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ABSTRACT

Mesh generation is a fundamental and critical problem in geometric data modeling and pro-

cessing. In most scientific and engineering tasks that involve numerical computations and

simulations on 2D/3D regions or on curved geometric objects, discretizing or approximating

the geometric data using a polygonal or polyhedral meshes is always the first step of the pro-

cedure. The quality of this tessellation often dictates the subsequent computation accuracy,

efficiency, and numerical stability.

When compared with unstructured meshes, the structured meshes are favored in many sci-

entific/engineering tasks due to their good properties. However, generating high-quality

structured mesh remains challenging, especially for complex or large-scale geometric data.

In industrial Computer-aided Design/Engineering (CAD/CAE) pipelines, the geometry pro-

cessing to create a desirable structural mesh of the complex model is the most costly step.

This step is semi-manual, and often takes up to several weeks to finish. Several technical

challenges remains unsolved in existing structured mesh generation techniques.

This dissertation studies the effective generation of structural mesh on large and complex

geometric data. We study a general geometric computation paradigm to solve this problem

via model partitioning and divide-and-conquer. To apply effective divide-and-conquer, we

study two key technical components: the shape decomposition in the divide stage, and the

structured meshing in the conquer stage. We test our algorithm on vairous data set, the

xiii



results demonstrate the efficiency and effectiveness of our framework. The comparisons also

show our algorithm outperforms existing partitioning methods in final meshing quality. We

also show our pipeline scales up efficiently on HPC environment.
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1. INTRODUCTION

1.1 BACKGROUND

Mesh generation is a fundamental and critical problem in geometric data modeling and pro-

cessing. In most scientific and engineering tasks that involve numerical computations (e.g.

solving partial differential equations (PDE) using finite difference methods (FDM), finite ele-

ment methods (FEM), or finite volume methods (FVM)) and simulations on 2D/3D regions

or on curved geometric objects, discretizing or approximating the geometric data using a

polygonal or polyhedral meshes is always the first step of the procedure. The quality of this

tessellation often dictates the subsequent computation accuracy, efficiency, and numerical

stability.

To tessellate 2D manifolds (planar regions or curved surfaces) or 3D manifolds (3D regions

or solid objects), piecewise mesh elements can be general polygons or polyhedra respectively.

But most commonly used tiling elements are triangles (tri) or quadrangles (quad) for 2D

manifolds, and tetrahedra (tet) or hexahedra (hex) for 3D manifolds. Figure 1.1 shows these

four types of mesh elements generated on the Stanford Bunny model. The tri/tet meshes

are the most commonly used meshes in finite element computation and analysis. Effective

triangular meshing techniques have been well studied. State-of-the-art triangular meshing

software, such as Triangle [6] for surface data, and TetGen [7]/NetGen [8] for volume data, is
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(a) (b) (c) (d)

Figure 1.1: Different types of meshes. (a) - (d) Triangular, tetrahedral, quadrilateral, and hexahe-
dral meshes of the Stanford Bunny model

able to efficiently produce millions of high-quality triangle/tetrahedron elements per second

for geometric data processing and computation.

On the other hand, compared with tri/tet meshes, the quad/hex meshes are often preferred

in many applications due to several reasons.

• Natural Tensor-product Representation. The quad/hex meshes directly support

the natural representation of the tensor-product high-order bases, which is needed for

the industrial standard representations, such as tensor-product B-splines, Non-uniform

rational basis spline (NURBS) [9], and Catmull-Clark surfaces [10] in computer-aided

design/manufacturing and computer graphics.

• Higher Computational Accuracy. In many scientific computing tasks such as elas-

tic analysis, structural analysis, Navier-Strokes computation, etc., quad/hex meshes

provide better accuracy than tri/tet meshes for the same computational cost [11].

• Easier Feature Alignment. In geometric modeling, quad/hex meshes can better

support feature alignment. For example, geometric surfaces has two dominant direc-

tions locally, referred to as the principal directions, to which quad/hex meshes can

naturally align, for sampling optimization [12].
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1.2 CHALLENGING ISSUES

Despite these advantages in engineering designs and simulations, effective quad/hex mesh

generation is non-trivial. In industrial Computer-aided Design/Engineering (CAD/CAE)

pipelines, the geometry processing to create a desirable structural mesh of the

complex model is semi-manual, and often takes up to several weeks to fin-

ish [13]. Therefore, it is often the most time-consuming step within the entire

pipeline [11, 13] and can take up to 80% of the total costs in the CAD/CAE

procedure [14]. Several technical challenges remains unsolved in existing quad/hex mesh

generation techniques.

1. Generating high-quality elements for complex geometry is difficult. From

the aspect of element quality, an ideal quad element is a square, while a perfect hex

element is a cube. However, arbitrarily given geometries cannot be tessellated into

meshes with only ideal elements, angle and volume distortions inevitably exist in the

elements. The bad-quality (e.g. severely sheared or scaled) elements limit the usability

of the mesh. When the geometry is complicated, most existing meshing algorithms can

not guarantee to generate a mesh without degenerate (i.e., non-zero edge-length, area,

and volume) nor flipped (i.e., self-intersected) elements [15], near which the numerical

computation/analysis cannot be performed.

2. Handling large-scale data is difficult. When the data size becomes big, the gener-

ation of quad/hex mesh with controllable global structure becomes very difficult. On

one hand, direct computation is very expensive. On the other hand, when the data

have complex topology and geometry, controlling the global layout and singularity
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distribution is usually infeasible.

3. Local topological modification/refinement is difficult. During mesh genera-

tion, local update and refinement is often desirable in generating high-quality adaptive

meshes and in improving mesh quality. However, for quad/hex meshes, local topological

modifications will propagate across entire region. Many effective refinement techniques

in triangle/tetrahedral meshes, such as subdivision, could not be applied [11].

1.3 RELATED WORK

Our goal is to design effective structural quad/hex mesh generation algorithm for complex

and large geometric regions/objects, tackling the above challenges. We propose to develop a

divide-and-conquer computational pipeline to solve the problem of structured mesh gen-

eration for complex and large-scale geometric data. To apply effective divide-and-conquer,

we study two key technical components: the shape decomposition in the divide stage,

and the structured meshing in the conquer stage. In the processing of complex or large

geometric data, effective data decomposition can partition the data into solvable smaller

and geometric simpler subparts, upon which processing can be performed simultaneously in

a parallel manner. On each local region, structured meshes should be constructed follow-

ing boundary consistency constraints along the partitioning boundary, to avoid unnecessary

topological modifications after local results are stitched together.
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1.3.1 Shape Partitioning

Given a geometric region M , a set of components {Mi} is a decomposition of M if (1) their

union is M , i.e.,
⋃

iMi =M , and (2) all Mi are interior disjoint, namely, ∀i 6=jM
◦
i ∩M◦

j = ∅,

where M◦
i =Mi\∂Mi is the open set of Mi.

Shape decomposition has been widely used in a large number of applications in computa-

tional geometry, computer graphics, parallel computing. In the computational geometry

and computer graphics applications, the study of shape decomposition focus on how to get

desire geometric properties for each sub-region, such as convexity, symemtry, etc. In parallel

computing applications, the study focus on the efficiency of parallel computing.

Shape Decomposition in Geometric Processing

In computation geometry, geometric regions have been decomposed into different polygo-

nal/polyhedral primitives, such as Voronoi cells, convex subregions, star subregions, etc.

Thorough reviews have been given in surveys [16] and [17]. In computer graphics and vi-

sualization, shape decomposition has been studied for different applications such as object

recognition, meshing, skeleton extraction. Geometric objects are often decomposed into sub-

patches with certain desirable geometric criteria such as compactness, flatness, roundness,

or along certain feature regions such as concave valleys, sharp ridges, etc. Two thorough

surveys in this field have been given in [18] and [19]. In geometric processing, the shape de-

composition techniques mainly focus on optimizing geometric properties of the local subparts

obtained from the decomposition.
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Shape Decomposition in Parallel Computing

Data decomposition is also studied in many parallel computing problems, but existing tech-

niques often pay most attention to the efficiency of parallel computing resulted from this

decomposition. Existing partitioning strategies developed in parallel data processing litera-

ture can be classified into two categories: extrinsic space partitioning and intrinsic manifold

partitioning methods. The first class method partitions the data by partitioning the data’s

embedding space using spatial structures such as quad-tree or octree, axis/planes or space-fill

curves, etc. In general, data (space) partitioning using space-filling curves or other extrinsic

space partitioning methods is very efficient, as demonstrated in several successful applica-

tions, such as computational physics, algebraic multigrid and adaptive mesh refinement.

However, algorithms based on spatial partitioning are not suitable to handle data that have

complex geometry or nonuniform properties. The second category method partitions the data

model on its intrinsic tessellation. The data are discretized into a mesh or a graph, where

elements or nodes are clustered into subparts directly or recursively. Among this category, a

very widely used strategy is the graph partitioning which usually produce good-quality par-

titions with balanced load and reduced communication. These existing graph partitioning

algorithms focus on only tackling the load balancing and communication reduction issues.

However, only considering these two criteria is insufficient, since flexibly incorporating ex-

tra geometric constraints is often critical in geometric and spatial data processing in many

scientific applications including our mesh generation task.
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1.3.2 Quad/Hex Mesh Generation

In a quad mesh, if the valence of a vertex is 4, then it’s a regular vertex. Otherwise the

vertex is called irregular, or a singularity vertex. For hex meshes the valence of a regular

vertex is 6. If all the interior vertices of a mesh are all regular then we call the mesh

is a structured mesh, otherwise it’s a unstructured mesh. Structured meshes can facilitate

a number of applications. In animation, structured meshes can act as control meshes for

subdivision surfaces. In other applications such texture mapping, structured meshes can

be trivially mapped to texture. With careful design, a complicated geometric objects can

be represented using a set of structured meshes stitched together, and along the stitching

boundary there may be a few singularity vertices.

Generally speaking, there are three types of methods for generating quad/hex meshes: spatial

partitioning, plastering, and mapping based methods.

In spatial partitioning approaches, the given object or the space it embeds is first decom-

posed into a set of cells which will then be projected or deformed to conform to the model’s

boundary geometry. A limitation these approaches is its pose-sensitivity: a small orientation

change (e.g. rotation) of the object can lead to different meshing results. Another limitation

is that these approaches usually lead to poor quality near the boundary elements. On the

other hand, the plastering approaches usually start from the structurally meshed boundary,

then propagate the construction of new elements toward the object center. The plastering

approach can generate high quality elements, however, it often generates large amount of sin-

gularities, whose number and distribution cannot be controlled. Mapping-based methods

parameterize (map) the input object or region M onto a regular-shape domain Ω, namely,
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compute Φ :M → Ω. On the regular domain Ω, a uniform structural mesh H can be easily

constructed using subdivision [20–24] or other standard technique. Then, the inverse of the

map Ψ = Φ−1 : Ω → M is used to transfer the regular mesh H back to M . Unlike the

first two approaches, the mesh singularities and their distribution can be controlled by the

map Φ, however, optimizing the shape of Ω and the map Φ often reduce to solving nonlinear

optimization with nonlinear geometric constrains. The computation can often be expensive,

and therefore, needs to be performed on subregions that have relatively small size, simple

geometry, and uniform feature/material structures. A general surface/volume parameteriza-

tion model for regular mesh generation is to map M onto a canonical 2D/3D domain whose

boundary sizes are integers (assuming each cell has a unit size) [25,26], allowing singularity

points on both interior and boundary regions [27,28]. However, for 3D manifolds, the topo-

logical structure of the singularity of the parameterization is much more complicated and its

automatic construction/optimization remains unsolved [28].

1.4 OUR APPROACH

In this dissertation, we aim to explore and tackle the aforementioned challenging technical

issues in quad/hex mesh generation of complex and large geometric models. We will propose

a shape decomposition algorithm based on “visibility” called Star Decomposition to parti-

tion a given 3D region into a set of star shapes, on which high-quality bijective mapping can

be constructed. Then, we will also study effective partitioning efficient parallel processing of

large geometric models. Besides load balancing and communication minimization, we also

study the incorporation of various geometric properties, to propose a Geometric-aware

Graph Partitioning computation pipeline for efficient parallel geometric processing.
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On the other hand, constructing lowly distorted mapping from the geometric data onto

canonical domain dictates the quality such as the stretching, skewness, and uniformity of the

constructed meshes. Constructing and optimizing suitable canonical parametric domains is

critical for the element quality and singularity distribution control in mapping-based regular

mesh construction. We will propose innovative polycube parameterization algorithm to

map geometric object onto the canonical and regular polycube domain, upon which uniform

and perpendicular iso-integral lines can be obtained, and boundary-constrained high-quality

mesh can be generated.

The remainder of this dissertation is organized as follows: In part 1.4 we will study two

partitioning techniques: visibility-based decomposition technique called star-decomposition

(Section 2) and a geometric-aware graph partitioning technique (Section 3). A polycube

mapping based structured meshing algorithm will be studied in Part 3.5.

Finally is the conclusion and future work(Chapter 7).
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PART II

SHAPE PARTITIONING
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This chapter is devoted to study the shape decomposition algorithms. In Section 2 we will

study the 3D guarding problem and propose a star decomposition algorithm for 3D. In

Section 3 we will study a geometric-aware graph partitioning, which is suitable for parallel

geometric processing tasks.
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2. COMPUTING 3D SHAPE GUARDING AND STAR DECOMPOSITION

This section studies the shape partitioning based on visibility, i.e. star decomposition. It

segments a 3D volumetric shape to a set of subregions, each of which is visible from a

guarding point (such a subregion is called a star shape). It can be shown that a star-shaped

subregion has some good properties. For example, harmonic volumetric parameterization

can be constructed bijectively upon such domain [29]. In computer graphics and animation,

star decomposition can benefit many tasks such as shape matching/retrieval, and morphing.

Surface segmentation, generally based on specific local geometric properties of surface patches,

has been thoroughly examined (see survey papers [18, 19]). Partitioning 3D objects based

on their volumetric properties, such as convexity, symmetry, etc. have also been studied;

however, less study has been conducted to the decomposition based on visibility. Star-

decomposition is closely related to a well known art-gallery guarding problem. The gallery

guarding problem has been studied in computational geometry community on 2D planar

domains and in 2.5D for terrain guarding. But “Very little is known about gallery guard-

ing in three dimensions” [30], especially for 3D free-form models, due to their much higher

complexity.

The main contributions include:

• We develop an effective progressive integer linear programming (PILP) optimization

paradigm to compute approximate optimal guarding of complex 3D free-form domains;
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• We present a region-growing algorithm to compute the star-decomposition of a given 3D

model, seeded from guarding points computed in the PILP;

• We explore two direct applications of our proposed guarding/decomposition framework:

shape morphing and shape matching.

2.1 RELATED WORK

2.1.1 Shape Guarding

We consider the following shape guarding problem in 3D. A point g ∈M is visible to another

point p ∈ M if the line segment gp entirely locates inside M . A region (shape) M is called

a star region (star shape) if there exists a point g ∈ M that any point p ∈ M is visible

to g; we call such a point g a guarding point. All convex shapes are star shapes; but more

complicated shapes usually can not be visually covered by a single guard so these regions

are not star shapes. Given a general solid shape M whose boundary ∂M is a closed surface,

usually tessellated by a triangle mesh, we want to find a smallest set of points G = {gi}

inside M that every point p ∈ ∂M is visible to at least one point in G.

Various versions of this problem are generally called art gallery problems, which are known

to be a famous difficult problem. Finding minimal guards has been shown to be NP-hard

for 2D polygons with holes [31], 2D simple polygons [32], and even 2D simple orthogonal

polygons [33], using either vertex or point guards. Approximation algorithms have been

studied in 1.5 ( [30]) and 2D ( [34]) to get an close-to-optimal result in polynomial time

complexity. Lien [35] computes guarding for 3D point cloud data, approximating visibility

using ǫ-view. The algorithm is based on a randomized greedy approach.
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2.1.2 Shape Decomposition

Given a solid model M , represented by a tetrahedral mesh {T, V }, where T is the set of

tetrahedra and V is the set of all the vertices, a decomposition is a partitioning of T into a

set of subregions Mi = {Ti, Vi}, so that (1) Ti ⊂ T , (2)
⋃

i Ti = T , and (3) Ti
⋂
Tj = ∅, i 6= j.

If each subregion Ti is a star shape, we call this partitioning a star decomposition.

Shape decomposition has been widely studied in computation geometry and graphics. In

computation geometry, different decomposition methods (e.g. Voronoi decomposition, con-

vex decomposition, etc.) have been proposed; while a thorough review on other types of

decompositions is beyond the scope of this work, we refer readers to surveys [16] and [17].

In computer graphics and visualization, surface segmentation has been studied for different

applications such as object recognition, meshing, skeleton extraction. Two thorough surface

segmentation surveys were given in [18] and [19], in both of which, segmentation techniques

are classified as surface-based methods (segmentation guided by surface properties of sub-

surface-patches) and part-based methods (segmentation guided by volumetric properties of

sub-solid-regions).

General approaches for decomposition can also be classified into two categories: top-down

methods, by iteratively segmenting sub-parts to finer components; and bottom-up meth-

ods, by iteratively gluing small elements/components to larger parts. For example, the

Approximate Convex Decomposition [36] is a top-down approach. It iteratively measures

the convexity of each (sub-)region M ; if it fails to satisfy the convexity criterion, we shall

further cut it into two sub parts M1 and M2. The algorithm continues until all sub-regions

are convex enough. A difficult issue in top-down methods is to find the suitable cut so that
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shapes of smaller regions become nice in a few steps. On the other hand, popular surface

segmentation techniques such as region growing ( [37], [38]), watershed ( [39]), or clustering

( [40], [41]) algorithms are bottom-up approaches. These approaches start from a set of

seeds, then expand to include neighboring primitives (vertices, faces, tetrahedra) until their

unions cover the entire region.

2.2 3D SHAPE GUARDING

Given a solid shape M , whose boundary is discretized by a triangle mesh ∂M = {V, F},

where V = {v1, v2, . . . , vNV
} are vertices and F = {f1, f2 . . . , fNF

} are triangle facets. Seeking

fewest necessary guarding points is challenging. Our algorithm is based on the following two

intuitions. (1) As demonstrated in medical visualization, medial axes (skeletons) usually

have desirable visibility to the shape (referred as the “reliability” of skeletons). The skeleton

can guide camera navigation and ensure full examination of the organ. (2) Hierarchical

skeletons can be effectively computed, progressively reducing the size of the optimization

problem and improving computation’s numerical efficiency and stability against boundary

perturbations or noise.

Many effective skeletonization algorithms (see a great survey [42]) have been developed for

3D shapes. We use the algorithm/software of [43] since it efficiently generates skeletons on

medial-axis surfaces of the 3D shapes. For the boundary triangle mesh ∂M with NF triangles

and the extracted skeleton with NK nodes, the guarding problem can be converted to finding

a minimal-size point set G from this NK points, such that all NF boundary faces are visible

to G. Note that here we require each boundary triangle face is visible to G. We define the

visibility of a face as follows:
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• Vertex Visibility: A point p ∈M is visible to another point q ∈ ∂M if the line segment

pq connecting p and q is insideM , namely, it only intersects ∂M on q: pq
⋂
∂M = {q}.

• Face Visibility: A triangle face f ∈ F is visible to a point p if all its three vertices are

visible to p.

The shape guarding problem can be approximated as finding G to guard all the boundary

vertices, in which we will only need the concept of vertex visibility. For the subsequent star

decomposition purpose, to make each triangle of the boundary surface on the sub-region

fully visible, we shall use the face visibility. Guarding all the faces of a region is stronger (i.e.

can require more guards) than guarding all the vertices. When the triangle mesh is dense

enough, face visibility well approximates the visibility in the continuous case.

2.2.1 Visibility Detection

A basic operation is to detect the visible region of a (skeleton) point p. Specifically, on the

boundary surface ∂M = {F, V }, we define the visibility region V (p) of an interior point p

to be the collection of all visible boundary triangles: V (p) = {f |f ∈ F, f is visible to p}.

To compute V (p), one should check intersection between each line segment pvi and ∂M ,

where vi ∈ V is a vertex. If intersection is detected on a point q ∈ ∂M other than vi

and the Euclidean distance |pq| < |pvi|, then vi is not visible from p. Simply enumerating

every pvi then detecting its intersections with every triangle f ∈ F is time consuming:

for a single skeleton point p, it costs O(NV · NF ) = O(N2
V ) time to check its visibility

on NV vertices. We develop the following sweep algorithm to improve the efficiency. We

create a spherical coordinate system originated at p. Each vertex vi ∈ V is represented

17



as pvi = (r(vi), θ(vi), ϕ(vi)), where r(vi) ≥ 0,−π/2 < θ(vi) ≤ π/2,−π < ϕ(vi) ≤ π.

For every triangle fi = (vi,1, vi,2, vi,3) ∈ F, 1 ≤ i ≤ NF , its max θ(fi) can be defined as

θmax(fi) = max{θ(vi,j)}, 1 ≤ j ≤ 3, the θmin(fi), ϕmax(fi), ϕmin(fi) can be defined similarly.

The segment ovk cannot intersect with a triangle f unless




θmin(f) ≤ θ(vk) ≤ θmax(f)

ϕmin(f) ≤ ϕ(vk) ≤ ϕmax(f),

(2.1)

therefore we ignore triangles outside this range and only check ones that satisfy this condition

(denoted as active triangles).

The angle functions θ and ϕ are not continuously defined on a sphere. When a trian-

gle f spans θ = π, we duplicate it to ensure that each θ of the original f is between

[θmin(f), θmin(f) + 2π) and θ of its duplicate is between [θmax(f), θmax(f) + 2π), by adding

or subtracting θ by 2π. For each triangle f spans ϕ = π, we duplicate it in the same way.

Using θ(vi) as the primary key and ϕ(vi) as the secondary key, we then sort all line segments

pvi. Then we sweep all segments following the angle functions one by one in an ascend-

ing order and check intersection between the sweep line and all active triangles satisfying

condition (2.1).

Specifically, we define a counter ci on every triangle fi. Initially, ci = 0; when the segment

pv, v ∈ fi is being processed, ci ← ci+1. The following two cases indicate that the sweep has

not reached the neighborhood of the triangle fi, and we do not need to check its intersection

with line segment pv:

ci = 0→ θmin(fi) > θ(ov), or ϕmin(fi) > ϕ(ov);

ci > 3→ θmax(fi) < θ(ov), or ϕmax(fi) < ϕ(ov).
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Therefore we maintain a list L of active triangles {fi} whose counters have 1 ≤ ci ≤ 3. When

the sweep segment hits a new triangle tj , we have cj = 1 and add tj into L; when a counter

cj = 3, we remove tj from L after processing the current segment.

Given a skeleton point p, for a boundary triangle mesh withNV vertices it takes O(NV logNV )

to compute and sort angles of all segments. For each segment, if the size of the active triangle

list L is m, it takes O(m) intersection-detecting operations. Therefore, the total complex-

ity is O(logNV + mNV ). The incident triangles around a vertex vi is usually very small:

m < logNV . Therefore the algorithm finishes visibility detection of p in O(NV logNV ) time.

On a skeleton containing NK nodes, it takes O(NKNV logNV ) pre-computation time to know

the visibility region for all nodes.

2.2.2 Greedy and Optimal Guarding

Once visibility regions for all skeletal nodes are computed, the guarding problem can be

converted into a set-covering problem. Consider a set in which each element corresponds to

a face on the boundary; a skeleton node can see many faces so it covers a subset of elements.

We want to pick several skeleton nodes so that the union of their covered subsets is the

entire set. The set-covering problem, shown to be NP-complete [44], can be formally defined

as follows: given the universe V = {vi} and a family S of subsets Sj = {sj,k}, sj,k ∈ V , a

cover is a subfamily C ⊂ S of sets whose union is V . We want to find a covering C that

uses the fewest subsets in S. C indicates an optimal subset of skeletal nodes that can guard

the entire region. Skeletons generated using medial-axis based methods with dense enough

nodes usually ensure S itself is a covering. This holds in all our experiments. If a coarsely

sampled skeleton can not cover the entire V , we further include all those invisible vertices
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into the skeleton point set. A greedy strategy for the set covering is as follows: iteratively

pick the skeletal nodes that can cover the most faces in V , then remove all guarded faces

from V (and update S accordingly since the universe becomes smaller), until V = ∅. Such a

greedy strategy is quite effective and it yields O(logn) approximation [45] to the set covering

problem.

An optimal selection can be computed by 0 − 1 programming, also called Integer Linear

Programming (ILP). We assign a variable xi on each skeleton node pi: xi = 1 if pi is chosen,

and xi = 0 otherwise. The objective function to minimize is then
∑m

i=1 xi.

Every element should be visible, for ∀fi ∈ F visible to some skeletal nodes Pi = {p(i,1), . . . , p(i,k)},

at least one node in Pi should be chosen to ensure fi guarded. Thus we solve:

min

m∑

i=1

xi, subject to (2.2)

xi = 0, 1, and
∑

j∈J(i)

xj ≥ 1, ∀i ∈ {1, . . . , n}, (2.3)

where J(i) is the index set of nodes pj visible to fi.

The above optimization can be solved using branch-and-bound algorithms. When the dimen-

sion is small (e.g. a few hundreds to a few thousands), we can use the TomLab Optimization

package [46] to solve it efficiently.

2.2.3 Progressive Guarding

Directly solving optimal guarding is expensive, or prohibitive for big models. In contrast,

greedy algorithm generates many unnecessary guards and is sensitive to local boundary ge-

ometric perturbations.

20



Figure 2.1: Greedy (left) and PILP (right) Guarding of Centaur.

To solve this problem, we propose a progressive integer linear programming (PILP) frame-

work using progressive mesh simplification and refinement [47], adaptively combining ILP

and multiresolutional refinement.

We progressively simplify the boundary mesh ∂M into several resolutions ∂M i = {T i, V i}, i =

0, . . . , m. On each level we keep the problem size within the scale that ILP can solve. The

finest skeleton is re-sampled with joints preserved and used for computation. In the coarsest

level i = 0, we solve the optimal guarding using ILP. Then we progressively move to finer

levels with more details. On each finer level i, we greedily remove regions covered by existing

guards computed in level i− 1, then again use ILP to find necessary new guards. With we

move toward finer level with increased details, new guards are added until the finest reso-

lution ∂Mm is covered. On every new level, we also resolve a few least significant existing

guards (whose visibility region covers a small area Area(V (p)) < ǫArea(M i)). We do not

directly insert them into the current level’s guarding set Gi and do not remove their covered

boundary faces from the universe.
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On each level, we also conduct four reduction operations before ILP computation. These

reductions significantly reduce the optimization problem size. Suppose we store the visibility

information in an incidence matrix A: aij = 1 if the skeletal node pi can see the face fj, and

aij = 0 otherwise. Originally the A is |NK | × |NF |, and we apply the following four rules

to reduce the size of A:

1. If column j has only one non-zero element at row i, we must pick pi in order to see vj .

Therefore, add pi into G, remove column j. Also, for all non-zero element aik, remove

column k (since all vertices visible to pi are now covered, and can be removed).

2. If row i1 has all its non-zero elements non-zero in row i2, i.e. ai1,j = 1 → ai2,j = 1,

then pi2 sees all vertices that pi1 can see, and we can remove the entire row i1.

3. If column j1 has all its non-zero elements non-zero in column j2, i.e. ai,j1 = 1→ ai,j2 =

1, then guarding vj1 guarantees the guarding of vj2 , and we can remove the entire

column j2.

4. If the matrix A is composed of several blocks, we partition A to several small matrixes

{Ak}.

In step 4, since we remove faces that have been covered by existing guards, remaining

boundary faces could be partitioned to several connected-components far away from each

other. And these sub-components may be optimized separately, which significantly reduces

optimization size.

This PILP scheme can efficiently compute the guarding for large size 3D volumetric regions

and generate a hierarchical guarding graph. The pipeline is fully automatic, and furthermore,
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Figure 2.2: Greedy vs PILP on 48 models in TOSCA dataset [1]. The x-axis lists the 48 models,
the y axis indicates the necessary guards computed. The blue bar indicates the PILP result and
red is the greedy result. PILP has similar computational performance with the greedy approach,
but generate better guarding (on average, using 20% less guards).

it has the following important advantages over both the pure greedy strategy and global ILP

optimization (more statistical results are shown in Table 2.1 and Fig. 2.2). Note that the tP

in Table 2.1 does not include the progressive mesh computation time. However, progressive

mesh can be computed efficiently. Simplifying a 10k mesh takes roughly 10 seconds. From

our experiments, we can see that

• PILP is much faster than global ILP. Its computational efficiency is improved for

several orders of magnitude over ILP on large-size geometric models, and can therefore

handle massive data.

• With comparable speed to the greedy approach, PILP usually provides much bet-

ter guarding solutions. Firstly, the PILP guards number is smaller than the greedy
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Table 2.1: Guarding Statistics. NV is the boundary surface vertex number. NI , NG, NP indicate
the number of necessary guards computed by ILP, Greedy, and PILP approaches, respectively. t
shows the computational time in seconds. Guarding of big models cannot be solved directly using
ILP, so their statistics are not applicable.

Models (NV ) NI NG NP tI tG tP
Greek (9,994) 15 22 18 4,122.4 290.2 293.1
David (9,996) 16 22 17 107,391.2 233.9 235.2
Female (10,002) 13 18 14 2,046.2 264.2 281.1
Male (10,002) 14 16 15 3,074.3 298.6 310.2
Cat (10,004) 14 19 15 3173 375.4 393.1
Wolf (10,005) 13 18 15 8044 328.1 349.9
Dog (15,002) – 39 27 – 412.3 433.2

Victoria (15,000) – 35 27 – 408.7 421.2
Horse (20,002) – 38 29 – 376.1 384.2
Michael (20,002) – 46 31 – 321.0 332.9
Gorilla (30,004) – 60 46 – 462.4 490.1
Centaur (30,002) – 52 32 – 488.1 514.5

approach; secondly, the PILP guarding is hierarchical and therefore is robust against

geometric noise (Figure 2.1 shows an example. In PILP, global structure from coarser

levels is stable under local refinement to new details).

In our experiments, we simplify the boundary mesh to the coarsest level with 5k vertices for

the first round ILP optimization. On each iteration, we refine to next level with additional

10k vertices. When the size of constraints is around 5k, and the size of variables (skeletal

nodes) is around 1k, the optimization takes 10-30 seconds to solve. We set the significance

threshold parameter to be ǫ = 10%.

Figures 2.1 shows an example of guarding the Centaur model, where we can see the PILP

guarding provides a stable hierarchial guarding. The guards added in the finest level are

colorized in green while the one computed on coarser level are rendered in red. We perform

extensive experiments on our new algorithm. And it demonstrates great effectiveness. More

guarding results are visualized in Figure 2.3. Statistical comparison is shown in Table 2.1; a
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Figure 2.3: Visualizing Guarding of Models in TOSCA dataset.
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more thorough comparison chart between greedy and PILP approaches on 48 models from

the TOSCA dataset is depicted in Figure 2.2. As we can see in this table and the chart,

PILP has similar optimality as the ILP solution, but is much faster; while compared with

greedy approach, PILP has similar efficiency, but provides the guarding 20% better than

that of greedy method on average. Considering that the greedy approach is generally a nice

approximation for this problem, the guarding generated by PILP is very nice.

Table 2.2: Skeletal-Nodes Guarding versus Tetrahedral-Vertices Guarding. |V∂M | and |VM | are
numbers of boundary vertices and tetrahedral vertices, respectively; |S| is the number of nodes on
extracted skeletons; |GVM

| and |GS | are the sizes of computed guarding sets (solved by ILP) when
using all tetrahedral vertices as candidates and using only skeletal nodes as candidates, respectively.

Models |V∂M | |VM | |S| |GVM
| |GS|

Kitten 400 1,682 122 3 3
Beethoven 502 2,895 88 2 2
Bimba 752 5,115 139 2 2
Buddha 502 3,002 155 2 2
Bunny 998 8,320 270 5 5

Discussion. It should be noted that theoretically our algorithm solves an approximate

optimal solution. In our current computational framework, two aspects need to be considered

on the approximation of the optimal guarding problem. (1) We enforce the face visibility

of the guarding. This can be considered as an approximation to guarding all points on the

boundary. However, when the boundary surface mesh is dense enough with respect to the

geometry of the model, we usually can assume this guarding is accurate enough because

it is unlikely to have a branch that blocks the interior region of a face while leaving its

all three vertices visible. (2) We compute the guarding points from the curve skeleton.

Because of this, our simplified problem setting is not guaranteed to get the optimal solution.

We perform experiments to evaluate whether using guarding candidates from the skeleton
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leads to larger guarding point set. Table 2.2 shows results of these experiments: guarding

using skeletal candidates produces the same optimality compared with guarding computed

using all tetrahedral vertices. Therefore, our intuition of choosing guards from skeleton is

experimentally justified; our approximation is close to the optimal solution.

2.3 STAR DECOMPOSITION

Guarding points are natural seeds to start region growing for the star decomposition. The

sweep algorithm (Section 2.2.1) can be generalized to tetrahedral mesh vertices so that

visibility among vertices and guards can be efficiently pre-computed. We start region growing

from all guards while simultaneously preserving star-property on all subregions.

We start from the guarding points G = {gi}, i = 1, . . . , Kg, and assign a specific color-value

ci on each guard gi. The growing procedure can then be illustrated as assigning a unique

color ci to each tetrahedron, so that at the end, the connected component in color ci is a star

shape guarded by gi. We can grow sub-regions on the dual graph of the tetrahedral mesh

using the following notations and operations.

Similar to the face visibility, we say that a tetrahedron is visible from a point g if all its

four vertices are visible from g. Given a guarding point g and a tetrahedron t, we define the

visibly dependent tetrahedral set T (g, t) = {ti} such that it contains all the tetrahedra on

the way of the four ray segments gvj, vj ∈ t pass through. In other words, t is visible to g if

∀t ∈ T (g, t) is visible to g.

We then denote the one-ring faces surrounding a vertex v as Fn(v): Fn(v) = {f |∀t, v ⊂

t, f ⊂ t, v 6⊂ f}; and denote the neighboring tetrahedra of t as Tn(t) = {∪vj∈tt′|Fn(vj) ⊂ t′};

then we can define T̃ (g, t) = T (g, t) ∩ Tn(t). Intuitively, including tetrahedra in T̃ (g, t) into
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a sub-region guarded by g prevents triangles in Fn(vj) from becoming the boundary of this

sub-region (which could block the visibility of t from g). It is not difficult to further show

that

a) t is visible if ∀t′ ∈ T̃ (g, t) are visible.

b) t can be safely added into a sub-regionMg seeded in g without violating its star-property,

if all t′ ∈ T̃ (g, t) are in Mg.

The dual graph D of the given tetrahedral mesh is defined in the following way: a node

ni ∈ D is defined for each tetrahedron ti. For a node ni visible from gk (with the color ck),

we create a directed edge in color ck to ni from another node nj if tj ∈ T̃ (gk, ti); and we

call nj is a color-ck predecessor of ni. Since recursively, T (gk, ti) = T̃ (gk, ti)∪T (gk, tj), we

only need to store each node’s visibility dependency relationship. T̃ (gk, ti) can be computed

in O(1) time by checking the intersections of gk, v and Fn(v) for each v ∈ ti.

For each guard gk we generate a virtual node in D and connect it to nodes corresponding to

all its one-ring tetrahedra. Then each guard gk and its visible region defines a direct acyclic

graph Rk. The entire 3D region guarded by Kg points {gi} corresponds to a connected

graph with Kg sources. Each source gi has an individual color ci, the region growing assigns

each node a unique color. A node nj can be assigned by a color c only when all its color-c

predecessors (on which nj is visible dependent) are already assigned by color-c.

The region growing on the dual graph can be applied using the node-merging. When there

is a color-c edge from a color-c node ni to an uncolored node nj, and all edges entering nj

are leaving from color-c nodes, then nj can be safely colored by c. Therefore we can merge

them together to one node in color-c, preserving all distinct outgoing edges. The region
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(A) Rocker Arm (B) Torus Cone

(C) Cat (D) Centaur (E) Horse

(F) David (G) Greek (H) Male (I) Female

Figure 2.4: Star Decomposition of Solid Models. Different subparts are rendered in different colors.
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growing procedure is converted to iteratively merging each uncolored node to one of the Kg

“growing” colored nodes. Therefore, the region growing algorithm can be summarized as

follows.

Cost Function. For each node ni, we can compute how many nodes are directly or indirectly

visually dependent on ni with respect to gk. This can be pre-computed in linear time: after

the dependency graph Rk is created from the source gk to leafs, inversely the dependency

cost can be accumulated and stored as f(gk, ni).

Nodes Merging. We merge uncolored nodes with colored region based on the cost function

f(g, n). A node shall merge into a growing region that can see it and has biggest correspond-

ing cost. This repeats until all nodes are colorized or no node can be further merged. If a

node cannot be given the color of its any entering edges, it is left unclassified after the region

growing. We collect each uncolored connected components, and respectively compute their

guarding and re-apply the region growing until all tetrahedra are colored.

Computational Complexity. For each guard, the preprocessing step computes the visibil-

ity dependency in O(mV logmV ), wheremV is the number of tetrahedral vertices. Computing

the visibility dependency of one tetrahedral vertex v takes O(Kn), where Kn is v’s one-ring

tetrahedra. Since Kn < logmV , the preprocessing time for each guard is O(mV logmV ). The

region growing can be finished in O(mT ), where mT is the number of tetrahedra. So the

total decomposition complexity is O(KgmV logmV +mT ), where Kg is the number of guards.

For example, it takes about 550 seconds to perform the star decomposition on solid David

(175,079 tetrahedra, 17 guards), including 400 seconds in guarding computation. Figure 2.4

illustrate our decomposition results on many solid models.
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The visibility dependency relationship is the sufficient condition to guarantee the tetrahe-

dron visibility. A tetrahedral sub-region that grows following this dependency relationship is

guaranteed to be star-shaped. However, this constraint is stronger than necessary, especially

when tetrahedral mesh is sparse, and some tetrahedra near inner partitioning boundary may

not be considered acceptable during the region growing. In practice, in order to include

these tetrahedra, we release this constraint by accepting a tetrahedron if two to three of its

vertices are visible. Finally, we perform a Laplacian smoothing step on the inner-border of

subregions after the region growing. This further moves these interior tetrahedral vertices,

and the smoothed boundary improves the decomposition result: more than 99% tetrahedral

vertices are visible from their corresponding guards.

2.4 APPLICATIONS

Our proposed guarding and decomposition framework can benefit many geometric processing

tasks. In this section, we demonstrate two direct applications in computer graphics: shape

matching and shape morphing [48].

2.4.1 Shape Matching and Retrieval

We define a descriptor for a shape based on its guarding. The descriptor has two parts: the

guarding skeleton (or guarding graph) G and histograms H defined on nodes.

The guarding graph G is a graph extracted following the skeletal graph, whose nodes are

the guarding point set G = {gi}. At each guard gi, we compute a histogram H(gi) storing

the distances from gi to the object boundary surface towards a set of sampling directions.

Specifically, the histogram is constructed as follows. From each guarding point p, we shoot
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Figure 2.5: Shape Descriptor of Greek Sculpture. Each histogram stores distances from each
guarding point to the boundary surface along sampling directions.
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Figure 2.6: Shape retrieval experiment conducted in the TOSCA dataset of 48 models. Black
indicates better similarity. Those blocks of black regions indicate the following groups are more
similar: cats−dogs−wolves, David−Michael−Victoria, horses−centaurs, and ect.
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rays {ri} towards all spatial directions defined on a unit sphere. Each ray ri intersects with

∂M on a point qi. The length of the line segment pqi is stored in the histogram Hp. This

histogram captures the geometry near this point. Fig. 2.5 illustrates the descriptor of the

Greek sculpture.

The proposed descriptor has two good properties:

• Completeness. The geometry of the original shape can be completely reconstructed from

its descriptor. Distance-to-boundary distributions nicely capture geometry characteristic

of the solid shape and are suitable for the matching purpose. The guarding graph can

visibly covers the entire region, so the shape descriptor is complete.

• Conciseness. The graph structure G has fewest necessary nodes because the guarding is

optimized. Therefore, descriptor matching is efficient.

To compare two 3D models M and M ′, we match their guarding graphs G = {G,EG}

and G ′ = {G′, EG′}, where vertex sets G,G′ are guarding point set and edge sets EG , E
′
G

following the adjacency of the decomposition. We match them by solving a deformation of

one skeleton to fit the other. The deformation is guided by a weighted energy EG(G,G ′)

composed of three terms: (1) the matching error EM on each node, (2) the smoothness

error ES on the deviation of the transformations of two adjacent nodes, and (3) the length-

preserving error EL on each edge. Formally, suppose we define the affine transformation φi

on each node gi of the guarding graph G, then these three terms are:

EM =
∑

gi∈G
D(φi(gi), G

′)2,

ES =
∑

[gi,gj ]∈EG
||φi − φj ||2,

EL =
∑

[gi,gj ]∈EG
(||φi(gi)− φj(gj)|| − ||gi − gj||)2,

(2.4)
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where D(φi(gi), G
′) denotes the distance from the transformed point φi(gi) to the guarding

skeleton. In practice, we integrate two costs: (1) geometric distance, approximated using

the distance from φi(gi) to its closest point in G′, and (2) topology distance, represented

by the valence information of gi. Therefore each node is represented as a 4-dimensional

vector and the distance between two nodes is computed using the L2 norm. During the

optimization, this shortest distance can be efficiently recomputed using a k-d tree data

structure. In ES, the ||φi − φj||2 is the L2 norm of the transformation matrix φi − φj. In

EL, the ||gi− gj||, ||φi(gi)− φj(gj)|| denote the distance between adjacent points before and

after the transformation.

The final objective function EG(G,G ′) is a quadratic weighted sum of these cost functions:

EG(G,G ′) = α1EM + α2ES + α3EL, (2.5)

where in our experiments we set α1 = 0.1, α2 = 1, α3 = 1. We compute transformations

defined on all the nodes by minimizing EG(G,G ′); the solution is a non-rigid mapping between

G and G ′. The quadratic optimization can be solved efficiently.

After the transformation is computed, we add in the histogram matching error

EH =
∑

gi∈G

||H(gi)−H(g′j)||2,

where g′j denotes the closest point in G
′ under the previous matching. The difference between

two histograms is again measured using the L2 norm. The shape matching energy is

E(M,M ′) = EG + α4EH , (2.6)

where we set α4 = 0.5. Finally, we use the symmetric energy (E(M,M ′) + E(M ′,M))/2 as

the shape distance between M and M ′.
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Figure 2.7: Shape Morphing. The top row shows the source and target shapes. The lower row
shows the 50% shape interpolation.

Shape Retrieval

For all the shapes in the database we can pre-compute their guarding graphs and node

histograms as their descriptors. Given a new object we compute its descriptor, then match

it with existing descriptors following the above approach. The descriptor with the smallest

matching error indicates the most similar object in the database. We perform shape matching

and comparison on the TOSCA dataset. The comparison results are illustrated in Fig. 2.6,

where black indicates small difference. The black blocks in this figure indicates several

groups of models, although in different postures, share better similarity. For examples,

cats−dogs−wolves, David−Michael−Victoria, horses−centaurs, and etc.

36



2.4.2 Shape Morphing

Given the source surface M1 and target M2, we want to compute an interpolation M(t), 0 ≤

t ≤ 1,M(0) =M1,M(1) =M2. Interpolation between M1 andM2 can be generated through

the consistent guarding. Consistent guarding of M1 and M2 are two isomorphic graphs G1

and G2, such that G1 (G2) guards M1 (M2) respectively. The consistent guarding {G1, G2}

can be computed in three steps:

1) Compute cross-surface parameterization fM : M1 → M2 using surface mapping tech-

niques (e.g. [49] [50]);

2) Extracting compatible skeletons (e.g. [51]) that bijectively corresponds the first curve

skeleton C1 (of M1) to the second skeleton C2 (of M2), fC : C1 → C2;

3) Solve PILP simultaneously. We say vi ∈ M1 and fM(vi) ∈ M2 are simultaneously visible

to pj ∈ C1 and fC(pj) ∈ C2, if both vi is visible to pj and f1(vi) is visible to f2(pj).

The solution found in Step-3 is two consistent guarding sets {G1, G2}. Gi may contain more

guards than necessary to cover Mi, but the guarding points and their images consistently

cover both models. This consistent guarding can generate consistent star decomposition

which can benefit many applications. An example is shape interpolation.

Conventionally, shape morphing can be generated by linear interpolation: given inter-surface

mapping fM : M1 → M2, the morphing for each vertex is generated by linear interpolation

between v1 ∈M1 and its image fM(v1) ∈M2: v(t) = (1− t)v1 + tv2.

With star decomposition, we can interpolate the corresponding regions to generate the mor-

phing. A similar idea in 2D, based on star decomposition for 2D polygons and the interpo-

lation of polar coordinates, is introduced in [52]. However, directly generalizing this to 3D
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by interpolating the spherical coordinates does not work well. We break the interpolation

into the rigid part and the non-rigid part.

Rigid part. After the consistent star decomposition, we get the consistent surface segmen-

tation {S1, S2}, for each subregion with m triangles {P1, P2, P3, . . . , Pm} in S1, there is a

corresponding triangle set in S2, {Q1, Q2, Q3, . . . , Qm}, their guards are gS1
= (gxS1

, gyS1
, gzS1

)

and gS2
= (gxS2

, gyS2
, gzS2

) respectively, for each corresponding triangle pair P,Q, we compute

the Jacobian of the affine transformation AT :

AT =




px1 − gxS1
py1 − gyS1

pz1 − gzS1

px2 − gxS1
py2 − gyS1

pz2 − gzS1

px3 − gxS1
py3 − gyS1

pz3 − gzS1




−1

·




qx1 − gxS2
qy1 − gyS2

qz1 − gzS2

qx2 − gxS2
qy2 − gyS2

qz2 − gzS2

qx3 − gxS2
qy3 − gyS2

qz3 − gzS2




where P = {p1, p2, p3}, pi = (pxi , p
y
i , p

z
i ), i = 1, 2, 3 is the the coordinates of the ith vertex of

triangle P . Given a t, 0 < t < 1, we interpolate the Jacobian by polar decomposition [53].

Since a vertex may be shared by several triangle pairs, each triangle pair has a transformation,

to keep the mesh consistent during the interpolation, we compute the interpolation vertex i

position vir(t) by minimizing the quadratic error between the actual Jacobian and the desired

ones, as stated in [54].

Non-rigid part. Excluding the rigid part transformation, we use a linear interpolation to

blend the non-rigid deformation. For vertex i we compute the vin(1) = viM2
−vir(1), where viM2

is the target position, vir(1) is the rigid transformed position. Then we compute the non-rigid
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position vin(t) = tvin(1). So the final interpolated position of vertex i is vi(t) = vir(t) + vin(t).

Compared with linear interpolation and the as-rigid-as-possible interpolation [54] directly

computed globally, our morphing based on star-decomposition could lead to less self-intersection

and therefore generate more natural interpolation: A comparative example is shown in Fig-

ure 2.7. The source and target models are shown in the first row. In the second row,

from left to right, the 50% morphing generated by linear interpolation, global center-driven

as-rigid-as-possible interpolation, and our as-rigid-as-possible interpolation based on star de-

composition are illustrated. Our result is natural, especially can be seen at regions in red

circles.

2.5 CONCLUSION

In this paper we present an efficient progressive integer linear programming scheme to com-

pute 3D shape guarding and star-decomposition. The proposed method is efficient and ro-

bust, which is demonstrated by extensive experiments. We also explore its effective computer

graphics applications in shape retrieval and shape morphing. It is also used in autonomous

pipeline inspection [55, 56].

Skeleton shape and skeletal nodes sampling are important for our guarding compaction. We

will develop greedy or optimization strategies to further adjust them during the guarding

computation. We will also improve our shape matching algorithm, and explore new appli-

cations of guarding and star decomposition.
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3. GEOMETRIC-AWARE GRAPH PARTITIONING

In recent years, the acquisition or generation of large high-resolution geometric datasets pose

new challenges to the design of effective processing algorithms. These big and complex data

are expensive to model and analyze using existing sequential algorithms, as the limited CPU

and memory are often insufficient to handle billions of elements efficiently. Parallel algorithms

utilizing high-performance computers make it possible to solve large and complex problems

efficiently on hundreds or thousands of computing clusters and is therefore desirable.

Divide-and-conquer is a natural and effective strategy in parallel mesh generation for large

geometric data. The given region or object is first decomposed into a set of solvable and

simplified subparts; then each subpart is distributed to a working processor for mesh con-

struction; finally, individually generated meshes are merged to get the final result. Parallel

mesh generation strategies such as Delaunay-based methods and advancing front techniques

have been used for both triangulation [57–59] or tetrahedralization [60, 61]. Following this

general paradigm, in this work we aim to develop a partitioning algorithm on comlex and

large-scale 2D regions for parallel quadrilateral mesh generation.

In geometric processing through divide-and-conquer, the partitioning of data often directly

dictates the algorithm’s efficiency and quality. We formulate three main criteria as follows:

(1) The areas of the subregions should be similar; (2) The boundary length of each subregion

should be small compared with it’s area; and (3) Each subregion should have desirable
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geometric property, and more specifically for quad meshing, it should have corner angles close

to kπ/2, k ∈ {0, 1, 2, 3}. The first two criteria determine the parallel performance: the

balance of work load on different processors, and the communication cost among processors.

Efficient parallelization should balance the workload distributed to different processors and

should minimize interprocessor communication to reduce synchronization and waiting. The

third criterion on the subregion’s geometry affects the quality of the final quad tessellation.

For example, on a square subregion one can generate a quad mesh where every element is

uniform and not sheared; but on a triangle subregion, the smallest angle of the resultant

quad mesh will inevitably be smaller than the smallest boundary angle of this triangle patch.

Hence, for effective quad mesh generation, it is desirable to partition the geometry into

subregions whose boundary angles are near kπ/2 to construct less-sheared quad elements. To

incorporate the geometric constraint in data partitioning, however, is sometimes prohibitively

expensive. We will discuss this issue in Section 3.2 and propose a more efficient strategy to

tackle it.

After data partitioning, we distribute subregions to different working processors for mesh

generation. In our implementation, we use consistent boundary sampling and advancing

front for parallel meshing on each subregion. The sub-meshes are finally merged together

then a relaxation is performed to get the final result. The main contributions of this paper

include:

• We study geometry-aware data partitioning for effective parallel mesh generation, and

suggest new models to partition large and complex 2D regions into subparts with desirable

geometric shapes for quad meshing. Compared with existing partitioning algorithms,
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our approach could lead to more efficient parallel processing and higher-quality meshing

results.

• We develop a parallel computing framework for quad mesh generation of large-scale 2D

regions. It can effectively utilize parallel computational resources to handle big geometric

data. We demonstrate an application in coastal modeling where massive-size coastal

terrains and oceans need to be discretized for simulations.

3.1 RELATED WORK

3.1.1 Data Partitioning

Given a geometric region M , a set of components {Mi} is a partition of M if (1) their union

is M , i.e.,
⋃

iMi = M , and (2) all Mi are interior disjoint, namely, ∀i 6=jM
◦
i ∩ M◦

j = ∅,

where M◦
i = Mi\∂Mi is the open set of Mi. Depending on the geometric processing ap-

plications, partitioning techniques consider different criteria accordingly. Thorough surveys

on geometric partitioning algorithms have been given [18, 62] for computer graphics and

geometric modeling applications; some data benchmarks [63] have been built for evaluating

these methods in these graphics applications.

Slightly different from the partitioning criteria considered in graphics applications, in order to

obtain effective data partitioning for parallel computing, partition strategies can be classified

into two categories: extrinsic space partitioning and intrinsic manifold partitioning methods.

We call the first strategy the extrinsic space partitioning method, because it partitions data

by partitioning the data’s embedding space. For example, data can be decomposed by spatial

subdivision or partitioning structures such as quad-tree or octree [64], axis/planes [58], or
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blocks [65]. In parallel data processing literature, a very popular extrinsic space partitioning

strategy is the space filling curve [66, 67]. The idea is to first fill the N -dimensional space

with a 1-dimensional curve and establish a bijective map between cells in the space and

curve segments passing them. Different regions (cells) in the space are therefore indexed

by this curve, and partitioning of the space (therefore, partitioning of data) is obtained

by partitioning the curve accordingly. In general, data (space) partitioning using space-

filling curves or other extrinsic space partitioning methods is very efficient, as demonstrated

in several successful applications, such as computational physics, algebraic multigrid, PDE

solving, adaptive mesh refinement [68,69]. However, algorithms based on spatial partitioning

are not suitable to handle data that have complex geometry or nonuniform properties.

We call the second category the intrinsic manifold partitioning method, and it partitions

the data model on its intrinsic tessellation. The data are discretized into a mesh or a graph,

where elements or nodes are clustered into subparts directly [70] or recursively [71]. Among

this category, an effective and widely used strategy is called graph partitioning [2, 72–75],

which usually produce good-quality partitions with balanced load and reduced communica-

tion. Solving the graph partitioning is NP-complete, and several effective strategies include

spectral bisection [73], Kerninghan-Lin algorithm [72] and the multi-level scheme [2]. The

spectral bisection algorithm [73] uses the spectral information to partition the graph. The

eigenvector of the Laplacian matrix is computed to bisect the graph. Spectral Bisection

usually produces a good partitioning, however it is very expensive to compute, especially

for large matrix. On the other hand, the Kerninghan-Lin algorithm [72] is a fast heuristic

scheme. It starts with an initial bipartition of the graph, then iteratively swaps a subset

of vertices from each part to reduce the energy. This algorithm is fast, however, the initial
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partition is critical but often not easy to obtain. The multi-level method, including the

widely adopted algorithm/software METIS [2], uses a three-phase scheme: first, the graph

is simplified to a coarse graph; then a partitioning is performed on the coarsened graph;

finally, the partitioning is modified during the progressive graph refinement. These existing

graph partitioning algorithms focus on only tackling the load balancing and communication

reduction issues. However, only considering these two criteria is insufficient. Incorporating

extra geometric constraints is often critical in geometric modeling applications. The Medial

Axis Domain Decomposition (MADD) algorithm [76] merges triangles to eliminate small

angles then solves a graph partitioning on dual graph of the merged mesh. Subregions con-

structed using MADD partitioning usually possess larger corner angles than METIS. For our

problem, it is desirable to have perpendicular corner angles. Therefore, a geometric term to

incorporate this angle constraint can be formulated and included into the graph partitioning

model. Furthermore, an additional connectivity constraint is needed to ensure each subre-

gion form only one connected component. However, solving the original graph partitioning

is already NP-hard, and the incorporation of these extra geometric constraints will further

significantly increase the complexity of the problem (see Section 3.2 for details). This makes

the efficient solving of this problem highly challenging.

3.1.2 Quadrilateral Mesh Generation

Quadrilateral mesh generation has been studied in computer graphics and geometric model-

ing fields. Quad meshes can be constructed through either the indirect or direct approaches.

The indirect approaches first generate an intermediate structure/tessellation that can be eas-

ily constructed, e.g., a triangle mesh, then convert it into a quadrilateral mesh [77]. One big
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drawback of this method is that the layout of the unstructured elements in the intermediate

tessellation determines the layout of final quad mesh, and there are usually a large number

of singularities (i.e., non-valance-4 vertices) in the resultant quad meshes, which are usually

undesirable for efficient simulation. The direct approaches construct quads on the model

directly. Related techniques include quad-tree ( [78]), template-guided decomposition ( [79])

and advancing front( [80]). A related problem is the quadrilateral mesh generation on curved

surfaces. [12] gave a good survey on this topic. However, the curved geometry pose extra

challenges in quad mesh generation and many recent surface quad meshing algorithms [81,82]

use a cross frame field to guide the construction of the quad meshes. Finding an optimal

cross frame field reduces to nonlinear integer programming, which is computationally ex-

pensive for large-scale geometric regions. Another related problem is the quad layout patch

construction [83]. Its goal is to partition a surface into topologically rectangle patches, upon

which quad meshes can be constructed. In this paper, we didn’t adopt this strategy, be-

cause the topological constraint on restricting subregions to be “4-sided polygons” is very

expensive to enforce.

3.2 REGION PARTITIONING

Data partitioning is the first step in a divide-and-conquer framework for parallel compu-

tational models. A good partitioning with balanced workload and small interprocess com-

munication helps improve computational efficiency. Furthermore, in our parallel meshing

problem, a good data partitioning is also critical in generating high-quality quad elements.

We use three criteria to quantitatively evaluate a partitioning: workload balance, total

separator length, and separator angle deviation. Graph Partitioning is a suitable strat-
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egy to solve our partitioning, because it can systematically model and optimize these criteria.

In this section, we will first introduce the related notation (Sec. 3.2.1) and formulation of

the three criteria (Sec. 3.2.2, 3.2.3 and 3.2.4) and the Connectivity Constraints (Sec. 3.2.5),

then propose our algorithm in Sec. 3.2.6.

3.2.1 Notation

Given a tessellation M = (V M , EM , FM) of a 2D region, where V M , EM , FM are the sets

of vertices, edges, and faces (cells) respectively, let G = (V G, EG) denotes its dual graph,

where V G, EG are the node and arc sets respectively. A node v ∈ V G corresponds to a

cell of M . Two nodes v1, v2 ∈ V G are connected by an arc if their corresponding cells are

adjacent, namely, share an edge. Therefore, each arc of EG also corresponds to an edge in

EM . The weight of a node v ∈ V G is defined to be the area of its associated cell f ∈ FM ,

and an arc’s weight is defined as the length of its associated edge. The partitioning on

G can be computed on the dual graph G. A k-way Graph Partitioning divides V G into

k connected components, each of which is a subregion that will be processed individually.

In practice, k-way partitioning is usually solved through recursive bisection [2]. Hence, we

recursively partition G into two sub-graphs G0 = (V G0 , EG0) and G1 = (V G1, EG1), where

V G1 = V G \ V G0 . This also partitions cells in the original tessellation M into two sets M0

andM1, if an edge e ∈M is shared by two cells fi, fj from distinct subsets, fi ∈M0, fj ∈M1,

then edge e is called a separator.
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For each node vGi ∈ V G, we assign a variable xi,

xi =





0, if vGi ∈ V G0

1, if vGi ∈ V G1

.

Then for each arc eGij = [vGi , v
G
j ], we assign a variable yij = x

i
− x

j
:

yij =





1 or − 1, if vGi and vGj are in two sub-graphs

0, otherwise

.

We have y = Ux, where x and y are node and arc variable vector respectively, and U is a

|EG| × |V G| matrix. With these variables, we formulate the three criteria as follows.

3.2.2 Workload Balance

Load balancing refers to the practice of distributing approximately equal amounts of work

among tasks, so that all tasks are kept busy all of the time. Unbalanced workload between

working processors leads to inefficiency in parallel computing, as the slowest task often

determines the overall running time. In our problem, the workload on each working processor

can be estimated by the area of each subregion to mesh. On the dual graph, the subregion

area can be calculated using the sum of weights of nodes in the corresponding subgraph.

A balanced partitioning should avoid big area difference between subregions. Hence, it is

formulated as the following constraint:

c1 ≤ xTwv − c ≤ c2, (3.1)

where x = (x1, x2, . . . , xn)
T is the variable vector, wv = (wv1 , wv2, . . . , wvn)

T is the node

weight vector, c = 1
2

∑
iwvi , and c1, c2 are the constant thresholds (in our experiments,

c1 = c2 = 0.1c).
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After a k-way partitioning is obtained, its workload balance can be evaluate by the ratio

between the areas of the largest and smallest subregions:

RW = Amax/Amin, (3.2)

where Amax and Amin are the areas of the largest and smallest subregions respectively. RW

close to 1 means better workload balance.

3.2.3 Total Separator Length

In parallel computing, inter-process communication means overhead. A smaller total sepa-

rator length usually indicates less communication cost. In our geometric data partitioning,

a smaller separator length also indicates (1) smoother subregion boarder lines, (2) better

geometric compactness of subregions, and (3) more efficient post-processing refinement (see

Section 3.3). Therefore, it is desirable to minimize the total separator length

LS = yTWey = xTUTWeUx, (3.3)

where y = (ye1, ye2, . . . , yen)
T is the edge variable vector, We = diag(we1, wen, . . . , wen) is a

diagonal matrix composed of arc weights.

With the above two criteria, solving a graph partitioning can be formulated as:

min xTUTWeUx,

subject to c1 ≤ xTwv − c ≤ c2,

xi ∈ {0, 1}.

(3.4)

Optimizing problem (3.4) is NP-hard. For large data, multilevel schemes such as METIS [2]

have been widely adopted to obtain good approximate solutions. Figure 3.1 illustrates
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a simple example. The input tessellation M is shown in (a) and the partitioning result

by METIS [2] is shown in (b). The two partitioned subregions colored in blue and red

respectively. We can see that the two subregions have the same area with total separator

length minimized.

Minimizing the total separator length will makes the boundary of subregions straight, and

it can increase the compactness of each subregion. On each subregion Mi, the compactness

can be measured by the ratio between the boundary separator’s length of Mi and the area

of Mi. Globally, we can compute an average compactness ratio,

R̂C =
LS

kAM

, (3.5)

where k is number of subregions, and AM is the total area of the region. Smaller R̂C comes

from a smaller LS and indicates better compactness.

(a) (b) (c)

Figure 3.1: Graph Partitioning on a simple example. (a) The original mesh; (b) the two (red and
blue) subregions obtained by METIS [2]; (c) the partitioning result with separator angle deviation
considered.

3.2.4 Separator Angle Deviation

Solving the graph partitioning formulated in Eq. (3.4) will result in balanced area and min-

imized total separator length. However, in many geometric processing tasks, constraints

on the geometry of subregions are important. In our quad meshing problem, ideally, each
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subregion should look like a square. Less strictly, since we use the advancing front technique

to generate quad meshes (Section 3.3), it is desirable to have angles between separators close

to kπ
2
. Therefore, we include a new separator angle term into graph partitioning to penalize

each such angle’s deviation from kπ
2
.

Angle Deviation Function. Consider the original tessellation M of the given 2D region,

suppose two edges ei, ej ∈ EM share a vertex v and form an angle θi,j . For concise rep-

resentation, in the following, we use Inc(i, j) = 1 to denote ei and ej are incident, and

Inc(i, j) = 0 means they are not incident. We define an angle deviation function

δθi,j =





mink{|θi,j − kπ
2
|, k ∈ {0, 1, 2, 3}}, if Inc(i, j) = 1

0, if Inc(i, j) = 0

(3.6)

to describe the deviation from angle θi,j to the nearest kπ
2

angle.

Accumulated separator angle deviation can then be formulated as

Dθ = yTWθy = xTUTWθUx, (3.7)

where y = (ye1, ye2, . . . , yen)
T is the edge variable vector, andWθ =




0 δθ1,2 δθ1,3 . . . δθ1,n

δθ2,1 0 . . . . . . δθ2,n

. . . . . . . . . . . . . . .

δθn,1
. . . . . . . . . 0




,

Wθ is an |EG| × |EG| matrix storing deviation angles δθi,j . This angle deviation matrix Wθ

can be precomputed by traversing all the edge pairs of the tessellation M once.

Furthermore, we can show that Eq. (3.7) will evaluate and only evaluate the angle deviation

between adjacent separators. Suppose two edges ei = [u, v], ej = [u, w] are incident separators,

sharing vertex u. Then, (1) yei 6= 0 and yej 6= 0, and (2) v and w belong to the same subregion
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and have a same indicator value, xv = xw. From (1) and (2), it is not difficult to see that

yei and yej are both −1 or both +1. Therefore, a non-negative contribution δθi,j will be

added to the accumulated separator angle deviation Dθ. To obtain a geometrically desirable

partitioning, we can minimize the separator angle deviation term (3.7) together with total

separator length (3.3), with the workload balance constraint (3.1).

Finally, after the partitioning, we can numerically evaluate the average separator angle de-

viation:

δ̂θ =
1

NC

(
∑

Inc(i,j)=1

δθi,j ), (3.8)

where NC is the total number of corners formed by incident separators. The smaller δ̂θ is,

the better.

3.2.5 Connectivity Constraints

Currently we have formulated the three criteria. To guarantee the result is a bipartitioning,

we need to impose the connectivity constraint, which is often not explicitly considered in

existing graph partitioning literature, due to its complexity. Specifically, nodes in each

subregion should form one connected component. Without explicitly enforcing this, although

minimizing total separator length often tends to penalize the partition that produces multiple

disjoint subsets, we can sometimes observe that more than one connected components exist

in one subregion.

To enforce connectivity of each subregion, we can formulate the following explicit constraint.

Given a (dual) graph G = (V G, EG), for any pair of non-adjacent nodes u, v, we define a node

set S ⊂ V \{u, v} to be a node-cut set that separates u and v, if there is no path between u and
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h

Figure 3.2: An example graph for connectivity constraint.

v after S is removed from G. For example, in the graph shown in Fig 3.2, for node pair {1, 4},

{2, 5, 7} is a node-cut set and {3, 6, 8} is another node-cut set. For {u, v} that [u, v] 6∈ EG,

we define Γ(u, v) to be the set consisting of all the node-cut sets of {u, v}. In this example,

Γ(1, 4) = {{2, 5, 7}, {2, 5, 8}, {2, 6, 7}, {2, 6, 8}, {3, 5, 7}, {3, 5, 8}, {3, 6, 7}, {3, 6, 8}}.

The connectivity constraint can be described as: between each pair of nodes u, v that are in

the same subregion, any node-cut set in Γ(u, v) must have at least one node being assigned to

this subregion. Using the binary variable xi defined previously, the connectivity constraints

can be formulated as a set of linear constraints. For any two non-adjacent nodes in subgraph

G1:

∑

w∈S

xw ≥ xu + xv − 1, ∀S ∈ Γ(u, v), for ∀xu = xv = 1, [u, v] /∈ EG, (3.9)

meaning that every node-cut set must have at least one node being assigned as 1. Similarly,

for any two non-adjacent nodes in subgraph G0:

∑

w∈S

xw ≤ xu + xv + |S| − 1, ∀S ∈ Γ(u, v), for ∀xu = xv = 0, [u, v] /∈ EG. (3.10)

These constraints ensure that there is at least one path connecting non-adjacent nodes u

and v if they are grouped to a same subgraph.

By incorporating both the separator angle deviation (Eq. 3.6) and connectivity constraints
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(Eqs. 3.9,3.10) into graph partitioning, the quadratic integer programming problem with

linear constraints can be solved through branch-and-bound algorithm. In our implementa-

tion, we use the open-source Basic OpeN-source Mixed INteger (BONMIN) solver from [84]

to obtain a solution. To solve mixed integer non-linear programming problems, BONMIN

allows one to choose optimization strategies including branch-bound, outer approximation

(OA), Quesada Grossman branch-cut, and Hybrid OA based branch-cut.

Figure 3.1 (c) shows the solution of this new graph partitioning. With the minimization

of separator angle deviation and the enforcement of connectivity constraints, a partitioning

more suitable for quad mesh generation is obtained. However, because (1) incorporating

separator angle deviation significantly increase the numbers of non-zero cross multiplication

of indicator variables, and (2) the enforcement of connectivity introduces an exponential

number of linear constraints. Solving such a new problem becomes prohibitively expensive

for even moderately large problem.

3.2.6 Our Two-Step Partitioning Algorithm

We proposed a two-stage partitioning scheme to incorporate the two new constraints dis-

cussed in the last section. A key observation this idea based upon is that: if the cells of the

initial tessellation has near-square geometry, then the partition performed on the dual graph

of this tessellation tends to have smaller separator angle deviation. Hence, first, we use L∞-

CVT to generate a tessellation with cells similar to squares (Sec. 3.2.6); second, we solve our

graph partitioning on this tessellation to get a set of subregions with balanced workload and

small total separator length, with connectivity constraints enforced on the subgraphs during

their refinement.(Sec. 3.2.6) We call this algorithm a L∞-CVT-GP algorithm for short, and
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the idea is illustrated in Fig. 3.3.

(a) (b) (c)

Figure 3.3: Partitioning a 2D “Key” Region
for Parallel Quad Mesh Generation. (a) The
input 2D boundary; (b) L∞-norm CVT on
the input boundary; (c) our partitioning re-
sult, with different subregions indicated us-
ing different colors.

(a) p = 4 (b)p = 6 (c)p = 8 (d)p = 10

Figure 3.4: Lp-CVT using different p values.
The results are similar when p >= 8. In our
experiments, we use L8-CVT to approximate
L∞-CVT.

L∞ Centroidal Voronoi Tessellation The Voronoi diagram is a fundamental geometric

structure widely used in various fields, especially in geometric modeling and computer graph-

ics. A 2D Voronoi Diagram of a given set of distinct points X = {xi}ni=1 in R2 is defined by

a set of Voronoi cells {Ωi}ni=1 where

Ωi = {x ∈ R2| ‖x− xi‖ ≤ ‖x− xj‖, ∀j 6= i}.

These points X are called sites. Each Voronoi cell Ωi is the intersection of a set of half-planes.

A Clipped Voronoi Diagram for the sites X within a given 2D domain Ω is the intersection

of the Voronoi Tessellation and the domain Ω, denoted by {Ωi|Ω, i = 1, . . . , n}, where

Ωi|Ω = {x ∈ Ω| ‖x− xi‖ ≤ ‖x− xj‖, ∀j 6= i}. (3.11)

In other words, Ωi|Ω = Ωi ∩Ω. The Centroidal Voronoi Tessellation (CVT) is that each site

of the Voronoi cell is coincident to this cell’s centroid.

The Lp Centroidal Voronoi Tessellation Energy [85] can be defined as:

F (X) = F ([x1,x2, . . . ,xn]) =
∑

i

∫

Ωi∩Ω

‖y− xi‖ppdy (3.12)
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Figure 3.5: The trajectory of Lp(x, y) = 1 with different p values. With the increase of p the
trajectory gradually approximates the unit square. L∞(x, y) = 1 gives a square.

where ‖z‖p = (
∑

j |zj|p)
1

p , zj is the j-th coordinate of a 2D point z. Figure 3.5 shows the

trajectory with different p. With the increase of p, the trajectory approximates to the square.

The trajectory of L∞ is a perfect square, where the L∞ norm of a d-dimensional vector z

is the maximal component in z, ||z||∞ = maxj |zj|. For efficient CVT computation, we

choose a sufficiently large p to approximate the L∞ norm. This also allows us to efficiently

compute the gradient of F (X) of Eq. (3.12). We test Lp-CVT on the key model using

different p values. And as the results illustrated in Figure 3.4, when p > 8, the difference of

Lp-CVT energy becomes very small, so we use L8-CVT to approximate L∞-CVT in all our

experiments. Since we use L8 which is smooth, the optimization of CVT energy F can be

solved efficiently using the quasi-Newton BFGS solver [86]. In summary, the algorithm to

compute the Lp-CVT on the input 2D region Ω has four steps.
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1. Get a uniformly sampled sites set X. In our implementation, we simply embed Ω on a

spatial grid, the grid points inside Ω are the initial sites.

2. Use the sweeping line algorithm [87] to construct the initial Voronoi Diagram.

3. Get the L∞-CVT tessellation by optimizing CVT energy.

4. Clip the CVT using ∂Ω to get the L∞-CVT of Ω.

Graph Partitioning Based on L∞-CVT

After solving the L∞-CVT, we get a tessellation M̃ of the 2D region. Then on M̃ ’s dual graph

G̃, we solve the graph partitioning formulated in Eq. (3.4). Following the heuristics used

in [2], instead of explicitly enforcing the large number of connectivity constraints in Eqs. (3.9,

3.10), we can adopt a region growing examination to check the connectivity of each subregion,

disconnected elements will be grouped into the other subregion automatically. During our

optimization, after every K iterations, we perform such an examination and update on G̃.

In practice, this strategy is efficient and effective in enforcing the connectivity of subregions.

We test different partitioning results on the Key model using (a) original graph partitioning

by METIS, (b) geometry-integrated graph partitioning solver introduced in Sections 3.2.4

and 3.2.5, and (c) this two-step L∞-CVT-GP algorithm. We also evaluate the workload

balancing ratio RW , average compactness R̂C , and average separator angle deviation δ̂θ on

these partition results. Using these three partitioning methods, RW are 1.13, 1.14, and

1.18, respectively; R̂C are 1.11, 1.15, and 1.18, respectively, and δ̂θ are 0.26, 0.12, and 0.15,

respectively.

As expected, the graph partitioning without geometric constraint focuses on workload bal-

ance and separator lengths, and gets best RW and R̂C , but very bad angle deviation. The
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expensive geometry-integrated graph partitioning produces smallest angle deviation. This

two-step L∞-CVT-GP produces results with slightly worse RW , R̂C , and δ̂θ than that from

the geometry-integrated graph partitioning. But its separator angle deviation is signifi-

cantly better than the original graph partitioning, and its speed is significantly faster than

geometry-integrated graph partitioning. More thorough comparisons will be given in Sec-

tion 3.4.

Through the L∞-CVT, we can also directly obtain a region partitioning. Is such a parti-

tioning sufficient, so that we no longer need to further solve a graph partitioning? This

section illustrates that the two-step L∞-CVT-GP algorithm usually leads to a better data

partition for the parallel meshing problem. One observation is that: with the increase of

the number of Voronoi sites/cells, the decomposition from L∞-CVT will become more uni-

form (better workload balancing) and more square-like (smaller separator angle deviation).

We have performed extensive experiments on L∞-CVT to verify this. Table 3.1 is the par-

titioning statistics on the key and the pipe model. If we directly evaluate the quality of

the partitioning suggested by the CVT decomposition, when the number of Voronoi cells

increases from 16 to 128, the workload balancing ratio RW (Eq. (3.2)) reduces from 1.65 to

1.23, while the average separator angle deviation δ̂θ also reduces from 0.26 to 0.18.

Table 3.1: Partitioning on the Key and Pipe models using direct CVT versus using our CVT-GP
algorithm. NS is the number of subregions, RW , R̂C , and δ̂θ are the workload balance ratio, average
compactness, and average separator angle deviation.

Key Pipe
CVT/CVT-GP CVT/CVT-GP

NS 16 32 128 32 64 256
RW 1.65/1.15 1.45/1.24 1.23/1.11 1.81/1.31 1.65/1.31 1.41/1.27

R̂C 1.21/1.11 2.21/ 2.01 9.41/9.24 1.82/1.77 4.04/3.88 18.11/17.84

δ̂θ 0.26/0.21 0.21/0.16 0.18/0.17 0.23/0.20 0.18/0.15 0.14/0.12
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We have the following observations.

• For a k-way partition, direct partitioning through a L∞-CVT decomposition with k cells

will lead to a worse partitioning result than our two-step algorithm (which first generates

n cells (n > k) then performs a graph partition to get k subregions).

• In order obtain a partition with similar RW and δ̂θ, direct L∞-CVT decomposition should

use more sites. But this will increase the total separator length, resulting in bigger

overhead and more singularities.

And we conclude that the L∞-CVT-GP algorithm offers a better partition than the direct

L∞-CVT decomposition. More comparisons will be given in Section 3.4.

3.3 QUAD MESH GENERATION

3.3.1 Parallel Quad Meshing on Subregions

After the entire 2D region is partitioned, subregions can be sent to different processors for

simultaneous mesh generation. Different quad meshing techniques can be applied on the

sub-regions. One requirement is to make sure the neighbouring subregion boundaries should

have consistent vertices. We use the advancing front technique [80] to tile the interior

regions with quads. To ensure the individually constructed sub-meshes can be composed

directly, we need to sample boundary vertices consistently on the shared edge of adjacent

subregions. We use a simple sampling scheme: first, we compute an average edge length

l̄ from input boundary line segments, then on each interior partitioning boundary curve S

we evenly sample lS
2l̄

points, where lS is the length of S. To ensure the valid generation of

a full quad mesh, the number of the points on the subregion boundary must be even [80],
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therefore, each interior separator line segments is subdivided into two to ensure the number

of sampled boundary vertices is even.

The advancing front algorithm initiates a wave front from the boundary of each subregion,

along which quadrangles are constructed inwards until all empty regions are tiled. We

implement the advancing front following [80]. The wave front propagates until the front has

6 or fewer vertices, by when a template is used to finish the quad mesh generation. Readers

are referred to [80] for details.

3.3.2 Post-processing after Composition

After composing meshes of subregions, we perform a Laplacian relaxation on vertices near

separators to improve the smoothness of the orientations of mesh elements on the partitioning

boundary. Each vertex moves towards the mass center of its neighboring vertices. Since our

partitioning algorithm minimizes the total separator length, this relaxation only applies to

a small number of vertices and takes a short time to process. In our experiments, up to 50

iterations are applied to each vertices within a five-ring buffer zone surrounding separators. In

our implementation, we didn’t parallelize this post-processing. But naturally, this refinement

can be easily parallelized if needed.

3.4 EXPERIMENTAL RESULTS

We perform experiments on our high performance computing clusters, SuperMIC, which

consist of 128 computing nodes. Each node has two 2.6GHz 8-Core Xeon 64-bit Processors

and 32GB memory. Five datasets have been tested: a key model with 21.6M boundary

segments and 1 inner hole, a pipe model with 57.6M boundary segments and 9 holes, and
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three coastal ocean/terrain regions : the Gulf of Mexico, Matagorda Bay, and West bay,

with 230M, 250M, and 550M boundary vertices, respectively. The generated meshes of the

two bays and the Gulf of Mexico have about 3, 4.5, and 10 billion elements, respectively.

We compare algorithms in three aspects: (1) Decomposition Quality: the workload bal-

ance ratio, total separator length, and separator angle deviation. (2) Parallel Computa-

tion Efficiency: the running time on each working processors and the total speedup in

quad meshing. (3) Meshing Quality: the scaled-Jacobian of quad elements and number

of singularities of the final mesh.

Our experiments are designed to compare 4 decomposition methods: (1) Partitioning via

direct L∞-CVT, (2) Partitioning by METIS [2], a very widely used Graph Partitioning

solver, (3) Partitioning by Medial Axis Domain Decomposition (MADD) [76], and (4) Our

L∞-CVT-GP algorithm.

3.4.1 Partitioning Quality Comparison

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: (a-d) Partitioning the key model into 8 subregions using direct L∞-CVT, METIS,
MADD, and our L∞-CVT-GP algorithm. (e-h) Partitioning the pipe model into 16 subregions
using direct L∞-CVT, METIS, MADD and our algorithm.

Figure 3.6 illustrates the four partitioning results on the key and pipe models. Table 3.2 gives
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Table 3.2: Decomposition quality comparison (the key and pipe model): direct L∞-CVT, METIS,
MADD and our L∞-CVT-GP method (initialized 4000 CVT Cells). NS is the number of subregions.
Our method has comparable workload balance and average compactness, while our δ̂θ is up to about
50% and 55% smaller than the METIS method on key and pipe model respectively; our δ̂θ is 20%
and 15% smaller than MADD on two models respectively. Compared with L∞ method, our RW is
40% smaller.

Key L∞-CVT METIS MADD Our Method (4000 cells)
NS 128 1024 128 1024 128 1024 128 1024
RW 2.01 1.92 1.03 1.02 1.13 1.08 1.06 1.04

R̂C 13.25 104.3 12.21 93.31 14.26 104.91 13.57 105.21

δ̂θ 0.18/0.15 0.15/0.14 0.32/0.26 0.41/0.21 0.32/0.20 0.25/0.19 0.17/0.15 0.15/0.14

Pipe L∞-CVT METIS MADD Our Method (4000 cells)
NS 128 1024 128 1024 128 1024 128 1024
RW 2.09 1.98 1.05 1.04 1.25 1.13 1.13 1.10

R̂C 4.76 36.51 4.64 36.37 5.06 35.48 4.71 36.42

δ̂θ 0.18/0.15 0.15/0.15 0.32/0.25 0.42/0.21 0.32/0.20 0.25/0.21 0.15/0.12 0.13/0.11

the partitioning statistics for key and pipe model respectively. The workload balance ratio

RW is calculated following Eq. (3.2). When RW is closer to 1, a better workload balance

is achieved. The average compactness R̂C is calculated following Eq. (3.5). The average

separator angle deviation δ̂θ is calculated following Eq. (3.8). Note that for each of these

three terms, the smaller the measured value is, the better. From these experiments, we can

see that:

1) For workload balance: METIS leads to the smallest RW . The RW of our method is about

5% bigger than METIS. RW of MADD is about 10% bigger than ours. The direct CVT

partitioning has worst workload balance and its RW is about 55% bigger than ours.

2) For average compactness R̂C : METIS also leads to the most compact subregions. The

R̂C of our method is about 8% bigger than METIS, but 6% smaller than MADD, and

about 2% smaller than direct CVT partitioning.

3) For average separator angle deviation δ̂θ: our algorithm has the smallest separator angle
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deviation. Our δ̂θ is 40% smaller than METIS, 20% smaller than MADD, and about 5%

smaller than direct CVT partitioning.

Figure 3.7: Quad meshing result of the Pipe model, color-coded by elements’ scaled Jacobian values.
The color from blue to red indicates the mesh quality from high to low.

In Conclusion, our algorithm results in significantly smaller separator angle deviation than

the METIS and MADD method, while preserving good workload balance and compactness.

Compared with the direct CVT decomposition, our algorithm yields 40% smaller workload

balance ratio, while have slightly better the compactness and the separator angle deviation

small. This indicates that meshing based on our decomposition is about 20% faster than

that using CVT decomposition. To achieve similar workload balance, the CVT method

needs to use much more (in our experiments, more than 4 times) cells. Then as a side effect,

this will lead to a significant increase in LS and in singularities of the final quad mesh (see

Section 3.4.3), which is undesirable.

3.4.2 Parallel Computational Efficiency

Sub-regions are distributed to different working processors for simultaneous quad mesh gen-

eration using advancing front. We test the parallel computation efficiency on our datasets:
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the pipe model (Figure 3.7), the terrain near West Bay (Figure 3.8(a)), and the terrain

near Matagorda Bay (Figure 3.8(b)) and the entire ocean region of the Gulf of Mexico (Fig-

ure 3.8(c)). Figure 3.9(a) shows the actual meshing time on each working processor. The

working time on different processors are very balanced during the parallel execution.

Table 3.3: The Runtime Table for different partitioning algorithms. NS is the number of subregions.
The runtime is in minute, and includes the partitioning, meshing and relaxation time. Usually, the
METIS is fastest, and our method has the second best efficiency.

Model Key Pipe
NS 16 64 256 1024 16 64 256 1024

L∞-CVT 13.92 4.51 1.59 0.60 16.55 5.43 1.94 0.74
METIS 13.09 4.24 1.49 0.56 15.54 5.10 1.82 0.70
MADD 13.69 4.43 1.56 0.59 16.27 5.34 1.90 0.73
Our 13.60 4.40 1.55 0.58 16.07 5.28 1.88 0.72

Model Matagorda West Bay Gulf of Mexico
NS 16 64 256 1024 16 64 256 1024 16 64 256 1024

L∞-CVT 19.25 6.49 2.26 0.91 19.14 6.50 2.18 0.95 26.07 8.55 3.11 1.28
METIS 18.13 6.11 2.13 0.86 18.08 6.14 2.06 0.90 24.42 8.01 2.91 1.20
MADD 18.94 6.38 2.22 0.90 18.92 6.42 2.15 0.94 25.51 8.36 3.04 1.25
Our 18.78 6.33 2.20 0.89 18.70 6.35 2.13 0.93 25.27 8.29 3.01 1.24

We also run the experiments by changing the number of working processors. The total run

time is shown in Table 3.3. METIS leads the fastest total running time, Our algorithm is

about 7% slower than METIS, 1% and 3% faster than MADD and direct CVT respectively.

Ideally, when the computation is evenly distributed to each processor, the speed up would

be T/D, where T is the total time cost of our algorithm without parallelization, and D

is the number of processors. But there are overheads of this divide-and-conquer pipeline,

including the partitioning, data transmission, and post-processing. The workload balancing

also affects the speed-up performance. Figure 3.9 (b) plots the speedup of our algorithm

on different models. The yellow dot line is the ideal speedup, and our algorithm s’ parallel

speed up ranges from 2.78 to 601.5 when 4 to 1024 processors are used, respectively. The
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(a)

(b)

(c)

Figure 3.8: (a, b, c) The quad meshes for West Bay (yellow region in bay map), Matagorda Bay
(red region in bay map), and the Gulf of Mexico respectively. The quad meshes are color-coded in
scaled Jacobian.
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(a) (b)

Figure 3.9: (a) The load balance for 512 working processes of the meshing of our dataset. (b) The
parallel speedup of meshing: we test our algorithm using 4 to 1024 working processes. The yellow
dot line is the ideal speedup, and the speed up of our algorithm on different models ranges from
2.78 to 601.5.

partitioning time usually takes up to 30% of the total time. To improve the meshing quality

near the separator, we apply a Laplacian relaxation [88] near the separators after individually

generated meshes are merged. Hence, a smaller LS will reduce this post-processing time. In

our experiments, the relaxation takes about 4% of the total computation time.

3.4.3 Meshing Quality Comparison

Table 3.4 compares the quality of final quad meshes generated by the sequential algorithm

and four parallel algorithms using different partitioning methods. The sequential algorithm

applies the advancing front to generate quad mesh without partitioning. For large model

such as Matagorda Bay, West Bay and Gulf of Mexico the sequential algorithm failed to

get a result. For each quad mesh, we compute four values, the (1) average, (2) standard

deviation, and (3) minimum of scaled Jacobian, and (4) the number of singularities. Ideally,

the scaled Jacobian should be 1. The scaled Jacobian of our mesh is comparable to the

sequential algorithm, but we have 20% more singularities. Compared with other partitioning

techniques, our average and minimal scaled Jacobians are 10% and 4% better than METIS
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Table 3.4: Mesh Quality Comparison between the sequential meshing algorithm, L∞-CVT, METIS,
MADD, and our algorithm. The sequential algorithm applies the advancing front without partition-
ing; and it only works on small models such as the Key and Pipe. NS is the number of subregions.
The four values: (1) average, (2) standard deviation, and (3) minimum of the scaled Jacobian,
and (4) the number of singularities are listed to show meshing quality. The scaled Jacobian of our
mesh is comparable to the sequential algorithm, but we have 20% more singularities. The average
and minimal scaled Jacobians of our algorithm are 10% and 4% better than METIS and MADD,
respectively. Our singularities are 40% and 20% fewer than METIS and MADD. Compared with
L∞-CVT, our algorithm leads to about 4% better average and minimal scaled Jacobians and 8%
fewer singularities.

Model (NS) Sequential Algorithm
Key (32) 0.97 / 0.13 / 0.39 / 35
Pipe (16) 0.97/ 0.04 / 0.31 / 34

Matagorda Bay (512) -
West Bay (512) -

Gulf of Mexico (1024) -

Model (NS) L∞-CVT METIS
Key (32) 0.98 / 0.14 / 0.38 / 233 0.93 / 0.27 / 0.23/ 411
Pipe (16) 0.97 / 0.04 / 0.30 / 55 0.94 / 0.09 / 0.23 / 128

Matagorda Bay (512) 0.97 / 0.04 / 0.35 /325 0.93 / 0.16 / 0.21 / 413
West Bay (512) 0.96 / 0.05/ 0.36 / 235 0.93 / 0.12 / 0.24 / 562

Gulf of Mexico (1024) 0.97 / 0.04 / 0.36 / 3158 0.96 / 0.15 / 0.21 / 3491

Model (NS) MADD Our Method
Key (32) 0.97 / 0.18 / 0.23 / 226 0.98 / 0.13 / 0.38 / 216
Pipe (16) 0.95 / 0.07 / 0.23 / 84 0.97 / 0.04 / 0.30 / 50

Matagorda Bay (512) 0.96 / 0.08 / 0.27 /346 0.97 / 0.04 / 0.35 /305
West Bay (512) 0.95 / 0.07 / 0.28 / 321 0.98 / 0.05/ 0.36 / 225

Gulf of Mexico (1024) 0.96 / 0.09 / 0.23 / 3201 0.98 / 0.04 / 0.36 / 3104

and MADD respectively. Our singularities are 40% and 20% fewer than METIS and MADD.

Compared with L∞-CVT, our algorithm leads to about 4% better average and minimal scaled

Jacobians and 8% fewer singularities. These experiments show that our algorithm produces

higher-quality quad meshes than other partitioning algorithms.
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3.5 CONCLUSION

We present a parallel quad mesh generation pipeline for large-scale 2D geometric regions. A

main contribution of this work is the solving of data partitioning with effective incorpora-

tion of the geometric constraint on angles between separators. After partitioning, subregions

are distributed to different processors for parallel mesh generation through advancing front.

Finally, after composition, post-processing is performed near partitioning boundaries for

refinement. We evaluate our partitioning and mesh generation algorithm in different exper-

iments. Compared with other data partitioning stratifies, our new algorithm leads to better

partition result and final meshing quality.

In the future, we will generalize this parallel pipeline for structured meshing of curved 2D

manifolds and 3D solid regions. We will also investigate parallel meshing algorithms with

controlled singularity numbers and distributions. For this purpose, singularity estimation

needs to be incorporated in partition optimization; tessellation of subregions may be com-

puted through parameterization-based mesh construction algorithms [89] [90] which globally

control the singularity distributions; and post-processing that allows the merging of nearby

singularities may also be useful.
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PART III

HEXAHEDRAL MESH
GENERATION
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This part is devoted to the PolyCube Parameterization based Hexahedral Mesh Generation.

High quality hexahedral meshes benefit many numerical simulations and are preferred over

the commonly used tetrahedral meshes in quite a few scientific tasks (see a survey in [91]).

Hex meshing algorithms can generally be categorized into three classes: spatial partitioning

approaches, plastering approaches, and mapping-based approaches. In spatial partitioning

approaches, the given model or the space it embeds is first decomposed into a set of cells

which will then be projected or deformed to conform to the model’s boundary geometry.

Marechal [92] generated hex meshes through an octree-based method through dual mesh

generation and buffer-layers insertion. Ito et al. [93] developed a set of templates to optimize

the octree-based hex meshing. A limitation of octree-based approaches is its pose-sensitivity.

A small orientation change (e.g. rotation) of the object can lead to different meshing results.

Levy and Liu [85] introduced Lp centroidal tessellation to generate anisotropic hex-dominant

meshes. Plastering algorithms usually start from the quadrilaterally meshed boundary, then

propagate hexahedral elements toward the object center. Staten et al. [94] used an uncon-

strained plastering to generate the hexahedral mesh. Zhang et al. [95] developed hexahedral

meshes based on a skeleton-driven sweeping algorithm. One disadvantage of plastering al-

gorithms is that the growing process could finish with unmeshed region. Another issue is

that the singularity configurations inside the hexahedral mesh may be very complicated.

Mapping-based methods map the input model M to a regular domain N , then transfers the

hexahedral grid (induced from N) back to M . Finding a desirable regular domain is usually

critical but as difficult as the computation of the lowly distorted map. Due to its natu-

ral regularity and geometric similarity to the model, polycube can be a suitable canonical

domain for hex mesh generation [3,4]. Instead of using a fixed domain like the polycube, vol-
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umetric mappings can produce lowly distorted hex meshes by introducing singularity curves

inside the domain [5,96,97]. Challenges of these volumetric parameterizations in hexahedral

meshing is that either the cross frame-fields need to be given manually [96] or they need to

be solved through expensive optimizations [5, 97] that cannot guarantee the finding of valid

solutions.

A Polycube is an orthogonal polyhedron (all the edges parallel to coordinate axes) that is

a 3D manifold. A polycube parameterization is a bijective map between a 3D model and

a polycube domain. The polycube domain shares the same topology with the model and

approximates the geometry of the model, as shown in Figure 3.10.

Figure 3.10: The bunny model. From left to right: The original input mesh, polycube domain, the
hexahedral mesh via polycube parameterization.

Hence, the polycube map can produce a seamless parameterization that has low metric

distortions and regular atlas structure (i.e, each patch/part is a rectangle/cube). Such

a parameterization is desirable in many geometric modeling and processing tasks such as

spline construction, meshing [3, 4, 98], shape interpolation [99], and texturing [100]. This

chapter studies effective automatic polycube parameterization.

High quality hexahedral (simply denoted as hex in the following) mesh generation has re-

ceived much attention in recent years. Tessellating the given solid model using high-quality

hex meshes is desirable for effective finite element analysis or isogeometric analysis in struc-
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tural mechanics, fluid dynamics simulations, etc. Polycube parameterization can be used for

automatic hex mesh generation. The basic idea is as follows. For a given solid shape M ,

whose boundary surface is denoted as S, first construct a polycube domain Ω geometrically

similar to M and compute a map φ : Ω → M ; then on Ω, construct a uniform hexahe-

dral mesh H , and transform it by φ(H). The resultant hex mesh φ(H) conforms with the

geometry of M and has regular tessellation. The meshing quality is dictated by the param-

eterization φ. If φ has smaller volume distortion, the resultant mesh is more uniform, and if

φ has smaller angle distortion, the mesh elements are less sheared.

Constructing a good polycube domain is critical in reducing mapping distortions. Earlier

polycube parameterization methods build polycubes manually [100,101], which can be labor-

intensive and infeasible for complicated shapes. More recently, a few automatic polycube

construction methods have been proposed [3, 4, 102]. However, automatic, robust, yet ef-

fective polycube construction for general 3D models remains challenging (see Section 2.1).

Specifically, a polycube domain having simpler structure and fewer corners usually provides a

more desirable (e.g. fewer singularities in spline construction [101] and mesh generation [3,4])

parameterization. In contrast, composing a polycube domain via more subcubes may better

approximate the original geometry and result in less distorted mapping. Hence, seeking an

effective balance between these two aspects is important, but it was little explored.

This chapter is structured as follows: first is the related work, then is our automatic Polycube

construction, next is the PolyCube Parameterization Computation, then the next we propose

a simultaneously optimize the PolyCube domain and the paramterization method.
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4. AUTOMATIC POLYCUBE DOMAIN CONSTRUCTION

4.1 RELATED WORK

Polycube Construction and Mapping. Polycube mapping was first introduced by Tarini

et al. [100] for seamless texture mapping, in which the polycube domain is constructed man-

ually and the map is constructed by spatial projection followed by iterative relaxations of

a deformation energy. Wang et al. [101] introduced an intrinsic polycube mapping method

using the conformal mapping, and resulted in a bijective map with small angle distortion;

the polycube construction, however, is also manual. Xia et al. [103] proposed an editable

polycube mapping method which provides a semi-automatic user-controllable polycube con-

struction and editing scheme. Lin et al. [102] proposed a polycube construction algorithm

using the Reeb graph. This method can automatically construct polycubes for models with

simple topology and geometry. However, for models with complex geometry, their con-

structed domain can be too simple and has large deviation from the given model, resulting

in low-quality mapping results. He et al. [4] suggested a line-scanning strategy to construct

the polycube nicely approximating the given model and produce nice hexahedral meshing

results. This method, however, is sensitive to the object’s orientation and off-axis features

and it often generates overly refined polycubes with many corner points. Gregson et al [3]

proposed a rotation-driven deformation algorithm to construct polycubes by rotating sur-
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face normal to nearest coordinate axes. This approach generates polycube domain shapes

with significantly fewer corner points. However, to remove topologically incorrect “wedges”

regions generated in deformation, a non-trivial domain correction is necessary. The post-

processing suggested in [3] is not robust and could fail to produce valid polycube on models

with moderately complex geometric features. Wan et al. [104] developed a polycube opti-

mization algorithm to refine the polycube domain shape according to the stretch distortion

of the final surface mapping. They construct an initial polycube through voxelization and

the subsequent polycube optimization algorithm is formulated to only refine the polycube

geometry without topology changing. In this chapter, we propose a polycube construction

and mapping algorithm to construct polycube and optimize its domain shape, which balances

the polycube shape’s complexity and its geometric similarity to the given model.

4.2 BASIC IDEAS AND ALGORITHM OVERVIEW

Like the octree-based mesh generation algorithms, a polycube domain can be robustly gen-

erated through voxelization. However, such a polycube will be sensitive to orientation of the

model, and will have overly zigzagged subparts for non-axis-aligned branches. Deforming

non-axis-aligned branches to an axis-aligned part on a polycube will be desirable for simpli-

fying the polycube structure and constructing lowly distorted maps. Inspired by [3], we first

deform a curved model into a geometrically regular shape whose branches are axis-aligned.

This gives us a polyhedron that is geometrically close to a polycube, but topologically not

necessarily correct (see Section 4.3 for details). Upon this axis-aligned polyhedron, we can

apply the voxelization and get a desirable initial polycube construction. Furthermore, we

apply a polycube domain shape optimization algorithm to optimize the polycube. This
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algorithm optimizes a tradeoff between the simplicity of the polycube structure and its ge-

ometric similarity to the given model. It helps improve the polycube mapping quality. Our

automatic polycube construction have two steps.

1) Pre-deformation. To solve a deformation of the given model so that its surface

normals align with coordinate axes and it deforms to a polyhedron geometrically close

to a polycube. (Section 4.3)

2) Polycube Construction and Optimization. To obtain an initial polycube through

a voxelization, then optimize the polycube shape through some novel homotopic mor-

phological operations. (Section 4.4)

Notations. We denote a given solid model as M and its boundary surface as S = ∂M . The

constructed solid polycube domain and its boundary surface are denoted as Ω and P = ∂Ω

respectively. In Step 1, we call the obtained axis-aligned polyhedron from deformation a

pseudo-polycube, denoted as Q. It is so-called because its facets are nearly perpendicular to

coordinate axes; but topologically, some of its vertices are not shared by three edges. In Step

2, the voxelization of Q results in an initial polycube P̃ , which will be optimized to a final

polycube P .

4.3 PRE-DEFORMATION

A polycube is aligned with coordinate axes but the given model is usually not. Automatic

polycube construction is often sensitive to the orientation of the model or its branches.

An example of the polycube construction [4] that poorly handles non-axis-aligned branches
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Figure 4.1: Polycube Construction for Buddha model. The input (a) is deformed to a pseudo-
polycube (b) with topological irregularities plotted in red; the corrected model by our method is
shown in (c).

is shown in Fig. 6.5(a), where the bunny’s ears are approximated by zigzagged polycube

branches with many corners.

The rotation-driven deformation guided by the surface normal, proposed by [3], can effec-

tively prevent constructing overly zigzagged polycubes. We recap its basic idea and refer

readers to [3] for details. (1) Cluster the surface S into different regions following the normal

distribution. Normals on vertices are classified based on their minimal rotations to axes

±X,±Y,±Z. (2) Then, use this minimal rotation to deform the surface so that the clus-

tered normals align with their corresponding nearest axes. This reduces to solving a Poisson

equation on each vertex-i:

xi −
1

|Ni|
∑

vj∈Ni

xj =
1

|Ni|
∑

vj∈Ni

Ri +Rj

2
· (x̃j − x̃i),

where x̃i and xi are the original and new (after deformation) vertex positions of vertex vi, Ri

is the 3× 3 rotation matrix of vertex vi which rotates its normal to the nearest axis, and Ni
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consists of neighboring vertices of vertex vi and |Ni| indicates vi’s valence. The deformation

of the surface S will converge in a few iterations and we will obtain a closed surface Q that

is geometrically axis-aligned.

The deformation result Q has each of its clustered regions (classified by normals) being flat

and perpendicular to a coordinate axis. However, when considered as a boundary of a 3D

polyhedron, the solid region bounded by Q is usually not an exact orthogonal polyhedron.

Given a polyhedron, whose boundary is a closed surface made up of polygonal facets. We

classify and label these facets based on the minimal rotations of their normals to axes ±X ,

±Y and ±Z. We call the labels of +X and −X as opposite labels (same for Y and Z). Each

facet f should be adjacent to 4 facets with different labels; and none of these four labels

can either be the same with or opposite to f ’s label. A wedge is a facet whose surrounding

labeling violates this rule. A few wedge examples are shown in Fig. 4.1(b).

Such wedge regions are hard to avoid, because strictly enforcing the topological constraints

of orthogonal polyhedra during the surface deformation is very difficult and too expensive.

Therefore, we adopt this deformed surface Q which is geometrically regular but topologically

incorrect, and call it a pseudo-polycube.

Note that global orientation of the model sometimes affects the polycube construction. An

example is shown in Fig. 4.2, where the rotation method of [3] generates an undesirable

polycube (b) for the given model (a). Therefore, before this pre-deformation, we heuristically

compute three principal axes [105] of the given model and pre-align principal axes with the

global X, Y, Z axes. The preprocessed model may lead to better polycube construction (c).
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Figure 4.2: Polycube construction with respect to model orientation: (a) a 30-degree-rotated child
model; (b) the polycube constructed by [3]; (c) our constructed pseudo-polycube.

4.4 POLYCUBE CONSTRUCTION AND OPTIMIZATION

Topologically irregular regions such as wedges (Fig. 4.1(b), Fig. 4.3(b)) exist in most pseudo-

polycubes. Correcting these topological irregularity of a pseudo-polycube is nontrivial. A

heuristic patch segmentation postprocessing algorithm was suggested in [3]. However, per-

forming these operations on triangle meshes are also not easy, and getting a valid segmenta-

tion for polycube may not be guaranteed. We propose an algorithm through voxelization to

produce a valid polycube. Furthermore, we develop a scheme to optimize the polycube do-

main shape, balancing domain simplicity and its geometric similarity to the pseudo-polycube.

4.4.1 Polycube Extraction by Voxelization

We first embed the pseudo-polycube Q into a spatial grid, then obtain a polycube P̃ from

the voxels which are inside or partially inside Q. A suitable size η of the voxel is computed

(See Section 4.4.1) to avoid topological change between Q and P̃ during this voxelization.

We pre-compute a level-set function DQ(x) to indicate the distance from x ∈ R3 to Q using

the algorithm of [106]. This DQ(x) provides efficient spatial query for partial occupation
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(a) (b) (c) (d)

Figure 4.3: Polycube Parameterization of the Kitten Model. (a) The kitten mesh is deformed to
a pseudo-polycube (b), where wedges are identified in red boxes. The resolution of voxelization is
determined by a Morse analysis: the red, green, and blue points in (c) indicate the critical values
in x, y and z directions respectively. The optimized polycube domain is shown in (d);

detection.

(a) (b) (c)

Figure 4.4: With pre-deformation, we can generate the more desirable polycube (c) than the direct
voxelization (b) from original model (a).

Note that since our pre-deformation transforms the given model S into a pseudo-polycube

Q whose geometry is simple and flat, our voxelization will produce a simple and regular

polycube. In contrast, directly applying voxelization on the curved original model S will

lead to a zigzagged result. An example of voxelization on bunny that is with and without

pre-deformation is shown in Fig. 4.4.
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Selecting Voxelization Resolution

The selection of the voxelization resolution threshold η affects the final polycube’s geometric

shape and topology. η should depend on the geometric saliency that we want the polycube to

preserve, and be fine enough to encode the topology of the pseudo-polycube Q. Voxelization

with a too big η may miss small topological features such as handles and voids. Size and

locations of topological features can be estimated through a Morse analysis [107].

On the pseudo-polycube Q, we apply a Morse analysis by defining a Morse function f : Q→

R. The purpose of this Morse analysis is to obtain a suitable threshold for the resolution

of spatial voxelization, i.e., to capture the extrinsic spatial size (in each of the three axis

directions) of each topological handle and void. Note that, using intrinsic scalar functions

such as harmonic fields [108] as this function f can result in isolated critical points, but they

usually do not precisely capture the spatial size of the topological features. On the other

hand, the height function is simple and directly serves as such an extrinsic indicator, and thus

has been widely used in Reeb graph construction [109]. Using the height functions results in

clusters of critical points (e.g. on each flat facet), therefore, we pick representative critical

points from these clusters and use them to determine the suitable voxelization resolution.

For vertices {vi} with coordinate (xi, yi, zi), we first use function values f(vi) = xi to extract

the critical points {v1, v2, . . . , vNx
|x1 < x2 < . . . < xNx

} in the x direction. The value range

[x1, xNx
] splits into Nx − 1 intervals: [x1, x2], [x2, x3], . . . , [xNx−1, xNx

]. We use a threshold

ε to group critical points from the same facet cluster: critical points are considered to be

on the same level if their difference of Morse function values is less than ε. Topological

features (handles, voids) that are smaller than ε will be treated as noise and ignored. In
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our experiments, we choose ε to be the 1% of the diagonal length of the bounding box of

M . Similarly, we extract critical points along the y and z directions. Fig. 4.3 (c) shows the

Morse analysis conducted on the Kitten model, where red, green, and blue nodes are the

critical points along x−, y−, and z− directions respectively. Finally, we make

η =
1

3
min{min

i
[xi, xi+1],min

j
[yj, yj+1],min

k
[zk, zk+1]}

to ensure that the voxel representation shares the same topology with the pseudo-polycube.

A more thorough discussion on the topology preservation of our polycube construction al-

gorithm is given in section 4.5.1.

4.4.2 Polycube Shape Optimization

The initial polycube P̃ we get after the voxelization is an orthogonal polyhedron and a

topologically valid polycube. But geometrically, P̃ may still be zigzagged in some regions.

Such zigzagged geometry will lead to extra corners and increase the mapping distortion.

Inspired by the morphological operations [110] in image processing, we propose the homotopic

morphological operations to optimize the polycube shape.

Homotopic Morphological Operations

Similar to [110], we can define two basic operations: erosion and dilation on voxels in

3D. The erosion operation removes a layer of boundary cells (boundary voxels); the dilation

inserts a new layer onto the boundary. More rigorously, given P̃ and a cell c ∈ P̃ , c has 26

adjacent cells. An erosion on c deletes c if any of its adjacent cell is not in P̃ . A dilation

inserts c if any of its adjacent cells is in P̃ .
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Then we have two combined operations: opening and closing [110]. An opening operation

performs an erosion followed by a dilation; and a closing performs a dilation followed by

an erosion. The openings can remove thin ridges/glitches and the closings can fill small

valleys/holes. Fig. 4.5 illustrates two examples.

Figure 4.5: Opening and Closing: the red regions are removed by opening operations and the yellow
regions are filled by closing.

Directly applying these morphological operations can simplify the polycube geometry, but

does not guarantee the preservation of topology. Hence, we further develop the following

homotopy-preserving approaches.

Simple Removal. Consider each k-dimensional element as a k-D cell. If a k-D element

(vertex, edge, face) is shared by only one (k+1)-D element (edge, face, voxel, respectively).

Then this k-D element is called a simple element and its accompanying (k + 1)-D element

is called its witness. To see whether a voxel (the window’s center) is removable, we can

iteratively remove a simple element and its witness, which is called a simple removal. We

iteratively conduct simple removals until no further simple removal is possible. If the re-

mained elements on this voxel are non-manifold elements, then this voxel is not removable,

otherwise, it is removable. Fig.4.6 shows an example of simple removal on 3 glued cubes.

The simple removal operation is topology-preserving (see Section 4.5.1). Based on the simple

removal, we can define the homotopic morphological operations. We define a homotopic
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Figure 4.6: A removable right voxel (in the left subfigure) v.s. an unremovable middle voxel (in
the right subfigure).

erosion operation as an erosion on a layer of boundary voxels that only performs 2D simple

removals, namely, only removable voxels are allowed to be removed. The homotopic dila-

tion can be defined similarly. A dilation can be considered as an erosion performed onR3\P̃ ,

i.e. practically, unselected cells outside P̃ but inside big bounding box of Q. Therefore, on

the 3D space outside P̃ we can perform simple removals during dilations on P̃ .

Figure 4.7: The homotopic morphological operations on Kitten model. On the tail region, the
ordinary morphological operations may change the topology, while the proposed homotopic mor-
phological operations preserve the topology.

To preserve the homotopy of the voxelization, we shall perform homotopic opening and

homotopic closing using homotopic erosions/dilations rather than the originally defined

erosions/dilations. A homotopic opening performs an homotopic erosion followed by a ho-

motopic dilation on the polycube; and a homotopic closing can be considered as a homotopic

opening on the dual space R3\P̃ . Pruning via simple removal will not change the topology
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of space, hence homotopic erosions will not change the voxelization’s topology (also see the

discussion in Section 4.5.1). Fig. 4.7 shows an example of applying homotopic morphological

operations on the Kitten model.

Polycube Optimization

Figure 4.8: Polycube Optimization. By only optimizing Eg we will get the original shape; by only
optimizing Ec we will get a simple cube with minimal 8 corners; in practice, a polycube should be
optimized following a combined energy.

We use two terms to measure the polycube quality:

• Domain simplicity (Number of corners) Ec. A vertex on polycube P is a corner if its

valence is not 4. Fewer corners indicates simpler (less zigzagged) domains.

• Geometric deviation Eg. The optimized polycube P should approximate the pseudo-

polycube Q. We can accumulate distances from vertices of P to Q, Eg =
∑

x∈P |DQ(x)|,

where DQ(x) is the distance from each point polycube boundary x to Q. Less Eg indicates

a more geometrically similar domain.

The total energy describing the polycube quality is

Ep = Ec + αEg (4.1)

Fig. 4.8 illustrates some examples of this polycube optimization. Based on the variance

of Ec and Eg, we set α = 20 in most of our experiments. We also discuss the usage of
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different weighting factors α in the polycube domain optimization and compare the results

in Section 4.5.2.

To minimize the objective function (4.1), we can now use a moving window to perform

the homotopic opening or homotopic closing operations on Ω. On each cell c, we have the

choices to perform three types of operations: keep, open, or close, where keep means we do

neither homotopic opening nor closing. What operation to choose is determined greedily by

the change of Ep on c. If a homotopic closing (or homotopic opening) operation reduces Ep

the most, then we choose to do it, if neither reduces the energy Ep more than a threshold

value (or even increases the energy), we do nothing on c. Since the distance field DQ() was

pre-computed (Section 4.4.1), and the increasing/decreasing of corner points can be locally

updated, this local greedy search on each cell is O(1).

Another issue is the size of the moving window, which controls the coarseness of the opening

and closing (e.g., when the window size is 1, each cell has 26 neighbors while when the

window size is 2, each cell has 124 neighbors). We start from a big window size (e.g., 5) and

gradually reduce it. On each level, we keep moving the window along all boundary cells on

P̃ until the energy Ep doesn’t decrease (i.e., no update on boundary cell is performed). The

final optimized polycube surface is denoted as P .

4.5 DISCUSSIONS AND IMPLEMENTATION

4.5.1 Topology Preservation in Polycube Construction

The construction of polycube P should preserve the topology of the input model S. In

the following, we discuss the topology preservation during each of our three-step algorithm,
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between (1) S and Q, (2) Q and P̃ , and then (3) P̃ and P , respectively. The topology

preservation is not theoretically guaranteed, but practically, these designs are effective and

in all our experiments, the resultant polycube constructed by this pipeline shares the same

topology with the given 3D shape.

First, the pre-deformation from the input model S to the pseudo-polycube Q usually does

not change the topology. To avoid self-intersections during the deformation, distance preser-

vation constraints can be added to the pre-deformation equations to preserve the distance

between nearby charts aligned to the same axis, and avoid self-intersections during deforma-

tion. With self-intersection prevented, the degeneracy of small topological handles can be

prevented. Note that although it works well in all our experiments, we admit that non-self-

intersection in the predeformation has no theoretic guarantee. If self-intersection occurs in Q,

topology may change during voxelization in the next step. We believe deformation explicitly

avoiding self-intersection can be adopted here to further improve this step’s robustness.

Next, the construction of initial polycube P̃ is done by voxelizing the pseudo-polycube Q.

The threshold η of the voxel is determined by Morse analysis. η is set to be 1
3
of the minimum

interval, with which critical points are usually separated in individual non-adjacent voxels,

preventing the topological degeneracy of handles and voids.

Finally, the optimization from P̃ to the final polycube P uses homotopic morphological

operations to preserve the topology. The topology of 3-manifold can be characterize by three

Betti numbers: β0, β1, β2. They represent the numbers of connected components, handles

and voids of the volume, respectively. The simple removals are equivalent to elementary

simplicial collapse in algebraic topology [111], which preserves βs of the 3-manifold [112].

The morphological operations based on simple removal are topology-preserving. This can
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also be verified using the topological invariant Euler characteristics χ of the volumetric

region: χ = β0 − β1 + β2, which can also be computed by

χ = k0 − k1 + k2 − k3 (4.2)

where ki denotes the number of elements of dimension i (k0, k1, k2, and k3 corresponds to

the vertex, edge, face, and cube number, respectively). When conducting a simple removal

on face, ∆k2 = −1,∆k3 = −1,∆k0 = ∆k1 = 0. Hence, χ, and the topology, will not change.

4.5.2 Different Weights in Polycube Optimization

(a) α = 5 (b) α = 10

(c) α = 20 (d) α = 40

Figure 4.9: Different α in Polycube Optimization and the Resultant Domain Shapes.

The weight α in Equation (4.1) offers a flexible optimization scheme balancing a trade-

off between the simplicity of the optimized polycube P and its geometric similarity to P̃ .

Fig. 4.9 shows the different optimized domains for the Rocker-Arm model using different α’s.

With the increase of the α , the corner number Ec increases while the geometric deviation

Eg decreases. Table 4.1 shows the different parameterization and meshing results under

different choices of αs. The mapping distortion, measured by average Scaled Jacobian ζ̄ of
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the generated hexahedral mesh (the closer to 1 the better, to be defined in Section 6.6). In

general, increasing α to emphasize geometric similarity can improve the parameterization

quality. But this makes the polycube more complicated and has more corner singularities.

Also, overly large number of corner singularities makes the polycube surface mapping difficult

to optimize; the unnecessary rotations of iso-parametric curves introduced on these corners

could also increase the parameterization distortion undesirable. For different models, the

optimal α could be different. Based on empirical results, in most of our experiments, we set

α = 20.

Table 4.1: Different Weights in Polycube Optimization. Ec is the corner number of the polycube;
Eg is the accumulated distance of the vertices on surface P to surface Q. ζ̄ is the average Scaled
Jacobian.

Weight (α) Ec (# of Corners) Eg ζ̄
5 41 6.82 0.861
10 60 5.51 0.897
20 80 4.10 0.931
40 134 3.12 0.921

4.5.3 Feature Preserving

Feature preserving can be implemented in our polycube mapping framework. In applications

such as meshing, feature points or curves (e.g. ridges/values with salient principal curvatures)

on the original model should be sampled. We can normalize the scaling of the polycube, so

that the smallest cell has the unit length. Then the parameters of the feature vertices/edges

should be restricted to integers. The above optimization problem (5.1) becomes a mixed-

integer problem [96, 97]. We use a simple greedy strategy to solve it. First, we solve the

parameterization without considering these integer restrictions, and get the initial parameters

(u1, u2, u3) for each vertex i. Then, for each feature edge, we project it onto an integer iso-
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(a) (b) (c)

Figure 4.10: Feature Preserving. (a) The input mechanical part model has feature curves (in
yellow). (b) The result without feature-preserving. (c) The result with feature preserving.

line parallel to one of the coordinate axes on the parameter domain. Feature points can be

projected onto nearest parameter grids easily. After the projection of all features, we fix

their parameters and solve the system again to get parameters on other vertices. Fig. 4.10

shows an example of feature-aligned meshing result.
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5. POLYCUBE MAPPING COMPUTATION

5.1 RELATED WORK

Volumetric Parameterization. Volumetric parameterization have been studied recently

in computer graphics and geometric modeling. Wang et al. [113] computed the discrete volu-

metric harmonic mapping over tetrahedral meshes for volumetric mappings on solid spheres.

Li et al. [98, 114] developed meshless methods using the fundamental solution method in

computing harmonic and biharmonic volumetric maps. Martin et al. [115] parameterized

volumetric models onto cylinders using the finite element method, and later generalized the

algorithm to more complicated models with medial surfaces [116]. Nieser et al. [96] proposed

a cube-cover mapping algorithm for hexahedral meshing, and the mapping is guided by a

user-designed frame field. Huang et al. [97] designed a boundary-aligned 3D frame field

optimization algorithm that can automatically generate a smooth frame field from a given

surface frame field. But the resultant frame field is not guaranteed to be valid (to induce

valid mapping). Li et al. [5] solved singularity-restricted frame fields to fix the singular-

ity errors in the direct rotational-symmetry solving. However, the generation of valid cross

frame-field (hence valid mapping) is not guaranteed.
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5.2 POLYCUBE VOLUMETRIC PARAMETERIZATION

After polycube construction, we compute volumetric parameterization of volume M over

the solid polycube domain Ω. We first use a fast algorithm to compute polycube surface

mapping φ|∂M : S → P, S = ∂M, P = ∂Ω (Section 5.2.1), which indicates the initial

boundary constraints of the volumetric parameterization φ :M → Ω (Section 5.2.2).

5.2.1 Polycube Surface Mapping

First, we project every vertex v ofQ along its normal direction onto P . This simple projection

f : Q→ P is not necessary bijective, and some region could have big metric distortion. We

perform a local relaxation similar to [4, 100] to reduce the mapping distortion:

• If a vertex vi’s projection f(vj) and its projected one-ring neighbors f(vj), ∀vj ∈ Nbr(vi)

are co-planar, we directly move f(vi) to the weighted (using the constant weight or

mean-value harmonic weight) average center of {f(vj), ∀vj ∈ Nbr(vi)}.

• If f(vi) and some of its projected neighbors f(vj), vj ∈ Nbr(vi) are on different polycube

facets, we flatten these facets locally [101] and relax f(v) on that plane.

Finally, f(v) is projected back to the polycube surface P . Fig. 5.1 (c,d) show the mapping

before and after relaxation on the kitten polycube. This relaxation can eliminate flip-overs

and reduce the surface mapping distortion. In our experiments, all the flip-overs introduced

in projections are corrected after a few iterations. On the other hand, note that, since surface

mapping will be only used to cluster patches in the subsequent volumetric parameterization

rather than hard constraints, local flip-overs within each cluster (facet) does not affect the

volumetric mapping computation.
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(a) (b) (c) (d)

Figure 5.1: Polycube Parameterization of the Kitten Model. (a) The kitten mesh, (b) is the
PolyCube domain, the polycube surface mapping is computed by a projection (c) followed by
iterative local relaxations (d).

With this refined surface map f : Q → P , we can compose the previously computed pre-

deformation g : S → Q to get the polycube surface map from S to P , ψ = φ|∂M : S → P =

f ◦ g.

5.2.2 Volumetric Polycube Parameterization

Suppose the solid model M is represented by a tetrahedral mesh. If the input is a boundary

surface S = ∂M represented by a triangle mesh, we can simply generate a tetrahedral

tessellation for M using existing algorithms/software [117]. In the following, we also use M

to denote this tetrahedral mesh. Now, we want to compute a piecewise linear volumetric

parameterization φ : M → Ω, composed of three piecewise linear scalar fields (u1, u2, u3)

defined on tetrahedral vertices using a global chart. Their gradient fields (∇u1,∇u2,∇u3)

are piecewise constant on different tetrahedra. To reduce metric distortion on φ, the Jacobian

∇φ = (∇u1,∇u2,∇u3) should be closed to a unitary matrix on every tetrahedron. We use

a volumetric frame field [96] to guide the computation of ∇φ. A frame field X on M is

composed of 3 perpendicular unit vector fields. In each tetrahedron, it can be represented by
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three unit vectors X = (~x1, ~x2, ~x3) that are pairwise orthogonal and form a local coordinate

system. We compute a volumetric polycube parameterization as follows.

1) Set the initial frame field on the boundary tetrahedra X|∂M (Section 5.2.2);

2) Solve a volumetric frame field X by optimizing its smoothness (Section 5.2.2);

3) Set boundary positional constraint φ|∂M following polycube surface mapping (Section 5.2.2);

4) Solve the polycube volumetric mapping φ using the directional constriant X and bound-

ary positional constraint φ|∂M (Sectioin 5.2.2).

This computation has similar spirit of the general volumetric parameterization computation

based on volumetric frame field construction [5,96,97]. However, to construct a bijective map

between two solid shapes, we use a global chart, do not consider the rotational-symmetry [96],

and enforce a different boundary constraint. Due to the carefully designed polycube domain

shape, our parameterization results are comparable to that from general boundary-free vol-

umetric parameterization methods. Meanwhile, this parameterization is much more efficient

(no mixed-integer constraints in frame smoothing, much fewer unknowns in mapping com-

putation) and usually does not introduce interior singularities.

Setting the Boundary Frame Field

The initial polycube construction and polycube surface mapping ψ : S → P suggests a

natural initial boundary frame field for volumetric parameterization: On each boundary

tetrahedron i, its frame field Xi has one vector xki following the normal direction of its

associated boundary face F . We preprocess each tet mesh so that each boundary tetrahedron

only has one boundary face (which can be done by splitting each tetrahedron that has two

92



Figure 5.2: Initial Boundary Surface Frame Field on Kitten. (a) A texture map of iso-parametric
lines on the boundary surface of Kitten, where red, green, and blue lines indicate 3 parametric coor-
dinates respectively; (b) the zoom-in of surface frame field: crosses are illustrated at the baricenters
of (a subset of) boundary triangles.

or more boundary faces). F is mapped onto the iso-uk facet on P , hence ∇uk defined on

F should following F ’s normal direction. The other two inherent iso-parametric directions

on this facet of P defines the other two components in Xi. However, these two directions,

initially defined by polycube surface mapping, are not fixed and will be optimized during the

frame field smoothing. Fig. 5.2 illustrates the surface frame fields on the kitten model. In

(a), a texture mapping on boundary surface of Kitten is shown, where red, green and blue

lines indicate iso-u1, u2 and u3 parametric lines respectively. In (b), the two frame directions

(excluding the one along the normal direction) on the boundary tetrahedra, rendered as

crosses on their corresponding boundary faces, are zoomed and shown in (b). This region

corresponds to a polycube corner.
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Solving the Smooth Frame Field

With boundary frame field initially set up, we then solve a smooth volumetric frame field.

We can use three Euler angles (αi, βi, γi) about the x, y, and z axes to represent the i−th

frame. Intuitively, smaller change on Euler angles on frames defined on adjacent tetrahedra

indicates better smoothness. We define the smoothness energy as:

CS =
∑

i

∑

j∈N(i)

[(αi − αj)
2 + (βi − βj)2 + (γi − γj)2]

The interior Euler angles that minimizes this energy can be computed by solving a linear

system. The volumetric frame fields then can be derived from the computed Euler angles

{αi, βi, γi}. Note that we solve ∇uk and uk on a global parametric chart on Ω instead of using

different local charts like [5,96,97]. Also, without considering rotational symmetry, our global

frame fields are like the traditional vector fields: discretely, surrounding any interior tet edge,

the composed rotation of local frames is always 2Nπ,N ∈ Z (instead of Nπ
2

in [5, 96, 97]).

Thus, with the boundary condition of polycube parameterization, the computed harmonic

fields of Euler angles will most likely result in 3 irrotational vector fields, each of which has

N = 0 everywhere. Under properly given boundary conditions, it is unlikely that our frame

field smoothing will introduce interior singularities in the constructed gradient fields, but

indeed, we admit the singularity-free and non-degeneracy of the parameterization are not

theoretically guaranteed here.

Setting Boundary Positional Constraints

The compute polycube volumetric mapping φ : M → Ω should map the boundary surface

S = ∂M to domain boundary P = ∂Ω. Following the previously computed polycube surface
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mapping, each boundary vertex vi is mapped onto a corner, edge, or facet of the polycube

surface, ψ(vi) = (u1i , u
2
i , u

3
i ). If ψ(vi) is a corner on the polycube, we enforce all these three

coordinates; if ψ(vi) is on a polycube edge perpendicular to axis xj , then we fix the two

coordinates except ukj ; otherwise, ψ(vi) is on a cube facet perpendicular to an axis xk, and

we only fix its k coordinate uki . This allows the surface mapping ψ(vi) to flow within facets

and along edges on the polycube during volumetric mapping computation.

Solving Volumetric Parameterization

Given the optimized frame field X and the boundary positional constraints, we solve the

volumetric parameterization φ by minimizing the least square energy

E =
∑

j

3∑

k=1

(‖∇ukj −Xk
j ‖2) · vol(tj), (5.1)

where vol(tj) is the volume of tetrahedron tj , superscript k and subscript j in ∇ukj , Xk
j

indicate the kth component of parameters on tetrahedron tj, and ‖ · ‖2 is the Euclidean

2-norm. Minimizing E aligns the Jacobian of the parametrization with the cross-frame field.

The gradient ∇ukj can be assembled from unknown scalar values uki defined on vertex i

contained by this tetrahedron tj . Assume that in the tetrahedron tj , the four vertices are

vjk, k = 0, 1, 2, 3. ujk = (u1jk, u
2
jk, u

3
jk) is the scalar value on vertex k. The Jacobian matrix

on tetrahedral tj is ∇uj = (~gj
1, ~gj

2, ~gj
3). According to [113],

~gj
r =

1

3vol(tj)

3∑

k=0

~sjku
r
jk, r = 1, 2, 3

where ~sjk = Areajk · ~njk, Areajk is the area of the triangle face opposite to vjk in tet j, and
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~njk is the normal of the triangle face pointing outside of the tet. Therefore we have:

E =
∑

j

3∑

k=1

(‖~gjk −Xk
j ‖2),

The derivatives of Ej over u
k
ji can be derived analytically. Hence, minimizing the quadratic

objective function reduces to solving a sparse linear system.

5.3 RESULTS AND COMPARISON

We compute polycube parameterization for various solid models. The experiments are con-

ducted on a workstation with 2.27 GHz CPU and 4GB memory. The runtime statistics

are shown in Table 6.1. Generally, for a 10k-vertex mesh, the pre-processing roughly takes

120 seconds, the voxelization and polycube optimization take about 240 seconds, and the

parameterization takes about 45 seconds.

Table 5.1: Runtime Table (in seconds). NV is vertex number of the input mesh
S; tpre, topt, tsmap, tvmap are computational times on pre-processing, polycube construc-
tion/optimization, surface mapping, and volumetric mapping, respectively.

Model( NV ) tpre topt tsmap tvmap

3-Torus (9.1K) 124.12 234.53 40.52 0.40
Bunny (34.8K) 294.21 521.24 67.83 0.78

Rocker arm (45K) 312.42 609.97 72.97 1.32
Hand (32K) 260.16 525.88 80.42 1.01

Fertility (34K) 262.21 485.53 65.43 1.57
Kitten (35K) 284.21 515.88 85.42 1.26

Hexahedral Remeshing. Regular hex structure ΩH can be generated on the polycube

domain Ω. With the parameterization φ :M → Ω computed on the tetrahedral mesh of M ,

we simply resample all the vertices of ΩH on M by φ−1 using barycentric interpolation. We

evaluate hex meshing quality using several terms:

• The scaled Jacobian [118]. Given a vertex x in a hex element with three neighboring
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vertices x1, x2, x3, the three edge vectors defined on this corner are ei = xi−x, i = 1, 2, 3.

The scaled Jacobian of x at this element is ζ(x) = det([e′1e
′
2e

′
3]), where e

′
i is the normalized

edge vector. ζ ∈ [−1, 1] measures a combination of angle and area distortions from a hex

element to a unit cube, where 1 is its optimal value.

• The average and standard deviation of dihedral angles, α and σα. Ideally, hex elements

should have most dihedral angles close to 90-degree, with small σα.

• The average volume distortion Dv =
1
|T |

Vt

Vs

∑
i
vis
vit
, where V and vi are the volumes of the

mesh and i-th tet element; s and t indicate the source and target meshes, both having

|T | number of tet elements.

• The Hausdorff distance dH measures the difference between the original model S and

the generated mesh ∂φ−1(ΩH). This geometric deviation is normalized using the ratio of

Hausdorff distance dH to M ’s bounding box diagonal ldiag, denoted as dH/ldiag.

Upon the direct hex meshing from polycube parameterization, we also develop a simple and

efficient post-processing refinement (without introducing any singularity) to improve the

hexahedral mesh quality. We optimize the positions of mesh vertices using the Untangle and

Jacobian metric defined in [119]. In our implementation, in each iteration we first optimize

vertices in R
3, then project them back to the original surface. The movement is accepted

if there is significant energy reduction and no flip-over. This postprocessing optimization

increases the meshing quality (ζ̄) by roughly 0.3%.

Fig. 6.6 illustrates our hex meshing results (also see the accompanying video for better

visualization). We document our mapping/meshing distortions, and the geometric deviation

in Table 6.2.
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(a)

(b)

(c)

Figure 5.3: Polycube construction and map of Bunny . Our construction (b) is insensitive to non-
axis-aligned branches like ears, and generates a better polycube than the method of [4] (a). Our
mapping distortion is also smaller (c).

Comparison with Existing Methods. We compare our parameterization and mesh-

ing results with existing polycube mapping methods [3, 4] and volumetric parameterization

methods [5, 96]. The statistics are shown in Table 6.2. We measure the following criteria,

which indicate the angle and volume distortions of the mapping and meshing: (1) the scaled

Jacobian ζ̄ , (2) the average ᾱ and standard deviation σα of dihedral angles, (3) average

volume distortion Dv, and (4) the number of singularities in hex-meshes Nh (number of non-

valence-6 interior vertices plus non-valence-4 boundary vertices). Since the average values

are affected by the mesh resolution (better when the mesh is denser), we also include the

number of elements in this comparison. When the number of hex elements are similar, the

average values are directly comparable. Compared with [4], our results have significantly

fewer corner numbers and smaller mapping distortion, as illustrated in Fig. 6.5 and Fig. 5.4.
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(a) (b)

Figure 5.4: Polycube of Fertility. A simpler polycube domain can be obtained than the method
of [4] (a) through our construction (b).

Fig. 6.5 (c) shows an example. The average Scale Jacobian of the Bunny model parameter-

ized by [4] is 0.84, while ours is 0.94. Compared with [3], our algorithm also results in less

distorted mapping and meshing results.

Compared with other volumetric parameterization algorithms, the scaled Jacobian and dihe-

dral angle of our results are also comparably low. Through a free-boundary parameterization

of M , Cube-cover [96] generates hexahedral meshes with smaller angle distortion (smaller

deviation). Compared with [5], since [5] aims in improving worst stretched elements, their

results have larger smallest scaled Jacobian values while ours have slightly better average

scaled Jacobian, as shown in Table 6.2. However, there are usually complicated singularity

lines inside the hex mesh whose distribution cannot be controlled. They need to perform a

postprocessing to reduce singularities during mesh generation. Figure 5.5 illustrates the sin-

gularity distribution of the final generated hex-meshes of [5] and our results. The singularity

numbers in the final meshes are similar.
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(a) [5]: Nh = 234 (b) Our result: Nh = 211
ζ̄ = 0.935 (134K hexes) ζ̄ = 0.938 (80K hexes)

(c) [5]: Nh = 188 (d) Our result: Nh = 200
ζ̄ = 0.866 (11K hexes) ζ̄ = 0.931 (18K hexes)

(e) [5]: Nh = 339 (f) Our result: Nh = 366
ζ̄ = 0.911 (14K hexes) ζ̄ = 0.914 (18K hexes)

Figure 5.5: Comparison with [5]. ζ̄ is the Scaled Jacobian. Our results demonstrate smaller
distortion (larger scaled Jacobian) while the number of singularities is similar to what is in [5].
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Table 5.2: Comparison with other methods. # Hexes indicates the number of hex elements in the
final mesh. ζ̄ is the average Scaled Jacobian; ᾱ and σα are the average and standard deviation
of dihedral angles. Dv is the volume distortion of the parameterization. Dg = dH/ldiag is the
geometric deviation. Nh is the number of singularities in the hex-mesh.Some data/statistics are
not available from the original papers and thus are labeled as -.

Models #Hexes ζ̄ ᾱ / σα Dv Dg(10
−7) Nh

Bunny [3] 82k 0.930 89.99 / 29.97 - - 405
Bunny [5] 134k 0.935 89.99 / 27.79 - - 234
Bunny (ours) 80k 0.938 89.99 / 11.43 0.997 0.04 211
Rocker-arm [96] 36k 0.950 90.00 / 8.40 - - -
Rocker-arm [3] 18K 0.899 - - - -
Rocker-arm [5] 11K 0.866 89.98 / 37.31 - - 866
Rocker-arm (ours) 18k 0.931 90.00 / 12.75 0.997 0.02 200
Fertility [3] 20k 0.911 90.00 / 29.62 - - 432
Fertility [5] 14K 0.911 90.00 / 29.36 - - 339
Fertility (ours) 18k 0.914 89.99 / 10.41 0.993 4.23 366
Hand [96] 5k - 90.00 / 10.30 - - -
Hand [3] 12k 0.928 - - - -
Hand (ours) 10k 0.937 89.88 / 12.88 0.994 2.06 110
3-Torus (ours) 25k 0.927 89.99 / 10.31 0.996 2.36 944
Kitten (ours) 16k 0.923 89.98 / 12.18 0.997 0.12 941
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Figure 5.6: Hex Meshing Results for Double Torus, 3-Torus, Bump Torus, Hand, Rocker arm,
Kitten, Fertility, Bunny and Buddha.

102



5.4 CONCLUSIONS

We develop an automatic and effective polycube parameterization pipeline for general 3D

solid models. Our domain optimization can generate a desirable polycube balancing the

domain simplicity and adequate resemblance to the input model. Upon this polycube, a

volumetric parameterization with small distortion can be computed. This usually does not

have interior singularities and hence is desirable for many computer-aided design/engineering

tasks such as spline construction. We show this parameterization’s application in high-quality

hexahedral mesh generation for 3D solid geometric models.

Limitations. First, our polycube construction and volumetric mapping are computed sep-

arately. Since the domain shape will affect the mapping distortion, solving them together

may lead to a better parameterization. However, their simultaneous optimization is very

expensive, especially when the topological structure (corner numbers) of the polycube do-

main needs to be modified during the optimization. A polycube surface domain optimization

algorithm without changing polycube corner numbers was given in [104], which is already

expensive for surface parameterization and prohibitive in volumetric parameterization. Sec-

ond, modeling complex feature curves are still challenging on volumetric polycube domains.

More sophisticated scheme and efficient mixed-integer optimization algorithms are needed.

Third, hex meshes generated by polycube mapping may have big distortion near corners.

Introducing interior singularities can reduce such distortion. Postprocessing such as adaptive

insertion of padding layers [92] (by splitting highly sheared hex elements) or other general

frame field and mapping optimization methods [5, 96, 97] can be directly adopted upon our

initial meshing results.
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6. SIMULTANEOUSLY OPTIMIZING THE POLYCUBE DOMAIN AND
THE PARAMETERIZATION

In previous chapters, we compute the PolyCube parameterization in two steps: first con-

struct and optimize a suitable PolyCube domain, then base on the domain we compute a

parameterization.

Because the parameterization depends on two aspects, the domain shape and the image on

the domain, our natural thought to simultaneously optimize them, so we can get a lower

distorted PolyCube parameterization.

In previous section, we apply a pre-deformation step to get a pseudo-PolyCube, Here we

can extend the deformation from surface to volume to get the PolyCube shape and the

volumetric domain.

6.1 NOTATION AND OVERVIEW

We follow the notations defined in previous chapters. The input is a solid tetrahedral mesh

solid model asM and its boundary surface as S = ∂M . The vertex coordinate set is denoted

as X̃ = {x̃i} The output is the deformed tetrahedral mesh with the normal of each boundary

triangle is axis-aligned for an arbitrary orthonormal coordinate system, i.e., a polycube. The

deformed vertex coordinate set is denoted as X = {xi}.

This output will be found through the constrained minimization of an energy containing
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terms to enforce axis-alignment of the normal field (Section 6.2) and term to control the

paramterization distortion (Section 6.3), an numeric approach to solve this optimization

problem is introduced in Section 6.4, after get the solution, a process to further reduce the

number of the corner number of the PolyCube is introduced in Section 6.5.

6.2 L1 FORMULATION OF THE POLYCUBE

A simple geometric characterization of the PolyCube domain is that the normal of each

boundary faces is aligned with one of the axes of an orthonormal coordinate frame. That

means the l1−norm of every l2−unit normal vector on the boundary is 1, which is the

minimum [120].

For a triangle with L2-unit normal n, the L1-norm is:

‖n‖1 = |nx|+ |ny|+ |nz|

the deviation from being axis-aligned can be defined using L1-norm through ‖n‖1 − 1.

So that, for a boundary triangle t, the normal energy ENORMAL can be written as:

ENORMAL(t) = ‖nt‖1 − 1. (6.1)

However, directly use this energy will possibly cause the triangle degenerate to a point. So

we use an area to prevent the shrinkage:

ENORMAL(t, X) = Ãt‖nt(X)‖1 −At(X). (6.2)

where Ãt is the input area of triangle t, which is a constant, At(X) is the deformed area of

triangle t.
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With this, the normal term over the whole tetrahedral mesh M is

ENORMAL(X) =
∑

bi

Ãbi‖nbi(X)‖1 −
∑

bi

Abi(X),

6.3 PARAMTERIZATION DISTORTION TERM

We are not only need to generate the PolyCube shape. It desirable for a PolyCube param-

terization to be low distortion. This is not only for surface but also for the volumetric.

There are several distortion measurement such as As-Rigid-As-Possible [53], As-Similar-As-

Possible [121] and As-Killing-As-Possible [122], and Most Isometric ParamterizationS(MIPS) [123].

The stand 2D MIPS energy measures the conformality of the mapping σ1σ
−1
2 + σ2σ

−1
1 where

σ1, σ2 are the singular values of the Jacobian of the mapping associated with a triangle.

Based on the singular values, there are other type of distortion measurement such as Dirich-

let energy σ2
1 + σ2

2, Green-Lagrange energy (σ2
1 − 1)2 + (σ2

2 − 1)2. Here we adopt a modified

MIPS energy called Advanced MIPS (AMIPS) [124] which can also measure the isometric

distortion.

In 2D case, given a triangle t with points p1, p2, p3 with coordinates (x1, y1), (x2, y2), (x3, y3)

respectively, and with the corresponding points in parametric domain are q1, q2, q3 with

coordinates (u1, v1), (u2, v2), (u3, v3).

The Jacobian Matrix is

Jt =
1

2At



x1 x2 x3

y1 y2 y3







0 1 −1

−1 0 1

1 −1 0







u1 v1

u2 v2

u3 v3






0 1

1 0




=
1

2At

CXUTB

(6.3)
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where At =
(u2−u1)(v3−v1)−(u3−u1)(v2−v1)

2
is the area of triangle t,

CX =



x3 − x2 x1 − x3 x2 − x1

y3 − y2 y1 − y3 y2 − y1


 (6.4)

B =



0 1

1 0


 (6.5)

Here xi, yi are known, ui, vi are unknowns.

On this triangle t, the MIPS energy EMIPS is:

EMIPS
t =

σ1
σ2

+
σ2
σ1

=
√
σ2
1 + σ2

2

√
1

σ2
1

+
1

σ2
2

=
√

Tr(Σ2
t )

√
Tr((Σ−1

t )2)

=
√

Tr(V ΣTUTUΣV T )
√

Tr(U(Σ−1)TV TV Σ−1UT )

=
√

Tr JT
t Jt

√
Tr (J−1

t )T (J−1
t )

= ‖Jt‖F‖J−1
t ‖F

=
Tr (JT

t Jt)

det Jt

(6.6)

where σ1, σ2 are the singular values, Jt = V ΣUT is the Singular Value Decomposition.

For the isometric control, the Edet term can be added:

Edet
t =

det(Jt) + det(J−1
t )

2
(6.7)

So that the total energy (Advanced MIPS, AMIPS) on the whole mesh is:

EAMIPS =
∑

t

EMIPS
t +

∑

t

Edet
t =

∑

t

Tr (JT
t Jt)

det Jt
+
∑

t

det(Jt) + det(J−1
t )

2
(6.8)
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Note that the definition of AMIPS is easy to extend to 3D case.

6.4 SOLVING THE OPTIMIZATION PROBLEM

With the formulation of the boundary normal term ENORMAL measuring the PolyCube

geometric shape, and the AMIPS term EAMIPSmeasuring the paramterization distortion,

we can assemble the total energy for solving the PolyCube paramterization:

EPCP (X) = αENORMAL + EAMIPS (6.9)

where α is the weight to adjust the two energy term.

6.4.1 Gradient Computation

To solve this optimization, we apply the gradient-decent method. However, the ENORMAL

contains the L1−norm which is not smooth. To deal with this case, one can use interior point

methods [125]. Here we employ a smooth approximation of the L1−norm for simplicity.

Given a component c ∈ [−1, 1] of the normalized normal, we simply replace the absolute

value |c| by
√
c2 + ε := c̃, where c̃ ≤ 0 is a regularizing parameter to balance smoothness

and accuracy.

The gradient (with respect to node positions) of this approximate absolute value is expressed

as a function of the original component:

∇c̃ = c

c̃
∇c

The gradient of second term EAMIPS can be derived as follows.
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The derivative with respective to variable p is:

∂E

∂p
=

2Tr(JT
t ∂pJt)

det Jt
− EMIPS Tr(J−1

t ∂pJt) +
(det(Jt)− det(J−1

t )) Tr(J−1
t ∂pJt)

2
+

1

2
(det J − det J−1) Tr(J−1 · ∂pJ).

(6.10)

6.4.2 Weighting Schedule

Since our energy is consisted of two terms, we need to choose the weight α to balance the

ENORMAL and EAMIPS. Also, since we use an approximation of the L1−norm function, the

parameter ε also needs to be determined.

Obviously the boundary normal will become axis-aligned only if the weight α is large. How-

ever, starting a large α will remove the effect ofEAMIPS. So we begin solving the optimization

with a small α and relative large ε to make the approximation of L1−norm smooth without

be trapped in local minimum so fast. After this converge, we gradually increase the α and

reduce the ε to get an more accurate solution.

In our experiments, we start with α = 0.1, ε = 1, then after each convergence, we double the

α and half the ε. The processes will converge in 20 iterations in our experiments.

Figure 6.1 shows an simple example on 2D:

(a) (b) (c)

Figure 6.1: (a) Input (b) Deform only considering boundary normal term, the red triangles in (a)
will degenerate. (c) Considering the AMIPS mapping distortion term to prevent degeneration.
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6.5 SIMPLIFYING THE POLYCUBE DOMAIN

After solving the optimization, we get the PolyCube domain with the paramterization. Recall

that a PolyCube domain is preferable if it has fewer number of corner points. However our

deformation energy formulation lacks control on the number of the corner points. So we

add a step to simplify the PolyCube domain by removing corner points. First, we use

voxelization to embed the resultant PolyCube domain in a grid space, then we use a moving

boundary plane in the grid space to get a PolyCube domain with fewer corner points and the

paramterization. The first step voxelization we apply the same algorithm described in 4.4.1.

After the voxelization, the PolyCube domain can be defined by the boundary patches. By

moving the boundary patches in the grid space, we can modify the PolyCube domain shape

and parameterization.

The quads in ∂P̃ can be clustered into 6 types of patches by their normals (±X,±Y,±Z).

Given a direction ~d, a patch is called a Positive Patch if ~n · ~d = 1, where ~n is the normal

of the patch. It’s a Negative Patch if ~n · ~d = −1. In our algorithm we use +X,+Y,+Z as

directions. Fig. 6.2 illustrates an example.

In the voxelized grid, each quad has an integer height on its normal direction. Corners can be

eliminated by moving patches on the normal direction. Fig. 6.3 illustrates an example. After

moving the upper patch down and merge with the lower one, four corners are eliminated.

We can optimize the PolyCube domain by assigning a new height to each boundary patch.

The two objectives are: first, we would like to reduce the corner number to get a simpler

domain; second, the geometric change should not be large from the initial polycube.

The pipeline of our polycube optimization algorithm is shown in Algorithm 1.
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(a) Polycube surface (b) +X and −X patches
(c) +Y and −Y patches (d) +Z and −Z patches

Figure 6.2: Six types of patches in three direction. Negative patches are in green.

Figure 6.3: Left: Original two patches. The upper patch has four corners in red color. Right: After
Moving the up patch down, the four corners are eliminated.

Algorithm 1: Polycube Optimization Algorithm

input: Initial polycube P̃

1 foreach quad q ∈ ∂P̃ do
2 h0q ← its initial height ;

3 end foreach

4 foreach patch p ∈ ∂P̃ do
5 h0p ← its initial height ;

6 end foreach
7 Compute valid moving integer interval {Hmin

p , . . . , Hmax
p } for each patch p ;

8 k ← 0 ;
9 repeat

10 Compute patch heights which decrease the PolyCube Energy EP

11 until no patch changes height ;
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Computing the Valid Moving Integer Interval. When optimizing the height of each

polycube patch, the topology of the polycube should not change (i.e., a handle should not

disappear). Merging a positive patch with a negative patch will lead to a non-manifold or a

topological change of the polycube. For example, in Fig. 6.2 (d), merging the lowest positive

patch and highest negative patch will eliminate the handle, which should be prevented during

the polycube optimization. So, we enforce a valid moving interval for each patch to avoid

this problem.

For a patch p perpendicular to an axis direction d, first we compute a patch set Pp = {pi},

composed of all other patches that are perpendicular to d, such that 1) pi has a different

orientation with p; and 2) p and pi, after projected onto a plane perpendicular to d, intersect

with each other. Then the height interval Hmin
p , . . . , Hmax

p for patch p can be determined

from Pp: H
min
p = max{hpi|hpi < hp, pi ∈ Pp}, Hmax

p = min{hpi|hpi > hp, pi ∈ Pp} where hp

is the height of patch p, hpi is the height for patch pi ∈ Pp.

6.5.1 PolyCube Energy Formulation

We define a PolyCube energy EP to evaluate the quality of the PolyCube Parameterization.

The energy is consisted of two terms: the domain complexity term and the parameterization

distortion term.

The domain complexity term reflects the corner numbers of the PolyCube domain, which

can be computed by the normals of the adjacent boundary patches. For a patch pi, N(pi) is

it’s neighbor patches, n(p) is the normal of the patch p, we formulate the complexity energy

as follows:
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EC(pi) =
∑

pj∈N(pi)

1− (npi · npj) (6.11)

The second term of PolyCube Energy is paramterization distortion EAMIPS. The total

energy can be written as

EP =
∑

pi

EC(pi) + αPCE
AMIPS (6.12)

where the αPC is the weight to balance two terms. In experiments we choose α = 20.

Solving the Optimal New Height ĥp. Within the moving interval for each patch p,

we can calculate, when we move p to each new height h′ ∈ (Hmin
p , Hmax

p ), (1) the change

of corner number ∆Ec(p, h
′) = Ec(p, h

′) − Ec(p, h
0), and (2) the new polycube’s geometric

deviation from the initial polycube ∆Eg(p, h
′) =

∑
q∈pA(q)|h′ − h0q |, where q ∈ p are the

quads in p, and h0q is the initial height of quad q. The height that minimizes the PolyCube

Energy EP is the optimal new height ĥp in this iteration.

The algorithm can be shown as:

1 k ← k + 1 ;

2 foreach direction ~d in directions {+X,+Y,+Z} do
3 foreach patch p perpendicular to ~d do
4 foreach h′ ∈ {Hmin

p , . . . , Hmax
p } do

5 Compute the PolyCube Shape Energy
6 end foreach

7 Picking the Optimal New Height ĥkp which minimizes E(h′) ;

8 Locally update the polycube mapping

9 end foreach

10 end foreach
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Parameterization Update. When the optimal height ĥp is obtained in the (k + 1)th

iteration, we update this modified patch as follows. (1) Set the new height for patch p

and its quad facets: hk+1
p = ĥp, and hk+1

q = ĥp, ∀q ∈ p; (2) Locally update the polycube

paramterization (3) Update the moving range of related neighboring patches.

6.5.2 Solving the Optimal Patch Heights using Beam Search

Greedily solving the patch heights one by one is slow, and can be easily trapped in local

minimum. We apply the Beam Search to find a better solution. Beam Search algorithm is

a heuristic search algorithm that can be used to solve optimization problem.

Suppose we have a state-space Ω. For a state S ∈ Q, we can use n parameters to describe

it, S = S(x1, x2, . . . , xn). In addition, we have an evaluation function f(x1, x2, . . . , xn) to

estimate how good or how bad this state is. Our goal it to find a state S∗(x∗1, x
∗
1, . . . , x

∗
n), its

evaluation value f(x∗1, x
∗
1, . . . , x

∗
n) is the best one of all states in Ω.

The general beam search stragtegy is as follows, also in Figure 6.4.

1. Begin with an initial state S0

2. Generate all successors of S0: {S1
1 , S

1
2 , . . . , }

3. Select the k best states {S̄1
1 , S̄

1
2 , . . . , S̄

1
k}

4. For each S̄1
1 , keep steps 2 and 3 until reach an optimal.

First, for each boundary patch we assign an integer variable xi for the height in the grid

space on it’s normal direction. In each iteration of the beam search, k best states are selected

by evaluating the PolyCube Energy EP . Iteratively update the patch heights until reach a

local minimum.
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Figure 6.4: The general beam search strategy.

6.6 RESULTS AND COMPARISON

We compute polycube parameterization for various solid models. The experiments are con-

ducted on a workstation with 2.27 GHz CPU and 4GB memory.

We compare our parameterization and meshing results with existing polycube mapping meth-

ods [3, 4, 126] and volumetric parameterization methods [5, 96]. The statistics are shown in

Table 6.2. The following criteria indicating the angle and volume distortions of the map-

ping and meshing are measured: (1) the scaled Jacobian ζ̄, (2) the average ᾱ and standard

deviation σα of dihedral angles, (3) average volume distortion Dv, and (4) the number of

singularities in hex-meshes Nh (number of non-valence-6 interior vertices plus non-valence-4

boundary vertices). Compared with [3], our algorithm more robust and results in close dis-

torted mapping and meshing results. Compared with [4], our result has significantly fewer

corners and smaller mapping distortion, as illustrated in Fig. 6.5. Compared with [126], our

method gets close corner numbers in polycube and mapping distortion in meshing results.

Our geometric deviation is slightly smaller than [126]. Generally, our polycube optimization

method is 30% faster than the morphological-based method in [126]. The runtime statistics

are shown in Table 6.1.
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Compared with other volumetric parameterization algorithms, the scaled Jacobian and dihe-

dral angle of our results are also comparably low. Through a free-boundary parameterization

of M , Cube-cover [96] generates hexahedral meshes with smaller angle distortion (smaller

deviation). Compared with [5], since [5] aims in improving worst stretched elements, their

results have larger smallest scaled Jacobian values while ours have slightly better average

scaled Jacobian, as shown in Table 6.2. However, there are usually complicated singularity

lines inside the hex mesh whose distribution cannot be controlled. They need to perform a

postprocessing to reduce singularities during mesh generation.

Table 6.1: Polycube Optimization Runtime Table (in seconds).NV is vertex number of the input
mesh S.

Model( NV ) [126] Ours
3-Torus (9.1K) 234.53 150.21
Bunny (34.8K) 521.24 321.57

Rocker arm (45K) 609.97 420.52
Hand (32K) 525.88 355.28

Fertility (34K) 485.53 330.81
Kitten (35K) 515.88 335.12

Fig. 6.6 illustrates our hex meshing results. We document our mapping/meshing distortions,

and the geometric deviation in Table 6.2.
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Table 6.2: Comparison with other methods. # Hexes indicates the number of hex elements in the
final mesh. ζ̄ is the average Scaled Jacobian; ᾱ and σα are the average and standard deviation
of dihedral angles. Dv is the volume distortion of the parameterization. Dg = dH/ldiag is the
geometric deviation. The order of magnitude of Dg is 10−7. Nh is the number of singularities in
the hex-mesh.Some data/statistics are not available from the original papers and thus are labeled
as -.

Models #Hexes ζ̄ ᾱ / σα Dv Dg Nh

Bunny [3] 82k 0.930 89.99 / 29.97 - - 405
Bunny [5] 134k 0.935 89.99 / 27.79 - - 234
Bunny [126] 80k 0.938 89.99 / 11.43 0.997 0.04 211
Bunny (ours) 80k 0.933 89.99 / 18.42 0.997 0.02 222
Rocker-arm [96] 36k 0.950 90.00 / 8.40 - - -
Rocker-arm [3] 18K 0.899 - - - -
Rocker-arm [5] 11K 0.866 89.98 / 37.31 - - 866
Rocker-arm [126] 18k 0.931 90.00 / 12.75 0.997 0.02 200
Rocker-arm (ours) 18k 0.910 90.00 / 11.50 0.998 0.02 240
Fertility [3] 20k 0.911 90.00 / 29.62 - - 432
Fertility [5] 14K 0.911 90.00 / 29.36 - - 339
Fertility [126] 18k 0.914 89.99 / 10.41 0.993 4.23 366
Fertility (ours) 18k 0.911 89.99 / 11.22 0.994 3.23 402
Hand [96] 5k - 90.00 / 10.30 - - -
Hand [3] 12k 0.928 - - - -
Hand [126] 10k 0.937 89.88 / 12.88 0.994 2.06 110
Hand (ours) 10k 0.929 89.99 / 15.28 0.994 1.76 140
Kitten [126] 16k 0.923 89.98/12.18 0.997 0.12 941
Kitten (ours) 16k 0.910 89.99 / 13.41 0.998 0.08 960
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(a)

(b)

(c)

Figure 6.5: Polycube construction and map of Bunny. Compared with [4] (a), our polycube con-
struction (c) can get a simpler domain. Compare with citeYZWL13CAD (b) is 30% faster. The
average scale Jacobian are close and our geometric deviation is slightly better. Table 6.2

118



Figure 6.6: Polycube (left) and Hex Meshing Result (right) for Rocker arm, Fertility, Bunny and
Kitten.
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6.7 CONCLUSION

In this part we explore the PolyCube parameterization based hexahedral mesh generation.

The PolyCube construction and parameterization computation can be separate or simultane-

ously. In the separate framework, a PolyCube is constructed from a pseudo-PolyCube, then

optimized by voxelization and homotopic morphological operations. After the PolyCube

domain is fixed, a frame-field guided parameterization is computed. In the simultaneous

framework, a volumetric deformation is applied on the input solid model, then is optimized

by moving planes using beam search algorithm. The simultaneous framework can provide

lower distortion parameterization and hiqher quality hexahedral mesh.
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7. CONCLUSION AND FUTURE WORK

High-quality mesh generation is important in finite element analysis. When compared with

unstructured meshes, the structural meshes are favored in many scientific/engineering tasks.

However, generating high-quality structural mesh remains challenging, especially for large-

scale geometric data. This dissertation studies the effective generation of structural mesh on

large and complex geometric data. We study a general geometric computation paradigm to

solve this problem via model decomposition and divide-and-conquer.

To demonstrate the efficiency and effectiveness of our framework, we test our algorithm on

various sets of scientific data. We compare our decomposition results with existing partition-

ing methods; also, we compare meshing quality with the results from other popular meshing

algorithms. We also show this pipeline scales up efficiently on HPC environment.

A possible extension of current work is the parallel structured mesh generation framework

for 3D data. First a geometric-aware graph partitioning is applied to segment the input

3D data into a set of sub-regions, then for each sub-region using polycube-mapping based

method to generate the structured meshes. The extension / improvement of current work

includes:

• Extend the geometric-aware graph partitioning to 3D.

• To generate the structured mesh for a large-scale geometry via polycube mapping in

divide-and-conquer framework, a parallel polycube domain optimization is desirable.
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