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ABSTRACT 

Numerical weather prediction is a computationally expensive task that requires not only 
the numerical solution to a complex set of non-linear partial differential equations, but 
also the creation of a parameterization scheme to estimate sub-grid scale phenomenon. 

The proposed method is an alternative approach to developing a mesoscale 
meteorological model – a modified recurrent convolutional neural network that learns to 
simulate the solution to these equations. 

Along with an appropriate time integration scheme and learning algorithm, this method 
can be used to create multi-day forecasts for a large region. The learning method 
presented is an extended form of Backpropagation Through Time for a recurrent 
network with outputs that feed back through as inputs only after undergoing a fixed 
transformation. 

An initial implementation of this approach has been created that forecasts for 2,744 
locations across the southeastern United States at 36 vertical levels of the atmosphere, 
and 119,000 locations across the Atlantic Ocean at 39 vertical levels.  These models, 
called LM3 and LOM, forecast wind speed, temperature, geopotential height, and 
rainfall for weather forecasting and water current speed, temperature, and salinity for 
ocean forecasting. 

Experimental results show that the new approach is 3.6 times more efficient at 
forecasting the ocean and 16 times more efficient at forecasting the atmosphere. 

The new approach showed forecast skill by beating the accuracy of two models, 
persistence and climatology, and was more accurate than the Navy NCOM model on 
16 of the first 17 layers of the ocean below the surface (2 meters to 70 meters) for 
forecasting salinity and 15 of the first 17 layers for forecasting temperature. The new 
approach was also more accurate than the RAP model at forecasting wind speed on 7 
layers, specific humidity on 7 layers, relative humidity on 6 layers, and temperature on 
3 layers, with competitive results elsewhere. 
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2.1.1 Backpropagation of Error 
The Backpropagation Algorithm is essential to training neural networks.  It computes how the 
values of the weights should change to minimize the error using gradient descent. 

We compute error at the output as [5]: 

Error = 12෍(t୩ − y୩)ଶ୬ିଵ
୩ୀ଴  

2-1

Where t୩is the kth target value, y୩is the kth output value, and n is the number of outputs. 
We can compute the error at the output as [6]: δ୭୩ = (t୩ − y୩)y୩(1 − y୩) 2-2

And the weight update for the output layer [6]: w୨୩ = w୨୩ + ηδ୭୩a୨୦୧ୢୢୣ୬ 2-3

Where w୨୩is the weight between the jth hidden neuron and the kth output neuron, a୨୦୧ୢୢୣ୬ is 
the activation of the jth hidden neuron, and η is the learning rate. 

Additionally, we can compute the error at the hidden layer as [6]: 

δ୦୨ = a୨(1 − a୨)෍ w୨୩δ୭୩୩  2-4

And the weight update for the hidden layer [6]: w୧୨ = w୧୨ + ηδ୦୨x୧ 2-5

Where w୧୨ is the weight between the ith input node and jth node of the hidden layer, and x୧is the ith input. 
2.1.2 Recurrent Neural Networks 
A recurrent neural network simply means that the network has outputs that are fed back as 
inputs.  These outputs may either be the output of the entire network, or they could be the 
output of a hidden layer. 
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and wind direction) for the single site. They tested using the 7 variables as inputs, the 7 
variables plus 7 more from an hour before, and the 7 variables plus their 1 hour deltas [14]. 
Abdel-Aal et al. used abductive networks to create a 24-hour hourly temperature forecast. 
The inputs to the network were temperatures for the 24 previous hours, minimum and 
maximum temperature for the previous day, and the minimum and maximum forecasted 
temperature. The output is the temperature for a given hour on the following day [15]. 

Abistado et al created a forecast for a single location (PAG-ASA Mactan-Cebu Station) 
using mean dew point, minimum temperature, mean temperature, mean humidity, rainfall, mean 
wind speed, prevailing wind direction, mean cloudiness, month of year, day of month, and 
mean pressure as inputs.  The output was tomorrow’s temperature, humidity, and amount of 
rainfall [16]. 

Mao et al created a 24 hour wind power forecast using a neural network with wind speed, 
wind direction, temperature, humidity, and pressure as inputs [17]. 

El-Feghi et al used radial basis functions to forecast temperature for a single location 
(Misrata, Libya). They used humidity, dew point, wind speed, wind direction, and pressure 
as inputs [18]. 

Raza and Jothiprakash used data for a single location (Tirunelveli, Tamil Nadu, India) to 
train a neural network to predict tomorrow’s maximum temperature, minimum temperature, 
humidity, wind speed, sunshine duration, dew point, and evaporation.  Their model takes 
these 7 variables for today and predicts the value of these variables tomorrow [19]. 

Hayati and Mohela used data from a single site (Kermanshah, Iran) to produce a one-day 
forecast for tomorrow’s high temperature.  They used wind, humidity, wet bulb temperature, 
dry bulb temperature, pressure, sunshine, and radiation as input [20]. 

Nurcahyo et al predicted rainfall for a single location (Kemayoran Jakarta) using temperature, 
wind speed, sunshine duration, pressure, humidity, and previous day rainfall as input [21]. 
Baboo and Shereef used data for a single site (Chhatrapati Shivaji International Airport).  
The used pressure, temperature, humidity, wind velocity, and wind direction as inputs [22]. 

There have been many attempts to create neural networks to forecast weather for a single 
location.  However, none of these approaches take into account spatial information, and 
therefore cannot account for advection and the movement of cyclones and frontal boundaries. 
For this reason, they have limited use. 
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2.1.4.2 Multiple location models 
There are very few studies that include multiple locations.  Collins and Tissot trained 286 
neural networks to detect the presence of thunderstorms on a 14x23 grid [23].  Each neural 
network predicted the presence of a thunderstorm within one box. 

This previous work is different from the proposed method in that the former trains a different 
network for every grid point, where the latter uses the same trained network for every grid 
point on a given layer.  This represents a significant reduction in the number of weights. 
Additionally, Collins and Tissot’s work downscales output from the Eta model.  The present 
work predicts the future values of the input variables. 

2.2 NOISY DATA, DATA ASSIMILATION, AND KALMAN FILTER 
Sensor data is noisy. Many algorithms, such as Barnes [24] and Cressman [25] analysis 
have been developed to solve this problem. These schemes use successive corrections across 
multiple passes to converge on an estimated denoised grid by applying differing weights to 
observations of different distances from grid points. 

Alternately, if we have a series of data that is observed over time, a Kalman filter [26] may 
be more appropriate. This is actually how our initialization data is produced by NCEP. Our 
initialization data is actually a weighted average of a previous forecast plus any new 
observations [27]. However, because the initialization data is a weighted average of the 
previous forecast and new data, it’s also biased toward the previous forecast and therefore 
cannot be used to produce an accurate representation of model error [27]. 

All data used in the experiments described in the present work have already been previously 
heavily filtered and denoised. Therefore, noise is not considered. 

2.3 CHOICE OF NEURAL NETWORK OR GENETIC ALGORITHM FOR LEARNING 
Choosing which machine learning technique to apply to a given problem is difficult. For the 
present work of forecasting the ocean and weather, a neural network architecture with 
backpropagation was chosen. 

There are a few ways a genetic algorithm could conceivably be used to solve the same 
problem. If the governing equations for forecasting the atmosphere could be described by a 
string/chromosome, then a genetic algorithm could be used to optimize the system. However, 
describing all the necessary equations as chromosomes would be difficult. 

Alternately, a neural network could be used with weights that are learned using a genetic 
algorithm. However, since we can calculate the error gradient and update the weights using 
gradient descent, it’s better to use backpropagation than a genetic algorithm for optimization. 
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Genetic algorithms are better used when no gradient can be calculated and only a fitness 
value can be calculated. 

2.4 NUMERICAL WEATHER PREDICTION 
Numerical Weather Prediction has a long history, beginning with Vilhelm Bjerknes’ equations 
(1904) and Lewis Fry Richardson’s failed forecast for May 10, 1910 (1922) in which he 
computed the entire forecast by hand using his finite difference method and a simplified 
version of Bjerknes’ equations [28]. 

It’s a computationally expensive task that requires not only the numerical solution to a complex 
set of non-linear partial differential equations (PDEs), but also the creation of a 
parameterization scheme to estimate sub-grid scale phenomenon [29]. 

Models such as the NCEP’s RAP (Rapid Refresh) and HRRR (High Resolution Rapid 
Refresh) model use this technique to generate forecasts. 

2.4.1 The Primitive Equations 
The Primitive Equations are a set of non-linear partial differential equations that govern 
atmospheric physics.  A variation of these equations for the backbone of a modern dynamical 
numerical weather prediction model. 

Horizontal motion equations [29]: ∂u∂t = −u∂u∂x − v ∂u∂y − ω∂u∂p + fv − ∂ϕ∂x + F୶ 2-7

∂v∂t = −u∂v∂x − v ∂v∂y − ω ∂v∂p − fv − ∂ϕ∂y + F୷ 2-8

Thermodynamic temperature equation [29]: ∂T∂t = −u∂v∂t − v ∂v∂t + ωቆ RTC୮p − ∂T∂Pቇ + HC୮ 2-9

Conservation of moisture equation [29]: ∂q∂t = −u∂q∂x − v ∂q∂y − ω∂q∂p + E − P 2-10

Conservation of mass (continuity equation) [29]: 
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∂u∂x + ∂v∂y + ∂w∂p = 0 2-11

Hydrostatic equation [29]: ∂ϕ∂p = −RTp 2-12

Table 2-1: List of variables and their meaning. 

Variable Meaning 
u East-West Component of the Wind 

v North-South Component of the Wind 

ω Vertical Velocity 
T Temperature 

q Specific Humidity 

ϕ Geopotential Height 
p Pressure 

These equations are not complete without an additional set of equations (parameterizations) 
to estimate the value of 	F୶, F୷, H, E, and P.  These correspond to friction in the x and y 
directions, heat, evaporation, and precipitation.  The heating term corresponds to heating due 
to incoming solar radiation, outgoing terrestrial radiation, latent heat of condensation, latent 
heat of vaporization, and latent heat of fusion. 

2.4.2 Finite Difference Methods 
The primitive equations contain many spatial derivatives.  These are partial derivatives with 
respect to the east-west and north-south grid coordinates x and y.  They are computed 
numerically using a centered finite difference scheme: ∂T୧୨∂x = T୧ାଵ,୨ − T୧ିଵ,୨2 2-13∂T୧୨∂y = T୧,୨ାଵ − T୧,୨ିଵ2 2-14

This process is similar to an edge detection convolution kernel that detect vertical and 
horizontal edges, respectively. 
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2.4.3 Time Integration 
The learning task of our recurrent convolutional neural network is to learn to compute the 

partial derivative of each variable with respect to time. For temperature, this would beப୘౟ౠப୲ . 
Once this is known, we can time step forward to get the next value of T: 

Tଵ = T଴ + Δt ∂T଴∂t 2-15

T୲ାଵ = T୲ିଵ + 2 × Δt ∂T୲∂t 2-16

The first formula is a forward integration technique, while the second is a centered-in-time 
technique, or leapfrog. While we could use the first one for every time step, errors quickly 
ruin the forecast unless a very small time step is used [29]. It was confirmed experimentally 
(as part of the present work) with a 15 second time step that the forward integration 
technique underperforms the leapfrog scheme using only a 5-minute time step. For this 
reason, we only use the forward scheme in the first time step to get the leapfrog scheme 
started. 

2.4.4 The CFL Condition 
We are using 20km resolution input data and 1 hour later target values. Ideally, we would 
take that input data and create a 1 hour forecast. However, it was discovered by Courant, 
Friedrichs, and Lewy that forecast stability is a function of grid resolution, time step, and 
velocity [30]. 

C = u୫ୟ୶Δt∆x ≤ C୫ୟ୶ 2-17

The ideal value of Cmax depends on many factors, including the system solution method. For 
our purposes, we’ll take it to be equal to 1. This means that with a 1-hour time step and 
20 km grid spacing, the maximum wind velocity we can simulate without the simulation 
becoming unstable is approximately 5.5 m/s or 12 mph. This is much lower than the typical 
maximum wind speed, even at the surface. Jet streams and cyclones can have wind speeds 
that exceed 150 mph. 

If we change our time step to 6 minutes and keep the same grid spacing, we can simulate 
wind speeds up to 55.5 m/s, or 124 mph. This necessarily smaller time step makes 
designing our system much more difficult because we don’t have target values for only 6 
minute later. It also means that the forecast system must run for 10 iterations in order to 
create a 1 hour forecast, increasing computation time by a factor of 10. 
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For reference, the RAP model uses a 1-minute time step. This allows for very high wind 
speeds in a very stable model. 

2.4.5 Parameterization Schemes 
Parameterization schemes are used to estimate sub-grid scales phenomena that can’t be 
directly simulated [31].  Krasnopolsky et al. replaced the shortwave and longwave atmospheric 
radiation parameterization schemes of the NCAR CAM-2 model with a neural network. The 
network proved to be a fast and accurate replacement and resulted in a 50-80 times faster 
computation of the radiation parameterization [32]. 

2.4.6 Rapid Refresh (RAP) Model and the Weather Research and Forecasting (WRF) 
Model 

The NCEP RAP model is a specially configured version of the WRF model.  It’s setup to 
create an 18 hour forecast for the continental United States in 1 hour increments. 

It uses WRF version 3.6.1 with ARW Core. The physic suite includes Grell-G3 convection, 
Thompson/NCAR microphysics, RRTM longwave radiation, Goddard shortwave radiation, MYNN-
Olson turbulent mixing, and RUC-Smirnova land-surface model [33]. 

NCEP runs three versions of the RAP model, at 20km, 13km, and 3km resolutions. 

2.5 PARALLELIZATION AND SCALABILITY 

2.5.1 Motivations 
Forecasting is a very time-sensitive task.  Even if a forecast is 100% accurate, it’s useless if 
the forecast takes too long to produce. 

Advances in accuracy come with increased model resolution.  Unfortunately, halving the 
resolution increases the number of grid points, and therefore computation time, by a factor of 
four.  In accordance with the CFL condition (section 2.2.4), a decrease in spatial resolution 
also necessitates a decrease in time step.  This further increases the computational complexity. 

In order to quickly produce a forecast for a larger region, we must introduce parallelism. 

2.5.2 OpenMP 
OpenMP is a framework for creating parallel code on a single machine by spreading 
computation across processors.  This is done by adding #pragma preprocessor directives to 
the code. For instance: 
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Part of writing the neural network and backpropagation code involved writing a library for 
efficient matrix math operations.  Adding OpenMP to the matrix library significantly improved 
performance. 

2.6 SUMMARY 
Previous work in this direction has been focused mainly on either forecasting weather variables 
for a single location and learn using inputs from only that site, or focused on creating a 
hybrid dynamic climate model by applying machine learning to the parameterization scheme. 
The former ignores the important spatial component that is available and essential to a 
successful forecast, while the latter hybrid model only partially relies on machine learning. For 
this reason, the method proposed is a generalized recurrent convolutional differentiation-
integration neural network that utilizes both spatial and temporal information to generate a 
forecast for a wide region. Instead of developing a hybrid model, the method almost 
exclusively relies on learning with limited domain knowledge.  

The learning method presented is an extended form of Backpropagation Through Time for a 
recurrent network with outputs that feed back through as inputs only after undergoing a fixed 
transformation.  
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Figure 3-2 depicts a centered-in-time (leapfrog) DITS network, which corresponds to 
equation 2-14.  This architecture produces a significant increase in numerical stability and 
accuracy over Figure 3-1.  The main difference is the addition of Xt-1 and Yt-1 as inputs and 
the time step coefficient change from ∆t to 2∆t. 

3.2.2 Backpropagation of Error 
Error is computed at the output of the network.  To back propagate error through Figure 4, 
let’s look at the equation in the second half: 

Xଵ = X଴ + Δt ∂X଴∂t 3-1

Error in Xଵ can be attributed to two sources, X଴ and	Δt பଡ଼బப୲ .  If we assume that the initial
state X଴ is accurate, all error comes from the second half of the equation.  Δt is a constant, 
so all error comes from பଡ଼బப୲ .  Therefore, the error we back propagate through the neural 
network in the left side of the DITS network is ଵ୼୲ பଡ଼బப୲ .  This is done using the standard 
backpropagation network. 

3.3 RECURRENT CONVOLUTIONAL DITS NETWORK 

3.3.1 Motivations 
While an ordinary DITS network is appropriate for a single time step, a recurrent version is 
needed for forecasting multiple time steps into the future.  The convolutional portion refers to 
using a single set of weights across the entire input to create a feature map.  In this 
instance, the feature map is a 2D map of time derivatives.  This allows us to incorporate 
spatial information. 

3.3.2 Network Architecture 
This type of network is conceptually similar to a convolutional neural network.  CNNs typically 
consist of alternating convolution and maxpooling layers.  This network consists of alternating 
convolution and integration layers.  However, the ‘convolution kernel’ is a 3-layer neural 
network instead of a traditional n x n set of weights.  This is done because multilayer neural 
networks can be used as universal approximators. 
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Figure 4-4 Time-step Size vs Execution Time for LOM and NCOM for a 1 hour forecast 

Therefore, LOM is approximately 20.7/5.8 = 3.6 times faster, even before considering that 
the LOM was run on a low power laptop processor, and NCOM is run on likely much faster 
desktop class processors. 

With a nearly factor of four speed up over NCOM, this would allow LOM to work on a grid 
with twice the horizontal resolution of NCOM with the computational resources currently 
allocated to NCOM. 

Figure 4-4 shows how the execution time of both LOM and NCOM vary with time-step size 
for a 1 hour forecast. The smaller the time-step, the more pronounced the difference in 
execution time becomes. 

Although LOM is already very fast, significant optimizations can be made to further speed it 
up. A significant amount of time is wasted copying data to ready it for the neural network. If 
the matrix and neural network library were re-written, LOM (and LM3) would be significantly 
faster. 
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4.5.2 LOM Salinity Forecasting 

Table 4-1 Summary of results forecasting salinity for 8 levels of the ocean, where LOM represents the results of 
the proposed method. Error is MAE. 

Level 
LOM 
Salinity 

NCOM 
Salinity 

Persistence Salinity Climate Salinity 

0m 0.013884 0.010804 0.01169 0.14032
10m 0.005487 0.010515 0.011116 0.122367
30m 0.005662 0.010849 0.010631 0.106313
60m 0.005594 0.009166 0.010892 0.096388
125m 0.014748 0.005943 0.022535 0.080334
350m 0.010341 0.004445 0.015618 0.053019
800m 0.011099 0.00461 0.016777 0.034504
2000m 0.001599 0.0002 0.002476 0.029792

LOM performed better than NCOM on the first 16 levels of the ocean below the surface, with 
an average error for NCOM around 80% higher. In addition to levels 1-16, LOM also 
outperformed NCOM on level 33 with a 15% difference in error. 

Table 4-2 Table of results for levels where LOM performed better than NCOM, persistence, and climatology. 

Level 
LOM Error 
Salinity 

NCOM Error 
Salinity 

2 m 0.005607 0.010635
4 m 0.005843 0.010575
6 m 0.005624 0.010528
8 m 0.005550 0.010506
10 m 0.005487 0.010515
12 m 0.005384 0.01056
15 m 0.005302 0.010659
20 m 0.005215 0.010856
25 m 0.005210 0.010942
30 m 0.005134 0.010849
35 m 0.005097 0.010614
40 m 0.005095 0.010271
45 m 0.005108 0.009923
50 m 0.005226 0.009637
60 m 0.005594 0.009166
70 m 0.006602 0.008874
1250 m 0.0009348 0.00100144
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Figure 4-5 LOM salinity forecast at the surface. On the left, a comparison of the forecast change in salinity vs 
actual change in salinity. On the right, actual salinity vs forecasted salinity. 

4.5.3 LOM Water Temperature Forecasting 

Table 4-3 Summary of results forecasting temperature for 8 levels of the ocean, where LOM represents the results 
of the proposed method. Error is MAE in Celsius. 

Level 
LOM Error 
Temperature 

NCOM Error 
Temperature 

Persistence Error 
Temperature 

Climate Error 
Temperature 

0m 0.140178 0.134634 0.130658 0.269382
10m 0.062074 0.138412 0.063263 0.297142
30m 0.050006 0.115152 0.041969 0.296411
60m 0.054653 0.08761 0.041167 0.279829
125m 0.23243 0.059692 0.233179 0.378432
350m 0.103416 0.033024 0.099292 0.147696
800m 0.157645 0.041699 0.161521 0.198037
2000m 0.016453 0.00205 0.024667 0.050963

LOM outperformed NCOM on levels 2 through 16 (4 meters to 80 meters), with NCOM’s 
error from 32% to 134% higher than LOM. 
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Table 4-4 Table of results for temperature forecasting for levels where LOM performed better than NCOM. Error is 
MAE. 

Level 
LOM Error 
Temperature 

NCOM Error 
Temperature 

4 m 0.100867 0.135179
6 m 0.078911 0.136295
8 m 0.068323 0.13773
10 m 0.062074 0.138412
12 m 0.058972 0.138005
15 m 0.057884 0.135585
20 m 0.055215 0.128569
25 m 0.052542 0.121276
30 m 0.050006 0.115152
35 m 0.051132 0.109383
40 m 0.052422 0.103977
45 m 0.053044 0.099151
50 m 0.053429 0.094972
60 m 0.054653 0.08761
70 m 0.060478 0.080166
80 m 0.040964 0.071781

Figure 4-6 LOM Water temperature forecast. On the left, scatterplot of forecasted change in temperature vs actual 
change in temperature at the surface. 
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4.5.4 LOM Water Current Forecast 

Table 4-5 Summary of results forecasting temperature for 8 levels of the ocean, where LOM represents the results 
of the proposed method. Error is MAE in Celsius. 

Level 
LOM  

Error U 
NCOM  
Error U 

Persistence  
Error U 

Climate  
Error U 

0m 0.106984 0.017094 0.104862 0.14032
10m 0.099336 0.016522 0.084165 0.122367
30m 0.080445 0.01203 0.07347 0.106313
60m 0.07187 0.010742 0.070892 0.096388
125m 0.055384 0.008957 0.06116 0.080334
350m 0.045684 0.006257 0.046137 0.053019
800m 0.036105 0.002996 0.033173 0.034504
2000m 0.008534 0.00174 0.022524 0.029792

Table 4-6 Summary of results forecasting temperature for 8 levels of the ocean, where LOM represents the results 
of the proposed method. Error is MAE in Celsius. 

Level 
LOM 

Error V 
NCOM 
Error V 

Persistence  
Error V 

Climate  
Error V 

0m 0.104665 0.019712 0.098368 0.127312
10m 0.100995 0.017163 0.087528 0.12321
30m 0.09404 0.010977 0.076755 0.113392
60m 0.095549 0.010107 0.073601 0.104831
125m 0.085993 0.008456 0.063806 0.086946
350m 0.060566 0.005893 0.045165 0.053475
800m 0.031424 0.003277 0.033789 0.037172
2000m 0.010783 0.001955 0.015529 0.030997
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Figure 4-7 LOM water current forecast. On the left, scatterplot of actual change in surface water current for the u 
(east-west) component vs forecasted change. On the right, the same, except for the v (north-south) component. 

4.6 PRUNING 
Networks were trained for every variable for every level. However, because of the way the 
networks are designed, a network for a variable for one level can be used interchangeably 
with a network trained for a different level. 

When cross-testing networks across levels, it was found that the network for salinity from 
level 0 was actually the best performing network for all levels less than or equal to 17. 
Although all the networks trained for above level 17 performed better than NCOM, the entire 
model performed better when the lower performing networks were swapped out in favor of the 
better performing ones that were trained for different levels. 

The same was found for levels greater than 17, where the best performing network was from 
level 28. 

4.7 DISCUSSION 
LOM is a much less computationally expensive model compared to NCOM. This will allow 
LOM to compute higher resolution grids than NCOM, and with smaller time-steps. Both of 
these would improve accuracy over NCOM. 

LOM already performs better than NCOM in shallow water with forecasting temperature and 
salinity. Forecasting water current has been a significantly bigger challenge. However, even if 
water current forecasting cannot be improved, the results show that a hybrid LOM-NCOM 
model that focused on each’s strengths could result in a much more accurate model. 
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The strong performance of NCOM is very misleading. Our measurement of the accuracy of 
NCOM is primarily on the comparison of a 24 hour NCOM forecast to the ground truth 
initialization grid for NCOM for the same time the next day. According to Allan Wallcraft 
(Navy Research Lab, NCOM), this is not a fair comparison and leads to a measurement of 
error that is much lower than the actual forecast error [27]. This is because of the fact that 
the ground truth initialization grid is actually based on the 24 hour forecast from the day 
before… exactly what we’re trying to find the error in. The initialization values are a weighted 
average of the 24 hour forecast from the previous day, buoy data, and satellite data. 
Because there are so few subsurface measurements, the 39 layers below the surface are 
synthetic profiles based on estimates from surface observations [27]. For these reasons, our 
error measurement is biased towards a lower error for NCOM. 

The results show that LOM does have forecast skill and can outperform a state-of-the-art 
ocean forecast system (NCOM), especially if LOM is further developed or combined with 
NCOM. 

Additional numerical stability could be achieved by switching from the leapfrog time integration 
scheme to a 3rd order Runge-Kutta integration scheme. 
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rectangular subgrid of the NCEP Grid 252. This grid would be nested inside a larger grid. 
Ideally, this would cover all the water of the Gulf of Mexico and LM3 would handle the land 
regions. 

This model would need to take into account different input variables from LM3, like sea 
surface temperature and have a smaller time step to accurately handle the higher winds. 

5.4 ENSEMBLE FORECASTING 
The initial state of the atmosphere is not perfectly known.  This introduces uncertainty into the 
forecast.  In meteorology, the conventional approach to handle this is to perturb the input 
data in various ways and rerun the model.  If the resulting forecast is similar to the forecast 
before, then we can be confident in the result.  If the resulting forecast is significantly 
different, then we know the forecast is very sensitive to input errors and we should not be 
as confident in the resulting forecast. 

For a neural network implementation of a dynamical meteorological model, we can accomplish 
this in an additional way.  Not only can we perturb the input data to determine the sensitivity 
to errors in the input, but we can also train multiple neural networks with different 
architectures and weights.  In this way we can determine the sensitivity to slight variations in 
model architecture. 

The results of all the forecasts can be averaged to produce a more accurate final forecast. 

5.5 IMPLEMENTATION AND EXPERIMENTAL SETUP  
The proposed method was implemented in Python and C++. All neural network code was 
written by the author specifically for this task. The experiment was run on a laptop with a 
1.6GHz Intel Core 2 Duo U7600 processor and 4GB RAM. Training time was limited to 1 
day, but could be allowed to run longer for reduced error. Because wind speed, temperature, 
relative humidity, specific humidity was forecast on 37 levels of the atmosphere, plus 
geopotential height at the surface, this required training 186 different networks. 

5.6 DATA 
The network was trained using the hourly input data sets to the Rapid Refresh (RAP) model 
for every third day in January 2014 beginning with the 3rd (3, 6, 9, 12…), and validated 
against every third day that same month beginning with the 1st (1, 4, 7, 10…). 

The RAP model is run hourly out to 18 hours on a 301x225 Lambert conformal projected 
grid with a 20km horizontal resolution and 37 vertical levels with pressure coordinates from 
1000mb to 100mb. Data includes temperature, wind speed/direction, geopotential height, 
relative humidity, and vertical velocity for every level. This data can be downloaded from 
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HRRR (3km) takes approximately 41 minutes on 1120 Intel Cores. 

This computation is done on a 208 teraflop supercomputer at WCOSS with 10,048 processing 
core. This means RAP uses 3.18% of WCOSS and HRRR takes approximately 11.15%. These 
allocations correspond to 6.6 teraflops and 23.2 teraflops, respectively. 

This means a run of the RAP model consists of 9,408 trillion floating point operations, and 
HRRR consists of 84,378 trillion floating point operations. On the LM3 grid, the RAP model 
would need approximately 4,192 trillion floating point operations. 

If LM3 is running on an estimated 100 gigaflop machine for 6.5 seconds, it takes 
approximately 650 billion floating point operations per time-step. To forecast out to 18 hours 
with a 4-minute time-step, it would take an estimated 175.5 trillion floating point operations. 

Figure 5-5 Time-step Size vs Execution Time for LM3 and RAP for a 1 hour forecast 

Figure 5-5 shows how the execution time of both LM3 and RAP vary with time-step size for 
a 1 hour forecast. The smaller the time-step, the more pronounced the difference in execution 
time becomes. For time-steps under 5 minutes, the effect is magnified significantly because 
halving the time-step results in double the number of iterations required to create the same 1 
hour forecast. 
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Under these assumptions, LM3 would be approximately 16 times faster than RAP. 

With a significant speedup over RAP and HRRR available, this would allow LM3 to work on 
a much higher resolution grid and still require fewer computational resources. The higher 
resolution grid would allow LM3 to resolve smaller features, which would help offset any 
potential reductions in accuracy. 

5.7.2 LM3 Wind Forecasting Results 

Table 5-1 Summary of results forecasting U for 10 levels of the atmosphere, where LM3 represents the results of 
the proposed method. Error is MAE in m/s (meters per second). 

Level LM3 U RAP U Persistence U Climate U 
1000 0.4514 0.4368 0.8707 2.2352
900 1.0420 1.0441 1.8615 2.4850
800 0.9070 0.9642 1.5217 3.7477
700 1.0209 0.7399 1.7444 5.2456
600 1.1019 0.7201 1.5368 6.7507
500 1.0215 0.5598 1.1289 7.6454
400 1.1763 0.7498 1.6150 7.8614
300 1.4445 1.0059 2.4442 9.2635
200 1.4522 1.4724 1.6286 6.4824
100 0.7468 0.5429 1.3671 3.9258

LM3 was more accurate than RAP at forecasting the u-component of wind speed (east-
west) on the 900 mb, 800 mb, 825mb, 200 mb, 175mb, 150mb, and 125 mb levels. 

Table 5-2 Layers where LM3 is more accurate than RAP at forecasting the u-component of the wind 

Level 
LM3 U 
 Error 

RAP U 
 Error 

900 1.0420 1.0441
825 0.9754 1.0144
800 0.9070 0.9642
200 1.4522 1.4724
175 1.1297 1.3357
150 0.8886 1.2160
125 0.8044 0.8527
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Table 5-3 Summary of results forecasting V for 10 levels of the atmosphere, where LM3 represents the results of 
the proposed method. Error is MAE in m/s (meters per second). 

Level LM3 V RAP V Persistence V Climate V
1000 0.5807 0.7011 1.2171 3.4181
900 1.0868 0.8296 2.0038 10.5488
800 1.0764 0.9353 1.7772 9.7302
700 1.0714 0.7266 2.3987 8.2690
600 1.2007 0.5436 2.0687 6.8842
500 1.1961 0.8981 2.3799 6.2477
400 1.4151 0.9954 1.6528 6.7325
300 2.4708 1.2572 2.7266 7.9448
200 1.6046 1.0807 2.7472 5.1649
100 1.0091 0.6839 1.6632 3.7913

LM3 was more accurate than RAP at forecasting the v-component of wind speed (north-
south) at the surface (1000 mb). 

Figure 5-6: Scatterplot for U Forecast on 1000mb Level 
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Figure 5-7: Scatterplot for U Forecast on 500mb Level 

Figure 5-8: Scatterplot for U Forecast on 100mb Level 
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5.7.3 LM3 Temperature Results 

Table 5-4 Summary of results forecasting temperature for 10 levels of the atmosphere, where LM3 represents the 
results of the proposed method. Error is MAE in Celsius. 

Level 
LM3 Temp 

Error 
RAP Temp 

Error 
Persistence Temp 

Error 
Climate Temp 

Error 
1000 0.9631 0.6820 1.7676 6.4362
900 0.4248 0.2486 0.6389 8.0903
800 0.3941 0.2285 0.5309 6.8417
700 0.3080 0.2545 0.5322 4.9478
600 0.2612 0.1825 0.3302 2.5596
500 0.2820 0.2429 0.4123 1.1399
400 0.3134 0.2445 0.4932 1.2228
300 0.3896 0.2641 0.6745 1.4285
200 0.7865 0.3393 0.8251 2.2704
100 0.3101 0.3718 0.5015 3.9936

As can be seen in Table 5-5, LM3 was more accurate than RAP at forecasting the 
temperature on the top 3 levels of the atmosphere (100mb, 125mb, and 150mb), and 
competitive elsewhere. LM3 consistently beats the persistence and climatology models. 

Table 5-5 Layers where LM3 is more accurate than RAP for forecasting temperature 

Level 
LM3 Temp 

Error 
RAP Temp 

Error 
150 0.27545 0.37862
125 0.26573 0.28615
100 0.31015 0.37188
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5.7.4 LM3 Relative Humidity Results 

Table 5-6 Summary of results for forecasting relative humidity for levels that are multiples of 100 

Level 
LM3 RH 
Error 

RAP RH 
Error 

Persistence RH 
Error 

Climate RH 
Error 

1000 3.43831 4.244534 7.754373 13.60183
900 4.748244 5.136297 6.485058 26.52671
800 4.535183 2.720845 7.117711 28.12656
700 5.289009 3.96793 8.984694 27.59054
600 5.310895 3.281706 8.729956 28.20039
500 6.171344 4.654155 12.73105 24.61318
400 7.335474 3.704082 14.27697 19.19148
300 6.120434 4.541181 11.84767 14.89603
200 1.910719 0.764213 2.873907 5.688638
100 0.197648 0.206997 0.3207 2.083975

LM3 was more accurate than RAP for forecasting relative humidity on the first 5 layers 
closest to the ground (1000mb – 900mb), plus the 100mb level at the top of the 
atmosphere. In addition, LM3 consistently beat the persistence and climatology models. 

Table 5-7 Layers where LM3 is more accurate than RAP for forecasting relative humidity 

Level LM3 RH Error RAP RH Error 
1000 3.43830 4.2445
975 3.35697 3.83928
950 3.47262 3.83928
925 4.24169 4.90451
900 4.90451 5.13629
100 0.19764 0.20699
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5.7.5 LM3 Specific Humidity Results 
Table 5-8 Summary of results for forecasting specific humidity for levels that are multiples of 100 

Level LM3 U RAP U Persistence U Climate U 
1000 0.00022 0.00038 0.000464 0.001622
900 0.000399 0.000472 0.000543 0.001612
800 0.000296 0.000177 0.000472 0.00156
700 0.000268 0.000188 0.000436 0.001173
600 0.000167 9.43E-05 0.000277 0.000873
500 0.000104 6.92E-05 0.000204 0.000413
400 5.38E-05 2.26E-05 9.66E-05 0.000134
300 1.34E-05 7.44E-06 2.32E-05 3.34E-05
200 3.10E-06 1.32E-06 4.20E-06 8.84E-06
100 1.66E-07 2.03E-07 2.53E-07 8.03E-07

LM3 was more accurate than RAP on the first 6 layers nearest to the ground for forecasting 
specific humidity (1000mb through 875mb), plus the 100mb level at the top of the 
atmosphere. 

Table 5-9 Layers where LM3 is more accurate than RAP for forecasting specific humidity 

Level LM3 SH Error RAP SH Error 
1000 0.00022022 0.0003803
975 0.00025526 0.0003979
950 0.00039793 0.0005065
925 0.00036531 0.0005084
900 0.00039891 0.0004716
875 0.00040037 0.0004017
100 1.6635e-07 2.0277e-07

5.8 PRUNING 
Networks were trained for every variable for every level. However, because of the way the 
networks are designed, a network for a variable for one level can be used interchangeably 
with a network trained for a different level. 

When cross-testing networks across levels, it was found that some networks outperformed all 
others from other layers, even though they were only trained on data from their own layer. 
For instance, for forecasting relative humidity, the best network for the top 12 layers of the 
atmosphere was the network trained only with data from the top 1 layer. The middle portion 
of the atmosphere was best forecast by a network that was trained on data only from layer  



47 

Table 5-10 Table of variables and layers, and the network that best forecasts that variable. 

Pressure Layer # T best U best V best RH best SH best 
100 36 36 36 36 36 32 
125 35 35 35 35 36 32 
150 34 34 34 34 36 32 
175 33 33 33 33 36 33 
200 32 32 32 30 36 32 
225 31 31 12 31 36 32 
250 30 30 30 24 36 26 
275 29 30 29 17 36 26 
300 28 30 28 28 36 26 
325 27 27 27 27 2 26 
350 26 26 26 26 36 26 
375 25 25 25 25 36 26 
400 24 24 0 24 21 24 
425 23 24 0 23 21 23 
450 22 22 21 22 21 22 
475 21 20 21 21 21 22 
500 20 18 20 20 21 21 
525 19 18 19 19 21 21 
550 18 18 18 18 36 21 
575 17 17 17 17 21 12 
600 16 17 16 17 21 15 
625 15 13 14 15 21 13 
650 14 13 14 14 21 13 
675 13 13 13 14 21 12 
700 12 12 12 12 21 12 
725 11 10 10 11 21 11 
750 10 10 10 10 21 11 
775 9 10 9 9 36 21 
800 8 10 8 8 36 21 
825 7 18 7 6 2 21 
850 6 18 6 6 2 26 
875 5 10 5 5 2 3 
900 4 18 4 4 36 18 
925 3 18 3 3 36 11 
950 2 18 0 2 2 11 
975 1 23 1 1 7 18 
1000 0 18 0 0 7 11 
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21, at 450mb… very near the center of mass of the atmosphere. The lower portion was best 
forecast by networks from layer 2 and layer 7, as can be seen in Table 5-10. 

Similar patterns were found in networks trained for other variables. 

5.9 TRAINING ERROR VS EPOCH 

Figure 5-9 Training error vs epoch. 

Figure 5-9 shows training error versus epoch for the first 1,024,000 iterations of training for 
the 1000 mb level u-component forecasting network for 1 hour. 

5.10 DISCUSSION 
The RAP model is an operational model run hourly by NCEP, and represents typical results 
by a sophisticated primitive equation model.  

Similarly as discussed before in Section 4.7 about the NCOM model, the strong performance 
of RAP is equally misleading. Our measurement of the accuracy of RAP is primarily on the 
comparison of a 1-hour RAP forecast to the ground truth initialization grid for RAP for the 
same time 1 hour later. As was the case with NCOM, the ground truth initialization grid is 
actually a weighted average of the 1-hour forecast from 1 hour ago plus any new 
observations. Most weather measurements are ground-based, and even satellite based 
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observations don’t provide a 3D insight into the atmosphere. The only data available for above 
ground level is radiosonde data on weather balloons, and those are only released twice daily 
at 0 GMT and 12 GMT. For these reasons, there is little to weight the previous 1-hour 
forecast away from itself. Therefore, this measure of error is likely biased towards lower 
measures of error for the RAP model. 

The implementation of the proposed method only forecasts horizontal wind speed, temperature, 
relative humidity, and specific humidity. Vertical wind speed and geopotential height are 
calculated for each level using diagnostic equations. A complete model would forecast all 
model variables. Many other important components are not yet implemented and are assumed 
to remain static during the forecast, but are necessary for more accurate, competitive results. 
Despite these limitations, Figures 5-5, 5-6, and 5-7 show that the learned behavior closely 
mirrors the desired behavior.  

Figure 5-5 is a scatterplot comparing the actual to the forecasted one-hour change in wind 
speed for both the proposed method and the RAP model for the 1000mb level. The 1000mb 
level closely follows the surface at ground level. The proposed method outperforms the RAP 
model on the 125mb - 200mb, 800 - 825mb, and 900mb levels, as can be seen in Table 
5-2 and the 1000mb level as can be seen in Table 5-3. LM3 also outperforms the RAP 
model in forecasting temperature in the top 3 layers of the atmosphere, as can be seen in 
Table 5-5, in forecasting relative humidity in 6 layers, as can be seen in Table 5-7, and in 
forecasting specific humidity, as can be seen in Table 5-9. 

Figure 5-6 is the same as Figure 5-5, except for the 500mb level. This level is shown 
because it represents the approximate center of mass of the atmosphere. It performs slightly 
worse than the RAP model in terms of MAE, but the scatterplot shows it more closely follows 
the line Y=X.  

Figure 5-7 is the same as Figure 5-6, except for the 100mb level. This level represents the 
top of the atmosphere. 

In the planetary boundary layer at the surface, learned networks should only be shared with 
regions with similar surface characteristics, like albedo, elevation, and land use type. Because 
of the homogenous nature of the boundary layer over water, this approach could be 
particularly well-suited to forecasting over oceans and could be applied to forecasting tropical 
systems like hurricanes and typhoons out at sea. However, special consideration would have 
to be made for landfalling systems and an appropriate time step would have to be chosen 
that satisfies the CFL condition.  

Additional numerical stability could be achieved by switching from the leapfrog time integration 
scheme to a 3rd order Runge-Kutta integration scheme, which is used by the RAP model 
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[30]. The time step, 6 minutes in our implementation, could also be brought down to 1 
minute to match the RAP model. 
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6 RESULTS OF PARALLELIZATION 

6.1 INTRODUCTION 
In this chapter, we look at the speedup achieve when parallelizing the code. Parallelism is 
introduced using OpenMP. The system could be further parallelized using MPI to spread 
computation across machines. 

6.2 RESULTS 

Parallelizing the implementation of LM3 resulted in an average speed up of approximately 33% 
over the serial implementation. Running time could be significantly reduced with further 
parallelization. 
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Execution times increase significantly with smaller time-step. Reducing the time-step by half 
results in twice as many iterations required to create a forecast of the same length. 



53 

7 CONCLUSION

7.1 SUMMARY 
The proposed RNN-based forecast model can be used to create a fully learned ocean or 
weather model. In order to do this, further work must be done to forecast all variables, for 
all regions and land types.  Special networks need to be trained to forecast over oceans, in 
the mountains, in forested regions, and over cities, although these specialized networks are 
only required for the lower levels of the atmosphere or the ocean. 

Both LOM and LM3 showed forecasting skill by outperforming both the persistence and 
climatology models. 

Even with the limited implementation, the implementation of the proposed approach 
outperformed the RAP model at forecasting wind speed in the north-south direction on the 
1000mb level – the level nearest the ground, the 125 mb, 150 mb, 175 mb, 200 mb, 800 
mb, and 825 mb levels for wind speed in the east-west direction, temperature at the 100 
mb, 125 mb, and 150 mb levels, specific humidity on the first 6 layers above ground level 
(1000 mb – 875 mb) and the 100 mb level, relative humidity on the first 5 layers above 
ground level (1000 mb – 900 mb) and the 100 mb level, and performed competitively 
elsewhere. 

Even more encouragingly, LOM outperformed NCOM in salinity forecasting for layers 1 through 
16 and temperature forecasting for layers 2 through 16, showing significant skill in forecasting 
temperature and salinity in shallow water. 

In addition to these good forecasting results, the LOM model produced a forecast 3.6 times 
faster than NCOM, and the LM3 model produced a forecast 24 times faster than RAP. These 
efficiencies can be used to increase the resolution and time-step the model uses to further 
increase accuracy while still requiring the same or fewer computational resources as RAP and 
NCOM. 

For improved weather forecasting, networks also need to be designed to forecast phase 
change and latent heat. The remaining work there mainly involves selecting the appropriate 
inputs to consider. With this, we would have a full forecast system.  

7.2 BENEFITS OF THE PROPOSED APPROACH 
The proposed method provides numerous advantages over prior neural network approaches. 
First, learning is resolution independent.  It is independent of both the resolution of the input 
data and the resolution it is trained at.  This is achieved by utilizing finite differences as 
inputs and the time derivative output. 
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Second, learning is model independent. No forecast model data is used in the forecast 
process. Input data is the analysis data and can be replaced by any objective analysis routine 
to produce gridded input data.  This flexibility means that we can make changes without 
retraining the network. 

Third, the method is more efficient.  Here, we are effectively replacing a complicated set of 
non-linear partial differential equations with a neural network, which are commonly used as 
universal function approximators. As we have discussed in previous sections, NCOM is 3.6 
times more computationally expensive as LOM, and RAP is nearly 24 times more 
computationally expensive as LM3. 

Forth, the proposed approach works for an entire region instead of only a single location. 
There have been many proposals for weather forecasting neural networks that only look at the 
time series data for a single location, but completely ignore the vital spatial component. For 
this reason, prior approaches are incapable of forecasting the movement of cyclones and 
frontal boundaries. 

Fifth, the method can learn from its mistakes and improve without human intervention.  
Parameterization schemes are approximating equations used to estimate complicated processes 
and sub-grid scale phenomena, like 3km diameter fair weather cumulus clouds on a 10-20km 
grid.  The proposed approach seeks to learn the governing equations instead of employing 
human-created estimations. 

Finally, the proposed approach is applicable to learning to forecast many things more than just 
the ocean and weather.  Differentiation-Integration Time Step networks should be applicable to 
many more time series prediction problems. 
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8 FURTHER STUDY 

Although the LOM ocean model is already more efficient than the Navy NCOM model, the 
efficiency of the LOM can still be improved significantly. One of the largest computations in 
LOM is copying data from a row-column format to a linear one… and back. This overhead 
of unnecessarily moving millions of values every time-step could be eliminated by re-writing 
the neural network library to directly accept the input as-is. 

The initial work on the LM3 meteorological model only seeks to forecast a limited subset of 
variables. However, for best results we must consider the evolution of all relevant variables. 
As currently implemented, our model assumes the other variables are static.  This is the 
largest contributor to the error.  Further work would be directed towards forecasting these 
other important variables. 

Training LM3 using HRRR 3km data would be extremely helpful because this model provides 
intermediate output every 15 minutes, instead of the 1-hour RAP data used currently.  
Unfortunately, only the 1-hour HRRR data is publicly available at this time. 

Finally, further experiments with parallelization could be performed to further speedup training 
and forecast times.  Although the current implementation runs well on a laptop computer, 
creating forecasts for larger regions would greatly benefit from spreading computations across 
multiple machines. 
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