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Mountain precipitation in the Western United States is critical for the water resources of 

the region, but resolving spatial and temporal patterns of precipitation in complex terrain is 

challenging due to lack of observations, measurement uncertainty and high spatial variability. 

We examine several gridded precipitation datasets over the Sierra Nevada mountain range of 

California, and find that these widely-used products exhibit substantial variation in water-year 

total precipitation over different areas of the range. In addition, trends in precipitation and snow 

computed from different datasets vary substantially. Both findings suggest that further work is 

needed to better resolve spatial and temporal patterns of precipitation in complex terrain.  

Streamflow observations are widely made and reflect the basin’s hydrologic response to 

precipitation input. We develop a methodology for inferring basin-mean precipitation using 
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lumped hydrologic models and Bayesian model calibration, which infers water-year total 

precipitation given daily streamflow observations. We apply this approach to several basins 

around Yosemite National Park in the Sierra Nevada in order to assess the sensitivity and 

robustness of inferred precipitation. We find that patterns of precipitation can be inferred from 

streamflow, both in terms of spatial and year-to-year variability. However, by using a small 

ensemble of hydrologic model structures to test the sensitivity of inferred precipitation, we also 

show that the absolute amounts of inferred precipitation are subject to significant uncertainty. 

Higher-elevation basins of the Sierra Nevada are hydrologically snow-dominated, and we 

hypothesize that the uncertainty in inferred precipitation can be reduced by calibrating the 

hydrologic model to both snow and streamflow observations. We leverage the recent availability 

of a high-resolution distributed snow dataset from the Airborne Snow Observatory (ASO) to 

determine basin-mean snow water equivalent (SWE) over the upper Tuolumne River basin. We 

also compare point and distributed SWE measurements over the basin, to assess the reliability of 

using point measurements to estimate basin-mean SWE. In this case, point measurements show 

bias in estimating basin-mean ASO SWE, largely due to non-representative sampling with 

respect to elevation. When basin-mean SWE is included with streamflow in model calibration, 

uncertainty in inferred precipitation is reduced by up to half, and model ensemble consistency is 

improved.  

To resolve patterns of precipitation over the Sierra Nevada, we infer precipitation from 

streamflow using 56 stream gauges that measure runoff from relatively unimpaired basins, over 

1950-2010. We compare inferred precipitation to gauge-based gridded precipitation data, finding 

that significant differences exist between the mean spatial patterns of precipitation over the 

range. In particular, inferred precipitation suggests that gridded products underestimate 
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precipitation for higher-elevation basins whose aspect faces prevailing winds. Better agreement 

is found in lower-elevation and leeward basins. Collectively, the findings suggest that the 

development of spatially distributed precipitation datasets should not consider precipitation 

gauge data in isolation, but should also consider other related hydrologic observations in order to 

better resolve patterns of precipitation in complex terrain.   
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Chapter 1. Introduction 

In the Western United States, representation of precipitation patterns over complex 

terrain is critical for understanding hydrology and water resources. Complex, high-elevation 

terrain drives orographic precipitation [Bales et al., 2006] and provides a large fraction of the 

region’s runoff [Barnett et al., 2005]. However, our ability to observe precipitation over 

mountains is limited due to factors such as lack of observations, high spatial variability and 

gauge errors; Dettinger [2014] noted our lack of awareness of hydrologic states and fluxes “in 

the third [i.e., vertical] dimension”, and Luce et al. [2013] showed that low-elevation 

observations may not properly characterize high-elevation climatic trends. Nonetheless, our 

ability to observe, simulate and predict hydrologic fluxes in these areas will dictate the extent to 

which we can efficiently manage water resources and adapt to future variability. 

While there are many variables involved in characterizing the hydrology of mountain 

basins, precipitation is perhaps the most fundamental. Along with temperature, it is the most 

common type of meteorological observation, and widely-used datasets have been developed to 

distribute precipitation in space and time based on observations [e.g., Daly et al., 1994; Hamlet 

et al., 2010]. In addition, all models of snowpack [e.g., Anderson, 2006] and distributed soil 

moisture and runoff, e.g., PRMS [Leavesley et al., 1983] use precipitation as a primary 

meteorological input. Hydrologic models that require additional inputs such as the surface 

radiation budget, e.g., VIC [Liang et al., 1994] and DHSVM [Wigmosta et al., 1994] utilize 

approaches to derive these terms from observations of precipitation and temperature, e.g., MT-

CLIM [Thornton and Running, 1999]. Thus, robust simulation and characterization of basin 

hydrology requires knowledge of the spatiotemporal variability of precipitation.  
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Despite its importance, precipitation is often poorly observed at higher elevations 

[Lundquist et al., 2003] where climatological precipitation is generally greatest. Compounding 

this problem is that the spatial and temporal variability of precipitation is also typically greatest 

in regions of complex terrain [Roe, 2005; Anders et al., 2007]. Spatial patterns of precipitation 

vary in time, sometimes confounding attempts to distribute these variables based on a fixed map 

[Lundquist et al., 2010; Siler et al., 2013]. Thus, it is challenging to resolve these fields via 

observations alone; errors in extrapolating point measurements of precipitation to the basin scale 

can be 100% or more [Milly and Dunne, 2002]. 

Due to this uncertainty, there is a need for models to supplement observations of 

mountain precipitation and temperature, and provide a more complete and representative 

description of these fields. Models that generate distributed fields of precipitation may be 

statistical, e.g., the Parameter-elevation Regressions on Independent Slopes Model [PRISM, 

Daly et al., 1994, 2008], or physical, e.g., the Weather Research and Forecasting atmospheric 

model [WRF, Skamarock and Klemp, 2008]. While statistical models may be accurate in that 

they are derived empirically from observations, they suffer from errors whenever there are 

changes in the underlying statistical relationship. In contrast, dynamic models are based on 

fundamental physics, but make assumptions of unknown validity about the structure and flux of 

mass and energy, and often require calibration of many unknown parameters, which can lead to 

predictions that are not robust [Clark et al., 2008; Renard et al., 2010]. As a result, it is 

incumbent on mountain hydrologists and meteorologists to leverage the strengths of both 

statistical and dynamic approaches (while acknowledging and avoiding their weaknesses) to 

improve our understanding of mountain precipitation. This is particularly critical given that 

scientists are being asked to utilize spatially-distributed precipitation and temperature data in 



3 

 

order to assess impacts on snowpack and streamflow, either in terms of current trends [e.g., Mote 

et al., 2005], or under future climate change scenarios [e.g., Jeton et al., 1996]. 

Indirect measurements of precipitation are also critical to improving our knowledge of its 

distribution. For example, observations of streamflow and snowpack can shed light on 

precipitation and soil storage in the basin [Adam et al., 2006; Hood and Hayashi, 2015; Le 

Moine et al., 2015]. We seek to employ the additional information contained in streamflow 

observations from unimpaired mountain basins to “do hydrology backward” [Kavetski et al., 

2003; Kirchner, 2009] and infer precipitation amounts. A similar approach is also possible using 

distributed observations of snow water equivalent (SWE). 

My dissertation investigates methods to improve our knowledge of the spatial and 

temporal patterns of precipitation in mountain basins. In particular, I seek to use indirect 

observations of precipitation (streamflow and SWE), along with statistical and conceptual 

physical models, to map precipitation across mountainous terrain. I consider streamflow and 

SWE observations in order to infer precipitation patterns beyond those that were directly 

observed via gauges. I use the Sierra Nevada mountain range of California as an example of a 

relatively arid region where orographic precipitation patterns are critical for water resources, and 

where uncertainty in high-elevation precipitation is significant. 

 In chapter 2, I present evidence of uncertainty in existing datasets of spatially distributed 

precipitation over the Sierra Nevada. In chapter 3, I develop an approach for inferring basin-

mean precipitation from streamflow observations using simple hydrologic models and Bayesian 

parameter inference. This approach is applied to a set of basins around Yosemite National Park. 

In chapter 4, I extend this approach to utilize both measurements of streamflow and SWE, in 

particular leveraging the recent high-resolution snow depth and SWE data made available by the 
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Airborne Snow Observatory (ASO). In chapter 5, I extend the inference of precipitation from 

streamflow to a set of 56 basins with long-term, relatively unimpaired streamflow observations, 

spanning the Sierra Nevada over 1950-2010. I use the comparison of observed streamflow, 

inferred precipitation, and gridded precipitation to comment on potential biases in existing 

datasets, and the potential for improving representations of mountain precipitation by 

considering indirect observations.   
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Chapter 2. High Sierra precipitation uncertainty in gridded datasets 

2.1. Background and datasets 

 The use of spatially distributed precipitation data has grown as distributed hydrologic, 

ecological and land surface models, which generally require distributed precipitation as an input, 

have made advances in resolution and process representation. Many gridded precipitation 

datasets have been developed that seek to represent spatial and temporal variability over the 

mountains of the Western United States [Maurer et al., 2002; Hamlet and Lettenmaier, 2005; 

Daly et al., 2008; Hamlet et al., 2010; Xia et al., 2012; Livneh et al., 2013; Newman et al., 2015]. 

These datasets have been used for many purposes, such as assessing climatic trends in 

streamflow and snowpack [e.g., Hamlet et al., 2005, 2007], downscaling of global climate 

models [e.g., Gutmann et al., 2014], estimating forest transpiration patterns and trends 

[Christensen et al., 2008] and assessing ecological impacts of climate change [e.g., Ogden et al., 

2014]. Thus, the resolution of precipitation in these datasets has wide-ranging scientific 

implications.  

 In general, these datasets are produced by interpolating precipitation gauge observations 

over the landscape of the Western United States; for detailed comparisons of the techniques used 

to create these datasets, see Lundquist et al. [2015] and [Newman et al., 2015]. The sources of 

precipitation gauge data vary, but most utilize the National Weather Service Cooperative 

Observer (COOP) gauge network, with additional gauge networks used in some cases as well. 

The datasets generally feature daily temporal resolution and spatial resolution between 30 arc-

seconds (~800 m) and 1/8° (~12 km), which may at least partially resolve mountainous terrain 

and account for effects of orographic enhancement [Roe, 2005]. Because of orographic effects, it 

is necessary to include topographic corrections in the final interpolated product; most (though 
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not all) gridded datasets force long-term average grid cell precipitation values to match a 

precipitation climatology developed from the Parameter Regression on Independent Slopes 

Model [PRISM, Daly et al., 2008]. However, individual datasets differ in terms of the temporal 

variability of grid cell precipitation, and in terms of the spatial pattern of precipitation at short to 

medium timescales.  

 Due to the challenges in estimating precipitation over complex terrain, multiple studies 

have demonstrated uncertainty in gridded precipitation datasets. In two cases in the Colorado 

Rocky Mountains where precipitation gauges had not been incorporated into the PRISM dataset, 

differences between predicted and observed precipitation of hundreds of mm per water year were 

found, as much as 50-100% of the water year total [Gutmann et al., 2012; Livneh et al., 2014]. 

Lundquist et al. [2015] compared daily increases in Sierra Nevada snow pillow snow water 

equivalent (SWE) to daily gridded dataset precipitation, and found individual water years in 

which the gridded products had up to 21% too little precipitation to account for snow pillow 

SWE increases.  

These examples indicate that even though most gridded precipitation datasets are 

deterministic and uncertainty estimates are not provided, there exists substantial potential for 

substantial error in estimating precipitation in complex terrain. To address this, Newman et al. 

[2015], using the approach outlined in Clark and Slater [2006], generated an ensemble gridded 

precipitation dataset in which the uncertainty of the spatial distribution of gauge data is explicitly 

estimated, and showed that intra-ensemble uncertainty was on the order of 10-30% for monthly 

accumulations.  

In this chapter, we compare four publicly-available gridded daily precipitation datasets 

over the Sierra Nevada, both against one another and against observations of streamflow and 



7 

 

SWE trends. The four datasets are Hamlet et al. [2010], hereafter H10; Livneh et al. [2013], 

hereafter L13; NLDAS-2 [Xia et al., 2012], hereafter NLDAS; and Newman et al. [2015], 

hereafter N15. The first two datasets have 1/16° (~6 km) spatial resolution, while the latter two 

have 1/8° (~12 km) resolution. While the first three datasets use a PRISM precipitation 

climatology (either the 1961-1990 or the 1971-2000 versions) for topographic correction, they 

differ in the exact set of gauges used in the interpolation and in the lapse rates of the 

accompanying daily temperature datasets [Lundquist et al., 2015]. The N15 dataset uses a 

regression against topographic predictors that is independent of PRISM, and explicitly samples 

the uncertainty of distributing precipitation using a 100-member ensemble.  

 We compare the spatial pattern of the water-year precipitation totals from each of the four 

datasets across a subdomain in the central Sierra Nevada, and for three streamflow basins (a 

subset of a larger 56-basin set described in chapter 5): Cherry and Eleanor Creeks (basin area 

486 km2), the San Joaquin River at Miller’s Crossing (651 km2) and Bear Creek (136 km2). For 

each basin, gridded precipitation is converted to a basin total by summing the daily precipitation 

of the grid cells within the basin, and weighting grid cells partially within the basin by the 

fraction that is within. The resulting basin daily precipitation time series are summed for each 

water year (October 1 to September 30). Daily stream gauge observations for the San Joaquin R. 

and Bear Cr. (United States Geological Survey (USGS) stream gauges 11226500 and 11230500) 

are divided by the basin areas, and then summed over the water year. For Cherry and Eleanor 

Crs., we use full natural flows provided by the operator of the reservoirs at both creeks’ outlets 

(see chapter 3 for more details). Because there is a tunnel connecting the two reservoirs, we sum 

both the full natural flows and the contributing areas of the two basins to create a single runoff 

time series; we refer to this combined basin as Cherry-Eleanor.   
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2.2. Comparison of water-year precipitation over the Sierra Nevada 

The inter-comparison of the gridded precipitation datasets and the comparison against 

streamflow are shown in Figure 2.1. Figures 2.1a-2.1c show time series of water year 

precipitation and streamflow for the three basins. For both Cherry-Eleanor and the San Joaquin, 

the gridded datasets precipitation is of a similar magnitude to streamflow (San Joaquin 

streamflow observations were not made after 1991). Because of basin water balance, 

precipitation that is similar to (or less than) streamflow implies implausible near-zero 

evapotranspiration in these basins. These are examples of cases in which the long-term 

precipitation is likely being underestimated, to varying degrees, by all four of the gridded 

datasets (in this case, NLDAS-2 in particular). The difference between precipitation and 

streamflow varies substantially between years for each gridded product, suggesting that these 

errors may vary from year to year in an unpredictable fashion.  

Bear Creek precipitation (Figure 2.1c) is greater as a fraction of streamflow for all four 

datasets, suggesting that underestimation is less severe in this basin. However, the agreement 

between the gridded datasets’ water year precipitation is worse in this basin relative to the others, 

with differences of over 500 mm, or 40%, appearing for many years. In particular, disagreement 

between L13 and the other datasets in water years 2005 and 2006 is apparent. The differences 

between water-year total basin-mean precipitation for these four datasets, expressed as the four-

dataset standard deviation divided by the four-dataset mean for each year, average 11% for 

Cherry-Eleanor, 18% for San Joaquin, and 21% for Bear. However, actual uncertainties between 

the datasets estimates and basin-mean precipitation may be substantially higher if the gridded 

datasets are biased low or high on average; low biases are almost certainly the case for some 

basins, given the comparisons to streamflow discussed above.  
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 We plot the spatial pattern of precipitation for water year 2005 in Figures 2.1d-2.1g. In 

particular, differences between the datasets for the high-elevation areas around the Cherry-

Eleanor and Bear Cr. basins are seen. The differences in these parts of the domain are on the 

order of 500-1,500 mm yr-1, or 25-60% of the mean precipitation across the four datasets. While 

this water year in particular has large disagreement, such uncertainties presumably would be 

highly problematic for simulation of the hydrology of this part of the range.  

 

2.3. Comparison of precipitation and snow trends over the Sierra Nevada 

Next, we examine the trends in cool-season precipitation over the Sierra Nevada, 

following the analysis of Mote et al [2005], who argued that mountain snowpack declined across 

the Western United States over 1950-1997. However, in that study an exception was the southern 

Sierra Nevada, where snow course measurements showed increasing SWE. The model analysis 

in that study also failed to replicate the positive SWE trends, and we examine the gridded 

precipitation dataset used to drive the model [Hamlet and Lettenmaier, 2005], hereafter HL05, 

which although of coarser resolution (1/8°), was generated using a similar methodology as the 

H10 dataset. Importantly, both datasets explicitly control for precipitation trends, such that they 

match observed trends at a subset of long-term, high-quality meteorological stations. This was 

done to avoid spurious trends associated with changes in the station set [Hamlet and 

Lettenmaier, 2005].  

 We compare the 1950-1997 trends in cool-season (October 1 to April 1) precipitation 

totals in both the HL05 and H10 datasets. We also compute the implied snowfall in each dataset, 

by summing grid cell precipitation on days with mean temperature below -0.5°C; precipitation 

on days with mean temperature between -0.5°C and 0.5°C was reduced proportionally, and 
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precipitation on days with mean temperature above 0.5°C was excluded. We compute the 1950-

1997 trends in each grid cell for snow calculated in this way. Finally, we compute the trend in 

April 1 SWE at 149 snow courses in the Sierra Nevada over the same time period, and compare 

the trends, following Figure 1 of Mote et al. [2005]. 

 The results of the 1950-1997 trend comparison are shown in Figure 2.2. First, we 

examine trends in the HL05 dataset, which shows slightly increasing (<10%) trends in 

precipitation over most of the Sierra Nevada (Figure 2.2a). Trends in HL05 snow shows 

decreases at mid-elevations, with moderate increases at higher elevations in the southern portion 

of the range (Figure 2.2b). However, greater precipitation trends are seen in the more recent H10 

dataset, both in precipitation and snow (Figures 2.2c-2.2d), particularly in the southern and 

eastern portions. Trends in April 1 snow course SWE (Figure 2.2e) show large increases in the 

high-elevation southern portions of the range, along with substantial decreases in the northern 

and mid-elevation areas. We compute streamflow trends from 23 gauges with complete or nearly 

complete observations over 1950-1997; the basins are part of the larger set discussed in chapter 

5. The streamflow trends (Figure 2.2f) largely agree with the snow trends, showing increasing 

streamflow from southern Sierra Nevada basins, but a mix of slight increases and moderate 

decreases over the northern portion of the range.  

When compared with observed SWE trends (Figures 2.2g), the H10 trends more closely 

approximate observations than the HL05 dataset; the observed large positive trends at almost all 

snow courses south of 38°N are mostly replicated in H10. However, the H10 trends still 

underestimate increases in SWE on the west slope in the southern Sierra Nevada, mainly in the 

basins of the Kings, San Joaquin and Merced rivers. The observed increases in high-elevation 

SWE suggest positive precipitation trends at these locations, which may have exceeded the 
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increases measured at the long-term precipitation gauges which control the H10 trends and are 

generally at lower elevations.  

 Using the same approach, we also compute trends in H10, N15, L13 and NLDAS over 

the time period when all four are available for the Sierra Nevada (1981-2006). Trends in these 

four gridded datasets are shown in Figure 2.3; they exhibit high spatial variability, with less 

coherent regional patterns. H10 precipitation trends over 1981-2006 show declines in the north 

and increase in the south of the domain, with magnitudes up to ±20%; snow trends are similar 

with the exception of more severe declines in the mid-elevation zones of the northern Sierra 

Nevada, presumably due to increasing temperatures (Figures 2.3a and 2.3b). However, N15 

trends (when computed as the mean of the trends across all 100 ensemble members) are much 

more muted, showing declines in both precipitation and snow of 10% or less over most of the 

Sierra Nevada (Figures 2.3c and 2.3d). In contrast, the trends L13 (Figures 2.3e and 2.3f) and 

NLDAS (Figures 2.3g and 2.3h) are highly spatially variable. Areas of very large (>±50%) 

trends are present in both datasets for precipitation and snow, but the locations of those large 

trends are neither consistent with each other, nor with the gains and losses seen in H10. Thus, 

estimation of precipitation and snow trends using these datasets is likely highly uncertain.  

Out of this group of datasets, H10 controls for changing station sets over time by forcing 

the data to match trends at long-term stations [Hamlet and Lettenmaier, 2005]. It is possible that 

the trends in L13 and NLDAS reflect the appearance and disappearance of stations as much as 

physically meaningful trends; temporal inhomogeneities such as these can strongly influence 

apparent trends in the data. N15 uses a static station set and filling of missing data (via quantile 

matching) to minimize the effects of inhomogeneities, but the trends in this dataset are quite 

different from those in H10. It is possible that the stationary relationships between stations 
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assumed in a quantile-matching approach to filling missing data could dampen trends in the N15 

dataset. We present the mean of the trends in the N15 ensemble, which also damps out much 

substantial variability in the trends of the individual ensemble members (not shown). The intra-

ensemble variability suggests that trends are uncertain in this dataset as well.  

 

2.4. Discussion 

The preceding examples show that gridded precipitation datasets, which rely on 

interpolation of gauge data across complex terrain, may contain biases in spatial patterns of 

precipitation at the annual timescale, and biases in precipitation trends over the long term. While 

the techniques to generate gridded precipitation do capture much topographic and temporal 

variability, certain features (e.g., local precipitation maxima and high-elevation trends) may not 

be observed by the gauge network in areas of sparse coverage. For example, the disagreement 

over water year total precipitation in the Cherry-Eleanor, San Joaquin and Bear basins is likely 

related to the fact that they feature relatively steep terrain, large elevation gradients and limited 

or non-existent road access for gauge maintenance.  

The high uncertainties in gridded precipitation over complex terrain have implications for 

their use in evaluating scientific hypothesis related to precipitation in these regions. Most gridded 

precipitation datasets (N15 excepted) do not provide estimates of uncertainty, and so there may 

be a tendency to accept these estimates as “truth” when they are applied to force a hydrologic 

model or for some other purpose. However, it is clear that users of these data should be aware of 

the potential for substantial error and consider how those errors may influence their results. 

 Given these findings, it will be useful to examine proxy data related to precipitation that 

may help to reduce the uncertainty in gridded datasets, i.e., streamflow and snow observations. 
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Additionally, precipitation estimates based on computational weather models, e.g., the Weather 

Research and Forecasting Model [WRF, Skamarock and Klemp, 2008], may provide useful 

information about precipitation where gauge-based estimates are uncertain. While model 

precipitation and precipitation inferred from streamflow and snow may have substantial 

uncertainties themselves, even approximate estimates may help resolve some of the 

disagreements between gridded datasets shown here. For example, we show in chapter 3 [Henn 

et al., 2015], that while there is substantial uncertainty in the absolute amounts of precipitation 

inferred from streamflow, basin-to-basin and year-to-year variability can likely be inferred more 

robustly. Thus, we seek to better identify spatial and temporal patterns in precipitation using 

these proxy observations.  

  



14 

 

2.5. Figures 

 

Figure 2.1. Gridded precipitation comparison for three basins with streamflow observations in 

the central Sierra Nevada. a) - c): Time series of water-year total, basin-mean precipitation from 

the four datasets for the Cherry-Eleanor, San Joaquin and Bear basins; water-year total 

streamflow for each basin is shown as well. Dashed box indicates example water year (2005), for 

which precipitation is mapped in d) - g). Basin locations are shown on each map.   
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Figure 2.2. 1950-1997 cool-season precipitation, snow and streamflow trends over the Sierra 

Nevada. a) - d): Precipitation and snow trends for the 1/8° HL05 and 1/16° H10 datasets. e) April 

1 snow course SWE trends. f) Water year total streamflow trends over 24 basins with 

observations spanning at least 85% of the 1950-1997 period. g) Difference between H10 and 

snow course trends (H10 minus courses). All trends calculated as percentage of the 1950 linear 

best-fit value, following Mote et al. [2005]. 
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Figure 2.3. Trends in 1981-2006 Sierra Nevada cool-season precipitation (top row) and snow 

(bottom row) in four gridded datasets, over the same domain as Figure 2.2.  
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Chapter 3. Estimating mountain basin-mean precipitation from streamflow using Bayesian 

inference 

 

Note: This chapter has been published in its current form as an article in Water Resources 

Research [Henn et al., 2015]; the only differences are in section numbering and some reference 

information. It is used here by permission of John Wiley and Sons.  

 

Abstract: Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty 

in the topographical representativeness of precipitation gauges relative to the basin. To address 

this issue, we use Bayesian methodology coupled with a multi-model framework to infer basin-

mean precipitation from streamflow observations, and we apply this approach to snow-

dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing 

data from lower-elevations stations, the Bayesian Total Error Analysis (BATEA) methodology 

and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean 

precipitation, and compare it to basin-mean precipitation estimated using topographically-

informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent 

Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with 

PRISM in terms of the rank of basins from wet to dry, but differ in absolute values. In some of 

the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff 

ratios may be inconsistent with the regional climate. We also infer annual time series of basin 

precipitation using a two-step calibration approach. Assessment of the precision and robustness 

of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is 

primarily related to uncertainties in hydrologic model structure. Despite these limitations, time 
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series of inferred annual precipitation under different model and parameter assumptions are 

strongly correlated with one another, suggesting that this approach is capable of resolving year-

to-year variability in basin-mean precipitation. 

 

3.1. Introduction 

3.1.1. Challenges in observing precipitation in complex terrain 

Estimating basin-mean precipitation in complex terrain is difficult due to the limited 

ability of precipitation gauges to capture spatial variability across the basin. Inadequate gauge 

spatial density or distribution with basin elevation can lead to errors of 100% or more in basin-

mean precipitation [Milly and Dunne, 2002]. These problems are particularly acute in mountain 

basins, due to the greater spatial variability of orographic precipitation [Roe, 2005] and the lack 

of meteorological stations at higher elevations [Lundquist et al., 2003; Adam et al., 2006; Daly et 

al., 2008]. Additionally, mountain precipitation gauges may contain biases of uncertain 

magnitude due to undercatch of snow and rain, as well as gauge icing [Sieck et al., 2007; 

Rasmussen et al., 2011b]. Manual access for wintertime gauge maintenance may be extremely 

difficult at mountain sites.  

 As a result, the observations available to estimate mountain basin-mean precipitation 

often have a coarse spatial resolution and high uncertainty. Uncertainty in mountain precipitation 

estimates hinders our ability to accurately predict rain-driven mountain basin floods, runoff 

volumes for water supply operations, and summertime low flows from high-elevation snowmelt 

[e.g., Ralph et al., 2005]. Problems with gauge uncertainty and representativeness have also 

hindered attempts to compare hydrologic model structures and forcing datasets [Mizukami and 

Smith, 2012; Wayand et al., 2013]. Similarly, relatively poor knowledge of high-elevation spatial 
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precipitation patterns limits our ability to validate and improve the simulation of precipitation in 

research and operational weather models [Jankov et al., 2009].  

Streamflow is widely measured and has a well-known link to basin-mean precipitation. 

From mass balance, streamflow at a catchment outlet (𝑄) must equal basin-mean precipitation 

(𝑃) minus basin-mean evapotranspiration (𝐸𝑇) and changes in storage (𝛥𝑆): 

 𝑄 = 𝑃 − 𝐸𝑇 − 𝛥𝑆  (3.1) 

where all terms are per unit area of the basin. Thus, if 𝑄 is measured with reasonable accuracy, 

and 𝐸𝑇and 𝛥𝑆 can also be determined, then we can infer the precipitation that the basin must 

have received. This idea leads to the general notion of inferring precipitation from streamflow 

[Kavetski et al., 2003; Vrugt et al., 2008; Kirchner, 2009], which has been termed “doing 

hydrology backward” [Vrugt et al., 2008; Kirchner, 2009]. Such inference can be undertaken 

using Bayesian methods [e.g., Kavetski et al., 2003; Vrugt et al., 2008; Renard et al., 2011], or 

where possible, by directly inverting the hydrologic model [e.g., Kirchner, 2009].  

3.1.2. Objectives: Inferring spatial precipitation patterns in the Sierra Nevada 

This study investigates the inference of basin-mean precipitation using streamflow 

observations, with the goal of reducing the uncertainty in mountain precipitation by employing 

the information that streamflow contains about the basin hydrologic system. We assume that 

errors in streamflow measurements are relatively small and unbiased at long time scales, 

compared to errors in estimates of basin-mean precipitation. While streamflow observations are 

subject to appreciable uncertainty [Pelletier, 1988; Baldassarre and Montanari, 2009], they 

appear more robust than spatially-interpolated estimates of precipitation in complex terrain, 

which have been shown to contain substantial biases [e.g., Gutmann et al., 2012; Lundquist et 

al., 2015]. Thus, we hypothesize that “doing hydrology backward” will improve understanding 
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of basin-mean precipitation, which in turn may lead to an improvement in widely-used spatially-

distributed precipitation datasets. 

 The approach of inferring basin-mean precipitation from streamflow observations is 

applied in the Sierra Nevada mountain range of California. This region has strongly 

topographical precipitation gradients and is critical for water supply in the state. In addition, 

there is substantial uncertainty regarding precipitation falling in high-altitude basins, which 

impacts the ability of downstream water resource managers to function efficiently. In the 

southern portion of the range, errors in gridded precipitation products may have interfered with 

hydrologic modeling efforts [Mote et al., 2005] due to a lack of high-elevation precipitation 

gauges. In a Mediterranean (wet winter, dry summer) climate, the precipitation in the high-

elevation portions of the range falls predominantly as snow. While spatial patterns of 

precipitation and snow have significant year-to-year consistency [e.g., Deems et al., 2008], 

changes in the spatial patterns of precipitation and snowpack between years have also been 

observed [e.g., Aguado, 1990; Lundquist et al., 2010], which highlights the need for precipitation 

estimates that do not depend on climatological spatial patterns.   

The precipitation-from-streamflow approach has previously been used to address 

questions about regional- or range-scale hydrology. Luce et al. [2013] utilized streamflow 

observations and a water balance argument as evidence that high-elevation precipitation has been 

decreasing in the Pacific Northwest of North America. Earlier studies in the Sierra Nevada have 

used streamflow measurements at multiple sites to infer snowmelt timing and the location of 

summer thunderstorms [Lundquist et al., 2003, 2009]. We seek to formalize the precipitation-

from-streamflow approach so that it can be applied to resolve basin-mean precipitation patterns 

across multiple high-altitude basins within a region.  
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Inferring precipitation from streamflow in snow-dominated watersheds has unique 

challenges, because the basin’s response to wintertime precipitation events is delayed and 

aggregated into the spring and summer snowmelt runoff response. In a previous study, Koskela 

et al. [2012] used a coupled snow and runoff model to infer precipitation from both streamflow 

and snowpack observations in a mixed rain-snow watershed in Finland. In this work, we use only 

streamflow observations, but we also explicitly address the impact of model structural 

differences on the inference, using the multi-model Framework for Understanding Structural 

Errors (FUSE) [Clark et al., 2008]. We also estimate precipitation at the annual timescale, rather 

than for individual storm events as in Koskela et al., [2012], because of the difficulty in inferring 

sub-annual events in snow-dominated watersheds.  

We infer both long-term average precipitation amounts for a set of basins, as well as the 

year-by-year variations in precipitation, and then compare the inferred amounts with other spatial 

estimates of precipitation that are based on climatology. While data for an independent validation 

of basin-mean precipitation does not exist for our case study catchments, it is possible to 

investigate sensitivity and uncertainty associated with the precipitation-from-streamflow 

approach by calculating a range of basin-mean precipitation amounts from different FUSE model 

structures, basin soil assumptions and forcing datasets.  

3.1.3. Contents 

 Section 3.2 provides background on the challenge of determining spatially-distributed 

precipitation in complex terrain, and on the inference of precipitation from streamflow. Section 

3.3 describes the multi-model hydrological modeling framework (FUSE) and the temperature 

index snow model; the Bayesian inference methodology (BATEA) used to estimate basin-mean 

precipitation; the hydrological, topographical and meteorological data used in this study; and the 
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methodology of the case studies in the Sierra Nevada basins. Section 3.4 presents the inferred, 

long-term, basin-mean precipitation and the results of inferring year-by-year variations in the 

precipitation rates. This section also evaluates the sensitivity of the precipitation-from-

streamflow approach to model structural choices, forcing data sources and parameter uncertainty. 

Section 3.5 discusses the applicability of the precipitation-from-streamflow approach in 

improving understanding of mountain precipitation, and section 3.6 summarizes the major 

findings from these experiments. 

 

3.2. Background 

3.2.1. Current approaches for distributing precipitation in complex terrain 

The most common strategy for estimating spatially-distributed precipitation in mountain 

basins is to interpolate observations between available precipitation gauges. Because topography 

plays a dominant role in precipitation patterns, spatial weights derived from precipitation 

regression against topography are applied to distribute precipitation from gauges [e.g., Clark and 

Slater, 2006; the Parameter-elevation Regression on Independent Slopes Model (PRISM), Daly 

et al., 2008]. The accuracy of these approaches is governed by the quality and spatial density of 

the precipitation data in the regressions. In particular, a challenge for these methods is to identify 

time-varying patterns of precipitation which may deviate from better-established climatological 

patterns [e.g., Lundquist et al., 2010, 2015].  

 While precipitation deviations will ultimately average out to produce stable spatial 

weights, this timescale may be too long for many hydrological applications. Spatial distributions 

of mountain precipitation have been found to vary with many factors in the Western United 

States, e.g., indices of the El Nino Southern Oscillation (ENSO) [Dettinger et al., 2004; Siler et 
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al., 2013]; extent of wind blocking by terrain [Hughes et al., 2009]; and microphysical 

differences in precipitation type and formation [Pavelsky et al., 2012]. All of these features may 

vary during a particular storm or study period, leading to non-stationary spatial patterns of 

precipitation. As a result, we are interested in methods of estimating spatial patterns beyond what 

can be gleaned from the often sparse network of gauges. 

3.2.2. Precipitation inferred from streamflow  

The water balance of the basin indicates the link between precipitation and streamflow. 

For a hydrologically-simple basin that behaves approximately as a single-reservoir system, it is 

possible to invert the reservoir model equation and express precipitation as a function of the time 

series of streamflow values [Kirchner, 2009]. When such direct estimation is not applicable, it 

may still be possible to estimate precipitation from streamflow using Bayesian approaches 

[Kavetski et al., 2006a; Vrugt et al., 2008]; a useful review of Bayesian methods in hydrologic 

modeling is given by Liu and Gupta [2007]. In these approaches, the precipitation forcing data 

used to drive the hydrologic model are assumed to be corrupted by errors, such as those due to 

spatial unrepresentativeness and undercatch. Precipitation multipliers (or similar correction 

factors) are established which correct the gauge observations to basin-mean precipitation. Prior 

knowledge about the basin’s hydrologic and hydrometeorologic characteristics, in combination 

with the goodness-of-fit of modeled and observed streamflow, are used to infer the precipitation 

multipliers along with other model parameters [Renard et al., 2010, 2011]. 

 Several frameworks have been proposed to calibrate hydrologic models under the 

assumption of precipitation input uncertainty. In this study, we use the Bayesian Total Error 

Analysis (BATEA) methodology [Kavetski et al., 2006a, 2006b; Kuczera et al., 2006; Renard et 

al., 2011] in order to explicitly specify the level of confidence in the precipitation forcing data, 
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as well as in the other model parameters such as soil properties. Importantly, BATEA allows 

exploring the interplay between multiple sources of uncertainty, thus providing insights into their 

contribution to total predictive uncertainty [Kavetski et al., 2006b; Thyer et al., 2009; Renard et 

al., 2010, 2011].  

 

3.3. Methods and data 

3.3.1. Models 

3.3.1.1. FUSE conceptual rainfall-runoff models 

 We use the Framework for Understanding Structural Errors (FUSE) [Clark et al., 2008] 

to provide a set of conceptual rainfall-runoff models and evaluate the effects of model structural 

uncertainty on inferred precipitation [Clark et al., 2011a; McMillan et al., 2011b]. FUSE 

provides multiple options for representing soil moisture storage and fluxes, such as ET, surface 

runoff and baseflow, using a spatially-lumped approach with upper and lower soil zones. 

Streamflow, soil moisture and ET time series are simulated at a daily timestep. The use of 

lumped models results in relatively few model parameters, which tends to reduce the 

computational cost of calibration and improve parameter identifiability.  

In this study, FUSE is used to explicitly test the uncertainty associated with model 

structural choices. This is accomplished by calibrating multiple FUSE structures to the same 

basin forcing data, and then evaluating the variance in the inferred basin-mean precipitation. We 

use an ensemble of six model structures which were previously used to investigate the impact of 

structure on model performance [Clark et al., 2011a; McMillan et al., 2011b]. More information 

about the specific model structures is found in the appendix and Figure 3.10. 

3.3.1.2. Snow Model 
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 FUSE is coupled to a temperature index snow model based on Snow-17 [Anderson, 

2006], which tracks snow water equivalent (SWE) based on precipitation and melt. Precipitation 

is added to SWE if the air temperature is below a threshold; otherwise, it is treated as rain. 

Snowmelt is initiated if the air temperature is above a threshold, and is proportional to the 

temperature above that point: 

 𝑆𝑀 = max⁡(min[𝑓{𝑇 − 𝑇0}, 𝑆𝑊𝐸] , 0) (3.2) 

where 𝑆𝑀 is snowmelt per timestep, 𝑓 is the snowmelt factor, 𝑇 is the air temperature, and 𝑇0 is 

the melt threshold temperature. The melt factor varies in a sinusoidal manner over the year, with 

minimum and maximum values on the winter and summer solstices, respectively. The rain-snow 

partition temperature, melt initiation temperature, and winter and summer melt factors are all 

inferred parameters. Snowmelt is combined with rainfall, and the two are routed to the soil 

model, which otherwise simulates fluxes and storages independently of the snow model.  

 In order to simulate the strong elevation dependence found within the basins, the snow 

model is run at 100 m elevation bands (unlike the soil model, which is lumped over the entire 

catchment). Elevation bands are a method of simulating the spatial snowpack variability that is 

necessary to reproduce the streamflow recession [Luce and Tarboton, 1998; Clark et al., 2011b].  

For each band, forcing temperature is lapsed to the ith band midpoint elevation:  

 𝑇𝑖 = 𝑇𝑓 + Γ(zi − zf)  (3.3) 

where 𝑇𝑖 is the ith band temperature, 𝑇𝑓 is the forcing temperature, zi is the band midpoint 

elevation, zf is the forcing data elevation, and Γ is the temporally-invariant temperature lapse rate 

(<0, °C km-1), which is also inferred.  

Similarly, precipitation is distributed to each band via a multiplicative scaling of the 

forcing precipitation: 
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 𝑃𝑖 = 𝑀𝑃𝑓(1 + 𝛼[zi − zf])  (3.4) 

where 𝑃𝑖 is the ith band precipitation, 𝑃𝑓 is the forcing precipitation, 𝑀 is the gauge-to-basin  

precipitation multiplier, and 𝛼 is the orographic precipitation gradient (OPG) in km-1 [Lundquist 

et al., 2010]. The negative lapse rate and the non-negative OPG ensure that the higher bands are 

colder and receive at least as much precipitation as the forcing elevation, allowing the model to 

simulate high-elevation snowpack that can last into the summer. 

 Finally, water fluxes to the lumped soil model are calculated by a weighted average of 

rain plus snowmelt from each elevation band:  

 𝐹𝑠𝑜𝑖𝑙 = ∑ 𝐴𝐹𝑖(𝑅𝑖 + 𝑆𝑀𝑖)
𝑛𝑏𝑎𝑛𝑑𝑠
𝑖=1   (3.5) 

where 𝐹𝑠𝑜𝑖𝑙 is the flux of water to the soil model, and 𝐴𝐹𝑖 is the fraction of the basin area, 𝑅𝑖 is 

the rain, and 𝑆𝑀𝑖 is the snowmelt, all from band i.  

 For simplicity, the snow model does not simulate sublimation from the snowpack, and in 

that regard it may underestimate basin evaporative losses. The soil model also permits 

evapotranspiration regardless of the degree of snow cover in the basin, so long as there is 

sufficient energy and soil moisture. These two errors likely compensate each other to some 

degree. 

3.3.2. Precipitation inference using BATEA 

3.3.2.1. Conceptual approach 

Figure 3.1 shows a schematic of information flow in the precipitation-from-streamflow 

approach using BATEA and FUSE. For a given set of parameter values, including the 

precipitation multiplier, OPG and hydrologic model parameters, a corrected estimate of basin 

precipitation can be routed through the snow and FUSE models to produce a simulated runoff 

time series. The simulated runoff is compared within BATEA’s residual error model (in the 
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likelihood function) to the observed streamflow record. The combination of the priors on the 

multiplier, OPG and other model parameters with the likelihood function yields the Bayesian 

posterior distributions of inferred parameters. For a given value of the precipitation multiplier 

and OPG, basin-mean precipitation can be calculated using (3.4); the posterior distribution of 

these parameters can then be used to obtain the posterior distribution of the basin-mean 

precipitation.  

 We infer basin-mean precipitation over timescales of a year or longer, given observed 

streamflow records for a basin. The Bayesian inference is applied as follows. Following Kavetski 

et al. [2006a], the posterior probability density functions (PDFs) of the multiplier 𝑀, the OPG 𝛼,  

and other model parameters 𝜃, given observed precipitation �̃� and streamflow �̃�, are described 

by: 

 𝑷(𝑀, 𝛼, 𝜃|�̃�, �̃�) ∝ 𝑷(�̃�|M, 𝛼, 𝜃, �̃�) ∙ 𝑷(𝑀, 𝛼, 𝜃)  (3.6). 

The first product term on the right hand side of (6) is the likelihood function, which describes the 

probability distribution of the observed streamflow, given particular values of 𝑀, 𝛼, 𝜃, and the 

observed gauge precipitation �̃�. The likelihood function is constructed by combining the 

hydrologic model with an error model. The second product term in (3.6) is composed of the prior 

distributions of the precipitation multiplier, OPG, and other model parameters.  

The posterior distribution of the precipitation multiplier, OPG and the other model 

parameters, 𝑷(𝑀, 𝛼, 𝜃|�̃�, �̃�), represents an update of the prior distributions given streamflow and 

precipitation observations.  

 The combination of the soil, snow and multiplier parameters results in a parameter space 

with at least 18 dimensions, and so to sample the posterior probability distributions, multiple-

start Quasi-Newton optimization and a Monte Carlo Markov Chain (MCMC) routine are used 
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within BATEA. The MCMC routine generates 4,000 samples from a chain, with convergence 

determined by the stabilization of the posterior distributions [Kavetski et al., 2006a]. The result 

of the MCMC sampling routine is an ensemble of parameter sets, with more samples clustered 

around parameter values of greater posterior probability.  

3.3.2.2. Parameter prior distributions  

The ability to infer precipitation from streamflow is limited by the information contained 

in the streamflow time series and in the model parameter priors. Lack of identifiability may limit 

the precision of the parameter inference, but can be reduced if prior information is available 

[Renard et al., 2010]. In the case of mountain basins, this requires some knowledge of the soil 

characteristics and snow model parameters, as well as the temperature and potential 

evapotranspiration (PET) forcing data. Table 3.1 shows a summary of the parameter prior 

distributions for model structure FUSE-070 and the sources of the prior information. In general, 

uniform distributions are used, and when no information is available about a parameter in the 

study domain, the distribution is set to the default limits for the FUSE model [Clark et al., 2008]. 

For simplicity and due to a lack of information about parameter covariance, the prior 

distributions for each parameter are independent of one another. 

We set the prior distribution of the precipitation multipliers to be uniform over [0.1 2.0]. 

This prior distribution represents high uncertainty in the precipitation gauge observations as they 

relate to the actual basin water input. The uniform distribution and wide bounds are set because 

of the paucity of high-elevation precipitation gauges in the study watersheds, which requires the 

use of forcing gauges that are at substantially lower elevation than the basin midpoints (3.3.3.1.). 

Although gridded daily precipitation datasets are available which cover the study basins and 

could be used to generate priors of the multipliers [e.g., Hamlet and Lettenmaier, 2005], the lack 
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of gauges also may result in potentially large uncertainties in these products. Thus, we elect to 

use vague priors in order to avoid biasing the posteriors. However, we note that uniform priors 

may introduce problems, such as making it easier for model structural errors to affect posterior 

distributions of the precipitation multipliers [e.g., Renard et al., 2010]. 

3.3.2.3. Weighted least squares error model 

 In the BATEA inference we use a weighted least squares (WLS) residual error model. 

The residual error model translates differences between modeled and observed streamflow into 

the likelihood of the corresponding parameter sets; as such residual errors are used to represent 

all sources of simulation error that are not explicitly accounted for (e.g., errors in streamflow 

observations and in temperature and PET forcing data). In the WLS approach, it is assumed that 

higher streamflow is subject to greater uncertainty, so that errors at different timesteps are treated 

differently, unlike simple least squares in which all timesteps are treated equally. Following 

Thyer et al. [2009], we assume that residual streamflow errors follow a Gaussian distribution 

with zero mean and a standard deviation that is a linear function of streamflow, i.e., 

 𝜎𝑡 = 𝑎�̂�𝑡 + 𝑏 (3.7) 

where 𝑎 and 𝑏 are residual error parameters inferred in the calibration, and �̂�𝑡 is the modeled 

streamflow at a given timestep, 𝑡.  

WLS error models have been shown to improve the robustness of the model calibration 

by avoiding overfitting to large, potentially anomalous flood events [Thyer et al., 2009]. It is 

further assumed that there is no temporal autocorrelation between model residuals [e.g., see 

Koskela et al., 2012]. This simplification is used to avoid the problematic interaction between 

model parameters and the mass balance parameters, as reported by Evin et al. [2014] 
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3.3.3. Data 

In this section we describe the data required for the precipitation-from-streamflow 

approach: basin elevation distributions, daily streamflow observations, daily precipitation, 

temperature and PET forcing data, and information about the probability distributions of soil and 

snow model parameters. All meteorological forcing data, precipitation and streamflow 

observations, and model-simulated values are at daily resolution. We also describe the PRISM 

precipitation dataset used for comparison with our results.  

3.3.3.1. Yosemite-area basins 

 Our study includes basins within the Tuolumne, Merced, Walker and San Joaquin Rivers’ 

watersheds in the Sierra Nevada of California (Figure 3.2): the Tuolumne above Hetch Hetchy 

Reservoir, the combined basins above Cherry Lake and Lake Eleanor (which drain to the 

Tuolumne River), the Merced above both Happy Isles and Pohono, the upper West Walker basin, 

and the Bear Creek and Pitman Creek basins (both small tributaries of the San Joaquin River). 

The first four basins are wholly or partially within the boundaries of Yosemite National Park; the 

Merced and Tuolumne basins compose the majority of the park’s alpine wilderness areas. The 

West Walker basin is located just outside the park on the eastern slope of the range, while the 

Bear and Pitman basins are located further south. The basins feature mixes of coniferous forests, 

meadows and high alpine open areas.  

Topographical boundaries of the basins are delineated based on 30 m United States 

Geological Survey (USGS) topographical data, which are also used to calculate basin area 

distributions within 100 m elevation bands. The basins’ elevations range from approximately 

1000-4000 m above sea level. The basin areas, elevation distributions and mean streamflow over 

the 1981-2006 study period are shown in Table 3.2. 
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3.3.3.2. Streamflow observations 

 We use daily streamflow observations from USGS stream gauges at Happy Isles and 

Pohono on the Merced River in Yosemite Valley (USGS Gauges 11264500 and 11266500). 

These gauges provide a long-term record of unimpaired runoff from the upper Merced basin, 

with the Happy Isles basin nested within the Pohono basin. We also obtained USGS gauge data 

for the West Walker, Bear and Pitman basins (USGS Gauge Nos. 10296000, 11230500 and 

11237500). All gauges are listed in the Hydro-Climate Data Network of basins without 

significant dams or diversions [Slack and Landwehr, 1992]. Uncertainties in the streamflow 

measurements from the rating curve have been estimated at 10% or less [Rockwell et al., 1996a], 

though studies of other rating curve-based streamflow techniques have suggested uncertainties of 

up to 20-40% at very high flows [Baldassarre and Montanari, 2009]. 

 Because the Tuolumne, Cherry, and Eleanor basins drain to reservoirs that are operated 

for water supply and hydroelectric generation, we use reconstructed full natural flows from the 

reservoir operators (provided by Bruce McGurk, personal communication, 2013). The full 

natural flows estimate the discharge in the absence of the dams, based on recorded reservoir 

releases and water levels. The uncertainties associated with reconstructed flows are less well 

known, but are assumed to be generally similar to those of standard streamflow observations. 

Because the adjacent Cherry and Eleanor Lakes are connected via a pumping tunnel with 

uncertain flow, we summed their watershed areas and discharge time series to create a 

“combined” basin, herein referred to as “Cherry-Eleanor.” 

3.3.3.3. Precipitation and temperature observations 

 We use precipitation observations from three mid-elevation gauges (Figure 3.2): two 

Cooperative Observer Network (COOP) stations operated by the San Francisco Public Utilities 
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Commission (Hetch Hetchy and Cherry Valley Dam), and one United States Forest Service 

Remote Automatic Weather Station (RAWS) site (Buck Meadows). The gauges’ mean annual 

precipitation over 1981-2006 were 960, 1303 and 935 mm, respectively, and their elevations are 

1180, 1453 and 976 m above sea level. The gauges are manually maintained during the winter 

and are at elevations where snow is less likely to cause significant measurement biases; few 

reliable, long-term, high-elevation records are available in the study area. We use an average of 

the three gauges’ daily precipitation as the forcing series for the hydrologic model. Averaging 

different gauges’ records may result in temporal smoothing, but given our inference timescales 

of a year or longer, we assume this did not impact our results. 

Daily high and low temperatures were also available from the three precipitation sites. 

We average the high and low temperatures at each site to create a daily mean temperature, and 

then average the three stations’ mean temperatures, to create one temperature forcing time series. 

Temperatures in the models are lapsed to the elevation bands from the average elevation of the 

three sites.  

3.3.3.4. PET forcing data  

 The FUSE models require a time series of basin-mean PET. PET is estimated using the 

Makkink equation, which uses temperature and shortwave radiation as predictors [e.g., Cristea et 

al., 2013]. Daily high and low temperatures from the forcing sites are used, and the Bristow-

Campbell parameterization is used to estimate shortwave radiation from temperature [Bristow 

and Campbell, 1984]. Daily PET is estimated at each elevation band assuming a constant lapse 

rate (-6.5°C km-1), and then basin-mean PET is aggregated from the bands.  

We calibrate the Bristow-Campbell and Makkink methods using data from the Dana 

Meadows meteorological station (2987 m above sea level, Figure 3.2) for water years 2003 
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through 2009. Shortwave radiation and temperature are used to calibrate the Bristow-Campbell 

coefficients A (0.7) and C (2.49). Shortwave radiation, wind speed, temperature and relative 

humidity are applied to estimate PET using the Penman-Monteith equation, following the 

methods of Allen et al. [1998]; this PET estimate is then used to calibrate the Makkink 

coefficient (0.668). In this way, we estimate PET over the long term using daily temperature 

observations alone. PET averaged 995 mm yr-1 over the Tuolumne basin during 1981-2006.  

3.3.3.5. Soils  

 We use information about typical basin soil properties to provide prior information for 

the BATEA inference of the model parameters. The basins are near the crest of the Sierra 

Nevada and have steep topography that is underlain by granitic bedrock. Typical soils are 

shallow and sandy, with a depth of no more than 1 m and a porosity of about 0.4 [NRCS, 2007]. 

Field studies have indicated that the soil has a high conductivity typical of sand and gravel, but 

that the percolation rate into the underlying bedrock is much lower [Flint et al., 2008]. A 

modeling study of the upper Merced basin indicated that the soils’ conductivity is likely at least 1 

m d-1 and that field capacity is likely no higher than 0.2-0.25, in order to match observed 

streamflow patterns [Lundquist and Loheide, 2011].  

3.3.3.6. PRISM precipitation data 

In order to obtain an alternative estimate of basin-mean precipitation in the region, we 

use the PRISM climatological precipitation product [Daly et al., 2008], specifically the 1981-

2010 normals at 800 m resolution. For each basin, all PRISM cells with centers within the 

watershed boundaries are used to find the basin-mean annual precipitation. The PRISM cells 

containing each of the three precipitation gauges are also averaged, and the PRISM ratio of 

basin-to-gauge precipitation is calculated. For each basin, the observed precipitation from the 
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gauges is then scaled by this ratio, thus providing a PRISM-based estimate of the basin-mean 

precipitation. This approach allows us to use the 1981-2010 PRISM normal over our slightly 

different study period (1981-2006) without bias, while still retaining the spatial information from 

the normals.   

In addition to precipitation gauges, PRISM normals also make use of long-term snow 

courses’ April 1 SWE observations in this portion of the Sierra (Chris Daly, personal 

communication, 2015). April 1 SWE is translated into precipitation by distributing it among the 

winter months, with some correction for melt and sublimation. Thus the PRISM precipitation 

values are derived from both precipitation gauges and snow observations in this region.  

3.3.4. Case study methodology 

3.3.4.1. Model validation 

First, we conduct a validation of the parameter inference by using distributions inferred 

from the first half of the study period (water years 1982-1995) to simulate the second-half 

validation period (water years 1996-2006). We calculate the Nash-Sutcliffe model efficiency 

coefficient and the percentage of timesteps within the 90% model confidence interval during the 

latter period, as means of validating the model’s predictions, confidence limits and error model 

assumptions.  The validation serves as a check that the model can replicate observed streamflow, 

before examining inferred precipitation.  

3.3.4.2. Inferring long-term mean annual precipitation  

Separate from the calibration-validation experiment, we infer long-term basin-mean 

precipitation rates over the study period of water years 1982-2006 for each basin. The time-

invariant soil, snow and precipitation parameters are inferred. The long-term precipitation 

multiplier and OPG are inferred for each basin in this way, resulting in a posterior PDF of basin-



35 

 

mean precipitation. The relatively long 25-year inference period is used to avoid errors 

associated with anomalous water years. Water year 1981 is used for model spin-up and is not 

included in the calibration period. Only one model structure (FUSE-070) is considered at this 

stage.  

3.3.4.3. Inferring time series of annual precipitation 

 Following the inference of the long-term precipitation, we infer time series of basin-mean 

annual precipitation for each basin over the same 1982-2006 period. We apply a two-step 

calibration approach: First, the soil and snow model parameters are inferred from the long-term 

inference. Then, these values (including the OPG) are used as fixed quantities when inferring 

annual variability in the basins’ precipitation multipliers. Only the multipliers are allowed to vary 

with each water year, but they are held constant within the year. While in practice the OPG and 

lapse rate may vary from year to year, in this case they are fixed to limit the dimensionality and 

computational burden of the inference, and to improve the identifiability of the precipitation 

multipliers [e.g., see Renard et al., 2010]. 

We also examine the behavior of the approach under different hydroclimatic conditions. 

We do this by comparing inferred precipitation, ET and runoff ratios in certain wet (2005 and 

2006) and dry (1987) years of the study period.  

3.3.4.4. Sensitivity of inferred precipitation  

 We also assess the sensitivity of the inferred precipitation to assumptions made during 

the inference process, including model structure, soil depth, PET forcing dataset, and year order 

of forcing data.  

To examine the impact of the choice of PET forcing data estimation method, we consider 

several approaches. Above we describe the Bristow-Campbell/Makkink approach for estimating 
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PET. One alternative approach utilizes pan evaporation measurements made at the Hetch Hetchy 

Reservoir during summers from 1955-1978. We regress pan evaporation on daily high and low 

temperatures and precipitation at the site. This model is used to extend the PET estimate to the 

entire study period. In order to reflect the likely decrease in PET with elevation, the regression is 

run at each 100 m elevation band, using a -6.5°C km-1 lapse rate to adjust temperatures from the 

observation sites’ elevation. The basin-averaged PET is then aggregated from the bands. Under 

these assumptions, the Tuolumne basin averages 738 mm yr-1 of PET, with near-zero wintertime 

values and summertime maxima of 5-6 mm d-1. Finally, another approach would simply be to 

use the pan evaporation regression time series without introducing the uncertainty of scaling for 

change with elevation. The average PET of this approach is 1629 mm yr-1 for Tuolumne; while 

this is likely an overestimate of basin-average PET, it allows us to test the method’s sensitivity to 

PET uncertainty. 

To examine sensitivity of the inference to year order, we conduct alternate simulations in 

which the forcing and streamflow series are altered. In one, the order of the water years is 

reversed (2006 to 1982), and in another, the years are arranged in a random order. Because the 

total precipitation and streamflow remains constant, and yearly carryover of SWE and soil 

moisture is very small in these basins, the inferred long-term precipitation should not 

significantly change between these calibrations. 

 

3.4. Results 

3.4.1. Model calibration and validation 

 We check the validation of the calibrated model parameters to see if the models are able 

to robustly simulate streamflow in the basins. Figure 3.3 shows a subset of the calibrated and 
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validated simulation of the Tuolumne basin using the FUSE-070 model structure, with 

parameters inferred from 1982 to 1995 used to simulate 1996 to 2006 (only water years 1995 and 

1996 are shown for clarity). The simulation has Nash-Sutcliffe values of 0.90 for the calibration 

period and 0.83 for the validation period. In both the calibration and validation periods, 96% of 

the timesteps fall within the 90% model confidence interval (shaded area in Figure 3.3). While 

this indicates that the confidence limits are slightly overestimated, the diagnostics do not suggest 

any major problems in the calibration; similar levels of model performance are obtained for the 

other basins. Importantly, the inferred multipliers all fall well within the prior range of [0.1 2.0], 

indicating that the choice of these bounds did not impact the results.  

3.4.2. Long-term basin-mean inferred precipitation 

 The inferred mean annual precipitation over the study period (water years 1982-2006) 

from the FUSE-070 structure is shown in Figure 3.4. Figure 3.4a shows histograms of the 

inferred basin-mean precipitation from the BATEA inference. The Tuolumne and the Merced at 

Pohono and at Happy Isles have relatively similar inferred precipitation (mean of the BATEA 

histogram): 1105, 967 and 1030 mm yr-1, respectively. Pitman has an inferred precipitation rate 

of 884 mm yr-1. However, Cherry-Eleanor is inferred to be significantly wetter, with a mean 

precipitation rate of 1648 mm yr-1. The West Walker and Bear basins are drier, with mean 

precipitation rates of 792 and 856 mm yr-1, respectively. The uncertainty of the precipitation 

estimates, as indicated by the mean of standard deviation of the sample histograms of the seven 

basins, is ±10 mm yr-1.  

Figure 3.4b is a map of inferred precipitation for each basin. Within-basin precipitation 

variability is not resolved in this experiment; inferred OPG within each basin is very close to 

zero. This was likely due to the forcing stations being near the precipitation maximum on the 
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west slope of the Sierra Nevada and the linear OPG formulation, which would have produced 

very large precipitation rates for the highest elevation bands if 𝛼 ≠ 0. As a result, each basin is 

shown with spatially-uniform precipitation rates. Using only basin-mean values, however, it is 

possible to see two precipitation gradients: a north-to-south, wet-to-dry gradient along the west 

slope of the Sierra Nevada, and an east-west gradient, in which basins that are rain-shadowed or 

in the lee of the crest receive less precipitation than those on the west slope.  

To illustrate the inference of precipitation from streamflow, we compare the inferred 

precipitation for each basin against its mean annual streamflow (Figure 3.5a). The basins’ 

inferred precipitation fell above the 1:1 line and increased in a linear fashion with streamflow, as 

would be expected given that precipitation is inferred from streamflow. The vertical difference 

between the 1:1 line and the precipitation estimate also suggests the inferred ET rate for each 

basin; the points imply a runoff ratio of 0.7-0.8 and basin-average ET of 200-400 mm yr-1. To 

compare the inferred precipitation against another estimate of basin-mean precipitation, in Figure 

3.5b we plot them against PRISM estimates for each basin. The positive slope of the points 

indicates that both PRISM and the inferred precipitation agree on the order of the basins’ 

precipitation. However, the inferred precipitation is less than precipitation derived from PRISM 

in the Tuolumne (16% less than PRISM), Merced at Pohono (26% less), Merced at Happy Isles 

(21% less), West Walker (27% less), Bear (31% less) and Pitman (30% less) basins, while in 

Cherry-Eleanor inferred precipitation is 14% higher than PRISM. The variability between basins 

is higher than in PRISM, with 855 mm yr-1 separating the wettest and driest basins as inferred 

from streamflow, compared to 346 mm yr-1 in PRISM.  

Finally, we plot PRISM against observed streamflow (Figure 3.5c). While there is also 

rank-order agreement between the two, the implied PRISM actual ET may conflict with the land 
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cover characteristics of some basins, in particular in Cherry-Eleanor. Implied PRISM actual ET 

is 157 mm yr-1 in this basin, of which evergreen forests cover 25%, and shrubland, grassland, 

wetlands and open water cover another 45%, according to the National Land Cover Database 

2011 [Jin et al., 2013]. While studies of actual ET are limited, measurements from flux towers 

[Goulden et al., 2012] and of conifer sap flow [Kurpius et al., 2003] suggest that Sierra 

evergreen forests have actual ET of 350-850 mm yr-1. Estimates based on meteorological data 

suggest Southern Sierra forests have actual ET of 275-350 mm yr-1 [Stephenson, 1998, their 

Figure 3.6]. Thus, the land cover mix for Cherry-Eleanor suggests that PRISM precipitation is 

too low in this basin, at least assuming that the runoff data are not strongly biased. Additionally, 

in the West Walker and Bear basins, the comparisons of PRISM precipitation and streamflow 

imply >500 mm yr-1 actual ET. These basins have similar levels of forest cover but are at higher 

mean elevations than Cherry-Eleanor; it is not obvious why actual ET would be much greater in 

these basins. 

3.4.3. Inference of yearly precipitation 

Figure 3.6 shows inferred yearly precipitation using the FUSE-070 model structure. The 

basins’ yearly precipitation is strongly correlated. The basins’ inferred precipitation also roughly 

tracks observed gauge precipitation (Figure 3.6, dashed line). The coefficient of variability of the 

inferred annual precipitation series is about 0.4 for each basin, consistent with findings of 

significant inter-annual variability in California. The order of the basins from wet to dry is 

relatively consistent from year to year, but not completely so, which suggests that the relative 

spatial pattern of precipitation does vary at the yearly timescale.  
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3.4.4. Case studies in annual variability: 1987, 2005 and 2006 

To further examine the inferred precipitation, ET and streamflow, we focus on three 

years: 1987, the driest year in the study period, and 2005 and 2006, two-above average 

precipitation years with certain unique aspects (dashed boxes, Figure 3.6). First, we compare the 

inferred ratios of ET and streamflow in 1987 vs. 2005 and 2006, to assess how the model 

partitions precipitation under dry and wet conditions. In 1987, inferred precipitation averages 

497 mm across the seven basins, while inferred ET averages 237 mm, with a mean modeled 

runoff ratio of 52%. In 2005 and 2006, the mean inferred precipitation values are 1268 and 1531 

mm, the mean ET values are 352 and 364 mm, and the runoff ratios are 73 and 77%, 

respectively. Inferred ET increases linearly in years with greater observed streamflow, though 

not as rapidly as inferred precipitation, leading to inferred higher runoff ratios in wetter years.  

Next, we examine differential spatial patterns between 2005 and 2006. In 2005, the Gin 

Flat snow pillow had relatively greater peak SWE than the pillow at Tuolumne Meadows, while 

in 2006, the order was reversed (Figure 3.7, upper row). The relative patterns in 2005 and 2006 

were also reflected in the observed streamflow of the Tuolumne and the Merced at Pohono: the 

two basins had similar streamflow volumes in 2005, but in 2006 the Tuolumne had 

approximately 15% greater streamflow volume (Figure 3.7, middle row). The Gin Flat pillow is 

at lower elevation, and temperature differences between the two years could have led it to 

receive more of its precipitation as rain in 2006. However, an examination of the pillows’ SWE 

and temperature records shows that SWE diverged in January, and temperatures at that time do 

not suggest that Gin Flat received rain instead of snow. Thus, the spatial patterns of precipitation 

appear to have differed between the two years. 
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We then normalized the inferred time series of precipitation, to produce annual estimates 

of basin precipitation as a percentage of the 1982-2006 average. In 2005, it is inferred that 

precipitation in the basin of the Merced at Pohono was 122% of average, while in the Tuolumne 

basin precipitation was 108% of average (Figure 3.7, bottom left). In 2006, both basins received 

more precipitation; it is inferred that the Tuolumne received 138% of normal, while the Merced 

received 139% of normal (Figure 3.7, bottom middle). Thus, the increase in precipitation 

between 2005 and 2006 was more pronounced in the Tuolumne basin (Figure 3.7, bottom right). 

The Merced received 103 mm more precipitation than the Tuolumne in 2005, but the Tuolumne 

received 68 mm more in 2006.  

The reversal of the order of the precipitation between the two basins over these two years 

is consistent with the observations of snowpack. Additionally, the Bear basin has the largest 

increase in inferred precipitation relative to normal from 2005 to 2006; the spatial shift may 

reflect a greater increase in precipitation in 2006 for higher-elevation basins closer to the crest of 

the Sierra Nevada. Notably, this shift is reflected neither in the precipitation gauges used for 

forcing the models (Figure 3.6), nor in the PRISM monthly 4 km gridded precipitation maps for 

the region, both of which estimate that 2005 had more precipitation than 2006.  

3.4.5. Method sensitivity and uncertainty 

3.4.5.1. Sensitivity to model structure 

 To investigate the effects of structural uncertainty in the FUSE models, we repeat the 

long-term calibration for each basin using five additional FUSE model structures, and then 

examine the range of the inferred precipitation results. The inferred precipitation from the six 

structures is shown in Figure 3.8a. The vertical range of points for each basin suggests that the 

inferred precipitation uncertainty associated with the choice of model structure has a standard 
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deviation of ±275 mm yr-1 – much larger than that inferred from the individual calibrations. 

Some model structures (-014, -016, -170) produce consistently higher inferred precipitation 

estimates than others (-070, -072, -160). Across all model structures, higher ET is associated 

with higher precipitation. Neglecting storage terms in (1), it follows that precipitation should be 

approximately equal to observed streamflow plus modeled ET. Therefore, the sensitivity of the 

inferred precipitation to model structure is likely due to the variability in modeled ET between 

the different structures.   

3.4.5.2. Sensitivity to soil capacity 

To examine the impact of uncertainty in soil depths on inferred precipitation, we repeat 

the calibration with a range of upper bounds on the uniform prior distribution on the maximum 

upper-level soil water capacity. We test three different soil water capacities (200, 800 and 1600 

mm) in addition to the best-estimate value (400 mm) used in all other experiments herein. The 

two higher values are considered unlikely given the regional soil types (primarily exposed 

bedrock interspersed with alpine meadows), but are tested to establish sensitivity. The inferred 

precipitation variability from a range of soil capacities is shown in Figure 3.8b. Increasing the 

soil capacity is shown to increase inferred precipitation across all basins. Presumably, greater 

soil capacity leads to increased soil water storage and ET, thus requiring greater precipitation to 

generate the observed streamflow rates. Uncertainty in basin soil depths could be a limiting 

factor in the ability to infer precipitation from streamflow, but in this case, the largest soil 

capacity (1600 mm) is implausible given the basins’ soil types and geology; excluding this run 

results in uncertainty in inferred precipitation associated with soil capacity of ±110 mm yr-1.  

3.4.5.3. Sensitivity to PET forcing 
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The precipitation values inferred using the three different PET forcing series and the 

FUSE-070 model structure are shown in Figure 3.8c. The primary Bristow-Campbell/Makkink 

approach is labeled as PET0, the scaled pan evaporation is PETlo, and the unscaled pan 

evaporation is PEThi. Variations in inferred precipitation between PET forcing runs have an 

average standard deviation of ±76 mm yr-1. The uncertainty associated with PET is somewhat 

less than that associated with soil capacity, and much smaller than that associated with model 

structure. Given the relatively thin soils in the basins and the prolonged dry summer season, 

limitations on water availability likely prevent actual ET from increasing significantly with PET.  

3.4.5.4. Sensitivity to year order  

The results of the year-order sensitivity experiment are shown in Figure 3.8d. The 

differences in the inferred precipitation between simulations for the same basin in which the 

water years are in actual, backwards and random order had standard deviation of ±82 mm yr-1. 

The exact mechanism for the calibration’s dependence on year order is currently not known. The 

calibration uncertainty is smaller than that associated with model structure, but it may suggest 

the limit of precision that can be obtained with this approach.  

3.4.6. Precision of annual precipitation estimates  

 The preceding analyses suggest substantial uncertainties associated with inferring 

climatological (1982-2006) basin-average precipitation rates. However, the magnitudes of both 

spatial (between basins) and temporal (between years) variance in precipitation are large in this 

region. We test whether the signals of year-to-year variability in basin precipitation inferred from 

streamflow are robust, by repeating the inference for each of the six FUSE structures. Year-by-

year inferred multipliers for the Tuolumne basin are shown in Figure 3.9a. The multipliers have 

been normalized by the 1982-2006 mean for each structure in order to highlight yearly 
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variations, rather than biases between structures. The high temporal correlation of the multipliers 

across model structures (average correlation coefficient of +0.87) suggests that these variations 

are driven by robust annual variability in streamflow and precipitation. For comparison, the 

average correlation coefficient among the seven basins’ annual streamflow volumes over this 

period was +0.97. 

 The inferred precipitation rates for each year from 1982-2006 in the Tuolumne basin are 

shown in Figure 3.9b, plotted against the observed streamflow for the year. The six model 

structures are shown, along with a best-fit line relating inferred precipitation to observed 

streamflow in each model. The case study years of 1987, 2005 and 2006 are shown in dashed 

boxes. The varying slopes of the best-fit lines reflect the implied runoff ratios; each structure 

tends to behave linearly in inferring more precipitation in years with more streamflow. We can 

also compare the uncertainty in the inferred precipitation between wet and dry years. For 1987, 

the range of the six model structures’ inferred precipitation is 424 mm or 59% of the mean, while 

for 2005 and 2006, it is 793 and 838 mm, or 54 and 45% of the mean, respectively. This suggests 

that in drier years, relative uncertainty in inferred precipitation is greater, though absolute 

uncertainty is less than in wet years.  

 

3.5. Discussion 

3.5.1. Precision and applicability of the precipitation-from-streamflow approach 

 The sensitivities discussed above suggest that there is substantial uncertainty in 

precipitation inferred from streamflow. In particular, uncertainties associated with model 

structure appear to be the limiting factor of this approach. However, some improvement may be 

made by favoring model structures which appear to better simulate the basins than others. For 
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example, Nash-Sutcliffe coefficients were not equal across the model structures: the high-ET and 

high-precipitation models averaged 0.72, while the low-ET and low-precipitation models 

averaged 0.83. The calibrated soil moisture time series for structures -014 and -170 (not shown) 

show persistently high soil moisture relative to other model structures even in summer, as well as 

higher inferred field capacity parameters. This suggests that in order to correctly simulate the 

surface runoff dynamics, these model structures require higher soil moisture, and thus produce 

actual ET of greater than 600 mm yr-1.  

Previous modeling has suggested that basin-mean actual ET is approximately 250-400 

mm yr-1 for the Merced at Pohono [e.g., Lundquist and Loheide, 2011]. Point-scale 

measurements of actual ET from flux towers located south of the study basins showed actual ET 

over forested canopies of 350-850 mm yr-1, decreasing at higher elevations [Goulden et al., 

2012]. However, no direct observations of basin-mean actual ET exist; thus, it is difficult to 

exclude model structures on this basis alone.  

Reducing model structural uncertainty may be aided by the inclusion of other data. 

Qualitative indicators, such as the match between modeled and observed seasonal patterns of soil 

moisture, or comparisons between inferred ET and minimum ET needed for known land cover 

types [Stephenson, 1998; Kurpius et al., 2003; Goulden et al., 2012], may be useful in this 

regard. Additionally, over the Sierra, observations of SWE are made at many snow courses and 

pillows [Rice and Bales, 2010; Meromy et al., 2013], snow depth and snow covered area are 

observed via remote sensing (e.g., MODSCAG [Painter et al., 2009] and the Airborne Snow 

Observatory [Painter et al., 2015]), and SWE may be reconstructed from remotely-sensed snow 

disappearance date [Rittger et al., 2011; Raleigh and Lundquist, 2012]. Numerical weather 

models now produce spatially-distributed precipitation fields at sufficient resolution to resolve 
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the study basins [Wayand et al., 2013]. Thus, approaches exist to reduce uncertainty in basin-

mean precipitation.  

 A comparison of the uncertainty from the precipitation-from-streamflow approach with 

that from commonly-used gridded precipitation datasets reveals that errors of a similar 

magnitude may sometimes be present in the gridded products. For example, disagreement 

between gridded products such as PRISM and precipitation inferred from snowpack 

measurements may be on the order of hundreds of mm per year in certain mountain ranges and 

under certain wind conditions [Gutmann et al., 2012; Lundquist et al., 2015]. In the context of 

these issues, the precipitation-from-streamflow approach may provide independent information 

about precipitation patterns that does not depend on the sparse precipitation gauge network.  

Additionally, it appears possible to robustly infer annual variations in precipitation from 

streamflow in these basins, despite the significant uncertainty and biases between the different 

model structures. While each model structure had a different bias regarding ET and thus inferred 

precipitation, the biases were consistent from year to year, allowing for robust inference of years 

with more or less precipitation from streamflow observations (Figure 3.9). Overall, the 

precipitation-from-streamflow approach appeared capable of detecting year-to-year shifts in 

spatial precipitation patterns, which may not be as well resolved in other distributed precipitation 

products.  

The approach defined here depends on the availability of unimpaired or full natural flow 

data from basins which have a relatively straightforward runoff response to water input. Both of 

these restrictions may limit its use to certain areas. Basins with gentler slopes, deeper soils and 

more significant groundwater dynamics would require more complex models in order to infer 

precipitation from streamflow, which would likely result in greater uncertainty in the results. 
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While it is reasonable to apply this approach only to certain basins, the types of basins where this 

approach may work best are also water supply regions across the Western United States (e.g., the 

Sierra Nevada and Colorado headwaters). The method also provides further motivation for 

USGS to maintain mountain basin stream gauges. 

3.5.2. Comparison with findings of Koskela et al. [2012] 

 Koskela et al. [2012] inferred precipitation multipliers in a snow-affected basin in 

Finland. They defined multipliers for individual storm events, and used a simultaneous inference 

of snow, soil and time-varying multiplier parameters, using both streamflow and snow 

observations as calibration targets. In their study, multipliers for each storm event could not be 

robustly identified. Our results contrast, in that precipitation multipliers are robustly identified, 

with the posterior distributions clustered around unique values for each water year, despite our 

vague prior distribution. 

Several factors may have led to this outcome. First, we use a longer timescale for each 

multiplier (annual vs. several-day storm event), which may provide a more distinct runoff signal 

for identification of the multipliers. Second, we choose study basins with steep slopes and thin 

soils, such that there would be a direct runoff response from rain and snowmelt. Another 

difference is that we use an error model with fewer degrees of freedom and no temporal 

autocorrelation, which was shown to be more robust in Evin et al. [2014].  

In contrast to the join calibration approach used by Koskela et al. [2012], we use a two-

step calibration approach to infer time series of precipitation multipliers for each water year for 

each basin, in which the hydrologic model parameters were inferred first, and then held fixed as 

the time-varying multipliers were inferred in the second step. The two-step calibration was not 

the cause of the difference between our study and Koskela et al. [2012], however. We performed 
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a test of a simultaneous inference of the snow and soil parameters and the series of annual 

multipliers, and the results were qualitatively similar to the two-step calibration.  

 

3.6. Conclusions 

Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in 

the representativeness of precipitation gauges relative to the basin. Inadequate distribution with 

elevation and spatial density can lead to large estimation errors in basin-mean precipitation. 

Streamflow offers additional information about the water balance of the basin with which to 

estimate precipitation. We infer basin-mean precipitation rates using a Bayesian methodology 

which calibrates a hydrologic model with precipitation multipliers. We apply this approach to a 

cluster of basins in the snow-dominated Sierra Nevada of California, inferring both the long-term 

average precipitation for each basin, as well as time series of annual precipitation using a two-

step calibration approach. 

The application of the precipitation-from-streamflow approach yields the following major 

conclusions:   

1) Precipitation inferred from streamflow using multiple nearby basins appears to 

appropriately reflect the climatic gradients of the region.  

2) Precipitation inferred from streamflow has greater variability from basin to 

basin than does PRISM-scaled precipitation. In fact, comparing PRISM 

precipitation to streamflow implies PRISM runoff ratios that, in some study 

basins, may be climatically implausible. Incorporating streamflow in the 

development of spatially-distributed precipitation datasets provides an 

independent source of hydrologic information for use in these products.  
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3) Long-term average precipitation have uncertainties with standard deviations of 

±110 and ±275 mm yr-1, associated with soil depths and the model structure, 

respectively. Inferred precipitation is less sensitive to the method used to 

estimate the PET forcing.  

4) Despite these uncertainties, year-by-year inferences of precipitation show 

robust signals across different model structures. This suggests that inferring 

precipitation from streamflow may be useful in discerning changes in spatial 

patterns of precipitation at annual and basin scales.    

5) Times series of precipitation multipliers inferred for each water year in the 

study can be robustly identified, even when using a relatively vague prior 

distribution for the multipliers. This suggests that in basins with thin soils and a 

pronounced dry season, the precipitation-from-streamflow approach is likely to 

be robust at the annual timescale.  

 

3.7. Appendix: Description of FUSE model structures 

We use six FUSE model structures: FUSE-014, -016, -070, -072, -160 and -170.  FUSE-

070 (Figure 3.10, upper left) has the fewest number of states and parameters; it has single upper 

and lower zone storage, evapotranspiration only from the upper layer, percolation based on the 

water content above the wilting point (which is considered zero water storage) in the upper zone, 

and a single linear baseflow reservoir. FUSE-072 (Figure 3.10, bottom left) is identical to FUSE-

070, except that the baseflow reservoir discharges with a power-law relationship with storage, 

rather than a linear one.  
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FUSE-016 (bottom middle) is very similar to FUSE-072, except that the percolation 

between upper and lower zones is based on storage above the amount of soil water held in 

tension, thus potentially limiting percolation. The fraction of soil water held in tension, as 

compared to free storage, is a tunable parameter in FUSE, somewhat similar to the field capacity 

of the soil. 

 FUSE-014 and FUSE-170 are similar to FUSE-016, but differ in their choice of the 

upper layer architecture and the evapotranspiration parameterization. FUSE-014 (upper middle) 

has an upper zone with two cascading buckets of tension storage, and a separate store of free 

water (storage above field capacity). Evapotranspiration in FUSE-014 is sequential, in which the 

upper zone first is first depleted before the lower zone. FUSE-170 (bottom left panel) also 

features the cascading buckets in the upper tension zone, but evapotranspiration is weighted 

between the two zones based on fraction of roots between the zones, a tunable parameter. This 

differentiates FUSE-014 and FUSE-170 from FUSE-016, which permits evapotranspiration only 

from the upper storage. Finally, FUSE-160 (upper right) differs from FUSE-016 based on the 

lower zone architecture; FUSE-160 has two parallel linear baseflow reservoirs, allowing for 

more complex baseflow behavior, and parameterizes ET using the same root-weighting scheme 

as FUSE-170.  

All models calculate saturation excess surface runoff via a Pareto distribution related to 

storage in the upper zone. None of the model structures permit interflow, the transfer of water 

from the upper storage zone directly to the stream; thus, all modeled streamflow is generated 

either by surface runoff or baseflow.   
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3.8. Tables 

Table 3.1. Parameters information for the FUSE-070 model structure. 
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Table 3.2. Characteristics of Yosemite-area streamflow basins used to infer precipitation.  
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3.9. Figures 

 
Figure 3.1. Schematic of information flow in the calibration routine using the snow model, 

FUSE and BATEA. Forcing data from meteorological stations are combined with parameters 

such as the precipitation multiplier, the OPG, and soil and snow parameters, to simulate basin 

snowpack and runoff. The simulated runoff is then compared with observed values, using a 

Bayesian approach that incorporates prior information. The result is a posterior distribution of 

parameters, including the multiplier and OPG, which describe basin-mean precipitation inferred 

from streamflow. 
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Figure 3.2. Topographical map of the Yosemite area, showing the Cherry-Eleanor, Tuolumne, 

Merced, West Walker, Pitman and Bear basins. The larger of the two nested Merced basins is 

referred to as the Merced at Pohono; the smaller is the Merced at Happy Isles. The stream gauges 

used in the inference and the three mid-elevation precipitation gauges used to force the model are 

shown. A high-elevation site measuring temperature, wind, and shortwave radiation used for 

PET calibration (Dana Meadows), and two snow pillows (Gin Flat and Tuolumne Meadows) are 

shown as well.  
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Figure 3.3. Example of the calibration and validation of the models used in the inference for the 

Tuolumne basin. For clarity, only water years 1995 (last year of calibration) and 1996 (first year 

of validation) are shown. a) Forcing data: precipitation (left axis), PET (left axis; shown tenfold 

for visibility) and temperature (right axis). b) Modeled basin-mean SWE using the mean BATEA 

parameter set. c) Modeled streamflow using the mean BATEA parameter set, compared against 

observed streamflow. The 90% confidence limits of the BATEA parameter set are also shown 

for comparison. 

  



56 

 

 
Figure 3.4. Inference of long-term basin-mean precipitation. a) 1982-2006 average inferred 

precipitation for each basin, shown as PDFs of annual precipitation, as well as the mean from the 

three precipitation gauges (dashed line). b) Map of inferred 1982-2006 precipitation. 
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Figure 3.5. Comparison of inferred climatological precipitation to other basin hydrologic 

indicators. a) Observed streamflow. b) Precipitation derived from PRISM 1980-2010 

climatological weights. c) PRISM-derived precipitation plotted against observed streamflow. 

 
Figure 3.6. Annual precipitation inferred using the FUSE-070 model structure for the seven 

basins. Observed annual gauge precipitation is shown as the dashed line.  
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Figure 3.7. Comparison of snowpack, streamflow and inferred precipitation between 2005 and 

2006. Left column shows the results for 2005; center column shows results for 2006, and right 

column shows 2005 subtracted from 2006. The top row shows observed snowpack at Gin Flat 

and Tuolumne Meadows. The middle row shows observed streamflow in the Tuolumne and the 

Merced at Pohono. The bottom row shows inferred precipitation from the FUSE-070 model 

structure, normalized by the 1982-2006 mean for each basin. The order of the Tuolumne and 

Merced basins in terms of snowpack, streamflow and inferred precipitation is reversed between 

2005 and 2006. 
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Figure 3.8. Sensitivities of inferred precipitation to various sources of uncertainty. a) For each 

basin, inferred precipitation corresponding to the six FUSE model structures. b) Inferred 

precipitation from each basin with four different upper-zone soil capacities. c) Potential 

evapotranspiration forcing: three forcing series with different magnitudes of average PET. d) 

Sensitivity of inferred precipitation to the order of years in forcing data. “Actual” refers to the 

true observations, while “Backwards” and “Random” show alternative scenarios in which the 

order of the water years 1982-2006 has been changed. 
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Figure 3.9. Annual inference in the Tuolumne basin. a) Precipitation multipliers inferred for 

each year from 1982-2006. Multipliers have been normalized by the mean 1982-2006 multiplier 

for each model structure. b) Inferred yearly precipitation plotted against observed annual 

streamflow for each model structure. Best-fit lines and accompanying equations show the 

response of each model structure to streamflow and precipitation. 

  



61 

 

 
Figure 3.10. (Appendix Figure 1) Schematics of the FUSE conceptual rainfall-runoff models 

used in this study. Rain plus melt from the snow model (R+SM) enters the soil storages. Upper 

and lower storages (S1 and S2) are shown using boxes. Fluxes are shown with arrows; q12 is 

percolation from the upper to lower layer, qb is baseflow, qsx is surface runoff, and ET is 

evapotranspiration. Dashed lines indicate soil storage thresholds; θwlt is wilting point, θfld is field 

capacity, and θsat is saturation.  
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Chapter 4. Combining snow, streamflow and precipitation gauges observations to infer 

basin-mean precipitation 

Abstract: Precipitation data in mountain basins is typically sparse and subject to substantial 

uncertainty due to difficulties in measurement and due to significant spatial variability. 

Streamflow provides indirect information about basin-mean precipitation, but the inference of 

precipitation from streamflow requires assumptions about hydrologic model structure that 

influence the precipitation amounts. In this study, we test the extent to which the use of both 

snow and streamflow observations reduces uncertainty in inferred precipitation compared to 

precipitation inference from streamflow alone. The case study area is the upper Tuolumne River 

basin in the Sierra Nevada mountain range of California, where distributed and basin-mean snow 

water equivalent (SWE) observations have recently been made available via the Airborne Snow 

Observatory (ASO). To extend our estimate of basin-mean SWE to periods prior to the ASO 

campaign, we compare recent SWE estimates from ASO with point observations from snow 

courses and snow pillows. This comparison shows that point estimates of SWE in the Tuolumne 

region tend to overestimate SWE at a given elevation, but undersample high-elevation areas. We 

then compare the inferences obtained with multiple hydrologic model structures. When included 

in precipitation inference, snow observations reduce differences in the resulting precipitation 

amounts by up to half, and improve the consistency between hydrologic model structures in 

terms of the yearly variability of precipitation. Some hydrologic model structures appear better 

suited to simulate both streamflow and SWE correctly. We reiterate previous findings that 

multiple data types be used in calibration of simplified hydrologic models to improve the 

robustness of model predictions. 
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4.1. Introduction 

 Precipitation observations across high-elevation and complex terrain are often highly 

uncertain due to a lack of gauges, high spatial variability and problems with undercatch and 

wintertime gauge maintenance [Milly and Dunne, 2002; Sieck et al., 2007; Daly et al., 2008; 

Rasmussen et al., 2011b]. Gridded precipitation datasets over complex terrain necessarily reflect 

this uncertainty, as evidenced by differences between and within gridded datasets (chapter 2 and 

Newman et al. [2015]), between gridded precipitation and precipitation estimated from snow 

pillows [Lundquist et al., 2015], and between gridded precipitation and precipitation from gauges 

not included in the grid interpolation [Gutmann et al., 2012; Livneh et al., 2014]. As a result, 

additional types of observations may be necessary to supplement precipitation gauge 

observations and reduce uncertainty in spatially distributed precipitation in complex terrain.  

 Streamflow observations have been used to infer precipitation patterns and amounts over 

mountain basins [Adam et al., 2006; Weingartner et al., 2007]. These earlier studies attempted to 

infer multi-year average precipitation rates from runoff, but other studies have attempted to infer 

precipitation from streamflow at shorter timescales with varying degrees of success. Koskela et 

al. [2012] found that precipitation from individual storm events was difficult to robustly infer in 

a snow-affected basin in Finland, while Le Moine et al. [2015] were able to infer daily 

precipitation amounts from streamflow and snow observations using the assumption of 

consistent spatial patterns of precipitation associated with various synoptic conditions. However, 

most approaches have not explicitly computed the uncertainty of the inferred precipitation.  

 In chapter 3 [Henn et al., 2015], we tested the robustness of inferring annual and long-

term precipitation rates from streamflow in snow-dominated basins in the Sierra Nevada 

mountain range of California. We used lumped hydrologic models and multipliers on the annual 
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precipitation forcing data to infer basin-mean precipitation by calibration against daily 

streamflow observations. This approach was generally able to identify year-to-year variability in 

precipitation in such basins, and identified potential disagreements between gridded precipitation 

climatology and precipitation inferred from streamflow. However, Henn et al. [2015] also 

showed that the inferred precipitation amounts strongly depend on model structural assumptions 

about evapotranspiration (ET) and soil moisture fluxes.   

 Calibrating only to streamflow in snow-dominated basins potentially allows for large 

model variability in the simulation of snow water equivalent (SWE). In these basins, both 

streamflow and SWE are major components of the water balance, and so it is reasonable to 

expect that a joint calibration to both types of observations would constrain models better than 

calibration to a one type alone. For example, Hood and Hayashi [2015] found that using both 

snowpack and runoff observations in an alpine basin allowed for inference of other quantities of 

the water balance, such as soil storage.  

 Using snow observations in addition to streamflow observations is especially applicable 

in the snow-dominated basins of the Western United States, where a network of pillows and 

snow courses make regular observations. Measurement of snowpack at individual points in the 

mountains Western United States has a long and successful history, beginning with early snow 

surveys in the 1930s [Church, 1933], and continuing through the current set of snow courses and 

the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network of over 700 

automated snow pillows [Serreze et al., 1999]. Point measurements have allowed near real-time 

estimation of snowpack and improved skill in seasonal streamflow prediction.  

 Nonetheless, the spatially variable nature of mountain snowpack challenges our ability to 

quantify it at the basin scale, which is necessary for the calibration of lumped hydrologic models. 
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Point measurements of snowpack only begin to sample the spatial variability at a wide range of 

scales of SWE across the mountain landscape. Due to variability from topography, wind, 

precipitation, radiative forcing, vegetation and other factors, snow courses and pillows generally 

do not reflect the amount of SWE in areas around them, even at relatively small spatial scales 

[Molotch and Bales, 2005; Clark et al., 2011b]. These biases are not always positive or negative, 

nor do they remain constant between the accumulation and ablation seasons or across different 

water years [Molotch and Bales, 2005; Rice and Bales, 2010; Meromy et al., 2013]. Further, 

practical constraints prevent installation and maintenance of snow sensors in the highest-

elevation areas, which have some of the deepest and most persistent snowpacks. Thus, in situ 

networks tend to oversample mid-elevation SWE and report melt earlier in the year as compared 

to higher-elevation areas [Rice et al., 2011]. All of these factors make it challenging to directly 

estimate basin-mean SWE from point observations alone.  

 Given the unpredictable biases in using point measurements of SWE to estimate basin-

mean SWE, much effort has been devoted to remote sensing of snow. For example, LiDAR 

provides an airborne or ground-based means of measuring snow depth with high spatial 

resolution (~1 m) across relatively large domains (a few to thousands of km2) [Deems et al., 

2013]. Remote sensing approaches such as LiDAR allow for fully sampling the spatial 

distributions of snowpack across the landscape. Since 2013, the Airborne Snow Observatory 

(ASO) has employed LiDAR to regularly observe the complete distribution of snow depth over 

several basins in the Sierra Nevada of California during the snow ablation season [Painter et al., 

2015]. When combined with modeled snow density, a spatially-distributed snapshot of SWE is 

produced. Importantly, ASO allows for a comparison of traditional point estimates of snow 
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(pillows and courses) to spatially-distributed observations, potentially allowing us to 

retrospectively assess the representativeness of point-derived estimates of basin-mean SWE. 

 This study has two primary aims. First, using the Tuolumne River basin above Hetch 

Hetchy Reservoir as a testbed, we investigate spatially-distributed snow observations. We 

compare basin-mean SWE from ASO data to basin-mean SWE estimated from snow pillows and 

courses. We hypothesize that a robust relationship may exist between point-based SWE 

indicators and spatially-distributed ones, and so we compare these two types of observations over 

water years 2013-2015. We then use this approach to develop a long-term time series of basin-

mean SWE using point observations alone. 

 Our second goal is to assess the value of multiple types of observational data in 

hydrologic model calibration. To do this, we use snow observations as an additional calibration 

target for a set of hydrologic models of the Tuolumne basin. We use also different sources of 

SWE observations, and test the hypothesis that inferring precipitation based on both SWE and 

runoff will yield more robust results when compared to conducting the inference based on 

streamflow alone. We use a multi-model framework to assess the degree to which hydrologic 

model consistency is improved via calibration to additional types of observations.  

 Section 4.2 reviews our previous study inferring precipitation from streamflow in the 

Sierra Nevada, which this work builds upon. Section 4.3 describes the hydrologic models and the 

inference routine used to estimate hydrologic model parameters and basin-mean precipitation. 

Section 4.4 describes multiple types of data used in this study: meteorological forcing data, 

streamflow data, prior information about model parameters, and ground- and LiDAR-based 

observations of SWE. Section 4.5 describes the model calibration experimental approach. 

Section 4.6 compares the two types of SWE observations, and then presents the results of the 
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precipitation inference over both a single water year (2014), and over a long-term run (water 

years 1982-2014). Section 4.7 discusses the implications of the comparison of point and 

distributed SWE on estimating basin-mean SWE, and of the different precipitation inference 

scenarios, and section 4.8 concludes with the main findings.  

 

4.2. Background 

 Chapter 3 [Henn et al., 2015] showed that when the precipitation input is allowed to vary, 

different lumped model structures can produce nearly equally satisfactory reproductions of 

observed streamflow, while having substantially different internal model states and fluxes. 

Figure 4.1 shows example data from that study, in which water year 1983 precipitation is 

inferred from runoff data in the basin of the Tuolumne River above Hetch Hetchy Reservoir. 

Using the Framework for Understanding Structural Errors (FUSE, [Clark et al., 2008]), time 

series of SWE and streamflow were generated by calibrating six different model structures to 

streamflow observations (Figure 4.1a). There are large differences between the simulated SWE 

amounts in each of the model structures. This is the result of substantial differences in the 

simulation of soil moisture and ET between the model structures, and as such, their inferred 

amounts of water-year precipitation disagree by more than 1,000 mm for this water year (Figure 

4.1b). However, the six structures all provide at least an adequate match to streamflow in terms 

of Nash-Sutcliffe coefficient (captions, Figure 4.1b). The differences in inferred SWE and 

precipitation are due to different structural assumptions in the lumped hydrologic models (Figure 

4.1c).  

 The preceding appears to be an example of model equifinality, in which disparate model 

assumptions (structure, parameters, etc.) match observations more or less equally well after 
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calibration [Beven and Binley, 1992]. Equifinality can hinder process understanding and model 

predictions. In addition, the example suggests that inferring precipitation from both snow and 

streamflow observations may reduce the uncertainty in inferred precipitation: the divergence of 

the modeled SWE in Figure 4.1a presumably reflects biases in the model structures that can be 

reduced by calibration of the models against SWE observations. Calibration of models to both 

streamflow and snowpack has been shown to improve process representation and robustness 

[e.g., Finger et al., 2015].  

 

4.3. Hydrologic models and calibration approach 

 Figure 4.2 shows the information flow in this study’s approach. To infer precipitation 

from streamflow and SWE observations, we assume that the precipitation forcing data used to 

drive the hydrologic model are corrupted by error, due to spatial unrepresentativeness or other 

factors. Following the approach of Kavetski et al. [2003] and Renard et al. [2010, 2011], we use 

precipitation multipliers that attempt to correct the precipitation gauge observations to better 

represent basin-mean precipitation. For a given set of parameter values, which includes the 

precipitation multiplier and hydrologic model parameters, a corrected estimate of basin 

precipitation is routed through snow and hydrologic models to produce simulated runoff and 

SWE time series. Using the Bayesian Total Error Analysis [BATEA, Kavetski et al., 2006a, 

2006b] calibration framework, we compare the simulated and observed streamflow and SWE 

(section 4.3.4), and the goodness of fit to both targets is used to establish the likelihood of the 

parameter set. The inferred basin-mean precipitation amount is then the product of the inferred 

multiplier and the original precipitation gauge record. A more detailed description of the 

precipitation inference routine is found in Henn et al. [2015]. 
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4.3.1. FUSE conceptual rainfall-runoff models 

 We use FUSE model structures (shown schematically in Figure 4.1c; [Clark et al., 2008]) 

to provide a set of conceptual hydrologic models and to help evaluate the effects of model 

structural uncertainty on inferred precipitation [Clark et al., 2011a; McMillan et al., 2011b]. This 

is accomplished by calibrating multiple FUSE structures to the same basin forcing data, and then 

evaluating differences in the inferred basin-mean precipitation.  

 FUSE provides multiple options for representing soil moisture storage and fluxes, such as 

ET, surface runoff and baseflow, using a spatially lumped approach with upper and lower soil 

zones. In this study, we use the six model structures previously used to investigate the impact of 

structure on model performance in the Mahurangi basin in New Zealand [Clark et al., 2011a; 

McMillan et al., 2011b] and to infer precipitation from streamflow in chapter 3 [Henn et al., 

2015]. The six structures have different upper- and lower-zone storage architectures and fluxes 

(Figure 4.1c):  

 FUSE-016, -070 and -072 are the simplest, with a single storage in each zone, but they 

differ in their baseflow and percolation parameterizations; 

 FUSE-014 and -170 use a two-storage upper zone to represent free and tension water; 

 FUSE-160 subdivides lower zone storage into tension storage and two parallel reservoirs; 

 ET parameterization varies: FUSE-014, -160 and -170 allow ET from both zones in 

different fashions, while FUSE-016, -070 and -072 allow ET only from the upper zone. 

4.3.2. Snow model 

 FUSE is coupled to a temperature index snow model based on Snow-17 [Anderson, 

2006], which tracks SWE  based on precipitation and melt. Precipitation is added to SWE if the 
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air temperature is below a threshold; otherwise, it is treated as rain. Snowmelt is initiated if the 

air temperature is above a threshold, and is proportional to the temperature above that point: 

 𝑆𝑀 = max⁡(min[𝑓{𝑇 − 𝑇0}, 𝑆𝑊𝐸] , 0) (4.1) 

where 𝑆𝑀 is snowmelt per timestep, 𝑓 is the snowmelt factor, 𝑇 is the air temperature, and 𝑇0 is 

the melt threshold temperature. The melt factor 𝑓 varies in a sinusoidal manner over the year, 

with minimum and maximum values on the winter and summer solstices, respectively. The rain-

snow partition temperature, melt initiation temperature, and winter and summer melt factors are 

all inferred parameters. Snowmelt is combined with rainfall and provided as input to the 

hydrologic model. 

 In order to simulate the strong elevation dependence within the basin, the snow model is 

discretized over 100 m elevation bands (unlike the hydrologic model, which is lumped over the 

entire basin). The use of elevation bands is generally necessary to reproduce basin-mean SWE 

and summertime streamflow recession in mountain basins [Luce and Tarboton, 1998; Clark et 

al., 2011b].  

 For each elevation band, forcing temperature is lapsed to the ith band midpoint elevation:  

 𝑇𝑖 = 𝑇𝑓 + Γ(zi − zf)  (4,2) 

where 𝑇𝑖 is the ith band temperature, 𝑇𝑓 is the forcing temperature, zi is the band midpoint 

elevation, zf is the forcing data elevation, and Γ is the temporally-invariant temperature lapse rate 

(<0, °C km-1), which is also inferred.  

 Similarly, precipitation is distributed to each band via a multiplicative scaling of the 

forcing precipitation: 

 𝑃𝑖 = 𝑀𝑃𝑓(1 + 𝛼[zi − zf])  (4.3) 
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where 𝑃𝑖 is the ith band precipitation, 𝑃𝑓 is the forcing precipitation, 𝑀 is the gauge-to-basin  

precipitation multiplier, and 𝛼 is the orographic precipitation gradient (OPG) in km-1, following  

Lundquist et al. [2010]. The negative lapse rate and the non-negative OPG ensure that the higher 

bands are colder and receive at least as much precipitation as the forcing elevation, allowing the 

model to simulate high-elevation snowpack that can last into the summer. 

 Finally, water fluxes to the lumped soil model are calculated by a weighted average of 

rain plus snowmelt from each elevation band:  

 𝐹𝑠𝑜𝑖𝑙 = ∑ 𝐴𝐹𝑖(𝑅𝑖 + 𝑆𝑀𝑖)
𝑛𝑏𝑎𝑛𝑑𝑠
𝑖=1   (4.4) 

where 𝐹𝑠𝑜𝑖𝑙 is the flux of water to the soil model, and 𝐴𝐹𝑖, 𝑅𝑖 and 𝑆𝑀𝑖, respectively, are the 

fraction of the basin area, the rain and the snowmelt, all from band 𝑖.  

 Full snow and hydrologic model details can be found in Henn et al. [2015]. 

4.3.3. Precipitation inference using BATEA 

4.3.3.1. Parameter priors 

 To constrain inference within the Bayesian framework, prior distributions are placed on 

the multiplier and each hydrologic and snow model parameter. We use the same set of parameter 

priors as in Henn et al. [2015]: in general, uniform distributions are used, and when no 

information is available about a parameter, the distribution is set to the default limits for the 

FUSE model [Clark et al., 2008]. We set the prior distribution of the precipitation multiplier to 

be uniform over 0.1 to 2.0. This represents high uncertainty in the precipitation gauge 

observations as they relate to basin-mean precipitation, which is because of the paucity of high-

elevation gauges in the study watershed and the use of forcing gauges that are at substantially 

lower elevation than the basin midpoint. Thus, we elect to use vague priors in order to avoid 

biasing the results with our choice of prior bounds.  
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4.3.3.2 Multi-response error model 

 Within BATEA, error model are used to translate differences between observed and 

simulated model responses (streamflow and SWE) into the likelihood of the corresponding 

parameter sets. For streamflow, we use a weighted least squares error model that assumes that 

higher streamflow values are subject to greater uncertainty. Following Thyer et al. [2009], we 

assume that residual streamflow errors follow a Gaussian distribution with zero mean and a 

standard deviation that depends linearly on simulated streamflow: 

 𝜎𝑄,𝑡 = 𝑎𝑄�̂�𝑡 + 𝑏𝑄 (4.5) 

where 𝑎𝑄 and 𝑏𝑄 are error model parameters and �̂�𝑡 is the modeled streamflow at timestep 𝑡. 

Similarly, the BATEA calibration of the model to SWE assumes that errors are normally 

distributed, and with a standard deviation, 𝜎𝑆𝑊𝐸. To obtain the overall goodness-of-fit, BATEA 

sums the squares of the errors from both streamflow and SWE, each normalized by their relative 

standard deviations (𝜎), and compares this sum against that of other parameter sets. 

Thus, the error model parameters 𝑎𝑄, 𝑏𝑄 and 𝜎𝑆𝑊𝐸 dictate the relative weight of each 

type of observation in the calibration. Increasing 𝜎𝑄,𝑡 would reduce the weight of streamflow 

errors, effectively worsening the model fit to streamflow and improving fit to SWE; the effect of 

increasing 𝜎𝑆𝑊𝐸 would be the reverse. We set the three error model parameters based on 

exploratory calibrations in which we sought to balance the fit to both observed time series; we 

use 𝑎𝑄 = 0.4, 𝑏𝑄 = 0.2 mm d-1, and 𝜎𝑆𝑊𝐸 = 25 mm. Given that we use daily streamflow 

observations, but yearly (April 1) SWE observations, the standard deviation for SWE errors 

should be less than that for streamflow errors, in order to produce an appropriate balance of 

model fit. For typical streamflow (~10 mm d-1) and SWE (~500 mm) magnitudes, the parameters 

above produce standard deviations of 42% and 5%, respectively, which reflects this balance. 
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4.3.3.3. Computational methods for BATEA inference 

 We infer basin-mean precipitation over timescales of a year or longer, given observed 

streamflow and snow for a basin. The combination of the hydrologic, snow and multiplier 

parameters results in a parameter space with at least 18 dimensions, and so to posterior sample 

the joint probability distribution, multiple-start Quasi-Newton optimization and a Monte Carlo 

Markov Chain (MCMC) routine are used within the BATEA algorithm. The result of the MCMC 

sampling routine is a posterior ensemble of parameter sets, with more samples clustered around 

parameter values of greater posterior probability.  

 

4.4. Data 

4.4.1. Tuolumne basin topographic and soils data 

 The basin of the Tuolumne River above Hetch Hetchy Reservoir is located within the 

boundaries of Yosemite National Park. The basin features a mix of coniferous forests, meadows 

and high alpine open areas. Topographical boundaries of the basin are delineated based on 30 m 

United States Geological Survey topographical data, which are also used to calculate basin area 

distributions over 100 m elevation bands. The basin’s elevation ranges from 1,162 m above sea 

level at Hetch Hetchy Reservoir to 3,997 m above sea level at Mount Lyell. Figure 4.3 shows the 

basin’s boundaries and topography. 

 We use information about typical basin soil properties to provide prior information for 

the BATEA inference of the model parameters. The basin is near the crest of the Sierra Nevada 

and has steep topography underlain by granitic bedrock. Soils are shallow and sandy, with an 

average depth of no more than 1 m and a porosity of about 0.4 [NRCS, 2007], a high 
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conductivity in the surface layer (>1 m d-1) but very low conductivity in the bedrock beneath, 

and fairly rapid drainage [Flint et al., 2008; Lundquist and Loheide, 2011]. 

4.4.2. Tuolumne precipitation, temperature and potential evapotranspiration data 

 We use precipitation observations from two Cooperative Observer Network (COOP) 

gauges operated by the San Francisco Public Utilities Commission (Hetch Hetchy and Cherry 

Valley, Figure 4.3). The gauges’ mean precipitation over water years 1981-2014 was 923 and 

1284 mm yr-1, respectively, and their elevations are 1,180 and 1,453 m above sea level. We use 

an average of the two gauges’ daily precipitation as the forcing series for the hydrologic model. 

Daily high and low temperatures were also available from the two sites. We averaged the high 

and low temperatures at each site to create a daily mean temperature series, and then averaged 

the stations’ mean temperatures to create one temperature forcing time series. Temperatures in 

the models are lapsed to the elevation bands from the average elevation of the two sites.  

 The FUSE models require a time series of basin-mean potential evapotranspiration 

(PET). PET is estimated using the Makkink equation, which uses temperature and shortwave 

radiation as predictors [e.g., Cristea et al., 2013]. Daily high and low temperatures from the 

forcing sites are used, and the Bristow-Campbell parameterization is used to estimate shortwave 

radiation from temperature [Bristow and Campbell, 1984]. Daily PET is estimated at each 

elevation band assuming a constant lapse rate (-6.5 °C km-1), and then basin-mean PET is 

aggregated from the bands. We calibrated the Bristow-Campbell and Makkink methods using 

data from the Dana Meadows meteorological station from water years 2003 through 2009. In this 

way, we estimate PET over the long term using daily temperature observations alone. PET 

averaged 984 mm yr-1 in the Tuolumne basin over water years 1981-2014. In chapter 3, we 

showed that sensitivity of inferred precipitation to PET is relatively small [Henn et al., 2015]. 
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4.4.3. Tuolumne runoff data 

 Because the Tuolumne basin drains to a reservoir operated for water supply and 

hydroelectric generation, we use reconstructed full natural flows from the reservoir operators 

[see supplemental material of Henn et al., 2015]. The full natural flows estimate the discharge in 

the absence of the dams, based on recorded reservoir releases and water levels. We use a daily 

streamflow series which begins in October 1980 and extends to early August 2015.  

4.4.4. SWE data 

4.4.4.1. Point SWE observations  

 For point-scale observations of SWE, we use a collection of observations from Sierra 

Nevada snow pillows and snow courses in the vicinity of Yosemite National Park. We use 23 

pillows and 40 courses both within and outside of the Tuolumne basin (Figure 4.3). In addition to 

the Tuolumne basin, the sites are located in the Merced, San Joaquin, Walker, Stanislaus, Mono 

and Owens drainages. The sites were chosen based on their relatively complete data records for 

water year 2014, which facilitates comparison with the ASO observations: the courses have at 

least three monthly observations and pillows have at least 60% of days with observations in this 

year. Monthly course SWE and daily pillow SWE were obtained the California Data Exchange 

Center (CDEC, http://cdec.water.ca.gov/). We take the daily mean (for pillows) or monthly mean 

(for courses) of all sites, to generate a robust indicator of the 1981-2015 temporal pattern of 

SWE over this region. 

 We use sites outside the Tuolumne basin because of the small number of sites within the 

basin: there are four pillows and seven courses in the basin, with fewer generally available 

during any one year due to missing data. While measurements made outside the basin do not 
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sample from its SWE distribution, they provide useful information because of the high degree of 

correlation between sites.  

 We examined the correlation of April 1 SWE between Sierra Nevada snow courses and 

pillows within the Tuolumne basin, outside the basin but within the set used here, and outside the 

set, calculating the mean pairwise correlation coefficient between station pairs with at least 5 

years of concurrent data. The mean correlation of snow courses and pillows within the basin was 

+0.93 and +0.85, respectively. The mean correlation between courses within the basin to those 

outside the basin but in the set used here was +0.91, compared with +0.84 for courses not used 

here. For pillows, the equivalent values were +0.85 and +0.79. These values suggest that the sites 

used here may potential serve as proxies for Tuolumne basin SWE. In addition, high-elevation 

courses from south of the basin (Figure 4.3) may be useful predictors of un-sampled high-

elevation terrain within the Tuolumne basin. For example, snow courses separated by 1° of 

latitude have a similar correlation (+0.8) to those separated by 500-1,000 m of elevation 

difference. This supports the use of sites in the upper San Joaquin basin as indicators of high-

elevation Tuolumne basin SWE. 

4.4.4.2. ASO SWE observations  

 We use LiDAR observations of snow collected on 27 ASO flights over the Tuolumne 

basin in water years 2013-2015. The flights begin in February or March of each year and end in 

June, and occur at approximately weekly intervals. The LiDAR observations cover the entire 

Tuolumne basin, providing a direct observation of the spatial distribution of snow depth and 

water equivalent over the landscape. However, the timing of the ASO campaign has largely 

coincided with the ongoing severe drought in California that began in water year 2012, and so it 
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is important to remember that all types of SWE observations over this period have values below 

the long-term average.  

 For each flight, we use a 50 m resolution SWE product that has been developed by the 

ASO program. The high-resolution (3 m) LiDAR snow depth data are first aggregated to 50 m 

resolution. Then a snow model is run over the basin in order to simulate snow density, with the 

model forced to match the LiDAR depth data and constrained by reliable in situ snow course and 

snow pillow densities [Painter et al., 2015]. The density and depth data are integrated to give a 

spatial map of SWE. For each flight, we average the SWE of the 50 m pixels within the basin to 

give a basin-mean value. We also average the SWE of pixels within each of the 100 m elevation 

bands in the Tuolumne basin to provide a vertical profile of the SWE distribution. 

 

4.5. Comparison and inference methodologies 

4.5.1. Comparison of point and distributed SWE, 2013-2015 

We use the sequence of basin-mean and elevation band-mean ASO SWE observations 

over 2013-2015 to compare against the time series of SWE from the pillows and courses. For 

example, we consider whether ASO or point observations show greater SWE at different times 

during the year, as well as the elevation distributions of April 1 SWE. In addition, we note the 

ratio of April 1 mean course and pillow SWE to the ASO estimates of basin-mean SWE, from 

the flight closest in time to April 1 each year. We hypothesize that the ASO basin-mean SWE is 

a much less biased indicator of basin-mean SWE than the mean point measurements, which may 

not be representative of spatial SWE patterns. Using the April 1 ratio retrospectively, we can 

develop a time series of basin-mean SWE that is derived from the mean April 1 course SWE, but 
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is multiplied by a correction factor that is based on the ASO comparison from 2013-2015. The 

corrected time series spans water years 1981-2014. 

4.5.2. Inference of water year 2014 precipitation under different calibrations 

 Using water year 2014 as a case study, we infer precipitation in the Tuolumne basin 

under the following calibration scenarios: a) streamflow only, b) streamflow and mean April 1 

course SWE, c) streamflow and mean April 1 course SWE scaled to match ASO, and d) 

streamflow and ASO SWE. Water years 2012 and 2013 are simulated but used for model spin-up 

and data from those years are discarded during the inference. We compare the inferred basin-

mean precipitation values across the calibrated model structures; the extent to which the inferred 

precipitation agrees (or disagrees) indicates the robustness of the model calibrations, and the 

certainty to which we can infer precipitation using this approach. We hypothesize that the 

addition of snow information to the calibration will improve the inference of the basin-mean 

precipitation, which is not well constrained when inferred from streamflow alone (Figure 4.1).  

4.5.3. Inference of annual precipitation from 1982-2014 

 Using similar approaches as in the water year 2014 study, we infer precipitation in the 

Tuolumne basin for each water year from 1982 to 2014. We conduct the 1982-2014 inference 

under three calibration scenarios: a) streamflow only, b) streamflow and mean April 1 course 

SWE, and c) mean April 1 course SWE scaled by the ASO ratio. Water year 1981 is used for 

model spin-up and is discarded. To infer basin-mean precipitation in individual water years, we 

use time-varying multipliers, which are assumed to constant within a single water year, but 

statistically independent across multiple water years. All other model parameters are inferred and 

assumed to be constant over the simulation. 
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4.6. Results 

4.6.1. Comparison of point and ASO SWE 

 We first compare SWE observations from point estimates against spatially-distributed 

ASO SWE. Fig. 4.4a shows the 2013-2015 time series of the snow course and pillow SWE 

measurements, as well as the basin-mean ASO SWE for each flight. The mean course and pillow 

measurements are also shown in Figure 4.4a using bold lines. Water year 2013 had the greatest 

SWE accumulation at the pillows and courses, with water year 2014 showing less SWE, and 

water year 2015 less still. All three water years had significantly below-average snowpack: the 

average April 1 SWE over 1981-2014 using the mean of the courses analyzed here was 780 mm.  

There is a great deal of SWE variability among the pillows and courses at any given time, 

but most show peak SWE accumulation around late March or early April in 2013 and 2014, but 

with an earlier (and smaller) peak in 2015. Cumulative streamflow shows the importance of 

snowmelt in runoff generation, as streamflow occurs primarily during the period of snowmelt, 

decreasing sharply once most snow has melted each year; the total streamflow volume is largely 

determined by the peak SWE for that year.  

 The ASO SWE series (Figure 4.4a) mainly captures the ablation season, starting around 

peak SWE and generally showing declines in SWE with each flight, to nearly zero SWE by the 

time of the last flight in June. In comparison with the pillow and course SWE, ASO shows 

somewhat less SWE around the time of peak accumulation. On April 1 of each year (dashed 

vertical line, Figure 4.4a), ASO SWE is 66, 80 and 95% of mean course SWE for the three years, 

respectively, and averaging the three years produces a mean April 1 ratio of 80%. Despite 

showing less April 1 SWE, ASO has a slower rate of melt than the pillows and courses during 

spring. By approximately May 1 of each year, ASO shows more SWE than the point 
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observations, and by the time of the last flight, ASO continues to show non-zero SWE when all 

pillows and courses have melted out. The differences between the two types of observations 

likely reflect the different spatial sampling, with ASO covering the entire elevation range while 

the point observations are limited spatially. 

 To examine the different profiles of SWE with elevation, we plot them on April 1 of each 

year (Figures 4.4b-4.4d). Point observations show SWE generally increasing with elevation, 

though few measurements exist above 3,000 m, and none are made below 2,000 m. However, we 

note that the pillows and courses show great variability in SWE for a given elevation. The 

extreme lack of snow in water year 2015 (Figure 4.4d) is also apparent, as nearly half of all 

pillows and courses had no snow on April 1.  

In each year, the mean ASO SWE in the elevation bands increases uniformly with 

elevation up to a point, though the elevation where SWE begins is much higher in 2015 than in 

2013 and 2014. In all three years, the greatest SWE is observed in the 3100 to 3200 m band, with 

SWE gradually decreasing above this elevation. When comparing ASO and course and pillow 

SWE, it is apparent that ASO sees less SWE on average than the point observations at a given 

elevation. For example, 86% of the non-zero point measurements had greater SWE than the 

mean ASO SWE at that elevation. Assuming that neither ASO SWE nor the point measurements 

suffer from strong measurement bias, this supports the idea that most courses and pillows in this 

region are situated at locations that are have anomalously high April 1 SWE for their elevation 

[e.g., Rice et al., 2011], and that extrapolating point measurements to represent the spatial 

domain likely leads to overestimation of basin-mean SWE. 

Finally, we note the distribution of SWE and measurements relative to the elevation 

distribution of the Tuolumne basin (dashed line, Figures 4.4b-4.4d). Almost all point 
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observations occur between the 10th and 85th percentile of the basin elevation distribution; when 

only pillows and courses actually within the Tuolumne basin boundaries are considered, only 

areas between the 10th and 69th percentile are sampled. The ASO elevation distribution of SWE 

shows that the 27% of the watershed area between 3,000 and 3,500 m both receives heavy 

snowfall and is not well observed by point measurements.  

Based on the findings here, we use a time series of mean April 1 course SWE as one 

calibration target, and the same series multiplied by the 80% ASO-course factor as a second 

calibration target.  

4.6.2. Comparison of model calibrations using streamflow and snow observations 

4.6.2.1. Water wear 2014 case study 

 We now describe the results of using snow observations, in addition to streamflow 

observations, to infer water year 2014 precipitation in the Tuolumne basin. As a baseline, we 

first calibrate the set of six FUSE model structures using only streamflow observations and 

compare simulated SWE and streamflow of the six model structures. Figure 4.5 shows time 

series of modeled snowpack for all structures; SWE from the calibration to streamflow only is 

shown in dark blue lines. Large variance exists between the different models’ SWE, and all of 

the models simulate more April 1 SWE than was observed by either ASO or the mean of the 

courses.  

Next, we consider the calibration of the models to both streamflow and April 1 mean 

snow course SWE (Figure 4.5, light blue lines). SWE among the six model structures now tracks 

somewhat more closely relative to the streamflow-only case, and is much closer to the SWE 

calibration target of 282 mm. This result is not surprising given that the model SWE series are 

calibrated to match April 1 observations. When the model is calibrated to match streamflow and 
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the scaled mean of the April 1 course, simulated SWE is reduced further (green lines). A similar 

result is found when calibrating to streamflow and the ASO April 1 SWE (yellow lines). Note 

that the calibration targets for these last two cases are very close to one another. 

In terms of streamflow, the time series of cumulative runoff for each model structure and 

calibration scenario are shown in dashed lines in Figure 4.5, along with observed streamflow. 

Qualitatively, all of the simulated traces match the timing of runoff, with biases in water year 

total flow of up to 15%. Taken together with the different SWE time series, this suggests that 

calibration to both types of observations can improve the simulation of snowpack without a 

substantial degradation of the streamflow simulation.  

 We can quantify the performance of each calibration scenario by considering the 

consistency of water year 2014 inferred precipitation and the goodness of fit to both streamflow 

and SWE. Figure 4.6a shows bar charts of inferred precipitation across the four calibration 

scenarios, with the six FUSE structures in each scenario. The streamflow-only calibration has a 

range between model structures of 394 mm in inferred precipitation, relative to a mean of 953 

mm. When the models are calibrated to both streamflow and mean April 1 course SWE, the 

range of inferred precipitation decreases, to 323 mm, as does the mean, to 768 mm. When scaled 

mean April 1 course SWE or ASO SWE are used for calibration in addition to streamflow, the 

mean inferred precipitation across the model structures decreases further, to 678 and 698 mm, 

respectively. The range between structures for these two scenarios is 248 and 336 mm, 

respectively. Thus, including the SWE calibration target, especially the lower ASO-based 

targets, reduces the inferred precipitation, and somewhat reduces the variability of inferred 

precipitation across the multiple model structures. 
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We can further consider the reliability of the inferred precipitation by considering the 

different model structures’ ability to match streamflow and SWE calibration targets. In terms of 

streamflow bias (Figure 4.6b), the streamflow-only calibration appears to produce unbiased 

simulations in terms of streamflow. When SWE is included, negative biases of up to 15% appear, 

suggesting that the calibration is trading off between matching a lower SWE target and retaining 

the streamflow skill. The bias in April 1 SWE (Figure 4.6c), however, shows that some model 

runs substantially overestimate SWE. The positive bias is most severe in the streamflow-only 

calibration, but also appears in the dual calibrations, mostly with the FUSE-014, -016 and -170 

model structures. Simulations that highly overestimate SWE (>30% bias) likely also 

overestimate precipitation, and if these scenarios are discarded, a much more consistent set of 

inferred precipitation values results.  

Finally, a comparison of streamflow Nash-Sutcliffe coefficients (Figure 4.6d), shows that 

all scenarios reproduce observed streamflow well (coefficients of 0.85 to 0.95). This suggests 

that a) streamflow Nash-Sutcliffe coefficient is not a good indicator of whether the models are 

correctly simulating SWE, and b) adding SWE to streamflow in the calibration does not reduce 

the ability to simulate streamflow (in fact, there is slight improvement in the streamflow Nash-

Sutcliffe coefficients for the three scenarios that include snow information as a calibration 

target).  

4.6.2.2. Inferring annual time series of water year 1982-2014 precipitation  

 We infer the multiplier and basin-mean precipitation for each water year in the 33-year 

period under the first three scenarios from the previous section. ASO data are not available prior 

to 2013, so we cannot use this scenario historically, but instead we use the scaled snow course 

mean SWE. The yearly multipliers and the inferred precipitation from each model structure are 
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plotted in Figure 4.7, with the multipliers shown in the left column. In comparing the 

streamflow-only calibration (Figure 4.7a) to the April 1 course SWE scenarios (Figures 4.7c, 

4.7e), a greater degree of correlation between the model structures is observed when SWE is 

included in the calibration. Second, the latter two scenarios have less variation across model 

structures for each year’s multiplier: the standard deviation of the multipliers across model 

structures averaged over all years is 0.22 for the streamflow-only calibration, while it is 0.12 and 

0.13, respectively, for the two streamflow and SWE calibrations. Thus, calibrating to both 

streamflow and SWE results in less uncertainty in the inferred precipitation multiplier for each 

year.  

 The impact of the calibration scenarios on inferred precipitation (as opposed to the 

multiplier) is shown in the right column of Figure 4.7. Here, we see that the year-to-year 

variability in precipitation is greater than variability in the multiplier, due to the high inter-annual 

variability in the climate of the Sierra Nevada. However, the greater consistency between 

precipitation multipliers in the streamflow and SWE calibration scenarios, as compared to the 

streamflow-only scenario, is also apparent in the inferred precipitation. The difference between 

model structures’ inferred precipitation is smaller and more consistent from year to year (cf. 

Figure 4.7b to Figures 4.7d and 4.7f). The average standard deviation of annual precipitation 

across model structures is 258 mm yr-1 in the streamflow-only calibration, 171 mm yr-1 in the 

streamflow and course mean SWE calibration and 177 mm yr-1 in the streamflow and scaled 

course mean SWE calibration. Also note that the model structures that exhibited high SWE bias 

in Figure 4.6c (FUSE-014, -016 and -170) tend to have the highest inferred precipitation 

amounts. This suggests that uncertainty could be reduced further by excluding calibrations that 

fail to adequately match SWE from the estimate of basin-mean precipitation  
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4.7. Discussion 

4.7.1. Relationship between ASO SWE and course and pillow SWE 

In using a constant 80% ratio to scale mean April 1 course SWE to the ASO  basin-mean 

SWE over the 1982-2014 inference period, we are assuming that the differences between ASO 

and course SWE are robust and repeat each year. While some studies of yearly SWE variability 

suggest this is not the case [e.g., Meromy et al., 2013], in other cases strong elevation 

dependence of SWE have been observed [e.g., Rice et al., 2011]. If the difference between ASO 

and the courses is driven largely by their different (but temporally consistent) sampling from the 

elevation distribution of SWE (e.g., Figures 4.4b-4.4d), then the ratios between them should 

repeat at least approximately each year. In that case, we can bias-correct the long-term snow 

course record to generate a more accurate historical record of basin-mean SWE.  

An examination of Figures 4b-4d suggests that it may be possible to determine the 

relationship between basin-mean SWE and a regional index of mean snow course SWE, based 

on the elevation distribution of the basin. For example, 29% of the Tuolumne basin area is above 

2,950 m, which is the 90th percentile elevation of the snow courses used in this study, while 10% 

of the basin area is below 1,975 m, the 10th percentile elevation of the snow courses. The 

Tuolumne basin had April 1 ASO basin-mean SWE of 66-95% of mean April 1 course SWE. 

The courses tend to overestimate spatially-distributed SWE at their particular elevation, but they 

underestimate higher-elevation SWE because this area is under-sampled. Thus, a basin with an 

area-elevation distribution similar to that of the courses would be expected to have less basin-

mean SWE than the courses. However, one with much of its area higher in elevation than most 

of the courses may have more basin-mean SWE.  
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It is also important to recognize that this approach is based on three years of data. Water 

years 2013-2015 were much warmer and drier than the observed long-term climate of the Sierra 

Nevada. Out of water years 1981-2015 at the two sites used for model forcing (Cherry Valley 

and Hetch Hetchy), water year 2014 was both the second-warmest (1.9°C above average), and 

fourth-driest (58% of average precipitation). Water year 2015 was even more extreme: it was 

both the warmest (2.2°C above average) and third-driest (57% of average precipitation). As a 

result, snowpack from these two years was far below normal, and so relationships between point 

and ASO SWE drawn from this period may be different from those in the long term.  

At this time, ASO snow observations are ongoing; when they are made during a non-

drought year, the climatic sensitivity of the ratio between ASO and point measurements should 

become much clearer. Given the very high spatial resolution and large domain of the ASO 

observations, it is now possible to conduct analyses of the spatial pattern of SWE across the 

high-elevation Sierra Nevada landscape that were not possible from point measurements alone. 

In particular, ASO offers the potential to observe spatial distributions of SWE accumulation from 

individual storm cycles, which would shed light on atmospheric dynamics and orographic 

enhancement occurring over the Sierra Nevada during these events.  

4.7.2. Impacts of including SWE in precipitation inference 

The results presented in Figures 4.5-4.7 suggest that when we use SWE along with 

streamflow to calibrate the hydrologic models, the consistency of the model states and their 

inferred precipitation is greater. Specifically, we find that the standard deviation of the inferred 

precipitation across model structures (i.e., its uncertainty) is reduced by nearly half with the 

inclusion of SWE in the calibration, particularly in the long-term run (Figure 4.7). The 

improvement in model robustness is similar to earlier findings [Kuczera and Mroczkowski, 1998; 
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Finger et al., 2015], and suggests a general rule that the inclusion of additional types of data in 

calibrations will improve model consistency.  

There appears to be a tendency towards overestimation of SWE in several model 

structures, FUSE-014, -016 and -170. Structures FUSE-014 and -170 (as well as -160) allow for 

ET from both the upper and lower storages. FUSE-016 restricts percolation from the upper to 

lower zone. The effect of both of these choices would be to increase ET due to greater soil 

moisture availability, which in turn requires greater precipitation and SWE to match observed 

streamflow. The high bias in SWE in these structures is only partially eliminated by the inclusion 

of snow information in the calibration (Figure 4.6c). While the FUSE model structures are 

lumped and highly-conceptualized representations of the basin, the model structural assumptions 

do appear to affect how realistically the models behave. Structures with high SWE biases may be 

less well suited for simulating the steep, shallow-soiled Tuolumne basin. 

In addition to variability, the SWE calibration also has an influence on magnitude of the 

inferred precipitation. In the streamflow-only calibrations, the set of FUSE models tends to 

overestimate basin-mean SWE (Figure 4.5), and thus likely overestimates basin-mean 

precipitation. When both streamflow and SWE are used in calibration, a better match to both 

targets is achieved, which likely reduces bias in inferred precipitation. However, the match to 

streamflow and SWE depends to some extent on their relative error weights. For some model 

structures, our exploratory weighting of streamflow and SWE errors showed that it is not 

possible to produce unbiased simulations of both: increasing the weight of one type of error to 

reduce bias resulted in greater bias in the other.  

Additionally, inferred precipitation is sensitive to the choice of SWE calibration target. 

The April 1 course mean SWE is greater than the ASO SWE for the Tuolumne basin, and using 
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the course SWE for calibration results in greater inferred precipitation than using ASO SWE 

(Figure 4.6a). Thus, correctly resolving the magnitude of basin-mean SWE is important for 

inferring basin-mean precipitation under this approach.  

For simplicity, the snow model does not simulate sublimation from the snowpack, and in 

that regard it may underestimate basin evaporative losses. However, the climate of the Sierra 

Nevada generally is warmer and more humid than basins where sublimation is most significant 

[e.g., Gustafson et al., 2010]. The soil model also permits evapotranspiration regardless of the 

degree of snow cover in the basin, so long as there is sufficient energy and soil moisture. This 

has been observed in some situations in the Sierra Nevada [Goulden et al., 2012], but may result 

in overestimates of ET. Altogether, there remains considerable uncertainty in the absolute ET 

over these basins as simulated by the FUSE models.  

 

4.8. Conclusions 

This study has two major aims. We compare different means of estimating the basin-

mean SWE amounts that are needed for model calibration, distinguishing between point-based 

and distributed data for estimating basin-mean SWE. We also investigate the value of snow data 

to constrain the inference of precipitation from streamflow, using lumped hydrologic models and 

an elevation-band snow model. 

Using the Tuolumne basin as a test case, we compare indices of snow based on point 

observations (courses and pillows), with spatially-distributed snow observations from the ASO 

LiDAR platform. The comparison of the two types of data is consistent with the idea that the 

current point observation network tends to oversample snowy, mid-elevation locations: the mean 

of the snow courses has greater April 1 SWE than ASO, but melts out more rapidly.  
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Inclusion of basin-mean SWE in the inference of basin-mean precipitation is shown to 

reduce biases in the inferred precipitation, and to somewhat reduce uncertainty in the inferred 

precipitation due to model structural uncertainty. The temporal correlation of different model 

structures’ inferred precipitation is higher in the calibrations with both streamflow and SWE as 

targets than in the streamflow-only calibration. 

From our findings, we suggest that the inclusion of multiple types of hydrologic 

observations is necessary to constrain the water balance of high-elevation basins such as that of 

the Tuolumne above Hetch Hetchy Reservoir. Because precipitation gauges are few, difficult to 

maintain during the winter, and suffer from undercatch of snow, it is difficult to directly estimate 

basin-mean precipitation in this basin. Incorporating multiple other types of observations, such as 

streamflow and SWE, is likely necessary to correctly estimate this component of the basin’s 

water balance. 
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4.9. Figures 

 

Figure 4.1. Comparison of water year 1983 simulations of the Tuolumne River basin above 

Hetch Hetchy Reservoir using six FUSE model structures (data from Henn et al. [2015]). a) 

Simulated SWE and streamflow, along with observed streamflow. b) Inferred precipitation for 

the six structures for this water year, with streamflow Nash-Sutcliffe coefficients of each 

structure shown after the structure name; symbols and colors indicate FUSE structures in a). c) 

Schematic diagram of the upper and lower zone storages and fluxes in each FUSE structure. 

Boxes represent storages and arrows represent fluxes (ET = evapotranspiration, R + SM = rain 

plus snowmelt, and Q = streamflow); dashed arrows indicate alternate parameterizations, and 

dashed lines indicate storage partitions. 
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Figure 4.2. Information flow in inference of precipitation from streamflow and SWE. Forcing 

data from meteorological stations are combined with parameters such as the precipitation 

multiplier, orographic precipitation gradient (OPG), and soil and snow parameters, to simulate 

basin snowpack and runoff. The simulated runoff and SWE are then compared with observed 

values, using a Bayesian approach that incorporates prior distributions on the parameters, to 

estimate the posterior probability of each parameter set. Posterior distributions of parameters, 

including the multiplier and OPG, describe basin-mean precipitation inferred from streamflow 

and SWE. 
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Figure 4.3. Topographical map of the Sierra Nevada domain, showing the Tuolumne basin 

boundaries. The snow courses and pillows used in the study are shown, as are the meteorological 

sites used to force the snow and hydrologic models. 
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Figure 4.4. Comparison between point and distributed measurements of SWE in water years 

2013-2015. a) Time series of course, pillow and ASO basin-mean SWE; cumulative runoff from 

the Tuolumne basin is also shown for each water year. b) - d) Elevation profiles of SWE from 

ASO and course and pillow measurements. The area distribution of the Tuolumne basin is also 

shown (in arbitrary units that integrate to unity). 
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Figure 4.5. Water year 2014 simulated and observed SWE in the Tuolumne basin. For each 

calibration scenario (colors), SWE (solid lines) and streamflow (dashed lines) from the six FUSE 

model structures are shown. April 1 SWE calibration targets are shown, along with cumulative 

observed streamflow. 
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Figure 4.6. Calibration metrics for the water year 2014 precipitation inference; colors indicate 

the calibration scenario and the individual FUSE model structures are indicated on the x-axis. a) 

Inferred precipitation. b) Streamflow bias. c) SWE bias. d) Streamflow Nash-Sutcliffe 

coefficient. 
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Figure 4.7. Results of precipitation inference over water years 1982-2014 in the Tuolumne 

basin, under different calibration scenarios. For clarity, a subset of water years is shown (1988-

2008). a), c) and e): Annual time series of inferred precipitation multipliers; mean correlation 

between multiplier times series (r) is indicated. b), d) and f): Annual time series of inferred 

precipitation; mean standard deviation of water year precipitation (σ) is indicated. a) and b): 

Streamflow-only calibration. c) and d): Streamflow and April 1 course mean SWE calibration. c) 

Streamflow and scaled April 1 course mean SWE calibration. 
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Chapter 5. Spatiotemporal precipitation patterns across the Sierra Nevada of California 

inferred from streamflow observations 

 

Abstract: Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, 

we use multiple streamflow observations as an additional source of information about 

precipitation to identify spatial and temporal differences between a gridded precipitation dataset 

and precipitation inferred from streamflow. In particular, we test whether gridded datasets 

capture across-crest and regional spatial patterns of variability, as well as year-to-year variability 

and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a 

Bayesian model calibration routine with multiple simple hydrologic model structures to infer the 

most likely basin-mean water year total precipitation for 56 basins with long-term (>30 year) 

streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean 

precipitation derived from this approach with basin-mean precipitation from a 1/16° gridded 

precipitation dataset that has been used to simulate and evaluate trends in Western United States 

streamflow and snowpack over the 20th century. The long-term average spatial patterns differ. In 

particular, there is less precipitation in the gridded dataset in higher-elevation basins whose 

aspect faces prevailing cool-season winds, as compared to precipitation inferred from 

streamflow. In some years and basins, there is less gridded precipitation than there is observed 

streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between 

gridded and inferred precipitation. Implied actual evapotranspiration (calculated from 

precipitation vs. streamflow) also varies between the streamflow-based estimates and the gridded 

dataset. Uncertainty in inferred precipitation is substantial, but the basin-to-basin and year-to-

year differences in precipitation inferred from streamflow are likely robust. The findings suggest 
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that considering streamflow when spatially distributing precipitation in complex terrain may 

improve the representation of basins whose orientations (e.g., windward-facing) are favored for 

orographic precipitation enhancement.  

 

5.1. Introduction 

5.1.1. Reducing uncertainty in spatially distributed precipitation estimates over complex terrain 

 As discussed in chapters 1, 2 and 3, large errors can occur during estimation of spatially 

distributed precipitation in complex terrain, due to both sparse and uncertain gauge data and 

uncertainty in the interpolation of gauge data to a grid. As a result, it may be useful to apply 

other types of observations and estimates to infer precipitation in these areas and reduce potential 

errors in gridded datasets. In chapters 3 and 4, we discussed using streamflow and snow 

observations to infer basin-mean precipitation over basins in the area of Yosemite National Park 

in the Sierra Nevada of California. In this chapter, we describe a larger streamflow dataset from 

the Sierra Nevada, the method for inferring precipitation from streamflow, and a set of 

experiments to compare inferred precipitation against the gridded precipitation dataset. We do 

this to identify patterns of where and when precipitation estimates diverge the most in the Sierra 

Nevada.  

Given the limits of precipitation gauge observations in high-elevation areas, streamflow 

observations offer an additional method with which to infer precipitation patterns and evaluate 

gridded precipitation datasets. Streamflow has been used to correct gridded precipitation 

products for high-elevation underestimation at the global scale [Adam et al., 2006], to evaluate 

sources of precipitation data [Wayand et al., 2013] and precipitation distribution schemes 

[Livneh et al., 2014] at the basin scale, and to identify errors in precipitation forcing data 
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[Renard et al., 2010; McMillan et al., 2011a]. In general, these studies have shown that 

substantial errors in spatially distributed precipitation can be identified through a comparison 

with observed streamflow. 

In chapter 3 [Henn et al., 2015], we developed an approach for inferring basin-mean 

precipitation from streamflow in the Sierra Nevada, and tested the sensitivity of the inferred 

precipitation from this approach to various assumptions. This approach uses Bayesian calibration 

of simple snow and hydrologic models to estimate the most likely water-year total precipitation 

in a basin given its daily streamflow observations. In effect, this approach calibrates the model to 

match streamflow under uncertain precipitation inputs, while estimating the evapotranspiration 

(ET) needed to close the basin’s water balance. We use a small ensemble of six hydrologic 

model structures to estimate the uncertainty of the inferred precipitation associated with model 

structural assumptions. 

Based on the seven Yosemite National Park-area basins tested in Henn et al. [2015], we 

concluded that streamflow allows for robustly inferring the climatological patterns of 

precipitation across the mountain range, i.e., identifying wetter and dryer areas within the range. 

Streamflow also highlighted annual variability between wet and dry years. We also found that 

long-term inferred basin-mean precipitation disagreed by up to 25% with Parameter Regression 

on Independent Slopes Model [PRISM, Daly et al., 1994, 2008] precipitation climatology. 

However, the absolute amounts of inferred precipitation are sensitive to the model structures 

used to simulate the basins, suggesting that this approach is only suited for identifying errors 

greater than 100 mm yr-1 in spatially distributed precipitation estimates. 
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5.1.2. Study objectives and chapter contents 

We apply the approach of inferring precipitation from streamflow in 56 basins in the 

Sierra Nevada that have largely unimpaired, long-term streamflow observations. We do this to 

compare inferred precipitation against the Hamlet et al. [2010] dataset (hereafter H10) over 

water years 1950-2010. We choose this dataset as it has been used to resolve spatial patterns and 

trends in Western United States snowpack and streamflow [Hamlet et al., 2005, 2007], and 

because it explicitly attempts to reduce temporal inhomogeneity by using long-term station 

records to control trends in the precipitation data [Hamlet and Lettenmaier, 2005]. 

We test for potential mismatches between the spatial patterns of the H10 precipitation 

dataset and the streamflow records. We hypothesize that areas of high elevation and complex 

terrain in the Sierra Nevada, where precipitation gauge density is low, may have substantial 

biases in gridded precipitation datasets, and these biases can be identified by precipitation 

inferred from streamflow. We further hypothesize that these biases may be greatest in areas that 

are topographically favorable or unfavorable for precipitation, and that they may vary in time 

depending on characteristics of a particular water year. We use precipitation inferred from 

streamflow to evaluate whether gridded precipitation datasets capture areas of orographic 

enhancement, the ratios of windward to leeward precipitation (i.e., rain shadows), year-to-year 

variability in the spatial patterns of precipitation, and long-term trends in basin-mean 

precipitation.  

In chapter 4, we considered the use of snow observations in addition to streamflow to 

infer precipitation. While this yielded a reduction in the uncertainty of inferred precipitation, it 

also showed sensitivity to the estimate of basin-mean snow water equivalent (SWE). Since high-

resolution SWE data is available for the Tuolumne basin, we used both streamflow and SWE in 
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that study. However, because we have lower confidence in basin-mean SWE estimates for other 

Sierra Nevada basins in which only point measurements of SWE are available, in this chapter we 

use only streamflow to infer precipitation.  

Also, unlike in previous chapters, here we develop quantitative estimates of prior 

uncertainty in basin-mean precipitation by considering the agreement (or lack thereof) for each 

basin between independent precipitation data sources. For example, weather model estimates of 

precipitation over complex terrain have increased in fidelity as models have been run at higher 

resolution and with more process-based precipitation parameterizations [e.g., Rasmussen et al., 

2011a]. The Weather Research and Forecasting model [WRF, Skamarock and Klemp, 2008] has 

been shown to generate precipitation estimates that are equal or better in terms of simulated 

hydrologic responses, as compared to gauge-based gridded precipitation, in some mountain 

basins [Gutmann et al., 2012; Wayand et al., 2013]. Thus, we consider modeled precipitation as 

a source of information about the patterns of precipitation over complex terrain. We also 

consider a gridded precipitation dataset [Newman et al., 2015] that does not depend on PRISM 

climatology, as well as a PRISM-based gridded dataset [Hamlet et al., 2010], as part of our prior 

estimate of basin-mean precipitation (see sections 5.2 and 5.3). 

Sections 5.2 and 5.3 describe the data and models, respectively, used in the inference of 

precipitation from streamflow. Section 5.4 presents the results of the precipitation inference and 

the comparison against the gridded dataset. Section 5.5 discusses the implications of the 

differences between gridded and inferred precipitation, and the potential value of streamflow 

observations in improving gridded precipitation datasets. Section 5.6 offers conclusions from the 

study.  
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5.2. Data 

In this section we describe the data used to compare H10 gridded precipitation with 

precipitation inferred from streamflow: unimpaired daily streamflow observations, basin 

topography and soils information, gridded precipitation data from several sources, and gridded 

temperature and evapotranspiration data. 

5.2.1. Streamflow and basins 

For comparison against precipitation, we identify 56 basins in the Sierra Nevada (Figure 

5.1; Table 5.1) in which daily streamflow observations have been made for extended periods of 

time. Forty-one of the gauges are west of the crest of the Sierra Nevada, and 15 are on the east 

slope. Streamflow observations included in this study have at least 30 water years of complete or 

nearly complete records between 1950 and 2010; in a few cases we include stream gauges with 

20-30 years of data because they were in areas with few gauges (the southeastern Sierra Nevada). 

Thirty-one of the 56 continue to operate, and 34 are listed in the Hydro-Climate Data Network 

(HCDN) of basins without significant regulation from dams or diversions to agricultural or 

domestic use [Slack and Landwehr, 1992]. We also include 22 basins not in the HCDN but with 

relatively few or “small” impairments, based on descriptions provided by the United States 

Geological Survey (USGS) water data reports for each site [Anderson et al., 1996; Rockwell et 

al., 1996a, 1996b]. In a few cases, we include basins with upstream dam regulation, so long as 

the storage was small compared to annual runoff volumes, or the regulation effect could be 

removed from the streamflow record because complete storage records were available. We 

exclude most stream gauges with observations that were described as having poor quality by the 

USGS; 3 gauges in the southeastern Sierra Nevada rated “poor” (Big Pine Cr., Independence Cr. 

and Cottonwood Cr.) were included due to a lack of gauges in this area. All streamflow data 
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were downloaded from the USGS National Water Information System Web Interface 

(http://waterdata.usgs.gov/nwis/sw), with the exception of two basins (Cherry-Eleanor and the 

Tuolumne River at Hetch Hetchy), in which full natural flows were provided by the operator of 

the reservoirs at the basin outlets, Hetch Hetchy Water and Power (see supplemental material of 

Henn et al. [2015]). More detailed information on the individual stream gauges and their 

associated basins is included in Table 5.1. 

Uncertainties in the daily streamflow measurements from the rating curve have been 

estimated at 10% for observations of “good” quality, and 15% for “fair” records [Rockwell et al., 

1996a], in that 95% of the daily measurements should fall within the stated margin of error. 

While other studies of other rating curve-based streamflow techniques have suggested 

uncertainties of up to 20-40% at very high flows [Baldassarre and Montanari, 2009], we are 

primarily interested in precipitation and runoff over timescales of a water year or longer, and so 

we presume the USGS estimates to be a reasonable representation of uncertainty.  

Topographical boundaries of the basins are delineated based on 30 m USGS elevation 

data, which are also used to calculate basin area distributions within 100 m elevation bands. The 

basins’ areas (Table 5.1) range from 10.1 km2 (Daggett Cr.) to 3,472 km2 (Kings R.); the median 

basin area is 165 km2. The basins’ mean elevations range from 744 m (White R.) to 3,457 m 

(Middle Fork of Bishop Cr.); most basins span at least 1,500 m in elevation.  

We use typical basin soil properties to provide information for the lumped hydrologic 

model in the inference of precipitation from streamflow (section 5.3). Most of the basins are near 

the crest of the Sierra Nevada and have steep topography that is underlain by granitic bedrock. 

Typical Sierra Nevada soils are shallow and sandy, with a depth of no more than 1 m and a 

porosity of about 0.4 [NRCS, 2007]. Field studies have indicated that soils in higher elevation 
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areas of the Sierra Nevada have a high conductivity typical of sand and gravel, but that the 

percolation rate into the underlying bedrock is much lower [Flint et al., 2008]. A modeling study 

of the upper Merced River basin indicated that the soils’ conductivity is likely at least 1 m d-1 

and that field capacity is likely no higher than 0.2-0.25, in order to match observed streamflow 

patterns [Lundquist and Loheide, 2011].  

5.2.2. Gridded precipitation 

5.2.2.1. H10 precipitation 

 We use the H10 daily precipitation dataset as a basis for comparison with streamflow and 

precipitation inferred from streamflow. The dataset uses National Weather Service Cooperative 

Observer (COOP) daily precipitation gauge observations, and the Parameter Regression on 

Independent Slopes Model [PRISM, Daly et al., 1994, 2008] 1971-2000 monthly precipitation 

climatology as a topographic corrector in the interpolation of gauge precipitation over complex 

terrain. We choose this dataset because of its relatively high spatial resolution (1/16°, ~6 km) and 

long-term span (1915-2010 over California), and because H10 and its predecessors have been 

used to simulate snow and streamflow in Western United States [e.g., Mote et al., 2005]. 

However, we note that other long-term gridded datasets [e.g., Livneh et al., 2013] are also 

available.  

Here we use H10 data covering water years 1950-2010 (1949 is used for model spin-up), 

over a spatial domain which covers the streamflow basins: from -121.5°W to -117.5°W and from 

35.5°N to 40°N. For each basin we calculate the fraction of each H10 grid cell that is within the 

basin, and calculate the H10 basin-mean time series as the weighted sum of the grid cells’ 

precipitation. We use this daily time series of precipitation, combined with a multiplicative 
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precipitation scaling factor inferred in calibration, to force the hydrologic and snow models that 

are the basis for inferring precipitation from streamflow for each basin (see section 5.3).  

5.2.2.2. N15, WRF and other precipitation datasets 

 In order to ascertain the uncertainty of the H10 precipitation estimates and how that 

uncertainty varies of the Sierra Nevada domain, we examine independently-generated gridded 

precipitation data from additional sources. A quantitative estimate of precipitation, and its 

associated uncertainty, is necessary for the Bayesian inference of precipitation from streamflow 

(see section 5.3). For one additional source of precipitation information, we use the N15 dataset 

[Newman et al., 2015]; while it interpolates gauge data in a qualitatively similar manner to H10, 

it notably does not use PRISM precipitation climatology as a topographic corrector, and thus 

may be a more independent estimate from H10 than other available gridded datasets (e.g., Livneh 

et al. [2013]). N15 is a 100-member ensemble dataset, such that uncertainty in the data can be 

explicitly quantified. N15 uses a 1/8° (~12 km) spatial grid, and so there may be greater 

topographic smoothing compared to the 1/16° datasets. 

 Second, we use WRF model [Skamarock and Klemp, 2008] daily precipitation totals over 

California. The regional WRF simulations were generated using WRF version 3.6.0 [Skamarock 

et al., 2008] to dynamically downscale the North American Regional Reanalysis (NARR), with a 

methodology very similar to that used in Hughes et al. [2012]. The WRF downscaling has two 

nested domains, with an outer 18 km grid extending across the northeastern Pacific and much of 

the U.S. intermountain west, and a 6 km grid domain that covers all of California (similar to 

Figure 1 of Hughes et al. [2012]). Both domains have 82 vertical levels, with 50-75 m vertical 

resolution within the lowest 2 km of atmosphere, with model top at 100 hPa. Both domains use 

Morrison double-moment microphysics [Morrison et al., 2009], Dudhia shortwave radiation 
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[Dudhia, 1989] and RRTM longwave radiation [Mlawer et al., 1997] called every 6 minutes, 

Kain-Fritsch convective parameterization [Kain, 2004], the Yonsei University planetary 

boundary layer scheme [Hong et al., 2006], and the Noah land surface model [Tewari et al., 

2004]. WRF data were generated for 11 calendar years, 2004-2014, and over this time period, the 

model was re-initialized approximately every 5 days using NARR data, with the first three hours 

of each 5-day period discarded as model spin-up. The model is run with a 30-second (10-second) 

timestep in the 18 km (6 km) domain; output data is aggregated to daily totals for precipitation. 

For both the N15 and WRF precipitation, gridded precipitation is aggregated to single time series 

for each basin using the fractional grid cells approach described above for H10. 

 For comparison, we also briefly examine two other gridded precipitation datasets: Livneh 

et al. [2013], hereafter L13, and North American Land Data Assimilation System, phase 2 [Xia 

et al., 2012], hereafter NLDAS. We include these datasets to see whether patterns of differences 

between gridded and inferred precipitation are consistent across different gridding 

methodologies. While each gridded dataset considered here varies in the set of precipitation 

gauges used, all of them (with the exception of N15) use PRISM climatology as the topographic 

corrector. Thus, we hypothesize that patterns of inferred biases may be fairly consistent across 

the datasets.  

5.2.3. Temperature and potential evapotranspiration 

To infer precipitation from streamflow, time series of daily mean temperature and 

potential evapotranspiration (PET) are needed to force the hydrologic model that is run for each 

basin. For temperature, we calculated basin-mean time series of daily high and low temperature 

from the H10 data in the same fashion as for precipitation, and averaged the high and low 

temperatures to create a daily mean temperature series. 
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 PET is estimated using the Makkink equation, which uses temperature and shortwave 

radiation as predictors [e.g., Cristea et al., 2013]. The Bristow-Campbell parameterization is 

used to estimate shortwave radiation from temperature [Bristow and Campbell, 1984].  We 

calibrated the Bristow-Campbell and Makkink methods using data from the Dana Meadows 

meteorological station (2,987 m above sea level) for water years 2003 through 2009. Shortwave 

radiation and temperature are used to calibrate the Bristow-Campbell coefficients A (0.7) and C 

(2.49). Shortwave radiation, wind speed, temperature and relative humidity are applied to 

estimate PET using the Penman-Monteith equation, following the methods of Allen et al. [1998]; 

this PET estimate is then used to calibrate the Makkink coefficient (0.668).  

 H10 daily high and low temperatures for each grid cell are used with the approach above 

to estimate daily PET at each grid cell in the spatial domain. The grid cells’ PET are then 

aggregated to basin-mean PET series for each basin. Due to reduced diurnal temperature range at 

higher elevations in the H10 data, PET calculated in this way decreases somewhat with 

elevation, such that 1,000 m elevation has roughly 20% more PET than 3,000 m elevation (about 

1,200 mm yr-1 vs 1,000 mm yr-1), though there is substantial grid cell variation for a given 

elevation. In chapter 3 [Henn et al., 2015], we found that inferred precipitation and inferred 

actual evapotranspiration are only mildly sensitive to PET, presumably due to the largely water-

limited climate of the Sierra Nevada, so we do not investigate PET further here.  

 

5.3. Methods 

Precipitation is inferred from streamflow in this study using methods similar to those 

shown in Figure 3.1. H10-based precipitation, temperature and PET forcing data are used to 

drive snow and hydrologic models for each basin and produce simulated streamflow time series. 
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We simulate all water years for which streamflow observations are available for each basin from 

1950-2010; at least one water year before the start of the analysis (i.e., 1949 for basins with 

streamflow in 1950) is used for model spin-up and is discarded. The parameters of the models 

include a multiplicative error correction [Kavetski et al., 2003] on the precipitation time series, 

along with snow and soil parameters. The simulated runoff is compared to the observed 

streamflow record, and based on the goodness of fit of the streamflow and the prior likelihood of 

the model parameters, the Bayesian joint posterior distribution of the parameters is generated. 

From the posterior distribution of the precipitation multiplier, the corrected basin-mean 

precipitation can then be calculated. This section describes the snow and hydrologic models and 

the calibration routine used to infer precipitation from streamflow; for a more detailed 

description of this approach, see chapter 3 [Henn et al., 2015]. 

5.3.1. Models 

5.3.1.1. FUSE conceptual hydrologic model structures 

 We use the Framework for Understanding Structural Errors (FUSE) [Clark et al., 2008] 

to provide a set of conceptual hydrologic models and to evaluate the effects of model structural 

uncertainty on inferred precipitation [Clark et al., 2011a; McMillan et al., 2011b]. FUSE 

provides multiple options for representing soil moisture storage and fluxes, such as ET, surface 

runoff and baseflow, using a spatially-lumped approach with upper and lower soil zones. 

Streamflow, soil moisture and ET time series are simulated at a daily timestep. In this study, 

multiple FUSE structures are included to estimate the uncertainty of the precipitation inferred 

from streamflow. We use six model structures previously used to investigate the impact of 

structure on model performance in the Mahurangi basin in New Zealand [Clark et al., 2011a; 
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McMillan et al., 2011b] and to infer precipitation from streamflow in chapters 3 and 4. For 

greater details on the FUSE model structures, see Henn et al. [2015] and [Clark et al., 2008]. 

5.3.1.2. Snow model 

 Each FUSE structure is coupled to a temperature index snow model based on Snow-17 

[Anderson, 2006], which tracks SWE based on precipitation and melt. Precipitation is added to 

SWE if the air temperature is below a threshold; otherwise, it is treated as rain. Snowmelt is 

initiated if the air temperature is above a threshold, and is proportional to the temperature above 

that point: 

 𝑆𝑀 = max⁡(min[𝑓{𝑇 − 𝑇0}, 𝑆𝑊𝐸] , 0) (5.1) 

where 𝑆𝑀 is snowmelt per timestep, 𝑓 is the snowmelt factor, 𝑇 is the air temperature, and 𝑇0 is 

the melt threshold temperature. The melt factor 𝑓 varies in a sinusoidal manner over the year, 

with minimum and maximum values on the winter and summer solstices, respectively. The rain-

snow partition temperature, melt initiation temperature, and winter and summer melt factors are 

all inferred parameters. Snowmelt is combined with rainfall, and the two are routed to the soil 

model, which otherwise simulates fluxes and storages independently of the snow model.  

H10 basin-mean precipitation is corrected for errors using a precipitation multiplier 𝑀𝑖, 

where the subscript i indicates the daily timestep:  

 𝑃𝑖 = 𝑀𝑖𝑃𝑓,𝑖  (5.2). 

Here, 𝑃𝑓,𝑖 is the H10 basin-mean precipitation, 𝑀𝑖 is the multiplier and 𝑃𝑖 is the model forcing 

precipitation, all at time i. The multipliers are defined such that they are different for each water 

year, but constant within the water year, and each yearly multiplier is inferred in calibration. In 

this way, we infer water year precipitation from streamflow.  
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 In order to simulate the strong elevation dependence of snow in the Sierra Nevada, the 

snow model is run at 100 m elevation bands for each basin (unlike the soil model, which is 

lumped over the entire catchment). For each band, forcing temperature is lapsed to the ith band 

midpoint elevation:  

 𝑇𝑖 = 𝑇𝑓 + Γ(zi − zf)  (5.3) 

where 𝑇𝑖 is the ith band temperature, 𝑇𝑓 is the forcing temperature, zi is the band midpoint 

elevation, zf is the basin’s mean elevation (because basin-mean temperature and precipitation 

forcing is used), and Γ is the temporally-invariant temperature lapse rate (<0, °C km-1), which is 

also inferred in calibration.  

 Finally, water fluxes to the lumped soil model are calculated by a weighted average of 

rain plus snowmelt from each elevation band:  

 𝐹𝑠𝑜𝑖𝑙 = ∑ 𝐴𝐹𝑖(𝑅𝑖 + 𝑆𝑀𝑖)
𝑛𝑏𝑎𝑛𝑑𝑠
𝑖=1   (5.4) 

where 𝐹𝑠𝑜𝑖𝑙 is the flux of water to the soil model, and 𝐴𝐹𝑖 is the fraction of the basin area, 𝑅𝑖 is 

the rain, and 𝑆𝑀𝑖 is the snowmelt, all from band i.  

Unlike in chapters 3 and 4, we do not use an orographic precipitation gradient (OPG) to 

distribute precipitation to the basins’ elevation bands and infer intra-basin precipitation 

distributions. Instead, the multiplier-corrected precipitation is distributed evenly to each 

elevation band. This is done because the results in chapter 3 and 4 indicated that the inference 

was likely not able to discern intra-basin precipitation patterns; almost all inferred OPGs were at 

or near zero. Thus, precipitation inferred from streamflow represents the basin-mean amount for 

each water year.  

5.3.2. Bayesian model calibration  

5.3.2.1. Bayesian inference of precipitation 
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 We infer basin-mean precipitation from streamflow using Bayes’ Theorem using the 

Bayesian Total Error Analysis package [BATEA, Kavetski et al., 2006a]. The posterior 

probability density functions (PDFs) of the multipliers 𝑀 and other model parameters 𝜃 (the 

snow and soil parameters and the lapse rate), given observed precipitation �̃� and streamflow �̃�, 

are described by: 

 𝑷(𝑀, 𝜃|�̃�, �̃�) ∝ 𝑷(�̃�|M, 𝜃, �̃�) ∙ 𝑷(𝑀, 𝜃)  (5.5). 

The first product term on the right hand side of (5.5) is the likelihood function, which describes 

the probability distribution of the observed streamflow, given particular values of 𝑀, 𝜃 and the 

observed gauge precipitation �̃�. The likelihood function interprets the difference between 

observed and simulated streamflow, using an error model. The second product term in (5.5) is 

composed of the prior distributions of the precipitation multiplier and other model parameters. 

The posterior distribution of the precipitation multiplier and the model parameters, 

𝑷(𝑀, 𝜃|�̃�, �̃�), represents an update of the prior distributions given streamflow and precipitation 

observations.  

We use a weighted least squares (WLS) residual error model to translate differences 

between modeled and observed streamflow into the likelihood of the corresponding parameter 

sets. In the WLS approach, it is assumed that higher streamflow is subject to greater uncertainty, 

unlike simple least squares in which all timesteps are treated equally. Following Thyer et al. 

[2009], we assume that residual streamflow errors follow a Gaussian distribution with zero mean 

and a standard deviation that is a linear function of streamflow, i.e., 

 𝜎𝑡 = 𝑎�̂�𝑡 + 𝑏 (5.6) 
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where 𝑎 and 𝑏 are residual error parameters inferred in the calibration, and �̂�𝑡 is the modeled 

streamflow at a given timestep, 𝑡. The error model calculates likelihood as a function of the 

squared differences between observed and modeled streamflow, which are first normalized at 

each timestep by 𝜎𝑡. 

 The combination of the soil, snow and yearly multiplier parameters results in a parameter 

space with 50-80 dimensions, and so to sample the posterior probability distributions, multiple-

start Quasi-Newton optimization and a Monte Carlo Markov Chain (MCMC) routine are used 

within BATEA [Kavetski et al., 2006b]. The result of the MCMC sampling routine is an 

ensemble of parameter sets, with more samples clustered around parameter values of greater 

posterior probability.  

5.3.2.2. Parameter prior distributions  

To constrain the inference within the Bayesian framework, prior distributions are placed 

on the multiplier and each hydrologic and snow model parameter. We use similar snow and soil 

parameter distributions as in Henn et al. [2015]: uniform distributions are generally used, and 

when no information is available about a parameter in the study domain, the distribution is set to 

the default limits for the FUSE model [Clark et al., 2008]. For more details on the soil and snow 

model parameters, see Table 3.1. 

The prior distributions of the precipitation multipliers are normal distributions and each 

yearly multiplier is independent of the others. We use estimates of each basin’s mean 

precipitation, and the differences in precipitation estimates between H10, N15 and WRF, to set 

the mean and standard deviation of the multipliers’ prior distribution. An example of this process 

is shown in Figure 5.2, for the Cherry-Eleanor basin in water year 2008.  

For the mean of the prior distribution we use: 
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 𝜇𝑀 = (𝑃𝐻10 + 𝑃𝑁15 + 𝑃𝑊𝑅𝐹)/(3𝑃𝐻10) (5.7) 

where 𝑃𝐻10, 𝑃𝑁15 and 𝑃𝑊𝑅𝐹 are the H10, N15 and WRF basin-mean precipitation for the water 

year; N15 precipitation is the mean of the ensembles. For each basin, this procedure is applied 

over each water year from 2005 to 2010, and then averaged. In other words, the mean of the 

prior distribution for each basin is the average of the three datasets’ precipitation, divided by the 

H10 precipitation; this is an a priori guess of how H10 precipitation should be corrected, before 

considering streamflow (see H10, N15 and WRF precipitation in Figure 5.2a and 5.2b).  

 For the standard deviation of the distribution we use: 

 𝜎𝑀 =
1

𝑃
√
1

3
([𝑃𝐻10 − 𝑃]

2
+ [𝑃𝑁15 − 𝑃]

2
+ [𝑃𝑊𝑅𝐹 − 𝑃]

2
) (5.8) 

where 𝑃 is the mean precipitation of the three datasets, or: 

 𝑃 = 𝜇𝑀𝑃𝐻10 (5.9). 

Thus, the standard deviation of the multiplier prior distribution is the standard deviation of basin 

precipitation in H10, N15 and WRF, normalized by the mean of the three. As with the mean, 

(5.8) is applied to estimate the standard deviation for each year from 2005 to 2010 and then 

averaged; this process is repeated for each of the basins. Thus, we use the agreement between the 

three datasets (or lack thereof) to estimate the prior distribution of uncertainty in precipitation for 

a given basin. To illustrate the result of this process, the prior distribution for Cherry-Eleanor in 

water 2008 is plotted in Figure 5.2b.  

5.3.3. Experimental approach 

 First, we examine the Bayesian inference, comparing the prior distribution of the 

multiplier with the posterior distribution for each of the six FUSE model structures. This 

comparison allows us to evaluate whether the choice of prior distribution and precipitation 
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uncertainty appears appropriate given the precipitation inferred from streamflow, as well as the 

uncertainty in inferred precipitation associated with the choice of model structure. 

 Next, we compare H10 precipitation and precipitation inferred from streamflow across 

the 56 study basins in the Sierra Nevada, at several timescales. We present results for several 

water years, focusing on those for which many streamflow gauges were operational (1983 and 

1977), which allows for greater spatial comparison of precipitation. We also compare inferred 

precipitation and streamflow to other gridded precipitation datasets (to test whether the findings 

are consistent across different methodologies). Then we present long-term average differences 

between gridded and inferred precipitation. When testing the differences between gridded and 

inferred precipitation, we consider their spatial patterns in terms of distribution with elevation, 

and distribution topographically across the crest of the Sierra Nevada. Finally, we consider the 

patterns of implied ET from the gridded and inferred datasets across the range.  

 

5.4. Results 

5.4.1. Precipitation multiplier prior and posterior distributions 

 Figure 5.2 shows an example of the prior and posterior distribution of the precipitation 

multiplier for the Cherry-Eleanor basin. We first plot the different precipitation estimates over 

time for this basin, showing the 2005-2010 comparison on which the multiplier prior distribution 

is based. The H10 precipitation is generally less than N15 and WRF, and so the mean prior 

estimate of the multiplier is 1.48 for this basin. The disagreement between the different datasets 

is also relatively high compared to other basins, with the three sources of precipitation spanning 

600-800 mm yr-1. Therefore, the standard deviation of the prior distribution is set to reflect this at 

0.26; together with the mean, this indicates that prior to considering streamflow, we expect 
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basin-mean precipitation to be between 0.97 and 1.99 times H10 precipitation with 95% 

confidence. Using water year 2008 (boxed, Figure 5.2a) as an example, the prior distribution is 

plotted as a precipitation distribution for Cherry-Eleanor in Figure 5.2b, i.e., as the product of the 

multiplier distribution and the 840 mm of precipitation in H10. We also plot water year 2008 

streamflow (790 mm) and N15 (1,052 mm) and WRF precipitation (1,499 mm), showing that the 

prior distribution largely spans the three precipitation data sources. 

 The precipitation inferred from streamflow by the six FUSE model structures for Cherry-

Eleanor is also shown in Figure 5.2. The time series of the inferred precipitation ensemble shows 

substantial differences between FUSE structures, but also robustly reflects yearly variability in 

streamflow. In general, the ensemble of precipitation inferred from streamflow is greater than 

H10, similar or greater than the N15 ensemble, and contains the WRF precipitation. In the water 

year 2008 distribution (Figure 5.2b), the 95% confidence intervals of the inferred precipitation 

from each structure are shown, with the mean indicated by the marker. While the individual 

structures’ intervals are about 100 mm wide, the range of the ensemble is almost 800 mm, 

showing that structural uncertainty in inferred precipitation is more substantial than the 

individual structures imply; this is consistent with the findings of chapter 3 and 4. The mean of 

the FUSE ensemble is also shown (1,332 mm); it is less than WRF but greater than H10 and 

N15. 

 A qualitative examination of this basin and others indicates that the posterior 

precipitation amounts generally fall within reasonable (95%) limits of the prior distributions. 

This suggests that the prior distributions are not grossly incompatible with the posterior 

distributions inferred from streamflow using the FUSE model structures. When this is the case, 

the specific choice of the prior distribution likely does not exert undue influence on the inferred 
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precipitation. Instead, the posterior distributions of inferred precipitation largely reflect the best 

fit of the different model structures to streamflow.  

 Precipitation uncertainty (as measured by the agreement between the H10, N15 and WRF 

datasets) appears greatest in the central Sierra Nevada. When the difference between the datasets 

for each basin are normalized by the basin mean value and plotted spatially (not shown), greater 

relative uncertainty is seen in the Tuolumne, Merced and San Joaquin R. basins. Differences for 

these basins frequently exceed 20% of the mean, while in the southern Sierra Nevada differences 

are generally 10-15% or less, and the northern Sierra Nevada has intermediate values. However, 

the spatial pattern of uncertainty may be at least partially dependent on the choice of the 

particular precipitation datasets used in the comparison. 

5.4.2. Comparing H10 precipitation and inferred precipitation for wet and dry years 

 For each of the 56 basins, we compile the inferred precipitation from the FUSE structures 

and calculate the mean of the FUSE ensemble for each basin-year. We exclude the basin-years in 

which the model calibrations produced very poor fits to streamflow (streamflow Nash-Sutcliffe 

coefficient of -2 or less), or about 8% of all basin-years simulated. We then compare the inferred 

precipitation mean to H10 basin-mean precipitation for individual water years from 1950 to 

2010.  

 Figures 5.3 and 5.4 show this comparison for two water years (1983 and 1977). Water 

year 1983 was one of the wettest on record in the Sierra Nevada, with many gauges reporting 

over 2,000 mm of precipitation. H10 precipitation (Figure 5.3a) reflects the heavy precipitation 

that year, with most basins on the west slope of the Sierra Nevada north of 37°N averaging at 

least that much. Maximum accumulations are seen in the North Fork of the American R. and the 

South Fork of the Yuba R., as well in small adjacent basins. H10 precipitation generally 
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decreases to the south along the west slope of the Sierra Nevada. In comparison, inferred 

precipitation (Figure 5.3b) shows a somewhat more spatially variable pattern: while precipitation 

of 2,500 mm or greater is seen in the Yuba and American basins, similarly large accumulations 

are seen in the basins in the Stanislaus, Tuolumne, San Joaquin, Kings and Kaweah drainages.  

 Water year 1983 streamflow (Figure 5.3c) shows a similarly spatially variable pattern. Of 

particular note are the strong gradients in streamflow seen over the central Sierra Nevada, with a 

local maxima over Cherry-Eleanor and Falls Crs., and much drier (>1,000 mm less runoff) 

basins to the east in the Walker R. basin, and to the southwest in the lower Tuolumne R. basin. 

The spatial gradients are much less sharp in the H10 dataset than they are in streamflow, but are 

(not surprisingly) reflected in the precipitation inferred from streamflow. 

 To check H10 and inferred precipitation, we subtract observed streamflow from both 

datasets’ basin-mean precipitation (Figures 5.3d and 5.3e). Notably, H10 precipitation minus 

streamflow is negative in several basins in water year 1983: Cherry-Eleanor (-175 mm), the 

North Fork of the Stanislaus R. (-16 mm) and Duncan Cr. (-75 mm). Several other basins have 

streamflow within about 100 mm of H10 precipitation, including the San Joaquin R. and its 

tributary Granite Cr. On the other hand, H10 precipitation minus streamflow is much greater for 

basins further from the crest of the Sierra Nevada. For example, the low-elevation Cosumnes and 

Mokelumne basins have H10 precipitation more than 800 mm greater than runoff. Inferred 

precipitation is greater than streamflow by more consistent amounts across the Sierra Nevada 

(Figure 5.3e), typically 400-800 mm, though some local variability exists.  

 Finally, we plot the difference between H10 and inferred precipitation (Figure 5.3f), 

which highlights the different spatial patterns of precipitation from the two sources of 

information. Inferred precipitation is greater than H10 over most high-elevation basins, 
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particularly in the central Sierra Nevada (Stanislaus, Tuolumne, San Joaquin, Kings and Kaweah 

basins). Precipitation inferred from streamflow is less than H10 for many of the lower-elevation 

basins, and for many of the basins east of the crest of the range.  

 The equivalent water year 1977 comparison (Figure 5.4) shows spatial patterns during an 

anomalously dry year. Comparing Figures 5.3 and 5.4 shows that streamflow is on the order of 

90% less in 1977 as compared to 1983. As a result, the absolute differences in streamflow and 

precipitation between basins in 1977 are relatively small, but as a fraction of water year totals 

and considering the value of water in California in a drought year, they remain significant. For 

example, streamflow over 200 mm was observed in some central and northern basins (e.g., San 

Joaquin, Cherry-Eleanor, Falls Cr., the Stanislaus R. basins, and the Yuba R.), as compared to 

the southern portion of the range, where every basin west of the crest except the upper Kaweah 

R. had less than 200 mm of streamflow (Figure 5.4c). Streamflow was also strongly elevation-

dependent, with lower-elevation basins producing less than 100 mm.  

 The spatial pattern of H10 precipitation in 1977 is relatively smooth, and the greatest 

basin-mean precipitation is in the south in the Kaweah R. basin (Figure 5.4a). In contrast, 

inferred precipitation reflects the northerly and high-elevation patterns of streamflow (Figure 

5.4b). Thus, H10 precipitation minus streamflow tends to be greater in the south than in the 

north, while inferred precipitation minus streamflow is more spatially uniform (Figures 5.4d and 

5.4e). The north-south difference is also highlighted in Figure 5.4f. 

 To estimate the long-term differences between H10 and inferred precipitation, we 

calculate the mean difference between the two datasets, using the years in which streamflow is 

available for each basin (generally at least 30 for each basin). While the resulting map (Figure 

5.5) does not reflect a consistent time period, it does give a sense of the overall spatial 
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differences between the two sources of precipitation information. Requiring at least 30 years of 

data means that each basin samples close to the full range of yearly variability, as opposed to 

only a relatively wet or dry period. As discussed for the example years above, the H10 

precipitation pattern appears spatially smoother than the pattern of precipitation inferred from 

streamflow (Figures 5.5a-5.5b). The spatial pattern of average streamflow shows the same strong 

gradients between windward and leeward basins seen in single water years (Figure 5.5c). While 

no basin has long-term H10 precipitation less than long-term streamflow (Figure 5.5d), 

streamflow does suggest very high runoff ratios from H10 precipitation for many windward, 

high-elevation basins (Figure 5.5f). 

5.4.3. Comparison to other precipitation-gauge based gridded datasets 

For comparison, we also plot the water year 1983 precipitation pattern of three other 

gridded datasets (N15, L13 and NLDAS) against streamflow (Figure 5.6). Qualitatively, the 

patterns of precipitation across the three datasets are similar, and also similar to H10, though 

NLDAS appears to have slightly less precipitation across the Sierra Nevada than the other 

datasets, and L13 appears to have somewhat more. In Figures 5.6d-5.6f, a set of basins shows 

low values of precipitation minus streamflow: the upper Kaweah R. basins, the San Joaquin R. 

and Granite Cr., Cherry-Eleanor and Falls Cr., the North Fork of the Stanislaus R. and Highland 

Cr., several of the small basins draining to Lake Tahoe, Duncan Cr., and the South Fork of the 

Yuba R. This set of basins is quite similar to those with low H10 precipitation minus streamflow 

(cf. Figure 5.3d), suggesting that the spatial patterns of precipitation across different gridded 

datasets are relatively similar.  

 Given that the H10, L13 and NLDAS datasets use PRISM precipitation climatology as a 

topographic corrector in the interpolation of gauge observations, we compare the PRISM spatial 
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pattern against streamflow observations. In Figure 5.7, we show the 1971-2000 PRISM 

precipitation normal for each basin (Figure 5.7a); the 1971-2000 normal is used by both the H10 

and L13 datasets. When compared against streamflow (Figures 5.7b and 5.7c), it is apparent that 

the spatial pattern of precipitation in PRISM is similar to those seen in the other precipitation 

datasets, because largely the same set of basins shows low values of precipitation minus 

streamflow (e.g., San Joaquin, Cherry-Eleanor, and the Stanislaus basins). As in the previous 

cases, the spatial pattern of PRISM precipitation is much smoother than the spatial pattern of 

streamflow. 

5.4.4. Cross-range transects of precipitation and streamflow 

 To resolve the spatial patterns of precipitation and streamflow with respect to the 

topography of the Sierra Nevada, we plot them along two cross-range transects (Figure 5.8). The 

first transect begins in the Tuolumne R. basin on the west slope and travels northeast through the 

Walker R. basin, while the second begins in the Mokelumne R. basin, passes through the North 

Fork of the Stanislaus R. basin before crossing the range into the Carson R. basin. Given 

predominant cool-season winds out of the southwest [e.g., Lundquist et al., 2015], these transects 

pass from windward to leeward basins.  

In the first transect (Figure 5.8b), the greatest streamflow is seen near the top of the 

windward slope in the Cherry-Eleanor basin, while steep declines to both the southwest (Big 

Cr.), and in particular, the northeast (Walker R.) are seen. H10 precipitation generally places the 

greatest precipitation near the crest, but the maximum is likely too little given observed 

streamflow (Figure 5.8c). However, H10 precipitation appears compatible with streamflow and 

nearly matches inferred precipitation for Big Cr. and the Walker R. basins.  
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In the second transect (Figure 5.8d), streamflow also reaches its peak on the high 

windward face of the range, in the North Fork of the Stanislaus R. basin. Similar to the first 

transect, H10 precipitation appears insufficient in this basin; H10 precipitation is slightly less 

than streamflow in water year 1983 (Figure 5.8e). Also similar to the first transect, the leeward 

basin (East Fork of the Carson R.) has much better agreement between H10 and inferred 

precipitation, but the lower-elevation windward basin (South Fork of the Mokelumne R.) has 

much greater H10 precipitation than inferred precipitation. In both transects, the higher-elevation 

windward basins have generally southwest-facing aspects; winds from this direction encounter a 

consistent upslope aspect and little upstream blocking, conditions favorable for orographic 

enhancement [Roe, 2005].  

5.4.5. Interannual variability in spatial patterns of precipitation and streamflow 

By considering multiple stream gauges in the Sierra Nevada, we can examine changes in 

the spatial pattern of streamflow and inferred precipitation from year to year. For this analysis, 

we select a subset of years and basins with complete records, so differences between years are 

due to changes in streamflow, and not due to changes in the set of basins. We select 1974-1987, 

a period in which 43 basins have complete streamflow records (Figure 5.9a). Within that set, we 

identify 15 basins on the west slope of the Sierra Nevada that are potentially underestimated by 

the gridded datasets based on the findings in the previous sections, and average these basins’ 

runoff and precipitation to represent the windward portions of the range. We identify 9 basins on 

the eastern side of the crest and average them to create a leeward group. Finally, we divide the 

basins into northern and southern groups (Figure 5.9a); the windward and leeward basins are also 

included in the appropriate northern and southern groups. With these indices of streamflow and 

precipitation, we can identify windward vs. leeward and north vs. south shifts between years. 
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In Figures 5.9b and 5.9c, we show windward-leeward and north-south ratios, 

respectively, of precipitation and streamflow. Streamflow is on average more than twice as great 

from the windward basins than from the leeward basins; however, the ratio varies from year to 

year, with 1978 in particular showing greater windward streamflow relative to the lee of the 

range (Figure 5.9b). This shift is reflected in the inferred precipitation, which has a lower mean 

windward-leeward ratio (~1.7), but generally follows the variability in streamflow. H10 

windward-leeward precipitation ratios, however, are between 1.25 and 1.5, suggesting a weaker 

rain shadow, and show very little interannual variability. North-south ratios (Figure 5.9c) show 

substantial interannual variability, with precipitation and streamflow twice as large in the 

northern portion of the range compared to the south in some years, but near equal in others. 

Streamflow inferred precipitation and H10 precipitation track one another over this time period, 

though agreement is worse during the 1976-1977 drought years.  

The annual difference between precipitation and streamflow in the Sierra Nevada implies 

the actual evapotranspiration (ET), as drainage to deep aquifers and changes in soil moisture 

storage are generally small compared to precipitation and streamflow. In some studies, ET has 

been estimated from the differences between basin-mean gridded precipitation and streamflow 

[e.g., Christensen et al., 2008; Lutz et al., 2010], and so we plot implied ET from the different 

basin groups under both H10 and inferred precipitation in Figure 5.10. When considering 

windward-leeward differences, H10 precipitation implies that ET is greater in the leeward basins 

than the windward basins (Figure 5.10a). The difference from H10 precipitation between leeward 

and windward implied ET is variable, and appears larger in wetter water years (1978, 1982 and 

1983). However, inferred precipitation implies that windward ET is greater than leeward ET, by 

a fairly constant margin. There is greater agreement between H10 and inferred precipitation 
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regarding north-south differences in implied ET (Figure 5.10b): both datasets generally show 

greater ET in the northern basins, though in some years this is not the case for the H10 dataset. 

We discuss patterns of ET in more detail in section 5.5.  

5.4.6. Trends in precipitation and streamflow 

Using a subset of basins with at least 90% complete streamflow records over the study 

period (1950-2010), we calculate trends in the water year totals of observed streamflow, H10 

basin-mean precipitation and inferred basin-mean precipitation. While there are fewer basins 

with sufficiently long records to conduct the trend analysis, the spatial patterns of precipitation 

and streamflow trends can still be discerned (Figure 5.11). Trends in H10 precipitation show a 

strong north-south divide; the Kern and Kaweah basins in the south have positive precipitation 

trends, while all basins to the north have declines of 5-15%. In contrast, inferred precipitation 

(Figure 5.11b) shows increases in precipitation over the central Sierra Nevada in the Merced and 

San Joaquin basins, weak trends in the southern portion of the domain, and decreases in the 

northern basins. In general, this follows from the observed streamflow trends, which are most 

positive over the central Sierra Nevada and are negative for all basins from the Mokelumne R. 

northward (Figure 5.11c). The differences between the H10 and inferred precipitation trends are 

thus greatest over the central Sierra Nevada (Figure 5.11d).  

The trends in Sierra Nevada precipitation and streamflow are generally consistent with 

the trends in precipitation, April 1 SWE and streamflow shown in chapter 2. Since 1950, 

precipitation, streamflow and SWE appear to have increased over the Sierra Nevada from 

approximately Yosemite National Park southward, while the northern Sierra Nevada has seen 

declines in precipitation, streamflow and SWE. The H10 dataset appears to capture some, though 

not all, of these shifts in spatial patterns. While it does show the positive trends in precipitation 



124 

 

in the southern Sierra Nevada that would be expected from the observed positive trends in 

streamflow and SWE, it does not capture the correct sign or magnitude of the increasing 

precipitation inferred over the central basins, in particular the San Joaquin, Merced and Walker 

basins.   

5.4.7. Comparing gridded, modeled and inferred precipitation patterns 

In Figure 5.12, we plot water year 2008 basin-mean precipitation for H10, WRF and 

inferred precipitation. These three datasets have independent sources of information: the spatial 

pattern of H10 is driven by PRISM-based precipitation gauge interpolation, while WRF 

simulates atmospheric dynamics, and inferred precipitation is derived from streamflow. While in 

comparison to earlier years there are fewer operating stream gauges in 2008 (when WRF 

precipitation is available), precipitation patterns can still be compared across the three datasets. 

WRF has the greatest precipitation amounts, particularly for basins in the northern portion of the 

range. By contrast, H10 has significantly less, while inferred precipitation is generally in 

between the other two. When precipitation minus streamflow is plotted for each (Figure 5.12, 

bottom row), different spatial patterns are seen: H10 again shows relatively low values over 

higher-elevation windward basins, while both WRF and inferred precipitation show patterns of 

precipitation minus streamflow that are greatest in the northern and high-elevation windward 

basins. Notably, WRF precipitation minus streamflow does not show low values in the basins 

previously identified with H10 precipitation and the other gridded datasets, suggesting that it is 

capturing the dynamics of local orographic enhancement and may better reproduce local runoff 

maxima in streamflow.  
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5.5. Discussion 

5.5.1. Precipitation minus streamflow and ET estimates 

Precipitation inferred from streamflow using the approach here essentially uses basin 

water balance closure and assumes that precipitation is the sum of observed streamflow and 

modeled actual ET, using the flexible precipitation input outlined in previous sections. 

Therefore, inferred precipitation represents a physically-based estimate of basin-mean 

precipitation given streamflow observations. Figure 5.2 and the results in chapters 3 and 4 make 

it clear that this formulation does produce substantial uncertainties in the absolute amounts of 

inferred precipitation, specifically due to uncertainties in hydrologic model structure and the 

parameterization of fluxes such as percolation and ET. Therefore, the absolute inferred 

precipitation quantities presented here should be viewed with some care due to the uncertainty in 

inferred ET. However, the results of chapter 3 also suggest that the year-to-year and basin-to-

basin variability of inferred precipitation is more robust than the absolute amount of inferred 

precipitation [Henn et al., 2015]. While each FUSE model structure has a bias relative to the 

others, this bias is quite consistent across water years and basins (Figures 3.5 and 3.9). So we 

interpret the spatial pattern of inferred precipitation, as well as the yearly wet vs. dry differences 

in inferred precipitation, as being physically-based. In contrast, gridded precipitation products 

such as H10 leverage available precipitation observations to produce interpolated patterns, but 

interpolating gauge observations to a grid is a statistical process, not a physical one, and as such 

is subject to statistical uncertainty.  

Given these considerations, it is reasonable to check precipitation minus streamflow from 

both approaches against available observations and estimates of actual ET over the Sierra 
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Nevada. However, measurements of ET over the Sierra Nevada are few, and uncertainty is high. 

Observational studies have estimated actual ET to be between 400 and 800 mm yr-1 at the point 

scale [Stephenson, 1998; Kurpius et al., 2003; Ichii et al., 2009; Goulden et al., 2012]. Studies of 

forest cover and soils have shown that deep rooting allow trees and vegetation to access water 

stored in weathered bedrock [Rose et al., 2003; Bales et al., 2011], allowing for greater ET and 

maintenance of forests despite shallow (<1 m) soils and nearly precipitation-free summers in the 

Sierra Nevada’s Mediterranean climate.  

However, ET observations are exclusively made at the point scale in or over forest cover, 

and the extrapolation to spatially distributed, basin-mean ET has greater uncertainty. Goulden et 

al. [2012] and Goulden and Bales [2014] developed a relationship between the normalized 

difference vegetation index (NDVI) observed by the Moderate-Resolution Imaging 

Spectroradiometer (MODIS) and observations of ET at multiple flux towers in California, and 

used it to estimate basin-mean ET and elevational gradients of ET. Basin-scale studies can also 

infer ET through consideration of precipitation and streamflow, but both must be known well 

since ET is often the remainder of these two larger terms. (Our findings suggest that gridded 

precipitation datasets may have too much uncertainty to apply this approach to reliably infer ET 

in many basins.) A two-year study in the forested Southern Sierra Critical Zone Observatory 

(SSCZO) in the Kings basin [Bales et al., 2011] estimated ET to be 760 mm yr-1, respectively. 

This suggests that basin-mean ET is generally less than point estimates made in forests, 

presumably due to the areas of limited transpiration (i.e., rock, snow and grasses); a two-year 

water balance study of an above-treeline Kaweah basin found ET of 400 mm yr-1 [Kattelmann 

and Elder, 1991]. The relationship between forest and basin-mean ET may depend on the 

fraction of forest cover in the basin.  
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In Figure 5.13 we consider implied ET from the different precipitation data sources 

against observation-based estimates of ET over the Sierra Nevada. We plot precipitation, 

streamflow and precipitation minus streamflow against each basin’s mean elevation in Figure 

5.13a. The distribution of precipitation with elevation for H10 shows an increase at lower 

elevations, then a maximum at perhaps 2,000 m, followed by a slight decline above that 

elevation. The pattern for streamflow, and inferred precipitation, is more sensitive to elevation: 

streamflow increases rapidly from the lower elevation basins up to 2,000-2,500 m; there are few 

basins above this elevation. Inferred precipitation follows a similar pattern, but with a positive 

offset from streamflow. Precipitation minus streamflow (Figure 5.13b) for H10 shows a general 

decline with elevation, with the negative values noted above apparent at 1,800 m to 2,400 m in 

elevation. However, inferred precipitation minus streamflow is much less sensitive to elevation, 

with most values at all elevations between 400 and 800 mm yr-1, presumably reflecting a 

relatively constant pattern of evapotranspiration in the FUSE models across the basins.  

Point observations of ET from the Sierra Nevada are plotted against elevation in Figure 

5.13c, including estimates from Ameriflux tower sites [Kurpius et al., 2003; Ichii et al., 2009] 

and SSCZO flux towers and basin water balance [Bales et al., 2011; Goulden et al., 2012]. We 

also apply the regression of ET against MODIS NDVI from Goulden et al. [2012] to estimate 

basin-mean ET for each of the streamflow basin (gray circles). Collectively, these observations 

show that ET likely peaks in the middle elevations (1,000-2,000 m), with declines at higher and 

lower elevations. We can interpret this difference given arguments about ET over the elevation 

range of the Sierra Nevada. While higher, colder basin have shorter growing seasons and less 

PET, they also have greater water availability compared to lower-elevation basins due to greater 

precipitation. Given the Sierra Nevada’s very arid summers and shallow soils, actual ET is 
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generally driven more by water availability than PET, i.e., the climate is generally water-limited 

at all but the highest elevations. The resulting tradeoffs appear to favor the greatest actual ET in 

the middle elevations, particularly on windward slopes [Christensen et al., 2008; Goulden et al., 

2012], which is also where the greatest forest cover is located [Stephenson, 1998]. The NDVI-

based approach in particular suggests that there is low (<400 mm yr-1) ET in high-elevation and 

leeward basins. However, because Goulden et al. [2012] based their regression on flux towers 

that are located primarily at sites at lower elevations and in more arid regions than the high 

Sierra Nevada, they note that it may underestimate ET in energy-limited alpine areas where 

NDVI is not a major indicator of water availability. For example, studies of evaporation and 

sublimation from the snowpack in the Sierra Nevada have estimated it to be from near zero to 

more than 300 mm yr-1, the substantial uncertainty is due to a lack of direct measurements 

[Kattelmann and Elder, 1991; Leydecker and Melack, 1999]. Thus, the NDVI-based estimates 

are probably best considered as a lower bound of ET in the higher-elevation basins.  

In the lower row of Figure 5.13, we plot the spatial pattern of implied ET from H10 (d), 

inferred precipitation (e) and from the NDVI-based regression (f). The spatial patterns exhibit 

significant differences, with H10 and inferred precipitation showing greater implied ET than the 

NDVI-based approach over many of the higher-elevation basins in the central and southern 

Sierra Nevada as well as east of the crest. The different ET estimates also suggest that the 

precipitation inferred from streamflow using the FUSE models may overestimate high-elevation 

ET in basins with little vegetative cover. However, the NDVI-based approach does suggest that 

basins of similar elevation and forest cover (e.g., the Tuolumne and Merced basins in the central 

portion of the range) have similar amounts of ET. While the NDVI-based ET amounts are less 

than those from inferred precipitation, these spatial patterns of variability (Figures 5.13e-f) are 
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more similar than the H10 ET pattern (Figure 5.13d). The NDVI-based approach does not 

support aspects of the H10 dataset in which certain basins (e.g., Cherry-Eleanor) have much less 

ET than basins of similar elevation, or that ET is greater on the leeward slope of the Sierra 

Nevada as compared to the windward slope. We interpret those features of the H10 dataset to be 

more likely due to underestimation of precipitation in grid interpolation.  

5.5.2. Gridded underestimation of precipitation in favored windward basins 

The maps (Figures 5.3-5.7) and transect plots (Figures 5.8) of the difference between 

gridded and inferred precipitation yield several consistent spatial patterns. First, the likely 

underestimation of precipitation by H10 occurs over higher-elevation windward basins with 

generally southwest aspect (Duncan Cr., Cole Cr., the North Fork of the Stanislaus R. and 

Highland Cr., Cherry-Eleanor and Falls Cr., Granite Cr. and the San Joaquin R., and the Marble 

Fork and main stem of the Kaweah R.). Lower-elevation basins on the west slope, basins in the 

far southern Sierra Nevada, and basins east of the crest generally show better agreement, or even 

potential overestimation by H10. This pattern is illustrated in Figures 5.8, which shows the 

greatest disagreement occurring in relatively high-elevation windward basins. The apparent 

enhancement and mainly southwestern aspect of these basins agrees with findings that the 

predominant moisture transport into the Sierra Nevada is from low-level southwesterly winds 

during cool-season storms [e.g., Lundquist et al., 2015]. 

Given that these findings are essentially the result of basins with higher streamflow than 

others at similar elevation and latitude, the reliability of the streamflow observations deserves 

consideration. Streamflow measurements are subject to uncertainty in the rating curve and depth 

measurements, which produce instantaneous errors in flow measurement, and may lead to biases 

if not validated with reliable instream flow measurements. However, we consider the likelihood 
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of large, long-term biases in streamflow data to be relatively small, assuming that the gauges are 

well-maintained and that the USGS considers the records to be of reasonable quality. It is 

possible that any individual gauge has a substantial bias; however, the patterns of streamflow 

seen in Figures 5.3-5.5 appear to be spatially coherent. They exhibit as a generally north-to-

south, wet-to-dry pattern, and appears to favor southwest-facing basins with no upstream 

blocking. The apparent enhancement in these topographically favored basins is supported by 

theoretical and observational studies of relatively small-scale precipitation patterns in complex 

terrain [Frei and Schar, 1998; Roe, 2005; Anders et al., 2007; Minder et al., 2008]: mountainous 

areas receiving the greatest precipitation generally are those in which prevailing moisture-

bearing winds are forced upslope due to favorable topographic aspect. These factors suggests 

that the long-term streamflow measurements are relatively robust. 

The patterns appears also fairly consistent in time across the water years surveyed and in 

the long-term average pattern. Thus, it suggests that there may be low bias in the spatial mean 

pattern of precipitation in the gridded datasets, which in H10 (and most similar datasets) is set to 

match a long-term precipitation climatology from PRISM [Daly et al., 1994, 2008]. Other 

PRISM-based gridded datasets (L13, NLDAS) show relatively similar patterns of potential 

underestimation (Figure 5.6), suggesting that this climatology may be a source of the 

underestimation. PRISM uses a detailed topographic interpolation scheme that reflects the 

spatially-variable relationship between precipitation and elevation on slopes of different aspect. 

However, it ultimately relies on gauge observations (as well as April 1 snow course observations 

in some cases) to obtain the elevation-precipitation relationship. If there are few or no gauges on 

certain preferential slopes where air parcels are forced upward due to aspect and topographic 
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convergence [Roe, 2005], it will be difficult for the regression to capture these local maxima. As 

a result, it may underestimate precipitation for basins in these areas. 

Because many datasets use PRISM climatology to establish the mean spatial pattern of 

precipitation over complex terrain, the potential biases seen in Figures 5.3-5.6 do not just apply 

to the H10 dataset, but to a broader array of gridded precipitation products. In fact, even the 

gridded precipitation dataset that does not rely on PRISM (N15) shows a relatively similar 

spatial pattern of precipitation. Given these findings, it appears that underestimation of local 

precipitation maxima in complex terrain could be a widespread feature of gridded precipitation 

datasets. However, it is notable that WRF precipitation does appear to better represent 

precipitation in some of the basins with very high streamflow (Figure 5.12). Some have argued 

that WRF precipitation over mountains is generally too high [e.g., Caldwell et al., 2009], and the 

WRF data shown here does produce high values of precipitation minus streamflow overall. But 

given that gridded precipitation datasets are usually used to evaluate WRF, it appears possible 

that the apparent wet biases in WRF in some areas actually may be dry biases in the gridded 

products.  

We also find evidence of year-to-year variability in the potential biases in H10 

precipitation. While the differences between inferred and H10 precipitation appear to be largely 

temporally consistent, in that the sign of the differences tends to be the same for a given basin 

from year to year, there are also differences between the wet and dry years shown in Figures 5.3 

and 5.4. Water year 1977 inferred precipitation and streamflow, while very low, is mostly in the 

northern Sierra Nevada. H10 precipitation is more uniform from north to south, and so the 

comparison with inferred precipitation (Figure 5.4f) suggests H10 underestimation primarily in 

the northern Sierra Nevada. In contrast, for the very wet water year 1983, the greatest differences 
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between H10 and inferred precipitation occur throughout the Sierra, but primarily at higher-

elevation, windward basins (Figure 5.3f). In addition, the gridded dataset appears to 

underestimate changes in year-to-year ratios of windward and leeward precipitation (Figure 5.9). 

These findings suggests that the biases in gridded precipitation may vary depending on the 

particular storm tracks and spatial patterns of precipitation in a water year [e.g., Lundquist et al., 

2010].  

 

5.6. Conclusions 

From the comparison between streamflow from 56 long-term, largely unimpaired Sierra 

Nevada stream gauges, gridded precipitation, and precipitation inferred from streamflow, over 

water years 1950 to 2010, we draw the following conclusions:  

1) There are differences between the mean spatial pattern of gridded precipitation in H10 

(and other gridded datasets, most of which are set by PRISM climatology) and the spatial 

pattern of precipitation inferred from streamflow. In particular, streamflow implies 

greater precipitation in higher-elevation, southwest-facing basins than is seen in H10 and 

other gridded datasets.  

2) The spatial and temporal variability of precipitation inferred from streamflow (e.g., 

precipitation gradients over the crest of the Sierra Nevada) is higher than in H10 gridded 

precipitation. While absolute uncertainties in inferred precipitation are relatively high, the 

spatial patterns are relatively robust, such that the gradients in streamflow also likely 

represent gradients in the precipitation pattern.  

3) The relationship between implied actual ET (precipitation minus streamflow) across the 

crest of the Sierra Nevada is different between the gridded precipitation dataset and 
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inferred precipitation: H10 implies actual ET is similar or greater in a set of basins to the 

lee of the crest relative to a set on the windward side, while implied actual ET is greater 

on the windward side with inferred precipitation.  

4) 1950-2010 trends in inferred precipitation show increases over the central and southern 

Sierra Nevada; in contrast, H10 precipitation trends show declines over the central Sierra 

Nevada. 
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5.7. Tables 

Table 5.1. Sierra Nevada unimpaired streamflow gauge and basin information. 

USGS 
Gauge 

Number 

USGS 
Gauge Name 

Watershed Latitude Longitude 
Gauge 

Elevation 
[m] 

Basin 
Mean 

Elevation 
[m] 

Basin 
Peak 

Elevation 
[m] 

Basin 
Area 

[km2] 
Starts Ends Years HCDN Quality Notes 

10270872 

MF BISHOP C 
BL LK 

SABRINA NR 
BISHOP CA 

Owens 

37°12''50" 118°36''34" 2,762 3,457 4,212 43.6 1990 - 26 Y - 

Regulation by 
Lake Sabrina 
(USGS station 
10270870); 

mass balance 
correction 

applied to flow 
record 

10276001 

COMBINED Q 
BIG PINE C & 

GIROUX 
DITCH CA 

37°08''42" 118°18''52" 1,372 2,997 4,336 100.5 1931 1978 48 N Poor 
Includes both 

river and 
diversion 

10281800 

INDEPENDEN
CE C BL 

PINYON C NR 
INDEPENDEN

CE CA 

36°46''43" 118°15''49" 1,616 2,996 4,130 31.3 1924 1978 55 N Poor 
No diversions or 

regulations 

10286001 

COTTONWOO
D C NR 

OLANCHA 
CA.+ PH CA 

36°26''20" 118°04''48" 1,421 3,058 4,263 103.8 1907 1978 72 N Poor 
Includes both 

river and 
diversion 

10291500 

BUCKEYE CK 
NR 

BRIDGEPORT, 
CA 

Walker 

38°14''20" 119°19''30" 2,104 2,804 3,612 114.1 1954 - 62 Y Good 

No regulation or 
diversion above 

station; WYs 
1980-1995 

missing 

10295500 

L WALKER RV 
NR 

BRIDGEPORT, 
CA 

38°21''39" 119°26''38" 2,070 2,647 3,527 163.0 1945 2008 64 Y Good 

Small diversions 
above stations; 
WYs 1987-1995 

missing 
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10296000 
W WALKER R 
BL L WALKER 

R NR CO 
38°22''47" 119°26''57" 2,010 2,696 3,577 469.1 1939 - 77 Y Fair 

Small diversions 
upstream; slight 

regulation by 
Poore Lake 

10296500 
W WALKER R 

NR 
COLEVILLE, CA 

38°30''48" 119°26''56" 1,683 2,624 3,577 632.0 1958 - 58 Y Fair 

Small diversions 
upstream; slight 

regulation by 
Poore Lake 

10308200 

E FK CARSON 
RV BLW 

MARKLEEVILL
E CK NR 

MARKLEEVILL
E 

Carson 

38°42''53" 119°45''50" 1,646 2,412 3,489 717.2 1961 - 52 Y Fair 

Small diversions 
upstream; slight 

regulation by 
small reservoirs 

10310000 

W F CARSON 
R AT 

WOODFORDS, 
CA 

38°46''11" 119°49''58" 1,754 2,458 3,309 170.0 1939 - 74 Y Fair 

Small diversions 
upstream; small 

regulation 
upstream 

10310400 
DAGGETT CK 
NR GENOA, 

NV 
38°57''52" 119°50''57" 1,555 2,220 2,915 10.1 1972 - 39 Y Good 

No diversions 
above station; 

WYs 1984-1988 
missing 

10336660 
BLACKWOOD 

CREEK NR 
TAHOE CITY 

Tahoe 

39°06''27" 120°09''40" 1,901 2,217 2,704 29.6 1961 - 55 Y Fair 

No known 
diversion or 

regulation; ice 
error in winter 

10336676 

WARD C AT 
HWY 89 NR 

TAHOE PINES 
CA 

39°07''56" 120°09''24" 1,899 2,222 2,704 24.9 1973 - 43 Y Good 
Minor 

diversions 
upstream 

10336780 
TROUT CREEK 

NR TAHOE 
VALLEY CA 

38°55''12" 119°58''17" 1,903 2,426 3,318 93.9 1961 - 55 Y Good 

Minor 
diversions 

upstream; ice 
error in winter 

10343500 

SAGEHEN 
CREEK NR 
TRUCKEE 

CALIF 

39°25''54" 120°14''13" 1,927 2,164 2,656 27.6 1954 - 62 Y Good 
No storage or 

diversion 
upstream 
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11186001 

COMBINED 
FLOW OF 

KERN R AND 
KERN R NO 3 

CA 

Kern 

35°56''43" 118°28''36" 1,104 2,632 4,403 2,190.2 1911 - 104 Y - 
Includes both 
river and SCE 

diversion 

11187000 
KERN RIVER 

AT KERNVILLE 
CALIF 

35°45''16" 118°25''21" 799 2,495 4,403 2,610.5 1954 1993 40 N Good 

A few small 
diversions for 

irrigation 
upstream from 

station 

11189500 
SF KERN R NR 
ONYX CALIF 

35°44''15" 118°10''22" 884 2,357 3,691 1,371.0 1946 - 66 Y - 
<15 cfs 

diversions 
upstream 

11199500 
WHITE R NR 
DUCOR CA 

Tulare 

35°48''36" 118°55''03" 218 744 2,526 234.9 1972 2005 33 N Good 
No regulation or 

diversion 

11202001 

NF OF MF 
TULE R NR 

SPRINGVILLE 
CALIF (TOTAL 

FLOW) 

36°10''29" 118°41''41" 890 2,057 3,116 101.4 1940 - 72 Y - 
Includes both 

river and PG&E 
diversion 

11204500 
SF TULE R NR 
SUCCESS CA 

36°02''33" 118°51''24" 235 1,238 2,831 285.2 1931 1990 60 N - 
 

11206501 

MF KAWEAH 
R NR 

POTWISHA 
CAMP CALIF 

(TOTAL 
FLOW) 

Kaweah 

36°30''47" 118°47''27" 640 2,287 3,826 266.1 1950 2002 53 N - 
Includes both 
river and SCE 

diversion 

11208001 

MARBLE FK 
KAWEAH AT 

POTWISHA CP 
CALIF TOTAL 

FLOW 

36°31''19" 118°47''54" 674 2,403 3,494 132.7 1950 2002 53 N - 
Includes both 
river and SCE 

diversion 

11208731 

COMBINED 
FLOW EF 

KAWEAH R 
NR THREE 
RIVERS CA 

36°27''05" 118°47''15" 762 2,315 3,791 222.5 1957 2002 29 N - 

Includes both 
river and SCE 

diversion; WYs 
1978-1993 

missing 
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11209900 

KAWEAH 
RIVER AT 

THREE RIVERS 
CALIF 

36°26''38" 118°54''09" 247 1,894 3,826 1,085.3 1959 1990 42 N Good 
Diversions of up 

to 200 acres 
upstream 

11210100 

SOUTH FORK 
KAWEAH 
RIVER AT 

THREE 
RIVERS, CALIF. 

36°25''00" 118°54''48" 246 1,578 3,472 230.3 1959 1990 42 N Good 

Several small 
diversions 

upstream from 
station for 
irrigation 

11213500 

KINGS RIVER 
AB NF NR 
TRIMMER 

CALIF 

Kings 

36°51''48" 119°07''24" 305 2,621 4,338 2,463.4 1932 1982 51 N Good 
No diversions or 

regulations 

11218501 

COMBINED 
FLOW KINGS 

R BL N F & 
KINGS R PP 

CA 

36°52''29" 119°08''27" 287 2,551 4,338 3,471.5 1953 1993 41 n Good 

NF Kings portion 
regulated post-
1957; includes 
both river and 

powerplant flow 

11221700 
MILL CREEK 

NEAR PIEDRA 
CALIF 

36°49''07" 119°20''27" 168 782 2,197 328.3 1958 1994 37 N Good 

Some small 
diversions 

upstream from 
station for 
irrigation 

11226500 

SAN JOAQUIN 
R AT MILLER 
CROSSING 

CALIF 

San Joaquin 

37°30''38" 119°11''47" 1,393 2,781 4,009 650.5 1922 1991 47 N - 
WYs 1929-1951 

missing 

11228500 

GRANITE C NR 
CATTLE 

MOUNTAIN 
CA 

37°31''36" 119°15''28" 2,073 2,709 3,539 123.9 1966 1986 21 N - 
No diversion 
from station 

11230500 

BEAR CR NR 
LAKE 

T.A.EDISON 
CALIF 

37°20''22" 118°58''21" 2,246 3,244 4,177 136.3 1922 - 94 Y - 

No storage or 
diversion 

upstream of 
station 

11237500 
PITMAN C BL 
TAMARACK 
CREEK CALIF 

37°11''55" 119°12''46" 2,140 2,436 3,002 59.9 1928 - 88 Y - 
No diversion 

upstream from 
station 
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11264500 

MERCED R AT 
HAPPY ISLES 
BRIDGE NR 
YOSEMITE 

CALIF 
Merced 

37°43''53" 119°33''29" 1,225 2,747 3,980 469.8 1916 - 100 Y Good 

Up to 5 cfs can 
be diverted 

upstream from 
station 

11266500 

MERCED 
RIVER AT 
POHONO 

BRIDGE NEAR 
YOSEMITE, 

CAL 

37°43''01" 119°39''55" 1,177 2,577 3,980 834.5 1916 - 100 Y Good 

No diversions 
between Happy 

Isles and 
Pohono 

11275000 
FALLS C NR 

HETCH 
HETCHY CA 

Tuolumne 

37°58''15" 119°45''48" 1,631 2,599 3,545 119.4 1916 1983 68 N Good 
No regulation or 

diversion 

- 
TUOLUMNE R 

A HETCH 
HETCHY 

37°58''15" 119°47''18" 1,067 2,723 3,984 1,172.8 1970 - 46 Y Fair 
HHWP full 

natural flows 

- 

CHERRY CR A 
CHERRY LAKE 
+ ELEANOR 
CR A LAKE 
ELEANOR 

37°58''29" 119°54''36" 1,357 2,344 3,275 485.7 1974 2013 40 Y Fair 

HHWP full 
natural flows; 

includes flow of 
Eleanor basin, 
connected by 

tunnel 

11281000 

SF 
TUOLUMNE 

RIVER NR 
OAKLAND 

RECREATION 
CAMP CAL 

37°49''18" 120°00''43" 854 1,692 2,813 225.6 1924 - 85 N Good 

No diversion, 
small regulation 
upstream; USGS 
record ends in 

2002; reappears 
on CDEC in 

1/2009 as STO 

11282000 

MIDDLE 
TUOLUMNE R 
AT OAKLAND 
RECREATION 

CAMP CAL 

37°49''42" 120°00''38" 854 1,869 2,930 165.1 1917 - 92 N Good 

No regulation, 
small diversions; 

USGS record 
ends in 2002; 
reappears on 

CDEC in 1/2009 
as MTO 

11283500 

CLAVEY RIVER 
NEAR BUCK 
MEADOWS, 

CALIF. 

37°54''02" 120°04''15" 724 1,802 2,825 378.2 1960 1994 35 N Good 

No storage or 
diversion 

upstream of 
station; WYs  
1984-1986 
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missing 

11284400 

BIG C AB 
WHITES 

GULCH NR 
GROVELAND 

CA 

37°50''31" 120°11''02" 781 961 1,210 41.7 1970 - 46 Y Good 
No storage or 

diversion 

11292000 

MF 
STANISLAUS R 
AT KENNEDY 

MDWS NR 
DARDANELLE 

CA 

Stanislaus 

38°17''51" 119°44''25" 1,929 2,725 3,520 123.6 1938 - 78 Y - 

No diversion, 
but higher 

summer low 
flows due to 

releases from 
Relief Reservoir 

11292500 

CLARK FORK 
STANISLAUS 
RIVER NEAR 

DARDANELLE, 
CAL 

38°21''50" 119°52''13" 1,679 2,497 3,428 174.8 1951 1994 44 N Good 
No regulation or 

diversion 
upstream 

11293500 

NF 
STANISLAUS R 

BL SILVER 
CREEK CALIF 

38°26''22" 120°00''53" 2,036 2,303 2,868 74.4 1953 1987 35 N - 

Low/medium 
flows regulated 

by 
Union/Utica/Alp
ine reservoirs; 
no diversions 

11294000 

HIGHLAND C 
BL SPICER 

MEADOWS 
RES CALIF 

38°23''35" 119°59''53" 1,933 2,343 3,024 119.8 1953 1987 60 Y - 
 

11315000 
COLE C NR 

SALT SPRINGS 
DAM CALIF 

Mokelumne 

38°31''09" 120°12''42" 1,805 2,260 2,842 54.1 1928 - 85 Y - 

Occasional 
pumping 

upstream from 
station for 

summer homes 

11316800 

FOREST 
CREEK NEAR 
WILSEYVILLE, 

CALIF. 

38°24''12" 120°26''45" 899 1,419 2,108 54.6 1960 - 53 Y - 

No regulation, 
minor 

diversions 
upstream for 
irrigation and 
domestic use 
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11317000 

MF 
MOKELUMNE 

R A WEST 
POINT CA 

38°23''23" 120°31''32" 747 1,336 2,248 178.0 1911 - 105 Y - 

Up to 10 cfs 
diversion from 
this basin to SF 
Mokelumne; 

slight regulation 
by Schaads Res. 

since 1940; 
other small 
diversions 

11318500 

SF 
MOKELUMNE 

R NR WEST 
POINT CA 

38°22''06" 120°32''40" 595 1,250 2,113 194.6 1933 - 82 Y - 

Up to 10 cfs 
diversion from 

MF Mokelumne 
to this basin; up 

to 9 cfs 
diversion out of 

basin to Jeff 
Davis Res. 

11335000 
COSUMNES R 
A MICHIGAN 

BAR CA 
38°30''01" 121°02''39" 51 934 2,357 1,387.3 1907 - 109 Y Good 

Regulation and 
diversion by 

Jenkinson Lake, 
some transfers 

out of basin 

11414000 
SOUTH YUBA 
RIVER NEAR 

CISCO, CALIF. 
Yuba 39°19''17" 120°33''48" 1,683 2,106 2,754 140.3 1943 1994 52 N Fair 

Low flow 
regulated by 
several small 

PG&E reservoirs 

11427000 

NF AMERICAN 
R AT NORTH 
FORK DAM 

CALIF 
American 

38°56''10" 121°01''22" 218 1,329 2,736 884.0 1942 - 74 Y Good 

Minor 
regulation by 

Lake 
Clementine, Big 
Reservoir, Lake 

Valley 
Reservoir; 

diversion into 
Bear River 

basin; minor 
effect on 

natural flows 

11427700 

DUNCAN 
CREEK NR 
FRENCH 

MEADOWS 
CALIF 

39°08''09" 120°28''39" 1,607 1,950 2,263 25.6 1961 - 55 Y - 

No regulation or 
diversion 

upstream from 
station 
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11431800 

PILOT CREEK 
ABOVE 

STUMPY 
MEADOWS 
RESERVOIR, 

CALI 

38°53''41" 120°34''02" 1,305 1,568 1,883 30.2 1960 2008 48 N Good 

No regulation or 
diversion 

upstream from 
station 

11440000 

ALDER C NR 
WHITEHALL  

TOTAL FLOW 
CA 

38°45''19" 120°22''17" 1,171 1,801 2,274 57.2 1923 1981 59 N - 
Includes flow 
diverted into 

pipeline 
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5.8. Figures 

 
Figure 5.1. Topographic map of the Sierra Nevada showing streamflow basins used in this 

study; major drainages are labeled.   
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Figure 5.2. Comparison of prior and posterior precipitation distributions for the Cherry-Eleanor 

basin. a) Time series of water year total precipitation from H10, N15 and WRF, along with 

streamflow, and the precipitation inferred from streamflow (FUSE structures). b) Probability 

distributions of precipitation for Cherry-Eleanor in water year 2008, showing fixed precipitation 

dataset values, the prior distribution that is based on the datasets, and the posterior distribution of 

precipitation from the six FUSE structures. Vertical axis is normalized so that distributions sum 

to 1; inferred precipitation is shown as credible intervals with the symbol indicating the mean 

value. FUSE intervals are plotted at arbitrary vertical positions to clearly show their horizontal 

distributions. 
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Figure 5.3. Basin-mean precipitation for water year 1983 from H10 (a) and from inferred precipitation (b). c) Water year streamflow 

totals. d) and e): Basin-mean differences between H10 and streamflow, and inferred precipitation and streamflow, respectively. f) 

Basin-mean differences between H10 and inferred precipitation. The crest of the Sierra Nevada is shown in black; background image 

from LANCE Rapid Response MODIS images (http://lance-modis.eosdis.nasa.gov/).  
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Figure 5.4. Same as Figure 5.3, but for water year 1977. Note different color scale. 
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Figure 5.5. Same as Figures 5.3 and 5.4, but for basin-mean averages of all years in which streamflow is available for each basin. 
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Figure 5.6. Top row: water year 1983 basin-mean precipitation for three other gridded datasets (N15, L13 and NLDAS). Bottom row: 

precipitation minus streamflow for each of the same datasets. 
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Figure 5.7. PRISM 1971-2000 precipitation normal for each streamflow basin (a), streamflow (b), and PRISM precipitation minus 

streamflow (c).  
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Figure 5.8. Cross-Sierra Nevada patterns of streamflow and precipitation. a) Inset of 1983 

streamflow map, showing locations of two transects that pass from southwest to northeast across 

the range. b), d) Transects of water year 1983 streamflow and H10 and inferred precipitation, 

along with elevation. c), e) Precipitation (H10 and inferred) minus streamflow for the same 

transects. Streamflow, inferred precipitation, and precipitation minus streamflow are shown as 

the basin-mean for all points within the basin. 
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Figure 5.9. a) Map of basins indicating windward, leeward, northern and southern groups. Time series of windward-leeward (b) and 

north-south (c) ratios of precipitation and streamflow over water years 1974-1987.
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Figure 5.10. a) Time series of precipitation minus streamflow (implied ET) for the windward 

and leeward basins from H10 and inferred precipitation. b) Time series of implied ET for the 

northern and southern basins from H10 and inferred precipitation.  
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Figure 5.11. 1950-2010 trends in precipitation and streamflow over the Sierra Nevada, 

expressed as the 1950-2010 change in the best-fit line as a percentage of the 1950 best-fit value. 

a) Trends in basin-mean precipitation from the H10 dataset. b) Trends in inferred precipitation. 

c) Trends in streamflow. d) Differences between H10 and inferred precipitation trends.  
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Figure 5.12. Top row: water year 2008 basin-mean precipitation from three sources: H10, WRF, and inferred from streamflow. 

Bottom row: precipitation minus streamflow for each of the same three datasets. 
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Figure 5.13. Patterns of precipitation, streamflow and ET over the Sierra Nevada domain. a) Streamflow and precipitation vs. mean 

elevation for each basin. b) H10 and inferred precipitation minus streamflow (implied actual ET) for each basin. c) Elevational pattern 

of Sierra Nevada ET estimates: Southern Sierra Critical Zone Observatory flux towers [Goulden et al., 2012] and water balance [Bales 

et al., 2011] estimates of ET; Ameriflux tower ET estimates [Kurpius et al., 2003; Ichii et al., 2009]; ET based on MODIS NDVI 

regression [Goulden et al., 2012] for each basin. d) – f) Maps of basin-mean ET estimates from H10 precipitation, inferred 

precipitation, and MODIS NDVI regression, respectively. Flux tower locations are shown in f). 
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