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Forests strongly influence the amount and duration mountain snow storage because forest 

cover modifies both snow accumulation and ablation processes. Quantifying and predicting forest 

effects on snow processes and snow storage is critical for understanding the effects of forest change 

on snow storage, and subsequent impacts on downstream water resources. However, both the 

magnitude and direction of forest modifications of individual snow processes vary with climate, 

topography, and forest characteristics. Accurate prediction of the net effects of forest change on 

mountain snow storage, particularly in a warming climate, depends on accurately representing the 

spatiotemporal variability of forest-snow interactions.  

With a goal to better understand forest-snow processes in the maritime snow zone, we 

collected snow observations over four winters within diverse forest types in western Washington, 

USA. We utilize these new observations to quantify forest effects on snow duration, as well as to 

assess the robustness of remote methods to observe snow-covered area within a forest. We find 
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that mean snow duration is 8 days longer in forest gaps than in forested plots, but that snow 

duration in thinned forest and dense forest are indistinguishable at the 1600 m2 plot-scale. We 

additionally show that time-lapse cameras and spatially distributed ground temperature sensors are 

both robust methods for observing snow duration, and make suggestions about the optimal spatial 

density of snow observations within forests. The entire four-year dataset and related metadata are 

extensively described, and are now publicly available for potential use in numerous modeling 

applications. 

To expand our focus on forest-snow interactions to the Pacific Northwest, USA, regional-

scale, we collaborate with other research institutions and engage citizen scientists. Regional 

synthesis and analysis of snow depth and duration at 12 out of 14 paired open-forest locations 

show that differential snow duration ranges from synchronous, to snow lasting up to 13 weeks 

longer in the open. The differences in snow duration are attributed to forest effects on snow 

accumulation, with larger differences between snow accumulation rates than between ablation 

rates in the open and forested sites through the duration of the forest snowpack. In 2 out of the 14 

locations, differential snow duration is 2-5 weeks longer in the forest. These 2 sites are subject to 

hourly average wind speeds ranging up to 8 and 17 m s-1. Therefore, longer snow duration in the 

forest likely results from a combination of enhanced deposition of snow and reduced snow loss 

from canopy interception in the forested sites. These findings suggest that a regional framework 

to understand forest effects on snow storage in the maritime to maritime-continental transitional 

climate across the Pacific Northwest must account for high interception efficiencies in warmer 

climates as well a high winds due to topographic exposure and climate. 

Lastly, we assess the influence of forest structural characteristics on snow storage in 

western Washington by linking lidar-derived forest canopy metrics to snow depth and snow 
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duration. By using a matrix decomposition method to collapse the variance of spatially distributed 

observations of snow depth onto a few dominant modes, we show that the top two modes represent 

forest effects on snow accumulation and ablation, respectively.  Furthermore, gridded metrics of 

canopy cover and height that quantify the canopy directly overhead, rather than to the south, 

correlate equally strongly (r2 of up to 0.74) with the spatial coefficients that scale both of these 

modes. This finding suggests that the role of forests in shading the snowpack from sunlight is 

diminished at this site. Furthermore, multivariate analysis of physiographic predictors of snow 

duration across a range of elevations and years quantifies the important role of canopy 

characteristics in controlling snow duration. At the study site in western Washington, the binary 

simplification of considering forested versus open locations is supported by evidence for a stepped 

response, in which snow duration shifts from longer to shorter around values of 60-70% canopy 

cover. Collectively, the findings demonstrate that forest effects on snow accumulation dominate 

the overall influence of forest on snow storage in the Pacific Northwest, USA, resulting in larger 

magnitude and longer duration snow storage in canopy gaps, except in locations subject to high 

wind speeds.  
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Chapter 1. Forests and Mountain Snow Storage in the Pacific Northwest, USA 

1.1 Introduction 

Coniferous forests cover much of the seasonal snow zone in the Pacific Northwest (PNW), 

USA, and strongly influence hydrological processes by modifying water and energy fluxes at a 

range of spatial and temporal scales. Therefore, forest change due to management activities or 

natural disturbance affects the amount and duration of snow storage in a watershed [Hedstrom 

and Pomeroy, 1998; Storck et al., 2002; Musselman et al., 2008; Molotch et al., 2009; Lundquist 

et al., 2013], with a cascade of impacts on soil moisture availability [Veatch et al., 2009; 

Harpold et al., 2015b], phenology [Ford et al., 2013], tree line migration [Geddes et al., 2005], 

soil-atmosphere exchanges of gases [Groffman et al., 2006] and energy [Cherkauer and 

Lettenmaier, 1999], water availability during flood events [Marks et al., 1998; Wayand et al., 

2015b], the timing and magnitude of spring and summer streamflow [Wilm and Dunford, 1948; 

Bosch and Hewlett, 1982; Jones, 2004; Lyon et al., 2008], and stream temperature [Moore et al., 

2006; Gravelle and Link, 2007]. Understanding and predicting the difference in the magnitude of 

peak snow storage and the timing in snow disappearance as a function of forest cover (or lack 

thereof) in response to changing climate and forest conditions are therefore critical for 

quantifying and projecting hydrological and ecological impacts at the local and watershed scale 

(Figure 1.1).  

As a result, many studies have addressed the effects of timber harvest, silvicultural practices, 

and forest disturbance on snow processes [Golding and Swanson, 1986; Murray and Buttle, 

2003; Winkler et al., 2005; Jost et al., 2007] and water yield [Rothacher, 1970; Bosch and 

Hewlett, 1982; Stednick, 1996]. However, although the key influence of forests, and forest 
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change, on snow processes has been widely observed, the net effect of forests on snow storage 

across the landscape varies with forest characteristics like canopy density and stand age 

[Kittredge, 1953; Jost et al., 2007], topographic position [Strasser et al., 2011; Ellis et al., 2013], 

latitude [Musselman et al., 2008; Harpold et al., 2015b], and climate [Lundquist et al., 2013]. As 

a result, predicting or modeling the net effects of forest on snow depends on the integration of 

multiple forest-snow processes, and is an on-going research challenge that has widely been noted 

as a critical hydrological knowledge gap [Essery et al., 2009; Rutter et al., 2009; Varhola and 

Coops, 2013]. 

Understanding forest-snow-climate interactions is particularly important in the heavily 

forested PNW. Snow storage in the headwaters of the Columbia River basin and the coastal 

drainages, such as the Skagit and Snoqualmie basins, directly contributes to the suitability of 

stream habitat for endangered salmonids, hydropower generation for the PNW and beyond, and 

agricultural and municipal water supply. Furthermore, the PNW is an ideal local laboratory to 

assess forest-snow-climate relations, with extensive and diverse forest types, extensive seasonal 

snow storage, and both maritime and continental climates. Active forest management programs 

in the PNW include timber harvest, silvicultural thinning, and prescribed burns [Richards et al., 

2012; Wigmosta et al., 2015]. Extensive logging has resulted in widespread 2nd growth forest 

composed of densely packed stands of even-age trees [Kane et al., 2010b, 2011]. Policy tools 

such as the Northwest Forest Plan and Habitat Conservation Plans driven by compliance with the 

Endangered Species Act have prompted some public land management agencies, such as Seattle 

Public Utilities (SPU) to implement management strategies to accelerate the development of 

complex terrestrial habitat [Seattle, 2000]. In particular, variable density thinning and gap-cutting 

are used to support the conversion of dense 2nd growth forests with homogeneous canopy cover 
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to the more complex canopy structures and stem distributions of old growth forests [Richards et 

al., 2012].  

 Forest harvest activities are additionally overprinted by large swaths of forest land burned 

by wildfire [Westerling, 2006; Barbero et al., 2015] or defoliated by insects [Welch et al., 2015]. 

Accounting for forest change effects on snow processes will become even more important under 

changing climate conditions because climate change is likely to simultaneously increase forest 

disturbances [Wimberly and Liu, 2014] and reduce snow storage [Mote et al., 2005; Adam et al., 

2009; Elsner et al., 2010]. 

This dissertation focuses on quantifying and modeling forest influences on snow in the 

mountain watersheds of the PNW. In particular, this research seeks to better understand the 

spatiotemporal variability of forest effects on individual snow processes as well as integrated 

quantities such as snow depth and snow duration. The overarching goal of this body of work is to 

ultimately enhance prediction skill for conceptual, empirical, and process-based models such that 

we can better anticipate the combined effects of forest change and climate change on mountain 

snow storage and downstream water resources. A brief overview of the relevant literature on 

forest-climate-snow interactions is presented in chapter 2, and chapter 3 focuses on methods for 

collecting snow observations within diverse forest types. The operational snow networks are 

designed to capture maximum snow accumulation in locations where there are no trees, and there 

is a relative paucity of snow data from within forests. As such, chapter 4 details the forest, snow, 

and meteorological observations that we collected over four winters in the Cedar River 

Municipal Watershed, in western Washington, and represents an effort to make this rich dataset 

both publicly available and usable by other interested researchers. Our findings in the Cedar 

River Municipal Watershed led to a global synthesis of forest-snow studies [Lundquist et al., 
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2013], and ultimately to a PNW-focused study of where and why snow lasts longer in the forest 

versus the open. To address this question in a regional context, we sought to collect and gather 

forest snow data from across the PNW. This goal resulted in a 4-year citizen science campaign 

that is described in chapter 5, and in collaborative analysis with researchers at Oregon State 

University and the University of Idaho, which is detailed in chapter 6. The PNW forest-snow 

synthesis presented in chapter 6 elucidates the dominant components of forest-snow interactions 

that contribute to the amount and duration of mountain snow storage, but necessarily simplifies 

the landcover comparison into binary categories of forest or open. Lastly, chapter 7 addresses the 

important role of forest structure on snow processes by analyzing spatially distributed snow 

observations from the Cedar River Municipal Watershed in conjunction with lidar-derived forest 

and topographic predictor variables. 
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1.2 Figures 

 
Figure 1.1 Illustration of local, forest, and streamflow effects of differences in snow storage 
amount (Δ Peak Snow) and duration (Δ Disappearance Timing) between forests and open areas. 
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Chapter 2. Background: forest modifications of snow processes 

Forests affect under-canopy snow accumulation via canopy snow interception and storage. 

Since snow that is stored in the forest canopy is subject to higher rates of loss due to sublimation 

[Pomeroy et al., 1998b, 2002; Molotch et al., 2007] and melt [Storck et al., 2002], interception 

typically results in reduced under-canopy snowpack relative to open areas [Storck et al., 2002; 

Winkler et al., 2005; Molotch et al., 2009; Veatch et al., 2009; Moeser et al., 2015; Revuelto et 

al., 2015]. Snow accumulation is also modified by the attenuation of wind by surrounding forest 

cover, which leads to redistribution of snow from exposed to sheltered areas [Winstral and 

Marks, 2002, 2014; Essery and Pomeroy, 2004b; Trujillo et al., 2009], or locally enhanced 

deposition within forests or at forest edges where the trees effectively act as a snow fence 

[Miller, 1964; Tabler, 1975; Hiemstra et al., 2002; Geddes et al., 2005].  

Forest cover modifies ablation processes by enhancing or diminishing radiative inputs and 

diminishing turbulent heat transfer due to reduced wind speeds. The forest canopy reduces the 

magnitude of incoming solar radiation [Link et al., 2004; Sicart et al., 2004; Lawler and Link, 

2011; Musselman et al., 2013, 2015], but can also increase net solar radiation via leaves and 

needles that reduce under canopy snow albedo [Hardy et al., 2000; Pugh and Small, 2012]. 

Forest cover can contribute enhanced longwave radiation to under canopy snowpack from the 

relative warmth of tree temperatures as compared with the atmosphere [Essery et al., 2008; 

Lawler and Link, 2011], and from enhanced warming of tree stems and leaves from penetration 

of solar radiation into the forest [Pomeroy et al., 2009]. Finally, turbulent energy exchanges 

within forest are typically reduced relative to open areas due to reduced wind speeds [Chen et al., 

1993; Marks et al., 1998]. 
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In a global synthesis of observations of snow disappearance timing from forest and open 

study plots, [Lundquist et al., 2013] documented the range of overall forest effects on snow 

retention, and demonstrated that winter climate is a first-order predictor for whether the net 

effect of forest is to delay [Gelfan et al., 2004; Thyer et al., 2004; Burles and Boon, 2011] or 

accelerate [Storck, 2000; Bales et al., 2011; Dickerson-Lange et al., 2015a] snow disappearance 

timing relative to an open area. In particular, in locations with warmer winter climates (greater 

than -1 °C), snow persisted up to two weeks longer in the open after snow disappeared in the 

forest, while in colder winter climates (below -6 °C) snow persisted up to two weeks longer in 

the forest. Snow disappearance timing was approximately synchronous (i.e., ± 3 days) in 

locations where DJF temperature ranged from -6 to -1 °C. A key implication of this winter 

temperature-based framework is that air temperature plays a primary role in influencing the 

processes by which forests modify snow accumulation and ablation. 

Average winter air temperature affects the magnitude of the forest’s impact on each 

individual snow process, contributing to locally modified rates of snow accumulation and 

ablation. Snow interception rates, which reflect the efficiency with which the forest canopy 

captures and stores snow, are typically higher in warmer climates [Shidei et al., 1952; Miller, 

1964; Storck et al., 2002; Martin et al., 2013; Friesen et al., 2015]. Interception efficiencies have 

been observed to range from 30-60% in colder climates [Schmidt, 1991; Schmidt and Gluns, 

1991; Hedstrom and Pomeroy, 1998], and from 50 to 80% in warmer climates [Storck et al., 

2002; Martin et al., 2013]. The differences have been primarily attributed to the higher cohesion 

of snow at warmer temperatures [Shidei et al., 1952; Kobayashi, 1987; Pfister and Schneebeli, 

1999]. Temperature also influences the role of forest in ablation processes via controlling the 

magnitude of incoming longwave radiation and influencing the relative contribution of 
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shortwave radiation to the energy balance. Since longwave radiation is a function of temperature 

to the 4th power (i.e., the Stefan-Boltzman law), trees that are approximately the same 

temperature as the surface air temperature contribute much more downwelling longwave 

radiation to a snowpack that the surrounding open area, where downwelling longwave radiation 

is diminished due to the lower temperature and emissivity of the upper atmosphere. This 

difference in longwave radiation can result in enhanced mid-winter melt (i.e., before peak snow 

accumulation), leading to earlier snow disappearance under the forests in warmer winter climates 

[Lundquist et al., 2013].  

Average winter air temperature indirectly impacts solar radiation at the surface by affecting 

the timing of when a snowpack becomes isothermal through longwave and sensible heat fluxes. 

This timing, in turn, influences the relative importance of forest cover for shading the snowpack. 

At warmer sites, whether low elevation or situated in a warmer climate, ablation may take place 

early in the season while solar zenith angles are relatively low, which diminishes the importance 

of shading effect of forest cover on ablation rates [Sicart et al., 2004; Lundquist et al., 2013; 

Musselman et al., 2015]. Conversely, the role of the forest in reducing incoming solar radiation 

may be enhanced at colder sites that still have snow when solar angles are high [Musselman et 

al., 2008; Molotch et al., 2009; Veatch et al., 2009; Harpold et al., 2015b].  

Thus, both previous synthesis work and process understanding of forest-snow interaction 

provide compelling evidence that winter climate is a key influence on differential snow 

disappearance timing between forests and open areas. However, documented exceptions to this 

framework exist and are driven by local meteorological and canopy conditions. For example, 

[Lundquist et al., 2013] reported that snow disappearance timing in the relatively warm winter 

climate of the Spanish Pyrenees (average winter temperature of 2.2 °C based on gridded climate 
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data, see Table 1 and Figure 2a of [Lundquist et al., 2013]) was observed to be synchronous 

[López-Moreno and Latron, 2008], whereas a temperature-based framework suggests that snow 

would persist longer in the open. However, the locale is subject to very high wind events, which 

were highlighted at a nearby site in the analysis of repeat terrestrial laser scanner snow surveys 

[Revuelto et al., 2015]. Thus, wind redistribution of snow to the forest or wind-driven 

preferential accumulation in forests may contribute to enhanced snow accumulation and longer 

snow persistence within forests despite warm winter temperatures.  

Previous investigations have also shown that both the density and structure of the forest 

stands [Kittredge, 1953; Varhola et al., 2010a; Musselman et al., 2012] and the size and 

distribution of openings [Lawler and Link, 2011; Ellis et al., 2013; Seyednasrollah and Kumar, 

2014; Broxton et al., 2015; Moeser et al., 2015] influence the ways in which the presence of 

forest modifies snow processes. Both canopy density and tree stem (i.e., trunk) density have been 

shown to affect under-canopy snow accumulation and ablation processes [Gary and Troendle, 

1982; Davis et al., 1997; Link et al., 2004; Woods et al., 2006; Jost et al., 2007; Veatch et al., 

2009; Seyednasrollah et al., 2013]. High resolution modeling [Broxton et al., 2015] as well as 

spatially distributed observations of snow [Veatch et al., 2009; Harpold et al., 2015b; Moeser et 

al., 2015] and radiative fluxes [Lawler and Link, 2011; Musselman et al., 2015] have 

demonstrated the dependence of snow accumulation and ablation processes on proximity and 

direction to a canopy edge.  
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3.1 Abstract 

Forests cover almost 40% of the seasonally snow-covered regions in North America. 

However, operational snow networks are located primarily in forest clearings, and optical remote 

sensing cannot see through tree canopies to detect forest snowpack. Due to the complex 

influence of the forest on snowpack duration, ground observations in forests are essential. We 

therefore consider the effectiveness of different strategies to observe snow-covered area under 

forests. At our study location in the Pacific Northwest, we simultaneously deployed fiber-optic 

cable, stand-alone ground temperature sensors, and time-lapse digital cameras in three diverse 

forest treatments: control second-growth forest, thinned forest, and forest gaps (one tree height in 

diameter). We derived fractional snow-covered area and snow duration metrics from the co-

located instruments to assess optimal spatial resolution and sampling configuration, and snow 

duration differences between forest treatments. The fiber-optic cable and the cameras indicated 

that mean snow duration was 8 days longer in the gap plots than in the control plots (p < 0.001). 

We conducted Monte Carlo experiments for observing mean snow duration in a 40 m forest plot, 

and found the 95% confidence interval was ± 5 days for 10 m spacing between instruments and ± 

3 days for 6 m spacing. We further tested the representativeness of sampling one plot per 

treatment group by observing snow duration across replicated forest plots at the same elevation, 

and at a set of forest plots 250 m higher. Relative relationships between snow duration in the 

forest treatments are consistent between replicated plots, elevation, and two winters of data.  
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3.2 Introduction 

The duration of the seasonal snowpack that develops and melts each year in mountain 

watersheds is a key influence on runoff, soil moisture, surface-atmosphere energy fluxes, and 

ground temperature. Observations of snow-covered area in mountain watersheds are assimilated 

into land surface models (e.g.[Rodell and Houser, 2004; Clark et al., 2006]), used to validate 

snow models (e.g.[Parajka et al., 2012]), and incorporated in investigations related to terrestrial 

habitat and phenology (e.g., [Ford et al., 2013]). Both snow-covered area observed commonly 

via remote sensing (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)), and 

point observations of snow water equivalent (SWE) from snow telemetry instrument networks 

(e.g., Natural Resources Conservation Service Snow Telemetry stations (NRCS SNOTEL)) are 

used to assess how the snowpack and snow processes vary across the landscape, but each 

provides incomplete snow information. Snow cover characterizes extent, but not magnitude of 

the amount of water stored on the landscape, and point SWE measurements provide magnitude 

information at a subset of locations. Furthermore, both snow cover and SWE data are typically 

sparse or estimated within forests due to the blocking of the optical sensors (e.g., MODIS) or a 

lack of operational data collection in forests (e.g., SNOTEL stations). 

Deriving or estimating snow magnitude (i.e., SWE) or snow cover from the other of the two 

variables is possible by combining observed snow cover with a distributed modeling approach 

(e.g., [Yatheendradas et al., 2012; Guan et al., 2013]), interpolating point values of snow water 

equivalent (SWE) to gridded products (e.g., [Fassnacht et al., 2003; Rice et al., 2011]), and 

applying snow depletion curves that describe the empirical relationship between snow magnitude 

and snow cover (e.g., [Liston, 2004; Luce and Tarboton, 2004; Clark et al., 2011]). However, 

accurate estimation of both SWE and snow-covered area in forested watersheds is problematic 
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(e.g., [Meromy et al., 2013; Raleigh et al., 2013]). With forests extending over approximately 

40% of the seasonally snow-covered zone in North America [Klein et al., 1998], improvements 

in accurate quantification of both snow magnitude and snow cover within forests is crucial. We 

focus on snow cover, which reflects the net effect of the variability in snow processes across the 

landscape, is a key variable in hydrological, ecological, and atmospheric processes, and has a 

direct relationship to quantifying SWE. 

Snow duration varies in space and time across forested watersheds due to the complex 

influence of the forest on snow accumulation, redistribution, and ablation processes (e.g., 

[Varhola et al., 2010a]). The spatial distribution of snow duration, or snow-covered area, is the 

result of the spatial distribution of snow depth [Luce et al., 1998; Anderton et al., 2004] and 

spatially varying melt and sublimation rates [Lawler and Link, 2011; Musselman et al., 2012], all 

of which are influenced by the presence and characteristics of vegetation. Thus, it is difficult to 

extrapolate snow observations made in clearings to adjacent forests [Rice and Bales, 2010; 

Yatheendradas et al., 2012; Meromy et al., 2013]. 

Remote sensing delivers gridded characterization of snow cover, but trees limit the viewable 

snow on the ground. Snow coverage under the canopy is therefore estimated from the percentage 

of snow cover in open areas (e.g., [Durand et al., 2008]). The assumption that snow-covered area 

within forests is proportional to snow-covered area within the open (i.e., the viewable gap 

fraction) is particularly problematic because the magnitude and direction of forest effects on 

snowpack depends on forest characteristics (e.g., [Winkler et al., 2005; Burles and Boon, 2011]), 

climate (e.g., [Lundquist et al., 2013], and topographic position (e.g., [Strasser et al., 2011; Ellis 

et al., 2013]), so the relationship between snow-covered area in the open versus in the forest, as 

well as between different forest types, should also be expected to vary. For example, Raleigh et 
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al. [2013] found that the fractional snow-covered area across a range of forest densities was 

underestimated by 9 to 37% by optical remote sensing techniques as compared to spatially-

distributed ground-based observations in the Sierra Nevada. Repeat airborne lidar (light detection 

and ranging) has the capability to detect snow cover and depth accurately under forests 

(e.g.,[Deems et al., 2013]), but this technology has only recently been considered for operational 

purposes, and it is not yet clear how the high costs compare to the potential benefits of improved 

snow information. 

Ground-based observational methods are therefore necessary within forests to quantify the 

duration of snow cover, which varies in space and time. Distributed point observations that are 

sufficiently dense and representatively positioned are critical for accurately scaling-up to 

quantify time-varying snow-covered area at the scale of a grid element of interest, such as a 

Landsat pixel, a model grid cell, or a forest stand. Ground observations, however, can be difficult 

and expensive to obtain. Limited resources and rugged conditions motivate using the optimal 

strategy to maximize the likelihood of successfully collecting representative data. Stand-alone 

instruments are ideal because data collection does not depend on winter road access and trained 

personnel to visit the sites at the desired frequency. Many options for ground-based detection of 

areal snow cover exist, including self-recording ground temperature sensors (e.g., [Lundquist and 

Lott, 2008], fiber-optic cable (e.g.,[Tyler et al., 2008]), and time-lapse photography (e.g., 

[Parajka et al., 2012]) but each strategy has a unique set of advantages and disadvantages. Thus, 

in order to guide the collection of snow duration observations in forests, we test observational 

strategies to determine which instruments, sampling configurations, and plot selection are 

optimal in terms of accuracy, representativeness, cost, and ease. 
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Quantification of the spatial variability in snow duration under different forest types has 

applications for predicting the magnitude and timing of streamflow, modeling energy and water 

fluxes, and explaining ecological patterns. Increased heterogeneity in snow duration is associated 

with melting extending to later in the season, providing contributions to spring and summer 

streamflow [Luce et al., 1999; Essery and Pomeroy, 2004a; Lundquist et al., 2005; Clark et al., 

2011]. Areal snow coverage is an important parameterization in land surface models because the 

presence of snow modifies the exchange of energy between the land and atmosphere via the 

increased albedo of snow [Liston, 1995; Slater et al., 2001], and snow-covered area can be used 

to derive snow water equivalent (SWE) [Liston, 1999, 2004; Luce et al., 1999; Faria et al., 2000; 

Essery and Pomeroy, 2004a]. From an ecological standpoint, local snow duration influences the 

length of the growing season and the availability of soil moisture for plant communities [Lutz et 

al., 2010; Ford et al., 2013]. Snow also insulates the ground surface, protecting soils and plants 

from extreme temperatures [Brown and DeGaetano, 2011], and affects soil-atmosphere fluxes of 

nitrous oxide (N2O) and other trace gases [Groffman et al., 2006]. 

Since the forest influences both snow accumulation (reduced snow depth [Hedstrom and 

Pomeroy, 1998; Pomeroy et al., 1998b; Storck et al., 2002; Martin et al., 2013]) and snow 

ablation (reduced or enhanced melting [Essery et al., 2008; Ellis et al., 2011; Lawler and Link, 

2011; Mahat and Tarboton, 2012]), and snow duration is the net result of accumulation and 

ablation, variability in snow duration can be diminished or amplified relative to the variability 

observed in snow depth, depending on whether the presence of forest delays [Molotch et al., 

2009] or enhances [Lundquist et al., 2013] ablation processes. Local weather patterns can also 

diminish or amplify forest influences on snow melt processes. For example, rain-on-snow events 
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can temporarily enhance snowmelt rates in open areas as compared with forests [Marks et al., 

1998].  

Mountain landscapes are covered by a mosaic of forest stands, each with a unique history of 

natural disturbance and management actions [Kane et al., 2010b, 2011]. However, spatially-

distributed snow duration in forests is rarely directly observed, and, in particular, diverse forest 

types are underrepresented. Many useful investigations have measured snow depth and duration 

in forest plots via repeat manual snow course observations (e.g., [Koivusalo and Kokkonen, 

2002]), ultrasonic snow depth sensors (e.g., [Bales et al., 2011]), and time-lapse cameras (e.g., 

[Garvelmann et al., 2013]), or snow duration only using ground temperature measurements (e.g., 

[Raleigh et al., 2013]). Fewer studies have observed snow cover in a range of forest types, 

including deciduous and coniferous stands (e.g., [Pohl et al., 2014]), different coniferous species 

and canopy densities (e.g., [Kittredge, 1953]), stands disturbed by fire (e.g., [Burles and Boon, 

2011]) or insects (e.g., [Varhola et al., 2010b]) regenerating stands following timber harvest 

(e.g., [Winkler et al., 2005]), and stands subject to thinning in various patterns and densities (e.g., 

[Storck et al., 2002]).  

The purpose of this study is to determine optimal strategies for observing spatially 

distributed snow duration in a range of diverse forest treatments. Since forests have complex 

influences on snow, quantifying the evolution of snow-covered area in a representative range of 

forests types is critical to hydrological and ecological investigations, and there is currently no 

feasible substitute for ground observations given common financial constraints. By co-locating 

multiple instruments at three intensive 40 × 40 m study plots previously subjected to different 

silvicultural treatments, and by replicating study plots in a single study area and at a higher 

elevation study area, we consider the following key questions: How does each instrument 
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characterize differences in snow duration between forest treatments? What sampling density at 

the plot-scale is optimal to detect differences in snow duration and avoid redundant sampling? 

How representative is snow duration observed at one plot of snow duration at other plots subject 

to the same forest treatment, both within the same elevation band and in a different elevation 

band?  

In section 2 we introduce the study location, observational strategies, and methods used to 

infer snow presence from observations. We compare snow duration results between methods and 

between replicated experimental plots in section 3, and additionally present results from Monte 

Carlo experiments to further explore the optimal sampling density and configuration. In section 4 

we discuss applications of our findings, and the unique perspective of each method and its 

influence on our results. We conclude by making recommendations for future field campaigns.  
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3.3 Methods 

3.3.1 Study sites 

We deployed stand-alone instrumentation to observe snow duration in diverse forest types 

over two winters in the Cedar River Municipal Watershed (47° 20’ N, 121° 32’ W), located 

approximately 50 km east of Seattle, Washington, USA (Figure 3.1a). The protected municipal 

watershed is located on the western slope of the Cascade Range. Within a 10 km2 area in the 

upper watershed, we collected data at two study sites (Bear Creek and Mount Gardner) at 

different elevations (640 m and 890 m, respectively). Both sites encompass multiple study plots 

approximately 1600 m2 in area, which were previously subjected to two silvicultural 

manipulations: thinning and gap creation. These forest management strategies are used by Seattle 

Public Utilities in dense, second-growth forests with homogeneous canopy to facilitate the 

recovery of ecosystem functions, such as habitat for species that depend on late-successional 

forests [Richards et al., 2012]. 

The Cedar River Watershed has a maritime climate, with cool winter temperatures that 

fluctuate around the freezing point and heavy winter precipitation.  Mean January minimum and 

maximum temperatures are -3.3°C and 3.5°C, respectively, at the lower elevation Bear Creek 

study site, and are -3.6°C and 1.4°C at the higher elevation Mount Gardner study site (based on 

1971-2000 climate normals derived from PRISM [Daly et al., 2008]). Mean annual precipitation 

is 2,490 mm surrounding the lower site and 2,690 mm surrounding the upper site (also from 

PRISM [Daly et al., 2008]); annual snow accumulation varies from 0 to 800 mm of SWE.  

Bear Creek is the most comprehensively sampled study site, and comprises a 400 m × 80 m 

domain (Figure 3.1b) of approximately 70 year old evergreen forest [Sprugel et al., 2009; Lutz et 

al., 2012]. The second-growth forest is dominated by western hemlock (Tsuga heterophylla) and 
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Douglas-fir (Pseudotsuga menziesii), with some western redcedar (Thuja plicata), Pacific silver 

fir (Abies amabilis) and noble fir (Abies procera), and an overall stem density of ∼1500 stems 

ha-1 (see Sprugel et al., [2009] for details). The study site includes fifteen 40 m × 40 m 

experimental plots, including five each of control forest, thinned forest, and gap plots. The five 

control forest plots are covered by untreated second-growth forest with an average of 68.4 m2 of 

basal area (i.e., sum of the cross-sectional stem area at 1.4 m height) per hectare (see Table 3.1 

for lidar-derived canopy cover metrics). In the thinned plots approximately 30% of the basal area 

was removed from the entire plot, with the largest trees retained (basal area of 46.3 m2 ha-1). In 

the gap plots a circular gap with a diameter of 20 m, equal to approximately one tree height, was 

cut into the middle of the plot, resulting in zero canopy cover over about 20% of the plot. Three 

of the Bear Creek study plots, a control plot and one representing each forest treatment, were 

designated as intensive study plots (hereafter, “intensive plots”; shaded on Figure 3.1b). The 

remaining 12 plots at Bear Creek were designated as “additional plots”. 

The Mount Gardner site provides a higher elevation comparison to the Bear Creek site 

(elevation difference of 250 m), and consists of three 40 m × 40 m study plots: a control forest 

plot, a thinned plot, and a gap in which the NRCS Mount Gardner SNOTEL site (#898) is co-

located (hereafter “higher elevation plots”; Figure 3.1c). Despite the modest elevation difference 

between Mount Gardner and Bear Creek, snow coverage at the higher site tends to be more 

temporally and spatially continuous; the higher site was included to characterize snow processes 

in comparable forest treatments above the intermittent snow zone. The second-growth evergreen 

forest at the Mount Gardner site includes Pacific silver fir as the dominant species, with some 

western hemlock, Douglas-fir, and western redcedar. Stand density in the control plot is ~ 2900 

stems ha-1 and 78.7 m2 ha-1 basal area. Basal area in the thinned plot density is 45.8 m2 ha-1. 
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3.3.2  Data Collection & Processing 

Our observational strategy included replicated measurements at variable spatial and 

temporal resolutions at the Bear Creek site to test observational methods and sampling 

configurations (water year (WY) 2011 only), and replicated forest treatments at Bear Creek and 

Mount Gardner to test the representativeness of a set of forest plots (WY 2011 and 2012). At 

each study plot we collected time series of ground temperature data using either a grid of 

individual ground temperature sensors deployed slightly below the ground surface, or a fiber-

optic cable (FOC) deployed on top of the ground surface (Table 3.1). From the ground 

temperature data we inferred daily snow presence/absence based on the diurnal temperature 

cycle. At the three intensive plots at Bear Creek in WY 2011 we simultaneously collected snow 

presence data using both types of ground temperature instruments and time-lapse cameras to 

detect snow presence visually.  

We derived a time series of daily snow presence/absence at each sample point for each 

observational method. Each instrument has a different support (i.e., the area over which the 

observation is integrated [Blöschl, 1999]), discussed below. However, for the purpose of using 

point data to represent snow duration variability at the scale of a forest plot, we generalize all of 

our instruments as collecting point-scale data, as distinguished from the plot-scale. To assess 

spatially distributed snow duration we used the point observations to compute plot-scale metrics: 

1) the evolution of fractional snow-covered area (fSCA) through time, and 2) distributions of 

snow duration metrics, including the number of days of snow cover during a given period of time 

(relative snow-covered days, RSCD, which is intended to be a relative metric between plots 

during the same snow season), and the snow disappearance date (SDD). These metrics reflect the 

net effect of the magnitude of snow accumulation combined with the rate of snow ablation on 
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snow duration at a point, and the distribution of the metrics characterizes the spatial variability of 

snow duration at the plot-scale.  

In addition to the snow presence data discussed in detail below, we collected meteorological, 

canopy, and snow depth observations to support our analyses and provide context. We measured 

air temperature at the intensive gap and control plots, and at a clearing located 2 km from Bear 

Creek at an elevation of 730 m (Clearing Met on Figure 3.1a). Due to discontinuous air 

temperature data collection at the two intensive plots and close agreement between air 

temperature recorded at the study plots and the nearby Clearing Meteorological Station, we used 

air temperature at the Clearing Meteorological Station in our analyses. We acquired airborne 

lidar on 31 August and 1 September 2012 (i.e., leaf on), with an average return density of 7.5/m2 

over the study area, from which we derived 5 m gridded canopy cover. Canopy cover was 

defined as the proportion of returns from canopy (>2 m above the ground model) compared to 

the total number of returns, and relates to the vertical projection of canopy crowns upon the 

ground surface [Jennings et al., 1999]. To characterize plot-scale canopy cover, we present the 

mean and standard deviations of the gridded data over individual study plots in Table 3.1. 

Additionally, prior to the start of the snow season in WY 2011, we measured canopy closure 

with a GRS densiometer (Geographic Resource Solutions, Arcata, California) at 0.5 m intervals 

directly above the FOC transect, discussed below. Canopy closure relates to the sky hemisphere 

that is obscured by vegetation when viewed from a single observation point. We used a nearest 

neighbor algorithm to take the 5 m average of canopy closure for every 1 m along the FOC. 

Lastly, we collected snow depth observations via approximately bi-weekly manual snow course 

transects at each of our intensive plots; mean snow depth was calculated from two perpendicular 

20 m transects consisting of 20 evenly spaced measurements. 
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3.3.2.1 Ground Temperature Observations & Snow Presence 

Snow presence/absence data at point locations were derived from ground temperature data 

collected via two types of instruments: self-recording ground temperature sensors and a fiber-

optic cable (FOC). Ground surface temperature measurements are a reliable way to determine 

when and where snow is present [Lundquist and Lott, 2008; Lyon et al., 2008; Tyler et al., 2008; 

Raleigh et al., 2013]. When the diurnal fluctuation of ground surface temperature is damped (due 

to the insulating properties of snow) relative to nearby air temperature, we infer that the surface 

is snow-covered. When surface temperature and air temperature fluctuate by similar amounts, we 

infer that the ground surface is snow-free. 

We deployed grids of 9-10 individual ground temperature sensors (Maxim DS 1922L 

thermochrons, hereafter “iButtons”) per study plot at a spacing of 10 m for the full duration of 

the snow season in both WY 2011 and 2012 at Bear Creek and at Mount Gardner. The iButtons 

were wrapped in self-sealing plastic and buried 1-2 cm below the ground surface, where they 

recorded hourly near-surface temperature to an accuracy of 0.5 °C; the diameter (i.e., support) of 

an individual instrument is 1.5 cm. All iButtons were validated before and after usage via ice 

bath and ambient air temperature tests. Using the hourly temperature data, we inferred daily 

snow cover using two criteria: a maximum temperature less than 2 °C and a maximum diurnal 

temperature range less than 1.5 °C (see Figure 2 in Raleigh et al. [2013] for illustration). Due to 

instrument failure, however, as few as 5 per plot in WY 2011, and as few as 7 per plot in WY 

2012 (indicated in Figure 3.1b and c), recorded continuous data during the ablation season.  

A 900 m FOC (BRUsens Temperature +85 °C; Brugg Cable International, Bragg, 

Switzerland) was deployed in WY 2011 to collect ground temperature, integrated over every 1 m 

along the cable at 30 minute temporal resolution; data from 800 m of the FOC that transected the 
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experimental plots were retained for analysis. A Sensornet Oryx distributed temperature sensing 

(DTS) system (Sensornet, Elstree, United Kingdom) was installed in an equipment trailer and 

used to generate light pulses and measure the corresponding reflected spectra. The Oryx 

compares the ratio of anti-Stokes photons (higher frequency, shorter wavelength) and Stokes 

photons (lower frequency, longer wavelength) that are absorbed and reemitted as the light pulse 

comes into contact with the cable wall [Tyler et al., 2009]. The ratio of anti-Stokes photons to 

Stokes photons follows a Boltzmann distribution proportional to the ambient temperature 

surrounding the FOC [Selker et al., 2006; Tyler et al., 2008, 2009; Lutz et al., 2012]. Deployment 

specifics are described further in Lutz et al. [2012].  

We measured ground temperature using the FOC during the snowmelt period from 17 

March 2011, when the entire study area was snow-covered, to 25 May 2011, when the entire area 

was snow free (70 days). Since the FOC was deployed on the snow-free ground surface rather 

than underground, we used co-located time-lapse cameras to visually compare snow presence 

with the diurnal temperature range observed at two 10 m stretches of FOC, one in the intensive 

gap plot and one in the intensive control plot. We found that the diurnal temperature range 

fluctuated up to 2.0°C even when completely covered by snow, and was sensitive to sunny days 

(Figure 3.2). Therefore, to account for its position on top of the ground, rather than below the 

ground, we used slightly different criteria to determine snow presence, including an additional 

criterion of maximum daily air temperature recorded at the nearby Clearing Meteorological 

Station to dynamically determine the temperature thresholds. On days when maximum air 

temperature was less than or equal to 12.0 °C, we used a maximum temperature of 2.5 °C and a 

maximum diurnal range of 2.0°C to infer snow presence, whereas when the maximum daily air 
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temperature was greater than 12.0 °C we used 3.0 and 2.5 °C, respectively (see supplemental 

material for more details and sensitivity testing).  

Due to power disruptions caused by snow accumulating on the solar panels and preventing 

battery recharge, cloudy conditions that diminished battery recharge, and insufficient battery 

capacity, FOC data were collected for approximately 2/3 of the sampling times. Power 

disruptions followed a diurnal cycle, and we collected a minimum of one datum per day (in the 

afternoon) at all sampling locations, with the exception of four missing periods longer than one 

day. Since many of these disruptions occurred due to snowfall, which were periods during which 

snow disappearance was unlikely to occur, the missing FOC data had a minimal effect on our 

ability to represent daily snow presence (see supplemental material for more details). For days on 

which the last day of continuous snow cover occurred before a missing day, we assumed that 

snow disappeared on the next day of data collection (Figure 3.2b).  In these cases, the ground 

temperature clearly indicates snow presence on the day before the data gap, and snow absence on 

the day following the data gap. This assumption recognizes that snow was most likely to 

disappear after a missing period if the cause of the data gap was snowfall; however, in some 

cases data were missing due to cloudy conditions. Sensitivity testing of this assumption yielded 

negligible differences in distributions of snow metrics. 

3.3.2.2 Time-Lapse Cameras & Snow Presence 

We deployed time-lapse digital cameras to identify snow presence at the three Bear Creek 

intensive plots, where iButtons and the FOC were also deployed in WY 2011. Each digital 

camera was encased in a weather-resistant box and mounted 2 m high on a tree trunk, with the 

field of view including roughly one fifth of the plot. Multiple photos were taken each day in 

order to capture a range of weather and light conditions. Daily images were chosen for analysis 
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on the basis of consistent light (i.e., daytime, few shadows) and a clear view (i.e., no falling 

snow, minimal condensation on the lens). Photos were cropped during analysis to exclude the 

view of adjacent plots from analysis (Figure 3.3a). 

We used semi-automated image analysis to determine the spatial extent of the ground 

surface (i.e., removing tree trunks that obscured the field of view from analysis), and then 

classified snow presence/absence for each pixel via a threshold brightness approach (Figure 

3.3b). We used a MATLAB tool (graythresh.m) that implements Otsu’s method for determining 

the optimal threshold for converting an image to binary, by choosing a group cutoff to maximize 

the ratio of between group variance to within group variance [Otsu, 1979]. Due to the brightness 

of the forest floor (e.g., some woody debris), snow cover was overestimated in many of the 

images with sparse snow cover; in these cases, we manually selected a threshold that resulted in 

the closest match between the visual image and the binary image. 

Before calculating fSCA or extracting snow duration metrics, we aggregated the photo into 

equal-area boxes, each of which represents approximately 0.08 m2 on the ground (Figure 3.3c). 

Since each pixel covers a different amount of ground area, resulting in a different support for the 

observation depending on position within the photo, we adjusted the number of pixels included 

in each aggregated box according to their respective representative areas. To determine the 

number of pixels needed to achieve equal area boxes, we estimated the distance on the ground 

captured in each pixel as a function of distance from the camera, using known values for the 

height, focal length, and view angle of the camera, and making the simplifying assumption that 

the ground surface was horizontal. We classified snow as present/absent for each box on each 

day from the percentage of snow-covered pixels (>50%), and then treated each box as a point 

location for quantifying snow duration.  
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3.3.2.3 Quantifying Snow Duration  

From the time series of snow presence, we computed the time-evolution of fSCA at the 

spatial scale of a plot, and snow duration metrics at the scale of a point sample. Daily fSCA 

quantifies snow duration through time for each plot, and is calculated for each day based on the 

ratio of data points at a plot that indicate snow presence to the total number of data points at that 

plot. Thus, although thinking of this ratio as an area provides physical relevance, we are strictly 

describing the ratio of snow presence within each configuration of sensors, including a partial 

grid (iButtons), a transect (FOC), and a sub-area (photos). The spatial resolution of the fSCA 

metric therefore varies with the sensor type. 

We additionally compute two snow duration metrics for each sampling location (e.g., one 

iButton) to summarize overall snow duration for the season. We then quantify the differences 

across observational methods and across forest treatments by first comparing metrics from co-

located instruments and then the distributions of values derived from the three instruments 

located at the same plot. The first metric, the relative number of snow-covered days (RSCD), 

represents snow duration at a single point and allows for snow cover to be intermittent. To 

compare snow duration for the period during which the three instrument types at the intensive 

plots were all collecting data (WY 2011), we computed the RSCD as the number of days of snow 

cover during the period of FOC data collection and omitted days of missing FOC data. For both 

years at Mount Gardner and for WY 2012 at Bear Creek, we computed the number of days of 

snow cover since peak snow depth at Bear Creek (determined from the snow courses). The 

choice of starting date for this metric is arbitrary, since it is intended for comparison of different 

plots during the same snow season, rather than for comparison between years.  
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Our second metric, snow disappearance date (SDD), is the last day of any snow presence 

(e.g., snow is present in the morning, but absent by the afternoon) at a single location (e.g., 

Figure 3.2a). The SDD is an ecologically relevant metric for growing season length and ground 

temperature (e.g.,[Ford et al., 2013]), but the intermittent nature of seasonal snow cover in the 

Cedar River watershed has a strong influence on this method of quantifying snow duration. 

Periods of mid-winter melt and late season snowfall contribute to multiple occurrences of snow 

appearance and disappearance, especially at the lower elevation Bear Creek site. This episodic 

accumulation and disappearance of a spring snowfall results in a “final” SDD that is synchronous 

across many locations, and these event-driven SDD metrics can be independent of the net effects 

of the forest on snow duration. For example, at locations where snow disappears early in the 

ablation season, the accumulation and subsequent disappearance of late season snowfall will 

result in the same SDD value at these locations despite each location having variable snow 

disappearance timing prior to final snowfall. Thus, we consider both the number of snow-

covered days (RSCD) as well as final snow disappearance date (SDD) to robustly quantify snow 

duration. 

In order to characterize plot-scale snow duration, the metrics were computed for every 

sample location for the ground temperature sensors. Since the cameras have a much higher 

spatial resolution, we computed snow duration metrics for the equal-area, aggregated sample 

locations (Figure 3.3c). Previous investigations have derived spatially-distributed snow metrics 

from the camera’s field of view by analyzing snow depth [Parajka et al., 2012], snow albedo and 

canopy interception [Garvelmann et al., 2013], or fractional snow-covered area [Ide and Oguma, 

2013] at discrete locations in the photograph. Kerr et al. [2013] assessed the spatial pattern of 

snow disappearance by resampling time-lapse photos and identifying SDD for each aggregated 
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domain. We build on this approach to resample the entire domain of each photo and extract SDD 

and RSCD values, allowing for a direct comparison to the empirical distributions derived from 

the iButtons and the FOC. 
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3.4 Results 

3.4.1 Comparing Observational Strategies: Point Comparison 

In a direct comparison of the time series of snow presence/absence observed by co-located 

instruments, the iButton and cameras agree very closely, whereas the FOC indicates less 

continuous snow duration and earlier snow disappearance. We utilized four locations in which 

the marker for an iButton was clearly visible within the field of view of the camera (Figure 3.4a), 

and compared the time series of snow presence at those locations derived from the iButton and 

the camera. We found that the two methods matched very closely, with SDD and RSCD values 

that were within +/- 1 day. 

 Similarly, we compared the FOC with co-located iButtons at six locations (three of which 

were also visible in time-lapse photos, e.g., Figure 3.4a), assessing the agreement between the 

time series of ground temperature (Figure 3.4b) and of snow presence (Figure 3.4c). In all 

locations the FOC observed a larger diurnal temperature range during times when the iButton 

(and camera for three locations) indicated that snow was present, generally resulting in an early 

bias in snow disappearance and a low bias in the RSCD relative to the other methods. At two 

locations the SDDs derived from the iButton and the FOC were identical, whereas at the other 

four locations the FOC observed an SDD that was 1-5 days earlier than the iButton (e.g., the 

FOC SDD is one day earlier than the iButton SDD in Figure 3.4b and c). The RSCD observed by 

the FOC was biased low relative to the iButtons at four locations, where the iButtons recorded 3-

9 more snow covered days than the FOC for the same observational period. At two locations the 

FOC observed 2-6 more snow covered days. 
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3.4.2 Comparing Observational Strategies: Fractional Snow-covered Area 

The three observational strategies for capturing the evolution of fSCA through time agree 

closely on the overall shape and timing of snow duration at each of the three intensive plots 

(Figure 3.4d-f). All three methods consistently indicate that snow duration is longer at the 

intensive gap plot (Figure 3.4d) relative to the thinned and control plots (Figure 3.4e and f), and 

that snow disappears and then reappears in late April over some portion of the area at all three 

plots. Results from the iButtons are affected by their sparser spatial coverage: the iButtons 

underestimate snow coverage at the gap relative to the FOC and camera, dropping to 40% fSCA 

in late April and early May when the other sensors indicate 50-70% snow coverage. Since the 

iButtons agree closely with the cameras on point-scale snow presence, the difference is 

attributable to the sample density. With only 5 functioning iButtons at the gap, this translates to 2 

out of 5 sensors indicating snow presence, whereas fSCA derived from the other instruments is 

based on more than 40 sample locations. However, fSCA derived from the finer spatial 

resolution FOC and camera also disagree at times; fSCA from the camera is lower than fSCA 

from the FOC during most of April at all three plots.  

Visual comparison of the time series of fSCA with the camera images provides an 

independent check on the consistency of the different methods. During the early portion of the 

ablation season, in the middle two weeks of April, the FOC shows slightly higher fSCA by 

missing localized snow disappearance around trees (i.e., tree wells) at all three intensive plots. 

Note that this tendency toward higher fSCA due to the spatial coverage of the FOC is in the 

opposite direction of the point-scale tendency toward detection of early snow disappearance (i.e., 

underestimation of fSCA), which emphasizes the separate contribution of point-scale and plot-

scale uncertainties. The dense spatial coverage of the camera captures, and possibly 
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overemphasizes, the subtle effect of snow disappearance gradually extending outward from tree 

trunks. Since the warmest tree trunks in the gap are likely located on the north side of the gap 

due to the heating by direct solar radiation, the north-facing camera may underestimate fSCA in 

the gap plot by sampling only that portion of the gap. Thus, the true plot-scale value likely lies in 

between the FOC and the camera. 

3.4.3 Comparing Observational Strategies: Distributions of Snow Duration Metrics 

The overall spatial variability in snow duration at each intensive plot is represented by the 

distributions of snow metrics (Figure 3.5a and b). Snow duration was longer at the gap plot 

relative to the control and thinned plots (also illustrated in the time series of fSCA in Figure 

3.4d-f). However, the values of the metrics, and the quartiles and range of the distributions of 

metrics, extracted from each of the three observational strategies are different even at the same 

plots.  

At the intensive gap plot, the median value for RSCD quantified by the FOC and the camera 

is the same, whereas the median RSCD observed by the iButtons is 10 days shorter (Figure 3.5a).  

As discussed in section 3.4.2, this key difference in the distribution of snow duration metrics at 

the plot-scale is related to sampling density and placement. With a sample size of 5 iButtons at 

the gap, median snow duration (as quantified by RSCD) is highly influenced by one iButton that 

was deployed next to a tree trunk and consequently observed very early snow disappearance.  

The maximum values (i.e., longest snow duration) of the distributions are within 1 day of each 

other for the FOC and iButtons, but the maximum derived from the camera is 4 days longer. The 

three methods conflict most in terms of quantifying the minimum snow duration, with the 
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camera showing the longest tail on the earlier end of the distribution, extending toward low snow 

duration values. 

Data from the intensive thinned plot also illustrate disagreement between methods, 

particularly in median values. The iButtons observed the longest median snow duration, with a 

median RSCD value of 32 days, whereas the camera recorded the shortest, with a value of 22 

days. The median FOC value is 28 days, which falls between the other two methods.  The three 

methods agree most closely at the control plot; the median RSCD values are within one day for 

all instruments. However, similar to the comparison at the gap and thinned plots, the range of 

values recorded by the camera is larger than the ranges observed by the FOC and iButtons. 

Comparisons of final SDD values recorded by the different instruments at the same forest 

treatments yield similar results as the comparisons of RSCD (Figure 3.5b). However, the SDD is 

approximately synchronous at the control and thinned plots due to late season snowfall, where 

snow accumulated on bare ground and then disappeared again the next day. The resulting 

distributions of SDD values at these plots are therefore much tighter. In contrast, the distribution 

of SDD for the gap plot is unaffected by the snowfall event since the snow cover was continuous 

over much of the plot both prior to and after the one-day event. 

Another perspective for comparing these methods at the plot-scale is to consider how each 

instrument captured the difference in median snow duration between the three forest treatments. 

Results from the FOC and cameras indicate that median (mean) snow duration is 8-10 (8) days 

longer in the gap plot as compared with the control, and 14-20 (12-16) days longer in the gap as 

compared to the thinned plot; the iButtons detect a median (mean) difference of only 1 (1) day in 

RSCD between the gap and control plots. All three measurement types indicate that snow 

duration at the control and thinned plots is similar. The mean differences between the gap and 
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non-gap plots that were detected by the FOC and camera are statistically significant when tested 

via an analysis of variance (ANOVA) after sub-sampling to account for spatial dependence (see 

further details on spatial autocorrelation below, and see supplemental materials for details on 

statistical testing). In contrast, the RSCD values observed by the iButtons are statistically 

indistinguishable between all three plots. The comparison between the observational strategies at 

the intensive plots suggests that the methods characterize snow duration differently based on the 

method by which they detect snow presence, and their spatial resolution and placement. 

3.4.4 Representing Forest Types: Replicated Experimental Plots at Bear Creek 

Observational strategies aside, we further consider results from the additional plots at Bear 

Creek (as opposed to the intensive plots only), all of which were transected by the FOC (Figure 

3.1b), to test the representativeness of a single set of intensive plots to characterize snow 

duration in a forest treatment (e.g., both the intensive gap plot and the additional gap plots).  

Within both natural and managed forests, canopy characteristics are spatially heterogeneous even 

in a single forest type. Thus, the representativeness of a given experimental plot is critical to 

extrapolating snow duration from one plot to a forest type present across the landscape.  

Distributions of RSCD observed via the FOC at all plots (i.e., the intensive and additional 

plots subject to the same silvicultural treatment) compared with the intensive plots tend to have a 

larger overall range, but with median and interquartile range values within 3 days or less of each 

other for RSCD (Figure 3.5c). Boxplots of canopy closure distributions for all plots of the same 

treatment and the intensive plots only indicate that intensive plots are representative of their 

treatment groups, with small deviations from the overall distributions of canopy closure (Figure 

3.5d). The difference in mean snow duration for all gap plots and non-gap plots is much greater 
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than within-treatment group variability and is statistically distinguishable (1-way ANOVA on 

plot means: F = 11.3, α= 0.05, p < 0.005; Tukey Honestly Significant Difference (HSD): p < 

0.005 for gap-control and gap-thinned). Mean snow duration in the control and thinned plots is 

not statistically distinguishable by treatment.  

3.4.5 Representing Forest Types: Different Elevations and Years 

At the Bear Creek site, results from replicated experimental plots indicate that sampling 

snow duration at one plot in each treatment group captures the overall relationship between gap 

and non-gap forest treatments. To assess the relationship between snow duration in different 

forest treatments at different elevations, we used snow presence data derived from grids of 

iButtons over two winters at the Bear Creek and Mount Gardner sites. The comparison includes 

the three intensive plots at Bear Creek and the higher elevation gap, thinned, and control plots at 

Mount Gardner. The inability of a small number of iButtons to detect a significant difference in 

plot-averaged snow duration between intensive plots at Bear Creek in WY 2011 highlights the 

challenge in robustly characterizing the distribution of snow duration from a sparse network of 

instruments. However, despite the low number of sensors at Bear Creek in WY 2011, the shape 

of the curve for the evolution of fSCA and the final snow disappearance are closely represented 

(Figure 3.4d-f). Furthermore, more working sensors at Bear Creek during WY 2012 (8-10 per 

plot), and at Mount Gardner during both water years (6-9 per plot) yielded slightly higher sample 

sizes and statistically distinguishable differences in some cases (see Table 3.7). We therefore 

present the comparison of fSCA at our two study sites over two years, with the caveats that these 

instruments grids do not provide full spatial coverage nor are they capturing substantial 

interannual variability in snow accumulation.  
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At both sites, the time series of snow accumulation and the evolution of fSCA were similar 

between the two years of data collection, but there are important differences between the 

different elevation sites (Figure 3.6). Final snow disappearance was 13-15 days later at the gap 

plots than in the non-gap plots at both Bear Creek and Mount Gardner. However, the relative 

timing of the onset of snow disappearance at different forest treatments, and the relative impact 

of mid-winter melt events on snow cover differed substantially. At Bear Creek, snow began to 

disappear from the gap plot before the control plot, but then lasted longer in the gap plot (Figure 

3.6c and d). As a result, both plots reached 50% snow-covered area at approximately the same 

time and the snow that persisted in the gap plot was discontinuous (i.e., < 50% fSCA). In 

contrast, the beginning of ablation at the Mount Gardner gap plot is synchronous with or later 

than the onset of snow disappearance at the Mount Gardner control and thinned plots (Figure 

3.6e and f). Thus, since fSCA depletion starts later at the gap relative to the other plots, snow 

cover at the Mount Gardner gap is still almost continuous when the control and thinned plots 

reach 50% snow-covered area.  

The comparison of fSCA between Bear Creek and Mount Gardner additionally indicates that 

mid-winter melt events are enhanced at the control plots at both elevations, but that the 

difference between the control and the other forest treatments is amplified at lower elevations, 

where snow accumulation is lower overall. For example, during a mid-winter melt event in 

January 2012, the fSCA at the Bear Creek control plot drops from 100 to 0%, while the higher 

elevation Mount Gardner control plot drops only to 50% fSCA (Figure 3.6d and f).  
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3.4.6 Spatial Patterns of Snow Metrics & Autocorrelation 

Snow duration varies spatially across each of the plots, and RSCD data across the FOC 

transects suggests that snow duration is influenced by canopy closure (Figure 3.7). Therefore, the 

spatial sampling density and positioning of the different instruments are likely to influence the 

distribution of snow duration values observed at the plot. Semi-variograms of RSCD from the 1-

m FOC data show increasing variance with distance across the experimental plots, indicating that 

snow duration is spatially autocorrelated within the treatment types (Figure 3.7c). Maximum 

variance (i.e., the sill on the semi-variogram) in snow duration occurs at the control and thinned 

plots at a distance of approximately 4-8 m (i.e., the range on the semi-variogram). Reaching the 

maximum variance suggests that all sample locations separated by at least that much distance are 

subject to equal random variability, whereas sample locations that are closer will reflect the same 

local influences. Variance continuously increases across the gap plots, up to the maximum lag 

distance of 20 m, which is indicative of a plot-scale spatial trend related to the gap size in 

addition to local autocorrelation effects (see supplemental material). 

To determine an optimal minimum spatial sampling resolution we extended the Monte Carlo 

approach of Lundquist and Lott [2008], who estimated the number of samples necessary to 

approximate the true mean and variance of a distribution. The previous investigation drew from a 

lognormal distribution because the distribution of pre-melt SWE has been commonly 

approximated as lognormal (e.g., [Essery and Pomeroy, 2004a]). However, our observations of 

snow duration at these plots are not distributed lognormally, which is illustrated by the 

symmetrical positioning of the 25th and 75th percentiles around the median and is particularly 

evident in the FOC data (Figure 3.5). We therefore built empirical 95% confidence limits for 

distance to the true value of mean RSCD by repeatedly drawing a given number of samples 
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without replacement from the observed distribution (as derived from the FOC) for each treatment 

type. We tested the effect of randomly sampling from the distribution (i.e., randomly taking 4 

samples from a treatment group, regardless of location) versus sampling at a fixed spacing (i.e., 

taking 4 samples spaced 10 m apart to evenly cover the entire 40 m transect across the 

experimental plot).  

We found that 10 sensors per forest treatment are needed to minimize the range of the 95% 

confidence interval to ± 5 days around the mean RSCD in the case of random sampling, but that 

the number of samples can be reduced (3-4 sensors) to achieve the same confidence interval in 

the fixed spacing approach (Figure 3.8). By spacing sample locations evenly, the sampling 

design minimizes the effect of spatial autocorrelation and therefore is more effective than more 

randomly-distributed samples in representing the mean snow duration. For all plots, an even 

sample spacing of 10 m (i.e., 4 samples per 40 m transect) characterizes the true mean to within 

± 5 days, whereas an even spacing of 6 m (i.e., 7 samples) brings the confidence interval to ± 3 

days. 

To extend our analysis to representing variability in all directions rather than along a linear 

transect, we repeated the experiment by sampling from the camera images using a random and a 

fixed-grid spacing approach (not shown).  The results indicated that a grid of 6-8 sample points 

is sufficient to represent the field of view of the camera, but the results were sensitive to the 

treatment type, and to the spatial orientation of the grid spacing. For example, as previously 

discussed, the camera deployed in the intensive gap plot includes in its view a portion of the gap 

and a portion of south-facing trees, which we would expect to heat up due to direct sunlight and 

thus enhance local melting [Pomeroy et al., 2009]. Configuring a 3 × 2 sampling grid (i.e., 6 

samples) to have 3 samples across the maximum gradient (e.g. from gap to surrounding forest, or 
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vertically in the photo in Figure 3.1b) versus across the minimum gradient (e.g., through the 

middle of the gap, not entering the forest) strongly influenced the mean. We therefore 

recommend considering the direction of maximum gradient from canopy data and plot 

orientation (e.g., location, aspect), in addition to the extent of process variability, and orienting 

grids of ground sensors and cameras to sample the maximum range of variability. 
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3.5 Discussion 

3.5.1  Applications 

The two-week difference in final snow disappearance between the gap plot and non-gap 

plots observed in the Cedar River watershed is on par with the greatest differences observed 

worldwide [Lundquist et al., 2013]. Numerous investigations across the world have noted a 

difference of more than one week in final snow disappearance between forested and open sites, 

but the direction of the difference varies, with snow persisting longer under the forest in Alberta, 

Canada [Burles and Boon, 2011], Northwest Russia [Gelfan et al., 2004], Japan [Rutter et al., 

2009], and Finland [Koivusalo and Kokkonen, 2002], and snow persisting over a week longer in 

the open in southwestern Oregon [Storck et al., 2002]. 

The observed differences in how forest cover influences both the magnitude and direction of 

snow duration highlights the necessity of observations to quantify snow cover in both forested 

and open areas. Snow cover observed in open areas (i.e., the viewable gap fraction (VGF)) via 

remote sensing is commonly used to extrapolate snow cover under the forest canopy, but relies 

on the critical assumption that fSCA in the open represents fSCA under the forest canopy 

[Durand et al., 2008; Liu et al., 2008; Xin et al., 2012]. Applying this assumption to the Cedar 

River watershed data presented here, snow-covered area in the forest would be over-estimated 

for at least two weeks based on the difference between final snow disappearance in the gap and 

control plots. Field campaigns to quantify the evolution of fSCA in representative forest plots 

could be used locally to improve methods of extrapolating from the visible snow cover in the 

open, to the hidden snow cover under the forest. 

Improving model representation of snow processes in forested watersheds is another key 

application of quantifying spatially distributed snow duration. Previous investigations have 
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demonstrated shortcomings in accurately modeling snow accumulation and ablation within 

forests (e.g., [Rutter et al., 2009; Du et al., 2013; Martin et al., 2013]). Many recent steps toward 

improving model representation of snow processes in forested watersheds focus on explictly 

characterizing the structure and density of the forest. These efforts include representing forest 

gaps [Ellis et al., 2013], modeling time-varying canopy transmissivity [Musselman et al., 2012, 

2013], and estimating spatially-distributed forest metrics from lidar [Varhola et al., 2012; 

Varhola and Coops, 2013]. Key challenges remain in learning which forest metrics to measure 

and implement in a modeling framework, because these metrics vary widely in resolution, 

methodology, and interpretation [Fiala et al., 2006; Korhonen et al., 2006; Pueschel et al., 

2012]. For example, at these study sites, mean canopy cover values derived from lidar (Table 

3.1) are quite different than mean canopy closure values along the FOC transet (Figure 3.5d), 

which is to be expected based on different view angles. Whereas canopy closure relates well to 

the below canopy light environment, canopy cover is better suited to estimate interception 

through canopies [Jennings et al., 1999]. Further work is needed to determine which forest 

metrics would best support model representation of the observed impacts of forest type on snow 

duration. 

Since the observational strategies presented here were tested in a study location in which 

forest cover plays a key role in snow duration, we assert that the guidelines discussed below are a 

robust starting point for planning a field campaign at any site in which forest is a key influence 

on snow duration. However, in locations in which snow duration variability may be dominated 

by wind, aspect, or other local influences, increased sampling density is advised. 
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3.5.2 Sampling Snow Duration in Forest Plots: Representativeness 

To use distributed ground observations to characterize snow duration in diverse forest 

treatments, sampling density at the plot-scale must be sufficient to represent the plot, and the 

number and locations of experimental plots must be sufficient to represent the forest type present 

across the landscape. Clark et al. [2011] previously found that a resolution of 5 m is necessary to 

resolve snow heterogeneity at the hillslope scale, where the dominant influences are vegetation, 

avalanching, and wind. At our protected, flat study sites, the pattern of spatial autocorrelation 

indicates that the 1 m sampling density of the FOC is subject to spatial redundancy. To maximize 

sampling efficiency, sample locations should be at least 4 m apart (i.e., the lag distance to the 

plateau of variance at the control plot (Figure 3.7c)) and the results from the Monte Carlo 

experiments suggest an optimal sample spacing of 6 m (Figure 3.8). Since the point-scale 

comparison of the iButtons to the camera indicate similar detection of snow presence, and grids 

of iButtons successfully detected a plot-scale difference in other cases, we conclude that the 

failure of the iButtons to detect a significant plot-scale difference between the gap and non-gap 

plots in WY 2011was due to the small population of point samples. Thus, plot-scale differences 

in snow duration (and the evolution of fSCA through the ablation season) could be accurately 

represented by increasing the sampling density of iButtons (or an equivalent sensor).  

Detection of snow presence/absence by the FOC differs from the other two instruments due 

to its deployment position and support. The positioning of the FOC on top of the ground, rather 

than under the ground as in the case of an iButton, results in a larger diurnal temperature range 

even when the cameras indicate that the section of FOC is snow-covered. Additionally, the 

extent of the FOC observation is integrated over 1 m, which also contributes to differing results 

between instruments at the same sample locations.   
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The spatial configuration of each instrument, along with the sampling density, further 

contributes to the representativeness of each method. Each instrument was deployed in a typical 

configuration (e.g., the FOC as a linear transect), although each also has a varying degree of 

flexibility in spatial placement. Whereas the high sampling density of the FOC and camera 

exceed the optimal sample resolution indicated by the Monte Carlo experiments, both 

instruments have the potential to misrepresent plot-scale snow duration depending on the 

location and direction of the FOC transect and the camera. In contrast, grids of iButtons can be 

deployed to cover the entire plot, but spacing of the sensors determines representativeness. 

In concept, the FOC and iButtons provide an evenly-distributed sample of snow duration 

across the entire plot, though in practice, sensor failure among the iButtons could result in spatial 

bias. We were fortunate that the five surviving iButtons in the gap during WY 2011 were evenly 

distributed across the plot, with one sensor in the middle of the gap, two in the gap near the edge, 

and two in the adjacent forest. Even so, high variability of canopy characteristics and ground 

conditions result in spatially heterogeneous snow duration that even a fully-distributed network 

will likely miss. For example, the placement of a single iButton very close to a tree in the 

intensive gap plot resulted in observation of a low snow duration location that was missed by the 

FOC transect (Figure 3.5a and b). In addition, variability is likely a function of direction across 

the plot, particularly in the gap and thinned plots, where gaps and small openings are not evenly 

distributed (Figure 3.7b). A sufficiently dense grid of ground sensors deployed to characterize 

anisotropic variance may therefore be preferred over a linear transect. 

The higher resolution camera data captured observations of localized processes that the 

ground temperature instruments missed, such as gradual melting extending outward around trees, 

but the cameras are subject to bias due to positioning and perspective. Although the spacing of 
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camera samples is small, the extent is limited to the field of view, and an extent that is below the 

scale of process variability can result in a trend in the data [Blöschl, 1999]. For this reason, the 

extent and the direction of the camera are particularly influential where there is a clear spatial 

trend to snow duration. For example, at a gap plot, snow duration observations will differ 

between a camera facing the south side of a gap versus the north side; Golding and Swanson 

[1986] found 40-50% lower SWE on the northern side than the southern side of gaps. Similarly, 

snow duration observations at the thinned plot will depend on whether the camera is facing a 

section with a more open canopy versus a section with more closed canopy.  This limitation 

could be overcome by representative placement, and particularly by deploying multiple cameras 

to sample across the entire plot. Consideration of the azimuth of the camera (i.e., facing North) 

during installation would aid in minimizing bias due to directional effects on snow duration (e.g., 

shading from sunlight) and could contribute to improved image processing (e.g., minimizing 

shadows).  

The perspective of the camera is also unique compared to the ground sensors. The FOC and 

iButtons detect snow presence from below, sensing only temperature variations, which help to 

infer whether snow is on top of the sensor or not. In contrast, the camera detects snow from 

above, and the quantification of snow cover is influenced by the oblique view of the 

heterogeneous ground surface. When snow melts, logs on the ground that were previously 

covered are revealed, which leads to detection of reduced fSCA even when snow may still cover 

the ground around, behind, or under portions of the log (e.g., Figure 3.3, see log across the 

middle of the field of view and the impact on RSCD metrics). 
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3.5.3 Representing Snow Duration in a Forested Watershed: How Many Plots? 

The relationship between snow duration in the gap and non-gap forest treatments was clearly 

defined by one set of plots at Bear Creek and Mount Gardner, but more variable forest types may 

require additional plots. In particular, the lack of a detectable plot-scale treatment response 

between the control and thinned plots indicates that the effect of forest thinning (30% basal area 

removal) on snow duration is either too small to be detected, or there is no difference between 

the control and thinned plots despite the reduced stem density. The high spatial density of 

samples and numerous replicated plots support a process-based explanation: snow duration is 

similar at these particular control and thinned plots.  

For a hypothetical case in which thinning produces a sufficiently sparse canopy to have a 

detectable treatment effect on snow duration, more samples are advisable simply to account for 

increased canopy heterogeneity. Snow duration at the intensive thinned plot shows the largest 

deviation from the distribution of snow duration for the thinned treatment group as a whole, 

including the intensive and additional plots (Figure 3.5c). Whereas the gap plots have a wide 

total range of canopy closure (Figure 3.5d), the thinned plots have high variation in short 

distances, with small gaps and openings that are likely to contribute to variability in snow 

accumulation and ablation (Figure 3.7a and b). Woods et al. [2006] previously found that snow 

accumulation in a lodgepole pine forest in Montana was three times more variable in a plot 

thinned using a shelterwood method (i.e., clusters of trees remain) than a plot that was evenly 

thinned. Thus, although snow duration was indistinguishable between the control and thinned 

plots in this study, results at other thinned plots may vary widely depending on silvicultural 

methods. Further consideration to replicate sampling plots for heterogeneous forest types should 

be extended to other types of diverse canopy structures, including old growth stands and forests 
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subject to multiple episodes of thinning through time, due to proven difficulty in predicting snow 

duration in these forest types (e.g., [Du et al., 2013]).  

Although we observed consistency in the relationship between forest treatments at different 

elevations and over two years, sampling representative forest plots at different elevations is 

advised in some applications. For our study area, the two sites have different snow duration 

characteristics due to climate. The lower elevation Bear Creek site experiences intermittent snow 

cover, where multiple episodes of snow appearance and disappearance occur, whereas 

continuous snow cover is more common at the higher elevation Mount Gardner site.  For 

applications in which the intermittency may be more important, such as quantifying land surface 

albedo or determining light conditions for undergrowth, sampling in both of these snow regimes 

would be critical.  

Sampling across multiple years is also important. We found similar relationships between 

treatment groups through our two years of data collection, but both years had similarly high 

snowfall. Weather conditions will influence the offset in snow duration between plots, and the 

variability within a single plot. Snow duration at the gap plots was the most variable of the three 

treatment groups, with a standard deviation typically 1 to 3 times higher than the nearby control 

plot. During WY 2011, however, the standard deviation of snow duration (the number of snow-

covered days since peak snow depth) was within 2 days at all three higher elevation plots at 

Mount Gardner. The substantial spring snowfall evened out snow duration variability by 

augmenting locations where snowpack was thin. Extended snow duration in these locations that 

otherwise would have disappeared earlier resulted in lower than typical variability in the gap 

plot. 
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3.5.4  Practical Considerations 

The deployment of multiple instruments resulted in field-tested insight into the feasibility of 

these observational strategies in environments with limited access, wet conditions, and varied 

forest cover. The high spatial resolution snow observations from the FOC are invaluable for 

dense, regularly-spaced observations of snow presence. However, utilization of the FOC posed 

some challenges. In particular, deployment was physically difficult and required a strong field 

team to carry a heavy spool of cable over 1 km of uneven, forested terrain (See Figure 8 in [Lutz 

et al., 2012]). Despite their best efforts, the resulting placement of the cable included short 

stretches that were suspended over a hollow or draped over large woody debris, where the FOC 

did not represent ground conditions (see supplemental material). The high expense of purchasing 

the FOC equipment was avoided by using loaned equipment from the Center for Transformative 

Environmental Monitoring Programs (CTEMPS, see acknowledgements). However, utilizing the 

FOC required substantial in-person intervention to achieve semi-continuous operation of the 

instrument; for example, during our 70-day deployment during WY 2011, we made weekly or 

more-frequent trips to our study location after snowfall events to replace batteries and clear snow 

off the solar panel. Despite this effort, approximately 1/3 of the time steps were missing, 

frequently following a diurnal cycle in which data were collected only during daylight hours 

when solar power was available. The investment of time and money to deploy and operate the 

FOC successfully yielded dense ground temperature data over 800 m, covering multiple 

experimental plots. 

In contrast, both iButtons and time-lapse cameras are easy to deploy and relatively 

inexpensive, but they are also subject to problems with data continuity. In most cases, these 

issues could be resolved by learning from experience, with better waterproofing of the sensors 
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and by using improved cameras that last longer on a single set of batteries. In addition, the 

operational independence of the iButtons and cameras poses advantages and disadvantages. One 

key advantage of stand-alone instruments is that if one fails, data from only one sampling 

location is lost. Conversely, the networked nature of a continuous cable is such that a power 

outage or damage to one part of the cable results in data gaps across the entire FOC. An 

additional consideration for using stand-alone instruments in analyses is that particular care must 

be taken to complete accurate geolocation and record-keeping in the field in order to confidently 

compare results between years and to other spatially distributed datasets. Table 3.2 in the 

supplemental material further summarizes the advantages and disadvantages of each method, and 

provides details about instruments and recommendations for future deployments.  
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3.6 Conclusion 

Ground observations of snow coverage in diverse forest types are required for numerous 

applications across disciplines, because operational snow networks are located in clearings, and 

remote sensing techniques have limited accuracy for detecting snow on the ground in forests. 

Furthermore, manual snow courses are typically too infrequent to characterize variability in 

snow duration.  However, limitations on time and money for field campaigns are a ubiquitous 

challenge. By comparing the ability of multiple instruments to detect snow presence, and 

investigating optimal sample spacing to represent heterogeneous snow duration at the scale of a 

grid element, we address practical considerations for optimal field campaigns. 

Our results support the deployment of inexpensive remote instruments such as time-lapse 

cameras and self-recording ground temperature sensors. Based on Monte Carlo experiments 

drawing from the high spatial resolution FOC ground temperature data and camera data, the 

optimal sampling spacing for stand-along ground temperature sensors is 6-10 m in second-

growth forest and partially open forest plots (i.e., with gaps). Experience with the cameras and 

analysis of the Monte Carlo experiments suggest that a minimum of two cameras, facing 

different directions, are needed to address anisotropic variance in snow duration.  

More dense sampling and more replicated plots may be needed in diverse canopy and 

ground conditions, such as those found in old growth stands and 2nd growth forest subject to 

multiple thinning events. Sampling multiple plots at different elevation bands, and particularly 

straddling the intermittent and continuous snow zones, is advised for applications in which the 

intermittency of snow cover is critical.  
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3.8 Tables 

Table 3.1 Study sites and plots therein, with snow duration data collected at each location 
indicated by water year. Mean and standard deviation (SD) of canopy cover over each plot or 
groups of plots were computed from a gridded ratio of the number of airborne lidar returns from 
above 2 m height to the total number of returns for each 5 m pixel. 

Site Elev. 
(m) Plot(s) 

Snow Presence Data 

Fiber Optic 
Cable iButtons Time Lapse 

Camera 

2011 2012 2011 2012 2011 2012 

Bear 
Creek 640 

1 intensive control plot x   x x x   
4 additional control plots x           
1 intensive thinned plot x   x x x   

4 additional thinned plots x         
1 intensive gap plot x   x x x   

4 additional gap plots x           

Mount 
Gardner 890 

1 control plot     x x     
1 thin plot     x x     

1 gap plot (snotel site)     x x     
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3.9 Figures 

 
Figure 3.1 a) Hillshade map of the upper Cedar River Municipal Watershed, with study sites 
indicated, and outline of Washington State (USA) showing location of the watershed. b) Layout 
of Bear Creek site, showing the path of the fiber-optic cable transect across 20 experimental plots 
with the start (0 m) and end (800 m) points of data collection indicated, (the 40 m turn-around on 
the western side of the site was excluded from analysis); and the locations of iButtons (dots) at 
the three intensive plots. Synchronous time-lapse photos of the three intensive plots (shaded on 
the map) are shown for 4 May 2011, near the end of the snowmelt period. c) Layout of Mount 
Gardner site, and photos of the three higher elevation plots taken in the summer.  
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Figure 3.2 a) Thirty-minute ground temperature from 2 May through 15 May 2011 measured at 
24 m on the fiber-optic cable (FOC), which is near the middle of the intensive gap plot. Hourly 
air temperature from the nearby Clearing Meteorological Station is shown for comparison. The 
snow disappearance date (SDD) is indicated by a black circle for 13 May, when the diurnal 
variation in ground temperature indicates that the location became snow free. b) Ground 
temperature for same time period along an 80 m section of the FOC (combining 80 time series of 
data like the one shown in (a)), transecting a gap plot (0-40 m distance) and a control plot (40-80 
m distance). Note that the temperature color bar is truncated to show detail within 5 °C above the 
melting point. The SDD at every 1 m is derived from the temperature record and is indicated by 
a black circle. Vertical gray stripes are periods of missing data. Red line indicates location of the 
ground temperature time series shown in (a). 
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Figure 3.3 a) Time-lapse photo of the intensive thinned plot on 9 April 2011, with analysis area 
indicated by the red box. b) Photo converted to binary snow presence (blue) or absence (yellow). 
c) Relative snow-covered days (RSCD) since 17 March 2011, determined from snow presence in 
aggregated regions of equal ground area. Note that the vertical dimensions of (b) and (c) vary 
due to the pixel aggregation method, and black areas in (b) and (c) were excluded from analysis.  
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Figure 3.4 Comparison of instruments at the point-scale (a-c) and at the plot-scale (d-f). (a) 
Photo of a portion of the intensive control plot on 2 May 2011, with the location of the fiber 
optic cable (FOC) indicated by red lines, and the location of an iButton indicated by a red circle. 
(b) Comparison of one month of ground temperature data observed by the co-located section of 
FOC and iButton shown in (a), and (c) snow presence derived from both instruments (date of 
photo shown in (a) is indicated by a vertical red line in (b) and (c)).  Data from all of the point 
locations measured from a fiber optic cable (FOC) transect, a grid of iButtons, and a single time-
lapse camera in each 40 × 40 m plot are combined to compute plot-scale fractional snow-covered 
area (fSCA) through WY 2011 at the (d) intensive gap plot, (e) intensive thinned plot, and (f) 
intensive control plot at Bear Creek. The number of sample points used in the computation of 
fSCA for each plot and method is shown in each legend. 
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Figure 3.5 a) Boxplots showing distributions of the relative number of snow-covered days 
(RSCD) since 17 March 2011, calculated from (left to right for each forest treatment): the 40 m 
fiber-optic cable (FOC) transect, the iButton grid, and the time-lapse camera in each intensive 
plot. The median of each distribution is indicated by the heavy line; boxes extend to the 25th and 
75th percentiles, whiskers to remaining data points within 1.5x the interquartile range, and dots 
to outliers. b) Distributions of WY 2011 snow disappearance dates (SDD), with groupings as in 
(a). c) Distributions of RSCD, calculated from the 40 m FOC transect that runs through each 
intensive plot (also shown in (a)) and all plots transected by 800 m of FOC, including all five 
plots (1 intensive + 4 additional) in each treatment group. d) Distributions of 5 m canopy closure 
values along the FOC with groupings as in (c).  Numbers above boxes are the number of data 
points represented by each boxplot. 
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Figure 3.6 Mean snow depth at Bear Creek (BC) and Mount Gardner (MG) (a-b) and fractional 
snow-covered area (fSCA), calculated as the fraction of iButtons at each plot that indicate snow 
presence, through time at Bear Creek ((c) and (d)) and Mount Gardner ((e) and (f)) for WY 2011 
and 2012. The number of instruments included in the calculation of fSCA is noted in parenthesis. 
The SDD recorded by the snow pillow at the Mount Gardner SNOTEL (co-located with the 
Mount Gardner gap plot) is shown in (e) and (f) for comparison. See Table 3.4 for exact snow 
disappearance dates (fSCA = 0 when maximum SDD is reached). 
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Figure 3.7 a) Relative number of snow-covered days (RSCD) since 17 March 2011 recorded by 
the FOC transect across the three intensive plots, and percent canopy closure. All transects are 
approximately NW to SE. b) Hemispherical photos from the center of each plot. c) Semi-
variograms of RSCD for all plots transected by the FOC (including the intensive and additional 
plots). Note that lag distance is the distance separating each pair of samples, rather than a linear 
distance along the FOC. 
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Figure 3.8 Results from Monte Carlo experiments for RSCD from WY 2011 snow presence data 
at Bear Creek. a) A given number of samples were randomly drawn without replacement 1000 
times from the distribution of FOC data for each forest treatment (including intensive and 
additional plots), and the results were used to build empirical 95% confidence limits around the 
true mean. Gray shading indicates ± 3 days around the true mean. b) Same approach as in (a), but 
the starting sample location was chosen at random, but then additional samples were drawn at a 
constant spacing from the same plot. 
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3.10 Supporting Information 

3.10.1 Introduction  

The supporting information provides additional details related to data collection and 

analyses of the snow duration data presented in the main text. In particular, we address practical 

considerations of instruments used to detect snow presence, operation of the fiber optic cable 

(FOC) and subsequent data processing, additional snow duration metrics, statistical hypothesis 

testing, and the spatial autocorrelation of the data. 

3.10.2 Deploying Stand-Alone Remote Instruments  

Each instrument has its own unique set of advantages and disadvantages. In addition to the 

comparison of observational effectiveness described in the text, we have found that particular 

instruments are more or less rugged in design. A synopsis of key observations, and details on 

manufacturers and current pricing are presented in Table 3.2. Protection from water seepage into 

the instrument and longevity of the power source are the two critical operational issues for both 

the iButtons and the cameras. Our experience with these instruments in the field has also led to 

the development of sampling protocols, below. Note that the Cedar River watershed is subject to 

a maritime climate, with very wet conditions common during the non-summer months and 

relatively warm winter temperatures; thus, our recommendations are based on experience in this 

environment, and may be less applicable in drier or colder climates.  

3.10.2.1 Self-recording Ground Temperature Sensors 

We have seen numerous iButton failures from battery shorting due to water. Although some 

co-authors of this paper have successfully deployed iButtons wrapped in Glad Press ‘N Seal self-

sealing plastic in somewhat drier climates (e.g., the Sierra Nevada of California, the Front Range 
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of Colorado), we find that the maritime climate is too wet to ensure continuous operation. We 

therefore recommend using temperature sensors for which waterproof shells are a standard 

component (e.g., Onset Hobo Pendants) or purchasing them as an accessory (e.g., iButton 

Capsule). Encapsulating each instrument in a water balloon before deployment is an inexpensive 

idea that we have recently encountered but we do not have the field experience to comment on 

this strategy. We find that battery longevity of the iButtons is generally good, and that storing 

hourly data for 10-11 months is comfortably accommodated provided that care is taken with 

programming (e.g., disable roll-over).  

 In addition to choosing a rugged instrument, we suggest the following deployment 

protocols: 

• Validate iButton accuracy prior to and after deployment by measuring sub-hourly 
temperature in an ice bath (stirring frequently to ensure well-mixed water), and air 
temperature (in a location not subject to temperature gradients or sudden changes in 
temperature). Check both the absolute values observed by each instrument compared 
to the expected values (e.g., 0 °C) and the resolution of the instrument (e.g., ±0.5 °C), 
as well as the relative performance of each instrument compared to the standard 
deviation of the population. Instruments with suspect performance should be noted 
and re-tested, either to determine whether to deploy (prior to a field season) or to flag 
the data as possibly suspect (subsequent to field deployment). 

• Take care with programming to ensure the rollover option (i.e., over-writing data 
when storage becomes full) is disabled, and that the sampling interval is consistent 
with the data storage capacity and length of deployment. For example, an 8-bit iButton 
thermochron measuring to a resolution of 0.5 °C will store approximately 11 months 
of hourly temperature data, whereas an 8-bit iButton hygrochron will store only 5.5 
months of hourly temperature and relative humidity data. We do not recommend 
hygrochrons for detecting snow presence, as snow presence can be inferred from 
temperature alone and because soil saturation conditions can damage the humidity 
sensor. 

• Record the ID number of field number of each instrument and its precise location 
during deployment, and check again during retrieval that the deployment map matches 
the instruments retrieved in the field. Once the iButton has been retrieved there is no 
way to reconstruct where it was deployed. 

• In our limited-access location in the Cedar River Watershed, we used the same 
positioning stakes every year. We suggest pre-determining a consistent spatial 
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deployment (distance and azimuth) relative to georeferenced locations, e.g., 20 cm 
north of the position stake, for multi-year deployments to allow for comparison to high 
resolution spatial data such as lidar.  

• In a public access location where marking the locations may invite curiosity, the 
position of each instruments needs to be recorded (e.g., via GPS) for retrieval and for 
analysis. A metal washer taped to the iButton fob is helpful when using a metal 
detector to aid instrument retrieval. For this method, we recommend first scanning the 
target installation area with a metal detector to ensure that there are no other metallic 
objects in the soil, as these will complicate identification of the sensor’s location upon 
retrieval. 

3.10.2.2 Time-Lapse Cameras 

Battery longevity and memory capacity were the most persistent issues with our time-lapse 

cameras. In WY 2011 and 2012 we deployed a custom combination of an off-the-shelf digital 

camera wired to a time-lapse mechanism, all powered by 3.6V lithium ion batteries and housed 

in a waterproof case. Continuous operation of these cameras depended on regular replacement of 

the batteries and memory cards, and even then, we had limited success with collecting images in 

WY 2012. Since that time, inexpensive time-lapse hunting cameras have become available, 

which are ruggedly packaged. In our limited usage of these new cameras we have found mixed 

success with AA battery longevity (even switching from alkaline to lithium batteries), but are 

optimistic about newer models that accommodate six C-cells and about add-on solar panels that 

are available (e.g., Wingscapes TimelapseCam with Wingscapes PowerPanel). We expect these 

will reduce the odds of complete power failure through the winter, though there may be 

intermittent outages after snow storms. 

We make the following suggestions for deployment of time-lapse cameras: 

• Measure the height, angle relative to vertical and azimuth of the camera. 
• Use an SD card reader and laptop computer in the field to take test photographs in 

order to ensure that the field of view is as expected.  
• Place multiple, clear markers over georeferenced points within the field of view to 

allow for orthorectification of image. 
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3.10.3 Fiber-Optic Cable 

3.10.3.1 FOC Deployment 

Deployment of over 900 m of FOC across uneven terrain was physically challenging (see 

Figure 3.8 and description of deployment in Lutz et al.[2012]) and posed issues with the 

representativeness of some sampling locations (Figure 3.9). During processing (see below), 

locations that were never snow covered during the data collection period (when there were 

multiple snowfall events) were excluded from analysis. These locations were likely suspended 

above the ground, since their temperature record mimics the observed air temperature.  

3.10.3.2 FOC Operation 

Continuous operation of the FOC was affected by power because the instrument sends a 

pulse of light at every sampling interval. As a side note, operation was also affected by a bear 

biting through the cable, but power was the more persistent, if less exciting, issue (Figure 3.10). 

Thus, since we lacked a power source at our remote location, we used a 12 volt battery in 

combination with a solar panel to recharge the battery (Figure 3.11). However, the majority of 

complete days of missing data are attributable to snowfall events, during which time there was 

low light and snow sitting on the solar panel. To minimize the effect of these events on data 

collection, the day after snowfall ended we visited the field site to switch out the battery and 

brush snow off of the panel. Low power resulted in a diurnal cycle to data collection, in which 

samples were only taken during daylight hours (Figure 3.12).  

3.10.3.3 FOC Data Processing 

The temporally discontinuous data contributes to uncertainty in inferring snow presence and 

snow disappearance date. Previous work on inferring snow presence from ground temperature 

has relied upon the damped diurnal temperature range as an indicator of snow cover. Whereas 
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we, too, utilize the diurnal range for inferring snow presence on both the iButtons and the FOC, 

the number and temporal spread of data points collected by the FOC is problematic. During days 

in which data were only collected during daylight hours (e.g., 27 April through 1 May, shown in 

Figure 3.12), we lack enough information to determine the true diurnal temperature range. 

However, we proceeded with inferring daily snow presence using the criteria of a maximum 

temperature threshold and a maximum diurnal range, designating snow absence for each day 

when one or both thresholds were exceeded. We justify this method based on two reasons: the 

timing of successful data collection, and sensitivity testing on the temperature thresholds. First, 

the FOC collected data at times that were likely to be near the daily maximum (i.e., the middle of 

the day during the sunniest conditions). If any of the sub-hourly temperature values exceeded the 

maximum temperature threshold for that day, then snow was inferred to be absent. In the case 

when temperature was below the threshold and there were only a few data points, it is possible 

that the daily maximum temperature was higher than we observed; however, the timing of data 

collection makes this case unlikely. Furthermore, we tested the sensitivity of our derived snow 

presence data to the temperature criteria, but increasing and decreasing both thresholds by 0.5 

and 1 °C. By plotting fSCA with the upper and lower bounds represented by reprocessing the 

temperature data using different criteria, we see how sensitive our snow duration metrics are to 

these processing decisions (Figure 3.13). The bounds on fSCA are fairly small through time 

when reprocessed using ± 0.5 °C for temperature thresholds; the maximum difference is about 

20% during the ablation season, with little to no difference during much of the time series. 

Results of sensitivity testing using ± 1.0 °C led to unreasonable results (e.g., 0% fSCA in mid-

March, when all evidence points to nearly complete snow coverage), leading us to conclude that 

the criteria we used are physically realistic.  



87 

 

 

One additional source of uncertainty in our processing of the FOC data is the designation of 

SDD during periods when full days of data were missing. As stated in the main text, if snow was 

present at a location before a missing day, and the location failed the criteria for daily snow 

presence after the missing period, then the first day after the missing period was designated as 

the SDD. This assumption is based on the likelihood that the missing period was due to snowfall, 

during which time snow disappearance is unlikely. However, we tested the sensitivity of our 

distributions of SDD to this assumption by recalculating the distribution based on the opposite 

assumption: that snow disappeared the first day that the FOC was not working. We find 

differences of 0-1 days in the median SDD for each forest treatment (Figure 3.14).   

3.10.4 Snow Duration Metrics 

We present the quantiles of RSCD and SDD values presented in Figure 4 of the main text in 

Table 3.3 and Table 3.4. 

3.10.4.1 Length of Ablation Season 

For both Bear Creek and Mount Gardner in WY 2011, we further quantified snow duration 

in the different treatment plots by using a snow covered days approach. This comparison used 

data from the iButtons only, all of which continuously logged hourly temperature data through 

the snow season. We designated the last day of peak snow depth (from bi-weekly manual snow 

course measurements) as the starting day for calculating snow covered days in order to quantify 

the length of the ablation season (LAS) for comparison between forest treatments and study sites. 

However, the utility of this metric is in comparing snow duration at different plots from the same 

year.  The length of ablation lacks year-to-year comparability in the intermittent snow zone 
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because accumulation and ablation cannot be neatly divided into only two periods; instead, in 

both years, there were two snow depth peaks of similar magnitude separated by a period of 

ablation.  

The resulting distributions of LAS values are simply another way to look at the data 

presented in Figure 3.6 in the main text, which shows the evolution of fSCA as a function of 

forest treatment at the different sites during the two years. Distributions of LAS illustrate that 

there is more overall difference between the gap and non-gap plots at Mount Gardner than at 

Bear Creek, but that the relative relationship between forest treatments is similar at each site and 

each year (Table S4 and Figure 3.15).  

3.10.4.2 Additional SDD Data 

We present SDD values from grids of iButtons at Bear Creek and Mount Gardner in WY 

2011 and 2012 in Table 3.6 and Figure 3.16. Comparisons of snow duration in the main text are 

based on RSCD values due to the event-driven nature of SDD in the intermittent snow zone; 

however, final SDD is a key metric in numerous applications. 

3.10.5 Statistical Testing  

To assess the magnitude of treatment effect detected by each instrument we used a statistical 

hypothesis testing approach. We compared the RSCD by forest treatment for the FOC, iButtons, 

and Cameras using a 1-way analysis of variance (ANOVA), followed by Tukey’s Honestly 

Significant Difference (HSD) for the tests in which the null hypothesis could be rejected. Since 

only the FOC observed snow presence at multiple plots, we tested all of the data at the sample 

level without accounting for plot-level variance. Statistical testing on the plot means of the FOC 

data is presented in the main text.  
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Prior to testing the sample-level data we accounted for spatial autocorrelation by sub-

sampling the FOC and camera data. In other words, we used only a subset of the data, from 

locations that were physically spread by 4 m or more, to meet the assumption of independent 

samples required by hypothesis testing. The results from each test are presented in Table 3.7.  

3.10.6  Autocorrelation and Spatial Trends  

The analysis of autocorrelation of snow metrics across each plot reveals a spatial trend in the 

gap plots: variance increases up to a lag distance of 20 m (which is the maximum lag distance 

under consideration when considering relationships between pairs of observations across a 40 m 

transect; see Figure 3.7). We hypothesized that the increasing variance was the results of a 

spatial trend related to the size of the gaps. The maximum variance is reached at a distance of 20 

m since the diameters of the gaps are approximately 20 m. At a distance of 20 m, two sample 

locations are likely to be positioned so that one in the forest and one is in the open, whereas the 

likelihood of both samples being either in the open or under the forest increases with diminishing 

distance between the samples. 

To test this hypothesis, we assessed autocorrelation between points located within the same 

treatment group across the entire site, utilizing their position in X-Y space to extend the analysis 

to longer lag distances (Figure 3.17). The semi-variogram for each treatment across the entire 

site confirms the hypothesis of a spatial trend in which variance within gap plots is maximized at 

a distance of 20 m between pairs of points (Figure 3.17a). Also notable is the increase in 

variance at a lag distance of 40 m across all treatments types, which we attribute to the 

differences between plots of the same treatment type. Since the 40 × 40 m forest plot served as 

our unit of analysis, the extension of autocorrelation analysis to the entire site raises some 
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questions about the suitability of a group of randomly placed treatment plots for spatial analysis. 

The peak in variance at 40 m illustrates the discontinuous response of snow duration in adjacent 

treatment plots. 

To separate the spatial relationship in snow duration due to the spatial trend across gap plots 

and the spatial autocorrelation of proximal measurements, we then de-trended the observations 

across each gap plot and assessed autocorrelation of the residuals. Based on the observation that 

snow duration across the gap plots resembled a parabolic form, we fit a 3rd order polynomial 

function to each plot and computed the residuals from the fitted function (Figure 3.18). We then 

computed the semi-variogram on the residuals as a function of position (Figure 3.19, utilizing 

their position in X-Y space, as in Figure 3.17).  The resulting semi-variogram shows a peak and 

subsequent plateau in variance (i.e., the sill of the semi-variogram) at a lag distance of 6 m, 

which is similar to the range found for the thinned plots (Figure 3.6). 

The results of this analysis confirm that a spatial trend is clearly the large-scale control on 

snow duration variability in the gap plots, but that there’s additional spatial auto-correlation that 

affects the local similarly of samples. From a practical standpoint this is useful for quantifying 

snow presence in regularly spaced canopy openings: to quantify the range of variability a sensor 

in the middle of the gap and in the forest are sufficient, whereas to fully characterize the 

variability without redundancy a spacing of approximately 6 m is recommended. 
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3.11 Supporting Tables  

Table 3.2 Summary of advantages and disadvantages for each method for observing snow 
duration. 

Instrument Advantages Disadvantages Example Brands & Costs 

Fiber Optic 
Cable 

• High spatial and 
temporal resolution  

• Single instrument 
deployment for large 
spatial coverage 

• Cumbersome to deploy in forest 

• Placement can diminish 
representativeness (e.g., hanging 
over logs, in depressions) 

• Missing data due to power 
disruptions when solar panel is 
blocked or experiences low light 
conditions 

• BRUsens Temperature +85 
°C cable and Sensornet 
Oryx distributed 
temperature sensing (DTS) 
system 

Ground 
Temperature 
Sensors 

• Easiest to deploy of 
the three methods 

• Inexpensive 

• Higher spatial resolution 
requires more instruments 

• Disturbance can diminish 
representativeness (e.g., being 
dug up by animals) 

• Maxim DS1922L 
thermochrons (iButtons), 
$52a/iButton for 1-24 
iButons, with waterproof 
iButton Capsule, $25/each 
(DS9107) 

• Onset Hobo Pendants, $ 
59b/instrument for 1-9 
instruments (UA-001-64) 

Time Lapse 
Cameras 

• Easy to deploy, 
depending on the 
average winter snow 
depth 

• One deployment 
covers a much larger 
area than a single 
ground temperature 
sensor 

•  Highest spatial 
resolution (but 
distortion must be 
accounted for in some 
situations) 

• Visual assessment of 
conditions allows 
method for ground-
truth of snow cover 
quantification 

• Missing data due to battery or 
camera failure, although 
improvement likely with add-on 
solar panel. Multiple cameras 
recommended for back-up. 

•  Positioning can diminish 
representativeness, requiring 
multiple cameras. 

•  Perspective of cameras seeing 
tree trunks and logs may 
underestimate snow on the 
ground. 

• Environmental conditions affect 
detection of snow presence 
(e.g., precipitation, 
condensation, shadows, and 
branches entering the field of 
view). 

• Wingscapes 
TimelapseCam, $99, with 
Wingscapes PowerPanel, 
$64 

a Cost varies by quantity ordered. Requires reader, e.g., Blue Dot Receptor, USB and Serial Port (DS1402D-DR8), $12 
b Cost varies by quantity ordered. Requires reader and software, e.g., Optic USB Base Station for Pendant (BASE-U-1), $70, and 
HOBOware Pro (BHW-PRO-CD), $99 
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Table 3.3 Quantiles of RSCD metrics, plotted in Figure 3.5 of the main text. 

Bear Creek WY 2011 RSCD since 17-March 
Treatment Method Min Q25 Median Mean Q75 Max 

gap FOC (all) 20 35 44 41 48 54 
thinned FOC (all) 8 27 30 31 36 48 
control FOC (all) 15 28 32 31 35 42 

gap FOC (intensive) 28 35 42 41 48 50 
thinned FOC (intensive) 15 26 28 28 33 36 
control FOC (intensive) 24 31 34 33 35 37 

gap iButtons 13 30 32 34 46 49 
thinned iButtons 21 22 32 28 33 34 
control iButtons 29 30 33 33 35 37 

gap camera 3 28 42 37 48 54 
thinned camera 3 15 22 21 28 36 
control camera 9 22 32 29 35 41 

 

Table 3.4 Quantiles of SDD metrics, plotted in Figure 3.5 of the main text. 

Bear Creek WY 2011 Snow Disappearance Date (SDD) 
Treatment Method Min Q25 Median Mean Q75 Max 

gap FOC (all) 1-May 3-May 12-May 10-May 17-May 23-May 
thinned FOC (all) 29-Apr 1-May 1-May 3-May 3-May 17-May 
control FOC (all) 1-May 1-May 2-May 2-May 3-May 10-May 

gap FOC (intensive) 1-May 3-May 10-May 9-May 17-May 19-May 
thinned FOC (intensive) 1-May 1-May 1-May 1-May 2-May 4-May 
control FOC (intensive) 1-May 1-May 2-May 2-May 3-May 5-May 

gap iButtons 9-Apr 30-Apr 1-May 2-May 14-May 18-May 
thinned iButtons 30-Apr 30-Apr 2-May 1-May 2-May 2-May 
control iButtons 1-May 1-May 2-May 2-May 2-May 5-May 

gap camera 25-Mar 30-Apr 11-May 7-May 17-May 24-May 
thinned camera 21-Mar 21-Apr 3-May 27-Apr 3-May 7-May 
control camera 26-Mar 1-May 2-May 1-May 4-May 10-May 
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Table 3.5 Quantiles of LAS metrics, plotted in Figure 3.15. BC = Bear Creek, MG = Mount Gardner. 

      Length of Ablation Season (LAS) 
Site WY Treatment Min Q25 Median Mean Q75 Max 
BC 2011 gap 36 55 57 59 72 76 
BC 2011 thinned 45 45 58 53 59 60 
BC 2011 control 54 55 59 58 61 63 
BC 2012 gap 14 19 27 26 32 38 
BC 2012 thinned 14 16 20 19 22 23 
BC 2012 control 19 22 22 22 22 23 
MG 2011 gap 89 91 97 95 98 99 
MG 2011 thinned 71 78 82 81 82 92 
MG 2011 control 69 71 72 75 78 84 
MG 2012 gap 22 45 48 46 53 55 
MG 2012 thinned 27 38 39 39 41 46 
MG 2012 control 24 32 39 36 39 42 

 

Table 3.6 Quantiles of SDD metrics, plotted in Figure 3.16. BC = Bear Creek, MG = Mount 
Gardner. 

      Snow Disappearance Date (SDD) 
Site WY Treatment Min Q25 Median Mean Q75 Max 
BC 2011 gap 9-Apr 30-Apr 1-May 2-May 14-May 18-May 
BC 2011 thinned 30-Apr 30-Apr 2-May 1-May 2-May 2-May 
BC 2011 control 1-May 1-May 2-May 2-May 2-May 5-May 
BC 2012 gap 13-Apr 17-Apr 25-Apr 24-Apr 30-Apr 7-May 
BC 2012 thinned 13-Apr 14-Apr 19-Apr 18-Apr 21-Apr 22-Apr 
BC 2012 control 18-Apr 20-Apr 21-Apr 20-Apr 21-Apr 22-Apr 
MG 2011 gap 31-May 2-Jun 7-Jun 5-Jun 9-Jun 10-Jun 
MG 2011 thinned 13-May 20-May 24-May 22-May 24-May 3-Jun 
MG 2011 control 11-May 14-May 15-May 17-May 19-May 26-May 
MG 2012 gap 21-Apr 14-May 17-May 14-May 22-May 24-May 
MG 2012 thinned 6-May 7-May 8-May 8-May 10-May 15-May 
MG 2012 control 6-May 6-May 8-May 7-May 8-May 11-May 
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Table 3.7 Results from sample-level hypothesis testing regarding the forest treatment effect on 
snow duration observed by each instrument. 

        p  p     

Site Year Method F 
ANOVA: 

All 
Treatments 

Tukey HSD: 
Gap vs.  

Non-Gap 
  Notes 

BC 2011 FOC (all) 35.45 < 0.001 < 0.001  Tested all data points, sub-sampled at 4 m 
spacing 

BC 2011 FOC (all) 11.29 < 0.005 < 0.005  Tested plot means, n=5 for each treatment 

BC 2011 FOC 
(intensive) 12.75 < 0.001 

<0.05 (gap 
vs. control), 
<0.001 (gap 
vs. thinned) 

 Tested data points at intensive plot only, 
sub-sampled at 4 m spacing 

BC 2011 camera 10.14 < 0.001 

<0.05 (gap 
vs. control), 
<0.001 (gap 
vs. thinned) 

 

Tested data points, sub-sampled at even 
spacing for 10 total data points (for 
equivalent number of samples at the sub-
sampled FOC) 

BC 2011 iButtons 0.52 0.605 n/a  Tested all data points 
BC 2012 iButtons 2.85 0.079 n/a  Tested all data points 
MG 2011 iButtons 24.45 < 0.001 < 0.001  Tested all data points 
MG 2012 iButtons 3.44 0.051 n/a   Tested all data points 
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3.12  Supporting Figures  

 
Figure 3.9 Photograph of the fiber-optic cable draped over a large stump, resulting in 
temperature observations that represents the stump or the adjacent air space rather than the 
ground temperature. 
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Figure 3.10 Photograph of bear damage to the fiber-optic cable. 
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Figure 3.11 Photograph of the equipment trailer and solar panel used to power and operate the 
FOC. View is toward the southwest, with the Bear Creek intensive gap plot in the forest shown 
in the background. Partway through the deployment, the trailer was moved further away from the 
trees in an attempt to reduce the time during which the solar panel was shaded each day. 
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Figure 3.12 Data continuity of ground temperature observed by the FOC during one week in WY 
2011 at Bear Creek. (a) Temperature along a 40 m stretch of the FOC, with the two sample 
locations shown in (b) and (c) indicated as red lines. (b) Ground temperature through time at one 
sampling location (211 m, located in a thinned plot), and (c) at a second sampling location (191 
m, located in a thinned plot). Note that 30 April is the only day with completely missing data 
(due to >10 cm of snowfall) during this time period. Date ticks indicate 0000 hrs (i.e., midnight) 
of each day. 
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Figure 3.13 Fractional snow covered area (fSCA) through time during WY 2011 at the (a) 
intensive gap plot, (b) intensive thinned plot, and (c) intensive control plot at Bear Creek, as 
measured from a fiber optic cable (FOC) transect, a grid of iButtons, and a single time lapse 
camera. Bars on the FOC data represent the sensitivity of the values to temperature thresholds 
used when deriving snow presence from the time series of ground temperature. Upper and lower 
limits of the bars are determined from re-processing the ground temperature data using ± 0.5 °C 
on the thresholds for maximum temperature and the maximum diurnal temperature range. 
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Figure 3.14 Distributions of snow disappearance date (SDD) at Bear Creek for each forest 
treatment for (a) the intensive plots only, and for (b) all of the experimental plots transected by 
the FOC (5 plots per forest treatment). The two distributions shown for each forest treatment in 
(a) and (b) are based on SDD values derived using the assumption stated in the main text, that 
SDD occurred at the end of a missing period of data, and the opposite assumption of SDD 
occurring at the beginning of a missing period of data. 
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Figure 3.15 Boxplots of the length of ablation season (LAS, the number of snow covered days 
since peak snow depth, note different scale for each year) derived from grids of iButtons at Bear 
Creek and Mount Gardner for (a) WY 2011 and (b) 2012. Number shown above each boxplot is 
the number of working sensors for that plot and year.  

 



102 

 

 
Figure 3.16 Boxplots of SDD derived from grids of iButtons at Bear Creek and Mount Gardner 
for (a) WY 2011 and (b) 2012. Number shown above each boxplot is the number of working 
sensors for that plot and year. 
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Figure 3.17 Semi-variograms of RSCD for all five plots in each forest treatment group. This 
analysis utilizes the position of each point measurement in X-Y space, without regard to its 
membership in a particular plot, thus, extending the analysis over longer lag distances.  
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Figure 3.18 Example of fitting a 3rd order polynomial to RSCD as a function of distance along 
the FOC for one of the gap plots (a), and the residuals from the fitted function (b). 

 
Figure 3.19 Semi-variogram of the residuals of RSCD at all five of the Bear Creek gap plots after 
fitting RSCD as a function of distance across each plot to a 3rd order polynomial function. Note 
that variance peaks (i.e., the sill is reached) at a lag distance of approximately 6 m. 
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Chapter 4. Observations of distributed snow depth and snow duration within diverse forest 
structures in a maritime mountain watershed 

Susan E. Dickerson-Lange1,5, James A. Lutz2, Rolf Gersonde3, Kael A. Martin1, Jenna E. 
Forsyth4, and Jessica D. Lundquist1 
 
1Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA 
2Wildland Resources Department, Utah State University, Logan, Utah, USA 
3Seattle Public Utilities, Seattle, Washington, USA 
4School of Earth Sciences, Stanford University, California, USA 
 
 

Note: This chapter has been published in its current form as an article in Water Resources 

Research [Dickerson-Lange et al., 2015b]; the only differences are in section, figure, and table 

numbering, and in the casing of lidar, which has been updated to reflect current consensus 

[Deering and Stoker, 2014]. It is used here by permission of John Wiley and Sons.  
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4.1 Abstract 

Spatially distributed snow depth and snow duration data were collected over two to four 

snow seasons during water years 2011-2014 in experimental forest plots within the Cedar River 

Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, 

situated on the western slope of the Cascade Range, include un-thinned second-growth 

coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter 

(approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-

growth forest.  

Together, this publicly available dataset includes snow depth and density observations from 

manual snow surveys, distributed snow duration observations from ground temperature sensors 

and time-lapse cameras, meteorological data collected at two open locations and three forested 

locations, and forest canopy data from airborne light detection and ranging (lidar) data and 

hemispherical photographs. These co-located snow, meteorological, and forest data have the 

potential to improve understanding of forest influences on snow processes, and provide a unique 

model-testing dataset for hydrological analyses in a forested, maritime watershed. We present 

empirical snow depletion curves within forests to illustrate an application of these data to 

improve sub-grid representation of snow cover in distributed modeling. 
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4.2 Introduction 

The forests that cover mountain watersheds influence snow accumulation and ablation 

processes as a function of climate (e.g., [Lundquist et al., 2013]), topographic position (e.g., 

[Ellis et al., 2013]), and forest characteristics such as stand composition and density (e.g., 

[Kittredge, 1953]). Snow depth and duration within forested watersheds are therefore difficult to 

accurately model (e.g., [Rutter et al., 2009]) or estimate from sparse point observations of snow 

depth (e.g., [Meromy et al., 2013]) or from remotely-sensed detection of snow cover in open 

areas (e.g., [Raleigh et al., 2013]). As a result, distributed observations are critical for improving 

process understanding and for model development and testing of snow process representation 

within forests. 

We present a dataset of snow depth, snow water equivalent (SWE), and snow duration 

observations, and related meteorological and forest data, collected within a forest-snow regime 

that is both under-sampled and is an extreme case in the range of observed forest influences on 

snow processes. The study site is situated in a maritime climate zone and subject to heavy winter 

precipitation and relatively warm winter temperatures that fluctuate around 0 °C. The observed 

influence of the forest on snow processes in this location is an end point in the published range. 

Both canopy snow interception efficiency (83%, [Martin et al., 2013]), and the difference in 

snow disappearance timing between forested and open locations (14 days later in the open, 

[Lundquist et al., 2013]) are of the largest magnitude observed worldwide. Furthermore, the net 

effect of forest cover on snow duration is in the opposite direction than more well-studied 

continental sites where snow frequently persists longer within forests (e.g., [Gelfan et al., 2004; 

Winkler et al., 2005; Rutter et al., 2009]). 
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Whereas several high quality snow datasets are publicly available (e.g.,[Reba et al., 2011; 

Morin et al., 2012; Landry et al., 2014]), the few that include snow observations within forests 

are situated in colder, continental climates (e.g., the Cold Land Processes Field Experiment 

(CLPX) [Elder and Cline, 2003; Elder et al., 2009]), or are situated at lower latitudes and subject 

to clearer skies and higher solar elevations during the ablation season [e.g., the Sierra and Jemez 

Critical Zone Observatories (CZO; http://criticalzone.org/)]. The notable exception is the HJ 

Andrews Experimental Forest in western Oregon at which variable frequency snow stake 

observations capture differences in peak snow depth between paired open and forested sites 

(http://andrewsforest.oregonstate.edu/data/). The warm, wet winter climate conditions 

represented at the Cedar River Municipal Watershed are also observed in other maritime snow 

zones worldwide (e.g., northern Europe and Japan [Sturm et al., 1995]), and have been 

previously shown to result in high snow accumulation (e.g., the world record of observed snow 

accumulation at Mount Baker, 29 m in water year (WY) 1999 [Mass, 2008]), high canopy 

interception efficiency [Storck et al., 2002; Martin et al., 2013], and mid-winter melt events that 

can be enhanced [Lundquist et al., 2013] or diminished [Marks et al., 1998] due to forest cover.  

Since individual components of the under-forest snowpack mass and energy balance are partially 

controlled by winter climate (e.g., canopy snow interception efficiency is commonly formulated 

as a function of temperature [Hedstrom and Pomeroy, 1998] ), testing of snow model 

representations and process understanding in a warmer climate may become critical for accurate 

hydrologic predictions under projected climate warming [Cristea et al., 2014].  

In addition to the unique climate-forest-snow interactions represented in this dataset, these 

observations were collected within a range of forest types in order to better characterize the 

relations between snow processes and forest structural characteristics. Since much of the 

http://criticalzone.org/)
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seasonally snow-covered landscape is also covered by a mosaic of forest stands that reflect a 

history of timber harvesting, silvicultural activities, and natural disturbance [Kane et al., 2010b, 

2011], improved quantification of snow processes within diverse forest types are needed.  

Spatially distributed snow observations within forests have the potential to support enhanced 

understanding of the relationship between forest characteristics and snow processes [Molotch et 

al., 2009; Musselman et al., 2012; Lundquist et al., 2013], testing and validation of hydrologic 

model representation in forests [Whitaker et al., 2003; Du et al., 2013; Martin et al., 2013], and 

the comparison of empirical results to theoretical snow depletion curves [Liston, 2004; Luce and 

Tarboton, 2004; Clark et al., 2011].  Furthermore, co-located forest observations (i.e., lidar and 

hemispherical photographs) additionally provide testing data for the implementation of forest 

metrics in models [Varhola et al., 2012]. 

We therefore present field observations collected over four winters (WY 2011 – 2014) 

within the upper Cedar River Watershed to provide data for empirical analyses and model testing 

focused on forest influences on snow processes. We describe the study site in section 4.3, 

provide an overview of the data in section 4.4, and briefly discuss empirical snow depletion 

curves as an example application of these data in section 4.5. 
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4.3 Site Description 

Snow and meteorological data were collected in the Cedar River Municipal Watershed (47° 

20’ N, 121° 32’ W), which is a protected watershed located on the western slope of the Cascade 

range, approximately 50 km to the east of Seattle, Washington USA (Figure 4.1). Within a 60 

km2 area in the upper watershed, we collected data at six study sites ranging in elevation from 

620 m to 1165 m. Each site encompassed one or more study plots approximately 1600 m2 in area 

(i.e., 40 m × 40 m), which were designated based on forest type or silvicultural treatment (Table 

4.1; Figure 4.2). Mean January minimum and maximum temperatures are -2.4°C and 4.0°C 

(based on 1981-2010 climate normals derived from PRISM [Daly et al., 2008; PRISM Climate 

Group, 2012]), respectively, at the warmest study site (Bear Creek), and are -3.2°C and 1.7°C at 

the coldest study site (Tinkham Creek). Mean annual precipitation is 2570 mm at Bear Creek and 

2710 mm at Tinkham Creek (again based on 1981-2010 climate normals [Daly et al., 2008; 

PRISM Climate Group, 2012]); annual peak SWE ranged from 300 to 1500 mm at the three co-

located National Resource Conservation Service snow telemetry (NRCS SNOTEL) sites during 

the study period. 

Coniferous forest covers approximately 95% of the upper watershed above Chester Morse 

Reservoir, and includes stands of naturally regenerated second-growth forest, second-growth 

forest subject to silvicultural thinning or gap creation, old-growth forest, and clearings, each of 

which is represented by one or more study plots (Table 4.1; Figure 4.2). The watershed is 

managed both for municipal water supply and ecological functions, and silvicultural thinning and 

gap creation are used to facilitate the recovery of ecosystem functions in second-growth forests 

with dense, homogeneous canopies [Richards et al., 2012].  Two study sites, Bear Creek and 

Mount Gardner, include one or more plots that represent unmanipulated (control) second-growth 
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forest, thinned forest, and a forest plot with a canopy gap cut in the middle. The four other sites, 

including City Cabin, Clearing Meteorology (Met), Tinkham Creek, and Rex River, encompass 

one or two experimental forest plots. Mount Gardner, Tinkham Creek and Rex River are 

additionally co-located with SNOTEL stations (#898, #899 and #911, respectively).  

Two to four snow seasons of snow duration observations were collected at each study plot, with 
two years of manual snow surveys, and up to four years of meteorological data collected at a 
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subset of plots (

 
1. Plot code, refers to the position within the Bear Creek site, with the southwest plot designated as Row 1 Column 1 (R1C01).  2. Forest metrics 
are based on manual measurements of stem density and diameter, and field estimates of basal area and tree height  3. Mean of the 5m gridded 
95th percentile canopy height over the 40 x 40 m plot.  4. The Clearing plot was not treated as a 40 x 40 m plot that included all land cover 
within, but, rather, all data collection took place within the clearing, which renders the plot-scale canopy metrics irrelevant. 

  



113 

 

Table 4.2). Hourly air temperature data from transects of temperature sensors deployed in 

trees were collected over portions of WY 2012 through 2014 to characterize terrain effects on air 

temperature in the rain-snow transition zone. Within the upper basin, there are three SNOTEL 

stations which are adjacent to study plots, a fourth SNOTEL station (Meadow Pass, #897), and 

four USGS stream gages, which together provide public access to hourly meteorological, snow, 

and streamflow data. 

As a critical water and ecological resource to the region, the protected Cedar River 

Municipal Watershed has a long history of use a field research site. Most relevant to the data 

presented herein, [Dickerson-Lange et al., 2015a] previously analyzed snow duration data at 

Bear Creek and Mount Gardner in WY 2011 and 2012, [Martin et al., 2013] completed an 

investigation quantifying canopy snow interception during WY 2012 at Bear Creek, and [Sprugel 

et al., 2009] and [Lutz et al., 2012] provide details on tree location mapping and ecological 

investigations at Bear Creek. The correspondence of ground measurements and remotely sensed 

lidar data in the watershed is given in [Kane et al., 2010a]. A list of citations to decades of 

ecological and hydrological studies is provided with the dataset. 
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4.4 Data Description 

4.4.1 Data Availability and Metadata 

The data described herein are publicly available. Snow and meteorological data are archived 

at the University of Washington (http://hdl.handle.net/1773/33268) and FOC data are 

additionally archived at the Consortium of Universities for the Advancement of Hydrologic 

Science, Inc. (CUAHSI) Water Data Center (https://dx.doi.org/10.4211/his-data-

cedarriverforestsnow). Airborne lidar data are available through Open Topography 

(http://www.opentopography.org/). Location metadata provide attributes of each data collection 

location, including site name, plot type (forest type or treatment), and geolocation. Coordinates 

are based on GPS points collected with handheld instruments or on interpolation between 

georeferenced points. Metadata provided with each dataset additionally include details on the 

instrumentation used to collect data, the manufacture-provided or estimated accuracy, and post-

processing or quality control procedures.  

4.4.2 Meteorological Data 

Meteorological data, including temperature, relative humidity, wind speed, wind direction, 

incoming solar radiation, and photosynthetically active radiation were collected in various 

combinations at all study sites and at two additional transects through the upper watershed, with 

sensors mounted to towers and tripods, and sensors hanging in trees. Precipitation data are 

available from the three co-located SNOTEL stations. 

4.4.2.1 Meteorological Stations 

Five stations recorded hourly meteorological data, each with a variable length of operation. 

Two meteorological stations provide semi-continuous observations, with one located in a 

http://hdl.handle.net/1773/33268
https://dx.doi.org/10.4211/his-data-cedarriverforestsnow
https://dx.doi.org/10.4211/his-data-cedarriverforestsnow
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clearing (Clearing Met) and one located in an old-growth forest (City Cabin) (Figure 4.1). The 

Clearing Met site captured the most continuous data stream, with 3% of time steps missing in 

four years (with the exception of the wind direction sensor, which only functioned correctly for 

20% of time steps). The time series recorded at City Cabin has 4% of time steps missing until 

datalogger malfunction in May 2013. Additional stations at the Bear Creek intensive control and 

gap plots, and Mount Gardner control plot provide shorter records of observations. The intensive 

plots are designated as such because of the high concentration of different observations (see 

Figure 4.2d and [Dickerson-Lange et al., 2015a]). 

 Each of the meteorological stations included a temperature and humidity sensor with a 

radiation shield and an unheated wind speed sensor installed approximately 2.5 m above ground 

level. At Clearing Met and City Cabin, photosynthetically active radiation (PAR) was observed, 

and at Clearing Met incoming solar radiation and wind direction were additionally observed. 

Data were generally logged every 1 minute and aggregated to hourly values (Campbell Scientific 

CR10X). Observations have undergone basic quality control, including checks for missing or 

repeated time steps and reasonable values, with flags indicating changes made. Pyranometers and 

wind sensors were unheated and thus subject to error when covered by snow or ice [Malek, 

2008]. Time-lapse photographs (described below) are archived with the dataset and provide a 

view of the Clearing Met and City Cabin stations that could be used to check for field issues. 

Additional, proximal meteorological forcing data were observed beginning in WY 1989 at 

the Snoqualmie Pass Meteorological Station, located 5 km from the northeastern edge of the 

Cedar River watershed [Wayand et al., 2015a]. The dataset includes standard meteorological 

variables in addition to 4-stream radiation and quantification of turbulent fluxes during WY 2013 

onward. 
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4.4.2.2 Sensors in Trees 

For some plots without a meteorological tower, we deployed one or more self-recording 
temperature sensors (Maxim DS 1922L thermochrons, hereafter “iButtons”), or temperature and 
relative humidity sensors (Maxim DS 1923, hygrochrons, hereafter “hygrochrons”) within trees 
to collect hourly (iButtons) or 2-hourly (hygrochrons) observations (
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1. Plot code, refers to the position within the Bear Creek site, with the southwest plot designated as Row 1 Column 1 (R1C01).  2. Forest metrics 
are based on manual measurements of stem density and diameter, and field estimates of basal area and tree height  3. Mean of the 5m gridded 
95th percentile canopy height over the 40 x 40 m plot.  4. The Clearing plot was not treated as a 40 x 40 m plot that included all land cover 
within, but, rather, all data collection took place within the clearing, which renders the plot-scale canopy metrics irrelevant. 
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Table 4.2). We additionally deployed an east-west and a north-south transect of iButtons and 

hygrochrons covering approximately 13 km at a 1 km spacing to further characterize the spatial 

and temporal variability of temperature and relative humidity across complex terrain (Figure 

4.1). For example, the mean January air temperature ranges from -0.8 to 1.4 in WY 2012 and 

from 1.1 to 4.0 °C in WY 2014 along these transects. 

We used funnels with holes drilled in them as radiation shields and positioned strings over tree 
branches to raise instruments to the desired heights. At three plots, we deployed 2-3 sensors at 
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different heights (

 
1. Plot code, refers to the position within the Bear Creek site, with the southwest plot designated as Row 1 Column 1 (R1C01).  2. Forest metrics 
are based on manual measurements of stem density and diameter, and field estimates of basal area and tree height  3. Mean of the 5m gridded 
95th percentile canopy height over the 40 x 40 m plot.  4. The Clearing plot was not treated as a 40 x 40 m plot that included all land cover 
within, but, rather, all data collection took place within the clearing, which renders the plot-scale canopy metrics irrelevant. 
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Table 4.2). At locations along the north-south transect, sensors were hung in trees on the 

south and north side of the tree at approximately 3 m above ground. Sensors on the east-west 

transect were hung on the north side of trees at 4 m above ground. Whereas the manufacturer-

stated accuracy is ±0.5 °C for the temperature sensors, [Lundquist and Huggett, 2010] showed 

that sensors deployed in dense stands of trees are subject to a positive bias relative to a shielded 

sensor of up to 0.8 and 0.4 °C in daily maximum and mean temperature, respectively. Most 

sensors were subject to substantial shading from adjacent trees.  

4.4.3 Snow Depth & Density 

For the duration of continuous snowpack in WY 2011 and 2012, we performed manual snow 
surveys in select study plots, and from WY 2011 through 2014 we collected hourly snow depth 
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observations at Clearing Met with an acoustic snow depth sensor (

 
1. Plot code, refers to the position within the Bear Creek site, with the southwest plot designated as Row 1 Column 1 (R1C01).  2. Forest metrics 
are based on manual measurements of stem density and diameter, and field estimates of basal area and tree height  3. Mean of the 5m gridded 
95th percentile canopy height over the 40 x 40 m plot.  4. The Clearing plot was not treated as a 40 x 40 m plot that included all land cover 
within, but, rather, all data collection took place within the clearing, which renders the plot-scale canopy metrics irrelevant. 
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Table 4.2). Snow surveys, including snow depth transects and snow courses, were 

performed approximately bi-weekly, with more frequent surveys during the melt season, but the 

number of plots that were surveyed varied by field day. Snow depth was measured manually to 

the nearest 1 cm with an avalanche depth probe at 20 locations across each of two 20-35 m long, 

perpendicular transects of the study plots; at Clearing Met only one transect was completed. At 

five study plots, snow depth and SWE were measured in three locations using a federal snow 

sampler, and snow density was computed. 

4.4.4 Snow Duration 

We observed spatially distributed snow duration via three instruments: grids of individual 

iButtons (see above) that were shallowly buried in the ground, a 900 m linear transect of fiber-

optic cable (FOC; BRUsens Temperature +85 °C; Brugg Cable International, Bragg, 

Switzerland) that was deployed on the ground surface, and time-lapse cameras mounted in trees. 

The FOC was paired with a Sensornet Oryx distributed temperature sensing (DTS) system 

(Sensornet, Elstree, United Kingdom), in order to generate laser light pulses and measure the 

corresponding reflected spectra, from which ambient temperature around the FOC is determined 

through the principle of Raman scattering [Raman and Krishnan, 1928; Selker et al., 2006; Tyler 

et al., 2009; Lutz et al., 2012]. For the iButtons and FOC, we inferred daily snow presence from 

hourly or sub-hourly ground temperature [Lundquist and Lott, 2008; Lyon et al., 2008; Tyler et 

al., 2008; Raleigh et al., 2013]. Rugged, time-lapse hunting cameras were mounted on trees and 

collected one or more images per day. Each image records a view of a portion of the plot, 

including 1-3 depth measurement poles. Thus, snow presence across the image can be quantified 

(e.g.,[Dickerson-Lange et al., 2015a]) in addition to point snow depth.  
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The iButtons and FOC were used to derive a time series of snow presence for the support of 

the sensor (i.e., the area or length over which the instrument integrates an observation [Blöschl, 

1999]), which was subsequently used to calculate snow duration metrics (e.g., snow 

disappearance date) at the point-scale, and to use the distribution of snow duration metrics at the 

plot-scale to characterize snow duration variability. Both the support and the spatial 

configuration of the instruments varied, resulting in differences between characterization of both 

point-scale and plot-scale snow duration. The FOC observed ground temperature integrated over 

every 1 m along the length of the cable and the iButtons were deployed in grids covering each 

plot. Spacing between iButton locations was designed to be either 5 or 10 m, but sensor failures 

resulted in larger spacing in some locations and years. Methods and a comparison of strategies to 

detect snow duration are discussed further in [Dickerson-Lange et al., 2015a]. In total, snow 

duration data include the sub-daily raw ground temperature data from which snow presence was 

derived, the daily time series of snow presence/absence derived from each temperature 

instrument, related snow duration metrics, and daily time-lapse photographs.  

4.4.5 Forest Canopy Characteristics 

The forest canopy at each site is represented by a combination of airborne lidar data, 

manually measured forest metrics, and hemispherical photographs. Lidar data were collected 

over all of the study locations by the National Center for Airborne Laser Mapping (NCALM, see 

acknowledgements). The survey was performed with an Optech Gemini on 31 August and 1 

September 2012 (i.e., leaf on), with an average pulse density of 7.5 m-2 and up to 4 returns per 

pulse. The mean and standard deviation of 5 m gridded canopy cover values derived from lidar 
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(i.e., the ratio of the number of returns from >2 m above the ground model to the total number of 

returns for the pixel), and mean canopy height over the study locations are provided in Table 4.1. 

Prior to the start of the snow season in WY 2011, we measured canopy closure with a 

densiometer (Geographic Resource Solutions, Arcata, California) at 0.5 m intervals directly 

above the fiber-optic cable (FOC) transect, discussed above (see also Figures 5d and 7a of 

[Dickerson-Lange et al., 2015a]). We used a nearest neighbor algorithm to take the 5 m average 

of canopy closure for every 1 m along the FOC. To further characterize the canopy, we took 

hemispherical photographs over select iButton and FOC locations, and under radiation 

instruments. The camera was leveled and oriented with the top toward north and five exposures 

were collected per location.  
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4.5 Example Application: Snow Depletion Curves 

Accurate quantification of the spatial distribution of snow depth, SWE, and snow duration is 

critical for hydrological and ecological investigations. Since direct observations of both 

snowpack magnitude and extent are sparse, the relationship between distributed snow depth and 

snow cover is commonly used to estimate one quantity from the other [Liston, 1999, 2004; Luce 

et al., 1999; Faria et al., 2000; Essery and Pomeroy, 2004a]. In particular, snow depletion curves 

are used to parameterize fractional snow-covered area across a grid element as a function of 

snow depth and snow depth variability at peak values [Luce et al., 1999; Luce and Tarboton, 

2004; Clark et al., 2011].  

Whereas previous work to implement snow depletion curves in models relies on general 

categories of snow variability based on climate and land cover type [Liston, 2004], a potential 

application of this dataset is fitting snow depletion curves to observed data in order to 

parameterize the relationship for different forest treatments or test theoretical representations 

[Pomeroy et al., 1998a]. In particular, the types of forest treatments in which we collected snow 

data span large portions of the Cedar River watershed. Therefore, estimating the relationship 

between snow depth and snow cover based on representative field data could support distributed 

modeling efforts across this landscape of distinct blocks of managed forest stands (e.g.,Figure 

4.2). 

Observations illustrate the differing relationship between snow depth and snow covered 

area, calculated from distributed measurements of snow duration, in three forest treatments 

(Figure 4.3). At the control plots, where the mean coefficient of variation (CV, the ratio of the 

standard deviation to the mean) of snow depth at peak depth is low (0.13), snow cover remains 

relatively continuous during ablation, and rapidly drops off when snow depth drops below 25% 



126 

 

of maximum snow depth. In contrast, at both the thinned and gap plots, the spatial variability of 

snow depth is higher (i.e., indicated by higher mean CV values, 0.16 and 0.22, respectively) and 

snow covered area begins to decrease when snow depth reaches 25-50% of maximum.  
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4.6 Conclusion 

The dataset presented here quantifies snow metrics across experimental forest plots in a 

climate regime that has previously been shown to be an end point in the observed spectrum of 

forest influence on snow processes. These field observations include distributed snow magnitude 

and snow duration, and meteorological data collected over multiple years. In addition to the 

empirical snow depletion curves discussed above, potential applications of these data include 

assessing relations between canopy metrics and snow depth and duration, testing model 

representations of forest-snow processes, and assessing spatial and temporal variability in 

meteorological forcing data in different forest types. Furthermore, since the influence of forest 

on snow processes varies with climate, these data could provide a testing platform for modeling 

the hydrologic effect of a warmer winter climate in forested, mountain watersheds. 
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4.8 Tables 

Table 4.1 Description of the location and forest characteristics at each study site and plot. Note 
that the table is split into two parts. The reader is referred to the published citation for a more 
legible version of this table. 
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1. Plot code, refers to the position within the Bear Creek site, with the southwest plot designated as Row 1 Column 1 (R1C01).  2. Forest metrics 
are based on manual measurements of stem density and diameter, and field estimates of basal area and tree height  3. Mean of the 5m gridded 
95th percentile canopy height over the 40 x 40 m plot.  4. The Clearing plot was not treated as a 40 x 40 m plot that included all land cover 
within, but, rather, all data collection took place within the clearing, which renders the plot-scale canopy metrics irrelevant. 
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Table 4.2 Overview of which observations were collected at each plot over four winters of data 
collection. Note that the table is split into two parts. The reader is referred to the published 
citation for a more legible version of this table. 
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1.  The operation of time lapse cameras varied from continuous to intermittent, therefore the continuity is classified as follows:   A = all, covers 
entire snow season with daily resolution.   M = most, covers entire snow season (including disappearance) with some gaps.   P = partial, camera 
failed before final snow disappearance.  2.  Meterological observations included:  T = air temperature.  RH = relative humidity.  WS = wind 
speed.  WD = wind direction.  SR = incoming solar radiation.  PAR = incoming photosynthetically active radiation.  SD = snow depth. 
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4.9 Figures 

 
Figure 4.1 Map of the upper Cedar River Municipal Watershed (a), with locations of point 
observations indicated, and location of the watershed shown in regional context (b).  Photograph 
of the north-facing side of the Cedar River valley taken near Mount Gardner (MG) shows typical 
combination of forest cover interspersed with talus fields (c). Photographs at Clearing Met (d and 
f) and City Cabin (e and g) show meteorological stations, and hemispherical photographs taken 
from below the respective pyranometers show the overlying canopy. 
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Figure 4.2 Photographs and lidar-derived canopy height (overlaid on canopy surface model) 
showing examples of forest plots.  The Mount Gardner (MG) old-growth plot (a) is shown in 
context of canopy height and location relative to the other MG plots (f).  The Bear Creek (BC) 
intensive gap plot (b) is one of five gap plots at BC (d), where each forest treatment is replicated 
at five experimental plots; rows 1 and 2 (R1 and R2) and column 1 (C01) are indicated for 
distinguishing BC plots by plot code. The Tinkham Creek (TC) thinned plot (c) represents a 
sparse forest canopy at the higher elevation TC site (e). 
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Figure 4.3 Fractional snow covered area as a function of snow depth (relative to the maximum 
snow depth) for each plot, at all of the BC experimental plots in WY 2011. The data are grouped 
by forest treatment, including five control plots (a), five thinned plots (b) and five gap plots (c), 
with the gradations in color indicating the individual plot (i.e., plot code, see Table 4.1 and 
Figure 4.2d). Snow depth is the mean of bi-weekly manual snow depth transects at each plot, and 
fractional snow covered area was derived from ground temperature observed by fiber-optic cable 
(n≈40 at each plot) for the same day that snow depth was measured. 
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Chapter 5. Challenges and successes in engaging citizen scientists to observe snow cover: 
From public engagement to an educational collaboration  
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Note: This chapter has been published in its current form as an article in the Journal of 
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figure, and table numbering. The Journal of Science Communication is an open access journal 

and permission to reproduce is included under a Creative Commons 4.0 by-nc-nd license. 
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5.1 Abstract 

Whereas the evolution of snow cover across forested mountain watersheds is difficult to 

predict or model accurately, the presence or absence of snow cover is easily observable, and 

these observations contribute to improved snow models. We engaged citizen scientists to collect 

observations of the timing of distributed snow disappearance over three snow seasons across the 

Pacific Northwest, USA. The primary goal of the project was to build a more spatially robust 

dataset documenting the influence of forest cover on the timing of snow disappearance, and 

public outreach was a secondary goal. Each year’s effort utilized a different strategy, building on 

the lessons of the previous year. We began by soliciting our professional networks to contribute 

observations via electronic or paper forms, moved to a public outreach effort to collect 

geotagged photographs, and finally settled on close collaboration with an outdoor science school 

that was well-positioned to collect the needed data. Whereas the outreach efforts garnered 

abundant enthusiasm and publicity, the resulting datasets were sparse. In contrast, direct 

collaboration with an outdoor science school that was already sending students to make weekly 

snow observations proved fruitful in both data collection and educational outreach. From a data 

collection standpoint, the shift to an educational collaboration was successful because it 

essentially traded wide spatial coverage combined with sparse temporal coverage for dense 

temporal coverage at a single, but important, location. From a public engagement standpoint, the 

partnership allowed for more intensive participation by more people and enhanced the science 

curriculum at the collaborating school.  
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5.2 Context 

The spatial pattern of snow cover across a forested mountain watershed is easily observed 

by outdoor enthusiasts who readily make note of snow disappearance patterns at a range of 

scales when they avoid skiing into tree well, change a hiking route after encountering a snow 

field, or capture a photograph of patchy snow across a valley. Whereas these patterns are obvious 

to an observer, reproducing such a pattern via a computer model is an ongoing research 

challenge[Essery et al., 2009]. Hydrologic models attempt to incorporate the physical influences 

of forest cover on snow processes, but are limited by approximations of physical processes that 

are based on site-specific field data that may lack transferability to different climates and 

forests[Clark et al., 2015]. In particular, observational data documenting snow cover patterns, 

which represent the spatial variability of the timing of snow disappearance, in forested mountain 

watersheds are needed because the net effect of forest cover on snow can be to delay or 

accelerate the date of snow disappearance relative to open areas[Lundquist et al., 2013]. 

Subsequently, the timing of snow disappearance influences soil moisture availability, streamflow 

amount, and stream temperature during the dry summer season in the mountains of the American 

West[Lundquist et al., 2005; Ford et al., 2013]. By capitalizing on the presence of hikers, skiers, 

snowmobilers and others who are often in “the right place at the right time” to observe snow 

cover patterns, a citizen science approach has the potential to yield critical data to further 

understanding of snow processes and to test watershed models. 

Improved estimates of the effect of forest management actions, such as thinning or clear-

cutting, on the timing of snow disappearance are relevant to land managers who consider 

multiple objectives when making decisions, including forest resilience to insect outbreaks, 

aquatic ecosystem health, fire fuels management, and adaptation to climate change. Previous 
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work has supported the creation of forest gaps as a way to retain snow on the landscape 

[Dickerson-Lange et al., 2015a] and thus shift the timing of peak spring streamflows to later in 

the year (i.e., due to later snowmelt[Ellis et al., 2013]) to the benefit of late season water supply 

and ecosystem health. However, this management strategy is likely to have the intended effect 

only within a specific set of conditions. The magnitude and direction of forest influences on 

snow processes, such as snow accumulation and melt, depends on winter climate[Lundquist et 

al., 2013], topographic position such as north- versus south-facing slopes[Ellis et al., 2013], and 

forest composition and density[Kittredge, 1953].  

Thus, in order to support an ongoing effort to develop management-relevant maps of where 

forest is likely to delay versus accelerate snow disappearance in the Pacific Northwest, USA, 

additional field data documenting the differential timing of snow disappearance between forested 

and non-forested areas are needed. Unfortunately, such observational data are limited in both 

temporal and spatial coverage because field campaigns are expensive, time-consuming, and 

hindered by access issues[Elder and Cline, 2003]. Furthermore, satellite methods to detect snow 

cover are uncertain within forests because the tree canopies obscure the ground surface 

conditions[Raleigh et al., 2013]. Therefore, even after incorporating field data from a network of 

collaborating institutions across the region into this project there are still critical data gaps in 

parts of the region, including eastern Washington, eastern Oregon, and central Idaho, each of 

which has unique climate and forest conditions (Figure 5.1a).  

Since the beautiful mountain landscapes that attract outdoor enthusiasts are home to the 

same locations in which additional forest-snow observations are needed, engaging the people 

who already recreate there in collecting data seems ideal. Furthermore, with a particular interest 

in the snowmelt season (i.e., spring and summer), skiers who are seeking spring snow and hikers 
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who are seeking snow-free routes are well-positioned to collect data at the optimal time to 

capture differential timing of snow disappearance across forested and open areas.  

This model of opportunistic citizen science has previously proven successful in locations 

that people are motivated to visit, such as to see the wildflowers bloom on Mount Rainier each 

summer[Wilson et al., 2015]. Many successful citizen science projects leverage large numbers of 

observations to develop robust spatial or temporal resolution, and to reduce the uncertainty 

associated with amateur data collectors. For example, one million bird observations are 

submitted from around the world each month as part of the bird observation programs 

implemented by the Cornell Lab of Ornithology[Bonney et al., 2009]. The utilization of citizens 

to collect large numbers of data points is typically associated with minimal training, and this 

strategy has been described as utilizing citizens as sensors[Haklay, 2013] or as crowdsourcing in 

a framework of the possible levels of engagement of citizen scientists (hereafter “level 1”).  

In the same model[Haklay, 2013], the next level of participation (hereafter, “level 2”) 

involves more training in order to develop interpretation skills, relying on participants to 

complete some basic interpretation while collecting data. The data collected by citizens who are 

participating in a level 2 project are likely to be higher quality, but since data collection involves 

more training and therefore is more time and energy-intensive, a level 2 project is also likely to 

engage fewer people. Many successful school-based citizen science programs occur at this level, 

in which teachers provide instruction, a framework for participation, and assistance in making 

decisions about when and where to collect data[Rock and Lauten, 1996; Eick et al., 2008]. Such 

programs have been shown to generate high quality data[Lawless and Rock, 1998; Galloway et 

al., 2006; Peckenham and Peckenham, 2014] in addition to improving educational 

outcomes[Bingaman and Eitel, 2010; Schon et al., 2014]. 
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Although citizen science arguably has its roots in ecology in general[Silvertown, 2009], and 

surveys in particular, many previous efforts have successfully incorporated citizen science in 

hydrology[Buytaert et al., 2014]. These investigations have focused primarily on water 

quality[Peckenham and Peckenham, 2014] or water quantity in the form of 

precipitation[CoCoRaHS, 2015] or streamflow[Lowry and Fienen, 2013]. Previous snow 

hydrology investigations to formally utilize citizen scientists are limited, as far as we are aware, 

to a snow study that involves tweeting point snow depth values (http://scistarter.com/project/205-

SnowTweets?tab=project, accessed 14 May 2015) but citizen observations of snow presence and 

conditions are certainly included in backcountry snow reports utilized by the recreation 

community (e.g., http://www.wta.org/go-hiking/trip-reports, accessed 14 May 2015) and on 

social media.  

In addition to providing a method to collect spatially distributed data, citizen science has 

been shown to have key benefits for public engagement. Projects have yielded positive social 

benefits by enhancing community collaboration[Borden et al., 2007], increasing participation in 

locally-relevant environmental issues[Cooper et al., 2007], and guiding development of land 

management strategies[Rosenberg et al., 2003]. Bonney et al.[Bonney et al., 2014] further 

predict that increased implementation of citizen science holds potential for strengthening the 

relationship between scientific efforts and society. Since the ongoing forest-snow investigation 

described here has potential management applications, communication with land managers and 

public stakeholders is a key project goal, and a citizen science approach provides an avenue to 

engage the public in addition to collecting data. Thus, in March 2012, we moved forward with 

enthusiasm for the idea but few analogous models for utilizing citizen science to observe snow 

cover and develop a more spatially robust dataset for the Pacific Northwest.   

http://scistarter.com/project/205-SnowTweets?tab=project
http://scistarter.com/project/205-SnowTweets?tab=project
http://www.wta.org/go-hiking/trip-reports
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5.3 Objective & Methods 

Motivated by the clear congruence between our data needs, public outreach goals, and the 

already-occurring citizen forays into the mountains, we began a citizen science project three 

years ago to document the timing of snow disappearance across the mountains of the Pacific 

Northwest. The project was initiated by a team of two university researchers at the University of 

Washington, and evolved into collaboration between three universities and a K-12 outdoor 

science school. We detail our citizen science effort from the perspective of both researchers and 

educators, using the writing voice of the research institutions but including co-authors from both 

sides of the educational collaboration.  

The project evolved substantially each year as we incorporated lessons from the successes 

and failures of the previous year. This citizen science effort was motivated first and foremost by 

a critical need for more distributed data across the greater Pacific Northwest region, rather than 

as a study of citizen science itself. Thus, evaluation efforts focused on quantifying the usable 

data received each year in an effort to understand what was working for meeting our scientific 

goals. To consider the success of the project in terms of public outreach, we informally assessed 

the experience of participants through written comments included in data submission and follow-

up email communications and made adjustments accordingly.  

Whereas the first two years were effective in increasing engagement with public 

stakeholders, the participation model that we utilized did not ultimately match our primary data 

needs. We therefore re-assessed the requirements for usable data and shifted our focus from 

public engagement to collaboration with an outdoor science school on the third year, effectively 

trading spatial coverage for usable temporal resolution. This tradeoff between breadth and depth 

has been previous identified as a potential difficulty facing researchers who delve into citizen 
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science[Riesch et al., 2013]. However, we found that the decision to change our focus from 

widespread participation to a single site was a turning point in the overall success of the project 

and a model from which the project could again expand in spatial scope. We therefore present 

the relevant experiences and lessons from three years of citizen science, with a particular 

emphasis on the evolution of the project from public outreach to educational collaboration.  
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5.4 Results 

5.4.1 Year One and Two: The Evolution of a Citizen Science Effort 

We originally envisioned the citizen science project as a crowdsourcing effort[Howe, 2006; 

Haklay, 2013] in which numerous participants, who were in the mountains during the spring and 

summer for other purposes (e.g. recreation), would document observations of the differential 

timing in snow disappearance between forested and open areas. In essence, we needed 

comparisons of snow presence between forested areas and meadows or clearings that would 

allow us to determine 1) where snow lasted longer in the forest versus an equivalent open area 

(or vice versa), and 2) how long the snow persisted in the forest after disappearing from the 

clearing (or vice versa).  

In year one, we contacted our personal networks to solicit “beta testing” from people we 

knew who were likely to be in the mountains during the melt season, including researchers, a 

national park scientist, and mountaineers. We developed a questionnaire to record time and 

location details, relative snow presence, and opportunities for additional observations and 

feedback. We provided basic instructions in email communications and two formats for 

responding: an on-line Google form and a paper form. We received 12 electronic responses and 2 

paper responses, from which we extracted five data points for the investigation.   

Two key issues arose from the data. First, the location and physical data associated with 

each response were not always adequate; for example, a trail rather than a precise location would 

be given because the hiker either did not have a Global Positioning System (GPS) or had a GPS 

but did not have a convenient way to record their position. Second, the responses did not always 

contain the direct comparison between forest and open areas that we were interested in; for 

example, one response described the snow conditions above tree line. We additionally observed 
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that we lacked both spatial and temporal resolution in the year one dataset, but we attributed our 

sparse dataset to the “soft” roll-out in year one.  

Feedback from the participants communicated a general sense of enthusiasm for the scope of 

the project, but also reflected some of the same data issues. Participants commented that they 

thought they understood what observations to collect in the field, but then were unsure when it 

came time to fill out the form upon their return. The most complete observations came from a 

participant who routinely makes multi-day treks in the mountains and specifically requested that 

we provide a paper form that could be used to make notes while in the field. Our assessment 

from our year one experience was that we needed to streamline the data collection and 

submission process, to provide more explicit instructions, and to recruit more participants. 

Thus, we began year two with a change in focus from recording written observations to 

collecting geotagged photographs, improved educational materials, and an effort to recruit many 

more participants to generate more data in both time and space. The advantage of geotagged 

photographs is that the metadata embedded in the photograph includes the key information, 

including date and time, latitude and longitude, and elevation, and they are easy to take with a 

smartphone or GPS-enabled camera[Wilson et al., 2015]. We updated our website and written 

materials with education related to the project and re-tooled directions to describe 1) how to take 

a geotagged photograph, 2) what to take the photos of, and 3) how to submit the photos. We 

created a 2-minute YouTube video describing the project and how to participate 

(https://www.youtube.com/watch?v=JEmIV9vOXZ4). With the infrastructure in place, we 

reached out to the community via calls and emails to hiking organizations, emails to university 

and research groups, blog posts, presentations at conferences and professional meetings, and the 

personal networks of the research team. We embedded a Google Earth map into the project 
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website to display observations as they were submitted next to our model predictions for the 

region. Judging from the abundant enthusiasm that we encountered, we prepared ourselves for 

numerous submissions and declared the public outreach goal of the project to be a success.  

However, from the standpoint of usable data, the 28 photo submissions from 9 individuals 

that we received were less than we had hoped for, and the usability of the observations 

documented in photographs was highly variable. Participants in year two included hikers, 

mountaineers, and scientists doing other field research, and they provided positive feedback that 

they enjoyed contributing to the investigation. However, the range in the field of view of the 

photographs created challenges for data analysis, with submissions that ranged from landscape 

shots to photographs documenting local snowmelt features such as tree wells. With landscape 

shots, the geolocation of the photograph (i.e., the coordinates of the camera position) does not 

match the geolocation of the observation, nor indicate the topographic position of the subject 

(i.e., a north-facing versus south-facing slope). With close-up shots, the spatial context of the 

observations is not apparent, so drawing a conclusion about snow presence within a forest 

becomes difficult when looking at only a few trees. 

5.4.2 Reflection: More data points or more engagement? 

At the end of year two we substantially reconsidered our strategy and ultimately redesigned 

the project. To date, the observations that we had received were too sparse in both time and 

space to provide a meaningful way to bracket the difference in the timing of snow disappearance 

between the forest and the open. At best, photographs from a single location could tell us 

whether snow persisted longer in the forest or in the open, but could not indicate the absolute 

difference in timing, which is critical to our investigation. We realized that even without issues 



147 

 

of data quality, we would need many, many more observations for the approach of collecting 

geotagged photographs to be successful. 

Upon reflection, we discovered a mismatch between the level of engagement and the 

numbers of participants that we needed for the dataset that we originally envisioned. We realized 

that our vision of participation fell between two common levels of citizen science engagement 

[Haklay, 2013]. We wanted participants to function at level 2 and make an informed decision 

about where to observe a fair comparison between snowpack in the forest and open and about the 

spatial scale at which to document that comparison. At the same time, we fundamentally needed 

a lot of data to bracket differential snowmelt timing over such a large region, which calls for a 

level 1 approach. Since the design of our project fell in between the two levels, the program did 

not successfully engage participants at either level. On one hand, our training resources and 

participation guidelines were not fully utilized by those who did participate which resulted in 

unusable data. Simultaneously, the extensive directions probably acted as a barrier to achieve 

widespread participation by making the process too complicated.  

Additionally, a level 1 approach is perhaps most feasible when the subject of data collection 

is inherently interesting or photogenic, as in the case of birds or wildflowers. Snowy landscapes 

are frequently photographed, but close range views of melting snow have less general appeal. 

We briefly considered mining public repositories of photographs for the observations and 

locations of interest as previously tested for monitoring wildflower phenology on Mount 

Rainier[Wilson et al., 2015]. However, we ruled this option out because the spatial scale of 

landscape photographs would limit our data quality, and the approach lacks a meaningful public 

outreach component.  We were left with a choice to make: focus on expanding participation in a 

simplified public project or focus in on training volunteers who would commit to making repeat 
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observations in specific locations. Around the time that we were considering how to move 

forward, we became aware of the University of Idaho College of Natural Resources’ McCall 

Outdoor Science School (MOSS), and quickly realized that a direct collaboration with an 

education program located in a region where we needed data could be a solution to meet both our 

data needs and our goal to involve public stakeholders. Thus, we shifted our focus from a public 

outreach to a collaboration, in which we would trade spatial coverage for informed participation 

and high temporal resolution via repeat observations. 

5.4.3 Year Three: Collaboration with MOSS 

From our first conversation it became apparent that a partnership between the research 

institutions and the MOSS would be mutually beneficial. MOSS is a residential outdoor science 

school serving more than 2500 students each year in week-long inquiry-based, place-based 

experiential science programs. Each week throughout the school year, groups of approximately 

60-80 5th – 8th grade students from a variety of locations throughout Idaho, Oregon, and 

Washington travel to MOSS to spend a week attending school in the outdoors. Their instructors 

are graduate students enrolled in a graduate residency in environmental education through the 

University of Idaho’s College of Natural Resources.  The winter curriculum at MOSS focuses on 

snowpack dynamics, hydrology, winter ecology and energy balances, so the citizen science 

project was a natural complement to the existing curriculum. MOSS instructors lead field groups 

of 8-12 students into snow-covered, forested field sites on a weekly basis to collect snow data, 

resulting in groups who are well-positioned to constrain the timing of snow disappearance to a 

weekly temporal resolution.  
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The structured, educational data collection program implemented at MOSS is atypical from 

the standpoint of a traditional citizen science project in which volunteer citizens participate on an 

ad hoc basis. However, the program also very clearly fits the model for best practices related to 

involving citizens in scientific research that was developed by the Cornell Lab of Ornithology, 

which has famously led large-scale successful citizen science projects such as Project 

Feederwatch and the Great Backyard Bird Count[Bonney et al., 2009]. The Cornell citizen 

science framework served as a guide for developing the collaboration and provides guidance for 

reflection on successes and possible improvements. For our experience, the first steps in the 

framework were already complete by the time we initiated the collaboration, including choosing 

a scientific question and forming the collaborative team.  

The key step that was essential to complete together was to adjust and test protocols and 

materials for implementation in the MOSS program. This step was initiated via conversations 

about the nature of the data collection needs and the MOSS program, with both the research team 

and the MOSS team trying to understand how one would most easily and beneficially fit into the 

other.  Since the MOSS program already includes instructor-led field excursions and field data 

recording on tablet computers, we decided to 1) standardize the locations which each instructor 

would visit each week so as to collect repeat observations in the same place, 2) design protocols 

to include taking photographs to record observations (Figure 5.1b), and 3) build a web-based 

form for data entry of estimated snow cover (Figure 5.1c). The research team provided initial 

protocols and drafts of web forms, with iterative feedback from the MOSS team as to the fit for 

their curriculum and logistics. The MOSS team was responsible for site selection and training of 

graduate students, with feedback and contributions from the research team via a video seminar.  



150 

 

By incorporating two forms of data collection in the protocols, including photographs and 

field-based estimates, we met the dual goals of collecting quality data and providing students a 

means by which to see their contribution to the project. The fraction of snow-covered area in 

each cardinal direction was estimated for the forested and open portions of each site, entered into 

the web form while in the field, and then automatically averaged and displayed as a time series 

plot (Figure 5.1c). As a subjective estimate, these numbers could then be validated via 

quantitative image analysis. 

Although the program seemed to be a perfect fit in many ways, the implementation into the 

MOSS curriculum was not without challenges. Each graduate instructor was responsible for 

visiting their site every other week, ideally with their students, but this did not always happen. 

Reaching a fixed site via snowshoes during field instruction was occasionally limited by 

students’ physical abilities and stamina, as well as bad weather. Future integration of the data 

collection into instructor training will help to define it as an integral part of the educational 

experience rather than an additional task. Other challenges were encountered during the key step 

of recruiting participants for a citizen science program; in this case recruitment was easy since 

the data collection was integrated into the overall educational program. However, we suspect that 

the fact that participation was not entirely voluntary did occasionally result in a lack of 

motivation on the part of the instructors. Based on informal conversations with instructors we 

determined that their level of commitment varied between those who were motivated by the 

educational opportunity of collecting data relevant to a research investigation, to those with 

lower interest due to difficulty getting to the site, lack of understanding of the importance of the 

work, or lack of understanding how to incorporate the data collection into the rest of the field 

curriculum. For the future we would implement face-to-face meetings between the research team 
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and the graduate instructors to instill a sense of why the research matters. Although such a 

meeting is not possible with the student groups, we are also considering making an introductory 

movie or meeting with students each week via video-conferencing technology.  

From the perspective of MOSS, the citizen science program provides a promising way in 

which to connect educational activities to scientific practice. In addition to content exploration, 

the MOSS curriculum focuses on engaging students in the process of doing science, so 

partnering with research projects provides a way for students to connect with real scientists, and 

to see their data contribute to an on-going investigation. Previous studies have demonstrated that 

citizen science provides a platform on which science process skills can be practiced[Trumbull et 

al., 2000], and that participants show an increased support for science, scientific literacy, and 

sense of connection to the environment[Conrad and Hilchey, 2011]. Future iterations of this 

project at MOSS could include a formal evaluation of the participation experience of both 

students and graduate instructors in order to measure any or all of these learning outcomes and 

enhance our understanding of how to improve the program. 

From a research perspective, we drastically limited the spatial scope of our citizen science 

project by abandoning our dispersed approach and partnering with MOSS for improved temporal 

data resolution. However, there are three key scientific reasons that this partnership proved more 

successful than previous years: 1) the data collected by students and instructors conformed to 

standardized protocols and were therefore high quality, 2) repeat observations through time were 

collected at a scientifically relevant time step, and 3) observations at the MOSS field site fill a 

spatial data gap for the project. For all of these reasons the MOSS dataset is being incorporated 

into the regional investigation, and represents important field data from a geographic and 



152 

 

climatic data gap. As the only data from central Idaho, these observations record forest-snow 

interactions that are specific to a colder, continental/maritime climate regime. 
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5.5 Conclusion 

Overall, two key lessons arose from our three year experience with citizen science: 1) the 

data collection needed for the investigation needs to align with the strengths of the citizen 

science approach, and 2) the level of participation needed from the audience needs to align with 

both the regular activities and interests of the audience and the type of data being collected. For 

us, the first lesson was built into our approach when we recognized that this would be an ideal 

citizen science project. We are investigating processes that are difficult to model but 

straightforward to observe for someone who is in the right place at the right time. Thus, from the 

beginning we recognized that the data needed for this investigation would align well with a 

citizen science approach. 

The second lesson was learned via the successes and failures over three years. In scaling up 

from year one to year two we focused on expanding participation in order to develop a spatially 

and temporally dense dataset. However, the flaw in this approach was that the level of 

engagement was mismatched with the numbers needed to achieve the desired dataset. Whereas 

we needed participants to collect data in an informed and thoughtful way, we also needed a large 

quantity of data that would be more readily achievable by engaging a large number of 

participants. Thus, we chose to compromise broad spatial coverage for quality data and changed 

our focus from engaging the public to engaging an organization that makes repeat trips to the 

same locations.  We gave up the desired spatial resolution but achieved the temporal resolution 

and structured data collection that resulted in a usable dataset.  

Through trial and error, we better defined the parameters for the collection of usable data, 

and we recognized that we either needed orders of magnitude more data in order to filter out the 

unusable data, or we needed our participants to follow specific instructions. We therefore honed 
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in on the style of citizen science that resulted in success for the partnership and success for the 

investigation. In connecting with MOSS, we partnered with an organization that was already 

collecting similar data and that was seeking ways to make educational data collection more 

meaningful for students via connection with a research effort. Furthermore, the pilot program 

with MOSS has the potential to be replicated with other schools or organizations that are already 

making repeat visits to locations of interest throughout the snow season. Possible future partners 

include outdoor education centers located in mountainous or snowy regions, as well as organized 

recreational groups, such as snowmobiling clubs that make repeat trips along certain trails. In 

addition to the potential application of the approach described herein to other distributed snow 

studies, any scientific project to employ a citizen science for collecting distributed data may 

benefit from consideration of a spatially targeted approach. 

In conclusion, our three year journey with citizen science resulted in meaningful connections 

with a wide range of interested individuals and organizations. In addition to the benefits of 

communicating current research to the public and supporting the educational goals of MOSS, the 

effort resulted in a temporally consistent dataset that filled a single spatial data gap in our 

regional analysis of forest influences on the timing of snow disappearance.  
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5.7 Figures 

 

Figure 5.1 Map of the Pacific Northwest showing collaborating field sites (gray dots) and 
McCall Outdoor Science School (MOSS, black triangle) (a). Photograph of MOSS students 
estimating snow cover in different directions (b). Example graph of average snow cover in open 
and forested areas at Quad Forest, one of the MOSS field sites. Graphs for each site were 
updated in real-time on a website that was linked to the online form for data collection (c).  
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6.1 Abstract 

Forests modify snow processes and affect snow water storage as well as snow disappearance 

timing. However, forest influences on snow accumulation and ablation vary with climate and 

topography, and are therefore subject to substantial temporal and spatial variability. We utilize 

multiple years of snow observations from across the Pacific Northwest, USA, to assess forest-

snow interactions in the relatively warm winter conditions characteristic of maritime and 

transitional maritime-continental climates. We (1) quantify the difference in snow magnitude and 

disappearance timing between forests and open areas and (2) assess how forest modifications of 

snow accumulation and ablation combine to determine whether snow disappears later in the 

forest or in the open.  

We find that snow disappearance timing at 12 (out of 14) sites ranges from synchronous in 

the forest and open, to snow persisting up to 13 weeks longer in the open relative to a forested 

area. By analyzing accumulation and ablation rates up to the day when snow first disappears 

from the forest, we find that the difference between accumulation rates in the open and forest is 

larger than the difference between ablation rates. Thus, canopy snow interception and subsequent 

loss, rather than ablation, sets up longer snow duration in the open. However, at two windy sites 

(hourly average wind speeds ranging up to 8 and 17 m/s) differential snow disappearance timing 

is reversed: snow persists 2-5 weeks longer in the forest. At these sites, accumulation rates in the 

forest and open are similar, and longer snow retention in the forest appears to be controlled by 

preferential snow deposition. While ablation rates are higher in the open, the difference between 

ablation rates in the forest and open is approximately equivalent to the difference at less-windy 

sites. These findings suggest that improved quantification of forest effects on snow accumulation 
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processes are needed to accurately predict the effect of forest canopy change via harvest or 

natural disturbance on snow water resources. 
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6.2 Introduction 

The forests that cover much of the seasonal snow zone in the Pacific Northwest (PNW), 

USA, modify snow accumulation [Shidei et al., 1952; Miller, 1964; Hedstrom and Pomeroy, 

1998; Hiemstra et al., 2002; Storck et al., 2002; Moeser et al., 2015] and ablation processes 

[Marks et al., 1998; Hardy et al., 2000; Link et al., 2004; Molotch et al., 2009; Pomeroy et al., 

2009; Veatch et al., 2009; Lawler and Link, 2011; Reba et al., 2012; Gleason et al., 2013; 

Musselman et al., 2015], with a variable impact on the amount of snow that is stored and the 

timing of snowmelt across the landscape. The net effect of forest-snow interactions is manifest in 

spatial patterns of snow cover near the end of the ablation season, and specifically in the 

difference in snow disappearance timing between forests and open areas. However, predicting 

the overall effect of forest cover on snow retention (i.e., the timing of snow disappearance) is 

complex because both the amount and direction of forest influence on individual snow processes 

change with climate [Hedstrom and Pomeroy, 1998; Storck et al., 2002; Lundquist et al., 2013; 

Martin et al., 2013], topographic position [Strasser et al., 2011; Ellis et al., 2013], latitude 

[Musselman et al., 2008; Harpold et al., 2015b], and forest characteristics [Kittredge, 1953; Jost 

et al., 2007; Veatch et al., 2009; Varhola et al., 2010a]. The net effect of forest cover on snow 

retention therefore depends on the integration of multiple forest-snow processes, each of which 

varies spatially and temporally. 

Prediction of where and how forest cover will accelerate versus delay snow disappearance 

timing has valuable forest management applications, particularly in regions of extensive forest 

cover and intensive timber harvest such as the PNW [Spies and Franklin, 1991]. In particular, 

snow retention is linked to the timing of peak soil moisture [Molotch et al., 2009; Veatch et al., 

2009; Harpold et al., 2015b] and the onset of soil moisture depletion [Flint et al., 2008], the 
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timing of spring and summer streamflow [Whitaker et al., 2003; Lundquist et al., 2005; Lyon et 

al., 2008], stream temperatures [Langan et al., 2001; Gravelle and Link, 2007; Leach and 

Moore, 2014], and wildfire risk [Westerling, 2006]. However, an improved understanding of 

how different forest-snow processes combine to contribute to snow disappearance timing is 

needed before applying empirical models [Winkler et al., 2005; Jost et al., 2007; Varhola et al., 

2010a; Lundquist et al., 2013], or physically-based hydrologic models [Ellis et al., 2013; Du et 

al., 2016] to management practices.  

Lundquist et al. (2013) suggested that average winter temperature is a first-order predictor 

of differential snow disappearance timing, and found that snow storage duration is longer in the 

open as compared to the forest for two locations in the PNW. However, local influences such as 

high winds [Revuelto et al., 2015] and cold-air pooling [Whitaker and Sugiyama, 2005] have 

been shown to affect differential snow disappearance timing, and point to the need for region-

specific investigations that sample a range of climatic and topographic conditions.  

We therefore draw upon observational snow data from forest-open comparisons across a 

climate gradient in order to assess what conditions lead to longer retention of snow in forested or 

open areas. Previous investigations have demonstrated that the density and structure of forest 

stands [Kittredge, 1953; Varhola et al., 2010a; Musselman et al., 2012; Seyednasrollah and 

Kumar, 2014; Broxton et al., 2015; Moeser et al., 2015] influence the ways in which forest cover 

modifies snow processes. However, representing and predicting where and when forests will 

accelerate versus delay snow disappearance timing is an ongoing research challenge even for a 

simplified comparison of forest versus open [Rutter et al., 2009; Lundquist et al., 2013]. Thus, in 

order to advance a regional understanding of forest effects on snow storage we assess binary 

categories of forest cover (i.e., forested and open) and note the importance of continued 
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investigation into canopy structure effects on snow processes as such analysis is beyond the 

scope of this paper. 

The field sites encompass forest-open comparisons within a relatively warm winter climate 

regime, where average winter (December-January-February (DJF)) temperatures range from -5 

to 2 °C [PRISM Climate Group, 2012](Figure 6.1). Thus, we hypothesize differences in snow 

disappearance timing ranging from synchronous at the colder sites (< -1 °C) to snow lasting 

longer in the open at the warmer sites (> -1 °C), based on values proposed by Lundquist et 

al.(2013). Observational studies of the forest effects on snow processes in this region are sparse 

relative to more numerous studies in colder, continental climates. However, the maritime PNW 

represents an observational endpoint for forest effects on snow disappearance timing: two sites 

included in the Lundquist et al.( 2013) synthesis recorded the largest acceleration of snow 

disappearance in forests seen worldwide, with snow lasting two weeks longer in the open as 

compared to the forest [Storck et al., 2002; Dickerson-Lange et al., 2015a]. 

An improved understanding of forest-snow dynamics in warmer climates is therefore 

essential for assessing potential combined effects of forest change and climate change. For 

example, under warmer winter climate conditions, or in anomalously warm years, forest-snow 

interactions in colder, continental locations could shift to become more similar to the forest 

influences observed in warmer sites today. We therefore present analyses from forest-snow field 

studies from across the PNW in order to test the relation between winter temperature and 

differential snow disappearance timing between open and forested areas, and to assess the 

relative contribution of forest influences on snow accumulation and ablation.  
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6.3 Study Locations 

The PNW, represented by Washington (WA), Oregon (OR), and Idaho (ID), USA (Figure 

6.1a), depends on mountain snow storage to augment summer dry season water resources 

[Hamlet and Lettenmaier, 1999; Nolin and Daly, 2006; Adam et al., 2009]. The west side of the 

north-south trending Cascade Range is characterized by a maritime climate and maritime snow 

regime [Sturm et al., 1995], with typically large amounts of winter precipitation and 

temperatures that fluctuate around the freezing point (Figure 6.1a). The region east of the 

Cascade Range is colder and drier, with a transitional maritime-continental climate, and a mix of 

snow regime classes, including maritime (warm, deep snowpack), alpine (intermediate 

snowpack), and prairie (thin, cold snowpack) snow classes [Sturm et al., 1995]. 

Snow and meteorological observations were collected over a range of water years (WY) by 

three research institutions and by citizen scientists to characterize forest effects on snow 

processes across the region. Each study location includes one or more paired forest and open area 

in which to compare snow observations (Table 6.1). A subset of annotated aerial images (Figure 

6.1) demonstrate the range of forest canopy densities and data collection strategies, which 

included paired manual snow courses, snow pits, and automated sensors. Fourteen total study 

sites cover the western slopes and crest of the Cascade Range in WA and OR, and central and 

northern ID. Site and data collection details are provided in Table 6.1 and section 6.11, and in the 

references provided. Where available, forest metrics are given to illustrate the range of forest 

canopy densities that constitute “open” or “forest” classifications, but explicit consideration of 

forest structure is outside the scope of this investigation. 
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6.4 Methods 

6.4.1 Annual and Long-Term Average Air Temperature 

To assess the climatic context of the snow observations, we used a gridded dataset to 

compute mean air temperature values for the year of snow observations and all the years of 

record. Gridded data rather than in situ observations were used because of the availability of a 

much longer temperature record. We extracted 4-km gridded monthly mean temperature for the 

period 1981–2015, provided by PRISM [Daly et al., 2008], for the grid cells enclosing the study 

sites. We then computed mean DJF temperature for every water year on record, and compared 

the value for the year of snow observations to the 34-year distribution of values.  

6.4.2 Snow Metrics 

To compute snow metrics we used a combination of point values from snow depth sensors 

and fixed snow measurement poles, and spatially distributed values from snow depth transects 

and grids of ground temperature sensors. Distributed observations were spatially aggregated to 

median snow depth values for each forest or open area. For all metrics and analyses we used 

snow depth rather than SWE to quantify snow magnitude because of the availability of snow 

depth data at all field sites, the robustness of manual snow depth observations at low snow 

values, and the uncertainty related to snow density differences between forest and open. We 

demonstrate and discuss the robustness of the results to utilizing depth versus SWE in the 

supporting information. 

Summary metrics derived from each time series of snow depth include the magnitude of 

peak snow depth and the snow disappearance date (SDD). For sites at which both distributed and 

point observations were collected (Table 6.1), summary metrics were based on distributed data in 
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order to represent spatial snow heterogeneity within the forest or open area. Peak snow 

magnitude represents the end of the accumulation season, and was taken as the local maxima on 

the latest date on which peak snow depth values were observed. The SDD represents the first day 

when snow depth was zero (or in the case of distributed observations, when over half of the snow 

depth measurements are zero).  

The SDD was generally extrapolated from the preceding values. For acoustic snow depth 

sensors, the extrapolation was performed in order to reduce the effects of increasing uncertainty 

as the snow surface becomes uneven or patchy [Ryan et al., 2008]. For manual snow 

observations, the extrapolation was applied to account for the weekly to bi-weekly temporal 

resolution of data collection. Since a manual observation of zero snow only indicates that the 

SDD occurred sometime between two dates, the elapsed time between manual measurements can 

artificially delay the SDD. Thus, the SDD was linearly extrapolated from the slope of the two 

values previous to the day on which zero snow was observed. Sensitivity analyses at a subset of 

sites demonstrated that this approach reduces the absolute error relative to using the observed 

SDD by an average of 2, 5, or 9 days for a 1, 2, or 3 week temporal resolution (supporting 

information). 

For the distributed snow duration datasets (Cedar River, Table 6.1) we inferred SDD from 

each ground temperature sensor and aggregated to the plot-scale by determining the day on 

which >50% of the sensors in a plot indicated that snow had disappeared [Dickerson-Lange et 

al., 2015a]. Similarly, at one site in ID (MOSS, Table 6.1), SDD at each field location was 

determined as the day when fractional snow covered area dropped below 0.5.  

We compared snow observations between the forest and open area by computing the ratio of 

peak snow depth and the differential snow disappearance timing. For all sites, the paired forest-
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open locations are topographically similar and are typically adjacent. The ratio of peak snow 

depth is the peak snow depth in the open divided by peak snow depth in the forest. Differential 

snow disappearance timing quantifies the difference in SDD, in days, between open and forest 

plots. The difference is represented as ∆SDD (after [Lundquist et al., 2013], but note the switch 

in sign to be consistent with the additional metrics presented herein), which is defined here as: 

∆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓 

A positive ∆SDD indicates the number of days that snow persists longer in the open after snow 

has disappeared in the adjacent forest. Conversely, a negative ∆SDD is the number of days that 

snow persists longer in the forest relative to the open.  

6.4.3 Cumulative Gain and Loss Analysis 

Where available, we utilized sub-daily snow depth values to assess cumulative gain (i.e., 

accumulation and redistribution) versus loss (i.e., compaction, melt, and sublimation) through 

time to distinguish the relative importance of forest effects on snow accumulation versus 

ablation. We aggregated to daily median snow depth values in order to reduce noise associated 

with snow depth sensors [Ryan et al., 2008]. Since we estimated the precision of visually reading 

snow depth poles from time-lapse images as 5 cm, we rounded both the forest and open data 

streams to the nearest 5 cm for comparisons that utilized data from time-lapse cameras (Figure 

6.2a). The mismatch between a pole that is read to the nearest 5 cm and an acoustic snow depth 

sensor with an accuracy of ±2cm has the potential to substantially affect results when summing 

differences through time.  

When snow was present at both the forest and open area, we computed the change in depth 

for each day and at each sensor (i.e., ∆depthforest and ∆depthopen), and then summed daily gain 
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and loss through time (Figure 6.2b). Days for which data were missing or snow depth was zero 

(i.e., measured as <1 cm) at either the forest or open were excluded. We treated all positive 

∆depth values as gain, and all negative ∆depth values as loss. This approach does not account for 

sub-daily fluctuations in depth, snow compaction (i.e., settling and metamorphism), or spatial 

variation in snow density. Thus, although we used the change in daily depth as a proxy for snow 

accumulation or ablation, we were strictly computing changes in height. Sensitivity analyses that 

account for time-varying density and snow compaction demonstrate that the general results 

presented in section 6.5 are insensitive to these simplifications (supporting information). 

After computing time series of cumulative gain and loss, we extracted the values from the 

paired plots at the time of peak snow depth and at the time when snow at one of the plots 

disappeared (i.e., the first SDD). To approximate the influence of forest on snow accumulation 

and ablation rates, we summarized the findings by taking the difference between cumulative 

gain/loss at the paired open and forest plots at the timing of peak snow and snow disappearance. 

As such, we present these difference metrics for cumulative gain as: 

∆�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝

= �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

−�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓

 

for the difference at the timing of peak snow, and as 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓

 

for the difference at the timing of the SDD at the first plot, with the similar equations for 

cumulative loss. Figure 6.2 presents an annotated example of this analysis. 
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6.5 Results  

6.5.1  Winter Temperature and Differential Snow Disappearance Timing 

Climatological winter temperature, extracted from PRISM for each site, indicates that mean 

DJF temperature at most of the WA and OR sites is above or very close to -1 °C, while mean 

DJF temperature at all of the ID sites falls between -6 and -1 °C (Figure 6.3a). DJF temperature 

for the years of snow observations (i.e., red circles on Figure 6.3a) indicate that the climatic 

context for these snow observations range from a colder-than-average year (e.g., WY 2008 at 

UIEF, ID), to the warmest year on record (e.g., WY 2015 at MOSS, ID).  

We find that differential snow disappearance timing generally follows the hypothesized 

temperature-based thresholds, with snow lasting 0-4 weeks longer in the open across the western 

WA and OR sites (Figure 6.3b; values provided in Table 6.2). At one site, during the 

anomalously low snow year of WY 2015, snow lasts 93 days longer in the open relative to the 

forest (Olallie on Figure 6.7; point removed from Figure 6.3b for readability). One notable 

exception to snow lasting longer in the open at the WA and OR sites is Hogg Pass (Table 6.1), at 

the crest of the Cascades in western OR, where snow lasted 15-29 days longer in the forest 

relative to the open. Differential snow disappearance timing at the colder ID sites ranges from 

approximately synchronous (i.e., ∆SDD = -1) to snow lasting 9 days longer in the open, with the 

exception of one comparison in which snow lasted 44 days longer in the forest. The ∆SDD 

values of -1 and 0 observed at Mica Creek in northern ID (Table 6.1), contrast with the general 

conclusion of [Hubbart et al., 2015] who showed that snow lasts 3 weeks longer in the open as 

compared to the forest (i.e., ∆SDD = 21) in an aggregated analysis that did not explicitly account 

for topographic position and related preferential deposition. 
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The ratio of peak snow accumulation in the open to the forest at the WA and OR sites is 

consistently high, ranging from 1.4 to 3.5 at all sites except Hogg Pass, OR, with a median ratio 

of 2.2 (Figure 6.3c). Ratios at Hogg Pass are below 1 (i.e., more snow in the forest than in the 

open). There are fewer data points for the colder sites in ID, but the ratio ranges from 0.9 to 2.9 

with a median of 1.9.  

6.5.2 Forest Effects on Snow Gain versus Loss 

Analysis of daily snow depth observations indicates higher rates of snow gain and snow loss 

in the open as compared to the forest. This result is consistent with previous synthesis work by 

Varhola et al.( 2010) on the relation between forest presence and snow accumulation and 

ablation. Figure 6.4 illustrates three examples of cumulative gain and loss analysis, and at each 

site there is consistently more cumulative gain and loss in the open as compared to the forest 

(i.e., the blue and green lines in Figure 6.4). Cumulative gain and loss analysis at all sites (not 

shown) is summarized by extracting ΔΣGain and ΔΣLoss (i.e., the distance between the blue and 

green lines in Figure 6.4d-4f) at the timing of peak snow depth and at the first SDD. The 

consistent result that rates of snow gain and loss are higher in the open at all sites is illustrated by 

positive values for both ΔΣGain and ΔΣLoss, where both metrics are computed as values at the 

open site minus values at the forest site (Figure 6.5a and b).  

Furthermore, the comparison of cumulative gain and loss demonstrates that forest effects on 

snow accumulation effectively set up differential snow disappearance timing at these sites. When 

snow is present at both the open and the forest, there is more difference between open and forest 

sites in gain than in loss. This is illustrated by ΔΣGain values that are consistently higher than 

ΔΣLoss, and therefore plot below the 1:1 line at the time peak snow depth is reached (Figure 
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6.5a) as well as at the timing of first SDD (Figure 6.5b). By the time snow first disappears from 

either the open or forest, ΔΣGain is still larger than ΔΣLoss at all sites except Hogg Pass (i.e., all 

but one data point fall below the 1:1 line in Figure 6.5b). The difference between ΔΣGain and 

ΔΣLoss at the first SDD is a proxy for the amount of snow that remains in either the forest or 

open area when snow has disappeared from the other. This difference is therefore a predictor of 

how long snow will persist and the resulting differential snow disappearance timing (Figure 

6.5c).  

One exception is observed at Hogg Pass, where ΔΣGain is lower than ΔΣLoss (i.e., it plots 

above the 1:1 line) at the timing of peak snow depth and at the first SDD. This exception is 

further illustrated by the time series of snow depth at Hogg Pass, where values in the open and 

forest track very closely (Figure 6.4c) and, consequently, there are small differences between 

cumulative gain and loss, with slightly more cumulative loss than gain (Figure 6.4f).  

6.5.3 Wind Effects 

Assessment of local meteorological conditions for the two sites where snow lasts longer in 

the forest (Figure 6.3b) illustrates cases in which wind is a key influence on forest-snow 

interactions. Hogg Pass is both topographically exposed in a mountain pass, and the open 

location consists of mostly standing dead trees (Figure 6.1e, Figure 6.6e). Thus, observed wind 

speeds are high, with average hourly values that range from 0–17 m/s, and a mean hourly value 

of 4 m/s during winter and spring at the Hogg Pass open meteorological station (Figure 6.6d). In 

contrast, average hourly wind speed ranges from 0–3 m/s at a nearby lower elevation open site 

(McK Mid, OR; Table 6.1), which is less exposed topographically and has sparse vegetation 

cover (Figure 6.1d, Figure 6.6b and c). Similarly, one of the open locations at UIEF, ID (the 
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“open reference” sensor, Table 6.1), recorded average hourly wind speeds of 1–8 m/s, and a 

mean hourly value of 2 m/s during February through May (Figure 6.6g) during the study period 

as compared to 0–2 m/s at all of the other forest and forest gap sensors (not shown). The UIEF 

open reference sensor is located on an exposed hilltop in the Palouse region of the interior 

Pacific Northwest, which is a region that is known to be subject to high winds during storm 

events. In summary, at both of these sites the higher observed winds in conjunction with the peak 

snow ratio and ∆SDD metrics suggest that wind influences on forest-snow processes control the 

differential snow disappearance timing. 
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6.6  Discussion 

6.6.1  Forest effects on accumulation drive differential snow duration in PNW 

Observations from these sites provide evidence that forest modification of snow 

accumulation processes is the dominant factor in determining differential snow disappearance 

timing between forested and open areas in the PNW. Two cases of differential snow 

disappearance timing were observed, both of which result from forest modification of 

accumulation processes. In the most common case, the presence of forest results in snow 

accumulation that is substantially reduced beneath the canopy. Reduced under-canopy snow 

accumulation subsequently sets up snow disappearance timing that ranges from synchronous to 

longer snow duration in the open. In the second case, which is particular to two windy sites, 

forest cover results in enhanced snow accumulation. The net result is longer snow duration in the 

forest relative to the open areas.  

Effectively, the two cases reflect the role of the forest when snow is falling: does the 

presence of trees reduce or enhance the accumulation of under-canopy snowpack? We discuss 

the specifics of each case below. 

6.6.1.1  Case One: Reduced accumulation in forest 

Twelve of the fourteen forest-open comparisons fall into the first category, in which 

diminished snow accumulation in the forest drives synchronous to longer snow persistence in the 

open (Figure 6.3b). At these sites, more snow accumulates in the open relative to the forest, 

illustrated by ratios of open-to-forest peak snow depth that range from 1.2 to 3.5 (Figure 6.3c). 

Previous work has demonstrated that canopy snow interception efficiency and storage capacity 

are larger where and when temperature is higher [Kobayashi, 1987; Friesen et al., 2015]. These 

results corroborate previous observations of higher canopy snow interception efficiency values in 
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maritime versus continental climates (i.e., 30–50% in continental climates [Hedstrom and 

Pomeroy, 1998] and up to 60–80% in maritime climates [Andreadis et al., 2009; Martin et al., 

2013]). 

Beyond supporting previous findings, the results from cumulative gain and loss analysis 

provide strong evidence that canopy snow interception is the driving process that sets up 

differential snow disappearance timing in the PNW. The ΔΣGain values extracted from snow 

depth are larger than the ΔΣLoss values at all of these sites at the time of first SDD (Figure 6.5b), 

suggesting that difference in snow magnitude at the time when snow disappears from the forest 

is initiated by differences in snow accumulation rates. Reduced accumulation within the forest 

establishes the direction of differential snow disappearance timing, in that snow disappearance 

timing will range from synchronous to snow lasting longer in the open. Even though cumulative 

loss in the open is consistently higher than in the forest, diminished rates of loss in the forest are 

not sufficient to balance out the diminished snow accumulation. After snow disappearance 

occurs in the forest, the number of days of snow duration difference results from the amount of 

snow remaining in the open divided by the rate of loss in the open (Figure 6.5c). 

6.6.1.2 Case Two: Enhanced accumulation in forest 

In the second case, forest effects on accumulation set up the opposite snow retention pattern 

at sites subject to high wind. Observations from Hogg Pass and the UIEF open reference site 

indicate that approximately the same amount of snow accumulates in the forest as in the open 

(Figure 6.3c), that snow persists longer in the forest (Figure 6.3b), and that wind speeds are 

higher than other, nearby open sites (Figure 6.6). Ablation rates at Hogg Pass are similar to 

values from the other, less windy sites, however, snow accumulation is almost equivalent 

between forest and open, resulting in a ΔΣGain value that is lower than all other sites (Figure 
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6.5a and b). This suggests that accumulation processes that differ from the majority of sites drive 

the longer snow retention in the forest, rather than greatly enhanced ablation rates in the open. 

We speculate that the equivalent accumulation in the forest and open at this site is driven by 

preferential snow deposition (and thus accumulation) in the forest due to the transition to slower 

wind speeds [Hiemstra et al., 2002; Geddes et al., 2005] and possibly from the contribution of 

canopy-intercepted snow to the under-canopy snowpack due to wind unloading [Roesch et al., 

2001]. Qiu et al.(2011) previously found that high winds during storm events in the Palouse 

region (i.e., where the UIEF site is located) result in large spatial heterogeneity in snow 

accumulation, with less snow on ridge tops relative to more sheltered locations. Redistribution of 

snow from the open to forested area after a storm event ends is less likely due to relatively warm 

winter temperatures that support high snow cohesion [Li and Pomeroy, 1997].  

6.6.2 Winter climate and forest-snow processes 

Setting aside the sites where wind is the dominant factor, these results generally support 

categories of differential snow disappearance timing delineated by DJF temperature [Lundquist 

et al., 2013]. Specifically, in locations with warmer winter temperatures such as those 

investigated herein, differential snow disappearance timing ranges from synchronous, to snow 

persisting longer in the open relative to the forest. These sites and observation years reflect a 

relatively narrow range of DJF temperatures (Figure 6.3a), and there is substantial interannual 

variability in both snow metrics and DJF temperature at individual sites (e.g., McK Mid on 

Figure 6.3). Thus, the observations do not display a robust correlation with DJF temperatures 

(Figure 6.3b).  



175 

 

The finding that snow duration is generally longer in the open at these sites suggests that 

climate-mediated forest-snow processes contribute substantially to overall forest-snow 

interactions. In addition to rates of canopy interception, discussed above, winter climate also 

influences the under-canopy energy balance and resulting ablation rates. Warmer air 

temperatures can directly result in increased ablation rates in forests due to enhanced under-

canopy longwave radiation [Essery et al., 2008; Lundquist et al., 2013; Cristea et al., 2014]. 

However, we find temperature-influenced enhancement of under-canopy snowmelt to be a 

second-order effect relative to reduced under-canopy snow accumulation. Lundquist et al.(2013) 

presented an example from western OR in which snow accumulation before the first SDD was 

greater in the open, but cumulative loss was actually greater in the forest due to mid-winter melt 

events driven by enhanced longwave radiation. In contrast, all of the sites in this study show 

higher ablation rates in the open, and accumulation processes, rather than enhanced ablation in 

the forest, appear to set up the difference in snow disappearance date.  

Additionally, many studies have established that forest cover can substantially reduce 

ablation rates via shading the snowpack from solar radiation [Sicart et al., 2004; Musselman et 

al., 2008, 2012; Ellis et al., 2011], but climate can have an indirect effect on the magnitude of the 

contrast between ablation rates in the open and in the forest. For example, colder air 

temperatures contribute to a later ablation season, when forest shading is more important because 

solar elevation angles are higher [Sicart et al., 2004; Musselman et al., 2015]). High atmospheric 

transmissivity (i.e., more clear-sky days) later in the ablation season can also enhance the 

importance of forest shading [Seyednasrollah and Kumar, 2014]. In the PNW, synchronous 

snow disappearance timing at the colder, sunnier ID sites likely results from the combination of 
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lower canopy snow interception relative to the warmer sites (Figure 6.3c) and diminished 

ablation rates in the forest that compensate for reduced accumulation in the forest.  

6.6.3 Implications for Future Work 

The finding that forest effects on accumulation processes drive differential snow 

disappearance timing has important implications for future investigations of forest-snow 

processes. Many studies have focused on quantifying the effect of forests on modifying the 

below-canopy energy balance (e.g., [Davis et al., 1997; Essery et al., 2008; Ellis et al., 2011; 

Musselman et al., 2013]), which is particularly relevant to forest-snow processes in colder 

climates and higher latitude locations. However, at the PNW sites considered here, forest 

modifications of accumulation processes dominate. Although many studies have documented the 

difference in snow accumulation under forest canopy as compared to the open, much work 

remains in quantifying tree-scale and stand-scale canopy snow interception and storage [Friesen 

et al., 2015]. For example, Clark et al.(2015) demonstrated that two commonly used 

parameterizations of canopy snow interception in hydrologic models exhibit opposite 

dependencies on air temperature: canopy snow interception capacity increases with air 

temperature in one [Andreadis et al., 2009] while decreasing with air temperature in the other 

[Hedstrom and Pomeroy, 1998]. Additional work quantifying canopy interception processes is 

needed in light of the importance of accurately representing snowpack in the PNW, and 

potentially in other forested, snowy regions that are subject to a warming climate.  

The role of forest in snow accumulation processes must also be considered in the context of 

wind, which varies greatly over complex terrain and affects patterns of snow deposition and 

energetics. The findings of this investigation, as well as previous investigations [Gary, 1974; 
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Hiemstra et al., 2002; Geddes et al., 2005; Fortin et al., 2015], demonstrate that forests can act 

to enhance snow deposition and retention, with implications for snow storage across the 

landscape. Improved modeling of forest-snow processes in this region requires consideration of 

where wind attenuation at the edge or within forests may dominate over other forest-snow 

interactions. Existing methods to map winds on complex terrain include statistical (e.g., 

[Winstral and Marks, 2002]), statistical-dynamic (e.g., [Liston and Elder, 2006]), or completely 

dynamic (e.g.,[Mott et al., 2014]) approaches that account for some combination of local 

topography (slope and curvature), wind speed, and direction. While many high-resolution wind 

models are computationally impractical to run over larger domains [Mott et al., 2014], recent 

developments in physical-statistical modeling (e.g.,[Liston et al., 2016]) show promise for 

representing wind-related deposition and redistribution with relatively little computational cost.  

Lastly, the compilation of forest-snow sites presented here represents a diverse cross-section 

of topography and climate in the region, but there are substantial observational data gaps in 

forest-snow studies in the PNW. Specifically, observations are needed from locations where 

conditions during snowmelt are sunnier, and therefore forest shading is likely to be more 

important, such as on the eastern slopes of the Cascade Range. In addition, data from the coldest 

parts of the region, such as the North Cascades or the Sawtooth Mountains would be helpful for 

understanding the climate dependency of forest-snow processes in the region.  
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6.7 Conclusions 

Snow observations from WA, OR, and ID were analyzed to determine the difference in 

snow accumulation magnitude and snow disappearance timing between forests and open areas, 

and to assess the relative contribution of forest-modulated accumulation versus ablation to snow 

storage and duration. We find that snow disappearance timing ranges from approximately 

synchronous, to snow lasting several weeks longer in the open as compared to the adjacent 

forest, except where wind speeds are high. Excluding the windy sites, differences in snow 

accumulation between the forest and open area result from canopy snow interception and 

subsequent loss, which sets up differential snow disappearance timing. Where similar amounts of 

snow accumulate under the forest and in the open, snow disappearance timing is close to 

synchronous. Where substantially more snow accumulates in the open, the deeper snow takes 

longer to melt, and the time lag between SDD in the forest to SDD in the open is longer. At 

wind-affected sites, differential snow duration is in the opposite direction, with snow persisting 

2–5 weeks longer in the forests. We attribute the differential snow disappearance timing 

primarily to forest effects on snow deposition and retention in the windy environments, rather 

than enhanced ablation rates. These findings provide a regional framework for understanding the 

range of forest and forest-change effects on snow retention across the landscape. 

This study focused on PNW sites with fairly warm winters, but these findings have broad 

implications for improving prediction of the effects of forest change on snow retention. The 

forest-snow community has made great advances in improving model representations of the 

below-canopy and within-gap energy balance, but the results presented here suggest that even 

greater model improvements could be obtained by focusing on snow accumulation processes 

associated with forest conditions. These findings are applicable not only to practitioners working 
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in warmer forested snow regimes but also to scientists trying to predict global impacts of 

climatic change. Forest-snow processes important today in the PNW may be critically important 

in any forest worldwide in a winter with similarly warm temperatures. 
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6.9 Tables 

Table 6.1 Locations and attributes of field sites included in this analysis, including the types of 
data collected, the timeframe over which data were collected and indications of which data were 
used in the derivation of summary metrics (e.g., the peak snow ratio).  

     Analyses Land cover 

Location 
(Lat/Lon) 

Site 
Name(s) 

Elev 
(m) 

Type(s) of data 
used in 
analysis  

Wat
er 

Year
s Pe

ak
 R

at
io

 

∆S
D

D
 

C
um

ul
at

iv
e 

Open Forest 

Cedar 
River, WA 
(47.3° N, 
121.5° W) 

Cedar 
Low 
(Bear 
Creek) 

640 

Snow depth 
from 20 m 

perpendicular 
manual 

transects (n=40 
for each plot) in 

5 open and 5 
gap plots 

2011
-

2012 
D D   

20 m 
diameter, 
circular 

gap; data 
from gap 

and 
surroundin

g forest 

2nd-
growth, 
closed 

canopy, 
CC=88, 
H=31 

Cedar 
Low 
(City 
Cabin 
and 

Clearing 
Met) 

780 

Snow depth 
from time-lapse 
photos at City 
Cabin (forest) 

and snow depth 
sensor at nearby 

Clearing Met 
(open) 

2011
, 

2013 
P P P 

Met 
Station in 

30 m 
diameter 

gap 

Old-
growth, 
closed 

canopy, 
CC=87, 
H=39 

Mount 
Gardner 890 

Snow duration 
from grid of 

iButtons 
(forest) and 
snow depth 

sensor (open) 

2011
-

2014 
 D  

Forest gap, 
SNOTEL 

(#898) 

2nd-
growth, 
closed 

canopy, 
CC=94, 
H=22  

Tinkham 
Creek 910 

Snow duration 
from grid of 

iButtons 
(forest) and 

acoustic snow 
depth sensor 

(open) 

2013
-

2014 
  D   

Forest gap, 
SNOTEL 

(#899) 

2nd-
growth, 
closed 

canopy, 
CC=90, 
H=23 

Cascade 
Crest, WA 
(47.4° N, 
121.4° W) 

Snoqual
mie 910 

Snow depth 
from time-lapse 
photos (forest) 
and acoustic 
sensor (open) 

2015 P P P 

Met 
Station in 

30 m 
diameter 

gap 

2nd-
growth, 
closed 

canopy, 
ND 
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Olallie 1180 

Snow depth 
from time-lapse 
photos (forest) 
and acoustic 
sensor (open) 

2015 P P P 
Meadow, 
SNOTEL 

(#672) 

2nd-
growth, 
closed 

canopy, 
ND 

McKenzie 
River, OR 
(44.4° N, 
122.0° W) 

McK 
Low 1110 

Snow depth 
from 500 m 

manual 
transects (n=50) 

and acoustic 
sensors from 

both 

2012
-

2014 
D D P 

Regenerati
ng clear-

cut, 
SVF=0.70, 

H=8 

Old-
growth, 
closed 

canopy, 
SVF=0.10, 

H=30 

McK 
Mid 1350 

Snow depth 
from 500 m 

manual 
transects (n=50) 

and acoustic 
sensors from 

both 

2012
-

2014 
D D P 

Regenerati
ng clear-

cut, 
SVF=0.44, 

H=12 

Old-
growth, 
closed 

canopy, 
SVF=0.10, 

H=21 

Hogg 
Pass 1480 

Snow depth 
from 500 m 

manual 
transects (n=50) 

from both 

2012
-

2014 
D D  Standing 

burned 
stems, 

SVF=0.88, 
H=10 

Sparse, 
beetle-

impacted 
forest, 

SVF=0.35, 
H=14 

Acoustic 
sensors from 

both 
2014   P 

Middle 
Fork 

Willamette
, OR 

(43.6° N, 
121.1° W) 

MFW 
Low 1200 

Snow depth 
from 500 m 

manual 
transects (n=50) 

and acoustic 
sensors from 

both 

2012
-

2013 
D D P 

Regenerati
ng clear-

cut, 
SVF=0.18, 

H=15 

Closed 
canopy, 

SVF=0.08, 
H=26 

MFW 
Mid 1350 

Snow depth 
from acoustic 
sensors from 

both 

2012
-

2013 
P P P 

Regenerati
ng clear-
cut, H=10 

Closed 
canopy, 
H=36 

Mica 
Creek, ID 
(47.2° N, 
116.3° W) 

Mica 
Creek 1420 

Snow depth 
from acoustic 
sensors from 

both 

2004     P 
Regenerati
ng clear-

cut, 
CC=0.03, 

H=2  

Second-
growth, 
closed 

canopy, 
CC=0.82, 

H=28  

Snow depth 
from 20 m 
manual 
transects (n=20) 

2006 D D P 
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and acoustic 
sensors  

UIEF, ID 
(46.9° N, 
116.7° W) 

UIEF 
Lawler 

Gap 
880 

Snow depth 
from acoustic 

sensors, starting 
at peak snow 

depth 

2008 P P   

40 m long 
elliptical 
gap and 
clear-cut 

"open 
reference" 
location 

ND 

McCall 
Outdoor 
Science 

School, ID 
(44.9° N, 
116.1° W) 

MOSS 1540 

Snow depth 
from bi-weekly 

snow pits 
(n=10) and 

snow duration 
from snow 

cover estimates 

2015 D D   ND ND 

          
D = Distributed snow observations       
P = Point snow observations        
CC = Mean Canopy Cover from lidar (%); H = Mean Tree Height (m); SVF = Mean sky view fraction 
from hemispherical photographs 
ND = Qualitative assessment of canopy only; no canopy data 
available     
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6.10 Figures 

 
Figure 6.1 (a) Map of the PNW, showing field locations and (b-h, see Table 6.1 for site details) 
aerial photographs showing forested and open areas from representative snow observation sites. 
Approximate locations of snow depth transects are shown as green (forest) and blue (open) lines, 
with the length of the forest transect that is visible in the photograph indicated in green type.  
Approximate point observation locations are shown as green and blue dots. Photographs courtesy 
of Google Earth Imagery, © 2016 Google, with the following additional data sources: (b,c,f,g) 
Landsat and (d,e) Landsat, LDEO-Columbia, NSF, and NOAA. 
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Figure 6.2 Annotated cumulative depth analysis, showing (a) the time series of daily median 
snow depth in the open (blue) and forest (green) at the Snoqualmie, WA site (see Figure 6.1c). 
Snow depth is rounded to 5 cm, which is the estimated precision of visually reading the snow 
depth pole from time-lapse images in the forest. (b) The time series of cumulative gain and loss 
derived from positive and negative changes in daily snow depth. Gray bars illustrate a period of 
gain and a period of loss at the open site in (a), which is refected in the time series of cumulative 
values in (b). ∆ΣGain and ∆ΣLoss metrics at the timing of peak snow depth (i.e., Peak in (a)) and 
at first snow disappearance (i.e., SDD in (a)) are annoated as the distance between the traces of 
cumulative values in the open and forest in (b).  
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Figure 6.3 (a) Boxplots of December, January, February (DJF) average air temperature extracted 
for each field site from PRISM 4 km gridded monthly average values for WY 1982-2015. The 
values for the years of snow observations at each site are indicated with a red circle. The dashed 
lines at -1 and -6 ° C indicate previously proposed temperature thresholds for differential snow 
disappearance timing [Lundquist et al., 2013]. (b) Differential snow disappearance timing 
(∆SDD) and (c) the ratio of peak snow depth in the open to the forest versus 4 km DJF average 
air temperature for the year of snow observations at each site (i.e., the red circles in (a)). An 
outlier ∆SDD value of 96 days observed at Olallie has been removed from (b) for readability (see 
Figure 6.7).  
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Figure 6.4 Examples of cumulative gain and loss analysis from three sites, including (a-c) time 
series of snow depth in the open (blue) and forest (green), and (d-f) time series of cumulative 
gain and loss. Temporal bounds on analysis are indicated as vertical black lines and the timing of 
peak snow magnitude indicated as a vertical red line (see Figure 6.2 for annotations). Analysis 
for WY 2013 at (d) Cedar River and (e) McKenzie Mid, where the difference in cumulative gain 
is larger than the difference in cumulative loss at both peak snow and first SDD, is typical of all 
the sites and years analyzed, with the exception of (f) Hogg Pass in WY 2014. 
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Figure 6.5 (a) ∆ΣGain (i.e., cumulative gain in the open minus cumulative gain in the forest) 
versus ∆ΣLoss at the time of peak snow depth (vertical red dotted lines in Figure 6.3) and (b) at 
the first SDD, which is the end of the shared snow period (vertical black dotted lines in Figure 
6.3). (c) ∆SDD as a function of the difference in ∆ΣGain and ∆ΣLoss when snow disappears at 
the first site (i.e., a proxy for the amount of snow left at first SDD). Dashed lines in (c) indicate 
zero values.  
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Figure 6.6 Wind and forest characteristics at (a-c) McK Mid, (d-f) Hogg Pass, and (g-h) UIEF 
sites. (a, d, g) Average hourly wind speeds (m/s) observed at the open meteorological stations 
show the wind conditions at each site, and (b, c, e, f) field illustrate differing types of forest and 
open locations. (h) 2011 aerial view shows the position and land cover characteristics of the open 
reference (blue dot) and forest reference (green dot) sensors, and the domain of Figure 6.1g is 
also noted for comparison. See Figure 6.1d and e for aerial views of McK Mid and Hogg Pass. 
Aerial photograph courtesy of Google Earth Imagery, © 2016 Digital Globe. 
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6.11 Appendix 1. Site Details 

6.11.1  Cedar River Watershed, western Washington 

Snow and meteorological data were collected in the Cedar River Municipal Watershed, 

located on the western slopes of the Cascade Range, approximately 50 km east of Seattle, WA 

(Figure 6.1b). These data were collected over WY 2011–2014 at four sites spanning an elevation 

range of 640–910 m, and are described in Dickerson-Lange et al.(2015a). Distributed snow depth 

data were collected bi-weekly via 20-m manual transects at one site (Bear Creek). Following the 

methods for observing snow depth via time-lapse cameras that were assessed by Parajka et al. 

(2012), point snow depth data were determined from digital images of fixed measurement poles 

in the forest (City Cabin), and compared to snow depth data collected with an acoustic sensor in 

the nearby open site (Clearing Met). For the purposes of this study, forest-open comparisons at 

Bear Creek and City Cabin/Clearing Met are lumped as Cedar Low due to their proximity. 

At two additional sites (Mount Gardner and Tinkham Creek), snow duration in a forest plot 

was inferred from distributed observations of ground temperature [Dickerson-Lange et al., 

2015a] and compared with snow duration extracted from the adjacent National Resource 

Conservation Service Snow Telemetry (SNOTEL) depth sensor observations (i.e., the open 

comparison).  

6.11.2  Cascade Crest, western Washington 

Point observations of snow depth were collected at two locations during WY 2015 at the 

crest of the Cascade Range, 70 km east of Seattle, Washington. One location, Snoqualmie 

(elevation 920 m), is situated at Snoqualmie Pass, and encompasses a 30-m diameter forest gap 

and a second-growth coniferous forest study plot adjacent to the gap (Figure 6.1c). Daily manual 
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snow board measurements were collected in the gap, and automated, sub-hourly snow depth and 

meteorological measurements were collected in the gap [Wayand et al., 2015a] and adjacent 

forest. Sub-daily time-lapse photographs of snow measurement poles were also collected in the 

forest and validated against the snow depth sensor.  

The Olallie site (elevation 1180 m) is just east of the Cascade crest, and co-located with the 

Olallie Meadows SNOTEL (# 672), which is situated in a meadow. Time-lapse cameras and 

snow measurement poles were deployed in the gap around the SNOTEL station, and in the 

adjacent forest, approximately 60 m to the southeast. Snow depth from the time-lapse 

photographs in the meadow was validated via close agreement with the SNOTEL acoustic snow 

depth sensor. At both Olallie and Snoqualmie, the photograph-derived forest time series was 

compared with manual or automated snow depth data from the gaps to comprise forest-open 

comparisons.  

6.11.3 McKenzie River and Middle Fork Willamette Watersheds, western Oregon 

Snow and meteorological data were collected over WY 2012–2014 from five paired forest-

open sites chosen to span a broad elevation range (1110–1480 m) [Sproles et al., 2013; OSU, 

2016]. Three study sites were located in the upper McKenzie (McK) River watershed, 

approximately 100 km east of Corvallis, OR on the western slope of the Cascade Range (Figure 

6.1d and e). Two additional sites were located in the Middle Fork Willamette (MFW) watershed, 

located to the south of the McKenzie. The highest site, Hogg Pass (Figure 6.1e), is located 

approximately 500 m from the Hogg Pass SNOTEL (#526).  

Distributed snow depth and snow water equivalent (SWE) observations were collected via 

monthly manual snow courses along 1000 m transects from 1 November through 1 April and bi-
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weekly thereafter. Meteorological stations were deployed at some sites and years to record sub-

hourly snow depth and meteorological variables from both the forest and the open (Table 6.1).  

6.11.4 Mica Creek Watershed, northern Idaho 

Snow magnitude and meteorological data were collected over WY 2004 and 2006 at the 

Mica Creek Experimental Watershed in northern ID, approximately 25 km southeast of St. 

Maries, ID. Observations were collected in second-growth coniferous forest and clear-cut blocks 

(Figure 6.1f), and are described in detail by Hubbart et al.(2015). During WY 2004 and 2006, 

two meteorological stations that recorded 30-minute point values of snow depth were deployed 

in the forest and in the clear-cut. Distributed snow depth and SWE data were collected 

approximately weekly from February through May during WY 2006 via 4 manual transects per 

forest or open.  

The topographic positions of the meteorological stations and snow courses represent a 

relatively small elevation range (i.e., 1380-1460 m), but include diverse aspect positions. We 

aggregated the data by forest or open, and by aspect into topographically equivalent comparisons 

of the north-facing and non-north facing snow courses, based on a pattern of preferential snow 

deposition on north-facing slopes, and compared the aggregated clear-cut (i.e., open) and forest 

transects. Additional information about the history and physiography is given in Hubbart et 

al.(2007) and Gravelle and Link (2007). 

6.11.5 UIEF Lawler Landing, north-central Idaho 

Within the Flat Creek Unit of the University of Idaho Experimental Forest (UIEF) near 

Moscow, ID, snow depth data were collected at seven locations across the Lawler Landing site 

(elevation 880 m) from February to May of WY 2008 [Carson, 2010]. A 70 m north-south 
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oriented transect of 5 snow depth sensors was deployed to record sub-daily snow depth, with co-

located meteorological instruments. The sensors traversed a 40 m long elliptical forest gap and 

the adjacent forest in both directions (Figure 6.1g). The locations were the same as those used 

previously to quantify how shortwave and longwave radiation vary across a forest gap [Lawler 

and Link, 2011]. Two additional snow depth sensors and meteorological stations were deployed 

at “interior forest reference” and “open reference” sites, situated 80 m southeast and 1200 m 

west, respectively, from the main transect. Whereas the forest reference site was similar to the 

surrounding forest, the open reference site was much more exposed than the forest gap. Thus, we 

aggregated the data to two forest-open comparisons: one between the two reference sites and one 

between the sensors in gap and in the surrounding forest.  

6.11.6 McCall Outdoor Science School (MOSS), central Idaho 

Students and instructors at the University of Idaho McCall Outdoor Science School (MOSS) 

in McCall, ID participated in a citizen science campaign designed for this project, detailed in 

Dickerson-Lange et al.(2016). Weekly to monthly field observations of snow cover were 

collected at 6 field sites within Ponderosa State Park (elevation 1540 m), adjacent to Payette 

Lake, during WY 2015 (Figure 6.1h). Students documented snow cover within forested versus 

open areas at each site via photographs and estimates of the continuity of snow cover. 

Additionally, snow depth and density were measured via snow pits in the forest and the open. All 

observations were collected within a relatively flat, 1 km2 area, and metrics were aggregated to 

median values for one forest-open comparison. Checks on estimates of snow covered area as 

compared to photographs, and previous work utilizing citizen science [Lawless and Rock, 1998; 
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Galloway et al., 2006; Peckenham and Peckenham, 2014] demonstrated that amateurs are 

capable of collecting high quality data. 
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6.12 Supporting Information 

Supporting information is provided to further describe data, methods, and sensitivity testing 

referenced in the main text. In particular, Table 6.2 presents values and metadata for snow 

metrics presented in Figure 6.3. Figure 6.7 replicates Figure 6.3b, but with the outlier included. 

Finally, analyses and discussion that support the methods described in section 6.4 are presented. 

6.12.1  Sensitivity of results to methods 

We performed a series of sensitivity tests to assess the effect of methodology on the 

robustness of results. 

6.12.1.1 Extrapolating SDD from Manual Snow Observations 

For comparisons of ∆SDD we utilized distributed observations where available in order to 

fairly represent the spatial heterogeneity of snow. However, many of these distribution 

observations were manually collected, and therefore the temporal resolution ranges from 1 to 3 

weeks. The SDD derived from manual observations is subject to temporal uncertainty related to 

the elapsed time between field visits. Thus, we used linear extrapolation to improve estimates of 

SDD (described in section 6.4.2 in the main text). We tested the robustness of the extrapolation 

approach for a subset of sites by analyzing daily snow depth data from acoustic sensors and 

manually identifying the true SDD. We then resampled the data at varying temporal resolutions 

to mimic the frequency of manual observations. From the sparser subset of observations we 

identified the observed SDD (i.e., the first day on which snow depth was < 1 cm) and 

extrapolated the SDD from the two observations previous to the observed SDD. We used the 

extrapolated SDD in cases for which it occurred before the observed SDD; otherwise, we used 

the observed SDD.  
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We utilized a Monte Carlo approach over numerous starting points and sampling 

frequencies to assess the absolute error, in days from the true SDD, for the extrapolation 

approach as compared to the manually observed SDD. We found that the extrapolation approach 

was almost always closer to the true SDD, with a reduction in the absolute error relative to using 

the observed SDD by an average of 2, 5, or 9 days for a 1, 2, or 3 week temporal resolution 

(Figure 6.8). 

6.12.1.2 Utilizing observations of snow depth versus SWE 

Snow depth is widely used to quantify the magnitude of the snowpack. However, 

accumulation and ablation processes affect the mass of the snowpack, or SWE, which is a 

function of both depth and density. We used snow depth as a measure of snow magnitude, rather 

than SWE, because of the availability of data, the number of repeated observations, and the 

uncertainty related to how snow density varies with land cover. Furthermore, we ignored 

compaction by using snow depth as an indicator of snow magnitude. The reasons for and 

sensitivity tests related to these choices are detailed below. 

For distributed manual observations, which were utilized for computing ∆SDD metrics, we 

used observations from snow depth transects even where SWE was also observed. The snow 

depth transects at all of these sites included approximately 10 times more samples than the co-

located snow course (i.e., SWE transect). Since SWE observations are known to be more 

uncertain at lower snow values [Work et al., 1965], we used snow depth observations for the 

extraction of snow metrics. 

Previous work established that snow density is less spatially variable than snow depth [Elder 

et al., 1998; Sturm et al., 2010; López-Moreno et al., 2013], which supports the use of snow 

depth as a proxy for SWE. However, studies that have explicitly compared snow density 
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observed in the forest to the open have found that snow density is 1-8% higher in the open (1-

5%,[Griffin, 1918]; approximately 8% [Veatch et al., 2009]) and that snow density is negatively 

correlated with forest cover [Molotch and Bales, 2005]. Thus, we repeated cumulative gain and 

loss analysis on estimated daily SWE at select sites by using three approaches to quantify 

density: (1) linearly interpolating between snow course observations of density for forest and 

open (aggregated by land cover to median values for each day of observations), (2) linearly 

interpolating between snow course observations of median density (aggregated to a single 

median value for each day of observations), and (3) choosing the most extreme differences in 

density that were observed in the forest and the open and applying them as constant density 

values to snow depth. For the first two cases, we applied a time-varying density value based on 

the observations. In the third case, we chose the end member density differences between land 

cover types observed on the same day, including one case for which snow density in the open 

was observed to be larger than in the forest and vice versa. We then applied those values to the 

entire time series of observations from the appropriate cover class. Results from applying 

different methods of calculating SWE from depth and then using SWE as input to cumulative 

gain and loss analysis are similar to the results presented in section 6.5. The values for ∆ΣGain 

and ∆ΣLoss metrics vary somewhat with the method used, but the general relation that ∆ΣGain is 

larger than ∆ΣLoss is robust. 

Lastly, we considered the potential effect of ignoring snowpack settling and metamorphism 

in cumulative gain and loss analysis. By ignoring vertical shortening (hereafter “shortening”) due 

to settling and metamorphism, cumulative gain would be underestimated because when snow 

shortening occurs the depth of the snowpack is less than accumulated snow depth [U.S. Army 

Corps of Engineers, 1956]. Subsequently, cumulative loss would be underestimated because the 
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accumulated snow depth is underestimated. However, loss could also be overestimated because 

shortening during periods of loss results in a negative change in depth and is therefore counted as 

loss even if there is no change in snow mass.  

We tested the effect of these over- and under-estimates by applying a linearly changing 

multiplication factor to adjust the depth of the snowpack for shortening, based on previous 

findings comparing the depth of the snowpack to cumulative snow depth measured with a snow 

board [U.S. Army Corps of Engineers, 1956] (See Plate 8-1). The USACE factor ranged from 1 

at the start of the accumulation season, when there is no shortening effect, to 1.5 at peak 

accumulation and onward, when the depth of the snowpack is smaller than the depth of 

accumulated snow. We applied this factor to the snow depth data from the open and forest 

independently and then repeated cumulative gain and loss analysis. The results confirmed that 

the pattern illustrated in Figure 5 is robust.  
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6.13 Supporting Tables 

Table 6.2 Snow metrics for each site, including ratios of peak snow depth and ΔSDD, and notes 
of how each value was determined from the dataset. Figure 6.3 in the main text and Figure 6.7 
are based on these values. 

Site Water 
Year 

Peak Snow 
Depth (cm) 

Snow 
Disappearance 

Day (Julian) 

Comparison 
Metrics Notes 

    Open Forest Open Forest Peak 
Ratio ∆SDD   

Hogg Pass 2012 229 254 148 163 0.9 -15 Extrapolated from median snow 
course value 

Hogg Pass 2013 179.5 203.5 122 141 0.9 -19 Extrapolated from median snow 
course value 

Hogg Pass 2014 105 151 112 141 0.7 -29 Extrapolated from median snow 
course value 

McK Low 2012 138 57 126 122 2.4 4 Extrapolated from median snow 
course value 

McK Low 2013 133 64 122 96 2.1 26 Extrapolated from median snow 
course value 

McK Low 2014 64 23 72 65 2.8 7 

Used sensors for snow metrics due to 
only 3 days of manual observations. 

Note that sensors follow median snow 
course depth for the 3 days of 

distributed observations. 

McK Mid 2012 260 90 155 122 2.9 33 Extrapolated from median snow 
course value 

McK Mid 2013 195 56.5 137 122 3.5 15 Extrapolated from median snow 
course value 

McK Mid 2014 67 25 115 104 2.7 11 Extrapolated from median snow 
course value 

MFW Low 2012 50 35 104 104 1.4 0 Extrapolated from median snow 
course value 

MFW Low 2013 95.5 51 106 91 1.9 15 

Extrapolated from median snow 
course value for forest; extrapolated 

from sensor for open because median 
snow course follows sensor, and 
accumulation event on 15 April 

prolongs snow cover in open; thus, 
this is a more conservative estimate 

for the ∆SDD calculation 

MFW Mid 2012 161 42 138 117 3.8 21 

Used sensors; no snow course at this 
site. Took SDD as inflection point for 

open site, where the sensor reaches 
minimum value near 6 cm. 

MFW Mid 2013 168 80 136 109 2.1 27 Used sensors; no snow course at this 
site 
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UIEF 
Lawler 

Landing 
2008 34 40 65 109 0.9 -44 

Open and forest "reference stations" 
(Met 6 and Met 7); used smoothed 

depth; used 16 February as the day of 
peak depth because first day that all 

sensors were functioning, actual peak 
depth was likely before this date. 

UIEF 
Lawler 

Landing 
2008 96 39.5 118 112 2.4 6 

Mean of two forest stations adjacent 
to gap; median of 3 gap stations; used 
smoothed depth; used 16 February as 

the day of peak depth because first 
day that all sensors were functioning 

Mica Creek 2006 173 100 132 132 1.7 0 

North-facing depth transects; used 
observed SDD (extrapolation would 
have resulted in a value later than the 

observed SDD) 

Mica Creek 2006 109 70 117 118 1.6 -1 
Non-north-facing depth transects (3 in 
open, 3 in forest); extrapolated from 

median snow course value 

MOSS 2015 62 50 90 81 1.2 9 
Aggregate by week and by forest 

cover; used week 5 as timing of peak 
depth  

Olallie 2015 69 25 122 29 2.8 93 
Forest cameras (mean of 2) versus 

snotel depth; Forest SDD ignores late 
March accumulation event 

Snoqualmie 2015 82 28 75 47 2.9 28 Forest cameras (mean of 2) versus 
snow depth sensor in gap 

Cedar Low 
(City Cabin 

and 
Clearing 

Met) 

2011 113 44 139 128 2.6 11 
Forest cameras (mean of 3) at City 

Cabin old growth versus snow depth 
sensor at Clearing Met 

Cedar Low 
(City Cabin 

and 
Clearing 

Met) 

2013 128 65 130 124 2.0 6 
Forest camera (1) at City Cabin old 
growth versus snow depth sensor at 

Clearing Met 

Cedar Low 
(Bear 

Creek) 
2011 102 50 143 122 2.0 21 

Extrapolated from median snow 
course depth, median of all control 

values and of all gap values for Bear 
Creek; Peak values are from later 

peak 

Cedar Low 
(Bear 

Creek) 
2012 108 49 129 111 2.2 18 

Extrapolated from median snow 
course depth, median of all control 

values and of all gap values for Bear 
Creek; Peak values are from later 

peak 

Mount 
Gardner 2011   157 137  20 

Open SDD from snow depth sensor; 
Forest SDD as median of iButton 

grid; No depth observations 
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Mount 
Gardner 2012   142 129  13 

Open SDD from snow depth sensor; 
Forest SDD as median of iButton 

grid; No depth observations 

Mount 
Gardner 2013   136 123  13 

Open SDD from snow depth sensor; 
Forest SDD as median of iButton 

grid; No depth observations 

Mount 
Gardner 2014   122 102  20 

Open SDD from snow depth sensor; 
Forest SDD as median of iButton 

grid; No depth observations 

Tinkham 
Creek 2013   162 150  12 

Open SDD from snow depth sensor; 
Forest SDD as median of iButton 

grid; No depth observations 

Tinkham 
Creek 2014     146 131.5   14.5 

Open SDD from snow depth sensor; 
Forest SDD as median of iButton 

grid; No depth observations 
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6.14 Supporting Figures 

 
Figure 6.7 This is the same plot as shown in Figure 6.3b, but includes the Olallie site (outlier), 
which was removed from Figure 6.3b for readability. 
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Figure 6.8 Histograms showing the frequency of difference (in days) in absolute error between 
using the observed SDD and using the extrapolated SDD method, for 50 iterations of a Monte 
Carlo approach used to resample the daily data at frequencies ranging from 3 to 21 days. 
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7.1 Abstract 

Forests are a key influence on snow processes, and the increasing availability of airborne 

lidar data allows for high resolution quantification of forest structural characteristics over large 

areas. We assess linkages between forest metrics and four years of snow observations in a 

maritime mountain watershed in western Washington, USA, in order to inform process 

understanding and model development. We test the relationships between lidar-derived canopy 

predictor variables and snow observations that integrate forest effects on both snow 

accumulation and ablation processes, including the time series of snow depth observations 

through two years, and snow duration observations through four years. We find that 92% of the 

observed spatiotemporal variability of snow depth in a 1 km2 area is approximated by two 

temporal modes determined from matrix decomposition, which represent snow accumulation and 

ablation. The spatial variance in the scaling of these modes is highly correlated (r2 > 0.7) with 

several canopy variables in this even-aged forest stand, including mean canopy cover and mean 

canopy height. Multivariate models of snow duration across a 500 m elevation gradient, four 

years, and a range of forest types explain 52-72% of the variance in snow disappearance timing, 

and indicate a stepped response at two sites in which snow duration is longer where canopy 

cover is <60% and shorter where canopy cover is >80%. The difference in snow disappearance 

timing between open and forest is shown to be larger in higher snow years, and at lower 

elevations. Taken together, these results suggest that canopy openness directly overhead controls 

both accumulation and ablation processes, and subsequent snow disappearance timing. 

Furthermore, canopy edges drive the gradient of canopy cover in these even-aged stands, and 

delineating open versus forested area may be sufficient for approximating forest effects on snow 

in the maritime snow zone. 
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7.2 Introduction 

The increasing availability of airborne lidar data allows for high resolution spatial 

characterization of forest attributes over large areas [Harpold et al., 2015a]. In turn, this 

improved forest information holds large potential for advances in both process understanding and 

model representation of the interactions between forests and snow accumulation [Trujillo et al., 

2009; Moeser et al., 2015] and ablation [Broxton et al., 2015; Musselman et al., 2015]. Canopy 

metrics derived from lidar are available at higher spatial resolutions (e.g. 5 m) than traditionally-

used bulk metrics, such as canopy cover or leaf area index (e.g., 30 m data from the National 

Landcover Database), and can explicitly resolve the spatial arrangement of forest canopy 

features, such as the size and density of forest gaps, and the positions of edges between forests 

and openings.  

Although the general ways in which forests modify snow processes are well established 

(e.g., [Connaughton, 1935; Hedstrom and Pomeroy, 1998; Storck et al., 2002; Geddes et al., 

2005; Essery et al., 2008; Musselman et al., 2008; Veatch et al., 2009; Ellis et al., 2011; 

Seyednasrollah et al., 2013]), there is substantial spatiotemporal variability in the magnitude and 

direction of forest effects on snow. Empirical studies have demonstrated that snow accumulation 

generally decreases with increasing forest density because the forest canopy intercepts snow and 

reduces under-canopy snowpack [Varhola et al., 2010a], but the amount of interception and 

subsequent loss depends on climate conditions [Kobayashi, 1987; Hedstrom and Pomeroy, 1998; 

Storck et al., 2002]. Snow ablation rates generally decrease with increasing forest density due to 

shading from sunlight and sheltering from wind [Varhola et al., 2010a; Ellis et al., 2011; 

Seyednasrollah et al., 2013]. However, the amount of decrease varies with topographic position 

[Strasser et al., 2011; Ellis et al., 2013] and forest attributes [Kittredge, 1953; Woods et al., 
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2006; Gleason et al., 2013]. Alternatively, the presence of forest can increase ablation rates due 

to enhanced incoming longwave radiation from the forest canopy as compared to the atmosphere 

[Essery et al., 2008; Pomeroy et al., 2009; Lundquist et al., 2013]. Snow accumulation and 

ablation rates are also spatially variable within and across diverse forest canopy types, such as 

forest stands subject to spatially variable thinning [Woods et al., 2006; Jost et al., 2007]. 

Previous work at the aggregated scale of a plot or silvicultural treatment unit has indicated that 

bulk representation of forest characteristics may miss important local variations in forest-snow 

processes (Dickerson-Lange et al., 2015b).  

Thus, implementing high resolution forest data in empirical and physically-based models 

has potential to improve representation of the spatiotemporal variability of snow processes 

[Musselman et al., 2015; Zheng et al., 2016]. Enhanced understanding of the relations between 

silvicultural actions, and the resulting lidar data and snow quantities is also of potential use to 

land and water managers who consider the contribution of snow storage to forest health, aquatic 

habitat, and water resources [Grant et al., 2013; Wigmosta et al., 2015]. Distributed hydrology 

modeling is critical for simulating future impacts of forest change, but is limited by the quality of 

parameterizations of forest-snow processes [Essery et al., 2009; Rutter et al., 2009; Clark et al., 

2015].  

Several recent studies have begun to address the question of how to utilize lidar to improve 

representation of forest effects on snow. Strategies generally fall into two categories: those which 

utilize the three-dimensional lidar point cloud and those that compress the information into a 

two-dimensional forest metric. The former has been successfully used for small spatial-scale 

applications, such as explicit ray tracing of solar radiation through a forest canopy [Musselman et 

al., 2015], but is computationally intensive. The latter seeks to develop a grid-based framework 
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to represent the forest, which can be readily implemented into grid-based models or compared 

with other gridded data.  

This investigation focuses on the usage of gridded lidar metrics to explain observed snow 

quantities. Most previous work has focused on using forest metrics to explain snow metrics, such 

as peak snow magnitude, intercepted snow magnitude, and ablation rates. Peak snow water 

equivalent (SWE) and snow ablation rate in interior British Columbia, Canada, were shown to 

correlate with the percent of canopy cover, a lidar-derived ratio of the number of lidar returns 

from the canopy (i.e., > 2m above ground surface) to the total number of lidar returns for a given 

spatial domain [Varhola et al., 2010b, 2014]. In an application of lidar metrics across a 2150 m 

elevation gradient in the Sierra Nevada, California, USA, Zheng et al. (2016) determined that 

lidar-derived canopy cover explained 14% of the variance in peak snow depth values, whereas 

elevation explained 43%. [Moeser et al., 2015] linked lidar-derived forest metrics that describe 

gap size and position relative to gap edges to observations of the amount of intercepted snow 

from individual storm events in Switzerland, and developed a model for canopy snow 

interception. Additional previous studies have also demonstrated the importance of position 

relative to canopy edge, which is readily quantifiable from lidar data, for explaining the spatial 

variation of snow mass and energy fluxes [Veatch et al., 2009; Broxton et al., 2015]. 

This investigation assesses linkages between lidar forest metrics and snow observations that 

integrate forest effects on both snow accumulation and ablation processes in western 

Washington, USA. In this forested maritime snow zone, a relatively warm winter climate regime 

contributes to multiple episodes of accumulation and melt throughout a single winter. Whereas 

previous studies have focused heavily on individual snow metrics, such as peak snow depth 

[Varhola et al., 2010b, 2014] or amount of intercepted snow from a single event [Moeser et al., 
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2015], multiple peak values of snow depth interspersed by periods of substantial mid-winter melt 

are common in the maritime Pacific Northwest, USA [Storck et al., 2002; Dickerson-Lange et 

al., 2015a; Wayand et al., 2015a].  

Since forest modifications of snow processes are different depending on the process and 

conditions, the link between forest and snow is this climate is complex. For example, canopy 

density directly overhead may be the primary control on snow depth at the first peak value in a 

season, but if a warm, sunny period follows that first peak, the second peak value will be a 

function of both canopy density overhead, which controls interception, and canopy density to the 

south, which controls incoming solar radiation. Lidar data allow for consideration of both the 

size and shape of the spatial extent of forest characteristics that influence snow processes.  

Thus, we consider snow observations that integrate the spatiotemporal variability of forest 

modifications of snow processes, including time series of snow depth observations and snow 

duration metrics. In particular, we utilize spatially distributed observations of snow depth (2 

years) and snow duration (4 years) collected on the forested western slope of the Cascade 

Mountains, Washington, USA, to address the following overarching questions: 

1. Which lidar-derived metrics are most predictive of the observed spatiotemporal 

variability in snow depth and snow duration under a range of forest canopy densities? 

2. How do forest characteristics influence different modes of temporal variance in snow 

depth, and can this help us understand the influence of forest on different snow 

processes? 

3. What are the relative importance and influence of canopy characteristics in controlling 

snow duration across a range of forest and topographic attributes? 

Assessment of the relations between forest metrics and snow quantities will inform future 

development of both physically-based and empirical models that integrate lidar data to represent 

forest-snow interactions. Additionally, we aim to further elucidate the roles of forests in 
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modifying snow accumulation and ablation processes in the maritime snow zone. Previous 

studies illustrate that the magnitude and direction of forest-snow processes vary considerably 

with climate [Lundquist et al., 2013; Dickerson-Lange et al., 2016b]. Improved understanding of 

these interactions in the warm and wet maritime snow zone may support improved prediction of 

the combined effects of forest and climate change across models that are intended to be applied 

worldwide. 
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7.3 Methods 

7.3.1 Study site and snow observations 

Observations of snow magnitude and snow duration were collected from WY 2011 through 

WY 2014 in the upper Cedar River Municipal Watershed, approximately 50 km east of Seattle, 

Washington, USA (Figure 7.1). The watershed is situated on the western slope of the Cascade 

Range and is subject to a maritime climate, with heavy winter precipitation and winter 

temperatures that fluctuate around the freezing point. Data were collected at 5 study sites, 

ranging from 620 m to 1165 m in elevation, and ranging in forest characteristics. Peak SWE 

values at the study sites were highest in WY 2012 (63-151 cm) and lowest in WY 2014 (28-85 

cm, Table 7.1). 

The site characteristics and data collected are described only briefly here because the 

experimental design and physiography of the study area are detailed in [Dickerson-Lange et al., 

2015b]. The entire observational dataset and related metadata are publicly available. Snow 

observations at all sites were designed to robustly sample 40 × 40 m experimental plots that 

represent a single forest type or silvicultural treatment. The present study uses snow observations 

at individual locations, but we reference the membership in different types of experimental plots 

to describe forest type and to link to previous work. Experimental plots at the Bear Creek 

(elevation 620-640 m, BC on Figure 7.1a) site and Mount Gardner (elevation 860-900 m, MG on 

Figure 7.1a) site include dense second-growth forest with closed canopy, thinned second-growth 

forest, and plots with 20 m diameter canopy gaps located in the middle (e.g., Figure 7.1b). Mount 

Gardner additionally includes an old-growth forest plot, and the City Cabin (elevation 775-780 

m, CC on Figure 7.1a) site consists of a single old-growth forest plot. The higher Tinkham Creek 

(elevation 910-930 m, TC on Figure 7.1a) and Rex River (elevation 1160-1165 m, RR on Figure 
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7.1a) sites each include a sparsely-forested plot previously subjected to multiple episodes of 

silvicultural thinning. Tinkham Creek additionally includes a dense, second-growth forest plot. 

National Resource Conservation Service Snow Telemetry (SNOTEL) stations are co-located 

with the Mount Gardner, Tinkham Creek, and Rex River sites. We additionally collected sub-

daily snow depth data with an acoustic snow depth sensor at the Clearing Meteorological station 

(CM on Figure 7.1a).  

Biweekly manual snow depth transects were performed at Bear Creek in WY 2011 and 

2012, and distributed ground temperature data were collected in WY 2011-2014 at Bear Creek, 

Mount Gardner, and City Cabin, and in WY 2013-2014 at Tinkham Creek and Rex River (see 

Figure 7.1b for an example of sample locations). Hourly ground temperature data from 

individual iButton temperature sensors (Maxim DS 1922L thermochrons) buried approximately 

2 cm below the ground surface were used to infer daily snow presence and annual snow duration 

at each sample location following the methods detailed in [Dickerson-Lange et al., 2015a]. 

7.3.2 Snow metrics 

Individual observations of snow depth from manual snow courses were spaced 

approximately 1 m apart along two perpendicular 20-m transects in each 40 × 40 m experimental 

plot. Snow depth at 15 plots was measured consistently in WY 2011 on a weekly to bi-weekly 

frequency. In WY 2012, snow courses were consistently performed at 5 plots on a bi-weekly to 

monthly frequency. These observations are spatially auto-correlated and vary in precise location 

from snow course to snow course. The minimum spacing for independent samples of snow 

duration (i.e., the range on a semi-variogram) was previously shown to be 4-8 m at this site 

[Dickerson-Lange et al., 2015a]. Thus, to reduce redundancy from autocorrelation and noise 
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from imprecise geolocation, we use a nearest neighbor approach to aggregate observations by 

taking the mean along 5 m sections of the transect, at 5 positions in each plot. Thus, the snow 

depth dataset is aggregated to five observations at each experimental plot, representing the center 

of the plot and the 5m at both ends of each perpendicular transect. In total, we analyze snow 

depth at 75 and 24 aggregated locations in WY 2011 and 2012, respectively. 

Snow duration is computed from daily snow presence as the relative number of snow 

covered days (RSCD) since the final peak snow depth value for the site. This metric of snow 

duration was previously shown to be more representative than snow disappearance date (SDD) 

of forest-snow interactions at the Bear Creek site because of intermittent snow cover and late-

season snow accumulation events [Dickerson-Lange et al., 2015a]. For example, some locations 

that become snow-free early in the ablation season are then recovered during a spring snow 

storm, resulting in synchronous values for SDD across many sites that do not reflect the 

differences in forest-snow processes at those locations.  

Furthermore, in order to assess forest influences on snow duration across multiple sites and 

years, we use a relative metric of ΔRSCD as the difference in relative number of snow covered 

days between a reference open location and the sample location. The reference open values are 

derived from snow depth sensors at the Mount Gardner, Tinkham Creek, and Rex River 

SNOTEL stations, and at the Clearing Meteorological station for comparison to the Bear Creek 

and City Cabin sample locations. Thus, the ΔRSCD metric essentially normalizes for sites and 

years where snow disappears earlier or later as a function of differences in the amount of snow 

accumulation or the conditions during the ablation season. Since maximum snow duration tends 

to occur in the center of gaps, as in all of the open reference stations, all values of ΔRSCD are 
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negative. Higher (lower) values of ΔRSCD indicate that snow duration is longer (shorter), and 

that there is less (more) difference between the sample location and the reference open station. 

7.3.3 Lidar data and forest metrics 

Airborne lidar data were acquired over the study sites in 2012 by the National Center for 

Airborne Laser Mapping (NCALM, see Acknowledgments). The survey was performed with an 

Optech Gemini on 31 August 2012 and 1 September 2012 (i.e., leaf on), with an average pulse 

density of 7.5 m2 and up to four returns per pulse.  

The 3-dimensional point clouds are processed in the open-source FUSION software 

(http://forsys.cfr.washington.edu/fusion/fusion_overview.html) to produce gridded 1 m bare 

earth and canopy surface models, and 5 m canopy cover and canopy height metrics. The height 

(m) of the top of the canopy is interpolated in every 1 m grid based on the canopy surface model 

(CSM). Canopy cover (%) is computed as the ratio of lidar returns from greater than 2 m above 

the ground surface (represented by the bare earth model) in a given 5 m grid cell to the total 

number of returns in that grid cell. 

We compute gridded metrics over a range of size, shapes, and summary statistics (i.e., mean 

and standard deviation) to empirically test the strength of relationships between canopy cover, 

canopy height, and snow observations. By testing a range of spatial domains, we aim to elucidate 

the most relevant spatial scale and the directionality of forest influences on snow processes. 

Since forest effects on incoming solar radiation are directional, we hypothesize that forest 

metrics based on the forest directly overhead may have a different influence on snow 

observations than forest metrics to the south of the sample location. Thus, we test gridded 

canopy cover (5 m) in aggregated 15, 25, and 35 m square domains (Figure 7.2a) and 15 and 25 
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m wedge-shaped domains, for which the apex of the wedge was oriented toward north to reflect 

influences from trees to the south (Figure 7.2c). We also test gridded canopy height (1 m) in 

aggregated 3, 5, 9, 15, 25, and 35 m square domains and 15 and 25 m wedge-shaped domains.  

For all spatial domains greater than the base data (i.e., 5 m for canopy cover and 1 m for 

canopy height), we aggregate via focal mean and standard deviation, where the summary 

statistics are computed based on the distribution of gridded values in the defined neighborhood, 

and the summary value (e.g., mean) is assigned to the pre-defined neighborhood kernel (e.g., 

often the center pixel in a square neighborhood, Figure 7.2a). Focal metrics control the position 

of the point of interest in the domain (e.g., the snow sample location), in contrast to extracting 

point values from an aggregated domain, which results in a wide variety of point positions 

relative to the grid cell (e.g., Figure 7.2b). 

We also test the use of the 1 m canopy height values to quantify the percent open area in a 

domain. Since the canopy surface model relies only upon first lidar returns rather than the ratio 

of canopy returns to ground returns, the canopy surface model can be more robust in very dense 

forests where ground returns are sparse. Thus, metrics from canopy height could be a useful 

alternative to canopy cover in some locations. We therefore classify each 1 m pixel as under 

canopy or open based on a threshold canopy height of 2 m and compute percent open area, 

within the same size and shape focal domains as discussed above.  

From the bare earth digital elevation model, we extract focal mean values for topographic 

metrics in 10 m and 30 m square domains. Topographic quantities include elevation, surface 

curvature, slope and aspect. Surface curvature is represented by a topographic position index 

(TPI, after [Weiss, 2001]). TPI values range from -1 to 1, with low values representing 

concavities, have values representing convexities, and 0 values indicative of constant slope. 
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Slope and aspect are combined into a single ‘northness’ metric, after [Molotch et al., 2005], 

which is computed as the product of the cosine of the aspect and the sine of the slope. Values 

range from -1 to 1, with low values indicative of southern exposure and high values indicative of 

northern exposure.  

7.3.4  Data Analysis 

7.3.4.1 Singular Value Decomposition of Snow Depth at Bear Creek  

We apply singular value decomposition (SVD) to quantify the spatiotemporal variability in 

the entire dataset of spatially aggregated (i.e., 5 m nearest neighbor, see section 2.2) snow depth 

observations through time at Bear Creek in WY 2011 and 2012. Since the snow depth 

observations were all collected in one < 1 km2, relatively flat location, the spatial variability in 

snow depth is expected to be primarily due to forest canopy influences. We analyze each WY of 

snow depth separately, after removing the mean snow depth for the entire WY from all 

individual observations so that the mean of the WY dataset equals zero.  

SVD is a matrix decomposition method for reducing dimensionality and redundancy in a 

dataset. The decomposition empirically determines new orthogonal bases for data transformation 

that maximize the variance explained. In essence, SVD analysis of these datasets results in 

ranked time modes and the corresponding multipliers for each time mode at each location in 

space. Thus, the complete observed pattern of snow depth through time at any location is 

approximated by the linear combination of the most important temporal modes multiplied by the 

corresponding coefficients at that location in space and the singular values (which are 

proportional to the amount of variance explained by the mode).  
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We then assess the correlation between the spatial coefficients related to each of the 

dominant temporal modes and the lidar-derived spatial predictors, including canopy and 

topographic metrics. The spatial coefficients reflect the variability in the response through the 

entire season of observations, rather than on a single day, as in linear correlation. We regress the 

spatial coefficients against the predictors and use the correlation coefficient (r2) and p-values to 

quantify the strength of the correlation. 

7.3.4.2 Random Forest Models of Snow Duration Across Years and Sites 

We apply a random forest approach to empirically build optimal multivariate models to 

predict snow duration across multiple years and sites. Random forest is a non-parametric 

classification and regression tree (CART, Breiman et al., 1984) approach that empirically selects 

a multivariate predictor set that explains the most variance in the response variable [Breiman, 

2001; Cutler et al., 2007]. The algorithm is implemented in the randomForest package [Liaw and 

Wiener, 2002] for the R statistical program (release 3.1.0) [R Core Development Team, 2014]. 

Random forest uses an iterative approach to build and combine hundreds of binary regression 

trees (i.e., a forest of regression trees, typically 500). By building each tree from a randomly 

selected subset of predictors at each node, the model avoids over-emphasizing a single, dominant 

predictor variable. In addition, the algorithm assesses the relative contribution of correlated 

predictors through quantifying the additional variance explained. In the case of highly correlated 

forest canopy metrics, for example, if canopy height is chosen as the best predictor then canopy 

density will be included only insofar as it explains additional variance in the data. Furthermore, 

by taking the average across hundreds of trees the model averages out the tendency of a single 

iteration to over-fit to the data and reduces the need for post-construction pruning of the tree. 
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Since the four-year dataset of snow duration includes sites and experimental plots that were 

added or subtracted through time, we subset the dataset to build four models. We build a 1-site 

model based on snow duration at Bear Creek over WY2011-2014 to assess the influence of 

canopy across multiple water years in a single, topographically similar site. We build 2-site 

models to additionally investigate the relative influence of elevation; the Mount Gardner site is 

approximately 250 m higher than Bear Creek, has generally lower canopy heights but similarly 

dense forest canopy (see Table 4.1 and Figure 7.8 in the supporting materials). Two 2-site 

models are assessed: (1) based on snow duration observations collected at gap, thinned, and 

control forest plots at Bear Creek and Mount Gardner in WY 2011 and 2012, and (2) based on 

snow duration observations collected at gap, thinned, and control forest plots at Bear Creek and 

at thinned and control forest plots at Mount Gardner in WY 2011-2014. Observations collected 

in the gap plot at Mount Gardner during WY 2011 and 2012, and at the old growth plot at Mount 

Gardner in WY 2013 and 2014 were excluded from the second model. These subsets of data 

were used because observations from the Mount Gardner gap in WY 2011 and 2012 represent 

canopy values that are more open (i.e., from an additional gap plot) and are less well-represented 

in the dataset (e.g., distribution of canopy cover values presented in the supporting section, 

Figure 7.8), but the gap plot was not sampled in WY 2013 and 2014. Similarly, the Mount 

Gardner old growth plot was only sampled in WY 2013 and 2014. Mixing data from these plots 

when assessing inter-annual forest-snow dynamics could influence the results. 

Lastly, we build a 5-site model from observations collected during WY 2013-2014 at five 

sites, which span an elevation range of 620 – 1165 m and diverse forest types (see Table 4.1). In 

addition to the control second growth forest, thinned forest, and gap plots at Bear Creek and 

Mount Gardner, the observations sampled old growth forest at Mount Gardner and City Cabin, 
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dense second growth at Tinkham Creek, and plots subject to multiple episodes of thinning at 

Tinkham Creek and Rex River. Thus, the 5-site model reflects the predictability of snow duration 

in diverse forest and topographic conditions. 

For each of these models, the random forest approach selects the optimal predictor set and 

quantifies the relative importance of each predictor variable in the optimal set. This ‘importance’ 

metric is computed from the decrease in mean squared error associated with iteratively including 

each predictor variable in the model. Although the random forest algorithm inherently accounts 

for dependent predictor datasets, parsimonious predictor inputs can simplify model construction 

and improve interpretability [Kane et al., 2015]. Thus, we cycled through several options for 

predictor inputs, ranging from using all predictors to constraining predictors to one type of 

canopy variable (i.e., canopy cover versus canopy height) or one spatial domain (i.e., 15 versus 

25 m).  



220 

 

7.4 Results  

7.4.1 Spatiotemporal variability of snow depth  

7.4.1.1 Dominant modes of variability 

Observations of snow depth through time at one site (Bear Creek) demonstrate that values in 

a single year follow a similar temporal pattern, indicating multiple peak snow depth values 

through a single winter (Figure 7.3). Both the magnitude and amplitude of variation are similar at 

all control forest locations, with more variance between all locations in the thinned forest and 

open locations (not shown).  

SVD was applied to the time versus space matrix of all snow depth values for each water 

year, and the decomposition demonstrates that in WY 2011 and 2012 the majority of the 

temporal variability is approximated by 3 modes, with 52% (WY 2011) and 57% (WY 2012) of 

the variance explained in the 1st mode, 35% (WY 2011) and 40% (WY 2012) in the 2nd mode, 

and 3% (WY 2011) and 4% (WY 2012) explained in the 3rd mode. The first mode scales the 

local maxima of snow depth (Figure 7.4a), and the spatial coefficients for the first mode are all 

positive (Figure 7.4b), indicating a temporal mode that is in-phase, but is different in magnitude 

and slope at all locations. In other words, snow depth at all locations rises and falls together but 

to variable maxima and minima, which is illustrated for four example locations by multiplying 

the temporal mode by the singular value (i.e., the variance explained) and spatial coefficient for 

each location (Figure 7.5). The largest variance in the first temporal mode occurs at times that 

coincide with peak snow depth observations. Spatial coefficients are highest at the sites with less 

canopy cover, such as in the center of a gap, and lowest within dense canopy, indicating above 

average snow magnitudes at open locations with higher spatial coefficients (Figure 7.4b and 

Figure 7.5).  
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The second temporal mode displays the largest variance at times between or following peak 

values in snow depth observations. The signs of the spatial coefficients are mixed, such that the 

second temporal mode displays diverging trends through time depending on location (Figure 

7.4b and Figure 7.5). In particular, many locations in gaps are described by a negative 

coefficient, such that the second mode indicates above average snow depth between and 

following days of peak snow depth. In contrast, locations in dense forest are described by 

positive coefficients, indicating below average snow depth between and following days of peak 

snow depth. 

The third temporal mode represents a much smaller portion of the variance in the dataset, 

but improves the low-dimensional approximation of late season snow depth at many locations. 

The mode modifies the amount of snow depth for one or two days of observations in April of 

both WY2011 and 2012, affecting the magnitude of the final peak snow observation and the 

subsequent rate of ablation.  

7.4.1.2 Correlation analysis on spatial coefficients 

The spatial coefficient for each sample location reflects the local conditions that scale the 

snow variability through time in both direction and magnitude. Thus, the spatial pattern of 

coefficients reflects local attributes. The spatial coefficients therefore correlate strongly with 

some metrics of the lidar-derived predictor dataset (Figure 7.6, Table 7.2). The predictors that 

correlate most strongly (r2: 0.68-0.74) with the spatial coefficients for the first and second modes 

of snow depth variability are mean canopy cover and mean canopy height in 15 and 25 m square 

domains. The standard deviation of canopy cover and the percent open area (based on the 1m 

canopy surface model) also correlate highly with the spatial coefficients for the first mode, and 
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have slightly lower correlation coefficient for the second mode. None of the topographic metrics 

derived from lidar, including northness or TPI, correlate strongly with any of the top modes. 

Notably, the strength of correlation between canopy predictors and the SVD spatial 

coefficients are similar between the first and second modes for each predictor (Figure 7.6,Table 

7.2). None of the spatial predictors correlate strongly with the third mode, with a maximum 

correlation coefficient of < 0.3 (Figure 7.6). 

7.4.2 Multivariate models of snow duration 

7.4.2.1 One-site model: Bear Creek, WY 2011-2014 

The random forest binary regression tree model of snow duration at a single site (Bear 

Creek) over WY 2011-2014 explains 74% of the variance with a RMSE of 4.4 days. The top 

three predictor variables are mean canopy cover in a 15 m square (33% of the importance), WY 

(19% of the importance), and mean canopy cover in a 15 m wedge (14% of importance) (Figure 

7.7a). Models that are constructed using both canopy cover and canopy height predictors achieve 

similar amounts of variance explained (i.e., r2), and the importance is divided into similar 

amounts between mean canopy height and mean canopy cover. Similarly, in a model constructed 

from only canopy height predictors, rather than canopy cover predictors, the same types of 

variables are selected as for the model fit to the canopy cover predictors, and the functional 

relationships are similar in shape (Figure 7.9 in the supporting materials).  

Partial plots illustrate the snow duration response of an individual predictor variable in the 

fitted model across the range of predictor values, with all other predictors held constant at their 

mean values (Figure 7.7). The snow duration response to canopy cover at Bear Creek mimics a 

step function, for which snow duration is longer (i.e. higher values of ∆RSCD) where mean 
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canopy cover is 0-60%, and snow duration is shorter (i.e. lower values of ∆RSCD) where canopy 

cover is greater than 80% (Figure 7.7a). The response of snow duration to WY indicates that 

there was less difference between sample locations and the reference open location (i.e., Clearing 

Meteorological station) in WY 2011 and 2012, and more difference in WY 2013 and 2014. The 

response of snow duration to the remaining canopy predictors indicates that snow lasts longer 

where canopy cover both immediately overhead and to the south is lower (low values of mean 

canopy cover in a wedge). The variable snow duration response across the range of elevation 

values likely reflects the spatial arrangement of experimental plots rather than a true elevation 

effect. 

7.4.2.2 Two-site models: Bear Creek and Mount Gardner, WY 2011-2014 

The first two-site model is built from snow duration data from the gap, thinned, and control 

forest plots at Bear Creek and Mount Gardner in WY 2011 and 2012. The model demonstrates 

less predictive value (r2 = 0.52) overall, but the results are similar to the Bear Creek model in that 

canopy cover is the dominant predictor (importance metric of 25%; Figure 7.7b). Snow duration 

demonstrates a stepped response to canopy cover that is similar to the response in the one-site 

model (previous section). The inclusion of data from the Mount Gardner gap and thinned plots 

results in slightly higher frequencies of mid-range canopy values than in the one-site model, 

illustrated by the comparison of histograms in Figure 7.7a and Figure 7.7b. Elevation and the 

standard deviation of canopy cover emerge as the second most important variables (23 and 22%). 

The frequency of elevation values is bimodal, reflecting observations collected at two sites that 

are separated by approximately 250 m elevation. The snow duration response to elevation 

indicates that there is more difference between the sample locations and the reference open 

location at Bear Creek than at Mount Gardner. The response to standard deviation of canopy 
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cover is also stepped: longer snow duration where canopy variance is higher. Water year is not 

an important predictor variable for this dataset from WY 2011 and 2012, with a flat snow 

duration response between the different years (not shown). 

The second two-site model explains a higher percent of the variance in the data (r2 = 0.74), 

and also selects canopy cover as a dominant variable along with elevation (25% importance 

each) across two sites and four WY of snow duration data (Figure 7.7c). Canopy cover in a 

wedge is the third predictor (14% importance), and WY is the fourth (12% importance). Similar 

to the first two-site model, the response of snow duration to elevation is stepped, with more 

difference between snow duration at a sample location and at a reference open location at the 

Bear Creek site. In contrast to the first two-site model (WY 2011 and 2012), the second two-site 

model (WY 2011-2014) demonstrates a clear dependence on WY as a predictor, with less 

difference between sample locations and their open reference locations in WY 2011 and 2012 

and more difference in WY 2013 and 2014. 

7.4.2.3 Five-site model: All Sites, WY 2013-2014 

The Random Forest model explains 60% of the variance of the dataset, with the two top 

predictors capturing site differences characterized by elevation (30% importance) and northness 

(19% importance, Figure 7.7d). The third and fourth predictors are mean canopy cover in a 15 m 

square and in a 15 m wedge (tied at 17% importance each): the overall trend is toward longer 

snow duration in locations with less canopy cover directly overhead and to the south, but the 

response is variable, particularly in the range of 40-80% canopy cover. Notably, the importance 

of WY is less than 1% for this dataset that spans WY 2013-2014. 
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7.5 Discussion 

7.5.1 Relating SVD modes to forest-snow processes 

Singular value decomposition of snow depth through time distills the temporal and spatial 

variance at one site (Bear Creek) through an entire snow season, rather than representing a single 

moment in time. As such, the dominant modes of temporal variance, and the spatial coefficients 

at each location, reflect the integration of key snow processes and how they are modified by the 

spatial attributes at each location. Since the dataset is constrained to observations collected 

within a < 1 km2, relatively flat site, observed snow variability is likely to be linked to local 

attributes related to the forest canopy (or lack thereof) or local topographic features (i.e., 

curvature), rather than reflecting larger spatial scale differences in snow processes that could be 

attributed, for example, to orographic effects on precipitation.  

The dominant mode of temporal snow depth variability reflects the amplitude of peak values 

throughout the snow season. From a process perspective, this scaling is primarily related to forest 

modification of snow accumulation via canopy snow interception. Where dense canopy is 

present, snow is intercepted, and the under-canopy snow accumulation is reduced, resulting in 

lower peak values. At this site, the snow depth peaks are highest in the gap center and lowest in 

the control forest (Figure 7.5, row 1).  

The second mode of variability scales snow depth in between or following peak values, and 

is related to ablation processes. In particular, snow depth during periods of ablation is higher at 

the gap sites and lower at the control sites (Figure 7.5, row 2). Mathematically, some of the 

scaling is related to over (or under) representation of the ablation curve resulting from fitting the 

first mode to the amplitude of peak values and therefore affecting both the minima and maxima. 

However, the adjustments made by the second mode (i.e., since the scaled modes are summed to 
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approximate snow depth at a single site) are larger in magnitude than the over (or under) 

estimations of snow depth minima in the first mode. Thus, the mode may represent higher 

ablation rates in the forest versus the gaps at some locations and in some events. 

Both the first and second temporal modes, which broadly represent accumulation and 

ablation processes, are correlated approximately equally to the same canopy predictor variables 

(Figure 7.6 and Table 7.2). This finding supports previous analysis in the Pacific Northwest that 

suggested diminished importance of the role of forest in shading the snowpack from sunlight in 

the net effect of forest on snow duration [Dickerson-Lange et al., 2016b]. If forest shading from 

sunlight were important to under-canopy ablation, we would expect to find that canopy metrics 

that describe canopy density or openness to the south of a sample location to be more strongly 

correlated with the second mode than canopy metrics that represent the canopy directly 

overhead. That both modes are most strongly related to canopy density directly overhead 

suggests that the amount of snow present from accumulation processes, or the differential 

longwave radiation contribution from overhead forest versus sky are more likely to contribute to 

the temporal variability in snow depth following a peak value.  

The third mode of variability represents much less variance explained (3%), but is 

interesting because it mainly modifies snow depth in the late season, April and May, in both WY 

2011 (Figure 7.6, row 3) and 2012 (not shown). In contrast to the first two modes, the spatial 

coefficients of the third modes are not robustly explained by any of the canopy or topographic 

predictor variables (Figure 7.7). We speculate that the third mode reflects whether the overlying 

canopy completely attenuates the snow accumulation signal during small, late-season events 

when intercepted snow is likely to be completely lost to the under-canopy snowpack via melt 

driven by high energy inputs. In particular, we hypothesize that a different metric that better 
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reflects the total longwave radiation input from both the overlying canopy and the multi-

directional tree stem inputs, such as distance from a tree stem, may be more predictive of the 

variability in snow depth response to these late-season snow storms. 

7.5.2 Multivariate modeling of snow duration 

Random Forest modeling of snow duration allows for estimation of the contribution of 

individual predictor values to the overall multivariate explanation of snow duration across sites 

and years. For a single densely forested site, Bear Creek, canopy cover is the most important 

predictor variable, even over four winters of data collection (Figure 7.7a). Similarly, canopy 

cover is one of the top two predictors for both 2-site models (Figure 7.7b and Figure 7.7c). The 

trend of the response indicates that snow duration is longer where canopy cover is lower (i.e., 

more open), and the shape suggests a threshold value of canopy density at which snow duration 

shifts from longer in a more open site (canopy cover < 60%) to shorter snow duration in a 

densely forested site (canopy cover > 70%). This stepped result is influenced to some extent by 

the distribution of canopy values that were sampled, since snow duration observations were 

sparsely collected where canopy cover is < 70% (Figure 7.7a, histogram of canopy cover). 

However, the stepped response is consistent when adding more locations in the 2-site model, 

which includes slightly higher frequencies of mid-range canopy cover values (Figure 7.7b, 

histogram of canopy cover). The consistent result supports the robustness of a stepped response. 

A threshold response to snow duration at this location is also supported by previous analysis of 

the distribution of snow duration observations at the Bear Creek and Mount Gardner sites, in 

which snow duration at the 40 × 40 m plot-scale was statistically indistinguishable between the 

thinned and control second-growth forest [Dickerson-Lange et al., 2015a]. The basal area of the 
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thinned plots was reduced by approximately 30%, which resulted in a 10-16% decrease in 

canopy cover (derived from lidar).  

The ranked importance of predictor variables in the 1-site and 2-site models further indicates 

that canopy cover is more important for predicting relative snow duration than inter-annual 

variability, and equally or more important than elevation, at the Bear Creek and Mount Gardner 

sites. The response of relative snow duration to WY suggests more difference between forested 

and open sites in lower snow years. Peak SWE at the nearby meteorological stations (Clearing 

Meteorological station and Mount Gardner SNOTEL) was slightly less than WY 2013 than in 

WY 2011, and approximately 50% less in WY 2014 than in 2011 (Table 7.1). Elevation is the 

second most important predictor in the 2-site model, indicating less difference in snow duration 

between forested and open locations at the higher Mount Gardner site than at Bear Creek. 

Similar to the finding that there is less difference during high snow years, the larger amounts of 

snow accumulation at Mount Gardner likely overwhelm the canopy snow storage capacity and 

thus reduce the difference in under-canopy versus open snowpack accumulation. Recent 

observations of forest snowpack at nearby sites at the crest of the Cascade range in Washington 

also show very large differences in snow duration between open and forested locations during 

the anomalously low snow year of WY 2015 [Dickerson-Lange et al., 2016b].  

7.5.3 Implications for linking canopy metrics to snow 

Mean canopy height and mean canopy cover have similar explanatory value for distributed 

snow depth at Bear Creek and snow duration at Bear Creek and Mount Gardner (Table 7.2, 

Figure 7.7 and Figure 7.9). Percent open area, derived from the canopy height model also is 

highly correlated with the spatiotemporal variability of snow depth at Bear Creek. These results 
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reflect the forest structure at both sites: dense, even-aged stands of second growth interspersed 

with open forest gaps. Thus, the canopy height metric describes the position of the sample 

location relative to an edge, since a mid-range canopy height value is the results of averaging 

spatially consistent canopy height values with adjacent zero values where there is a gap. Previous 

work and the stepped response of snow duration to canopy cover at these two sites (Figure 7.7) 

indicate that silvicultural thinning to the extent completed at this site has little to no effect on 

snow duration, despite resulting decreases in canopy cover values relative to the control second-

growth forest (Figure 7.8). Rather, the presence or absence of a canopy opening appears to be the 

driver of snow variability and, ultimately, snow duration.  

Canopy height functions differently as a predictor in the 5-site model. The inclusion of 

canopy height improves the 5-site model, likely because canopy height correlates with elevation 

and helps to distinguish the sites (Figure 7.8). This relationship relates to tree physiology and 

growth rates as a function of elevation, as well as the forest management history that resulted in a 

patchwork of mostly even-aged stands where the canopy height is spatially homogeneous except 

where there are gaps or open areas [Kane et al., 2011].  

Therefore, in even-aged stands, particularly where canopy cover is dense, simply 

distinguishing whether a location is in the forest or in the open may be as useful for prediction of 

relative snow duration as a higher resolution canopy metric derived from lidar. Many previous 

studies across climate regimes and forest types have also showed that the relative amount and 

position of canopy edges and openings strongly influence both accumulation and ablation 

processes [Musselman et al., 2008; Veatch et al., 2009; Harpold et al., 2015b; Moeser et al., 

2015]. Previous work by Veatch et al. (2009) found than an edgeness metric to quantify the 

direction and gradient of canopy cover change improved a statistical model of peak SWE, but 
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their metric utilized 30 m canopy cover data, and we did not find that such a metric based on 

higher resolution canopy height or cover provided strong explanatory value for snow depth or 

duration. Regardless, these findings support the importance of edges and of open areas in 

determining the magnitude and duration of snow storage. Canopy gaps, which can include 

openings resulting from natural disturbance, silviculture, or forest harvest patch cuts and skid 

tracks may be the key structure that contributes to the spatial heterogeneity of snow and 

ultimately to the duration of stand-scale snow storage. We note, however, that this study is 

limited to the effects of small canopy gaps on snow, and does not account for decreasing shading 

and sheltering in larger gaps [Seyednasrollah and Kumar, 2014; Musselman et al., 2015].  

Quantification of the presence, size, and density of these gaps could be accomplished by 

estimating focal mean and variance of canopy attributes from gridded data in predominantly 

even-aged stands, as demonstrated in this study. Other, more computationally intensive 

approaches such as vector tracing have been successfully implemented to quantify gap density in 

previous work [Moeser et al., 2015]. However, at the Cedar River Municipal Watershed in 

particular, and perhaps for much of the western Pacific Northwest region, mapping open or 

forested from aerial photography could possibly provide a robust first order approximation of 

spatially distributed snow duration based on sparse observations. Automated edge detection (e.g., 

[Liu and Jezek, 2004]) from photography or from gridded products like a lidar-derived canopy 

surface model has potential to quantify canopy edges and openings over large areas for use in 

forest-snow modeling.  
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7.6 Conclusion 

Since forest effects on snow processes vary in magnitude and direction, predicting the effect 

of forest characteristics on snow storage is an ongoing research challenge. Particularly in the 

maritime snow zone where forest modifications of both snow accumulation and ablation 

processes are integrated throughout a winter season, linking forest metrics to snow observations 

is complex. Thus, we utilize two data analysis strategies to help understand the link between the 

full time series of snow depth and canopy metrics, and between snow duration and canopy, 

climate, and topographic drivers. 

We find that lidar-derived canopy metrics that describe the canopy openness directly 

overhead correlate equally well with the temporal variability associated with accumulation 

processes as with ablation processes. Canopy openness also drives the snow duration response 

over four years, particularly at two densely forested sites; a stepped snow duration response to 

canopy cover indicates that snow duration is longer where canopy cover is < 60%. Together, 

these results indicate that representing the presence, size, and density of canopy gaps is critical 

for predicting snow duration over a landscape. Furthermore, the delineation of canopy edges in 

even-aged stands is not limited to canopy cover, but can be derived from a canopy surface model 

or aerial photography. 
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7.8 Tables 

Table 7.1 Peak snow metrics from sub-daily snow depth sensors located in forest gaps during the 
four years of data collection, provided here to illustrate the inter-annual variability in snow 
conditions. 

  2011 2012 2013 2014 

Site SWE 
(cm) 

Depth 
(cm) 

SWE 
(cm) 

Depth 
(cm) 

SWE 
(cm) 

Depth 
(cm) 

SWE 
(cm) 

Depth 
(cm) 

Clearing Meteorological   166  204   151  110 
Mount Gardner 51 147 63 198 48 150 28 102 
Tinkham Creek 87 216 106 297 79 224 59 188 

Rex River 132 277 151 343 121 290 85 239 
 

Table 7.2 Linear correlation coefficients (r2) for canopy predictor variables with the spatial 
coefficients associated with the first and second dominant modes of temporal variability (Mode 1 
and Mode 2, respectively) from the SVD analysis of snow depth through time at Bear Creek in 
WY 2011.  

Predictor Size 
(m) Shape Mode1 Mode2 

Mean canopy cover (%) 15 Focal square 0.74 0.73 
Mean canopy cover (%) 25 Focal square 0.72 0.70 
Mean canopy height (m) 15 Focal square 0.70 0.69 
Mean canopy height (m) 25 Focal square 0.68 0.68 

Percent open (from 1 m CSM) 15 Focal square 0.67 0.67 
Standard deviation of canopy cover (%) 25 Focal square 0.67 0.63 

Canopy cover (%)  5 Gridded square 0.65 0.65 
Standard deviation of canopy cover (%) 35 Focal square 0.65 0.62 

Mean canopy height (m) 9 Focal square 0.65 0.65 
Mean canopy height (m) 15 Focal square 0.65 0.66 

Percent open (from 1 m CSM) 9 Focal square 0.63 0.63 
Mean canopy height (m) 35 Focal square 0.63 0.62 
Mean canopy cover (%) 10 Focal N-pointed wedge 0.62 0.55 

Percent open (from 1 m CSM) 5 Focal square 0.58 0.60 
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7.9 Figures 

 

Figure 7.1 (a) Map of the Cedar River Municipal Watershed (inset shows region) with data 
collection sites indicated (adapted from (Dickerson-Lange et al., 2015a)). (b) Lidar-derived 1-m 
canopy surface model (i.e., canopy height) over one experimental forest gap plot at the Bear 
Creek (BC on (a)) site, with positions of snow observations indicated. 

 

 

Figure 7.2 Cartoon illustrating different methods for computing gridded metrics.  (a) Focal mean 
of a 3 × 3 square domain, with mean value assigned to kernel (in green). (b) Extraction of value 
for the point x based on the inclusion of x in the 3 × 3 domain. (c) Focal mean of a north-pointed 
wedge-shaped domain that is 3 pixels high, with mean value assigned to kernel (in green). 
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Figure 7.3 (a) Normalized snow depth observations (i.e., mean snow depth for all locations has 
been removed) during WY 2011 at four example locations at Bear Creek. (b) Aerial photograph 
of a portion of the Bear Creek site, with locations of the four examples in (a) noted by purple 
boxes and labels. Photograph courtesy of Google Earth Imagery, © 2016 Google, with the 
additional data from Landsat. 
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Figure 7.4 (a) Top three temporal modes, scaled by their singular values, for snow depth 
observations at Bear Creek from WY 2011.  (b) Spatial coefficients for the top three temporal 
modes, plotted on gridded 5-m canopy cover (%) for a subset of sampling locations. Purple 
boxes indicate example locations shown in Figure 7.3 and Figure 7.5. 
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Figure 7.5 Dominant temporal modes for snow depth observations at Bear Creek from WY 2011, 
scaled by their singular values and by the spatial coefficients at four example locations, 
indicating the dominant patterns of snow depth variability through time at these locations. 
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Figure 7.6 Scatterplots of spatial coefficients as a function of one lidar-derived canopy metric, 
mean canopy cover (%) in a 15 m square domain, and correlation statistics, for the top three 
modes of temporal variability in snow depth observations at Bear Creek for both WY 2011 and 
2012. 
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Figure 7.7 Partial plots from Random Forest model fitted to a suite of canopy and topographic 
predictor variables for snow duration observations (∆RSCD, computed as snow duration in a 
reference open location minus snow duration at a sample location), where the black line shows 
the snow duration response to an individual predictor variable across the range of predictor 
values with all other predictors held constant at their mean values. The gray histogram indicates 
the frequency distribution of predictor values in the dataset. The subplots display the results for 
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models based on four subsets of snow data:  (a) a 1-site model based on observations from Bear 
Creek (BC) in WY 2011-2014, (b) a 2-site model based on observations from BC and Mount 
Gardner (MG) in WY 2011-2012, and (c) in WY 2011-2014 (with all data from the MG gap and 
old growth plots excluded due to temporal inconsistency), and (d) a 5-site model based on 
observations from BC, MG, City Cabin (CC), Tinkham Creek (TC), and Rex River (RR) in WY 
2013-2014. 
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7.10 Supporting Figures 

 

Figure 7.8 Meta-analysis of the variability of spatial predictor values with sites and with 
elevation. (a –c) Distributions of lidar-derived (a) canopy cover (%) and (b) canopy height (m) 
and (c) elevation (m) over snow duration sample locations at all experimental plots included in 
the 5-site snow duration model. Both canopy metrics are given as the focal mean values of 15 m 
square domains. (d) Lidar-derived canopy height as a function of elevation, with color and shape 
of symbols indicating experimental plot membership. 
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Figure 7.9 Partial plots from Random Forest model as presented in Figure 7.7a and Figure 7.7d, 
but showing the equivalent models built from canopy height rather than canopy cover metrics. 
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