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ABSTRACT 

Efficient and reliable goods movement via our nation’s highway system is critical to the nation’s 

economy and quality of life. Truck mobility is one of the key performance measures for 

evaluating the conditions of goods movement and supporting freight planning. Truck GPS data 

can be useful in developing truck mobility measures and providing insights into freight planning. 



 
 

This dissertation employs truck GPS data and proposes a set of methodologies for measuring and 

forecasting truck mobility performance, with particular emphases on truck travel time and travel 

time reliability. It also examines how GPS data can be used to support freight planning, using the 

analysis of impacts of a tolling project on truck mobility and routing as a case study.  

The first part of this dissertation investigates how to measure truck travel time reliability given 

the characteristics of GPS data.  An improved spot-speed distribution based travel time reliability 

measure is proposed. The proposed approach is compared with a number of commonly applied 

reliability measures. The correlations among these measures reveal that the reliability measures 

are not highly correlated, demonstrating that different measures provide different conclusions for 

the same underlying data and traffic conditions. The author presents recommendations of the 

appropriate measures for different applications.  

Quantitative freight project prioritization processes require both pre- and post-investment truck 

mobility performance. Therefore, the second part of this dissertation develops quantitative 

methods for forecasting truck specific travel time and travel time reliability. For travel time 

prediction, a speed-density based approach is proposed to predict truck travel time associated 

with segment density changes. Traffic regimes are segmented using a cluster analysis approach. 

The travel time estimates are compared with two widely applied traditional methodologies. The 

results demonstrate that the proposed method is able to estimate more accurate travel times. For 

reliability prediction, we analyze the changes of GPS spot speed distribution in response to 

different traffic conditions. A relationship between truck spot speed distribution coefficient of 

variation and segment density is proposed to forecast reliability. The approach is transferrable 

and sheds a light on forecasting travel time reliability.  



 
 

The third part of this dissertation focuses on examining how GPS data can be used to assist 

freight planning. The SR-520 toll bridge in the City of Seattle, Washington is selected as the case 

study. We quantify the toll project impacts on truck mobility and route choice. Truck GPS data is 

used to evaluate route choice and travel speed along SR-520 and the alternate toll-free route I-90. 

A logit model is developed to determine the influential factors in truck routing. The results 

indicate that travel time, travel time reliability and toll rate are all influential factors during both 

peak and off-peak periods. The values of truck travel time during different time periods are 

estimated, and the values vary with the definition of peak and off-peak periods. 

This dissertation provides decision makers with useful guidance and information on using GPS 

data for truck mobility measurement and forecasting. It also demonstrates the capability of GPS 

data in supporting freight planning.  
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Chapter 1 INTRODUCTION 

Efficient and reliable goods movement via our nation’s highway system is critical to the nation’s 

economy and quality of life. Truck mobility measures, defined as travel time and travel time 

reliability in this dissertation, are designed as a tool to evaluate the efficiency and reliability of 

freight goods movement. Information derived from mobility measures can support freight 

planning, including identifying bottlenecks, prioritizing projects, and assessing project impacts. 

The truck mobility measurements rely upon truck-specific movement data. This dissertation 

employs truck GPS data to measure and forecast truck mobility and support freight planning. 

Chapter 1 presents the research motivations, background, research questions, and dissertation 

organization. 

1.1 Research Motivations 

Trucking industry plays a significant role in the U.S. economy. It employed 9 million people and 

generated $659 million in revenue, which represented 5% of the U.S. Gross Domestic Product in 

2007(American Trucking Association 2008). In 2011, the U.S. highway system moved 17.6 

billion tons of goods worth $10 trillion. Meanwhile, the freight highway demand is projected to 

grow dramatically by 66% to be worth $21.5 trillion by 2040 (FHWA 2012a). However, it is 

unlikely the transportation supply side can keep up with the same growth without improvement 

to freight goods movement networks. The freight highway system’s economic significance to the 

United States and the needs for sustaining the highway system both have been gradually 

recognized by government and private sectors (NCFRP 2011). The Moving Ahead for Progress 

in the 21
st
 Century (MAP-21) act signed into law by President Obama in June 2012 emphasizes 

funding freight-related projects which are able to improve freight movement efficiency and 

economic vitality (FHWA 2012b). Despite the efforts that have been made to address future 
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transportation needs, the report published by The National Commission suggested that the nation 

had spent only 40% of what is needed to sustain and improve the highway network (The 

National Commission 2008).   

The increasing demand of the freight highway system and the limited federal and state level 

transportation budgets require truck performance measures for monitoring the condition of the 

system and identifying needs for future improvement. In this light, the MAP-21 act requests that 

all national and state roads be gauged by performance measures. In addition, it encourages all 

State Freight Plans to include performance measures that will guide the freight-related 

transportation investment decisions of the state (FHWA 2012b, USDOT 2012).  

For the past two decades we have developed increasingly sophisticated approaches for 

understanding the transportation system performance. Although a number of states have 

developed performance measure frameworks for monitoring general traffic, only a few of them 

have truck-specific performance measures. None has the performance measure-based freight 

planning strategies for freight project prioritization and impact assessment. Among the existing 

truck performance measures, most agencies only collect or estimate truck traffic volume and 

truck safety data, without providing truck mobility measures, e.g., speed, travel time and travel 

time reliability. However, developing truck mobility performance measures is important and 

necessary as it evaluates current system conditions and identifies problems. Furthermore, the 

performance measure-based planning is based upon real world data and, therefore, is able to 

provide a means to a more efficient investment of transportation funds and monitor project 

efficiency and effectiveness (NCFRP 2011).  
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The feasibility of using truck GPS data in freight performance measure has been investigated in 

several studies (Battelle 1999, McCormack and Hallenbeck 2006, FHWA 2003). It is found that 

GPS data provides reliable truck location and movement information and has potential to support 

performance measurement and forecasting. However, there are limited studies applying truck 

GPS data to measure and forecast truck mobility and assist freight planning. Thus this 

dissertation aims to take advantage of this new data source and investigate how truck GPS data 

can be used to support truck mobility measurement, forecasting, and freight planning.  

1.2 Research Background 

1.2.1 Access to Truck GPS Data for Freight Mobility Measurements and Planning 

Despite the fact that many truck performance-measure applications have been implemented, 

most agencies are only able to provide truck volume and safety statistics based on real world 

observations. They are unable to provide truck mobility measures (e.g., truck travel time and 

travel time reliability) which are based on expensive field data that is labor-intensive to collect. 

One of the major challenges faced by transportation agencies is the insufficiency of truck-

specific movement data (McCormack and Hallenbeck 2006, Beagan 2007). The traditional 

means for collecting such information involves stopping trucks and interviewing drivers or 

giving them a questionnaire. Such methods may not be able to get accurate information and were 

conducted, at most, once a decade (NCFRP 2011). 

The GPS technology has been widely applied in the trucking industry for fleet management since 

the 1980s, and both shippers and carriers have benefited from its use (Roetting 2003, 

Baumgartner 2008). Several pilot studies had proved the capability of commercial truck GPS 

technology in collecting truck movement data for supporting freight mobility research. Greaves 

http://www.sciencedirect.com/science/article/pii/S1361920908000850
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and Figliozzi (2008) analyzed the issues and potential applications of collecting commercial 

truck tour data using GPS technology. The study was based on the commercial vehicle data 

collection study in Melbourne in 2006. It is found that the capacity of GPS data to provide 

reliable and detailed time-space information in an economical manner has many potential 

applications in the transportation field, including constructing origin-destination matrices and 

developing speed-time profiles. McCormack and Hallenbeck (2005, 2006) conducted tests which 

involved installing GPS devices on commercial trucks. The results also indicated that it is 

possible to use GPS devices to collect truck movement data and assess truck trip reliability and 

identify truck route choices. However, the results also suggested that it is difficult to recruit 

drivers and install GPS devices due to privacy concerns.  

This data paucity issue has been gradually solved as the FHWA started collaborating with the 

American Transportation Research Institute (ATRI) to collect commercial truck GPS data.  They 

also investigated how data gathering from the GPS devices installed in trucks can be used to 

measure the mobility along interstate highways since 2002 (Jones et al. 2005). The data was also 

shared with several research agencies for analysis. In July 2013, FHWA also released the 

National Performance Measurement Research Data Set (NPMRDS), which is an aggregated 

travel time dataset in five-minute intervals for both passenger and commercial vehicles. State 

DOTs and their contractors have access to the data for interstate highway performance measures 

(ATRI 2012). In addition, some researchers purchased GPS data from GPS vendors or fleet 

management firms to study truck behaviors (McCormack et al. 2010, Sharman and Roorda 2011).  

The GPS data acquisition efforts on which this dissertation is based was a pilot study of 

investigating how to gather and use existing GPS data collected for truck fleet management to 



5 
 

develop performance measures for trucks (McCormack et al. 2010). The GPS data was initially 

collected by GPS vendors for trucking companies’ fleet management. Data used in this 

dissertation was purchased from GPS vendors directly instead of from trucking companies. Each 

vendor collects data for many trucking companies. The data includes a unique device ID, vehicle 

trajectory, spot speed, heading, location, time and date (McCormack et al. 2010, Ma et al 2011, 

Zhao et al. 2012). Each device ID was scrambled for anonymity to protect the customer 

information. Data was collected since September 2008 until the present. Originally, there were 

approximately 3,000 tracked trucks traveling in Washington, which represented around 3% of 

the total Washington truck population. Because the data was collected for the purpose of fleet 

management, the average reading frequency is around 15 minutes. Since November 2011, the 

sample size was enlarged to approximately 5,000 trucks. In addition to all roads throughout 

Washington, the data also covers 100 miles outside Washington’s borders (in British Columbia, 

Idaho, and Oregon). Some of the GPS reading rates were improved from 15 minutes to 2~5 

minutes. Figure 1-1 shows the daily coverage of GPS data collected on October 3
rd

 2012.  
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Figure 1-1 Daily Coverage of GPS Data (Collected on October 3
rd

 2012) 

1.2.2 Applications of Truck GPS Data in Freight Mobility Measurements 

Due to the increasing availability of truck GPS data to transportation agencies and researchers, 

there are some emerging studies of using GPS data to support freight performance measures and 

freight planning. 

Since 2002, the Federal Highway Administration (FHWA) started collaborating with the 

American Transportation Research Institute (ATRI) to investigate how data gathering from the 

GPS device installed in trucks can be used to measure the mobility and reliability along interstate 

highways (Jones et al. 2005). A series of reports has been published. Five freight-significant 

corridors were selected in the initial two phases of study, including I-5, I-10, I-45, I-65 and I-70 

(ATRI 2005). The truck GPS data was employed to measure the average travel speed; travel time 

index, which is defined as the ratio of observed travel speed to free-flow travel speed; and buffer 
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index, which represents travel time reliability and is computed by dividing the extra travel time 

to ensure on-time arrival by average travel time. The GPS dataset was enlarged in 2006, and 

ATRI re-examined the truck mobility in the five corridors (USDOT 2006b). In 2009, ATRI and 

FHWA monitored 100 freight-significant highway locations and provided the congestion ranking 

based on the congestion index calculated based on truck GPS data (ATRI 2010). The congestion 

rank index is the total freight congestion value, which is produced based on three steps. The first 

step is to set the free flow speed of 55 mph. The second step is to calculate the hourly freight 

congestion value, which is obtained by multiplying the difference between free flow and average 

truck speed with the hourly number of commercial vehicles. The final step is to sum the 24 hours 

freight congestion value and rank the bottlenecks accordingly (ATRI 2010). The performance 

measure was conducted in 2010 and 2012 as well, and 250 freight-significant highway locations 

were monitored and ranked using truck GPS data (ATRI 2011, ATRI 2013).  

FHWA and ATRI also partnered with academia and several state transportation agencies to 

investigate methods for developing freight performance measures. Figliozzi et al. (2011) utilized 

the ATRI truck GPS data to examine the travel time reliability on I-5 corridor in Oregon using 

statistical techniques. They developed an algorithm to segment the I-5 segment to ensure an 

adequate number of observations to conduct statistically reliable analysis. Truck travel time 

reliability was evaluated based on the travel time distribution, including 50
th

, 80
th

, and 95
th

 

percentile travel time. Florida DOT utilized the ATRI GPS data to estimate the travel speed for 

Florida’s highways, as well as identifying truck trips and OD flow table (FDOT 2012). 

Minnesota DOT sponsored the research to analyze truck travel speed and reliability along I-90 

and I-94 based on the ATRI GPS data (Liao 2009). Building on this research effort, Liao 

developed an analysis methodology using ATRI truck GPS data to study the performance of 
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heavy commercial vehicles along 38 critical freight-significant corridors in Twin City, 

Minnesota to identify truck bottlenecks (Liao 2014). Truck mobility, delay, and reliability index 

were evaluated. The mobility was measured as the number of hours in peak periods with average 

speed below threshold speed. Truck travel time reliability was quantified as an index calculated 

by dividing the 80
th

 percentile travel time by the travel time at pre-defined threshold speed. 

Truck traffic bottlenecks were identified and ranked on the average truck delay per mile and 

number of hours in peak periods with speed less than threshold speed. 

In July 2013, the FHWA released the National Performance Measurement Research Data Set 

(NPMRDS), which is travel time data in every five-minute interval for all national highway 

facilities for both passenger and freight vehicles. Liao (2014) documented the steps to associate 

the NPMRDS travel time data with the national highway system GIS shapefile data. The average 

speed of passenger and commercial vehicles at each segment was computed by dividing the 

segment distance by the corresponding travel time. The derived speed was plotted on map within 

the ArcGIS environment.   

The GPS data provided by ATRI only covers the interstate highways and major state roads and 

does not provide much data about arterial roads and routes in rural areas, which also experience 

severe truck congestions. Instead of accessing data from ATRI, WSDOT purchased the GPS data 

from GPS vendors directly and used the data to identify truck trips, speed, travel time and 

reliability (McCormack et al. 2010). The GPS data was collected since September 2011 to 

present and covers most truck roads in Washington. Based on this data, Ma et al. (2011) 

developed a web-based benchmark to process commercial GPS data for truck performance 

measures. An algorithm was proposed to identify truck trip originations and destinations from 

raw GPS data.  Truck performance measures include speed, travel distance, travel time between 
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transportation analysis zones (TAZ), and travel time reliability. Zhao et al. (2011) utilized the 

same dataset to compare different freeway travel time estimation methods. It is found that the 

mean GPS spot speed can represent the average truck travel speed along short segments, and 

travel time is computed by dividing the segment distance by the corresponding mean spot speed. 

The travel time estimates were comparable with space mean speed-based travel time estimates. 

In addition, WSDOT has developed a set of criteria for identifying truck bottlenecks using the 

same dataset (WSDOT 2011). The first criterion is truck slow-speed bottleneck, which is 

identified preliminarily upon the truck speed estimates retrieved from GPS devices. If there are 

50% of trucks traveling below the poor performance threshold defined by WSDOT, the segment 

is categorized as a bottleneck. The poor performance threshold was defined as 60% of posted 

speed limit and 35 mph on urban freeways. The second type of bottleneck is defined as reliability 

bottleneck. Two approaches were employed to identify the bottlenecks. The first approach was 

proposed by Zhao et al. (2012) based on the truck GPS spot speed distribution. If the speed 

distribution of the studied segment follows a mixture of two Gaussian distributions, it is 

recognized as unreliable, otherwise it is reliable. The second approach relies upon the 95
th

 

percentile of truck travel time (USDOT 2006a). However, the second approach requires a vast 

amount of GPS data, and the current dataset used by WSDOT can only support the reliability 

measure of a few corridors.   

While several pilot studies have been implemented, most of them assess the truck mobility by 

calculating the truck speed based on GPS spot speed only, and one of them deals with the travel 

time evaluation explicitly. However, the complexity of travel time reliability still requires 

substantial efforts to investigate. The forecasting of truck mobility performance using the 

aforementioned GPS datasets has not been investigated in any studies yet.  
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1.2.3 Applications of Truck GPS Data in Freight Planning 

In the past decades, there have been multiple studies seeking to collect truck movement data to 

support freight planning, including identifying truck travel patterns, supporting travel demand 

model improvement, and evaluating impacts of freight policies. Sharman and Roorda (2011) 

developed an automatic processing application to identify truck trip destinations and track 

frequency of frequently visited destinations. They tested different approaches to cluster trip ends 

retrieved from GPS devices in order to group trip ends into repeated visits to common 

destinations. The comparison of a number of clustering approaches indicates that the Ward’s 

method is superior to other methods for this application due to better clustering results and 

reasonable computation efforts. This research associates GPS stops with common visit 

destinations, which initiates new research opportunities to identify truck destination patterns. 

You (2012) developed methodologies for tour-based truck demand modeling. Truck GPS data 

was employed to gather truck tour data and understand the drayage trucks’ trip patterns. Four 

types of truck pattern were categorized given the corresponding characteristics. The analysis 

results demonstrate that the traditional trip-based travel demand model cannot address drayage 

truck behaviors, and a tour-based model is needed.  

Puget Sound Regional Council (PSRC) employed truck GPS data to support the improvement of 

the regional travel demand model (2009). The truck speed retrieved from GPS data along a 

selected corridor was compared with passenger car speed in the same corridor to improve the 

understanding of whether trucks travel at a different speed than passenger cars. The study also 

suggested potential applications of truck GPS data in improving travel demand models, including 

identifying zone to zone movements; identifying origins, destinations, and tours; providing 
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information on speed, travel time, trip length, congestion, and bottlenecks; and evaluating project 

effects by modeling both pre- and post-investment travel time using travel demand models. 

GPS data has also been used for analyzing project impacts. Golias (2013) employed GPS data to 

evaluate the effects of the commercial truck hours of service (HOS) rule on traffic congestion. 

The HOS rule regulates the maximum number of driving and working hours per day for a 

commercial truck driver before a rest period. The regulation is expected to reduce negative 

impacts of truck traffic on roadway congestion as well. The effects are evaluated through truck 

volume, truck trip characteristics, and the corresponding roadway level of service (LOS). A 212 

mile long segment of I-40 between Memphis and Nashville, Tennessee was selected as the case 

study. The truck GPS data was provided by ATRI and collected between September 1
st
, 2011 

and October 31
th

, 2011. Each GPS record includes truck ID, latitude, longitude, timestamp (date 

and time), speed, and heading. GPS data was spatially associated with the highway segment 

being studied within the ArcGIS environment. The analysis results reveal that truck traffic 

increased significantly during peak period and consequently lead to a worse traffic condition 

after applying the new HOS rule.  

Despite the fact that truck GPS data has been applied to various freight planning studies, none of 

them has investigated the tolling project impacts on truck travel performance and behaviors. 

Thus this dissertation intends to fill this gap by exploring the GPS data capability in quantifying 

tolling project impacts. 

1.3 Research Objectives 
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The overall goal of this dissertation is to use the advantages of the information provided by the 

truck GPS data to support freight planning. To fill the gap identified in the previous section, 

three specific research objectives are identified: 

The first research objective is quantifying current travel time reliability using GPS data. 

Accordingly, the set of research questions are: 

 What are the existing implementable metrics that can be used to estimate truck travel 

time reliability given the characteristics of the GPS data we are using? 

 What are the pros-and-cons of each method? 

 If there are limitations of the existing approaches, how can we improve it? 

 What are the appropriate reliability measures to use under different situations?  

The second research objective is predicting truck travel time and travel time reliability for freight 

planning using truck GPS data. The second set of research questions include: 

 What are the limitations of using the traditional engineering equations and travel demand 

models to predict the post-investment truck travel time and travel time reliability for 

freight planning projects?  

 What methods can be applied to predict truck travel time based on GPS data? What data 

do we need to implement the forecasting? How does the accuracy vary spatially and 

temporally? How to validate the results? 

 What methods can be employed to forecast travel time reliability? Why do we choose this 

method?  What data do we need to support the forecasting?  
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The third research objective is applying truck GPS data to support freight planning by 

quantifying the toll road impacts on truck speed and route choice. The third set of research 

questions are: 

 Will the truck travel speed be affected after the SR-520 Bridge toll project? To what 

extent will they be affected?  

 How can GPS data be used to quantify truck route choice?  

 What are the factors affecting truck route choice? What are the impacts of these factors? 

1.4 Organization 

The remainder of this dissertation is organized as follows: 

Chapter 2 starts with the literature review of the existing commonly applied travel time reliability 

measures. It is followed by a discussion of the challenges of employing truck GPS data to 

evaluate reliability using these approaches. The author then proposes an improvement to the 

existing spot speed distribution based reliability measure and compares it with a number of 

existing approaches. Correlations are provided between the improved approach and a number of 

commonly used reliability measures. The advantages and disadvantages of each measure are 

discussed and recommendations of the appropriate measures for different applications are 

presented. 

Chapter 3 proposes a speed-density relationship based freeway truck travel time prediction 

approach based on truck GPS data and loop data. Traffic regimes are segmented using a cluster 

analysis approach. The proposed method is compared with another two traditional approaches. 

The results indicate that the proposed method generates more accurate travel time estimates. 
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Chapter 4 examines the impact of traffic condition on GPS spot speed distribution. The 

relationship between traffic density and coefficient of variation of GPS spot speed distribution is 

developed to forecast truck travel time reliability based on truck GPS data and loop data. 

Chapter 5 explores how GPS data can be used to evaluate impacts of tolling on truck speed and 

routing. The City of Seattle SR-520 toll bridge is selected as a case study. Truck GPS data is 

employed to evaluate route choice and changes in travel speed along the toll route SR-520 and 

the alternative toll-free route I-90. A logit model is developed to determine the influential factors 

during both peak and off-peak periods. The values of truck travel time during both periods are 

also estimated.  

The final chapter presents the conclusions and contributions of this research and discusses the 

potential obstacles and challenges to implement the proposed methodologies.  
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Chapter 2 MEASURING TRUCK TRAVEL TIME RELIABILITY USING 

TRUCK PROBE GPS DATA 

This chapter focuses on proposing a travel time reliability measure given the characteristics of 

the GPS data used in this dissertation, and providing recommendations of the appropriate 

reliability measures to use under different conditions. It starts with a literature review of a 

number of commonly applied travel time reliability measures. It is followed by an improvement 

to the recently proposed GPS spot speed based approach. The author then applies the improved 

GPS spot speed based measure and those widely applied reliability metrics to a case study, and 

compares the correlations among these reliability measures. In addition, the advantages and 

disadvantages of each measure are summarized and appropriate methods for different 

applications are recommended. 

2.1 Introduction and Background 

Travel time reliability represents the level of consistency in travel times for the same trip for a 

time period (Lomax et al. 2003). It has been recognized as a critical factor in truck routing and 

scheduling. A survey conducted by Bogers and van Zuylen (2004) found that truck drivers prefer 

the more reliable route, even if it involves a longer trip in comparison to other routes with shorter 

travel time and higher uncertainty. While travel time reliability is a factor for determining truck 

route choice, it is also becoming an important component of freight mobility performance 

metrics (Cambridge Systematics 2013, USDOT 2006b). Given the importance of travel time 

reliability, numerous quantitative approaches have been proposed to measure travel time 

reliability based on a variety of data sources. The truck probe data collected from GPS devices 

has gained increased attention as a source of truck travel time reliability input given the growing 

market penetration of GPS technology, as well as the improved truck specific vehicle location 
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and speed information provided by GPS devices. Meanwhile, the Moving Ahead for Progress in 

the 21
st 

Century (MAP-21) program will make GPS data from commercial vehicles available to 

transportation agencies for evaluating regional freight performance, including travel time 

reliability.  

Most truck travel time reliability studies that apply GPS data are based on travel time 

observations that are retrieved from GPS data (ATRI and FHWA 2005, USDOT 2006b, Liao 

2009, USDOT 2010, Figliozzi et al. 2011). The travel time observations require substantial 

sample size to ensure statistical reliability (NCHRP 2008, Figliozzi et al. 2011), and the major 

challenges to using GPS data to obtain travel times are small non-random observation sets and 

low reading frequency. In contrast, using GPS spot speed directly can alleviate the low read rate 

and read density concerns. In addition, raw GPS data typically provides spot speed (not travel 

time), and the conversion from spot speed to travel time for a particular segment involves data 

processing and therefore may cause a loss of data accuracy. Despite the potential of truck GPS 

spot speed data to support truck specific travel time reliability assessment, there are limited 

studies investigating reliability metrics based on spot speed data. Zhao et al. (2013) developed 

the GPS spot speed distribution based approach to evaluate truck travel time reliability and 

identified bottlenecks based on the hypothesis that the truck speed distribution can be modeled 

by either unimodal or bimodal probability density functions. They further identified that if truck 

speed follows a bimodal distribution, the segment is classified as unreliable. Otherwise, it is 

defined as reliable. However, this reliability metric only classifies reliability into three categories: 

reliably slow, reliably fast and unreliable.  It does not provide a numerical value which would 

allow for a more quantitative evaluation, e.g. ranking reliabilities on different segments or during 
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different time periods, or quantifying the changes in travel time reliability associated with 

transportation investments.  

In light of this, the objective of this chapter is to improve the current GPS spot speed based 

reliability metric by proposing a means to support more quantitative analyses.  In addition, the 

authors compare the proposed approach with a number of commonly used travel time based 

reliability measures: travel time coefficient of variation (COV), buffer time index (BI), skew, and 

truck reliability index (RI80). The appropriate reliability measures for different applications are 

discussed. The remainder of this chapter is organized as follows: section two (2) provides a brief 

review of the commonly used travel time reliability measures that are implementable with truck 

GPS data, and discusses the sample size constraint associated with travel time based reliability 

measures; section three (3) proposes the improvement to the recently proposed GPS spot speed 

based approach, section four (4) applies the improved GPS spot speed based measure and those 

widely applied travel time based metrics to a case study and compares the correlations among 

these reliability measures; section five (5) offers findings and conclusions of the analyses. 

2.2 Literature Review on Current Travel Time Reliability Measures 

There has been substantial effort to develop travel time reliability measures relying upon 

statistical techniques and probe data collected from GPS devices. Comprehensive overviews of 

travel time reliability measures can be found in Lomax et al. (2003), NCHRP Report 618 (2008) 

and Cambridge Systematics (2013). Several commonly applied reliability measures are reviewed 

in this section since they can be measured and implemented with GPS data, and have been tested 

and applied in practical projects. The authors classified these measures into two categories 

according to the data on which these approaches are based: travel time based reliability measure 

and GPS spot speed based measure.  
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Travel Time Based Reliability Measures 

(1) Standard Deviation and Coefficient of Variation (COV) 

The travel time standard deviation is a measure of how spread observations are. The larger the 

value of the standard deviation, the lower the travel time reliability. In addition to the standard 

deviation, the ratio of the standard deviation and the mean, also called the coefficient of variation, 

is defined as a reliability measure.  This value is interpreted as the larger the standard deviation 

relative to the mean, the lower the travel time reliability.  One example of the use of COV 

approach is the research led by the U.S. Department of Transportation (USDOT) on measuring 

the crossing-border truck travel time and travel time reliability (USDOT 2010). The study 

location was the Otay Mesa International Border between the U.S. and Mexico. Truck GPS data 

was collected from January 2009 to February 2010. A large travel time standard deviation from 

the mean was observed, which ranged from 61% to 81% of the mean value. Therefore the study 

concluded that carriers crossing the border experienced very low travel time reliability. 

(2) Percentile Method 

In this method, the 95
th

 percentile travel time was recommended by USDOT as the metric to 

compare travel time reliabilities on different segments (TTI and Cambridge Systematics 2006).  

This 95
th

 percentile travel time method is used to measure very long travel times based on 

observations over a certain time period, e.g. across one year. It estimates the time travelers need 

to plan in order to meet a desired arrival time. It is also called planning time. It is recommended 

by the National Cooperative Highway Research Program (NCHRP) as the simplest indicator of 

travel time reliability (NCHRP 2008).  Researchers may also use the 80
th

 or 85
th

 or other 

percentiles as the base. The SHRP 2 (Second Strategic Highway Research Program) 
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recommended using 80
th

 percentile travel time instead of 95
th

 percentile travel time since they 

found that events that contribute to the 80
th

 percentile travel time are more common events and 

are more likely to be influenced by operation strategies, e.g. improvement to transportation 

infrastructures (Cambridge Systematics 2013). Figliozzi et al. (2011) evaluated travel time 

reliability along the I-5 corridor through the State of Oregon based upon truck GPS data accessed 

from the American Transportation Research Institute (ATRI). The 50
th

, 80
th

 and 95
th

 percentile 

travel time were selected as metrics to measure travel time reliability along the I-5 corridor.   

(3) Buffer Time Index (BI) 

Buffer time is defined as the extra travel time travelers must add to the average travel time to 

allow for on-time arrival, and it is calculated as the difference between the 95% travel time and 

average travel time (TTI and Cambridge Systematics 2006). The buffer time index (BI) is 

calculated by dividing buffer time by the mean travel time. Federal and regional transportation 

agencies have used the BI to evaluate system performance. The Federal Highway Administration 

(FHWA) and ATRI have evaluated how information retrieved from GPS devices could provide 

data to support freight travel time reliability measures. The BI measure was employed to 

evaluate freight travel time reliability along five major freight corridors in the U.S. (USDOT 

2006).  The Minnesota DOT evaluated freight performance along I-94/I-90 from the Twin Cities 

to Chicago using archived truck GPS data and freight travel time reliability was evaluated using 

the BI metric (Liao 2009).  

(4) Skew 

While standard deviation and COV represent the spread of the travel time distribution, the skew 

depicts the “leaning” of travel time distribution to one side of the mean. Van Lint and van Zuylen 
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(2005) examined the travel time distribution along a 19.1 km freeway in Netherlands and found 

that both width and skew of travel time distribution change with respect to different traffic 

regimes (van Lint et al. 2008). The travel time distribution is approximately symmetric before 

congestion, with small values of both width and skew. The distribution tends to be left-skewed 

with wider breadth (longer tail) during the onset of congestion. During the congested period, the 

travel time distribution growths wider and becomes right skewed. Finally, while congestion 

wanes, both the median travel time and the spread of travel time distribution decrease, and the 

distribution is left skewed again (van Lint et al. 2008).  Given the changes in both width and 

skew, van Lint and van Zuylen (2005) suggested that not only the variance of travel time should 

be used as reliability measures, but also the skewness. The skewness is quantified by comparing 

how much of the 90
th

 percentile travel time is greater than the median to how much the 10
th

 

percentile travel time is less than the median, as expressed in Equation (2-1) (van Lint and van 

Zuylen 2005, van Lint et al. 2008). 

90 50

50 10

T T
Skew

T T





                                                               (2-1) 

(5) Truck Reliability Index(RI80) 

The reliability measure recommended by The American Association of State Highway and 

Transportation Officials (AASHTO) for the MAP-21 Program is the RI80, which is defined as the 

ratio of the total truck travel time needed to ensure on time arrival to the agency-determined 

congestion threshold travel time (e.g. observed travel time or preferred travel time) (AASHTO 

2012, Cambridge Systematics 2013). The 80
th

 percentile travel time is chosen to represent the 

total truck travel time needed. The congestion threshold travel time is determined by each 
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transportation agency and should account for various reasons to slowing trucks, e.g. weather, 

congestion, accident and work zone.  

Sample Size Constraint 

The reliability measures discussed above rely upon travel time observations. Two common 

approaches are utilized to compute the travel times on a specific roadway segment using GPS 

data. One is the vehicle location based approach. Two buffers are created at the segment start and 

end points respectively, and truck trips that have GPS reads in both buffers are identified. The 

difference between the two timestamps in the two buffers is viewed as the travel time along the 

segment (Figliozzi et al. 2011). Another approach is the “estimated link speed” method (Zhao et 

al. 2011). This method is based upon the assumption that averaged GPS spot speed is able to 

approximate the travel speed along the segment when the segment is short, and consequently the 

travel time can be approximated by dividing the segment length by the average spot speed. Both 

approaches require sufficient travel time observations to ensure the estimated travel time can 

represent the link travel time with reasonable accuracy. The minimum number of travel time 

observations is proposed to ensure statistical reliability, and it is determined by the precision 

desired by the analysts and the variability of the dataset (NCHRP 2008). If analysts need to know 

the average travel time very precisely and the variability of the observations is high, e.g. during 

peak period, a large number of observations will be required. The minimum required number of 

observations is shown in Equation (2-2) (NCHRP 2008). 
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                                                  (2-2) 

where N = minimum required number of observations, 
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1 %CI  = confidence interval for the true mean with probability of (1-α)%, where α equals to the 

probability of the true mean not lying within the confidence interval, 

(1 /2), 1Nt   = the t statistic for the probability of two-sided error summing to alpha with N-1 

degrees of freedom, 

S = the standard deviation in the measured travel times. 

If the number of minimum observations is not reached, analysts need to either extend the time 

period, e.g. from a 30-minute to a one hour interval, or increase the length of the segment being 

studied. However, for some segments with sparse GPS datasets and low data reading frequency, 

the minimum sample size cannot be achieved even if the analysis time period is extended to 3 

hours. Also, the length of the segment should not be too long since roadway segmentation is 

mainly determined by the changes in truck volume, roadway geometric design and traffic control 

to ensure similar roadway characteristics.  

GPS Spot Speed Based Approach 

Sample size is often a challenge when producing travel time based reliability metrics of 

statistical strength. To alleviate the challenges, Zhao et al. (2013) developed a GPS spot speed 

distribution based approach, which provides a reliability measure with a sparse GPS dataset. 

WSDOT has evaluated the truck reliability performance and identified freight bottlenecks using 

this approach (McCormack et al. 2011). The probe data used in Zhao’s research is sparse for 

most segments, and is not sufficient to provide a travel time distribution to support travel time 

reliability analyses using the travel time based reliability methods reviewed above. Instead of 

examining the travel time distribution, they plotted the spot speed on each segment during 
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certain time periods. It was found that a mixture of two Gaussian distributions provided the best 

fit for the truck speed observations. Zhao et al. (2013) assessed the reliability by evaluating the 

speed distributions with the assumption that the travel time is unreliable if bimodal distributions 

are observed. Otherwise (a unimodal distribution), it is classified as reliable. The probability 

density function of a mixture of two Gaussian distributions is shown in Equation (2-3). The 

parameters are fitted based on the maximum likelihood rule.  
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                                   (2-3)  

where w = the proportion of the first normal distribution, 

μ1 and μ2 = mean of the first and second Gaussian distribution, 

σ1 and σ2 = standard deviation of the first and second Gaussian distribution. 

The approach defines the travel condition as unreliable if and only if

1 2 1 2 1, 0.2,   0.75 pw and V           ( pV  is the posted speed), otherwise, it is viewed 

as reliable. For the reliable performance, it is subdivided into reliably fast and reliably slow 

depending on the average speed. The major advantage of this methodology is that the reliability 

evaluation does not require a large number of travel time observations, rather only spot speed. 

However, the current method does not provide a numerical value which would allow for a more 

quantitative evaluation and ranking. 

The literature review section recalls a number of commonly applied travel time reliability 

measures. In contrast to the travel time based reliability measures, the reliability metric proposed 
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in the next section is based on GPS spot speed data. It is an improvement to the newly proposed 

spot speed based approach discussed above, which allows more quantitative analyses. 

2.3 Improvement to the GPS Spot Speed Based Reliability Measures 

As discussed in the previous sections, the current GPS spot speed based approach can only 

classify segment travel time reliability into three categories. For example, Figure 2.1 shows the 

fitted truck spot speed distributions of four segments during the AM peak period (6:00 AM – 

9:00 AM) based on GPS observations collected in May 2012. Segment 1 and Segment 2 are the 

stretch of 9 miles of eastbound and westbound of Interstate 90 (I-90) near Spokane, WA. 

Segment 3 and Segment 4 are the stretch of 3.5 miles of southbound and northbound of Interstate 

5 (I-5) near downtown Seattle, WA. The corresponding fitted parameters are given in Table 2-1. 

The distribution fitting was accomplished using the R software package “mixdist” (Du 2002). 

Taking segment 1 as an example, the fitted result can be interpreted as follows. The GPS spot 

speed distribution is composed of two traffic regimes. The average truck travel speed of the first 

traffic regime is 40.05 mph, with standard deviation of 21.6 mph. The average truck travel speed 

of the second traffic regime is 63.36 mph, with standard deviation of 5.11 mph. The probability 

of truck travel speed falling within the first traffic regime is 4%, which indicates that the 

probability of truck travel speed falling within the low-speed regime is very small. Since the 

fitted parameters do not meet the rule of “ 1 2 1 2   0.2and w       ”, the travel time 

distribution of segment 1 follows a unimodal distribution (as shown in Figure 2-1 (a)). In 

addition, the average travel speed is 62.29 mph, which is greater than the 75% of the posted 

speed limit. Thus travel time on segment 1 is further defined as reliably fast. Similarly, the truck 

travel time on segment 2 is also defined as reliably fast. For segment 3, it is also composed of 

two traffic regimes. The average truck travel speed of the first traffic regime is 24.01 mph, with 



25 
 

standard deviation of 11.78 mph. The average truck travel speed of the second traffic regime is 

54.44 mph, with standard deviation of 6.19 mph. The probability of truck travel speed falling 

within the low-speed traffic regime is 55%. The fitted parameters meet the predefined rule, and 

therefore the travel time on segment 3 is defined as unreliable during the AM peak period. 

Similarly, segment 4 is defined as unreliable. However, this approach can only identify the 

reliability category, but it is not able to rank the reliabilities to identify the most unreliable 

segment. 

 

                                                  (a)                                                                             (b) 
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                                            (c)                                                                                (d) 

Figure 2-1 GPS Spot Speed Distribution Fittings of Four Segments during AM Peak Period 

Table 2-1 Estimated Parameters for GPS Spot Speed Distribution Fittings of Four 

Segments 

 Segment 1 Segment 2 Segment 3 Segment 4 

w 0.04 0.03 0.55 0.35 

1  40.05 28.46 24.01 12.95 

1  21.60 8.16 11.78 4.94 

2  63.36 63.04 54.44 45.87 

2  5.11 6.02 6.19 12.65 

pV  60 60 60 60 

Average speed 62.29 61.84 37.52 34.16 

1 2 1 2

1

 , 0.2
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  0.75 pif average speed V   No No   

Reliability category Reliably Fast Reliably Fast Unreliable Unreliable 

A coefficient of variation (COV) method is proposed to improve the current approach. Since it 

has been proven that the GPS spot speed distribution follows a mixture of two Gaussian 

Distributions, the mean and standard deviation of the spot speed distribution can be calculated 

based on the parameters of the two distributions, as shown in Equation (2-4). The COV which is 
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computed by dividing the standard deviation by the mean is employed as travel time reliability 

measure, as shown in Equation (2-5).  

                                             
1

2 2 2

1

(( ) )

n

i i

i

n

i i i

i

w

w

 

   







  




                                                    (2-4)         

   ( )Coefficient of Variation COV



                                                 (2-5)                       

where   =  mean of the mixture of Gaussian distributions, 

iw = weight of the ith Gaussian distribution, 

i  = mean of the ith Gaussian distribution, 

  = standard deviation of the mixture of Gaussian distributions, 

i = standard deviation of the ith Gaussian distribution, 

 n = number of Gaussian distributions, n=2 since it has been proved that spot speed follows of 

the mixture of two Gaussian distributions. 

Using Equation (2-5), the corresponding COV of the four segments can be computed, as 

displayed in Table 2-2. The authors ranked the travel time reliability based on the values of the 

COV, where 1 represents the least reliable segment and 4 represents the most reliable segment. 

The larger the standard deviation relative to the mean, the lower the travel time reliability. 

According to the calculation, segment 4 was identified as the most unreliable segment during 

AM peak period based on the one month GPS spot speed observations, and segment 1 was the 

most reliable segment. This information can be used to support resource allocation and planning. 
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Table 2-2 Reliability Measurements and Ranking Results of the Four Segments 

 Segment 1 Segment 2 Segment 3 Segment 4 

Mean 62.43 62.00 37.70 34.35 

Standard deviation 8.04 8.48 17.97 18.95 

COV 0.13 0.14 0.48 0.55 

Reliability Ranking 4 3 2 1 

2.4 GPS Data Based Travel Time Reliability Measures Comparison 

This section provides a case study to compare various reliability measures by ranking the 

reliabilities on the same segment during different times-of-day and days-of-week, and computing 

the correlation among these measures.  

Study Area and Description of the Probe Data Used 

A stretch of 3.5 miles of southbound Interstate 5 (I-5) through downtown Seattle was selected for 

the case study. Travel time reliability was examined during two time periods: off-peak period 

(12:00 AM – 6:00 AM) and AM peak period (6:00 AM – 9:00 AM). The GPS data acquisition 

efforts on which this dissertation is based was a pilot study of investigating how to gather and 

use existing GPS data collected for truck fleet management to develop performance measures for 

trucks (McCormack et al. 2010). The GPS data was initially collected by a GPS vendor for 

trucking companies’ fleet management. The data is purchased from the GPS vendor directly and 

it includes a unique device ID, vehicle trajectory, spot speed, heading, location (latitude and 

longitude), time and date. Each device ID was scrambled for anonymity to protect the customer 

information. Data was collected from January 2012 to December 2012. The average GPS reading 

frequency ranges from 2 to 15 minutes. More details of data collection efforts can be found in 

McCormack et al. (2010), Ma et al. (2011) and McCormack et al. (2011). The GPS data 

processing consists of three steps: (1) cleaning data to filter out problematic and duplicated data, 

(2) geocoding GPS data to road segments, and (3) estimating travel time from GPS spot speed (if 
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travel time based reliability measures are selected). More details of the data processing and travel 

time estimation can be found in McCormack et al. (2011) and Zhao et al. (2011).  

The traffic performance information retrieved from the GPS dataset represents the performance 

of trucks equipped with GPS devices. Previous research by Zhao et al. (2011) has demonstrated 

that the mean truck travel speed computed from the GPS data compared well with the mean 

mixed traffic speed recorded by loop detectors deployed in the right-most lane (the absolute 

differences between the two values are less than 6%). The MAP-21 program will provide State 

DOTs with GPS for performance measures. Although the GPS data may be provided by different 

vendors than that described in this dissertation, the data formats are consistent with those 

identified in this dissertation. 

Reliability Ranking Results 

Truck travel time reliability on the selected segment was measured using a number of reliability 

metrics: COV, BI, skew, RI80 and the improved GPS spot speed based method. Travel time 

standard deviation method was not included in the case study since it is highly correlated to the 

COV. The RI80 was calculated by dividing the 80
th

 percentile travel time by 60% of posted speed 

(Washington State Department of Transportation’s congestion threshold (WSDOT 2010)). The 

80
th

 percentile travel time measure was not included in the analysis as it is highly correlated with 

the RI80 metric. 

Table 2-3 shows the reliability ranking results of the same segments during different times-of-

day and days-of-week, each based on one of the reliability measures listed above.  
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Table 2-3 (a) Reliability Ranking Results during Off-peak Period (12:00 AM – 6:00 AM) 

Measures Mon Tue Wed Thu Fri 

COV 2 5 4 3 1 

BI 3 5 2 4 1 

Skew 3 5 4 2 1 

RI80 3 5 2 4 1 

Improved GPS spot speed based method 3 5 2 4 1 

Table 2-3 (b) Reliability Ranking Results during AM Peak Period (6:00 AM – 9:00 AM) 

Measures Mon Tue Wed Thu Fri 

COV 1 4 2 3 5 

BI 4 5 3 1 2 

Skew 1 4 5 3 2 

RI80 4 3 2 1 5 

Improved GPS spot speed based method 4 2 1 3 5 

The travel time reliability ranking results vary depending on the measures used. During the off-

peak period, all measures identify travel time on Friday as the least reliable and travel time on 

Tuesday as the most reliable. However, the rankings of the rest of three days are different. The 

rankings differ significantly during the AM peak period. The COV and skew metrics indicate 

travel time on Monday is the least reliable compared to other days, the BI and RI80 method show 

that truck drivers experienced the most unreliable travel time on Thursday, and travel time on 

Wednesday is defined as the most unreliable by the improved GPS spot speed based approach. 

The differences stem from the fact that different measures capture different components of 

reliability.  

Correlations among Travel Time Reliability Measures 

The above ranking results indicate that different measures get different conclusions even if the 

same data is used. To further explore the relationship among these measures, the correlations 

among each measure were calculated, as displayed in Table 2-4. The values represent the degree 

to which these measures are related.  
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Table 2-4 (a) Correlations among Reliability Measures during Off-peak Period 

  COV BI Skew RI80 Improved GPS Spot Speed 

COV 1.000 

 

 

  BI 0.639 1.000  

  Skew 0.666 0.408 1.000 

  RI80 0.695 0.735 0.446 1.000  

Improved GPS spot speed 0.556 0.433 0.420 0.769 1.000 

 

Table 2-5 (b) Correlations among Reliability Measures during AM Peak Period 

  COV BI Skew RI80 Improved GPS Spot Speed 

COV 1.000 

 

 

  BI 0.679 1.000  

  Skew 0.471 0.418 1.000 

  RI80 0.508 0.595 0.135 1.000  

Improved GPS spot speed 0.322 0.196 -0.223 0.821 1.000 

Although the results above are based on a specific freeway segment truck travel time and speed 

data, it reveals a general finding that there are large deviations among the travel time based 

reliability measures, and between the travel time based reliability measures and the improved 

GPS spot speed based approach. What’s more, the deviations are more significant during peak 

period compared to off-peak period.  

The COV and Skew are not highly related during the off-peak period (with correlation of 0.666), 

and they are even more weakly related during peak period (with correlation of 0.471). By 

examining the definitions of the two measures, we see that they capture different characteristics 

of the travel time distribution. The COV evaluates the width or spread of travel time distribution, 

while the Skew depicts the leaning of travel time distribution. It is not necessarily the case that a 

small variance is associated with small skew, especially when the travel time distribution is 

highly left-skewed (during congestion onset and congestion dissolve regimes).  
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The COV is not closely related to the BI either. This is because the BI is computed based on the 

difference between the extreme travel time (80
th

 percentile travel time) and the average travel 

time. The smaller difference between the extreme travel time and average travel time is not 

necessarily related to a small COV since a few extreme values affect the mean more significantly 

than the extreme travel time, e.g. 80
th

, 90
th

 and 95
th

 percentile travel time (Cambridge Systematic 

2013). This is explained in Figure 2-2, which displays two travel time distributions. The first 

distribution contains some extreme travel time values, and the distribution is left-skewed. The 

second one represents the distribution after removing those extreme values.  The traffic 

performance of the second condition is more reliable than the first one and generates smaller 

COV. However, as shown in Figure 2-2, the corresponding BI of the second condition is greater 

than the first one. This may explain the week correlation between COV and BI. As a result, 

several studies suggested computing BI by using median travel time instead of mean travel time 

(Cambridge Systematics 2013, Pu 2010).  
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Figure 2-2 Mean and 80th percentile Travel Time of Two Distributions 

The improved GPS spot speed approach is computed as the coefficient of variation of the speed 

distribution. However, the travel time based COV metric is not highly related to the improved 

GPS spot speed approach either. This may due to the loss of data accuracy during the conversion 

from GPS spot speed to travel time estimations. 

The correlation analysis reveals that different measures provide different conclusions for the 

same underlying data and traffic conditions, and judgment as to whether or not a particular 

segment is reliable depends on the reliability measures used.  Table 2-5 presents the comparison 
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of each measure. The selection of the appropriate measures depends on the characteristics of 

each measure discussed above, as well as the available dataset, potential users and analysis 

purposes. 

Table 2-5 Comparison of Travel Time Reliability Measures 

 SD 

and 

COV 

Percentile 

Method 

BI Skew RI80 GPS spot 

speed based 

approach 

Does not require conversion of 

original data into travel time 

estimate. 

     × 

Smaller sample size requirement.       × 

Has been widely applied. × × ×    

Easy to compute when historical 

travel time observations are 

available. 

× × × × ×  

Easy to interpret to non-technical 

users. 

 × ×    

Ability to be applied for daily trip 

planning. 

 × ×    

Ability to compare reliability 

across trips and segments. 

  ×  × × 

Ability to indicate if congestion is 

increasing or decreasing. 

   ×   

As summarized in Table 2-5, if raw GPS data is readily available, the GPS spot speed approach 

is preferred as it does not require additional data processing efforts to retrieve travel time 

estimates from raw data. It is an asset to avoid this task as it requires resources, and provides 

opportunities for introducing error.  For State DOTs and other transportation agencies, when 

travel time observations are readily available, and if the intent of the analysis is to rank reliability 

on different segments or identify truck bottlenecks, the SD, COV and RI80 are recommended as 

they are easy to compute and provide quantitative measures to rank reliability. If the real time 

data is available and the analysts aim to propose efficient traffic operation strategies to alleviate 

traffic congestion, the Skew could be considered due to its capability in capturing short-term 
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traffic trends. For a nontechnical audience, the Percentile Method and the mean value-based BI 

are ideal measures for trip planning, e.g. determining departure time and vehicle routing for 

freight industry. 

2.5 Findings and Conclusions 

This article recalls a number of reliability measures that are implementable with truck GPS data. 

These measures are classified into two categories: the travel time based measures and spot speed 

based measures. GPS data sample size is one of the major concerns of implementing the travel 

time based measures with sparse GPS observations. In addition, truck GPS data usually provides 

instantaneous speed and the conversion from spot speed to travel time estimates requires 

additional efforts, and therefore may cause loss of data accuracy. The recently proposed GPS 

spot speed based approach can alleviate the sample size constraint, and it does not require data 

processing from spot speed to travel time estimates. However, it is not able to provide a 

quantitative means for ranking and comparing reliabilities. Thus an improvement was made to 

provide a means for more quantitative analyses by calculating the spot speed distribution COV. 

The improved spot speed based reliability measure is able to provide numerical values which 

allow for quantitative analyses.  

The improved method was compared with a number of travel time based reliability measures. It 

is found that the assessment of whether or not travel time reliability on a particular segment 

during specific times-of-day and days-of-week periods should be regarded as reliable depends on 

the reliability measures used. Different measures may get different conclusions for the same 

underlying data. Therefore, the ranking of travel time reliability bottlenecks varies depending on 

the reliability measures used, and even just those travel-time based reliability measures do not 

obtain the same conclusion. The correlation calculation indicates that there are large deviations 
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among reliability measures, and it is mainly due to the fact that these measures capture different 

components of reliability. For instance, the COV represents how spread the observations are, the 

BI captures the impacts of extreme values, and the Skew reflects the leaning of travel time 

distribution to one side of the mean. Given the different characteristics of each measure, the 

selection of the appropriate measures for different applications are determined by the available 

datasets, potential users and analysis purposes. 
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Chapter 3 FREEWAY TRUCK TRAVEL PREDICTION 

3.1 Background 

Predicting truck travel time is a principle component of freight planning. For instance, most 

freight prioritization tools, which are required in an era of state and regional budget constraints, 

count travel time reduction as one of the key project benefits associated with a freight investment. 

Travel time changes are also an input into other calculations, for example, vehicle operating cost. 

Historically, vehicle performance functions have been used to predict travel time in planning 

tools, e.g. project prioritization tools and travel demand models. However, most vehicle 

performance functions are designed to represent passenger travel and do not consider truck 

performance separately. As a result, in these planning tools, trucks performance is either treated 

the same as passenger travel or approximated by simply applying an adjustment factor to 

passenger travel. For instance, the Puget Sound Regional Council travel model converts truck 

volume to passenger car equivalents for trip assignment and applies an additional 25% factor on 

travel time of trucks traveling on freeways during model calibration (Cambridge Systematics, 

2007).  Similarly, the Atlanta Regional Commission model assigns trucks to the network with a 

time-penalty value in relative to passenger travel (Atlanta Regional Commission 2011). 

Although there are considerable truck specific models, they are designed for modeling truck 

demand generation and distribution (Cambridge Systematics and Jack Faucett Associates, 2001) 

and no truck specific performance function for predicting travel time is found in the literature. 

The reason is due to the deficiency of truck specific movement data as customer privacy issues 

and strategic concerns prevent companies from sharing their truck movement data. What’s more, 

many passenger trip travel time prediction models relying upon out-of-date data or limited 

samples. For instance, the widely applied travel time prediction model developed by the U.S. 
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Bureau of Public Roads, called as the BPR function, was proposed based on data collected on 

uncongested highways, and therefore is not able to capture the travel time under congestion 

condition (U.S. Bureau of Public Roads,1964).  

Fortunately, the needs for quantitative freight performance measures and planning have been 

recognized and several studies have investigated how truck GPS data can be used to support 

freight performance measure and planning. The U.S. Federal Highway Administration (FHWA) 

collaborated with the American Transportation Research Institute (ATRI) to investigate how data 

gathering from GPS devices installed in trucks can be used to measure the mobility and 

reliability along interstate highways (ATRI and FHWA 2005). In June 2013, the FHWA released 

the National Performance Management Research Data Set, a 5-minute aggregated truck GPS 

speed data set covering the national highway system for truck performance measure (FHWA 

2013). As truck GPS data is increasingly available to transportation agencies and researchers, 

there are emerging studies evaluating truck mobility and behaviors using truck GPS data. Ma et 

al. (2011) implemented a trip identification algorithm to identify truck trip originations and 

destinations, and retrieved truck trips from raw GPS data which was reported from 

approximately 5,000 trucks traveling in the entire Washington State. They also developed an 

online platform to measure and report truck trip performance including speed, trip distance, 

travel time, and travel time reliability. Zhao and Goodchild (2011) employed the same dataset to 

measure truck travel time on freeways. The segment being studied was divided into several sub-

segments with shorter distances. The travel time of each sub-segment was obtained by dividing 

the sub-segment distance by the average truck speed along the sub-segment. Travel time of the 

entire link was the sum of the travel time of each sub-segment. The result was compared with 

both empirical GPS observations and estimates based on loop detector data. It is found that the 
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approach is sufficiently accurate to estimate truck travel time on freeways. Furthermore, truck 

behaviors were investigated using observed GPS data. Wang and Goodchild (2014) studied the 

impacts of tolling on truck speed and routing using truck GPS data. They found that truck speed 

along the toll road increased considerably after tolling while speed along the alternative free road 

decreased. A logit model was developed to identify the influential factors in truck routing, and 

the results reveal that drivers are willing to pay for a toll for a faster and more reliable route. 

Despite that there are studies using truck GPS data to study truck mobility and behaviors, none 

of them provides insight into how truck GPS data can be used to predict future truck travel time. 

To bridge this gap, this chapter proposes a pragmatic approach to estimate future truck travel 

time in response to traffic changes using truck GPS data and loop data. The logic of this 

approach is based on multi-regime relationships between truck speed and segment density. 

Cluster analysis was employed to segment traffic regimes. Future truck travel time could be 

estimated in response to segment density changes. The predicted travel time can be used to 

estimate travel time changes associated with freight investments or other planning practices. 

3.2 Existing Travel Time Prediction Approaches 

There is considerable research being done on predicting future travel time. These approaches can 

be classified into two categories based on their applications: short-term (real time) travel time 

prediction for traffic operation purposes and long-term travel time estimation for transportation 

planning purposes. A great deal of recent research has been targeted at developing short-term 

travel time prediction models using statistical techniques and mathematical modeling approaches, 

including time series (D'Angelo 1999), Kalman filtering (Chien 2003), artificial neural networks 

(Van Lint 2005), and Markov chain (Yeon 2008). Most of these approaches require current 

traffic conditions and historical observations, as well as considerable computing resources to 
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develop predictions for real-time traffic operations. The objective of this chapter is to propose an 

approach that can support long-term freight project prioritization and planning, not real-time 

operations, and therefore, the literature review emphasizes travel time prediction over a longer 

time horizon.  

One of the most straightforward methodologies for longer time travel time estimation is the use 

of speed and volume-capacity ratio (V/C) relationship. It has been applied extensively in various 

project benefit-cost analysis tools (McFarland 1993, Dowling Associates 2000). The speed is 

predetermined and changes in response to various V/C, facility type and speed limit. This 

engineering relationship is simple but not always accurate. In addition, it does not capture any 

network effects when additional traffic is attracted to the improved segments from other roads. 

Equilibrium traffic assignment methods address this issue, by assigning traffic to the network 

based on the predefined cost functions.  The entire system reaches an equilibrium status 

assuming all vehicles travel along the minimum cost path. For instance, the Freight Analysis 

Framework version 3 (FAF3) freight traffic analysis developed by Battelle (2011) uses this 

method to assign freight traffic flow to the national highway network. The FAF3 employs the 

BPR function as the cost function for the stochastic user equilibrium traffic assignment 

procedure, as shown in Equation 3-1.  

[1 ( ) ]BPR ffTT TT x                                                  Equation (3-1) 

where TTBPR = segment traversal time estimated using the BPR function, 

TTff = segment vehicle travel time at free flow speed, 

x = volume-capacity ratio, 
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α and β are determined by facility type, free-flow speed and  speed at capacity. 

According to the Highway Capacity Manual (HCM 2000), the freeway free flow speed is 

calculated based on the information of number of lanes, lane width, shoulder width, and 

interchange density. Segment capacity is defined as number of vehicles during one hour under 

free-flow condition, and determined by facility type and free-flow speed. 

The parameter α of the BPR function influences the ratio of free-flow speed to the speed at 

capacity. The parameter β determines how sensitive the speed drops when v/c is close to 1.0 

(Dowling et al 1998). Given the characteristics of the two case studies of this chapter, α and β are 

assigned to 0.15 and 4 respectively.  

The BPR function assumes travel time has a linear relationship with volume-capacity ratio. The 

model was developed by fitting data collected on uncongested freeways, and does not capture the 

travel time under congestion condition.  To overcome the inaccurate prediction of oversaturated 

condition, Akçelik developed a time-dependent travel time prediction function based on the 

steady-state delay equation for a single channel queuing system, and this model was 

recommended by the HCM 2000 for predicting vehicle travel time for planning purposes 

(Akçelik et al 1991, HCM 2000).  The model is shown in Equation 3-2.  

2
2

2

16
0.25 [( 1) ( 1) ]Ak f鏴lik f

JL
TT TT T x x

T
                              Equation (3-2) 

where TTAkçelik = segment traversal time predicted using the Akçelik function, 

T = expected duration of demand (typically 1 hour), 

L = segment length (mile) 
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J = calibration parameters determined by facility type, signal per mile, free-flow speed and speed 

at capacity (exhibit 30-4, HCM 2000) 

Although the above two travel time prediction equations are extensively employed in travel 

demand models to estimate vehicle speed and travel time in response to various traffic volumes, 

neither of them is a truck specific model. As a result, there exist considerable deviations between 

the truck travel estimates and actual truck travel times. To solve this issue and predict reasonably 

accurate truck travel time for freight planning, this chapter proposes an approach to forecast 

truck travel time based on empirical truck GPS observations.  

3.3 Proposed Methodology 

This section discusses data on which this research is based and the proposed freeway truck travel 

time prediction approach. The proposed approach predicts future truck travel time based on the 

relationship between truck speed and density, which were retrieved from truck GPS data and 

dual-loop detectors respectively. The k-means cluster analysis algorithm was selected to partition 

data into homogeneous groups based on the characteristics of different traffic regimes.  

4.3.1 Data Preparation 

Two traffic datasets from different locations were collected to demonstrate the proposed 

approach: Interstate-5 (I-5) northbound between milepost (MP) 158 and 161 in the City of 

Seattle, WA and Interstate-405 (I-405) northbound between MP 8 and 10 in the City of Bellevue, 

WA.  

Truck Speed 

Truck speed used in this research was retrieved from GPS devices equipped on commercial 

vehicles traveling along the two selected segments. Data was collected anonymously between 
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May 2012 and July 2012. The GPS data was reported every 2-15 minutes. Information provided 

by GPS data includes a unique device ID, latitude and longitude, instantaneous truck speed, truck 

heading direction, and timestamp (time and date). Data was cleaned and geocoded to the freeway 

network in the ArcGIS environment. More details of data processing can be found in 

(McCormack 2011). GPS data was aggregated into 1 hour bins for each freeway segment to get 

average truck speed along the link.  

Roadway Density  

Roadway density was obtained by dividing traffic volume by truck speed. Traffic volume was 

collected by dual-loop detectors deployed in the right-most lane. The raw loop data provides 

traffic count every 20 seconds. Traffic count data was also aggregated into every 1 hour. Case 

study I contains six loop detectors deployed at MP 158.21, 158.92, 159.2, 159.96, 160.4 and 

160.97.  Case study II contains five loop detectors deployed at MP 8.03, 8.4, 8.9, 9.36 and 9.75. 

Traffic volume was estimated as the averaged value of loop detector collections along the 

segment. 

4.3.2 Travel Time Predication Approach 

The approach consists of 4 major steps:  

1. Classify clusters based on the characteristics of truck speed and segment traffic volume 

using k-means algorithm,  

2. Fit speed-density relationships,  

3. Estimate freeway truck travel time, and 

4. Evaluate estimation accuracy.  
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To evaluate the results, the estimates are compared with travel time calculated based on 

empirical truck speed observations, BPR function outputs and Akçelik model outputs.  

Identify Clusters 

Existing traffic flow studies have observed that traffic data shows two clear phases: free-flow 

and congested phases. In the free-flow phase, vehicles move at their desired speed and there is 

little influence/interaction between vehicles. In the congested phase, the traffic volume on the 

segment approaches capacity, and vehicles speed declines. Recent studies have also identified a 

transitional phase, called the intermediate phase (Kerner 1996). In the intermediate phase, 

vehicles experience stop-and-go driving conditions and are forced to drive as part of the overall 

traffic. Both two-regime and three-regime traffic models have been proposed in the literature. 

The first two-regime traffic flow model was proposed by Edie (1961), in which, the free-flow 

regime was fitted using the Underwood model and the congestion-flow regime was represented 

by Greenberg model, as shown in Equation 3-3. 

54.9exp( /163.9)     50

26.8ln(162.5 / )          50

k for k
u

k for k

 
 


                                                  Equation (3-3) 

where u = vehicle speed (mph) 

k = traffic density (vehicles per lane per mile) 

Drake et al. (1967) developed a three-regime traffic model based on the Greenshields-type linear 

model for all three regimes, as given in Equation 3-4. 

50 0.098               40

81.4 0.913           40 65

40 0.265              65

k for k

u k for k

k for k

 


   
  

                                              Equation (3-4) 
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While these multi-regime models substantially improve the capability to capture different traffic 

characteristics under various traffic conditions, one of the major challenges of proposing such 

models is to determine the breakpoints between regimes (Sun and Zhou 2005). In the literature, 

most density breakpoints were determined by the researchers’ engineering experience, which is 

subjective and biased by the judgment of model developers. Sun and Zhou (2005) employed the 

Cluster Analysis method to determine the breakpoints automatically given the fact that data 

belongs to the same cluster share similar features and data with different features belong to 

different groups. This chapter also employs a cluster analysis method to determine the 

breakpoints. Cluster analysis is a methodology to classify samples into a number of groups using 

a quantitative measure of association. The k-means algorithm is chosen in this study to identify 

traffic clusters. This algorithm is a centroid-based clustering algorithm, which aims to find the k 

cluster centers and assign the data to the nearest cluster center whose mean yields the least 

within-cluster sum of squares (Hartigan 1975). The k-means algorithm requires that the number 

of clusters is predetermined by modelers. The cluster analysis was accomplished using the R 

software package “cluster” (R Software 2014). 

Fit Truck Speed-Density Relationships 

For each cluster, the corresponding speed density relationship is fitted by minimizing squared 

errors. According to empirical observations, the speed-density relationships usually follow linear, 

logarithmic and exponential relationships (Sun and Zhou 2005), and the appropriate format to fit 

the data is determined based on the adjusted R-squared values. The one with the greatest R-

squared value is chosen to represent the speed-density relationship of the empirical observations. 

Estimate Truck Travel Time 
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Truck travel time is estimated by dividing segment distance by speed predicted on the speed-

density relationships. It is assumed that trucks travel at a constant speed along the segment. This 

assumption is reasonable when the segment is short and maintains similar features, including 

both traffic volume and roadway geometric characteristics. This approach has been proved to be 

a reliable method by comparing the travel time estimates with empirical observations (Zhao 

2011). 

Evaluate Results 

Mean absolute percentage error (MAPE), which is widely used as a measure to quantify the 

difference between the estimated value and the observed value, is chosen to evaluate the 

accuracy of the prediction, as shown in Equation 3-5. In this study, the observed travel time is 

defined as the estimates obtained by dividing segment distance by average truck speed from GPS 

data. The MAPE value of the proposed approach is compared with the MAPE values of the BRP 

function and the Akçelik function. A lower MAPE value represents more accurate prediction of 

truck travel time. 

1

'1
100%

n
i i

i i

TT TT
MAPE

n TT


                                         Equation (3-5) 

where n = total number of examples, 

TTi = observed travel time, 

TTi
’
 = model predicted travel time. 

3.4 Case Studies 

4.4.1 Case Study I 
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A 3-mile stretch of northbound I-5 in the City of Seattle, WA between MP 158 and MP 161 was 

selected as case study I. Both truck GPS data and loop data were collected between May 2012 

and July 2012. The data set was divided into a training set (May 2012 and June 2012) and a 

testing set (July 2012). Truck speed along the segment was retrieved from GPS data. Traffic 

volume was calculated as the averaged traffic volume recorded by the six dual loop detectors. 

Density was obtained by dividing traffic volume by truck speed. Figure 3-1 displays the truck 

speed-density plot of the training dataset.  

 

Figure 3-1 Case Study I Truck Speed-Density Plot 

As shown in Figure 3-1, trucks maintain a constant speed around 60 mph when segment density 

is less than 10 vehicles/mile and speed drops significantly while density increases, with the 

lowest observed speeds of  approximately 20 mph. The K-means algorithm was employed to 

classify dataset into different clusters representing various traffic regimes. It is clear from Figure 
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3-1 that there are at least two traffic regimes, and may be more as the speed decreases at different 

rates with the increase of density. The appropriate number of clusters is often ambiguous, and 

depends on the distribution of observations in a dataset and the desired resolution of the user. 

Meanwhile, the number should not be too many for convenient use of the model. Thus the 

authors conducted the cluster analysis with two clusters and three clusters respectively, and 

compare the results in the following sections.  

Two Clusters 

Figure 3-2 and Table 3-1 present the clustering results when there are two clusters. The first 

cluster characterizes the free-flow traffic regime, in which trucks travel at around 60 mph when 

segment truck density is less than 10 vehicles/mile. The clustering result shows that the average 

truck speed of cluster 1 is equal to 60 mph, and average density is 4.87 vehicles/mile. The second 

cluster represents the non-free flow condition where truck speed starts to decrease when density 

is greater than 10 vehicles/mile and drops continuously with the increase in segment density. The 

average truck speed and segment density of the second cluster are 54.63 mph and 18.46 

vehicles/mile respectively. It should be noted that the cluster numbers here are only used to 

identify each specific cluster.  
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Figure 3-2 Case Study I Two Clusters Truck Speed-Density Plot 

Table 3-1 Case Study I Cluster Centers of Two Clusters Analysis 

  Cluster 1 Cluster 2 

Truck Speed (mph) 60 54.63 

Density (vehicles/mile) 4.87 18.46 

For cluster 1, trucks travel at the average of 60 mph regardless of the segment density. For 

cluster 2, truck speed is a dependent variable of density. The authors fitted the data using linear, 

logarithmic and exponential models which were applied in the rational speed-flow relationships 

shown in Equation 3-3 and 3-4. It is found that the exponential function provides the best fit of 

the observed data with the greatest R-squared value, and the regression results are summarized in 

Table 3-2. All parameters are significant with P-values less than 0.0005. The truck speed-

relationship of the test dataset is given in Equation 3-6.  
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Table 3-2 Case Study I the Second Cluster Fitted Results of Two Clusters Analysis 

  Coefficients Standard Error t Stat P-value 

Intercept 4.478 0.009 469.177 <0.0005 

Density -0.027 0.000 -58.459 <0.0005 

 

60                                   10

exp(4.478 0.027 )       10

u for k

u k for k

 


  
             Equation (3-6) 

Data collected in July 2012 was used to evaluate the proposed approach. Hourly traffic volume 

was retrieved from loop detector data and averaged hourly truck speed was calculated from truck 

GPS data. Truck travel time obtained from dividing the segment distance by observed truck GPS 

speed was used as the ground truth travel time to evaluate the accuracy of the proposed approach. 

The authors also employed the BPR function and Akçelik function to estimate travel time, and 

compared with the ground truth travel time to calculate the corresponding MAPE values and 

evaluate the accuracy of each method. As shown in Table 3-3, the MAPE value of the proposed 

speed-density based approach is 6.16%, less than the MAPE values of BPR and Akçelik methods 

of 11.52% and 11.60% respectively. This result indicates that the proposed approach generates 

less deviation between travel time estimates and observations, and therefore performs better than 

the existing BPR method and Akçelik method. 

Table 3-3 Case Study I MAPE Values of Each Travel Time Prediction Method 

  MAPE value 

Speed-density method (two clusters) 6.16% 

BPR method 11.52% 

Akçelik method 11.60% 

Three Clusters  

Figure 3-3 and Table 3-4 show the clustering results with 3 clusters. Similar to the two clusters 

results, cluster 1 represents the free-flow traffic regime, in which traffic density is low and truck 
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travel at about 60 mph when density is less than 11 vehicles/mile. The speed is constant and not 

affected by density. The average truck speed and density of cluster 1 is 60mph and 4.94 

vehicles/mile respectively. Truck speed in cluster 2 and cluster 3 decreases considerably with the 

increase of density. Cluster 2 features a high speed and intermediate density phase when density 

is between 11 and 25 vehicles/mile, and cluster 3 characterizes a low speed and high density 

congested phase when density is greater than 25 vehicles/mile. For cluster 2, the average speed 

and density are 58.77mph and 15.26 vehicles/mile. For cluster 3, the average speed and density 

are 32.33 mph and 35.71 vehicles/mile.  

 

Figure 3-3 Case Study I Three Clusters Truck Speed-Density Plot 
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Table 3-4 Case Study I Cluster Centers of Three Clusters Analysis 

  Cluster 1 Cluster 2 Cluster 3 

Truck Speed (mph) 60 58.77 32.33 

Density (vehicles/mile) 4.94 15.26 35.71 

As shown in Figure 4-3, the rate at which speed decreases differs between cluster 2 and 3. The 

linear, logarithmic and exponential models were tested to fit the cluster 2 and 3 data. It is found 

that the linear function fits cluster 2 data best and exponential function fits the cluster 3 data best, 

the fitting results are presented in Table 3-5. All parameters are statistically significant. Truck 

speed-density relationships are given in Equation 3-7.   

Table 3-5 (a) Case Study I Second Cluster Fitted Results and (b) Third Cluster Fitted Results 

  Coefficients Standard Error t Stat P-value 

Intercept 72.709 0.794 91.569 <0.0005 

Density -0.914 0.051 17.975 <0.0005 

(a) 

  Coefficients Standard Error t Stat P-value 

Intercept 4.238 0.068 61.926 <0.0005 

Density -0.022 0.002 11.804 <0.0005 

(b) 

Truck speed and density relationship: 

60                                10

72.709 0.914           11 25

exp(4.238 0.022 )   25

u for k

u k for k

u k for k

 


   
   

                                       Equation (3-7) 

Similar to the previous analysis, the authors evaluated the proposed model using the test dataset 

and calculated the MAPE values. The MAPE value of the proposed approach is 5.55% as shown 

in Table 3-6. This value is less than the corresponding values of the BPR method and the Akçelik 

method, which are 11.52% and 11.60% respectively. This result reveals that the proposed 

approach generates, by a substantial margin, more accurate results than the other two methods. 



53 
 

Table 3-6 Case Study I MAPE Values of the Selected Travel Time Prediction Methods 

  MAPE value 

Speed-density method (three clusters) 5.55% 

BPR method 11.52% 

Akçelik method 11.60% 

By comparing Table 3-3 and Table 3-6, the two clusters and three clusters analysis results show 

that the MAPE value is improved from 6.61% to 5.55%. While the three clusters approach 

provides a slightly more accurate result, it also requires a greater data analysis effort. While the 

user is entitled to choose the number of clusters appropriate for their study, for this case study, 

no significant improvement is observed when using three clusters instead of two clusters, and the 

case study is carried forward with the two clusters approach.  

4.4.2 Case Study II 

Case study II is a 2-mile segment of I-405 northbound between MP 8 and 10. Traffic volume was 

the averaged value of data collected by the five loop detectors deployed along the rightmost lane. 

The speed-density plot is displayed in Figure 3-4. Similar to case study I, trucks travel at a 

constant speed in free-flow traffic pattern. Truck speed decreases when density is greater than 20 

vehicles/mile. Both two clusters and three clusters analyses were performed to identify the 

appropriate number of clusters for this dataset.   
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Figure 3-4 Case Study II Truck Speed-Density Plot 

Two Clusters 

Figure 3-5 and Table 3-7 present the clustering results with two identified clusters. Cluster 1 

features free-flow phase, in which trucks travel at a constant speed. According to the cluster 

analysis result, the average speed and density of cluster 1 is 58 mph and 9.12 vehicles/mile. For 

cluster 2, truck speed starts to decline when density is greater than 16 vehicles/mile. The average 

speed and density are 50.88 mph and 29.39 vehicles/mile respectively.  
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Figure 3-5 Case Study II Two Clusters Truck Speed-Density Plot 

Table 3-7 Case Study II Cluster Centers of Two Clusters Analysis 

  Cluster 1 Cluster 2 

Truck Speed (mph) 58 50.88 

Density (vehicles/mile) 9.12 29.39 

To fit the data of cluster 2, the linear, logarithmic and exponential models were tested, and the 

adjusted R-squared values of each model indicate that the linear model provides the best fit. The 

model results are presented in Table 3-8. The truck speed-density relationship is given in 

Equation 3-8.  

Table 3-8 Case Study II the Second Cluster Fitted Results of Two Clusters Analysis 

  Coefficients Standard Error t Stat P-value 

Intercept 81.88 0.82 99.70 <0.0005 

Density -1.05 0.03 -38.65 <0.0005 
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The MAPE values of the proposed approach, BPR function and Akçelik function were calculated 

and the results are summarized in Table 3-9. The proposed approach generates the least MAPE 

value, and therefore performs better than the other two approaches.  

Table 3-9 Case Study II MAPE Values of the Selected Travel Time Prediction Methods 

  MAPE value 

Speed-density method (two clusters) 7.33% 

BPR function 13.75% 

Akçelik method 14.60% 

Three Clusters 

The three clusters were tested, and the speed-flow plot is displayed in Figure 3-6 and Table 3-10. 

While cluster 1 characterizes the free-flow traffic regime, cluster 2 represents the intermediate 

phase and cluster 3 features the congested phase. The authors tested linear, logarithmic and 

exponential models and find that none of them is able to delineate the dataset of cluster 2 and 3 

well given the R-squared values are all less than 0.5. Thus the authors concluded that two 

clusters analysis is better than three clusters for this specific data of case study II.  
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Figure 3-6 Case Study II Three Clusters Speed-Density Plot 

Table 3-10 Case Study II Cluster Centers of Three Clusters Analysis 

  Cluster 1 Cluster 2 Cluster 3 

Truck Speed 59.73 54.35 42.46 

Density 14.49 27.31 36.06 

The above two case studies illustrate how the proposed multi-regime speed-density based 

approach can be used to forecast truck travel time. The analysis results indicate that the proposed 

approach is superior to the traditional BPR method and Akçelik method, and is able to forecast 

more accurate travel time. The number of clusters can be determined by both the distribution of 

data and the desired resolution of the user. The increase of number of clusters is able to improve 

the travel time prediction accuracy, but will involve additional data processing efforts and model 

application complexity.  For both case studies, two clusters are able to provide substantial 

improvements over current methods used to predict truck travel time.  
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Despite the fact that both case studies considered freeways in the Puget Sound, the speed-density 

relationships shown in Equations 3-6 and 3-8 are different.  Figure 3-7 shows the speed-density 

plot of the two datasets. It is noted that two case studies have distinct speed-density relationships. 

For case study I, speed starts to decline when density is greater than 10 vehicles/mile, while the 

breakpoint of case study II is around 16 vehicles/mile. Further, when density exceeds the 

breakpoint, dataset 1 has a convex shape and an exponential model provides the best fit, while 

dataset 2 displays a straight and linear relationship. The deviation of the speed-density 

distributions is associated with several characteristics of each segment, including roadway 

geometric features and travel demand distribution. Thus, it is less accurate to select one model to 

fit both datasets. Given this, and the simplicity of the approach, we recommend users to apply 

the clustering and best-fit modeling approach, and develop their own equations for different 

locations.  

 

Figure 3-7 Speed-Density Plot of Case Study I and Case Study II 
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3.5 Conclusions 

This chapter proposes a multi-regime speed-density relationship based approach to predict 

freeway truck travel time using empirical truck probe GPS data and loop detector data. The K-

means cluster analysis algorithm was employed to determine the breakpoints of different traffic 

regimes. Each cluster was fitted using linear, logarithmic and exponential models, and the model 

with the highest R-squared value was selected. The parameters of the best models for both cases 

are all statistically significant. The travel time estimates were compared with estimates 

calculated based on empirical truck GPS speed data, and the mean absolute percentage error was 

calculated. This was compared with the BPR model and the Akçelik model. It is found that the 

new approach is able to estimate more accurate travel times than traditional methods given it 

generates the least MAPE values for both case studies.  

The authors investigated the appropriate number of clusters when segment the data using the K-

means algorithm. For case study I, the two-cluster identification is recommended since it is 

easier to use and still provides reasonably high accuracy of estimates. For case study II, the two-

cluster identification is recommended as well since the commonly applied speed-density formats 

do not fit the three-cluster clustering results. The analysis reveals that the number of clusters is 

determined by the distribution of data and the resolution desired by users. In the case studies 

evaluated, the more clusters are classified, the less deviation is obtained. The two clusters 

analysis is recommended when the improvement from two to three clusters is small.     

The predicted travel time can support freight prioritization and planning. For instance, to forecast 

truck travel time associated with traffic density changes resulting from freight investments, one 

can apply this approach to generate the multi-regime speed-density relationships based on GPS 

and loop data, and estimate the corresponding post-project traffic density. The fitted speed –
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density relationship was not tested with other segments. We recommend users applying this 

approach to develop their own equations as speed-density relationships vary depending on 

roadway geometric features, traffic demand distribution, traffic operation strategy and other 

factors.  

 

 

 

  



61 
 

Chapter 4 FREEWAY TRUCK TRAVEL TIME RELIABILITY 

FORECASTING 

Despite the fact that there are considerable quantitative project prioritization applications, only a 

few of them consider travel time reliability. None of them includes truck-specific travel time 

reliability forecasting. Some applications employ regional travel demand models to quantify both 

pre- and post-investment performance. These travel models rely upon fixed inputs, and therefore 

cannot capture transportation system variability/reliability. Travel time reliability is rarely 

considered in project prioritization tools due to the deficiency of truck specific movement data 

and the complexity of both measuring and forecasting reliability. Due to the fact that truck GPS 

data is increasingly available to transportation agencies and researchers, there now exist 

opportunities to better measure and forecast truck travel reliability. The measurement of 

reliability has been discussed in Chapter 2. This chapter focuses on forecasting travel time 

reliability using truck GPS data.  

4.1 Background 

There have been multiple studies investigating how GPS data can be used to measure travel time 

reliability. Zhao et al. (2013) proposed a truck GPS spot speed distribution based approach. This 

work demonstrated that the mixture of two Gaussian distributions provides the best fit for the 

truck GPS spot speed observations. The probability density function of mixture of two Gaussian 

distributions is shown in Equation 4-1. The parameters are fitted based on the maximum 

likelihood rule.  
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where w = the proportion of the first normal distribution, 

μ1 and μ2 = mean of the first and second Gaussian distribution, 

σ1 and σ2 = standard deviation of the first and second Gaussian distribution. 

Furthermore, they developed a rule to classify reliability into three categories: reliably fast, 

reliably slow and unreliable. Travel condition is defined as unreliable if and only if

1 2 1 2 1, 0.2,   0.75 pw and V           ( pV  is the posted speed), otherwise, it is viewed 

as reliable. If travel condition is defined as reliable and the average speed is less than 75% of the 

posted speed ( 0.75 pv V  ), it is defined as reliably slow, otherwise, it is viewed as reliably fast. 

Wang et al. (2014) further improved the approach by computing the coefficient of variation 

(COV) of the fitted mixture of two Gaussian distributions. The calculation is given in Equation 

4-2 and 4-3. The improved approach is able to provide a numerical value which would allow for 

a more quantitative evaluation and reliability ranking.  
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                                                    (Equation 4-2)         

                                   ( )Coefficient of Variation COV



                                           (Equation 4-3) 

For forecasting travel time reliability, understanding how reliability changes in response to 

different traffic conditions is the key since speed and reliability are associated with traffic 
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condition closely. Under free-flow condition, traffic volume is low and most of the trucks travel 

at a reliable desired speed, which is close to free-flow speed. During congestion phase, trucks 

stop and go due to the influence of other vehicles, and results in unreliable travel time.  

The following section presents the changes of speed distribution in response to different traffic 

density along a selected segment.  

4.2 Data and Analytical Process 

The idea of forecasting reliability is to understand how speed changes with respect to different 

traffic situations.  Future traffic conditions can be obtained from engineering experience, e.g. the 

reduction in traffic volume/density by adding one lane.  We started with gathering historical spot 

speed distributions and roadway traffic data.  

The same freeway segment utilized in Chapter 2 was selected as an example to show how speed 

distribution changes under different traffic conditions. The segment is a stretch of 3.5 miles of 

southbound Interstate 5 (I-5) through downtown city of Seattle, Washington. Both GPS data and 

loop data were collected between January 2012 and December 2012. GPS data was collected by 

GPS devices installed in commercial vehicles traveling along the segment of interest. The data 

was cleaned to remove duplicated and problematic records. The cleaned data was geocoded to 

the corresponding network to reflect truck travel speed along the segment within ArcGIS 

environment. Details of the data cleaning and preparation can be found in Zhao et al. (2011). The 

monthly GPS data was aggregated for one hour interval to generate hourly truck spot speed 

distribution. For each one hour dataset, spot speed was fitted using the mixture of two Gaussian 

distributions. The distribution fitting was accomplished within the R software, using the package 

called “mixdist” (Du 2002). The fitting process generates the mean values and standard 
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deviations of the two normal distributions, and the probability of each distribution. Details can be 

found in Chapter 2.  

Traffic condition was implied using traffic density computed based on traffic volume and speed 

information. Both traffic volume and speed were collected by the loop detector deployed along 

the segment being studied. The data was recorded at every 20-second interval. Similar to the 

GPS data, monthly loop data was aggregated for one hour interval to generate the average hourly 

traffic volume and hourly speed. Traffic condition was quantified using traffic density obtained 

by dividing traffic volume by speed.  

As proved in Zhao et al. (2013), truck spot speed distribution follows a mixture of two Gaussian 

distributions, and it is either a unimodal or bimodal distribution. Truck travel time is classified as 

unreliable if spot speed distribution follows a bimodal distribution; otherwise travel time is 

reliable and the spot speed distribution follows a unimodal distribution. When travel time is 

reliable, most of the trucks travel at a constant and desired speed, and therefore the spot 

distribution follows a unimodal distribution. However, during the traffic congestion condition, 

trucks stop and go, and therefore the presence of another speed distribution emerges. The 

fluctuated speed generates a bimodal speed distribution representing two traffic regimes, the low 

speed regime and high speed one. The more unreliable the system is, the wider the speed 

distribution and the greater possibility of spot speed falling within the low speed regime. 

Figure 4-1 displays the hourly spot speed distributions between 5 AM and 11 AM in May 2012 

along the segment being studied. The fitted distribution parameters and the corresponding 

calculated hourly traffic density values are given in Table 4-1.  
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As shown in Figure 4-1 (a) and Table 4-1, between 5 AM and 6 AM, the average segment 

density was 11.4 veh/mi/ln, and therefore it was classified as level of service (LOS) A according 

to the Highway Capacity Manual (HCM) (HCM 2000). The spot speed distribution followed a 

unimodal distribution, and the predefined reliability rule identified the travel time as reliably fast. 

Most of the trucks traveled at a free-flow speed, and the average truck speed was around 60 mph. 

According to the Highway Capacity Manual, the traffic condition is classified as Level of 

Service (LOS) A since density is less than 15 veh/mi/ln. The description of LOS A indicates that 

this is the traffic condition of free flow. Traffic density is low, with uninterrupted flow speeds 

controlled by driver desires, speed limits, and physical roadway conditions. Drivers can maintain 

their desired speeds with little or no delay. The truck travel performance observed from the speed 

distribution is consistent with the description of LOS A.  

Traffic density increased to 17.75 veh/mi/ln between 6 AM and 7 AM, and therefore fell into 

LOS B category. The presence of the second distribution emerged. Namely, not all trucks were 

able to travel at the desired speed, but some of them were influenced by others and traveled at a 

lower speed. The averaged truck speed of the first traffic regime was 39.99 mph, with standard 

deviation of 13.31 mph; the average speed of the second traffic regime was 58.55 mph, with 

standard deviation of 3.85 mph. The probability of truck travel speed falling within the low 

speed traffic regime was 17%. Travel time was still classified as reliable based on the predefined 

rule. These changes of speed distribution and truck performance are consistent with the transition 

from LOS A to LOS B. According to the definition of LOS B, drivers still have reasonable 

freedom to travel at their desired speeds, but there is a low probability that traffic flow will be 

restricted.  
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From Figure 4-1 (b) to Figure 4-1 (c), the probability of falling within the low speed regime 

increased to 47% with the increased traffic density of 22.55 veh/mi/ln, and a clear bimodal 

distribution was presented. Meanwhile, the average speed of the first traffic regime dropped to 

20.76 mph, with standard deviation of 9.92 mph; the average speed of the second traffic regime 

decreased to 51.63 mph, with standard deviation of 7.87 mph. Travel time was changed to 

unreliable as evaluated by the predefined rule. The travel time reliability was reduced with the 

growth of traffic density. The density of 22.55 veh/mi/ln indicates the LOS C condition. The 

definition of LOS C pointed out that most drivers are restricted in selecting their own speed and 

driving behaviors, but closely controlled by the higher volume. The speed observation is 

consistent with the LOS C definition.  

Traffic density did not change significantly between 8 AM – 9 AM and similar speed distribution 

was observed. The probability of falling within low speed regime is equal to 58%. Travel time 

was identified as unreliable.  

The low speed traffic regime started to wane since 9 AM while average traffic density decreased 

to 18.91 veh/mi/ln. The spot speed distribution showed the trend to change back to unimodal 

distribution. Travel time between 9 AM and 10 AM, and 10 AM and 11 AM were both reliable.   
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(a) 5 AM-6 AM                                          (b) 6 AM-7 AM 

 

 (c) 7 AM-8 AM                                                (d) 8 AM-9 AM 
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   (e) 9 AM-10 AM                                              (f) 10 AM-11AM 

Figure 4-1 Truck Spot Speed Distribution during Different Time-of-Day 

Table 4-1 Truck Spot Speed Distribution Fitted Results 

 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 

Traffic density (veh/mi/ln) 11.40 17.75 22.55 22.51 18.91 19.21 

w 0.14 0.17 0.47 0.58 0.30 0.22 

1  59.34 39.99 20.76 21.75 26.15 28.13 

1  24.33 13.31 9.92 10.28 13.77 14.93 

2  59.34 58.55 51.63 51.08 54.82 56.52 

2  6.32 3.85 7.87 7.16 5.59 5.14 

pV  60 60 60 60 60 60 

Average speed 59.35 55.36 37.00 33.98 46.10 50.33 

1 2 1 2

1

 , 0.2

0.75 p

if w

and V

   



   

 
 

No No Yes Yes No No 

  0.75 pif average speed V   No No Yes Yes No No 

Reliability category Reliably  

Fast 

Reliably  

Fast 

Unreliable Unreliable Reliably 

Fast 

Reliably 

Fast 

The above analyses indicate that truck spot speed distributions vary in response to different 

traffic conditions. Traffic congestion causes fluctuated truck speed and consequently leads to 
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unreliable travel time. Greater roadway density is associated with lower travel speed and lower 

reliability. 

This analysis also reveals that the distribution COV, which is utilized to quantify reliability in 

this study, is strongly associated with segment density. As a result, travel time reliability could 

be forecasted based on the relationship between COV and density when future roadway density 

is available or predictable. The next section presents a case study to illustrate the process of 

establishing the relationship between COV and density to support reliability forecasting. 

4.3 Case Study 

 

Figure 4-2 K-Means Analysis Results of the Segment Density and Spot Speed Distribution COV 

Plot 

Figure 4-2 displays the hourly segment density and hourly speed distribution COV based on one 

year observations between January 2012 and December 2012. Higher COV indicates lower 

travel reliability. The figure illustrates that higher traffic density is associated with lower travel 

reliability. The impacts of density on COV and reliability vary depending on the value of density. 
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When density was between 15 veh/mi/ln and 28 veh/mi/ln, COV increased considerably with the 

growth of density. COV did not change substantially when density was greater than 28 veh/mi/ln.  

There were three clear clusters representing different relationships between density and COV. 

Thus a cluster analysis was conducted to identify the breakpoints and segment data into three 

clusters, denoted as 1
st
, 2

nd
 and 3

rd
 cluster as shown in Figure 4-2. The K-means cluster algorithm 

was selected and the clustering process was accomplished using the R software. The three 

clusters represent different traffic regimes.  

For the first cluster, density was less than 18 veh/mi/ln and the corresponding COV was less than 

0.2 (excluding one outlier). According to the rule developed to evaluate travel time reliability by 

Zhao et al., the truck travel time of the first cluster was assessed as reliable. This result is 

consistent with the LOS definition, in which LOS A and B are defined as free flow and near free 

flow conditions when density is less than 18 veh/mi/ln.  Travelers travel at the desired or near-

desired speed and are not influenced by other travelers under LOS A and B. When density 

reaches the value of 28 veh/mi/ln, it is classified as the third cluster. The COV does not change 

significantly with the growth of density, and stays between 0.6-0.7. 

The COV increased considerably with the growth of density in the second cluster. The author 

fitted the data using linear regression, and obtained the relationship between COV and density as 

presented in Equation 4-4 and Table 4-2. Both the intercept and density are significant. The sign 

of density is positive, which confirms the adverse impact of density on reliability. The adjusted 

R-squared value is 0.68.  
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0.442 0.037      15 / / 28 / /

 0.631                                  28 / /

COV density veh mi ln density veh mi ln

COV density veh mi ln

     


 
   Equation 4-4 

Table 4-2 The Second Cluster Fitted Results 

  Coefficients Standard Error t Stat P-value 

Intercept -0.442 0.049 -8.937 <0.0005 

Density 0.037 0.002 17.624 <0.0005 

For this case study, if density is less than 15 veh/mi/ln, vehicles experience reliable travel time 

and travel at a speed of 60 mph. The system is unreliable when density is greater than 15 veh/mi/ln.  

Reducing segment density can improve reliability considerably when density is between 15 

veh/mi/ln and 28 veh/mi/ln. When density is greater than 28 veh/mi/ln, moderate density 

reduction does not affect reliability substantially; notable improvement can be observed only 

until density is reduced to less than 28 veh/mi/ln.  

This cluster analysis based approach is expected to be applied for forecasting travel time 

reliability and support project prioritization, and to be conducted individually for each segment 

of interest using data from the segment itself. Potential changes of segment density resulting 

from highway investments can be estimated based on engineering experience and established 

models. The project prioritization process should also include sensitivity analysis to assess 

impacts of different density changes on future travel time reliability.  

4.4 Conclusion 

This chapter proposes an approach to forecast freeway vehicle travel time reliability for planning 

purposes using GPS data. The proposal is a methodology that can be applied to any segment of 

interest for which GPS data is available.  The authors analyze the changes in truck GPS spot 

speed distribution in response to different traffic conditions. The analysis reveals that traffic has 

considerable impact on speed distribution, and a bimodal distribution emerges with increasing 
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traffic density. Greater speed distribution COV is closely associated with greater segment density, 

but the relationships are dependent on the traffic regime. A cluster analysis based approach is 

proposed to segment the COV and density dataset into several groups and identify the 

breakpoints. The authors further quantify the impact of density on COV by fitting the data using 

a linear model. The developed equation is able to forecast segment reliability with changes of 

density. 

Given the simplicity of this approach and the increasingly available vehicle GPS data, we 

recommend users to apply this proposed approach, and develop their own equations for different 

locations for project prioritization and planning.  
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Chapter 5 GPS DATA ANALYSIS OF THE IMPACT OF TOLLING ON 

TRUCK SPEED AND ROUTING 

In the past decades, there have been multiple studies seeking to collect truck movement data to 

support freight planning, including identifying truck travel patterns, supporting travel demand 

model improvement, and evaluating impacts of freight policies.  This chapter explores the 

capability of truck GPS data in evaluating tolling impacts on truck travel performance and 

routing. Truck GPS data contains the empirical responses to tolling following the 

implementation of a toll on the State Route 520 (SR-520) bridge in Seattle. Thus it is used to 

evaluate route choice and mobility performance along SR-520 and the alternate toll-free route I-

90. 

5.1 Background 

Roadway tolls are designed to raise revenue for funding transportation investments and manage 

travel demand (AASHTO 2010). The tolling strategies might affect both truck speed and route 

choice. On one hand, tolling adds additional costs to goods movement, which may result in truck 

traffic diversion from toll roads to toll-free roads. On the other hand, tolling may reduce travel 

time and improve reliability along the toll road, which in turn saves logistics costs, and therefore 

may attract trucks to toll roads. Thus trucks may switch routes between toll roads and free roads 

based on the trade-offs among a set of time- and cost-related attributes.   

Extensive studies of tolling impacts on passenger travel have revealed that travelers’ responses 

include rescheduling trips, canceling trips and consolidating trips, as well as changing routes.  

However, commercial trips have less flexibility for rescheduling, canceling and consolidation 

trips due to customers’ requirements (Roth 2003). A survey developed to examine the impacts of 
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the Port Authority of New York and New Jersey’s time-of-day pricing found that 68.9% of for-

hire carriers and private carriers cannot change their schedule due to customer requirements, and 

only 0.5% of trucks would switch to off-peak hour delivery (Holguin-Veras et al. 2006). 

Meanwhile, the results showed even less ability to consolidate trips, with only 0.1% of carriers 

able to increase shipment size, 0.4% of carriers able to wait for longer for mixing pickups and 

0.1% of carriers able to cut some of their runs (Holguin-Veras et al. 2006).  

The diverted truck traffic has significant impacts on regional traffic safety, travel performance 

(e.g. travel speed), the environment (emissions), as well as toll revenue and the regional 

economy. For instance, the Ohio Turnpike caused a 30% to 50% increase in truck traffic on local 

routes, and imposed significant safety and environment costs (Swan and Belzer 2007). Thus it is 

critical to understand the effects of tolling on truck performance and route choice. Yet limited 

research has quantified the impacts of tolling on truck speed and trip diversion due to the lack of 

detailed truck data. In light of this, this dissertation uses truck GPS data to observe truck speed 

and route choice following the implementation of a toll on SR-520 in Seattle, WA.  

The remainder of this chapter is organized as follows: section two provides a brief review of the 

state of practice in evaluating the effects of tolling on truck routing; section three introduces the 

study area; section four details the process by which the tolling effects are analyzed, section five 

applies the discussed methods and provides the results; section six offers conclusions from the 

study. 

5.2 Literature Review 

Truck travel demand elasticity modeling is a common approach to study the effects of tolling on 

truck trip diversion. Several freight demand elasticity models were developed to model the 
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impacts of tolling on truck route choice. One example is the Ohio Turnpike truck traffic 

diversion analysis (Swan and Belzer 2007). The toll rates of the Ohio Turnpike were increased 

substantially in the 1990s for funding new construction projects and were later reduced once the 

projects were completed. Therefore it is an ideal dataset to estimate the truck demand elasticity 

with respect to toll rates.  The truck VMT (Vehicle Miles Traveled), toll rates, and roadway 

speed limit data were collected between 1973 and 2005. Truck trip diversion from the Ohio 

Turnpike to other free alternatives was estimated using the ratio of Ohio Turnpike truck VMT to 

the U.S. total truck VMT. The results indicated that a 10% increase in toll rate per VMT 

increased the truck traffic diversion to a toll-free route by 4.7%.  

Another study is the I-81 tolling in Virginia (VirginiaDOT 2004). In contrast to the Ohio 

Turnpike truck diversion research, which relied on historical observations, the I-81 project 

predicted the truck demand elasticity based on a customized non-linear Reebie’s Truck Cost 

Allocation Model (TCAM) developed by Oak Ridge National Laboratory. The model assumes 

that route choice is determined by travel cost only, and the trucking industry behaves in an 

economical manner, meaning that truckers always take the route along which the travel cost was 

the minimum. The TCAM estimated the travel cost using a non-linear model with the 

independent variables of travel distance, travel time, toll, expected congestion, equipment type, 

driver type and size of carrier. The route choice was translated into traffic diversion at each given 

toll rate to estimate the truck demand elasticity with respect to toll rates. The traffic diversion is 

expected to increase from 16% to 67% when the toll rate increases from 12 to 30 cents per mile. 

What’s more, the study revealed that the commodity type does not matter to the truck VMT 

diversion on I-81, with the exception of coal.  
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In addition to the truck VMT modeling, other researchers attempted to model the impacts of 

tolling and other influential factors on truck route choice based on stated-preference surveys. 

Arentze et al. (2006) conducted a stated preference survey to understand truck route choice 

behaviors. The survey was designed to examine how drivers trade off road accessibility 

characteristics against travel time and travel cost factors. Road accessibility refers to roadway 

geometry, e.g. sharp curves and intersections. There were 78 respondents who completed the on-

line questionnaires. A mixed logit model was formulated based on the responses. It is noted that 

travel time has the strongest impact on route choice, and congestion and road category are 

significant factors as well. Sun et al. (2007) conducted interviews with truck drivers at three rest 

areas and truck stop locations along major highways in Texas, Indiana and Ontario to identify the 

factors that affect truck routing. Truck drivers were asked to choose between two hypothetical 

route alternatives. Two scenarios were created: the Bypass scenario and the Turnpike scenario. 

In the Bypass scenario, truckers were asked to choose between an urban freeway passing through 

the downtown area, and a bypass alternative which charges additional tolls and involves a longer 

travel distance, but shorter travel time. Under the Turnpike scenario, drivers were asked to 

choose between the tolled freeway and free local roads. A logit model was developed to analyze 

the factors that determine route choice. It is found that toll cost and travel time are the most 

significant factors affecting truck routing.  

Studies of the value of truck travel time also involve the examination of roadway toll impacts on 

truck routing. Kawamura (2000) estimated truck value of time for different types of carriers 

based on a stated preference survey conducted in California. Truck drivers were asked to choose 

between an existing free road and a toll road for different combinations of travel time and costs. 

In addition, other truck operator characteristics including business type (for-hire or private fleet), 
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shipment size, and pay scale (pay-by-hour, fixed salary or commission-based) were examined as 

well. The results reveal that the value of truck travel time is closely associated with the time and 

toll cost trade-off, as well as the business type and pay scale. More specifically, the for-hire 

carriers have higher value of travel time than private ones. Similar results were found by Zhou et 

al. (2009) that travel time and toll costs are the significant factors determining route choice. 

Meanwhile, smaller carriers are more likely to avoid a toll road when compared to larger 

companies.  

The literature review summarizes the commonly applied methodologies to model the impacts of 

roadway tolls on truck trip diversion. Both the truck travel demand modeling based approach, 

and the survey and interview based approach are costly to collect data to support the analyses. 

However, GPS data is able to alleviate such concerns given the decreased GPS devices costs and 

increased market penetration of GPS technology used for truck fleet management. In addition, 

the traditional surveys and interviews consist of hypothetical routes and estimated attributes (e.g. 

travel time and speed), and therefore are not able to reflect the real world truck traffic 

performance. Since respondents are given these abstract and hypothetical situations, the route 

preferences indicated by the respondents may not be the same as their actual choices. In contrast, 

the data retrieved from GPS devices is able to provide details of truck specific movement (speed 

and travel time) and trajectory (route choice) information, and therefore can support realistic 

tolling impact analyses, including quantifying changes in truck speed, identifying influential 

factors in truck routing and estimating value of truck travel time based on utility functions. In 

light of this, this chapter investigates how truck GPS data can be used to implement the 

aforementioned tasks. 
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5.3 Study Area and Data Acquisition 

Study Area 

The 6.8-mile-long SR 520 is recognized as a critical corridor carrying traffic across Lake 

Washington between Interstate Highway 5 (I-5), the City of Seattle on the west, and I-405 and 

the Cities of Bellevue, Redmond, and Kirkland on the east (Figure 5-1). The alternate routes are 

I-90 and SR-522. The SR-520 bridge was built in 1963, and is approaching the end of its useful 

life. Thus Washington Department of Transportation (WSDOT) started tolling in December 2011 

to fund the SR-520 replacement projects (WSDOT 2012). Toll rates are predetermined, and 

chang based on time-of-day, truck size, and payment method (WSDOT 2012). According to 

WSDOT,  tolling caused some traffic which used to travel along SR-520 to divert to the 

alternative free road, I-90. Through March 2012, the traffic on SR 520 bridge dropped by 35% to 

40%, while traffic on I-90 increased by 5% to 10% (Craig et al. 2012). No significant change 

along SR-522 was observed since SR-522 involves a longer detour, intersections and signal 

delays (Craig et al. 2012). Therefore, this study considers only I-90 as the alternative toll-free 

road for lake crossing commercial trips. 
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Figure 5-1 Study Area and Surrounding Highways 

The study area is subdivided into four zones, denoted as A, B, C, and D, as shown in Figure 1. 

Areas outside of the four zones are not considered as the detour length is exceedingly long.  It is 

less likely for truck drivers traveling between Zone A and Zone D to choose the toll-free route I-

90 since it involes longer detour. That is, if SR-520 bridge is chosen, the crossing lake travel 

distance is the length of EB (eastbound) SR-520 shown in Figure 5-1. However, if I-90 is chosen, 

the crossing lake travel distance is the sum of SB (southbound) I-5 between SR-520 and I-90, EB 

I-90, and NB (northbound) I-405 between I-90 and SR-520. However, drivers traveling between 

Zone A and Zone C, and Zone B and Zone D face two comparable alternatives (similar travel 

distances): whether SR-520 or I-90 is chosen depends on the trade-offs between a set of time- 

and cost-related attributes. If SR-520 is chosen, drivers need to pay for the toll, but may 

experience shorter and more reliable travel time. In contrast, if free road I-90 is chosen, drivers 

do not need to pay for the toll, but may experience longer and less reliable travel time since 

increased traffic was observed on I-90 after tolling. Therefore this study examines the impacts of 
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a set of time- and cost-related attributes on truck route choice based on empirical observations of 

truck trips between Zone A and Zone C, and Zone B and Zone D during both peak period (6:00 

AM – 9:00 AM and 3:00 PM to 6:00 PM), and off-peak period (9:00 AM – 3:00 PM).  

GPS Data Acquisition 

This research used the GPS data collected in November 2011 (prior to the toll), and April 2012 

(following the toll started on December 29
th

 2011). Data was provided on the condition of 

anonymity from trucks equipped with GPS devices traveling through the Puget Sound region. 

The GPS data was reported every 2-15 minutes and at every stop. Information provided by the 

GPS data includes a unique device ID, location (latitude and longitude), spot (instantaneous) 

speed, truck heading direction, time and date (McCormack et al. 2012). The truck fleet and 

commodity information is unknown. Before conducting any analysis, the raw GPS data was 

cleaned to remove problematic and duplicated data. More details of the GPS data collection and 

processing can be found in (Zhao et al. 2013, McCormack et al. 2012). In addition, an algorithm 

was developed to automatically identify discrete truck trips from raw GPS data based on truck 

dwell time (Ma et al. 2011).  

5.4 Methodology 

Impact of Tolling on Truck Travel Speed 

The truck travel speeds on SR-520 and I-90 before and after tolling are compared to analyze the 

impacts of tolling on truck performance. The speed on SR-520 and I-90 before and after tolling 

were estimated using the estimated link speed method every 15-min interval (Zhao et al. 2011). 

The segment being studied is divided into several subsegments. For each subsegment, the speed 

is calculated by averaging the spot speed over the subsegment, and the corresponding travel time 
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is computed by dividing the subsegment distance by the average spot speed. The total travel time 

(for the entire segment) is the sum of the travel times on each subsegment. The truck travel speed 

of the entire link, called the estimated link speed, is computed by dividing the total distance by 

the total travel time. The calculation is given in Equation 5-1. The outcome has been compared 

with space mean speed and it has been demonstrated that the estimated link speed approach is a 

reliable method to estimate truck speed (Zhao et al. 2011).   
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                                                        Equation (5-1) 

where V = estimated link speed, 

i = number of subsegments, 

il = length of the i
th

 subsegment, 

iv  = average GPS spot speed on the i
th

 subsegment. 

Impact of Tolling on Truck Route Choice 

A number of studies have investigated the influential factors in truck routing. A thorough review 

can be found in Cullinane and Toy (Cullinane and Toy 2000), in which they reviewed seventy-

five articles and identified the five most common categories. These are travel cost/price/rate, 

travel speed, transit time reliability, characteristics of the goods and service. In addition, other 

studies have found that roadway geometric features, safety/security, accessibility, type of carriers, 

and drivers’ payment method are significant as well (Arentze et al. 2012, Sun et al. 2013, 

Kawamura 2000, Zhou et al. 2009). Not all of the aforementioned variables are readily available 
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or can be retrieved from the truck GPS data, and therefore, this study chooses travel time, travel 

time reliability and toll rates as the influential attributes in truck routing. These factors are also 

identified as the most significant variables in most studies.  

A logit model is used to quantify the impact of tolling on truck route choice based on the 

assumption that trucking industry behaves in an economical manner and always maximizes 

utility while choosing travel routes. Two alternative routes were considered: (1) toll bridge SR-

520, and (2) toll-free route I-90. The utility functions are:  

90 1 90 2 90

520 1 520 2 520 3

   

           

U TT TR

U TT TR Toll

  

  

  

  
                        

Equation (5-2) 

where 90U = utility function of choosing I-90, 

520U = utility function of choosing SR-520, 

 = constant, 

TT = Lake crossing time, as shown in Table 5-1, 

TR = Lake crossing travel time reliability, defined as standard deviation of travel time, 

Toll = toll rates. 
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Table 5-1 Truck Travel Time on Each Alternative 

Truck trips Route Lake crossing time 

Zone A->Zone C SR-520 TTSR-520_EB +TTI-405_SB
*
 

 I-90 TTI-5_SB+TTI-90_EB 

Zone C-> Zone A SR-520 TTI-405_NB + TTSR-520_WB 

 I-90 TTI-90_WB+ TI-5_NB 

Zone B-> Zone D SR-520 TTI-5_NB+ TTSR-520_EB 

 I-90 TTI-90_EB +TTI-405_NB 

Zone D-> Zone B SR-520 TTSR-520_WB+ TTI-5_SB 

 I-90 TTI-405_SB+ TTI-90_WB 
*
TTSR-520_EB represents travel time on eastbound SR-520, and TTI-405_SB represents travel time on 

southbound I-405 segment between SR-520 and I-90 

As illustrated in Equation 5-2, to construct the logit model, six variables are required for each 

lake crossing trip: actual route choice, actual travel time, potential travel time on the alternative 

route, actual travel time reliability, potential travel time reliability on the alternative route, and 

toll cost on SR-520. The following sections discuss how these variables are observed and 

estimated.  

Truck Route Choice 

The selection of lake crossing trips and identification of route choice consists of three steps. First, 

the processed GPS data is geocoded to the network, and GPS reads on SR-520 and I-90 are 

selected separately. Second, the truck trips containing GPS reads on SR-520 and I-90 are 

identified based on the unique GPS device ID. Third, the truck trips that are between Zone A and 

Zone C, and Zone B and Zone D are selected as the input to support the modeling process. The 

corresponding route choice of each truck trip is identified depends on if it contains GPS reads on 

SR-520 or on I-90. The complete process is accomplished inside the ArcGIS environment.  

Truck Travel Time 
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The travel time considered in the model is the lake crossing travel time, as presented in Table 1. 

The actual lake crossing time is calculated by dividing travel distance by the truck GPS spot 

speed. To formulate the logit model, the potential travel time on the alternative route is needed as 

well. The travel time on the alternative route is estimated by dividing travel distance of the 

alternative route by the estimated link speed (calculated using Equation (5-1)) on that alternative 

route during the corresponding 15-min interval. Travel time is measured as minutes in the logit 

model.  

Travel Time Reliability 

Travel time reliability represents the level of consistency in travel times during a time period 

(Lomax et al. 2013). Numerous approaches have been developed to quantify travel time 

reliability, including the travel time standard deviation, 95th percentile of travel time, buffer time, 

probability of on-time arrival, etc. (Lomax et al. 2013). In this study, the travel time standard 

deviation is chosen as the reliability metric, which is consistent with the measure used in the 

highway pricing study SHRP 2 (Second Strategic Highway Research Program) Project C04 

(Improving Our Understanding of How Highway Congestion and Pricing Affect Travel Demand) 

(Parsons Brinckerhoff 2012).  The travel time reliabilities on both the actual selected route and 

the alternative route are calculated for each 15-min interval.   

Toll Rate 

Toll rates on SR-520 vary depending on the time-of-day, truck type and payment method. The 

rate ranges from $0 between 11 PM and 5 AM for all types of trucks to $10.50 between 7 AM to 

9 AM for six-axle truck paying by the electronic tolling system.  We assume all trucks on SR-

520 use the electronic tolling system. Higher toll rates are expected if other payment methods, 
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e.g. pay by mail, are used (WSDOT 2012). Since the truck size is unknown, the toll rate on SR-

520 during each time period is calculated as a weighted average using WSDOT truck counts by 

number of axles.   

5.5 Results 

Impacts of Tolling on Truck Speed 

Figure 5-2 presents the weekday average truck speed on EB SR-520 and EB I-90 before and after 

tolling, between 6:00 AM and 12:00 PM. The speed was aggregated every 15-min interval. 

According to Figure 5-2 (a), prior to tolling, truck speed on SR-520 was always lower than on I-

90.  The lowest speed was about 30 mph between 8:00 AM and 9:00 AM. However, as 

illustrated in Figure 5-2 (b), travel speed on SR-520 improved significantly following the toll. 

The truck speed was around 50 mph during the AM peak period, which exceeded the speed on I-

90. In addition to the improvement to travel speed, the travel time on SR-520 was more stable 

with reduced fluctuation—the difference in travel speed was greater than 20 mph in November 

2011 and was less than 10 mph in April 2012. Changes in travel speed on I-90 were much less 

pronounced than on SR-520. The truck travel speed on I-90 decreased slightly between 7:30 AM 

and 9:00 AM. The changes in truck speed on both bridges were mainly resulted from the traffic 

diversion from SR-520 to I-90. According to the data collected by the traffic count devices 

deployed along SR-520 bridge in April 2012, the EB number of passenger car trips reduced by 

32% compared to the volume recorded in November 2011, and the commercial truck trips 

dropped by 26%.  
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(a) (b)  

Figure 5-2 (a) Truck speed on EB SR-520 and EB I-90 in November 2011 and (b) Truck 

speed on EB SR-520 and EB I-90 in April 2012 

The truck speeds over WB SR-520 and I-90 before and after tolling were also compared, and are 

presented in Figure 3. Similar impacts on WB truck speed were observed. As displayed in Figure 

3 (a), before tolling, average truck speed on SR-520 was lower than the speed on I-90 (except 

between 6 AM and 6:15 AM), with lowest speed of 30 mph around 8 AM. The speed increased 

dramatically after tolling and was greater than the speeds on I-90 between 7:15 AM and 9 AM, 

as shown in Figure 3 (b). Meanwhile, the variation of speed on SR-520 was reduced after tolling. 

The truck speed on WB I-90 after tolling did not change considerably between 6:00 AM and 

7:30 AM. However, the speed declined significantly between 7:30 AM and 9:15 AM. This may 

be due to the fact that toll rate increases by 25% during 7 AM to 9 AM compared to the rate 

during 6 AM to 7 AM, and results in considerable traffic diversion from SR-520 to I-90. The 

monthly traffic volume collected by the traffic count devices shows that passenger car trips on 
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WB SR-520 bridge decreased by 31% in April 2012 compared to the data collected in November 

2011, and the truck traffic declined by 26%.  

 

(a)                                                                    (b)    

Figure 5-3 (a) Truck speed on WB SR-520 and WB I-90 in November 2011 and (b) Truck 

Speed on WB SR-520 and WB I-90 in April 2012 

Impacts of Tolling on Truck Route Choice 

There are 185 truck trips observed during the peak period, among which 25 trips selected SR-520 

and 160 trips selected I-90. For the off-peak period in April 2012, there are 203 trucks trips 

observed, among which 37 trips chose SR-520 and 166 trips chose I-90. The logit model was 

implemented using R software. The results are shown in Table 2. Two traffic phases were 

modeled: the peak period (6: 00 AM – 9:00 AM and 3:00 PM – 6:00 PM), and off peak period 

(9:00 AM- 3:00 PM). Travel time and toll rate are significant variables for both phases. The 

signs of travel time and toll rate are both negative, which means that the increase of travel time 

and toll rate of a specific route will reduce the utility of that route as well as the probability that it 
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will be chosen. The constant in the I-90 logit function is positive, and it indicates that everything 

being equal, the utility of choosing I-90 is greater than choosing SR-520, which reveals that I-90 

is more preferable to truck drivers. I-90 is an interstate highway with four-lanes each direction 

and sufficient shoulder width, while SR-520 has two-lanes each direction and insufficient 

shoulder. These geometric features may make I-90 more attractive to trucks than SR-520. In 

addition, there are weight and size restrictions on SR-520, and some heavy or large trucks may 

be required to choose I-90. The constants of the two logit functions also reveal that if there is 

zero toll, the SR-520 and I-405 combination will be more attractive only if it is on average 23 

minutes faster during the peak and 19 minutes faster during the off peak. It should be noted that 

travel time reliability is not significant at the 95% confidence level, and therefore is eliminated 

from both models. The utility functions for the two time periods are written as follows: 

Peak period 

90 90

520 520

4.717 0.207      

        0.207 0.68   

I

SR

U TT

U TT Toll





 

  
 

Off-peak period 

90 90

520 520

5.586 0.301      

       0.301 0.703   

I

SR

U TT

U TT Toll





 

  
 

Table 5-2 Logit Model Results 

Time period Variables  Coefficient z-Value p-Value 

Peak period 

(6 AM -9 AM 

and 3 PM to 6 

PM) 

Constant  4.717  4.278 <0.005 

Travel time -0.207 -2.190 0.028 

Travel time reliability 

Toll rate 

 0.001 

-0.680 

 0.022 

-10.041 

0.983 

<0.005 

Off peak 

period 

(9 AM to 3 

PM) 

Constant  5.586  3.563 <0.005 

Travel time -0.301 -2.134 0.033 

Travel time reliability 

Toll rate 

-0.044 

-0.703 

-0.826 

-9.997 

0.408 

<0.005 
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Travel time reliability is not observed to be a significant variable in route choice during both 

time periods. This is due to the correlation between travel time and travel time reliability. Travel 

time reliability is low when travel times are high. Travel times are at their lowest when drivers 

can travel at free flow speed.  If this is the case, travel times are very reliable as there is no 

congestion. Figure 4 presents the scatter plot of travel time versus travel time reliability during 

peak period and off peak period. Linear relationships between the two variables during both 

periods are observed, and the correlations are 0.702 and 0.525 respectively. To eliminate the 

influence of correlation, travel time was removed from both utility functions, and only travel 

time reliability and toll rate were considered. The updated model results are shown in Table 5-3. 

Both travel time reliability and toll rate are statistically significant, and the signs are both 

negative. The results indicate that travel time reliability is an influential factor determining truck 

route choice as well, and trucking industry is willing to pay for a toll for a reliable route.   
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Figure 5-4 (a) Scatter plot of travel time versus travel time reliability during peak period (6 

AM to 9 AM and 3 PM to 6 PM), and (b) scatter plot of travel time versus travel time 

reliability during off peak period (9 AM to 3 PM) 

Table 5-3 Logit Model Results (without Travel Time) 

Time period Variables  Coefficient z-Value p-Value 

Peak period 

(6 AM to 9 AM 

and 3 PM to 6 

PM) 

Constant  2.529  5.902 <0.005 

Travel time 

reliability 

Toll rate 

-0.046 

-0.707 

-2.183 

-10.642 

0.029 

<0.005 

Off peak period 

(9 AM to 3 PM) 

Constant  2.385  5.803 <0.005 

Travel time 

reliability 

Toll rate 

-0.112 

-0.760 

-2.528 

-11.415 

0.012 

<0.005 

Value of Truck Travel Time 

The coefficients of travel time and toll rate reflect the sensitivity of commercial trips to changes 

in travel time and cost. Their ratio is able to capture the trade-off between travel time and toll 

rate, as shown in Equation 5-3. According to Equation 3 and the model results presented in Table 

2, the value of truck travel time during peak period and off-peak period can be calculated, and 

are 18.26 $/hr and 25.69 $/hr respectively.  

1

3
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Toll

Value of Truck Travel Time



















                         Equation (5-3) 

It should be noted that if this study has bias, it will underestimate the value of truck travel time. 

First, all trucks on SR-520 were assumed to use the most economical payment method. It is 
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possible that other payment methods are used, which generate higher toll costs, and consequently 

yield higher value of truck travel time. Second, there are vehicle weight and size restrictions on 

the SR-520 bridge, and therefore we may under-sample heavy trucks as compared to other 

facilities. Third, trucks may have less flexibility in rescheduling and changing routes.  

It is also noted that the value of truck travel time during off-peak period is greater than the value 

during peak period. This is explainable within the commercial trips context. The peak period 

value of travel time for passenger vehicles is expected to be greater than the off-peak period 

value since most trips occurring during peak period, e.g. working trips, have fixed destinations 

and less flexibility in changing departure time or route. However, many commercial trips with 

strict delivery window and customer requirements do not necessarily occur during the peak 

period defined for passenger trips. To verify this assumption, we used the same data but 

redefined the truck specific peak period as 9 AM to 5 PM, and off peak period as 6 AM to 9 AM 

and 5 PM to 6 PM. The updated model results are shown in Table 4. According to the model 

results, the value of truck travel time during truck specific peak period and truck specific off 

peak period are 25.15 $/hr and 19.44 $/hr respectively. 

Table 5-4 Logit Model Results (Truck Specific Peak and Off Peak Periods) 

Time period Variables  Coefficient z-Value p-Value 

Truck Peak period 

(9 AM to 5 PM) 

Constant 

Travel time 

 5.169 

-0.285 

 3.972 

-2.433 

<0.005 

0.015 

Travel time reliability 

Toll rate 

-0.002 

-0.680 

-0.052 

-11.338 

0.959 

<0.005 

Truck off peak 

period 

(6 AM to 9 AM 

and 5 PM to 6 PM) 

Constant 

Travel time 

 4.794 

-0.219 

 3.783 

-1.988 

<0.005 

0.047 

Travel time reliability 

Toll rate 

 0.003 

-0.676 

 0.102 

-8.064 

0.919 

<0.005 
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5.6 Conclusions 

This research investigates how truck GPS data can be used to quantify the impacts of tolling on 

truck speed and routing, using SR-520 as a case study. It is found that roadway tolls affect truck 

speed on both the toll route and the alternative toll-free route. Tolling may alleviate the 

congestion on toll road during both peak and off-peak periods, and increase the congestion on the 

alternate free route during peak period.  

A logit model was developed to understand the effects of toll rate, travel time and travel time 

reliability on truck routing. Two traffic phases were examined: the peak period (6 AM to 9 AM 

and 3 PM to 6 PM) and off-peak period (9 AM to 3 PM). It is found that travel time and toll rate 

are both significant factors during both phases. The travel time reliability is not significant in the 

combined model results due to the correlation between travel time and travel time reliability. 

However, it is significant when travel time is eliminated from the model, which demonstrates 

that travel time reliability is an influential factor determining truck route choice as well.  

The value of truck travel time varies with the definition of peak and off-peak periods. The values 

during general traffic peak period (6 AM – 9 AM and 3 PM to 6 PM) and off-peak (9 AM to 3 

PM) are 18.26$/hr and 25.69 $/hr respectively. If we look at the truck specific peak period (9 

AM to 5 PM) and truck specific off peak period (6 AM to 9 AM and 5 PM to 6 PM), the value of 

truck travel time are 25.15 $/hr and 19.44 $/hr. The values are comparable with the estimates 

discussed in several literatures, in which the value of truck travel time ranges from 20 $/hr to 50 

$/hr (in 2012 dollars) (Kawamura 2000).  The results can be used to inform tolling rates, and to 

better forecast the impact of tolling on truck route choice. The fleet information is unknown as 

the data was provided on condition of anonymity. Any bias presented by differences between the 

fleet represented in the GPS dataset, and the truck population at large, are not known.   
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Chapter 6 CONCLUSIONS 

Despite the fact that a considerable number of studies have examined passenger vehicle mobility 

performance and how passenger vehicles response to roadway tolls, limited truck-specific 

research has been done. To a large extent, this is due to the deficiency of truck-specific 

movement data. The increasing availability of truck GPS data provides reliable truck movement 

data, and therefore it initiates opportunities for truck-specific research. This dissertation begins to 

fill the gap by employing truck GPS data to freight planning applications. Three key truck-

specific research questions are addressed, including measuring truck travel time reliability, 

forecasting truck travel time and travel time reliability, and analyzing tolling project impacts on 

truck performance and routing. This final chapter presents conclusions and findings of each 

research question. The studies are expected to be applied by planners and engineers to support 

freight planning. Thus this chapter also discusses the potential obstacles and challenges to 

implement the proposed methodologies.  

6.1 Measuring Truck Travel Time Reliability 

Travel time reliability is a critical factor for evaluating freight-highway system performance and 

determining truck route choice. Numerous quantitative approaches have been proposed to 

measure travel time reliability. The author classified existing reliability measurements into two 

categories according to the data on which these approaches are based: travel time based 

reliability measure and GPS spot speed based measure. The GPS spot speed based approach is 

superior than travel time based approach due to the fact that the GPS data employed in this 

research is low sample sized and provides spot speed data instead of travel time data. We 

improved the GPS spot speed based approach by calculating the speed distribution coefficient of 
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variation. This improved approach provides numerical values, and therefore allows more 

quantitative reliability evaluation.  

We ranked reliability of the same segment during different times-of-day and days-of-week using 

a number of reliability metrics, and found that the ranking results varied depending on the 

measures used. To further explore the relationship among these reliability measures, the 

correlations among each measure were computed. The results reveal that there exist large 

deviations among reliability measures, especially during peak period compared to off-peak 

period. Both ranking and correlation analyses suggest that different measures provide different 

conclusions for the same underlying data and traffic condition. We summarized the advantages 

and disadvantages of each measure, and provided recommendations of the appropriate measure 

to use under different situations.  

When raw GPS data is readily available, the improved spot speed distribution approach is 

recommended as it does not require additional efforts to retrieve travel time information from 

raw data and allows small sample size. However, this approach has not been widely applied. 

Also, it is more complex to compute and explain to non-technical audience compared to other 

reliability measures, e.g. travel time standard deviation, percentile method and buffer time 

method. Nevertheless, it is an asset to avoid calculating travel time from raw GPS data as it 

requires resources and provides opportunities for introducing error. 

6.2 Forecasting Truck Travel Time and Travel Time Reliability 

This research initiates from one of our previous studies to develop a framework to determine 

highway-truck benefits and economic impacts associated with highway investments. In that 

project, we realized that there is no truck-specific benefits evaluation application, which is 
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primarily due to the lack of truck data and models to predict truck performance associated with 

transportation investments. In light of this, this dissertation proposes approaches to develop such 

models to forecast truck travel time and travel time reliability using truck GPS data.  

Forecast Freeway Truck Travel Time 

The objective of chapter 3 is to propose a truck travel time forecasting approach that can support 

long-term freight project prioritization and planning, not real-time operations. The idea of this 

approach is based on multi-regime relationships between truck speed and segment density. 

Cluster analysis was employed to segment traffic regimes based on the characteristics of truck 

speed and segment traffic density using the K-means algorithm. We fitted the data of each cluster 

using linear, logarithmic and exponential models to find the best fit of the observed data. The 

fitted models were compared with two traditional travel time forecasting models, the BPR 

function and the Akçelik function. The proposed model generates less deviation between travel 

time estimates and observations, and therefore performs better than the existing two approaches. 

The k-means cluster algorithm requires user defined number of clusters, which is determined by 

both the distribution of observations in a dataset and the desired resolution of the user. 

Meanwhile, the number should not be too many for convenient use of the model. Thus for the 

two case studies presented in this dissertation, the authors conducted the cluster analysis with 

two clusters and three clusters respectively, and compare the results. It is found that for case 

study II, three-cluster did not work as the clusters cannot be fitted properly. For case study I, no 

substantial improvement regarding model forecasting accuracy was observed from 2 clusters to 3 

clusters. 
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This proposed approach is expected to forecast more accurate truck travel time in response to 

segment density changes. Given this, and the simplicity of the approach, we recommend users to 

apply the clustering and best-fit modeling approach, and develop their own equations for 

different locations.  

Forecast Freeway Truck Travel Time Reliability 

Chapter 4 of this dissertation explores how truck travel time reliability can be forecasted using 

truck GPS data. This chapter is based on the previous research efforts to measure truck travel 

time reliability using COV of the spot speed distribution illustrated in Chapter 2. To forecast 

reliability, we first plotted the hourly truck spot speed distribution from 5 AM – 10 AM based on 

one month GPS observations. The figures suggest that speed distribution is affected considerably 

by traffic density. More specifically, truck speed distribution follows a unimodal distribution 

when traffic density is low and most of the trucks travel at a desired speed. The presence of the 

second distribution emerges with the increase of traffic density. During congestion phase, the 

distribution presents a bimodal distribution, which is consisted of two phases: the low speed 

phase and high speed phase. The probability of truck speed falling within the low speed phase 

increases with the growth of traffic density. The low speed distribution wanes when traffic 

density drops.  

Such changes of speed distribution can be reflected by the corresponding COV. Thus we plotted 

the COV versus traffic density, and found that there exist strong correlations between the two 

datasets. For the case study discussed in this dissertation, we found travel time was always 

reliable when density was less than 15 veh/mi/ln. When density was between 15 veh/mi/ln and 

28 veh/mi/ln, COV increased dramatically with the growth of density. COV did not change 
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considerably when density was greater than 28 veh/mi/ln.  The K-means algorithm was then 

employed to segment the dataset into three groups based on the characteristics of the data. For 

the second cluster, in which density was between 15 veh/mi/ln and 28 veh/mi/ln, we fitted the 

data using linear regression. The fitted equation is able to predict travel time reliability in 

response to different traffic density when future density is available or predictable.  

The idea of using COV of truck speed distribution to represent travel time reliable is relatively 

new and complex to be explained to first-time users. However, this method overcomes the 

sample size constraints and does not require additional data processing efforts to retrieve travel 

time information form raw GPS data. These are the strengths of this approach. The proposed 

COV forecasting approach is easy to implement and can be extended for studies of different 

locations and/or with different GPS datasets.  

6.3 Impacts of Tolling on Truck Performance and Routing 

In the past decades, there have been multiple studies seeking to collect truck movement data to 

support freight planning, but none of them have been investigated how truck GPS data can be 

used to support the impact analysis of tolling on truck mobility performance and vehicle routing. 

Thus Chapter 5 conducts an analysis to quantify tolling impacts on truck speed and routing. Both 

truck spot speed and vehicle trajectory (route choice) information was retrieved from GPS data.  

The 6.8-mile-long SR-520 bridge in city of Seattle, WA was selected as the case study. The 

alternative toll-free route is I-90 bridges. The speed comparison shows that the truck speed along 

SR-520 improved considerably following the toll. The lowest truck speed during morning peak-

period was 30 mph after tolling and increased to 50 mph after tolling. In addition to the speed 

improvement, the reliability along SR-520 was improved as well. Changes in travel speed on I-
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90 were much less pronounced than on SR-520. The changes in truck speed along both bridges 

were mainly resulted from the traffic diversion from SR-520 to I-90. 

A logit model was developed to identify the factors affecting truck route choice based on the 

assumption that trucking industry behaves in an economical manner and always maximizes 

utility while choosing travel routes. Two traffic phases were modeled: the peak period (6 AM -9 

AM and 3 PM -6 PM) and off-peak period (9 AM – 3 PM). The model results reveal that travel 

time, travel time reliability and toll rate are significant variables for both phases. The signs of 

travel time and toll rate are both negative, which means that the increase of travel time and toll 

rate of a specific route will reduce the utility of that route as well as the probability that it will be 

chosen. We further estimated the value of truck travel time and found that the value of truck 

travel time during truck specific peak period and truck specific off peak period are 18.26 $/hr 

and 25.69 $/hr respectively.  

This study proves the capability of truck GPS data in supporting tolling impact analysis. The 

results can be used to inform tolling rates, and to better forecast the impact of tolling on truck 

route choice. The fleet information is unknown as the data was provided on condition of 

anonymity. Any bias presented by differences between the fleet represented in the GPS dataset, 

and the truck population at large, are not known. 

By addressing the above three research questions, the capability of truck GPS data in supporting 

truck mobility measurement, forecasting and tolling impact analysis have been fully investigated. 

The dissertation proposes a systematic set of approaches to take the advantage of the emerging 

GPS data source to support freight planning. The reliability measurement approach is innovative 

compared to traditional travel time based reliability measures. Both truck travel time forecasting 
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and travel time reliability forecast analyses demonstrate the impacts of traffic conditions on truck 

mobility performance. More specifically, the research quantifies to what extend traffic may 

influence truck travel time and reliability. The proposed approaches are adaptive for different 

locations and/or different GPS dataset as long as the GPS data formats are consistent.  
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