sources, ensemble meteorological forcing generation, open loop 

simulations, and the National Weather Service (NWS) model set up—are as described in 

Chapters 2 and 3. 

4.2.1 Particle filter 

We use two types of particle filters (PFs) in this study: SIR-PF and AR-PF. Both methods are 

based on the Sequential Importance Sampling (SIS) PF [Doucet et al., 2001], described in 
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section 2.2.3.2, in which the weights are calculated as a function of the weight at the previous 

time step: 

 𝑤1C ∝ 𝑤145C ∙ 𝑝 𝑧1 𝑥1C  (4.1) 

where 𝑤1C is the weight of particle 𝑖 at time 𝑡, and 𝑝 𝑧1 𝑥1C  is the likelihood of the observation 

𝑧1	at time 𝑡 given state 𝑥1C of particle 𝑖 at time 𝑡. The likelihood is calculated here as a Gaussian 

function: 
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where 𝑁/ is the number of particles, 𝜎1V	is the variance of the assumed Gaussian distribution, and 

ℎ(𝑥1C) is the state of particle i at time 𝑡 transformed to directly simulate the observed quantity. In 

this case, the unit hydrograph portion of the NWS models, which relates model states to 

streamflow by routing the model’s runoff, is the observation operator h(∙). In Chapter 3, it was 

shown that the PF added more value to short-range streamflow forecasts when the likelihood 

function had a standard deviation of 25% of current flow instead of 10%, so that value is used to 

calculate weights in this chapter as well. As in Chapters 2 and 3, we substitute Eqn. 4.2 into Eqn. 

4.1 to calculate particle weights, which are then normalized over 𝑁/ to sum to one. These 

weights represent the posterior probability of model states. 

 In Chapters 2 and 3, when the number of effective particles (𝑁KLL) falls below 𝑁//5, we 

use what van Leeuwen [2009] refers to as stochastic universal resampling to resample the 

particles to reproduce the posterior distribution with a set of 𝑁/ equally weighted particles. These 

equally weighted particles are sampled directly from the same ensemble of particles that existed 

prior to resampling, with a frequency according to their prior weights. As a result, the states of 

the particles with the highest original weight replace the states of particles with low weights. 
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This means that some particles in the resampled ensemble have the same states; however, each 

resampled particle is propagated forward in time with a unique forcing ensemble member. While 

the unique forcing ensemble members ideally ensure that the ensemble will inflate in the future, 

there is an immediate collapse of the ensemble onto a smaller set of states. Because hydrologic 

systems have memory and because they exhibit varying levels of responsiveness depending on 

meteorological conditions, the time to recovery of sufficient ensemble spread (to accurately 

represent the probability distribution of states and to maintain filter performance) can be more 

than a few days. In addition, if the entire simulated ensemble is biased, resampling from the best 

current states does not improve the ensemble bias. 
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Figure 4.1 Process flow chart for the creation of open loop and weighted hydrologic states 

ensembles using the Analog Resampling Particle Filter (AR-PF).  
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4.2.2 Analog resampling 

The analog approach used in this study replaces NWS model states (soil moisture, SWE, and unit 

hydrograph history) with NWS model states that have been resampled from candidate 

simulations taken from an extensive archive (a.k.a. catalog) of previous simulations of 

hydrologic model states. In a forecasting application, these states can be used as initial conditions 

for streamflow predictions. In this discussion, the term “analogs” is used to denote the dates and 

ensemble members in the historical record and the observations and simulations that correspond 

to those dates and ensemble members. We test the analog approach using two different strategies 

for identifying and selecting analogs, both of which focus on streamflow rather than additional 

hydroclimate variables. The “resampling” step of AR is the process of replacing the existing 

particle states with simulated states from analogous hydrologic conditions in the past. 

The first method (termed “obs-sim”) compares current streamflow observations (𝑧1) on 

day 𝑡 only to past streamflow simulations (ℎ(𝑥1�
/)) for each day 𝑡′ (where 𝑡′ simply denotes a day 

from the catalog of potential analogs) and potential analog ensemble member 𝑝 in the catalog. 

The second selection method (termed “obs-obs”) expands the selection criteria to compare 

present streamflow observations (𝑧1) both to past streamflow observations (𝑧1�) for each day 𝑡′ in 

the catalog and to their corresponding streamflow simulations. The former ensures that the 

analog’s simulated streamflow will be a good fit to the current observed streamflow, and the 

latter ensures that the analog’s true hydrologic conditions (as estimated from observed flow) are 

similar to the current hydrologic conditions. The obs-obs case does not address or target model 

bias but leaves bias correction for post-processing. 

Analog methods are general, but in the temporal application context, they use a look-up 

procedure and a quantitative metric of similarity (or ‘distance’) to identify a set of historical 
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dates on which conditions are analogous to the period of interest, often the present. For both obs-

obs and obs-sim selection methods, we construct a catalog of 𝑛 potential analogs. For the obs-

obs method, 𝑛 is the number of years in the historical data set (26, from 1980 to 2005) times the 

number of days per year to include in each analysis period (𝑤 = window size).  For each year 

from 1980 to 2005, we define the searchable catalog to include the calendar period each year 

from 15 days before to 15 days after the day of the year of the current analysis date, for a total 

of	𝑤 = 31 days. By limiting the analysis period to a window of +/- 15 days, we limit the analog 

selection to periods in which seasonal hydroclimatic behavior is most likely to be similar to the 

present. For the obs-sim method, 𝑛 is the number of ensemble members in the open loop 

simulation (100) times the number of years in the historical data set (26, from 1980 to 2005) 

times the number of days per year to include in each analysis (𝑤 = window size). For example, if 

resampling is required on 16 Jan. 2015, the AR-PF will search from 1 Jan. to 31 Jan. for all years 

in the historical record. Therefore, each time the AR-PF is called, a total of 𝑛 = 26×31 = 806 

and	𝑛 = 806×100 = 80,600 potential analogs are searched for the obs-obs and obs-sim selection 

methods, respectively. 

To assess each potential analog in the record, we use a similarity metric defined as the 

Euclidean distance between the time series of analog streamflow and of current observed 

streamflow over a period of 𝑘 days up to and including the analog date. The larger the value of 

𝑘, the more hydrologic memory the system considers in selecting the analogs. This array of 

potential analogs (𝒛𝒕� = [𝑧1�, 𝑧1�45, 𝑧1�4V, … , 𝑧1�4~45] for obs-obs or 𝐡(𝑥1�
/) =

[ℎ(𝑥1�
/), ℎ(𝑥1�45

/ ), ℎ(𝑥1�4V
/ ), … , ℎ(𝑥1�4~45

/ )] for obs-sim) is then compared to the 𝑘-dimensional 

vector of observed streamflow from the past 𝑘 days (𝒛𝒕 = [𝑧1, 𝑧145, 𝑧14V, … , 𝑧14~45]). To achieve 

a computationally efficient ranking of analogs, we use a k-d tree [Maneewongvatana and Mount, 
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1999], as implemented in the scipy.spatial.KDTree python class, to quickly locate the 

approximate “nearest neighbors” (best matching analogs) in a 𝑘-dimensional space. Preliminary 

tests showed that the resultant analog ensemble was similar for values of 𝑘 between 7 and 10 

days (not shown). The results shown in this chapter use 𝑘 = 7 days. 

The obs-sim analog selection directly returns 100 nearest neighbors (analogs) that replace 

the current 100 particles at time 𝑡. Because the catalog in the obs-sim case contains 100 particles 

for each day 𝑡′, the number of unique dates from which the analogs were selected is usually 

under 100. For example, in the five cases described in section 4.2.3, the largest number of unique 

dates returned by the obs-sim look-up was 55.  

The obs-obs analog selection method works in two steps.  Each day 𝑡′ has an ensemble of 

100 simulated flows from the archive that correspond to only one observed flow. This means that 

if the analog search returns 100 nearest neighbors for the obs-obs method, there would be 100 

distinct dates, with a corresponding total of 10,000 potential analogs (each analog corresponding 

to a date and an ensemble member). Initial investigations (not shown) suggest that subsetting the 

10,000 analogs to only include the 100 realizations for which ℎ(𝑥1�
/) best matches 𝑧1�, we can end 

up with many analogs for which simulated streamflow ℎ(𝑥1�
/) is a poor match to the current 

observation 𝑧1. To reduce the search range and still satisfy the goal of the obs-obs selection 

method — identifying analogs for which the true hydroclimatic conditions are similar at those of 

the date of analysis – we instead select only the 10 nearest neighbors in the obs-obs look-up. 

These 10 dates provide a total of 1000 potential analogs. The final 100 analogs are selected from 

this set as those that minimize the mean absolute error between observed analog and simulated 

analog streamflow for the k (7) days leading up to and including the analog date. 
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The catalog is constructed following a similar process as that used in generating the open 

loop simulations, described in sections 2.2.3.1 and 3.2.3.1. In situ observations of precipitation 

and minimum and maximum temperature are obtained from the Global Historical Climatology 

Network-Daily dataset [Menne et al., 2012a, 2012b] for the period 1 Jan. 1970 to 31 Dec. 2005. 

After quality control and gap filling, the observations are probabilistically interpolated to an 

ensemble of 1/16° gridded meteorological time series using the Gridded Meteorological Analysis 

Tool (GMET) [Newman et al., 2015]. The time series are then conservatively remapped to the 

hydrology model’s hydrologic response units. These are used to force the same hydrologic model 

configuration used in simulating initial hydrologic conditions and performing forecast 

simulations (Fig. 4.1, sections 2.3.2 and 3.2.3). We use the period from 1 Jan. 1970 to 31 Dec. 

1980 to “spin-up” hydrologic states. Each of the 100 ensemble members and date from 1 Jan. 

1980 to 31 Dec. 2005 is a unique potential analog. 

4.2.3 Case study 

As shown in Chapter 3, compared to the open loop case, when analyzed over nine water years, 

the SIR-PF contributed limited improvement to medium-range streamflow forecasts at Howard 

Hanson dam on the Green River at lead times of two or more days. One of the reasons for this 

lack of improvement is that sample impoverishment is responsible for overconfident forecasts in 

this basin. Therefore, we selected this site to explore the potential for improvement in initial 

conditions with a PF using analog sampling. 

 As an initial exploration of the feasibility of the AR-PF as a strategy for improving the 

resampling of particles in the context of hydrologic state estimation, we present five examples of 

historical streamflow events for which the SIR-PF implemented in Chapter 3 required 

resampling. The event dates were selected to show a range of hydrologic conditions, including: 
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1) mid-winter freeze (24 Jan. 2009), 2) the rising limb of a spring freshet (14 May 2008), 3) the 

falling limb of a spring freshet (20 May 2008), 4) the peak of a fall rain-induced event (12 Nov. 

2008), and 5) summer-time baseflow (30 Aug. 2015). The purpose of these examples is not to 

comprehensively evaluate the performance of the AR-PF methods, but rather to serve as an 

initial assessment of the sensitivity of the approach’s performance to hydrologic conditions and 

analog search and selection method. On each date, we compare the resampled particles produced 

by the stochastic universal resampling of the SIR-PF with those produced by each method of 

analog resampling (AR-PF). 

4.3 RESULTS 

Several features of the results are consistent across the ensembles on all five dates of analysis, 

regardless of hydrologic conditions (Figs. 4.2-4.6). First, the simulated streamflow from the AR-

PF based on an obs-sim lookup best matches the current streamflow observations over the most 

recent seven days, except in the summer baseflow case for which SIR-PF minimizes the 

ensemble mean bias over that period (Fig. 4.6). The summer baseflow case is from 2015, which 

was among the driest years in the simulated history. Second, while the SWE and soil moisture 

states in the SIR-PF have very little spread after resampling, all AR-PF methods produce larger 

spread in SWE and soil moisture states than the SIR-PF, and in some cases, the spread in states 

produced by the AR-PF is greater than that of the open loop. The spread in SWE and soil 

moisture is increased by the AR-PF relative to the SIR-PF even in cases when the spread in 

streamflow is reduced by as much as the SIR-PF, relative to the open loop ensemble (e.g., Fig. 

4.2). 

Fig. 4.2 shows an example of resampled particles during a period of mid-winter freeze 

and coincident baseflow recession. The open loop model captures the observed flow relatively 
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well in this case, but the SIR-PF ensemble has a small low bias for several days prior to 24 Jan. 

2009 that it was not able to correct with resampling. Both look-up schemes for the AR-PF were 

able to closely match the observed streamflow. The obs-obs look-up retains slightly more spread 

in simulated streamflow on the date of analysis; however, it has slightly less spread in soil 

moisture than the obs-sim look-up. In both AR-PF cases, the low bias in streamflow was 

corrected, on average, by selecting analogs with lower SWE and soil moisture. 

 

 
Figure 4.2. Time series of streamflow, soil moisture and SWE leading up to 24 Jan. 2009 for 

open loop, SIR-PF and AR-PF (both obs-obs and obs-sim look-up methods). For PFs, only the 

particles that remain after resampling are plotted. The color saturation of the blue lines reflects 

the density of particles. 
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 Figs. 4.3 and 4.4 show the effects of resampling on the rising (14 May 2008) and falling 

(20 May 2008) limbs, respectively, of a spring freshet in mid-May 2008. In this case, the only 

method that captures the observed streamflow in the rising limb is the AR-PF with an obs-sim 

look-up (Fig. 4.3). It also produces a particle distribution on 20 May 2008 that most closely 

matched the peak streamflow from three days prior, which could correspond to more accurate 

state evolution (Fig. 4.4). In this case, the obs-sim AR-PF contains ensemble members whose 

simulated flow is higher than observed in the analog record, which is why the obs-obs AR-PF 

underpredicts flows. On the rising limb, all cases result in ensembles with similar rates of 

snowmelt (the slope of the SWE time series) leading up to the event (Fig. 4.4), suggesting that 

the best-matching analogs in the obs-sim AR-PF case were taken from analogs that experienced 

more precipitation than the forcings ensemble on 14 May 2008 (as shown in the difference 

between open loop flows and AR-PF obs-sim flows). This is an example of the desired AR-PF 

behavior. 



 

 

93 

 
Figure 4.3. Same as Figure 4.2 but for variables leading up to 14 May 2008.  
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Figure 4.4. Same as Figure 4.2 but for variables leading up to 20 May 2008. 

 

 
 The fourth example shows resampling applied at the peak of a fall rain event on 12 Nov. 

2008 (Fig. 4.5). The open loop simulation begins to predict some snow accumulation at the 

beginning of the seven-day nearest-neighbor analysis window. In this case, analogs were selected 

from a subset of the historical archive containing 28 Oct. to 27 Nov. of all archived years. The 

Green River basin frequently has some snow cover at higher elevations during this period. As a 

result, many of the selected analogs have much more snow than the open loop and SIR-PF 

predict. 2015 was a particularly hot and dry year, and there would have been very little snow in 

the basin, if any, on 12 Nov. 2015. Additional simulations are needed to investigate the 

implications of this erroneous SWE as the ensemble evolves. This suggests that it may be 
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necessary to further condition the analog selection on factors such as temperature, in addition to 

time of year. 

 
Figure 4.5. Same as Figure 4.2 but for variables leading up to 12 Nov. 2008. 

 

 
Finally, Fig. 4.6 shows an example of the AR-PF applied to a period of summer 

baseflow. The date shown, 30 Aug. 2015, is months into a long dry season and represents 

baseflow only. The open loop simulations, in this case, simulated up to three times as much flow 

as observed. SIR-PF is effective in reducing the mean streamflow bias; however, the resultant 

ensemble of streamflow and states is overconfident. Both AR-PF methods reduce the mean 

streamflow bias relative to the open loop to a lesser extent than the SIR-PF; however, both also 

retain more spread in both streamflow and soil moisture ensembles, thereby retaining a more 
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realistic representation of the ensemble uncertainty than the SIR-PF. None of the years from 

1980-2005 had flow as low as the observed leading up to 30 Aug. 2015, so even in cases where 

simulated analog flow matches the observed analog flow well, both simulated and observed 

analog flows are too high to represent the 30 Aug. 2015 streamflow. This highlights a weakness 

of this and all analog approaches, which is that the quality of the analysis depends on the archive 

containing hydroclimatic extremes. 

 

 
Figure 4.6. Same as Figure 4.2 but for variables leading up to 30 Aug. 2015. 
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To better understand the source of differences in ensembles generated by the obs-obs and 

obs-sim analog look-up methods, we examine the observations corresponding to the selected 

analogs for each analysis date (Fig. 4.7). This examination illuminates two idiosyncrasies that 

may arise from the current methodology: the selected analog set can contain 1) several sequential 

days from the historical record, appearing as a phase shift, or 2) several ensemble members from 

the same day in the historical record, appearing as a thicker, less transparent blue line in Fig. 4.7. 

Both effects occur for both methods. The phase shift can also be seen in the simulated flow 

ensembles, as for AR-PF obs-obs in Fig. 4.4. Note that the existence of analog ensemble 

members differing only in phase may be seen as undesirable mainly because they contain a 

structure that does not arise from the uncertainty generation methods and assumptions used to 

create the open loop states, and also because they introduce a correlation between ensemble 

members. It is not clear whether this structure would negatively impact the use of the states to 

initialize forecasts.   

The other notable feature of Fig. 4.7 is that the observations corresponding to the selected 

analogs for AR-PF obs-sim can be quite different from the observations leading up to the day of 

analysis. This is particularly true for analogs sampled on 30 Aug. 2015. The historical ensemble 

of gridded meteorology missed a rain event on 29-31 Aug. 2005, resulting in a simulation of 

continuous low flow. This simulation was sampled 56 times in the obs-sim case. In this case, the 

analog simulation conditions are still a reasonable approximation to the states corresponding to 

current observations because in both cases, there is no additional rainfall. It is possible that the 

2005 event would have been selected in the obs-obs case if more than 10 analog dates were 

sampled from the catalog. For the case of 14 May 2008, on the other hand, the wide range of 

analog observed streamflow for AR-PF obs-sim is indicative of less hydroclimatic similarity 
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between analogs and the present. This is reflected in the wider range of analog simulated 

streamflow leading up to the seven-day matching window and the wide range of analog 

simulated soil moisture and SWE states (Fig. 4.3). These results are consistent with the design of 

the two analog search approaches, in that the obs-sim analog search approach was not 

constrained to achieve similarity with past observations, in contrast to the obs-obs approach. 
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Figure 4.7. Observed streamflow corresponding to the analogs whose simulated flows are 

shown in Figs. 4.2-4.6. The color saturation of the blue lines reflects the density of particles. 
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4.4 DISCUSSION  

The preliminary analysis presented in this chapter shows that AR-PF has the potential to expand 

the spread of ensemble states in a collapsed particle filter while maintaining model simulation 

traces that are internally consistent (by not perturbing individual states). While these individual 

examples cannot be generalized to assess overall filter performance, they do show promise in 

addressing a prominent PF challenge, particularly in the case of AR-PF obs-sim. Still, several 

aspects of the AR-PF strategy and possible approaches to account for them are worth noting in 

more detail. These include: 1) sensitivity to hydroclimate, 2) system memory, 3) accuracy and 

reliability trade-offs, and 4) sample independence. 

First, because hydroclimatic processes are often tied closely to the time of year in which 

they occur, the AR-PF is able to efficiently search comparable past seasons to find analogs that 

reproduce current observed streamflow as well as, and often better than, the SIR-PF. In a 

changing climate, the window for analog identification might need to shift or expand. For 

example, in basins with seasonal snow in Washington State, a shift from snow to rain as the 

primary form of precipitation is projected in the coming decades [Elsner et al., 2010]. The 

example for 12 Nov. 2008 (Fig. 4.5) shows the sort of mismatch in conditions that we might 

expect under a changing climate, where a flood event driven by heavy rains in the absence of 

snow is replaced by states associated with rain-on-snow flooding. If a time of year during which 

there had historically been snow on the ground—like late October—ceases to have snow on the 

ground, more appropriate analogs may be found at other times of year, for example by looking 

for analogs to October observations in September or by defining the search window based on 

process rather than time.  Under a stationary climate assumption, the use of a search window 
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indexed to the day of the year or season is essentially a proxy for an explicit process-based 

analog search.   

Second, it is possible to improve the simulation of streamflow over a period of 7 days 

without improving the simulated states. The inherent equifinality of hydrologic models, which 

implies that similar runoff can arise from different model state and parameter configurations, 

cannot be easily overcome [Beven, 1993], but the degree to which poor analog states are selected 

can be minimized. The effect of improving streamflow while degrading hydrologic states is 

apparent in Fig. 4.5. The best analogs in terms of simulated streamflow for this event also have 

significant amounts of snow at a time when no snow was present. Interannual variability in 

hydroclimate can lead to streamflow analogs with significantly different states, some of which 

we know to be wrong. Some possible approaches to limit these differences include extending the 

memory (𝑘), or basing the catalog on process rather than time, to the extent that watershed 

processes can be readily recognized. An obvious path toward achieving greater fidelity in analog 

selection is to expand the hydroclimate feature vector used to calculate analog similarity to 

current conditions. Here we present just two possible analog similarity calculations, both of 

which considered only streamflow (e.g., observed and simulated), but observations of SWE and 

soil moisture, as well as basin meteorological data, where available, would likely be very 

effective in further constraining analog selection. Nonetheless, one benefit of the AR-PF is that it 

increases the spread of possible particles at the time of resampling such that the filter does not 

become fixed on an erroneous path, tracking the evolution of only a few (potentially wrong) 

states. The increased spread increases the chances of the distribution containing reasonable state 

estimates, and the most reasonable states (particles) may be preferentially selected when their 
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linkage to streamflow emerges (e.g., unreasonable SWE states may be de-ranked when their melt 

appears as inconsistent to flow). 

Third, in ensemble forecasting, there is often a trade-off between mean error of the 

ensemble members and reliability. After the SIR-PF resamples the particles, the mean error is 

often decreased because the ensemble only contains particles closest to the observations. 

However, in dropping the poor-performing states, the ensemble becomes overconfident (the 

spread is too small). This trade-off is apparent in Fig. 4.6, for which the ensemble mean of the 

SIR-PF is closest to the observations. While the AR-PF often reduces model bias, particularly for 

the obs-sim AR-PF, the primary benefit of the AR-PF is that it re-inflates the ensemble spread, 

resulting in higher reliability. This happens even in cases where the ensemble bias is higher for 

AR-PF than SIR-PF (e.g., Fig. 4.6). 

Fourth, as seen in Fig. 4.7, the AR-PF sometimes selects several ensemble members from 

the same day or several sequential days from the historic record as analogs. This raises the 

concern of sample independence. Each member of the gridded meteorological forcing ensemble 

is an independent sample of the meteorological forcing distribution [Clark and Slater, 2006; 

Newman et al., 2015], which means that the hydrologic ensemble members in the open loop case 

are also independent. Therefore, the selection of several ensemble members from the same day 

should not impact the statistical independence of the resampled ensemble. Sequential days from 

the same ensemble member, however, will have correlated errors. This effect cannot be entirely 

removed without limiting each historical ensemble member to contribute no more than one 

analog date to the resampled ensemble. Because hydrologic states tend to reset in October in this 

basin, future applications could apply this limit to allow no more than one analog date per water 

year per historical ensemble member. Because the uncorrelated forcings applied to each state 
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cause the members to diverge over time, this correlation may prove to be unimportant in 

practical applications. 

4.5 CONCLUSIONS AND FUTURE WORK 

An exploratory analysis of the use of an AR-PF approach to replace particles when the particle 

filter collapses (number of effective particles falls below a minimum) suggests that AR-PF has 

the potential to increase the ensemble spread following resampling while also improving 

ensemble mean streamflow estimates. Both of the analog selection strategies demonstrated here 

increase the ensemble spread of resampled hydrologic states relative to the SIR-PF. AR-PF also 

has the potential to reduce the computational cost of PFs in operational systems by replacing the 

simulation of ensemble members with the selection of analogs from past simulations. The AR-PF 

obs-obs expands the analog search to consider both simulated and observed streamflow and 

illustrates that constraining the analogs to more closely match current hydroclimate (as indexed 

by streamflow only) may produce a better ensemble of multiple hydrologic states, which could 

ultimately lead to better forecasts. The relatively better performance of the AR-PF obs-sim 

analog search in matching observed streamflow, on the other hand, results in less biased 

ensemble of streamflow during the spin-up period, which could lead to reduced streamflow 

forecast errors at initial lead times. To more effectively assess the utility of each of these 

methods, future work will include a comparison of streamflow forecasts initialized with analog 

states from both search strategies used here, and possibly use additional variables in the analog 

search and selection. 
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The case study results presented here suggest four areas for further development and 

investigation. These include: 

1) Evaluation of AR-PF methods in a continuous system (rather than for specific 

events). 

2) Evaluation of the impacts of increased ensemble spread due to AR-PF on 

streamflow forecast reliability. 

3) Assessment of the impacts on forecast performance of sample correlation from 

the selection of analogs from the same historic ensemble member over 

multiple sequential days. 

4) Identification of methods to account for shifting hydroclimate and interannual 

variability. 

Several examples are not sufficient to demonstrate improvements or to calculate meaningful 

verification statistics to evaluate the ensemble of hydrologic states. On-going work will extend 

the AR-PF methods to simulate initial hydrologic conditions and hindcasts for more water years. 

There are several degrees of freedom in this analysis including the catalog window size (𝑤), the 

number of days in the nearest neighbor search (𝑘), and the number of analog days to search for in 

the k-d tree when performing an obs-obs look-up. The appropriate values for these quantities is 

likely to vary between basins, and a full examination of the sensitivity of results to each is also 

needed. 
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APPENDIX A 
This appendix includes three supporting figures for Chapter 2. Figure A.1 shows the workflow 

used to resample particles when the number of effective particles falls below a threshold, as 

described in Section 2.2.2. Figures A.2 and A.3 include the daily and long-term average monthly 

streamflow values for the calibration period 1981-2008 at Howard Hanson and Hungry Horse, 

respectively. The observations, calibration, and simulations are described in section 2.3.2. 
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Figure A. 1. Resampling flow chart. See section 2.2 in the main text for detail.  
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Figure A. 2. Daily streamflow (upper 3 panels) and long-term average monthly streamflow 

(lower panel) at Howard Hanson for calibration period from 1 October 1981 to 30 September 

2008. The RMSE of daily flow is 17.3 m3/s and of long-term average monthly streamflow is 1.6 

m3/s. 
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Figure A. 3. Daily streamflow (upper 3 panels) and long-term average monthly streamflow 

(lower panel) at Hungry Horse for calibration period from 1 October 1981 to 30 September 2008. 

The RMSE of daily flow is 50.3 m3/s and of long-term average monthly streamflow is 8.2 m3/s. 
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