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Material-induced bend-twist coupling in laminated composite beams has seen applica-

tions in engineered structures for decades, ranging from airplane wings to turbine blades.

Symmetric, unbalanced, carbon fiber laminates which exhibit bend-twist coupling can be dif-

ficult to characterize and exhibit unintuitive deformation states which may pose challenges

to the engineer. In this thesis, bend-twist coupled beams are investigated comprehensively,

by experimentation, numerical modeling, and analytical methods. Beams of varying fiber

angle and amount of coupling were manufactured and physically tested in both linear and

nonlinear static and dynamic settings. Analytical mass and stiffness matrices were derived

for the development of a beam element to use in the stiffness matrix analysis method. Ad-

ditionally, an ABAQUS finite element model was used in conjunction with the analytical

methods to predict and further characterize the behavior of the beams. The three regimes,

experimental, analytical, and numerical, represent a full-field characterization of bend-twist

coupling in composite beams.

A notable application of bend-twist coupled composites is for passively adaptive turbine

blades whereby the deformation coupling can be built into the blade structure to simultane-
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ously bend and twist, thus pitching the blade into or away from the fluid flow, changing the

blade angle of attack. Passive pitch adaptation has been implemented successfully in wind

turbine blades, however, for marine turbine blades, the technology is still in the development

phase. Bend-twist coupling has been shown numerically to be beneficial to the tidal turbine

performance, however little validation has been conducted in the experimental regime. In

this thesis, passively adaptive experiment scale tidal turbine blades were designed, analyzed,

manufactured, and physically tested, validating the foundational numerical work. It was

shown that blade forces and root moments as well as turbine thrust and power coefficients

can be manipulated by inclusion of passive pitch adaption by bend-twist coupling.

Keywords: carbon fiber, composite, bend-twist coupling, composite

turbine blades, stiffness matrix
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Chapter 1

Introduction

1.1 Motivation

Carbon fiber composites have seen increased use in structural applications in the last half

century due to their high specific strength and stiffness as compared to alloys, plastics, or

other common structural materials. Many high-performance structures benefit from the use

of composite laminates where high stiffness, light weight, and reduced part count is required

such as in racecars, motorcycles, spacecraft, aircraft, and turbine blades. Composite fiber

laminates are a set of materials comprised of long stretches of fiber coated with an epoxy

resin “matrix,” laid up together in layers to form the finished laminate. Usually, the fibers

are made from carbon or glass and are strung together in bundles called tows and woven or

laid out directionally in sheets. The lamina are inherently orthotropic and can be combined

in virtually endless configurations, the combinations of which each resulting in a laminate

with potentially different structural characteristics. Most lamina configurations result in

some degree of laminate anisotropy. Designing with composite fiber laminates requires the

engineer to possess an understanding of Classical Laminated Plate Theory (CLPT) [1] to ap-

propriately engineer a laminate with the lamina in the correct orientations to satisfy design
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objectives. A particular subset of configurations can conveniently result in quasi-isotropic

laminates. Quasi-isotropic laminates are extremely commonly used in aerospace, automo-

tive and recreational fiber reinforced polymer (FRP) applications and are colloquially known

as “black aluminum” for their ease of design and analysis. Other configurations, however,

can be better suited for component design as their anisotropy can result in coupled struc-

tural response, where the deformations of the laminate can be coupled between extension

and bending, extension and twisting, or bending and twisting. Furthermore, the degree of

coupling between these responses can vary based on the fiber angles of each lamina that

comprise the laminate. To this end, FRPs can be used outside of a quasi-isotropic structural

design state as a tailorable structural material that provide the engineer with features to

craft a particular structural response to a given loading. This is highly unusual structural

behavior but can be exploited in specific engineering applications that might require such

a response. The engineer can now design parts to be stiffer along the load path, reducing

excess material, thus producing a more efficient design.

A particularly common use case where composite fiber laminates are advantageous comes

in the form of cantilevered structural members. Obvious and observable applications of

cantilever beams as structural members are airplane wings, helicopter blades, wind and

marine turbine blades, solar sails, and satellite antennae. Of particular importance with

beams are their ability to handle transverse loads due to gravity, lift, or thrust as well

as stability under dynamic loading to reduce flutter, divergence, and localized failure. A

certain subset of composite laminates have characteristics that couple the transverse bending

response with the torsional twisting response. These laminates are appropriately called bend-

twist coupled laminates. Bend-twist coupled beams have application in flutter control for

forward-swept wings on experimental aircraft [2] as well as passively adaptive wind [3,4] and

marine turbine blades [5–7]. Understanding the structural response of bend-twist coupled

laminates is important to proper engineering and design. The goal of this work is to develop
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a comprehensive understanding of the structural behavior of bend-twist coupled cantilever

beams through experimentation, analytical formulations, and finite element analyses to aid

the engineer in applying the knowledge to the development of novel, applications such as

bend-twist coupled marine turbine blades.

1.2 Background

Bend-twist coupling can occur a number of ways in structures. For homogeneous, isotropic,

structures with axis-symmetric cross-sections such as a metallic I-beam, the beam exhibits a

combined flexural and torsional response when it is loaded eccentrically from its shear center,

such as on a corner or edge of the beam. This is essentially a mechanical coupling and is

mitigated by ensuring the load path travels through the shear center of the beam. Similarly,

flexural-torsional coupling occurs in open-cross-section structures such as C-channel beams

or slit tubes due to the shear center and the mass center of the cross section being non-

coincident. Even when loaded at the mass center, the beam will still exhibit a twisting

response due to the non-symmetrical cross section about the bending axis. These instances

of bend-twist coupling, however, are fundamentally different from coupling that occurs due

to the composite layup schedule. With composite laminates, the orientation of each ply

within the laminate contributes to the global structural response based on its orientation.

Arbitrarily oriented lamina within a laminate can induce multiple couplings if the laminate

is asymmetric and unbalanced about the laminate mid-line. Bend-twist coupling occurs

specifically when the laminate is ply-symmetric about the mid-line, but unbalanced, meaning

that the laminate doesn’t contain a −α angle ply for each α ply, where α is the ply’s fiber

angle, as in Figure 1.1. For these laminates, the cross section is symmetric and the mass and

shear axes are coincident but the coupling still remains due to the global material anisotropy.
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Figure 1.1: Schematic of an off-angle unidirectional laminate with fiber angle, α

Bend-twist coupling was perhaps most famously introduced in the Grumman X-29, an

experimental aircraft with forward-swept wings that had tip divergence issues which were

mitigated by introducing bend-twist coupling to keep the angle of attack of the wings in

check. Research has also been conducted on incorporating bend-twist coupling in commercial

aircraft wings to passively alleviate gust loadings in [8]. In [8], it was also found that the

inclusion of bend-twist coupling could strongly reduce (between 20% and 45%) the wing’s

Figure 1.2: NASA photograph of the Grumman X-29 in banked flight
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root spanwise bending moment on Boeing 737’s and 777’s by mitigating the angle of attack

under the gust loading scenario. The work in [8] has not been implemented in application

to date, however. Alternatively, industry, military, and the U.S. government have long been

interested in bend-twist coupled propeller blades as the coupled deformation response can

alleviate effects of cavitation in marine propellors and improve energy efficiency. A fairly

comprehensive review can be found in [9]. Bend-twist coupling has also been researched and

implemented for years in the wind energy community, both by government institutions such

as Sandia National Labs as in [3,4] as well as industry as a means for improved performance

and load reduction on the blade structure.

Newer to the bend-twist coupling research community are the applications in marine

tidal turbines. Tidal turbines are typically placed in energy dense regions of water where the

loading environment can vary drastically in a short period of time. Bend-twist coupling was

proposed as a mechanism by which the blades could passively articulate pitch and angle of

attack in real time, adapting to the fluid flow without having to be mechanically actuated.

Until recently, analysis on tidal turbines assumed the blades to be rigid. Some studies have

investigated the effects of flexible blades on turbine level performance [10] while a number

of researchers [6, 7] are modeling flexible, adaptive marine turbine blades. Work in [11]

reviews the current state of adaptive composites for marine applications, and emphasizes the

advantages associated with passive adaptation on blade and turbine performance. In [11],

current challenges and future research directions are also discussed, citing physical testing

as an element of the research that is lacking as little investigation has occurred in the

experimental regime until very recently in [5].

Furthermore, numerical analyses of composite marine structures that incorporate bend-

twist coupling are often computationally demanding, requiring fluid-structure interaction,

the joining of boundary element models and finite element models to characterize their

behavior. The analyses can become increasingly complicated in turbulent or highly dynamic
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loading conditions. Even the characterization of the static structural response of a bend-

twist coupled laminate is complicated enough to warrant finite element modeling, as CLPT

does not apply to transverse load cases or curved laminates, and no stiffness matrix method

approach to analysis is regularly available for anistropic structures that result in deformation

coupling. The structural coupling that arises from the material anisotropy makes it difficult

for the engineer to immediately intuit the structural behavior of loaded bend-twist coupled

laminates and thus is an important subject of investigation as an aid in the understanding

and intuition of such structures.

1.3 Outline

The research presented herein includes experimental, analytical, and numerical investiga-

tions to better understand the nuances of the structural response of bend-twist coupled

laminate beams and how they can be applied to a marine turbine blade development to in-

crease the performance characteristics of tidal turbines. The objectives of the study are to:

(1) experimentally evaluate the relationship between laminate fiber angle, degree of bend-

twist coupling, and overall structural response to static and dynamic loading conditions, (2)

compare experimental results to existing analytical methods for analysis, (3) generate finite

element models of the test articles to compare with the experimental results, (4) and apply

the findings to the design, analysis, testing, and manufacture of a flume-scale bend-twist

coupled marine turbine blade. An additional key objective includes an effort to develop an

analytical stiffness method approach to analysis of bend-twist coupled laminates as a design

tool to circumvent the requirement of a finite element model for every analysis.

The research presented herein is significant for its contribution towards developing a

greater understanding of bend-twist coupling in composite laminates in order for the engineer

to intuitively apply their use in a structural setting. The motivation for this work comes
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from the inclusion of bend-twist coupling in marine turbine blades, but can be extended to

any surface which needs to pitch as well as deflect. Furthermore, the basis for development

of the element stiffness matrix for a bend-twist coupled laminate can be extended in theory

to any combination of coupling, should the engineer choose to investigate laminates with

bend-extensional coupling or extensional-twist coupling.

This thesis is organized as follows: Chapter 2 investigates the manufacture and fundamen-

tal mechanics of bend-twist cantilevers through experimentation, finite element modeling,

and development and use of static and dynamic analytical models. Details of four experi-

ments conducted on beams with varying degrees of bend-twist coupling are presented. The

development of an appropriate finite element model in ABAQUS is presented along with

the respective steps included and all noteworthy parameters. A new analytical stiffness ma-

trix method for formulating a bend-twist coupled beam element is developed and presented

in detail. Eigen-solutions for the natural frequencies of bend-twist coupled beams are also

presented by solving the equations of motion for the continuous system. Chapter 3 covers

material property testing that was conducted on the manufactured composite beams. The

elastic modulus and corresponding bending rigidity of carbon fiber composites are notori-

ously difficult to characterize, therefore a comprehensive set of experiments was required

to most accurately quantify the material properties of the laminates. Several experimental

methods for establishing elastic modulus were tested and the results are presented. Chapter

4 presents a comparison of experimental results with predictions by analytical and numerical

models, including a discussion of the results and their respective shortcomings. Chapter 5

transitions into the application of bend-twist coupling to a structural design setting. General

historical applications are briefly covered but then focused into the application for passively

adaptive marine turbine blades. A literature review and the status of current work with

bend-twist coupled turbine blades is presented as well as a novel flume-scale experiment

in which passively adaptive blades are compared to standard, non-twisting blades. Project
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objectives for the blade design and experimentation are established. The design, analy-

sis, manufacture, structural characterization testing, and experimental results of flume-scale

tidal turbine blades are discussed in detail. The results from the turbine-level experiment

are discussed briefly as well. Chapter 6 summarizes the conclusions of the research presented

herein, discusses the existing limitations in analysis and the analytical models, and includes

recommendations for future investigations.
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Chapter 2

Fundamental Mechanics of

Bend-Twist Coupled Beams

2.1 Overview

This section establishes multiple methods by which bend-twist coupled laminate beams can

be characterized statically and dynamically. The ultimate goal of this section is to character-

ize beam behavior to allow for the development of accurate models. Four experiments were

conducted to provide data for model validation. Additionally, a beam element for use in the

stiffness method is proposed and developed as a complimentary analysis tool to ABAQUS

finite element modeling (FEM).

2.2 Beam Specimen Manufacture

The material used in this research all originated from a roll of Hexply IM7/8552 that was

donated by the Air Force Research Labs Space Vehicles Directorate (AFRL/RV) for use in the

University of Washington’s (UW) Civil and Environmental Engineering (CEE) department.
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Over the course of the conducted research, several laminated plates were manufactured for

experimentation on an as-needed basis. The laminates were manufactured such that they

were large enough that various beams of varying fiber angle could be cut from them. An

example of this can be seen in Figure 2.1. For each laminate, eight individual lamina were

cut from the roll using an Autometrix CNC fabric cutting machine and laid up as a large

rectangular plate ([0]8). One laminate was cured via hot press while the others were cured

in an autoclave, both using a 2-stage curing cycle provided by the manufacturer of this

material, Hexcel. Details regarding the autoclave bagging process and cure profile stages are

presented in the Appendix (A.1).

(a) Finished cured laminate from hot press

(b) Template for cutting beams of varying fiber angles

Figure 2.1: Cured laminate and cut template
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Hot Press Cured Beams

Beam Width (mm) Length (mm) Thickness (mm) Thickness Loss
0 degree (1) 24.6 254 0.85 18.8%
0 degree (2) 25.1 254 0.85 18.8%
10 degree (1) 24.4 254 0.86 17.6%
10 degree (2) 24.6 254 0.85 18.8%
20 degree (1) 24.9 254 0.86 17.6%
20 degree (2) 23.6 254 0.86 17.6%
30 degree (1) 24.9 254 0.86 17.6%
30 degree (2) 24.9 254 0.86 17.6%

Table 2.1: Specimen geometry for hot-press-cured beams

Autoclave Cured Beams

Beam Width (mm) Length (mm) Thickness (mm) Thickness Loss
0 degree (1) 24.4 250 0.77 26.5%
0 degree (2) 24.4 250 0.81 22.7%
10 degree (1) 24.2 250 0.79 24.6%
10 degree (2) 24.8 250 0.79 24.6%
20 degree (1) 23.5 250 0.81 22.7%
20 degree (2) 24.5 250 0.80 23.7%
30 degree (1) 24.6 210 0.81 22.7%
30 degree (2) 24.3 250 0.80 23.7%

Table 2.2: Specimen geometry for autoclave-cured beams
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Laminates comprised of all lamina laid up at a constant fiber angle are called “uni-

directional (uni) laminates.” Unidirectional laminates exhibit highest levels of bend-twist

coupling but can suffer from a “ply consolidation” phenomena, where the fibers from one

lamina get pushed into and combined with the fibers from another lamina. The resulting

laminate will be thinner than the product of the lamina thickness and number of plies.

Thickness reductions of such laminates vary based on the curing method, therefore must be

examined on a case by case basis. Autoclave-cured laminates might exhibit larger reductions

in thickness due to some resin content being vacuumed out during the cure process. Alter-

natively, hot-press-cured laminates may not have constant thickness across the plate due to

the flatness limitations on the hot press platens. Furthermore, the thickness of the plate

could vary along its geometry simply due to the resin distribution during curing. Significant

differences in thickness reductions were apparent between the two laminates as depicted by

Tables 2.1 and 2.2. For laminates manufactured in this work, the hot-press cures exhibited

an average thickness reduction of about 18% while the autoclave-cures exhibited an average

thickness reduction of about 24%. Despite this, unidirectional laminates serve as a useful

baseline for exploring bend-twist coupling mechanics.

In non-unidirectional layups such as cross-ply or quasi-isotropic layups, the adjacent

lamina are at different fiber angles and do not allow for the fibers to push into each other

and compress. Bend-twist coupling can still be achieved without “consolidation” by designing

an unbalanced laminate as long as the fiber angles vary between layers above and below the

midline. It was shown in [12] that the global load-deformation behavior of any laminate layup

can be characterized by a unidirectional equivalent. However, for the research presented

here, the highest possible amounts of bend-twist coupling were desired, which required the

laminates to be off-angle (α 6= 0) unidirectional layups. Each material possesses a unique

relationship between amount of bend-twist coupling and lamina fiber angle. Laminates with

the highest degrees of coupling will contain all lamina at the same prescribed fiber angle
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which explains the motivation for the laminate design used in this research. It is to be

noted, though, that this is not typical in industry use of composites.

2.3 Experimental Methods

Composite laminates typically exhibit discontinuous stress distribution between layers. An

example of the through-thickness stress and strain distribution for three quasi-isotropic lam-

inates in bending is provided by Figure 2.2 (taken from [13]). Because the through-thickness

stress distributions within a laminate can vary so drastically, design criteria are often strain

or displacement based.

For the special case of unidirectional layups such as those used in this research, the stress

variation is linearly distributed, but the displacement-based design criteria remains intact.

For this reason, it is a sensible starting point of any investigation into composite laminate

beams to establish the load-deflection relationship under the appropriate loading conditions.

Figure 2.2: Through-thickness strain and stress distributions of laminate in bending
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2.3.1 Quasi-Static Force-Deflection

Most cantilever applications of composite beams experience some kind of distributed load

such as self-weight, lift, drag, wind pressure, etc. Under static loading and for large deflec-

tions, however, it can be hard to induce such a load case. Due to this, a single point end

load was used as a simplification for loading in this experiment to characterize behavior. The

force-deflection response of bend-twist beams of varying fiber angle was investigated when

subjected to this load case as an opening step in characterizing their structural response.

For this experiment, each beam had a small hole drilled into its end, and was loaded

incrementally with masses from 50g to 250g. Of interest were the beams’ vertical deflections

of each edge. The mid-line vertical deflections were averaged from the deflections of the

edges, while the beam twist could be approximated with the following equation

θx = sin−1
(
uL − uR

b

)
, (2.1)

where θx is beam twist, uL and uR are vertical displacements of left and right edges, re-

spectively, and b is beam width. Beam displacements were measured at each edge 150 mm

from the boundary after each load increment. The edges were measured at the start under

self-weight but no applied loading to provide a baseline for the displacements. Loads were

applied incrementally with the beam deflections were measured via a MicroEpsilon optoN-

CDT 1700-500 laser sensor and data recorded manually once the beams came to equilibrium

after each incremental step. A schematic explaining Equation (2.1) is shown in Figure 2.3.

The laminate fiber angle dictates the degree of bend-twist coupling but comes at the

expense of bending stiffness. This tradeoff between bending stiffness and twist coupling is

shown experimentally in Figure 2.4. The beams with fiber angles that deviate more from 0°

deflect more but also twist more. This will be the case up until the fiber angle that maximizes

bending-torsional coupling, at which point increasing the fiber angle will reduce the bending
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stiffness as well as reduce beam twist until 90° where bending stiffness is minimized and no

bend-twist coupling occurs.

𝑢𝐿 𝑢𝑅

𝑏

Figure 2.3: Schematic showing laser sensor measurement at each edge and the relation to
beam twist

Figure 2.4: Deflection of varied fiber angle (10°, 20°, 30°) beams under identical loading
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2.3.2 Free Vibration

Of critical importance to all structural evaluations is an eigenparameter analysis to identify

fundamental frequencies and mode shapes in order to design appropriately for the load-

ing environment. Arguably the simplest investigation into the fundamental frequency of a

cantilevered structure is imparting an impulse and measuring the free vibration response.

Beams of varying fiber angles were plucked in an approximate first mode shape and left to

ring down. The same MicroEpsilon optoNCDT 1700-500 laser sensor was used in measuring

the beam response. The laser sensor captured beam vibration at a sampling rate of 2.5

kHz. The time history data was processed via Fast Fourier Transform (FFT) in MATLAB

to obtain the beam response in the frequency domain. The frequency index of the maximum

value of Fourier transformed data corresponds to the beam’s natural frequency. Experimen-

tal setup can be seen in Figure 2.5. Time history data for the impulse and ringdown are

shown in Figure 2.6 with the top subfigure corresponding to the ringdown of the 0° beam,

increasing in fiber angle until the bottom subfigure for the 30° beam. Because it is difficult

to excite higher mode shapes, however, only the first natural frequencies were of interest.

16



Figure 2.5: Experimental setup for free vibration
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Figure 2.6: Free vibration ringdown for beams of varying fiber angles showing decreasing
frequency of vibration for increasing fiber angle. Y-axis values are distance from laser sensor
to beam in millimeters.
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2.3.3 Small Amplitude Frequency Sweep

A separate evaluation of beam natural frequencies was conducted via forced vibration fre-

quency sweeps. This experiment utilized an electrodynamic shaker table for the structural

excitation. The beams were each mounted to a fixture on the shaker and the displacement

response of the beam captured via laser sensor as seen in Figure 2.7. Controlling the shaker

was a LabView VI P-controller that moderated shake table accelerations to keep acceleration

constant throughout the sweep. Maintaining constant acceleration or forcing is important

in order to generate a relationship only between displacement amplitude and excitation fre-

quency. The particular controller worked most effectively in a small range of frequencies,

therefore the shake table excited the beams in a 10 Hz range around the estimated funda-

mental frequencies from the free vibration experiment. Once again, the beam displacement

was recorded by the MicroEpsilon optoNCDT 1700-500 laser sensor and the time history

of the response was converted to the frequency domain via FFT in MATLAB. An example

of the time history response for a frequency sweep under 1G accelerations can be seen in

Figure 2.8 while the frequency domain response is shown in Figure 2.9.

Figure 2.7: Experimental setup for frequency sweep
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Figure 2.8: Time domain response of 1G frequency sweep on beams of varying fiber angles.
Y-axis values are distance from laser sensor to beam in millimeters
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Figure 2.9: Frequency domain response of 1G frequency sweep on beams of varying fiber
angles. Y-axis values are power.
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2.3.4 Large Amplitude Frequency Sweep

Finally, a large amplitude dynamics experiment was conducted to investigate the poten-

tial for any frequency stiffening or softening effects of the beams under large amplitude

vibration. With structures that undergo large enough deflections, there is potential for the

natural frequencies to increase (stiffen) or decrease (soften) based on the geometric nonlin-

earity associated with catenary tensions or out-of-plane displacements. Frequency sweeps of

accelerations ranging from 1G to 20G were conducted on each beam in the autoclave-cured

batch. Conducting frequency sweeps at varying amplitudes could indicate whether or not

the natural frequency varies with forcing amplitude. Frequency stiffening effects would re-

sult in increasing natural frequencies with the increased forcing amplitude, while frequency

softening would result in decreasing natural frequencies with the forcing amplitude increase.

The experimental setup for this experiment was identical to that in Figure 2.7. The only

variable was the shaker acceleration programmed in the controller and the number of tests

conducted on each beam. Results, and comparison to theoretical results, will be presented

in detail in Chapter 4.3.

2.4 ABAQUS Finite Element Modeling

2.4.1 Structure Properties

Commercial finite element software, ABAQUS [14], by Dassault systems was used for all

numerical modeling in this research. Four finite element models (FEMs) were developed, one

for each corresponding beam’s fiber angle based on average geometric properties associated

with each respective beam. The material properties and their development are covered in

detail in Chapter 3.6. Geometric properties in the models were averaged values for each set

of beams from Tables 2.1 and 2.2, respectively. Material properties for the IM7 used in the
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models are as follows: E1 = 141 GPa, E2 = 8.96 GPa, G12 = 4.93 GPa, and ν12 = 0.316,

which were established from testing conducted in Chapter 3.6. Material properties were

initially taken from a comprehensive report conducted on the material by the National

Institute for Aviation Research and can be referenced in [15]. The values presented in

the report differ slightly from those presented by the material manufacturer, Hexcel, but

were assumed to be more accurate as the data comes from a comprehensive set of tests

conducted on laminates similar to those used in this research. Upon initial comparison of

the model results to experimental results, the researcher was also prompted to experimentally

evaluate material properties so as to develop better agreement between them. Details of the

experiments yielding the most accurate material properties are discussed in depth in Chapter

3.6.

The layup and fiber angles were introduced into the models’ properties via the composite

layup creator tool. The material properties were applied to the entire beam section, given

a thickness corresponding to the appropriate thickness from the measured values in the

specimen properties Tables (2.1,2.2), and given a fiber offset angle corresponding to whichever

beam is being modeled. The model uses three Simpson integration points through the

thickness and conducts the section integration during the analysis.

2.4.2 Model Steps

Each model has a general, static step for the quasi-static load-deflection experiment, a step

for a linear perturbation frequency analysis, and a dynamic implicit step where dynamic

forcing can be applied to the model.

In the static step, the load was gradually stepped up to 250g to correspond to the loading

steps imposed in the cantilever force-deflection experiment. In that experiment, the beams

were end-loaded with masses ranging from 50g to 250g in 20g increments. This step included

geometric nonlinearity in order to account for the large displacements experienced by such
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thin beams under load. Geometric nonlinearity is expected based on the very apparent

deformation visible in Figure 2.4.

For the linear perturbation step, the model generated the first 10 eigenvalues and eigen-

vectors corresponding to the first 10 natural frequencies and mode shapes of the respective

beams. This step allowed for comparison to the linear dynamics experiments of free vibra-

tion and small amplitude frequency sweeps. In the frequency sweep experiment, the first and

second mode shapes are most dominant due to experimental constraints on the excitation

frequency and measurable displacement amplitude. This rendered the higher modes from

the linear perturbation analysis interesting but they were not validated against experiments.

The dynamic implicit step was used to input a forcing function into the model to simulate

the effects of large amplitude base excitation present in the large amplitude frequency sweep

experiment. In this step, a forcing function was generated to match the experimental forcing

frequency and acceleration and then input into the model as a time-variant distributed load

on the beam’s surface. The distributed load was meant to simulate the inertial effects due to

the beam’s accelerations on the shaker. The forcing function was required to have constant

acceleration over a range of increasing frequencies. The function is depicted by Equation 2.2

F = A sin

[
ω1 + (

ω2 − ω1

b
) t

]
t, (2.2)

where F is the force at time increment, t, A is the forcing amplitude in Gs, ω1 is the starting

frequency, ω2 is the ending frequency, and b is the frequency increment.

Mass-proportional Rayleigh damping was included in the models for the dynamic implicit

step. The damping coefficient was calculated via the log-decrement method from the free

vibration experiment results using the following Equation 2.3,

δ =
1

n
ln

x(t)

x(t+ nT )
, (2.3)

22



where x(t) is amplitude at time, t, and x(t + nT ) is amplitude at a peak n periods away

where n is any integer of successive, positive peaks. The damping ratio can be calculated by

ζ =
1√

1 + (2π
δ

)2
, (2.4)

which was 0.1% based on data in Figure 2.6. The Rayleigh constant, α, can be equal to

2 ζ ω where ζ is calculated from above and ω is the measured natural circular frequency from

the free vibration experiment. The model uses only mass-proportionate damping as the α

damps primarily low frequencies such as those observed in the experiments conducted in this

work.

2.4.3 Element Details

Four-node, reduced-integration, shell elements (S4R) were chosen for all models. Reduced-

integration elements were chosen to mitigate the effects of shear locking and artificial stiffen-

ing due to the finite element method of analysis. Four-node elements were employed because

a linear stress distribution was thought to provide a sufficient level of gradation across the

elements, as well as for speed in analysis. The resulting mesh density contained elements no

larger than 12.5% of the beam’s width, or 8 elements across the width of the beam. Because

the models are approximating deflections and dynamics rather than material stresses or any

sort of failure or fracture, the mesh density requirement is not as stringent.

23



2.5 Analytical Formulations

2.5.1 Stiffness Matrix Method

The classical stiffness matrix method is a formulation of the equilibrium equations of ‘stick-

type’ structures (e.g. beams, frame, trusses). While it may be formulated using variational

principles with the finite element method, the resulting equations require no reference to

general FEM theory. For beam-type elements, the deformations between nodes can usually

be solved exactly, allowing for the formulation of the stiffness matrix directly (usually called

the direct stiffness method) without reliance on more typical variational approaches of FEM.

The application of the stiffness method to the analysis of laminated composite structures

has been limited, however, as the anisotropic laminate response is often more complex than

that of an isotropic, homogeneous material. The structural response of steel beam elements,

for instance, can be solved using the Euler-Bernoulli beam equation, whereas this is not a

practical approach for anisotropic composite beam elements.

The following section details the development of mass and stiffness matrices for a bend-

twist coupled beam element for using in a stiffness matrix method approach of analysis. For

the remainder of this work, “SMM” shall refer to “stiffness matrix method,” which is derived

henceforth.

2.5.1.1 Constitutive Law

For thin, flat, composite laminated beams that have coincident shear, flexural, and elastic

centers and are loaded at the midline, the bend-twist coupling is a result of the laminate layup

schedule. A weak-form approach with assumptions from classical laminated plate theory

(CLPT) can be taken to develop an element stiffness matrix for these coupled laminates if

the shape functions are appropriately defined for the coupled structural response. Consider

a laminated beam with the coordinate system shown in Figure 2.10, where α corresponds to
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Figure 2.10: Fiber angle offset and coordinate system for unidirectional laminate

the fiber angle of each ply. Nodal coordinate notation follows the right-hand rule, consistent

with the approach presented in [16]. This paper will focus on stacked single-orientation

laminates where the fiber angle remains the same for each ply as shown schematically in

Figure 2.10. This type of laminate results in the highest degree of bend-twist coupling

and serves as a useful baseline for exploring the development of this method. However,

the formulation presented herein is easily applicable to all symmetric laminates with any

amount of bend-twist coupling, including quasi-isotropic and general unbalanced laminates.

The properties of composite laminate plates are conventionally expressed in terms of an ABD

matrix which relates three in-plane forces and three bending moments with three mid-plane,

in-plane strains and three curvatures. The A, B, and D terms refer to the corresponding

3x3 submatrices that make up the 6x6 ABD matrix. Any laminate which has a non-zero

D16 term in its ABD matrix can benefit from the formulation presented in this work (see [1]

for composite mechanics, ABD derivation, and CLPT).

Because this work focuses on beam elements rather than plates, the derivation instead

begins with a general three-dimensional beam theory approach which simplifies the results

as in [17]. Equilibrium and kinematics are established in [17] which result in the load-strain
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relation of

F = C ε, (2.5)

where C is the constitutive relation matrix, F is a vector containing the in-plane forces,

and ε is a vector containing mid-plane strains. For a bend-twist coupled beam, the previous

equation can be written as



Nx

Tx

My

Mz


=



ExA 0 0 0

0 GJ K 0

0 K ExIy 0

0 0 0 ExIz





w′x

θ′x

θ′y

θ′z


, (2.6)

where ExA represents the axial rigidity, GJ represents the St. Venant torsional rigidity,

ExIy represents the weak axis bending rigidity, ExIz represents the strong axis bending

rigidity and K represents the bending-torsion coupling rigidity. The derivatives in the strain-

vector, ε, are with respect to the element length, or ‘x’, direction (as per Figure 2.10). This

constitutive relation differs from that of an uncoupled structural element whose C matrix

has zero-valued off-diagonal elements. The constitutive rigidities can be represented by the

following expressions per [18] or [19]:

ExA = Ex b t,

GJ = 4 b

(
D66 −

D2
26

D22

)
,

K = 2 b

(
D16 −

D12D26

D22

)
,

ExIy = b

(
D11 −

D2
12

D22

)
,

ExIz = Ex
b3t

12
,
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where Ex is the approximate x-direction elastic modulus, the Dij terms are components

of the laminate ABD matrix, and b is the beam or plate width (Figure 2.10). The Dij

terms relate bending moments and plate curvature. The dominant coupling parameter in

K is D16, which relates My and θ′x, or the relationship between beam bending moment and

corresponding twisting rate. For uncoupled laminates, this value is zero; it also tends to be

close to zero for laminates with small amounts of bend-twist coupling.

2.5.1.2 Weak-Form Formulation

A 3D beam element can now be defined with 2 nodes and 6 degrees of freedom per node.

The displacement vector takes the form

d =

[
wx1, wy1, wz1, θx1, θy1, θz1, wx2, wy2, wz2, θx2, θy2, θz2

]T
, (2.7)

where w and θ correspond to the nodal displacements and rotations for the directions denoted

in the subscript. Strains from Equation (2.5) can be expressed via the strain-displacement

relation as

ε = B d, (2.8)

where B is a matrix which contains functions relating strains and nodal displacements; these

relations will be discussed in the following subsection. The conventional weak-form derivation

based on potential energy minimization results in the following expression relating loads and

displacements via an element stiffness matrix. This can be expressed as

P =

(∫ L

0

BT C B dx

)
d, (2.9)

or more simply

P = K d, (2.10)
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where P is the vector of nodal forces and K is the resulting element stiffness matrix.

2.5.1.3 Strain-Displacement Matrix Derivation

To this point, this method is consistent with the derivation of an uncoupled beam element.

For a bend-twist coupled beam element, however, the strain-displacement relation matrix,

B, is more complicated. Uncoupled beam relations denote twisting strains only due to

applied torques at the nodes. As a point of comparison, in [20], while bend-twist coupling

is included in the constitutive law (i.e. the K term is present as in (2.6)), the strain-

displacement relationships are derived from classic isotropic beam elements. This approach

leads to inaccuracy for strongly coupled laminates where twisting strain is strongly influenced

by transverse displacements and beam rotations, the importance of which cannot be ignored

in the strain-displacement matrix. The effects of out-of-plane nodal beam displacements and

nodal beam rotations, wz and θy, respectively, on beam twist must also be accounted for to

completely establish strain-displacement relations.

In order to fully populate the strain-displacement matrix for this type of laminate, the

shape functions corresponding to unit element displacements and rotations must be known.

Equations (2.11-2.16) are the assumed forms of the six deformation fields (three translations,

and three rotations). Using the standard discretization approach, each deformation field

is approximated using the nodal degrees of freedom and their respective shape functions.

Outside of the standard linear shape functions for axial deformations (NA) and the four

cubic bending (NB) and rotation (NR) shape functions well-known to beam theory, shape

functions for beam twist due to transverse nodal displacements and beam twist due to nodal

rotations must be derived. Mid-span twist induced by transverse displacements and bending

rotations at the nodes can be observed in experiments and FEM simulations, indicating

that new shape functions must be added. The requirement for new shape functions can be

understood by examining the displacement equations for each degree of freedom, noting that
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the θx equation contains additional expressions to fully quantify the twisting response.

wx = NA1wx1 +NA2wx2 (2.11)

wy = NB1wy1 +NR1 θz1 +NB2wy2 +NR2 θz2 (2.12)

wz = NB1wz1 +NR1 θy1 +NB2wz2 +NR2 θy2 (2.13)

θx = NT1 θx1 + Nθx z1 wz1 + Nθx θy1 θy1 +

NT2 θx2 + Nθx z2 wz2 + Nθx θy2 θy2

(2.14)

θy = Nθy θy1 θy1 +Nθy z1 wz1 +Nθy θy2 θy2 +Nθy z2 wz2 (2.15)

θz = Nθz θz1 θz1 +Nθz y1 wy1 +Nθz θz2 θz2 +Nθz y2 wy2 (2.16)

The boxed expressions in Equation (2.14) identify the additional shape functions and nodal

displacements that contribute to the θx twist equation. The naming convention on the shape

functions is as follows. Nθx z1 refers to the contribution to θx (twist) by a unit displacement,

wz, at node 1. Following suit, Nθx θy2 indicates the contribution to θx (twist) by a unit

rotation, θy, at node 2. All shape functions are functions of x through the element length,

yet will be denoted simply by N for brevity.

These additional shape functions can be solved for explicitly in the following fashion.

To solve for the θx relationship due to an imposed nodal displacement, wz, we have (from

equilibrium or Equation (2.6)),

Tx = GJ θ′x +K θ′y, (2.17)

My = K θ′x + ExIy θ
′
y. (2.18)
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With Euler-Bernoulli kinematics, w′z = −θy, Equations (2.17) and (2.18) become

Tx = GJ θ′x −K w′′z , (2.19)

My = K θ′x − ExIy w′′z . (2.20)

As there are no applied loads in-span, My is a linear function of position and thus M ′′
y = 0.

Equation (2.20) can be differentiated twice to give

0 = K θ′′′x − ExIy w′′′′z . (2.21)

Likewise, the torque is constant within the element, meaning that the derivative of Equation

(2.17) is also equal to zero. Combining this and Equation (2.21) yields two uncoupled

differential equations, (
ExIy −

K2

GJ

)
w′′′′z = 0, (2.22)

(
ExIy −

K2

GJ

)
θ′′′y = 0, (2.23)

which reduce to the standard governing beam equations

w′′′′z = 0, (2.24)

θ′′′y = 0. (2.25)

The solution form for transverse displacement, wz, with the nodal deformations representing

the boundary conditions yields

wz(x) = wz1N1(x) + θy1N2(x) + wz2N3(x) + θy2N4(x). (2.26)
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In this example derivation, imposing only a displacement at node 1 results in a simplified

displacement equation,

wz(x) = wz1N1(x), (2.27)

with N1(x), in this case, equal to the standard beam bending shape function, N1(x) =

1− 3 ( x
L

)2 + 2 ( x
L

)3. Equation (2.27) can be combined with the derivative of Equation (2.17)

(because T ′x = 0) to give

GJ θ′′x −K wz1N
′′′
1 (x) = 0. (2.28)

Evaluating N ′′′1 (x), twice-integrating θ′′x, and applying zero θx boundary conditions gives the

resulting shape function for θx due to a displacement of wz1

θx =
6K

GJ L3

(
x2 − Lx

)
wz1 = Nθx z1 wz1. (2.29)

A similar approach can be taken to yield the shape function for θx due to a rotation, θy

(noting that the boundary conditions must be altered accordingly), of

θx =
3K

GJ L2

(
Lx− x2

)
θy1 = Nθx θy1 θy1. (2.30)

The additional bend-twist shape functions come directly from the governing differential

equations in the same way as the traditional isotropic Euler-Bernoulli shape functions. One

difference, however, is that they include material properties and thus are not purely kinematic

relationships. The magnitude of the deformation in the extra relations is conditional on the

relationship between coupling and torsional rigidities, not on kinematics alone.

The shape functions, N , representing the element displacement field for each degree of

freedom are listed in Table 2.3. Having established the appropriate shape function relations

for coupled laminated beams, the complete strain-displacement matrix, B, can now be writ-

ten using the first derivatives with respect to x of the appropriate shape functions, and the
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strains can now be more completely expressed as

εi = Bij(x) dj =
dNij(x)

dx
dj, (2.31)

where

NA1 1− x
L 0 0.2 0.4 0.6 0.8 1

0

0.5

1

NA2
x
L 0 0.2 0.4 0.6 0.8 1

0

0.5

1

NT1 1− x
L 0 0.2 0.4 0.6 0.8 1

0

0.5

1

NT2
x
L 0 0.2 0.4 0.6 0.8 1

0

0.5

1

NB1 1− 3 x2

L2 + 2 x3

L3
0 0.2 0.4 0.6 0.8 1

0

0.5

1

NB2 3 x2

L2 − 2 x3

L3
0 0.2 0.4 0.6 0.8 1

0

0.5

1

NR1 L ( x
L
− 2 x2

L2 + x3

L3 )
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

NR2 L ( x
3

L3 − x2

L2 )
0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

Nθx z1
6K
GJ L3 (x2 − Lx)

0 0.2 0.4 0.6 0.8 1

-2

-1

0

Nθx z2
− 6K
GJ L3 (x2 − Lx)

0 0.2 0.4 0.6 0.8 1
0

1

2

Nθx θy1
3K
GJ L2 (Lx− x2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
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Nθx θy2
− 3K
GJ L2 (Lx− x2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Nθy z1
6 x
L2 − 6 x2

L3
0 0.2 0.4 0.6 0.8 1

0

1

2

Nθy z2
−6 x

L2 + 6 x2

L3
0 0.2 0.4 0.6 0.8 1

-2

-1

0

Nθy θy1
1− 4 x

L
+ 3 x2

L2
0 0.2 0.4 0.6 0.8 1

0

0.5

1

Nθy θy2
3 x2

L2 − 2 x
L 0 0.2 0.4 0.6 0.8 1

0

0.5

1

Nθz y1
−6 x

L2 + 6 x2

L3
0 0.2 0.4 0.6 0.8 1

-2

-1

0

Nθz y2
6 x
L2 − 6 x2

L3
0 0.2 0.4 0.6 0.8 1

0

1

2

Nθz θz1
1− 4 x

L
+ 3 x2

L2
0 0.2 0.4 0.6 0.8 1

0

0.5

1

Nθz θz2
3 x2

L2 − 2 x
L 0 0.2 0.4 0.6 0.8 1

0

0.5

1

Table 2.3: Shape functions table
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The complete, coupled B matrix that is used in the analysis presented here is expressed as the following:

B =



N ′A1 0 0 0 0 0 N ′A2 0 0 0 0 0

0 0 N ′θxz1 N ′T1 N ′θxθy1 0 0 0 N ′θxz2 N ′T2 N ′θxθy2 0

0 0 N ′θyz1 0 N ′θyθy1 0 0 0 N ′θyz2 0 Nθyθy2 0

0 N ′θzy1 0 0 0 N ′θzθz1 0 N ′θzy2 0 0 0 N ′θzθz2


,

where the boxed terms are the strain-displacement relations that arise due to the newly-derived shape functions. In a

conventional, uncoupled, approach, these boxed terms would be zero. Note that Equation (2.6) only requires the four

strains, w′x, θ
′
x, θ
′
y, θ
′
z, which are represented by the respective rows in B.
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2.5.1.4 Element Stiffness Matrix Calculation

The integration from Equation (2.9) can now be performed with the constitutive relation

from Equation (2.5) to yield the 12x12 element stiffness matrix for the coupled beam. The

boxed Kx expressions in the stiffness matrix are expressed in Equations (2.32-2.35) and

are a result of the inclusion of the extra strain-displacement relations in B. Without the

extra relations, the integration would simply yield the standard uncoupled stiffness matrix

expressions of the form 12ExIy
L3 , 6ExIy

L2 , 4ExIy
L

, and 2ExIy
L

. The new stiffness expressions are

the following:

K1 =
12 (−K2 +GJ ExIy)

GJ L3
, (2.32)

K2 =
6 (K2 −GJ ExIy)

GJ L2
, (2.33)

K3 =
−3K2 + 4GJ ExIy

GJ L
, (2.34)

K4 =
−3K2 + 2GJ ExIy

GJ L
. (2.35)
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The fully coupled element stiffness matrix, K, used in the analysis presented here is expressed as the following:

K =



ExA
L

0 0 0 0 0 −ExA
L

0 0 0 0 0

0 12Ex Iz
L3 0 0 0 6Ex Iz

L2 0 −12Ex Iz
L3 0 0 0 6Ex Iz

L2

0 0 K1 0 K2 0 0 0 −K1 0 K2 0

0 0 0 GJ
L

K
L

0 0 0 0 −GJ
L

−K
L

0

0 0 K2
K
L

K3 0 0 0 −K2 −K
L

K4 0

0 6Ex Iz
L2 0 0 0 4Ex Iz

L
0 −6Ex Iz

L2 0 0 0 2Ex Iz
L

−ExA
L

0 0 0 0 0 ExA
L

0 0 0 0 0

0 −12Ex Iz
L3 0 0 0 −6Ex Iz

L2 0 12Ex Iz
L3 0 0 0 −6Ex Iz

L2

0 0 −K1 0 −K2 0 0 0 K1 0 −K2 0

0 0 0 −GJ
L

−K
L

0 0 0 0 GJ
L

K
L

0

0 0 K2 −K
L

K4 0 0 0 −K2
K
L

K3 0

0 6Ex Iz
L2 0 0 0 2Ex Iz

L
0 −6Ex Iz

L2 0 0 0 4Ex Iz
L



.

36



2.5.1.5 Idealized Beam Comparison

The performance of this stiffness method approach to the analysis of bending-torsion coupled

beams was evaluated by comparison to a linear elastic ABAQUS/Standard [14] FEM of

an idealized test beam. The idealized beam is 2.54 meters long, 0.0254 meters wide, and

0.001048 meters thick. The beam has high length-to-width and width-to-thickness ratios to

ensure that the Euler-Bernoulli assumptions are valid as well as to minimize the effects of

localized through-width or through-thickness deformation concentrations that arise due to

the imposition of displacements at individual nodes.

The lamina properties of the FEM were defined using the composite laminate creator

tool. The material used in the analyses was Hexcel IM7/8552 unidirectional carbon fiber

composite prepreg. Material properties for the IM7 are as follows: E1 = 164 GPa, E2 = 8.96

GPa, G12 = 4.93 GPa, and ν12 = 0.316. It needs to be noted that, in the development

and validation of this stiffness method approach, material properties for the IM7/8552 were

taken directly from reported values in [15], as opposed to the abridged values established

in Chapter 3.6, which are utilized when comparing to the experimental results later in this

work.

A total of 1696 four-node, reduced integration shell elements (S4R) were used in the

FEM mesh. The beam ends were kinematically constrained to a single point to represent

the respective nodes on which boundary conditions could be applied as depicted in Figure

2.11. A unit displacement at node 2 was imposed in each degree of freedom and the respective

reaction forces at node 1 were recorded by the ABAQUS model. Evaluation of the stiffness

matrix was done by direct comparison of the top-right quadrant to the finite element model

reaction forces. Because unit magnitude boundary condition displacements were imposed on

node 2 in the FE model, the top-right quadrant represents the reaction forces at node 1 to

displacements at node 2.
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Figure 2.11: Beam end constraints as a single point in finite element model

2.5.1.6 ABAQUS vs Stiffness Matrix Values Comparison

The ABAQUS simulations were conducted for fiber angles ranging from 0° to 90° and each

set of reaction forces was recorded. In the top-right quadrant, the five terms that govern the

beam bending and torsional response are the following: −K1, K2, K4, −GJ
L

, and −K
L

. Both

coupled and uncoupled analytical stiffness matrix expressions are plotted for all fiber angles

and compared to values obtained from ABAQUS. The comparisons can be seen in Figures

2.12 - 2.16. It should be noted that the −GJ
L

and −K
L

terms are identical for the coupled

and uncoupled cases. This is because the additional shape functions for the fully-coupled

element do not contribute to those respective stiffnesses.

Note that the uncoupled analytical solution greatly over-predicts stiffness for fiber angles

ranging from near 0° to near 50°. This is because it doesn’t allow for the element twisting,

which leads to artificial stiffening through constraint. The coupled solution is in fact exact

as all the shape functions are solved explicitly from the governing equations. The deviation

from the FEM solutions is possibly a result of how the displacements were applied or how

the reaction force was recovered in the finite element model.
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Figure 2.12: K1, translational stiffness for an imposed transverse nodal displacement

0 10 20 30 40 50 60 70 80 90

,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
2
[N

=
m

]

Abaqus Model
Uncoupled
Coupled

Figure 2.13: K2, translational stiffness for an imposed nodal rotation
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Figure 2.14: K4, rotational stiffness for an imposed nodal rotation
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Figure 2.15: GJ
L

, torsional stiffness for an imposed nodal twist
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Figure 2.16: K
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, rotational stiffness for an imposed nodal twist

2.5.1.7 Sensitivity to the Coupling Parameter, K

It is important to the engineer to understand the role that bend-twist coupling plays in

the structure and when the inclusion of the coupled relations are necessary to the analysis.

Observing how the uncoupled and coupled stiffness terms vary in Equations (2.32-2.35), the

difference is seen to be conditional on the ratio of K2

ExIy GJ
. The sensitivity ratio can be

calculated directly from CLPT as all of the parameters are functions of D terms from the

ABD matrix as the following:

Λ =

(
D16 − D12D26

D22

)2(
D11 − D2

12

D22

) (
D66 − D2

26

D22

) . (2.36)

This ratio, Λ, serves as a nondimensional parameter that dictates how sensitive the

laminate is to the coupling terms in the stiffness matrix. As shown in Figure 2.17, the ratio

is conditional only on fiber angle and is significant for a large suite of unidirectional laminate
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Figure 2.17: Sensitivity of laminate fiber angle to the difference between coupled and un-
coupled stiffness matrix terms

fiber angles. For quasi-isotropic laminates or generally arbitrary layups, the sensitivity ratio

can be calculated as a metric to aid in the design and analysis of coupled laminates. A

ratio near zero suggests that uncoupled strain-displacement relations should be sufficiently

accurate in analysis. However, the simplicity of the exact formulation leaves little need to

avoid the completely coupled stiffness matrix.
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2.5.1.8 Element Mass Matrix

One application already investigated is the use of the method for static analyses. The

structural engineering community is very familiar with stiffness matrix assembly, making this

method immediately available for their use. By utilizing discretization, the method is readily

extendible for use with in-span loads. Additionally, through the use of rotation matrices,

it is suitable for 3D frame analysis. The analysis could also be adapted into many existing

nonlinear co-rotational methods for large deformations. This section will focus instead on

dynamic analysis, as the stiffness matrix is immediately suitable for this application. The

usefulness of the element stiffness matrix can be extended into the structural dynamics

regime by formulating an element mass matrix.

Mass distribution for use in the stiffness matrix method can be established in a number of

ways, including direct mass lumping or variational mass lumping. Following the variational

mass lumping approach establishes the kinetic energy as,

T =
1

2
ρ
[
A
(
ẇ2
x + ẇ2

y + ẇ2
z

)
+ I0 θ̇2x

]
, (2.37)

where the dotted terms are the respective degree of freedom velocities, ρ is the material

density, A is the cross-sectional area, and I0 = Iy + Iz is the polar moment of inertia for the

twisting body by the perpendicular axis theorem. The mass matrix can then be represented

by the following integral,

M = ρA

∫ L

0

(NA)T NA dx

+ρA

∫ L

0

(NB)T NB dx

+ρ I0

∫ L

0

(NT)T NT dx,

(2.38)

where NA, NB, and NT are shape function matrices containing the relevant shape functions

for axial, bending, and torsion terms, respectively. For a consistent mass matrix, shape
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functions for the mass matrix are the same as those for the stiffness matrix. However,

only the shape functions corresponding to displacement equations for wx, wy, wz, and θx in

Equations (2.11-2.14) are needed due to negligible θy and θz rotational inertia. Thus, NA

would contain the shape functions present in the first row of the shape function matrix in

(2.39). Similarly, NB corresponds to the shape functions included in the second and third

rows of (2.39), while NT contains shape functions present in the fourth row of (2.39). The

resulting shape function matrix is 4x12 in dimension and results in a 12x12 consistent mass

matrix.
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The shape function matrix, N, used to derive the consistent mass matrix, M, is expressed as the following:

N =



NA1 0 0 0 0 0 NA2 0 0 0 0 0

0 NB1 0 0 0 NR1 0 NB2 0 0 0 NR2

0 0 NB1 0 NR1 0 0 0 NB2 0 NR2 0

0 0 Nθxz1 NT1 Nθxθy1 0 0 0 Nθxz2 NT2 Nθxθy2 0


, (2.39)

where the boxed terms are the newly-derived shape functions. In a conventional, uncoupled, mass matrix derivation, these

positions in the matrix would be zero.

The new expressions for coupled mass terms are as follows:

M1 =
13ALρ

35
+

6 I0K
2 ρ

5GJ2 L
, (2.40)

M2 =
11AL2 ρ

210
+

3 I0K
2 ρ

5GJ2
, (2.41)

M3 = −11AL2 ρ

210
+

3 I0K
2 ρ

5GJ2
, (2.42)

M4 =
AL3 ρ

105
+

3 I0K
2 Lρ

10GJ2
, (2.43)

M5 =
9ALρ

70
− 6 I0K

2 ρ

5GJ2 L
, (2.44)

M6 = −13AL2 ρ

420
− 3 I0K

2 ρ

5GJ2
, (2.45)
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M7 =
13AL2 ρ

420
− 3 I0K

2 ρ

5GJ2
, (2.46)

M8 = −AL
3 ρ

140
− 3 I0K

2 Lρ

10GJ2
. (2.47)

The entire mass matrix can be presented as the following, where the boxed terms represent the terms expressed by

Equations (2.40-2.47).

M =



ALρ
3

0 0 0 0 0 ALρ
6

0 0 0 0 0

0 13ALρ
35

0 0 0 11AL2 ρ
210

0 9ALρ
70

0 0 0 −13AL2 ρ
420

0 0 M1 − I0K ρ
2GJ

M2 0 0 0 M5 − I0K ρ
2GJ

M6 0

0 0 − I0K ρ
2GJ

I0 Lρ
3

− I0K Lρ
4GJ

0 0 0 I0K ρ
2GJ

I0 Lρ
6

I0K Lρ
4GJ

0

0 0 M2 − I0K Lρ
4GJ

M4 0 0 0 M7
I0K Lρ
4GJ

M8 0

0 11AL2 ρ
210

0 0 0 AL3 ρ
105

0 13AL2 ρ
420

0 0 0 −AL3 ρ
140

ALρ
6

0 0 0 0 0 ALρ
3

0 0 0 0 0

0 9ALρ
70

0 0 0 13AL2 ρ
420

0 13ALρ
35

0 0 0 −11AL2 ρ
210

0 0 M5
I0K ρ
2GJ

M7 0 0 0 M1
I0K ρ
2GJ

M3 0

0 0 − I0K ρ
2GJ

I0 Lρ
6

− I0K Lρ
4GJ

0 0 0 I0K ρ
2GJ

I0 Lρ
3

I0K Lρ
4GJ

0

0 0 M6
I0K Lρ
4GJ

M8 0 0 0 M3
I0K Lρ
4GJ

M4 0

0 −13AL2 ρ
420

0 0 0 −AL3 ρ
140

0 −11AL2 ρ
210

0 0 0 AL3 ρ
105


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2.5.1.9 Natural Frequency Calculation

Having established element mass and stiffness matrices, the system natural frequencies can

be solved as a multiple degree of freedom linear dynamics eigenvalue problem. Solving the

eigenvalue problem in Equation (2.48) yields the structural circular frequencies, ωn.

|Kel − ω2
n Mel| = 0 (2.48)

[
Kel − ω2

n Mel

]
φn = 0 (2.49)

The mode shapes are the corresponding eigenvectors, φn, that satisfy Equation (2.49).

2.5.2 Exact Solution to Coupled Equations of Motion

The analytical solution for natural frequencies of bend-twist coupled cantilevers has been

previously solved and given by many researchers but first notably by Banerjee in [21]. The

work presented here most closely follows after Kramer’s work on bend-twist coupling of

composite laminates as in [19] which is also based off [21] but applied to composite laminates

with the help of flexural, torsional, and coupling rigidities presented in [18]. This method

will be denoted as the “coupled analytical solution” for the remainder of this thesis. The

governing partial differential equations for a structural system under free vibration, ignoring

structural damping, can be expressed as:

Ex Iy
∂4h

∂x4
−K ∂3φ

∂x3
+m

∂2h

∂t2
= 0, (2.50)

GJ
∂2φ

∂x2
−K ∂3h

∂x3
− Ix

∂2φ

∂t2
= 0, (2.51)

where h = h(x, t) and φ = φ(x, t) are both functions of the longitudinal location of the

beam as well as time. In these equations, ExIy is the bending stiffness parameter, GJ is the
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torsional stiffness parameter, K is the bend-twist coupling parameter, m is the total mass

per unit length, and Ix is the total polar mass moment of inertia per unit length about the

x-axis. m and Ix can be expressed as:

m = ρs b t, (2.52)

Ix = ρs
b t (b2 + t2)

12
, (2.53)

where ρs is the solid density and b and t are the corresponding width and thickness of the

beam.

The stiffness parameters ExIy, GJ , and K, can be calculated following the work of [18]

as:

ExIy = b (D11 −
D2

12

D22

), (2.54)

GJ = 4b (D66 −
D2

26

D22

), (2.55)

K = 2b (D16 −
D12D26

D22

), (2.56)

where the expressions for bending stiffness terms, D11, D12, D16, D22, D26, and D66 are

components of the laminate’s ABD matrix. The ABD matrix values are dependent on

material properties and lamina orientation as defined by CLPT.

Using separation of variables such that h(x, t) = H(x) ei ω t and φ(x, t) = Φ(x) ei ω t where

ω is the eigenfrequency, equations (2.50) and (2.51) can be rewritten in eigenformat as:

ExIyH
(4) −K Φ(3) −mω2H = 0, (2.57)

GJ Φ(2) −KH(3) + Ix ω
2 Φ = 0, (2.58)

where f (n) = dnf
dxn

represents the nth spatial derivative of the function, f . Eliminating either
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H or Φ from equations (2.57) and (2.58) yields a sixth-order differential equation:

W (6) +
IxExIy ω

2

ExIy GJ −K2
W (4) − mGJ ω2

ExIy GJ −K2
W (2) − mIx ω

4

ExIy GJ −K2
W = 0, (2.59)

where W = H or Φ. A non-dimensional length ξ = x/L can be introduced as well as letting

D = d(·)
dξ

, such that (2.59) can be re-written as:

(D6 + aD4 − bD2 − a b c)W = 0, (2.60)

where

a =
IxExIy ω

2 L2

ExIy GJ −K2
, (2.61)

b =
mGJ ω2 L4

ExIy GJ −K2
, (2.62)

c = 1− K2

ExIy GJ
. (2.63)

The general solutions of Equation (2.60) take the form:

H(ξ) = A1 cosh(α ξ) + A2 sinh(α ξ) + A3 cos(β ξ) + A4 sin(β ξ)

+ A5 cos(γ ξ) + A6 sin(γ ξ),

(2.64)

Φ(ξ) = B1 cosh(α ξ) +B2 sinh(α ξ) +B3 cos(β ξ) +B4 sin(β ξ)

+B5 cos(γ ξ) +B6 sin(γ ξ),

(2.65)

where

α =

√
2

√
q

3
cos
(ϕ

3

)
− a

3
, (2.66)

β =

√
2

√
q

3
cos

(
π − ϕ

3

)
+
a

3
, (2.67)
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γ =

√
2

√
q

3
cos

(
π + ϕ

3

)
+
a

3
, (2.68)

q = b+
a2

3
, (2.69)

ϕ = cos−1[
27 a b c− 9 a b− 2 a3

2 (a2 + 3 b)3/2
]. (2.70)

The coefficients A1−6 and B1−6 are related by the relationship obtained by substituting

Equations (2.64) and (2.65) into Equation (2.57), yielding:

B1 =
kαA2

L
, (2.71)

B2 =
kαA1

L
, (2.72)

B3 =
kβA4

L
, (2.73)

B4 = −kβA3

L
, (2.74)

B5 =
kγA6

L
, (2.75)

B6 = −kγA5

L
, (2.76)

where

kα =
ExIy α

4 −mω2 L4

K α3
, (2.77)

kβ =
ExIy β

4 −mω2 L4

K β3
, (2.78)

kγ =
ExIy γ

4 −mω2 L4

K γ3
. (2.79)

Bending rotation Θ(ξ), bending moment M(ξ), shear force S(ξ), and torsional moment
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T (ξ) may be obtained from Equations (2.64) and (2.65) as:

Θ(ξ) =
1

L

dH(ξ)

dξ
=

1

L
(A1 α sinh αξ + A2 α cosh αξ − A3 β sin βξ

+A4 β cos βξ − A5 γ sin γξ + A6 γ cos γξ),

(2.80)

M(ξ) = −ExIy
L2

d2H(ξ)

dξ2
= −ExIy

L2
(A1 α

2 cosh αξ + A2 α
2 sinh αξ − A3 β

2 cos βξ

−A4 β
2 sin βξ − A5 γ

2 cos γξ − A6 γ
2 sin γξ),

(2.81)

S(ξ) = − 1

L

dM(ξ)

dξ
=
ExIy
L3

(A1 α
3 sinh αξ + A2 α

3 cosh αξ + A3 β
3 sin βξ

−A4 β
3 cos βξ + A5 γ

3 sin γξ − A6 γ
3 cos γξ),

(2.82)

T (ξ) =
GJ

L

dΦ(ξ)

dξ
=
GJ

L2
(A1 α kα cosh αξ + A2 αkα sinh αξ − A3 β kβ cos βξ

−A4 β kβ sin βξ − A5 γ kγ cos γξ − A6 γkγ sin γξ).

(2.83)

To derive the frequency equation, boundary conditions must be applied for the appropri-

ate setting. In this case, cantilever setup results in the following boundary conditions:

H(0) = Θ(0) = Φ(0) = 0, (2.84)

M(1) = S(1) = T (1) = 0. (2.85)

By substituting Equations (2.64),(2.65),(2.80) - (2.83) into Equations (2.84) and (2.85), the

following linear systems of equations is obtained:

BA = 0, (2.86)

where A = [A1, A2, A3, A4, A5, A6]
T and B takes the following form:
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

1 0 1 0 1 0

0 α 0 β 0 γ

0 kα 0 kβ 0 kγ

α2Chα α2 Shα −β2Cβ −β2 Sβ −γ2Cγ −γ2 Sγ

α3 Shα α3Chα β3 Sβ −β3Cβ γ3 Sγ −γ3Cγ

α kαChα α kα Shα −βkβ Cβ −β kβ Sβ −γ kγ Cγ −γ kγ Sγ


,

where

Chα = cosh α, Cβ = cos β, Cγ = cos γ,

Shα = sinh α, Sβ = sin β, Sγ = sin γ.

(2.87)

The necessary and sufficient condition for a non-zero solution to Equation (2.86) is ∆ =

det[B] = 0, which yields the natural frequencies of the composite beam.
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Chapter 3

Material Property Testing

3.1 Overview

When results from the finite element models were first compared with experimental results,

the numerical models significantly over-predicted the stiffness of the beams, especially for

the lower fiber angles of 0° and 10°. This suggested that the fiber-direction modulus, or E1

may not be accurate. For this reason, several experiments (tension testing, 3-point bending,

cantilever bending) were conducted to characterize the elastic fiber-direction modulus of the

material used in this research in order to have reasonable numbers to put in the model.

Unidirectional composite laminates with fibers oriented in the one principle laminate

direction are inherently orthotropic. The transverse and out-of-plane elastic modulii are

identical, however, and only conditional on the resin properties. Lamina and unidirectional

laminates are typically characterized by four material properties, fiber-direction elastic mod-

ulus, E1, resin-direction elastic modulus, E2, in-plane shear modulus, G12, and Poisson’s

ratio, ν12. For the tests conducted in this section, only E1 was of interest, as E1 contributes

the most to the bending rigidity of the laminated beams.

Test specimens for these experiments came from existing beams as well as specimens
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cured specifically for elastic modulus characterization. The newly-cured specimens included

an 8-ply hot press cured plate, an 8-ply autoclave cured plate, and a 16-ply autoclave cured

plate. Five beams were cut from each plate at varying locations from within the plate. The

cut-templates for the autoclave beams can be seen from Figure 3.1 below. The motivation

for choosing these specimens, specifically, were to investigate whether there were noticeable

effects due to the following: cure methodology, thickness effects, location of beam cut from

the plate. For each of the figures in the following sections, the bars represent individual

beams, while the horizontal lines represent the mean measured value for all beams in the

respective test.

Figure 3.1: 8-ply and 16-ply autoclave plate specimen templates. Note that the specimens
are labeled ‘1’-‘5’ from left to right.

3.2 Tension Testing

Tension tests were conducted on each beam in the UW CEE Construction Materials Lab

on an Instron 600DX machine, with an Instron 2-inch gauge length extensometer measuring

specimen displacements. Load-displacement data were processed in MATLAB to generate

the stress-strain relation from which the effective modulus of elasticity could be calculated.

Results for each beam are depicted in Figure 3.2. A note to the reader: the location ‘5’ 16-ply
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Figure 3.2: Tension test material characterization results

autoclave beam was broken before this test and could not be tested, hence the missing data

point. It can be seen from Figure 3.2 that the 8-ply hot press specimens exhibit higher tested

modulii than either the 8-ply autoclave beams or the 16-ply autoclave beams. The 8-ply hot

press beam measured an average modulus of 174.31 GPa, while the 8-ply autoclave beams

measured 168.46 GPa and the 16-ply autoclave beams averaged 162.44 GPa. Coefficients of

variation for the tests were 6.9%, 10.2%, and 10.7%, respectively. The mean values are in

the realm of expected values, however. Elastic modulus values obtained by the report in [15]

averaged 162.1 GPa for 0 degree unidirectional beam specimens.

The difference in measured modulus across the width of the plate is significant, however.

For the 16-ply autoclave specimens, the location ‘1’ beam measured nearly 40 GPa (≈ 25%)

higher than the beam in the location ‘4’ position. While the difference between modulii

for beams across the plate is significant, it is not immediately obvious whether there is an

identifiable relationship between plate location and elastic modulus. It appears that beams
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Figure 3.3: 3-point bending experimental setup

cut from the middle of the plate exhibit lower modulii, though the 16-ply autoclave ‘4’

location beam is even further decreased from the ‘3’ location. Similarly, the ‘5’ location

8-ply beam is lower than the ‘3’ location beam. This is left for future investigation.

3.3 3-Point Bending

A 3-point bending experiment was conducted in the UW Mechanical Engineering Building

Instron 5585H machine. The test setup can be seen in Figure 3.3 below. Load and displace-

ment values were recorded throughout the experiment and provided the data from which

the effective modulus of elasticity could be calculated via a mechanics-of-materials approach

where effective modulus, E, can be represented by the following expression,

E =
P L3

48 δ I
, (3.1)

where P is applied load, L is beam length, δ is mid-span deflection, and I is beam area

moment of inertia. Results for each of the beams are depicted in Figure 3.4. The results of

the 3-point bending experiment to characterize modulus of elasticity differ significantly from
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Figure 3.4: 3-point bending test material characterization results

those in the tension testing experiment. In general, the results are 10-20 GPa (≈ 4%− 14%)

lower across all specimens. The 8-ply hot press beams still have highest values, measuring

an average of 167.25 GPa, while the 8-ply autoclave beams are lower, averaging 156.56 GPa,

and the 16-ply autoclave specimens are again lowest at 142.28 GPa. Coefficients of variation

were 2.5%, 2.8% and 3.4%, respectively. The largest variance again came from the 16-ply

autoclave beams, but in a completely different order than captured by the tension tests.

For instance, the difference in measured modulus between the tension test and the 3-point

bending test for the location ‘2’ 16-ply beam is nearly 50 GPa (≈ 40%). As noted above,

there is no obvious explanation for these variations and this is left for future investigation.

3.4 Cantilever Bending

A cantilever bending experiment was also conducted in the UW CEE Structural Dynamics

lab following the same experimental setup as described in Chapter 2.3.1. The beams were
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end-loaded with the same masses and had displacements recorded by the same microEpsilon

laser sensor used in the Chapter 2.3.1 experiments. This provided the data from which

the effective modulus of elasticity could be calculated via a mechanics-of-materials approach

where effective modulus, E, can be represented by the following expression,

E =
P L3

3 δ I
, (3.2)

where P is applied load, L is beam length, δ is mid-span deflection, and I is beam area

moment of inertia. Results for each beam are depicted in Figure 3.5. A note to the reader:

by the time this test was conducted, the location ‘5’ 8-ply autoclave beam had broken as well

as the location ‘4’ and ‘5’ 16-ply autoclave beams, hence the missing data points from this

experiment. In this experiment, the average modulus for all beams were lower than averages

for both the 3-point bending and the tension tests. The 8-ply autoclave beams showed

highest modulus at 143.82 GPa, followed closely by the 8-ply hot pressed beams with 142.15
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Figure 3.5: Cantilever bending test material characterization results
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GPa, and lowest again were the 16-ply autoclave beams with an average modulus of 137.05

GPa. The coefficients of variation were 4.8%, 6.8%, and 3.3%, respectively. The variation

in modulii with respect to beam specimen location differs yet again from the previous tests,

though the maximum measured difference between tests isn’t as drastic as in the 3-point

bending experiment. The test is missing data from the broken beams, though. Despite the

missing beams, no obvious trend between specimen location and modulus is apparent.

3.5 Steel Beam Modulus Testing

Due to the varying nature of the results both in beam specimen location and between exper-

iments, it was questionable whether the nature of the experiment and calculation method

would affect the resulting effective elastic modulus of a homogeneous, isotropic material such

as steel. In order to test the effects of testing method on the resulting elastic modulus, three

steel beams were cut from a thin steel plate. Each beam had two experiments conducted

on it, a cantilevered free vibration ring-down, and a cantilever bending test, as a means to

experimentally establish the elastic modulus for the material. The beams were identically

sized to the composite beams in the previous sections and set up identically for the cantilever

and free vibration tests. The free vibration was imposed in the same was as in Chapter 2.3.2,

where an impulse was imparted on the free end, and the structure was left to ring-down,

with the time-history displacement being recorded via laser sensor. With the response data,

the natural frequency could be obtained. With the beam’s natural frequencies, the bending

stiffness can be backed out after solving the beam equation of motion which results in the

following expression for natural frequency,

ωnf = α2
n

√
ExIy
mL4

, (3.3)
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where ωnf refers to the natural circular frequency of the beam, αn corresponds to the vi-

brational mode constants, 1.875, in the case of the first mode, m is the linear mass density,

and L is the beam length. The cross section is known, and thus the elastic modulus can be

solved for. For the case of cantilever bending, the elastic modulus is solved identically to the

previous section detailing the process for the composite beams.

The results for each steel beam and for each method can be seen in Table 3.1. The free

vibration experiment yields an average elastic modulus of only 0.3 GPa (< 0.5%)higher than

the cantilever bending experiment. The variance between specimens is higher than expected,

however all values are within a reasonable range for the material and are very close when

averaged. Listed values for structural steel elastic modulus range from 180− 200 GPa. This

experiment was conducted as a check to ensure that, for a well-characterized material, such

as structural steel, the experimental results for elastic modulus do not vary drastically.

Beam Efreevib [GPa] ECL [GPa]

1 182.8 178.9
2 176.9 189.9
3 190.1 180.1

Mean 183.3 183.0

Table 3.1: Elastic modulus averages between experiments for steel beams

3.6 Results and Discussion

Overall, there is drastic difference in elastic modulii between cure methods, specimen thick-

nesses, and specimen location in the laminate. The general trend for them is that the

hot-pressed beams were stiffer than either of the autoclaved beams. The thicker 16-ply spec-

imens always averaged lower values than either of the 8-ply specimens in each test. Tension

tests yielded highest values for the effective modulus, while 3-point bending provided inter-

mediate values, and cantilever bending tests resulted in the lowest measured values. The
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values from the tension tests aligned most closely with values presented in [15], but the test

in that reference was also a tension coupon test, which is then sensible. It is not clear,

however, why the different experiments such different values. Comparing the experimentally

characterized values for the structural steel, it can be seen that the averages are very close

between the two methods. However, both free vibration and cantilever bending had can-

tilever boundary conditions, while the three experiments conducted on the composites each

had unique boundary conditions.

Looking at the averages for each composite beam set for each test in Table 3.2, the

differences between experimental method results are clearly visible. The mean values for

each set of experiments are presented in the bottom row, averaging out the effects of cure

method and laminate thickness. The table shows that modulii calculated by cantilever

bending method result in values nearly 17 GPa less (≈ 12%) than by 3-point bending, and

27 GPa (≈ 19%) less than by tensile testing.

A colleague at the University of New Mexico also worked with the same material donated

by the Air Force Research Labs in some of her experimental structural mechanics of carbon

fiber laminates research. In her thesis [22], E1 for the IM7/8552 material was measured

to be 122.2 GPa with a Poisson’s ratio of 0.27, measured by strain gauge. This test was

conducted as a tensile test and it is curious why the results are 46 GPa (≈ 38%) lower than

the measured values conducted in this work.

At this stage, the inherent variability of the material suggested to the researcher to move

forward with the E1 value associated with the boundary condition most representative of

Beam Etension [GPa] E3Pt [GPa] Ecantilever [GPa]

Hot press 8-ply 174.3 167.2 142.2
Autoclave 8-ply 168.5 156.6 143.8
Autoclave 16-ply 162.4 149.5 137.1

Mean 168.4 157.8 141.0

Table 3.2: Elastic modulus averages between experiments for composite beams
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applications of bend-twist composite beams, the cantilever. This was deemed an appropriate

“effective” material property for the boundary conditions in the experiments. The material

properties which were decidedly used in the finite element models of the experiments can be

seen in Table 3.3. The remaining properties came from reported values in [15].

E1 [GPa] E2 [GPa] ν12 G12 [GPa] G13 [GPa] G23 [GPa]
141.0 8.96 0.316 4.69 4.69 3.09

Table 3.3: Material properties for finite element models of experiments
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Chapter 4

Comparison of Results

4.1 Static Force-Deflection

The force-deflection and force-twist responses of bend-twist coupled cantilever beams can

be characterized experimentally, analytically via stiffness matrix method, and by ABAQUS

finite element analysis. The results from the analyses are compared in Figure 4.1. The solid

lines represent the ABAQUS numerical simulations, while the dashed lines illustrate the

experimental results. The triangular markers correspond to the SMM results for the first

two load cases. The SMM analysis was not conducted for the whole suite of loadings due to

the high degree of geometric nonlinearity achieved in the experiments as the validity of the

SMM is limited to the geometrically linear domain.

Despite efforts to appropriately characterize the fiber-direction modulus of the composite,

it is still evident in the results that the material properties are not completely correct. For

every beam, the experimental results are more flexible and exhibit larger deflections than the

ABAQUS numerical models in the force-deflection relationship. The difference in deflection

magnitude between experiment data and numerical simulation increases as the deflections

increase. The opposite can be observed in the force-twist relationship. The numerical models
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Figure 4.1: Comparison of analytical, FEM, and experimental results for load-deformation
characterization. Solid lines represent the ABAQUS numerical simulations, while dashed
lines illustrate experimental results, and the triangular markers correspond to the SMM
results for the first two load cases.
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over-estimate the beam twist compared to the measured values in the experiment, specifically

for the 20° and 30° beams. In characterizing force-deflection and force-twist relationships,

the SMM model approximates well for the smallest load cases. Beyond about 30 grams of

loading, the beam experiences enough bending to be significantly geometrically nonlinear.

The geometric nonlinearity is easily observed in the stiffening force-deflection and force-twist

curves for the numerical and experimental cases.

Additionally, imperfections can be observed in the experimental data for the 0° beam

force-twist relationship. The dashed curve should remain vertical, indicating no twist, how-

ever, there is a slight deviation, suggesting that the loading was not coincident with the

shear center, or that the fiber angle was not, indeed, 0°. Nonetheless, both the numerical

model and the SMM model provide a reasonable rough approximation of the deflection state

for all beams.

4.2 Linear Vibration

Small amplitude dynamics were investigated robustly for the suite of beams. Both free vibra-

tion and frequency sweep experiments were conducted, which exposed first natural bending

frequencies for each beam. The frequency sweep was conducted at higher frequencies as well

to experimentally establish second natural bending frequencies. The second bending mode

and first twisting mode were not able to be recovered from the free vibration experiment

due to the beams’ preference to vibrate in the first mode when plucked manually and left

to ring down. The vibrations did not contain enough second bending mode or first twisting

mode content to meaningfully show up in the frequency spectrum after performing the Fast

Fourier Transform. Each experiment and set of analyses was conducted on beams manufac-

tured both by autoclave and by hot-press. Because the results are nominally identical and

for the sake of brevity, only the results for the hot-pressed beams are presented in this work.
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For linear dynamics, multiple methods are available for analysis and characterization.

Both analytical formulations as well as the ABAQUS FEM presented in Chapter 2.4-2.5 can

be utilized to evaluate the structure’s dynamic response. In this section and the following

figures, “CAS” refers to “coupled analytical solution,” or the exact solution to the coupled

equations of motion presented in Chapter 2.5.2. “SMM” again refers to the “stiffness matrix

method” also presented in Chapter 2.5.1. In this case, the “SMM” is a 20-element mesh in

order to be sufficiently accurate. The convergence of the model due to mesh refinement is

also covered in Chapter 2.5.1.

In Figure 4.2, the results for the first bending natural frequency are presented. There is

a slight difference between the experimentally characterized values with the free vibration

natural frequency being consistently higher than those corresponding to the frequency sweep.

Similarly, the ABAQUS numerical predictions are consistently higher than predictions by

either analytical method. The predictions between the two analytical methods are consis-

tently close. All of the predictive methods approximate the first bending frequency within

several Hertz, but none are consistently very close across all beams of multiple fiber angles.

Figure 4.3 depicts the results for the 2nd bending natural frequency established by the

frequency sweep experiment and the predictive methods. Once again, the predictive meth-

ods approximate the natural frequency within a reasonable range of frequencies, however

none of them are consistently very close to the experimentally characterized frequency. The

ABAQUS approximations are consistently higher than the analytical methods, while the

results seem to converge towards a common value as the fiber angle of the beams increases.

This is to be expected due to the reduction in coupling intensity at fiber angles beyond about

10°.

First twisting natural frequencies are compared and presented in Figure 4.4. There was

no experiment that could capture any twisting frequencies, hence only the predictive methods

are presented. Results are consistent with other modes, with the ABAQUS approximation
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being consistently higher than the analytical methods, but converging towards a common

value at the higher fiber angles.
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Figure 4.2: Comparison of first bending natural frequencies for various experimental and
predictive methods
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Figure 4.3: Comparison of second bending natural frequencies for experimental and predic-
tive methods
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Figure 4.4: Comparison of first twisting natural frequencies for predictive methods
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4.3 Large Amplitude Vibration

Large amplitude vibration was investigated in order to determine whether or not geometric

nonlinearity would affect the structure’s natural frequencies. In order to determine whether

or not a composite cantilever is sensitive to frequency stiffening or frequency softening under

large vibrations, the specimens were subjected to base excitation accelerations of 1G, 5G,

10G, and, for the 0° beam, 20G. As the excitation acceleration increased, the beam displace-

ments increased significantly, well into the geometrically nonlinear realm. Figure 4.5 shows

the difference in displacements for each beam when subjected to 1G and 10G accelerations.

The top subfigure refers to the 0° beam, with increasing fiber angle (10° and 20°) for each

successive subfigure until the 30° beam at the bottom. An order of magnitude increase in

forcing essentially doubles the beam displacements.

It can be seen from Figure 4.6, however, that the respective natural frequencies for each

beam under the increasing loading remains essentially unchanged. The beams were simply

too light to incite any frequency stiffening due to the catenary tensions associated with the

geometric nonlinearity. Furthermore, cantilever boundary conditions may not be restrictive

enough to induce any axial effects during vibration (unlike clamped-clamped systems).
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4.4 Discussion of Results

There are several notable takeaways when comparing the experimental results with predictive

methods for the structural response of bend-twist coupled cantilever beams. First, the

material properties have a very significant effect on beam response. Even after characterizing

the fiber-direction modulus of the beams in Chapter 3.6, the experimental results still differed

when compared to the model predictions. The material may require further testing to

appropriately establish resin and shear modulii. Additionally, the material properties vary

from beam to beam, even when cut from the same laminate, which makes the predictions

even more difficult.

Secondly, the ABAQUS FEM consistently over-predicts stiffness of the beams in both

the static and dynamic load cases, specifically when compared to the analytical methods.

This may be due to how ABAQUS calculates effective laminate properties, conducts the
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frequency analysis, or any number of other factors, inherent to the finite element method.

Generally, though, all of the analysis methods provide reasonable estimates for predicting

structural response of such beams, yet none of them match the experimental results exactly

or consistently.

Lastly, natural frequencies established experimentally differ based on the method of ex-

perimentation. This is unusual behavior, especially when the frequencies differ by several

Hertz. Boundary conditions and experimental setup could all contribute to the difference

in observed natural frequencies. It is most important to ensure that material properties are

established appropriately and that the laminate fiber angle is accurate. Material properties

contribute greatly to the overall beam stiffness, and the coupling sensitivity is highly depen-

dent on fiber angle for beams with significant coupling. Therefore, if the beams were cut

from the laminate at an angle which differed slightly from the target fiber angle, the results

could differ significantly.
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Chapter 5

Applications of Bend-Twist Coupled

Composites

5.1 General Applications

5.1.1 Aircraft Wings

Bend-twist coupling made its aerospace debut in the Grumman X-29 experimental aircraft,

an aircraft commissioned by NASA and the US Air Force to investigate the effects of for-

ward swept wings, canard control surfaces, and other novel technologies on aircraft perfor-

mance. The forward swept wings are problematic under strong lift conditions due to the

ever-increasing angle-of-attack associated with such geometry. Lift created by the wing in-

duces wing bending, accompanied by a pitching effect due to the forward sweeping. The

wings pitch to stall under load, increasing the angle-of-attack, thus increasing the lift on the

wing further, until the wing experiences either a stall condition or a total structural failure

associated with the diverging wing deflections. Mitigating this would require a wing that

is, torsionally, extremely rigid. However, increasing the rigidity of the wing so much would
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increase mass and neglect the performance advantages associated with the design. The en-

gineers decided to implement symmetric, unbalanced composite laminates in the skin of the

wing to counteract the divergent pitch-to-stall characteristics with the inclusion of bend-twist

coupling. The wings could deflect, but the bend-twist coupling of the composite skins would

limit the twisting of the wing to maintain appropriate angles-of-attack. Similar technologies

were incorporated by Russian engineers with the forward swept-wing aircraft, Sukhoi Su-

47. Tip divergence in the Russian aircraft was mitigated with the same bend-twist coupled

composite skins in the aircraft wings. These aircraft were successful in demonstrating the

technology, however did not transition into production.

(a) Grumman X-29 (b) Sukhoi Su-47

Figure 5.1: Experimental fighter jets which used bend-twist coupling in their wing skins
from [23] and [24]

Although bend-twist coupling has been investigated in experimental aircraft, limited

progress has been made including the structural phenomena outside of the experimental

regime. Recently, however, the inclusion of bend-twist coupling in commercial aircraft wings

to mitigate effects of gust loading was investigated as by Perron in [8]. Perron showed that

bend-twist coupling could help reduce the peak spanwise bending moments by up to 45%

and aid in weight savings up to 4% on larger commercial aircraft such as the Boeing 777.

5.1.2 Wind Turbine Blades

Bend-twist coupling has been in the wind turbine research community for several decades.

Aeroelastic tailoring has been viewed as a cost-effective, passive means to shape the power
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curve and reduce loads. The functionality of the bend-twist mechanism is the same as in

aircraft wings, where the composite is used to designate the angle-of-attack as the blade

experiences load. In the context of wind turbine blades, the aeroelastic tailoring is typically

included to regulate power or speed in high winds. It has long been a subject of investiga-

tion by the Department of Energy’s, Sandia National Labs, which has produced extensive

documentation on the subject, as in [4], [3], and [25]. Researchers in Denmark and Sweden

have also investigated and modeled the bend-twist coupling effects in wind turbine blades

in [26] and [20]. Within the existing research, the goal is primarily to accurately model

the structural response of the blades and tailor their performance to a loading or design

condition. The literature corresponding to modeling and designing bend-twist coupled wind

turbine blades is fairly robust.

5.1.3 Marine/Tidal Turbine Blades

Newer to the bend-twist coupling community is the adaptation of the coupling mechanism

into tidal turbine blades. Tidal (or marine) turbines are analogous to wind turbines, however,

they rely on the flow of water past the turbine for energy generation. Marine turbines are

typically placed in energy-dense regions, such as inlets or harbors, where the tidal flows are

significant.

The loading environments of marine turbine blades can be harsher and more variable

than those corresponding to wind-turbine blades. Water is heavy, incompressible, corrosive,

and difficult to work in. Theoretically, bend-twist coupling should be equally as useful

in a marine environment to tailor the blade response to the loading condition. As far as

application, however, nearly all marine turbine blades rely on active pitch control to vary the

angle-of-attack of the turbine blades to shed loads under off-design flow conditions. Passive

pitch adaptation using bend-twist coupling can allow for instant angle-of-attack adjustment

to varying flow conditions without reliance on motors and mechanisms providing active
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Figure 5.2: Marine/tidal turbine examples

control. Researchers have written about and modeled applications of bend-twist coupled

blades for horizontal axis tidal turbines in [10], [6], [7], and [27], though it has not been

implemented into full-scale application to date.

5.2 Bend-Twist Coupling for Passively Adaptive Tidal

Turbine Blades

5.2.1 Motivation

While the use of adaptive marine turbine blades has been thoroughly explored numerically,

little experimental work has been accomplished to date. In order to validate and support

continuing numerical studies of the adaptive blades, it is necessary to provide baseline ex-

perimental data on these systems. The work in this section presents the design, analysis,

manufacture, testing, and experimentation of three sets of flume-scale turbine blades. An

experimental program was conducted to investigate the mechanics of adaptive pitch blades
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and the impact these blades have on the performance of a marine turbine system. The

performances of two sets of adaptive composite blades were compared to that of a neutral

pitch blade design. One adaptive set was designed to pitch to stall, or twist such that the

angle of attack increases with loading, while the other set was designed to pitch to feather,

or decrease the angle of attack. Turbine level performance characteristics were predicted to

differ based on which direction the blades pitched, therefore two sets of pitching blades were

required.

5.2.2 Design of Flume-Scale Turbine Blades

All blades discussed in this work were designed to identical geometric parameters; the tailored

bend-twist mechanism in the adaptive models was created solely by the coupling induced at

the material level. The blade geometry was provided by corresponding researchers from the

University of Washington’s Marine Energy Group in the Mechanical Engineering Depart-

ment. Blade geometry was determined using an optimization routine in HARP Opt (Hor-

izontal Axis Rotor Performance Optimization) code developed by the National Renewable

Energy Laboratory (NREL). Details concerning the exact blade geometry and its develop-

ment can be found in [5]. Because the blades were designed for use in an experimental flume,

they were significantly reduced in size from actual production marine turbine blades. Each

blade was roughly 170 mm long, 30 mm wide, and 10 mm thick at the root. The general

blade profile and female mold provided by the Marine Energy Group can be seen in Figure

5.3.

Due to the small scale of the blades required for flume-level testing, it was not feasible to

lay up an adaptive composite laminate following the complex blade geometry with sufficient

accuracy in either the geometry or the fiber orientation. To address this issue, the composite

blades were composed of a flat carbon fiber spar, twisted to follow the chord line of the

target blade geometry, and a semi-flexible urethane body cast around the spar to create the
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Figure 5.3: Machined aluminum mold of flume-scale blade geometry

hydrodynamic blade shape. Tooling for the chord line down the blade was designed and

machined as a surface on which to lay up the spars and can be seen in Figure 5.4. The

urethane was chosen such that it had adequate hardness to maintain the blade geometry but

would not impede the elastic bend-twist deformations. In this way, the adaptive tailoring

of the composites could be explicitly controlled in the carbon fiber spar without sacrificing

accuracy in the hydrodynamic profile. This fabrication process was used solely for the small-

scale blades in this test sequence and experimentation; future work on larger blades will

require the use of more traditional manufacturing processes.

Because the geometry was pre-established, design goals for the blades corresponded

Figure 5.4: Machined aluminum tooling of twisted chord line for spar manufacture
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mostly to the deflection targets thought to yield meaningful differences in turbine-level per-

formance. A target pitch change (±5°) and a limit on bending deflection (10% of the blade

length, or ≈ 17 mm) at the design condition were imposed, along with constraints based on

the predefined geometry.

5.2.3 Analysis of Composite Spars

The experimental flume has a fluid velocity range of 0.5 m/s - 1.2 m/s. The turbine was

tuned for performance at a fluid velocity around 0.85 m/s. From the blade geometry, the

coefficient of thrust could be estimated to be between 0.65− 0.85 (information provided by

UW Mechanical Engineering). With this information, the thrust per blade could calculated

via the following equation,

T =
1

2n
ρV 2ACt, (5.1)

where T is the blade thrust, ρ is the fluid density, V is the fluid velocity, Ct is the coefficient

of thrust, n is the number of blades, and A is the swept area of the turbine. Using the upper

and lower bounds on the coefficient of thrust and flow velocity estimates gave a range of

expected blade thrusts. Given that the geometry of the blades was already provided, the

thrusts could be divided by the blade area to give an estimated range of pressures that the

blades would experience in the flume. This calculation set the basis for the analysis and

design of the composite spars.

To design the appropriate composite laminate spars for the adaptive blades, a parametric

study in ABAQUS/Standard was conducted. Each spar was designed to be cut from an

off-angle unidirectional laminate plate. Designing for both twist and deflection gave a two-

variable parameter space, where fiber angle, and number of plies could be varied to meet

target twist and deflection goals stated earlier. The material to be used in manufacturing

the spars was consistent with the experimental beams from Chapter 2, more specifically the
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donated Hexcel IM7/8552 carbon fiber. At this stage, some of the experimentation from

Chapters 2 and 3 had not yet been conducted, therefore the material properties used in

analysis were consistent with those provided by the manufacturer rather than deduced by

experimentation as in Chapter 3.6.

The resulting laminates each consisted of 14 plies, resulting in a final spar thickness of

1.43 mm. All plies for the adaptive blades were laid up with a 7° fiber angle offset from the

blade axis: +7° for the pitch to feather blades and −7° for the pitch to stall blades. The

neutral composite blades were also 14 ply, with the unidirectional fiber angles aligned with

the blade longitudinal axis(i.e. 0°). The fiber angle offset required for the creation of an

adaptive mechanism will always result in a reduced stiffness compared to the neutral, 0°,

orientation, however all deflections were within the acceptable range. Properties of all three

materials used are shown in Table 5.1.

Compound: 6061-T6
Aluminum ρ = 2700 kg/m3

E = 68.9 GPa
G = 26 GPa
ν = 0.33

Compound: Hexcel IM7/8552
Carbon Fiber ρ = 1570 kg/m3

Laminate E1 = 158 GPa, E2 = E3 = 8.96 GPa
G12 = G13 = 4.69 GPa, G23 = 3.09 GPa

ν12 = ν13 = 0.316, ν23 = 0.451
Compound: Smooth-Cast 45D

Urethane ρ = 1100 kg/m3

Shore Hardness: 45D
Elongation at Break: 100%

Table 5.1: Blade material properties
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5.2.4 Manufacture of Experimental Blades

Manufacturing the flume-scale turbine blades required construction over the course of several

steps. First, all the spar laminates needed to be laid up and cured via autoclave. Details of

the autoclave curing process can be found in Appendix A.1 of this work. Once cured, the

spars could be cut from the laminates by Dremel and then tailored to the precise designed

shape. An example of this can be seen in Figure 5.5. Next, a machined aluminum piece had

to be epoxied to the base of each spar in order to interface with the turbine hub, as seen in

Figure 5.6.

(a) Autoclave-cured laminates used for com-
posite spar

(b) Spar cut by Dremel from cured laminates

Figure 5.5: Cured laminate vs. finished spar shape

Figure 5.6: Close-up of machined aluminum insert being epoxied to spar
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The spar and interface piece could then be placed and clamped in the mold in order to

have the urethane poured around it. Finally, the urethane was mixed and poured around the

spar and let to cure before it could be removed from the mold to yield the finished, cured part.

Once complete, the leading and trailing edges of the blade could be cleaned up manually and

checked for defects. In total, 14 blades were produced for use in the experiment, as seen in

Figure 5.7. The three sets only required 9 blades, however some extras were manufactured

for redundancy and in case of breakage or fitment issues.

Figure 5.7: Finished blades with flexible urethane poured over the spars

5.2.5 Load-Deflection Experiment and Structural Qualification

Load-deformation testing on the turbine blades was performed in the structural vibrations

laboratory at the University of Washington. The blades were mounted to the turbine hub

while the entire turbine was affixed to one of the work benches. Each blade was then loaded

quasi-statically in the streamwise direction (see Figure 5.8; negative BFY direction) using

a displacement-controlled method in which a slowly incrementing displacement was applied

to the blade tip at the neutral pitch axis. Two lasers, a Micro-Epsilon optoNCDT 2300-20

and a Micro-Epsilon optoNCDT 1700-500, were used to measure deflection of the blades

under load. The lasers each captured “streamwise” deflection 163 mm from the blade root
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at points separated by 14.7 mm along the chord of the blade, as depicted in Figure 5.9. Each

individual blade was mounted on a load cell which was connected to the turbine for the test.

The load cell was a six-axis ATI Industrial Automation Nano25, and was used to record

forces and moments corresponding to the applied displacement. Measurements from the two

lasers and the load cell were synchronized in order to calculate force-deflection, force-twist,

and deflection-twist relationships.

Static load-deformation tests were conducted in order to quantify the force-deformation

relationships of the three composite blade sets as well as one “rigid” aluminum blade set in

response to a single point load. The aluminum blade set served as an effectively rigid control

set for comparison to the flexible and adaptive composite blades in the flume experiment,

the details of which are explained in the following section. Though, in practice, the loading
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Figure 5.8: Schematic of the blade (BFxyz,BMxyz) and hub (HFxyz,HMxyz) load cell coor-
dinate systems.
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Laser sensing 

location 

Figure 5.9: Placement of laser sensors on turbine blade for load-deformation tests.

profile on the turbine blade is highly complex, these tests provide a baseline performance

survey to both confirm design behavior and calibrate future numerical models. Note that

because the deformation in each test was applied at the blade tip and the deflections were

measured slightly inside the maximum radius of the blade’s sweep, simple beam theory was

used to extrapolate the deflection and twisting responses to the tip. This was determined to

be an acceptable approximation due to the small deflections and curvatures.

Figures 5.10a and 5.10b show the results of a suite of force-deformation tests. Point

data from each of three tests conducted on every blade is reported. In Figure 5.10a, the

strongly linear nature of the force-deflection response is clear. However, nonlinear behavior

is apparent in deflections under 1 mm; this is likely due to a slight amount of play in the

blade root-to-hub fitting. As expected, the aluminum blades display a nearly rigid behavior,

showing maximum deflections on the order of 10% of those measured in the adaptive blades.
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The adaptive composite blades behave similarly to the neutral design; however, the reduced

stiffness that is a function of the adaptive mechanism can clearly be seen. The bending

deformation of the pitch to feather and pitch to stall blades is effectively identical. This is

to be expected, as the fiber angle offset, and thus stiffness reduction, is the same magnitude

in the two blades designs.

The difference in the direction of the fiber angle offset can be seen in the force-twist

response, shown in Figure 5.10b. Though the adaptive blades display very similar behavior

(a) Force-deflection response at blade tip

(b) Force-twist response at blade tip

Figure 5.10: Load-dependent elastic deformation responses of each blade type

85



in bending, the force-twist responses in the two designs are opposite. The pitch to feather

blades show a positive pitch change, while the pitch to stall blades twist in a negative

direction. Again, the aluminum blades display effectively rigid behavior, while the neutral

composite shows a slight bias towards pitching to feather (increasing pitch). The trends in

these results are also linear, though the correlation is less strong than in the force-deflection

responses. The scatter in Figure 5.10b is due to the difficulty in imposing a displacement on

the blade tip without influencing the twisting deformations. Though the blades were loaded

at a point as close to the neutral pitch axis as possible, any small deviation from that point

will have a significant impact on the twist response.

The deflection and pitch change responses are combined in Figure 5.11 to show empirical

bend-twist relationships. A linear regression for each blade design is plotted for additional

clarity. As expected, the bend-twist response of the pitch to feather blades is approximately

equal in magnitude (as measured from the neutral pitch behavior) and opposite in direction

to that of the pitch to stall blades. Though the aluminum blades displayed effectively

rigid behavior by neither bending nor twisting to a significant extent, they show the same

influence of the slight geometric bias to pitch to feather as the neutral composite blades, a

behavior that agrees with previous numerical predictions [6]. However, the correlation of the

aluminum bend-twist response especially is quite low, and additional tests are necessary for

conclusive results.

In general, the results of the load-deformation tests showed good agreement with design

goals and behavior predictions stated in the previous section. The pitch to feather blades

displayed a bias to increase blade pitch under load, while the pitch to stall design tended

to decrease blade pitch. Both adaptive designs were slightly more flexible than the neutral

composite, and the assumption of rigidity for the aluminum blades was shown to be an

acceptable approximation.
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Figure 5.11: Deflection-twist relationship, with linear regression plotted

5.2.6 Flume Experiment Results

In addition to the static test program, dynamic experiments were conducted at the Bam-

field Marine Sciences Center in Bamfield, BC, Canada. It must be noted that the flume

experiments were conducted by a different, more senior researcher within the research group

rather than the author of this thesis. Her research is more concerned with turbine perfor-

mance characterization and turbine-level differences due to the adaptive blade mechanism,

rather than the development of the blades themselves, which was the focus of this Chapter.

The results of the flume experiment, however, are equally important to this work, thus are

included here.

The Bamfield facility includes a recirculating rectangular open channel flume (b = 0.98

m, L = 13 m). Fluid velocity in the flume is controlled by a series of four pumps, allowing

for speeds of up to 1.0 m/s. The dynamic water depth and temperature were held constant

at hd = 0.73 m and T = 16° C, respectively, for all tests. The level of turbulence in the

flume was around 7-8%, consistent with field measurements in Puget Sound and previous
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flume experiments in the literature ( [28]). The turbine was placed near the center of the

flume longitudinally, with the hub height, hhub = 0.375 m, set to approximately half of

the static water depth in the flume. Performance curves were generated by holding the

fluid velocity constant and increasing turbine rotational speed, in order to measure loads

over a range of tip speed ratios. Measurements at each point on the performance curve

were sampled at ≈ 16 Hz for 2-5 minutes to ensure steady state operation. Due to the

load-dependent nature of the adaptive blades, however, performance is dependent on both

velocity and tip speed ratio. Therefore, curves were collected for the adaptive pitch blades

at three inflow velocities: Uhub = 0.5 m/s, 0.65 m/s, and 0.85 m/s, resulting in a range of

Reynolds numbers ReD = 2.0e5 − 3.4e5 (Rec ≈ 0.7e5 − 1.1e5). For comparison with the

composite blades and to investigate effects of Reynolds number dependence, performance

curves for the rigid aluminum blades were collected at Uhub = 0.5 m/s, 0.85 m/s, and 1.0

m/s.

To investigate the performance behavior of the adaptive blades as compared to the non-

adaptive and rigid designs, forces and moments on the key blade of each turbine system

were recorded during dynamic testing. In the blade load cell, the x-direction points from the

leading to the trailing edge of the blade at the 0◦ pitch line, the y-direction points upstream,

and the z-direction points out radially along the blade. The coordinate systems for both load

cells can also be found in Fig. 5.8. During flume testing, a Nortek Vector acoustic Dopper

velocimeter (ADV) was positioned approximately 1.1 m (≈2.5 dT ) upstream of the turbine.

The ADV sampled instantaneous three-dimensional inflow velocities. The x-direction of

the ADV is oriented upstream and the y- and z-directions reflect horizontal and vertical

velocities, respectively.

Using data from the blade load cell and ADV, it is possible to calculate the mean forces

and moments on the key blade as a function of tip speed ratio (λ = Rω/Uavg) for each inflow

velocity. These trends for all four blade designs are shown in Figure 5.12 for the tests run
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at Uhub = 0.50 m/s. The first item to notice in these figures is that the neutral pitch (non-

adaptive) composite blade and the aluminum blade perform similarly in nearly all respects.

The only significant difference between the two is in the z-direction force, shown in Figure

5.12a. This is the centripetal force, which is larger in magnitude for the aluminum blades

due to their higher total mass; the general increase in this force corresponds to the increase

in rotational velocity. Beyond BFZ , all four blade designs trend together in the x-direction

forces and moments and the y-direction moments. It is worth noting that the blade pitching

moment (BMZ) is essentially zero for all blades. This indicates that any twist the blades

experience will likely be due to the bend-twist mechanism, rather than any outside forcing.

The largest difference by far between designs can be seen in the y-direction, or stream-

wise, forces (Figure 5.12a) and the x-direction, or bending, moments (Figure 5.12b). These

streamwise forces and the associated bending moments are the main driver for the load-

dependent adaptive pitch mechanism. Thus, at low tip speed ratios the blades experience

similar loading conditions, but as the forces on the system increase the performance of the

different blade designs begin to diverge. As noted above, the neutral and aluminum blades

behave in a similar manner, providing a baseline model for comparison. The difference in

forces and moments on the adaptive blade designs is attributable to the predicted twist de-

formations. Under increased load, the pitch to stall blade will twist to decrease the pitch

angle, effectively increasing the angle of attack. This was shown statically in Figure 5.10b

as well as predicted numerically in [6]. The increase in angle of attack in turn causes the

higher forces and moments seen in Figure 5.12. In the opposite fashion, the pitch to feather

blade twists to decrease the angle of attack and starts to shed excess loads, resulting in a

reduced rate of increase in the forces and moments.

Along with blade loads, rotor force and moment measurements were collected. Tur-

bine performance is commonly characterized in terms of power and thrust coefficients; to

that end, the instantaneous axial thrust (T), moment (τ), velocity (Uhub), and angular
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velocity (ω = 2πfT ) measurements were used to calculate the system thrust coefficient,

CT = T/ (0.5ρATU
2
hub), and power coefficient, CP = (τω) / (0.5ρATU

3
hub) for all four blade

designs. The resulting performance curves, calculated from the tests conducted at Uhub =

0.50 m/s, are shown in Figure 5.13. Error bars are used to indicate the 95% confidence

interval of this data. The larger error bars seen on the calculated power coefficients relative

to the thrust coefficients are likely due to the slightly higher accuracy of the hub load cell in

reading thrust as compared to torque measurements.

The thrust coefficients, in Figure 5.13a, generally reflect the individual blade trends seen

previously. The pitch to stall system experiences increased thrust compared to the neutral

pitch design as the tip speed ratio increases, while the pitch to feather system sheds load

over the same range. The neutral pitch system differs slightly from the aluminum blades, but

maintains a similar trend. In Figure 5.13b, the calculated power coefficients are displayed.

Though all four designs show comparable performance behavior, there are several features

to highlight. From the lower tip speed ratios to the apex of the curve, the pitch to stall blade

produced a generally higher CP than the other designs. The pitch to feather blade had the

lowest calculated value, while the neutral and aluminum blades fell in between. However,

at higher tip speed ratios, the performance of all three composite blades falls off much more

steeply than the aluminum blades. This is likely due to the fact that the composite blades,

especially of the pitch to stall design, showed considerable out-of-plane deformation with

increased trust on the system. In this case, increased lift on the foils will not translate as

directly to increased torque on the system, and much of the gains in performance expected

from the pitch to stall system would be lost

90



λ

Blade FX

Blade FY

Blade FZ

(a) Average forces on the key blade at Uhub = 0.50 m/s

λ

Blade MX

Blade MY

Blade MZ

(b) Average moments on the key blade at Uhub = 0.50 m/s

Figure 5.12: Blade load cell measurements with increasing λ at Uhub = 0.50 m/s
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λ
(a) Calculated thrust coefficients at Uhub = 0.50 m/s

λ
(b) Calculated power coefficients at Uhub = 0.50 m/s

Figure 5.13: System performance characteristics with increasing λ at Uhub = 0.50 m/s
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Chapter 6

Conclusions and Future work

6.1 Conclusions

6.1.1 Fundamentals

In this thesis, bend-twist coupled composite laminate beams were characterized experimen-

tally, numerically, and analytically in both static and dynamic load settings. Several sets

of beams were manufactured as specimens for experimentation, cured both by autoclave as

well as by hot press. Experiments conducted on the beams included static force-deflection,

free vibration ring down, small amplitude frequency sweep and large amplitude frequency

sweep. Motivation for the suite of experiments involved understanding the relationship be-

tween bending and twisting deformations when loaded statically, as well as how bend-twist

coupling reduces stiffness and affects the structure’s dynamic response. Large amplitude

frequency sweeps were conducted in an attempt to illicit frequency stiffening or softening

due to geometric nonlinearities.

Two analytical methods of analysis were presented as well. An existing analytical model

which relies on solving the coupled equations of motion for a bend-twist coupled composite

cantilever was programmed and implemented. Additionally, a beam element for use in the
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stiffness matrix method was derived in order to analytically model the beam deformation

under static loading. The stiffness matrix model was also extended into the dynamics regime

by formulating the common vibration eigenvalue problem.

A numerical model was developed in ABAQUS with steps for static loading and linear

perturbation frequency analysis. The addition of the numerical model rounds out the spec-

trum of analysis and evaluation methods for bend-twist coupled beams presented in this

work.

6.1.2 Material Testing

In order to appropriately model the structural response of the beams, material properties

had to first be established. Composite laminates are notoriously difficult to characterize

and often have highly varying material properties. A suite of experiments including tensile

testing, three-point bending, cantilever bending, and free vibration were implemented in an

attempt to establish fiber-direction elastic modulus, E1, for the coupled beams.

Results varied significantly in a number of ways. First, each experiment yielded different

average properties. Tension testing yielded higher values than three-point bending, which

were higher still than cantilever bending results. Second, the method of manufacture resulted

in different elastic modulii with hot-press-cured beams giving higher values than autoclave

cured beams. Furthermore, the 16-ply autoclave beams showed lower values than the 8-

ply autoclave beams, which suggests some degree of thickness dependence. Lastly, beam

modulus varied significantly based on the location from where it was cut in the original

laminate. There was no consistent observable trend suggesting a particular location in the

laminate yielded higher or lower values, however.

In order to investigate whether composites are truly so difficult to characterize, two tests

were performed on a set of structural steel specimens, which has a well-known elastic modulus

as it is a homogeneous, isotropic material. Free vibration and cantilever bending tests were
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conducted on the steel specimens, with the free vibration experiment yielding an average

elastic modulus of ≈ 0.3 GPa (≈ 0.1%) higher than established by cantilever bending. This

suggests that the steel specimens can be characterized reasonably closely across experimental

methods, unlike the composite beams.

Finally, composite laminates are shown to, indeed, be difficult to characterize experi-

mentally with results differing drastically with respect to multiple variables, not limited to

experimental method, curing method, boundary conditions, and laminate thickness. Thus,

the author chose to move forward with effective material properties corresponding to beams

and boundary conditions that most closely matched the experiments which were conducted.

Elastic modulus characterized by cantilever bending was chosen as the baseline value to be

used in the models for analysis.

6.1.3 Comparison of Results

In general, it was shown by comparing experimental results with analysis methods that the

material properties were still not fully accurate. Comparing results for force-deflection, the

ABAQUS model is consistently stiffer and more coupled across all beams. The stiffness

matrix method captures small deflections well, consistent with both ABAQUS and exper-

imental results, but becomes irrelevant for large deflections due to geometric nonlinearity

conditions. The ABAQUS model deviates most significantly from the experimental data

when deflections are largest and geometric nonlinearity is most severe.

For linear, small amplitude dynamics, several things are worth noting. First, the natural

frequencies for each beam differed based on which experiment was conducted. Free vibration

consistently yielded higher natural frequencies than the small amplitude frequency sweep for

all beams. The ABAQUS frequency analysis consistently over-approximated the natural

frequency compared to both experimental results as well as analytical methods. This is con-

sistent with the results from the static experiment as well, where ABAQUS approximated
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slightly stiffer. The two analytical methods were nearly identical in predicting natural fre-

quency, however neither method matched experimental results consistently for every beam.

Generally, both ABAQUS and the analytical methods predicted within a few Hertz of the

experimentally established values, but the approximation is limited to within a fairly course

frequency range. This is true for higher order bending modes and torsional modes as well.

Large amplitude vibration did not yield any frequency stiffening or softening effects.

An order of magnitude increase in excitation accelerations (from 1G to 10G) doubled the

beam deflections, yet did not change the beam natural frequency significantly. Modeling

the beam’s dynamic response for such large forcing and geometric nonlinearities was deemed

to be extraneous and too time consuming to provide meaningful contribution to this work.

Thus, only the experimental results for the large amplitude frequency sweep were presented.

Lastly, for the linear domain, the SMM was shown to be a valid, accurate, and eas-

ily implemented model for the analysis of bend-twist coupled beams. The SMM is easily

programmed, does not rely on solving the governing equations for the particular boundary

conditions, and is as or more accurate than a far-more-complicated ABAQUS numerical

model for modeling beam response both statically and dynamically.

6.1.4 Applications of Bend-Twist Coupled Composites

The motivation for this section was to develop experimental scale passive pitch adaptive

blades as a proof of concept research initiative. The blades were designed to have a composite

spar that dictated the structural response, while a flexible urethane made up the blade surface

geometry. A parametric study was conducted in ABAQUS to establish the optimal degree of

bend-twist coupling and laminate thickness to achieve target deflection goals for the expected

loading conditions. The performance of two sets of adaptive composite blades, one designed

to pitch to stall and one to pitch to feather, were compared to that of a neutral pitch blade

design and an effectively rigid aluminum set under static and dynamic testing conditions.
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During static qualification testing, force-deflection and force-twist response were mea-

sured. Additionally, an empirical deflection-twist relationship was calculated. Though both

adaptive blades behaved similarly in bending, the pitch to stall blades were found to twist

to decrease blade pitch under load (which would increase effective angle of attack), while the

pitch to feather design instead twisted to increase blade pitch (decreasing angle of attack).

The neutral pitch blades were shown to be slightly stiffer than the adaptive designs in bend-

ing, and evidenced a slight bias towards pitching to feather under load. The assumption of

rigidity for the aluminum blades was shown to be valid, though these blades also displayed

a geometric pitch to feather bias.

Dynamic experiments were also performed in the flume at the Bamfield Marine Sciences

Center. During these tests, instantaneous forces and moments were recorded on the turbine

system and on one of the three blades during operation at varying rotational speeds and

inflow velocities. Combined with the instantaneous fluid velocity measurements, these data

were used to quantify blade forces and moments as a function of tip speed ratio, as well as

overall system performance curves at several inflow velocities. The results of these tests show

that in general, the pitch to stall blades experience increased forces and moments compared

to the neutral pitch and aluminum blades. This translates to increased power generation

at low dimensional loads, but under higher loading conditions caused excessive out of plane

deformation, potential fluid stall, and blade failure. In the opposite fashion, the pitch to

feather systems demonstrated lower blade loads and system thrust, with a relatively small

decrease in power capture capabilities. This feature could prove a valuable asset to a marine

hydrokinetic turbine system.
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6.2 Future Work

6.2.1 Material Characterization

Characterizing composite laminates accurately has proven to be a challenge for reasons de-

scribed above and in Chapter 3.6. A more robust testing schema needs to be implemented

for thin laminates to more accurately establish elastic modulii as well as other critical ma-

terial parameters such as shear modulus and resin modulus. Doing so will provide better

ability to model and predict structural response of the coupled laminates. This was not the

central objective of this thesis, which is why the material characterization tests were not

fully comprehensive.

6.2.2 Co-rotational Adaptation of Stiffness Matrix Method Model

The current stiffness matrix method model is only useful in the geometrically linear re-

sponse domain. It cannot capture the effects of geometric nonlinearity and large deflections

as demonstrated in Section 4.1. The stiffness matrix could, however, be implemented into a

co-rotational model to account for large deflections and geometric nonlinearity. This would

provide a more comprehensive analytical model that could then be compared more com-

pletely with an ABAQUS shell or continuum FEM.

6.2.3 Larger Scale Experimentation of Passively Adaptive Marine

Turbine Blades

In terms of application, future work includes scaling the passively adaptive marine turbine

blades to a more realistic geometry and design and manufacture methods. Rather than

another “flume-scale” experiment, the next iteration would take on a “field-scale” geometry

which would likely be at least two times larger in diameter. The blades would need to be
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manufactured differently, as designing a flat spar with a urethane profile would require a

prohibitively thick spar and a large amount of liquid urethane. Instead, a box section with

bend-twist coupling in the flanges and an outer skin may serve as a better design while being

much more representative of actual manufacturing and design practices. Such an experiment

would also shed light on turbine performance scaling effects and help understand how to best

implement bend-twist coupling at a more realistic scale.
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Appendix A

Supplementary Information

A.1 Hexcel IM7/8552 Curing Details

A.1.1 Cure Profile

The cure profile for all IM7 layups used in this work are shown below in Figure A.1. One

adaptation was made, however, where the curing pressure for the duration of the event was

reduced to 50 psi or 3.45 bar. First, the autoclave used in the cures presented in this work was

limited to a max pressure of 85 psi or 5.86 bar. Second, the unidirectional laminates would

suffer from excessive “smushing” under higher cure pressures, thus slightly lower pressures

were used to minimize in-cure laminate deformation. Otherwise, the temperature profile

followed the figure exactly.
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Figure A.1: Cure profile from Hexcel for IM7/8552
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A.1.2 Autoclave Bagging Process

The autoclave bagging process can be depicted by Figure A.2. The graphic was taken

directly from the instruction techniques from composites supplier, Fibre Glast Development

Corporation [29].

Figure A.2: Vacuum bagging diagram for autoclave-cured composite laminates, schematic
sourced from [29]
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A.2 Model Scripts

A.2.1 ABD Matrix Script

1 f unc t i on [ABD, abd , Ex ] = ABD abd(E11 , E22 , G12 , v12 , Npl ies , t , layup )

2

3 % Addit iona l Poisson ’ s r a t i o s

4 v21 = v12 ∗(E22/E11) ;

5

6 % Enter geometr ic p r op e r t i e s

7 h = Npl i e s ∗ t ; % t o t a l t h i c kne s s o f laminate (m)

8

9 % I n i t i a l i z i n g ar rays

10 Qbar = ze ro s (3 , 3 , Np l i e s ) ;

11 A = ze ro s (3 , 3 ) ;

12 B = ze ro s (3 , 3 ) ;

13 D = ze ro s (3 , 3 ) ;

14

15 % Qij

16 Q11 = E11/(1−v12∗v21 ) ;

17 Q22 = E22/(1−v12∗v21 ) ;

18 Q12 = v12∗E22/(1−v12∗v21 ) ;

19 Q66 = G12 ;

20

21 % Zbar i s the coo rd ina t e s o f the p l i e s in the layup

22 f o r i = 1 : Np l i e s +1;

23 zbar ( i ) = − ( ( h) /2 + t ) + i ∗ t ;

24 end ;

25

26 % Qbari j f o r each lamina o f laminate

27 f o r k = 1 : Np l i e s

28

29 c = cosd ( layup (k ) ) ;

30 s = s ind ( layup (k ) ) ;

31

32 Qbar (1 , 1 , k ) = Q11∗c ˆ4 + 2∗(Q12 + 2∗Q66) ∗ s ˆ2∗ c ˆ2 + Q22∗ s ˆ4 ;

33 Qbar (1 , 2 , k ) = (Q11 + Q22 − 4∗Q66) ∗ s ˆ2∗ c ˆ2 + Q12∗( s ˆ4 + c ˆ4) ;

34 Qbar (2 , 1 , k ) = Qbar (1 , 2 , k ) ;

35 Qbar (2 , 2 , k ) = Q11∗ s ˆ4 + 2∗(Q12 + 2∗Q66) ∗ s ˆ2∗ c ˆ2 + Q22∗c ˆ4 ;
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36 Qbar (1 , 3 , k ) = (Q11 − Q12 − 2∗Q66) ∗ s ∗c ˆ3 + (Q12 − Q22 + 2∗Q66) ∗ s ∗c ˆ3 ;

37 Qbar (3 , 1 , k ) = Qbar (1 , 3 , k ) ;

38 Qbar (2 , 3 , k ) = (Q11 − Q12 − 2∗Q66) ∗ s ˆ3∗ c + (Q12 − Q22 + 2∗Q66) ∗ s ∗c ˆ3 ;

39 Qbar (3 , 2 , k ) = Qbar (2 , 3 , k ) ;

40 Qbar (3 , 3 , k ) = (Q11 + Q22 − 2∗Q12 − 2∗Q66) ∗ s ˆ2∗ c ˆ2 + Q66∗( s ˆ4 + c ˆ4) ;

41

42 end

43

44 % Estab l i s h i ng A, B, and D matr i ce s

45 f o r i =1:3

46 f o r j =1:3

47 f o r k = 1 : Np l i e s

48 A( i , j ) = A( i , j ) + Qbar ( i , j , k ) ∗( zbar (k+1) − zbar (k ) ) ;

49 B( i , j ) = B( i , j ) + (1/2) ∗(Qbar ( i , j , k ) ∗( zbar (k+1)ˆ2 − zbar (k ) ˆ2) ) ;

50 D( i , j ) = D( i , j ) + (1/3) ∗(Qbar ( i , j , k ) ∗( zbar (k+1)ˆ3 − zbar (k ) ˆ3) ) ;

51 end

52 end

53 end

54

55 % Make ABD, abd matrix

56 ABD = [A B;B D] ;

57 abd = inv (ABD) ;

58

59 \% Getting Ex Ey Gxy

60 a = inv (A) ;

61 Ex = 1/(h∗a (1 , 1 ) ) ;

62 Ey = 1/(h∗a (2 , 2 ) ) ;

63 Gxy = 1/(h∗a (3 , 3 ) ) ;

64

65 end

108



A.2.2 Stiffness Matrix Method Model Scripts

1

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 % Element Mass and S t i f f n e s s Matr ices f o r S t i f f n e s s Method o f Ana lys i s o f

4 % Bending−Torsion Coupled Laminated Composite Beams

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % Author : Pavel Babuska

7 % Date : Spring 2017

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9

10 c l c ; c l e a r ; c l o s e a l l ;

11 format shortg ;

12

13 % −−−−−−−−−−−−−−−−−− ENTER KNOWN MATERIAL INFORMATION −−−−−−−−−−−−−−−−−−−−

14 % Enter known lamina p r op e r t i e s

15 E1 = 141 e9 ; % Pasca l s

16 E2 = 8.96 e9 ; % Pasca l s

17 G12 = 4.69 e9 ; % Pasca l s

18 t = 0.131 e−3; % Ply th i ckne s s (m)

19

20 % Poisson ’ s Rat ios

21 v12 = 0 . 3 1 6 ;

22 v21 = v12∗E2/E1 ;

23 v23 = v12∗(1−v21 ) /(1−v12 ) ;

24

25 % −−−−−−−−−−−−−−−−−−−−−−−−− ENTER LAMINATE INFORMATION −−−−−−−−−−−−−−−−−−−−

26 % Types : QuasiIso , SameAngle , General

27 type = ’ General ’ ;

28

29 % Manually ente r layup i n f o here , in the c o r r e c t r e s p e c t i v e s e c t i o n f o r

30 % which type o f laminate i s be ing des igned / analysed

31 i f strcmp ( type , ’ Quas i I so ’ ) == 1

32 layup = [0 45 −45 90 90 −45 45 0 ] ; % Enter layup ang l e s in degree s here

33 Npl i e s = length ( layup ) ;

34 h = Npl i e s ∗ t ; % Total t h i c kne s s o f laminate (m)

35

36 e l s e i f strcmp ( type , ’ SameAngle ’ ) == 1

37 Npl i e s = 8 ; % Enter number o f p l i e s

38 o f f s e t = 0 ; % in degree s
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39 layup = o f f s e t .∗ ones (1 , Np l i e s ) ;

40 c o r r e c t i o n = 0 . 1889 ; % th i ckne s s c o r r e c t i o n due to cure f l a t t e n i n g

41 t = (1− c o r r e c t i o n ) ∗ t ; % Corrected ply th i c kne s s (m)

42 h = Npl i e s ∗ t ;

43

44 e l s e i f strcmp ( type , ’ General ’ ) == 1

45 layup = [0 0 90 90 0 0 ] ; % Enter layup ang l e s in degree s here

46 Npl i e s = length ( layup ) ;

47 c o r r e c t i o n = 0 . 0 0 ; % th i ckne s s c o r r e c t i o n due to cure f l a t t e n i n g

48 t = (1 − c o r r e c t i o n ) ∗ t ; % Corrected ply th i c kne s s (m)

49 h = Npl i e s ∗ t ;

50

51 end

52

53 % Function c a l l to get ABD, abd matr i ce s and e f f e c t i v e e l a s t i c modulus

54 [ABD, abd , Ex ] = ABD abd(E1 , E2 , G12 , v12 , Npl ies , t , layup ) ;

55 ABD

56 % −−−−−−−−−−−−−−−−−−−−−− ENTER KNOWN BEAM INFORMATION −−−−−−−−−−−−−−−−−−−−

57 b = 0 .02464 ; % Beam width (m)

58 L = 0 . 2 1 ; % Beam length (m)

59 rho = 1570 ; % Mass dens i ty kg/m3

60 n e l = 20 ; % Number o f e lements to be d i s c r e t i z e d in to

61

62 % Function c a l l to get the g loba l , complete , Mass and S t i f f n e s s matr i ce s

63 [ K Global , M Global , EIy , GJ, KK] = elementKM(ABD, Ex , b , h , L , rho , n e l ) ;

64

65 % Sen s i t i v i t y Ratio o f the laminate de s i gna t e s the l e v e l o f importance o f

66 % inc lud ing Bending−Tors iona l coup l ing in the ana l y s i s .

67 sensRat io = (ABD(4 , 6 ) − ABD(4 ,5 ) ∗ABD(5 ,6 ) /ABD(5 ,5 ) ) ˆ 2 / . . .

68 ( (ABD(6 ,6 ) − ABD(5 ,6 ) ˆ2/ABD(5 , 5 ) ) ∗(ABD(4 , 4 ) − ABD(4 ,5 ) ˆ2/ABD(5 , 5 ) ) ) ;

69

70 % sensRat io = (ABD(4 , 6 ) ) ˆ2/(ABD(4 ,4 ) ∗ABD(6 ,6 ) ) ;

71

72 % SR of >0.1 i s cons ide r ed ’ high ’ and would sugges t the

73 % in c l u s i o n o f BT coup l ing in the s t i f f n e s s matrix .

74 sensRat io

75

76

77 %%
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78 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

79 % Now that we ’ ve made s t r i d e s in s e t t i n g up element s t i f f n e s s matrix , l e t ’ s

80 % e s t a b l i s h a load and disp lacement vec to r to get t h i s working from a

81 % s t i f f n e s s method approach to ana l y s i s .

82 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83

84

85 % −−−−−−−−−−−−− ENTER KNOWN LOADING AND BOUNDARY CONDITIONS −−−−−−−−−−

86 % Load and disp lacement degree o f freedom convent ion

87 % Load = [Nx1 Fy1 Fz1 Mx1 My1 Mz1 Nx2 Fy2 Fz2 Mx2 My2 Mz2 ] ;

88 % U = [wx1 wy1 wz1 thx1 thy1 thz1 wx2 wy2 wz2 thx2 thy2 thz2 ] ;

89 P = ze ro s (1 , 6∗( n e l + 1) ) ;

90 U = ze ro s (1 , 6∗( n e l + 1) ) ;

91 % U(7) = 1 ; % meters

92 P( end − 3) = 0 . 5 ; % Newtons

93

94 % Boundary cond i t i on s

95 DoF = 1 : l ength ( K Global ) ;

96 f i x e d = [ 1 : 6 ] ;

97 f r e e = DoF( ismember (DoF, f i x ed ) ˜= 1) ;

98

99 % Par t i t i o n i n g

100 Kff = K Global ( f r e e , f r e e ) ;

101 Kfr = K Global ( f r e e , f i x ed ) ;

102 Krf = K Global ( f i xed , f r e e ) ;

103 Krr = K Global ( f i xed , f i x ed ) ;

104

105 Mff = M Global ( f r e e , f r e e ) ;

106 Mfr = M Global ( f r e e , f i x ed ) ;

107 Mrf = M Global ( f i xed , f r e e ) ;

108 Mrr = K Global ( f i xed , f i x ed ) ;

109

110 Pf = P( f r e e ) ;

111 Pr = P( f i x ed ) ;

112

113 % % For un i t d i sp lacements case

114 % Ur = U( f i x ed ) ;

115 % Uf = double ( vpa ( Kff\(−Kfr∗Ur ’ ) ) ) ;

116 % U( f i x ed ) = Ur ;
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117 % U( f r e e ) = Uf ;

118 % U’ ;

119

120 % For app l i ed load

121 Ur = U( f i x ed ) ;

122 Uf = double ( vpa ( Kff \Pf ’ ) ) ;

123

124 s t a tu s = ’ Off ’ ;

125 i f strcmp ( status , ’On ’ ) == 1

126 % For c a n t i l e v e r d i sp lacements between the nodes

127 c l e a r x

128 x = 0 . 1 2 ; % Measurement s en s ing d i s t ance

129 y = (P( end − 3) ∗xˆ2) ∗(3∗L − x ) /(6∗ ( EIy − KKˆ2/GJ) )

130 the ta x = Uf ( end − 2) ∗180/ p i

131 the ta y = Uf ( end − 1) ∗180/ p i ;

132 e l s e

133 end

134

135

136 %%

137 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

138 % Appl i ca t i on s o f the element s t i f f n e s s matrix in c lude the a b i l i t y to

139 % ca l c u l a t e the beam natura l f r e qu en c i e s from so l v i n g the e i g enva lue

140 % problem as long as the mass and s t i f f n e s s matr i ce s are formulated

141 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

142

143 % −−−−−−−−−−−−−−−−−−− Natural Frequency −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

144 % For a SameAngle laminate type with no coup l ing such as in a [ 0 ] or c r o s s

145 % ply [ 0 90 . . . ] , D16 i s 0 r e s u l t i n g in no coupl ing , and thus the

146 % wel l−known an a l y t i c a l s o l u t i o n f o r c a n t i l e v e r l natura l f requency can be

147 % implemented . Note t h i s f i r s t c ond i t i o na l i s f o r uncoupled CANTILEVER ONLY.

148 % nf (1 ) = (1 .875ˆ2∗ s q r t ( EIy /( rho∗b∗h∗Lˆ4) ) ) /(2∗ pi ) ;

149 % nf (2 ) = (4 .694ˆ2∗ s q r t ( EIy /( rho∗b∗h∗Lˆ4) ) ) /(2∗ pi ) ;

150 % nf (3 ) = (7 .855ˆ2∗ s q r t ( EIy /( rho∗b∗h∗Lˆ4) ) ) /(2∗ pi ) ;

151

152 s t a tu s = ’ Off ’ ;

153 i f strcmp ( status , ’On ’ ) == 1

154 % General ly , though , t h i s i s bes t .

155 [ nf , modeShape ] = eigenvalueBT (Mff , Kff ) ;
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156 nf ( 1 : 6 )

157 modeShape ( 1 : 6 , 1 : 6 )

158

159 % Nondimens iona l i zat ion as in Kramer ’ s paper

160 D0 = E1∗hˆ3/(12∗(1−v12∗v21 ) ) ;

161 omega = nf . ∗ (Lˆ2) ∗ s q r t ( rho∗h/D0) ;

162 e l s e

163 end
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Element mass and stiffness matrix scripts for Stiffness Matrix Method code

1

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 % Element Mass and S t i f f n e s s Matr ices f o r S t i f f n e s s Method o f Ana lys i s o f

4 % Bending−Torsion Coupled Laminated Composite Beams

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % Author : Pavel Babuska

7 % Date : Spring 2017

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 f unc t i on [ K Global , M Global , EIy , GJ, KK] = elementKM(ABD, Ex , b , h , L , rho , n e l )

10

11 % R i g i d i t i e s . These terms inc lude thru−width f l e x i b i l i t y , which

12 % appropropr i a t e l y r e s u l t s in reduced r i g i d i t i e s , hence the minus (BLAH)

13 % part s .

14 EA = Ex∗b∗h ;

15 GJ = 4∗b∗(ABD(6 , 6 ) − ABD(5 ,6 ) ˆ2/ABD(5 , 5 ) ) ;

16 KK = 2∗b∗(ABD(4 , 6 ) − ABD(4 ,5 ) ∗ABD(5 ,6 ) /ABD(5 ,5 ) ) ;

17 EIy = b∗(ABD(4 , 4 ) − ABD(4 ,5 ) ˆ2/ABD(5 , 5 ) ) ;

18 EIz = Ex∗(h∗bˆ3) /12 ;

19

20 % % R i g i d i t i e s . These terms assume thru−width ( e . g . chord−wise ) r i g i d i t y

21 % in the beam . This g i v e s a s t i f f e r approximation and should not be used

22 % the major i ty o f the time .

23 % EA = Ex∗b∗h ;

24 % GJ = 4∗b∗(ABD(6 , 6 ) ) ;

25 % KK = 2∗b∗(ABD(4 , 6 ) ) ;

26 % EIy = b∗(ABD(4 , 4 ) ) ;

27 % EIz = Ex∗(h∗bˆ3) /12 ;

28

29 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 % Shape Functions

31 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32 syms x

33

34 % Element l ength

35 l e l = L/ n e l ;

36

37 % Extension

38 Na1 = 1 − x/ l e l ;
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39 Na2 = x/ l e l ;

40

41 % Torsion

42 Nt1 = 1 − x/ l e l ;

43 Nt2 = x/ l e l ;

44

45 % Trad i t i ona l Beam Bending

46 Nb1 = 1 − 3∗( x/ l e l ) ˆ2 + 2∗( x/ l e l ) ˆ3 ;

47 Nb2 = 3∗( x/ l e l ) ˆ2 − 2∗( x/ l e l ) ˆ3 ;

48 Nr1 = l e l ∗ ( ( x/ l e l ) − 2∗( x/ l e l ) ˆ2 + (x/ l e l ) ˆ3) ;

49 Nr2 = l e l ∗ ( ( x/ l e l ) ˆ3 − ( x/ l e l ) ˆ2) ;

50

51 % Approximated and/ or new func t i on s

52 Ntxz1 = (6∗KK/(GJ∗ l e l ˆ3) ) ∗( xˆ2 − l e l ∗x ) ;

53 Ntxty1 = (3∗KK/(GJ∗ l e l ˆ2) ) ∗( l e l ∗x − xˆ2) ;

54 Ntxz2 = (6∗KK/(GJ∗ l e l ˆ3) ) ∗( l e l ∗x − xˆ2) ;

55 Ntxty2 = (3∗KK/(GJ∗ l e l ˆ2) ) ∗( l e l ∗x − xˆ2) ;

56 Ntyty1 = 1 − 4∗( x/ l e l ) + 3∗( xˆ2/ l e l ˆ2) ;

57 Ntyz1 = 6∗( x/ l e l ˆ2) − 6∗( xˆ2/ l e l ˆ3) ;

58 Ntyty2 = 3∗( xˆ2/ l e l ˆ2) − 2∗( x/ l e l ) ;

59 Ntyz2 = −6∗(x/ l e l ˆ2) + 6∗( xˆ2/ l e l ˆ3) ;

60 Ntztz1 = 1 − 4∗( x/ l e l ) + 3∗( xˆ2/ l e l ˆ2) ;

61 Ntzy1 = −6∗(x/ l e l ˆ2) + 6∗( xˆ2/ l e l ˆ3) ;

62 Ntztz2 = 3∗( xˆ2/ l e l ˆ2) − 2∗( x/ l e l ) ;

63 Ntzy2 = 6∗( x/ l e l ˆ2) − 6∗( xˆ2/ l e l ˆ3) ;

64

65 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

66 % Stra in−Displacement and Cons t i tu t i v e Matrix r e l a t i o n s

67 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

68

69 % For an uncoupled laminate such as [ 0 ] or c r o s s p l y [ 0 90 . . . ] , D16 = 0 and

70 % th i s f i r s t c ond i t i o na l r e s u l t s in c l a s s i c a l s t i f f n e s s matrix assembly and

71 % ana l y s i s . Otherwise , any other laminate should d e f au l t to the most

72 % complete assembly and approximation in the next c ond i t i o na l

73 i f ABD(4 , 6 ) == 0

74

75 C = [

76 EA 0 0 0 ;

77 0 GJ 0 0 ;
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78 0 0 EIy 0 ;

79 0 0 0 EIz ;

80 ] ;

81

82 B = [

83 d i f f (Na1) 0 0 0 0 0 d i f f (Na2) 0 0 0 0 0 ;

84 0 0 0 d i f f (Nt1 ) 0 0 0 0 0 d i f f (Nt2 ) 0 0 ;

85 0 0 d i f f ( Ntyz1 ) 0 d i f f ( Ntyty1 ) 0 0 0 d i f f ( Ntyz2 ) 0 d i f f ( Ntyty2 ) 0 ;

86 0 d i f f ( Ntzy1 ) 0 0 0 d i f f ( Ntztz1 ) 0 d i f f ( Ntzy2 ) 0 0 0 d i f f ( Ntztz2 ) ;

87 ] ;

88

89 N = [

90 Na1 0 0 0 0 0 Na2 0 0 0 0 0 ;

91 0 Nb1 0 0 0 Nr1 0 Nb2 0 0 0 Nr2 ;

92 0 0 Nb1 0 Nr1 0 0 0 Nb2 0 Nr2 0 ;

93 0 0 0 Nt1 0 0 0 0 0 Nt2 0 0 ;

94 ] ;

95

96 % Integrands

97 K = B’∗C∗B;

98 M = ( rho∗b∗h) .∗N( ( 1 : 3 ) , : ) ’∗N( ( 1 : 3 ) , : ) ;

99 M = M + ( rho ∗(b∗hˆ3/12 + h∗bˆ3/12) ) .∗N( 4 , : ) ’∗N( 4 , : ) ;

100

101 e l s e

102

103 C = [

104 EA 0 0 0 ;

105 0 GJ KK 0 ;

106 0 KK EIy 0 ;

107 0 0 0 EIz ;

108 ] ;

109

110 B = [

111 d i f f (Na1) 0 0 0 0 0 d i f f (Na2) 0 0 0 0 0 ;

112 0 0 d i f f ( Ntxz1 ) d i f f (Nt1 ) d i f f ( Ntxty1 ) 0 0 0 d i f f ( Ntxz2 ) d i f f (Nt2 ) d i f f ( Ntxty2 ) 0 ;

113 0 0 d i f f ( Ntyz1 ) 0 d i f f ( Ntyty1 ) 0 0 0 d i f f ( Ntyz2 ) 0 d i f f ( Ntyty2 ) 0 ;

114 0 d i f f ( Ntzy1 ) 0 0 0 d i f f ( Ntztz1 ) 0 d i f f ( Ntzy2 ) 0 0 0 d i f f ( Ntztz2 ) ;

115 ] ;

116
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117 N = [

118 Na1 0 0 0 0 0 Na2 0 0 0 0 0 ;

119 0 Nb1 0 0 0 Nr1 0 Nb2 0 0 0 Nr2 ;

120 0 0 Nb1 0 Nr1 0 0 0 Nb2 0 Nr2 0 ;

121 0 0 Ntxz1 Nt1 Ntxty1 0 0 0 Ntxz2 Nt2 Ntxty2 0 ;

122 ] ;

123

124 % Integrands

125 K = B’∗C∗B;

126 M = ( rho∗b∗h) .∗N( ( 1 : 3 ) , : ) ’∗N( ( 1 : 3 ) , : ) ;

127 M = M + ( rho ∗(b∗hˆ3/12 + h∗bˆ3/12) ) .∗N( 4 , : ) ’∗N( 4 , : ) ;

128

129 end

130

131

132 % Pre−a l l o c a t e g l oba l s t i f f n e s s matrix

133 K Global = ze ro s (6∗ ( n e l + 1) , 6∗( n e l + 1) ) ;

134 M Global = ze ro s (6∗ ( n e l + 1) , 6∗( n e l + 1) ) ;

135

136 % Int eg r a t e over the l ength to c r e a t e Element and Mass S t i f f n e s s Matr ices

137 f o r i = 1 : l ength (K)

138 f o r j = 1 : l ength (K)

139 Kel ( i , j ) = in t (K( i , j ) , 0 , L/ n e l ) ;

140 Mel ( i , j ) = in t (M( i , j ) , 0 , L/ n e l ) ;

141 end

142 end

143

144 % % To use lumped mass matrix , uncomment out t h i s s e c t i o n and r e d e f i n e Mel as

145 % % the f o l l ow i n g

146 % Iz = b∗hˆ3/12 + h∗bˆ3/12;

147 % Mel = ( rho∗b∗h∗(L/ n e l ) /2) . ∗ [ 1 0 0 0 0 0 0 0 0 0 0 0 ;

148 % 0 1 0 0 0 0 0 0 0 0 0 0 ;

149 % 0 0 1 0 0 0 0 0 0 0 0 0 ;

150 % 0 0 0 Iz /(b∗h) 0 0 0 0 0 0 0 0 ;

151 % 0 0 0 0 0 0 0 0 0 0 0 0 ;

152 % 0 0 0 0 0 0 0 0 0 0 0 0 ;

153 % 0 0 0 0 0 0 1 0 0 0 0 0 ;

154 % 0 0 0 0 0 0 0 1 0 0 0 0 ;

155 % 0 0 0 0 0 0 0 0 1 0 0 0 ;

117



156 % 0 0 0 0 0 0 0 0 0 I z /(b∗h) 0 0 ;

157 % 0 0 0 0 0 0 0 0 0 0 0 0 ;

158 % 0 0 0 0 0 0 0 0 0 0 0 0 ] ;

159

160 % Assemble g l oba l s t i f f n e s s and mass matr i ce s

161 f o r i = 1 : n e l

162 i f i == 1

163 K Global ( [ 1 : 1 2 ] , [ 1 : 1 2 ] ) = K Global ( [ 1 : 1 2 ] , [ 1 : 1 2 ] ) + Kel ;

164 M Global ( [ 1 : 1 2 ] , [ 1 : 1 2 ] ) = M Global ( [ 1 : 1 2 ] , [ 1 : 1 2 ] ) + Mel ;

165 e l s e

166 K Global ( [1+6∗( i −1) :12+6∗( i −1) ] , [ 1+6∗ ( i −1) :12+6∗( i −1) ] ) . . .

167 = K Global ( [1+6∗( i −1) :12+6∗( i −1) ] , [ 1+6∗ ( i −1) :12+6∗( i −1) ] ) + Kel ;

168

169 M Global ( [1+6∗( i −1) :12+6∗( i −1) ] , [ 1+6∗ ( i −1) :12+6∗( i −1) ] ) . . .

170 = M Global ( [1+6∗( i −1) :12+6∗( i −1) ] , [ 1+6∗ ( i −1) :12+6∗( i −1) ] ) + Mel ;

171 end

172 end

173

174 % double ( vpa ( K Global ) ) ;

175 % double ( vpa (M Global ) ) ;

176

177 end
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Eigenvalue problem formulation and solution for Stiffness Matrix Method code

1

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 % Eigenso lu t i on with S t i f f n e s s Method f o r Natural Frequency Ca l cu l a t i on o f

4 % Bending−Torsion Coupled Laminated Composite Beams

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % Author : Pavel Babuska

7 % Date : Spring 2017

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9

10 f unc t i on [ nf , modeShape ] = eigenvalueBT (Mff , Kff )

11

12 % −−−−−−−−−−−−−−−−−−− Natural Frequency −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 % Form the system matrix and get the e i g e n s o l u t i o n s

14 % [V,D] = e i g ( Kff , Mff ) ;

15 [V,D] = e i g (Mff\Kff ) ;

16

17 % V matrix g i v e s e i g env e c t o r s and d iagona l D matrix g i v e s e i g enva lu e s

18 % Sort the e i gvenva lue s and e i g env e c t o r s

19 [ D sorted , ind ] = so r t ( diag (D) , ’ ascend ’ ) ;

20 V sorted = V( : , ind ) ;

21

22 % Obtain natura l f r equence s and mode shapes

23 f o r i = 1 : l ength (D)

24 nf ( i ) = sq r t ( D sorted ( i ) ) /(2∗ pi ) ;

25 modeShape ( : , i ) = V sorted ( : , i ) ;

26 end

27

28 end
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