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The study explores the optimization of reservoir operations based on weather forecasts to 

maximize hydropower production, without compromising other competing objectives. Two dam 

sites with small to medium storage receiving unregulated inflow were selected. Short-term weather 

forecasts from the Global Forecast System (GFS) and dynamically downscaled by the Weather 

Research Forecasting (WRF) Model were used to forecast reservoir inflow. The resulting forecast 

inflow information was used to optimize reservoir operations aimed at maximizing hydropower 

with flood control, environmental flow and dam safety as key constraints. Three strategies of 

optimization were tested to study the effect of lead time and forecasting skill on derived benefits. 

Results suggest that significant hydropower benefits can be obtained by forecasting the inflow 

peak early and maintaining the reservoir levels accordingly. Despite reduced forecasting skill at 



 

 

longer lead times, hydropower maximization is found to be greater when the dam operator 

optimizes storage and releases earlier based on forecasted inflow. The reservoir state at the end of 

a flood event is found to be closer to the historical rule-curve of the dams, thereby leaving sufficient 

pool to handle future and unexpected flood events. The study clearly highlights the added value of 

weather forecasts for hydropower maximization when compared with conventional operations 

using the rigid rule curves for medium and small storage dams that represent 98% of US dams. 

Because of the significant amount of additional hydropower that is generated, the use of weather 

forecasts is a clear source of additional economic benefits for society that should be scaled up 

across the nation to further reduce dependence on fossil-fuel based energy production in the long 

run. 
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Chapter 1. INTRODUCTION 

1.1 MOTIVATION 

The hydropower infrastructure, over the last several decades, has proven to be a stable and low-

cost source of energy around the world [Hamlet et al., 2002]. Being able to turn-on and –off 

quickly, it serves as an instant source of power generation and a backup for power outages. Unlike 

the non-hydropower energy sector that has experienced periods of fluctuations and fundamental 

shifts in the past, hydropower has effectively supported the development of the power grid and 

industrial growth [DOE Report, 2016]. The significant operational flexibility, low operating and 

maintenance costs, and the capability of integration with intermittent renewables like solar and 

wind make hydropower a robust power generation source.  

 Recently, a clever initiative was undertaken by a German firm, called the “wind-hydro 

combination” by developing the first wind farm with an integrated hydropower plant [Grumet, 

2016]. As storing excess energy in wind farms has not yet been practical, excess energy harvested 

(during periods of favorable weather conditions) directly goes to the grid leading sometimes to 

negative energy prices, as observed on May 8, 2016 in Germany where commercial consumers 

were being paid to consume the excess electricity produced [Coren, 2016]. This “wind-hydro 

combination”, also termed as four-turbine project (due to the proposed four wind turbine sites), is 

aimed to create an affordable way to store excess energy in a natural reservoir, integrating the 

source of energy (wind, water) and storage (water) into one system. The proposed plan is to store 

energy from the spinning blades by pumping water about 100 feet up inside the turbine structure 

itself. Basins around each base will store another 9 million gallons. When the wind stops, water 

flows downhill to generate hydroelectric power and a man-made lake in the valley below collects 
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water until turbines pump the water back up again. Figure 1.1 shows an illustration of the concept 

from the German firm Max Boegl Wind AG. 

 

Figure 1.1. Illustration of the wind-hydro combination. The turbines will stand 584 feet high 

when the blade is pointing straight up with the bottom serving as a water reservoir.  

(Source: Coren, 2016) 

 

Although, hydropower is not considered fully renewable because of the drastic impact of 

dams on fisheries and natural river flows [Lessard et al., 2003], the overwhelming societal benefits 

of hydropower cannot be overlooked. As reported by World Energy Council (WEC) in its 2016 

report [WEC, 2016], the contribution of hydropower to the world’s electricity generation from all 

sources reached 16.4% with an installed capacity of 1,064 GW (excluding pumped storage 

capacities) in 2016. The recent years have witnessed a major surge in the global installation of 

hydropower capacity. Statistics show an average growth rate of nearly 4% per year with a total 

capacity rise of 39% during 2005-2015 [WEC, 2016]. Its drivers include the increased demand for 
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electricity, easy energy storage, flexibility of generation, freshwater management, and climate 

change mitigation solutions. However, most of the newer installed capacity is concentrated in the 

developing world that includes the markets of Asia (particularly China), Latin America and Africa, 

offering an opportunity to supply electricity to under-served populations and a growing industrial 

base, while at the same time providing a range of complementary benefits associated with multi-

purpose projects [WEC, 2016]. As per the report, China has been at the forefront for hydropower 

capacity, accounting for 26% of global installed capacity in 2015, far ahead of USA (8.4%), Brazil 

(7.6%) and Canada (6.5%). China has strengthened its hydropower reserve by adding 19 GW in 

2015, almost three times the new capacity of the next five countries combined. The statistics for 

installed and total hydropower capacity for top 6 countries are summarized in Table 1.1. Further, 

Figure 1.2 plots the newly installed hydropower capacity in 2015 for the respective countries. 

Table 1.1. Statistics for countries with top hydropower capacity as of 2015 

Country Total Capacity at the 

end of 2015 (GW) 

% of global 

installed capacity 

Production (TWh) 

China 319  26% 1,126 

USA 102 8.4% 250 

Brazil 92 7.6% 382 

Canada 79 6.5% 376 

India 52 4.3% 120 

[Data from WEC, 2016] 
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Figure 1.2. Installed hydropower capacity (GW) in 2015 

As can be observed from Figure 1.2 there is hardly any new installation in the year 2015 

in the US and the trend has been the same over the past decade. In more mature hydropower 

markets such as that of Western Europe and the U.S., the most economical sites have already been 

explored and any further expansion is usually hindered by environmental concerns [Labadie, 

2004]. This can also be observed from the global scenario of hydropower dam construction, where 

the under-construction and planned dams in the developed nations are almost non-existent, while 

the number is much higher in the developing part of the world [Zarfl et al., 2014]. This is illustrated 

in Figure 1.3 which plots the dams with a capacity of >1000 MW that are planned and under 

construction. 
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Figure 1.3. Distribution of under construction and planned dams (>1000 MW) over the world 

(From Zarfl et al., 2014) 

 Furthermore, the hydroelectricity consumption has seen a significant increase in the past 

decade especially in the regions where the dam construction is on the rise, while the trend is 

towards saturation in the nations otherwise. Figure 1.4 plots the yearly consumption (TWh) at the 

continental scale over the world from which the trend is quite apparent. 
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Figure 1.4. Yearly consumption of hydroelectricity (TWh) from 1965-2016 

(Data: BP Statistical Review of World Energy, 2017) 

1.2 HYDROPOWER SCENARIO IN THE U.S. 

The installation of hydropower in the U.S. started in the late 19th century, after which it actively 

grew with large projects built mostly between 1930 and 1970, according to the US Department of 

Energy Report of 2016. Various small to medium-sized projects were also completed in the 1980s. 

However, these did not represent large capacity increases similar to previous decades. 

Cumulatively, over the past 65 years (1950-2015), hydropower has contributed 10% to the total 

U.S. electricity generation, and 85% to the total U.S. renewable power generation over the same 

period. This has efficiently supported the power grid development and its industrial growth. By 

the end of 2015, the U.S. hydropower generation fleet included 2,198 active power plants with a 
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total capacity of 79.6 GW and 42 Pumped Storage Hydropower (PSH) plants totaling 21.6 GW, 

for a total installed hydropower capacity of 101 GW [DOE Report, 2016]. Among the U.S. states, 

only a handful, those bestowed with abundant water resources and climatological conditions, have 

been able to harness hydropower for producing a significant share of electricity. The states of 

Washington, California, and Oregon possess the most installed capacity (around 40 GW in 565 

power plants), and within these, the Columbia River basin plants in the Pacific Northwest produce 

more than 40% of total U.S. hydropower generation [DOE Report, 2016]. Interestingly, 

Mississippi and Delaware are the two states that have not used hydropower for electricity yet, 

although hydropower project construction is expected to kick off between 2017 and 2018 in 

Mississippi. The distribution of existing hydropower generation capacity in the United States as 

of 2016 is shown in Figure 1.5. 
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Figure 1.5. Existing hydropower generation capacity in the United States as of 2016 (79.6 GW) 

(Source: DOE Report, 2016) 

According to DOE, the amount of nation’s net total electricity generation contributed by 

hydropower has decreased, from 30% in 1950 to 7% in 2013, as nuclear power, coal, natural gas, 

and other sources were added to the nation’s energy portfolio to meet rising demands. In the last 

decade, no large-scale (> 500 MW) hydropower dam project has been constructed in the United 

States. Factors such as lower economic growth, concerns related to environmental impacts, 

stagnant energy market, uncertainties owing to climate change and recent breakthroughs in the 

shale gas and oil industries [Miao et al., 2016] have contributed to the stagnation in the U.S. Figure 
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1.6 illustrates this stagnation observed with the decrease in annual hydropower capacity additions 

[DOE Report, 2016]. 

 

Figure 1.6. Cumulative installed hydropower capacity from 1890-2015 over the United States 

(Reproduced from DOE Report, 2016) 

 

 As most economical hydropower sites have already been explored over the previous 

century, no significant rise in the trend of hydropower capacity can be expected [Labadie, 2004]. 

The changing climate [Voisin et al., 2017] and the drastic impacts of the dams over aquatic 

ecosystems will likely limit new hydropower projects in the US. Thus, building new dams to 

harvest power is unrealistic considering the present constraints in the US. This calls for the energy 

community in the developed world such as the United States to explore the maximization of 

operational effectiveness of existing hydropower infrastructure and make use of the state-of-the-

art advancements in the fields of atmospheric sciences, optimization and numerical modeling. 

Such an exploration can potentially improve energy security of a region, maximize benefits and 
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avoid financial losses of current hydropower infrastructure that are here to stay in the foreseeable 

future. 

1.3 CURRENT STATE OF RESERVOIR OPERATIONS  

The operation for almost all dams in US is guided by water control manuals which were developed 

when the dams and reservoirs were constructed. The three major federal agencies - U.S. Army 

Corps of Engineers, Bureau of Reclamation, and the Tennessee Valley Authority operate about 

10% of the total number of hydropower facilities in the US, representing 49% of the installed 

capacity [DOE Report, 2016]. Each federally operated reservoir has congressionally mandated 

purposes, and the rationale is to use the control manuals to balance those purposes. The manuals 

provide details on the reservoir's history, authorizations, watershed characteristics, data collection 

networks, forecasting methods, and stakeholder coordination [US Army Corps of Engineers]. The 

most critical of them is the reservoir operating policy, outlining the operational plan designed to 

benefit each of the downstream stakeholder needs involving water supply, recreation, hydropower, 

environment and flood control in the most reliable and effective manner. Reservoir operating 

policies are often defined in terms of ‘Rule Curves,’ also termed as ‘Standard Operating 

Procedures.’ They specify the storage targets that the reservoir needs to meet at specific time 

intervals of the year. The dam operator has to release the water as necessary and as close to the 

recommended levels in the manual to achieve the respective targets for each stakeholder need 

[Loucks et al., 2005]. However, the actual releases vary depending on the storage and dynamic 

inflows that actually occur. An example rule curve is shown in Figure 1.7 for the Detroit dam in 

Oregon, specifying the monthly elevations that the reservoir operator is supposed to follow. 
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Figure 1.7. Operating Rule Curve for Detroit Dam, Oregon, specifying the monthly reservoir 

elevations (w.r.t mean sea level) to be maintained as closely as possible by the dam operator 

 

 Although the rule curves, specified in the control manuals, were developed using the best 

information available at the time of dam construction, they have not been adjusted/modified to 

reflect the changing climatological conditions over the course of the last several decades [Lee et 

al., 2009; “FIRO Overview”, 2016]. Consequently, the manuals cannot account for the change in 

inflow patterns that has resulted over the long span of time with change in climate and land cover 

conditions [Hossain et al., 2012; Woldemichael et al., 2012]. Furthermore, releases in the standard 

operating procedures were specified independently of future inflow forecasts. Rather, they are 

typically based only on existing storage volumes and within-year periods using a climatology of 
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historical flow observations [Jordan et al., 2012]. This makes the rule curves prone to 

misrepresentation of an impending situation at the weather scale and can lead to sacrificing the 

benefits to downstream stakeholders. For instance, in a weaker-than-average flood-prone month 

during the flood season, lowering the pool to rule-curve recommended level will result in 

significant loss in hydropower generation, which otherwise could have been avoided if the inflow 

forecasts were made ahead of time [Miao et al., 2016]. This is just one of the many scenarios where 

the static and traditional rule curves could be made more adaptive for real-time operations to 

harvest more hydropower.  

As the scientific community began tapping the potential of satellites in the previous decade, 

the vast information associated with the most remote locations of land and oceans started getting 

unveiled [Knudby et al., 2016]. Further, with advancements in the field of atmospheric sciences 

and numerical modeling over the last few decades, weather forecasting skill has improved 

considerably with a reasonable accuracy [Block, 2011]. The advanced numerical weather 

forecasting models have made it possible to forecast the future and obtain inflow information into 

the reservoir that was unavailable when the manuals were developed during dam construction. 

This information has the potential to tweak the static reservoir operating policies and adjust it 

according to the real-time and near-future scenario [Block, 2011]. As concluded by Bauer et al. 

[2015], the skill in forecasts from numerical weather prediction model at a lead time of 10-days 

has improved by around 40% since 1995, which can be sufficient in many cases to forecast, for 

instance, a peak flood event and adjust the dam operations accordingly. Not only can the weather 

forecasts provide an emergency flood warning, but incorporating that forecast information to 

adjust reservoir operations can often result in two-fold benefit of maximizing hydropower 

production without sacrificing downstream flood safety. This study presents a timely exploration 
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for the hydropower infrastructure community to leverage numerical weather forecasting tools at 

short-term and make the reservoir operations more dynamic in order to generate additional 

hydropower without compromising flood safety.   

1.4 RESEARCH QUESTIONS  

The focus of this study is on the small and medium storage dams that typically receive unregulated 

flow. The goal is to explore the optimization of reservoir operations to maximize the hydropower 

production, especially during short-term peak events, without compromising other competing 

objectives of flood security, water supply and environmental flow constraints. Specifically, this 

study tries to answer the following question: Can the short-term reservoir inflow forecast from 

numerical weather prediction improve the existing hydropower generation scenario for small and 

medium storage dams, without compromising other competing objectives? 

The broader impacts of this study are threefold: 1) contribution towards the integration of 

operational short-term weather forecasts and management activities by federal and state agencies 

(in the US and in the developing world) to increase efficiency of existing water resource and 

hydropower infrastructure, 2) re-evaluation of the potential decision policies (i.e., rule curves) 

pertaining to the real-time operations for maximized hydropower production and enhanced flood 

protection, and 3) pilot demonstration for more global scale replication over other reservoirs in the 

U.S. and developing nations. An overview of the methodology is shown in the schematic below in 

Figure 1.8, where the red arrows signify the fluxes in and out of the reservoir system, with one of 

the end objectives being hydropower electricity generation. 
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(a) 

 

(b)  

Figure 1.8. (a) Illustration of the major steps of modeling the meteorological parameters/ 

reservoir operations (b) Overview of the major components used in the hydropower study.  

Study site (dam) 
selection

Short-term weather 
forecasts (GFS/WRF)

Hydrologic Modeling 
(VIC)

Reservoir operations 
optimization (GA)

Optimization 
performance 
assessment 
(benefits)

GFS  -  Global Forecasting System for 

weather forecasts from NOAA 

WRF - Weather Research Forecasting 

Model for dynamic downscaling 

VIC   - Hydrologic model for predicting 

inflows 

GA    - Genetic Algorithm used for the 

optimization 
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The study starts with the selection of two dam sites that satisfy the criteria of being 

small/medium storage dam receiving unregulated inflow. Next, the short-term forecast forcing 

data are obtained from the Global Forecast System (GFS) data, dynamically downscaled by 

Weather Research Forecasting (WRF) Model. These forecast forcings are used along with the 

hindcast data to run the hydrological model, resulting into forecasted streamflow into the reservoir. 

This forecast inflow information is subsequently used to optimize the operations maximizing the 

hydropower generated, considering pertinent constraints associated with flood control and dam 

safety. These steps are illustrated in Figure 1.9. Hereafter, we shall use ‘dams’ and ‘reservoirs’ 

interchangeably for the dam-reservoir management system. 
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Figure 1.9. Detailed illustration of the involved methodology. Green box – forecasting; Blue box 

– hydrologic modeling; Red box – reservoir operations modeling and optimization component. 

1.5 THESIS OUTLINE 

The thesis has been organized as follows. Chapter 2 gives an overview of the relevant work done 

in the past or is in progress on reservoir operations optimization and hydropower maximization. 
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Chapter 3 describes the methodology that was implemented to approach the problem. Essentially, 

it elaborates on the site selection criteria, details of weather forecasting model and its downscaling 

and steps of hydrological modeling along with its calibration and validation procedures applied on 

the selected dam sites. The chapter ends with the section on reservoir operations modeling which 

provides details on the optimization model, the strategy of optimization, optimization technique 

used and different components involved therein. In Chapter 4, a case study is presented applying 

the steps described in Chapter 3 over the selected dam sites to demonstrate the effectiveness of the 

present study and its real-world application. The chapter applies the optimization strategies which 

the dam operator will use for operational purposes. The performance of the optimization model 

has also been assessed considering the competing objectives of downstream stakeholder benefits. 

A discussion on the obtained results and findings is presented in Chapter 5 along with concluding 

remarks and recommendations on further study. 
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Chapter 2. BACKGROUND 

The current lack of the use of weather forecasts for reservoir operations, especially for water 

resources management can be pinned on the risk averse nature of water managers, difficulty in 

integrating operational forecasts into existing water management decision processes, and lack of 

focus on specific stakeholder benefits [Block 2011; Hamlet et al., 2002; Broad et al., 2007]. As 

reported in Block [2011], the abundant literature produced over the previous years should motivate 

more and more case studies to evaluate and outline the potential benefits and reliability through 

inclusion of forecast information.  

In order to embody the uncertainty that is brought in by the forecast model, several studies 

have used an ensemble of forecasts [Demargne et al., 2010] resulting in various possible 

realizations of the streamflow. For instance, Zhao et al. [2011] synthetically generates ensemble 

streamflow forecast to study its effect on real-time reservoir operations. Xu et al. [2016] used 

multistage stochastic programming to represent the uncertain long-term streamflow forecasts by 

limited number of discretized scenarios to form a scenario-tree. Seguin et al. [2017] investigates 

the complexity required in such scenario trees to obtain a good operational solution to the 

stochastic short-term hydropower problem. Another study by Fan et al. [2016] explores the 

deterministic and probabilistic forecasts, in combination with the stochastic optimization to force 

short-term optimization model over a Brazilian reservoir. Considering studies on reservoir systems 

within US, Stedinger et al. [2014] focuses on stochastic short-term scheduling models for 10-

project subsystem of the federal reservoirs on the Columbia and Snake River systems, while Yao 

et al. [2001] used ensemble forecasts for daily and hourly optimization at Folsom Lake. Other 

studies incorporating ensemble forecasts for short term optimization include Wang et al. [2012], 

Ficchi et al. [2015], Fan et al. [2016], and Schwanenberg et al. [2015]. 
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The optimization objective is the key towards optimizing the operations, and most of the 

studies have focused on single user benefits. These include optimizations for downstream aquatic 

resources [Sale et al., 1982], flood control and security [Lee et al., 2009; Hsu et al., 2007; Windsor, 

1973], hydropower production [Barros et al., 2003; Yasar, 2016; Jothiprakash et al., 2014], water 

supply [Ji, 2016; Neelakantan, 1999], irrigation and crop planning [Georgiou et al., 2008; Sadati 

et al., 2014] and environmental concerns [Mao et al., 2016]. However, due to the wide-ranging 

diversity of property rights and stakeholders, optimizing for a single stakeholder is practically 

unfeasible. This calls for an objective function balancing the major competing benefits of the 

downstream users for harnessing the maximum and equitable benefit out of the existing 

infrastructure.  

 Some of the multi-objective optimization studies include Ding et al. (2015), Jordan et al. 

(2012), and Ahmadi et al. (2013), but the considered dams have significantly large catchment 

areas. There are a few ongoing projects that have addressed this issue of optimizing the reservoir 

operations for more than one objective in specific river basins. The Integrated Forecast and 

Reservoir Management (INFORM) project (currently in its second phase) attempts to demonstrate 

integrated operational methodologies of climate and hydrologic forecasting and reservoir 

management in Northern California for several downstream user benefits, for individual reservoirs 

as well as for the river system [Georgakakos et al., 2015]. Its foci include the Folsom, Oroville, 

Shasta, and Trinity reservoirs and their associated water resources. The hydrologic model of 

INFORM II closely follows the operational hydrologic forecast models used by the California 

Nevada River Forecast Center (CNRFC). It includes snow and soil water models adapted from the 

National Weather Service River Forecast System (NWSRFS), where the hydrologic segments 

within INFORM are based on CNRFC‐defined watershed areas for operational forecasting. Inputs 
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to the hydrologic model components are basin mean areal precipitation (MAP) and mean areal 

temperature (MAT). The MAP and MAT estimates are derived from the INFORM forecast system 

downscaling of large‐scale atmospheric forecasts from the Global Forecast System (GFS, 0‐16 

days with 6 hourly resolution) and the Climate Forecast System (CFS, 0‐41 days with 6‐hourly 

resolution and from 1 to 9 months with daily resolution). INFORM forecast system produces an 

ensemble of MAP and MAT forecasts over the forecast horizon, and, through the hydrologic and 

routing models, an ensemble of reservoir inflow forecasts. This ensemble of reservoir inflow 

forecasts then provides the input to the INFORM decision support system (DSS) component 

[HRC-GWRI, 2013].  

 Another project called Forecast Informed Reservoir Operations (FIRO) uses long-term 

forecasts to tweak the rule curves, optimizing operations of the Lake Mendocino reservoir in 

Mendocino County, California for improving water supply with enhanced flood risk reduction 

[“FIRO Overview”, 2016]. This project is in the assessment phase at the time of this writing. The 

major objectives are the identification, assessment and enhancement of the best science available 

to improve operations to maximize flood control, water supply and ecosystem benefits. The 

evaluation will identify realistic, short-term steps to provide more accurate and timely information 

about weather and watershed conditions. A study with similar objectives in Africa is currently 

exploring seasonal (30-180 day) climate forecasts and remote sensing data to achieve optimum 

operation planning for improving the hydropower production [Gebremichael et al., 2016]. The 

anticipated results from this study are schematically shown in Figure 2.1. 
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Figure 2.1. Schematic showing Integrated System Solution diagram for the proposed hydropower 

reservoir operation in Africa (Source: Gebremichael et al., 2016) 

 

Further, the efforts to incorporate seasonal forecasts for optimizing reservoir operations at 

seasonal/monthly scale are only suitable for large and multi-reservoir systems that possess a large 

storage buffer. The response time of such systems is quite long and storage does not change 

significantly at shorter time periods and over short-term extreme events. While the dams with huge 

storage contribute a major portion to the hydropower production, small and medium-storage dams 

with modest power generation capacity constitute major chunk of US dams and will continue to 

be developed in the foreseeable future in the developing world. Such dams often receive 

unregulated flow due to their location in the upstream and lower order river locations of a river 

system. For such dams, the response to a peak flood or extreme drought event is appreciably 

quicker due to limited storage capacity. The short-term forecasts are more valuable when the dams 

with reservoir capacity smaller than its annual volume and those operated for short-term operation 
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purposes including flood protection [Anghileri et al., 2016].  An effort has been made here to 

specifically study such dams, which have hardly been given attention in the existing literature, 

optimizing the operations by forecasting weather-scale flow events. With the need of ensemble 

forecasts to fully capture the uncertainty, as emphasized by the works cited above, we view the 

present research, using deterministic forecasts, to be an exploratory study on small to medium 

dams exploring informed sensitivity analysis, rather than a prediction of future events. 
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Chapter 3. METHODOLOGY 

3.1 SITE SELECTION  

As reservoirs operate differently across the U.S. with different climates, topography, dam size, and 

other pertinent meteorological factors, the study of a single dam or a single river basin is 

insufficient for generalizing the results over other wide ranging hydrologic conditions. We first 

explored multiple dam sites representing varying climates, capacities, and upstream drainage areas 

in the U.S while satisfying the constraints of having small to moderate storage receiving 

unregulated inflow.  

While the International Commission on Large Dams (ICOLD) has characterized dams 

based on the dam height [“ICOLD: Definition”, 2017], the dam storage capacity also plays a 

significant role on the temporal scale of optimization. A dam with substantially high storage 

possesses large storage buffer and cannot always respond dynamically in operations to a short-

term peak inflow event. On the other hand, small/medium storage capacity dam has little storage 

buffer necessitating short-term optimization for reservoir operations. We define dams with surface 

area of less than 200 km2 to have small to medium storage. This threshold represents about 98% 

for the dams according to the distribution of surface areas of US dams (see Figure 3.1). In Figure 

3.1, the dams are ranked in order of decreasing area and using the Weibull plotting position given 

by 
𝑖

𝑛+1
, where 𝑖 is the rank and 𝑛 is the total number of dams (𝑛 = 1647) obtained from the Global 

Reservoir and Dams (GRanD) database [Lehner et al., 2011]. The Weibull plotting position is 

selected as it represents unbiased exceedance probability for distributions [Stedinger et al., 1993].  
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Figure 3.1. Distribution of the surface area of dams in US, with y-axis representing the dam 

surface area plotted on log-scale 

 

A preliminary search was therefore made for dams satisfying the following criteria: (i) 

having a reservoir surface area of less than 200km2, (ii) located upstream in the dam network (in 

case of a multi-reservoir system) to receive unregulated inflow, in order to facilitate VIC 

hydrological modeling, (iii) operated for hydropower generation or flood control as the primary 

and secondary purpose, and (iv) reservoir with storage capacity smaller than the annual inflow 

volume for the short-term forecasts to be valuable. Out of several potential locations, two dams 

were selected to be within the study’s scope based on the data availability and processing time 

constraints for an exploratory study. Both dams are considered to be operated mainly for 

hydropower production with flood control being the other major use. There are, no doubt, many 

more dams that fit the above criteria for a more comprehensive national study in future.  
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The first dam chosen for this study is the Detroit dam, which is situated in Oregon on the 

North Santiam River, forming Detroit Lake (see Figure 3.2). The reservoir’s surface area is 14.1 

km2, being categorized as one of the small reservoirs [Lehner et al., 2011]. The dam lies upstream 

amongst other dams in the network and receives mostly unregulated natural flow. Located in the 

Cascades, the climate of the region is temperate with a warm summer, as per the Köppen-Geiger 

climate classification [Kottek et al., 2006]. The dam is operated and managed by United States 

Army Corps of Engineers. 

The second site is the Pensacola dam, also called Grand River Dam, on the Grand River in 

Oklahoma. The dam creates Grand Lake o' the Cherokees with a medium surface area of 188.2 

km2, in contrast to the Detroit dam’s smaller sized reservoir. It is Oklahoma’s first hydroelectric 

power plant, operated by Grand River Dam Authority [Pensacola Project, 2008], with other 

operational purposes including flood control and recreation. The region is classified as temperate 

with hot summer Köppen-Geiger class. The locations of the selected dams along with the relevant 

information are shown below in Figure 3.2. The storage-elevation relations and further details for 

both the dams can be found in Appendix A. Additionally, the respective values of reservoirs’ 

storage capacity for the two dams are shown in Table 3.1, being smaller than the annual inflow 

volume for the short-term forecasts to be valuable [Anghileri et al., 2016]. 

Table 3.1. Statistics Comparison of Storage Capacity with Annual Inflow for the two dams 

Dam Storage Capacity (ac-ft) Annual Inflow (ac-ft) Capacity < Annual Inflow 

Detroit 455,000 1,420,360 Yes 

Pensacola 1,672,000 5,996,482 Yes 
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(c) 

 

Figure 3.2. Location of selected dams along with drainage boundaries and stream networks (a) 

Detroit Dam (b) Pensacola Dam (c) Respective Rule Curves of the two dams 
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3.2 DATASETS USED 

The study uses several satellite-based, in-situ and post-processed datasets for application in the 

forecasting model, hydrologic model and for reservoir operations optimization. These are 

described in detail in the following sections. 

3.2.1 Global Forecast System forecast data 

The Global Forecast System (GFS) is a weather forecast model developed by the National Centers 

for Environmental Prediction (NCEP) at NOAA. The GFS model is a coupled model, composed 

of four separate models (an atmosphere model, an ocean model, a land/soil model, and a sea ice 

model), which work together to provide an accurate picture of weather conditions. The forecast 

model outputs a variety of atmospheric and land-soil variables including temperature, wind speed, 

precipitation soil moisture, atmospheric ozone concentration and so on. The model has a base 

resolution of 18 miles (28 km) between grid points, which is used by the operational forecasters. 

This drops to 44 miles (70 km) between grid point for forecasts between one week and two weeks 

[“Global Forecast System”, 2017].  

Although this resolution is suitable for a global scale analysis, the data turns out to be much 

coarser when used for application over a short-scale basin. Hence, some sort of downscaling needs 

to be done beforehand to be able to use the forecast data meaningfully. For this particular study, 

the GFS forecast data was used for lead time up to 16 days, for the period revolving around the 

considered peak inflow event. The GFS analysis/re-analysis data are also available, but the forecast 

data was used to assess the performance of optimization under real-time operational scenario 

where the dam operator will use the forecast data. The grib-2 files were downloaded by requesting 

the required files from Archive Information Request System managed by NOAA [“Order data - 
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NCDC”]. The forecasts are at 3-hourly resolution for the first 8-days lead time following which 

the resolution drops down to 12-hours, the spatial resolution being 0.5˚. The forecast data at 0.25˚ 

till 2015 are also archived. Further, this data was dynamically downscaled using Weather Research 

Forecasting (WRF) model (see section 3.3). An example of the GFS forecast precipitation at 0.5˚ 

resolution of Sept 3, 2017 at a lead time of 1-day is shown in Figure 3.3.  

  

Figure 3.3. GFS forecast precipitation (mm) at 0.5˚ resolution of Sept 3, 2017 at 1-day lead time 
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3.2.2 NCDC-GSOD Dataset 

While the forecast forcings were provided by the GFS forecast data, in order to run the hydrologic 

model, hindcast forcings are also required for a period of at least two years to account for the 

model spin-up period and facilitate the model calibration and validation. Global Surface Summary 

of the Day (GSOD) is an in-situ observational data from National Climatic Data Center (NCDC), 

derived from the Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data 

obtained from the USAF Climatology Center. Historical data are generally available for 1929 to 

the present, with data from 1973 to the present being the most complete. The latency of latest 

summary data is 1-2 days and incorporates data typically over 9000 stations over the globe 

[“GSOD”, 2017]. The data are reported and summarized based on Greenwich Mean Time (GMT) 

after going through a quality control assessment. For instance, the precipitation will only appear if 

the stations report enough data to result in a valid value, and a minimum of 4 observations for the 

day need to be present. The dataset encompasses several hydrological parameters, and the ones 

required as forcing data to the VIC hydrologic model were extracted and processed into ASCII 

files. These include the precipitation amount, mean wind speed, minimum and maximum 

temperature. These are downloaded from the ftp site managed by NCDC 

(ftp://ftp.ncdc.noaa.gov/pub/data/gsod) for the stations that lie within or around the drainage basin 

of the selected dam sites. The stations found in NCDC-GSOD Server over the drainage basins of 

Detroit and Pensacola dam and their spatial distribution are shown in Figure 3.4. The interpolation 

was performed using the Inverse Distance Weighted (IDW) technique to result in a gridded raster 

of 0.1˚ resolution of the required forcings to be consistent with that obtained from post-processing 

of the WRF output. 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod)
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Figure 3.4. Spatial distribution of the stations found in NCDC-GSOD Server over the drainage 

basins of Detroit and Pensacola Dams 

3.3 SHORT-TERM FORECAST MODEL  

In order to optimize the reservoir operations, the short-term numerical forecasts of the weather 

need to be incorporated into the hydrologic model to obtain the daily forecast of inflow over short 

lead times (see Figure 3, green box). Real-time ensemble forecasts for short-term (1-16 days) lead 

time are provided by the Global Forecast System (GFS) global-scale Numerical Weather 

Prediction model developed by the NOAA. The 16-day forecast data are available at 0.25˚, 0.5˚, 

1˚, and 2.5˚ resolution through the National Center for Environmental Prediction (NCEP). 

However, the resolution of forecast data is too coarse to be used for hydrological modeling over a 

reservoir with small to moderate surface area, which necessitates downscaling before application. 

There are essentially two kinds of downscaling techniques - the statistical/probabilistic 

downscaling methods use archived forecasts to downscale the information, while dynamical 

downscaling techniques involve dynamical models of the atmosphere and physics [Murphy, 2000; 

Chen et al., 2016; Sikder et al., 2016]. The present study uses the dynamical downscaling of GFS 

forecast data using the numerical Weather Research Forecasting (WRF) model. 

 WRF, being a mesoscale atmospheric numerical modeling system, is widely used in 

operations and research. WRF has demonstrated its capability for constructing the atmospheric 

conditions, at both local and regional scales [Chen et al., 2016; Skamarock et al., 2005]. The GFS 

forecast data was acquired at 0.5-degree resolution for 1-16 days’ (384 hours) lead time with a 3-

hourly temporal resolution for first 192 hours (8 days) and 12-hourly for the remaining period. 

Two nested domains of 10 km and 30 km were used for both the dams as shown in Figure 3.5. The 
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resolution of child domain was kept as 10 km to match the resolution of hydrologic model used 

for reservoir inflow prediction. The outputs from WRF are 100 km2 (0.1 × 0.1-degree resolution) 

gridded forcing datasets of minimum and maximum temperature, precipitation and wind speed, 

which subsequently are the input to hydrological model for forecasting inflow. 

      
 

 

(a) 

(b) 
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Figure 3.5. The nested domains for WRF simulation at 30km and 10km, for (a) Detroit Dam, OR 

and (b) Pensacola Dam, OK 

 

In a numerical model like WRF, the Microphysics (MP) and Cumulus Parameterization 

(CP) schemes are the controlling factors for precipitation as reported in existing literature 

[Stensrud, 2007; Kumar et al., 2008; Chen et al., 2016]. The water vapor, cloud, and precipitation 

process are explicitly resolved by the microphysics schemes, while the subgrid-scale convective 

process and shallow clouds are managed by the cumulus parameterization [Sikder et al., 2016]. As 

the Detroit dam is in Pacific Northwest region, the model configurations are inherited from the 

forecast model runs of the Department of Atmospheric Sciences at the University of Washington 

[“Pacific Northwest Mesoscale Model”, 2016]. At the department, forecasts are run twice a day to 

produce high resolution meteorological guidance for the Pacific Northwest. Specifically, the 

Thompson scheme with graupel was considered for the microphysics (MP) scheme and Grell–

Freitas Ensemble scheme for the cumulus physics (CP) for Detroit Dam. For the Pensacola dam 

in Oklahoma, the Morrison microphysics scheme was used as recommended by Chen et al. [2016] 

as starting option for extreme storm simulation, while CP is kept the same as for Detroit dam. The 

detailed configurations of the WRF model for both the dams can be found in Appendix C, showing 

the namelist.input file (required input for running the WRF model). 

The evaluation of WRF forecasted precipitation was performed using Livneh daily 

CONUS near-surface gridded meteorological dataset [Livneh et al., 2013]. The dataset provides 
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long-term precipitation record over the CONUS, and was generated from rain gauge records since 

1915. The spatial coverage of daily rainfall was evaluated under various metrics (Probability of 

Detection, POD; False Alert Ratio, FAR; and Frequency Bias) [Chen et al., 2016]. For Pensacola 

dam, the WRF model was set up for the peak inflow event of 19-20 March 2012, for which the 

control and actual forecast runs were performed (see section 3.5.1). The GFS forecast data for 15 

March was downloaded for lead time of 16 days up to 30 March, and subsequently downscaled 

with WRF. The forecast precipitation forcing was compared with the Livneh dataset for the 16-

day period and the respective peak event was found to be captured reasonably well by the WRF 

downscaled output. In case of Detroit dam, although the control run was performed for December 

2014 event, but due to the absence of Livneh dataset after 2014, WRF model was set up for a peak 

inflow event of 18-19 December 2007. The GFS forecasts of 17 December for 16-day lead time 

were downscaled using WRF. For both the dams, the WRF setup revealed that performance of the 

forecast model deteriorates with the lead time with higher number of misses (true negatives) and 

false positives as compared to the true positives, while the event was better captured (most true 

positives) for smaller lead times.  

3.4 HYDROLOGIC MODEL  

The hydrologic model chosen for this study to model the forecasted reservoir inflows is the 

macroscale semi-distributed Variable Infiltration Capacity (VIC) hydrologic model [Liang et al., 

1994, 1996]. The VIC model is driven by gridded precipitation, minimum and maximum 

temperature, and wind time series. The model simulates snow accumulation and melt, soil moisture 

dynamics and evapotranspiration, as well as surface runoff and baseflow, which are subsequently 

routed through a grid-based flow network to simulate streamflow at select points within the basin 

[Christensen et al., 2004]. Details and examples of VIC model applications, calibration approach, 
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and streamflow routing can be found in Nijssen et al. [1997] and Hamlet et al. [1999]. Figure 3.6 

represents a schematic view of VIC Land cover tiles along with the soil column and major fluxes. 

 The VIC model was run with 0.1-degree spatial resolution at daily time scale to obtain the 

gridded outputs over the upstream drainage area of the respective reservoirs. These gridded outputs 

include soil moisture, baseflow, runoff and evaporation. The forcings of precipitation, minimum 

and maximum temperature, and wind time series were obtained from NOAA’s NCDC-GSOD data 

(see section 3.2.2 for details). In order to obtain the inflow at the most downstream station of basin 

(the dam location), routing of streamflow was performed separately using the routing model of 

Lohmann et al. [1996; 1998]. Model calibration was performed by adjusting the parameters of VIC 

model that govern baseflow recession, infiltration, and soil layer depths to match the simulated 

streamflow with reference dataset, maximizing the Nash-Sutcliffe efficiency and minimizing 

RMSE. The Nash-Sutcliffe efficiency, described by Nash and Sutcliffe [1970] is based on the 

deviation variance, expressed as, 

 𝑁𝑆𝐸 = 1 −
𝜎𝑒

2

𝜎𝑜
2    (3.1) 

where, 

NSE = Nash-Sutcliffe efficiency 

𝜎𝑒
2 = variance of the deviation between observation and simulation, and 

𝜎𝑜
2 = variance of the observations 

The variance of deviation is defined as: 

 𝜎𝑒
2 =

1

𝑁−1
∑ (𝑄𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖)

2𝑁
𝑖=1     (3.2) 

 

The efficiency is similar to the statistical parameter coefficient of determination, 𝑅2, with 

a value of 1 for a perfect fit, and can be negative as well for poor fits. 
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The parameters of stream flow routing model have also been fine-tuned to obtain the best 

matching streamflow [Hossain et al., 2017]. The details of the model simulation and calibration 

for the two dams are provided in the following sections.  

 

Figure 3.6. Schematic of VIC land cover tiles and soil column, with major water and energy 

fluxes. (Source: http://vic.readthedocs.io/en/master/Overview/ModelOverview/) 
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3.4.1 Detroit Dam  

The Northwestern Division of US Army Corps of Engineers provides the daily streamflow data 

for Detroit dam on the Dataquery portal [“Dataquery 2.0”, USACE]. Considering this to be 

unregulated inflow into the dam, the modeled VIC inflow was compared with USACE’s daily 

streamflow in order to perform the calibration and validation of the model. Calibration was 

performed on the period from 2012-15, and the validation performed over 2009-11. The first few 

months were ignored for calculating metrics, taking into account the model run’s spin-up period. 

Normalized RMSE is calculated as 
RMSE

σobs
  (where σobs  is standard deviation of the observed 

streamflow). The results for calibration and validation are shown in Figure 3.7. 

  
(a) 
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(b) 

 

Figure 3.7. (a) VIC calibrated and (b) validated streamflow, along with the observed values at 

Detroit Dam, OR 

3.4.2 Pensacola Dam  

The daily streamflow data for Pensacola dam was obtained from the Water Control Data Portal 

managed by the Southwestern Division of US Army Corps of Engineers [“Monthly Charts”, 

USACE]. The website provides monthly reports of the Grand Lake, formed by Pensacola Dam 

that includes daily pool elevation, storage, releases, inflow into dam and other pertinent variables. 

As the dam is located in the most upstream point in the river network, this inflow is assumed to be 

natural and unregulated with no effect of water management. These monthly reports were 

processed over 2010-16 to extract the daily inflow data for calibration. The validation was 

performed over the period of 2001-05. The calibration and validation results are shown below in 

Figure 3.8. 
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(a) 

  

 
(b) 

 

Figure 3.8. (a) VIC calibrated and (b) validated streamflow, along with the observed values at 

Pensacola Dam, OK. 

 The calibrated parameters for VIC model for both the dams are summarized in Table 3.2. 

Table 3.2. Calibrated parameters for VIC model simulation 

Parameter Units Detroit Dam Pensacola Dam 

binfilt n/a 0.23 0.23 

Ws fraction 0.0028 0.001 

Ds fraction 0.39 0.99 

Layer 1 depth, D1 meters 0.25 0.90 

Layer 2 depth, D2 meters 0.28 0.10 
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The performance of VIC model in case of Pensacola dam is better as compared to that of 

Detroit dam, which essentially is the consequence of the smaller sized catchment in the latter case. 

Running VIC model at 0.1˚ resolution leads to inconsistencies in the modeled streamflow for 

smaller domains that other higher resolution models may be able to address. Yet, based on the 

performance metrics, the model is able to capture the peaks and pattern of observed inflow 

reasonably well and therefore is suited for forecasting inflow. 

3.5 RESERVOIR OPERATION MODELING  

The forecasting and hydrologic modeling components (Figure 1.9) result in the forecasted inflow 

into the reservoir for lead times of up to 16 days. The next step (see Figure 1.9, red box) is to model 

the reservoir operations using this forecast inflow information and optimizing the releases that 

need to be made from the reservoir to maximize hydropower generation. Optimizing at the daily 

time step is most suitable when it comes to real-time operations of small and medium-storage 

dams. A small dam operator is very unlikely to be making decisions on reservoir releases for such 

dams at frequencies higher than every 24 hours, while time steps larger than 1 day may miss a 

short term intense rainfall event leading to high inflow into the reservoir. Optimization can 

significantly add value to the use of forecast information, avoiding sub-optimal decisions and low 

efficiency operations concerning downstream stakeholder benefits. For instance, a study 

conducted on the economic value of long-term streamflow forecast for hydropower production in 

the Columbia River system, USA, found that an average increase of about US$ 150 million in 

annual revenue could be obtained [Hamlet et al., 2002]. Although a long-term forecast is different 

from the short-term forecasts from Numerical Weather Prediction (NWP) models, these figures 

reveal that the optimization of operations on short-term basis, an area still relatively untapped, also 

has the potential to maximize the economic benefits. 
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3.5.1 Optimization Strategy  

In general, setting up an optimization framework involves three components – 1) advanced 

scheduling of water releases through the turbines, 2) accurate inflow forecasts that serve as input 

data, and 3) an optimization model that utilizes forecast information to the best advantage [Yeh 

1985]. An extensive literature review and evaluation of different state-of-the-art optimization 

techniques is provided by Yeh [1985], ReVelle [1997] and Labadie [2004]. The optimization 

requires setting up the objective function to be maximized/minimized, imposing several 

constraints taking into consideration the interests of downstream stakeholders, dam safety and 

other environmental concerns.  

A major limitation in operating the reservoirs for multiple downstream demands occurs 

during the flood/peak streamflow season when the high uncertainty in predicting a flood peak 

leaves the dam operator uncertain as to how much water needs to be released to balance the 

conflicting objectives. The static rule curves do not help much in handling this uncertainty. Hence, 

the short-term forecasts provide a way to overcome this limitation (as mentioned earlier in section 

1.2) by including flood control as a constraint in the optimization model. However, as the 

forecasting models can never be perfectly accurate, optimizing based on these forecasts over the 

short-term period can result in an operation strategy that might not be the most optimum when 

operated according to the forecast inflow. 

In order to assess the effect of uncertainty in forecasts as well as the impact of lead times 

on the resulting optimization scheme, the following schemes for optimization were employed: 

1. Control Run: This scheme assumes that the forecast inflow information obtained from the 

numerical weather prediction model is perfectly accurate and mimics the actual inflow over the 

course of 16-days of optimization. We use a retrospective observed streamflow dataset as one-
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time perfect forecasts to optimize for the 16-days lead time, which is expected to approximate the 

use of a sophisticated forecasting system and free of possible modeling biases in the construction 

of forecasts [Denaro et al., 2017]. This essentially represents the best-case scenario for the 

optimization revealing the theoretical benefit (perfect forecast benefits) that could be obtained 

from optimized operation procedure on top of what the operations without any optimization result 

in. So, this strategy substitutes the GFS forecast data with the actual inflow data over the 16-day 

period. 

2. Actual Forecast Run: The potential of actual WRF simulated forecasts for the optimization 

of reservoir operations is assessed by the actual forecast runs. The 16-day deterministic forecast 

inflow obtained from one-time actual forecasts followed by hydrological modeling (see Figure 1.9, 

blue box) is used for the optimization instead of the actual inflow. The resulting optimized release 

policy is evaluated by calculating the hydropower benefits (a) using the WRF forecast inflow 

(actual forecast benefits), and (b) using the actual observed inflow as input to the reservoir system 

(realized benefits). This scheme is employed for exploring the effectiveness of forecasts with 

varying lead times on the benefits that could be obtained out of optimization. 

3. Real-time sequential run: Once the potential of the WRF simulated forecasts is realized 

and the effect of lead time of forecasts on the resulting optimized elevations and stakeholder 

benefits is investigated through actual forecast runs, another scheme for investigating the 

efficiency of forecasts is tested. This scheme sequentially updates the inflow into reservoir with 

actual WRF forecasts being updated every alternate day, running the optimization for 16-day 

period. This is closer to the real-time reservoir operations and what a dam operator will most likely 

be using for operational purpose, as updates on the forecast of reservoir inflow will be sought as 

frequently as possible. The scheme outputs a single net benefit (net sequential benefit) over the 
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course of the optimization run, obtained by passing the actual inflow downstream and using the 

sequentially updated releases.  

The methods of obtaining the various benefits are summarized in Table 3.3. The benefits 

refer to the hydropower energy production (MWh) as a product of hydraulic head and power 

release, considering the turbine efficiency, operating hours and the capacity factor. 

Table 3.3. Summary of various benefits for the evaluation of the control, actual forecast and real-

time sequential runs 

 Perfect 

Forecast 

Benefits 

Actual 

Forecast 

Benefits 

Realized 

Benefits 

Net 

Sequential 

Benefit 

No 

Optimization 

Benefits 

Optimized based on AI FI FI UFI - 

Benefits based on AI FI AI AI AI 

AI: Actual Inflows; FI: Forecasted Inflows; UFI: Forecasted Inflows updated every alternate day 

For all the three schemes, the strategy to optimize operations over a short-term peak inflow 

event involves the following: (1) As soon as high inflow (defined as any value greater than the 

turbine capacity, requiring water to be released over the spillways) is forecasted within the 

confidence bounds of WRF model, water is released through the penstocks ahead of the event to 

the maximum of turbine capacity, so that the spillage can be minimized when the peak inflow hits 

the reservoir. This maximizes hydropower over the release period, leaving more reservoir space 

for the future peak inflow to occur. (2) At the end of the high flow period (as estimated with the 

forecast data), the system is brought back to the rule curve specified stage, to ensure normal state 

of the reservoir after the peak event.  

The Genetic Algorithm was employed as the optimization technique interfacing the other 

components of weather forecasting and hydrological modeling to determine the actual gate 

operations during the real-time operations of the reservoir. It is described in detail in the following 

section. To quantify the hydropower benefits, the hydroelectric energy produced (MWh) using the 
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observed release procedures (from data provided by USACE, or modeling the hydropower) 

without any optimization and that produced using the optimized release procedures was compared. 

Further, the optimization was performed individually for one peak inflow event for each dam. The 

events were chosen to represent yearly-scale peaks, and peak event of such a magnitude usually 

occurs once or twice a year over both the dams. 

3.5.2 Optimization Technique – Genetic Algorithm 

Amongst the plethora of metaheuristic techniques, Evolutionary Algorithms (EA’s) are the most 

influential ones and are becoming more popular for optimization. EA’s are a class of general-

purpose stochastic global optimization algorithms simulating the natural evolution of biological 

systems. Genetic Algorithm (GA) is the most popular form of EA. The study of genetic algorithms 

(GAs) originated in the mid-1970s [Holland 1975], after which, GAs have developed into a 

powerful technique used in a diverse range of fields. An excellent overview of GAs can be found 

in the literature by Goldberg [1989] and Michalewicz [1992]. Goldberg [1989] identifies the 

following as the significant differences between GAs and more traditional optimization methods: 

1. GAs work with a coding of the parameter set, not with the parameters themselves. 

2. GAs search from a population of points, not a single point. 

3. GAs use objective function information, not derivatives/other auxiliary knowledge. 

4. GAs use probabilistic transition rules, not deterministic rules. 

For a particular optimization problem, the possible solutions are coded into a series of 

substrings, or genes, representing components or variables that either form or can be used to 

evaluate the objective function of the problem. The series of substrings is termed as a chromosome. 

For instance, in the problem of single-reservoir operation optimization over 16-days in which the 

objective function is composed of reservoir releases over 16 days, the chromosome would 
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comprise of 16 genes, each representing 1 day of reservoir release. The GA starts with a population 

of chromosomes and tries to produce successive populations that are fitter. This reproduction 

process involves three genetic operators: selection, crossover and mutation. The chromosomes 

from the population with a high fitness value have a higher probability of being selected for 

combination with the other highly fit chromosomes. This combination takes place by crossover of 

the pieces of genetic material between the selected chromosomes. Mutation is required for the 

random mutations of bits of information in the individual genes. This process, through successive 

iterations, results in a progressively improved population of chromosomes.    

MS Excel’s in-built Evolutionary Solver was used for the purpose, to generate the optimum 

release/storage values in a user-friendly environment accompanied with a strong visualization 

capability. A screenshot of the interface for Evolutionary solver window is shown in Figure 3.9, 

along with the required options to run the genetic algorithm in Figure 3.10. 
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Figure 3.9. Evolutionary solver window in MS Excel 

 

Figure 3.10. Specified options for the Evolutionary Solver  

 

 For setting up the optimization problem, an objective cell needs to be specified, which for 

this study, comprises of the additional hydropower benefits over the optimization period (16-days) 

and the deviation of the reservoir level from the rule curve specified level for a particular number 
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of days at the end of peak inflow event (depends on the length of event) to bring the reservoir back 

to normal state of operation after the event. As the optimization was formulated to minimize the 

objective, the hydropower benefit comes with a negative sign while the deviation of reservoir level 

is in positive. The default parameters of population size of 1000, convergence rate of 0.0001 and 

mutation rate of 0.075 were used for implementing the optimization strategy. Population size is 

the number of different potential values for the decision variables that the GA maintains at any 

given time in its population of candidate solutions. Convergence rate represents the maximum 

percentage difference in objective values for the top 99% of the population that Solver allows 

before stopping to iterate. Smaller rates of convergence consume more time but will stop at a point 

closer to the optimal solution. Mutation rate takes values between 0 and 1, and signify the relative 

frequency with which some members of the population will be mutated to create a new trial 

solution during each “generation” or sub-problem considered by the Evolutionary method. A 

higher mutation rate usually increases the diversity of the population and probability of arriving at 

better solution, although this may increase total computational time [“Excel Solver”, 2017].  

3.5.3 Optimization Components 

3.5.3.1 Decision Variables 

The variables needed to be optimized for the operational purpose are (a) the release made from the 

reservoir 𝑅𝑡𝑜𝑡,𝑡 at daily time step 𝑡, and (b) reservoir storage 𝑆𝑡 at time step 𝑡. The daily release can 

be further categorized as (i) power release, 𝑅𝑝 and (ii) non-power release, 𝑅𝑛𝑝. Power release is 

the effective water released through the penstocks, contributing to the hydropower generation, 

while non-power release is the water released via spillways or regulating outlets and includes water 

discharged for a purpose other than electricity generation. 
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3.5.3.2 Objective Functions 

Over the period of flood event, the proposed optimization model involves the following objectives: 

1. Maximize the hydroelectric energy produced (MWh) [Barros et al., 2003], 

 max 𝑓1 = ∑ 𝜖 ∙ (𝐻𝐹𝑡 − 𝐻𝑇𝑡) ∙ 𝑅𝑝,𝑡 ∙ ∆𝑡𝑡𝑢𝑟𝑏𝑡   (3.3) 

2. Minimize the sum of the absolute value of storage deviations from the rule curve-specified 

value at the end of flood event to bring the system back to normal operations after the peak 

inflow event ends. The function is represented as, 

 min 𝑓2 = ∑ |𝑆𝑡 − 𝑇𝑡|𝑡′       (3.4) 

3. Minimize total spilled (‘missed’) energy from non-power release,  

 min 𝑓3 = ∑ 𝑅𝑛𝑝,𝑡𝑡     (3.5) 

where: 

𝐻𝐹 – Reservoir forebay water level, obtained from area-elevation curve 

𝐻𝑇 – Reservoir tailrace water level,  

𝑅𝑝,𝑡 − Power-release from penstocks 

𝑅𝑛𝑝,𝑡 – Non-power release from spillways leading to missed energy 

𝜖 –   Turbine efficiency 

∆𝑡𝑡𝑢𝑟𝑏 – Turbine operating hours 

𝑆𝑡 – Reservoir storage 

𝑇𝑡 – Target (rule curve specified) storage 

𝑡′ – Number of days at the end of peak inflow event, depends on the length of event 

 𝑡 – Time step over the period of optimization 

Thus, considering the appropriate sign for each objective, the composite objective 

function to be minimized can be written as, 
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 min 𝐹 = −𝑓1 + 𝑓2 + 𝑓3    (3.6) 

Together, these objectives ensure that over the course of peak inflow event, the hydropower 

production is maximized and once the event ends (within the predictive ability of inflow forecasts), 

the reservoir system returns to the rule-curve stated levels to prevent the extremely high/low 

storage scenarios.  

3.4.2.3 Constraints 

The constraints comprise limiting values of the decision variables and other controlling parameters 

derived to ensure the dam safety, address environmental concerns, and satisfy multiple 

downstream stakeholders’ demands. We define following constraints for our optimization model: 

1. The maximum release through the turbines is constrained by the turbine capacity for each 

time step 𝑡, 

 𝑅𝑝,𝑡 ≤ 𝑅𝑡𝑢𝑟𝑏 
, ∀𝑡  (3.7) 

(𝑅𝑡𝑢𝑟𝑏 - Turbine capacity, MW) 

2. The system must follow the storage volume continuity (water-balance equation) which 

requires that in each period 𝑡, initial active storage 𝑆𝑡 plus the inflow 𝐼𝑡, less the losses 𝐿𝑡 

and release (𝑅𝑝,𝑡 + 𝑅𝑛𝑝,𝑡), equals the final storage, or equivalently the initial storage, 𝑆𝑡+1, 

in the following period 𝑡 + 1. 

 𝑆𝑡+1 = 𝑆𝑡 + [𝐼𝑡 − 𝐿𝑡 − (𝑅𝑝,𝑡 + 𝑅𝑛𝑝,𝑡)] ∙ ∆𝑡, ∀𝑡  (3.8) 

 However, as the optimization is performed at daily time steps (∆𝑡 = 1), the losses due to 

evaporation and seepage over a day can be considered to be negligible and hence the loss 

term, 𝐿𝑡 is ignored in the continuity equation above. As the storage is in acre-feet/day while 

inflow/releases are in cubic feet per second (cfs), a conversion factor of 1.983 was used for 

inflow and release terms to convert cfs into acre-feet/day. 
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3. The reservoir storage is limited within the bounds considering dam safety and infeasible 

storage scenarios such as reservoir running empty.  

 𝑆𝑚𝑖𝑛 ≤ 𝑆𝑡 ≤ 𝑆𝑚𝑎𝑥 ,   ∀𝑡  (3.9) 

 Here, 𝑆𝑚𝑖𝑛 is set up considering the conservation pool of the reservoir to keep it at a suitable 

level above the inactive pool, while 𝑆𝑚𝑎𝑥 denotes the active storage capacity till the 

reservoir’s full pool.  

4. In order to avoid excessive and infeasible rates of non-power release via the spillway, the 

non-power release rate was limited to the spillway capacity, 

 𝑅𝑛𝑝,𝑡 ≤ 𝑆𝑝𝑖𝑙𝑙𝑚𝑎𝑥 ,   ∀𝑡  (3.10) 

5. To prevent the downstream flooding hazards, the total release was constrained to a 

maximum limit of 𝑅𝑚𝑎𝑥 based on the historical records of outflow causing flooding at a 

downstream control station, 

 𝑅𝑝,𝑡 + 𝑅𝑛𝑝,𝑡 ≤ 𝑅𝑚𝑎𝑥 ,   ∀𝑡  (3.11) 

6. Lastly, the releases made from reservoir should comply with the environmental flow limit, 

𝑄𝑒𝑛𝑣, allowing safer fish passage, temperature control and minimum instream flow 

requirements,  

 𝑅𝑛𝑝,𝑡 + 𝑅𝑝,𝑡 ≥ 𝑄𝑒𝑛𝑣,   ∀𝑡  (3.12) 

 The optimization model is nonlinearly constrained with a nonlinear objective function, as 

the energy production function,  

 ∑ 𝜖 ∙ (𝐻𝐹𝑡 − 𝐻𝑇𝑡) ∙ 𝑅𝑝,𝑡 ∙ ∆𝑡𝑡𝑢𝑟𝑏𝑡     (3.13)  

comprises the reservoir head which is based on the nonlinear storage-elevation relation specific to 

each reservoir.   
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Chapter 4. CASE STUDY AND RESULTS 

4.1 CASE 1: DETROIT DAM  

4.1.1 Dam Logistics 

The Detroit dam, as highlighted in section 3.1, is a storage dam located at the North Santiam River 

in Marion County, Oregon, used for flood control, power generation, irrigation, navigation, and 

recreation (Figure 3.2). It was constructed as a part of the Willamette Valley Project authorized by 

the Flood Control Act of 1938. An overview of the Willamette basin along with the dams therein 

is shown in Figure A.1 (Appendix A). The dam, lying in the North Santiam Sub-basin, is a concrete 

gravity structure approximately 463 feet tall and 1580 feet long, having six spillway gates. The 

spillway crest is located at elevation 1541 feet above mean sea level (MSL), and full pool is at 

1569.0 feet MSL. The powerhouse contains two Francis turbine units with a hydraulic capacity of 

5340 cubic feet per second (cfs) and a total combined nameplate capacity of 100 megawatts (MW) 

(50MW each). Downstream fish passage is available only through the spillway, turbines, or 

regulating outlets [Duncan et al., 2011]. The dam lies upstream in the network with inflow into it 

experiencing no regulations, as can be seen from the schematic in Figure 4.1. Downstream of 

Detroit dam is the Big Cliff dam which is a re-regulating dam with small reservoir located nearly 

3 miles downstream [“Willamette River Basin”, 2011]. Big Cliff dam is used to smooth out the 

power generation water releases from Detroit dam and to control downstream river level 

fluctuations. Complete details of the dam are shown in Figure 4.2 and the pertinent dam logistics 

are summarized in Table 4.1. 
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Figure 4.1. Willamette Valley Project schematic (Source: “Willamette River Basin”, 2011) 

 

 To obtain the relation between storage and elevation of the reservoir to be used in 

operations modeling (see Figure 1.3, red box), the storage-elevation curve was obtained using the 

most recent data provided by USACE [“Dataquery 2.0”, USACE]. Datasets corresponding to 

reservoir’s storage and forebay elevation (see Figure 4.2 for various pool values) for the last 5 

years were fitted with an exponential curve to obtain the relation, as plotted in Figure 4.3 (a) below. 

Further, as the turbine operating hours and efficiency of operation usually varies over the event 

and season, a model for hydropower estimation (MWh) based on available historical daily 

generation data from USACE was developed. The assumption made here is that the turbines will 

continue to operate in the near future with the same efficiency and average number of operating 

hours as obtained from the historical operations. As hydropower from a turbine is directly 
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proportional to the discharge and the hydraulic head [Yao et al., 2001], linear regression was 

performed between the actual production data (in MWh) and the product of hydraulic head ∆𝐻 

and power release 𝑅𝑝 (adjusted for units to be in MW) as plotted in Figure 4.3(b). The constant 

for converting from MW to MWh is 19.72 hours, which takes into account the turbine efficiency, 

average number of operating hours and its capacity factor (ratio of the average power generated 

and nameplate capacity). 

 

 

Figure 4.2. Cross-section of Detroit dam (not to scale) showing relevant elevations (from mean 

sea level, MSL) 
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Table 4.1. Detroit Dam logistics 

Year of completion 1953 
Drainage Area 438 sq. miles 
Dam Height 450 feet 
Turbines Two 50 MW Francis type 
Turbine Capacity 5340 cfs 
Spillway Gates 6 radial tainter gates 
Spillway Capacity 176,000 cfs 

 

 
(a) 

 

 
(b) 

Figure 4.3. (a) Storage-Elevation curve and corresponding fitted exponential curve for Detroit 

dam (b) Linear regression model for simulating the turbine efficiency and operating hours in the 

hydropower production equation. 
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4.1.2 Optimization Model 

The optimization model was set up using the constraints as described in section 3.4.2.3. 

The values for each of the bounds was obtained from the dam’s operational data from USACE. 

The minimum storage limit was arrived at by obtaining 95% of the 10-year historical minimum of 

the storage, to keep the reservoir within the conservation pool, while the maximum storage limit 

was set to the maximum conservation pool of the dam. Minimum environmental flow limit for the 

release was obtained from a study done on the Detroit dam [Risley et al., 2012]. The maximum 

total release is usually set to control a downstream point to some threshold value, so that the 

outflow is set to minimum for peak events. Although the threshold still gets exceeded during the 

actual peak event, but having the project a minimum helps in shaving the peak to some extent. 

Detroit has three downstream control points - Mehama, Jefferson and Salem. However, as 

Jefferson and Salem include regulated inflow from other tributaries making it harder to model, 

only Mehama was used to obtain the threshold. Detroit dam is operated to keep Mehama at less 

than 17,000 cfs when possible [Personal communication with Christopher Frans, USACE]. 

However, as another tributary of Santiam River adds to the inflow at Mehama, an approximate 

release value of 9000 cfs was chosen considering the factor of safety. The locations of each of the 

control stations are shown in Figure 4.4. The constraints are summarized in Table 4.2. 

Table 4.2. Constraints for Optimization for Detroit dam, OR 

Constraint Value 

Turbine Capacity 5340 cfs 

Spillway Capacity, Spillmax 176,000 cfs 

Minimum storage limit, Smin 135,700 ac-ft (95% of 10-year minimum) 

Maximum storage limit, Smax 455,100 ac-ft (max conservation pool) 

Maximum total release, Rmax 9000 cfs (avoid flooding at Mehama) 

Environmental flow limit, Qenv 1500 cfs 
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Figure 4.4. Locations of the control stations downstream of Detroit dam, OR 

 

With this optimization model setup, the respective schemes of optimizing the operations 

(see section 3.4.1) are investigated below. 

4.1.2.1 Control Run 

The control run was performed over the February 1996 major flood event of Oregon, also termed 

as Willamette Valley Flood of 1996. The event is considered as a 100-year flood and lasted for 

around a week with peak inflow occurring on 8 Feb 1996. The flood was triggered by an above 

average snowpack in lower elevations accompanied with heavy rain and frozen soil. It lasted for a 

few days only but the effects were long-lasting, causing millions of dollars in damage. Figure 4.5 

shows the aerial view of flooded Willamette River.  

Salem 

Jefferson 

Mehama 

Detroit Dam 
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Figure 4.5. Aerial view of flooded Willamette River, over which the Detroit dam is located 

(Source: National Weather Service Portland) 

 

When floodwaters were at the peak, dam operations reduced their impact and kept the river 

level lower than it would have been otherwise, reducing the water levels by 1 – 1.5 feet. Estimates 

show that these measures saved the region $3.2 billion in catastrophic flood damage to homes and 

businesses. Although, extreme events like this are rare, but efficient optimization of the operations 

over such an event can help facilitate the loss prevention and extract additional hydropower, 

turning the catastrophic event into a future benefit. The actual inflow, releases and storage during 

the peak inflow event, along with the rule curve, are plotted in Figure 4.6.  
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Figure 4.6. Observed inflow, outflow and storage from reservoir operations during Feb 1996 

flood event over Detroit dam, OR 

 

The optimization over this extreme event was tested for four scenarios of 1, 4, 7 and 10-

days lead depending on when the peak inflow of 8 Feb is forecasted, using the optimization 

strategy of control run outlined in section 3.5.1.  The hydropower benefits (MWh) obtained using 

the control run optimization at different lead times, along with the respective benefits from 

observed operations and corresponding difference between the two are plotted in Figure 4.7. 
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(a) 

 

(b) 

Figure 4.7. (a) Optimized elevations at different lead times, (b) Hydropower benefits (MWh) 

obtained using the control run optimization at different lead times, along with the respective 

benefits from observed operations and corresponding difference (Detroit dam, OR) 
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 From Figure 4.7(b), it is apparent that longer lead times of forecasting, a relatively higher 

additional hydropower benefit can be extracted from the optimization over 16-day period reflected 

by the larger difference between optimized and no-optimization benefits. Also, considering the 

competing objective of flood control, a higher lead time brings the reservoir level at the end of 

flood event closer to the rule curve as suggested by Figure 4.7 (a). However, as longer lead times 

also come with a loss in forecasting skill, there exists a tradeoff between the longer lead times and 

the respective benefits that could be harnessed.  

To study this tradeoff, actual forecast run (see section 3.5.1) needs to be performed 

employing the GFS forecast data. However, as the GFS data are unavailable for the year 1996, 

another peak inflow event with annual scale magnitude was chosen to perform the control run and 

actual forecast run. This event took place in December 2014, with a peak inflow of 24,170 cfs on 

22 December. As Livneh data ends in 2013, NEXRAD Stage IV data from NCEP was used to 

visualize the heavy precipitation event. The Stage IV data is based on regional multi-sensor (radar 

and gauges) hourly/6-hourly ‘Stage III’ precipitation analysis on local 4km polar-stereographic 

grids produced by the 12 River Forecast Centers (RFCs) in CONUS. NCEP mosaics the Stage III 

into the national Stage IV product [Lin, 2011]. The precipitation event is shown in Figure 4.7 for 

21-23 December. The drainage boundary of Detroit dam is marked in black. 
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21 December 2014 

 
(a) 

 

22 December 2014  

 
(b) 
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23 December 2014 

 
(c) 

 

 

Figure 4.8. Daily 24-hr accumulated surface precipitation (mm) from NEXRAD (Stage 

IV) product for 21-23 Dec. 2014, visualized in Weather and Climate Toolkit (WCT) from 

NOAA, with Detroit dam’s upstream drainage boundary showed in black 

 

An initial control run performed over this event at lead times of 3, 5 and 9 days and over a 

16-day period of optimization results into the optimized elevations as shown in Figure 4.9. 
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Figure 4.9. Optimized elevations from the control run performed over Dec 2014 peak inflow 

event with three different lead time scenarios (Detroit dam, OR) 

4.1.2.2 Actual Forecast Run 

To assess the tradeoff between the increasing the lead time of forecasts and the respective benefits 

that could be reaped from optimization, one-time actual forecast runs were performed over the 

December 2014 peak inflow event as described above. The GFS forecasts produced on four 

different days corresponding to 3, 5, 7, and 9-day lead times were downscaled using WRF followed 

by VIC hydrological modeling, resulting in the forecasted inflow into the dam over 16-day lead 

time as plotted in Figure 4.10 (a) (only three lead times shown for clarity). The forecasting skill 

increases with shorter lead time, although there are slight overestimations. The respective 

optimized elevations using the actual GFS forecast optimization runs are plotted in Figure 4.10 

(b). 
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(a) 

 

(b) 

Figure 4.10. (a) Forecasted inflow at different lead times of forecast; (b) Optimized reservoir 

elevations for different lead times, using actual GFS forecasts (Detroit dam, OR) 
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The resulting optimized release policy from one-time actual forecasts was evaluated by 

calculating the hydropower benefits (a) using the WRF forecast inflow (actual forecast benefits), 

and (b) using the actual observed inflow as input to the reservoir system (realized benefits), as 

plotted in Figure 4.11. The respective benefits from control run (perfect forecast benefits) and 

those from observed operations (no optimization) are also shown alongside. The methods of 

obtaining the various benefits are summarized in Table 3.3. 

 

(a) 
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(b) 

Figure 4.11. (a) Comparison of the various hydropower benefits obtained using control run and 

actual forecast run (one-time forecasts) along with those obtained from operations with no 

optimization (b) Total actual and forecasted inflow over optimization period (Detroit dam, OR). 

 

 The benefits from the control run (perfect forecast benefits) set the benchmark for the 

hydropower benefits that cannot be exceeded practically. However, when the actual one-time WRF 

forecasted inflow is used to estimate the hydropower benefits, the under/overestimation of the 

forecasted inflow peak due to uncertainties in the forecast cause the benefits (actual forecast 

benefits) to exceed the benchmark. For instance, due to the peak inflow being overestimated with 

5-day lead forecast from WRF, the additional hydropower obtained from actual forecast run is 

higher than what the control run results into. This is certainly not practical and only representative 

of the effect of uncertainties in forecast over the resulting optimized release policy, where the 

difference in the perfect forecast and actual forecast benefits (first two bars) is the measure of the 

forecast skill. The truer evaluation of the benefits from one-time actual forecasts (realized benefits) 
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is achieved by routing the actual inflow instead of the forecasted one, with the reservoir storage 

calculated accordingly using the actual inflow. The realized benefits, as can be observed from 

Figure 4.11 (a), do not exceed the perfect forecast benefits. Further, for the 7-days lead time, where 

the realized benefit is slightly higher than the actual forecast benefit, the corresponding total 

forecasted inflow over the optimization is lower than the actual observed inflow, as shown in 

Figure 4.11 (b). This generates a higher power (and hence higher realized benefit) when the actual 

inflow is passed, as compared to when the lower forecasted inflow is used. The effect of lead time 

on the derived benefits can be assessed by comparing with those obtained from operations without 

any optimization (no-optimization benefits). The difference between the realized and no-

optimization benefits are 7469, 6031, 5970, and 2132 MWh for lead times of 9, 7, 5 and 3-days, 

respectively. This suggests that the additional benefits go down with smaller lead times, owing to 

the lesser flexibility in operating the reservoir on approaching the peak inflow event. Also, the 

tradeoff in lead time needs to be mentioned, where with the increase in the realized benefits 

obtained with higher lead times, the corresponding forecast skill goes down (higher difference 

between first two bars). The daily optimization plots for observed and optimized release and 

elevations for each lead time for control and actual forecast runs are shown in Appendix B. 

4.1.2.3 Real-time Sequential Run 

Instead of doing multiple runs for different lead times, this scheme sequentially updates the inflow 

into reservoir with WRF-downscaled GFS forecasts every alternate day, running the optimization 

every day for 16-day period. This provides with a more dynamic and close to real-time scheme to 

be followed by a dam operator for operational purposes. For Detroit dam, this is tested on the same 

Dec 2014 event, with the optimization starting at 11-days lead on 11 Dec (the peak occurs on 22 

Dec). The reservoir release procedure is obtained optimizing for the downstream stakeholder 
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benefits over 16 days using the corresponding forecast information. The resulting procedure is 

followed for two days (i.e. 11 and 12 Dec), following which an update to the inflow forecasts is 

made by running the forecast model again on 13 Dec. The optimization is performed again, this 

time the initial storage being that obtained from the optimized procedure of 11 Dec. Thus, the 

second optimization run is done based on new inflow forecasts of 13 Dec making subsequent 

changes to the optimized release procedure.  

The sequential updating of inflow forecasts is continued every alternate day till 19 Dec (3-

days lead) to result in the optimized release policy over the course of the event, as shown in Figure 

4.12. The actual observed outflow and reservoir elevations were compared with the respective 

optimized parameters. While the releases and elevations from 11-19 Dec are obtained by 

sequentially updating the forecasts, the values after 19 Dec are obtained from the optimization 

performed using the forecasts of 19 Dec. Observed inflow is also plotted alongside to show the 

timing of peak inflow event.  

As can be observed from Figure 4.12, the optimized operations result in higher power 

release as soon as the peak inflow is forecasted, due to which the reservoir levels drop down within 

dam’s safety limits, and surges as the peak hits the reservoir. The elevation at the end of the 

optimization period is brought closer to the rule curve specified level, closer than what the 

observed operations (without optimization) resulted in. A total additional hydropower benefit 

(sequential net benefit) of 9,820 MWh was obtained from 11 Dec to 23 Dec (before and during the 

peak inflow event) over which the sequential updates to the inflow forecasts were made, as shown 

in the plot of Figure 4.13, highlighting the daily benefits of sequential optimization over observed 

operations. 
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Figure 4.12. Optimized releases and elevations along with the respective observed variables 

obtained using real-time sequential run, updating forecasts every alternate day from 11 Dec to 19 

Dec, optimized over 16-day period (Detroit dam, OR) 

 

Figure 4.13. Daily comparison of hydropower benefits (MWh) obtained using observed 

operations (no-optimization) and from sequential optimization (Detroit dam, OR). Green bars 

and the corresponding values show the difference in benefits from the two strategies. 
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Overall, this strategy asserts that the optimization, when performed by sequentially 

updating the inflow forecasts, can result in significantly higher benefits as compared to what the 

dam operations would result in when operated without any optimization, and without 

compromising the flood risk during or after the peak inflow event. 

4.2 CASE 2: PENSACOLA DAM  

4.2.1 Dam Logistics 

The Pensacola dam, commissioned in 1941, is a part of the 125-megawatt (MW) Pensacola 

Hydroelectric Project issued by The Federal Energy Regulatory Commission (FERC) to the Grand 

River Dam Authority (GRDA). Headquartered in Vinita, GRDA is Oklahoma’s state-owned 

electric utility. The Pensacola project consists of a dam, two auxiliary spillways, an intake 

structure, and a powerhouse containing six turbine generator units with the nameplate capacity of 

120MW [Pensacola Project, 2008]. The main spillway section is controlled by 21 Tainter gates 

each 36 feet long by 25 feet high. GRDA shares operations with the USACE as part of a basin 

wide system of flood control and navigation projects. When water levels exceed or are anticipated 

to exceed 745 feet on Grand Lake O’ the Cherokees, the USACE control the amount of water to 

be released through the floodgates. Once the lake level drops to 745 feet, GRDA once again 

assumes control over releases. The flood storage is provided between elevations 745 and 755 feet, 

while the top of the conservation pool varies with seasons. Further details along with the dam 

logistics are shown in Figure 4.15 and Table 4.3. The storage elevation relation is shown in Figure 

4.15, and the corresponding values for storage and elevation are shown in Appendix A. 



 

 71 

 

Figure 4.14. Cross-section of Pensacola dam (not to scale) showing relevant elevations (from 

mean sea level, MSL)  

 

Table 4.3. Pensacola Dam logistics 

Year of completion 1940 

Drainage Area 10,293 sq. miles 

Dam Height 147 feet 

Turbines Six 20 MW Francis type (total 120MW) 

Turbine Capacity 12,000 cfs 

Spillway Gates 21 Tainter gates (36’ x 25’), 2 auxiliary 

spillways 

Spillway Capacity 525,000 cfs 
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Figure 4.15. Storage-elevation relation for the Pensacola dam using the data from 2000-2015 

 

 

 The original rule curve that the dam was following since the development of control 

manuals has been recently subjected to a change. The Federal Energy Regulatory Commission 

(FERC) has approved the GRDA’s request for an amendment to the current operating policy for 

operating Pensacola Dam over the Grand Lake. Under that amendment, GRDA will no longer be 

required to lower the Grand Lake from 744 feet to 741 feet beginning in mid-August [“GRDA - 

FERC”, 2017], as it was supposed to do until now, as shown in Figure 4.16. As stressed by GRDA, 

the lowering of the lake by three feet caused recreational safety problems, as well as impacted 

negatively on the area’s economy during a popular summer boating holiday, considering boating 

and other recreational activities. Instead of lowering the lake from an elevation of 744 feet to 741 

feet, the amendment means the lake will only be brought to 743 feet through mid-September, 

before dropping to 742 feet for the fall and winter months. This amendment will remain in place 

throughout the remainder of GRDA’s existing license, which runs through March 2022.  
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Figure 4.16. Current and amended rule curves (starting Aug 15, 2017) for Pensacola Dam as per 

GRDA request for amendment 

 

As the amendment has affected the operations in August and September, while the present 

study considered the event that occurred in December, the results of optimization will still be 

applicable with the new operational procedure in place. As mentioned by GRDA Chief Executive 

Officer, the organization is still seeking a long-term solution to the lake level issue to provide more 

operational control over the lake, while balancing all the other stakeholder concerns of 

hydroelectric generation, flood control and recreation. This study provides a possible alternative, 

delineating the advantages to multiple stakeholders as demanded by the stakeholder agencies. 

4.2.2 Optimization Model 

The optimization constraints for Pensacola dam are summarized in Table 4.4, obtained, similar to 

that for Detroit dam, using the actual data from USACE. For the maximum total release, the 
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threshold was obtained by finding the corresponding flood-safe value of streamflow at the 

downstream USGS station of Neosho River (site ID - 07190500). Also, the spillway capacity was 

used to limit the rate of the non-power release, thus limiting the speed with which the reservoir 

levels can go down. 

Table 4.4. Constraints for Optimization for Pensacola dam, OK 

Constraint Value 
Turbine Capacity 12,000 cfs 

Spillway Capacity, Spillmax 525,000 cfs 

Minimum storage limit, Smin 126,500 ac-ft (95% of 10-yr minimum) 

Maximum storage limit, Smax 2,021,679 ac-ft (flood control pool) 

Maximum total release, Rmax 30,000 cfs (avoid flooding at Neosho River downstream) 

Environmental flow limit, Qenv 4500 cfs 

  

With this optimization model setup, the respective schemes of optimizing the operations 

(see section 3.5.1) are investigated below. 

4.2.2.1 Control Run 

The control run was performed over one of the peak inflow events over Pensacola dam in March 

2012. This event lasted for 3 weeks and the inflow peak began in 20 March 2012. The peak inflow 

was 82,350 cfs on 22 March, being the highest in 2012. There was significant precipitation 

observed over and around the Pensacola dam during this period. The rainfall obtained from Livneh 

data for 19-21 March is shown in Figure 4.17 below, with the drainage basin of the dam marked 

in red. 
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Figure 4.17. Livneh precipitation (mm) plotted over the region surrounding the Pensacola 

dam. Drainage boundary of dam is shown in red. 

 

Four different scenarios of 3, 5, 7 and 9-days lead were tested for based on when the peak 

inflow is forecasted to study the effect of lead time. As the actual hydropower data (MWh) is not 

provided on USACE data portal, a conversion factor from MW to MWh for the hydropower 

production could not be obtained, in order to take into account the turbine efficiency and average 

operating hours. Hence, a value of 20 hours was assumed, chosen close to that of Detroit, as both 

the dams have similar installed hydropower capacities. The respective optimized reservoir 

elevations are shown in Figure 4.18 (three lead times shown for clarity). 
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Figure 4.18. Optimized reservoir elevations for different lead times of forecast, under control run 

assuming perfectly accurate forecasts (substituting the forecasted inflow with observed inflow) 

(Pensacola dam, OK) 

 

4.2.2.2 Actual Forecasts Run 

Next, actual GFS forecast runs were tested for each of the four lead time scenarios. GFS forecasts 

on four different days corresponding to lead times of 3, 5, 7, and 9-days for the inflow peak of 20 

March, were downloaded for the forecasting followed by VIC hydrological modeling. This 

resulted in forecasted inflow into the dam over 16-day lead time as plotted in Figure 4.19 (three 

lead times are shown for clarity). The resulting optimized elevations found using the optimization 

strategy are shown in Figure 4.20. 
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Figure 4.19. Forecasted inflow into dam over 16-day lead time using actual WRF-downscaled 

forecasts produced on three different lead times from 11th to 17th March (Pensacola dam, OK) 

 

Figure 4.20. Optimized reservoir elevations for different lead times of forecast, using actual 

WRF-downscaled forecasts (Pensacola dam, OK) 
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The plot above in Figure 4.20 shows that the optimization strategy results in an elevation 

closer to the rule curve at the end of peak event, and with increasing lead time of forecast, the rule 

curve-specified level is reached earlier.  

The evaluation of the actual forecast run and control run was performed, similar to that for 

Detroit dam, using four different hydropower benefits as specified in Table 3.3. The respective 

benefits are shown in Figure 4.21. 

 

(a) 
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(b) 

Figure 4.21. (a) Comparison of the various hydropower benefits obtained using control run and 

actual forecast run (one-time forecasts) along with those obtained from operations with no 

optimization (b) Total actual and forecasted inflow over the optimization period (Pensacola dam, 

OK).  

 In the plot above, the benchmark for the practically obtainable benefits is set by the benefits 

from the control run (perfect forecast benefits). While the actual forecast benefits do exceed this 

benchmark, owing to the overestimated inflow peak from WRF based forecasts, the more realistic 

evaluation of the benefits was performed by using the actual inflow instead of the forecasted one 

(realized benefits), which are limited by the benchmark of perfect forecast benefits for all the lead 

times. The difference between the perfect forecast and actual forecast benefits (first two bars) 

decreases with smaller lead times, signifying the corresponding increase in forecast skill. Also, the 

higher realized benefit relative to the actual forecast benefit is due to the total forecasted inflow 

being lower than the corresponding observed inflow thus generating higher power (and hence 

higher realized benefit) when the actual inflow is passed. The additional realized benefits 
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(difference between the realized and no-optimization benefits) are 5856, 6862, 5700, and 3212 

MWh for lead times of 9, 7, 5, and 3 days, respectively. This decrease in benefits, like for Detroit 

dam, reflects the associated tradeoff of the higher forecast skill and reduced benefits with smaller 

lead time of forecasts. The daily optimization plots for Pensacola dam for observed and optimized 

release and elevations for each lead time using the control and actual forecast runs are shown in 

Appendix B.  

When compared to Detroit dam, the WRF model’s performance for Pensacola dam is better 

as the difference between the actual forecast and control forecast benefits in Figure 4.21 are 

smaller. This could be explained by the fact that the reservoirs with smaller storage capacity are 

more prone to forecast errors as found in the study by Zhao et al. [2011]. 

4.2.2.3 Real-time Sequential Run 

Like Detroit dam, instead of doing multiple runs for different lead times, this scheme is 

sequentially implemented to update the inflow into reservoir with actual WRF forecasts every 

alternate day. For Pensacola dam, this is tested on the March 2014 event, as described above, with 

the optimization starting from 11 March for the peak inflow starting from 20 Mar (9-days lead). 

First, the reservoir release procedure is obtained using 11 March forecast data for 16-days lead 

time, optimizing the reservoir elevations for hydropower and flood control over 16 days using the 

corresponding sequentially updated WRF-based forecasts. This resulting procedure is followed for 

two days (i.e. 11 and 12 March), following which an update to the inflow forecasts is made by 

running the forecast model on 13 March. The optimization is again performed, this time the initial 

storage being that obtained from the optimized procedure of 11 March. Thus, the second 

optimization run is done based on new inflow forecasts of 13 March and subsequent changes to 

optimized release procedure are made accordingly.  
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The sequential updating of inflow forecasts is continued for every alternate day till 17 

March (3-days lead) to result in the optimized release policy over the course of the event, as shown 

in Figure 4.22. The actual observed outflow and resulting reservoir elevations were compared with 

the respective optimized parameters. Observed inflow is also plotted to compare with the timing 

of peak inflow event.  

 

Figure 4.22. Observed inflow, releases, and elevation along with the respective optimized 

variables obtained using real-time sequential run, updating forecasts every alternate day from 11 

March to 17 March, optimized over 16-day period (Pensacola dam, OK). 

 

The plot in Figure 4.22 suggests, the optimized release starts to increase as soon as the peak 

inflow is forecasted from WRF-downscaled forecasted inflow on 11 March and keeping it to the 

maximum, satisfying the flood control bounds. The resulting elevation decreases due to this 

enhanced release until the peak inflow hits the reservoir, after which there is a sudden increase in 

reservoir elevation. Like the results for Detroit dam, the ending level at the end of optimization 

period was brought closer to the rule curve specified level, closer than what the observed 
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operations (without optimization) resulted in. Considering the daily hydropower benefits before 

and during the peak inflow event, total additional benefit (net sequential benefit) of 13,048 MWh 

was obtained from 11 to 24 March, where additional benefit refers to the difference in hydropower 

benefit obtained from sequentially optimized operations (passing actual inflow with optimized 

releases) and the corresponding observed operations. The daily hydropower benefits over this 

period are compared in Figure 4.23. 

 

Figure 4.23. Daily comparison of hydropower benefits (MWh) obtained using observed 

operations (no-optimization) and from sequential optimization (Pensacola dam, OK). Green bars 

and the corresponding values show the difference in benefits from the two strategies. 

4.3 PERFORMANCE ASSESSMENT - HYDROPOWER VERSUS FLOOD CONTROL 

BENEFITS  

The two competing benefits of hydropower and flood control considered in the optimization need 
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to be satisfied simultaneously for the optimization strategy to be successful. For the Pensacola 

dam, during the Mar 2012 peak event, the most dynamic scheme of real-time sequential update 

(updating the forecasts every alternate day) results into an additional benefit (net sequential 

benefit) of 13,048 MWh over the pre-event and during event days, on top of what the operations 

without optimization result in. With an average retail price of 7.90 cents/kWh [“State Electricity 

Profiles - EIA”], the benefit amounts to $1,030,792. Also, at an average electricity consumption 

of 900 kWh per month per US household, this additional benefit could fulfill the demands of 

14,500 households for one month. For the competing objective of flood control, the performance 

of optimization can be assessed from the extent to which the outflow peak is reduced during the 

event. For the selected event, a maximum release of 57,211 cfs was observed on Mar 23, 2012 in 

response to the peak event. After optimizing the operations, this maximum release was limited to 

30,000 cfs as a safe threshold to prevent flooding downstream. Thus, a 47.5% reduction in the 

peak outflow was achieved compared to the operations without optimization. Moreover, after the 

peak event ends, the reservoir’s forebay head was brought lower and closer to rule curve specified 

level, which leaves more pool for any following peak event in future and brings the reservoir back 

to normal operating state. Furthermore, using the one-time actual forecasts, which suffers from the 

uncertainties in WRF-based forecasts, additional realized benefits ranging from 3212 to 6862 

MWh can be obtained on top of the observed benefits, depending on the lead time of forecasts. 

These figures translate to $253,748 to $542,098, supporting 3570 to 7624 households per month. 

In case of Detroit dam, the sequential optimization resulted into an additional hydropower 

benefit (net sequential benefit) of 9,820 MWh from 11 Dec to 23 Dec (before and during the peak 

inflow event) over which the sequential updates to the inflow forecasts were performed. This 

additional energy amounts to $859,250 over 13 days of optimization, using an average retail price 
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of 8.75 cents/kWh for the state of Oregon [“State Electricity Profiles - EIA”]. This amount can 

light up to 10,911 US households for a single month considering the average electricity 

consumption rate same as for Pensacola dam. Further, the flood control objective was also 

satisfied, as the maximum total of 24,170 cfs was reduced by 63% to only 9,000 cfs, which was 

set as the threshold for downstream flood control. Furthermore, similar to the case of Pensacola 

dam, reservoir levels were brought closer to what the rule curve specifies, closer than the 

operations without optimization would have resulted into. The actual one-time forecast runs 

produce realized benefits ranging from 2132 to 7469 MWh ($186,550 to $653,540) depending on 

the forecast’s lead time. Further, for the major flood event of 1996 (for which only the control run 

was performed due to absence of forecast data), the optimization using control run produced an 

additional benefit of 5,000 MWh to 10,000 MWh (depending on lead time of forecast), amounting 

to $437,500 to $875,000 over the flood event, and reducing the peak inflow of 48,300 cfs by 81% 

to only 9,000 cfs. Thus, the proposed optimization strategy is able to address both the competing 

objectives to a reasonable extent.  
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Chapter 5. DISCUSSION, CONCLUSION AND 

RECOMMENDATIONS 

5.1 DISCUSSION AND CONCLUSION 

In this present research, the potential of weather forecasts has been dynamically evaluated 

for the optimization of reservoir operations based on maximizing the hydropower production, 

without compromising other competing objectives. The short-term weather forecast model, 

hydrologic model, genetic algorithm optimization and reservoir operations model were 

synergistically employed to result into optimized reservoir operating policy over short-term 

forecast period. To demonstrate the concept, two dam sites of small to medium storage receiving 

unregulated inflow were selected. Short-term weather forecasts from the Global Forecast System 

(GFS) data, dynamically downscaled by Weather Research Forecasting (WRF) Model, were used 

to forecast the reservoir inflow. This resulting forecast inflow information was used to the optimize 

reservoir operations aimed at maximizing hydropower with flood control, environmental flow and 

dam safety as key constraints. One of the contributions of this study is recommendation of a new 

forecast evaluation framework for application to reservoir optimization. Typical measures that are 

used for forecast evaluation include correlation, RMSE, etc., while we propose the flood peak 

reduction and daily hydro power additional benefits, which are more effective in minimizing the 

flood damages and realizing higher hydropower benefits. 

The study reveals that there indeed exists potential for optimizing the reservoir operations 

over short-term duration using weather forecasts. The critical factor that plays a key role in 

optimizing the operations is the lead time of forecasting the peak inflow. As the lead time increases, 

there is a higher uncertainty associated with forecasts [Zhao et al., 2011], leading to more uncertain 

operations that risk-averse dam operators will try to mitigate. For such high lead times, the dam 
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operator is likely to operate the dam based on the rule curves rather than just relying on the forecast 

inflow information. Thus, there exists a tradeoff between the benefits that can be extracted by 

predicting the reservoir inflow ahead of time and the confidence with which such a prediction can 

be made. The short-term optimization, being the focus of this study, relies on the downscaling of 

the coarser GFS forecasts, thus limited to a period of 16-days. For the actual forecast run strategy 

of optimization (when no updates are being made to the inflow forecasts), the 7-10 days’ lead time 

of forecasts is the optimum, considering tradeoff between stakeholder benefits and loss in 

forecasting skill. While the control run and actual forecast run validate the tradeoff (forecast skill 

versus benefits) associated with the lead time of the forecasts, the sequential optimization tries to 

overcome the limitation of under/overestimation in forecasts by updating the forecasted inflow 

every alternate day, thus assimilating with the best available information at hand. For Pensacola 

dam, an additional revenue of $1,030,792 was obtained from sequential optimization, while for 

Detroit dam, the figure amounts to $859,250, which is significant as the optimization policy has 

been demonstrated over just a single peak inflow event and there are usually more than one such 

occurrences (although the magnitude of other peaks is smaller) over the late winter and spring 

season, during which the uncertainty of the events are high, more so with the climate change 

playing its part. The outflow peak has also been reduced significantly as compared to what resulted 

from the observed operations (without optimization). Further, the reservoir state at the end of peak 

event was brought closer to the rule-curve specified level, leaving out more pool for any future 

peaks hitting the reservoir and bringing the reservoir back to normal level of operation. 

Further, the contrast in the shape of the drainage basins for Detroit and Pensacola dams 

(smaller for Detroit with fast response in contrast to the narrower and much larger for Pensacola 

with slow hydrologic response) reveal interesting insights into how the reservoir characteristics 
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affect the resulting operation policies from short-term forecast information.  As Detroit dam lies 

at higher elevation and in mountainous region with steep slopes, the rainfall occurring over the 

basin quickly turns into runoff, with a lesser time of concentration. This leads to lower forecast 

horizon, with the accuracy of resulting forecast streamflow dictated mainly by the atmospheric 

forecast skill, and with lesser dependence on the performance of the hydrologic model. However, 

in case of Pensacola dam, due to its narrower drainage basin with longer rivers, the basin possesses 

higher time of concentration with slower hydrologic response, and the forecast skill is dictated by 

the shape of basin in addition to atmospheric forecast skill. With a longer forecast horizon and a 

good hydrologic model setup, the peak inflow is forecasted more accurately and the resulting 

optimized policy from the forecasts is closer to that obtained using the perfectly accurate forecasts 

scenario. Thus, the shape and size of drainage basin drives the performance of optimized operation 

procedures, which needs to be taken into account individually for each dam. 

Although, the study considered only two dams, the characteristics associated with these 

can cover a wide range of dams spread over the US. Detroit dam has a small surface area, but its 

height is one of the highest, with a modest power generation capacity. On the other hand, Pensacola 

dam consists of a medium surface area but with smaller height as compared to Detroit dam. 

However, both the dams lie upstream enough to receive unregulated natural streamflow, thus 

presenting a suitable case for modeling the inflow into the reservoir and subsequently optimizing 

the operations. In a particular year, the peak inflow events happen to occur during the late winter 

and spring season, and this period is the most efficient to run the optimization scheme based on 

weather forecasts. For operational purposes, the WRF forecasts need to be updated every day over 

the event to update the optimized flow release with a new WRF run in the lead up to the event. 

This will result in a more dynamic and realistic strategy with frequent updating of forecasts, 
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minimizing the missed and false hydropower benefits. 

 Considering the scalability of this particular study, although the case study was performed 

considering only single peak event on both the dams, the procedure of short-term optimization 

using forecast information can be applied to any dam over the entire CONUS that satisfies the 

criteria of (a) powered dam, (b) reservoir surface area of < 200km2, and (c) lying upstream in the 

dam network, receiving unregulated flow. A quick analysis over the dams in the US revealed 525 

dams that satisfy these criteria, amongst the 2248 powered dams, as obtained from the National 

Hydropower Asset Assessment Program’s (NHAAP) Existing Hydropower Assets (EHA) dataset 

of powered dams. The dams lying on rivers with stream order of 1 – 3 were assumed to be located 

upstream and receiving unregulated flow, where the stream order data was obtained from 

NHDPlus version 2 national dataset [McKay et al., 2012]. The selected dams are shown in Figure 

5.1. 

 

Figure 5.1. Distribution of the selected dams satisfying the necessary criteria for scalability of 

this study over the CONUS. 
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 With a dynamic operational framework for the dams and reservoirs in place, a significant 

improvement in the hydropower production – both the firm energy and the variable non-firm 

energy supplied over and above it, can be obtained out of the same infrastructure that the US has 

built over the previous century. As most dams are used for more than just extracting hydropower, 

it also facilitates addressing other competing objectives of water security, flood control and 

pertinent environmental constraints. To increase management flexibility and efficiency, as Hamlet 

et al. [2002] notes, multiple energy distribution systems are frequently inter-linked. This feature is 

important to incorporate in case of, say, a surplus hydropower production in one state from the 

optimization over an extreme peak inflow event. This surplus can be supplied to other linked 

systems during a time of their peak demand, if not needed instantly. For instance, peak demand 

for electricity is seasonally reversed in the Pacific Northwest (PNW, peak demand in mid-winter) 

and the Southwest and California (peak demand in late summer). So, even if California does not 

receive enough inflow in summer, the surplus from PNW can supply the summer demand through 

the electric grid.  

 For the dams that operate with flood control as the primary purpose, there is certainly less 

flexibility and hydropower generation is more of an afterthought, being hardly considered during 

the flood events by the operating agencies. However, the current study makes an effort to persuade 

the agencies to be more inclusive and include the other competing benefits as well, without 

affecting the primary purpose of dam operation. Further, the long-term benefits of generating 

hydropower (every day) far outweigh the damages avoided through flood control (as floods do not 

happen every day). So, if the operations can extract the most out of any flood event by utilizing 

the additional amount of water poured in by the nature and minimizing the damages downstream, 
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then the operating policy can surely be considered to be efficient and sustainable, preventing the 

surplus water to get wasted by causing harm to the downstream lives.  

 Further, taking an example of the case of Pensacola dam’s rule curve amendment (see 

section 4.2.1), even after the accepted change to operating policy, the organization is seeking a 

long-term solution to the lake level management issue to provide more operational control over 

the lake, while balancing all the other stakeholder concerns of hydroelectric generation, flood 

control and recreation. This is the need of hour, and is demanded by most of the 

operational/managing agencies of dams and reservoirs. Such manual amendments to the classically 

developed rule curve takes a significant amount of resource and time, making infeasible for the 

changes and amendments to be made in accordance with the changing climatic conditions and 

inflow patterns. This study provides a possible alternative, by putting forward the operations that 

are more dynamic and adjustable to the real-time weather patterns, and maximizing the advantages 

for the multiple stakeholders with competing benefits. 

 The far-reaching effects of this study also shed light on the more sophisticated techniques 

of electricity production. The recent concept of integrated hydro-powered wind mills, introduced 

by a German firm (as mentioned in Chapter 1), can benefit from the short-term optimization 

scheme. The integration of wind mill-produced electricity with the hydropower require a 

framework that can assimilate the information from multiple sources coming at frequent intervals 

and optimize the hydro- and wind-borne turbine operations accordingly. In future, the integration 

of electricity from multiple sources to create a synergistic framework, optimizing the operation of 

the sources involved therein can prove to be a landmark step towards revolutionizing the way 

renewable sources are utilized. 
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5.2 RECOMMENDATIONS AND FUTURE WORK 

Through this study, a concept has been put forth for making the conventional operating policy of 

dam more dynamic and adjustable to the real-time and short-term forecast inflow information 

employing the weather forecasts. Such a dynamic operational policy could be of a great 

significance for the country, especially in the coming decades when environmental sustainability 

will play a key role in any nation’s economic growth and development. A lot can be improved and 

built upon this demonstrated concepts from this study. Future work should include developing a 

better coupled hydropower-flood control optimization framework by integrating the present 

hydropower optimization strategy with more sophisticated flood forecasting techniques and then 

scaling it up for other hydropower dams that are part of regional energy infrastructure. By using 

real data on real dams with real-world constraints, we have demonstrated very clearly that the 

currently available weather forecasts from numerical weather prediction models have a lot to offer 

to address our nation’s energy security. Because these weather forecasts are already available, the 

challenge now is to convert availability to accessibility so that dam operators have an additional 

basis of decision-making that builds on the rule curves and improves the state of the art. 

 The entire procedure starting from short-term weather forecasting to hydrologic modeling, 

optimization and reservoir operations modeling can be integrated and presented in the form of user 

friendly GUI as a Decision Support System (DSS). The DSS will compute every few days, the 

‘optimized’ storage and release (power and non-powered) to maximize the stakeholder benefits 

for varying risk-averse constraints set by the dam operator. The future prospects of this study 

include developing such a DSS using Detroit dam as the starting point, and will later be generalized 

for ‘any’ small-medium dam receiving unregulated inflow in the US. Also, as deterministic 

forecasts were employed here for the purpose of demonstrating the utilization of forecasts, 
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uncertainty in forecasts is certainly a future step that needs to be considered in order for the dam 

operator to have a possible optimal range of operating the reservoir. 

 The optimization model considered here can be improved upon by including other major 

downstream stakeholder benefits, such as water supply, irrigation, recreational activities etc., 

considering the water-energy-food nexus. A year-round optimization framework could be 

developed, considering the different benefits pertinent to the time of year, season and weather 

scenario. The region of operation should also affect the optimization strategy, depending on what 

the downstream users are concerned with. Moreover, the forecast data can be modified in that the 

long-term seasonal forecasts can be included in the optimization along with the short-term GFS 

forecasts to produce the operating policy at the both the short and long-term temporal scales, 

providing the dam operator with enough insight into the future. Also, for operational purposes, the 

real-time sequential run demonstrated in this study is the way to go, as the dam operator would be 

interested in operating based on the most recently available forecast inflow information. 

 For dams with smaller drainage basins, other hydrologic models can be explored as the 

VIC model (being used in this research) is a mesoscale model, which sometimes might not give 

the best results when run over smaller domains. Also, the study used MS Excel’s built-in 

Evolutionary GA solver, which could be expanded upon by using other heuristic optimization 

algorithms as the situation at hand demands. Possible alternatives could be Particle Swarm 

Optimization, Simulated Annealing, Ant Colony Optimization, Bee Algorithm etc. In recent years, 

heuristic search methods have gained significant attention from researchers, as they can produce 

many non-dominated, optimal solutions simultaneously in multi-objective optimization problems, 

as compared to the traditional gradient methods, such as linear and nonlinear programming, which 

can only produce a locally converged optimal solution. Multi-reservoir systems can also be 
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considered for investigating the efficiency of short-term weather forecasts, as the current study 

only considered a single dam for optimization without receiving no regulated inflow. Lastly, this 

procedure can be replicated globally, and especially over the dams in the developing world, where 

most of the future construction is going to be witnessed. These upcoming dams can embrace the 

dynamic dam operations instead of going for a conventional static rule curve, so as to increase the 

efficiency of the infrastructure that is to be built and optimize the benefits to multiple stakeholders.  

The take-home messages that can be derived from this study are summarized as follows: 

 The GFS-based forecasts dynamically downscaled using WRF model provide a basis for 

optimizing the reservoir operations over short-term peak inflow events and in dams with 

small to moderate storage receiving unregulated inflow.  

 The short-term optimization can result in significant improvements in the hydropower 

generated over such events, without compromising the objectives of flood control, water 

security, dam safety and environmental regulations. 

 Optimization using short-term forecasts can sometimes result into an additional 

hydropower than what is theoretically possible (control run), if the peak inflow is 

overestimated while opposite can occur in case of the underestimation of peak. 

 Control and actual forecast runs validate the tradeoff in lead time of forecasts, while 

sequentially updating the forecasts tends to minimize the under/overestimations, resulting 

in a more dynamic and close to real-time scheme to be followed by a dam operator. 

 As any ‘green’ energy technology succeeds or fails based on the price of power it generates, 

the current study adds a factor in favor of hydropower by harnessing the most out of the 

current infrastructure, generating an increased revenue and minimizing downstream losses 

that can occur in case of a peak inflow event.  
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 APPENDIX A. DAM AND RESERVOIR DETAILS 

 

 

Figure A.1. Major river streams and dams thereupon in Willamette Basin. Also mapped are the 

fish facilities available at the river streams. Detroit dam lies upstream in the network of 

dams, receiving unregulated inflow (Source: “Willamette River Basin”, 2011). 
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Figure A.2. Location of Pensacola Dam along with the formed reservoir, Grand Lake. No major 

dams lie upstream of the dam. (Visualization from Ahmad S. K. (2017). GRanD Interactive 

Visualizer) 

 

 

 

 

 

Pensacola Dam 

Grand Lake 
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Table A.1. Data for Storage-Area Relationship of Detroit Dam, OR 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

336233.455 1531.62 436805.9 1563.76 304048.167 1519.74 193898.194 1471.25 

336317.542 1531.65 436805.9 1563.76 304023.122 1519.73 193858.294 1471.23 

336429.688 1531.69 436872.023 1563.78 303998.079 1519.72 193858.294 1471.23 

336513.82 1531.72 436838.96 1563.77 303998.079 1519.72 193838.347 1471.22 

336626.027 1531.76 436872.023 1563.78 303948 1519.7 193818.401 1471.21 

341117.454 1533.4 436872.023 1563.78 303948 1519.7 193818.401 1471.21 

341173.415 1533.42 436872.023 1563.78 303922.963 1519.69 193818.401 1471.21 

341369.348 1533.49 436872.023 1563.78 303922.963 1519.69 193818.401 1471.21 

341453.351 1533.52 436905.089 1563.79 303872.895 1519.67 193798.458 1471.2 

341621.414 1533.58 436971.226 1563.81 303847.864 1519.66 164531.84 1455.63 

341705.475 1533.61 436971.226 1563.81 303847.864 1519.66 164531.84 1455.63 

341733.499 1533.62 437004.298 1563.82 303822.834 1519.65 164531.84 1455.63 

341733.499 1533.62 436971.226 1563.81 303797.807 1519.64 164531.84 1455.63 

341761.525 1533.63 437004.298 1563.82 303772.781 1519.63 164513.817 1455.62 

342069.955 1533.74 437004.298 1563.82 303722.736 1519.61 164513.817 1455.62 

342547.123 1533.91 437004.298 1563.82 303697.716 1519.6 164513.817 1455.62 

342603.301 1533.93 437070.449 1563.84 303547.637 1519.54 164513.817 1455.62 

345619.307 1534.94 437070.449 1563.84 219222.795 1483.88 164513.817 1455.62 

345649.414 1534.95 437070.449 1563.84 219222.795 1483.88 164513.817 1455.62 

345739.752 1534.98 437070.449 1563.84 219222.795 1483.88 164513.817 1455.62 

345799.989 1535 437136.609 1563.86 219222.795 1483.88 164495.796 1455.61 

345859.755 1535.02 437169.692 1563.87 219199.709 1483.87 164495.796 1455.61 

345889.641 1535.03 437202.778 1563.88 219199.709 1483.87 164495.796 1455.61 

345919.53 1535.04 437235.866 1563.89 219199.709 1483.87 154160.932 1449.86 

345949.421 1535.05 371417.219 1543.54 219176.627 1483.86 154160.932 1449.86 

345949.421 1535.05 371387.212 1543.53 219176.627 1483.86 154160.932 1449.86 

345949.421 1535.05 371357.206 1543.52 219176.627 1483.86 154160.932 1449.86 

345949.421 1535.05 371297.202 1543.5 219176.627 1483.86 154160.932 1449.86 

345979.315 1535.06 371267.203 1543.49 219153.546 1483.85 154160.932 1449.86 

345979.315 1535.06 371267.203 1543.49 219130.468 1483.84 154160.932 1449.86 

346069.009 1535.09 371237.206 1543.48 219130.468 1483.84 154160.932 1449.86 

346128.818 1535.11 371147.23 1543.45 219130.468 1483.84 154143.869 1449.85 

436706.732 1563.73 371117.242 1543.44 219130.468 1483.84 154143.869 1449.85 

436739.786 1563.74 371087.257 1543.43 219107.392 1483.83 154143.869 1449.85 

436772.842 1563.75 371057.274 1543.42 219107.392 1483.83 154143.869 1449.85 

436772.842 1563.75 371027.293 1543.41 219222.795 1483.88 154143.869 1449.85 

436772.842 1563.75 370967.337 1543.39 219222.795 1483.88 154143.869 1449.85 

436805.9 1563.76 370967.337 1543.39 193898.194 1471.25 154143.869 1449.85 
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Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

154937.936 1450.3 220311.61 1484.37 350747.288 1536.65 191479.897 1469.99 

154937.936 1450.3 220311.61 1484.37 350717.254 1536.64 191479.897 1469.99 

154937.936 1450.3 220311.61 1484.37 350657.192 1536.62 191479.897 1469.99 

154937.936 1450.3 220311.61 1484.37 350657.192 1536.62 191479.897 1469.99 

154937.936 1450.3 220311.61 1484.37 350597.14 1536.6 191479.897 1469.99 

154937.936 1450.3 220311.61 1484.37 350567.117 1536.59 191479.897 1469.99 

154937.936 1450.3 220311.61 1484.37 350537.097 1536.58 191459.801 1469.98 

154937.936 1450.3 220311.61 1484.37 350477.064 1536.56 191459.801 1469.98 

154919.977 1450.29 220289.637 1484.36 350477.064 1536.56 191459.801 1469.98 

154919.977 1450.29 220289.637 1484.36 350447.051 1536.55 191459.801 1469.98 

154919.977 1450.29 220289.637 1484.36 350417.041 1536.54 191439.708 1469.97 

154919.977 1450.29 220289.637 1484.36 350387.032 1536.53 191439.708 1469.97 

154919.977 1450.29 220289.637 1484.36 350327.023 1536.51 191439.708 1469.97 

154919.977 1450.29 220289.637 1484.36 350297.022 1536.5 191439.708 1469.97 

154919.977 1450.29 220289.637 1484.36 350297.022 1536.5 191439.708 1469.97 

154919.977 1450.29 220289.637 1484.36 350267.023 1536.49 191439.708 1469.97 

154919.977 1450.29 220267.667 1484.35 419578.064 1558.57 191479.897 1469.99 

154919.977 1450.29 292348.808 1515.14 419578.064 1558.57 267307.317 1505.35 

174217.909 1461.01 292298.954 1515.12 419578.064 1558.57 267255.392 1505.33 

174217.909 1461.01 292298.954 1515.12 419578.064 1558.57 267229.434 1505.32 

174199.995 1461 292298.954 1515.12 419545.048 1558.56 267177.523 1505.3 

174199.995 1461 292274.029 1515.11 419545.048 1558.56 267177.523 1505.3 

174199.995 1461 292224.187 1515.09 419545.048 1558.56 267125.622 1505.28 

174199.995 1461 292124.525 1515.05 419545.048 1558.56 267099.675 1505.27 

174181.908 1460.99 292074.705 1515.03 419545.048 1558.56 267073.73 1505.26 

174181.908 1460.99 291999.991 1515 419545.048 1558.56 267047.788 1505.25 

174181.908 1460.99 291947.78 1514.98 419545.048 1558.56 267047.788 1505.25 

174163.823 1460.98 291843.383 1514.94 419545.048 1558.56 267021.848 1505.24 

174163.823 1460.98 291765.108 1514.91 419545.048 1558.56 266995.91 1505.23 

174163.823 1460.98 291686.853 1514.88 426971.974 1560.78 266995.91 1505.23 

174145.74 1460.97 291634.693 1514.86 426971.974 1560.78 281855.367 1511.06 

174145.74 1460.97 291556.47 1514.83 426971.974 1560.78 281803.566 1511.04 

174145.74 1460.97 291556.47 1514.83 426971.974 1560.78 281803.566 1511.04 

174145.74 1460.97 291556.47 1514.83 426971.974 1560.78 281777.669 1511.03 

174127.659 1460.96 291530.4 1514.82 426938.91 1560.77 281751.774 1511.02 

174127.659 1460.96 292348.808 1515.14 426938.91 1560.77 281699.991 1511 

174127.659 1460.96 292298.954 1515.12 426938.91 1560.77 281649.789 1510.98 

174217.909 1461.01 291426.142 1514.78 426938.91 1560.77 281933.085 1511.09 

[Source: US Army Corps of Engineers (USACE), Northwestern Division] 
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Table A.2. Data for Storage-Area Relationship of Pensacola Dam, OK 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

2010562 754.81 1667859 744.91 1538759 742.04 1500891 744.65 

2008878 751.72 1667859 744.91 1538759 742.04 1500879 741.16 

2005294 754.72 1667401 744.9 1538759 742.04 1500476 744.64 

2000030 754.63 1666466 748.37 1538759 742.04 1500451 741.15 

1995934 754.56 1665559 744.86 1538759 742.04 1500060 744.63 

1984581 751.27 1665505 748.35 1538759 742.04 1499645 744.62 

1978966 754.27 1665099 744.85 1538759 742.04 1499590 741.13 

1976038 754.22 1664641 744.84 1538759 742.04 1499590 741.13 

1958619 753.92 1663720 744.82 1538321 742.03 1499590 741.13 

1958050 753.91 1662800 744.8 1538321 742.03 1499230 744.61 

1956347 753.88 1661881 744.78 1538321 742.03 1499160 741.12 

1950390 750.63 1661881 744.78 1538321 742.03 1498814 744.6 

1942970 750.49 1659579 744.73 1538321 742.03 1498814 744.6 

1942706 753.64 1659579 744.73 1538321 742.03 1498814 744.6 

1935885 753.52 1659119 744.72 1538321 742.03 1498729 741.11 

1929065 753.4 1658661 744.71 1538321 742.03 1498729 741.11 

1919969 753.24 1658661 744.71 1538321 742.03 1498729 741.11 

1909169 753.05 1658201 744.7 1538321 742.03 1497986 744.58 

1907310 749.81 1657280 744.68 1535037 745.46 1497871 741.09 

1899169 752.87 1608449 743.61 1534420 741.94 1497871 741.09 

1896416 752.82 1608052 747.12 1534183 745.44 1497571 744.57 

1895314 752.8 1607589 747.11 1533559 741.92 1497571 744.57 

1893032 749.53 1607127 747.1 1533559 741.92 1497571 744.57 

1722066 749.51 1607101 743.58 1533129 741.91 1497571 744.57 

1719481 746.01 1606204 747.08 1533129 741.91 1497441 741.08 

1719081 749.45 1606200 743.56 1532478 745.4 1497441 741.08 

1717089 749.41 1605750 743.55 1532050 745.39 1497155 744.56 

1714769 745.91 1604851 743.53 1532050 745.39 1497010 741.07 

1714301 745.9 1604401 743.52 1532050 745.39 1497010 741.07 

1712115 749.31 1604401 743.52 1531196 745.37 1496740 744.55 

1711949 745.85 1604401 743.52 1531196 745.37 1496580 741.06 

1711011 745.83 1604354 747.04 1530979 741.86 1496580 741.06 

1710540 745.82 1603895 747.03 1530769 745.36 1496325 744.54 

1710070 745.81 1603500 743.5 1530549 741.85 1496325 744.54 

1707250 745.75 1601701 743.46 1530342 745.35 1496325 744.54 

1707250 745.75 1601701 743.46 1530342 745.35 1496325 744.54 

1706780 745.74 1601701 743.46 1530342 745.35 1496150 741.05 

1703960 745.68 1601618 746.98 1529918 745.34 1496150 741.05 
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Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

Storage 

(ac-feet) 

Reservoir 

Elevation 

(feet) 

1476409 744.06 1393890 742.03 1485124 744.27 1896416 752.82 

1475994 744.05 1393890 742.03 1485124 744.27 1895314 752.8 

1475994 744.05 1393890 742.03 1484708 744.26 1893032 749.53 

1475994 744.05 1393890 742.03 1484708 744.26 1888155 752.67 

1475994 744.05 1393890 742.03 1484293 744.25 1882098 752.56 

1475994 744.05 1393890 742.03 1483878 744.24 1880996 752.54 

1475994 744.05 1393890 742.03 1483878 744.24 1880448 752.53 

1475994 744.05 1393890 742.03 1483047 744.22 1876593 752.46 

1475994 744.05 1393890 742.03 1483047 744.22 1870533 752.35 

1475994 744.05 1393890 742.03 1482634 744.21 1865028 752.25 

1475579 744.04 1393486 742.02 1482219 744.2 1864999 748.98 

1475579 744.04 1393486 742.02 1482219 744.2 1860622 752.17 

1475579 744.04 1393486 742.02 1481804 744.19 1857318 752.11 

1475579 744.04 1393486 742.02 1481388 744.18 1854565 752.06 

1475579 744.04 1393486 742.02 1481388 744.18 1851812 752.01 

1475579 744.04 1393486 742.02 1481388 744.18 1851261 752 

1475579 744.04 1393486 742.02 1481388 744.18 1842001 748.52 

1475579 744.04 1393486 742.02 1480973 744.17 1842001 748.52 

1475166 744.03 1393486 742.02 1480973 744.17 1590509 746.73 

1475166 744.03 1351950 740.97 1604354 747.04 1590451 743.21 

1439977 743.17 1351950 740.97 1603895 747.03 1590451 743.21 

1439567 743.16 1351950 740.97 1603500 743.5 1589100 743.18 

1439160 743.15 1351950 740.97 1601701 743.46 1588199 743.16 

1439160 743.15 1351950 740.97 1601701 743.46 1587398 746.66 

1439160 743.15 1351950 740.97 1601701 743.46 1586850 743.13 

1438751 743.14 1351568 740.96 1601618 746.98 1586850 743.13 

1438342 743.13 1351568 740.96 1600800 743.44 1586400 743.12 

1437932 743.12 1351568 740.96 1600800 743.44 1586400 743.12 

1437932 743.12 1351568 740.96 1600350 743.43 1586400 743.12 

1437932 743.12 1351185 740.95 1600350 743.43 1585622 746.62 

1437114 743.1 1351185 740.95 1599899 743.42 1585051 743.09 

1437114 743.1 1351185 740.95 1599899 743.42 1583700 743.06 

1437114 743.1 1351185 740.95 1599899 743.42 1583700 743.06 

1436707 743.09 1351185 740.95 1599449 743.41 1582799 743.04 

1436707 743.09 1350801 740.94 1599001 743.4 1582799 743.04 

1436297 743.08 1350801 740.94 1598551 743.39 1582799 743.04 

1436297 743.08 1350801 740.94 1598100 743.38 1582511 746.55 

1435888 743.07 1350033 740.92 1596749 743.35 1581901 743.02 

[Source: US Army Corps of Engineers (USACE), Southwestern Division] 
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APPENDIX B. DAILY OPTIMIZATION DETAILS 
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PENSACOLA DAM – CONTROL & ACTUAL FORECAST RUN 

 

 

Figure B.1. Actual/Optimized release and elevations for lead time – 3 days (17 March 2012) 

(Pensacola dam, OK) 
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Figure B.3. Actual/Optimized release and elevations for lead time – 5 days (15 March 2012) 

(Pensacola dam, OK) 
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Figure B.4. Actual/Optimized release and elevations for lead time – 7 days (13 March 2012) 

(Pensacola dam, OK) 
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Figure B.5. Actual/Optimized release and elevations for lead time – 9 days (11 March 2012) 

(Pensacola dam, OK) 
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DETROIT DAM – CONTROL & ACTUAL FORECAST RUN 

 

 

Figure B.6. Actual/Optimized release and elevations for lead time – 3 days (19 Dec 2014) 

(Detroit dam, OR) 
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Figure B.7. Actual/Optimized release and elevations for lead time – 5 days (17 Dec 2014) 

(Detroit dam, OR) 
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Figure B.8. Actual/Optimized release and elevations for lead time – 7 days (15 Dec 2014) 

(Detroit dam, OR) 
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Figure B.9. Actual/Optimized release and elevations for lead time – 9 days (13 Dec 2014) 

(Detroit dam, OR) 
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Figure B.10. Actual/Optimized release and elevations for lead time – 11 days (11 Dec 2014) 

(Detroit dam, OR) 
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APPENDIX C. WRF MODEL CONFIGURATIONS 

 

namelist.input – DETROIT DAM  
 
&time_control 
 run_days                            = 0, 
 run_hours                           = 384, 
 run_minutes                         = 0, 
 run_seconds                         = 0, 
 start_year                          = 2014, 2014,  
 start_month                         = 12,   12,   
 start_day                           = 19,   19,   
 start_hour                          = 00,   00,   
 start_minute                        = 00,   00,   
 start_second                        = 00,   00,  
 end_year                            = 2015, 2015, 
 end_month                           = 01,   01,    
 end_day                             = 04,   04,   
 end_hour                            = 00,   00,  
 end_minute                          = 00,   00,   
 end_second                          = 00,   00,   
 interval_seconds                    = 43200 
 input_from_file                     = .true.,.true., 
 history_interval                    = 60,  60,   
 frames_per_outfile                  = 24, 24,  
 restart                             = .false., 
 restart_interval                    = 5000, 
 io_form_history                     = 2 
 io_form_restart                     = 2 
 io_form_input                       = 2 
 io_form_boundary                    = 2 
 debug_level                         = 0 
 / 
 
 &domains 
 time_step                           = 180, 
 time_step_fract_num                 = 0, 
 time_step_fract_den                 = 1, 
 max_dom                             = 2, 
 e_we                                = 90,    112, 
 e_sn                                = 90,    97, 
 e_vert                              = 38,    38,  
 p_top_requested                     = 5000, 
 num_metgrid_levels                  = 27, 
 num_metgrid_soil_levels             = 4, 
 dx                                  = 30000,10000, 
 dy                                  = 30000,10000, 
 grid_id                             = 1,2, 
 parent_id                           = 1,1, 
 i_parent_start                      = 1,48, 
 j_parent_start                      = 1,31, 
 parent_grid_ratio                   = 1,3, 
 parent_time_step_ratio              = 1,3, 
 feedback                            = 0,  
 smooth_option                       = 0 
 / 
 
 
 &physics 
 mp_physics                          = 8,     8, 
 ra_lw_physics                       = 1,     1,  
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 ra_sw_physics                       = 1,     1, 
 radt                                = 30,    30,  
 sf_sfclay_physics                   = 1,     1,   
 sf_surface_physics                  = 4,     4,   
 bl_pbl_physics                      = 1,     1,  
 bldt                                = 0,     0,  
 cu_physics                          = 3,     3,  
 cudt                                = 5,     5,  
 isfflx                              = 1, 
 ifsnow                              = 1, 
 icloud                              = 1, 
 surface_input_source                = 1, 
 num_soil_layers                     = 4, 
 num_land_cat                        = 21, 
 sf_urban_physics                    = 0,     0,  
 / 
 
 &fdda 
 / 
 
 &dynamics 
 w_damping                           = 0, 
 diff_opt                            = 1,      1,      1, 
 km_opt                              = 4,      4,      4, 
 diff_6th_opt                        = 0,      0,      0, 
 diff_6th_factor                     = 0.12,   0.12,   0.12, 
 base_temp                           = 290. 
 damp_opt                            = 0, 
 zdamp                               = 5000.,  5000.,  5000., 
 dampcoef                            = 0.2,    0.2,    0.2 
 khdif                               = 0,      0,      0, 
 kvdif                               = 0,      0,      0, 
 non_hydrostatic                     = .true., .true., .true., 
 moist_adv_opt                       = 1,      1,      1,      
 scalar_adv_opt                      = 1,      1,      1,      
 / 
 
 &bdy_control 
 spec_bdy_width                      = 5, 
 spec_zone                           = 1, 
 relax_zone                          = 4, 
 specified                           = .true., .false.,.false., 
 nested                              = .false., .true., .true., 
 / 
 
 &grib2 
 / 
 
 &namelist_quilt 
 nio_tasks_per_group = 0, 
 nio_groups = 1, 
 / 
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namelist.input – PENSACOLA DAM 
 
&time_control 
 run_days                            = 0, 
 run_hours                           = 384, 
 run_minutes                         = 0, 
 run_seconds                         = 0, 
 start_year                          = 2012, 2012,  
 start_month                         = 03,   03,   
 start_day                           = 11,   11,   
 start_hour                          = 00,   00,   
 start_minute                        = 00,   00,   
 start_second                        = 00,   00,  
 end_year                            = 2012, 2012, 
 end_month                           = 03,   03,    
 end_day                             = 27,   27,   
 end_hour                            = 00,   00,  
 end_minute                          = 00,   00,   
 end_second                          = 00,   00,   
 interval_seconds                    = 43200 
 input_from_file                     = .true.,.true., 
 history_interval                    = 60,  60,   
 frames_per_outfile                  = 24, 24,  
 restart                             = .false., 
 restart_interval                    = 5000, 
 io_form_history                     = 2 
 io_form_restart                     = 2 
 io_form_input                       = 2 
 io_form_boundary                    = 2 
 debug_level                         = 0 
 / 
 
 &domains 
time_step                = 180, 
time_step_fract_num      = 0, 
time_step_fract_den      = 1, 
max_dom                  = 2, 
e_we                     = 90,       124, 
e_sn                     = 90,       130, 
e_vert                   = 35,       35, 
p_top_requested          = 5000, 
num_metgrid_levels       = 27, 
num_metgrid_soil_levels  = 4, 
dx                       = 30000,    10000, 
dy                       = 30000,    10000, 
grid_id                  = 1,        2, 
parent_id                = 1,        1, 
i_parent_start           = 1,       14, 
j_parent_start           = 1,       18, 
parent_grid_ratio        = 1,        3, 
parent_time_step_ratio   = 1,        3, 
feedback                 = 1, 
smooth_option            = 0, 
 / 
 
 &physics 
 mp_physics                          = 10,     10, 
 ra_lw_physics                       = 1,     1,  
 ra_sw_physics                       = 1,     1, 
 radt                                = 30,    30,  
 sf_sfclay_physics                   = 1,     1,   
 sf_surface_physics                  = 4,     4,   
 bl_pbl_physics                      = 1,     1,  
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 bldt                                = 0,     0,  
 cu_physics                          = 3,     3,  
 cudt                                = 5,     5,  
 isfflx                              = 1, 
 ifsnow                              = 1, 
 icloud                              = 1, 
 surface_input_source                = 1, 
 num_soil_layers                     = 4, 
 num_land_cat                        = 21, 
 sf_urban_physics                    = 0,     0,  
 / 
 
 &fdda 
 / 
 
 &dynamics 
 w_damping                           = 0, 
 diff_opt                            = 1,      1,      1, 
 km_opt                              = 4,      4,      4, 
 diff_6th_opt                        = 0,      0,      0, 
 diff_6th_factor                     = 0.12,   0.12,   0.12, 
 base_temp                           = 290. 
 damp_opt                            = 0, 
 zdamp                               = 5000.,  5000.,  5000., 
 dampcoef                            = 0.2,    0.2,    0.2 
 khdif                               = 0,      0,      0, 
 kvdif                               = 0,      0,      0, 
 non_hydrostatic                     = .true., .true., .true., 
 moist_adv_opt                       = 1,      1,      1,      
 scalar_adv_opt                      = 1,      1,      1,      
 / 
 
 &bdy_control 
 spec_bdy_width                      = 5, 
 spec_zone                           = 1, 
 relax_zone                          = 4, 
 specified                           = .true., .false.,.false., 
 nested                              = .false., .true., .true., 
 / 
 
 &grib2 
 / 
 
 &namelist_quilt 
 nio_tasks_per_group = 0, 
 nio_groups = 1, 
 / 


