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Seismic events such as the Northridge (1994) and Nisqually (2001) earthquakes, amongst many 

others, have caused significant damage and financial losses to both structural and non-structural 

components of buildings. In response to this, significant research is being conducted with the aim 

of achieving higher performance objectives, which include: (i) the reduction and even 

elimination of structural damage during earthquakes, and (ii) the improvement of seismic risk 

mitigation for non-structural elements. 

To address point (i), several innovative technologies have been proposed that could limit 

structural damage compared to traditional structural systems in which structural damage serves 

as a means of energy dissipation. Among these, hybrid base-rocking walls effectively combine 

unbonded post-tensioning and mild-steel reinforcement to eliminate damage and residual 

displacements while providing good energy dissipation. In this study, the seismic response of 

hybrid base-rocking walls is compared to the more “traditional” reinforced concrete (RC) walls, 

through non-linear time-history analysis of 4, 8 and 12-story case-study buildings. Special 



 

 
 

attention is given to the floor acceleration response of both structural systems as it pertains to the 

performance of non-structural elements. 

To address point (ii), this study proposes three simple methodologies for estimating acceleration 

demands on non-structural elements in hybrid base-rocking and RC wall buildings, through a 

floor response spectrum (FRS) method. In all three procedures, individual modal floor spectra 

are first generated and then combined through a simplified modal combination approach to 

generate floor spectra that account for the effects of multiple modes. In order to account for non-

linear structural response, the first procedure utilizes the concept of transitory inelastic modes of 

vibration to generate inelastic modal floor spectra, while the second procedure utilizes empirical 

modal reduction factors that are used to reduce elastic modal floor spectra based on the expected 

ductility of the building. The third procedure focuses on how to estimate floor spectra in the 

early design phases of a building, when the modal characteristics of a building are not known. To 

this end, the procedure idealizes RC and hybrid base-rocking walls as continuous distributed-

mass systems to estimate their modal characteristics, which are in turn used to estimate floor 

spectra. Each proposed procedure is then tested by comparison to floor spectra obtained from 

non-linear time-history analysis of 4, 8 and 12-story case-study buildings. 
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1 INTRODUCTION 

1.1 Motivation 

For many years, the seismic design of buildings has focused on life-safety with the main concern 

being the prevention of loss of life during strong earthquakes. In the context of past design 

philosophies, the damage caused to buildings during a seismic event (which can be both structural 

and non-structural), though undesirable, has been treated as a secondary problem. Consequently, 

past earthquakes have often caused significant damage and financial losses to both structural and 

non-structural components. Such was the case, for example, of the 1994 Northridge earthquake 

(Los Angeles) (Todd et al., 1994; Villaverde, 1997). A recent study conducted by Charleson 

(2008) suggests that of the 66,000 buildings that were damaged during the earthquake, about 75% 

of the buildings suffered damage to non-structural elements alone (Ferner et al., 2014; Welch, 

2016). Even relatively moderate earthquakes, without causing much structural damage and loss of 

life, have been responsible for substantial damage to non-structural elements. For instance, the 

2001 Nisqually earthquake (Seattle-Olympia) is estimated to have caused two billion dollars’ 

worth of damages, which was mostly associated with non-structural damage (Filiatrault et al., 

2001). This is not surprising considering that non-structural components and building contents can 

account for upwards of 80% of the total investment in a typical building (Taghavi and Miranda, 

2003). 

In response to this, current design philosophies are moving toward performance-based earthquake 

engineering (PBEE) approaches. In this approach, seismic risk is not only quantified in terms of 

life-safety but also in terms of financial losses, and more generally in terms of overall performance, 

looking at both structural and non-structural components of buildings. To this end, there is 

increasing research focusing on: (i) the reduction and even elimination of structural damage during 

earthquakes, and (ii) improvement of seismic risk mitigation for non-structural elements.  

To address point (i), several innovative technologies have been proposed that could limit and even 

eliminate structural damage compared to traditional structural systems in which structural damage 
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serves as a means of energy dissipation. There are many “traditional” lateral load resisting systems 

that are currently in use. Amongst these, reinforced concrete (RC) structural walls have long been 

used as lateral load resisting systems for their excellent energy dissipation capacity and their 

overall performance observed in past earthquakes (Wood et al., 1987; Fintel, 1995; Mitchell et al., 

1995). RC walls are typically designed such that an inelastic fuse (i.e. plastic hinge) forms at the 

base of the wall, so that the inelastic deformation is concentrated at one location, limiting the forces 

experienced by the wall. This design approach, however, causes significant damage to the wall 

(mostly in the plastic hinge region) and residual displacements in the structure, which can be 

difficult and costly to repair. An emerging technology that improves upon such a system is the 

hybrid base-rocking structural wall, which has good energy dissipation capabilities (albeit less 

compared to RC walls) but does not tolerate damage.  

Hybrid base-rocking walls are not monolithically cast with the foundation of a building and thus 

do not form a plastic hinge at the base of the wall or experience structural damage. Instead, wall 

panels are post-tensioned to the foundation such that controlled rocking occurs during lateral 

loading. Energy dissipation, in the form of hysteretic dampers, is commonly provided through 

unbonded mild steel reinforcement that crosses the wall/foundation interface. It is important to 

note that friction (Kurama, 2001), viscous (Kurama, 2000) and other types of hysteretic dampers 

(Nakaki et al., 1999; Perez et al., 2004) have also been considered in the literature (Wiebe, 2008). 

Once lateral loading is removed, the post-tensioning force re-centers the wall eliminating any 

residual displacements that would otherwise be present in a traditional RC wall. Despite these 

benefits, higher floor accelerations have been observed in hybrid base-rocking walls relative to RC 

walls (Rodriguez et al., 2002; Wiebe, 2008), which can be concerning for the performance of 

acceleration-sensitive non-structural elements. 

Regarding point (ii), there are ongoing studies looking into both the seismic behavior of non-

structural elements as well as into the quantification of seismic loads on non-structural elements 

(Welch, 2016). In terms of seismic behavior, non-structural elements can be classified as either 

drift-sensitive or acceleration-sensitive (Taghavi and Miranda, 2003; FEMA, 2012; Welch, 2016). 

Drifts are typically dealt with by stiffening the supporting building, and proper detailing of non-

structural elements. Once the stiffness of the building is established, floor response spectra are 

typically generated to estimate the acceleration demands on non-structural elements (Sullivan et 
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al., 2013). However, recent studies have shown that current codified methods for estimating 

acceleration demands are inadequate, particularly because they do not account for elastic damping 

of the supported non-structural element and higher mode response of the supporting building (Uma 

et al., 2010; Sullivan et al., 2013; Pinkawa et al., 2014; Welch, 2016; among others). Therefore, 

there is an increasing push towards developing improved procedures to estimate acceleration 

demands on non-structural elements.  

This thesis addresses both points discussed above. First, an analytical investigation of the seismic 

response of hybrid base-rocking walls is conducted in relation to the response of RC walls. Special 

attention is given to the floor acceleration response of both types of structural walls as it pertains 

to the performance of non-structural elements. Second, several methodologies are proposed for the 

estimation of acceleration demands on non-structural elements that are supported by either 

structural wall systems. 

1.2 Research Objectives and Outline of Thesis 

The two main research objectives of this study are as follows: 

i) To compare the seismic response of hybrid base-rocking and RC wall buildings, and 

ii) To develop procedures for the estimation of floor response spectra in hybrid base-rocking 

and RC wall buildings responding non-linearly that can be used for the design of 

acceleration-sensitive non-structural elements. 

Note that this study considers only light non-structural elements with a mass less than 1% of the 

total building mass, and one point of attachment to the supporting building. 

The research objectives outlined above are addressed in the following chapters, which are outlined 

as follows: 

Chapter 2 introduces both RC and hybrid base-rocking structural wall systems and their expected 

seismic behavior.  

Chapter 3 presents a review of existing procedures to estimate acceleration demands on non-

structural elements. The first section addresses the inherent assumptions for using floor response 

spectra to estimate acceleration demands on non-structural elements. The second section discusses 
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recent research efforts that have developed floor spectra estimation procedures for single (SDOF) 

and multi-degree-of-freedom (MDOF) systems responding both linearly and non-linearly. Most 

notably, the work of Sullivan et al. (2013), Calvi and Sullivan (2014), and Welch (2016) are 

discussed in detail. The last section discusses how several prominent code provisions determine 

acceleration demands on non-structural elements, and the limitations associated with each 

provision.  

Chapter 4 discusses the design and time-history analysis of the case study RC and hybrid base-

rocking wall buildings considered in this study. The layout of the case-study buildings and the 

seismic design loads (ASCE, 2010) are first introduced. Then, a detailed explanation of the 

displacement-based design of the buildings is provided. Lastly, a detailed explanation of the 

dynamic time-history analysis of the case-study buildings is provided. 

Chapter 5 presents the results of the time history analysis of the case study buildings conducted 

according to Chapter 4. Using the results, the first section addresses the effectiveness of a 

displacement-based design approach in estimating seismic response. The second section presents 

an in depth comparison between the seismic response of RC and hybrid base-rocking wall 

buildings. Lastly, the third section details the observations made from floor response spectra atop 

the case-study buildings, with a focus on identifying parameters that have a significant influence 

of floor spectra. In addition, the dynamic interaction between non-structural elements and 

supporting buildings is discussed. 

Chapter 6 details a two-part study into the maximum dynamic amplification of peak floor 

acceleration that is expected when a non-structural element and its supporting structure are in 

resonance. The first section investigates the performance of existing formulations for estimating 

the maximum dynamic amplification through time-history analysis of elastic SDOF systems, 

specifically focusing on the works of Sullivan et al. (2013) and Welch (2016). The second section 

investigates the effects of inelastic structural response on maximum dynamic amplification 

through time-history analysis of inelastic SDOF RC and hybrid base-rocking wall systems. 

Chapter 7 employs the observations made in Chapter 5 and 6, and presents the development of 

three methodologies to estimate floor response spectra atop RC and hybrid base-rocking wall 

buildings responding non-linearly. The proposed procedures were based on the work of Calvi and 

Sullivan (2014) who proposed a simple procedure to estimate of floor response spectra in MDOF 
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buildings responding elastically. In this procedure, individual modal floor spectra are first 

generated and then combined through a simplified modal combination approach. The first two 

procedures proposed in the present study utilize the methodology proposed by Calvi and Sullivan 

(2014) and focus mostly on how to account for the influence of non-linear structural response on 

floor response spectra. To this end, the first procedure utilizes the concept of transitory inelastic 

modes of vibration (Sullivan et al., 2006) to estimate floor acceleration demands during non-linear 

response. The second procedure utilizes empirical modal reduction factors (Welch, 2016) that can 

be used to reduce elastic floor acceleration demands based on the ductility expected in the system. 

The last procedure focuses on how to estimate acceleration demands on non-structural elements in 

the early design phases of a building, when the modal characteristics of the building are not known. 

To this end, the procedure idealizes RC and hybrid base-rocking walls as continuous distributed-

mass systems to estimate their modal characteristics, which are in turn used to estimate floor 

acceleration demands. 

Finally, Chapter 8 presents a summary of the findings from the study. The limitations of the study 

and areas of future research are also identified.
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2 STRUCTURAL WALL SYSTEMS 

2.1 Reinforced Concrete (RC) Wall Systems 

Cantilever Reinforced Concrete (RC) structural walls (“RC walls”) are commonly used to resist 

lateral loads in buildings. RC walls are economical and easy to construct and serve both 

architectural (i.e. they are necessary to host elevator shafts and staircases) and structural purposes 

(resisting vertical and lateral loads). To this end, their effectiveness at resisting lateral loads has 

been extensively demonstrated and buildings with RC walls have performed well in past 

earthquakes with structural collapse being rare (Wood et al., 1987; Fintel, 1995; Mitchell et al., 

1995). 

RC walls are cast monolithically with the foundations of the building, and commonly designed 

such that an inelastic mechanism (i.e. a plastic hinge) forms at the base of the wall. For these 

systems, the plastic hinge, and specifically the yielding of the flexural reinforcement, represents 

the principal source of energy dissipation. Additional energy is dissipated through cracking and 

crushing of concrete.  To this end, it should be noted that in order to dissipate a large amount of 

energy (which is beneficial because it reduces the overall seismic demand on the system), it is 

necessary that the walls experience significant and permanent damage within the plastic hinge 

region. 

RC walls are normally designed ensuring that undesirable failure modes, such as those due to 

diagonal tension or diagonal compression caused by shear, are prevented. Walls that are properly 

designed and detailed for flexural ductility are capable of high performance. The force-

displacement response of ductile RC walls can be idealized as shown in Figure 2.1. It can be 

observed that once yielding occurs, cyclic loading causes significant stiffness degradation in the 

system as a result of increasing inelastic deformation (i.e. damage) in the plastic hinge region. 

Since the damage caused to the plastic hinge region is permanent, the wall can be permanently 

displaced even if lateral loading is removed, resulting in residual displacements. It should be noted, 

however, that once maximum displacement has been reached, the residual displacement could be 
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reduced by subsequent loading and unloading cycles depending on the characteristics of the ground 

motion (Christopoulos et al., 2003). Figure 2.2, for example, shows how subsequent loading and 

unloading cycles that do not yield the system in either direction could reduce residual 

displacements, from rmax to rfinal (Christopoulos et al., 2003). In addition, the self-weight of the 

wall can help to re-center the wall, slightly reducing residual displacements. For a more detailed 

look into the seismic behavior, analysis and design of RC wall systems, refer to Paulay and 

Priestley (1992). 

 

Figure 2.1 RC wall hysteretic response (adapted from Carr (2004)) 

 

Figure 2.2 Reduction of residual displacements in RC walls during cyclic loading (adapted from 

Christopoulos et al. (2003))  
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2.2 Hybrid Base-Rocking Wall Systems 

As discussed in the previous sub-section, RC walls (or monolithic systems in general) provide 

excellent energy dissipation during seismic events. However, this is accompanied by significant 

damage and permanent deformation that requires extensive repair to the structural system. In order 

to overcome this limitation, hybrid base-rocking walls (“rocking walls”) have recently been 

developed. One of the first notable research efforts that focused on such systems is the Precast 

Seismic Structural Systems (PRESSS) Research Program (Priestley, 1991). In this research 

program, a 60 percent scale five-story precast concrete building incorporating a rocking jointed-

structural wall system, developed and designed by Galusha (1999), was tested under simulated 

seismic loading (Priestley et al., 1999). The results from the tests indicated that rocking walls had 

the potential for significantly reducing and even eliminating residual displacements and structural 

damage. Since this project, numerous analytical and experimental studies have been conducted to 

further develop and implement rocking walls (Rahman and Restrepo, 2000; Kurama, 2002; Holden 

et al., 2003; Perez et al., 2004; Marriott et al., 2008; Wiebe, 2008; Belleri et al., 2014; Sritharan 

et al., 2015; Gavridou, 2015; Khanmohammadi and Heydari, 2015; among others). However, 

relative to RC wall systems, the evidence backing the expected seismic performance of rocking 

wall systems is somewhat limited. 

Nevertheless, several buildings have been constructed that incorporate rocking walls. The Cala 

building in the Dominican Republic is the first building in the literature that incorporated coupled 

rocking walls (Stanton et al., 2003). Two other buildings incorporating coupled rocking walls have 

also been built in New Zealand, namely the Alan MacDiarmid Building in Wellington (Cattanach 

and Pampanin, 2008), and the Southern Cross Hospital Endoscopy Building in Christchurch 

(Pampanin et al., 2011). 

The rocking walls considered in the present study consist of a precast concrete panel that is 

reinforced with unbonded post-tensioning tendons as well as mild steel energy dissipaters crossing 

the wall-to-foundation interface (Figure 2.3). The post tensioning tendons are unbonded for the 

entire height of the wall, and anchored both at the top of the wall and at the foundation. The mild 

steel energy dissipaters are also unbonded for a specified length at the base of the wall. It is 

important to note that this type of dissipaters have some disadvantages, namely the potential for 
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buckling in compression and necking in tension since the dissipaters are axially loaded over an 

unbonded length.  

 

Figure 2.3 Sample schematic drawing of rocking wall (adapted from Palermo et al. (2005)) 

The hysteretic response of rocking walls can be idealized by the flag-shaped hysteresis shown in 

Figure 2.4, which was adapted from Wiebe and Christopoulos (2009). The simplified push-pull 

behavior presented in the figure assumes a rigid foundation, and perfectly elasto-plastic energy 

dissipaters crossing the wall-to-foundation joint. For clarity, the hysteresis is idealized with sharp 

stiffness changes, but, as experimental data shows (Figure 2.5), changes in stiffness are expected 

to occur more gradually (Wiebe and Christopoulos, 2009). 
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Figure 2.4 Push-pull response of base-rocking system: (a) at rest; (b) incipient rocking; (c) yield of 

mild steel energy dissipaters; (d) applied lateral load greater than yield load; (e) applied lateral load 

greater than yield load in reverse direction; (f) lateral load removed (adapted from Wiebe and 

Christopoulos, 2009).  
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Figure 2.5 Rocking wall experimental lateral force-drift ratio response (Unit 3 tested by Rahman 

and Restrepo (2000)) 

At rest (step a), the wall in Figure 2.4 is in axial equilibrium with the base reaction counteracting 

the total axial load in the wall, which consists of post-tensioning force, self-weight and any 

additional gravity load. Upon initial loading, the wall resists lateral loads similar to an RC wall 

until the clamping force (total axial load) is overcome and rocking begins (step b) (Wiebe and 

Christopoulos, 2009). Rocking occurs because the wall is not monolithically connected to the 

foundation and all the reinforcement passing the wall/foundation interface is unbonded.  

When rocking begins, the initial stiffness of the wall kinitial reduces to an elastic post-rocking 

stiffness krock due to the opening of a gap at the rocking joint (step c). At this point, the post-

tensioning tendons begin to elongate and the mild steel energy dissipaters begin resisting lateral 

forces elastically. 

Once the dissipaters reach their yield capacity, the elastic post-rocking stiffness krock reduces to a 

post-yield stiffness kyield (step d). At this stage, the post-tensioning tendons continue to elongate 

but remain elastic.  

Upon load reversal, the energy dissipaters begin resisting lateral loads in compression. Since the 

dissipaters have been permanently deformed due to yielding in tension, they need to yield in 

compression in order for the joint cap to close (step e) (Wiebe and Christopoulos, 2009). Thus, 
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unloading occurs with the elastic post-rocking stiffness krock until yielding occurs in compression. 

Once the dissipaters yield in compression, the stiffness reduces to the post-yield stiffness kyield until 

the joint gap closes (Wiebe and Christopoulos, 2009).  

Since the energy dissipaters have yielded in compression, they exert an upward force upon the 

wall that reduces the load at which rocking begins. However, during loading in the opposite 

direction, the upward force must be overcome to yield the dissipaters in tension. Thus, the overall 

yield force of the system remains unchanged, which creates a symmetrical hysteretic behavior for 

loading in the opposite direction. Once applied load is removed, the wall returns back to the 

original position, resulting in zero residual displacements (step f) (Wiebe and Christopoulos, 

2009).  

The energy dissipated by the hysteretic response described above is quantified by an energy 

dissipation coefficient beta β (Figure 2.4f). A β of zero corresponds to the absence of energy 

dissipation (i.e. mild steel reinforcement), and a β of one corresponds to the maximum amount of 

energy dissipation while still ensuring re-centering. 

The re-centering capabilities described above, which significantly reduce residual displacements, 

represent the main benefit of using rocking walls over RC walls. A more detailed list of benefits 

associated with rocking walls is presented in Table 2.1. Despite these benefits, rocking walls have 

been shown to attract higher floor accelerations relative to RC walls (Rodriguez et al., 2002; 

Wiebe, 2008), which is attributed to sharp changes in stiffness during rocking (Wiebe and 

Christopoulos, 2010). This can be concerning for the performance of acceleration-sensitive non-

structural elements. The present study addresses this concern by comparing the floor acceleration 

response of RC and rocking wall systems through a dynamic non-linear time-history analysis of 

case study buildings.  

In addition, as Qureshi and Warnitchai (2016) note, both horizontal and vertical acceleration spikes 

have been observed in the seismic response of rocking walls during dynamic experimental tests 

(Toranzo, 2002; Marriott et al., 2008; Schoettler et al., 2009; Belleri et al., 2014). These 

acceleration spikes are attributed to the high-velocity impact between a rocking wall and its 

foundation during rocking (Qureshi and Warnitchai, 2016). As reasonable to expect, this might 

negatively affect the performance of non-structural elements. However, this issue is not addressed 

in the present study and remains an area of future study. 
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Table 2.1 Comparison between RC and rocking wall systems (adapted from Holden et al., 2003) 

System property RC Walls Rocking Walls 

Energy dissipation 

capacity 

Excellent Good 

Special reinforcing 

detailing 

In potential plastic hinge zones. 
Congested cages to confine the 
concrete, prevent longitudinal 
reinforcing from buckling, and to 
prevent shear failure. 

Only required at wall ends and 
foundation beam where rocking 
takes place. 

Dimensional limitations To prevent plastic hinge instability Minimum—based on elastic 
theory as wall panels remain 
essentially crack-free 

Minimum 

reinforcement 

requirements 

Can significantly increase the 
moment capacity at the critical 
region. This could result in larger 
foundations as a result of capacity 
design 

Temperature and shrinkage can 
be substituted with fiber 
reinforced concrete 

Expected 

postearthquake repair 

work 

In plastic hinge zones repair work can 
vary from epoxy injection of 1 mm 
wide cracks or less, to concrete 
replacement. Longitudinal bars could 
buckle and fracture requiring 
demolition. 
Permanent deformations. 

None expected. Self-centering, 
permanent deflections are not 
expected. 

Initial cost Competitive—widely used systems Competitive? Requires cost 
analysis. 

Life-cycle cost Competitive relative to other 
conventional systems. May require 
postearthquake repair, or following a 
severe earthquake demolition and 
rebuilding may be necessary. 

Expected to be very competitive. 
No postearthquake repairs 
needed. 
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3 SEISMIC DEMANDS ON NON-STRUCTURAL ELEMENTS 

Non-structural elements (NSEs) are components of buildings that are not part of the main structural 

system. These elements can be broadly categorized into three groups according to FEMA (2012):  

 Architectural elements: partitions, ceilings, storefronts, glazing, cladding, veneers, 

chimney, fences, architectural ornamentation, etc. 

 Mechanical, electrical and plumbing (MEP) elements: pumps, chillers, fans, air handling 

units, motor control centers, distribution panels, transformers, etc. 

 Building contents: shelving and bookcases, industrial storage racks, retail merchandise, 

books, medical records, computers and desktop equipment, etc. 

However, in terms of seismic design, NSEs can be separated into two main groups: drift-sensitive 

and acceleration-sensitive elements (Taghavi and Miranda, 2003; FEMA, 2012; Welch, 2016). 

Drifts are typically dealt with by stiffening the supporting building, and proper detailing of non-

structural elements. However, structures tend to attract higher accelerations when stiffened, which 

can be limited somewhat by inelastic structural response (Sullivan et al., 2013). 

In general, acceleration-sensitive NSEs have proven to be more vulnerable over the course of past 

earthquakes (Miranda and Taghavi, 2005). In addition, numerous researches have questioned the 

reliability of current code provisions for this class of NSEs (Uma et al., 2010; Sullivan et al., 2013; 

Pinkawa et al., 2014; Welch, 2016; among others). For these reasons, the present study focuses on 

acceleration-sensitive NSEs, and more specifically, how to estimate acceleration demands for this 

type of NSEs. 

3.1 Floor Response Spectra for the Seismic Design of Non-structural Elements 

In the last half century, much effort has been devoted to developing rational methods for 

conducting seismic analysis of NSEs. In the vast majority of practical design situations, decoupled 

analyses are conducted using a “cascading” approach. In this approach, it is assumed that NSEs 



 

10 
 

have minimal dynamic interaction with the supporting structure. In other words, the NSEs and the 

supporting structure are treated as uncoupled systems. In past research efforts, this assumption has 

been considered acceptable for NSEs with mass less than 1% of the total mass of the supporting 

structure (Singh and Ang, 1974; Sankaranarayanan, 2007; Taghavi and Miranda, 2008; Pinkawa 

et al., 2014; Welch, 2016). However, some have suggested that interaction occurs closer to 0.1% 

of total mass of the supporting structure (Toro et al., 1989). In the context of cascading approaches, 

one of the most popular methods is the Floor Response Spectrum (FRS) method (Figure 3.1). The 

structural response at the attachment level is considered as the input motion for the estimation of 

the response of the nonstructural component and used to construct the response spectra pertaining 

to the floor under consideration. 

 

Figure 3.1 Illustration of floor response spectrum (FRS) method (Filiatrault and Sullivan, 2014) 

An inherent assumption of the FRS method is that NSEs have a single point of attachment to the 

supporting building.  As Welch (2016) and Villaverde (1997) noted, FRS methods are not suitable 

for NSEs with multiple points of attachment. For instance, each support or attachment can be 

subject to a different and out-of-phase motion, which cannot realistically be accounted for with an 

FRS method (Villaverde, 1997). 

3.2 Novel Methods for Estimating Floor Response Spectra 

One of the main objectives of the present study is to propose floor response spectra estimation 

procedures for RC and rocking wall buildings responding non-linearly. The proposed procedures 



 

11 
 

are based mainly on the work of Sullivan et al. (2013), Calvi and Sullivan (2014), and Welch 

(2016). Sullivan et al. (2013) proposed a new and simple methodology for estimating floor 

response spectra atop linear and non-linear single-degree-of-freedom (SDOF) structures. Then, 

Calvi and Sullivan (2014) extended this work to linear multi-degree-of-freedom (MDOF) 

structures. Most recently, Welch (2016) adapted the methodology of Calvi and Sullivan (2014) to 

MDOF systems responding in the non-linear range. A summary of each of these studies is 

presented below.  

Note that numerous other procedures, not discussed here for brevity, have been proposed for the 

estimation of floor spectra. For a broader look into the current state-of-the-art in the estimation of 

floor spectra, refer to Welch (2016) who has an excellent literature review on the topic. 

3.2.1 Sullivan et al. (2013) for Single-Degree-of-Freedom Systems 

Sullivan et al. (2013) proposed a new methodology for generating floor spectra atop SDOF 

systems that is based on a dynamic amplification of peak floor acceleration (PFA). For a SDOF 

structure that has been designed for a given lateral load, the PFA can be determined by dividing 

the design base shear by the total mass of the structure.  

To obtain the floor response spectrum, the PFA is then scaled by empirical dynamic amplification 

factors, which are dependent on the elastic damping of the supported element. The following 

empirical equations summarize the procedure: 

 

𝑎𝑚(𝑇) =

{
 
 

 
 𝑇

𝑇𝑝
 [𝑎𝑚𝑎𝑥(𝐷𝐴𝐹𝑚𝑎𝑥 − 1)] + 𝑎𝑚𝑎𝑥       𝑓𝑜𝑟 𝑇 < 𝑇𝑝          

𝑎𝑚𝑎𝑥𝐷𝐴𝐹𝑚𝑎𝑥                                            𝑓𝑜𝑟 𝑇𝑝 ≤ 𝑇 ≤ 𝑇𝑒
𝑎𝑚𝑎𝑥𝐷𝐴𝐹                                                  𝑓𝑜𝑟 𝑇 > 𝑇𝑒          

 (3.1) 

where T is the spectral period of interest (i.e. the period of the non-structural element), and am(T) 

is the spectral floor acceleration value at period T (i.e. the acceleration of the non-structural 

element). The term amax is the PFA, and Tp is the elastic period of the primary/supporting structure. 

The term Te is the effective period of the supporting structure, which is computed using a secant 

stiffness at design displacement.  The term DAF is the dynamic amplification factor given by 

Equation (3.2) and DAFmax is the maximum dynamic amplification factor given by Equation (3.3), 
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which is expected to occur when the non-structural element is in resonance with the supporting 

structure. 

 
𝐷𝐴𝐹 =

1

√(1 −
𝑇
𝑇𝑒
)
2

+ 𝜉𝑁𝑆   

 
(3.2) 

  

 
𝐷𝐴𝐹𝑚𝑎𝑥 =

1

√𝜉𝑁𝑆
 (3.3) 

where ξNS is the elastic damping of the non-structural/supported element. Note that Te is equal to 

Tp if the supporting structure is responding linearly.  

Both amplification factors (which are based on principles of structural dynamics) were empirically 

derived and successfully validated with the results of non-linear time history analyses of SDOF 

systems subject to a large suite of ground motions. 

Figure 3.2 presents an illustration of the procedure proposed by Sullivan et al. (2013). Notably, 

maximum dynamic amplification extends from the elastic period to the effective period of the 

supporting structure. This was proposed by Sullivan et al. (2013) to take into account non-linear 

structural response.  When a supporting structure goes through inelastic deformation, it no longer 

has a unique natural period of vibration. Thus, peak spectral response (i.e. resonance) occurs over 

a range of periods bounded by the elastic and effective periods of the supporting structure. 
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Figure 3.2 Procedure for estimating floor spectra atop SDOF systems by Sullivan et al. (2013) 

(Welch, 2016) 

3.2.2 Calvi and Sullivan (2014) for Linear Multiple-Degree-of-Freedom Systems 

The work of Calvi and Sullivan (2014) extended the methodology developed for SDOF systems 

by Sullivan et al. (2013) to MDOF systems responding in the elastic range. This was achieved by 

adapting the approach summarized in the previous sub-section for use with a traditional modal 

analysis of the supporting structure (Chopra, 2001). In this context, each of the modes is treated as 

an equivalent SDOF system that can be dealt with as discussed above. Thus, floor response spectra 

can be constructed for each mode at all floors of a structure. The effects of the individual modal 

floor spectra are then combined using modal superposition to generate a floor response spectrum 

that accounts for the effects of multiple modes. 

The first step that this methodology involves is the performance of an Eigen-value analysis and 

the consequent calculation of periods of vibration and mode shapes (Figure 3.3a). Once the periods 

and mode shapes are known, a traditional modal response spectrum method is employed to 

determine the PFA contributions from each mode (Figure 3.3b&c) (Chopra, 2001).  

Mathematically, the contributions are determined by: 

 
𝑎𝑚𝑎𝑥,𝑗,𝑖 =

𝜙𝑗,𝑖
∑𝜙𝑗,𝑖𝑚𝑗

𝑚𝑒,𝑖𝑆𝑎,𝑖 
(3.4) 

where amax,j,i is the floor acceleration at degree-of-freedom (i.e. floor level) j from mode i, ɸj,i is 

the mode shape for level j and mode i, mj is the seismic mass at level j, and me,i is the effective 
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modal mass for mode i. The term Sa,i is the spectral acceleration value for mode i obtained from 

the design ground response spectrum. 

 

Figure 3.3 Illustration of floor spectra construction procedure for upper stories of elastic MDOF 

systems (Calvi and Sullivan, 2014) 

Once the modal PFA contributions are determined, floor spectra can be obtained for each of the 

modes by using the procedure for SDOF systems outlined by Sullivan et al. (2013) (Section 3.2.1). 

At this time, the floor response spectra for upper levels are obtained by combining each of the 

modal floor spectra using an established modal combination rule such as square-root-of-sum-of-

squares (SRSS) (Figure 3.3d). 

For the lower levels, floor spectra are obtained as a curve that envelopes the floor spectra obtained 

using the modal combination method discussed above and the design ground response spectrum. 

This was proposed as a means to capture the limited higher mode filtering of the ground motion 

(rigid mode response) that is expected in the lower levels. 

Calvi and Sullivan (2014) also proposed an adjustment to the maximum dynamic amplification 

factor (DAFmax) formulation. It was pointed out that stiff structures tend to provide little filtering 
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of ground motions, which was also observed by Menon and Magenes (2008) amongst others. Thus, 

the DAFmax formulation proposed by Sullivan et al. (2013) would overestimate the dynamic 

amplification of peak floor accelerations in stiff structures. To account for this phenomenon, 

Equation (3.5) was proposed in which the DAFmax is reduced for supporting structures with natural 

periods below TB = 0.3 sec. 

 

𝐷𝐴𝐹𝑚𝑎𝑥 =

{
 
 

 
 

1

(1.79 −
𝑇𝑖
𝑇𝐵
)√𝜉𝑁𝑆

      𝑖𝑓 0 ≤ 𝑇𝑖 ≤ 𝑇𝐵

1

√𝜉𝑁𝑆 
                       𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵

 (3.5) 

where Ti is the elastic period of the primary structure for mode i. 

3.2.3 Welch (2016) for Non-Linear Multiple-Degree-of-Freedom Systems 

By building upon the works of Sullivan et al. (2013) and Calvi and Sullivan (2014), Welch (2016) 

developed a procedure to estimate floor spectra in non-linear MDOF buildings. For a supporting 

building responding non-linearly, floor spectra are generated by reducing elastic modal floor 

response spectra with empirical modal reduction factors that are dependent on the ductility of the 

supporting structure. Then, the reduced modal floor response spectra are combined using an 

established modal combination rule to obtain floor response spectra that account for the effects of 

multiple modes.  

Since the procedure is empirical, Welch (2016) focused on two structural systems: steel moment 

resisting frames (MRF) and RC cantilever walls, of which only the latter is discussed here. In 

addition, two separate procedures were proposed by Welch (2016): a simplified procedure and an 

explicit procedure. The latter was not adopted in this study and, thus, not discussed here. 

To develop the simplified procedure, Welch (2016) ran time history analyses of case-study 

structures responding both linearly and non-linearly under a large suite of ground motion records. 

Empirical modal reduction factors were then obtained on a record-by-record basis. A modal 

reduction factor is the ratio of spectral floor acceleration (SFA) from linear response to that of the 

corresponding non-linear response (Equation (3.6)).  
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𝑅𝑖,𝑆𝑖𝑛𝑔𝑙𝑒 𝑅𝑒𝑐𝑜𝑟𝑑 =

𝑆𝐹𝐴(𝑇𝑖)𝐿
𝑆𝐹𝐴(𝑇𝑖)𝑁𝐿

 
(3.6) 

where SFA(Ti) is the spectral floor acceleration at the period of mode i. The subscripts L and NL 

represent the linear and non-linear response cases, respectively. 

Once the reduction factors for each acceleration record were obtained, a non-linear regression was 

performed in the form of Equation (3.7).  

 𝑅𝑖 = 𝜇
𝛼𝑖  (3.7) 

where Ri is the reduction factor for mode i, μ is the estimated ductility demand of the supporting 

structural system, and αi is the exponent governing the rate of reduction in mode i. 

Figure 3.4 presents a visual representation of how the regression analysis was conducted. 

 

Figure 3.4 Illustration of modal reduction factors for individual accelerograms (left) and example 

of regression model used (right) (Welch, 2016) 

The regression was conducted using only roof level floor spectra, and independent of non-

structural damping ratio. Thus, the reduction factors for each of the non-structural damping ratios 

considered (ξNS = 0.5%, 2%, 5% and 10%) were collectively used for the regression. The analysis 

was conducted within a ductility range of 1.0 to 5.0, and any data point outside of this range was 

omitted.  

The raw data was also adjusted during the regression analysis to allow for better tracking of how 

increasing ductility demands affect acceleration peaks. Accordingly, the reduction factor for each 
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accelerogram was normalized by the reduction factor at an intensity level resulting in a ductility 

close to 1.0 (in the range of 0.9 to 1.1). This means that for all accelerograms, a ductility of 1.0 

corresponds to a reduction factor of 1.0.  Table 3.1 presents the modal reduction factors obtained 

from the regression analysis.  

Table 3.1 Generalized values of modal reduction factors from record-by-record regression for RC 

walls conducted by Welch (2016) 

Structural System 

Mode 1 Mode 2 Mode 3 

α1 α2 α3 

RC Walls 1.25 0.4 0.2 

Modal reduction factor taken as Ri = μα 

 

To account for period elongation, Welch (2016) proposed Equations (3.8) and (3.9) to define the 

effective periods of modes 1 and 2 respectively. Mode 3 was assumed to have negligible period 

elongation. 

 
𝑇1,𝑒 = 𝑇1√

𝜇

[1 + 𝑟(𝜇 − 1)]
 

(3.8) 

where T1,e is the effective first mode period, T1 is the elastic first mode period, and r is the global 

strain hardening factor. 

 

𝑇2,𝑒 =

{
 
 

 
 

𝑇2                     𝑓𝑜𝑟        𝜇 ≤ 1.0 

𝑇2 (1 + 0.5(
𝜇

𝜇𝑝𝑖𝑛
))      𝑓𝑜𝑟 1.0 < 𝜇 < 𝜇𝑝𝑖𝑛               

1.5𝑇2                𝑓𝑜𝑟         𝜇 ≥ 𝜇𝑝𝑖𝑛 

 (3.9) 

where T2,e is the effective second mode period, and T1 is the elastic second mode period. The term 

μpin is the ductility limit corresponding to the pinned behavior of higher modes. Hence, when 

ductility reaches this limit, the RC wall is considered fully-pinned. 

Welch (2016) also updated the dynamic amplification factor formulation. It was observed that 

damping of the supporting structure had an impact on dynamic amplification factor, albeit to a 
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smaller extent compared to non-structural damping. The revised formulations for DAFmax and 

DAF are given by Equations (3.10) and (3.11). 

 
𝐷𝐴𝐹𝑚𝑎𝑥 = {

(0.55 + 0.45
𝑇𝑖
𝑇𝐵
) (0.5𝜉𝑝 + 𝜉𝑁𝑆) 

−0.667      𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵                 

(0.5𝜉𝑝 + 𝜉𝑁𝑆) 
−0.667                             𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵       

 (3.10) 

 

 

𝐷𝐴𝐹 =

{
 
 

 
 
 (0.55 + 0.45

𝑇𝑖
𝑇𝐵
) [(1 −

𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵             

 [(1 −
𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

                     𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵

 
(3.11) 

where T is the spectral period of interest, Ti is the elastic period of the supporting structure for 

mode i, Ti,e is the effective period of the supporting structure for mode i, ξp is the elastic damping 

of the primary structure, and ξNS is the elastic damping of the non-structural element. The term TB 

is taken as 0.3 sec. 

Based on the findings summarized above, Welch proposed the following simplified procedure to 

estimate floor response spectra. 

Step 1: Define the primary (ξp) and non-structural (ξNS) damping ratios 

Welch (2016) proposed a primary damping ratio of 5% for RC walls. Even though the 

procedure can be applied to any non-structural damping ratio, a value of 2% was proposed 

if the damping of a non-structural element is not known. 

Step 2: Define the input acceleration spectrum, Sa(T,ξp) 

The input acceleration spectrum is the design ground response spectrum. It can also be 

taken as the median or mean spectrum of a target record set. At this point, TB is also 

estimated as the initiation of the constant acceleration range of the input spectrum. Note 

that the input acceleration spectrum is defined at the primary damping ratio ξp. 

Step 3: Perform modal analysis for the number of modes considered 
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For a given mode i, the following parameters need to be obtained: the fundamental period 

(Ti), mode shape (ɸi), and modal participation factor (Γi). Welch (2016) found that 

considering the first three modes was sufficient to generate reliable floor spectra estimates.  

Step 4: Ductility demand, modal reduction factors and effective periods 

The ductility demand (μ) needs to be estimated at the intensity of interest. The modal 

reduction factors can then be obtained based on Table 3.1. 

The effective periods for modes 1 and 2 can be obtained using Equations (3.8) and (3.9), 

respectively.  For modes 3 and higher, the effective period can be considered equal to the 

elastic period. 

Step 5: Estimate modal floor accelerations, modal contributions and SRSS estimates 

 The modal floor acceleration amax,j,i for a given mode i at a floor level j is given by: 

 
𝑎𝑚𝑎𝑥,𝑗,𝑖 = 𝜙𝑗,𝑖Γ𝑖 (

𝑆𝑎(𝑇𝑖, 𝜉𝑝)

𝑅𝑖
) ;    𝑅𝑖 ≥ 1 

(3.12) 

where the elastic spectral acceleration demand Sa(Ti ,ξp) is reduced by the modal reduction 

factor Ri to account for non-linear demands. 

The individual modal contributions am,j,i(T) to the floor response spectrum are given by: 

 

𝑎𝑚,𝑗,𝑖(𝑇) =

{
 
 

 
 (
𝑇

𝑇𝑖
)
2

 [𝑎𝑚𝑎𝑥,𝑗,𝑖(𝐷𝐴𝐹𝑚𝑎𝑥 − 1)] + 𝑎𝑚𝑎𝑥,𝑗,𝑖       𝑓𝑜𝑟 𝑇 < 𝑇𝑖          

𝑎𝑚𝑎𝑥,𝑗,𝑖𝐷𝐴𝐹𝑚𝑎𝑥                                            𝑓𝑜𝑟 𝑇𝑖 ≤ 𝑇 ≤ 𝑇𝑖,𝑒
𝑎𝑚𝑎𝑥𝐷𝐴𝐹                                                  𝑓𝑜𝑟 𝑇 > 𝑇𝑖,𝑒          

 

(3.13) 

where T is the spectral period of interest. DAFmax and DAF are estimated using Equations 

(3.10) and (3.11). 

The SRSS spectral floor response at a given period T is estimated as: 

 

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆 = √∑[𝑎𝑚,𝑗,𝑖(𝑇)]2
𝑛𝑚

𝑖=1

 

(3.14) 

where nm is the number of modes being considered.  

Step 6: Account for rigid mode response 
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The final spectral floor acceleration SFAj(T) is given by Equation (3.15) which takes into 

account rigid mode response observed in the lower levels of RC wall buildings. 

 

𝑆𝐹𝐴𝑗(𝑇) =

{
 

 max (𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆, 𝑆𝑎(𝑇, 𝜉𝑁𝑆))      𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
< 0.5                

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆                        𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
≥ 0.5

 

(3.15) 

 
where Hj is the height of floor level j, and Hn is the height of the roof level. The term 

Sa(T,ξNS) is the spectral acceleration demand at period T obtained from the input 

acceleration spectrum at  a damping level of ξNS. If the input acceleration spectrum is 

obtained for a typical damping ratio of 5%, then the spectrum can be adjusted by a damping 

modification factor given by: 

 
𝜂 = (

0.1

0.05 + 𝜉𝑁𝑆
)
0.5

 
(3.16) 

3.3 Current Code Provisions  

This section provides a brief summary of exemplary code provisions regarding non-structural 

elements (NSEs). Specifically, the United States, Europe and New Zealand code provisions are 

discussed. Particular attention is given to how each provision determines acceleration demands for 

NSEs. 

3.3.1 United States (ASCE 7-10) 

In the United States, the seismic design provisions for non-structural elements/components are set 

forth in ASCE 7-10 (ASCE, 2010). The horizontal seismic design force for a component is 

determined by: 

 
𝐹𝑝 =

0.4𝑆𝐷𝑆𝑎𝑝𝑊𝑝
𝑅𝑝
𝐼𝑝

(1 + 2
𝑧

ℎ
) 

(3.17) 

where 0.4SDS is the design peak ground acceleration (PGA), Wp is the weight of the component, z 

is the height of component attachment, and h is the average roof height of the supporting structure. 

The term ap is the component amplification factor, which varies from 1.00 to 2.50. The term Ip is 
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the component importance factor, which varies from 1.00 to 1.50. The term Rp is the component 

response modification factor, which varies from 1.00 to 12.00. 

The horizontal seismic design force shall not be taken less than the following limit: 

 𝐹𝑝 = 0.3𝑆𝐷𝑆𝐼𝑝𝑊𝑝 (3.18) 

In addition, the horizontal seismic design force need not be taken greater than the following limit: 

 𝐹𝑝 = 1.6𝑆𝐷𝑆𝐼𝑝𝑊𝑝 (3.19) 

NSEs are also designed for a concurrent vertical seismic design force given by: 

 𝐹𝑝 = ±0.2𝑆𝐷𝑆𝑊𝑝 (3.20) 

The component amplification (ap) and response reduction (Rp) factors are outlined in tables (not 

reproduced here for brevity) for specific NSEs. For instance, for laboratory equipment, ap = 1.00 

and Rp = 2.50, while for signs and billboards, ap = 2.50 and Rp = 3.00. Using a lower value of ap, 

other than the ones provided in the tables, is not permitted unless justified by a detailed dynamic 

analysis. Even so, ap is not permitted to be taken less than 1.0. 

In addition, ASCE 7-10 makes a distinction between rigid or rigidly attached, and flexible or 

flexibly attached components. A rigid component is defined as a NSE with fundamental period of 

0.06 sec or less, while a flexible components is defined as a NSE with fundamental periods higher 

than 0.06 sec. For rigid component, ap is 1.0 and for flexible components, ap is 2.5. 

Lastly, the component importance factor (Ip) is one of two values and assigned based on the criteria 

in Table 3.2.  
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Table 3.2 Non-structural element/component importance factors for ASCE 7-10 (ASCE, 2010) 

Conditions 
Importance 

Factor, Ip 

 The component is required to function for life-safety purposes after an 
earthquake, including fire protection sprinkler systems and egress 
stairways. 

 The component conveys, supports, or otherwise contains toxic, highly 
toxic, or explosive substances where the quantity of the material exceeds a 
threshold quantity established by the authority having jurisdiction and is 
sufficient to pose a threat to the public if released. 

 The component is in or attached to a Risk Category IV (essential facilities; 
refer to ASCE (2010)) structure and it is needed for continued operation of 
the facility or its failure could impair the continued operation of the facility. 

 The component conveys, supports, or otherwise contains hazardous 
substances and is attached to a structure or portion thereof classified by the 
authority having jurisdiction as a hazardous occupancy. 

1.5 

 All other conditions 1.0 

3.3.2 Europe (Eurocode 8) 

In Europe, the main seismic design provisions for NSEs are set forth in Eurocode 8 (CEN, 2004). 

The horizontal seismic force on a NSE is given by: 

 
𝐹𝑎 =

𝑆𝑎𝑊𝑎𝛾𝑎
𝑞𝑎

 (3.21) 

where Wa is the weight of the element, ϒa is the importance factor of the element, qa is the behavior 

factor of the element, and Sa is the seismic coefficient applicable to NSEs, which is given by: 

 
𝑆𝑎 = 𝛼𝑆

[
 
 
 3 (1 +

𝑧
𝐻)

1 + (1 −
𝑇𝑎
𝑇1
)
2 − 0.5

]
 
 
 
 ≥  𝛼𝑆 

(3.22) 

where α is the design PGA on Soil Type A (rock) in terms of acceleration of gravity (g), S is the 

site soil factor, Ta is the fundamental period of the NSE, T1 is the fundamental period of the 

supporting building, z is the height from the base of the supporting building to the NSE attachment, 

and H is the height of the supporting building. 
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The importance factor of the element (ϒa) is one of two values and assigned based on the criteria 

in Table 3.3. The behavior factor of the element (qa) is assigned based on the criteria in Table 3.4 

Table 3.3 Non-structural element importance factors for Eurocode 8 (CEN, 2004) 

 Type of Non-structural Element Importance Factor, ϒa 

 Anchorage elements of machinery and equipment required for 
life safety systems. 

 Tanks and vessels containing toxic or explosive substances 
considered to be hazardous to the safety of the general public 

≥1.5 

 All others. 1.0 

Table 3.4 Non-structural element behavior factors for Eurocode 8 (CEN, 2004) 

Type of Non-structural Element Behavior Factor, qa 

 Cantilevering parapets or ornamentations 

 Signs and billboards 

 Chimneys, masts and tanks on legs acting as unbraced cantilevers 

along more than one half of their total height 

1.0 

 Exterior and interior walls 

 Partitions and facades 

 Chimneys, masts and tanks on legs acting as unbraced cantilevers 

along less than one half of their total height, or braced or guyed to 

the structure at or above their center of mass 

 Anchorage elements for permanent cabinets and book stacks 

supported by the floor 

 Anchorage elements for false (suspended) ceilings and light fixtures 

2.0 

3.3.3 New Zealand (NZS 1170.5) 

In New Zealand, the seismic design provisions for non-structural elements/parts are set forth in 

NZS 1170.5 (NZS, 2004). The horizontal seismic force on a NSE is given by: 
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 𝐹𝑝ℎ = 𝐶𝑝(𝑇𝑝)𝐶𝑝ℎ𝑅𝑝𝑊𝑝 ≤ 3.6𝑊𝑝 (3.23) 

where Cp(Tp) is the horizontal design coefficient for the part, Cph is the horizontal response factor 

for the part, Rp is the risk factor for the part, and Wp is the weight of the part. 

For parts that are sensitive to vertical acceleration, the vertical seismic force on a NSE is given by: 

 𝐹𝑝𝑣 = 𝐶𝑝𝑣𝐶𝑣𝑑𝑅𝑝𝑊𝑝 ≤ 2.5𝑊𝑝 (3.24) 

where Cpv is the vertical response factor for the part, and Cvd is the elastic site vertical design 

response spectrum value at the supporting structure’s period adjusted by a structural performance 

factor. 

The horizontal design coefficient (Cp(Tp)) is determined by: 

 𝐶𝑝(𝑇𝑝) = 𝐶(0)𝐶𝐻𝑖𝐶𝑖(𝑇𝑝) (3.25) 

where C(0) is the elastic site design response spectrum value for T = 0, CHi is the floor height 

coefficient for the level i supporting the part given by Equation (3.26), Tp is the period of the part, 

and Ci(Tp) is the spectral shape factor for the part at level i given by Equation (3.27). 

 

𝐶𝐻𝑖 =

{
 
 

 
 1 +

ℎ𝑖
6
,          𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ𝑖 < 12 𝑚

1 + 10
ℎ𝑖
ℎ𝑛
,     𝑓𝑜𝑟       ℎ𝑖 < 0.2ℎ𝑛 

3.0,                 𝑓𝑜𝑟        ℎ𝑖 < 0.2ℎ𝑛

 (3.26) 

where hi is the period of the part, 

 
𝐶𝑖(𝑇𝑝) = {

2.0,                   𝑓𝑜𝑟     𝑇𝑝 < 0.75 𝑠𝑒𝑐

2(1.75 − 𝑇𝑝), 𝑓𝑜𝑟 0.75 < 𝑇𝑝 < 1.5 𝑠𝑒𝑐 

0.5,                    𝑓𝑜𝑟      𝑇𝑝 ≥ 1.50 𝑠𝑒𝑐

 (3.27) 

The horizontal (Cph) and vertical (Cpv) response factors are determined based on the ductility 

expected in the part (Table 3.5). The risk factor for the part is determined based on  

Table 3.6.  
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Table 3.5 Non-structural element/part response factors for NZS 1170.5 (NZS, 2004) 

Ductility of the Part, μp 
Horizontal (Cph) and Vertical (Cpv) Response 

Factors 

1.00 1.00 

1.25 0.85 

2.00 0.55 

3.00 or greater 0.45 

 

Table 3.6 Non-structural element/part risk factors for NZS 1170.5 (NZS, 2004) 

Category Criteria Part Risk Factor, Rp 

P.1 Part representing a hazard to life outside the structure 1 1.0 

P.2 
Part representing a hazard to a crowd of greater than 100 

people within the structure 1 
1.0 

P.3 
Part representing a hazard to individual life within the 

structure 1 
0.9 

P.4 
Part necessary for the continuing function of the evacuation 

and life safety systems within the structure 
1.0 

P.5 Part required for operational continuity of the structure 2 1.0 

P.6 
Part for which the consequential damage caused by its failure 

are disproportionately great 
2.0 

P.7 All other parts 1.0 

Notes:  

1. To be considered in this category, the part must weigh more than 10 kg, and be able to fall more 

than 3 meters onto a publicly accessible area. 

2. Only parts essential to the operational continuity of structures with importance level 4 (refer to 

NZS, 2004) will be classified as P.5. Non-essential parts and parts within structures of other 

importance levels will be otherwise classified. 
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3.3.4 Summary 

All three code provisions have distinct procedures for establishing acceleration demands on NSEs. 

ASCE 7-10 takes into account the variability in acceleration demands in NSEs depending on their 

location within the supporting building. However, it does not account for the NSE’s natural period 

and how it relates to the structure’s natural periods (i.e. resonance condition) with the exception 

of broadly defining elements as either rigid or flexible. 

In comparison, Eurocode 8 takes into account the fundamental natural period of NSEs with respect 

to the fundamental period of the supporting building. NZS 1170.5 also accounts for the natural 

period of the NSE but does not establish a relationship between the natural period of the NSE and 

the supporting building. Similar to ASCE 7-10, both NZS 1170.5 and Eurocode 8 consider the 

variability in acceleration demands in NSEs depending on their location within the supporting 

building. 

The weaknesses in current code provisions have been thoroughly discussed in past research efforts 

(Uma et al., 2010; Sullivan et al., 2013; Pinkawa et al., 2014; Welch, 2016; among others). Welch 

(2016) listed some of the important concerns regarding the code provisions, which include: 

 Overestimating peak floor acceleration demands while underestimating the dynamic 

amplification of flexible NSEs. 

 Neglecting the modal properties of the supporting building. 

 Not accounting for differences in damping of the NSE and the supporting building. 

 Not accounting for non-linear demands in the supporting building. 
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4 DISPLACEMENT-BASED DESIGN AND DYNAMIC TIME 

HISTORY ANALYSIS OF CASE STUDY BUILDINGS 

This chapter details the design and time history analysis (THA) of the six case study buildings 

considered in this study. The structures were designed through a displacement-based design 

procedure with seismic loads from ASCE 7-10 (ASCE, 2010). Both linear and non-linear time 

history analyses were conducted using a lumped-plasticity modelling approach in 

RUAUMOKO2D (Carr, 2004).  

4.1 Case-study Buildings 

The structures considered for this study were 4, 8 and 12 story buildings. A general layout of the 

buildings is presented in Figure 4.1. The lateral load resisting systems consisted of either RC or 

rocking structural walls, while the gravity load resisting system consisted of columns. The columns 

were assumed to provide negligible lateral load resistance. In addition, the lateral and gravity load 

resisting systems were assumed to be uncoupled. Hence, the only gravity load the structural walls 

carry is self-weight. 

Figure 4.1 General layout of case study buildings (4, 8 and 12 stories from left to right) 

The buildings were assumed to have no torsional irregularity with diaphragms that are fully rigid 

in plane and fully flexible out of plane. Hence, the walls in each building were designed and 

N 
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analyzed separately. The walls considered in this study are the walls in the East-West direction 

depicted in Figure 4.1. The characteristics and material properties of these walls are presented in 

Table 4.1 and Table 4.2, respectively. 

The concrete for all structural members was assumed to be normal-weight concrete with a unit 

weight of 23.5kN/m3. The seismic mass for each floor was calculated assuming the following 

building characteristics: 

 0.200 m thick concrete slab, 

 0.310 m x 0.310 m concrete columns, 

 6 m x 0.310 m concrete walls in the North-South direction, 

 0.310 m thick case study concrete walls in the East-West direction, and  

 a superimposed dead load of 1.5kN/m2. 

Table 4.1 Characteristics of case study structural walls 

  4 Story 8 Story 12 Story 

Wall Length (m) 3.0 5.0 6.5 

Wall Thickness (m) 0.310 0.310 0.310 

Wall Aspect Ratio (-) 4.0 4.8 5.5 

Inter-story Height (m) 3.0 3.0 3.0 

Total Gravity Load (kN) 263 877 1709 

Typical Floor Seismic Mass Per Wall 
(tons) 109 210 214 

Roof Seismic Mass Per Wall (tons) 100 195 197 
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Table 4.2 Material properties of case study structural walls 

Material Specification Property 
RC 

Walls 

Rocking 

Walls 

Concrete - 

Compressive Strength, 
 f’c (MPa) 35 35 

Modulus of Elasticity,  
Ec (GPa) 29.6 29.6 

Longitudinal 

Reinforcement 

Steel 

ASTM A706M Grade 420 
(ASTM International, 2016a) 

Yield Stress, fy (MPa) 420 420 

Ultimate Stress, fu (MPa) 550 550 

Modulus of Elasticity,  
Es (GPa) 200 200 

Mild Steel 
ASTM A615M Grade 280 

(ASTM International, 2016b) 

Yield Stress, fmy (MPa) - 280 

Ultimate Stress, fmu (MPa) - 420 

Modulus of Elasticity,  
Es (GPa) - 200 

Post-tensioning 

Steel 

ASTM A416M Grade 1860 
(ASTM International, 2016c) 

Yield Stress, fpty (MPa) - 1670 

Ultimate Stress, fptu (MPa) - 1860 

Modulus of Elasticity,  
Ept (GPa) - 195 

4.2 Design Loads 

The seismic loads were calculated assuming the structures are located in San Francisco, CA with 

a site soil property of rock, which corresponds to Site Class B property in ASCE 7-10 (ASCE, 

2010). A design response spectrum (Figure 4.2) was constructed based on the location and site 

conditions according to ASCE 7-10 (ASCE, 2010).  
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Figure 4.2 ASCE 7-10 design response spectrum 

4.3 Direct Displacement-Based Design 

Both the RC and rocking wall buildings were designed using a direct displacement based design 

(DDBD) approach. This approach was adopted because the more traditional force-based design 

(FBD) approach has been shown to have significant downsides for the design of precast and 

prestressed concrete buildings (Priestley, 1998; Conley et al., 2002). In FBD, design loads are 

obtained using elastic structural properties, which are then reduced using reduction factors that are 

dependent on the ductility of the system, assuming monolithic concrete behavior (Conley et al., 

2002). However, energy dissipation characteristics and the concept of yielding (and therefore 

ductility) in precast systems are fundamentally different from monolithic concrete systems, which 

makes FBD procedures unable to capture the true behavior of precast systems (Priestley, 1996; 

Conley et al., 2002; Priestley, 2002). In addition, Rahman and Sritharan (2006) showed that even 

if both FBD and DDBD approaches satisfied performance limits, a DDBD procedure could result 

in a lower design base shear, and thus a more economical design, for rocking wall systems in low-

rise buildings (Pennucci et al., 2009). 

In DDBD, structures are designed for a target displacement selected as a function of a desired 

performance level. The structures are idealized as single-degree-of-freedom systems (SDOF) that 

achieve peak displacement at a given performance level. Since the SDOF systems are designed at 

peak displacement, effective system properties are used instead of elastic properties. Thus, the 

system is characterized by effective properties, namely a secant stiffness and an equivalent viscous 

damping. The equivalent damping accounts for elastic damping as well as the added hysteretic 
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damping resulting from inelastic deformation. A summary of the DDBD procedure adapted from 

Priestley et al. (2007) is provided in Sections 4.3.1 to 4.3.5. Figure 4.3 provides a visual summary 

of this procedure.  

 

Figure 4.3 Direct displacement design of structures (Priestley et al., 2007). 

4.3.1 Design Displacement 

The first step of the design process is to establish the design displacement profile of the structure. 

This is governed by either material or drift limit states. It is also dependent upon the structural 

system. Hence, the displacement profiles for both RC and rocking wall buildings are addressed 

separately in Sections 4.3.6 and 4.3.7. Once the design displacement profile is determined, the 

design displacement of the equivalent SDOF system can be obtained by the expression: 

 
∆𝑑=

∑ 𝑚𝑖∆𝑖
2𝑛

𝑖=1

∑ 𝑚𝑖∆𝑖
𝑛
𝑖=1

 
(4.1) 

where mi is the mass of each floor and Δi is the design displacement of each floor. 
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4.3.2 Effective Mass and Height 

The effective mass and height of the SDOF system are calculated by Equations (4.2) and (4.3):  

 
𝑚𝑒 =

∑ 𝑚𝑖∆𝑖
𝑛
𝑖=1

∆𝑑
 

 

(4.2) 

 

 
𝐻𝑒 =

∑ 𝑚𝑖∆𝑖𝐻𝑖
𝑛
𝑖=1

∑ 𝑚𝑖∆𝑖
𝑛
𝑖=1

 
 

(4.3) 

where Hi is the height of each floor. 

4.3.3 Equivalent Viscous Damping 

To estimate the system’s equivalent viscous damping, the system’s displacement ductility needs 

to be calculated first. This is done using Equation (4.4): 

 
𝜇 =

∆𝑑
∆𝑦

  

(4.4) 

where Δy  is the yield displacement of the equivalent SDOF system calculated from the structure’s 

yield displacement profile at the effective height, He. 

The design ductility is then used to calculate the hysteretic damping expected from the system. 

This is dependent upon the structural system used. Thus, damping for both RC and rocking wall 

buildings is discussed separately in Sections 4.3.6 and 4.3.7. Once the hysteretic damping is 

known, the equivalent viscous damping is calculated by the expression: 

 𝜉𝑒𝑞 = 𝜉𝑒𝑙 + 𝜉ℎ𝑦𝑠𝑡  

(4.5) 

where ξhyst is hysteretic damping and ξel is elastic damping, assumed to be 5% for both RC and 

rocking wall systems.  

4.3.4 Effective Period and Stiffness 

The effective period of the equivalent SDOF system is obtained from a design displacement 

response spectrum as a function of the design displacement. However, the design spectrum 
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(specified for a damping ratio of 5%) is first scaled, to account for added hysteretic damping, by 

the factor: 

 
𝑅𝜉 = √

0.07

0.02 + 𝜉𝑒𝑞
 

 

(4.6) 

The effective stiffness of the SDOF system is then calculated using the expression: 

 
𝑘𝑒 =

4𝜋2

𝑇𝑒
𝑚𝑒 

 

(4.7) 

where Te is the effective period. 

4.3.5 Design Base Shear 

The design base shear is calculated as: 

 𝑉𝑑 = 𝑘𝑒Δ𝑑  

(4.8) 

The base shear is then distributed along the height of the structure assuming a linear distribution: 

 
𝐹𝑖 = 𝑉𝑑

𝑚𝑖∆𝑖
∑ 𝑚𝑖∆𝑖
𝑛
𝑖=1

  

(4.9) 

where Fi is the equivalent static force acting at a given floor i. 

Note that the force distribution obtained with this step corresponds to first mode effects only. Thus, 

appropriate capacity design procedures must be used to account for higher modes.  

4.3.6 RC Wall Buildings 

As discussed above, the design displacement profile and the hysteretic damping are dependent 

upon the structural system. The design displacement profile for RC wall buildings is assumed to 

be the result of an elastic and a plastic component. The yield displacement (i.e. the elastic 

component) at any given floor i can be determined as (Priestley et al., 2007): 

 
∆𝑦𝑖= 

𝜀𝑦

𝑙𝑤
𝐻𝑖

2 (1 −
𝐻𝑖
3𝐻𝑛

) 

 

(4.10) 
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where εy is the yield strain of the longitudinal reinforcement, lw is the length of the wall, and Hn is 

the height of the wall. 

Once the yield displacement profile is determined, the design displacement profile is given by 

Equation (4.11), which is controlled by the 2% ASCE 7-10 (ASCE, 2010) drift limit (Priestley et 

al., 2007). 

 ∆𝑖= ∆𝑦𝑖 + (𝜃𝑐 −
𝜀𝑦

𝑙𝑤
 𝐻𝑛)𝐻𝑖 

 

(4.11) 

where θc is the code drift limit. 

The equivalent viscous damping for RC wall buildings is given by (Priestley et al., 2007): 

 
𝜉𝑒𝑞 = 0.05 + 0.444 (

𝜇 − 1

𝜇𝜋
) (4.12) 

Tables 4.3 and 4.4 present the design outcomes obtained using the DDBD design procedure and 

material properties outlined above. It should be noted that the effective periods of the case study 

buildings (characterized by an effective stiffness) are somewhat high. This is because the buildings 

were designed for the ASCE 7-10 design-level earthquake (ASCE, 2010), which is a relatively 

weak event in relation to the 2% drift limit (ASCE, 2010) adopted for the displacement-based 

design.  

Table 4.3 RC wall buildings DDBD outcomes 

 me (ton) He (m) Δy (m) Δd (m) μ ξeq (%) Te (sec) Vb (kN) 

4 Story 338 9.11 0.043 0.151 3.5 15.1 2.38 356 

8 Story 1234 17.43 0.095 0.275 2.9 14.2 4.22 754 

12 Story 1827 25.85 0.162 0.390 2.4 13.3 5.79 838 
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Table 4.4 Design displacements, and first mode force, shear and moment distributions for the RC 

wall buildings 

 

To account for higher mode effects, a simplified capacity design procedure is recommended by 

Priestley et al. (2007). The capacity-design moment distribution is defined by a bilinear envelope 

as a function of the moment at the base, mid-height and top of the structure (zero). The base 

moment is given by Equation (4.13) while the mid-height moment is given by Equation (4.14). 

 𝑀𝐵
𝑜 = 𝜙𝑜𝑀𝐵 (4.13) 

  

 𝑀0.5𝐻𝑛
𝑜 = 𝐶1,𝑇𝑀𝐵

𝑜 (4.14) 

 

where 
𝐶1,𝑇 = 0.41 + 0.075𝑇𝑖 (

𝜇

𝜙𝑜
− 1) ≥ 0.4 (4.15) 

MB is the base moment calculated from first mode force distribution; Ti is the elastic period of the 

structure estimated using Equation (4.16); and ɸo is an overstrength factor, which is 1.0 when 

strain-hardening is considered in determining base flexural reinforcement (Priestley et al., 2007).  

Hi 

(m) 

4 story 8 Story 12 Story 

Δi 

(m) 

Fi 

(kN) 

Vi 

(kN) 

Mi  

(kN-m) 

Δi  

(m) 

Fi 

(kN) 

Vi 

(kN) 

Mi  

(kN-m) 

Δi 

(m) 

Fi 

(kN) 

Vi 

(kN) 

Mi  

(kN-m) 

0 0.000 0 356 3243 0.000 0 754 13149 0.000 0 838 21662 

3 0.041 31 356 2175 0.034 16 754 10886 0.028 7 838 19148 

6 0.091 69 325 1200 0.074 35 739 8671 0.062 16 831 16656 

9 0.147 112 256 432 0.120 56 704 6559 0.101 25 815 14210 

12 0.207 144 144 0 0.170 80 648 4614 0.143 36 790 11840 

15     0.225 105 569 2909 0.190 48 754 9579 

18     0.282 131 464 1517 0.240 60 706 7461 

21     0.341 159 332 520 0.292 74 646 5523 

24     0.401 173 173 0 0.348 87 572 3807 

27         0.405 102 485 2353 

30         0.463 117 383 1204 

33         0.523 131 266 405 

36         0.582 135 135 0 
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𝑇𝑖 = 𝑇𝑒√

1 + 𝑟(𝜇 − 1)

𝜇
 

 

(4.16) 

The factor, r, is the ratio of post-yield stiffness to elastic stiffness (approximated as 0.05 for this 

study).

The capacity-design shear distribution is defined by a linear envelope consisting of a shear force 

at the base and at the top of the structure, Equations (4.17) and (4.20), respectively.   

 𝑉𝐵
𝑜 = 𝜙𝑜𝜔𝑣𝑉𝐵 (4.17) 

 

where 𝜔𝑣 = 1 +
𝜇

𝜙𝑜
𝐶2,𝑇 (4.18) 

 

 𝐶2,𝑇 = 0.067 + 0.4(𝑇𝑖 − 0.5)  ≤ 1.15 (4.19) 

 

 𝑉𝑛
𝑜 = 𝐶3𝑉𝐵

𝑜 (4.20) 

 

where  𝐶3 = 0.9 − 0.3𝑇𝑖  ≥ 0.3 (4.21) 

For shear design, the overstrength factor, ɸo, should account for material overstrength, strain-

hardening, and excess flexural reinforcement. For simplicity, a value of 1.25, as recommended by 

Priestley et al. (2007), was adopted. 

After completing the capacity-design procedures outlined above, the following design outcomes 

were obtained. 

Table 4.5 RC wall buildings capacity design shear and moment distributions  

Hi 
4 Story 8 Story 12 Story 

Vi (kN) Mi (kN-m) Vi (kN) Mi (kN-m) Vi (kN) Mi (kN-m) 

0 955 3243 2915 13149 3898 21662 

Hn/2 714 2127 1894 10091 2534 17512 

Hn 474 0 874 0 1170 0 
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Figure 4.4 RC wall buildings DDBD shear force distribution: (a) 4-Story; (b) 8-Story; (c) 12-Story 
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Figure 4.5 RC wall buildings DDBD moment distribution: (a) 4-Story; (b) 8-Story; (c) 12-Story 

4.3.7 Rocking Wall Buildings 

The displacement-based design of the rocking wall buildings was conducted following the 

procedure proposed by Pennucci et al. (2009), assuming traditional detailing of the walls as 

outlined by Rahman and Restepo (2000). The detailing includes longitudinal reinforcement along 

the height as well as confinement in the toe and heel of the wall (Figure 4.6). 
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Figure 4.6 Rahman and Restepo (2000) rocking wall detailing (left) and conventional RC wall 

detailing (right) (adapted from Pennucci et al. (2009)) 

The displacement profile is assumed to be the result of an elastic and a plastic component. The 

yield displacement (i.e. the elastic component) at any given floor i can be determined as: 

 
∆𝑦𝑖= 0.5𝜙𝑏 [𝐻𝑖

2 −
𝐻𝑖
3

2𝐻𝑛
+

𝐻𝑖
5

20𝐻𝑛
3] + 𝜃𝑦_𝑏𝑎𝑠𝑒𝐻𝑖 

(4.22) 

where Hi is the height of each floor, Hn is the height of the wall, ɸb is the curvature at the base of 

the wall, and Ɵy_base is the yield rotation of the wall/foundation connection. The wall base curvature 

is given by: 

 
𝜙𝑏 =

𝜙𝑦

𝛾
 

(4.23) 

where ɸy is the yield curvature of the wall and ϒ is a curvature index which is typically a value 

greater than 1 to allow cracking while avoiding yielding in the wall. However, a value of 2 or 3 is 

suggested by Pennucci et al. (2009) to comply with serviceability performance criteria even if 

cracking takes place. For this study, a value of 3 was adopted. The yield curvature is given by: 

 𝜙𝑦 = 2
𝜀𝑦

𝑙𝑤
 (4.24) 

where ɛy is the yield strain of the wall longitudinal reinforcement and lw is the length of the wall. 
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The yield rotation of the wall/foundation connection is given by: 

  
𝜃𝑦_𝑏𝑎𝑠𝑒 =

𝜀𝑚𝑦(𝑙𝑢𝑏_𝑚𝑠 + 2Δ𝑠𝑝)

𝑙𝑤(1 − 𝑣) − 𝑑𝐴𝑆
 

(4.25) 

where ɛmy is the yield strain of mild steel, lub_ms is the mild steel unbonded length, dAS is the distance 

from the tension face of the wall to the centroid of mild steel (Figure 4.7), v is the normalized depth 

of compression area at yielding and Δsp is the strain penetration which is given by: 

 Δ𝑠𝑝 = 0.022f𝑚𝑦d𝑚𝑏 (4.26) 

where fmy is the mild steel yield stress and dmb is the mild steel bar diameter. 

 

Figure 4.7 Rocking wall/foundation connection design parameters (Pennucci et al., 2009)  

At the beginning of the design process, the normalized depth of compression area, which is 

unknown at this time, was taken as 0.2 while the distance to the centroid of the mild steel 

reinforcement was taken as 0.35lw as recommended by Pennucci et al. (2009). These values were 

then recalculated and updated once the reinforcement design was completed. 

Once the yield displacement profile is calculated, the design displacement at a given floor i is 

obtained as: 

 Δ𝑖 = Δ𝑦𝑖 + (θ𝑐 − θ𝑦_𝑛)H𝑖 (4.27) 

where θc is the code drift limit and θy_n is the total roof drift at yielding given by: 

 θ𝑦_𝑛 = θ𝑤𝑎𝑙𝑙 + θ𝑦_𝑏𝑎𝑠𝑒 (4.28) 

where θwall is the wall deformation at yielding given by: 
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 θ𝑤𝑎𝑙𝑙 =
3
8⁄ 𝜙𝑏𝐻𝑛 (4.29) 

The equivalent viscous damping for rocking walls is dependent upon the factor λ, the ratio of 

between post-tensioning and mild steel bending resistance. In order to prevent residual 

displacements, λ. has to be greater than 1.0 (Figure 4.8). Thus, a value of 1.25 was adopted as 

suggested by Pennucci et al. (2009).  This value ensures re-centering and the maximum amount of 

energy dissipation considering material over-strengths.  

 

Figure 4.8 Flag-shaped hysteresis with increasing λ factors (Pennucci et al., 2009) 

To estimate the equivalent viscous damping for the rocking wall buildings, a damping-ductility 

design curve produced by Pennucci et al. (2009) was adopted. The design curve, developed for λ 

= 1.25 and r = 0, is approximated by the following expression: 

 
𝜉𝑒𝑞 = 0.05 + 0.524 (

𝜇 − 1

𝜇𝜋
) (4.30) 

Tables 4.6 and 4.7 present the design outcomes obtained using the DDBD design procedure and 

material properties outlined above. Similar to the RC wall buildings, it should be noted that the 

effective periods of the case study rocking wall buildings (characterized by an effective stiffness) 

are somewhat high. Again, this is because the buildings were designed for the ASCE 7-10 design-

level earthquake (ASCE, 2010), which is a relatively weak event in relation to the 2% drift limit 

(ASCE, 2010) adopted for the displacement-based design.  
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Table 4.6 Rocking wall buildings DDBD outcomes 

 me (ton) He (m) Δy (m) Δd (m) μ ξeq (%) Te (sec) Vb (kN) 

4 Story 352 8.94 0.020 0.173 8.5 19.7 3.06 256 

8 Story 1305 17.00 0.039 0.325 8.3 19.7 5.75 506 

12 Story 1959 25.05 0.063 0.475 7.6 19.5 8.38 524 

Table 4.7 Design displacements, and first mode force, shear and moment distributions for the 

rocking wall buildings 

Hi (m) 

4 story 8 Story 12 Story 

Δi  

(m) 

Fi  

(kN) 

Vi  

(kN) 

Mi  

(kN-m) 

Δi  

(m) 

Fi  

(kN) 

Vi  

(kN) 

Mi  

(kN-m) 

Δi  

(m) 

Fi  

(kN) 

Vi  

(kN) 

Mi  

(kN-m) 

0 0.000 0 256 2292 0.000 0 506 8600 0.000 0 524 13122 

3 0.056 26 256 1523 0.054 13 506 7082 0.052 6 524 11550 

6 0.114 52 231 831 0.109 27 493 5604 0.106 13 517 9998 

9 0.173 80 178 296 0.167 42 465 4209 0.162 19 505 8484 

12 0.233 99 99 0 0.225 56 423 2939 0.218 26 485 7029 

15     0.284 71 367 1839 0.276 33 459 5652 

18     0.344 86 296 952 0.334 40 426 4375 

21     0.404 101 209 324 0.393 47 385 3219 

24     0.464 108 108 0 0.453 55 338 2205 

27         0.513 62 284 1354 

30         0.573 69 222 689 

33         0.633 76 153 230 

36         0.692 77 77 0 
 

There is currently no simplified design procedure to account for higher mode effects in rocking 

wall buildings. However, as Wiebe (2008) pointed out, higher mode effects in rocking walls are 

likely to play a role that is analogous to that observed for RC walls. Therefore, the procedure 

discussed in Section 4.3.6 was applied to the rocking wall buildings to investigate its applicability. 

The following capacity design outcomes were obtained from the procedure. 
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Table 4.8 Rocking wall buildings capacity design shear and moment distributions (obtained using 

procedure for RC wall buildings) 

Hi 
4 Story 8 Story 12 Story 

Vi (kN) Mi (kN-m) Vi (kN) Mi (kN-m) Vi (kN) Mi (kN-m) 

0 1104 2292 3982 8600 5703 13122 

Hn/2 846 2508 2588 14377 3707 28001 

Hn 587 0 1195 0 1711 0 
 

 

Figure 4.9 Rocking wall buildings DDBD shear distribution: (a) 4-Story; (b) 8-Story; (c) 12-Story 
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Figure 4.10 Rocking wall buildings DDBD moment distribution: (a) 4-Story; (b) 8-Story; (c) 12-

Story 

4.4 Reinforcement Design 

The loads obtained in Section 4.3 were used to design the wall/foundation connections for both 

the RC and rocking walls. For simplicity, only flexural reinforcement was determined. It is 

assumed that the walls will have sufficient shear reinforcement and confinement to achieve the 

required flexural strengths. The flexural design for all case study walls is detailed in Sections 4.4.1 

and 4.4.2. 
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4.4.1 RC Walls 

For the RC walls, sectional analysis was conducted using the program CUMBIA (Montejo and 

Kowalsky, 2007) to determine the required flexural reinforcement and moment-curvature 

relationship. Traverse reinforcement was assumed to be ASTM A706M Grade 420 No. 5 bars 

spaced at 95mm (ASTM International, 2016a). Based on the material properties and loads outlined 

in the previous sections, the following design outcomes were obtained. 

Table 4.9 RC walls reinforcement ratio and bilinear moment-curvature approximation 

  4 Story 8 Story 12 Story 

Longitudinal Reinforcement Ratio, ρ (%) 0.004 0.006 0.005 

First Yield Capacity 
My (kN-m) 1867 8267 14661 

ɸy (1/m) 0.00095 0.00058 0.00045 

Nominal/Yield Capacity 
MN (kN-m) 2948 12072 20786 

ɸN (1/m) 0.00150 0.00085 0.00064 

Ultimate Capacity 
Mu (kN-m) 3464 14010 23828 

ɸu (1/m) 0.01938 0.01149 0.00891 

Elastic Stiffness, k (kN-m2) 1.96E+06 1.43E+07 3.26E+07 

Post Yield Stiffness Ratio, r (-) 0.015 0.013 0.011 
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Figure 4.11 RC walls moment-curvature relationships: (a) 4-Story; (b) 8-Story; (c) 12-Story 

4.4.2 Rocking Walls 
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middle of the wall. Using this procedure, an idealized bilinear moment-rotation relationship was 

obtained. A brief summary of the procedure is presented below. 

The first point (yield) of the bilinear moment-rotation relationship is the yielding of the mild steel 

energy dissipaters, at which point the wall/foundation separation gap has propagated through 75% 
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𝑀𝑦 = (𝑁 + 𝑓𝑝𝑡𝑖𝐴𝑝𝑡 + 𝑓𝑚𝑦𝐴𝑚) (

𝑙𝑤
2
−
𝑐𝑦

3
) 

(4.31) 

where N is the gravity load on the wall, fpti is the initial stress in the post-tensioning tendons after 

losses, Apt is the total area of post-tensioning strands, Am is the total area of mild steel, and cy is the 

distance from extreme compression fiber to the neutral axis at yield given by the expression: 

 𝑐𝑦 ≈ 0.25𝑙𝑤 (4.32) 

To determine an appropriate initial post-tensioning force, the following inequality must be satisfied 

to ensure the tendons remain elastic at ultimate capacity. 

 
𝑓𝑝𝑡𝑖 ≤ 𝑓𝑝𝑡𝑙𝑝 − 𝐸𝑝𝑡

𝜃𝑐(𝑑𝑝𝑡 − 𝑐𝑢)

𝑙𝑢𝑏_𝑝𝑡
 

(4.33) 

where fptlp is the nominal limit of proportionality stress of the post-tensioning tendons 

approximated as 0.84fptu as suggested by Restrepo and Rahman (2007). dpt is the location of post-

tensioning tendon furthest away from the extreme compression fiber, lub_pt is the total unbonded 

length of post-tensioning tendons taken as 1.10 times the height of the wall, and cu is the distance 

from extreme compression fiber to the neutral axis at ultimate capacity given by the expression: 

 
𝑐𝑢 ≈

𝑁 + 0.9𝑓𝑝𝑡𝑙𝑝𝐴𝑝𝑡 + 𝑓𝑚𝑢𝐴𝑚 + 1.4𝑓𝑐
′𝑏𝑒𝑐𝑐

1.4𝑓𝑐′𝑏𝑒
 

(4.34) 

where be is the width of the wall without concrete cover. 

To determine an appropriate amount of mild steel reinforcement, the following inequality must be 

satisfied to ensure the tendons remain elastic up to ultimate capacity. 

  2

5

𝑁 + 𝑓𝑝𝑡𝑖𝐴𝑝𝑡

𝑓𝑚𝑦
< 𝐴𝑚 ≤ 

2

3

𝑁 + 𝑓𝑝𝑡𝑖𝐴𝑝𝑡

𝑓𝑚𝑦
 

(4.35) 

The yield rotation of the wall/foundation connection is given by the expression: 

 
𝜃𝑦_𝑏𝑎𝑠𝑒 =

𝜀𝑚𝑦𝑙𝑢𝑏_𝑚𝑠
𝑙𝑤
2 − 𝑐𝑦

 
(4.36) 

where Ig is moment of inertia of the gross wall cross-section and Ag is the gross cross-sectional 

area. In order for Equation (4.36) to be valid, the total axial load (post-tensioning plus gravity load) 

has to be less than 0.2Agf’c. When the total axial load is higher than 0.2Agf’c, the high compression 
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at the base of the wall results in a non-linear behavior of the confined concrete and mortar bed at 

the wall ends. This leads to a reduction of stiffness, which is not accounted for in Equation (4.36). 

To determine the mild steel unbonded length, Restrepo and Rahman (2007) suggest the following 

range to ensure the strain in the mild steel does not exceed 2/3 of the strain at the tensile strength 

at ultimate capacity. 

 
 
9

4

𝜃𝑐
𝜀𝑚𝑢

(𝑑𝑚 − 𝑐𝑢) ≤ 𝑙𝑢𝑏_𝑚𝑠 ≤ 
3

2

𝜃𝑐
𝜀𝑚𝑢

(𝑑𝑚 − 𝑐𝑢) 
(4.37) 

where ɛmu is the ultimate strain of the mild steel energy dissipaters taken as 0.10, and dm is the 

location of mild steel furthest away from the extreme compression fiber. 

The second point (ultimate) of the bilinear moment-rotation relationship is defined as the point 

when the post-tensioning tendons reach a limit of proportionality. The moment at this point is 

given by the expression:  

 
𝑀𝑢 = (𝑁 + 𝑓𝑝𝑡𝑙𝑝𝐴𝑝𝑡 + 𝑓𝑚𝑢𝐴𝑚) (

𝑙𝑤
2
−
𝑎

2
− 𝑐𝑐) 

(4.38) 

where cc is the concrete cover taken as 80mm, and a is the depth of equivalent rectangular concrete 

stress block approximated by the expression: 

 𝑎 ≈ 𝑐𝑢 − 𝑐𝑐 (4.39) 

The ultimate rotation of the wall/foundation connection is given by the expression: 

 
𝜃𝑢_𝑏𝑎𝑠𝑒 =

𝑓𝑝𝑡𝑙𝑝 − 𝑓𝑝𝑡𝑖

𝐸𝑝𝑡

𝑙𝑢𝑏_𝑝𝑡
𝑙𝑤
2

 
(4.40) 

Based on the design procedure outlined above, the following design outcomes were obtained.  
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Table 4.10  Rocking walls reinforcement design outcomes 

  4 Story 8 Story 12 Story 

Mild Steel 
Reinforcement Ratio, ρm (-) 0.0017 0.0029 0.0023 

Unbonded Length, lub_ms (m) 0.400 0.600 0.750 

Post-

tensioning 

Tendons 

Reinforcement Ratio, ρpt (-) 0.0007 0.0006 0.0005 

Initial Post-tensioning 

Stress/Ultimate Stress, fpti/fptu (-) 
0.67 0.71 0.72 

Unbonded Length, lub_pt (m) 13.2 26.4 39.6 

Total Axial Load/Agf'c (-) 0.03 0.04 0.04 
 

Table 4.11 Rocking walls bilinear moment-rotation relationship 

  4 Story 8 Story 12 Story 

Yield Capacity 
My (kN-m) 1965 7174 11656 

Ɵy_base (rad) 0.00075 0.00067 0.00065 

Ultimate Capacity 
Mu (kN-m) 2599 9244 14600 

Ɵu_base (rad) 0.01830 0.01821 0.01807 

Elastic Stiffness, k (kN-m/rad) 2.63E+06 1.07E+07 1.80E+07 

Post Yield Stiffness Ratio, r (-) 0.014 0.011 0.009 
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Figure 4.12 Rocking walls moment-rotation relationships: (a) 4-Story; (b) 8-Story; (c) 12-Story 

4.5 Dynamic Time History Analysis Procedure 

A two-dimensional time history analysis of the case study buildings was conducted using the 

program RUAUMOKO2D (Carr, 2004). In both the RC and rocking wall buildings, it was assumed 

that nonlinear behavior would occur only at the base of the systems. Thus, a lumped plasticity 

modelling approach was adopted. It is important to note that this approach has been previously 

used by others to model both types of structural wall systems (Amaris, 2002; Palermo et al., 2005; 

Wiebe, 2008; Twigden et al., 2013; Welch, 2016). The following sections detail the modelling 

process and ground motions used in the analysis. 
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4.5.1 Ground Motions 

A suite of spectrum compatible ground motions were selected for the time history analysis from 

the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 ground motion database 

(http://peer.berkeley.edu/ngawest2/). The ground motions were selected according to ASCE 7-10 

(ASCE, 2010) two dimensional analysis guidelines. Therefore, the selected acceleration records 

were from events with magnitude, fault distance, and source mechanism consistent with the 

maximum considered earthquake (MCE) (ASCE, 2010).   

In order to select seismic events with properties similar to the MCE, a deaggregation of seismic 

hazard was obtained for the site location and ground conditions from the United States Geological 

Survey (USGS) Earthquake Hazards Program online tool (https://earthquake.usgs.gov/ 

hazards/interactive/). The following properties were obtained from the online tool and used to 

select the acceleration records: magnitude of 5-9, closest distance of 5-50km and mechanism of 

strike slip or reverse. However, the range of closest distance resulted in only a few records, so the 

upper limit of 50km was removed during the record selection process. The selected ground motions 

are listed in Table 4.12. 

In addition to selecting the ground motions, the PEER website was also used to scale the 

acceleration records to match the ASCE 7-10 (ASCE, 2010) design response spectrum (refer to 

Section 4.2). Each acceleration record consisted of three components: two horizontal (H1 and H2) 

and one vertical (V). Since the THA is a two-dimensional analysis, only the first horizontal 

component (H1) was scaled. The scale factors were computed to minimize the Mean Squared Error 

of each record and the arithmetic mean of all records with respect to the design response spectrum 

(Figure 4.13). It can be noted that there is a somewhat high variability in the selected ground 

motions, which may not be suitable for design purposes. However, this was considered acceptable 

for the purpose of this study.  

http://peer.berkeley.edu/ngawest2/
https://earthquake.usgs.gov/hazards/interactive/
https://earthquake.usgs.gov/hazards/interactive/
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Figure 4.13 Acceleration response spectra of spectrum compatible earthquake records and ASCE 

7-10 design response spectrum 
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Table 4.12 Characteristics of spectrum compatible earthquake records  

Earthquake Name Station Name Year Magnitude Mechanism 
Joyner-Boore 

Distance (km) 

Scale 

Factor 

Imperial Valley-02 El Centro Array #9 1940 6.95 strike slip 6.09 1.515 

Northwest Calif-02 Ferndale City Hall 1941 6.6 strike slip 91.15 10.378 

Borrego El Centro Array #9 1942 6.5 strike slip 56.88 5.348 

Kern County LA - Hollywood Stor FF 1952 7.36 Reverse 114.62 4.922 

Kern County Pasadena - CIT Athenaeum 1952 7.36 Reverse 122.65 7.860 

Kern County Santa Barbara Courthouse 1952 7.36 Reverse 81.3 4.481 

Kern County Taft Lincoln School 1952 7.36 Reverse 38.42 2.484 

Northern Calif-02 Ferndale City Hall 1952 5.2 strike slip 42.69 9.104 

Southern Calif San Luis Obispo 1952 6 strike slip 73.35 11.474 

Northern Calif-03 Ferndale City Hall 1954 6.5 strike slip 26.72 1.697 

Imperial Valley-05 El Centro Array #9 1955 5.4 strike slip 13.78 12.999 

El Alamo El Centro Array #9 1956 6.8 strike slip 121 10.123 

Northern Calif-04 Ferndale City Hall 1960 5.7 strike slip 56.94 10.873 

Hollister-01 Hollister City Hall 1961 5.6 strike slip 19.55 5.380 

Parkfield Cholame - Shandon Array #12 1966 6.19 strike slip 17.64 6.296 

Parkfield Cholame - Shandon Array #5 1966 6.19 strike slip 9.58 1.725 

Parkfield Cholame - Shandon Array #8 1966 6.19 strike slip 12.9 3.039 

Parkfield Temblor pre-1969 1966 6.19 strike slip 15.96 2.636 

Northern Calif-06 Hollister City Hall 1967 5.2 strike slip 37.11 32.180 

Borrego Mtn El Centro Array #9 1968 6.63 strike slip 45.12 2.450 

Borrego Mtn LA - Hollywood Stor FF 1968 6.63 strike slip 222.42 20.164 

Borrego Mtn LB - Terminal Island 1968 6.63 strike slip 199.84 22.291 

Borrego Mtn Pasadena - CIT Athenaeum 1968 6.63 strike slip 207.14 32.157 

Borrego Mtn San Onofre - So Cal Edison 1968 6.63 strike slip 129.11 9.790 

Lytle Creek Colton - So Cal Edison 1970 5.33 
Reverse 

Oblique 
29.18 70.238 

San Fernando 2516 Via Tejon PV 1971 6.61 Reverse 55.2 8.745 

San Fernando Bakersfield - Harvey Aud 1971 6.61 Reverse 111.88 32.583 

San Fernando Borrego Springs Fire Sta 1971 6.61 Reverse 214.32 31.655 

San Fernando Buena Vista - Taft 1971 6.61 Reverse 111.37 28.237 

San Fernando Carbon Canyon Dam 1971 6.61 Reverse 61.79 7.072 

San Fernando Cedar Springs Pumphouse 1971 6.61 Reverse 92.25 23.370 

Friuli_ Italy-01 Barcis 1976 6.5 Reverse 49.13 21.782 
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4.5.2 Earthquake Intensity Levels 

Both linear and non-linear time history analyses were conducted at six different earthquake 

intensities (Table 4.13). Hence, each acceleration record from Table 4.12 was scaled with the 

appropriate scale factor to match the intensity. 

Table 4.13 Intensity levels for time history analysis 

Intensity Scale Factor Peak Ground Acceleration, PGA (g) 

1 0.50 0.225 

2 0.65 0.293 

3 0.75 0.338 

4 0.85 0.383 

5 1.00 0.450 

6 1.50 0.675 
 

Note that the case-study structures were designed for Intensity 5, which corresponds to the ASCE 

7-10 Design Basis Earthquake (DBE) (ASCE, 2010). In addition, Intensity 6 corresponds to the 

Maximum Considered Earthquake (MCE), which is 1.5 times the DBE according to ASCE 7-10 

(ASCE, 2010). 

4.5.3 Modelling Assumptions 

The following assumptions were made for the time history analysis. 

 The structural walls were assumed elastic except for the wall/foundation connection, which 

behaves non-linearly according to the appropriate hysteresis model. 

 The floor diaphragms were assumed fully rigid in plane and fully flexible out of plane so 

that each floor could be lumped at a single node. 

 The gravity columns and traverse structural walls were assumed to have negligible lateral 

load resistance and thus were not modelled. 

 The foundation was assumed fully fixed. 

 P-delta effects were assumed to be negligible. 
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4.5.4 Integration Time-step 

The integration time-step selected was 0.0005 sec, 1/10th of the smallest acceleration record time-

step, 0.005 sec (Welch, 2016). Time dependent results were also output at this time-step. 

4.5.5 Elastic Damping Model 

The elastic damping model adopted was based on the work by Smyrou et al. (2011) who conducted 

a thorough literature review on common damping models in non-linear analyses and proposed a 

suitable modelling procedure. 

The proposed modelling approach involves using a user-specified modal damping model with a 

constant 5% for all modes except the first. For the first mode, an artificially lower value is set 

according to Equation (4.41) to avoid excessive damping in the post-yield phase and counter-

balance the added damping introduced from using a constant damping ratio (Smyrou et al., 2011). 

 

𝜉∗ = 5%

(

 
1 − 0.1(𝜇 − 1)(1 − 𝑟)

√
𝜇

1 + 𝑟𝜇 − 𝑟 )

  

(4.41) 

where ξ* is the artificially lowered first mode damping ratio. 

As noted by Pennucci et al. (2009), theoretically, the artificially lowered first mode damping ratio 

should approach zero as ductility reaches infinity. However, the empirical Equation (4.41) reaches 

zero at a displacement ductility of 11. This is problematic since high displacement ductility is 

expected in the rocking walls (for instance μ=8.5 for the 4-story case study wall). As a possible 

solution, Pennucci et al. (2009) used a minimum damping ratio of 1%, which was also adopted in 

this study.  

With the adopted elastic modelling approach, the following damping ratios were used for the time 

history analysis. 
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Table 4.14 Elastic damping values for time history analyses 

 
RC Walls Rocking Walls 

4 Story 8 Story 12 Story 4 Story 8 Story 12 Story 

Damping 

Ratio 

(%) 

First Mode 1.99 1.96 1.95 1.00 1.00 1.00 

All Other Modes 5.00 5.00 5.00 5.00 5.00 5.00 

4.5.6 RC Wall Models 

The models for the RC walls consisted of a series of elastic Giberson beam elements (Figure 4.14) 

with non-linearity concentrated at a plastic hinge at the base of the wall (Figure 4.15). The beam 

elements were characterized by a cracked, linear elastic stiffness of the wall cross-section, and the 

plastic hinge was characterized by a Modified Takeda hysteresis (Carr, 2004). The moment-

curvature relationships from the reinforcement design (Section 4.4.1) were used as the backbone 

of the hysteresis. In addition, the following parameters were used to define the unloading and 

reloading behavior of the hysteresis (Amaris, 2002; Welch, 2016): 

 Unloading stiffness factor, α = 0.5 

 Reloading stiffness factor, β = 0 

 An Emori and Schnobrich unloading (KKK = 2) 

 

Figure 4.14 Giberson one-component beam model (Carr, 2004) 
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Figure 4.15 Diagram of RC wall models (left) and Modified Takeda hysteresis (Carr, 2004) (right). 

The plastic hinge lengths were calculated by the following expression as suggested by Priestley et 

al. (2007). 

 𝑙𝑝 = 𝑘𝐻𝑒 + 0.1𝑙𝑤 + 𝑙𝑠𝑝 (4.42) 

where lsp is the strain penetration length and k is a factor that takes into account the ratio between 

the longitudinal reinforcement ultimate and yield strengths, which is given by the expression: 

 
𝑘 = 0.2 (

𝑓𝑢
𝑓𝑦
− 1) ≤ 0.08 

(4.43) 

The strain penetration length is given by the expression: 

 𝑙𝑠𝑝 = 0.022𝑓𝑦𝑒𝑑𝑏  (𝑓𝑦𝑒 𝑖𝑛 𝑀𝑃𝑎) (4.44) 

where fye is the expected yield stress of longitudinal reinforcement taken as 1.1fy (Priestley et al., 

2007), and db is the diameter of longitudinal reinforcement. 

Concrete shear modulus was taken as 0.43 times the Young’s modulus of concrete (Montejo and 

Kowalsky, 2007). Effective shear area was taken as 5/6th of total cross-sectional area (Welch, 

2016). The moment of inertia for the elastic beam elements was calculated by Equation (4.45), 

which takes into account concrete cracking (Priestley et al., 2007 and Welch, 2016). A summary 

of all the model properties is presented in Table 4.15. 

  
𝐼𝑒 =

𝑀𝑁

𝐸𝑐𝜙𝑁
 (4.45) 

 

Level 1 

Level n 

Level 2 

Level 3 Elastic Giberson 

beam elements   

Plastic Hinge with Modified 

Takeda Hysteresis  

Seismic floor mass 

lumped at each node   
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Table 4.15 RUAUMOKO2D model parameters for the RC walls  

 4 Story 8 Story 12 Story 

Plastic Hinge Length, lp (m) 0.99 1.77 2.44 

Yield Moment, MN (kN-m) 2948 12072 20786 

Post Yield Stiffness Ratio, r (-) 0.015 0.013 0.011 

Moment of Inertia, Ie (m4) 0.07 0.48 1.10 

Gross Cross-sectional Area, Ag (m2) 0.93 1.55 2.02 

Effective Shear Area, Ash (m2) 0.78 1.29 1.68 

 

The modal characteristics of the RC wall buildings obtained using the models described in this 

sub-section are presented in Appendix A. 

4.5.7 Rocking Wall Models 

The models for the rocking walls consisted of a series of elastic Giberson beam elements (Figure 

4.14) for the wall panel and a zero length rotational spring for the wall/foundation connection 

(Figure 4.16).  The beam elements were characterized by a cracked, linear elastic stiffness of the 

wall cross-section, and the rotational spring was characterized by a Flag-Shaped Bi-Linear 

Hysteresis (Carr, 2004). The moment-rotation relationships from the reinforcement design 

(Section 4.4.2) were used as the backbone of the hysteresis.   

Figure 4.16 Diagram of rocking wall models (left) and flag-shaped bi-linear hysteresis (Carr 2004) 

(right). 
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The energy dissipation coefficient β was calculated to be 0.888 from Equation (4.46). The 

expression was derived by equating an equivalent hysteretic damping model in terms of β, 

Equation (4.47), and a model in terms of λ, Equation (4.48).  The latter was used to generate the 

damping-ductility curve in Section 4.3.7 (Pennucci et al., 2009). The damping model in terms of 

β was adopted from Priestley and Grant (2005).  

 
𝛽 =

2

𝜆 + 1
 𝑓𝑜𝑟 𝑟 = 0 (4.46) 

where λ=1.25 from the displacement based design of the rocking walls (refer to Section 4.3.7).   

 
𝜉ℎ𝑦𝑠𝑡 =

(𝜇 − 1)𝛽

𝜋𝜇(1 + 𝑟(𝜇 − 1))
 

(4.47) 

 

 
𝜉ℎ𝑦𝑠𝑡 =

2(𝜇 − 1)

𝜋𝜇(𝜆 + 1)
 𝑓𝑜𝑟 𝑟 = 0 

(4.48) 

The concrete shear modulus was taken as 0.43 times the Young’s modulus of concrete (Montejo 

and Kowalsky, 2007). Effective shear area was taken as 5/6th of total cross-sectional area (Welch, 

2016). The moment of inertia for the beam elements was taken as 85% of the gross moment of 

inertia. Even though rocking walls have been shown to exhibit little to no cracking in experimental 

investigations (Priestley et al., 1999; Rahman and Restrepo, 2000; Belleri et al., 2014; Gavridou, 

2015; amongst others), a 15% reduction in stiffness was introduced to account for slight cracking. 

A summary of all the model properties are presented in Table 4.16. 

Table 4.16 RUAUMOKO2D model parameters for the rocking walls 

 4 Story 8 Story 12 Story 

Elastic Stiffness, ko (kN-m/rad) 2.63E+06 1.07E+07 1.80E+07 

Yield Moment, My (kN-m) 1965 7174 11656 

Post Yield Stiffness Ratio, r (-) 0.014 0.011 0.009 

Moment of Inertia, Ie (m4) 0.59 2.74 6.03 

Gross Cross-sectional Area, Ag (m2) 0.93 1.55 2.02 

Effective Shear Area, Ash (m2) 0.78 1.29 1.68 
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The modal characteristics of the rocking wall buildings obtained using the models described in 

this sub-section are presented in Appendix A. 

4.5.8 Non-structural Elements Modelled with Supporting Structure  

When included in the rocking and RC wall models, non-structural elements (NSEs) were modelled 

as elastic SDOF, mass-spring-damper systems. The springs were modelled with longitudinal 

spring members and the dampers were modelled with longitudinal dashpot members (Carr, 2004) 

(Figure 4.17). The spring and damper, which were modeled in parallel, were fixed to the floor 

level of interest on one end and fixed to the lumped mass of the NSE on the other end. The lumped 

mass was free to move only in the longitudinal direction. This modelling process was the same for 

both the RC and rocking walls. 

For a non-structural element with a specified mass and natural period, the stiffness of the 

longitudinal spring member was determined using the fundamental relationship: 

 
𝑘 = 𝑚(

2𝜋

𝑇
)
2

 
(4.49) 

where m is the mass and T is the natural period of the non-structural element. 

Subsequently, for a specified damping ratio, the damping coefficient of the longitudinal dashpot 

member was determined using the fundamental relationship: 

 𝑐 = 𝜉(2√𝑘𝑚) (4.50) 

where ξ is the damping ratio of the non-structural element.  

Figure 4.17 Diagram of non-structural element modelled with supporting structural wall 
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5 DYNAMIC TIME HISTORY ANALYSIS RESULTS 

This chapter presents the results of both the linear (LTHA) and non-linear time history analysis 

(NLTHA) of the case-study RC and rocking wall buildings. From these results, the first section 

assesses the effectiveness of the displacement based design approach in predicting structural 

response. The second section addresses the seismic response of rocking wall systems in 

comparison to RC wall systems. Lastly, the third section presents the key observations that were 

made from floor response spectra obtained from time history analyses of case study buildings.  

The analysis results were collected for all 32 ground acceleration records. Mean values were then 

computed and used as representative of expected response for the specific earthquake intensity. 

The dispersion in the data is presented in the form of coefficients of variation. 

5.1 Comparison between Analysis Results and Displacement Based Design   

This section aims to analyze how well a displacement-based design (DBD) procedure predicts 

structural response. To this end, NLTHA results for the DBE intensity are compared to DBD 

outcomes with respect to displacement, interstory drift, moment, and shear envelopes. 

5.1.1 RC Wall Buildings 

The displacement-based design approach is expected to provide an accurate estimation of 

displacement profiles, as discussed in Section 4.3. Displacement estimates for the 8- and 12-story 

RC wall buildings were found to be in good agreement with the analysis results (Figure 5.1). 

However, the estimates were somewhat non-conservative for the 4- and 8-story buildings. Both 

buildings had mean interstory drifts exceeding the 2% design drift (Figure 5.2). 

Even though base moments were predicted very well, the moment estimates along the height of 

the buildings (obtained from the capacity design procedure discussed in Section 4.3.6) were found 

to be somewhat non-conservative for all case study buildings (Figure 5.3), particularly at mid-
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height where the higher modes seem to play a predominant role. In contrast, the shear estimates 

from the procedure compared well to the analysis results (Figure 5.4).  

Figure 5.5 summarizes the variability in the analyses results. The coefficients of variation were 

somewhat high for peak displacement, peak interstory drift and peak base shear. This is to be 

expected since there is significant variability in earthquake records used in NLTHA even if they 

are scaled to similar intensities, as also noted by Wiebe (2008). The variability for peak base 

moments were generally low and decreased with increasing building height. 

 

Figure 5.1 Maximum displacement envelope of RC wall buildings from DBD and NLTHA under 

DBE intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.2 Maximum interstory drift envelope of RC wall buildings from DBD and NLTHA under 

DBE intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.3 Maximum moment envelope of RC wall buildings from DBD and NLTHA under DBE 

intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.4 Maximum shear envelope of RC wall buildings from DBD and NLTHA under DBE 

intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.5 RC wall buildings under DBE intensity, variability for: (a) peak roof displacement; (b) 

peak roof interstory drift; (c) peak base moment; (d) peak base shear 

5.1.2 Rocking Wall Buildings 

For the rocking wall buildings, displacement estimates were generally acceptable, slightly non-

conservative for the 4-story building, but conservative for the 8- and 12-story buildings (Figure 

5.6). This is in contrast with the results presented by Pennucci et al. (2009) who found that 

displacement estimates, using the same DBD approach, were in very good agreement with the 

analysis results regardless of building height. There are two possible explanations for the greater 

disparity between DBD estimates and analysis results in this study. First, the moment-rotation 

relationships used in the models were slightly different from the DBD outcomes (Figure 4.12). 

More specifically, the post-yield stiffness for all three case-study walls was higher in the models. 
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This could explain the disparity between DBD estimates and analysis results since the majority of 

wall rotation and displacement is expected post-yield. Secondly, Pennucci et al. (2009) used a 

multi-spring modelling approach, which has been shown to capture the cyclic response of rocking 

walls with increased accuracy compared to the lumped plasticity modelling approach used in this 

study (Twigden et al., 2013). In addition, Pennucci et al. (2009) could have made different 

assumptions regarding the elastic stiffness for the wall panels (not explicitly provided in the paper) 

compared to the 85% of gross stiffness assumed in this study (refer to Section 4.5.7). 

The base moment estimates for the 8- and 12-story buildings were in very good agreement with 

the analysis results (Figure 5.8). However, the estimates for the 4-story wall fell short on the non-

conservative side, compared to the analysis results (Figure 5.8). For all case study buildings, the 

moment and shear distributions above the base of the walls were significantly higher than the first-

mode DBD estimates (Figures 5.8 and 5.9). This response is due to higher mode effects and 

requires appropriate capacity design measures, as discussed by Pennucci et al. (2009). 

In Section 4.3.7, the RC wall capacity-design procedures were adapted and used for the rocking 

walls to provide some design means of accounting for the effects of higher modes. This brought a 

remarkable improvement in the results, with the magnitudes of the “magnified” capacity-design 

moments approaching those extracted from the analyses. It can be seen in Figure 5.8 that the design 

values are still somewhat non-conservative, but this is not surprising considering that the procedure 

was developed and calibrated for RC walls.   

Analogous improvements can be observed with respect to the shear force distributions. It can be 

noted that the “magnified” capacity-design shear profiles represent conservative envelopes of the 

shear forces obtained from the analyses (Figure 5.9). This suggests that the capacity-design 

procedure developed for RC walls has potential for use with rocking walls, but more work is 

needed before the approach can be generalized. To this end, special attention should be given to 

the modal superposition capacity-design approach (refer to Priestley et al. (2007)), which was the 

basis for the simple design procedure presented in Section 4.3.6.  

Figure 5.10 summarizes the variability in the analyses results. Similar to the RC wall buildings, 

the coefficients of variation for the rocking wall buildings were somewhat high for peak 

displacement, peak interstory drift and peak base shear, but low for the peak base moment. 
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Figure 5.6 Maximum Displacement Envelope of Rocking Walls from DBD and NLTHA under DBE 

Intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.7 Maximum Interstory Drift Envelope of Rocking Walls from DBD and NLTHA under 

DBE Intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.8 Maximum Moment Envelope of Rocking Walls from DBD and NLTHA under DBE 

Intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.9 Maximum Shear Envelope of Rocking Walls from DBD and NLTHA under DBE 

Intensity: (a) 4-Story; (b) 8-Story; (c) 12-story 
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Figure 5.10 Rocking Walls under DBE Intensity, Variability for: (a) Peak Roof Displacement; (b) 

Peak Roof Interstory Drift; (c) Peak Base Moment; (d) Peak Base Shear 
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5.2 Comparison between RC and Rocking Wall Buildings  

This section aims to compare the seismic response of rocking and RC wall systems based on the 

results of the non-linear time history analyses at two intensity levels, namely the DBE and the 

MCE.  

5.2.1 Displacement Response 

The mean peak displacement responses for the DBE and MCE Intensities are presented in Figures 

5.11 and 5.12. Rocking wall peak displacements were comparable to RC wall displacements for 

the DBE intensity. This is to be expected since both structural systems were designed for a 2% 

design drift. 

Peak displacements were also comparable for the MCE intensity with rocking wall displacements 

slightly higher than RC wall displacements. This might be an indication that both structural 

systems are responding similarly to the applied ground motions. The Modified Takeda Hysteresis 

that was used to model the RC walls is expected to dissipate more energy leading to smaller 

displacements compared to the flag-shaped hysteresis used to model the rocking walls. However, 

the rocking walls are much stiffer compared to the RC walls, which might also be reducing the 

rocking wall displacements, albeit to a smaller extent compared to the impact of hysteresis rules. 

Wiebe (2008) found that shorter rocking walls had higher peak displacements than the 

corresponding RC walls. However, Khanmohammadi and Heydari (2015) found that rocking wall 

displacements were generally lower than RC wall displacements. It is important to note that both 

Wiebe (2008) and Khanmohammadi and Heydari (2015) had distinct design and modelling 

assumptions relative to each other and this study. It is likely that these differences are causing the 

differences in the findings of each study.  

Figure 5.13 summarizes the variability in peak displacement results for both the rocking and RC 

walls. Both structural systems had somewhat high but similar coefficients of variation.  
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Figure 5.11 Maximum displacement envelope under DBE intensity: (a) 4-Story; (b) 8-story; (c) 12-

story 
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Figure 5.12 Maximum displacement envelope under MCE intensity: (a) 4-Story; (b) 8-story; (c) 12-

story 
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Figure 5.13 Variability in peak roof displacement under DBE (left) and MCE (right) intensities 

5.2.2 Interstory Drift Response 

The mean peak interstory drift responses for the DBE and MCE intensities are presented in Figures 

5.14 and 5.15. Interstory drifts in the rocking walls remained approximately constant regardless of 

wall height, but the highest values were recorded at the top of the walls. This indicates that the 

majority of the wall displacement is coming from the rigid body rotation of the wall at the base, 

which was expected since the wall panels were designed to undergo minor elastic deformation.   

In contrast, peak interstory drifts in the RC walls had a more gradual increase from low drift at the 

base of the walls towards a maximum drift at the top of the walls. This indicates that the 

deformation in RC walls is more distributed along the height of the walls and not concentrated at 

the base of the walls. 

Figure 5.16 summarizes the variability in peak displacement results for both the rocking and RC 

walls. Both structural systems had somewhat high coefficients of variation with rocking walls 

having slightly higher values. 
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Figure 5.14 Maximum interstory drift envelope under DBE intensity: (a) 4-Story; (b) 8-story; (c) 

12-story 
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Figure 5.15 Maximum interstory drift envelope under MCE intensity: (a) 4-Story; (b) 8-story; (c) 

12-story 
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Figure 5.16 Variability in peak Roof interstory drift under DBE (left) and MCE (right) intensities 

5.2.3 Residual Displacement Response 

The residual displacement responses for the DBE and MCE intensities are presented in Figures 

5.17 and 5.18. The rocking walls were found to have significantly less residual displacements 

compared to the RC walls, which was also observed by Khanmohammadi and Heydari (2015) and 

Wiebe (2008) amongst many others. This is to be expected since the primary benefit of using a 

rocking system instead of a traditional monolithic system is the re-centering capability, which 

leads to a reduction or elimination of residual displacements.  

The maximum residual displacements recoded were 0.021% of wall height for the rocking walls 

and 0.24% of wall height for the RC walls. As reasonable to expect, the highest residual 

displacements in the RC walls were recorded for the MCE intensity. However, the residual 

displacements for the rocking walls remained approximately constant for both the DBE and MCE 

intensities. This indicates very good self-centering properties, which do not depend upon the 

earthquake intensity or the maximum displacement reached by the structure. 

Figure 5.19 summarizes the variability in residual displacement results for both the rocking and 

RC walls. Both structural systems had high coefficients of variation. This was unexpected for the 

rocking walls since there was no strength degradation introduced in the models. Once the 

earthquake excitation is removed, the rocking walls are expected to remain elastic and go into free 

vibration, which should dampen to a residual displacement of zero regardless of the ground motion 

applied. Thus, the high variability in the rocking walls could be an indication of insufficient 

analysis run-time to allow for the dampening of free vibration. 
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Figure 5.17 Maximum residual displacement envelope under DBE intensity: (a) 4-Story; (b) 8-

story; (c) 12-story 
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Figure 5.18 Maximum residual displacement envelope under MCE intensity: (a) 4-Story; (b) 8-

story; (c) 12-story 
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Figure 5.19 Variability in roof residual displacement drift under DBE (left) and MCE (right) 

intensities 

5.2.4 Peak Floor Acceleration Response 

The peak floor accelerations (PFAs) for the DBE and MCE intensities are presented in Figures 

5.20 and 5.21. The 4-story rocking wall PFAs were found to be comparable to or slightly less than 

PFAs in the corresponding RC walls for both the DBE and MCE intensities. This trend was also 

observed in the 8- and 12-story walls but only in the upper half of the walls. For the lower half of 

the walls and the top two floor levels, the rocking wall PFAs were found to be slightly higher than 

PFAs from the RC walls.  

These results are consistent with results from Khanmohammadi and Heydari (2015) in which PFAs 

in rocking walls were either comparable to or less than PFAs in the corresponding RC walls. In 

contrast, Wiebe (2008) found that rocking walls generally had higher PFAs compared to RC walls. 

As Wiebe (2008) noted, this might be an indication of rocking joints causing an amplification in 

floor acceleration. However, this was not observed in this study or by Khanmohammadi and 

Heydari (2015). Wiebe (2008) also pointed out that the high PFAs in rocking systems may be 

partially due to numerical issues that arise because of modelling assumptions, and specifically 

because of the decision to idealize a flag-shaped hysteresis using sharp corners. However, this 

same assumption was maintained in this study and high PFAs were not observed in rocking walls. 

Thus, the accurate modelling of flag-shaped hysteresis remains an open question and the subject 

of ongoing research studies. 
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Figure 5.22 summarizes the variability in PFA results for both the rocking and RC walls. Both 

structural systems had somewhat high coefficients of variation with rocking walls having slightly 

higher values. 

 

Figure 5.20 Peak floor acceleration envelope under DBE intensity: (a) 4-Story; (b) 8-story; (c) 12-

story 
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Figure 5.21 Peak floor acceleration envelope under MCE intensity: (a) 4-Story; (b) 8-story; (c) 12-

story 
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Figure 5.22 Variability in peak roof acceleration under DBE (left) and MCE (right) intensities 

5.2.5 Bending Moment Response 

The bending moment responses for the DBE and MCE intensities are presented in Figures 5.23 

and 5.24. For better comparison, the moment values for all walls were normalized by the base 

moment resulting from a point load equal to the wall seismic weight acting at the roof. For both 

the DBE and MCE intensities, the base moments for the rocking walls were lower than the base 

moments from the corresponding RC walls. This was expected and attributed to the high ductility 

capacity of the rocking walls (Table 4.6). For a given wall height, the rocking walls had a higher 

design ductility and effective period than the RC walls, which led to a lower base moment and 

shear.  

In contrast, the rocking wall moment envelopes were either comparable to or higher than the 

moment envelopes for the RC walls. This suggests that the higher mode effects are more 

pronounced in rocking than in RC wall systems. In addition, as the height of the walls increased, 

the rocking wall moments were progressively larger than the RC wall moments over the height of 

the walls. These results are consistent with results from Khanmohammadi and Heydari (2015) but 

in contrast with the observations of Wiebe (2008).   

Wiebe (2008) obtained rocking wall moments that were similar to RC wall moments over the 

height of the walls, regardless of wall height. However, it is important to note that Wiebe (2008) 

modelled the RC walls with an elastoplastic hysteresis, which is in contrast with the Modified 

Takeda Hysteresis that was used in this study. In addition, the elastic stiffness of the elastoplastic 

hysteresis was set equal to the elastic stiffness of the flag-shaped hysteresis used to model the 
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rocking walls. As Sullivan et al. (2008) and others note, higher mode response is not affected by 

inelastic deformation to the same extent as first mode response. This means that higher modes can 

respond somewhat elastically even when the structure achieves high ductility. Since Wiebe (2008) 

assumed similar elastic properties for both structural systems, this might explain why higher mode 

effects were found to be similar for both systems. 

Figure 5.25 summarizes the variability in peak bending moment results for both the rocking and 

RC walls. Both structural systems had low coefficients of variation with rocking walls having 

slightly higher values. 
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Figure 5.23 Maximum moment envelope under DBE intensity: (a) 4-Story; (b) 8-story; (c) 12-story 
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Figure 5.24 Maximum moment envelope under MCE intensity: (a) 4-Story; (b) 8-story; (c) 12-story 
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Figure 5.25 Variability in peak base moment under DBE (left) and MCE (right) intensities 

5.2.6 Shear Response 

The shear responses for the DBE and MCE intensities are presented in Figures 5.26 and 5.27. For 

better comparison, the shear values for all walls were normalized with respect to the total seismic 

weight of the wall. As mentioned in the previous section, the rocking walls had lower first mode 

design shears compared to the RC walls, which is attributed to their high ductility capacity (Figures 

5.26 and 5.27). However, for both the DBE and MCE intensities, shear values were generally 

higher over the entire height of the rocking walls compared to the RC walls, with the exception of 

the 4-story walls. This suggests that higher mode effects are more pronounced in rocking systems, 

which is consistent with the observations made in the bending moment response of rocking walls 

in the previous section. 

Figure 5.28 summarizes the variability in peak shear results for both the rocking and RC walls. 

Both structural systems had somewhat high coefficients of variation with rocking walls having 

generally higher values. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

4-Story 8-Story 12-Story

C
o

ef
fi

ci
en

t 
o

f 
V

ar
ia

ti
o

n

0

0.05

0.1

0.15

0.2

0.25

0.3

4-Story 8-Story 12-Story

C
o

ef
fi

ci
en

t 
o

f 
V

ar
ia

ti
o

n

Rocking Wall

RC Wall



 

90 
 

 

Figure 5.26 Maximum shear envelope under DBE intensity: (a) 4-Story; (b) 8-story; (c) 12-story 
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Figure 5.27 Maximum shear envelope under MCE intensity: (a) 4-Story; (b) 8-story; (c) 12-story  
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Figure 5.28 Variability in peak base shear under DBE (left) and MCE (right) intensities 

5.2.7 Summary 

Both structural systems experienced analogous peak displacements and peak floor accelerations. 

However, the rocking walls had negligible residual displacements compared to the RC walls. This 

represents the main benefit that rocking systems have over RC systems. The results of the analyses 

also suggest that the effects of higher modes are more significant in rocking walls, but it is believed 

that these effects could be mitigated through appropriate capacity design measures.  

5.3 Observations of Floor Response Spectra atop RC and Rocking Wall 

Buildings 

This section details the key observations that were made from floor response spectra obtained from 

both linear (LTHA) and non-linear (NLTHA) time history analyses of the case study buildings. 

After the time history analyses were conducted, floor response spectra were obtained using 

DYNAPLOT (Carr, 2004) at four damping levels of 2%, 5%, 10% and 20% of critical damping. 

From the NLTHA results, floor response spectra were obtained for each floor level at Intensities 

1, 5, and 6 (refer to Table 4.13). From the LTHA results, floor response spectra were obtained for 

each floor level at Intensity 5. 

This section also presents the results of the NLTHA that were conducted with non-structural 

elements modelled with the case-study buildings. Using these results, the dynamic interaction 

between non-structural elements and supporting structures is discussed.  
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5.3.1 Parameters Influencing Floor Response Spectra 

This section aims to discuss three parameters that have a strong influence on floor response spectra. 

This includes non-structural element damping, modal characteristics of the supporting building, 

and inelastic structural response. 

5.3.1.1 Non-structural Element Damping 

As previously mentioned, floor response spectra were generated at four damping levels of 2%, 5%, 

10% and 20% of critical damping for each of the case study buildings. Figure 5.29 shows the effect 

of non-structural damping ξNS on the floor response spectra of the 4-story RC wall building 

responding elastically at Intensity 5, which is representative of overall trends. Corresponding 

figures for all case-study buildings, and types of structural response (i.e. elastic or inelastic) is 

provided in Appendix B.  

As Figure 5.29 shows, spectral floor acceleration (SFA) demands are strongly dependent on the 

non-structural element damping ξNS under consideration. As reasonable to expect, low ξNS values 

result in the highest amplification of SFA demands. The influence of ξNS is highest at modal periods 

where the spectral demands are also highest since the non-structural element and the supporting 

structure are in resonance. For very low and high spectral periods as well as spectral periods in 

between modal periods, the influence of ξNS is low. 

Sample non-structural damping ratios ξNS and periods TNS are provided in Table 5.1 and Figure 

5.30. These values are provided to show the wide range of dynamic properties of non-structural 

elements that can be expected in buildings.  
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Figure 5.29 Mean floor response spectra atop 4-story RC wall building for fully elastic structural 

response at Intensity 5 (PGA = 0.450 g) 

Table 5.1 Sample non-structural damping ratios and periods from previous studies (Welch, 2016) 

Component Type ξNS (%) TNS (%)* Reference Notes 

Suspended Ceiling 14% - 30% 0.07 – 0.1 Ryu et al. (2012) Analytical/ 
Experimental 

Vibration Isolated Chiller 1% - 3% 0.65 – 0.85 Fathali and Filiatrault 
(2008) Experimental 

Large HVAC Equipment 
- Fixed base 
- Vibration Isolated 

1% 
1% 

0.2 
1.0 

Wanitkorkul and 
Filiatrault (2008) Analytical 

Sprinkler Piping System** 
- Black iron, threaded 
- CPVC, cement joints 
- Steel, groove joints 

9% 
13% 
10% 

0.46 – 0.58 
1.87 -2.20 
0.80 -0.97 

Tian et al. (2015) Experimental 

Computer Servers 2% 0.025 Gidaris et al. (2016) Analytical 
Filing Cabinet 

- Fixed-base 
- Free-standing 

13% 
17% 

0.4 
0.5 Marsantyo et al. (2000) Experimental 

Unreinforced Masonry Wall 
with Wood Backing*** 
(Out of plane motion) 

9% 0.16 Paquette et al. (2001) Experimental 

* Period correspond to translational modes in horizontal direction. 
** Includes main lines, branch lines and bracing; period ranges correspond to the first four modes of branch lines 
*** Not included in the original table adapted from Welch (2016) 
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Figure 5.30 Illustration of sample non-structural damping ratio and period ranges (exact values and references provided in Table 5.1)  
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5.3.1.2 Modal Characteristics of the Supporting Building 

Floor response spectra can vary significantly depending on the floor level under consideration. For 

each floor level, the contributions of each mode to the peak floor acceleration (PFA) depends on 

the modal coordinates for that floor. Accordingly, SFA demands are also dependent on the modal 

contributions for the specific floor. The highest SFA demands for each mode occur at the floor 

level with the highest modal coordinate for the specific mode under consideration.  

This is illustrated using the floor response spectra of the 4-story RC wall building responding 

elastically at Intensity 5 (Figure 5.29), which is representative of overall trends. In the 4-story RC 

wall building, the highest SFA demands occurred at roof level for the first mode, the second floor 

for the second mode, and the first floor for the third mode. For all three modes, these floor levels 

correspond to the floor level with the highest modal coordinate for the respective mode (Figure 

5.31). 

This observation can be directly used to select the location of non-structural elements. If a non-

structural element has a natural period close to the modal periods of the supporting building, it 

could be placed on floors with the least modal coordinates of the corresponding mode to reduce 

acceleration demands. For example, if a non-structural element in the 4-story RC wall building has 

a period close to the second modal period, it could be placed on the first or third floor to reduce 

acceleration demands. As Figure 5.31 shows, the second and third floors have the lowest modal 

coordinates for the second mode. This can also be observed in the floor response spectra of the 4-

story RC wall building. As Figure 5.29 shows, the lowest acceleration demands for the second 

mode occur on the first and third floors. 
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Figure 5.31 Mode shapes of the 4-story RC wall building 

5.3.1.3 Inelastic Structural Response 

Inelastic structural response has a significant impact of peak SFA demands. As a structure deforms 

into the inelastic range, energy is dissipated and SFA demands can be reduced. This can be 

observed in Figures 5.32 and 5.33 in which there is significant reduction in peak SFA demands for 

inelastic response compared to elastic response for the 8-story RC and rocking wall buildings at 

Intensity 5. These figures are representative of overall trends and corresponding figures for all 

case-study buildings are provided in Appendix B.  

For both types of structural walls, the reduction is SFA demands is highest in the first mode region. 

For the RC walls, there is also a significant reduction in SFA demands in the second mode region, 

albeit to a smaller extent compared to the first mode region. However, for the rocking walls, there 

is only a minor decrease in SFA demands in the second mode region. This indicates that higher 

mode response might be more significant in rocking walls, which is consistent with the 

observations made regarding the bending moment and shear response of rocking walls in Chapter 

5.  

The third mode contribution to spectral acceleration demands remains nearly elastic for both types 

of structural walls. This supports the notion that the higher mode response is not affected by 

inelastic deformation to the same extent as the first mode response. 

In addition, inelastic structural response leads to peak SFA demands occurring over a range of 

periods in the form of a “plateau”. This is due to the modal periods of the supporting structure 
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lengthening as the supporting structure goes into inelastic deformation. Hence, the resonance 

condition between the non-structural element and the supporting structure, which leads to peak 

SFA demands, occurs over a range of periods starting from the elastic period and ending at the 

effective period of the supporting structure. The extent of period elongation is highest for the first 

mode and significantly decreases in higher modes. 
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Figure 5.32 Mean floor response spectra atop 8-story RC wall building for fully elastic and inelastic 

structural response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 

 

 

Figure 5.33 Mean floor response spectra atop 8-story rocking wall building for fully elastic and 

inelastic structural response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 
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5.3.2 Dynamic Interaction between Non-structural Elements and Supporting 

Buildings 

One of the main objectives of this present study is to develop procedures for the estimation of floor 

response spectra (FRS), which can be used for the design of acceleration-sensitive non-structural 

elements (NSEs). As discussed in Section 3.1, an FRS method is commonly employed for NSEs 

that have negligible dynamic interaction with the supporting building, and thus FRS are usually 

obtained from a decoupled analysis. This assumption has typically been considered acceptable for 

a ratio of NSE mass to total building mass (referred to as mass ratio) of 1% or less (Singh and Ang, 

1974; Sankaranarayanan, 2007; Taghavi and Miranda, 2008; Pinkawa et al., 2014; Welch, 2016). 

However, some have suggested that NSEs and supporting buildings may need to be treated as 

coupled for mass ratios higher than 0.1% (Toro et al., 1989). Noting the large difference in the 

mass ratios considered acceptable, this section aims to understand the mass ratio at which dynamic 

interaction can be considered negligible. 

To this end, a coupled NLTHA was conducted in which NSEs with varying mass ratios (MR) were 

modelled with the case-study buildings according to the modelling procedure in Section 4.5.8. The 

analysis was conducted using the ground motions from Section 4.5.1 at Intensity 5. The analysis 

was limited to the 4- and 12-story RC and rocking wall buildings and only included NSEs located 

at the roof and mid-height floor levels. The NSEs had mass ratios of 0.12% and 0.06%. Each NSE 

was modelled at four damping levels ξNS: 0.1%, 2%, 10% and 20% of critical damping. A wide 

range of NSE natural periods was considered which included the first three modal periods of the 

supporting building.  

Note that for each combination of NSE mass ratio, period, damping, and floor level, a separate 

model was created that only included the NSE of interest and the supporting building. After the 

coupled NLTHA was conducted, mean accelerations of the NSEs were obtained, which were then 

compared to values from a mean floor response spectra obtained from a decoupled NLTHA. The 

comparisons presented in this section are for the roof level of the case-study buildings. 

Corresponding figures for mid-height floor levels are presented in Appendix B.  

For NSEs with very low damping (0.1%) in the 4-story RC wall building, mean NSE accelerations 

were approximately equal to acceleration demands from the 5% damped FRS for a wide range of 

natural periods with the exception of periods close to the fundamental period of the supporting 
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building (Figure 5.34). This indicates that the coupled models were non-classically damped, and 

thus the damping of the supporting primary structure was contributing to the damping of the 

supported NSE. This trend was also observed in the 4-story rocking wall building (Figure 5.35). 

 
Figure 5.34 Comparison between mean NSE accelerations from coupled analysis (MR=0.12%; ξNS 

= 0.1%) and mean FRS at various levels of ξNS from decoupled analysis; roof level of 4-story RC 

wall building, inelastic structural response at Intensity 5 (PGA = 0.450 g)  

 

Figure 5.35 Comparison between mean NSE accelerations from coupled analysis (MR=0.12%; ξNS 

= 0.1%) and mean FRS at various levels of ξNS from decoupled analysis; roof level of 4-story 

rocking wall building, inelastic structural response at Intensity 5 (PGA = 0.450 g) 

 

In general, FRS obtained from the decoupled analyses gave conservative acceleration demand 

estimates for a wide range of NSE periods. However, FRS estimates were non-conservative for 

NSEs with periods close to the fundamental period of the supporting building (Figures 5.36 and 

5.37). This trend was observed for both mass ratios of 0.06% and 0.12% as well as in all floor 

levels and case study buildings considered. Interestingly, the lower mass ratio was associated with 

higher accelerations. This indicates that dynamic interaction between NSEs and supporting 

structures might be significant even for mass ratios as low as 0.06%.  
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However, FRS estimates from the decoupled analyses were conservative for NSEs with periods 

close to the second or third modal periods. This indicates that dynamic interaction may only need 

to be accounted for NSEs with natural periods close to the fundamental period of the structure. 

 

 

Figure 5.36 Comparison between mean NSE accelerations from coupled analysis and mean FRS 

from decoupled analysis for roof level of 4-story RC wall building; inelastic structural response at 

Intensity 5 (PGA = 0.450 g) 
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Figure 5.37 Comparison between mean NSE accelerations from coupled analysis and mean FRS 

from decoupled analysis for roof level of 4-story rocking wall building; inelastic structural response 

at Intensity 5 (PGA = 0.450 g) 

 

The effect of dynamic interaction was also observed to diminish with increasing height of the 

supporting building. For both the 12-story RC and rocking wall buildings, the accelerations from 

the decoupled analyses were higher than spectral acceleration demands from the coupled analyses 

for NSEs with periods close to the fundamental period of the supporting building, but to a much 

smaller degree compared to the 4-story buildings (Figures 5.38 and 5.39). 

 

Figure 5.38 Comparison between mean NSE accelerations from coupled analysis (MR = 0.12%) and 

mean FRS from decoupled analysis for roof level of 12-story RC wall building; inelastic structural 

response at Intensity 5 (PGA = 0.450 g) 
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Figure 5.39 Comparison between mean NSE accelerations from coupled analysis (MR = 0.12%) and 

mean FRS from decoupled analysis for roof level of 12-story rocking wall building; inelastic 

structural response at Intensity 5 (PGA = 0.450 g) 
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6 MAXIMUM DYNAMIC AMPLIFICATION OF PEAK FLOOR 

ACCELERATION 

The current chapter details the investigative efforts into the maximum dynamic amplification of 

peak floor acceleration that occurs when a non-structural element is in resonance with the 

supporting structure. The work in this chapter applies to non-structural elements that can be 

considered uncoupled from the supporting structure, which, as discussed in Section 5.3.2, is 

typically considered acceptable for a mass ratio of 1% or less (Singh and Ang, 1974; 

Sankaranarayanan, 2007; Taghavi and Miranda, 2008; Pinkawa et al., 2014; Welch, 2016). The 

observations made in this chapter were directly utilized in the development of methodologies to 

estimate floor response spectra atop RC and rocking wall buildings responding non-linearly in 

Chapter 7.  

Maximum dynamic amplification occurs when a non-structural element (NSE) and the primary 

structure are in resonance. The maximum dynamic amplification factor (DAFmax) is defined as the 

ratio between maximum spectral acceleration and peak floor acceleration (PFA), which is shown 

in Figure 6.1. The term p stands for primary/supporting structure and the term NS stands for non-

structural/supported element.   
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Figure 6.1 Illustration of the peak dynamic amplification of acceleration for an elastic primary- 

secondary SDOF system at the resonant condition (Welch, 2016) 

In recent years, maximum dynamic amplification has been mostly studied and quantified 

empirically (Sullivan et al., 2013; Calvi and Sullivan, 2014; Vukobratović, 2015; Welch, 2016). 

This is partly because earthquake excitations apply neither harmonic nor a clearly defined impulse 

loading (Sullivan et al., 2013), and closed form formulations of maximum dynamic amplification 

have been shown to overestimate the amplification of PFA at resonance (Welch, 2016).  

As discussed in Section 3.2, Sullivan et al. (2013), Calvi and Sullivan (2014), and Welch (2016) 

(amongst others) proposed empirical formulations for DAFmax. Sullivan et al. (2013) formulated 

DAFmax as a function of non-structural element damping and assumed DAFmax was independent 

of the supporting structure’s properties (Equation (6.1)). Calvi and Sullivan (2014) kept the 

formation made in their previous work but introduced a reduction of DAFmax for stiff supporting 

structures with periods less than 0.3 sec (Equation (6.2)). Most recently, Welch (2016) updated the 

formulations of the two previous studies to take into account the damping of the primary structure 

in addition to the damping of the non-structural element (Equation (6.3)).  

 
𝐷𝐴𝐹𝑚𝑎𝑥 =

1

√𝜉𝑁𝑆
 (6.1) 

where ξNS is the elastic damping of the non-structural/supported element.   
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𝐷𝐴𝐹𝑚𝑎𝑥 =

{
 
 

 
 

1

(1.79 −
𝑇𝑖
𝑇𝐵
)√𝜉𝑁𝑆

      𝑖𝑓 0 ≤ 𝑇𝑖 ≤ 𝑇𝐵

1

√𝜉𝑁𝑆 
                       𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵

 (6.2) 

where Ti is the elastic period of the primary structure for mode i. The term TB is taken as 0.3 sec. 

 
𝐷𝐴𝐹𝑚𝑎𝑥 = {

(0.55 + 0.45
𝑇𝑖
𝑇𝐵
) (0.5𝜉𝑝 + 𝜉𝑁𝑆) 

−0.667      𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵                 

(0.5𝜉𝑝 + 𝜉𝑁𝑆) 
−0.667                             𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵       

 (6.3) 

where Ti,e is the effective period of the supporting structure for mode i, and ξp is the elastic damping 

of the primary structure.  

For a better understanding of maximum dynamic amplification of peak floor acceleration, a study 

of floor spectra atop both elastic and inelastic SDOF systems was conducted through time history 

analysis. The main objectives of the study were as follows: 

i. Investigate the performance of existing formulations for DAFmax with a new suite of 

ground motions not used in the development of the formulations for primary structure 

periods beyond TB = 0.3 sec, specifically focusing on the works of Sullivan et al. (2013) 

and Welch (2016); 

ii. Investigate the effects of inelastic structural response on DAFmax. 

6.1 Time History Analysis of SDOF Systems 

Both the elastic and inelastic SDOF systems were modeled as mass-spring-damper systems. For 

the earthquake excitation, the 32 ground motions in Section 4.5.1 were used in the time history 

analysis. The following sections detail the modelling process of the SDOF systems. 

6.1.1 Modelling of Elastic SDOF Systems 

The SDOF systems considered for the elastic analysis had primary structure periods Tp of 0.3, 0.5, 

1.0, 2.0, 3.0, 4.0 and 5.0 sec. Each SDOF system was modelled considering primary structure 

damping ratios ξp of 1%, 3% and 5% of critical damping. These damping ratios represent 

commonly assumed values for typical buildings (Welch, 2016). Damping was modelled using a 



 

108 
 

Rayleigh tangent-stiffness proportional damping model, consistent with the studies on DAFmax 

conducted by Sullivan et al. (2013) and Welch (2016). 

The ground acceleration records were applied at an intensity level of 1.0. For each combination of 

ground acceleration record, primary structure period and damping ratio, floor spectra were 

generated at five non-structural element damping ratios ξNS of 0.5%, 1%, 2%, 5%, and 10% of 

critical damping.  

6.1.2 Modelling of Inelastic SDOF Systems 

The inelastic SDOF systems were modelled in RUAUMOKO2D with two distinct hysteretic 

characteristics: Modified Takeda and flag-shaped hysteresis (Carr, 2004). The flag-shaped 

hysteresis was selected to represent the behavior of a rocking wall. The post-yield stiffness ratio 

was set at 10% and the energy dissipation coefficient β was set at 0.888. The adopted β value 

corresponds to a ratio of between post-tensioning and mild steel bending resistance λ of 1.25 as 

suggested by Pennucci et al. (2009). This provides the maximum amount of energy dissipation 

possible whilst ensuring re-centering of the wall and taking material over-strengths into account 

(refer to Sections 4.3.7 and 4.5.7 for more details). The Modified Takeda hysteresis was selected 

to represent the behavior of an RC wall. The post-yield stiffness ratio was also set at 10% and the 

following parameters were used to define the unloading and reloading behavior of the hysteresis 

(Amaris, 2002; Welch, 2016): 

 Unloading stiffness factor, α = 0.5 

 Reloading stiffness factor, β = 0 

 An Emori and Schnobrich unloading (KKK = 2) 

The SDOF systems considered had primary structure periods Tp of 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 

sec.  Each SDOF system was modelled with a structural damping ratio ξp of 3%, 5% and 7% of 

critical damping. These values were selected to create a reasonable range of damping ratios around 

5% damping, which is typically assumed for both types of structural walls. Damping was modelled 

using a Rayleigh tangent-stiffness proportional damping model, consistent with the studies on 

DAFmax conducted by Sullivan et al. (2013) and Welch (2016). 
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To study the effects of increasing inelastic deformation on DAFmax, the intensity of each of the 

ground acceleration records was gradually increased starting from an intensity resulting in elastic 

response. Displacement ductility was utilized to measure the level of inelastic deformation. For 

each combination of intensity level, ground acceleration record, primary structure period and 

damping ratio, floor spectra were generated using DYNAPLOT (Carr, 2004)  at four non-structural 

element damping ratios ξNS of 0.5%, 1%, 2% and 5% of critical damping. 

6.1.3 Monitoring of Maximum Dynamic Amplification Factor 

For both the elastic and inelastic SDOF systems, DAFmax was obtained through floor spectra by 

taking the ratio of maximum spectral floor acceleration (SFAmax) and peak floor acceleration 

(PFA), as defined in Equation (6.4). 

 
𝐷𝐴𝐹𝑚𝑎𝑥 =

𝑆𝐹𝐴 𝑚𝑎𝑥
𝑃𝐹𝐴

=
𝑆𝐹𝐴 𝑚𝑎𝑥
𝑆𝐹𝐴(0)

 (6.4) 

where SFA(0) is the spectral acceleration value at spectral period of 0 sec. 

6.2 Maximum Dynamic Amplification Factor in Elastic SDOF Systems  

The performance of existing formulations for DAFmax beyond TB = 0.3 sec was investigated using 

the results of the time history analysis of the elastic SDOF systems. Sullivan et al. (2013) proposed 

a formulation for DAFmax as a function of non-structural damping ξNS (Equation (6.1)). This 

formulation is presented along with the data from the present study in Figure 6.2. A regression 

analysis was conducted to find the best fit for the data in the form of 𝐷𝐴𝐹𝑚𝑎𝑥 = 𝜉𝑁𝑆
𝑥 where x is 

the dependable variable. Equation (6.5) was found to be the best fit with an R2 value of 0.51. The 

highest disparity between Equation (6.5) and the Sullivan et al. (2013) formulation occurs at low 

non-structural element damping ratios. This is reasonable since the scatter in the data is also highest 

at low non-structural element damping ratios, consistent with analysis results from Sullivan et al. 

(2013) and Welch (2016). Considering this scatter, the Sullivan et al. (2013) formulation can be 

considered an acceptable approximation for DAFmax for the data presented in this study. 

 
𝐷𝐴𝐹𝑚𝑎𝑥 =

1

𝜉𝑁𝑆
0.559  

(6.5) 
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* All Data represents DAFmax values for each combination of ground 
acceleration record, primary structure period, primary structure damping ratio, 
and non-structural element damping ratio. 

Figure 6.2 Comparison between the DAFmax formulation of Sullivan et al. (2013) and best fit for the 

results of time history analyses of elastic SDOF systems 

Most recently, Welch (2016) updated the DAFmax formulations of Sullivan et al. (2013), and Calvi 

and Sullivan (2014) to include the influence of the primary structure damping ξp along with non-

structural damping ξNS (Equation (6.3)). This formulation is presented along with the data from 

this current study in Figure 6.3. A regression analysis was conducted to find the best fit for the 

data in the form of 𝐷𝐴𝐹𝑚𝑎𝑥 = (𝑎𝜉𝑝 + 𝜉𝑁𝑆)
𝑏 where a and b are the dependable variables. Equation 

(6.6) was found to be the best fit with an R2 value of 0.61. This is a better fit to the data set 

compared to Equation (6.5), which only included the effects of non-structural damping, consistent 

with the observations of Welch (2016). The disparity between the Welch (2016) formulation and 

best fit of the data is small and limited to a small range of primary and non-structural damping 

ratios. Thus, an updated formulation for DAFmax based on the best fit of the current data set was 

not warranted, and the Welch (2016) formulation was adopted in this study. 

 𝐷𝐴𝐹𝑚𝑎𝑥 = (0.25𝜉𝑝 + 𝜉𝑁𝑆) 
−0.646  𝑓𝑜𝑟  𝑇𝑖 ≥ 𝑇𝐵  (6.6) 

where Ti is the elastic period of the primary structure for mode i. 
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* All Data represents DAFmax values for each combination of ground 
acceleration record, primary structure period, primary structure damping ratio, 
and non-structural element damping ratio. 

Figure 6.3 Comparison between the DAFmax formulation of Welch (2016) and best fit for the results 

of time history analyses of elastic SDOF systems 

6.3 Maximum Dynamic Amplification Factor in Inelastic SDOF Systems 

To investigate the effects of inelastic structural response on DAFmax, non-linear time history 

analysis (NLTHA) of inelastic SDOF systems was conducted at varying levels of intensity. Figures 

6.4 and 6.5 are representative of the trends observed in the analysis results for the various 

combinations of primary structure period, primary structure damping ratio, and non-structural 

element damping ratio.  

As Figures 6.4 and 6.5 show, DAFmax values generally decrease with increasing ductility for both 

the Modified Takeda and flag-shaped hysteresis models (Carr, 2004). This indicates that the 

existing formulations for DAFmax, which were empirically derived from elastically responding 

SDOF systems, represent an upper bound for DAFmax. Thus, the existing formulations are expected 

to be conservative and suitable for use in buildings responding non-linearly.   

However, for the flag-shaped hysteresis, there is a sharp increase in DAFmax when going from 

elastic deformation (ductility less than 1.0) to low levels of inelastic deformation (ductility slightly 
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higher than 1.0). This increase in DAFmax might be caused by numerical issues arising from the 

idealization of the flag-shaped hysteresis with sharp corners (briefly discussed in Section 5.2.4). 

Floor acceleration spikes in rocking systems have been shown to be sensitive to the roundness of 

the flag-shaped hysteresis with sharper corners potentially causing higher spikes (Wiebe and 

Christopoulos, 2011). Applying rounded corners has been shown to mitigate this issue so future 

work could replicate the NLTHA with a round-cornered flag-shaped hysteresis to check if the 

increase in DAFmax for low ductility values is a numerical issue  

 

* Each data point represents mean DAFmax and ductility values of 32 records 
scaled to the same intensity. 

Figure 6.4 The influence of increasing ductility demands on DAFmax for SDOF systems modelled 

with a Modified Takeda hysteresis (Carr, 2004) at varying levels of non-structural element 

damping; Tp = 1 sec; ξp = 5% 
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* Each data point represents the mean DAFmax and ductility values of 32 
records scaled to the same intensity. 

Figure 6.5 The influence of increasing ductility demands on DAFmax for SDOF systems modelled 

with a Flag-Shaped hysteresis (Carr, 2004) at varying levels of non-structural element damping; Tp 

= 1 sec; ξp = 5% 

6.4 Concluding Remarks 

The DAFmax formulations of Sullivan et al. (2013) and Welch (2016) were in good agreement with 

the current data set for primary structural periods beyond TB = 0.3 sec. Thus, the most recent 

relationship for DAFmax proposed by Welch (2016) was adopted in this study.  

Furthermore, the effects of inelastic structural response on DAFmax were investigated. Increasing 

ductility demands were generally associated with lower DAFmax values. Hence, the simplified 

DAFmax formulations for elastic systems can be considered conservative and acceptable for 

buildings responding non-linearly. 

Noting the strong relationship between DAFmax and damping, future studies should explore the 

sensitivity of the proposed DAFmax formulations to the damping model employed. In this study, 

the elastic damping the primary structure was modelled using a Rayleigh tangent-stiffness 

proportional damping model. Thus, future studies could replicate the study described in this 

chapter using different damping models to study the relationship between DAFmax and the damping 

model employed.
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7 METHODOLOGIES FOR THE ESTIMATION OF FLOOR 

RESPONSE SPECTRA IN RC AND ROCKING WALL 

BUILDINGS RESPONDING NON-LINEARLY 

In this chapter, several methodologies are developed for the estimation of floor response spectra 

in RC and rocking wall buildings. As discussed in Section 3.2.2, Calvi and Sullivan (2014) 

proposed a simple procedure for the estimation of floor response spectra in MDOF buildings 

responding elastically. The work summarized in this chapter extends this procedure to RC and 

rocking wall buildings responding non-linearly.  

7.1 Estimation of Ductility Demand 

In order to develop procedures for the estimation of floor response spectra in buildings responding 

non-linearly, it is important to have a reliable estimate of the buildings’ ductility as it quantifies 

the extent of inelastic behavior. From the NLTHA of the case-study buildings, ductility was 

measured on a record-by-record basis for each earthquake intensity under consideration 

(Intensities 1, 5, and 6). This is in line with the work of Welch (2016) who also found that ductility 

demands estimated using approximate procedures such as the ones presented below were 

comparable to simpler practice-oriented estimates of ductility demand. The following sections 

detail how ductility was estimated for the two types of structural systems considered. 

7.1.1 RC Wall Buildings 

For RC walls, displacement ductility is defined as the maximum displacement of the wall at the 

effective height divided by the yield displacement of the wall at the effective height (Priestley et 

al., 2007). The effective height of the walls is determined as: 

 
𝐻𝑒 =

∑ 𝑚𝑖∆𝑖𝐻𝑖
𝑛
𝑖=1

∑ 𝑚𝑖∆𝑖
𝑛
𝑖=1

 
 

(7.1) 
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where mi is the mass of each floor, Δi is the design displacement of each floor, and Hi is the height 

of each floor. 

The yield displacement at the effective height of the wall is given by:  

 
∆𝑦,𝐻𝑒= 

𝜀𝑦

𝑙𝑤
𝐻𝑒

2 (1 −
𝐻𝑒
3𝐻𝑛

) 

 

(7.2) 

where εy is the yield strain of the longitudinal reinforcement, lw is the length of the wall, and Hn is 

the height of the wall. 

Effective heights and yield displacements were calculated during the displacement-based design 

of the case study buildings (refer to Section 4.3). For clarity, the design outcomes have been 

repeated in this section as Table 7.1.  

Table 7.1 Effective heights and yield displacements at effective height for the RC wall buildings 

 He (m) He/Hn Δy,He (m) 

4 Story 9.11 0.759 0.043 

8 Story 17.43 0.726 0.095 

12 Story 25.85 0.718 0.162 

7.1.2 Rocking Wall Buildings 

Similar to the RC walls, displacement ductility of rocking walls can be defined as the maximum 

displacement of the wall at the effective height divided by the yield displacement of the wall at the 

effective height (Pennucci et al., 2009). The effective height is calculated with Equation (7.1). The 

yield displacement at the effective height can be determined as: 

 
∆𝑦,𝐻𝑒= 0.5𝜙𝑏 [𝐻𝑒

2 −
𝐻𝑒
3

2𝐻𝑛
+

𝐻𝑒
5

20𝐻𝑛
3] + 𝜃𝑦_𝑏𝑎𝑠𝑒𝐻𝑒 

(7.3) 

where Hn is the height of the wall, ɸb is the curvature at the base of the wall, and Ɵy_base is the yield 

rotation of the wall/foundation connection. The wall base curvature is given by: 

 
𝜙𝑏 =

𝜙𝑦

𝛾
 

(7.4) 
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where ɸy is the yield curvature of the wall and ϒ is a curvature index which was taken as 3 in this 

current study (refer to Section 4.3.7 for more details). The yield curvature is given by: 

 𝜙𝑦 = 2
𝜀𝑦

𝑙𝑤
 (7.5) 

where ɛy is the yield strain of the wall longitudinal reinforcement and lw is the length of the wall. 

The yield rotation of the wall/foundation connection is given by: 

  
𝜃𝑦_𝑏𝑎𝑠𝑒 =

𝜀𝑚𝑦(𝑙𝑢𝑏_𝑚𝑠 + 2Δ𝑠𝑝)

𝑙𝑤(1 − 𝑣) − 𝑑𝐴𝑆
 

(7.6) 

where ɛmy is the yield strain of mild steel, lub_ms is the mild steel unbonded length, dAS is the distance 

from the tension face of the wall to the centroid of mild steel, v is the normalized depth of 

compression area at yielding and Δsp is the strain penetration which is given by: 

 Δ𝑠𝑝 = 0.022f𝑚𝑦d𝑚𝑏 (7.7) 

where fmy is the mild steel yield stress and dmb is the mild steel bar diameter. 

Effective heights and yield displacements were calculated during the displacement-based design 

of the case study buildings (refer to Section 4.3). For clarity, the design outcomes have been 

repeated in this section as Table 7.2.  

Table 7.2 Effective heights and yield displacements at effective height for the rocking wall buildings 

 He (m) He/Hn Δy,He (m) 

4 Story 8.94 0.745 0.020 

8 Story 17.00 0.708 0.039 

12 Story 25.05 0.696 0.063 

7.1.3 Summary of Ductility Demands from NLTHA 

Using the procedures in the previous sub-sections, ductility was computed on a record-by-record 

basis for each of the earthquake intensities under consideration. Mean ductility demands were then 

calculated for each combination of case study building and earthquake intensity, which are 

presented in Table 7.3.  
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Table 7.3 Mean ductility demand estimates from the NLTHA of case study buildings 

 Ductility Demand, μ 

Structural System Intensity 4-story 8-story 12-story 

RC Walls 

1 2.02 1.43 1.15 

5* 4.52 3.04 2.06 

6** 7.28 4.71 2.96 

Rocking Walls 

1 3.80 3.25 2.40 

5* 10.44 7.36 5.28 

6** 18.46 12.12 8.58 

*   Design basis earthquake (DBE) intensity 
** Maximum considered earthquake (MCE) intensity 

7.2 Estimation of Floor Response Spectra using Transitory Inelastic Modal 

Characteristics  

Calvi and Sullivan (2014) proposed a procedure for estimating floor response spectra atop elastic 

MDOF systems in which individual modal floor spectra are combined using modal superposition 

to generate floor response spectra at each floor level. The modal floor spectra are generated by 

first obtaining the elastic PFA contributions from each mode using a traditional modal response 

spectrum method. The modal PFA contributions are then scaled by empirical dynamic 

amplification factors (DAF) to obtain spectral floor acceleration demands for each mode (refer to 

Section 3.2.2 for a more details on the procedure). 

To adapt this procedure to MDOF buildings responding non-linearly, it is proposed that inelastic 

modal PFA contributions be obtained using transitory modal characteristics instead of elastic 

modal characteristics to take into account the inelastic response of the building. The concept of 

transitory inelastic modes of vibration was put forward by Sullivan et al. (2006) to estimate the 

higher mode response of ductile structures. It was hypothesized that the development of inelasticity 

in structures is controlled by the first mode response. Thus, higher mode response must be 

characterized by taking into account the inelasticity caused by the first mode response (Sullivan et 

al., 2008). To this end, higher mode response is determined using transitory modal characteristics 

that are obtained through an eigen-value analysis using a tangent or unloading stiffness (instead of 



 

118 
 

the elastic stiffness) for the plastic hinge region. Therefore, this approach takes into account the 

loss of stiffness that is expected in plastic hinge regions due to inelastic response. 

Once the modal PFA contributions are determined using transitory inelastic modal characteristics, 

they can then be scaled by the same empirical dynamic amplification factors (DAF) calibrated for 

elastic systems to obtain spectral floor acceleration demands for each mode. As discussed in 

Section 6.3, the DAFmax formulations that were adopted in the present study were shown to be 

conservative for structures responding non-linearly. Thus, if PFAs can be accurately estimated 

using transitory modal characteristics, the existing formulations for DAF can be used to generate 

a floor response spectrum for a structure responding non-linearly. 

7.2.1 Estimation of Transitory Inelastic Modal Characteristics 

In order to obtain the transitory inelastic modal periods and mode shapes, an eigen-value analysis 

can be conducted on a model of the supporting structure with a rotational spring placed at the 

location of concentrated inelastic behavior (i.e. plastic hinge regions and rocking joints). The 

rotational spring is then assigned the secant stiffness of the structural system, which can be 

calculated based on the expected ductility of the structural system. For both types of structural 

systems studied, Figure 7.1 shows a schematic representation of the RUAUMOKO2D models used 

to obtain the transitory modal characteristics.  

 

Figure 7.1 Diagram of the model used to obtain transitory modal characteristics for the case study 

buildings (left) and diagram showing the secant stiffness of a structural system (right) 
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For RC wall buildings, the secant stiffness Ke,RC can be calculated as: 

 

𝐾𝑒,𝑅𝐶 =

𝑀𝑦 + 𝑟
𝐾𝑖,𝜙
𝐿𝑝

[
(𝜇 − 1)∆𝑦,𝐻𝑒

𝐻𝑒
] 

𝜙𝑦𝐿𝑝 +
(𝜇 − 1)∆𝑦,𝐻𝑒

𝐻𝑒

 ;    𝜇 ≥ 1 

(7.8) 

where My is the yield moment capacity of the wall,  r is the global post yield stiffness ratio, and 

Ki,ϕ is the elastic stiffness of the wall in terms of moment-curvature. The term μ is the expected 

ductility of the structural system. ϕy is the yield curvature of the wall, and Lp is the plastic hinge 

length. The term He is the effective height of the wall which can be determined using Equation 

(7.1). The term Δy,He is the yield displacement of the wall at the effective height of the wall 

determined using Equation (7.2). Note that if μ = 1, the secant stiffness Ke is equal to the elastic 

stiffness of the wall.  

For rocking wall buildings, the secant stiffness Ke,rock can be calculated as: 

 

𝐾𝑒,𝑟𝑜𝑐𝑘 =
𝑀𝑦 + 𝑟𝐾𝑖,𝜃 [

(𝜇 − 1)∆𝑦,𝐻𝑒
𝐻𝑒

] 

𝜃𝑦_𝑏𝑎𝑠𝑒 +
(𝜇 − 1)∆𝑦,𝐻𝑒

𝐻𝑒

 ;    𝜇 ≥ 1 

(7.9) 

where Ki,Ѳ is the elastic stiffness of the rocking joint in terms of moment-rotation, and Ѳy_base is the 

yield base rotation of the wall. The term He is the effective height of the wall which can be 

determined using Equation (7.1). The term Δy,He is yield displacement of the wall at the effective 

height of the wall determined using Equation (7.3). 

Based on the relationships outlined above and the estimated ductility of the case-study buildings 

in Table 7.3, the secant stiffness values were calculated for all case-study buildings and earthquake 

intensities considered (Table 7.4). The secant stiffness values were then used in an Eigen-value 

analysis of the case-study buildings (using the RUAUMOKO2D model depicted in Figure 7.1) to 

obtain the transitory modal characteristics, which are presented in Appendix A.  
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Table 7.4 Secant stiffness values for the case study buildings 

 Secant Stiffness, Ke (MN-m/rad) 

Structural System Intensity 4 Story 8 Story 12 Story 

RC Walls 

1 491 3209 8425 

5* 189 1045 2650 

6** 122 651 1635 

Rocking Walls 

1 313 1336 2938 

5* 125 583 1182 

6** 85 389 754 

*   Design basis earthquake (DBE) intensity 
** Maximum considered earthquake (MCE) intensity 

7.2.2 Estimation of Peak Floor Accelerations 

Once the transitory modal periods and mode shapes are determined using eigen-value analysis, the 

modal contributions to the PFA can be determined using a traditional modal response spectrum 

method.  Mathematically, the contributions are determined by: 

 
𝑎𝑚𝑎𝑥,𝑗,𝑖 = {

𝜙𝑡,𝑗,𝑖Γ𝑡,𝑖𝑆𝑎(𝑇𝑖,𝑒 , 𝜉𝑝,𝑒𝑞)          𝑓𝑜𝑟 𝑖 = 1             

𝜙𝑡,𝑗,𝑖Γ𝑡,𝑖𝑆𝑎(𝑇𝑖,𝑒 , 𝜉𝑝)           𝑓𝑜𝑟 𝑖 > 1          
 

(7.10) 

where amax,j,i is the floor acceleration at floor level j from mode i, ɸt,j,i is the transitory mode shape 

for floor level j and mode i, and Γt,i is transitory modal participation factor for mode i. The term 

Ti,e is the effective period of the supporting structure for mode i, which is to be taken as the 

transitory modal period for mode i. The term Sa(Ti,e ,ξp) is the spectral acceleration demand for 

higher mode i obtained from the design ground response spectrum at the elastic primary damping 

ratio ξp. The term Sa(Ti,e ,ξp,eq) is spectral acceleration demand for the first mode obtained from the 

design ground response spectrum at the equivalent viscous damping ratio of the primary structure, 

which is given by Equation (7.11). 

 𝜉𝑝,𝑒𝑞 = 𝜉𝑝 + 𝜉ℎ𝑦𝑠𝑡 (7.11) 

where ξhyst is hysteretic damping and ξp is elastic primary damping of the structure, assumed to be 

5% for both RC and rocking walls. 
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An equivalent viscous damping is proposed for the first mode to take into account the added 

hysteretic damping resulting from inelastic deformations. The hysteretic damping is dependent on 

the structural system in use and the expected ductility of the system (refer to Section 4.3.3 for more 

details). As Sullivan et al. (2008) and others note, the higher mode response is not affected by 

inelastic deformation to the same extent as the first mode response. Thus, the consideration of 

hysteretic damping is not proposed for the higher modes.  

The equivalent viscous damping for RC walls is given by (Priestley et al., 2007): 

 
𝜉𝑒𝑞,𝑅𝐶 = 0.05 + 0.444 (

𝜇 − 1

𝜇𝜋
) (7.12) 

where μ is the expected ductility. 

The equivalent viscous damping for rocking walls can be approximated by Equation (7.13), which 

was derived for a ratio between post-tensioning and mild steel bending resistance λ = 1.25 and 

post-yield global stiffness factor r = 0 (Pennucci et al., 2009). Refer to Section 4.3.7  for more 

details on equivalent viscous damping in rocking walls. 

 
𝜉𝑒𝑞,𝑟𝑜𝑐𝑘 = 0.05 + 0.524 (

𝜇 − 1

𝜇𝜋
) (7.13) 

Once the modal contributions to the PFA are determined following the steps summarized above, 

the PFA can be calculated using the SRSS rule as: 

 

𝑃𝐹𝐴𝑆𝑅𝑆𝑆,𝑗 = √∑[𝑎𝑚𝑎𝑥,𝑡,𝑗,𝑖]2
𝑛𝑚

𝑖=1

 

(7.14) 

Where nm is the number of modes under consideration. 

In line with the recommendations of Calvi and Sullivan (2014) and Welch (2016), it is proposed 

that the PFA for the lower half of MDOF buildings be taken as the maximum of the peak ground 

acceleration (PGA) and the SRSS PFA determined by the modal superposition approach discussed 

above. This is proposed to capture the limited higher mode filtering of ground motions (rigid mode 

response) that is expected in the lower levels of MDOF buildings (Calvi and Sullivan, 2014; 

Welch, 2016). Thus, the PFA at any given floor level j can be determined as: 
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𝑃𝐹𝐴𝑗 =

{
 

 max(𝑃𝐹𝐴𝑆𝑅𝑆𝑆,𝑗, 𝑃𝐺𝐴)      𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
< 0.5                

𝑃𝐹𝐴𝑆𝑅𝑆𝑆,𝑗                       𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
≥ 0.5            

 

(7.15) 

where Hj is the height of floor level j, and Hn is the height of the roof level.  

To analyze how well transitory modal characteristics predict the PFA, mean PFAs from the 

NLTHA of the case study buildings were compared to PFAs estimated using the steps outlined 

above.  

The comparisons for the RC wall buildings at Intensities 1, 5 and 6 are presented in Figures 7.2 to 

7.4. It can be seen that the PFA estimates are comparable to the mean PFA values from the NLTHA 

for all three earthquake intensities, with slightly non-conservative estimates at all floor levels. 

However, the estimates improved with increasing earthquake intensity, which might be an 

indication that transitory modal properties are better at estimating structural response at high 

ductility demands.  

 

Figure 7.2 Comparison between PFA estimates using transitory modes and NLTHA mean PFA for 

RC wall buildings under Intensity 1: (a) 4-Story; (b) 8-story; (c) 12-story 
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Figure 7.3 Comparison between PFA estimates using transitory modes and NLTHA mean PFA for 

RC wall buildings under Intensity 5: (a) 4-Story; (b) 8-story; (c) 12-story 

 

Figure 7.4 Comparison between PFA estimates using transitory modes and NLTHA mean PFA for 

RC wall buildings under Intensity 6: (a) 4-Story; (b) 8-story; (c) 12-story 

The comparisons for the rocking wall buildings at Intensities 1, 5 and 6 are presented in Figures 

7.5 to 7.7. Overall, there was very good agreement between the PFA estimates and the mean PFA 

values from the NLTHA, with slightly non-conservative estimates for the lower floor levels. This 

trend was consistent over all three earthquake intensities.  

 

Figure 7.5 Comparison between PFA estimates using transitory modes and NLTHA mean PFA for 

rocking wall buildings under Intensity 1: (a) 4-Story; (b) 8-story; (c) 12-story 
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Figure 7.6 Comparison between PFA estimates using transitory modes and NLTHA mean PFA for 

rocking wall buildings under Intensity 5: (a) 4-Story; (b) 8-story; (c) 12-story 

 

Figure 7.7 Comparison between PFA estimates using transitory modes and NLTHA mean PFA for 

rocking wall buildings under Intensity 6: (a) 4-Story; (b) 8-story; (c) 12-story 

7.2.3 Estimation of Floor Response Spectra 

Once the modal contributions to the PFA are determined using transitory modes, the individual 

modal contributions am,j,i(T) to the floor response spectrum are given by: 

 

𝑎𝑚,𝑗,𝑖(𝑇) =

{
 

 (
𝑇

𝑇𝑖
) [𝑎𝑚𝑎𝑥,𝑗,𝑖(𝐷𝐴𝐹𝑚𝑎𝑥 − 1)] + 𝑎𝑚𝑎𝑥,𝑗,𝑖       𝑓𝑜𝑟 𝑇 < 𝑇𝑖          

𝑎𝑚𝑎𝑥,𝑗,𝑖𝐷𝐴𝐹𝑚𝑎𝑥                                              𝑓𝑜𝑟 𝑇𝑖 ≤ 𝑇 ≤ 𝑇𝑖,𝑒
𝑎𝑚𝑎𝑥𝐷𝐴𝐹                                                         𝑓𝑜𝑟 𝑇 > 𝑇𝑖,𝑒          

 

(7.16) 

where T is the spectral period of interest, and Ti is the elastic period of the supporting structure for 

mode i, which is obtained through traditional eigen-value analysis of the supporting structure. 

DAFmax and DAF are estimated using Equations (7.17) and (7.18), respectively (Welch, 2016). 
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𝐷𝐴𝐹𝑚𝑎𝑥 = {

(0.55 + 0.45
𝑇𝑖
𝑇𝐵
) (0.5𝜉𝑝 + 𝜉𝑁𝑆) 

−0.667      𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵                 

(0.5𝜉𝑝 + 𝜉𝑁𝑆) 
−0.667                             𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵       

 (7.17) 

 

 

𝐷𝐴𝐹 =

{
 
 

 
 
 (0.55 + 0.45

𝑇𝑖
𝑇𝐵
) [(1 −

𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

 𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵           

 [(1 −
𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

                       𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵

  

(7.18) 

where ξp is the elastic damping of the primary structure, and ξNS is the elastic damping of the non-

structural element. The term TB is taken as 0.3 sec. 

The individual modal contributions to the floor response spectrum are then combined using modal 

superposition to give the SRSS spectral floor response at a given period T: 

 

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆 = √∑[𝑎𝑚,𝑗,𝑖(𝑇)]2
𝑛𝑚

𝑖=1

 

(7.19) 

where nm is the number of modes being considered.  

The final spectral floor acceleration SFAj(T) is given by Equation (7.20) which takes into account 

rigid mode response observed in the lower levels of MDOF systems (Calvi and Sullivan, 2014; 

Welch, 2016). 

 

𝑆𝐹𝐴𝑗(𝑇) =

{
 

 max (𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆, 𝑆𝑎(𝑇, 𝜉𝑁𝑆))      𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
< 0.5                

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆                        𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
≥ 0.5

 

(7.20) 

where Hj is the height of floor level j, and Hn is the height of the roof level. The term Sa(T,ξNS) is 

the spectral acceleration demand at period T obtained from the design ground response spectrum 

at the elastic non-structural element damping ratio ξNS.  

7.2.4 Comparison between Floor Response Spectra Estimates and NLTHA Results 

The following section presents the floor response spectra estimates obtained using the procedures 

outlined in the previous sub-sections along with the mean floor response spectra from the NLTHA 
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of the case study buildings.  The comparisons are presented for the 4-story case study buildings at 

Intensities 1, 5 and 6, and 2% non-structural damping ξNS. Corresponding comparisons for all case 

study buildings and non-structural damping ratios can be found in Appendix C. 

The comparisons for the 4-story RC wall building are shown in Figures 7.8 to 7.10. These results 

are considered representative of the results of the 8- and 12-story case study buildings. Only the 

first three modes of vibration were used to estimate floor spectra. In general, there was very good 

agreement between floor spectra estimates and NLTHA results. Peak spectral acceleration 

demands were well predicted using the proposed procedure. Period elongation and the resulting 

“plateau” in peak spectral acceleration demands were also well predicted. However, for Intensity 

1, the first mode contribution was underestimated for the 4-story building (Figure 7.8). For 

Intensities 5 and 6, the second mode contribution was slightly overestimated at some floor levels 

(Figures 7.9 and 7.10). 

 

Figure 7.8 Comparison between mean floor spectra from NLTHA and estimates using transitory 

modal properties; 4-story RC wall building, Intensity 1 (PGA = 0.225 g), ξNS = 2% 
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Figure 7.9 Comparison between mean floor spectra from NLTHA and estimates using transitory 

modal properties; 4-story RC wall building, Intensity 5 (PGA = 0.450g), ξNS = 2% 

  

  

Figure 7.10 Comparison between mean floor spectra from NLTHA and estimates using transitory 

modal properties; 4-story RC wall building, Intensity 6 (PGA = 0.675g), ξNS = 2% 
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The comparisons for the 4-story rocking wall building are presented in Figures 7.11 to 7.13. These 

results are considered representative of the results of the 8- and 12-story case study buildings. 

Similar to the RC wall buildings, only the first three modes of vibration were used to estimate the 

floor response spectra in the rocking wall buildings. This appears to be satisfactory in giving 

reasonable floor spectra estimates. Both peak spectral acceleration demands and period elongation 

were well predicted for all case-study buildings.  However, first mode contributions were 

underestimated for the 4- and 8-story buildings at Intensity 1 (Figure 7.11).  

Rigid mode response was observed in the lower levels of the rocking wall buildings. This is most 

apparent in the first floor of the 4-story building in which the NLTHA mean floor response spectra 

resembles the design ground spectrum with the exception of the second modal peak (Figure 7.11). 

To this end, it can be observed that taking an envelope of the design ground spectrum and the floor 

response spectrum obtained through modal superposition appears to capture the rigid body 

response very well. 

Consistent with the trends observed in the estimation of PFA, floor spectra estimates improved 

with increasing earthquake intensity (i.e. ductility), which indicates that transitory modal 

properties might be better at estimating structural response at high ductility demands (Figures 7.12 

and 7.13). 
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Figure 7.11 Comparison between mean floor spectra from NLTHA and estimates using transitory 

modal properties; 4-story rocking wall building, Intensity 1 (PGA = 0.225 g), ξNS = 2% 

 

 

Figure 7.12 Comparison between mean floor spectra from NLTHA and estimates using transitory 

modal properties; 4-story rocking wall building, Intensity 5 (PGA = 0.450g), ξNS = 2% 
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Figure 7.13 Comparison between mean floor spectra from NLTHA and estimates using transitory 

modal properties; 4-story rocking wall building, Intensity 6 (PGA = 0.675g), ξNS = 2% 

7.2.5 Issues with Using Transitory Modal Characteristics 

In the previous sub-sections, it has been proposed that different modal contributions be combined 

using an SRSS modal superposition in both the estimation of PFAs and floor response spectra. 

However, as Sullivan et al. (2008) note, traditional modal superposition methods, including SRSS, 

are not theoretically valid for inelastic systems since they were developed with linear random 

vibration theory. Nevertheless, Sullivan et al. (2008) used an SRSS approach and were able to 

show improved characterization of higher modes acting during non-linear response using 

transitory modal properties compared to elastic modal properties. Similarly, it has been shown in 

the previous sub-sections that reasonable estimates of the PFA and the floor response spectra can 

be obtained using transitory modal characteristics and an SRSS modal superposition method. 

It is important to note that the procedure outlined in the previous sub-sections may not be suitable 

for structural systems characterized by the activation of more than one plastic mechanism, such as 

moment frames or dual systems. For instance, Sullivan et al. (2008) looked at RC Frame-Wall 

structures, and noted that a number of different stiffness distributions need to be accounted for 

when determining transitory modal characteristics in systems with multiple plastic hinge locations. 
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Assuming the first mode causes the development of a plastic mechanism, determining the stiffness 

of each of the plastic hinges is not straightforward. Thus, Sullivan et al. (2008) proposed that the 

transitory modal characteristics be determined at maximum response assuming a tangent stiffness 

(approximated as zero) at all plastic hinge locations. This is expected to provide an upper bound 

for the transitory modal characteristics. Thus, inelastic behavior and consequently floor response 

spectra may be estimated with this approach but might be limited to maximum structural response 

for structural systems with more than one location of concentrated inelastic behavior. In any case, 

the development of procedures to estimate transitory modal characteristics for structural systems 

with more than one plastic mechanism is not within the scope of this work and should be addressed 

in future research efforts.   

7.3 Estimation of Floor Response Spectra using Empirical Modal Reduction 

Factors 

A common practice in the seismic design of structures is to obtain the seismic design loads 

assuming a structure will respond elastically and then reducing the loads by means of empirical 

response modification factors to account for the structure’s non-linear response. Typically, the 

modification factors are dependent on the expected ductility of the structural system in use. Some 

researchers (Sankaranarayanan, 2007; Welch, 2016; amongst others) have proposed a similar 

design process for light acceleration sensitive non-structural elements. In this context, it has been 

proposed that the floor response spectra be first determined assuming the supporting structure 

behaves elastically, and that the floor spectra be subsequently reduced based on the inelasticity 

expected in the system. This section explores such a procedure, which was proposed by Welch 

(2016) for RC wall and steel moment resisting frame (MRF) buildings.  

The procedure discussed by Welch (2016) to estimate floor spectra in non-linear MDOF systems 

involves reducing the elastic modal floor response spectra using empirical modal reduction factors 

that are dependent on the ductility of the supporting structure. The reduced modal floor response 

spectra are then combined using an SRSS modal combination rule to obtain floor response spectra 

that account for the effects of multiple modes and the inelasticity expected in the primary structural 

system. In this section, the procedure that Welch (2016) proposed for RC wall buildings is tested 

using a new set of ground motions and case study buildings.  In addition, the procedure is extended 

for use with rocking wall buildings.  
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7.3.1 Quantifying Modal Reduction Factors 

The use of distinct reduction factors for each mode was proposed by Welch (2016) to account for 

the decreased rate of reduction in spectral acceleration response observed with increasing order of 

modes during non-linear response. This was also observed in this study (refer to Section 5.3.1) as 

well as by Sankaranarayanan (2007), amongst others. 

In order to account for the non-linear response expected in the primary structure, Welch (2016) 

proposed a simple relationship between the reduction in spectral acceleration demand and the 

expected ductility of the primary structure. The reduction was quantified through a regression 

analysis in the form of Equation (7.21). 

 𝑅𝑖 = 𝜇𝛼𝑖 (7.21) 

where Ri is the reduction factor for mode i, μ is the estimated ductility demand of the 

primary/supporting structural system, and αi is the exponent governing the rate of reduction in 

mode i. 

For the regression analysis, Welch (2016) ran time history analyses of case-study structures 

responding both linearly and non-linearly under a large suite of ground motion records. Empirical 

modal reduction factors were then obtained on a record-by-record basis. A modal reduction factor 

is the ratio of the spectral floor acceleration (SFA) from linear response to that of the corresponding 

non-linear response (Equation (7.22)).  Figure 7.14 presents an illustration of how this regression 

analysis was conducted. 

 
𝑅𝑖,𝑆𝑖𝑛𝑔𝑙𝑒 𝑅𝑒𝑐𝑜𝑟𝑑 =

𝑆𝐹𝐴(𝑇𝑖)𝐿
𝑆𝐹𝐴(𝑇𝑖)𝑁𝐿

 
(7.22) 

where SFA(Ti) is the spectral floor acceleration at the period of mode i. The subscripts L and NL 

represent the linear and non-linear response cases, respectively.  
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Figure 7.14 Illustration of modal reduction factors for individual accelerograms (left) and example 

of regression model used (right) (Welch, 2016) 

The regression analysis described above was replicated in this study for RC and rocking wall 

buildings. Both linear and non-linear time history analyses of the case-study buildings were 

conducted at six intensity levels (refer to Section 4.5.2). The results of these analyses were then 

used to perform the regression analysis. 

The regression analysis was conducted using floor response spectra at the roof level. This is 

consistent with the analysis conducted by Welch (2016) who noted that mode shapes are typically 

normalized to the roof level, which should allow for differences in mode shapes to be reasonably 

accounted for, during modal superposition.  The analysis was conducted for ductility values 

ranging from 1.0 to 5.0 for the RC walls (Welch, 2016) and from 1.0 to 15.0 for the rocking walls. 

Any data point outside of this range was omitted from the analysis. The raw data was also adjusted 

during the regression analysis to allow for better tracking of how increasing ductility demands 

affect acceleration peaks (Welch, 2016). Each reduction factor corresponding to an acceleration 

record was normalized by a reduction factor obtained at an intensity level resulting in a ductility 

closest to 1.0 (in the range of 0.9 to 1.1). Thus, a ductility of 1.0 corresponds to a reduction factor 

of 1.0 for each acceleration record. 

The regression analysis was independent of building height and non-structural damping ratio. 

Thus, the reduction factors for each of the case study buildings (4-, 8- and 12-stories) and non-

structural damping ratios (ξNS = 2%, 5%, 10% and 20%) were collectively used for the regression. 
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Figures 7.15 and 7.16 present the results of the regression analysis for the RC and rocking wall 

buildings, respectively. For the RC wall buildings, the results from this study are shown alongside 

the recommendations of Welch (2016).  

For all three modes, the scatter in the reduction factors increased with increasing ductility for both 

structural wall systems. In addition, the reduction in SFA resulting from inelastic structural 

response significantly reduced with increasing order of modes. Comparing the two structural 

systems, for the same increment in ductility, a higher reduction should be expected in the RC wall 

buildings for all three modes. This supports the notion that RC wall buildings dissipate more 

energy compared to their rocking wall counterparts, for the same ductility demand.  

For the RC wall buildings, the αi values recommended by Welch (2016) have very good agreement 

with the data from the present study with the exception of the third mode. For the third mode, 

Welch (2016) recommended an αi value of zero based on observations made through a regression 

analysis of local maxima of median response, which was not conducted in the present study. In 

addition to the record-by-record regression, Welch (2016) conducted a regression on median floor 

response spectra in which reduction factors were still quantified in the form of Equation (7.22), 

but SFA(Ti)NL was determined as a local maximum. Thus, SFA(Ti)NL was obtained as the maximum 

SFA around the vicinity of the elastic modal period instead of the SFA at the elastic modal period. 

This was done to capture the influence of period elongation on the reduction of SFA during non-

linear response. From this regression analysis, Welch (2016) observed negligible reduction and in 

some cases even amplification in SFA demands for the third mode, which prompted the 

recommendation of αi = 0 for the third mode.  

In general, the RC wall modal reduction factors recommended by Welch (2016) were slightly 

conservative for the current data set. Thus, updated values based on the best fit of the current data 

set were not warranted, and the recommendations of Welch (2016) were adopted in the current 
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study.  A summary of the modal reduction factors recommended for both RC and rocking wall 

buildings is presented in Table 7.5. 

 

Figure 7.15 Regression analysis results to estimate SFA reduction factors for the first three modes 

of the RC wall case study buildings; fit using adjusted data at roof level and all non-structural 

damping ratios 

 

Figure 7.16 Regression analysis results to estimate SFA reduction factors for the first three modes 

of the rocking wall case study buildings; fit using adjusted data at roof level and all non-structural 

damping ratios 

Table 7.5 Generalized values of modal reduction factors for RC and rocking walls to estimate the 

expected reduction in SFA during non-linear structural response  

Structural System 

Mode 1 Mode 2 Mode 3 

α1 α2 α3 

RC Walls * 1.25 0.4 0 

Rocking Walls 0.75 0.20 0.18 

*Proposed by Welch (2016) 

Modal reduction factor taken as Ri = μα 
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7.3.2 Quantifying Period Elongation 

As discussed in Section 5.3.1, inelastic structural response leads to a “plateau” of peak SFA 

demands at modal periods. This is due to the modal periods of the supporting structure lengthening 

as the supporting structure deforms non-linearly. Thus, peak SFA demands occur over a range of 

periods starting at the elastic period and ending at the effective period of the primary structure. It 

was also observed that the extent of period elongation decreases with increasing order of modes. 

In order to capture this “plateau” in peak SFA demands, approximations for the effective periods 

of RC and rocking wall buildings are proposed in this section. 

For both RC and rocking wall buildings, the effective period for the first mode can be calculated 

as: 

 
𝑇1,𝑒 = 𝑇1√

𝜇

[1 + 𝑟(𝜇 − 1)]
 

(7.23) 

where T1,e is the effective first mode period, T1 is the elastic first mode period, and r is the global 

strain hardening factor. 

For the effective second mode period of RC wall buildings, Welch (2016) proposed an 

approximation based on continuum mechanics of fully-fixed and fully-pinned cantilever beams 

with the same distributed mass and sectional properties. For fully-fixed cantilever beams, the 

theoretical second mode period can be approximated by Equation (7.24) (Chopra, 2001).  If a fully-

fixed cantilever beam goes through inelastic deformation and becomes a fully-pinned cantilever 

beam, the second mode period can be approximated by Equation (7.25) (Pennucci et al., 2015).  

 
𝑇2,𝑓𝑖𝑥 = 0.285𝐿2√

𝑚

𝐸𝐼
 

(7.24) 

where L is the length, m is the uniformly distributed mass, and EI is the stiffness of the beam. 

 
𝑇2,𝑝𝑖𝑛 = 0.407𝐿

2√
𝑚

𝐸𝐼
 

(7.25) 

By comparing the coefficients of Equations (7.24) and (7.25), it can be seen that a 44% period 

elongation could be expected in the second mode when transitioning from a fully-fixed to a fully-

pinned cantilever beam.  
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In order to define a limit at which the plastic hinge of an RC wall building can be considered fully-

pinned, a ductility demand μpin of 5 was suggested by Pennucci et al. (2015). However, a lower 

value of 3.5 has also been suggested for coupled walls by Pennucci et al. (2011). For simplicity, 

Welch (2016) adopted a μpin of 5 and approximated the second mode period elongation as 50% at 

fully-pinned case. Mathematically, this is presented as Equation (7.26), which was adopted in this 

study.   

 

𝑇2,𝑒 =

{
 
 

 
 

𝑇2                     𝑓𝑜𝑟        𝜇 ≤ 1.0 

𝑇2 (1 + 0.5(
𝜇

𝜇𝑝𝑖𝑛
))      𝑓𝑜𝑟 1.0 < 𝜇 < 𝜇𝑝𝑖𝑛               

1.5𝑇2                𝑓𝑜𝑟         𝜇 ≥ 𝜇𝑝𝑖𝑛 

 (7.26) 

where T2,e is the effective second mode period, and T2 is the elastic second mode period. The term 

μpin is the ductility limit corresponding to the pinned behavior of higher modes. 

Similar to RC wall buildings, the second mode period for rocking wall buildings is also bounded 

by the periods of fully-fixed and fully-pinned cantilever beams. The difference between RC and 

rocking walls is in the ductility limit at which the wall can be considered fully-pinned. To the 

author’s knowledge, an appropriate ductility limit μpin has not be proposed in the literature. From 

the displacement-based design of rocking wall buildings, maximum ductility demands of 8.5 and 

13.3 were obtained in this study and by Pennucci et al. (2009), respectively. By considering these 

values, a conservative value of 13 is proposed for μpin until a reasonable estimate is proposed in 

future studies.  

As discussed in Section 5.3.1, negligible period elongation was observed in the third and higher 

modes for both the RC and rocking wall case study buildings. Thus, the inclusion of a “plateau” 

in peak SFA demands is not proposed for the third and higher modes for both RC and rocking wall 

buildings. 

7.3.3 Estimation of Floor Response Spectra 

The modal floor acceleration contributions amax,j,i for a given mode i at a floor level j is given by: 

 
𝑎𝑚𝑎𝑥,𝑗,𝑖 = 𝜙𝑗,𝑖Γ𝑖 (

𝑆𝑎(𝑇𝑖, 𝜉𝑝)

𝑅𝑖
) ;    𝑅𝑖 ≥ 1 

(7.27) 
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where Sa(Ti ,ξp) is the elastic spectral acceleration demand for the mode i obtained from the design 

ground response spectrum at the primary damping ratio. The term Ri is the modal reduction factor 

for mode i that accounts for the non-linear demands of the primary structure. 

Once the modal contributions to the PFA are determined, the individual modal contributions 

am,j,i(T) to the floor response spectrum are given by: 

 

𝑎𝑚,𝑗,𝑖(𝑇) =

{
 

 (
𝑇

𝑇𝑖
) [𝑎𝑚𝑎𝑥,𝑗,𝑖(𝐷𝐴𝐹𝑚𝑎𝑥 − 1)] + 𝑎𝑚𝑎𝑥,𝑗,𝑖       𝑓𝑜𝑟 𝑇 < 𝑇𝑖           

𝑎𝑚𝑎𝑥,𝑗,𝑖𝐷𝐴𝐹𝑚𝑎𝑥                                              𝑓𝑜𝑟 𝑇𝑖 ≤ 𝑇 ≤ 𝑇𝑖,𝑒
𝑎𝑚𝑎𝑥𝐷𝐴𝐹                                                         𝑓𝑜𝑟 𝑇 > 𝑇𝑖,𝑒          

 

(7.28) 

where T is the spectral period of interest, and Ti is the elastic period of the primary structure for 

mode i, and  Ti,e is the effective period of the primary structure for mode i. DAFmax and DAF are 

estimated using Equations (7.29) and (7.30), respectively (Welch, 2016). 

 
𝐷𝐴𝐹𝑚𝑎𝑥 = {

(0.55 + 0.45
𝑇𝑖
𝑇𝐵
) (0.5𝜉𝑝 + 𝜉𝑁𝑆) 

−0.667      𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵                 

(0.5𝜉𝑝 + 𝜉𝑁𝑆) 
−0.667                             𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵       

 (7.29) 

 

 

𝐷𝐴𝐹 =

{
 
 

 
 
 (0.55 + 0.45

𝑇𝑖
𝑇𝐵
) [(1 −

𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵        

 [(1 −
𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

                         𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵

  

(7.30) 

where ξp is the elastic damping of the primary structure, and ξNS is the elastic damping of the non-

structural element. The term TB is taken as 0.3 sec. 

The individual modal contributions to the floor response spectrum are then combined using modal 

superposition to give the SRSS spectral floor response at a given period T: 

 

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆 = √∑[𝑎𝑚,𝑗,𝑖(𝑇)]2
𝑛𝑚

𝑖=1

 

(7.31) 

where nm is the number of modes being considered.  
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The final spectral floor acceleration SFAj(T) is given by Equation (7.32), which takes into account 

rigid mode response observed in the lower levels of MDOF systems (Calvi and Sullivan, 2014; 

Welch, 2016). 

 

𝑆𝐹𝐴𝑗(𝑇) =

{
 

 max (𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆, 𝑆𝑎(𝑇, 𝜉𝑁𝑆))      𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
< 0.5                

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆                        𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
≥ 0.5

 

(7.32) 

 
where Hj is the height of floor level j, and Hn is the height of the roof level. The term Sa(T,ξNS) is 

the spectral acceleration demand at period T obtained from the design ground response spectrum 

at the elastic non-structural element damping ratio ξNS.  

7.3.4 Comparison between Floor Response Spectra Estimates and NLTHA Results 

The following section presents the floor response spectra estimates obtained using the procedures 

outlined above along with the mean floor response spectra from the NLTHA of the case study 

buildings.  The comparisons are presented for Intensity 5 and 2% non-structural damping ξNS. 

Corresponding comparisons for all intensities and non-structural damping ratios are presented in 

Appendix C. 

The comparisons for the RC wall buildings are presented in Figures 7.17 to 7.19. In general, the 

floor response spectra predictions were in good agreement with NLTHA results. Peak spectral 

accelerations as well as the “plateau” of the peaks were well predicted for the 8- and 12-story 

buildings. However, the first and second mode peak spectral accelerations were slightly 

underestimated for the 4-story building. This is reasonable considering the high ductility observed 

in the 4-story building relative to the 8- and 12-story buildings. As discussed Section 7.3.1, more 

scatter was observed in modal reduction factors for high ductility demands during the regression 

analysis.  
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Figure 7.17 Comparison between mean floor spectra from NLTHA and estimates using modal 

reduction factors; 4-story RC wall building, Intensity 5 (PGA = 0.450 g), ξNS = 2% 

  

  

Figure 7.18 Comparison between mean floor spectra from NLTHA and estimates using modal 

reduction factors; 8-story RC wall building, Intensity 5 (PGA = 0.450 g), ξNS = 2% 

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

NLTHA Mean

Predicted

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

NLTHA Mean

Predicted



 

141 
 

  

  

Figure 7.19 Comparison between mean floor spectra from NLTHA and estimates using modal 

reduction factors; 12-story RC wall building, Intensity 5 (PGA = 0.450 g), ξNS = 2% 

 

The comparisons for the rocking wall buildings are presented in Figures 7.20 to 7.22. Overall, the 

proposed procedure provided reasonable estimates for floor response spectra atop rocking wall 

buildings. Specifically, the first and third mode contributions to the floor response spectra were 

well predicted for all case study buildings. However, the second mode contribution was slightly 

underestimated for all case study buildings.  
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Figure 7.20 Comparison between mean floor spectra from NLTHA and estimates using modal 

reduction factors; 4-story rocking wall building, Intensity 5 (PGA = 0.450 g), ξNS = 2% 

  

  

Figure 7.21 Comparison between mean floor spectra from NLTHA and estimates using modal 

reduction factors; 8-story rocking wall building, Intensity 5 (PGA = 0.450 g), ξNS = 2% 
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Figure 7.22 Comparison between mean floor spectra from NLTHA and estimates using modal 

reduction factors; 12-story rocking wall building, Intensity 5 (PGA = 0.450 g), ξNS = 2% 

7.4 Estimation of Floor Response Spectra using Dynamics of Distributed-

Mass Systems 

This section explores the feasibility of approximating floor response spectra atop RC and rocking 

wall buildings using the dynamic properties of continuous distributed-mass beams. This approach 

can be useful for the consideration of non-structural elements (NSEs) during the early design 

phases of a building when there is limited knowledge about the dynamic characteristics of the 

building, such as right after the completion of a direct displacement-based design (DDBD). Other 

approximate and closed-form methods to estimate acceleration demands on NSEs have been 

proposed in the literature such as the work of Miranda and Taghavi (2005) who proposed 

approximate methods to estimate PFAs in MDOF buildings responding elastically.   

The floor response spectra estimation procedure discussed in this section is based on the procedure 

proposed by Calvi and Sullivan (2014). Thus, floor response spectra are generated by combining 

individual modal response spectra using modal superposition. In order to generate the modal 
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sub-sections focus on how the modal characteristics of RC and rocking wall buildings can be 

approximated using closed-form modal properties of continuous distributed-mass beams. For this, 

it was assumed that the only information available to the designer is the direct displacement-based 

design (DDBD) outcomes. Then, procedures to approximate floor response spectra for RC and 

rocking wall buildings are proposed and verified. 

7.4.1 Approximate Elastic Modal Characteristics for RC Wall Buildings 

To estimate their modal characteristics, RC wall buildings can be idealized as continuous 

cantilever beams with uniform stiffness EI and uniform distributed mass per unit length m. Thus, 

the concentrated masses at each floor level are assumed distributed across the whole height of the 

wall. For uniform cantilever beams with length L, the natural period Ti and mode shape ϕi for mode 

i are given by Equations (7.33) and (7.34) respectively (Chopra, 2001).  

 
𝑇𝑖 = 𝛼𝑖𝐿

2√
𝑚

𝐸𝐼
 

(7.33) 

where 𝛼𝑖 = 1.787, 0.285, 0.102, 0.052, 𝑒𝑡𝑐.  

 
𝜙𝑖(𝑥) = cosh𝛽𝑖𝑥 − cos 𝛽𝑖𝑥 −

cosh𝛽𝑖𝐿 + cos 𝛽𝑖𝐿

sinh𝛽𝑖𝐿 + sin 𝛽𝑖𝐿
(sinh𝛽𝑖𝑥 − sin 𝛽𝑖𝑥) 

(7.34) 

where 𝛽𝑖𝐿 = 1.8751, 4.6941, 7.8548, 10.996, 𝑒𝑡𝑐.  

After the preliminary design of an RC wall building is completed (e.g. using a DDBD approach), 

only the total mass of the building, the effective first mode period T1,e and the expected ductility μ 

are known (refer to Section 4.3). The elastic stiffness of the wall EI is not known. In order to 

estimate EI, the elastic fundamental mode period is first estimated using Equation (7.35), which 

assumes that the global post-yield stiffness factor r is zero. 

 𝑇1 = 𝑇1,𝑒√𝜇 (7.35) 

Once the elastic first mode period is known, the elastic stiffness of the wall EI can be approximated 

by rearranging Equation (7.33) for the first mode, which is illustrated in Equation (7.36). 

 
𝐸𝐼 = 𝑚(

1.787𝐿2

𝑇1
)

2

 
(7.36) 
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With the elastic stiffness of the wall approximated, the elastic modal characteristics of the RC wall 

building can be easily obtained using Equations (7.33) and (7.34). 

The procedure outlined above was used to obtain approximate elastic modal properties for the RC 

wall case study buildings, which are presented in Appendix A. The approximations were then 

compared to modal properties obtained through traditional modal analysis. The comparisons for 

the first three modal periods and mode shapes are presented in Table 7.6 and Figure 7.23 

respectively. 

It can observed that reasonable approximations of both modal periods and mode shapes were 

obtained by idealizing RC wall buildings as continuous cantilever beams. The approximations 

were better for lower order of modes, with the first mode shape approximation almost identical to 

the one obtained through modal analysis (Figure 7.23). It should also be noted that the 

approximations significantly improved with increasing building height. This was expected because 

as the number of degrees-of-freedom (i.e. floor levels) increases, approximating a lumped-mass 

system as a continuous beam with a distributed mass becomes more realistic.  
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(a) 

 
(b) 

 
(c) 

Figure 7.23 Comparison between mode shapes obtained through modal analysis and approximate 

mode shapes of continuous cantilever beams; (a) 4-story; (b) 8-story; (c) 12-story 
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Table 7.6 Comparison between modal periods obtained through modal analysis and approximate 

modal periods of continuous cantilever beams 

 

 

 

Modal Periods (sec) 

4 Story 8 Story 12 Story 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

Approximation 1.27 0.20 0.07 2.48 0.40 0.14 3.73 0.60 0.21 

Modal Analysis 1.35 0.22 0.08 2.54 0.41 0.15 3.69 0.60 0.22 

Difference -6.2% -6.9% -9.8% -2.4% -4.0% -6.5% 1.3% -0.2% -2.3% 

 

7.4.2 Approximate Elastic Modal Characteristics for Rocking Wall Buildings 

To estimate the modal characteristics of rocking wall buildings, rocking walls can be idealized as 

spring-hinged (at the foundation) uniform continuous beams. Again, the concentrated masses at 

each floor level of the rocking wall buildings are assumed to be distributed evenly along the height 

of the wall.  

For a spring-hinged uniform beam with length L, uniform stiffness EI, uniform distributed mass 

per unit length m, and base rotational spring stiffness K, the modal period for mode i is given by 

(Chun, 1972): 

 
𝑇𝑖 =

2𝜋𝐿2

(𝛽𝑖𝐿)2
√
𝑚

𝐸𝐼
 

(7.37) 

where the βi L terms are the roots of Equation (7.38). 

 𝐾𝐿

𝐸𝐼

1

𝛽𝑖𝐿
(

1

cos 𝛽𝑖𝐿 ∗ cosh𝛽𝑖𝐿
+ 1) − tan𝛽𝑖𝐿 + tanh𝛽𝑖𝐿 = 0 (7.38) 

 

The mode shape for mode i is given by (Chun, 1972; Jacobson and Ayre, 1958): 

 
𝜙𝑖(𝑥) =

−𝐾𝐿

𝐸𝐼

1

𝛽𝑖𝐿
(
𝐶

𝐷
)
𝑖

(cos 𝛽𝑖𝑥 − cosh𝛽𝑖𝑥) + (
𝐶

𝐷
)
𝑖

(sin𝛽𝑖𝑥 + sinh 𝛽𝑖𝑥) 

+(sin𝛽𝑖𝑥 − sinh 𝛽𝑖𝑥) 

(7.39) 
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where 
(
𝐶

𝐷
)
𝑖
=

sin𝛽𝑖𝐿 + sinh𝛽𝑖𝐿

𝐾𝐿
𝐸𝐼

1
𝛽𝑖𝐿

(cos 𝛽𝑖𝐿 + cosh𝛽𝑖𝐿) + sinh 𝛽𝑖𝐿 − sin 𝛽𝑖𝐿
 

(7.40) 

Again, following the displacement based design of a rocking wall building, the total mass of the 

building, the effective first mode period T1,e and the expected ductility μ are known (refer to 

Section 4.3). However, analogously to the case of RC wall systems, the elastic stiffness of the wall 

EI and the elastic rotational spring stiffness K are not known.  

Recognizing that rocking wall panels have been observed to sustain minor to no cracking during 

experimental investigations (Priestley et al., 1999; Rahman and Restrepo, 2000; Belleri et al., 

2014; Gavridou, 2015; amongst others), it is proposed that the elastic stiffness of the wall EI be 

approximated as 85% of gross stiffness. In order to approximate the elastic base rotational spring 

stiffness K, the elastic fundamental mode period is first estimated using Equation (7.41), which 

assumes that the global post-yield stiffness factor r is zero. 

 𝑇1 = 𝑇1,𝑒√𝜇 (7.41) 

Once the elastic first mode period is known, β1 L can be calculated by rearranging Equation (7.37). 

Then, the elastic base rotational spring stiffness K  can be estimated by rearranging Equation (7.39) 

and plugging in β1 L. Equation (7.42) summarizes these steps into one equation.  

 
𝐾 =

𝛽1𝐿 𝐸𝐼(tan𝛽1𝐿 − tanh𝛽1𝐿) 

𝐿 (
1

cos𝛽1𝐿 ∗ cosh𝛽1𝐿
+ 1)

 
(7.42) 

 

where 
𝛽1𝐿 = √

2𝜋𝐿2

𝑇1
√
𝑚

𝐸𝐼
 

(7.43) 

 

With the elastic stiffness values of the wall and the base rotational spring approximated, the modal 

properties of the rocking walls can be estimated using Equations (7.37) and (7.39). 

Even though the modal properties of rocking wall buildings can be estimated with the procedure 

outline above, the process is somewhat complicated and time consuming. In order to simplify the 

procedure, the base rotational spring stiffness can be assumed as zero (K = 0). Thus, the rocking 
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walls are idealized as fully-pinned continuous cantilever beams. For such systems, the modal 

properties can be easily computed using Equations (7.44) and (7.45) (Pennucci et al., 2011). 

 
𝑇𝑖 = 𝛼𝑖𝐿

2√
𝑚

𝐸𝐼
 

(7.44) 

where 𝛼𝑖 = 0.407, 0.126, 0.060, 𝑒𝑡𝑐.  

 
𝜙𝑖(𝑥) = sin 𝛽𝑖𝑥 +

sin 𝛽𝑖𝐿

sinh𝛽𝑖𝐿
sinh𝛽𝑖𝑥 

(7.45) 

where 𝛽𝑖𝐿 =
𝜋

4
+ 𝑖𝜋  

The first mode of vibration for a fully-pinned cantilever beam corresponds to the second mode of 

vibration for the rocking walls. The first mode of vibration for the rocking walls is approximated 

as a rigid body rotation and thus cannot be determined with Equations (7.44) and (7.45). Instead, 

the first mode period is approximated from the displacement-based design outcomes by using 

Equation (7.41). The first mode shape (i.e. rigid body rotation) can be obtained with a simple linear 

function (Equation (7.46)) that linearly increases the modal coordinates from a value of zero at the 

base of the wall to a value of one at the roof level. 

 𝜙1(𝑥) =
𝑥

𝐿
 (7.46) 

Both procedures outlined above were utilized to obtain approximate elastic modal properties for 

the rocking wall case-study buildings, which are presented in Appendix A. Comparisons between 

the approximations and modal properties obtained through traditional modal analysis are presented 

for the first three modes in Table 7.7 and Figure 7.24. 

Compared to the RC wall buildings, there was significantly more error in the approximation of 

modal periods for the rocking wall buildings (Table 7.7). However, idealizing the rocking walls as 

spring-hinged cantilever beams resulted in better estimates of modal periods. This was expected 

since idealizing a rocking wall as a sprung-base cantilever is a more realistic representation of 

rocking behavior compared to a fully-pinned cantilever.  In addition, the estimates improved with 

increasing height, consistent with the observations in the RC wall buildings. In terms of mode 

shapes, both the fully-pinned and sprung-base cantilever beams resulted in almost identical 

approximations (Figure 7.24). 
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As mentioned above, idealizing the rocking walls as sprung-base cantilever beams was relatively 

time consuming.  Thus, it is proposed that rocking walls be idealized as fully-pinned cantilever 

beams. The additional error in modal periods is considered acceptable noting the relative ease of 

obtaining modal properties for fully-pinned cantilever beams. 

Table 7.7 Comparison between modal periods obtained through modal analysis and approximate 

modal periods of spring-hinged and fully-pinned cantilever beams 

  

Modal Periods (sec) 

4 Story 8 Story 12 Story 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

Approximation, Spring-

Hinged Base (K≠0) 
1.05 0.08 0.03 2.00 0.20 0.07 3.04 0.31 0.10 

Modal Analysis 0.79 0.10 0.04 1.59 0.23 0.08 2.28 0.33 0.12 

Difference 32% - 20% -34% 26% -10% -22% 34% -4% -16% 

 

Approximation, Fully-

Pinned Base (K=0) 
1.05 0.07 0.02 2.00 0.17 0.05 3.04 0.27 0.08 

Modal Analysis 0.79 0.10 0.04 1.59 0.23 0.08 2.28 0.33 0.12 

Difference 32% -35% -48% 26% -25% -37% 34% -19% -31% 
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(a) 

 

(b) 

 

 

(c) 

Figure 7.24 Comparison between mode shapes obtained through modal analysis and approximate 

mode shapes of spring-hinged and fully-pinned cantilever beams; (a) 4-story; (b) 8-story; (c) 12-

story 
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7.4.3 Quantifying Period Elongation 

As discussed in Section 5.3.1, inelastic structural response leads to a “plateau” of peak SFA 

demands at modal periods. This is due to modal periods elongating as the structure goes through 

non-linear deformations. It was also noted that for both RC and rocking wall buildings, the period 

elongation was only observed for the first and second modes. Thus, this section provides 

approximations for the effective periods of the first and second mode.  

For the first mode, the effective period is known from the displacement-based design of the 

structural wall as discussed in the previous two sub-sections. For the second mode, the effective 

period can be approximated using Equation (7.47) (refer to Section 7.3.2 for the derivation).  

 

𝑇2,𝑒 =

{
 
 

 
 

𝑇2                     𝑓𝑜𝑟        𝜇 ≤ 1.0 

𝑇2 (1 + 0.5 (
𝜇

𝜇𝑝𝑖𝑛
))      𝑓𝑜𝑟 1.0 < 𝜇 < 𝜇𝑝𝑖𝑛               

1.5𝑇2                𝑓𝑜𝑟         𝜇 ≥ 𝜇𝑝𝑖𝑛 

 (7.47) 

where T2,e is the effective second mode period, and T2 is the approximate elastic second mode 

period. The term μpin is the ductility limit corresponding to the pinned behavior of higher modes. 

μpin is taken as 5.0 for RC wall buildings and 13.0 for rocking wall buildings. 

7.4.4 Estimation of Floor Response Spectra 

In the previous sub-sections, procedures to estimate the elastic modal properties of the RC and 

rocking wall buildings were proposed. However, using elastic modal properties to generate floor 

response spectra will lead to excessively conservative results, and, in some regions of the spectra, 

possibly leading to non-conservative estimates. When a modal period of the supporting structure 

lengthens due to inelastic deformation, spectral acceleration demands for the effective periods 

could be higher relative to the elastic period.  For instance, if the elastic period is within the initial 

ramp-up portion of the ground response spectrum, the effective period could lengthen past the 

ramp-up potion into the constant acceleration range of the ground spectrum, and thus attract higher 

accelerations. However, as discussed in Section 5.3.1, inelastic structural response generally leads 

to a significant reduction of spectral floor acceleration demands relative to elastic structural 

response. This reduction is most significant for the first mode while the higher modes tend to 

exhibit only minor reductions in spectral floor acceleration demands.  
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In order to account for the effect of inelastic structural response on the first mode, it is proposed 

that the modal floor acceleration contributions be obtained from the equivalent lateral force 

distribution of the design base shear. If the RC or rocking wall building is designed using a 

displacement-based design approach (refer to Section 4.3), the equivalent lateral force distribution 

is obtained using Equation (7.48), which only takes into account first-mode response.  

 
𝐹𝑗 = 𝑉𝑑

𝑚𝑗∆𝑗
∑ 𝑚𝑗∆𝑗
𝑛
𝑗=1

 
 

(7.48) 

where Fj is the equivalent static force acting at a given floor j, Vd is the design base shear, mj is the 

seismic mass of floor j, and Δj is the design displacement of floor j. 

From this force distribution, the first mode contributions to the peak floor acceleration at a given 

floor j amax,j,1  can be estimated as: 

 
𝑎𝑚𝑎𝑥,𝑗,1 =

𝐹𝑗

𝑚𝑗
;   

(7.49) 

For higher modes, it is proposed that the modal contributions to the peak floor acceleration be 

determined by a traditional modal response spectrum method using the approximate elastic modal 

properties. Assuming that the higher mode response remains elastic is potentially conservative but 

overall reasonable considering the minor reductions in spectral floor acceleration demands 

observed in higher modes during inelastic structural response. Thus, the higher mode contributions 

to the peak floor acceleration can be determined by the expression: 

 𝑎𝑚𝑎𝑥,𝑗,𝑖 = 𝜙𝑗,𝑖Γ𝑖𝑆𝑎(𝑇𝑖, 𝜉𝑝);   𝑖 ≥ 1 (7.50) 

where ɸj,i is the approximate mode shape for floor level j and mode i, and Γi is the approximate 

modal participation factor for mode i. The term Sa(Ti, ,ξp) is the elastic spectral acceleration demand 

for the mode i obtained from the design ground response spectrum at the primary damping ratio.  

Once the modal contributions to the PFA are determined, the individual modal contributions 

am,j,i(T) to the floor response spectrum are given by: 
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𝑎𝑚,𝑗,𝑖(𝑇) =

{
 

 (
𝑇

𝑇𝑖
) [𝑎𝑚𝑎𝑥,𝑗,𝑖(𝐷𝐴𝐹𝑚𝑎𝑥 − 1)] + 𝑎𝑚𝑎𝑥,𝑗,𝑖       𝑓𝑜𝑟 𝑇 < 𝑇𝑖          

𝑎𝑚𝑎𝑥,𝑗,𝑖𝐷𝐴𝐹𝑚𝑎𝑥                                              𝑓𝑜𝑟 𝑇𝑖 ≤ 𝑇 ≤ 𝑇𝑖,𝑒
𝑎𝑚𝑎𝑥𝐷𝐴𝐹                                                         𝑓𝑜𝑟 𝑇 > 𝑇𝑖,𝑒          

 

(7.51) 

where T is the spectral period of interest, and Ti is the approximate elastic period of the primary 

structure for mode i, and  Ti,e is the approximate effective period of the primary structure for mode 

i. DAFmax and DAF are estimated using Equations (7.52) and (7.53) respectively (Welch, 2016). 

 
𝐷𝐴𝐹𝑚𝑎𝑥 = {

(0.55 + 0.45
𝑇𝑖
𝑇𝐵
) (0.5𝜉𝑝 + 𝜉𝑁𝑆) 

−0.667      𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵                 

(0.5𝜉𝑝 + 𝜉𝑁𝑆) 
−0.667                             𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵       

 (7.52) 

 

 

𝐷𝐴𝐹 =

{
 
 

 
 
 (0.55 + 0.45

𝑇𝑖
𝑇𝐵
) [(1 −

𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

    𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵    

 [(1 −
𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

                                  𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵

  

(7.53) 

where ξp is the elastic damping of the primary structure, and ξNS is the elastic damping of the non-

structural element. The term TB is taken as 0.3 sec. 

The individual modal contributions to the floor response spectrum are then combined using modal 

superposition to give the SRSS spectral floor response at a given period T: 

 

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆 = √∑[𝑎𝑚,𝑗,𝑖(𝑇)]2
𝑛𝑚

𝑖=1

 

(7.54) 

where nm is the number of modes being considered.  

The final spectral floor acceleration SFAj(T) is given by Equation (7.55), which takes into account 

rigid mode response observed in the lower levels of MDOF systems (Calvi and Sullivan, 2014; 

Welch, 2016). 
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𝑆𝐹𝐴𝑗(𝑇) =

{
 

 max (𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆, 𝑆𝑎(𝑇, 𝜉𝑁𝑆))      𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
< 0.5                

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆                        𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
≥ 0.5

 

(7.55) 

where Hj is the height of floor level j, and Hn is the height of the roof level. The term Sa(T,ξNS) is 

the spectral acceleration demand at period T obtained from the design ground response spectrum 

at the elastic non-structural element damping ratio ξNS.  

7.4.5 Comparison between Floor Response Spectra Estimates and NLTHA Results 

The following section presents the floor response spectra estimates obtained using the procedures 

outlined above along with the mean floor response spectra from the NLTHA of the case study 

buildings. The comparisons are presented for Intensity 5 and 2% non-structural damping ξNS. 

Corresponding comparisons for all non-structural damping ratios are presented in Appendix C. 

The comparisons are only presented for Intensity 5 because the displacement-based design of the 

case study buildings (refer to Section 4.3) was conducted for this intensity.  

The comparisons for the RC wall buildings are presented in Figures 7.25 to 7.27. Consistent with 

the previous two methodologies proposed for the estimation of floor response spectra, only the 

first three modes of vibration were used for the current estimation procedure. In the previous sub-

section, it was proposed that the first mode contributions to the peak floor accelerations be 

estimated from the equivalent lateral force distribution of the design base shear. With this 

approach, the first mode peak spectral accelerations were well predicted for all RC wall buildings.  

The second and third mode peak spectral accelerations were also well predicted for the 8- and 12-

story RC wall buildings, with slightly conservative estimates for the roof levels. There was less 

agreement between floor response spectra estimates and NLTHA results for the 4-story RC wall 

building. The second modal peaks were underestimated while the third modal peaks were 

overestimated. This was expected since the error in the mode shape approximations significantly 

increased with decreasing height of the RC wall buildings (Figure 7.23). 
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Figure 7.25 Comparison between mean floor spectra from NLTHA and estimates using closed-form 

modal properties of a continuous cantilever beam; 4-story RC wall building, Intensity 5 (PGA = 

0.450 g), ξNS = 2% 

  

  

Figure 7.26 Comparison between mean floor spectra from NLTHA and estimates using closed-form 

modal properties of a continuous cantilever beam; 8-story RC wall building, Intensity 5 (PGA = 

0.450 g), ξNS = 2% 
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Figure 7.27 Comparison between mean floor spectra from NLTHA and estimates using closed-form 

modal properties of a continuous cantilever beam; 12-story RC wall building, Intensity 5 (PGA = 

0.450 g), ξNS = 2% 

The comparisons for the rocking wall buildings are presented in Figures 7.28 to 7.30. Again, only 

the first three modes of vibration were used to estimate floor response spectra. For all three rocking 

wall buildings, the first mode peak spectral accelerations were well predicted from the design 

equivalent lateral force distribution. However, the beginning of the “plateau” in peak spectral 

acceleration was not captured since the first modal periods were overestimated (Table 7.7).  

In addition, the second modal peaks were underestimated while the third mode peaks were slightly 

overestimated for all three rocking wall buildings. However, the estimates improved with 

increasing building height, consistent with the observations of the RC wall buildings. 
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Figure 7.28 Comparison between mean floor spectra from NLTHA and estimates using closed-form 

modal properties of a fully-pinned continuous cantilever beam; 4-story rocking wall building, 

Intensity 5 (PGA = 0.450 g), ξNS = 2% 

 

  

Figure 7.29 Comparison between mean floor spectra from NLTHA and estimates using closed-form 

modal properties of a fully-pinned continuous cantilever beam; 8-story rocking wall building, 

Intensity 5 (PGA = 0.450 g), ξNS = 2% 
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Figure 7.30 Comparison between mean floor spectra from NLTHA and estimates using closed-form 

modal properties of a fully-pinned continuous cantilever beam; 12-story rocking wall building, 

Intensity 5 (PGA = 0.450 g), ξNS = 2% 

Overall, the floor response spectra estimates obtained in this section matched well with the results 

of the NLTHA especially considering the limited amount of information available regarding the 

modal characteristics of the buildings after displacement-based design. Even though some of the 

estimates were non-conservative for higher mode response, the floor response spectra obtained 

through the simple procedure outlined above can still be very useful for the consideration of non-

structural elements in the early design phases of RC and rocking wall buildings.  

The main source of error in the floor response spectra estimates were the mode shape 

approximations. Thus, the application of reasonable correction factors to the mode shapes obtained 

from continuous distributed-mass beams could improve the proposed procedure. 

7.5 Summary of Methodologies to Estimate Floor Response Spectra 

This section summarizes the three floor response spectra estimation procedures proposed in the 

previous sub-sections. The required steps for each procedure are presented below with the 

necessary equations replicated for clarity. Since all three procedures were developed based on the 
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work of Calvi and Sullivan (2014), some of the steps are the same for all three procedures and thus 

only presented once. The steps that are unique to each of the proposed methods have been 

designated with the following markers: 

Method (a): Procedure that utilizes transitory inelastic modal characteristics 

Method (b): Procedure that utilizes empirical modal reduction factors 

Method (c): Procedure that utilizes dynamics of distributed-mass systems 

Step 1: Define the primary (ξp) and non-structural (ξNS) damping ratios 

For both RC and rocking wall buildings, the primary damping ratio can be taken as 5% of 

critical. Even though the procedure can be applied to any non-structural damping ratio, a 

value of 2% is proposed if the damping of a non-structural element is not known (Welch, 

2016). 

Step 2: Define the input acceleration spectrum, Sa(T,ξp) 

The input acceleration spectrum is the design ground response spectrum. It can also be 

taken as the median or mean spectrum of a target record set (Welch, 2016). Note that the 

input acceleration spectrum is defined at the primary damping ratio ξp. 

Step 3, Method (a): Perform modal analysis for the number of modes considered 

 For a given mode i, the following parameters need to be obtained:  

 elastic modal period (Ti) 

 transitory modal period (Ti,e)    

 transitory mode shape (ɸt,i), and  

 transitory modal participation factor (Γt,i).  

To obtain the transitory modal characteristics, modify the model used to obtain elastic 

modal characteristics by adding a zero-length rotational spring at the location of 

concentrated inelastic behavior (i.e. plastic hinge region or rocking joint). The rotational 

spring is assigned the secant stiffness of the structural system Ke at the expected ductility 

demand μ.  
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For RC and rocking wall buildings, the secant stiffness can be estimated with Equations 

(7.56) and (7.57) respectively.  

 

𝐾𝑒,𝑅𝐶 =

𝑀𝑦 + 𝑟
𝐾𝑖,𝜙
𝐿𝑝

[
(𝜇 − 1)∆𝑦,𝐻𝑒

𝐻𝑒
] 

𝜙𝑦𝐿𝑝 +
(𝜇 − 1)∆𝑦,𝐻𝑒

𝐻𝑒

 ;    𝜇 ≥ 1 

(7.56) 

where My is the yield moment capacity of the wall,  r is the global post yield stiffness ratio, 

and Ki,ϕ is the elastic stiffness of the wall in terms of moment-curvature. ϕy is the yield 

curvature of the wall, and Lp is the plastic hinge length. The term He is the effective height 

of the wall which can be determined using Equation (7.1). The term Δy,He is yield 

displacement of the wall at the effective height of the wall determined using Equation (7.2). 

 

𝐾𝑒,𝑟𝑜𝑐𝑘 =
𝑀𝑦 + 𝑟𝐾𝑖,𝜃 [

(𝜇 − 1)∆𝑦,𝐻𝑒
𝐻𝑒

] 

𝜃𝑦_𝑏𝑎𝑠𝑒 +
(𝜇 − 1)∆𝑦,𝐻𝑒

𝐻𝑒

 ;    𝜇 ≥ 1 

(7.57) 

where Ki,Ѳ is the elastic stiffness of the rocking joint in terms of moment-rotation, and 

Ѳy_base is the yield base rotation of the wall. The term Δy,He is yield displacement of the wall 

at the effective height of the wall determined using Equation (7.3). 

Step 3, Method (b): Perform modal analysis for the number of modes considered 

 For a given mode i, the following parameters need to be obtained:  

 elastic modal period (Ti) 

 elastic mode shape (ɸi), and  

 elastic modal participation factor (Γi).  

Step 3, Method (c): Estimate elastic modal characteristics 

RC Wall Buildings 

For an RC wall building, the approximate modal period for mode i is given by the 

expression: 
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𝑇𝑖 = {

𝑇1,𝑒√𝜇            𝑓𝑜𝑟 𝑖 = 1

𝛼𝑖𝐿
2√
𝑚

𝐸𝐼
       𝑓𝑜𝑟 𝑖 > 1

 
(7.58) 

where 𝛼𝑖 = 1.787, 0.285, 0.102, 0.052, 𝑒𝑡𝑐. The effective first mode period T1,e and 

expected ductility μ are obtained from the displacement-based design of the RC wall 

building. The term EI is the elastic stiffness of the wall, which is estimated by the 

expression: 

 
𝐸𝐼 = 𝑚(

1.787𝐿2

𝑇1
)

2

 
(7.59) 

For an RC wall building, the approximate mode shape for mode i is given by the 

expression: 

 
𝜙𝑖(𝑥) = cosh𝛽𝑖𝑥 − cos 𝛽𝑖𝑥 −

cosh𝛽𝑖𝐿 + cos 𝛽𝑖𝐿

sinh𝛽𝑖𝐿 + sin 𝛽𝑖𝐿
(sinh𝛽𝑖𝑥 − sin 𝛽𝑖𝑥) 

(7.60) 

where 𝛽𝑖𝐿 = 1.8751, 4.6941, 7.8548, 10.996, 𝑒𝑡𝑐.  

Rocking Wall Buildings 

For a rocking wall building, the approximate modal period for mode i is given by the 

expression: 

 
𝑇𝑖 = {

𝑇1,𝑒√𝜇               𝑓𝑜𝑟 𝑖 = 1

𝛼𝑖−1𝐿
2√
𝑚

𝐸𝐼
       𝑓𝑜𝑟 𝑖 > 1  

 
(7.61) 

where 𝛼𝑖 = 0.407, 0.126, 0.060, 𝑒𝑡𝑐. The effective first mode period T1,e and expected 

ductility μ are obtained from the displacement-based design of the rocking wall building. 

The term EI is the elastic stiffness of the wall approximated as 85% of the gross stiffness 

of the wall.  

For a rocking wall building, the approximate mode shape for mode i is given by the 

expression: 
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𝜙𝑖(𝑥) = {

𝑥

𝐿
                            𝑓𝑜𝑟 𝑖 = 1

sin 𝛽𝑖𝑥 +
sin 𝛽𝑖𝐿

sinh𝛽𝑖𝐿
sinh𝛽𝑖𝑥   𝑓𝑜𝑟 𝑖 > 1                     

  

(7.62) 

where 𝛽𝑖𝐿 =
𝜋

4
+ (𝑖 − 1)𝜋  

Step 4, Method (a): Estimate Effective periods 

For this method, effective modal periods are taken as the transitory modal periods. 

Step 4, Method (b): Estimate Effective periods 

For both RC and rocking wall buildings, the effective periods for the first and second modes 

can be estimated using Equations (7.63) and (7.64).  

 
𝑇1,𝑒 = 𝑇1√

𝜇

[1 + 𝑟(𝜇 − 1)]
 

(7.63) 

 

𝑇2,𝑒 =

{
 
 

 
 

𝑇2                     𝑓𝑜𝑟        𝜇 ≤ 1.0 

𝑇2 (1 + 0.5(
𝜇

𝜇𝑝𝑖𝑛
))      𝑓𝑜𝑟 1.0 < 𝜇 < 𝜇𝑝𝑖𝑛               

1.5𝑇2                𝑓𝑜𝑟         𝜇 ≥ 𝜇𝑝𝑖𝑛 

 (7.64) 

The global strain hardening factor r may be omitted. The term μpin is taken as 5.0 for RC 

wall buildings and 13.0 for rocking wall buildings. 

Step 4, Method (c): Estimate Effective periods 

For both RC and rocking wall buildings, the effective period for the first mode is 

determined from the displacement-based design of the building. The effective period for 

the second mode is estimated by Equation (7.64). 

Step 5; Method (a): Estimate modal floor accelerations 

 The modal floor acceleration amax,j,i for a given mode i at a floor level j is given by: 

 
𝑎𝑚𝑎𝑥,𝑗,𝑖 = {

𝜙𝑡,𝑗,𝑖Γ𝑡,𝑖𝑆𝑎(𝑇𝑖,𝑒 , 𝜉𝑝,𝑒𝑞)          𝑓𝑜𝑟 𝑖 = 1             

𝜙𝑡,𝑗,𝑖Γ𝑡,𝑖𝑆𝑎(𝑇𝑖,𝑒 , 𝜉𝑝)           𝑓𝑜𝑟 𝑖 > 1          
 

(7.65) 



 

164 
 

The term Sa(Ti,e ) is the spectral acceleration demand for mode i obtained from the design 

ground response spectrum at either the elastic primary damping ratio ξp or the equivalent 

viscous damping ratio ξp,eq of the primary structure, which is given by Equation (7.66). 

 𝜉𝑝,𝑒𝑞 = 𝜉𝑝 + 𝜉ℎ𝑦𝑠𝑡 (7.66) 

where ξhyst is hysteretic damping, which can be calculated using Equation (7.67) for RC 

wall buildings and Equation (7.68) for rocking wall buildings. 

 
𝜉𝑒𝑞,𝑅𝐶 = 0.05 + 0.444 (

𝜇 − 1

𝜇𝜋
) (7.67) 

 
𝜉𝑒𝑞,𝑟𝑜𝑐𝑘 = 0.05 + 0.524 (

𝜇 − 1

𝜇𝜋
) (7.68) 

Note that Equation (7.68) is valid for a ratio between post-tensioning and mild steel 

bending resistance λ = 1.25 and will need to be updated based on the reinforcement design 

of the rocking walls. 

Step 5; Method (b): Estimate modal floor accelerations 

 The modal floor acceleration amax,j,i for a given mode i at a floor level j is given by: 

 
𝑎𝑚𝑎𝑥,𝑗,𝑖 = 𝜙𝑗,𝑖Γ𝑖 (

𝑆𝑎(𝑇𝑖, 𝜉𝑝)

𝑅𝑖
) ;    𝑅𝑖 ≥ 1 

(7.69) 

where the elastic spectral acceleration demand Sa(Ti ,ξp) is reduced by the modal reduction 

factor Ri to account for non-linear demands. The modal reduction factors are determined 

as: 

 𝑅1 = 𝑅𝑖=1 ≈ 𝜇
1.25  𝑅𝐶 𝑊𝑎𝑙𝑙 ;  𝑅1 = 𝑅𝑖=1 ≈ 𝜇

0.75    𝑅𝑜𝑐𝑘𝑖𝑛𝑔 𝑊𝑎𝑙𝑙 

𝑅2 = 𝑅𝑖=2 ≈ 𝜇
0.4  𝑅𝐶 𝑊𝑎𝑙𝑙 ;  𝑅2 = 𝑅𝑖=2 ≈ 𝜇

0.20      𝑅𝑜𝑐𝑘𝑖𝑛𝑔 𝑊𝑎𝑙𝑙 

𝑅𝐻𝑀 = 𝑅𝑖>2 ≈ 𝜇
0    𝑅𝐶 𝑊𝑎𝑙𝑙 ;  𝑅𝐻𝑀 = 𝑅𝑖>2 ≈ 𝜇

0.18  𝑅𝑜𝑐𝑘𝑖𝑛𝑔 𝑊𝑎𝑙𝑙    

(7.70) 

Step 5; Method (c): Estimate modal floor accelerations 

 The modal floor acceleration amax,j,i for a given mode i at a floor level j is given by: 
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𝑎𝑚𝑎𝑥,𝑗,𝑖 = {

𝐹𝑗

𝑚𝑗
              𝑓𝑜𝑟 𝑖 = 1        

𝜙𝑗,𝑖Γ𝑖𝑆𝑎(𝑇𝑖, 𝜉𝑝)   𝑓𝑜𝑟  𝑖 ≥ 1                 

  
(7.71) 

where Fj is the equivalent static force acting at a given floor j and mj is the seismic mass of 

floor j. 

Step 6: Estimate modal contributions and SRSS estimates of floor response spectra 

The individual modal contributions am,j,i(T) to the floor response spectrum are given by: 

 

𝑎𝑚,𝑗,𝑖(𝑇) =

{
 

 (
𝑇

𝑇𝑖
) [𝑎𝑚𝑎𝑥,𝑗,𝑖(𝐷𝐴𝐹𝑚𝑎𝑥 − 1)] + 𝑎𝑚𝑎𝑥,𝑗,𝑖       𝑓𝑜𝑟 𝑇 < 𝑇𝑖                      

𝑎𝑚𝑎𝑥,𝑗,𝑖𝐷𝐴𝐹𝑚𝑎𝑥                                            𝑓𝑜𝑟 𝑇𝑖 ≤ 𝑇 ≤ 𝑇𝑖,𝑒   

𝑎𝑚𝑎𝑥𝐷𝐴𝐹                                                     𝑓𝑜𝑟 𝑇 > 𝑇𝑖,𝑒             

 

(7.72) 

where T is the spectral period of interest. DAFmax and DAF are estimated using Equations 

(7.73) and (7.74), respectively.  

 
𝐷𝐴𝐹𝑚𝑎𝑥 = {

(0.55 + 0.45
𝑇𝑖
𝑇𝐵
) (0.5𝜉𝑝 + 𝜉𝑁𝑆) 

−0.667      𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵                 

(0.5𝜉𝑝 + 𝜉𝑁𝑆) 
−0.667                             𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵       

 (7.73) 

 

 

𝐷𝐴𝐹 =

{
 
 

 
 
 (0.55 + 0.45

𝑇𝑖
𝑇𝐵
) [(1 −

𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

 𝑖𝑓 𝑇𝑖 ≤ 𝑇𝐵     

 [(1 −
𝑇

𝑇𝑖,𝑒
)

2

+ (0.5𝜉𝑝 + 𝜉𝑁𝑆)]

−0.667

                             𝑖𝑓 𝑇𝑖 ≥ 𝑇𝐵

 

(7.74) 

The term TB is taken as 0.3 sec. 

The SRSS spectral floor acceleration response at a given period T is estimated as: 

 

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆 = √∑[𝑎𝑚,𝑗,𝑖(𝑇)]2
𝑛𝑚

𝑖=1

 

(7.75) 

where nm is the number of modes being considered.  
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Step 7: Account for rigid mode response 

The final spectral floor acceleration SFAj(T) is given by Equation (7.76) which takes into 

account rigid mode response observed in the lower levels of MDOF buildings. 

 

𝑆𝐹𝐴𝑗(𝑇) =

{
 

 max (𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆, 𝑆𝑎(𝑇, 𝜉𝑁𝑆))      𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
< 0.5                

𝑆𝐹𝐴𝑗(𝑇)𝑆𝑅𝑆𝑆                        𝑓𝑜𝑟
𝐻𝑗

𝐻𝑛
≥ 0.5

 

(7.76) 

 
where Hj is the height of floor level j, and Hn is the height of the roof level. The term 

Sa(T,ξNS) is the spectral acceleration demand at period T obtained from the input 

acceleration spectrum at  a damping level of ξNS. If the input acceleration spectrum is 

obtained for a typical damping ratio of 5%, then the spectrum can be adjusted by a damping 

modification factor given by: 

 
𝑅𝜉 = √

0.07

0.02 + 𝜉𝑁𝑆
 

(7.77) 
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8 CONCLUSIONS 

This study had two main objectives: (i) comparing the seismic response of RC and rocking wall 

buildings; and (ii) proposing methodologies for the estimation of acceleration demands on non-

structural elements supported by both structural systems. 

In order to achieve these objectives, the behavior of both structural systems as well background 

information regarding the estimation of seismic demands on non-structural elements were first 

discussed in Chapters 2 and 3.  

In Chapter 4, the displacement based design (DBD) and time history analysis of six RC and rocking 

wall case study buildings were carried out. In Chapter 5, the results of the time history analyses 

were used to assess the performance of a DBD seismic design approach as well as the seismic 

response of rocking wall buildings relative to RC wall buildings. In addition, floor response spectra 

obtained from the analyses were used to gain a better understanding of the parameters affecting 

spectral acceleration demands and the dynamic interaction between non-structural elements and 

supporting buildings. 

Chapter 6 investigated the dynamic amplification of peak floor acceleration at the resonance of a 

non-structural element and its supporting structure. The accurate estimation of this dynamic 

amplification is a critical part of estimating peak spectral acceleration demands that occur at modal 

periods. In Chapter 7, the findings from Chapter 5 and 6 were utilized in the development of three 

procedures to estimate floor response spectra atop RC and rocking wall buildings.  

The following two sections summarize the findings and the limitations of the study summarized 

above. Areas of future research are also identified. 
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8.1 Overview of Findings 

8.1.1 Performance of a Displacement-Based Seismic Design Approach  

A direct displacement-based design (DDBD) procedure was utilized for the design of both the RC 

and rocking wall case study buildings considered in the present study. The design of the RC and 

rocking wall buildings was conducted according to the procedures proposed by Priestley et al. 

(2007) and Pennucci et al. (2009), respectively. A dynamic non-linear time history analysis of 

each of the case study buildings was then conducted under a suite of spectrum compatible ground 

motions. The results of the analysis were used to investigate the effectiveness of the DDBD 

approach in predicting structural response.  

For the RC wall buildings, the following observations were made regarding the DDBD approach: 

 In general, displacement estimates from the DDBD procedure were found to be in good 

agreement with the analysis results, with slightly non-conservative estimates for the 4- and 

8-story buildings.  

 The DDBD base moment estimates were in very good agreement with the analysis results 

for all case study buildings. 

 The capacity design procedure proposed by Priestley et al. (2007) was found to 

underestimate moment values along the height of each of the case study walls, particularly 

at mid-height where the higher modes seem to play a predominant role. However, the shear 

estimates from the same procedure compared well to the analysis results. 

For the rocking wall buildings, the following observations were made regarding the DDBD 

approach: 

 Compared to the analysis results, the displacement estimates from the DDBD procedure 

were generally acceptable. However, the estimates were found to be slightly non-

conservative for the 4-story building, but conservative for the 8- and 12-story buildings.  

 The DDBD base moment estimates were in very good agreement with the analysis results 

except for the 4-story building. 
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 As a means of accounting for higher modes in the rocking wall buildings, the RC wall 

capacity-design procedures proposed by Priestley et al. (2007) were adapted and used for 

the rocking walls.  Despite being developed and calibrated for RC walls, the procedure was 

able to provide reasonable, albeit non-conservative, estimates to the moment distribution 

along the height of the rocking wall buildings. The shear force distribution estimates from 

the procedure were also found to be in good agreement with analysis results. 

8.1.2 Seismic Response of Rocking Wall Systems 

Rocking wall systems are currently being developed as an alternative to traditional monolithic RC 

wall systems, which are prone to damage and residual drifts following strong earthquakes. RC 

walls are designed such that an inelastic mechanism forms at the base of the wall, commonly 

referred to as the plastic hinge region. In order to dissipate energy during a seismic event, RC walls 

rely on the yielding of longitudinal reinforcement, as well as the cracking and crushing of concrete, 

in the plastic hinge region. However, this causes significant damage to the plastic hinge region 

leading to residual displacements. Rocking wall systems, on the other hand, avoid this type of 

damage because they are not monolithically cast with the foundation, and incorporate unbonded 

reinforcement. To this end, rocking walls consists of precast wall panels that are post-tensioned to 

the foundation such that controlled rocking occurs during seismic events. Energy dissipation is 

also provided through unbonded mild-steel reinforcement that crosses the wall/foundation 

interface. Since the post-tensioning tendons and energy dissipaters are unbonded, damage is 

avoided to the wall panels during seismic events. In addition, after lateral loading is removed, the 

post-tensioning force re-centers the wall panels eliminating any residual drifts. 

In the present study, the seismic response of rocking and RC wall systems was compared through 

non-linear time history analysis of case study buildings (4, 8 and 12 stories) modelled using a 

simplified lumped-plasticity approach. The buildings were designed using a direct displacement-

based design (DDBD) approach for a 2% drift limit and a design-basis earthquake per ASCE 7-10 

standards (ASCE, 2010). The seismic response of both structural systems was compared for both 

design-basis and maximum-considered earthquake intensities (ASCE, 2010). Compared to the RC 

wall buildings, the following observations were made about the rocking wall buildings: 
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i) The rocking wall buildings had comparable displacements and peak floor accelerations. 

The displacements were mostly attributed to the rigid body base-rotation of the walls with 

only minor contribution from the elastic deformation of the wall panels.  

ii) The rocking wall buildings had negligible residual displacements, which remained 

approximately constant with increasing earthquake intensity. 

iii) The rocking wall buildings generally had higher moment and shear distributions along the 

height of the walls even though they were designed for a lower base moment and shear. 

This was attributed to the effects of higher modes, which could be mitigated through 

appropriate capacity design measures. 

8.1.3 Parameters Influencing Floor Response Spectra in MDOF systems 

Both elastic and inelastic floor response spectra were obtained from the time history analysis of 

the case study RC and rocking wall buildings at various earthquake intensities.  From these floor 

spectra, three factors were identified as having a strong influence on spectral acceleration 

demands: non-structural damping, modal characteristics of the supporting building, and inelastic 

structural response. The following observations were made regarding the three parameters:  

i) Low non-structural damping values were associated with higher acceleration demands. The 

influence of damping was found to be most significant at modal periods where peak 

spectral accelerations were also observed.  

ii) The highest spectral acceleration demands for each mode occurred at the floor level with 

the highest modal coordinate for the mode under consideration.    

iii) Inelastic structural response was observed to reduce spectral acceleration demands, 

particularly at modal periods. This reduction significantly reduced with increasing order of 

modes, with the third mode response remaining essentially elastic. 

iv) Inelastic structural response was observed to cause a “plateau” of peak spectral 

accelerations at modal peaks due to period lengthening as the supporting structure goes 

into inelastic deformation. Period lengthening was observed to decrease with increasing 

order of modes. 
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8.1.4 Dynamic Interaction between Non-structural Elements and Supporting 

Buildings 

One of the main objectives of the present study was to propose methodologies to estimate floor 

response spectra atop RC and rocking wall buildings that can be used to design non-structural 

elements (NSEs). An inherent assumption of the floor response spectrum (FRS) method to estimate 

acceleration demands on non-structural elements is that the NSE can be considered un-coupled 

from the supporting structure. Thus, the dynamic interaction between the NSE and the supporting 

structure is assumed to be negligible. In past research efforts, this assumption has been considered 

acceptable for mass-ratios of 1% or less (Singh and Ang, 1974; Sankaranarayanan, 2007; amongst 

others), but some have suggested 0.1% or less (Toro et al., 1989).  

Noting the large differences in the mass ratios at which dynamic interaction needs to be considered, 

a coupled NLTHA was conducted in which SDOF non-structural elements with mass ratios of 

0.06% and 0.12% were modelled with the case-study buildings. The NSE accelerations from the 

coupled analysis were then compared to spectral acceleration demands from floor response spectra 

obtained from a decoupled NLTHA. From this comparison, the following observations were made: 

i) For both mass ratios considered, the floor response spectra (obtained from the decoupled 

analyses) gave conservative acceleration demand estimates for a wide range of periods 

including NSE periods close to the higher mode periods of the supporting building.  

ii) For both mass ratios considered, NSE accelerations from the coupled analysis were found 

to be higher than spectral acceleration values for NSEs with periods close to the 

fundamental period of the supporting building. 

iii) A lower mass ratio was associated with higher accelerations for NSEs with periods close 

to the fundamental period of the supporting building. 

iv) The effect of dynamic interaction was observed to diminish with increasing height of the 

supporting building. 

In closing, the dynamic interaction of non-structural elements and supporting structures might be 

significant for mass ratios as low as 0.06%. Thus, a coupled analysis may be necessary to get an 
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accurate estimate of acceleration demands for non-structural elements with natural periods close 

to the fundamental period of the supporting structure. 

8.1.5 Maximum Dynamic Amplification of Peak Floor Acceleration 

Maximum dynamic amplification of peak floor acceleration occurs when a non-structural element 

is in resonance with the supporting structure. As such, the maximum dynamic amplification factor 

(DAFmax) is defined as the ratio between peak spectral acceleration and peak floor acceleration 

(PFA). The quantification of DAFmax was critical in the development of the three methodologies 

proposed for the estimation of floor response spectra. In all three procedures, the various modes 

of an MDOF system are transformed into equivalent SDOF systems. Subsequently, the peak 

spectral acceleration associated with a certain mode is determined by scaling the PFA contribution 

of the given mode by DAFmax. 

For a better understanding of DAFmax, a study of floor spectra atop both elastic and inelastic SDOF 

systems was conducted through time history analysis. Through this study, the performance of two 

empirical formulations for DAFmax (Sullivan et al., 2013; Welch, 2016) as well as the effects of 

inelastic structural response on DAFmax were investigated. The following observations were made 

from this study: 

i) Non-structural damping was observed to have a strong influence on DAFmax, with lower 

damping values associated with higher dynamic amplification. 

ii) The damping of the supporting structure was also observed to have an influence on 

DAFmax, but to a much smaller extent relative to non-structural damping. Again, lower 

damping values were associated with higher dynamic amplification. 

iii) In general, inelastic structural response was associated with a decrease in DAFmax with the 

highest DAFmax observed during elastic structural response.  

iv) A slight increase in DAFmax was observed at low levels of inelastic deformation (ductility 

slightly higher than one) relative to elastic response in SDOF systems with a flag-shaped 

hysteresis, which is representative of a base-rocking system. This might be attributed to 

numerical issues arising from the idealization of the flag-shaped hysteresis with sharp 

corners. 
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v) The DAFmax formulation proposed by Welch (2016), which was derived for elastic SDOF 

systems, was in very good agreement with the data set from the present study.  

In closing, since increasing ductility demands were generally associated with lower DAFmax 

values, the DAFmax formulation proposed by Welch (2016) was adopted in this study for use in 

inelastic MDOF systems. 

8.1.6 Methodologies to Estimate Floor Response Spectra atop RC and Rocking Wall 

Systems 

One of the main objectives of the present study was to develop a procedure for the estimation of 

floor response spectra atop RC and rocking wall buildings responding non-linearly. In the end, 

three separate procedures were developed. The first two procedures assume that floor response 

spectra are being generated after the dynamic properties of the buildings are known. On the other 

hand, the third procedure assumes that floor response spectra are being generated in the early 

design phases of a building when the dynamic properties of the building are not known. This 

procedure was developed such that the design of non-structural elements, which can account for 

the majority of the total investment in a typical building (Taghavi and Miranda, 2003), could be 

considered early on in the building design process.  

All three proposed procedures were developed based on the work of Calvi and Sullivan (2014) 

who proposed a simple procedure for the estimation of floor response spectra in MDOF buildings 

responding elastically. In this procedure, modal floor spectra are first generated by obtaining 

elastic PFA contributions from each mode using a traditional modal response spectrum method. 

The modal PFA contributions are then scaled by empirical dynamic amplification factors (DAF) 

to obtain elastic modal floor spectra. The individual modal floor spectra are then combined using 

modal superposition to generate floor response spectra at each floor level. Each of the proposed 

procedures in the present study extends the procedure proposed by of Calvi and Sullivan (2014) to 

RC and rocking wall buildings responding non-linearly. Thus, the focus in developing the 

procedures was on how to take into account the effect of inelastic deformation on spectral 

acceleration demands. The main findings from each of the procedures are presented below. 
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Method (a): Procedure that utilizes transitory inelastic modal characteristics 

This procedure accounts for the inelastic deformation by obtaining the modal PFA contributions 

using transitory (instead of elastic) modal characteristics. Transitory modes can be obtained 

through an Eigen-value analysis of the building in which the location of inelastic mechanism (i.e. 

plastic hinge region or rocking joint) is defined using a linear spring with an assigned secant 

(instead of elastic) stiffness. The secant stiffness is related to the ductility of the structural system, 

so transitory modes can be determined at any level of inelastic deformation or ductility. 

Once the transitory modes are obtained, the modal PFA contributions are computed using a 

traditional modal response spectrum method. In doing so, it was also proposed that the first mode 

contribution to the PFA be obtained from a design ground response spectrum scaled at the 

equivalent viscous damping of the building, which incorporates both elastic and hysteretic 

damping. The hysteretic damping, which is dependent upon the ductility and behavior of a 

structural system, accounts for the added damping resulting from inelastic deformation. The 

incorporation of hysteretic damping was only proposed for the first mode because it has been noted 

by Sullivan et al. (2008) and others that inelastic structural response mainly affects the first mode 

response. 

The PFA and floor response spectra estimates from the current procedure improved with increasing 

earthquake intensity. This might be an indication that transitory inelastic modal characteristics are 

better suited for estimating structural response at high ductility demands. 

Method (b): Procedure that utilizes empirical modal reduction factors 

This procedure, which was adapted from Welch (2016), accounts for inelastic structural response 

by reducing the individual elastic modal floor response spectra with empirical modal reduction 

factors. The reduction factors are defined as the ratio between the spectral floor accelerations from 

linear and non-linear response at the modal period. The reduction factors  𝑅𝑖 were quantified 

through a record-by-record regression analysis as a function of the expected ductility of the 

structural system 𝜇. The regression analysis was conducted in the form of a simple power law 𝑅𝑖 =

𝜇𝛼𝑖 where 𝛼𝑖 is the exponent governing the rate of reduction in mode 𝑖.  From the analysis, 

reduction factors were obtained for the first three modes of the RC and rocking wall buildings. The 

observations made from the regression analysis are summarized as follows: 
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i) The reduction factors significantly reduced with increasing order of modes, with the first 

mode having the highest reduction factor. This supports the notion that inelastic 

deformation mainly affects the first mode response.  

ii) The scatter in reduction factors increased with increasing ductility demand for all three 

modes. Thus, this procedure might be best suited for low to moderate ductility demands. 

iii) For all three modes, the rocking walls had lower reduction factors relative to the RC walls. 

Thus, for the same increment in ductility, a lower reduction in spectral floor acceleration 

is expected in the rocking walls. This indicates that the RC wall buildings have a better 

energy dissipation capability relative to the rocking walls.  

Method (c): Procedure that utilizes dynamics of distributed-mass systems 

This procedure is different from the previous two procedures in that it assumes the modal 

characteristics of the building are not known when floor response spectra are being estimated. In 

this context, the main goal of this procedure is to estimate the acceleration demands on non-

structural elements in the early design phases of a building, such as after the completion of a direct 

displacement-based design (DDBD).  

The first step in the development of this procedure was to provide an effective means of estimating 

the modal characteristics of RC and rocking wall buildings. To this end, it was proposed that the 

structural walls be idealized as continuous distributed-mass systems to estimate their modal 

characteristics. More specifically, RC walls can be idealized as continuous cantilever beams, and 

rocking walls as continuous fully-pinned (at the foundation) beams. Based on these idealizations, 

the periods and mode shapes of the RC and rocking wall case study buildings were estimated and 

compared to modal analysis values. The following observations were made from the comparison 

of the modal characteristics: 

i) Reasonable approximations of modal periods were obtained for both RC and rocking wall 

buildings. The approximations were significantly better for the RC wall buildings. 

ii) There was a significant amount of error in the mode shape approximations for both RC and 

rocking wall buildings.  
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iii) The approximations for both periods and mode shapes significantly improved with 

decreasing order of modes and increasing buildings height (i.e. floor levels). The latter was 

expected since idealizing a lumped-mass system as a continuous system becomes more 

realistic as the number of DOF (i.e. floor levels) increases.  

The second step in the development of the current procedure was to provide an effective means of 

taking into account the effect of inelastic deformation on spectral acceleration demands. To this 

end, it was proposed that the first mode PFA contributions be obtained from the equivalent lateral 

force distribution of the design base shear, which typically only takes into account the first mode 

response of the building. For the case-study buildings, this was very effective in providing 

reasonable estimates of peak spectral acceleration demands in the first mode region. 

For higher modes, it was proposed that the modal PFA contributions be determined by a traditional 

modal response spectrum method using the approximate elastic modal properties. Assuming that 

the higher mode response remains elastic is potentially conservative, but overall reasonable, 

considering the minor reductions in spectral floor acceleration demands observed in higher modes 

during inelastic structural response. For the case-study buildings, this assumption led non-

conservative estimates of peak spectral acceleration demands for the second and third mode 

regions, which was mainly attributed to the error in the mode shape approximations. 

8.2 Limitations of the Present Study and Recommendations for Further 

Research 

The mass ratio at which dynamic interaction of non-structural elements and supporting structures 

needs to be considered was investigated in the present study. Dynamic interaction was observed 

in non-structural elements with mass ratios as low as 0.06% and natural periods close to the 

fundamental period of the supporting structure. These results call into question the commonly 

accepted mass ratio threshold of 1%. However, only two mass ratios were considered in the present 

study. Thus, future research efforts should investigate dynamic interaction at a wide range of mass 

ratios. 

The floor response spectra estimation procedures proposed in the present study were developed 

for RC and rocking wall buildings with one inelastic mechanism (i.e. plastic hinge or rocking joint) 

at the base of the walls. For tall RC wall buildings, however, a second plastic hinge could form, 
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particularly in the presence bar of curtailment along the height of an RC wall (Panagiotou and 

Restrepo, 2009). The formation of the second plastic hinge could reduce the effects of higher 

modes (Panagiotou and Restrepo, 2009; Wiebe, 2008). Thus, the proposed floor response spectra 

estimation procedures are expected to provide a conservative estimate for spectral acceleration 

demands, mainly in the higher mode regions, for RC walls with multiple plastic hinges. For 

rocking wall buildings, the introduction of multiple rocking joints could cause an increase in the 

floor acceleration response of the building as observed by Khanmohammadi and Heydari (2015) 

and Wiebe (2008). Therefore, the proposed procedures to estimate floor response spectra might 

provide non-conservative estimates for spectral acceleration demands for rocking walls with 

multiple rocking joints. Nevertheless, the present study did not address the applicability of the 

proposed procedures to RC and rocking wall buildings with multiple plastic hinges and rocking 

joints, and thus should be properly addressed in future studies. 

In addition, the applicability of the proposed procedures to other common structural systems 

should be investigated in future studies. In doing so, future research efforts regarding the first 

procedure should focus on developing methodologies to estimate transitory modal characteristics 

in structural systems with more than one inelastic mechanism, such as moment frames or dual 

systems. In such systems, obtaining transitory modal characteristics requires the consideration of 

a number of different stiffness distributions in plastic hinge regions, which was not dealt with in 

the present study. 

Regarding the last procedure proposed for the estimation of floor response spectra, the error in the 

mode shape approximations was identified as the main source of error in the estimation of spectral 

acceleration demands. Thus, future research efforts should focus on the development of correction 

factors for the mode shapes obtained by idealizing RC and rocking wall buildings as continuous 

distributed-mass systems.
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APPENDIX A. MODAL CHARACTERISTICS OF CASE STUDY 

BUILDINGS 

Section A.1 presents the elastic modal characteristics of the case-study buildings. Section A.2 

presents the transitory modal characteristics of the case-study buildings at each intensity level 

considered. Section A.3 presents approximate elastic modal characteristics for the case study 

buildings idealized as continuous distributed-mass systems. 

A.1 Elastic Modal Characteristics 

Table A.1 Elastic modal characteristics of the 4-story RC wall building 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.741 4.613 12.490 21.400 
Period, Ti (sec) 1.350 0.217 0.080 0.047 

Damping Ratio, ξi (%) 1.987 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.367 0.633 0.354 -0.188 
Effective Modal Mass, Me,i (tons) 296.5 91.3 29.7 9.4 

Fraction of Total Mass (%) 69.0% 22.0% 7.0% 2.0% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.094 0.522 1.000 -0.994 
2 0.330 1.000 0.290 1.000 
3 0.649 0.513 -0.944 -0.654 
4 1.000 -0.776 0.461 0.204 
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Table A.2 Elastic modal characteristics of the 8-story RC wall building 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.393 2.426 6.605 12.370 19.140 26.060 
Period, Ti (sec) 2.543 0.412 0.151 0.081 0.052 0.038 

Damping Ratio, ξi (%) 1.960 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.458 -0.662 0.371 0.255 0.195 0.156 
Effective Modal Mass, Me,i (tons) 1088.0 338.1 117.1 59.1 33.2 18.4 

Fraction of Total Mass (%) 65.0% 21.0% 7.0% 3.0% 2.0% 1.0% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.026 -0.180 0.466 0.786 1.000 1.000 
2 0.096 -0.529 1.000 1.000 0.401 -0.393 
3 0.202 -0.839 0.913 -0.082 -0.944 -0.547 
4 0.335 -0.953 0.173 -0.994 -0.174 0.909 
5 0.488 -0.789 -0.656 -0.439 0.991 -0.282 
6 0.654 -0.352 -0.894 0.736 -0.014 -0.659 
7 0.826 0.280 -0.286 0.730 -0.919 0.843 
8 1.000 1.000 0.851 -0.685 0.505 -0.334 
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Table A.3 Elastic modal characteristics of the 12-story RC wall building 

MODE 1 2 3 4 5 6 
Frequency, fi (Hz) 0.271 1.676 4.586 8.686 13.730 19.400 

Period, Ti (sec) 3.686 0.597 0.218 0.115 0.073 0.052 
Damping Ratio, ξi (%) 1.955 5.000 5.000 5.000 5.000 5.000 

Modal Participation Factor, Γi (-) 1.493 -0.729 0.378 0.261 0.217 0.161 
Effective Modal Mass, Me,i (tons) 1633.0 506.8 176.3 90.9 54.5 35.0 

Fraction of Total Mass (%) 64.0% 19.9% 6.9% 3.6% 2.1% 1.4% 
              

Floor Level Mode Shapes 

  Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.012 -0.083 0.249 0.467 0.641 0.895 
2 0.045 -0.266 0.673 1.000 1.000 0.867 
3 0.097 -0.488 0.985 0.981 0.371 -0.412 
4 0.164 -0.690 1.000 0.325 -0.627 -0.971 
5 0.245 -0.826 0.676 -0.536 -0.881 0.066 
6 0.337 -0.862 0.121 -0.993 -0.112 1.000 
7 0.437 -0.778 -0.458 -0.725 0.791 0.305 
8 0.544 -0.576 -0.836 0.064 0.788 -0.889 
9 0.655 -0.269 -0.855 0.783 -0.109 -0.644 
10 0.769 0.117 -0.483 0.879 -0.843 0.621 
11 0.884 0.549 0.190 0.210 -0.500 0.779 
12 1.000 1.000 0.998 -0.896 0.712 -0.650 
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Table A.4 Elastic modal characteristics of the 4-story rocking wall building 

Mode 1 2 3 4 

Frequency, fi (Hz) 1.258 9.923 25.920 40.530 
Period, Ti (sec) 0.795 0.101 0.039 0.025 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.365 0.516 0.251 -0.105 
Effective Modal Mass, Me,i (tons) 338.7 71.8 14.0 2.5 

Fraction of Total Mass (%) 79.0% 17.0% 3.0% 1.0% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.198 0.785 1.000 -0.707 
2 0.444 1.000 -0.071 1.000 
3 0.718 0.322 -0.890 -0.742 
4 1.000 -0.905 0.515 0.249 
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Table A.5 Elastic modal characteristics of the 8-story rocking wall building 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.627 4.432 11.960 21.010 29.890 37.510 
Period, Ti (sec) 1.594 0.226 0.084 0.048 0.033 0.027 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.450 -0.628 0.312 -0.189 0.130 0.084 
Effective Modal Mass, Me,i (tons) 1227.0 302.1 80.0 32.0 14.2 6.3 

Fraction of Total Mass (%) 74.0% 18.0% 5.0% 2.0% 0.0% 1.0% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.079 -0.361 0.707 -0.960 1.000 0.940 
2 0.179 -0.693 1.000 -0.694 -0.043 -0.742 
3 0.296 -0.886 0.631 0.486 -0.973 -0.305 
4 0.425 -0.869 -0.153 1.000 0.155 1.000 
5 0.563 -0.622 -0.794 0.168 0.970 -0.537 
6 0.707 -0.179 -0.816 -0.853 -0.227 -0.570 
7 0.853 0.389 -0.148 -0.614 -0.866 0.953 
8 1.000 1.000 0.854 0.714 0.542 -0.413 
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Table A.6 Elastic modal characteristics of the 12-story rocking wall building 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.439 3.062 8.407 15.230 22.560 29.720 
Period, Ti (sec) 2.277 0.327 0.119 0.066 0.044 0.034 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.483 -0.690 0.324 0.213 0.145 0.110 
Effective Modal Mass, Me,i (tons) 1833.0 465.3 130.2 56.6 29.0 16.3 

Fraction of Total Mass (%) 72.0% 18.0% 5.0% 2.0% 1.0% 1.0% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.048 -0.216 0.491 0.706 0.910 1.000 
2 0.106 -0.441 0.875 1.000 0.887 0.480 
3 0.174 -0.640 1.000 0.657 -0.073 -0.771 
4 0.250 -0.778 0.812 -0.110 -0.941 -0.805 
5 0.332 -0.835 0.367 -0.797 -0.779 0.426 
6 0.420 -0.795 -0.186 -0.952 0.235 0.990 
7 0.512 -0.656 -0.660 -0.477 1.000 -0.001 
8 0.607 -0.428 -0.889 0.303 0.690 -0.998 
9 0.704 -0.124 -0.783 0.853 -0.347 -0.449 

10 0.802 0.230 -0.355 0.780 -0.957 0.762 
11 0.901 0.612 0.289 0.083 -0.422 0.685 
12 1.000 1.000 0.996 -0.871 0.795 -0.681 
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A.2 Transitory Modal Characteristics 

Table A.7 Transitory modal characteristics of the 4-story RC wall building; Intensity 1 (PGA = 0.225 g) 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.497 3.700 10.880 20.220 
Period, Ti (sec) 2.014 0.270 0.092 0.049 

Damping Ratio, ξi (%) 1.987 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.369 0.542 0.271 -0.117 
Effective Modal Mass, Me,i (tons) 331.1 76.4 16.3 3.1 

Fraction of Total Mass (%) 77.5% 17.9% 3.8% 0.7% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.177 0.738 1.000 -0.746 
2 0.421 1.000 -0.005 1.000 
3 0.703 0.365 -0.901 -0.715 
4 1.000 -0.881 0.500 0.233 

 

Table A.8 Transitory modal characteristics of the 4-story RC wall building; Intensity 5 (PGA = 0.450 g) 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.362 3.470 10.620 20.080 
Period, Ti (sec) 2.766 0.288 0.094 0.050 

Damping Ratio, ξi (%) 1.987 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.362 0.496 0.245 -0.106 
Effective Modal Mass, Me,i (tons) 343.0 67.8 13.6 2.6 

Fraction of Total Mass (%) 80.3% 15.9% 3.2% 0.6% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.211 0.790 1.000 -0.715 
2 0.458 1.000 -0.055 1.000 
3 0.725 0.322 -0.910 -0.723 
4 1.000 -0.934 0.517 0.237 
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Table A.9 Transitory modal characteristics of the 4-story RC wall building; Intensity 6 (PGA = 0.675 g) 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.304 3.403 10.550 20.040 
Period, Ti (sec) 3.295 0.294 0.095 0.050 

Damping Ratio, ξi (%) 1.987 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.358 0.481 0.238 -0.103 
Effective Modal Mass, Me,i (tons) 346.8 64.9 12.9 2.4 

Fraction of Total Mass (%) 81.2% 15.2% 3.0% 0.6% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.222 0.805 1.000 -0.707 
2 0.470 1.000 -0.068 1.000 
3 0.732 0.308 -0.913 -0.725 
4 1.000 -0.953 0.522 0.238 
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Table A.10 Transitory modal characteristics of the 8-story RC wall building; Intensity 1 (PGA = 0.225 g) 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.301 2.044 5.860 11.380 18.090 25.170 
Period, Ti (sec) 3.320 0.489 0.171 0.088 0.055 0.040 

Damping Ratio, ξi (%) 1.960 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.456 -0.645 0.331 -0.205 0.144 0.095 
Effective Modal Mass, Me,i (tons) 1193.0 316.8 89.8 37.2 17.2 7.8 

Fraction of Total Mass (%) 71.6% 19.0% 5.4% 2.2% 1.0% 0.5% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.065 -0.320 0.658 -0.930 1.000 0.966 
2 0.156 -0.655 1.000 -0.764 0.048 -0.681 
3 0.270 -0.873 0.695 0.389 -0.970 -0.381 
4 0.400 -0.887 -0.070 1.000 0.055 1.000 
5 0.542 -0.662 -0.750 0.258 0.971 -0.447 
6 0.692 -0.226 -0.837 -0.803 -0.131 -0.639 
7 0.845 0.356 -0.201 -0.670 -0.887 0.929 
8 1.000 1.000 0.858 0.706 0.519 -0.381 

 

Table A.11 Transitory modal characteristics of the 8-story RC wall building; Intensity 5 (PGA = 0.450 g) 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.220 1.872 5.631 11.150 17.900 25.030 
Period, Ti (sec) 4.537 0.534 0.178 0.090 0.056 0.040 

Damping Ratio, ξi (%) 1.960 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.444 -0.620 0.297 -0.185 0.128 0.085 
Effective Modal Mass, Me,i (tons) 1255.0 281.2 74.7 30.4 13.9 6.3 

Fraction of Total Mass (%) 75.4% 16.9% 4.5% 1.8% 0.8% 0.4% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.092 -0.363 0.712 -0.945 1.000 0.937 
2 0.199 -0.681 1.000 -0.697 -0.020 -0.718 
3 0.318 -0.858 0.632 0.460 -0.985 -0.345 
4 0.446 -0.832 -0.150 1.000 0.098 1.000 
5 0.580 -0.589 -0.799 0.216 0.982 -0.470 
6 0.718 -0.159 -0.841 -0.823 -0.155 -0.627 
7 0.859 0.394 -0.180 -0.660 -0.897 0.932 
8 1.000 1.000 0.887 0.717 0.531 -0.384 
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Table A.12 Transitory modal characteristics of the 8-story RC wall building; Intensity 6 (PGA = 0.675 g) 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.185 1.823 5.575 11.100 17.860 25.000 
Period, Ti (sec) 5.402 0.549 0.179 0.090 0.056 0.040 

Damping Ratio, ξi (%) 1.960 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.439 -0.611 0.287 -0.180 0.125 0.083 
Effective Modal Mass, Me,i (tons) 1276.0 267.8 70.6 28.8 13.2 6.0 

Fraction of Total Mass (%) 76.6% 16.1% 4.2% 1.7% 0.8% 0.4% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.101 -0.372 0.725 -0.947 1.000 0.931 
2 0.214 -0.685 1.000 -0.680 -0.035 -0.726 
3 0.334 -0.849 0.616 0.476 -0.989 -0.337 
4 0.461 -0.813 -0.171 1.000 0.108 1.000 
5 0.593 -0.565 -0.813 0.207 0.986 -0.474 
6 0.727 -0.139 -0.844 -0.828 -0.161 -0.625 
7 0.864 0.406 -0.175 -0.658 -0.900 0.933 
8 1.000 1.000 0.897 0.719 0.534 -0.385 
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Table A.13 Transitory modal characteristics of the 12-story RC wall building; Intensity 1 (PGA = 0.225 g) 

Mode 1 2 3 4 5 6 
Frequency, fi (Hz) 0.228 1.476 4.163 8.074 13.000 18.640 

Period, Ti (sec) 4.385 0.678 0.240 0.124 0.077 0.054 
Damping Ratio, ξi (%) 1.955 5.000 5.000 5.000 5.000 5.000 

Modal Participation Factor, Γi (-) 1.492 -0.717 0.353 0.237 0.157 0.125 
Effective Modal Mass, Me,i (tons) 1747.0 497.6 152.6 69.2 36.6 20.9 

Fraction of Total Mass (%) 68.5% 19.5% 6.0% 2.7% 1.4% 0.8% 
              

Floor Level Mode Shapes 

  Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.031 -0.167 0.413 0.636 0.898 0.980 
2 0.078 -0.378 0.812 1.000 1.000 0.594 
3 0.139 -0.586 1.000 0.759 0.079 -0.670 
4 0.211 -0.749 0.881 0.035 -0.903 -0.870 
5 0.292 -0.836 0.481 -0.698 -0.891 0.297 
6 0.382 -0.825 -0.069 -0.955 0.098 1.000 
7 0.478 -0.708 -0.577 -0.567 0.983 0.137 
8 0.578 -0.490 -0.861 0.196 0.802 -0.943 
9 0.682 -0.187 -0.808 0.802 -0.237 -0.557 
10 0.787 0.179 -0.412 0.812 -0.973 0.671 
11 0.893 0.583 0.238 0.153 -0.526 0.751 
12 1.000 1.000 1.000 -0.876 0.826 -0.662 
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Table A.14 Transitory modal characteristics of the 12-story RC wall building; Intensity 5 (PGA = 0.450 g) 

Mode 1 2 3 4 5 6 
Frequency, fi (Hz) 0.178 1.338 3.956 7.844 12.780 18.440 

Period, Ti (sec) 5.629 0.747 0.253 0.128 0.078 0.054 
Damping Ratio, ξi (%) 1.955 5.000 5.000 5.000 5.000 5.000 

Modal Participation Factor, Γi (-) 1.481 -0.691 0.327 0.210 0.141 0.112 
Effective Modal Mass, Me,i (tons) 1848.0 451.9 127.3 56.0 29.3 16.7 

Fraction of Total Mass (%) 72.5% 17.7% 5.0% 2.2% 1.1% 0.7% 
              

Floor Level Mode Shapes 

  Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.051 -0.213 0.471 0.694 0.919 0.987 
2 0.112 -0.434 0.844 1.000 0.927 0.512 
3 0.181 -0.627 0.971 0.679 -0.032 -0.735 
4 0.257 -0.762 0.797 -0.075 -0.946 -0.838 
5 0.339 -0.816 0.373 -0.774 -0.842 0.359 
6 0.427 -0.777 -0.163 -0.964 0.167 1.000 
7 0.518 -0.643 -0.630 -0.523 1.000 0.092 
8 0.612 -0.419 -0.867 0.251 0.767 -0.961 
9 0.708 -0.122 -0.781 0.835 -0.271 -0.536 
10 0.805 0.228 -0.375 0.815 -0.974 0.688 
11 0.902 0.608 0.262 0.137 -0.511 0.748 
12 1.000 1.000 1.000 -0.900 0.828 -0.670 
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Table A.15 Transitory modal characteristics of the 12-story RC wall building; Intensity 6 (PGA = 0.675 g) 

Mode 1 2 3 4 5 6 
Frequency, fi (Hz) 0.153 1.292 3.898 7.786 12.720 18.400 

Period, Ti (sec) 6.559 0.774 0.257 0.128 0.079 0.054 
Damping Ratio, ξi (%) 1.955 5.000 5.000 5.000 5.000 5.000 

Modal Participation Factor, Γi (-) 1.474 -0.678 0.318 0.202 0.138 0.108 
Effective Modal Mass, Me,i (tons) 1887.0 428.8 118.9 52.4 27.5 15.7 

Fraction of Total Mass (%) 74.0% 16.8% 4.7% 2.1% 1.1% 0.6% 
              

Floor Level Mode Shapes 

  Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.059 -0.225 0.484 0.709 0.919 0.987 
2 0.126 -0.447 0.848 1.000 0.905 0.493 
3 0.198 -0.635 0.958 0.659 -0.058 -0.750 
4 0.277 -0.760 0.770 -0.104 -0.952 -0.830 
5 0.359 -0.804 0.341 -0.796 -0.827 0.373 
6 0.446 -0.757 -0.190 -0.968 0.183 1.000 
7 0.535 -0.617 -0.645 -0.513 1.000 0.082 
8 0.626 -0.393 -0.868 0.266 0.756 -0.966 
9 0.718 -0.099 -0.773 0.846 -0.278 -0.532 
10 0.812 0.245 -0.365 0.818 -0.971 0.693 
11 0.906 0.617 0.268 0.133 -0.505 0.748 
12 1.000 1.000 1.000 -0.909 0.826 -0.672 
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Table A.16 Transitory modal characteristics of the 4-story rocking wall building; Intensity 1 (PGA = 0.225 g) 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.516 9.325 25.530 40.420 
Period, Ti (sec) 1.939 0.107 0.039 0.025 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.352 0.459 0.225 -0.096 
Effective Modal Mass, Me,i (tons) 352.7 60.7 11.5 2.1 

Fraction of Total Mass (%) 82.6% 14.2% 2.7% 0.5% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.241 0.836 1.000 -0.684 
2 0.491 1.000 -0.114 1.000 
3 0.745 0.273 -0.904 -0.747 
4 1.000 -0.975 0.532 0.251 

 

Table A.17 Transitory modal characteristics of the 4-story rocking wall building; Intensity 5 (PGA = 0.450 g) 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.331 9.261 25.490 40.410 
Period, Ti (sec) 3.018 0.108 0.039 0.025 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.350 0.452 0.222 -0.095 
Effective Modal Mass, Me,i (tons) 354.3 59.4 11.3 2.1 

Fraction of Total Mass (%) 83.0% 13.9% 2.6% 0.5% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.246 0.841 1.000 -0.682 
2 0.496 1.000 -0.118 1.000 
3 0.748 0.267 -0.906 -0.747 
4 1.000 -0.984 0.533 0.251 
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Table A.18 Transitory modal characteristics of the 4-story rocking wall building; Intensity 6 (PGA = 0.675 g) 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.274 9.248 25.480 40.410 
Period, Ti (sec) 3.647 0.108 0.039 0.025 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.350 0.450 0.222 -0.095 
Effective Modal Mass, Me,i (tons) 354.6 59.1 11.2 2.1 

Fraction of Total Mass (%) 83.1% 13.8% 2.6% 0.5% 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.248 0.842 1.000 -0.681 
2 0.497 1.000 -0.119 1.000 
3 0.748 0.266 -0.906 -0.747 
4 1.000 -0.986 0.534 0.252 
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Table A.19 Transitory modal characteristics of the 8-story rocking wall building; Intensity 1 (PGA = 0.225 g) 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.285 4.051 11.630 20.790 29.770 37.450 
Period, Ti (sec) 3.504 0.247 0.086 0.048 0.034 0.027 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.429 -0.592 0.275 -0.173 0.119 0.078 
Effective Modal Mass, Me,i (tons) 1303.0 250.2 64.9 26.5 12.1 5.4 

Fraction of Total Mass (%) 78.3% 15.0% 3.9% 1.6% 0.7% 0.3% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.115 -0.390 0.748 -0.960 1.000 0.923 
2 0.235 -0.699 1.000 -0.644 -0.083 -0.761 
3 0.358 -0.849 0.579 0.533 -0.988 -0.290 
4 0.484 -0.795 -0.222 1.000 0.180 1.000 
5 0.612 -0.535 -0.843 0.142 0.982 -0.547 
6 0.741 -0.105 -0.830 -0.865 -0.242 -0.565 
7 0.870 0.430 -0.134 -0.609 -0.878 0.956 
8 1.000 1.000 0.890 0.722 0.553 -0.416 

 

Table A.20 Transitory modal characteristics of the 8-story rocking wall building; Intensity 5 (PGA = 0.450 g) 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.194 4.005 11.590 20.770 29.760 37.440 
Period, Ti (sec) 5.163 0.250 0.086 0.048 0.034 0.027 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.425 -0.586 0.270 -0.171 0.117 0.078 
Effective Modal Mass, Me,i (tons) 1313.0 242.8 63.2 26.0 11.8 5.3 

Fraction of Total Mass (%) 78.9% 14.6% 3.8% 1.6% 0.7% 0.3% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.120 -0.392 0.753 -0.960 1.000 0.922 
2 0.243 -0.698 1.000 -0.639 -0.087 -0.762 
3 0.367 -0.843 0.574 0.538 -0.989 -0.288 
4 0.493 -0.785 -0.230 1.000 0.182 1.000 
5 0.619 -0.523 -0.849 0.139 0.983 -0.549 
6 0.746 -0.096 -0.832 -0.866 -0.243 -0.565 
7 0.873 0.435 -0.132 -0.608 -0.879 0.956 
8 1.000 1.000 0.894 0.723 0.554 -0.416 
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Table A.21 Transitory modal characteristics of the 8-story rocking wall building; Intensity 6 (PGA = 0.675 g) 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.159 3.993 11.580 20.770 29.750 37.440 
Period, Ti (sec) 6.276 0.250 0.086 0.048 0.034 0.027 

Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 
Modal Participation Factor, Γi (-) 1.424 -0.584 0.269 -0.170 0.117 0.078 
Effective Modal Mass, Me,i (tons) 1316.0 240.7 62.8 25.8 11.8 5.3 

Fraction of Total Mass (%) 79.0% 14.5% 3.8% 1.6% 0.7% 0.3% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.122 -0.393 0.754 -0.960 1.000 0.921 
2 0.245 -0.698 1.000 -0.637 -0.088 -0.763 
3 0.370 -0.841 0.572 0.539 -0.990 -0.288 
4 0.495 -0.782 -0.232 1.000 0.183 1.000 
5 0.621 -0.520 -0.850 0.139 0.983 -0.549 
6 0.747 -0.093 -0.832 -0.867 -0.244 -0.565 
7 0.874 0.437 -0.132 -0.608 -0.879 0.956 
8 1.000 1.000 0.895 0.723 0.554 -0.416 
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Table A.22 Transitory modal characteristics of the 12-story rocking wall building; Intensity 1                    

(PGA = 0.225 g) 

Mode 1 2 3 4 5 6 
Frequency, fi (Hz) 0.229 2.789 8.141 15.040 22.430 29.630 

Period, Ti (sec) 4.358 0.359 0.123 0.067 0.045 0.034 
Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 

Modal Participation Factor, Γi (-) 1.460 -0.650 0.296 0.191 0.136 -0.103 
Effective Modal Mass, Me,i (tons) 1949.0 390.5 106.5 47.3 24.9 14.2 

Fraction of Total Mass (%) 76.4% 15.3% 4.2% 1.9% 1.0% 0.6% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.073 -0.245 0.518 0.736 0.904 -0.991 
2 0.150 -0.472 0.880 1.000 0.844 -0.444 
3 0.229 -0.652 0.965 0.613 -0.121 0.792 
4 0.310 -0.764 0.744 -0.174 -0.953 0.790 
5 0.393 -0.792 0.289 -0.848 -0.754 -0.446 
6 0.478 -0.730 -0.252 -0.967 0.261 -0.985 
7 0.563 -0.580 -0.696 -0.459 1.000 0.017 
8 0.650 -0.351 -0.894 0.336 0.672 1.000 
9 0.737 -0.058 -0.766 0.881 -0.358 0.440 

10 0.825 0.278 -0.332 0.792 -0.952 -0.766 
11 0.912 0.637 0.305 0.075 -0.414 -0.681 
12 1.000 1.000 1.000 -0.897 0.793 0.682 
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Table A.23 Transitory modal characteristics of the 12-story rocking wall building; Intensity 5                    

(PGA = 0.450 g) 

Mode 1 2 3 4 5 6 
Frequency, fi (Hz) 0.152 2.740 8.099 15.010 22.410 29.620 

Period, Ti (sec) 6.599 0.365 0.124 0.067 0.045 0.034 
Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 

Modal Participation Factor, Γi (-) 1.453 -0.640 0.292 0.187 0.134 -0.102 
Effective Modal Mass, Me,i (tons) 1972.0 374.0 102.6 46.0 24.3 13.9 

Fraction of Total Mass (%) 77.3% 14.7% 4.0% 1.8% 1.0% 0.5% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.079 -0.249 0.521 0.740 0.903 -0.990 
2 0.159 -0.475 0.879 1.000 0.838 -0.439 
3 0.241 -0.651 0.958 0.607 -0.128 0.795 
4 0.323 -0.758 0.732 -0.184 -0.954 0.788 
5 0.406 -0.782 0.276 -0.856 -0.751 -0.448 
6 0.490 -0.717 -0.262 -0.970 0.265 -0.984 
7 0.575 -0.565 -0.702 -0.456 1.000 0.020 
8 0.659 -0.336 -0.894 0.341 0.669 1.000 
9 0.744 -0.045 -0.763 0.886 -0.360 0.438 

10 0.830 0.287 -0.329 0.794 -0.952 -0.766 
11 0.915 0.642 0.307 0.074 -0.413 -0.681 
12 1.000 1.000 1.000 -0.901 0.793 0.682 
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Table A.24 Transitory modal characteristics of the 12-story rocking wall building; Intensity 6                    

(PGA = 0.675 g) 

Mode 1 2 3 4 5 6 
Frequency, fi (Hz) 0.122 2.728 8.089 15.000 22.410 29.620 

Period, Ti (sec) 8.174 0.367 0.124 0.067 0.045 0.034 
Damping Ratio, ξi (%) 1.000 5.000 5.000 5.000 5.000 5.000 

Modal Participation Factor, Γi (-) 1.451 -0.638 0.290 0.187 0.134 -0.102 
Effective Modal Mass, Me,i (tons) 1978.0 369.6 101.6 45.6 24.1 13.9 

Fraction of Total Mass (%) 77.5% 14.5% 4.0% 1.8% 0.9% 0.5% 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.080 -0.250 0.522 0.741 0.903 -0.989 
2 0.162 -0.475 0.879 1.000 0.836 -0.437 
3 0.244 -0.651 0.956 0.605 -0.130 0.796 
4 0.327 -0.757 0.729 -0.187 -0.955 0.787 
5 0.410 -0.780 0.272 -0.858 -0.750 -0.449 
6 0.494 -0.714 -0.264 -0.971 0.266 -0.983 
7 0.578 -0.561 -0.703 -0.456 1.000 0.020 
8 0.662 -0.332 -0.894 0.343 0.668 1.000 
9 0.746 -0.042 -0.762 0.887 -0.360 0.438 

10 0.831 0.290 -0.328 0.795 -0.951 -0.766 
11 0.915 0.643 0.307 0.074 -0.413 -0.680 
12 1.000 1.000 1.000 -0.902 0.793 0.682 
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A.3 Approximate Elastic Modal Characteristics from Continuous Distributed-

mass Beams 

Table A.25 Approximate elastic modal characteristics of the 4-story RC wall building idealized as a 

continuous cantilever beam 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.790 4.951 13.862 27.167 
Period, Ti (sec) 1.266 0.202 0.072 0.037 

Modal Participation Factor, Γi (-) 1.364 0.215 0.607 -0.140 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.097 0.417 0.724 0.685 
2 0.340 0.714 0.020 -0.707 
3 0.658 0.135 -0.581 0.621 
4 1.000 -1.000 1.000 -1.000 

 

Table A.26 Approximate elastic modal characteristics of the 8-story RC wall building idealized as a 

continuous cantilever beam 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.403 2.526 7.072 13.859 22.908 34.220 
Period, Ti (sec) 2.481 0.396 0.141 0.072 0.044 0.029 

Modal Participation Factor, Γi (-) 1.455 0.497 0.589 0.068 0.414 -0.057 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.026 0.138 0.325 0.519 0.673 0.751 
2 0.097 0.417 0.724 0.685 0.285 -0.264 
3 0.205 0.654 0.618 -0.130 -0.691 -0.392 
4 0.340 0.714 0.020 -0.707 0.001 0.707 
5 0.493 0.534 -0.558 -0.145 0.696 -0.394 
6 0.658 0.135 -0.581 0.621 -0.256 -0.277 
7 0.828 -0.407 0.050 0.266 -0.502 0.636 
8 1.000 -1.000 1.000 -1.000 1.000 -1.000 
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Table A.27 Approximate elastic modal characteristics of the 12-story RC wall building idealized as a 

continuous cantilever beam 

Mode 1 2 3 4 5 6 
Frequency, fi (Hz) 0.268 1.679 4.701 9.213 15.229 22.749 

Period, Ti (sec) 3.733 0.596 0.213 0.109 0.066 0.044 
Modal Participation Factor, Γi (-) 1.491 0.617 0.567 0.166 0.377 0.041 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.012 0.066 0.168 0.292 0.425 0.549 
2 0.045 0.225 0.489 0.692 0.754 0.640 
3 0.097 0.417 0.724 0.685 0.285 -0.264 
4 0.166 0.590 0.722 0.195 -0.495 -0.681 
5 0.247 0.698 0.454 -0.426 -0.652 0.093 
6 0.340 0.714 0.020 -0.707 0.001 0.707 
7 0.440 0.621 -0.406 -0.434 0.655 0.092 
8 0.547 0.423 -0.644 0.171 0.505 -0.685 
9 0.658 0.135 -0.581 0.621 -0.256 -0.277 
10 0.771 -0.216 -0.218 0.532 -0.660 0.584 
11 0.885 -0.603 0.353 -0.108 -0.117 0.312 
12 1.000 -1.000 1.000 -1.000 1.000 -1.000 

 

Table A.28 Approximate elastic modal characteristics of the 4-story rocking wall building idealized as a fully-

pinned continuous cantilever beam 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.956 11.963 38.767 80.888 
Period, Ti (sec) 1.046 0.084 0.026 0.012 

Modal Participation Factor, Γi (-) 1.349 0.116 0.497 -0.273 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.250 0.566 0.696 0.393 
2 0.500 0.585 -0.256 -0.656 
3 0.750 -0.049 -0.503 0.655 
4 1.000 -1.000 1.000 -1.000 
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Table A.29 Approximate elastic modal characteristics of the 8-story rocking wall building idealized as a fully-

pinned continuous cantilever beam 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.500 4.609 14.935 31.162 53.288 81.315 
Period, Ti (sec) 2.002 0.217 0.067 0.032 0.019 0.012 

Modal Participation Factor, Γi (-) 1.421 0.392 0.485 -0.022 0.328 -0.140 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.125 0.323 0.548 0.677 0.704 0.624 
2 0.250 0.566 0.696 0.393 -0.138 -0.588 
3 0.375 0.663 0.339 -0.449 -0.677 -0.069 
4 0.500 0.585 -0.256 -0.656 0.271 0.653 
5 0.625 0.335 -0.641 0.058 0.627 -0.548 
6 0.750 -0.049 -0.503 0.655 -0.375 -0.146 
7 0.875 -0.511 0.137 0.194 -0.452 0.613 
8 1.000 -1.000 1.000 -1.000 1.000 -1.000 
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Table A.30 Approximate elastic modal characteristics of the 12-story rocking wall building idealized as a 

fully-pinned continuous cantilever beam 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.329 3.004 9.735 20.312 34.735 53.003 
Period, Ti (sec) 3.040 0.333 0.103 0.049 0.029 0.019 

Modal Participation Factor, Γi (-) 1.448 0.505 0.464 0.081 0.300 -0.029 
              

Floor Level 
Mode Shapes  

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.083 0.221 0.393 0.532 0.634 0.694 
2 0.167 0.417 0.655 0.701 0.561 0.271 
3 0.250 0.566 0.696 0.393 -0.138 -0.588 
4 0.333 0.649 0.505 -0.184 -0.683 -0.500 
5 0.417 0.657 0.146 -0.635 -0.466 0.393 
6 0.500 0.585 -0.256 -0.656 0.271 0.653 
7 0.583 0.436 -0.562 -0.234 0.707 -0.138 
8 0.667 0.219 -0.660 0.337 0.359 -0.709 
9 0.750 -0.049 -0.503 0.655 -0.375 -0.146 
10 0.833 -0.352 -0.117 0.470 -0.647 0.621 
11 0.917 -0.673 0.415 -0.167 -0.063 0.266 
12 1.000 -1.000 1.000 -1.000 1.000 -1.000 

 

Table A.31 Approximate elastic modal characteristics of the 4-story rocking wall building idealized as a 

spring-hinged continuous cantilever beam 

Mode 1 2 3 4 

Frequency, fi (Hz) 0.956 12.354 39.197 81.323 
Period, Ti (sec) 1.046 0.081 0.026 0.012 

Modal Participation Factor, Γi (-) 1.356 0.136 0.504 -0.266 
          

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 

0 0.000 0.000 0.000 0.000 
1 0.229 0.564 0.704 0.406 
2 0.479 0.603 -0.243 -0.660 
3 0.738 -0.031 -0.507 0.654 
4 1.000 -1.000 1.000 -1.000 
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Table A.32 Approximate elastic modal characteristics of the 8-story rocking wall building idealized as a 

spring-hinged continuous cantilever beam 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.500 4.899 15.263 31.506 53.637 81.668 
Period, Ti (sec) 2.002 0.204 0.066 0.032 0.019 0.012 

Modal Participation Factor, Γi (-) 1.438 0.430 0.501 -0.011 0.334 -0.134 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.100 0.308 0.538 0.676 0.711 0.636 
2 0.212 0.561 0.712 0.419 -0.115 -0.577 
3 0.333 0.680 0.372 -0.429 -0.681 -0.084 
4 0.461 0.618 -0.230 -0.662 0.257 0.657 
5 0.593 0.374 -0.636 0.045 0.631 -0.541 
6 0.728 -0.016 -0.511 0.652 -0.369 -0.151 
7 0.864 -0.493 0.129 0.198 -0.454 0.613 
8 1.000 -1.000 1.000 -1.000 1.000 -1.000 
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Table A.33 Approximate elastic modal characteristics of the 12-story rocking wall building idealized as a 

spring-hinged continuous cantilever beam 

Mode 1 2 3 4 5 6 

Frequency, fi (Hz) 0.329 3.198 9.954 20.536 34.962 53.233 
Period, Ti (sec) 3.040 0.313 0.100 0.049 0.029 0.019 

Modal Participation Factor, Γi (-) 1.468 0.545 0.483 0.093 0.307 -0.023 
              

Floor Level 
Mode Shapes 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.065 0.206 0.381 0.524 0.631 0.695 
2 0.136 0.403 0.652 0.712 0.580 0.292 
3 0.212 0.561 0.712 0.420 -0.114 -0.577 
4 0.291 0.659 0.535 -0.156 -0.677 -0.512 
5 0.374 0.681 0.180 -0.624 -0.479 0.380 
6 0.460 0.619 -0.229 -0.663 0.257 0.658 
7 0.548 0.475 -0.548 -0.250 0.707 -0.128 
8 0.637 0.259 -0.660 0.326 0.368 -0.709 
9 0.727 -0.015 -0.511 0.653 -0.369 -0.152 
10 0.818 -0.328 -0.127 0.475 -0.648 0.620 
11 0.909 -0.661 0.409 -0.163 -0.066 0.268 
12 1.000 -1.000 1.000 -1.000 1.000 -1.000 
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APPENDIX B. ADDITIONAL FLOOR RESPONSE SPECTRA 

RESULTS 

This appendix presents additional information for Section 5.3, which discussed the main 

observations that were made from floor spectra obtained from the time history analysis of the case 

study buildings. Sections B.1 and B.2 provide information regarding the influence of non-

structural damping and inelastic structural response, respectively, on spectral acceleration 

demands. Section B.3 provides comparisons between mean NSE accelerations from coupled 

NLTHA and mean floor spectra from uncoupled NLTHA 
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B.1 Influence of Non-structural Damping on Spectral Acceleration Demands 

 

Figure B.1 Mean floor response spectra atop 4-story RC wall building for fully elastic structural response at 

Intensity 5 (PGA = 0.450 g) 

 

Figure B.2 Mean floor response spectra atop 8-story RC wall building for fully elastic structural response at 

Intensity 5 (PGA = 0.450 g) 
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Figure B.3 Mean floor response spectra atop 12-story RC wall building for fully elastic structural response at 

Intensity 5 (PGA = 0.450 g) 

 

 

Figure B.4 Mean floor response spectra atop 4-story rocking wall building for fully elastic structural response 

at Intensity 5 (PGA = 0.450 g) 
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Figure B.5 Mean floor response spectra atop 8-story rocking wall building for fully elastic structural response 

at Intensity 5 (PGA = 0.450 g) 

 

Figure B.6 Mean floor response spectra atop 12-story rocking wall building for fully elastic structural 

response at Intensity 5 (PGA = 0.450 g) 
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Figure B.7 Mean floor response spectra atop 4-story RC wall building for inelastic structural response at 

Intensity 5 (PGA = 0.450 g) 

 

Figure B.8 Mean floor response spectra atop 8-story RC wall building for inelastic structural response at 

Intensity 5 (PGA = 0.450 g) 
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Figure B.9 Mean floor response spectra atop 12-story RC wall building for inelastic structural response at 

Intensity 5 (PGA = 0.450 g) 

 

Figure B.10 Mean floor response spectra atop 4-story rocking wall building for inelastic structural response 

at Intensity 5 (PGA = 0.450 g) 

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

3rd Floor

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

6th Floor

T1 = 3.69 sec

T2 = 0.60 sec

T3 = 0.22 sec

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

9th Floor

0

1

2

3

4

0 1 2 3 4 5
SF

A
 (

g)
Period, T (sec)

ξNS = 2% 
ξNS = 5% 
ξNS = 10% 
ξNS = 20% 

12th Floor

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

1st Floor

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

2nd Floor

T1 = 0.79 sec

T2 = 0.10 sec

T3 = 0.04 sec

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

3rd Floor

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

ξNS = 2% 
ξNS = 5% 
ξNS = 10% 
ξNS = 20% 

4th Floor



219 
 

 

Figure B.11 Mean floor response spectra atop 8-story rocking wall building for inelastic structural response 

at Intensity 5 (PGA = 0.450 g) 

 

Figure B.12 Mean floor response spectra atop 12-story rocking wall building for inelastic structural response 

at Intensity 5 (PGA = 0.450 g) 
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B.2 Influence of Inelastic Structural Response on Spectral Acceleration 

Demands 

 

Figure B.13 Mean floor response spectra atop 4-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 2% 

 

Figure B.14 Mean floor response spectra atop 4-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 
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Figure B.15 Mean floor response spectra atop 4-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 10% 

 

Figure B.16 Mean floor response spectra atop 8-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 2% 

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

1st Floor

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

2nd Floor

T1 = 1.35 sec

T2 = 0.22 sec

T3 = 0.08 sec

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

3rd Floor

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

Inelastic Response

Elastic Response

4th Floor

0

2

4

6

8

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

2nd Floor

0

2

4

6

8

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

4th Floor

T1 = 2.54 sec

T2 = 0.41 sec

T3 = 0.15 sec

0

2

4

6

8

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

6th Floor

0

2

4

6

8

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

Elastic Response
Inelastic Response

8th Floor



222 
 

 

Figure B.17 Mean floor response spectra atop 8-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 

 

 

Figure B.18 Mean floor response spectra atop 8-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 10% 
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Figure B.19 Mean floor response spectra atop 12-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 2% 

 

Figure B.20 Mean floor response spectra atop 12-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 
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Figure B.21 Mean floor response spectra atop 12-story RC wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 10% 

 

Figure B.22 Mean floor response spectra atop 4-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 2% 
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Figure B.23 Mean floor response spectra atop 4-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 

 

Figure B.24 Mean floor response spectra atop 4-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 10% 
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Figure B.25 Mean floor response spectra atop 8-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 2% 

 

Figure B.26 Mean floor response spectra atop 8-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 
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Figure B.27 Mean floor response spectra atop 8-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 10% 

 

Figure B.28 Mean floor response spectra atop 12-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 2% 
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Figure B.29 Mean floor response spectra atop 12-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 5% 

 

Figure B.30 Mean floor response spectra atop 12-story rocking wall for fully elastic and inelastic structural 

response at Intensity 5 (PGA = 0.450 g); ξNS = 10% 
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B.3 Comparisons between Mean NSE Accelerations from Coupled NLTHA 

and Mean Floor Response Spectra from Uncoupled NLTHA 

 

Figure B.31 Comparison between mean NSE accelerations from coupled analysis (MR=0.12%; ξNS = 0.1%) 

and mean FRS at various levels of ξNS from decoupled analysis; mid-height level of 4-story RC wall, inelastic 

structural response at Intensity 5 (PGA = 0.450 g) 

 

Figure B.32 Comparison between mean NSE accelerations from coupled analysis (MR=0.12%; ξNS = 0.1%) 

and mean FRS at various levels of ξNS from decoupled analysis; roof level of 4-story RC wall, inelastic 

structural response at Intensity 5 (PGA = 0.450 g)  
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Figure B.33 Comparison between mean NSE accelerations from coupled analysis and mean FRS from 

decoupled analysis for mid-height level of 4-story RC wall; inelastic structural response at Intensity 5 (PGA = 

0.450 g) 

 

 

Figure B.34 Comparison between mean NSE accelerations from coupled analysis and mean FRS from 

decoupled analysis for roof level of 4-story RC wall; inelastic structural response at Intensity 5 (PGA = 0.450 

g) 
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Figure B.35 Comparison between mean NSE accelerations from coupled analysis (MR = 0.12%) and mean 

FRS from decoupled analysis roof level of 12-story RC wall; inelastic structural response at Intensity 5 (PGA 

= 0.450 g) 

 

Figure B.36 Comparison between mean NSE accelerations from coupled analysis (MR=0.12%; ξNS = 0.1%) 

and mean FRS at various levels of ξNS from decoupled analysis; roof level of 4-story rocking wall, inelastic 

structural response at Intensity 5 (PGA = 0.450 g) 

 

Figure B.37 Comparison between mean NSE accelerations from coupled analysis (MR=0.12%; ξNS = 0.1%) 

and mean FRS at various levels of ξNS from decoupled analysis; mid-height level of 4-story rocking wall, 

inelastic structural response at Intensity 5 (PGA = 0.450 g) 
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Figure B.38 Comparison between mean NSE accelerations from coupled analysis and mean FRS from 

decoupled analysis for mid-height level of 4-story rocking wall; inelastic structural response at Intensity 5 

(PGA = 0.450 g) 

 

 

Figure B.39 Comparison between mean NSE accelerations from coupled analysis and mean FRS from 

decoupled analysis for roof level of 4-story rocking wall; inelastic structural response at Intensity 5 (PGA = 

0.450 g) 
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Figure B.40 Comparison between mean NSE accelerations from coupled analysis (MR = 0.12%) and mean 

FRS from decoupled analysis roof level of 12-story rocking wall; inelastic structural response at Intensity 5 

(PGA = 0.450 g) 
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APPENDIX C. ADDITIONAL FLOOR RESPONSE SPECTRA 

ESTIMATES FOR THE PROPOSED 

METHODOLOGIES 

This appendix presents additional information for Chapter 7, in which three procedures were 

proposed to estimate floor response spectra in RC and rocking wall buildings responding non-

linearly. Section C.1 presents comparisons between mean floor spectra obtained from NLTHA and 

floor spectra estimates using the procedure that utilizes transitory inelastic modal characteristics. 

Section C.2 presents comparisons between mean floor spectra obtained from NLTHA and floor 

spectra estimates using the procedure that utilizes modal reduction factors. Section C.3 presents 

comparisons between mean floor spectra obtained from NLTHA and floor spectra estimates using 

the procedure that utilizes dynamics of distributed-mass systems. 
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C.1 Procedure that Utilizes Transitory Inelastic Modal Characteristics 

4-Story                                                8-Story                                                  12-Story 

 

 

 

 

Figure 0.1 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 1 (PGA = 0.225g), ξNS = 2% 
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4-Story                                                8-Story                                                  12-Story 

 

 

 

 

Figure 0.2 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 5 (PGA = 0.450g), ξNS = 2% 

 

 

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

NLTHA Mean

Prediction

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 1.35 sec

T2 = 0.22 sec

T3 = 0.08 sec

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 2.54 sec

T2 = 0.41 sec

T3 = 0.15 sec

0

1

2

3

4

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 3.69 sec

T2 = 0.60 sec

T3 = 0.22 sec



237 
 

4-Story                                                8-Story                                                  12-Story 

 

 

Figure 0.3 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 6 (PGA = 0.675g), ξNS = 2% 
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4-Story                                                8-Story                                                  12-Story 

 

Figure 0.4 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 1 (PGA = 0.225g), ξNS = 5% 
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4-Story                                                8-Story                                                  12-Story 

 

Figure 0.5 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 5 (PGA = 0.450g), ξNS = 5% 

 

 

 

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

NLTHA Mean

Prediction

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 1.35 sec

T2 = 0.22 sec

T3 = 0.08 sec

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 2.54 sec

T2 = 0.41 sec

T3 = 0.15 sec

0

1

2

3

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 3.69 sec

T2 = 0.60 sec

T3 = 0.22 sec



240 
 

4-Story                                                8-Story                                                  12-Story 

 

Figure 0.6 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 6 (PGA = 0.675g), ξNS = 5% 
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Figure 0.7 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 1 (PGA = 0.225g), ξNS = 10% 

 

 

 

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

NLTHA Mean

Prediction

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 1.35 sec

T2 = 0.22 sec

T3 = 0.08 sec

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 2.54 sec

T2 = 0.41 sec

T3 = 0.15 sec

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 3.69 sec

T2 = 0.60 sec

T3 = 0.22 sec



242 
 

4-Story                                                8-Story                                                  12-Story 

 

 

 

 

Figure 0.8 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 5 (PGA = 0.450g), ξNS = 10% 
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Figure 0.9 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; RC wall buildings, Intensity 6 (PGA = 0.675g), ξNS = 10% 
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Figure 0.10 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 1 (PGA = 0.225g), ξNS = 2% 
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Figure 0.11 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 5 (PGA = 0.450g), ξNS = 2% 
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Figure 0.12 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 6 (PGA = 0.675g), ξNS = 2% 

 

 

 

 

0.0

1.0

2.0

3.0

4.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

NLTHA Mean

Prediction

0.0

1.0

2.0

3.0

4.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

1.0

2.0

3.0

4.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

1.0

2.0

3.0

4.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 0.79 sec

T2 = 0.10 sec

T3 = 0.04 sec

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 1.59 sec

T2 = 0.23 sec

T3 = 0.08 sec

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 2.28 sec

T2 = 0.33 sec

T3 = 0.12 sec



247 
 

4-Story                                                8-Story                                                  12-Story 

 

 

 

 

Figure 0.13 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 1 (PGA = 0.225g), ξNS = 5% 
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Figure 0.14 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 5 (PGA = 0.450g), ξNS = 5% 
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Figure 0.15 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 6 (PGA = 0.675g), ξNS = 5% 
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Figure 0.16 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 1 (PGA = 0.225g), ξNS = 10% 
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Figure 0.17 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 5 (PGA = 0.450g), ξNS = 10% 
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Figure 0.18 Comparison between mean floor spectra from NLTHA and estimates using transitory modal 

properties; rocking wall buildings, Intensity 6 (PGA = 0.675g), ξNS = 10% 
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Figure 0.19 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 1 (PGA = 0.225 g), ξNS = 2% 
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Figure 0.20 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 2% 
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Figure 0.21 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 6 (PGA = 0.675 g), ξNS = 2% 
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Figure 0.22 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 1 (PGA = 0.225 g), ξNS = 5% 
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Figure 0.23 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 5% 
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Figure 0.24 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 6 (PGA = 0.675 g), ξNS = 5% 
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Figure 0.25 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 1 (PGA = 0.225 g), ξNS = 10% 
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Figure 0.26 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 10% 
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Figure 0.27 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; RC wall buildings, Intensity 6 (PGA = 0.675 g), ξNS = 10% 
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Figure 0.28 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 1 (PGA = 0.225 g), ξNS = 2% 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

1.0

2.0

3.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

1.0

2.0

3.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

NLTHA Mean

Prediction

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.3

0.6

0.9

1.2

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

1.0

2.0

3.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

1.0

2.0

3.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 0.79 sec

T2 = 0.10 sec

T3 = 0.04 sec

0.0

1.0

2.0

3.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 1.59 sec

T2 = 0.23 sec

T3 = 0.08 sec

0.0

1.0

2.0

3.0

0 1 2 3 4 5

SF
A

 (
g)

Period, T (sec)

T1 = 2.28 sec

T2 = 0.33 sec

T3 = 0.12 sec



263 
 

4-Story                                                8-Story                                                  12-Story 

 

Figure 0.29 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 2% 
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Figure 0.30 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 6 (PGA = 0.675 g), ξNS = 2% 
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Figure 0.31 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 1 (PGA = 0.225 g), ξNS = 5% 
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Figure 0.32 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 5% 
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Figure 0.33 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 6 (PGA = 0.675 g), ξNS = 5% 
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Figure 0.34 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 1 (PGA = 0.225 g), ξNS = 10% 
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Figure 0.35 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 10% 
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Figure 0.36 Comparison between mean floor spectra from NLTHA and estimates using modal reduction 

factors; rocking wall buildings, Intensity 6 (PGA = 0.675 g), ξNS = 10% 
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Figure 0.37 Comparison between mean floor spectra from NLTHA and estimates using closed-form modal 

properties of a continuous cantilever beam; RC wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 2% 
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Figure 0.38 Comparison between mean floor spectra from NLTHA and estimates using closed-form modal 

properties of a continuous cantilever beam; RC wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 5% 
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Figure 0.39 Comparison between mean floor spectra from NLTHA and estimates using closed-form modal 

properties of a continuous cantilever beam; RC wall buildings, Intensity 5 (PGA = 0.450 g), ξNS = 10% 
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Figure 0.40 Comparison between mean floor spectra from NLTHA and estimates using closed-form modal 

properties of a fully-pinned continuous cantilever beam; rocking wall buildings, Intensity 5 (PGA = 0.450 g), 

ξNS = 2% 
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Figure 0.41 Comparison between mean floor spectra from NLTHA and estimates using closed-form modal 

properties of a fully-pinned continuous cantilever beam; rocking wall buildings, Intensity 5 (PGA = 0.450 g), 

ξNS = 5% 
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Figure 0.42 Comparison between mean floor spectra from NLTHA and estimates using closed-form modal 

properties of a fully-pinned continuous cantilever beam; rocking wall buildings, Intensity 5 (PGA = 0.450 g), 

ξNS = 10% 
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