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In the open ocean, breaking waves are a critical mechanism for the transfer of energy, momen-

tum, and mass between the atmosphere and the ocean. Despite much study, fundamental

questions about wave breaking, such as what determines whether a wave will break, remain

unresolved. Measurements of oceanic breakers, or “whitecaps,” are often used to validate

the hypotheses derived in simplified theoretical, numerical, or experimental studies. Real-

world measurements are also used to improve the parameterizations of wave-breaking in large

global models, such as those forecasting climate change. Here, measurements of whitecaps

are presented using ship-based cameras, from two experiments in the North Pacific Ocean.

First, a method for georectifying the camera imagery is described using the distant hori-

zon, without additional instrumentation. Over the course of the experiment, this algorithm

correctly identifies the horizon in 92% of images in which it is visible. In such cases, the

calculation of camera pitch and roll is accurate to within 1◦. The main sources of error

in the final georectification are from mislabeled horizons due to clouds, rain, or poor light-

ing, and from vertical “heave” motions of the camera, which cannot be calculated with the

horizon method. This method is used for correcting the imagery from the first experiment,

and synchronizing the imagery from the second experiment to an onboard inertial motion

package.

Next, measurements of the whitecap coverage, W , are shown from both experiments.



Although W is often used in models to represent whitecapping, large uncertainty remains in

the existing parameterizations. The data show good agreement with recent measurements

using the wind speed, U10. Although wave steepness and dissipation are hypothesized to

be more robust predictors of W , this is shown to not always be the case. Wave steepness

shows comparable success to the wind parameterizations only when using a mean-square

slope variable calculated over the equilibrium range waves and normalizing by the wave

directional spread. Meanwhile, correlation of W with turbulent dissipation measurements is

significantly worse, which may be due to uncertainty in the measurements or bias related to

micro-breaking waves.

Finally, phase-resolved, three-dimensional, measurements of the whitecaps were made

from a new ship-based stereo video system. Comparison with concurrent buoy measure-

ments indicate that the stereo data accurately reproduces the wave statistics, including the

frequency spectra. The whitecaps are characterized by transient and spatially localized re-

gions of extreme surface gradients, rather than large crest-to-trough steepnesses. It was found

that whitecaps were around 10 times more likely to have extreme slopes, and 50% of the

observed extreme surface slopes were in the vicinity of the breaking waves. The maximum

whitecap slopes show good agreement with the Stokes 120◦ limiting crest geometry, and the

whitecap crest loses much of its maximum steepness shortly after the onset of breaking. The

whitecap phase speeds are consistently less than the linear or weakly nonlinear predicted

phase speed, which indicate the effect of narrow-band wave groups, despite the broad-band

wave spectra.
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Chapter 1

INTRODUCTION

1.1 Motivation

Surface waves are a familiar sight to anyone who has spent time on or near the ocean. Driven

by the wind, these waves propagate along the air-water interface under the restoring force of

gravity. The physics governing these waves are largely understood when the waves are small.

As the waves grow, however, many will become unstable and break, at which point a new

set of dynamics is needed. The mechanics of wave-breaking are still not well understood,

particularly for the waves that break in the open ocean away from the coast.

“Whitecaps,” as these deep water breaking waves are often called, play a critical role in

many of the large-scale interactions between the atmosphere and the ocean (Melville, 1996).

The transfer of energy, momentum, heat, and mass between the ocean and atmosphere is

strongly dependent on the whitecaps, making breaking waves a critical component of the

global climate system (Cavaleri et al., 2012). Whitecaps also dissipate surface wave energy,

in the form of turbulence and bubble production. In deep water, wave-breaking is the primary

mechanism for wave dissipation, therefore, understanding the energetics of the whitecaps is

critical for improving upon the present operational wave forecasts (Cavaleri et al., 2007).

Theoretical study of wave-breaking is difficult, as the flow becomes turbulent, highly

nonlinear, and two-phase. Instead, the understanding of breaking has progressed though a

combination of three methodologies: numerical simulations, laboratory experiments, and —

the focus of this thesis — field measurements. Measurements in the field are often necessary

to test the theories developed in laboratory experiments, or to verify results or inputs for

numerical models (Perlin et al., 2013). For example, implementation of whitecaps in current
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climate models uses an empirical relation based on a simple theory with constants found

from field observations (see de Leeuw et al., 2011).

The field data used here were taken during two research cruises in the North Pacific

Ocean, in October 2012 and January 2015. In both cases, the primary goal of the cruise

was to reach Station Papa, located at 50◦ N, 145◦ W, to replace a moored long-term wave

measurement buoy. However, additional time was scheduled to make measurements of the

waves from the ship and from short-term drifting buoy deployments.

This thesis is primarily related to measurements of whitecaps from ship-based cameras.

Visible imagery is a powerful tool for quantifying whitecapping, but it can be difficult to

automate the analysis and interpret the imagery. Two metrics have been commonly used in

measuring whitecaps from cameras: the fractional whitecap coverage, W , and the normalized

distribution of whitecap crest length by speed, Λ(c). In addition, recent work has shown that

accurate measurements of the surface waves can be made by stereo processing of images from

two or more cameras (e.g. Gallego et al., 2011; de Vries et al., 2011; Benetazzo et al., 2012,

and others). Here, a stereo video system is used to study the geometry of the whitecaps at

breaking onset. As stereo video becomes more widely used and accepted, it is likely to yield

important insights into the fundamental questions of breaking waves.

1.2 Ocean Waves Basics

1.2.1 Linear Wave Theory

With just a few assumptions, it is possible to solve for the equations of motion of surface

waves. The result is called “linear wave theory,” or sometimes “Airy wave theory.” The

derivation starts by assuming inviscid, incompressible, and irrotational fluid motion, which

considerably simplifies the mass and momentum conservation equations. These are gener-

ally good assumptions that are extended even to the non-linear theories described later. A

troublesome problem remains in the boundary conditions, which are to be applied at the

sea surface, at an unknown height. Assuming wave heights that are small relative to their



3

wavelength, the boundary conditions may be applied at the mean water line, z = 0. This

“linearizes” the equations, and leads to expressions for the surface position, η, water veloc-

ity, (u, v), and water pressure, p. Despite the simplifying assumptions, linear theory often

provides a close approximation to the true wave motion, and reveals a number of important

properties of surface waves.

One of the most important results of the linear solution is the dispersion relation, which

relates a wave’s frequency, f , to its wavenumber, k. f and k are the inverse of wave period,

T , and wavelength, L, respectively, and are often used for mathematical convenience. In

deep water the dispersion relation can be written as

ω2 = gkrad, (1.1)

where ω and krad are the radian frequency and wavelength (ω = 2πf , krad = 2πk). The wave

phase velocity, cp, is the speed at which wave crests (and troughs) move, and is given by

cp = ω/krad =
√
g/krad =

√
gL/(2π). (1.2)

The group velocity, cg, is the propagation speed of wave groups, which relates to the flux of

wave energy. For linear waves, cg can be calculated as

cg =
∂ω

∂krad
=

1

2

√
g

krad
= cp/2. (1.3)

The dispersion relation reveals that longer waves propagate faster, in both phase and group

velocity, which causes waves of different length to “disperse.” Moreover, the wave phase

moves at twice the speed of the wave groups, which results in important group dynamics. In

intermediate and shallow water, the above equations also depend on the water depth, d.

1.2.2 The Wave Spectrum

In nature, waves are rarely observed propagating at a single frequency in a single direction

(these would be called “monochromatic” and “unidirectional” waves). However, Fourier

theory states that any stationary signal can be decomposed into a summation of sinusoids.
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Thus, even the most complicated “wavefield,” can be represented as a combination of waves

of different frequencies, each of which approximately follows the linear theory. This represen-

tation is called a wave spectrum, and gives the contribution of energy (which is proportional

to squared wave height) at every wave frequency. In practice, the spectrum must be aver-

aged over sufficient time and/or space in order to achieve a statistically robust distribution of

energy. In doing so, the phase of the sinusoids is lost and the result is a “phase-averaged” rep-

resentation of the wavefield. However, the spectral approach is appealing because the results

of linear theory (dispersion, etc) can be applied at each frequency. Thus, the phase-averaged

spectrum also forms the basis for most wave forecast models.

The sea surface, η(x, y, t), is a function of two spatial dimensions (x and y) and time

(t). Thus, the full wave spectrum, χ(kx, ky, t), is also a three-dimensional function, of two

wavenumbers (kx and ky) and frequency (f). As it is difficult to measure the full three-

dimensional sea surface, the full spectrum is rarely calculated. Instead, projections of the

full spectrum are often shown, such as the frequency spectrum, S(f), or frequency-directional

spectrum, S(f, θ). Even this latter quantity is usually an approximation of the true direc-

tional spectrum, as reconstructed from low order directional “moments” using maximum

likelihood or maximum entropy.

In any of its forms, the spectrum is normalized such that the area under the curve is

the total variance of the surface, σ2. It is often useful to represent the spectrum in terms of

scalar “bulk parameters.” For example, a commonly calculated parameter is the significant

wave height,

Hs = 4σ, (1.4)

which is used as a characteristic wave height in describing the wave conditions. The char-

acteristic wave frequency, wavenumber, or wave direction are often given by the values at

the spectral peak. Alternatively, energy-weighted mean values are often found from the

spectrum. For example, mean frequency may be defined as

fm =

∫
fS(f)df∫
S(f)df

. (1.5)
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1.2.3 Wave Nonlinearity

The derivation of linear wave theory depends on assuming waves of small amplitude relative

to their wavelength. The ratio of wave height or amplitude to wavelength is called the

steepness. As the steepness gets large, deviations from linear theory become more noticeable.

In deep water, perturbation theory may be used to account for nonlinearity. Perturbation

theory works by assuming power series solutions for the variables η, u, v, ω, etc., where higher

order terms are polynomials in steepness. As more terms are retained in the perturbation

solution, the solution approaches the true nonlinear solution.

Although linear wave theory is useful in many circumstances, it does not account for

a number of important properties of nonlinear waves. One example is Stokes drift, which

is a net mass transport in the direction of wave motion. In linear theory, water parcels

move in closed orbits, with no net translation. Similarly, the shape of nonlinear waves is not

symmetric like the sinusoids of linear theory. Instead, nonlinear waves have more peaked

crests and flat troughs.

Two nonlinear effects are most relevant to this thesis. First is the Benjamin-Feir in-

stability, sometimes called modulational instability, which prevents waves from propagating

as unimodal wave trains. The modulational instability causes such waves to break up into

modulating wave groups, and leads to a steepening of the waves at the center of the group.

It has been suggested as one physical mechanism for the wave steepening that often precedes

wave breaking.

Second, it can be shown that nonlinear waves have a maximum attainable steepness,

which is often called the Stokes limit. The limiting wave has a steepness of H/L ≈ 1/7, and

its crest forms a corner of angle 120◦. For this solution, the peak of the crest is a singularity

where the surface water velocity exactly equals the phase speed. As discussed below, it has

often been suggested that waves break when they reach the Stokes limit.

Finally, some nonlinear effects are more subtle, such as the so-called “wave-wave” interac-

tions, in which combinations of waves of different frequencies resonate and exchange energy.
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In deep water, the dominant wave-wave interaction occurs between two pairs of wave fre-

quencies, or quadruplets, the effect of which is to transfer energy out of certain frequencies

and into others. This is a rather “weak” nonlinearity in that the effects are only felt over

relatively large distances and times. Still, it is one of the dominant processes governing the

evolution of the wave spectrum in the open ocean, as described below.

1.2.4 The Radiative Transfer Equation

The radiative transfer equation describes the change in a wavefield in time and space. For

example, if one were to drop a stone in a quiet lake, the radiative transfer equation would

determine the outward radiation of the wave energy. The equation takes the form of a

conservation equation, where the quantity conserved is the “wave action,” n, which is the

wave energy divided by wave frequency. Without outside forcing, the only evolution in the

wavefield is from dispersion and directional spreading of the energy. In this case, the radiative

transfer equation can be written as

∂n

∂t
+−→cg · ∇n = 0. (1.6)

In the open ocean, three main forces alter the wave action balance. These are incorporated

into the radiative transfer equation as “sources” and “sinks” of wave action or energy. The

first is the wind, which pumps energy into the waves. The second is wave-breaking, which

dissipates wave energy, primarily in the form of turbulence in the upper ocean. Finally, is the

nonlinear wave-wave interactions mentioned in the previous section. These do not change the

overall energy in the waves, but rather transfer energy between waves of different frequencies.

The nonlinear interactions are responsible for most wave spectra having a somewhat common

shape, especially at high frequencies.

The final radiative transfer equation is given as

∂n

∂t
+−→cg · ∇n = Sin + Sds + Snl, (1.7)

where the terms Sin, Sds, and Snl represent the wind input, wave-breaking dissipation, and
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nonlinear interactions, respectively. By modeling these source terms, the change in the wave-

field can be predicted. The radiative transfer equation is at the heart of the so-called “third

generation” global wave forecast models, such as WAM, WAVEWATCH III and SWAN.

1.3 Review of Wave Breaking

1.3.1 Breaking Onset

When a wave breaks, the result is a turbulent, two-phase flow that cannot be described

analytically with either the linear or weakly nonlinear theories mentioned above. The com-

plexity of the wave-breaking problem has hampered progress on even the most fundamental

questions. For example, it is still not clear exactly what causes a wave to break.

Scientists have long sought a universal criteria for determining the onset of breaking. The

Stokes limit gives an upper bound on the wave steepness (H/L ≈ 1/7), thus, it has often

been suggested that waves must achieve this steepness before breaking. Unfortunately, the

Stokes limit does not appear to provide a robust, universal criteria for breaking. This can

be seen in several studies showing waves breaking well below the Stokes limit (for example

Holthuijsen and Herbers, 1986; Rapp and Melville, 1990; Banner and Pierson, 2007; Drazen

et al., 2008; Tian et al., 2010). Conversely, other studies (for example Babanin et al., 2007,

2010) have shown experimental and numerical evidence of waves approaching the limiting

steepness just prior to breaking. At the very least, it does seem that waves at the Stokes

limit will break, although three-dimensional affects may alter the limiting value slightly (the

Stokes limit being derived for two-dimensional waves only).

The Stokes limit is related to another suggested criteria, which states that waves break

when the horizontal water velocity at the crest exceeds the phase speed of the wave. This

makes physical sense, especially when picturing a large plunging breaker. However, validation

of this kinematic criteria has also been ambiguous. In particular, Stansell and MacFarlane

(2002) measured both the water velocity U and phase speed cp of breakers in a laboratory

tank, and found that for any of several definitions of cp, the kinematic criteria did not hold
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up (i.e. U < c at breaking).

Both the steepness and kinematic limits may therefore provide only a sufficient, but not

necessary, condition for breaking. The work of Banner and Tian (1998), Song and Banner

(2002), and Banner and Pierson (2007) advocate for a different type of breaking criteria,

which has been called a “dynamic criteria.” These papers suggest that breaking occurs when

the rate of growth of wave energy (potential plus kinetic) exceeds a universal threshold. This

criteria works particularly well for the case of modulating wave groups. In this scenario, the

Benjamin-Feir instability causes wave energy to slowly converge towards the center of the

group, leading the center wave to either break and quickly dissipate energy, or to not break

and repeat the modulational cycle, which is called “recurrence.” Song and Banner (2002)

show that the dynamic criteria is capable of distinguishing between initially very similar

breaking and recurrence cases.

A number of factors make the evaluation of these breaking criteria difficult, especially

outside of a controlled laboratory environment. For one thing, it is difficult to measure

both the surface configuration (for steepness or potential energy) and the water velocity

(for orbital velocity and kinetic energy) leading up to and during breaking. Application

of the dynamic breaking criteria is particularly challenging (Perlin et al., 2013). Moreover,

it becomes difficult to even define quantities like wave steepness, phase speed, and energy

growth in a spectral wave environment. For example, Chalikov and Babanin (2012) evaluated

each of these criteria in numerical simulations of spectral waves, and were unable to find any

universal criteria among them.

1.3.2 Whitecap Coverage, W

A related question to predicting the breaking onset of an individual wave is determining

how many waves will break within a given wavefield. This can be expressed as a break-

ing frequency, breaking probability, or, most commonly, whitecap coverage. The whitecap

coverage, W , is the average fraction of sea surface covered by whitecaps. W is frequently

used in parameterizations of gas transfer (Woolf, 2005) and sea spray aerosol production
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flux (de Leeuw et al., 2011). W has been frequently found to scale with the wind speed,

usually defined as the 10-meter wind speed, U10. The most widely used relation comes from

Monahan and O’Muircheartaigh (1980), who fit to the available data a power law of the form

W = 3.84× 10−6 U3.41
10 , (1.8)

where U10 is in m/s, and W is the fractional coverage. More recent measurements of W

include Stramska and Petelski (2003), Sugihara et al. (2007), and Callaghan et al. (2008a).

Although fits of W to U10 are common, the wind does not directly cause waves to break

(Babanin, 2011). Instead, the onset of breaking is more directly related to wave variables,

such as increased wave steepness. Banner et al. (2000) and Banner et al. (2002) show that

as the average wave steepness increases, so does the probability of whitecapping. There-

fore, average steepness parameters have recently been suggested in place of wind variables

in parameterizations of W . In fetch-limited waves, Kleiss and Melville (2010) show good

agreement between W and the mean steepness, although the fit to wind speed is still slightly

better. Alternatively, Goddijn-Murphy et al. (2011) and Salisbury et al. (2013) have sug-

gested using wave steepness as a secondary variable to correct for in shortcomings in the

wind speed parameterizations.

Others have suggested that W may be related to the energy dissipation from wave-

breaking, Sds. The first to propose this idea was Cardone (1970), after noting that fits to

wind speed suffered from uncertainties related to the atmospheric stability. However, large

uncertainties in the value of Sds make the development and application of such relations

challenging. Kraan et al. (1996) derived a theoretical prediction for W based on the WAM

dissipation source function and a JONSWAP spectrum, which showed reasonable agreement

with their measured whitecap coverage. Hanson and Phillips (1999) used estimates of dissi-

pation from the Phillips (1985) equilibrium range theory, and showed improved correlation

over U10 fits. Most recently, Hwang and Sletten (2008) derived a dissipation parameterization

based on a total equilibrium with wind energy input.

One of the ambiguities of calculating W (and other measurements based on the presence
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of visible foam) is in the distinction between foam from actively breaking waves and old,

residual foam from previous breakers. It is often noted that the active whitecap coverage is

dependent on the wave dynamics only, whereas the residual foam decay is also a function of

the bubble and water chemistry (see Callaghan et al., 2008b). However, there is currently no

automated method for differentiating between active and residual whitecap foam in visible

imagery (Scanlon and Ward, 2013).

1.3.3 Wave Breaking Dissipation

Of the radiative transfer equation source terms, it is generally agreed that the breaking

dissipation term is the least well-constrained (Babanin, 2011). One challenge is that breaking

does not fit well within the spectral framework. Wave breaking is a strongly nonlinear

process that is localized in space and time, whereas the spectrum is an average quantity that

evolves on long spatial and temporal scales. The implementation of breaking dissipation

in current models is often based on Hasselmann (1974), in which a random distribution of

whitecaps does negative work by exerting downward pressure on the front face of the waves.

Historically, improvements to this model were often made based on empirical comparisons

with observations, rather than improved physical understanding (i.e. using Sds as a “tuning

knob,” see Cavaleri et al., 2007). Only recently have effects such as the dissipation of swell

waves by the wind and the threshold behavior of wave-breaking been implemented in the

spectral models (see Ardhuin et al., 2010).

Further progress has been made primarily through laboratory experiments. The exper-

iments of Duncan (1981) were particularly important, as they describe a physical scaling

to relate the speed of a breaking wave to its rate of energy dissipation. This was done by

towing a hydrofoil through a long channel at a constant speed and depth, setting up a steady

breaking wave in the wake. Duncan determined that the rate of energy loss scaled as

εl ∝
ρwc

5

g
(1.9)

where εl is the energy dissipation per crest length, ρw is the water density, g is gravitational
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acceleration, and c is the speed of the hydrofoil and breaker.

Other experiments have since been performed using more realistic breakers. The study

of Rapp and Melville (1990) pioneered the use of “dispersive focusing” to induce breaking

at a chosen distance along a wave tank. Subsequent experiments, such as Lamarre and

Melville (1991) and Melville (1994), showed a dependence on wave steepness in the resulting

dissipation. Drazen et al. (2008) incorporated this steepness dependence into Equation 1.9,

resulting in the scaling,

εl ∝
ρwc

5(hk)5/2

g
. (1.10)

Meanwhile, Banner and Pierson (2007) proposed that the breaking strength is better param-

eterized using the rate of wave energy convergence, rather than wave steepness.

Most of the energy lost during breaking goes into the production of turbulence, which is

itself primarily dissipated in the upper layer of the ocean. This is observable in measurements

of the vertical profile of the turbulent dissipation rate. In the near-surface region, the dissi-

pation is significantly larger than predicted by the “law of the wall” for turbulence over a flat

boundary (see Agrawal et al., 1992; Terray et al., 1996; Gemmrich and Farmer, 2004; Gemm-

rich, 2010). There remains some question as to the exact structure of the energy fluxes and

turbulent dissipation profiles, but Thomson et al. (2016) showed that there is generally good

agreement between total near-surface turbulent dissipation and wave-breaking dissipation.

That study used measurements from drifting SWIFT buoys (Surface Wave Instrument Float

with Tracking), which measure turbulent dissipation profiles in the wave reference frame, as

first described in Thomson (2012). The same SWIFT buoys are used throughout this thesis

as well.

1.3.4 Phillips’ Equilibrium Hypothesis and Λ(c)

Under many conditions, it has been observed that the wave-breaking dissipation is approxi-

mately equal to the wind input (see, for example, Hwang and Sletten, 2008; Thomson et al.,

2013). In other words, the wind and the whitecaps are in near equilibrium. This is re-
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lated to the study of Phillips (1985), which hypothesized that for waves shorter than the

peak wavelength, an equilibrium range exists such that wind input, nonlinear transfers, and

dissipation are all of the same order and approximately in balance. This allowed Phillips

(1985) to derive an expression for the spectral form of the dissipation function within the

equilibrium range,

ε(c) = 4γβ3I(3p)ρwu
3
∗c

−1 (1.11)

where

I(3p) =

∫ π/2

−π/2
(cos θ)3pdθ (1.12)

is a directional weight function, γ, β, and p are constants, and u∗ is the wind friction velocity.

Furthermore, Phillips (1985) realized the utility of the Duncan (1981) dissipation scaling,

as a way to determine the spectral dissipation from observations of the whitecap speeds, and

perhaps validate Equation 1.11. Thus, Phillips (1985) introduced a distribution function for

breaking, Λ(c), which was defined as the distribution of breaking crest lengths per area as a

function of speed, c. Using this definition, along with Equation 1.9, Phillips (1985) proposed

a relation for the spectral breaking-induced dissipation, namely,

Sds(c) =
bρw
g
c5Λ(c) (1.13)

where b is a “breaking strength” scaling factor, and c is the phase speed (which was assumed

to equal the breaker speed).

Phillips et al. (2001) made the first measurements of Λ(c) in the field, using marine radar.

Numerous studies since then (Melville and Matusov, 2002; Gemmrich et al., 2008; Thomson

et al., 2009; Kleiss and Melville, 2010, and others) have measured Λ(c) using digital video

cameras. There has been overall agreement in the shape of Λ(c), which generally peaks at

roughly one-half of the spectral peak phase speed. However, there has been no consensus on

the value of b, indicating that it is likely not a constant. Romero et al. (2012) was the first

to incorporate the steepness correction of Drazen et al. (2008) into b. Specifically, they used
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the spectral saturation, defined as

σ =
(2π)4f 5E(f)

2g2
(1.14)

as a proxy for the spectral steepness. The saturation was used as it closely relates to the

wave mean square slope (see Banner et al., 2002).

A potential issue in the above studies is “microbreaking,” a phenomenon first described

in Banner and Phillips (1974). Microbreakers are breaking waves which occur at small

scales and do not entrain air, therefore they do not form whitecaps. Thus, microbreaking is

missed by measurements that rely on visible foam, such as from standard digital cameras.

Jessup and Phadnis (2005) showed that infrared (IR) cameras could be used to measure Λ(c)

in laboratory microbreakers. Sutherland and Melville (2013) used IR cameras to measure

microbreaking in the open ocean, and found that this methodology shifted the peak in Λ(c)

to much shorter wavelengths when compared with traditional video cameras.

1.4 Prior Work - Masters Thesis

The calculation of Λ(c) played a large role in the author’s Masters thesis (Schwendeman,

2012), which was later adapted to an article in the Journal of Physical Oceanography, the

full citation for which is:

Schwendeman, M., J. Thomson, and J. R. Gemmrich. Wave breaking dissipation

in a young wind sea. J. Phys. Ocean., 44(1):104-127, 2014. doi: 10.1175/JPO-

D-12-0237.1.

During peer review, a number of important modifications were made from the original Mas-

ters thesis. Therefore, the major results and conclusions from the journal article are sum-

marized below.

Data was taken from a field experiment in the Strait of Juan de Fuca, north of Washing-

ton’s Olympic Peninsula. Over two days in February 2011, a storm produced consistently

strong offshore winds, which made for an ideal study of wave-breaking dissipation. Wind
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and whitecap measurements were made from the R/V Robertson, which was allowed to drift

slowly downwind as each day progressed. The whitecaps were recorded from a digital video

camera mounted at about 7 meter height, above the ship’s wheelhouse. Nearby were two

drifting SWIFT buoys, which measured the wave frequency spectra and turbulent dissipation

profiles. An additional measure of the turbulence was made from an array of “Dopbeam”

current profilers, tethered to the ship on a long cord at sufficient distance to minimize dis-

turbance.

Figures 1.1, 1.2, and 1.3 show the resulting data products. In Figure 1.1 the frequency

spectra are shown and colored by the fetch (in km) and the wind stress, u∗. The high-

frequency decay is compared with f−4 and f−5 power laws, which are predicted on theoretical

grounds in Phillips (1985) and Phillips (1957), respectively. Figure 1.2 plots the average

dissipation profiles from the two SWIFTs, as well as the integrated dissipation rate, which is

used throughout as an estimate of Sds. Both are shown as a function of the offshore distance,

called the “fetch.” The integrated turbulent dissipation rate from the Dopbeam array is also

shown. In the later analysis, a 0.5 W m−2 “background dissipation” is subtracted from the

integrated turbulent dissipation rate.

Finally, Figure 1.3 shows the measured Λ(c) distributions, plotted on linear and loga-

rithmic axes, and against both dimensional and non-dimensional speed. Λ(c) was calculated

using the Fourier method of Thomson and Jessup (2009), with minor modifications. The

curves are colored by the wave mean square slope (mss), calculated from the spectra as

mss =

∫
2σ

f
df =

∫
(2π)4f 4E(f)

g2
df. (1.15)

Several of the Λ(c) measurements at short fetches were found to be less reliable, as their

breaking rates were significantly less than those estimated from cameras on the SWIFTs.

Figure 1.3 also shows a c−6 power law decay, as predicted from the Phillips (1985) equilibrium

range calculations.

The growth of the waves was compared with classical fetch “laws,” as shown in Figure

1.4. These are empirical relations used to determine the wave height and frequency for
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Figure 1.1: Wave frequency spectra colored by fetch (a) and u∗ (b). Also shown are power
laws of the form f−4 and f−5.

fetch-limited waves, given the (assumed constant) wind speed and fetch. The exact laws

used are a synthesis of several earlier studies, from Young (1999). The fetch law comparison

was complicated by the fact that the wind speed was not constant as measured from the

ship, especially at the shortest fetches. Thus, Figure 1.4 shows the results using three

different scaling wind speeds. A daily average wind speed gave the closest agreement to the

expected growth. Interestingly, offshore buoy measurements showed relatively steady winds

throughout the experiment, with waves closely matching the fetch laws. This may be related

to an evolution of the boundary layer with fetch, as shown by the changes in the wave mean

square slope and the drag coefficient, especially at short fetches.
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Figure 1.2: (a) Turbulent dissipation profiles from SWIFT 1 plotted with fetch. Depth, z,
is measured from the instantaneous sea surface. (b) Total (integrated) turbulent dissipation
measured by SWIFT 1 (red), SWIFT 2 (cyan), and Dopbeam system (blue) vs. fetch,
averaged over 500 meters. The background dissipation level of 0.5 W m−2 has not been
subtracted from these values, but is shown as the lower axis limit of panel (b).

Next, the wind, wave, and turbulence data were used to examine the local energy budget

from the radiative transfer equation (Equation 1.7). Specifically, a “bulk” energy balance

was evaluated, by integrating the spectral terms over all frequencies. The resulting balance

is
∂E

∂t
+ cg

∂E

∂x
= Sin − Sds, (1.16)

where E, cg, Sin, and Sds are now integrated variables. The above also assumes minimal

surface currents and one-dimensional wave growth. Figure 1.5 gives estimates of the contri-

bution from each of these terms, as a function of fetch. The uncertainty in each term was also

estimated. For example, Sin was calculated from the parameterization of Terray et al. (1996),

using the wind stress multiplied with an “effective” phase speed, ceff , and the error bars

reflect the uncertainty in ceff . If the waves were purely fetch-limited (i.e. steady), the time
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and logarithmic (c,d) coordinates. All curves colored by mean square slope. Dashed curves
are Λ(c) results shown to be biased low by comparison with SWIFT breaking rate estimates.
Black dashed line is the c−6 power law derived in Phillips (1985).

derivative on the left side of Equation 1.16 would be zero. However, the ramp up in the wind

suggests that this assumption is not valid. The actual wave growth was somewhere in the

range between pure growth in fetch, pure growth in time, and the sum of both growth rates.
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From Equation 1.16, the net difference of these terms gives the dissipation from breaking.

This inferred dissipation rate was compared with the integrated turbulent dissipation rate

from the SWIFTs and Dopbeam array. The comparison is good overall, with the turbulence

values lying in the range of the dissipation estimates needed to close the energy budget.

There are a few regions of higher discrepancy, such as the largest fetches on February 14.

Unfortunately, since the uncertainty in each of the wind, growth, and turbulent dissipation

terms is significant, it is difficult to isolate the cause of these discrepancies.

(c)
Feb. 15Feb. 14

S
d

s
 [
W

 m
−

2
]

Fetch [km]
0 5 10 15

0

0.5

1

1.5

2

(b)

D
E

/D
t 
[W

 m
−

2
]

0 5 10 15
0

0.5

1

(a)

S
in

 [
W

 m
−

2
]

0 5 10 15
0

1

2

3

 

 

SWIFT 1

SWIFT 2

Dopbeam

RTE

Figure 1.5: Evaluation and comparison of wave fluxes. Gray shaded regions show possible
range of wind input (a), wave energy flux (b), and breaking dissipation (c) vs. fetch. Black
lines come from a stationary assumption, ∂E/∂t = 0, and using the mean value of ceff =
0.5cp. Colored curves of dissipation are calculated directly from turbulent dissipation for
SWIFT 1 (red), SWIFT 2 (cyan), and Dopbeam (blue), with a background dissipation level
of 0.5 W m−2 subtracted off. All quantities are 500-meter averages.
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Each of the four estimates of Sds from Figure 1.5 were then used, along with the measured

Λ(c), to evaluate the breaking strength parameter, b. The results are shown in Figure 1.6,

as function of mean square slope, inverse wave age, and wave steepness from the significant

wave height and peak wavenumber. Also shown are older data from Thomson et al. (2009),

from young waves in Lake Washington and Puget Sound. It is clear that over the whole

dataset, the breaking strength is not constant. Moreover, the trend with wave steepness is

actually opposite that of the proposed correction from Drazen et al. (2008). Much of the

remaining discussion centered on this incongruity.
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Figure 1.6: Breaking strength parameter, b, plotted against mean square slope (a), inverse
wave age (b), and peak steepness (c). The data are colored by the source of Sds in the
calculation. Circles denote the first day of the experiment, and squares the second. Open
symbols are used for data with known bias. Additional data from Lake Washington in 2006
(green crosses) and Puget Sound in 2008 (magenta crosses) described in Thomson et al.
(2009). Vertical bars to the right of the plots show ranges of b estimates from Thomson et al.
(2009) (green), Gemmrich et al. (2008) (pink), Phillips et al. (2001) (light blue), and Banner
and Pierson (2007) (dark red). For Drazen et al. (2008) (dark blue), b is extrapolated to
these steepness from their power law fit. For Romero et al. (2012) (orange), the approximate
range of b for c ≤ cp is shown.
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On one hand, the variation in b might be predicted based on the similar variation across

the literature. The range in b from several other papers is shown along the right of Figure

1.6. The experiment covered an unusually large range in wave development over a short

time, which might explain why such large variations had not been seen before within a

single study. The influence of microbreaking waves was a big question. Video taken from

the SWIFT buoys indicated that smaller, less visible breakers were much more common at

short fetches than could be detected in the ship-based imagery. It was theorized that in

highly forced, young waves, the microbreaking might be a first-order source of dissipation,

becoming less important as the waves developed. Thus, the microbreaking could be a biasing

effect responsible for the large variation of b. Conversely, other sources of turbulence, such

as from non-breaking waves, were examined but determined to be small by comparison. A

detailed error analysis showed that b was also quite sensitive to several choices made during

the processing of Λ(c).

Finally, the shape of Λ(c) was discussed and compared with the original Phillips (1985)

theoretical prediction. Similar to Gemmrich et al. (2008), Thomson et al. (2009), and Kleiss

and Melville (2010), the Λ(c) curves peak at intermediate speeds somewhat less than the

peak phase speed. At higher speeds, the decay of Λ(c) resembles Phillips (1985) predicted

c−6 shape, but this is not the wave regime where this equation should hold. At the low

speeds where the Phillips (1985) theory is applicable, Λ(c) does not resemble the prediction.

The Romero et al. (2012) steepness correction based on the spectral saturation does not

remedy this inconsistency. Although microbreaking is likely to be important, it was noted

that several assumptions from Duncan (1981), Phillips (1985), and Drazen et al. (2008) had

never been confirmed in the field.

1.5 Thesis Outline

In the remaining chapters, measurements of open ocean whitecaps are presented from two

research cruises in the North Pacific Ocean. The organization is as follows:

Chapter 2 describes a method for stabilizing and georectifying ship-based imagery using
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the distant horizon. In the first experiment, this algorithm is used to correct for the ship

motion in the camera data, while in the second, it is used to synchronize the cameras with

inertial motion data. This chapter is reproduced, with only minor changes to the introductory

material, from the article:

M. Schwendeman and J. Thomson. A horizon-tracking method for shipboard

video stabilization and rectification. J. Atmos. Ocean. Tech., 32:164176, 2015a.

doi: 10.1175/JTECH- D-14-00047.1.

Next, Chapter 3 shows measurements of the whitecap coverage from both cruises, and

compares them with shipboard wind measurements and buoy measurements of the waves

and turbulent dissipation. It examines the issue of how best to parameterize the whitecap

coverage. This chapter was published as:

M. Schwendeman and J. Thomson. Observations of whitecap coverage and the

relation to wind stress, wave slope, and turbulent dissipation. J. Geophys. Res.

Oceans, 120, 2015b. doi: 10.1002/2015JC011196.

Chapter 4 introduces the ship-based stereo video system, present during the second exper-

iment only. The stereo imagery is used to recreate, in three dimensions, the surface geometry

during whitecapping. The focus is primarily on breaking onset, including a reevaluation of

the Stokes limiting steepness and the conclusions of Holthuijsen and Herbers (1986). This

work will be submitted for publication in the near future.

Finally, Chapter 5 summarizes the key findings of the earlier chapters, and concludes

with a few speculative ideas and suggestions for future research directions.
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Chapter 2

A HORIZON-TRACKING METHOD FOR SHIPBOARD
VIDEO STABILIZATION AND RECTIFICATION1

2.1 Introduction

The use of digital video as a measurement tool has grown tremendously in recent years, as

the cost of making and storing high-quality digital videos has decreased. Standard “electro-

optical” (EO) video, which records visible light in the wavelengths spanning 400-700 nm, is

part of a larger category of passive remote sensors, which also includes infrared (IR) cameras

and hyperspectral imaging systems (Holman and Haller, 2013; Dickey et al., 2006). These

passive systems complement the active remote sensors such as radar and lidar. Oceano-

graphic applications of remote sensing include direct measurements of whitecap coverage

(Callaghan and White, 2009) and sea ice concentration (Weissling et al., 2009). In addition,

underlying properties such as wave dissipation, bathymetry, or currents can sometimes be

inferred from remote measurements (Sutherland and Melville, 2013; Stockdon and Holman,

2000; Chickadel et al., 2003). Alternatively, hyperspectral measurements of optical proper-

ties of the upper water column (i.e. ocean color) may be used to determine concentrations

of certain biological quantities (IOCCG, 2000).

Across these modes and applications, quantitative use of camera imagery benefits greatly

from knowledge of the camera location and orientation, or “pose.” Camera pose information

is needed specifically for two common tasks: stabilization and rectification. Stabilization is

the removal of camera motion from a set of images, resulting in images appearing as though

recorded from a fixed camera. Rectification is the projection of one or more images into a

1This chapter was originally published in the Journal of Atmospheric and Oceanic Technology as:
M. Schwendeman and J. Thomson. A horizon-tracking method for shipboard video stabilization and rectifi-
cation. J. Atmos. Ocean. Tech., 32:164176, 2015a. doi: 10.1175/JTECH- D-14-00047.1.
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common coordinate system. When images are projected to a map of the earth’s surface, as

from an airplane or satellite, it is commonly termed “orthorectification.”

For a camera mounted to a fixed platform, the pose may be measured once and applied

to all images. Such configurations are not often available at sea, but may sometimes be

approximated in exceptionally stable ships (such as R/V FLIP, see Gemmrich et al., 2008;

Zappa et al., 2012; Sutherland and Melville, 2013) or relatively calm conditions (e.g Thomson

et al., 2009; Thomson and Jessup, 2009). Reliance on specific ships or conditions is not ideal,

however, as it limits the availability of these measurements. Alternatively, the pose may be

recorded continuously from an external system, usually an inertial motion unit (IMU). IMUs

measure linear acceleration and angular velocity with a combination of accelerometers and

gyroscopes. The position of the IMU is then estimated from dead reckoning. In Kleiss and

Melville (2010, 2011) and Romero et al. (2012), an IMU was used to gather the positional

data needed to rectify images taken from an airborne system. In Schwendeman et al. (2014),

a shipboard camera was actively stabilized with an inertial pan-tilt system. There are two

disadvantages of this strategy. First, inertial measurements are sensitive to noise and drift,

such that accurate systems can be prohibitively expensive. Second, such systems require

precise synchronization with the video frames, otherwise matching errors will occur.

A more attractive option is to use the video frames themselves to estimate the camera

orientation. Problems of this type usually require ground control points (GCPs) with known

x, y, and z coordinates (Szeliski, 2010). GCPs may be available in coastal applications when

land makes up a significant portion of the camera field of view, as in Holland et al. (1997).

In the open ocean, however, there are no GCPs.

In the following chapter, a method for determining the pitch and roll of a shipboard

camera is described from the location of the horizon line in the image. Similar strategies

have been used for stabilization of cameras for marine surveillance (Cao and Zhang, 2007;

Morris et al., 2007; Fefilatyev et al., 2012) and unmanned aerial vehicle (UAV) flight control

(Bao et al., 2005; Thurrowgood et al., 2009; Zhang et al., 2011). The focus here is on image

rectification to sea surface coordinates for oceanic measurement tasks. One such application
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is the calculation of the wave-breaking distribution Λ(c) (Phillips, 1985). Calculating this

distribution requires the measurement of the length, L, and speed, c, of many breaking wave

events.

In Section 2.2, the horizon-finding method is described using an example image from a

research cruise in the North Pacific. In Section 2.3, this algorithm is applied to the full video

dataset and its performance is evaluated. The uncertainty and sensitivity in the method are

examined in Section 2.4, using Λ(c) as a case study. Finally, Section 2.5 concludes and points

the user to a publicly-available Matlab toolbox for implementation of these algorithms.

2.2 Methods

The general problem of interest is outlined in Figure 2.1. A camera looks obliquely outwards

over a flat sea surface from a known height H, at a constant heading (or azimuth), γ.

The horizon line is unobstructed and visible in the image. The camera orientation is fixed

except for two angles: pitch, φ, and roll, τ , which are unknown and are defined in the

camera reference frame rather than the ship reference frame. Throughout the remainder of

this paper, the incidence angle, σ = π/2 − φ, is used rather than pitch, φ, for notational

convenience in the calculations.

The ultimate goal of the following procedure is to determine σ and τ , such that it becomes

possible to project a point located at pixel (u, v) to sea-surface coordinates (x, y,−H), and

visa versa. This goal will be achieved by relating the equation of the horizon line to σ and

τ , as detailed below.

2.2.1 Data Collection

The images shown here were collected during a research cruise onboard the R/V New Horizon

in the North Pacific in 2012. The ship sailed from San Diego to Ocean Station Papa (50◦N,

145◦W) and back over the course of three weeks. On twelve of these days, the ship held station

for several hours to make a variety of wind and wave measurements. These measurements

include approximately 48 hours of video, taken from a 3.6 mm “bullet” camera with 1/3”
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γ

Figure 2.1: Problem schematic, defining the camera parameters and coordinate systems.
The sea surface is shown in blue, with dark blue corresponding to the camera field-of-view,
while gray areas denote sky. The small, rotated, square represents the camera sensor (not
to scale), and the upper right square shows the resulting image.

Hi-Res Sony ExView B/W CCD. The data was sampled at 30 Hz and eight-bit grayscale, and

compressed to MPEG-2 video. For the first half of the experiment, the camera was mounted

on the top rail (H = 10.7 m) facing off the starboard side. On 7 October, it was moved to

the ship centerline (still on the top rail) to be able to look off either port or starboard.

The camera was attached to a pan-tilt stabilization system (Directed Perception PTU-

D100), which actively corrected for rotation in the incidence (= 90◦− pitch) and azimuth

angles. This was the same stabilization package used in Schwendeman et al. (2014), in

which a time-consuming manual horizon-finding method was used to compensate for the

drift in incidence, while roll was left uncorrected. By using active stabilization, the camera
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orientation is decoupled from the ship’s pitch, roll, and heading angles. Therefore we must

make the distinction that in the following sections, all angles are of the camera relative to the

sea surface, which are unrelated to the ship’s orientation. Although helpful in maintaining a

given field of view, the active stabilization has been shown to be insufficient for quantitative

processing of moving signals, such as breaking waves. This motivates the post-processing

method that follows.

2.2.2 Horizon-Finding Algorithm

This image-based stabilization depends on an automated method for fast, robust, and ac-

curate detection of the horizon line. Possible complications are poor lighting conditions,

partial horizon views, and noise from features in the sea surface (e.g. whitecaps) and sky

(e.g. clouds). As noted in Section 2.1, horizon detection has proven useful for a number of

applications, and several strategies have been described in the literature. Recently, Fefilatyev

et al. (2012) developed a “separation criterion” approach for finding the optimal horizon line

from a rapidly-moving, buoy-mounted camera. While their problem requires a very robust

detection algorithm, here we find that a simpler, faster approach is acceptable for our data

and application.

Figure 2.2a shows an example video frame with the horizon clearly visible in the image.

In Figure 2.2b, the image has been filtered with the Canny edge detector, which isolates

and thresholds local maxima in the image gradient along the direction perpendicular to the

gradient direction (Canny, 1986). Because the Canny detection method uses the gradient

direction information, it has a number of advantages over other edge filters. First, the

user can specify to return only the maximum pixel for a given edge (called “non-maximal

suppression”), which leads to sharper edges. Additionally, the Canny detector can find

connected edges with a lower threshold through hysteresis and edge linking (see Szeliski,

2010, for more details). Figure 2.2b shows the result of Matlab’s Canny detector with an

automated threshold that identifies 5% of pixels as edges.

Next, the binary edge image is passed to the Hough Transform, a widely-used method
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Figure 2.2: An example of the horizon-finding procedure, for a frame from 8 October, 19:58
UTC. (a) The original image after removal of distortion. (b) The binary image resulting from
filtering with the Canny edge detector. (c) The Hough Transform accumulator array, with
maximum value circled in red. (d) The original image with computed horizon line overlayed.
For this image, the calculated camera angles are τ = 3.9◦ and σ = 78.7◦.
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for identifying lines in images (Duda and Hart, 1972; Illingworth and Kittler, 1988). In the

Hough Transform, candidate lines are parameterized in polar coordinates by r, the distance

of the line to the image origin, and θ, the direction of the line, as shown in Figure 2.1. Then,

the number of edge pixels in the binary edge image is tallied along each line candidate.

Thus, an “accumulator array” is assembled, whose elements each correspond to a line in

(r, θ) space, and whose values equal the number of edge pixels located along this line. Since

the horizon line is usually the longest or most prominent edge in the image, its r and θ

parameterization corresponds to the maximum value of the accumulator array. Figure 2.2c

shows the resulting accumulator array with the maximum value circled. Finally, Figure 2.2d

shows the resulting line drawn on the original frame, exactly aligned with the horizon.

2.2.3 Projection Equations

With the horizon line found, the camera incidence and roll can be calculated from the camera

projection equation (also called perspective transform or homography). The geometric basis

for the projection equation is the pin-hole camera model, in which all light rays pass through

a principal point, O, before hitting the sensor located one focal length, f , from O. Although

the sensor physically lies behind the principal point, it can be easier to visualize the problem

with it in front, as in Figure 2.1.

A necessary first step is to determine the camera’s individual distortion coefficients and

intrinsic parameters. This is done using a geometric calibration technique, based on the

algorithms of Zhang (2000) and Heikkila and Silven (1997) that are available in the Matlab

Computer Vision System Toolbox (or similar open source software packages). Distortion

can be thought of as the deviation of the camera from an ideal pin-hole camera, and is

often noticeable for wide-angle lenses. After correcting for distortion, the horizon is seen

as a straight line in the image, as in Figure 2.2. Here, a distortion correction is used with

two radial coefficients, no skew, and no tangential distortion, resulting in average errors of

less than one pixel from a pin-hole camera. With distortion removed, the camera is fully

characterized by 4 intrinsic parameters. The first of these are fu and fv, which are the
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Table 2.1: Distortion coefficients and intrinsic parameters for the 3.6 mm “bullet” camera
used in this experiment.

Parameter Name Value

Number of columns, nu 640

Number of rows, nv 480

First radial distortion coefficient, κ1 -0.601

Second radial distortion coefficient, κ2 0.364

Focal length per pixel width, fu 673.4

Focal length per pixel height, fv 610.0

Image column center, cu 339.2

Image row center, cv 244.5

camera focal length expressed in terms of the pixel width and pixel height. The other two

are cu and cv, which correspond to the (u, v) coordinates of the pixel located directly behind

O, otherwise known as the image origin. The distortion coefficients and intrinsic parameters

for the camera used in this experiment are listed in Table 2.1.

The invertible perspective equation for projecting real-world (x, y, z) coordinates to (u, v)

pixel coordinates is,

s [u, v, 1, d]T = [P ] [x, y, z, 1]T (2.1)

where P is the 4×4 “camera matrix,” d is the inverse depth or “disparity,” and s is an

arbitrary scale factor. Eq. 2.1 can be inverted to find (x, y) from (u, v) by assuming s = d =

1, then normalizing the resulting (x0, y0, z0) coordinates by −z0/H, leading to coordinates

at (x, y,−H), i.e. the flat sea surface. For a pure rotation in incidence, σ, and roll, τ , the
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form of P is

[P ] =


fu 0 cu 0

0 fv cv 0

0 0 1 0

0 0 0 1




cos τ sin τ cosσ sin τ sinσ 0

sin τ − cos τ cosσ − cos τ sinσ 0

0 sinσ − cosσ 0

0 0 0 1

 (2.2)

where fu, fv, cu, and cv are the intrinsic parameters described above.

Angles σ and τ are uniquely determined by the location of the horizon line. In the limit

of y →∞, Eq. 2.1 leads to u and v which lie along a straight line in the image corresponding

to the horizon line, and defined by r and θ as found in the previous section. The equations

relating these parameters are

τ = tan−1

(
−fu

fv tan(θ)

)
(2.3)

σ = tan−1

(
fu sin(τ) cos(θ)− fv cos(τ) sin(θ)

r − cu cos(θ)− cv sin(θ)

)
. (2.4)

Note that the above equations do not include the third camera angle, azimuth, given by γ

in Figure 2.1. The azimuth angle may be needed for some applications if it varies significantly

across images and directional information is required. Like camera height, however, azimuth

cannot be determined with the horizon-finding procedure. Therefore it must be measured

or estimated from some other data source, such as the ship’s heading. With the pan-tilt

stabilization system used here, the camera azimuth is kept relatively constant over timescales

of several minutes, but this makes it independent of the ship’s heading. We therefore define

the line-of-sight of the camera to be at azimuth = 0◦ unless otherwise noted.

Figure 2.3 demonstrates the rectification from image coordinates to world coordinates,

for the same example as Figure 2.2. The red line again shows the accurately detected horizon

line, which is used to measure roll and incidence. For the example shown, the camera was

found to be oriented at 3.9◦ roll and 78.7◦ incidence. The blue rectangle in the original image

maps to an oblique near-trapezoidal shape in earth coordinates.
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Figure 2.3: Example rectification using the image from Figure 2.2. (a) The image in pixel
coordinates, with horizon detected correctly (red) and a sample rectangle (blue). (b) The
projection of the pixels within the blue rectangle to earth coordinates.

2.3 Results

2.3.1 Horizon-finding Statistics

Next, we apply the method to the full dataset of 48 hours over 12 days. Images were sub-

sampled at 30 second intervals, for a total of 5761 frames. Figure 2.4 shows 12 sample frames

from this set, one for each day of the experiment. This figure demonstrates the robustness

of the horizon-finding procedure over the large variety of lighting conditions seen during the

experiment. The frames are then all projected as though taken from a stationary camera

positioned at 0◦ roll and 75◦ incidence. Example videos showing this stabilization for several

minutes at a time are also available as online supplemental material.

All 5761 processed images were manually reviewed and classified into one of three cat-

egories: horizon visible and correctly identified, horizon visible but incorrect, and horizon

not visible. The results of this analysis are shown in Table 2.2, separated by date. The

rightmost column of the table shows the percentage of frames in which a visible horizon has

been correctly detected. The results totaled over the entire experiment are shown in the

bottom row. Overall, 92.3% of visible horizon lines were correctly identified with the Hough

Transform method.
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Figure 2.4: (a-l) 12 example video frames showing successful horizon detection (red dashed
line), each from a different day of the experiment. (m) Composite image formed by trans-
forming each image as though taken from a camera at 75◦ incidence and 0◦ roll, and averaging
over all images. The red dashed line shows the expected horizon for this orientation, and
the colored rectangles mark the outline of each transformed image.
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Table 2.2: Horizon-finding results, separated by day, and totaled over the entire dataset.
Images were output every 30 seconds, and manually classified. “Percent Correct” indicates
the percentage of visible horizon lines that are correctly identified in the Hough Transform.

Horizon Horizon Horizon Percent

Date Conditions Visible, Visible, Not Correct

(2012) Correct Incorrect Visible [%]

26-Sep Partly Cloudy 208 17 29 92.4

28-Sep Low Light Early 189 28 37 87.1

29-Sep Occasional Rain On Glass 145 31 26 82.4

02-Oct Partly Cloudy, Occasional Glare 470 8 30 98.3

03-Oct Partly Cloudy, Late Glare 296 58 13 83.6

04-Oct Mostly Cloudy 377 1 3 99.7

05-Oct Clear, Frequent Glare 318 131 59 70.8

06-Oct Partly Cloudy, Frequent Glare 299 74 8 80.2

07-Oct Early Glare, Late Darkness 959 37 40 96.3

08-Oct Partly Cloudy 898 1 5 99.9

11-Oct Mostly Cloudy 330 0 1 100

14-Oct Early Glare, Clear Later 598 38 0 94.0

Total 5086 424 251 92.3

The accuracy is quite variable over the experiment, reaching a minimum of 70.8% on

5 October, compared with a perfect 100% on 11 October. This accuracy is primarily a

function of lighting, as noted in the “Conditions” column. The most unfavorable conditions

are on clear or partly cloudy days when the sun is low in the sky, resulting in high glare

and saturation of the image near the horizon. The worst days for these conditions are 5

October and 6 October. This motivated moving the camera to the ship centerline on 7

October, allowing the camera to be directed either port or starboard to avoid glare, thereby

dramatically improving the horizon detection. Secondary effects include low light in the



35

early morning or evening and rain drops on the window of the camera housing.

2.3.2 Quality Control

It is crucial to be able to identify when the horizon finding fails, without relying on the

manual inspection described above. Given a series of sequential images, it is possible to

identify an incorrect horizon as an outlier from the expected smooth variation in σ and τ .

Such a method is unsuitable, however, in cases where the horizon is rapidly moving or when

non-sequential images are examined.

Instead, a predictive variable is defined to identify spurious horizons. Since the horizon

is chosen as the maximum of the Hough Transform, then the prominence of this maximum is

related to the strength of the horizon line. This first peak is compared with second highest

peak, and the ratio of these peaks, m, is used as an inverse quality metric. To avoid values

nearby to a prominent horizon, the second maximum is found a distance of r > 10 pixels

and θ > 2.5◦ from the first peak. A ratio m = 1 indicates that both maxima are identical,

whereas m = 0 corresponds to an infinitely large primary maximum.

The horizon-finding can fail for two reasons, namely: i) the horizon is not visible in the

image, or ii) the horizon is not the strongest line in the image. In both cases, a large value

of m is expected. Using the full data set of 5761 images, the ability of m to diagnose false

horizons is examined. For a given threshold value, mt, images with m < mt are predicted

to be successful horizon identifications (positives), while images with m > mt are predicted

failures (negatives). By comparing with the manual classification, images are characterized

as true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).

Positive predictive value (PPV), or “precision,” is the ratio of true positives to all predicted

successful horizon identifications,

PPV =
TP

TP + FP
. (2.5)

Conversely, true positive rate (TPR), or “recall,” is the ratio of true positives to all actual
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Figure 2.5: Plots of positive predictive value (PPV, or precision), and true positive rate
(TPR, or recall) are plotted as a function of the threshold of the Hough Transform peak
ratio, mt. Thin curves in blue (PPV) and red (TPR) are daily values (12 lines each), while
the dashed (PPV) and dash-dot (TPR) curves are for the full dataset.

successful horizon identifications,

TPR =
TP

TP + FN
. (2.6)

Figure 2.5 shows the precision and recall curves made by varying mt. Daily curves are

shown, as well as for the full dataset. As with Table 2.2, the results are encouraging overall,

but depend greatly on the individual day. For mt = 0.8, the total PPV is 99.6% (4 false

positives per 1000 predicted positives) and the total TPR is 96.2% (3.8% unnecessarily

discarded images). For the same threshold, the minimum daily PPV and TPR values are

98.9% and 81.8%. Thus, if anything, this cut-off has the potential to be overly conservative

when predicting failure in the horizon-finding algorithm.
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2.4 Discussion

2.4.1 Uncertainty Analysis

Three uncertainties can be quantified in this method: the uncertainty in the horizon line,

(r, θ), the uncertainty in camera angles, (σ, τ), and the uncertainty in the projected real-world

coordinates, (x, y, z).

The uncertainty in (r, θ) can be due to the resolution of the camera, the chosen quanti-

zation in the Hough Transform, and uncertainty due to ambiguity in the horizon location.

Camera intrinsic calibration indicates that the pinhole model is only accurate to within 1

pixel. Similarly, the Hough Transform is discretized by 1 pixel in r. The resolution in θ is

specified by the user and was chosen here to be 0.5◦, to reduce computation time and ensure

robust statistics in the maximization.

Additionally, there is some uncertainty in the actual horizon location. The assumption

made in deriving Eqs. 2.3 and 2.4 was of a horizon located infinitely far from the camera. For

a number of reasons, including the curvature of the Earth and atmospheric scattering, the

distance to the “apparent horizon” is actually finite (see French, 1982; Bohren and Fraser,

1986). Ignoring atmospheric effects, and assuming an observer height much less than the

Earth’s radius, the apparent horizon distance is

D ≈
√

2RH, (2.7)

where R is the radius of the Earth and H is the height of the observer. So, for our camera

located atH = 10.7 m, the distance to the apparent horizon is roughly 11.7 km. This distance

can be shortened due to atmospheric scattering, which decreases the contrast between sea

and sky (Bohren and Fraser, 1986). Alternatively, the distance can be lengthened as much

as 10% due to atmospheric refraction (French, 1982).

Figure 2.6 shows the errors in r from assuming an infinite horizon, for σ = 75◦, τ = 0◦,

and H = 10.7 m. This camera pose is representative of a typical view during this experiment,

and will be used repeatedly in the following analysis. At the estimated horizon distance of
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Figure 2.6: Uncertainty in image horizon location (∆r, in pixels) for finite horizon distances.
The line shown is for σ = 75◦, τ = 0◦, and H = 10.7 m.

11.7 km, the error in r is only 0.6 pixels, which is less than the uncertainty noted above.

As the apparent horizon nears the camera, the horizon appears lower in the image, and the

errors in r increase. This error is not sensitive to changes in σ, but scales proportional to

H. Since D scales with H1/2, these errors will become slightly more pronounced for higher

cameras. This plot is also useful in estimating the errors stemming from using the horizon

information under non-ideal conditions. For example, if a coastline obscures the horizon at

a distance of 1 km, an error of 6 pixels can be expected in r.

The uncertainty in σ and τ is directly related to the uncertainty in r and θ through Eqs.

2.3 and 2.4. Around the reference orientation (τ = 0◦, σ = 75◦), an error of ±0.5◦ in θ leads

to errors of ±0.55◦ in τ and ±0.26◦ in σ. Around the same value, errors of ±1 pixel in r

have no effect on τ , but correspond to errors of 0.09◦ in σ. Therefore, under ideal lighting,

the horizon method as described here is accurate to within 0.6◦ in τ and 0.3◦ in σ.

In Section 2.2, it was shown that the projected coordinates (x, y, z) are functions of the

pixel coordinates (u, v), the intrinsic parameters (fu, fv, cu, cv), the camera angles (σ, τ, γ),

and the camera height, H. Since z of the water surface is taken to be −H, the uncertainty

in z is simply equal to the uncertainty in H. However, the errors in x and y are functions of
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the uncertainties of all the parameters,

∆x = x (u, v;H + ∆H, σ + ∆σ, τ + ∆τ, γ + ∆γ, fu, fv, cu, cv)

−x (u, v;H, σ, τ, γ, fu, fv, cu, cv) ,
(2.8)

∆y = y (u, v;H + ∆H, σ + ∆σ, τ + ∆τ, γ + ∆γ, fu, fv, cu, cv)

−y (u, v;H, σ, τ, γ, fu, fv, cu, cv) .
(2.9)

Potential errors in fu, fv, cu, and cv are not addressed here based on the positive results of the

calibration procedure, which showed average errors of less than one pixel in the calibration

images. In the section above it was shown that after stabilization, the error in incidence and

roll angles were on the order of ∆σ ∼ 0.3◦ and ∆τ ∼ 0.6◦. The horizon technique cannot be

used to estimate H and γ, so these uncertainties must be estimated from other sources. ∆H

is a function of the sea surface elevation variability, or wave height. During this experiment,

the average wave height was roughly 2 m, which will be used as a representative value of

∆H. The specifications for the pan-tilt stabilization unit give azimuth errors of ∆γ < 0.25◦

for underlying sine-wave motions at 1 Hz, although the system tended to drift in azimuth

on longer timescales.

Figures 2.7 and 2.8 show the errors in x and y resulting from these sources, around the

reference state of σ = 75◦, τ = 0◦, γ = 0◦, and H = 10.7 m. Figure 2.7 shows the camera

field-of-view in pixel coordinates, with the area above the horizon colored gray. Pixels are

colored by error components ∆x and ∆y for the errors in τ , σ, γ, and H discussed above. In

Figure 2.8, these errors are shown as a function of y, for vertical slices in the left, middle, and

right of the image. The errors grow as y increases for both components and all uncertainty

sources. For all sources except γ, uncertainty in y is larger than in x. The most severe

source of error is in ∆y due to ∆H. For uncertainty in H, the relative errors, ∆y/y and

∆x/x, are equal to ∆H/H, or 18.6% in this case. So at a distance of 100 m, ∆y is nearly

20 m for ∆H = 2 m, whereas all other errors are less than 5 m at this distance. Although

this error analysis was performed around one camera pose, with single values for ∆τ , ∆σ,

∆γ, and ∆H, it would be easy to adapt this procedure to different camera views and error
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Figure 2.7: Uncertainty in rectification around a reference camera orientation of σ = 75◦,
τ = 0◦, γ = 0◦, and H = 10.7 m. The errors are shown in x (a-d) and y (e-h) at each pixel
(u, v) for corresponding errors of ∆τ = 0.6◦ (a, e), ∆σ = 0.3◦ (b, f), ∆γ = 0.5◦ (c, g), and
∆H = 2 m (d, h). The gray region represents the pixels above the horizon in the image.

magnitudes.

2.4.2 Uncertainty in Λ(c)

Figure 2.7 demonstrates that errors in the assumed camera height can lead to large uncer-

tainties during rectification, even after stabilization in roll and incidence. The manifestation

of these uncertainties will vary depending on the application. As a case study, we demon-

strate the result of such errors on estimates of the breaking wave distribution, Λ(c), a common

remotely-sensed wave measurement (see, for example, Gemmrich et al., 2008; Thomson et al.,
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Figure 2.8: Uncertainty in rectification around a reference camera orientation of σ = 75◦,
τ = 0◦, γ = 0◦, and H = 10.7 m. The ∆x (blue) and ∆y (red) errors are shown as a
function of distance from the ship (y) for corresponding errors of ∆τ = 0.6◦ (a), ∆σ = 0.3◦

(b), ∆γ = 0.5◦ (c), and ∆H = 2 m (d). Curves are plotted for three constant pixel columns,
corresponding to lines in the middle (u = 360, solid line), left (u = 120, dotted line with
crosses), and right (u = 540, dotted line with diamonds) of the image.
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2009; Kleiss and Melville, 2010; Schwendeman et al., 2014).

Λ(c) is defined as the sum of all breaking wave crest lengths per unit area and speed.

It has become commonly used in estimating wave energy dissipation due to breaking (see

Phillips, 1985). Calculation of Λ(c) requires the estimation of wave crest length, Li, and

speed, ci, for many breaking events. Then the calculation is carried out by binning the

events by ci, summing over Li, and applying the proper normalization. The final formula for

Λ(c) is

Λ(c) =

∑
i Li

ANdc
(2.10)

where N is the total observed events, A is the spatial domain, and dc is the speed bandwidth

such that the summation is over all Li with speeds (c − dc/2) < ci < (c + dc/2). If the

breaking waves are observed from a moving camera, it is clear that estimates of the crest

lengths and speeds will be affected by the camera motion, but it is not apparent how these

errors will propagate through the Λ(c) computation.

The sensitivity of Λ(c) to errors of this kind can be examined through the use of synthetic

data. These synthetic data have a known distribution of L and c, making errors easy to

determine. Moreover, in practice there are many subtle variations for determining Li and

ci, which are mostly avoided with the synthetic data. The creation of the synthetic data

proceeds as follows: Line segments with constant length 2 m are randomly given a starting

position within a domain of 30 m < y < 50 m and −10 m < x < 10 m. They are assigned

a speed from a Gaussian distribution centered around 3 m/s with standard deviation of

1 m/s. They are propagated forward with that speed, over a duration of 2 s, with their

position recorded every dt = 1/(15 Hz). Next, these crests are “observed” from a camera at

the familiar pose of σ = 75◦, τ = 0◦, γ = 0◦, and H = 10.7 m. The camera is subject to

a sinusoidal oscillation in height, with ∆H = 2 m (i.e. amplitude of 1 m), at a period of

T = 4 s, to simulate a shipboard camera in a rough sea state. Each wave crest is randomly

given a start time, which determines the camera phase during the event. The “observer” is

not aware that the camera height is changing, however, and therefore attributes the camera
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motion to the crests themselves. Examples of true and apparent crest motions are shown in

Figure 2.9a,b for two scenarios: crests moving directly across the image, in the +x direction,

or directly away from the camera, in the +y direction.

Figure 2.9c,d shows the results of calculating Λ(c) as in Eq. 2.10 for the true and apparent

crest motion. Over 10,000 crests were simulated in each case to ensure robust statistics. In

making Figure 2.9c, Li is calculated as the ∆y between the two endpoints of the crest, and

ci is ∆x/dt (visa versa for Figure 2.9d). The true Λ(c) distribution is shown in black. Five

cases are tested for each scenario, the first being the base case from Figures 2.9a,b (∆H = 2

m, T = 4 s), in blue. The red line shows the results for halving ∆H (∆H = 1 m, T = 4 s),

and the green line for doubling T (∆H = 2 m, T = 8 s). The cyan curve is a low motion

case (∆H = 0.25 m, T = 4 s). The magenta distribution is for a similar scenario, with the

exception that the camera is looking down from a nadir position (σ = 0◦).

The results from the synthetic data lead to a number of conclusions. First, in all cases,

sinusoidal errors in camera height tended to broaden the observed Λ(c) from the true distri-

bution, while the total sum of breaking crests (equal to the integral of Λ(c)) stayed within 1%.

Thus, the measurement of crest length was unbiased by the camera motion, but the crests

speeds were biased towards more extreme values. This is especially true for the scenario

with crests moving away from the camera, where for the large camera motions, the peak

is obscured completely. This orientation appears to be a worse-case scenario for observing

Λ(c), although the errors may be manageable for lower sea states, as the ∆H = 0.25 m case

shows. For both geometries, the curves are nearly identical for halving wave height (red) as

for doubling wave period (green), suggesting that the errors scale with the vertical velocity

of the camera motion. Finally, these plots show that the errors are not restricted to oblique

views, and in fact are as large for nadir camera orientations (magenta) as for x-propagating

crests under similar sea states (left, blue).

It should of course be noted that the above case study is an idealized model for shipboard

camera motion. The relationship between sea state and ship motion will depend greatly on

the ship, and in most cases the vertical motion of the camera will be less than the significant
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Figure 2.9: Error in Λ(c) due to varying camera height with synthetic breaking waves, for (a,
c) breaking waves propagating in the +x direction, and (b, d) breaking waves propagating
in the +y direction. (a, b) Three examples of the true breaker propagation (black) and the
apparent propagation (blue) for sinusoidal camera motion of ∆H = 2 m at T = 4 s. (c, d)
The resulting Λ(c) for gaussian input centered at 3 m/s (black), for ∆H = 2 m, T = 4 s
(blue), ∆H = 1 m, T = 4 s (red), ∆H = 2 m, T = 8 s (green, dashed), ∆H = 0.25 m, T = 4
s (cyan), and ∆H = 2 m, T = 4 s, at σ = 0◦ (i.e. nadir) (magenta, dashed).
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wave height. Additionally, the frequency of camera motion will depend on the size of the

ship relative to components in the incident wave spectrum. However, even for a camera

without any underlying motion, there are uncertainties in this rectification due to projecting

a wavy sea surface onto a flat plane. Acceptable uncertainties will vary with application;

these simulations of Λ(c) suggest that camera height variations less than 1 m are necessary

for high quality results.

2.4.3 Limitations

Here we summarize the limitations of this horizon stabilization method, many of which have

already been mentioned. The most fundamental requirement is that the horizon be visible in

the camera field-of-view. This is not guaranteed if the platform is subject to large motions or

the camera lens has a narrow field-of-view. The accuracy assessment reveals that the method

is especially sensitive to the lighting conditions (see Table 2.2). Possible complications include

glare from direct or reflected sunlight, and lack of contrast due to low light, heavy clouds,

or rain. Furthermore, the Hough Transform detection method requires the horizon to be the

most well-defined line in the image, meaning obstacles or other instrumentation in the field-

of-view may impede its detection. In that case, one of the several other horizon detection

algorithms (for example: Bao et al., 2005; Morris et al., 2007; Zhang et al., 2011; Thurrowgood

et al., 2009; Moore et al., 2011a; Fefilatyev et al., 2012) may be more suitable. Finally, if a

coastline is used in place of the horizon, at distances less than roughly 10 km, the camera

angle calculation will be negatively impacted, as shown Figure 2.6.

The horizon only provides information on the camera incidence and roll angles, and

cannot be used to calculate the heading angle and x, y, and z position. On large ships and

in low sea states, as in this dataset, the assumption of small motions in these other degrees-

of-freedom may be reasonable. The two most problematic of these unknowns are the heading

and camera height, because small errors in these variables lead to rectification errors which

become large as the distance from the camera increases (as shown in Figures 2.7 and 2.8). One

option is to use some combination of GPS, IMU, and magnetic compass data to estimate these
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other motions. Here, the overlapping pitch and roll estimates from the video and GPS/IMU

may be useful simply to synchronize the data streams. This unfortunately does not solve the

issue of noise (at short timescales) and drift (at longer timescales) that these systems can

suffer from. Ideally, the camera frames themselves could also be used to estimate these other

variables. Towards that end, Moore et al. (2011b) and Thurrowgood et al. (2014) showed

that by using two cameras with fisheye lenses oriented skyward, they could create a “visual

compass” — a nearly complete sky panorama which they could compare with an individual

view to calculate the relative heading of their UAV. Unfortunately, our limited view of the sky

in this dataset make this approach challenging, but future experiments may take advantage of

this method. Similarly, the height of the camera could be estimated visually using a stereo

camera system and fitting a plane to the three-dimensional points on the water-surface,

as in Benetazzo (2006). This assumes that the camera field-of-view covers a sufficiently

large footprint that the fitted plane approximates the mean water level. Note also that

this provides its own estimate of the camera pitch and roll, potentially making the horizon

method redundant. However, stereo imaging brings with it a host of significant processing

challenges, and thus researchers may still be drawn to this relatively simple method if the

conditions are suitable.

2.5 Conclusion

The horizon line, if it is visible and unobstructed, can be used to calculate the incidence (or

pitch) and roll angles of shipboard cameras in the absence of stationary ground control points

or external IMU systems. The Hough Transform is shown to be a robust and computationally

efficient means for horizon detection, and a derived quality control metric is effective for

isolating spurious horizons. Upon detecting the horizon, the conversion to the incidence and

roll of the camera is exact, and given in Eqs. 2.3 and 2.4. The performance of the horizon

tracking is largely dependent on the lighting conditions.

For images shown here, the uncertainties in incidence and roll were determined to be on

the order of 0.3◦ and 0.6◦, respectively. The effect of horizon distance is negligible in this case,
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though larger uncertainties are possible if the apparent horizon is within a few kilometers

of the camera due to poor atmospheric conditions or distant land. The largest source of

uncertainty in rectification is due to camera height variations from waves. The percent

errors in x and y are similar to the ratio of ∆H/H. These errors can in turn negatively

affect estimates of such quantities as Λ(c), due to the biasing of wave crest speeds.

The implementation of our method in Matlab is available as an open source toolbox via

the Matlab File Exchange under the name “Horizon Stabilization.” The package includes

all codes for horizon detection, image stabilization, rectification, and error analysis. These

codes require either the Matlab Computer Vision System Toolbox or the Image Processing

Toolbox for implementation of the Hough Transform.
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Chapter 3

OBSERVATIONS OF WHITECAP COVERAGE AND THE
RELATION TO WIND STRESS, WAVE SLOPE, AND

TURBULENT DISSIPATION1

3.1 Introduction

Whitecaps are a primary mechanism associated with many of the interactions between the

atmosphere and the ocean. They drive mixing near the air-water interface, and facilitate the

transfer of energy, momentum, heat and mass (Melville, 1996). This makes whitecapping a

critical component of the global climate system (Cavaleri et al., 2012). Since whitecaps dis-

sipate surface wave energy, primarily in the form of turbulence and bubble production, they

are also fundamentally important in the evolution of the wavefield. Therefore, understanding

the energetics of the whitecaps is critical for improving upon the present operational wave

forecasts (Cavaleri et al., 2007).

Whitecaps are a visual signature of breaking waves. Wave-breaking is a complex nonlin-

ear phenomenon, which occurs at scales much smaller than most global ocean models can

resolve. Therefore, breaking is often implemented using empirical parameterizations based

on field observations. Toward that end, we present observations of open-ocean whitecapping,

accompanied by concurrent wind, wave, and turbulent dissipation measurements.

A common visual measurement of wave-breaking is the whitecap coverage, W , which is

the average fraction of sea surface covered by whitecaps. Whitecap coverage is frequently

characterized as a function of the 10-meter wind speed, U10, since measurements or hindcasts

1This chapter was originally published in the Journal of Geophysical Research - Oceans as:
M. Schwendeman and J. Thomson. Observations of whitecap coverage and the relation to wind stress, wave
slope, and turbulent dissipation. J. Geophys. Res. Oceans, 120, 2015b. doi: 10.1002/2015JC011196.
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of U10 are often readily available. Common parameterizations are power law functions,

W = aUn
10, (3.1)

or cubic equations,

W = a(U10 − b)3. (3.2)

Unlike the power law, the cubic equation contains a threshold, b, below which there is no

visible whitecapping. Conversely, the power law allows for variation of the exponent of wind

speed, n.

Aggregating the many reported fits to U10, as in Anguelova and Webster (2006), shows

variability in predicted whitecap coverage of orders of magnitude across all wind speeds.

Such fits date back decades (e.g. Monahan, 1969), so it is possible that some of this scatter

is due to differences in experimental methods over the years. Most conspicuously, early W

estimates required manual inspection of a limited collection of photographs, while modern

studies tend to use large batches of digital imagery and pixel-wise thresholding techniques

(see Callaghan and White, 2009; Kleiss and Melville, 2011). In addition, images have been

used from a variety of geometries and instrumentation, leading to significant differences in

resolution and image quality.

Still, it is likely that some of the variability in the literature fits of W to U10 has physical

origins. For example, the wind stress, τ , is a better descriptor of the wind energetics, and is

less sensitive to atmospheric stability effects. Thus, the wind friction velocity, u∗ =
√
τ/ρ,

is often used in place of U10. Furthermore, several recent studies have shown variations in

W related to wave age (Sugihara et al., 2007), wave height (Stramska and Petelski, 2003),

and wind history (Callaghan et al., 2008a). This is not surprising, since the process of

wave-breaking is almost entirely driven by wave mechanics, rather than direct wind forcing

(Babanin, 2011).

The wave steepness, or slope, is fundamentally important to breaking, therefore average

wave slope parameters have often been proposed to replace wind variables in parameteriza-
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tions of whitecapping. Bulk wave steepness variables commonly take the form

S =
Hk

2
, (3.3)

whereH and k are a characteristic wave height and wavenumber. The significant wave height,

Hs, is often used for H. Alternatively, Kleiss and Melville (2010) found good correlation

between W and steepness using a peak wave height,

Hp = 4

[∫ 1.3fp

0.7fp

E(f)df

]1/2
, (3.4)

based on the work of (Banner et al., 2000). Here, fp is the frequency at the peak of the

omnidirectional spectrum, E(f). The corresponding peak wavenumber, kp, is often used

for the characteristic wavenumber value. Peak variables such as fp, kp, and Hp are easily

defined in unimodal seas, as in fetch-limited conditions. However, wave spectra from the

open ocean routinely exhibit several apparent peaks at different frequencies. Therefore, the

energy-weighted mean frequency, fm, is sometimes used instead:

fm =

∫
fE(f)df∫
E(f)df

. (3.5)

Similar definitions can be written for mean wavenumber, km, and wave height Hm. Note

that the cyclic wavenumber, rather than radial wavenumber, is used throughout this paper.

However, measurements of the propagation speeds of whitecaps indicate that most white-

caps are associated with waves shorter than the peak or mean waves (see Gemmrich et al.,

2008). On average, these waves are much steeper than the dominant waves or swell waves.

Therefore, other wave slope variables are often used to describe the energy in the short to

intermediate wind waves, i.e. the spectral “tail.”

To describe the breaking probability at a desired frequency scale, Banner et al. (2002)

used the azimuth-integrated spectral saturation,

B(f) = k4E(k) =
(2π)4f 5E(f)

2g2
. (3.6)
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The spectral saturation is related to wave steepness through its association with the mean

square slope (mss). Given a range in frequency, f1 < f < f2, the mss of the waves in these

frequencies can be calculated as

mss =

∫ f2

f1

2B(f)

f
df. (3.7)

In addition, Banner et al. (2002) showed better consistency in their results after normalizing

B(f) by the directional spread, ∆θ(f). A number of studies have since used the mss or

mean saturation (B), either normalized or unnormalized, to parameterize breaking (Kleiss

and Melville, 2010; Gemmrich et al., 2013; Hwang et al., 2013).

It has frequently been suggested that a better dynamic predictor of W is the rate of

energy dissipation from wave-breaking, Sds. The idea was proposed early on by Cardone

(1970) to correct for atmospheric stability effects in the data of Monahan (1969). Kraan

et al. (1996) derived a theoretical prediction for W based on the WAM dissipation source

function and a JONSWAP spectrum, which showed reasonable agreement with their mea-

sured whitecap coverage. Hanson and Phillips (1999) used estimates of dissipation from the

Phillips (1985) equilibrium range theory, and showed improved correlation over U10 fits. Most

recently, Hwang and Sletten (2008) derived a dissipation parameterization based on a total

equilibrium with wind energy input. Using a collection of whitecap coverage measurements,

they proposed a linear fit of the form

W = a(Sds − b). (3.8)

Much of the energy lost from the waves during breaking is dissipated as turbulence in

the ocean surface layer. In measurements, this is seen as a region of “enhanced dissipation,”

above a standard logarithmic boundary layer (Craig and Banner, 1994). Gemmrich (2010)

found most of the breaking turbulence to be concentrated in the very near-surface, especially

in the wave crest. Thomson (2012) introduced a drifting measurement platform called the

SWIFT (Surface Wave Instrument Float with Tracking), which is designed to measure the

near-surface dissipation profile, ε(z), in a wave-following reference frame. Schwendeman et al.
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(2014) used SWIFTs to measure ε(z) for fetch-limited waves in the Strait of Juan de Fuca.

They showed good agreement between the wave dissipation rate based on a fetch-limited

energy balance, and the integrated turbulent dissipation,

Sds ≈ ρw

∫
ε(z)dz. (3.9)

Sutherland and Melville (2015) measured turbulent dissipation from the R/V FLIP using a

combination of sub-surface acoustic measurements and stereo infrared (IR) imagery of the

sea surface. They showed excellent correlation between integrated turbulent dissipation and

estimated wave-breaking dissipation for wave ages below approximately cm/u∗ = 50.

A different statistic, which is often used to estimate breaking dissipation, is the breaker

crest distribution, Λ(c). This variable was introduced in Phillips (1985), based on laboratory

work from Duncan (1981), showing a proportionality between the rate of energy loss from a

breaking wave and its phase speed to the fifth power. In this formulation, the total breaking

dissipation becomes

Sds = ρwg
−1

∫
bc5Λ(c)dc, (3.10)

where Λ(c) is the total length of breaking crests per unit area, c is the breaker speed, and

b is a scaling factor sometimes called the “breaking strength.” Λ(c) is a more complete

description of the kinematics of the breaking waves than whitecap coverage. However, the

use of Λ(c) in practice (i.e. in Equation 3.10) has shown varying degrees of success. In

particular, it is strongly suspected that b is not a constant. For example, the laboratory

experiments of Drazen et al. (2008) demonstrated that b increases with the wave steepness,

while Schwendeman et al. (2014) showed orders of magnitude variations in b in both their

data and the published literature. Meanwhile, Banner et al. (2014b) highlighted the large

impacts of differing interpretations of the breaking speed, c.

Conversely, Sutherland and Melville (2013) showed estimates of wave dissipation from

Λ(c) that were well-matched with modeled dissipation values. However, the method of

Sutherland and Melville (2013) differs from the majority of previous studies in two important

ways. First is in the use infrared cameras, leading to measurements of micro-scale breaking
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waves, or “microbreakers,” which are not visible as whitecaps. Sutherland and Melville

(2015) noted that anywhere between 20% and 90% of their total estimated dissipation may

have come from microbreaking. Additionally, they employed a spectral breaking strength,

b(c), introduced in Romero et al. (2012), which uses the spectral saturation (Equation 3.6)

to approximate the dependence on wave slope identified in Drazen et al. (2008).

In this chapter, the focus is on the relationship of whitecap coverage to measurements

of wind, waves, and turbulent dissipation. We choose to avoid Λ(c) for several reasons.

First, the results of Sutherland and Melville (2013) and Schwendeman et al. (2014) strongly

indicate that estimating Sds from Λ(c) is not feasible without measurements of microbreaking,

especially in mature wind seas. Furthermore, although Λ(c) has the potential to provide

more information on the whitecap kinematics, Kleiss and Melville (2011), Schwendeman

et al. (2014), and Banner et al. (2014b) have shown that it can be very sensitive to changes

in processing. Moreover, apart from the total magnitude, Kleiss and Melville (2010) showed

very little variation in their measured Λ(c) from whitecapping. Despite (or perhaps due

to) its simplicity, whitecap coverage remains a useful representation of the overall breaking

conditions. As such, W is frequently used in parameterizations of gas transfer (Woolf, 2005)

and sea spray aerosol production flux (de Leeuw et al., 2011). The layout of this chapter is as

follows: the data collection and processing is described in Section 3.2; the results are shown

and discussed in Sections 3.3 and 3.4; and Section 3.5 summarizes the important points.

3.2 Methods

3.2.1 Field Experiments

The data used here come from two roughly three-week cruises in the North Pacific. The

first cruise, onboard the R/V New Horizon, departed San Diego CA on 26 September 2012

and returned on 16 October 2012. The second, onboard the R/V Thomas G. Thompson,

departed Seattle WA on 27 December 2014 and returned on 14 January 2015. The primary

objective of both cruises was the replacement of a long-term moored wave buoy (Datawell
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Figure 3.1: Map showing average ship locations during observations of both 2012 (blue
crosses) and 2015 (orange squares) cruises.

Waverider MK III) at Ocean Station Papa (50◦ N, 145◦ W). Measurements from this buoy

can be found in Thomson et al. (2013) and (Thomson et al., 2016). The remaining cruise

time was left for further data collection. Figure 3.1 maps the ships’ average location and

proximity to Station Papa during days of successful data collection. Drifting instruments

were used in both experiments, often deployed from the ship at dawn and retrieved later

the same day. The most common combination of drifters was one Waverider buoy (Datawell

DWR-G4) supplemented by two SWIFT buoys. Concurrent with the drifter deployments,

wind and video measurements were made from the ship. During measurement operations,

the ship was directed into the oncoming wind to limit distortion of the wind and waves.
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Figure 3.2 shows histograms of the wind, waves, and dissipation measured during both

experiments, averaged over 30-minute intervals coinciding with the video data (see below).

The amount of data is roughly equal between the two cruises. U10 ranges from 5.5 m/s to

16.0 m/s, and Hs from 1.5 m and 5.8 m. Overall, the 2015 experiment resulted in more

measurements of high winds, large and long waves, and high dissipation rates than 2012.

Further details of the measurements are provided below.

3.2.2 In Situ Methods

Wind speed and direction were measured at 10 Hz using a tri-axis R. M. Young 8100 Sonic

Anemometer mounted on the ships’ jack staff. The anemometer height above sea level was

11.8 meters in 2012, and 15.7 meters in 2015. After despiking, the mean speed and direction

are calculated over five-minute bursts. The wind friction velocity, u∗, is estimated using the

inertial dissipation method (Edson et al., 1991; Yelland et al., 1994). Wind speed is corrected

to the 10-meter estimate, U10, using a standard turbulent boundary layer assumption with

roughness z0 given by the Charnock relation with constant Charnock parameter, ch = 0.014

(Garratt, 1977).

Wave spectral measurements come from the Datawell DWR-G4 waveriders, which use

GPS to measure the horizontal (east-west and north-south) and vertical wave orbital veloc-

ities. Datawell’s built-in processing techniques are applied to the velocity measurements to

calculate the frequency spectrum, E(f), mean wave direction, θ(f) and directional spread,

∆θ(f) (de Vries, 2014). These were used to calculate the bulk parameters (Hs, fm, etc)

described in Section 3.1 and shown in Figure 3.2 .

Figure 3.3a shows the frequency spectra measured during the experiments, as well as the

fourth and fifth moments of the spectra, and directional spread, all colored by U10. After

normalizing by the mean frequency, fm, several frequency regimes are apparent. At low

frequencies below fm there is often significant swell energy, with some swell peaks on the

order of the dominant wave energy. There is little relationship between the swell energy and

the wind speed, as these waves were not generated by the local winds. The absolute peak
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in E(f) often occurs in the vicinity of fm = 1, but they do not match exactly. Above fm,

the spectra initially decay as f−4, consistent with the equilibrium range theory of Phillips

(1985). According to Phillips’ theory, in this regime the spectral source terms of wind

input, dissipation, and nonlinear energy flux are all in equilibrium, and the total energy is

proportional to the local wind stress. Beyond these frequencies there is a transition to an f−5

tail, as has been observed in several previous measurements (e.g. Kahma and Calkoen, 1992;

Romero and Melville, 2010) and which is often called the saturation range. This transition

is more clearly visible in the fourth and fifth moments of the spectra. Based on the spectra,

we define the equilibrium range to extend from roughly
√

2fm to
√

5fm (2km to 5km), as

shown in dotted lines on Figure 3.3.

The fundamental principles of the SWIFT platform are detailed in Thomson (2012).

The SWIFTs are equipped with a Nortek Aquadopp HR current profiler, which measures

water velocities from a depth of 0.6 meters up to the free surface. The SWIFTs follow

the wave orbital motion at the surface, effectively filtering the orbital velocity from their

measurement. What remains are only the turbulent velocity fluctuations. The second-

order structure function is calculated from the time series of velocity profiles at five-minute

intervals. Using the method of Wiles et al. (2006), based on Kolmogorov’s theory, leads to

profiles of the turbulent dissipation rate. Throughout this paper, a bulk turbulent dissipation

rate is used from integrating the profiles in depth, as in Equation 3.9. The turbulence profiles

themselves are analyzed in further detail in a separate paper using the 2015 data (Thomson

et al., 2016).

3.2.3 Video Methods

The camera configuration differed slightly between the two experiments. In 2012, a single

serial “bullet” camera with a wide field-of-view (FOV) was mounted on a Pan/Tilt system to

the foreword rail of the second deck of the R/V New Horizon, at a 10.8 meter height, similar

to the setup of Schwendeman et al. (2014). The Pan/Tilt provided active stabilization and

the capability to look either starboard or port, depending on lighting conditions. In 2015,
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the bullet camera was replaced with several Pt. Grey Flea2 and Flea2G cameras, which were

mounted directly to the ship’s port and starboard rails, 11.0 meters above the waterline. One

camera on each side had a FOV similar to the bullet camera. To test the effect of better

resolution, another camera on each side was fitted with a narrower lens. Video was recorded

synchronously from both cameras, and the side was again chosen based on the lighting.

Table 3.1 summarizes the camera configuration and specifications from both experiments.

Camera settings such as exposure time and gain were adjusted before every video capture

to maximize contrast and minimize saturation.

Table 3.1: Camera specifications and geometry.

Rectified

Year Camera Focal Length Height Pixels Resolution

2012 Mini Bullet, Sony ExView 3.6 mm 10.8 m 720× 480 1.2× 10−2 m2

2015 Pt. Grey Flea2G 2.8 mm 11.0 m 1288× 964 1.2× 10−2 m2

2015 Pt. Grey Flea2 9 mm 11.0 m 1032× 776 1.5× 10−3 m2

Figure 3.4 shows the steps involved in the video processing. First, the resulting video data

is georectified from pixel coordinates to meters. Schwendeman and Thomson (2015a) showed

that, in the absence of other data sources, adequate georectification can be performed using

an automatic detection of the horizon. This is the method used on the 2012 video data. In

2015, a NovAtel SPAN-IGM-A1 receiver and dual antennas were mounted on the rail next

to the port side cameras to aid in the georectification. NovAtel’s SPAN products combine

an inertial navigation system (INS) with global navigation satellite system (GNSS) for a

more robust and accurate position measurement than can be achieved with either method

alone. The horizon method is still used, as a means to synchronize the camera frames and

INS-GNSS data stream. The rectified images are interpolated onto a rectangular grid for

further processing. In each case, the grid was set between 40 and 60 meters from the ship,

to avoid reflections from the ship while maintaining acceptable camera resolution. The pixel
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Figure 3.4: Example of rectification and thresholding for a single video frame. (a) The orig-
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thresholding.
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footprint in the rectified image is specific to the camera geometry, the details of which can

be found in Table 3.1.

Next, a brightness threshold is applied to the rectified video to isolate the whitecaps.

A method similar to that of Kleiss and Melville (2011) and Schwendeman et al. (2014)

works well for the large quantity of video used here. In this technique, a histogram of

pixel brightness is calculated over 5-minute lengths of video. The second derivative of the

logarithm of the histogram yields a peaked shape, indicating a change of curvature separating

the bright foam of the whitecaps from the otherwise dark sea surface. The threshold is set as

the brightness at 20% of the peak in the curvature, as recommended in Kleiss and Melville

(2011).

Finally, the 5-minute thresholded bursts are gathered into half-hour segments for cal-

culation of whitecap coverage, W . Averaging over 30 minutes reduces the scatter in the

W estimate, and matches the duration of the Waverider measurements. Since video was

recorded at 15 frames-per-second (fps) in the 2012 experiment, and 5 or 7.5 fps in 2015,

this amounts to between 9000 and 27000 images per 30 minutes. This is well above the

500 images which Callaghan and White (2009) recommended to reduce the variability of W

to ±3%. Still, uncertainty exists due to non-stationarity of the whitecapping and lighting

conditions, as well as in the choice of threshold. Variability in the 5-minute bursts is used to

make error estimates in the 30-minute averages. A bootstrapping of the bursts is performed,

and error bars are calculated corresponding to one standard deviation around the mean.

Some errors were particularly large, on the order of W , and were found to correlate with

poor thresholding or low data quality in one or more of the bursts. Therefore, these points

are removed from the subsequent analysis.

The two cameras from the 2015 experiment are used to determine the effect of the pixel

resolution on whitecap coverage. Schwendeman et al. (2014) postulated that their data was

biased by inadequate resolution of small whitecaps. The narrow FOV camera improved

upon the previous resolution by roughly a factor of 10 (Table 3.1), but Figure 3.5 shows

little difference in W from the larger FOV. Therefore, to avoid double-counting the 2015
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data in curve-fitting, only the wide FOV results are used in the remainder of the paper.

Figure 3.5 indicates that the limiting factor for identifying small breaking events may

not be camera resolution. This is encouraging for comparisons of W measurements across

studies, given that there has been little attempt to standardize equipment and image acquisi-

tion. However, there is another factor which may preclude measurement of small whitecaps,

namely, lack of contrast due to less production of bubbles and foam. Visual inspection of

our images indicates that the quantification of these small events is highly dependent on

proper illumination and optimal camera settings (exposure, shutter speed, etc.). Glare, sun

glitter, and low light at dawn and dusk can all impede the detection of small breakers. In

the limiting case of microbreaking, no foam is produced, meaning that these events cannot

be measured from traditional video cameras regardless of camera settings and lighting.
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3.3 Results

3.3.1 W vs. U10 and u∗

As discussed in Section 3.1, the most common parameterization of whitecap coverage is to

U10. Figure 3.6a shows the North Pacific data along with three fits from the recent literature,

plus the widely used relation of Monahan and O’Muircheartaigh (1980). The three more

recent studies were chosen because their experimental methods closely match those used

here. In each of these studies, whitecap coverage was calculated using digital images from a

camera set 10-20 m above sea level with an oblique view 6-33◦ below horizontal, and with a

pixel-wise brightness threshold. Stramska and Petelski (2003) and Callaghan et al. (2008a)

both used shipboard photographs from the North Atlantic Ocean, while the video in Sugihara

et al. (2007) came from a tower in Tanabe Bay, Japan, roughly 2 km offshore. In all cases, the

local winds were measured in situ and adjusted to U10, without a correction for atmospheric

stability. Each fit line is plotted for only the range of the available measurements, with

maximum U10 of 14 m/s (Stramska and Petelski, 2003), 16.3 (Sugihara et al., 2007), and

23.1 (Callaghan et al., 2008a). All of these fits are of the cubic variety (Equation 3.2),

although Callaghan et al. (2008a) found that their data was best described by two distinct

cubics, with a transition between 9.25 and 11.25 m/s. The literature curves tend to diverge

for U10 < 7 m/s, when whitecapping is infrequent and microbreaking may have a larger

impact. In the range of 7 < U10 < 14 m/s, the fits agree to within roughly a factor of 2.

This wind speed range also brackets the majority of the North Pacific data.

The W data used in Monahan and O’Muircheartaigh (1980) were calculated manually,

using the method described in Monahan (1969). This may explain why the classical Monahan

and O’Muircheartaigh (1980) fit is biased high relative to the other curves, which were made

using thresholded digital images. In addition, the Monahan and O’Muircheartaigh (1980) fit

is in the form of a power law (Equation 3.1), which diverges from the cubic fits at low wind

speeds.

A fit to the North Pacific data is also plotted in Figure 3.6a, and closely resembles those
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of the recent literature. A hybrid of Equations 3.1 and 3.2 is used,

W = a(x− b)n, (3.11)

were x is the explanatory variable, in this case U10. This style of fit is used throughout the

remainder of this paper, and will be called the “threshold power law.” It incorporates the

threshold behavior which is a common feature of whitecap parameterizations (e.g. Banner

et al., 2000), as well as the ability to tune the exponent, n. The threshold power law is more

versatile than either Equations 3.1 or 3.2, however, the coefficients of this function cannot

be solved for linearly. Instead, the Levenberg-Marquardt algorithm is used to compute the

best fit by minimizing the sum of the squares of the log residuals,

Wres = log10W − log10 [a(x− b)n] . (3.12)

The log residuals are used to give equal weight to the whitecap data across several orders

of magnitude. Table 3.2 shows the best fit values of a, b, and n from Equation 3.11. In

addition, 90% confidence intervals are estimated for each coefficient, again using a bootstrap-

style technique. The full dataset is randomly resampled (with replacement) 100 times, with

a best fit calculated after each resampling. The confidence intervals on each coefficient

correspond to the 5th lowest and 95th highest value in the set of all fits. It should be noted

that because the threshold power law has three coefficients, these confidence intervals are

sometimes quite large, particularly when the variables are highly scattered. In the case of

U10, the cubic equation likely would have been adequate, as n = 2.8 is the exponent of the

best fit, and n = 3 is within the confidence interval (1.94 ≤ n ≤ 3.39).

Table 3.3 lists the error metrics for each fit, which are also calculated from the log

residuals. The root mean square error (RMSE) is defined as

RMSE =

√∑
W 2
res

N
, (3.13)

where N is the number of observations. This RMSE can be thought of as an average

order of magnitude deviation from the fit. The other quantity shown is the coefficient of
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Table 3.2: Results of the threshold power law fit, W = a(x − b)n, with 90% confidence
intervals in parenthesis.

Fit Variable, x a b n

U10 2.81 × 10−5 3.87 × 100 2.76

(Interval) (4.88 × 10−6, 2.19 × 10−4) (2.77 × 100, 5.21 × 100) (1.94, 3.39)

u∗ 6.82 × 10−2 1.39 × 10−1 2.04

(Interval) (5.08 × 10−2, 1.03 × 10−1) (9.49 × 10−2, 1.67 × 10−1) (1.63, 2.56)

U10/cm 2.71 × 10−2 3.85 × 10−1 2.66

(Interval) (1.48 × 10−3, 3.31 × 10−2) (-2.19 × 10−1, 5.41 × 10−1) (1.55, 5.32)

u∗/cm 9.64 × 100 1.69 × 10−2 1.92

(Interval) (9.54 × 10−1, 6.24 × 101) (1.34 × 10−2, 2.00 × 10−2) (1.25, 2.50)

u∗/cp 4.80 × 10−1 1.14 × 10−2 1.09

(Interval) (1.02 × 10−1, 6.89 × 103) (-6.49 × 10−2, 1.32 × 10−2) (0.67, 5.36)

Hskp/2 5.43 × 103 -3.33 × 10−2 4.48

(Interval) (4.16 × 10−2, 3.09 × 106) (-3.76 × 10−1, 2.51 × 10−3) (0.43, 9.99)

Hskm/2 6.85 × 102 5.78 × 10−3 2.66

(Interval) (3.09 × 100, 5.00 × 105) (-1.79 × 10−3, 9.10 × 10−3) (1.40, 4.47)

Hmkm/2 8.26 × 101 1.28 × 10−3 2.19

(Interval) (1.47 × 10−1, 5.72 × 103) (-6.54 × 10−4, 5.78 × 10−3) (0.70, 3.27)

Hpkp/2 1.47 × 105 -6.81 × 10−2 6.71

(Interval) (1.60 × 102, 3.35 × 105) (-3.65 × 10−1, -1.68 × 10−2) (2.81, 17.42)

mss 7.63 × 107 3.26 × 10−4 4.01

(Interval) (2.61 × 107, 1.05 × 108) (-2.05 × 10−4, 5.10 × 10−4) (3.88, 4.09)

mss/(∆θ) 1.46 × 105 9.36 × 10−4 3.07

(Interval) (2.94 × 100, 1.02 × 107) (4.66 × 10−4, 2.52 × 10−3) (1.03, 3.87)

mss/(∆f∆θ) 2.82 × 101 1.44 × 10−2 2.39

(Interval) (1.90 × 100, 1.05 × 102) (1.26 × 10−2, 2.12 × 10−2) (1.45, 2.81)∫
ε(z)dz 1.73 × 104 1.97 × 10−4 1.89

(Interval) (1.30 × 103, 6.02 × 107) (1.40 × 10−4, 3.11 × 10−4) (1.47, 2.92)∫
ε(z)dz (n = 1) 2.80 × 101 3.46 × 10−4 1

(Interval) (2.20 × 101, 3.52 × 101) (3.26 × 10−4, 3.76 × 10−4)
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determination (R2), here defined as,

R2 = 1−
∑
W 2
res∑(

log10W − log10W
)2 , (3.14)

where the overbar implies an average. As will be discussed further, the fit to U10 has the

best statistics (RMSE=0.28 , R2=0.81) of any shown in this paper.

In Figure 3.6b, W is plotted against u∗, with a threshold power law fit and literature

relations from Stramska and Petelski (2003) and Sugihara et al. (2007). u∗ was not calculated

in Callaghan et al. (2008a). The scatter is slightly more than for U10, as indicated by the

fit statistics (RMSE=0.32, R2=0.74). In addition, the fit from Stramska and Petelski (2003)

is qualitatively distinct from the others. This is probably explained by the fact that while

u∗ was estimated here and in Sugihara et al. (2007) using the inertial dissipation method,

Stramska and Petelski (2003) use an empirical relation from U10.

One feature that is apparent in this dataset is a leveling off of W at the highest winds,

U10 > 14 m/s. In many ways this is similar to the results of Callaghan et al. (2008a), which

also show a muted whitecapping response in the high wind speed regime. Unfortunately,

these conditions are not frequently measured, so it is difficult to ascertain whether this is a

persistent feature or a product of small sample size. For example, the data above 14 m/s

shown here come from a single day (07-Jan, 2015). Similarly, Sugihara et al. (2007) show

only two data points above 14 m/s and Stramska and Petelski (2003) do not make any

measurements above 14 m/s.

Stramska and Petelski (2003), Sugihara et al. (2007), and Callaghan et al. (2008a) each

identify wave development as a source of scatter in their W (U10) plots. Stramska and Petelski

(2003) separate their data using the difference between their (visually-estimated) Hs and

the fully-developed significant wave height, HFull, from the Pierson-Moskowitz spectrum

(Pierson and Moskowitz, 1964). They find markedly less whitecapping when the waves are

“undeveloped,” defined as Hs < (HFull − 0.5 m), in comparison with the “developed” waves

in similar wind speeds. Sugihara et al. (2007) note a similar separation by wave age, cp/u∗,

but only in the case of pure windseas. For 8 < cp/u∗ < 16, W is noticeably less than the
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Table 3.3: Statistics of the threshold power law best fit.

Fit Variable, x RMSE R2

U10 0.28 0.81

u∗ 0.32 0.74

U10/cm 0.34 0.69

u∗/cm 0.30 0.76

u∗/cp 0.43 0.49

Hskp/2 0.56 0.13

Hskm/2 0.44 0.48

Hmkm/2 0.47 0.40

Hpkp/2 0.57 0.10

mss 0.39 0.58

mss/(∆θ) 0.38 0.61

mss/(∆f∆θ) 0.30 0.75∫
ε(z)dz 0.50 0.27∫

ε(z)dz (n = 1) 0.51 0.26
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remainder of the data (16 < cp/u∗ < 29). Finally, Callaghan et al. (2008a) concentrate on

the wind history, or wind acceleration, similar to Hanson and Phillips (1999). They show

that when the wind is increasing (as measured over a 2.5 hour period) and U10 is above 9

m/s, W is significantly reduced. To summarize, each study found that when the waves were

growing or highly forced, the whitecap coverage was less than otherwise expected.

These ideas are tested using the residuals of the U10 threshold power law fit. Figure

3.7a shows the Wres data plotted against cm/u∗. A linear fit of the residuals is also shown

to highlight the trend. Interestingly, over the whole dataset there is a decreasing trend

with wave age (W reduced in older waves). However, for cm/u∗ < 29, as in the Sugihara

et al. (2007) dataset, Wres strongly increases with wave age. In other words, W is less than

predicted in both particularly young and particularly old waves. This is similar to the results

of Lafon et al. (2007) in a coastal region, showing a peak in W at around cp/U10 = 0.69. A fit

of W to (inverse) wave age alone was also attempted, however, the overall statistics are not

significantly improved (see Table 3.3) and no peak is apparent. Of the wave age variables,

the best fit is to u∗/cm, rather than cp or U10.

Next, the residuals are examined as a function of the 2.5-hour average wind acceleration,

∆U10/∆t, as in Callaghan et al. (2008a) (Figure 3.7b). The linear fit is plotted for all

the residuals, as well as for only U10 > 9 m/s. As predicted, the residuals are negative (W

reduced) for accelerating winds, and the effect is more pronounced in the higher wind regime.

Even for the higher winds, however, the trend is small in comparison with the overall scatter.

Finally, the residuals are plotted against the Stramska and Petelski (2003) wave development

metric, HFull −Hs. For this variable almost no trend can be seen. This is likely due to the

influence of swell on Hs. Indeed there are many points for which Hs > HFull, which could

not occur in the absence of swell energy.

3.3.2 W vs. Wave Slope

Figure 3.7 shows that wave development can modulate the general relationship of W to U10.

Next we test how well the whitecap coverage can be predicted from measurements of the
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Figure 3.7: Residuals of the U10 fit, plotted against (a) wave age, (b) wind acceleration,
and (c) wave height difference from fully-developed. Dashed lines show linear fits to all the
residuals. The dash-dot line in (a) is for only cm/u∗ < 29. The dotted line in (b) is for
U10 > 9 m/s (U10 < 9 m/s data are shown with open circles).

waves alone. As discussed in Section 3.1, an increase in the overall wave steepness is expected

to lead to more whitecaps. In Figure 3.8a, W is plotted against wave steepness using the

significant wave height, Hs, and the mean wavenumber, km. There is a clear correlation, but

several points look to be extreme outliers. In particular, the points in the lower right of the

plot, with relatively large steepness but little whitecapping. These are likely points with a

significant fraction of swell energy, leading to an unsuitable significant wave height. Again, a

threshold power law fit is used to quantify the correlation, as shown in Tables 3.2 and 3.3. In

addition, the results using several alternative steepnesses of the form Hk/2 are also reported.

Despite the issues visible in Figure 3.8a, Hskm/2 was found to have the best statistics of

these fits (RMSE=0.44, R2=0.48). The fits using peak variables Hp or kp are particularly

poor for this data. This is important to note, because while breaking parameterizations that

have been developed in young wind seas often use these variables (e.g. Hwang and Sletten,

2008; Kleiss and Melville, 2010), in the open ocean the peak waves may not be related to
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Figure 3.8: Whitecap coverage vs. (a) Hskm/2 and (b) equilibrium range mss, using the
frequencies

√
2fm ≤ f ≤

√
5fm, and normalized by the mean directional spread, ∆θ, and

frequency bandwidth, ∆f . Black lines are the current fits, and the orange line comes from
Kleiss and Melville (2010), using Hpkp.

the breaking waves at all. The fit from Kleiss and Melville (2010) to Hpkp/2 is shown for

comparison in Figure 3.8a. Aside from the scatter, the overall behavior is quite similar over

the range of their measurements. Note that Kleiss and Melville (2010) use a standard power

law fit, which is acceptable since their steepnesses are all relatively large. However, the North

Pacific whitecaps show a clear threshold around Hskm/2 ≈ 0.01, which the power law could

not reproduce.

Better agreement is found using steepness parameters that focus on the short or in-

termediate wind waves. In particular, the mss of the equilibrium range waves shows good

correlation (RMSE=0.39, R2=0.58). Again, the definition of the equilibrium range used here

is
√

2 ≤ f/fm ≤
√

5, as shown in Figure 3.3. Extending the mean square slope calculation to
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higher frequencies in the saturation range tends to degrade the correlation. This may have to

do with the scale of waves that form whitecaps. The corresponding equilibrium range phase

speeds are 0.44 to 0.71 times cm. Although the peak in estimates of Λ(c) from whitecaps

tends to be in the 0.2cm to 0.5cm range, these equilibrium range waves are well-represented

in the overall whitecapping. Moreover the results of Gemmrich et al. (2013) indicate that

after weighting by c5, the equilibrium waves produce the majority of the whitecap energy

dissipation. This gives a physical reasoning as to why the slopes of these particular waves

best explain the whitecap coverage.

In Figure 3.8b, W is plotted against mss after further normalizing by directional spread,

∆θ, and frequency bandwidth, ∆f . The resulting fit nearly matches the performance of the

wind variables (RMSE=0.30, R2=0.75). The success of the normalization shows that, for

similar mss, wavefields that are more unidirectional will exhibit more breaking. Note that

Figure 3.3 shows significant variation in the directional spread with frequency. For consis-

tency with mss, the value used in the normalization is the mean value over the equilibrium

range frequencies. The mss normalized by ∆θ is similar to the “weighted, band-averaged

saturation” used in Gemmrich (2010) and Gemmrich et al. (2013),

σb =

∫ 4fp

fp

B(f)

f∆θ(f)
df, (3.15)

where ∆θ(f) is the frequency-dependent directional spread and the factor of 1/f relates the

saturation, B(f), to mss (as in Eq. 3.7). In addition, normalizing by frequency bandwidth,

∆f = (
√

5 −
√

2)fm, also improves the quality of the fit. Since f−1B(f) ∝ f 4E(f) is

approximately constant in the equilibrium range, this normalization removes the erroneous

dependence on fm from the limits of integration.

Compared to Figure 3.6, the plots of W with wave steepness variables show less evidence

of leveling off at the high winds (steep waves). Thus the unexpectedly low W for these wind

conditions is perhaps explained by the wave slope, which is also lower than expected. This

effect is also shown and discussed in Thomson et al. (2016). Although the overall fit to mss

is not quite as good as that of U10, it may be that young, highly-forced waves are a case
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where wave slope parameters outperform the wind variables.

3.3.3 W vs. Turbulent Dissipation Rate

Finally, the whitecap coverage is compared with the turbulent dissipation rate, as measured

by the SWIFT drifters. Again, the SWIFTs measure profiles of dissipation, ε(z), but since we

are only interested in total dissipation, we integrate the profiles to a single value,
∫
ε(z)dz.

This bulk turbulent dissipation rate is in good agreement with the wave dissipation rate

in many conditions (see Thomson et al., 2013; Schwendeman et al., 2014). Figure 3.9a

shows W plotted against
∫
ε(z)dz. It is clear that the scatter is much larger than both

the wind speed and wave steepness parameterizations. This is reflected in the statistics of

the threshold power law fit to the dissipation data (RMSE=0.50, R2=0.27). In particular,

for integrated dissipation rates below 5 m3s−2, the variability is more than two orders of

magnitude. Although the confidence intervals on the best fit exponent (1.47 ≤ n ≤ 2.92)

do not support the linear model proposed by Hwang and Sletten (2008), the statistics are

not made significantly worse by constraining the fit to be linear (RMSE=0.51, R2=0.26). In

Figure 3.9b, the same results are plotted using a linear vertical axis for an alternative view

of the data.

In Figure 3.10, the residuals of the fit to dissipation are examined, using cm/u∗ as in

Figure 3.7a. This time the young waves (cm/u∗ ≤ 29) show no clear pattern. However, for

older waves there is an even stronger negative trend. The lowest residuals come from the

periods when whitecap coverage is least, yet there is still significant turbulent dissipation.

This could be evidence of the contribution of microbreaking to the dissipation. It is consistent

with Sutherland and Melville (2015), who suggest that the percentage of dissipation from

microbreaking increases with wave age, to as much as 90%.

Alternatively, uncertainty in the in situ measurements of turbulent dissipation may be

responsible for both the overall scatter and the bias. There are three broad categories of

uncertainties here. First are uncertainties from sources of turbulent dissipation not related

to wave breaking. These could be due to direct input from the wind, non-breaking “swell
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Figure 3.9: Whitecap coverage vs. integrated turbulent dissipation rate, shown on (a) log-
arithmic and (b) linear axis. Solid lines are the threshold power law fit, while dashed lines
are a linear fit.

dissipation,” or the SWIFTs’ own turbulent wake. The first two have been estimated to be

only minor contributions to the total turbulent dissipation (see Terray et al., 1996; Schwen-

deman et al., 2014), while the latter is minimized by using acoustic beams directed out and

away from the SWIFT hull. Conversely, the turbulent dissipation is only one of several

mechanisms for breaking-related dissipation. Most importantly, these measurements cannot

quantify the dissipation due to the entrainment of air in the whitecap bubble plume, which

Lamarre and Melville (1991) estimated to be as much as 50% of the dissipation in laboratory

breakers. Finally, there are the uncertainties in the measurement of turbulent dissipation

inherent to the SWIFT instrumentation and methodology. Thomson (2012) estimated these

errors to be on the order of 10%, however, these estimates were made for much smaller wave

heights (Hs < 1 m). More recently, Thomson et al. (2016) have demonstrated the difficulty
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Figure 3.10: Residuals of the threshold power law fit to turbulent dissipation, plotted against
wave age. The dashed line is a linear fit to all the residuals, and the dash-dot line is for only
cm/u∗ < 29.

in measuring turbulent velocities in the bubble cloud produced by large breaking events.

Therefore, it may be that some of the dissipation occurring during active whitecapping is

not resolved in the SWIFT measurements.

3.4 Discussion

Figure 3.6a stands in stark contrast to Anguelova and Webster (2006), who suggest discrep-

ancies of two orders of magnitude in the literature W (U10) fits across all wind speeds. By

comparing only studies using modern digital image processing and similar camera geometry,

many of the main methodological sources of scatter are eliminated. There is a clear distinc-

tion from the widely-used fit of Monahan and O’Muircheartaigh (1980), which was derived

from manual tracing of whitecaps in relatively small batches of photographs. The modern

fits agree to within roughly a factor of two between wind speeds of 7 and 14 m/s. Large

intermittence of whitecapping is likely responsible for the deviations at low wind speeds.

Meanwhile at high winds, the relative lack of measurements leads to biases associated with
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the small sample size. Still, despite all the known issues, the fit to U10 has the least error

of all the variables examined here. This is similar to the conclusions of Kleiss and Melville

(2010), Goddijn-Murphy et al. (2011), and Salisbury et al. (2013), who all show little to no

improvement using parameterizations that incorporate the wave conditions.

Wave-breaking is related to the local wind speed through the concept of equilibrium.

According to the Phillips (1985) theory, the spectral energy density of the equilibrium range

waves is proportional to u∗. Since mss is calculated from the fourth moment of the wave

frequency spectrum, and the equilibrium range spectrum decays as f−4, the mss of the equi-

librium waves is approximately proportional to u∗, as shown in Thomson et al. (2013). Thus,

the success of the fit of W to equilibrium range mss is no coincidence. The Phillips theory

also accounts for the directional spread of the waves through the I(p) function, although this

variable is more challenging to measure.

Thomson et al. (2013) also demonstrated that total wind input and total wave dissipation

are often in near-equilibrium (i.e. not just in the spectral equilibrium range). This was

also shown in Hwang and Sletten (2008), based on a scaling of fetch-limited wave growth.

Their proposed dissipation scaling (Equation 3.8) was actually validated using the wind

input, which is primarily dependent on u∗, with a small modulation by wave variables. To

summarize: the U10 and u∗ parameterizations are successful because they are variables that

are closely linked to both the equilibrium wave steepness and wave-breaking dissipation, yet

are measured more precisely than either steepness or dissipation themselves.

An unresolved question is whether to differentiate “active” whitecaps from “residual”

foam, as is often done in the literature (e.g. Scanlon and Ward, 2013). It has been hypoth-

esized that measurements of purely active breaking may be more closely related to wave

dynamics, since the behavior of residual foam is dependent on water chemistry (Callaghan

et al., 2008b). The experiments of Callaghan et al. (2013) show that whitecap foam can in-

deed be stabilized by high levels of surfactants. Meanwhile, satellite estimates of W indicate

that U10 parameterizations are biased low when the sea surface temperature is high, perhaps

because of increased water viscosity or other bubble dynamics (Salisbury et al., 2013). How-
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ever, ongoing laboratory work has shown an approximately linear relationship between the

volume of a whitecap’s submerged bubble plume and its dissipation of wave energy (A. H.

Callaghan, personal communication). A similar conclusion was presented in Lamarre and

Melville (1991). The bubble plume volume is in turn correlated with the surface decay of

the whitecap foam patch, although water chemistry (e.g. large surfactant concentrations)

may modify this relationship. In this way, the appearance and decay of residual foam may

actually be a more useful expression of the breaking energetics than previously thought.

As discussed in Scanlon and Ward (2013), it is difficult to separate active and residual

breaking on the basis of pixel brightness alone. Instead, we use an implicit calculation to

determine the influence of residual foam in W . This strategy is based on the observation

that as a whitecap propagates through the camera field-of-view, it “flips” pixels from zero to

one in the thresholded images (Figure 3.4c). For an idealized whitecap, these pixels remain

“flipped” until the residual foam fully decays. In this case, only the newly flipped pixels

are associated with active whitecapping, while the total whitecap coverage also incorporates

residual foam. The ratio of these quantities, multiplied by the time between images, dt,

produces a characteristic foam timescale,

τ =

∑
Itotal∑
Iflipped

dt, (3.16)

where dt is needed to account for differences in camera frame rate. It should be noted

that, though related, this τ is not directly comparable to the average whitecap duration as

calculated from Λ(c) (as in Kleiss and Melville, 2010), or from tracking individual breakers

(as in Callaghan, 2013). Rather, τ represents the average residence time of whitecap foam

over an individual image pixel.

Unfortunately, visual inspection of the thresholded images shows that the actual white-

caps do not necessarily behave like the idealized whitecap described above. Instead, real

whitecaps leave patchy foam which may be further advected by the subsequent wave or-

bitals. This means that pixels may flip several times over the course of a single breaking

event. Therefore, a further condition is implemented to better isolate the foam timescales.
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Figure 3.11: The characteristic residual foam time, τ , calculated using Tmin = 5 seconds
(blue), and Tmin = 10 seconds (orange), plotted against (a) the turbulent dissipation rate,
and (b) normalized mean square slope. The dashed lines are linear best fits.

Specifically, pixels are only counted in Iflipped the first time they flip within a defined time

frame, Tmin. This assumes that all subsequent flips within Tmin are assumed to be due to the

same wave, therefore Tmin should be on the order of the mean wave period, Tm, or between

5 and 10 seconds (see Figure 3.2).

In Figure 3.11, τ is plotted against the turbulent dissipation rate and normalized mss,

for Tmin equal 5 seconds and 10 seconds. Increasing Tmin leads to slightly larger values of

τ , but in either case a similar trend is apparent, namely, that steeper waves and increased

dissipation are associated with an increase in residual foam. As mentioned above, this is

likely due to bubbles being injected deeper into the water column for breaking under these

conditions. This also shows that the increase in whitecap coverage with these quantities (as

in Figures 3.6, 3.8, and 3.9) is not due to an increase in the rate of breaking alone, but is

also the result of a transition to larger, longer-lasting, whitecap events.

Finally, in relating whitecap measurements to wave dissipation, it is tempting to switch

from W to Λ(c). But would it improve the results? The potential gain is from the additional



79

dependence on the breaker speeds. However, as discussed in Section 3.1, not only is the

measurement of breaking speed problematic, most studies have shown the overall shape of

Λ(c) to be remarkably consistent. All together, Gemmrich et al. (2008), Thomson et al.

(2009), Kleiss and Melville (2010), Gemmrich et al. (2013), Schwendeman et al. (2014)

produce dozens of Λ(c) with similar unimodal distributions, peaking somewhere in the range

of 0.2 to 0.5 times the dominant phase speed, and decaying at a rate of around c−6. In

other words, the main dynamic parameter in Λ(c) is its amplitude, or the total length of

breaking crests per area, which is similar to the whitecap coverage. It is not surprising that

the large scatter in W over the years (see Anguelova and Webster, 2006) is mirrored by

similar variability in the breaking strength, b (see Schwendeman et al., 2014), since these

approaches share many similar sources of uncertainty (e.g. image processing, microbreaking

and residual foam, noisy ancillary measurements). For example, the negative residual trend

of W with wave age shown here is a similar result to the increase in b with wave age shown

in Gemmrich et al. (2008). One advantage of Λ(c) is that it is a spectral measurement, and

could potentially be used to calculate spectral wave dissipation. In practice, however, small

errors in Λ(c) are exaggerated by the calculation of the fifth moment, particularly for large

c. Furthermore, if the breaking strength is indeed spectral (as in Romero et al., 2012), that

value has not yet been well validated.

3.5 Conclusion

Whitecap coverage was measured during two experiments in the North Pacific Ocean, and

was found to correlate in varying degrees with wind speed and wind stress, wave steepness,

and turbulent dissipation. Interestingly, no significant differences in W were found when

decreasing the camera pixel footprint by an order of magnitude in the 2015 experiment. The

coefficients and errors for a threshold power law fit to W and each variable are compiled in

Tables 3.2 and 3.3. The residuals of these fits were used to investigate potential biases in

the parameterizations.

The fit to U10 has the best overall statistics, and shows good agreement with U10 relations
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from similar recent studies (Stramska and Petelski, 2003; Sugihara et al., 2007; Callaghan

et al., 2008a), particularly where the density of data is high (roughly 7 ≤ U10 ≤ 14 m/s).

There is a general leveling off of whitecap coverage at high winds, as was also shown in

Callaghan et al. (2008a). There is some minor evidence of bias in the W (U10) relation due

to wave development, as inferred from measurements of wind acceleration and wave age.

However, the variability in the residuals is large relative to these secondary trends.

Of the wave slope parameterizations, the best correlation is with the mean square slope

of the equilibrium range waves, defined as
√

2fm ≤ f ≤
√

5fm. This is probably because the

majority of whitecaps form in this range. Meanwhile, other bulk steepness values are based

on the dominant waves or are influenced by swell. The worst parameterizations involve the

“peak” variables, which may be completely associated with swell. The fit to equilibrium range

mss is further improved by normalizing by the directional spread and frequency bandwidth.

Whitecap coverage does correlate with turbulent dissipation, but the variability is larger

than for the wind or wave parameters. The best fit is not linear, as has frequently been

proposed, but the large scatter means a linear trend cannot be completely dismissed. The

residuals show a strong trend with wave age, possibly related to microbreaking. There are

clear parallels to the Λ(c) literature, due to many similar sources of uncertainty.
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Chapter 4

MEASUREMENTS OF WHITECAP GEOMETRY AND
STEEPNESS FROM A SHIP-BASED STEREO VIDEO

SYSTEM1

4.1 Introduction

The breaking of surface waves in deep water has been an active topic of research for decades,

due to its importance for safety at sea, wave forecasting, and air-sea interactions (Melville,

1996). Progress has been slow, as the physics of breaking are complex, and the necessary

measurements challenging. Two questions in particular remain unresolved: what causes a

wave to break (breaking onset), and how much wave energy is lost during breaking (breaking

dissipation) (Babanin, 2011). Advances have been primarily made through numerical and

laboratory simulations, as measurements of oceanic breakers, or “whitecaps,” are particu-

larly difficult (Perlin et al., 2013). In the following paper, observations of whitecaps are

presented from a ship-based stereo video system. The focus is on the geometry of the break-

ing waves, especially their steepness, which is thought to be a critical factor for both onset

and dissipation.

In deep water, the geometry of a linear monochromatic wave is fully determined by just

two parameters, the wave height, H, and wave length, L, and thus the steepness may be

described as simply the ratio H/L. In a real wave environment, however, the waves are

neither monochromatic nor linear, which complicates the description of the wave geometry.

Still, the steepness is often discussed using the familiar H/L ratio, or sometimes ak, where

a = H/2 is the wave amplitude and k = 2π/L is the radian wavenumber. Stokes (1880) was

the first to derive a limiting condition for the geometry of propagating surface waves, which

1This chapter will soon be submitted to the Journal of Physical Oceanography.
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is a sharp crest forming a 120◦ corner. Others have shown that such a crest is formed for

a monochromatic nonlinear wave with steepness H/L ≈ 1/7 or ak ≈ 0.443 (e.g. Williams,

1981). Mathematically, the peak of the limiting crest forms a singularity where the underlying

fluid velocity exactly matches the phase speed of the crest.

The Stokes limit was thus the first supposed breaking criterion, the assumption being

that waves would grow until this limiting geometry, at which point they would break. How-

ever, measurements from laboratory waves (Rapp and Melville, 1990) and field experiments

(Holthuijsen and Herbers, 1986; Weisman et al., 1984) have suggested that waves break well

below the Stokes steepness. In a field study using buoy estimates of steepness and human

observers to detect breaking, Holthuijsen and Herbers (1986) found that whitecaps could not

be distinguished from non-breaking waves by steepness alone (although the breaking waves

were found to be slightly steeper on average than the non-breaking waves).

However, some laboratory experiments, including those of Brown and Jensen (2001)

and Tian et al. (2010), have shown waves breaking near the Stokes limiting steepness. In

particular, Babanin et al. (2007) made a renewed case for the applicability of the Stokes

limit. In that study, measurements of breaking were presented in numerical and laboratory

simulations of an initially monochromatic wavetrain. Due to the Benjamin-Feir instability

mechanism, these waves quickly evolved into modulating wave groups, which led to wave

steepening and eventual breaking. The numerical simulations were carried out using the

fully nonlinear Chalikov-Sheinin model of Chalikov (2005), which is capable of simulating

waves up to the point just before surface overturning. The waves simulated in this method

became significantly steeper than previous simulations, such as Song and Banner (2002).

Prior to breaking, the local steepness of the numerical and laboratory waves closely matched

the Stokes limit.

Chalikov and Babanin (2012) used the same numerical method as Babanin et al. (2007),

initialized from a JONSWAP spectrum and random phase components. In this configura-

tion, which more closely resembles the natural ocean environment, the simulations no longer

showed waves consistently approaching the Stokes steepness prior to breaking. Instead,
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individual waves often became unstable at much lower bulk steepness. Additionally, the su-

perposition of waves of different scales made defining a wave more difficult, and introduced

large scatter to the wave-by-wave analysis. The most consistent indication of imminent

breaking was the presence of large surface slopes or curvature (also noted in Tian et al.,

2012). However, these features were highly localized, often developing within fractions of a

wave period from the breaking point.

Wave steepness has also been shown to be an important factor in the dissipation of wave

energy during breaking. For example, Rapp and Melville (1990) showed that the relative

energy loss was strongly dependent on the wave steepness, with some scatter due to the packet

bandwidth and central wavenumber. Similar results have since been shown in Banner and

Pierson (2007), Drazen et al. (2008), and Tian et al. (2010). Subtle differences in calculating

the energy flux and wave steepness makes comparing across the studies somewhat difficult.

However, the general agreement is that steeper waves lose a larger percentage of their energy

flux during breaking.

Steepness may also be incorporated into the Duncan/Phillips dissipation framework,

which comes from the experiments of Duncan (1981) and the analysis of Phillips (1985). In

scaling the dissipation, Phillips (1985) introduced a “breaking strength” parameter, b, which

was assumed to be constant. However, Melville (1994) showed experimental evidence that b

depends on the wave steepness. Drazen et al. (2008) argued that

b ∝ (ak)5/2 (4.1)

where ak is the breaking wave steepness, based on a “ballistic scaling” of a plunging breaker.

This scaling was supported by a series of laboratory experiments.

The idea of using stereo imagery to measure ocean waves has a long history (see, for

example, Holthuijsen, 1983), but only recently has it become realizable for most researchers.

This is due to the rapid growth in computing power and camera technology, as well as the

increasing availability of sophisticated computer vision algorithms. In stereo video, pixels are

matched between images from two or more cameras overlooking the same patch of the sea
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surface. Through triangulation, the distance to the water surface is estimated at each pixel,

which produces a three-dimensional reconstruction of the surface. The ability to resolve the

spatial wave geometry is a distinct advantage over point-based in situ wave measurements,

such as buoys and wave staffs.

Still, measuring waves with stereo imagery has its own difficulties. Jähne et al. (1994)

provides a critical review of the theoretical limitations, including resolution, occlusion, and

specular reflection. Benetazzo (2006) gives a good overview of early efforts at stereo video,

and provides quantitative estimates of the errors involved. Benetazzo (2006), Wanek and

Wu (2006), and de Vries et al. (2011) showed that measurements of waves with stereo video

compared well with more traditional in situ measurements. However, these studies were of

small waves (significant wave heights between 20-60 centimeters), and taken from stationary

nearshore platforms. In the last five years, innovations in the stereo methodology have led

to its use in increasingly diverse conditions. For example, the work of Benetazzo et al.

(2012) improved upon the image processing of Benetazzo (2006) and moved the system to

an offshore platform, such that they measured significant wave heights greater than 2 meters.

Researchers have used stereo wave measurements to explore a variety of scientific ques-

tions. For example, Sutherland and Melville (2013) used stereo-processed infrared imagery

to estimate the dissipation of breaking waves, including micro-scale breakers, using the Dun-

can/Phillips scaling. Fedele et al. (2013) compared the wave statistics in space-time stereo

images with nonlinear theoretical predictions. Most recently, Benetazzo et al. (2015) inves-

tigated the statistics of extreme waves and Leckler et al. (2015) examined the shape of the

full frequency-wavenumber spectrum in young wind waves.

In this chapter, we present measurements of open ocean waves from a shipboard stereo

video system installed on the R/V Thomas G. Thompson during a recent cruise to Station

P in the North Pacific. This contrasts with the above studies, which have each utilized

stereo measurements from stationary towers or platforms. A similar ship-mounted system

has recently been described in Benetazzo et al. (2016). The additional difficulties of ship-

based measurements include accurate camera calibration and the removal of underlying ship
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motion. For example, they describe an auto-calibration procedure for determining the camera

intrinsic and extrinsic parameters needed to perform the stereo processing. In addition,

Benetazzo et al. (2016) show that a planar fit to the stereo point cloud could be used to

determine and remove the motion of the ship, but only when the field-of-view encompasses

several full wavelengths. Here, a more traditional “checkerboard” calibration was found to be

adequate, and the ship motion was measured independently from a combined inertial motion

unit and global navigation satellite system, as noted in Section 4.2. One similarity with the

method of Benetazzo et al. (2016) is in the use of the Hirschmuller (2008) “semi-global”

stereo matching algorithm, which has many advantages over traditional “block-matching”

methods, including sub-pixel accuracy. Finally, although Benetazzo et al. (2016) propose

several practical uses of ship-based stereo imagery, they do not emphasize the study of

breaking waves. Here, we focus on the geometry and steepness of open ocean whitecaps.

The chapter proceeds as follows: Section 4.2 describes the stereo methodology, while Section

4.3 validates the results against linear theory and in situ wave measurements. In Section 4.4,

the whitecaps are investigated in further detail. Section 4.5 provides discussion, and Section

4.6 concludes.

4.2 Methods

4.2.1 Instrumentation

Measurements were made during a research cruise onboard the R/V Thomas G. Thompson

in the North Pacific Ocean. The ship departed from Seattle WA on 27 December 2014 and

returned on 14 January 2015, with the primary objective of replacing a moored wave buoy

at Station P (50◦ N, 145◦ W). On several days the ship paused in the transit to hold station

into the wind and collect measurements of the local wave conditions. The R/V Thompson is

equipped with bow and stern thrusters and a dynamic positioning system, which allow it to

keep a relatively stationary position even in rough seas. Conditions varied from quite calm

(U20 < 1 m/s, Hs = 1.3 m) to large winter storms (U20 = 23 m/s, Hs > 6.0 m).
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A stereo video system was installed for this cruise, which consisted of two Pt. Grey

Flea2 cameras. The cameras were separated by two meters along the rail just forward of the

bridge, approximately 12 meters above the mean sea surface, with a look angle approximately

12.5◦ below horizontal. Identical systems were located on both the port and starboard sides,

making it easy to switch sides depending on the position of the sun or clouds. Each stereo

camera was equipped with a 9 mm fixed focal lens, and placed in a weather-proof housing.

Each side had an additional Pt. Grey Flea2G camera recording a wider field-of-view (2.8

mm focal length). This camera was used heavily in Schwendeman and Thomson (2015b) for

estimating whitecap coverage. It also kept the horizon in view in most frames, allowing for

calculation of the camera pitch and roll as described in Schwendeman and Thomson (2015a).

The port side cameras were mounted next to a Novatel combined inertial motion unit (IMU)

and global navigation satellite system (GNSS), which measured the cameras’ position and

rotation.

While the ship held station with the stereo system recording, in situ measurements were

made of the local wave spectra. Two varieties of drifting buoys were used, usually deployed

at dawn and recovered at dusk. Datawell DWR-G4 Waveriders measured the horizontal wave

orbital velocities with GPS, from which the wave frequency spectrum, E(ω), mean wave di-

rection, θ(ω) and directional spread, ∆θ(ω) were calculated. The spectral calculations were

made over 30-minute intervals using Datawell’s built-in processing (de Vries, 2014). Mean-

while, custom-built SWIFT drifters, described in Thomson et al. (2016), used an onboard

IMU to measure the buoy acceleration and orientation, and produced frequency spectra and

directional moments on 10-minute intervals. The ship’s sonic anemometer measured the true

wind speed throughout the cruise, at a height of roughly 20 meters above the mean water

line.

4.2.2 Stereo Processing

Proper stereo measurements require good synchronization and calibration of the cameras.

Synchronization to within 10 µs was achieved by using a Pt. Grey IEEE 1394 (Firewire)
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hub, and the cameras were calibrated using the checkerboard routine included in Matlab’s

Computer Vision Toolbox. For the calibration procedure, a 10×5 array of 4” black and

white squares was shown to both cameras in their ship-mounted positions, which allowed the

calibration algorithm to optimize both the extrinsic and intrinsic camera parameters. Prior

to 01 January, the stereo cameras were run at 5 Hz; afterwards the frame rate was set to

7.5 Hz. The Novatel IMU/GNSS data was recorded on a separate computer from the stereo

imagery, which resulted in a small unknown time offset between the two data streams. This

was determined in post-processing using a cross-correlation of the time series of pitch and

roll from the camera horizon method (Schwendeman and Thomson, 2015a) with pitch and

roll from the Novatel system. The IMU/GNSS data was then shifted to line up with the

images.

The steps of the stereo image processing are outlined in Figures 4.1 and 4.2, on a pair

of images showing a large whitecap in the center of the field of view (this same example

whitecap is also used in Figures 4.8 and 4.10). The first step is stereo rectification, which is

the process of transforming images such that pixel rows are epipolar lines. With the stereo

cameras facing approximately parallel to one another, the rectification only slightly warps

the images. The rectified images are shown in Figure 4.1a,b. Next, the semi-global algorithm

from Hirschmuller (2008), as implemented in the Matlab Computer Vision Toolbox, is used

to calculate the disparity map, which is the image that maps pixels from the left rectified

image to the right rectified image. Figure 4.1c shows the disparity result. The missing data

on the left of the disparity map corresponds to the region of the images which do not overlap.

Some points in the disparity have more uncertainty than others, due to low texture in the

image. Matlab’s implementation allows for several options to exclude the low quality data.

There is an unavoidable trade-off, since excluding pixels leads to holes in the disparity map,

but including more points results in errors and noise. A number of quality control settings

were tested, with the best results shown in Figure 4.1c. These use the Matlab default block

size of 15 pixels and contrast threshold of 0.5, and a slightly larger uniqueness threshold of

25. In addition, a 5-pixel square median filter was applied to the disparity images to reduce
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Figure 4.1: An example showing (a,b) a pair of rectified stereo images, (c) the resulting
disparity map, and (d) the subsequent image projection. The left side of the disparity is cut-
off where the images do not overlap, and the holes in the disparity are where the confidence
in the solution is low. The same example whitecap is shown in Figures 4.2, 4.8, and 4.10.
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speckle noise.

At each pixel, the value of the disparity is inversely related to the range distance, r, of

the sea surface to the camera,

ri,j =
f

di,j
(4.2)

where f is the camera focal length and di,j is the disparity at pixel (i, j). Figure 4.1d shows

the pixel-wise distance image calculated from Equation 4.2. The dominant signal is the tilt

of the roughly flat sea surface relative to the oblique camera.

To reveal the waves, the measurements are rotated into an earth reference frame, in which

the long-time mean sea surface is a plane at height zero with normal vector aligned with

gravity. The rotation is performed using the synchronized IMU-GNSS data. Alternatively

Benetazzo et al. (2016) show that this rotation can be made by fitting a plane to each

image, however, this method requires a large spatial field-of-view relative to the length of

the waves. The data now make up a scattered point cloud, with each point corresponding to

a pixel in the disparity map. The point cloud data is unstructured and difficult to analyze.

Therefore, the final step is to interpolate the data onto a regular grid, as shown in Figure

4.2, using a scattered bilinear interpolation. The grid spacing is 25 cm, which is similar to

the average spacing in the unstructured point cloud. The gridded elevation product (Figure

4.2a) is heavily used in the following sections. Additionally, a similar interpolation can be

performed on the original image pixel brightness values, resulting in an earth-referenced

radiance product, as shown in Figure 4.2b. The radiance image looks blurred because the

interpolation to a uniform grid tends to smear out the small, rough waves that provide much

of the texture. However, the bright foam from whitecapping still shows up clearly, as seen in

Figure 4.2b. An additional translation and rotation is performed to bring the origin to the

center of the field-of-view and the x-axis inline with the average wind vector. Usually the

ship was pointed directly into the wind, such that this rotation is small. A video example of

the rendered elevation/radiance products is included as supplemental material.

Although roughly 45 hours of stereo video were taken, the data quality was highly vari-

able, due to variations in the natural lighting conditions and occasional rain. Ten video
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Figure 4.2: The same example from Figure 4.1, showing the (a) elevation and (b) radiance
data products found by interpolating the stereo result onto a rectangular grid. These gridded
products are later rotated such that the wind is in the +x direction.

bursts stood out as the highest quality, and data products were calculated for their full

durations, between 20 and 60 minutes each. A further 45 recordings were found to be of

mostly good quality, from which five minutes each of video were processed. The remaining

data were found to be too poor to warrant further examination and were not processed.

4.3 Validation

The stereo wave measurements are first validated using the in situ measurements of the

SWIFT and Waverider buoys. For this comparison, each point in the gridded elevation

product is processed as an independent time series. Frequency spectra, E(ω), are calculated

from the elevation time series at each point and averaged to a single spectrum for each video

burst, from which the significant wave height, Hs = 4[
∫
E(ω) dω]1/2, and mean wave period,

Tm =
2π
∫
E(ω) dω∫

ωE(ω) dω
, (4.3)

are calculated. These are plotted as a time series over the whole experiment in Figure 4.3,

along with the SWIFT and Waverider quantities when available. The time series show the
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wide range of conditions observed over the course of the experiment. During video recording,

the buoys measured significant wave heights between 1.2 and 5.5 meters, and mean wave

periods between 5.7 and 9.4 seconds.

These measurements are subject to small amounts of uncorrected ship motion, including

from surge and sway (RMS velocity fluctuation ≈ 0.3 m/s), heading (RMS angle ≈ 2◦), and a

small net drift (mean velocity ≈ 0.8 m/s). Still, it can be seen that the stereo measurements

follow the buoy data quite well overall, with a few exceptions. For example, the stereo

measurements overestimate Hs on 31-Dec and 01-Jan, and underestimate Tm on 03-Jan.

The Hs overestimation is likely a result of noise, which increases the variance in the data.

The underestimate of Tm may be due to missed energy at the low frequencies, which is

discussed more below.

The stereo and buoy data are further compared in Figure 4.4, from which a few additional

trends can be seen. The Hs data agree quite well for wave heights up to about 4 meters,

but for larger waves the stereo measurements have the tendency to overestimate Hs. Mean-

while, the stereo Tm on average underestimate the buoy values. The mean wave steepnesses,

Hs/Lm, are also compared, using Lm calculated from the linear dispersion relation. The

small scatter in Hs and Tm are amplified in this calculation. Despite this, the buoy and

stereo measurements are still clearly consistent.

Three frequency spectra from the stereo video are compared to SWIFT and Waverider

spectra in Figure 4.5. These examples are drawn from the full video captures (crosses on

Figures 4.3 and 4.4) from three different days (note that no SWIFT data is available for the

December 28th example). The measurement times do not overlap exactly, as the Waverider

spectra are calculated every 30 minutes, the SWIFT spectra every 10 minutes, and the

stereo measurements last between 30 and 60 minutes. Plotted in gray are spectra from

each stereo grid point, with the average spectra in black. Overall, the frequency spectra

are similar in shape to those calculated from the buoy. Figure 4.5 also shows wavenumber

spectra calculated from the stereo data for the same examples. The wavenumber spectra are

calculated in x (the wind direction) for each video frame, at every y. Here the light gray
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Figure 4.3: Time series of (a) 20-meter wind speed, U20, (b) wave height, Hs, and (c) energy-
weighted mean period, Tm. The wind speed is measured from the ship, while the wave
quantities are measured from SWIFT (blue circles) and Waverider buoys (orange circles),
and from the stereo video (black circles = 5-minute video segments, black x’s = full video
segments).
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Figure 4.4: Comparison of (a) significant wave height, Hs, (b) mean period, Tm, and (c)
significant steepness, Hs/Lm, from the stereo video and buoys (SWIFT in blue, Waverider
in orange). Circles are from the 5-minute video segments, and x’s are from the full video
segments.

curves show the average spectra at each y, while the red line shows the total average. These

direct measurements of the wavenumber spectrum are compared with the frequency spectra

transformed to wavenumber using linear dispersion with no current.

Although the spectral comparisons provide good validation for the stereo processing, they

also point to some of the limitations of the stereo data. The main difference with the buoy

spectra is in the lower frequencies, less than 0.5 rad/s, where the stereo measurements do

not reproduce some of the buoy energy. This is likely the reason that the stereo Tm are

slightly less than the buoy values, as shown in Figure 4.4. For example, in the January 11th

example there is a peak in the swell around 0.4 rad/s (16 second period), that is not seen

at all in the stereo spectrum. Since these swell waves are much longer than the width of the

stereo FOV, correctly measuring them depends on the shipboard IMU/GNSS to accurately

account for the vertical motion of the cameras. Unfortunately, this measurement is prone

to drift, and required the application of a high-pass filter. This filter was designed to pass

energy for frequencies above π/10 rad/s, however, which does not explain the difference at
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Figure 4.5: Comparison of three wave spectra, from three different days during the experi-
ment. (a-c) Frequency spectra, measured from the SWIFT (blue), Waverider (orange), and
stereo video. Gray lines are the spectra measured at each (x, y) in the stereo elevation prod-
uct, with the black line as the average. (d-f) Wavenumber spectra, measured directly from
the stereo video along the x direction (each y shown in gray, overall average in red), and
from the frequency spectra transformed using the linear dispersion relation (black).
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0.4 rad/s. Regardless, the effect on the remainder of the analysis should be minimal, as these

long-period swells are not of primary importance for the wave breaking.

At the higher frequencies, the spectra are expected to decay as a power law, S(ω) ∝ ω−n,

where n approximately equals 4 or 5 (see Banner, 1990). Indeed, the stereo spectra show

such behavior initially, but at larger frequencies noise begins to flatten the signal. This noise

is likely related to small errors in the disparity calculations and in the linear interpolation of

the data onto the rectangular grid. The noise starts to be noticeable around roughly 5 rad/s,

corresponding to waves of 2.5 meter wavelength. Small differences are seen in the comparison

between the directly calculated wavenumber spectra and the transformed frequency spectra,

particularly on December 28th. These may be due to the secondary ship motions (small

oscillations in surge, sway, and heading, plus a slow drift) or small surface currents, which

introduce a Doppler shift in the frequency spectra that is not present in the wavenumber

spectra.

Most importantly, the wavenumber spectra reveal the effect of the relatively small field-

of-view of the cameras, which is between 20 and 40 meters in the x direction (depending on

the range). The field-of-view does not resolve a full wavelength of the most energetic waves,

which are between 50 and 200 meters long. Fortunately, previous studies have shown that

many of the breaking waves are shorter than the peak or dominant waves (e.g. Gemmrich

and Farmer, 1999). Still, the limited field-of-view does make certain analysis difficult or

impossible, such as tracking the evolution of wave groups or measuring the dissipation from

individual waves breaking. The spectra show that the region of best performance in the

stereo data is for wave periods between 2 to 10 seconds and wavelengths between 5 to 50

meters.

Finally, the probability density function (PDF) of the stereo surface elevation data is

examined. PDFs are calculated over all x and y, and Figure 4.6 shows the average for each

of the 10 full videos. The elevations are expected to be quasi-Gaussian (Forristall, 2000),

such that large deviations from a Gaussian distribution would indicate bias in the stereo

data. In particular, because of the oblique camera angle, a major concern is occlusion, or
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shadowing, of the wave troughs in the far-field by the crests in the near-field. Figure 4.6

confirms that the surface elevations are near-Gaussian to at least three standard deviations.

Beyond this point, there is a noticeable deviation from the Gaussian distribution, with more

large positive elevations than low negative elevations. However, this is physically expected

due to wave nonlinearity, and is not necessarily indicative of measurement bias (Longuet-

Higgins, 1963). The plot is cut off where the statistics become less reliable, as the time scale

of occurrence approaches the length of the video records. Overall, the effect of occlusion

appears relatively small in the elevation PDFs.

Figure 4.6: The probability density function of surface elevation from the 10 full stereo video
bursts (black), compared with a normal Gaussian distribution (yellow).

In summary, comparison of the stereo elevation product with buoy data and linear wave

theory reveals the data to be good overall, with some notable limitations. In particular,

the small size of the field of view, the effect of noise on the high frequency waves, and the

small uncorrected ship motions must all be acknowledged. With this in mind, the following
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analysis of the wave-breaking focuses on the prominent, intermediate-length whitecaps, which

are well-resolved by the stereo measurements.

4.4 Results

4.4.1 Bulk metrics and distributions of wave steepness

Traditionally, estimates of steepness are only available from temporal measurements, which

usually employ frequency spectra or zero-crossing analyses. Most commonly, the average

wave steepness is given as the significant wave height, Hs, divided by a characteristic wave-

length, such as the spectral peak wavelength (Lp) or energy-weighted mean wavelength (Lm).

The characteristic wavelength is usually calculated in frequency space and transformed to

a wavelength using the linear dispersion relation. Studies such as Holthuijsen and Herbers

(1986) instead partition the time series of surface elevation into individual waves using a

zero-crossing method, which allows a steepness, Si = Hi/Li, to be measured for each wave.

In either approach, linear dispersion is needed to transform the time domain signal from a

point measurement into a wavelength for measuring steepness.

The stereo video data are uniquely suited for more direct estimates of steepness. Since the

gridded elevation product contains both spatial and temporal information, the actual surface

slope can be measured rather than inferred from dispersion. The magnitude of the surface

gradient, |∇z(x, y)| = [(∂z/∂x)2 + (∂z/∂y)2]1/2, is calculated from the gridded elevation

data using the central difference to approximate the partial derivatives. A circular Gaussian

filter of 1-meter standard deviation is applied prior to differencing to reduce the effect of

high-frequency noise in the discrete difference.

Figure 4.7 shows how |∇z(x, y)| relates to the steepness calculated from point measure-

ments (using spectral or zero-crossing methods). First, Figure 4.7a shows the probability

density function (PDF) of |∇z(x, y)|, colored by the significant steepness, Hs/Lm, as calcu-

lated from the stereo frequency spectra. It is clear that for larger Hs/Lm, the distribution

of |∇z| is also skewed higher. This is also seen in Figure 4.7c, which shows a roughly linear
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relationship between Hs/Lm and the median gradient, |∇z|.

Normalizing the gradient by |∇z|, as in Figure 4.7e, shows that for moderate values of

|∇z(x, y)|, the distributions are highly similar. The curves are well fit by the theoretical

probability density function of slope derived by Liu et al. (1997),

P (|∇z|) =
n

n− 1

|∇z|
σ2

[
1 +

|∇z|
(n− 1)σ2

]−(n−2)/2

(4.4)

using σ = 0.83|∇z| and n = 7.0. This model assumes independent distributions of wave

height and wave period. As discussed in Liu et al. (1997), deviations from this assumption

increase the probability density of high surface slopes, which can be be reproduced by de-

creasing n. The observations show that above 2 to 3 times |∇z|, the individual PDFs begin

to diverge. Also shown is the fit to the data using n = 3 (the upper curve at large gradi-

ents) and n = 40 (lower curve), which also match the distributions in the low and moderate

slopes, but bracket the data at high slopes. For comparison, Liu et al. (1997) found that the

measurements of Cox and Munk (1954) could be fit using a range of 6 ≤ n ≤ 100. Phys-

ically, large values of n indicate a narrow distribution of the wave frequency. As discussed

in Babanin (2011), the frequency bandwidth is related to the modulational properties of

the dominant waves (i.e. the wave groups). Thus, the probability of large surface slopes

increases when wave groups are pronounced.

The distribution of wave steepness is also shown using a zero down-crossing method, as in

Holthuijsen and Herbers (1986). Specifically, elevation time series are made from (x, y) points

taken every 5 meters, resulting in 81 virtual wave gauges (although several have no data due

to the shape of the field-of-view). In each time series, waves are identified as lying between

the two nearest points where the elevation crosses from positive to negative. For each wave,

a steepness S is calculated as the difference between the maximum and minimum elevation,

divided by the estimated wavelength, using linear dispersion and the period between down-

crossings. Figure 4.7b shows the PDFs of S, again colored by Hs/Lm. It should be noted

that the zero-crossing method is not ideal for these broad-band waves, where short waves

riding on long waves may fully lie below or above the mean water line.
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Figure 4.7: Probability density functions (PDFs) of (a) surface gradient magnitude, |∇z|,
and (b) wave steepness from zero down-crossings, S, each colored by significant steepness,
Hs/Lm. (c-d) Hs/Lm plotted against the median values of |∇z| and S. (e-f) The PDFs scaled
by their median values. The dashed line in (e) corresponds to the theoretical distribution of
Liu et al. (1997) with σ = 0.83|∇z| and n = 7.0. Dotted lines are for fits using n = 3 (upper
curve at large |∇z|) and n = 40 (lower curve).
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Still, as with the surface gradient, Figure 4.7d reveals that the median wave steepness S

is linearly related to Hs/Lm, and Figure 4.7f shows that the distributions are largely similar

after scaling by S. The main difference in using the zero-crossing steepness S is that each

wave is assigned a single value of steepness, whereas the surface gradient magnitude |∇z|

captures variations in the instantaneous and local wave slope. The increase in data causes

the PDFs of |∇z| to be much smoother than those of S. Additionally, the PDFs of |∇z|

show a clear variability near the tail of the distribution, which is not visible in the PDFs of

S. This is consistent with the hypothesis of Liu et al. (1997), who argue that the variation

in the shape of the |∇z| distribution is a nonlinear effect, which would not be captured by

the zero-crossing method.

The statistics of the extreme surface slopes at the tails of the PDFs are important to

understand physically, as they are likely related to the wave-breaking. Unfortunately, the

tails of the distributions are also affected by noise. Thus, the PDFs of both |∇z| and S were

cut off at high steepness based on the Stokes limiting wave. Specifically, S was plotted out

to H/L = 0.1443 and |∇z| = cot (120◦/2) = tan 30◦ = 0.5774. To better understand the

relationship of wave steepness to wave breaking, it is necessary to focus on the highest quality

data, and to concentrate on the relative differences between the breaking and non-breaking

waves.

4.4.2 Statistics of surface gradients and curvatures near whitecaps

In this section, the surface gradients are compared for whitecaps and non-whitecaps. For

this and the remainder of the paper, the data come from only the 10 best-case video seg-

ments, each lasting between 20 and 60 minutes. At each frame, the maximum of z(x, y)

and |∇z(x, y)| are calculated, as well as of the negative surface Laplacian, −∇2z(x, y). As

with |∇z|, smoothing is needed to prevent noise from dominating the signal of ∇2z. Here, a

Gaussian is used with standard deviation of 2.5 meters. The Laplacian of the elevation can

be thought of as a measure of curvature, or “peakedness.” A wave has negative ∇2z at its

crest, and positive at the trough. Figure 4.8 shows the evolution of the example whitecap
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shown in Figures 4.1 and 4.2 (it has been centered and rotated into the wind direction, as

discussed in Section 4.2). The surface elevation, z, slope, |∇z|, and curvature, −∇2z, are

all large in the vicinity of the whitecap. A thin region of large local steepness is visible on

the front face of the whitecap, near the crest, about 1 second prior to the appearance of the

whitecap (note the residual foam seen at t = −2 and t = −1 is from a previous whitecap).

The sharp crest is reflected in the large negative surface curvature.

Meanwhile, whitecap pixels are detected by thresholding the radiance data product (i.e.

the gridded pixel brightness), using the method of Kleiss and Melville (2011). This gives

a 3-dimensional array of Boolean values, W (x, y, t), in which a value of 1 indicates the

presence of whitecap foam. However, W does not distinguish between the recently formed

foam from active breaking, and the decaying foam left behind from past breakers. Therefore

another variable, ∆W (x, y, t) is used which more closely follows the active breaking. This

was introduced in Schwendeman and Thomson (2015b), and is calculated from W by simply

negating pixels in W for a period of several seconds after they are initially flipped from 0

to 1. Since the residual whitecap foam tends to remain mostly stationary, these pixels are

ignored in ∆W .

For each frame in the video, the total area of new foam is calculated as

∆Wt(t) =
∑
x,y

∆W (x, y, t)dxdy. (4.5)

Peaks in ∆Wt(t) indicate an active breaking event, and a threshold of ∆Wt(t) ≥ 10 m2 is

used to identify such events. The choice of this threshold is based on a visual examination

of the data. A lower threshold identifies more breaking events, but is more likely to falsely

identify breakers based on noise in ∆W (x, y, t), for example, from advection of residual foam.

On the other hand, a higher threshold more accurately identifies true whitecaps, but ignores

the frequent small events.

For comparison, non-breaking crests are identified from the statistics of the surface ele-

vation alone. At each frame, the 95th percentile of the surface elevation is calculated. This

gives a time series, z95%(t) of the highest 5% of elevations in the spatial domain. A peak
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Figure 4.8: A series of measurements around the whitecap from Figures 4.1, 4.2, and 4.10.
The progression of the surface radiance (top row), surface elevation (z, second row), surface
slope (|∇z|, third row), and surface curvature (∇2z, bottom row) is shown from t = −2 to
t = +1 seconds.
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Figure 4.9: Ensemble-averaged time series of (a) maximum surface gradient, |∇z|max, and
(b) maximum negative surface curvature (−∇2z)max, around breaking (orange) and non-
breaking (blue) waves.

in z95%(t) indicates the presence of a prominent wave in the field-of-view. In particular,

non-breaking wave events are identified as peaks in z95%(t) that are one standard deviation

above the mean in z95%(t) and are not within 10 seconds of the breaking events as determined

previously. This yields a total of 856 non-breaking waves.

Figure 4.9 shows the ensemble-average time series of the maximum surface slope, |∇z|max,

and negative surface curvature, (−∇2z)max, leading up to and following the peaks in active

foam (i.e. whitecaps) and extreme surface height (i.e. non-whitecaps). There is a clear

increase in the maximum slope and curvature around the breaking waves, which is not seen

in the large, but non-breaking, waves. The time series of |∇z|max is particularly interesting.

For the breaking waves, the maximum slope is roughly constant within −2 ≤ t ≤ 2 seconds
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of the peak of new foam generation, at a value of approximately 0.57. This is very near the

slope of tan(30◦) ≈ 0.577, which is the slope on either side of the 120◦ corner of a Stokes

limiting wave.

The above results suggest that large surface slopes and curvatures are present during

whitecapping, however, the details are obscured in the frame-based statistics. What is needed

is an algorithm for identifying distinct whitecap events. This is not straightforward, partly

because the whitecap foam does not always stay connected through the breaking process,

often separating into several groups of pixels. Additionally, although the new whitecap foam

is a better proxy for active breaking, the definition of ∆W (x, y, t) prevents the whitecaps from

overlapping between frames. To correct both issues, a topological dilation is applied to the

binary ∆W (x, y, t) array. The dilation step essentially connects all whitecap pixels within 1

meter of each other in the current, preceding, or following frames. Each group of spatially or

temporally connected pixels in the dilated ∆W (x, y, t) is considered as a potential whitecap

event. A minimum duration of two seconds is used to avoid transient events (often on the

boundary of the field of view) or noise (often from advected residual foam). A somewhat

similar procedure for identifying distinct whitecap events in visual imagery was described in

Gemmrich et al. (2008).

Next, a box is drawn around each group of whitecap pixels, as shown in Figure 4.10,

again for the same example whitecap. One large bounding box (in red) encompasses the

most prominent whitecap, which is clearly undergoing active breaking. Smaller whitecaps

are detected near to this breaker (orange and blue). It might be argued that these are

all a part of the same whitecap, but the distinction will not affect the following analysis.

Additionally, a separate whitecap (in yellow, top left in Figure 4.1) is also boxed.

Distributions derived from these bounding boxes show that both surface slopes and cur-

vatures are likely to be high near whitecaps. Figure 4.11a compares the probability density

of |∇z| and −∇2z from inside and outside of the boxed whitecap regions. It is clear that

within the boxed regions, the distribution of |∇z| is skewed high. For example, the ratio of

the two functions (Figure 4.11b) shows that values of |∇z| = 0.5 are approximately 10 times
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Figure 4.10: The results of the whitecap detection procedure for the whitecap shown in
Figures 4.1, 4.2, and 4.8.

more likely to occur in the neighborhood of actively breaking whitecaps. At slopes above

0.55 (not shown), the PDFs converge due to noise contamination, which occurs with equal

probability inside and outside of the whitecap boxes. Interestingly, the maximum difference

between the breaking and non-breaking distributions occurs very near to the Stokes corner

slope of tan(30◦) = 0.577.

Similarly, the boxed regions contain a much higher percentage of points of extremely

negative curvature (4.11c). The probability ratio peaks around 0.025, where values are 20

times more likely to be found in the boxed whitecap regions. Applying the smoothed discrete

Laplacian operator to a long-crested limiting Stokes wave, using the one-term approximation

of Rainey and Longuet-Higgins (2006), shows that the maximum of −∇2z is between 0.022

and 0.029 for waves of length 10–50 meters, which again corresponds with the peak of the

anomaly. Again, at the more extreme values (not shown on the plots), random noise brings

the distributions back together.

Although less frequent, points of high surface slope and negative curvature do occur in

the absence of visible whitecapping. Figure 4.11c compares the histograms of |∇z| from

within the boxed whitecaps to the overall histogram, to determine what percentage of the

extreme values correspond to breaking waves. The ratio of these curves reveals that around
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Figure 4.11: Statistics of (a-d) surface gradient magnitude, |∇z|, and (e-h) surface curvature,
−∇2z. Panels (a,e) show the probability density function (PDF) from inside (blue) and
outside (orange) of the whitecap boxes, and (b,f) shows their ratio. Panels (c,f) give the
overall (red) and whitecap (blue) histograms, with their ratio shown in (d,h).
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50% of surface slopes of |∇z| = 0.5, and 75% of curvatures of −∇2z = 0.025 are associated

with whitecaps. Because there is no value which occurs only within the boxes, a threshold

on |∇z| or −∇2z cannot be used to predict whitecapping with 100% accuracy. This may be

because of noise or missed whitecaps, but it is difficult to know due to the large quantity of

data. In the next section, a subset of the breaking cases is more closely examined for further

insights into the whitecap geometry.

4.4.3 Breaking Wave Profiles

To further investigate the shape of the whitecaps, the clearest wave-breaking events are

selected from the boxed whitecaps as follows. Over the lifetime of each whitecap event, the

grouped pixels are approximated by an ellipse with major axis Lmajor, minor axis Lminor,

centroid xc and yc, and orientation θ. The ratio of Lmajor to Lminor is found at each time,

and the time when this ratio is maximum is recorded as t1 = 0. The best cases are identified

as those where the maximum Lmajor/Lminor is greater than 4, when θ is within 45◦ of the

wind direction, and the (xc, yc) is within 10 meters of the center of the field-of-view. These

conditions eliminate cases of noise and advected foam, ensure that the breaking wave is

sufficiently long-crested, and avoid breakers occurring near the edge of the field-of-view.

Finally, the 137 resulting whitecaps are checked manually to be sure they show unambiguous

active breaking, after which 103 examples remain.

Next, a local coordinate system is defined around the breaking crest at t1 = 0, with x1 and

y1 coordinates orthogonal and parallel to the major axis of the whitecap, respectively. The

spatial origin (x1, y1) = (0,0) is found as the point of maximum −∇2z, within ±2.5 meters

of the whitecap centroid, (xc, yc). Profiles of z are interpolated onto x1 for −30 ≤ t1 ≤ 30

seconds.

A Hilbert transform is applied to the wave profiles to calculate the evolution of the

whitecap frequency, wavenumber, and amplitude. The Hilbert transform produces an an-

alytic function that defines a local amplitude and phase for the wave signal, z(x1, t1) =

<{A(x1, t1) exp[iφ(x1, t1)]}. The transform can be performed in space or in time, such



108

that there are actually two amplitude and two phase functions: Ax(x1, t1), φx(x1, t1), and

At(x1, t1), φt(x1, t1) (see Stansell and MacFarlane, 2002). Differentiating φx in x1 gives a

local and instantaneous wavenumber, k(x1, t1), while differentiating φt in t1 gives a local and

instantaneous frequency, ω(x1, t1).

Figure 4.12 shows the ensemble-average of the whitecap profiles and Hilbert transform

results. All values are normalized, using an average wavenumber, k, frequency, ω, and

amplitude, Ax or At, from the Hilbert analysis. Since ω, k, Ax, and At each vary over the

domain, their mean value is somewhat sensitive to the choice of x1 and t1 limits. Here, the

mean is found between −10 ≤ x1 ≤ 10 meters and −3 ≤ t1 ≤ 3 seconds, which encompasses

the bulk of the breaking wave but avoids noise near the edge of the domain. These averages

were found to agree well with the wave amplitudes and periods from a zero-crossing analysis

(not shown). The scaling of the wave elevation is performed after first subtracting the mean

surface elevation of the profile, over the same limits.

Analysis of the ensemble-averaged breaking wave profiles is similar to the processing of

laboratory wave data. Figure 4.12a shows the wave moving in the positive x1 direction as

time progresses (colors changing from red to blue). The breaker appears very smooth, which

is the product of averaging over the 103 individual waves. There is a clear steepening and

sharpening of the wave crest, which quickly relaxes after breaking. The maximum in slope

occurs very near the breaking crest, but is not symmetric. Initially the maximum slope

is on the front face, but after breaking it is on the back side. The wave is also vertically

asymmetric. At the break point, the breaker lies almost fully above the mean water line.

After breaking, the wave begins to shift to a lower mean elevation. Alternatively, the same

information can be presented as a timestack, as in 4.12b. Unfortunately, the limited spatial

field-of-view means that the wave is less well-sampled as x1k approaches π and −π.

Whereas the Hilbert transform of a monochromatic sinusoidal waveform yields a constant

amplitude, wavenumber, and frequency, this is not the case for these breaking waves. Instead,

there is a localized increase in the wave amplitude, wavenumber, and frequency near the wave

crest. Thus, the Hilbert transform results show a rapid increase in local wave steepness as



109

Figure 4.12: Ensemble averages of the 103 whitecap profiles and Hilbert transform results,
normalized by the individual mean values over −10 ≤ x1 ≤ 10 meters and −3 ≤ t1 ≤ 3
seconds. (a,b) Two views of the elevation profiles, (z−z)/Ax, (c) the local spatial amplitude,
Ax/Ax, (d) temporal amplitude, At/At, (e) wavenumber k/k, and (f) frequency, ω/ω. The
thick line in (a) corresponds to t1 = 0.

the whitecap occurs. This is shown in Figure 4.13a, where the instantaneous steepness is

plotted as Axk. At the break point, (x1, t1) = (0, 0), the local steepness is 0.424, very near
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the Stokes wave steepness of 0.443.

This local steepening near the breaking crest is shown explicitly in Figure 4.13b. The

normalized profiles are shown at t1 = 0, along with the ensemble-average profile, and com-

pared with the Stokes limiting wave, using the one-term approximation from Rainey and

Longuet-Higgins (2006). The individual profiles show much scatter, as might be expected in

broadband waves, such that the average profile does not quite collapse to the Stokes wave

overall. However, near the peak the profiles closely resemble the angular crest of the Stokes

wave.

Finally, the propagation speeds of these breaking crests are examined. Banner et al.

(2014a) showed that the steepest crests of nonlinear wave groups propagate significantly

slower than the predicted linear or weakly nonlinear phase speeds. This behavior is also

seen in the whitecap profiles, as shown in Figure 4.14. The true wave phase speeds (c) are

calculated as the ratio of the average frequency and wavenumber, which are independently

measured from the Hilbert transform. These are compared with the phase speeds calculated

from the average frequency using the linear dispersion relation, c0. Although there is signif-

icant scatter, the true phase speeds are almost uniformly less than the linear phase speed.

A fit to this data gives c = 0.61c0, consistent with the field measurements of Banner et al.

(2014a) showing c ≈ 0.75c0. This suggests that these whitecaps formed near the center of

nonlinear wave groups.

4.5 Discussion

4.5.1 Comparison with Previous Measurements

Previously, studies such as Holthuijsen and Herbers (1986) have shown oceanic breaking

waves to be of similar steepness to their non-breaking counterparts, and much less steep

than the Stokes limit. Here, by contrast, Figures 4.9, 4.11, and 4.13 suggest that breaking

is associated with high steepness and curvature, and breaking waves do resemble the corner

crest of a Stokes limiting wave. The apparent contradiction with previous measurements is in
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Figure 4.13: (a) Ensemble-averaged local wave steepness, Axk, from the Hilbert transform.
(b) Breaking wave profiles, scaled by the average spatial amplitude Ax, and wavenumber k
from the Hilbert analysis. The solid line shows the ensemble-averaged profile, dashed line
shows the one-term Stokes limiting wave approximation from Rainey and Longuet-Higgins
(2006).
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Figure 4.14: Comparison of measured phase speed (c) with linear phase speed (c0) from the
Hilbert transform analysis. The solid line is the 1:1 line, indicating perfect linear dispersion.

part because these steep crests are highly localized, such that they are not often accompanied

by the full limiting wave profile. Thus, the whitecaps do not appear particularly steep when

examined using bulk measurements of steepness. This is shown explicitly in Figure 4.15,

which compares the probability density of wave steepness from the whitecap profiles with

the overall steepness distribution, using a weighted average of the curves in Figure 4.7 based

on the number of whitecaps from each video burst. This zero-crossing method is taken

directly from Holthuijsen and Herbers (1986), and the results are very similar to theirs.

Indeed, in a bulk sense, the whitecaps are not considerably steeper than the non-breaking

waves.

Furthermore, the steepness measurements from the zero-crossing method of Holthuijsen

and Herbers (1986) rely on assuming a wave phase speed from linear dispersion, which

Figure 4.14 definitively shows is not applicable. Since the phase speed is actually lower than

suggested by linear dispersion, the true bulk steepnesses are higher than the estimates from

a time series measured at a point. Specifically, if the phase speed is actually 25% less than

the linear expectation, as in Banner et al. (2014a), the true wave steepness is 33% larger
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Figure 4.15: Probability density function (PDF) of wave steepness for the breaking wave pro-
files from a zero-crossing analysis, compared with the overall steepness PDF from a weighted
average of the curves in Figure 4.7.

than what is estimated from the time series.

Babanin et al. (2010) suggests that the reason field measurements often show whitecap-

ping at relatively low steepness is that the maximum steepness occurs prior to the detection

of whitecap foam. The data do not show evidence of this time delay effect (see Figures 4.9

and 4.12). Still, the point holds — determining the actual onset of breaking in field data

is a challenge. The presence of new whitecap foam does indicate active breaking, but the

distinction between new foam and residual foam is often unclear. In making two-dimensional

profiles of whitecaps, it was found that the surest way to identify active breaking was to use

the aspect ratio of the foam patch. Still, manual inspection of these best cases removed

roughly 25% of the tagged profiles, which were either ambiguous or mislabeled breaking

events. Furthermore, foam from small breaking events often does not show up as brightly

as from large events, or even at all in the case of microbreaking waves. The identification of

breaking from whitecap foam is therefore one of the largest sources of uncertainty in these

observations.
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4.5.2 The Role of Nonlinearity

What physical mechanism is responsible for the localized increase in wave steepness in the

breaking waves? Babanin (2011) divides potential steepening mechanisms into two cate-

gories: instability mechanisms and superposition mechanisms. The Benjamin-Fier instabil-

ity, more generally called modulational instability, is a nonlinear effect which leads monochro-

matic wave trains to dissolve into modulating wave groups and can eventually lead to break-

ing (see the review of Yuen and Lake, 1980). Conversely, superposition mechanisms are

primarily linear effects, which produce high steepnesses by focusing two or more wave crests

of different directions (directional focusing) or phase speeds (dispersive focusing).

Our measurements indicate that nonlinear group dynamics are critical in producing the

necessary steepnesses for breaking to occur. Figures 4.9 and 4.11 show that breaking occurs

near points of locally extreme surface slope and curvature. Meanwhile, Figure 4.7 shows

that the probability of these extreme surface slopes (at the tail of the distribution) is highly

variable, which Liu et al. (1997) attributes to nonlinear effects. Furthermore, the breaking

wave profiles display many of the characteristics associated with nonlinear wave groups. For

example, the asymmetry of the profiles, in which the wave tilts forward prior to breaking

and backwards after, was predicted by the theoretical work of Tayfun (1986). Similarly,

the reduced phase speed of the breaking crests, shown in Figure 4.14, is likely due to the

nonlinear group dynamics described in Banner et al. (2014a).

By contrast, there is not much evidence for breaking due to superposition. In particular,

the wave profiles and their Hilbert transforms do not show steepening from long waves

overtaking short waves, as in dispersive focusing. Instead, they show steep nonlinear waves

propagating as a phase-locked signal. This matches the hypothesis of Babanin (2011), which

argues on probabilistic grounds that dispersive focusing alone cannot produce the amount

of breaking measured in natural wavefields.

However, the breaking wave profiles along a principal axis cannot address the question of

directional superposition. Figure 4.16 shows again an ensemble-average of the 103 breaking
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Figure 4.16: Ensemble average of the 103 whitecaps in two dimensions at times (a) t1ω =
−π/2, (b) t1ω = 0, and (c) t1ω = π. As before, all the waves were first normalized by the
average wavenumber k and amplitude Ax from the previous section. (d-f) show the joint
probability density function (PDF) of surface gradient magnitude, |∇z|, and direction, θ, for
the whitecaps over the same times. Here, θ = 0 (±π) corresponds to downward slopes in the
+x1 (−x1) direction

waves, this time retaining both x1 and y1 spatial dimensions. Both x1 and y1 are scaled by

the average wavenumber, k, from the previous analysis. Snapshots of the two-dimensional

waveform are shown at t1ω = −π/2, 0, and π (i.e. at the break point, and a quarter period

before and after). In addition, the joint PDF of surface gradient magnitude, |∇z|, and

direction, θ are shown for the same times. Here, θ = 0 corresponds to downward slopes in

the +x1 direction, and θ = ±π indicates downward slopes in the −x1 direction. Due to the

limited spatial domain, they are not symmetric before and after breaking, when the wave is

entering and leaving the field-of-view.
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These plots show no indication of breaking from directional focusing, at least it is not

common enough to not be visible in the ensemble averages. Both the wave motion and the

direction of the largest surface slopes are primarily in the x1 direction, which validates the

use of the principal axis wave profiles in the previous section. Still, the two-dimensional

shape of the average whitecap is interesting, for example, the progression shows the wave

spreading somewhat in the y1 direction during breaking. Moreover, these plots provide

further evidence of the highly localized and transient nature of the steep whitecap crests.

This three-dimensionality of the breaking crests may be a topic for further research.

4.6 Conclusion

In this chapter, a ship-based stereo video system was used to investigate the steepness of

open ocean whitecaps. This work is in many ways complimentary to that of Benetazzo et al.

(2016), however our focus on wave breaking is distinct. Additional methodological differences

include the use of an IMU-GNSS system to measure the camera positions and orientations,

and a checkerboard calibration procedure. Additionally, the stereo processing is primarily

performed in Matlab using functions from the Computer Vision Toolbox. As in Benetazzo

et al. (2016), the surface elevations are quasi-Gaussian, but whereas Benetazzo et al. (2016)

only have model data to compare against their stereo-derived frequency and wavenumber

spectra, here good agreement is shown against measured spectra from buoys.

The stereo data provide a unique spatiotemporal measurement of the breaking wave

geometries. The measurements reveal that breaking often occurs at steep, highly localized,

wave crests. These crests have slope and curvature resembling Stokes (1880) 120◦ corner,

however, the waves themselves have much lower bulk steepness than H/L = 1/7. Evidence

of local Stokes crests is seen in the time series of frame-wise maximum surface slope and

curvature around peaks in new whitecap foam, in the distributions of slope and curvature

near detected whitecaps, and in examination of 103 whitecap profiles.

These steep crests were not seen in previous field studies, such as Holthuijsen and Herbers

(1986), for two reasons. First, the use of zero-crossing analysis gives only the bulk wave
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steepness, rather than a local slope. Second, using a temporal wave trace underestimates

the true wave steepness, because of a lower phase speed than predicted by linear dispersion.

Thus, a spatial measurement which resolves the local surface steepness is needed to detect the

relevant wave steepness. In such measurements, the Hilbert transform is a powerful tool for

describing the local and instantaneous wave amplitude, frequency, wavenumber, steepness,

and phase speed.

The wave steepening seen in the breaking waves is shown to be primarily due to nonlinear

wave group dynamics (as opposed to dispersive or directional superposition). In particular,

the phase speed of the breaking crests is consistently slower than predicted by linear dis-

persion, as discussed in Banner et al. (2014a). Unfortunately, the limited spatial domain

prevents direct observation of the group evolution.

Because of its importance for air-sea interaction, a better understanding of wave-breaking

is critical for a wide variety of applications. This work shows that stereo video is a powerful

tool for studying the surface geometry of breaking waves. As in the numerical simulations of

Chalikov and Babanin (2012), our measurements show that whitecaps often form at crests of

extreme surface slope and curvature, which are primarily formed by the nonlinear instability

mechanisms of modulating wave groups. More work is needed to determine how traditional

methods of measuring and describing surface waves (wave buoys, the frequency spectrum,

etc.) apply to the breaking waves. In addition, the steep crests are less a predictor of

future breaking than an indicator of imminent or active whitecapping. It is possible that a

dynamic breaking criteria, as advocated by Song and Banner (2002) and Banner and Pierson

(2007), may provide a better framework for predictive models than a geometric criteria alone.

Finally, it remains to be seen how whitecap geometry relates to the strength of the breaking

(i.e. the whitecap dissipation), but it is likely that stereo video will be a useful tool in this

problem as well. Future measurements could test, for example, the dissipation scalings of

Duncan (1981) and Drazen et al. (2008).
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Chapter 5

CONCLUSIONS

5.1 Summary and Recommendations

In this thesis, ship-based video cameras were used to detect and quantify breaking waves in

the open ocean. The overall goal was to relate visible wave-breaking to the general wave

conditions, and to investigate the question of why and how waves break in deep water.

In Chapter 2 (Schwendeman and Thomson, 2015a), a stabilization method based on the

detection of the horizon was found to be useful in removing ship motion from the wave

imagery. In Chapter 3 (Schwendeman and Thomson, 2015b), the whitecap coverage was

compared with measurements of the wind, waves and turbulent dissipation. Although the

wind speed was the best predictor of the whitecap coverage, a normalized mean square slope

metric which isolated the steepness of the short-to-intermediate wind waves also performed

well. In Chapter 4, stereo video was used to directly measure the geometry of the breaking

waves. The whitecaps were characterized by extreme local steepness near the breaking crests,

which were geometrically similar to Stokes’ 120◦ limiting corner flow. Several implications

of this work are further examined below.

One difficulty in making quantitative use of single camera imagery in the open ocean is

ship motion. The horizon stabilization and georectification method of Chapter 2 showed that

measurements can be made without additional instrumentation, such as active stabilization

or inertial motion packages. The horizon method is both robust and accurate. In determining

the camera pitch and roll, this algorithm may be useful for other applications as well. For

example, in Chapter 4 the horizon-derived roll was used to synchronize the stereo imagery

with the IMU data stream. In making ship-based video measurements, one should always

consider keeping the horizon in the camera field-of-view as a check on the motion correction.
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Unfortunately, the horizon method cannot correct for ship heave and heading.

The analysis of whitecap coverage in Chapter 3 challenged several ideas of open ocean

whitecapping. Although most steepness metrics are indeed correlated with W , the quality

of these fits is highly variable, and many are not nearly as good as a simple function of

wind speed. The best agreement is with mean square slope variables calculated in the tail of

the wave spectrum. These parameters avoid the influence of swell energy on the steepness,

which appears to have little effect on the whitecap coverage. Moreover, the improvement in

correlation after normalizing by directional spread indicates that wave directionality needs

to be taken into account. Measurements from stereo video may be able to further improve

the comparison of whitecap coverage and wave slope. Since whitecaps occur near extremes

in the surface slope, the probability of these extreme slopes may be a better predictor of

the whitecap coverage than spectral steepness metrics taken from a buoy. The probability

density function of the surface gradient shown in Chapter 4 indicate that extremes in the

surface slope are related to both the average wave steepness as well as the wave nonlinearity.

Comparing W among only studies using similar methodology (especially digital imagery

and pixelwise thresholding), and limiting the comparison to the intermediate wind speeds in

which the measurements were made, the supposed scatter in the fits to U10 is much reduced.

Wind speed is an imperfect parameter to physically explain the whitecap coverage, but it has

good predictive power because it is a more precise measurement than most wave variables.

Modelers should be skeptical about replacing wind speed parameterizations of whitecapping

with more complicated ones based on wave quantities unless there is strong evidence of

improved performance. Using bulk parameters, especially those defined at the spectral peak,

is particularly unadvisable. Most recent measurements do, however, show clear evidence of

a wind speed threshold in W , which is not captured in the power law fits such as Monahan

and O’Muircheartaigh (1980). After more than 30 years, it may be time to replace Monahan

and O’Muircheartaigh (1980) with a more up-to-date version as the de facto standard. The

Callaghan et al. (2008a) relation would be a good choice, based on their large amount of data

and range of observed wind conditions. However, whereas they provide a piecewise fit using
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two cubic functions, a single “threshold power law” function, as described in Schwendeman

and Thomson (2015b), would likely also fit the full dataset well and be simpler to implement.

Although Λ(c) is a more complex measurement than W , it is not clear that it provides

much more meaningful information. All of the uncertainties in determining W are also

included in Λ(c), with the additionally difficulty of determining the breaker speed, c. Not only

is the measurement of c challenging, but the theoretical definition is ambiguous as well (see

Banner et al., 2014b). The relatively poor comparison of W with turbulent dissipation rate

is related to the difficulty in determining a common breaking strength, b. Microbreaking may

explain some of the scatter, or it may come mostly from uncertainty in the measurements,

but it is difficult to know because Sds is so poorly constrained. Validation of the Duncan

(1981) or Drazen et al. (2008) scalings from phase-resolved measurements of breaking in

the open ocean are likely needed for Λ(c) to gain further acceptance within the scientific

community.

In Chapter 4, ship-based stereo video wave measurements were shown to be of similar

quality to buoy measurements, while providing much more information. With the imple-

mentation of robust stereo algorithms in Matlab, as well as ever improving open source

libraries and toolboxes, stereo video is quickly becoming a more widely available tool for

wave scientists. Apart from wave breaking, there are many problems which may benefit

from stereo video measurements, such as wave-ice and wave-current interactions. It may

also have application in wave monitoring or extreme wave detection.

Stereo video processing leads to phase-resolved, three-dimensional, measurements of

whitecaps, which were used to track the temporal and spatial evolution of the breaking

wave steepness. This capability is unique from older field studies, such as Holthuijsen and

Herbers (1986), which were only able to measure wave-breaking at one point. From a point

measurement, one is forced to define the wave steepness over a full wavelength, which is prob-

lematic in a spectral wave environment where it is difficult to define a single wave. Moreover,

the point measurements are not able to differentiate between different stages of breaking,

so they may not measure the maximum wave steepness before breaking onset. Even in the
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stereo data, defining the breaking onset can be a challenge. Unlike Holthuijsen and Herbers

(1986), the stereo data indicate that, with steepness defined as the maximum of local surface

slope, the whitecaps are significantly steeper than the non-breaking waves. Furthermore,

the highest surface slopes are approximately consistent with the angle of the Stokes limiting

wave, and mostly occur near to the whitecaps.

5.2 Remaining Questions

Generally, this work has attempted to give insight into three overarching questions regarding

breaking waves, namely

1. What causes a wave to break?

2. Given a wave spectrum, which waves (and how many) will break?

3. How much energy is dissipated due to breaking, both individually and collectively?

These questions are quite broad and may not be fully settled for many years. In the mean-

time, there are many more specific questions to investigate. Below are listed some of the

questions raised over the course of this work:

· The majority of whitecap observations have been made in intermediate wind speeds.

How does wave breaking change in higher winds, for example, during a hurricane?

· What can be done about the issue of microbreaking? Infrared measurements remain

expensive and difficult to interpret, is there another way to detect them or quantify

their effects? Do microbreakers follow the same dynamics as visible whitecaps, or must

they be treated differently?

· The stereo measurements show little lead time between the maximum wave steepness

and the onset of breaking. Is there a way to forecast breaking several seconds, or even
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several wave periods, in advance? Alternatively, is it possible that there is no simple,

universal, breaking criteria?

· Does the breaking onset and resulting dissipation depend on whether breaking was

caused by modulational instability vs. linear superposition? More generally, what

effect do nonlinear group dynamics have on the breaking?

· Do either the Duncan (1981) or Drazen et al. (2008) scaling of dissipation rate apply

to oceanic whitecaps? Can the whitecap area-time integral be used to determine the

loss of wave energy, as suggested in personal communication with Adrian Callaghan?

· Even if the total loss of energy from a whitecap is known, the wave models need the

spectral distribution of dissipation. Does Λ(c) correctly partition this dissipation?

· How much of the energy lost during breaking goes into turbulence, as opposed to other

dissipative mechanisms like bubble production? Conversely, can turbulence interact

with non-breaking waves to dissipate wave energy?

5.3 Next Steps

Clearly, there is much left to learn. Stereo video shows great promise for studying whitecaps,

and is likely to soon become a more widely used tool. The stereo video data of Chapter 4

may yet provide more insight into the breaking wave dynamics. For example, there is much

interest in statistical analysis and predictions of extreme wave events (i.e. “rogue waves”)

from stereo video (see Benetazzo et al., 2015). To benefit other scientists interested in such

“space-time” wave data, the current dataset will be archived and made available for public

download. Additionally, the same stereo system has since been deployed in the marginal

ice zone to study the influence of sea ice on waves, and may be useful in other unique

environments.
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However, it is clear that to investigate wave-breaking further, especially breaking dissi-

pation and wave group dynamics, a larger field-of-view would be valuable. Unfortunately,

it is difficult to expand the spatial domain while maintaining the accuracy of the stereo

measurement. Some gains might be seen from using higher resolution cameras or simply

more cameras. Alternatively, one might attempt to change the frame of reference by driving

a ship at roughly the wave group velocity, thereby observing each wave group for a longer

period of time. It might be possible to use unmanned aircraft to get a more ideal view-

point. Another option is to use LIDAR to measure the surface elevation. Because of the

high resolution of modern scanning LIDAR, it is possible to accurately measure the waves

from manned aircraft, as in Romero and Melville (2010). Finally, it may be useful for some

questions to start from a simpler measurement site, with a much narrower wave spectrum

in both frequency and direction. This may clarify the basic dynamics, without the added

complications of multiple wave scales.

The statistics of visible whitecaps remain valuable for relating wave-breaking to air-sea

interaction and mixing, yet there are still relatively few comprehensive datasets. With the

current price of video cameras and computer storage, and the horizon rectification method,

it is now minimally expensive to measure whitecap coverage from cruises of opportunity.

With a good system and some help, there is little reason why whitecap coverage cannot

be measured, for example, on every UNOLS cruise, which would likely cover most wave

conditions (perhaps not hurricanes and other extreme events). This would aid in the effort of

researchers currently using satellite data products to estimate the global whitecap coverage

(see Anguelova and Webster, 2006). It would also show once and for all whether water

properties effect the whitecap coverage, as discussed in Callaghan et al. (2008b).

Still, many of the questions in the previous section cannot be answered without new and

innovative methodologies. For example, in the age of “big data,” the time is ripe for a new

framework for quantifying wave breaking from video. This framework should be designed

with microbreaking in mind, meaning IR cameras are probably necessary. Ideally, it should

avoid the uncertainty from identifying discrete breaking events, as in whitecap coverage or
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the Fourier method of Thomson and Jessup (2009). The most simple variant would be an

infrared “whitecap coverage,” though even this would introduce a number of new challenges.

For example, the IR signal is highly dependent on the properties of the surface “cool-skin”

layer (see Jessup et al., 1997). On the other hand, given the rapid progress in machine

learning algorithms, it may be that more information can be obtained from these images

with less direction from the user.
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