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ABSTRACT 

The driving engine for the exponential growth of digital information processing systems 

is scaling down the transistor dimensions. For decades, this has enhanced the device performance 

and density. However, the International Technology Roadmap for Semiconductors (ITRS) states 

the end of Moore’s law in the next decade due to the scaling challenges of silicon-based CMOS 

electronics, e.g. extremely high power density. The forward-looking solutions are the utilization 

of emerging materials and devices for integrated circuits. The Ph.D. dissertation focuses on 

graphene, one atomic layer of carbon sheet, experimentally discovered in 2004. Since fabrication 

technology of emerging materials is still in early stages, transistor modeling has been playing an 

important role for evaluating futuristic graphene-based devices and circuits.  

The graphene nanoribbon field effect transistors (GNRFETs) has been simulated by 

solving a numerical quantum transport model based on self-consistent solution of the three-

dimensional (3D) Poisson equation and 1D Schrödinger equations within the non-equilibrium 

Green’s function (NEGF) formalism. The quantum transport model fully treats short channel-

length electrostatic effects and the quantum tunneling effects, leading to the technology 

exploration of GNRFETs for the future. A comprehensive study of static metrics and switching 

attributes of GNRFETs has been presented including the performance dependence of device 

characteristics to the GNR width and the scaling of its channel length down to 2.5 nm.  

It has been found that increasing the GNR width deteriorate the off-state performance of 

the GNRFET, such that, narrower armchair GNRs improved the device robustness to short 

channel effects, leading to better off-state performance considering smaller off-current, larger 

ION/IOFF ratio, smaller subthreshold swing and smaller drain-induced barrier-lowering. The wider 

armchair GNRs allow the scaling of channel length and supply voltage resulting in better on-



xv 

 

state performance such as higher drive current, smaller intrinsic gate-delay time and smaller 

power-delay product. In addition, the width-dependent characteristics of GNRFETs is 

investigated for two GNR semiconducting families (3p,0) and (3p+1,0). It has been found that 

the GNRs(3p+1,0) demonstrate superior off-state performance, while, on the other hand, 

GNRs(3p,0) show superior on-state performance. Thus, GNRs(3p+1,0) are promising for low-

power design, while GNRs(3p,0) indicate a more preferable attribute for high frequency 

applications. 
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CHAPTER 1 

INTRODUCTION 

1.1       Silicon Electronics and Scaling Challenges 

The evolution of integrated circuits has been largely governed by Moore’s law, which 

was postulated in 1965 [1] by Gordon Moore, co-founder of Intel Corporation. Moore’s law 

states that the number of transistors on a single chip doubles approximately every 18 months. 

The exponential trend in scaling silicon transistors has enhanced the device performance and 

density, satisfying the prediction of Moore’s law for decades. Scaling down in each new 

generation has approximately doubled logic circuit density and increased performance by about 

40% while the memory capacity has increased by four times. While we celebrate the 

50
th

 anniversary of Moore’s law, there are a number of factors which needs to be taken under 

consideration with continued MOSFET scaling that present challenges for the future and, 

ultimately, fundamental limits. In sub-10 nm channel length, the drain-source leakage current 

significantly increases due to short channel effects. The leakage current is contributed from 

reverse-biased p-n junction current, weak inversion and drain induced barrier lowering (DIBL) 

[2]. Increased power density and the corresponding dissipated heat in nanometer dimension has 

imposed also several fundamental physical challenges for silicon [3, 4], seriously affecting the 

performance of the chip. 

The International Technology Roadmap for Semiconductors (ITRS) [5] states the end of 

Moore’s law in next decade. Scaling of MOS structure can be divided into three intervals as 

shown in Figure 1.1 [2]. While pure lithography could accomplish the task of scaling until 2002, 

scaling alone by advancing the lithography technology is not sufficient and innovation was 

required since  then.  More  complex  device  geometries, e.g. multi-gate  or  nanowire  transistor   
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Figure 1.1: Integrated circuit scaling history and projection [6]. 
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structure, were the natural evolution to enhance the electrostatic control of the channel by the 

gate and consequently increase the device robustness to short channel effects. However, more 

forward-looking solutions for scaling challenges of silicon electronics are the utilization of 

alternate channel materials such that they can be likely solved by the genesis of new materials for 

integrated circuit [2].  

1.2       Prospects of Carbon-based Electronics 

A large group of emerging materials and devices is being extensively studied to replace 

silicon due to its scaling limit in sight [3]. Germanium has been substituted by silicon roughly 

half a century ago by moving up on the group IV of periodic table. Interestingly, moving up one 

more block, we reach to carbon, which has been widely tipped as substitute for next-generation 

electronics due to its impressive crystal structures, or allotropes. Although, silicon and carbon 

have similar chemical properties due to the same number of electrons in the outermost electronic 

shell, they have different Coulomb interactions and consequently different size of the electronic 

wave functions. Thus, the corresponding energies of respective electron systems vary 

significantly leading to different electronic behavior in most carbon allotropes.  

The hybridized s and p orbitals form strong directional covalent bonds leading to a large 

number of different allotropes. The most important allotropes of pure carbon are shown in Figure 

1.2. The nature of these allotropes was first understood by Linus Pauling in his book titled “The 

Nature of the Chemical Bond” [7], as all have the same basic motif, namely, the benzene ring. 

The building block of all these allotropes is carbon atoms in two-dimensional (2D) honeycomb 

lattice structure, called graphene, such that graphite can be looked upon as stacked graphene, 

nanotubes are rolled graphene. Fullerenes are wrapped graphene.  Fullerenes were discovered in 

the  1985 [8],  nanotubes  in 1991 [9] and graphene was discovered in 2004 [10]. Among  carbon  
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Figure 1.2:  Three Carbon allotropes, (a) buckyball, discovered in 1985 [8], (b) carbon nanotube, 

discovered in 1991 [9] and graphene discovered in 2004 [10].  
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allotropes, carbon nanotube (CNT) and graphene [11] are the two carbon allotropes, which have 

become prominent contenders to substitute silicon in post-CMOS technology [10, 12-14] as 

shown in ITRS prediction in Figure 1.3. This figure provides the projected years of device 

development and improvement, together with introduction of new materials as a potential 

solution by the year 2028. Though, engineers still need to devise methods for mass production of 

large, uniform sheets of pure, single-planed graphene, thereby, ITRS expects that graphene can 

possibly enter this phase of development by 2023.  

1.3       Graphene Superlative  

Graphene is one atomic layer of carbon sheet in a honeycomb lattice, which may 

outperform state-of-the-art silicon in many applications [15, 16] due to its exceptional properties 

such as large carrier motility, high carrier concentration, high thermal conductivity and 

atomically thin planar structure [17, 18]. Graphene was discovered by Andre Geim and 

Konstatin Novoselov in 2004, however, the history of this material goes back much further to 

year 1947 when Wallace [19] first described  it by calculating the band structure of a single layer 

of carbon atoms arranged in a hexagonal 2D lattice. The name “graphene” for single carbon 

layers of the graphitic structure was introduced in 1994 [20] only 10 years before its discovery. 

The groundbreaking experiments regarding the first observation of stable 2D material opened up 

a new field of research, which led to the award of the Nobel Prize in Physics in 2010 [21]. 

Graphene shows exotic electronic properties. The carrier transport in graphene is similar 

to the transport of massless particles since 2D electron gas in graphene [22] provides both high 

carrier velocity and high carrier concentration, resulting in large carrier mobility and 

consequently its faster switching capability [17]. While the bottleneck of scaling silicon channel 

is in heat removal of dissipated power, graphene has excellent thermal conductivity due to strong
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Figure 1.3:  Logic potential solution reported by ITRS 2013 [3]. 
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carbon-carbon bonding [18]. Atomically thin structure of monolayer graphene results in better 

gate control over the channel and the planar structure is compatible with current CMOS 

fabrication processes introducing the potential production of wafer-scale integrated circuits [23]. 

Graphene and related 2D materials could be utilized in heterostructures to create light emitting 

devices for the next-generation of thin, flexible and transparent electronics [24, 25]. Graphene 

shows some interesting properties in sensing applications as its planar geometry of graphene 

with one carbon atom thickness maximizes the active sensing area [26]. As large-area graphene 

is bendable and printable, the deposition of graphene on flexible substrates opens the door to 

high-frequency low-voltage flexible applications [27]. 

However, the application of large-area graphene is limited for integrated circuits due to 

lack of bandgap and the need for only narrow stripes of graphene. The latter are known as 

graphene nanoribbons (GNRs), which are promising alternative as replacement of transistor 

channels [28, 29] for next-generation integrated circuits. In principle, the GNRs can be produced 

by patterning large-area graphene using more standard fabrication methods with much more 

controllability than CNTs, whose chiralities are statistically predetermined during the 

manufacture process. While CNTs requires a different set of processing techniques, the younger 

counterpart, graphene shares a similar set of processing techniques currently used for silicon. 

GNR can be fabricated from large-area graphene using high-resolution lithography like e-beam 

lithography. GNRs share many of the fascinating electrical [30], mechanical [31], and thermal 

[18, 32] properties of CNTs such as large carrier mobility and thermal conductivity [33]. The 

mean free path (MFP) of electron in GNRs with smooth edge is comparable with CNT and can 

reach to micrometer range [34]. In addition, GNR has a very large current conduction capacity 

(1000 times larger than Cu) with extraordinary mechanical strength and thermal conductivity.  
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1.4       Fabrication of Graphene Nanoribbon  

There are several limitations and challenges to implement graphene nanoribbons in 

current technology. In the first place, wafer-scale high quality graphene is required to be 

synthesized on arbitrary substrates, which is suitable for patterning in the form of GNR channels. 

A variety of methods have been introduced for graphene production such as epitaxial growth on 

a silicon wafer [35], direct CVD epitaxy on metal substrates [36], chemical oxidation [37], 

mechanical exfoliation [11], solvent exfoliation from highly oriented pyrolytic graphite (HOPG) 

[38] and silicon sublimation from SiC [39]. Although the mobility of suspended and annealed 

graphene can exceed 200,000 cm
2
/V-s and demonstrate an exceptional material with highest 

mobility record [40, 41], it reduces to 40,000 cm
2
/V-s [42] for supported graphene devices at 

room temperature due to trapped charges in the substrate [43]. High quality graphene on silicon 

can be produced by mechanical exfoliation method [44]. However, the mass production and 

selective placement of graphene at a specific location are almost impossible and thereby the 

method is not currently suitable for integrated circuits. Few atomic layers of graphene with 

millimeter size can be produced by silicon sublimation method, in which thin layer of SiC 

deposited on Si substrate followed by silicon evaporation [45]. Although this method results in 

the carrier mobility as high as 25,000 cm
2
/V-s, it needs annealing temperature of at least 1200°C 

in H2 ambient condition [34] which makes it incompatible with some of the subsequent 

fabrication processes in manufacturing integrated circuits. The growth of large scale graphene 

can be achieved by ambient pressure CVD on metallic substrates such as nickel [46] and copper 

[23] to be transferred on arbitrary substrates by etching the metallic substrate [36], which can 

result in graphene flake with mobilities and sheet resistances in the range of 3700 cm
2
/V-s and 

280 Ω/□ [36], respectively. Graphene can be produced from exfoliation of HOPG. However, the 
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method is limited by the choice of solvent with proper surface energy thermodynamics [38] and 

required a chemical reduction step to recover original electronic properties similar to graphene 

obtained by mechanical exfoliation. Also, it usually produces monolayer graphene with low 

mobility in the range of 10 and 1,000 cm
2
/V-s [47].  

Graphene requires to be patterned in the form of GNR, which can lead to the introduction 

of dangling bonds at the edges. The edge roughness is a key issue in fabrication of GNR 

interconnects and has crucial effects in shortening the mean free path (MFP) of electrons in GNR 

such that it can eliminate the attractive electron transport properties of graphene [48]. It increases 

the backscattering probability of electrons due to side wall scattering and thereby decreases the 

ratio of longitudinal to transverse velocity of electrons in GNRs. Yang and Murali [49] 

experimentally observed the linewidth-dependent mobility of electrons in GNR, showing that 

electron mobility degrades by decreasing the GNR width below 60 nm. Edge roughness is 

increased by scaling down the minimum feature size due to increase in manufacturing variants of 

lithography and dry etching processes [50]. Thus, the efforts of most current research are to 

fabricate smooth-edged GNRs to preserve the superior electronic quality of graphene. Yu et al. 

[51] dissolved carbon atoms on nickel substrate at high temperatures and covered it with a 

silicon film, such that it can be patterned for GNR interconnects and transistors after removing 

nickel substrate. Wang et al. [52] produced smoother GNRs down to 5 nm using conventional 

lithography in conjunction with gas-phase etching. Dai et al. [53] showed a simple solution-

based method to produce GNRs with widths down to sub-10 nm. 

Another approach for the production of high quality ribbons with low disorder and 

smooth edge is based on unzipping the oxidized MWCNT through mechanical sonication, which 

can result in GNRs with approximately 20 nm length and mobility as high as 1500 cm
2
/V-s [54]. 



10 

Kim et al. [55] produced 45 nm width GNRs by a controlled thermally induced unwrapping of 

MWCNTs. Li Xie et al. [56] produced GNRs with widths between 10 nm to 30 nm by sono-

chemical unzipping of MWCNT. An accurate control over the edge roughness of graphene 

nanoribbon can be achieved by bottom-up approach, in which the one-dimensional chains of 

poly-aromatic carbon precursor have been developed [57]. GNR with precisely defined width 

can be produced by the scalable bottom-up approach beyond the precision limit of modern 

lithographic approach [58]. The width and edge periphery of GNRs can be defined by the 

structure of precursor. However, bottom-up approaches are usually limited to some specific 

substrates (e.g. Au (111)) and might not be applicable for large scale production of interconnect 

in current technology process. 

Sprinkle et al. [59] produced graphene on a template SiC substrate using a self-organized 

growth method and then narrowed to 40 nm width GNRs using lithography. Recently, 

Baringhaus et al. [60] showed that electrons in 40 nm wide GNR can have ballistic transport at 

room temperature for up to 16 µm length by controlling substrate geometry. GNRs are 

epitaxially grown on the edges of three-dimensional structures etched into silicon carbide wafers 

in order to produce perfectly smooth edges. As electrons flowing at the edges don’t have 

interaction with electrons in the bulk portion of the nanoribbons, they can contribute much better 

than other electrons traveling in the middle and act similar to optical waveguides in optical fiber 

which transmits without scattering. It has been announced [61] that electron mobility reached to 

one million with a sheet resistance of 1 ohm per square meter (Ω/□), which are two orders of 

magnitude lower than two-dimensional graphene and ten times smaller than the best theoretical 

predictions for graphene because the production of GNR with smooth edge activates the ballistic 

transport of those electrons. However, the challenge comes from growing GNR on conventional 
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substrates such as silicon and silicon oxide as SiC substrate is expensive and thereby not 

applicable for cost efficient integrated circuit fabrication. In addition, the growth of thin 

graphene films requires single crystal SiC substrate, which is not suitable for interconnects as 

required growth over dielectric materials. Furthermore, the back-end thermal budget in the 

fabrication of integrated circuits is low and thus the required high temperature in these 

techniques makes these not proper for producing GNRs. Beside the quality and grain size of 

graphene produced by CVD method, the growth temperature is subject of research efforts to 

lower the temperature below the tolerable level (~ 400°C). 

Jin et al. [62] claimed that the use of graphene oxide can create a small bandgap in 

graphene. Deformation of the graphene layer by bending or physical strain is another possibility 

to open bandgap [63]. Chemical doping can also open a small bandgap in graphene [64, 65]. Yan 

et al. [66] showed that a stable bandgap can be opened by doping via CVD methods with dopants 

like gold, sulphur, boron and nitrogen [64]. A random pattern of boron nitride atoms upon the 

graphene surface is capable of opening a bandgap in graphene [67]. However, this leads to a 

structural defect, and thus decreases the graphene mobility [67, 68]. Unlike bilayer graphene 

FET, opening bandgap with electrical field normal to the graphene plane cannot work with 

monolayer graphene. 

1.5       Modeling of Graphene Nanoribbon Field Effect Transistors 

The significant progress in experiments is accompanied with substantial achievements in 

theoretical work based on analytical approaches and numerical simulation techniques. Three 

approaches based on classical, semi-classical and quantum mechanics can be used for the study 

of current transport in devices. The classical approaches are based on Newton’s law [69, 70], like 

charge-collection equations [30] or drift-diffusion equations, which can be employed to model 
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transistors of large dimensions, but is not suitable for the physical modeling of sub-nanometer 

channel length of MOSFET types due to quantum effects. The traditional approach usually 

focuses on scattering effects inside the channel as a result of diffusive motions of carriers, whose 

length is much longer than the mean free path of carriers as shown in Figure 1.4(a).  

Figure 1.4(b) shows the energy-position-resolved local density of states (LDOS) of a 

typical graphene nanoribbon field effect transistors (GNRFET), which is numerically simulated 

by quantum-based model [71]. LDOS is a physical quantity that describes the density of states, 

but at different points in space, and is then a function of energy and position. The similar results 

as computational methods can be obtained by scanning tunneling spectroscopy (STS), which is 

capable of imaging electron densities of states as a function of energy at a given location in the 

sample. In the figure, the bandgap with quite low local density of states (dark black region) and 

the channel potential barriers can be easily identified. The quantum interference pattern due to 

incident and reflected electron waves in the generated quantum well in valence band of the 

channel is also apparent. It can be seen that the carrier transport can associated with three 

mechanisms, (1) thermionic current for electrons emission above the channel potential barrier, 

(2) direct source-to-drain tunneling current through channel potential barrier and (3) band-to-

band electron tunneling from the channel to the drain regions.  

For an emerging device such as graphene nanoribbon field effect transistor (GNRFET), 

the channel length needs to be 10 nm or less and the mean free path can reach to a few micro 

meters. Thus, the transport can be interpreted as ballistic motion of carriers in short channel 

devices while the discrete energies of GNR channel can be tuned by the gate electrostatic 

potential, leading to important effects of quantum tunneling on carrier transport. It is shown in 

Figure 1.4(b) that the direct source-to-drain tunneling and band-to-band tunneling  from  drain  to 
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Figure 1.4:  (a) Diffusive carrier transport in long channel device and ballistic carrier transport in 

short channel device and (b) energy-position-resolved local density of states of a 

typical GNRFET simulated with NEGF formalism, showing three possible regions 

for carrier transport: (1) thermionic emission of carriers over the channel potential 

barrier, (2) direct tunneling of carriers through channel potential barrier, and (3) 

band-to-band-tunneling of electrons from valence band in the channel region to the 

empty states in the drain side.  
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channel can be significant by scaling down the channel length and width of graphene 

nanoribbon, respectively. While semi-classical models [72-74] can be modified to incorporate 

band-to-band tunneling current, the models cannot be used for GNRFET with channel length 

below 10 nm since the direct carrier tunneling from source to drain regions can be an important 

component in calculating drain to source current. Thus, by scaling down the channel length, the 

atomistic quantum-based models [75, 76] which can take into consideration the tunneling effects 

in short channel GNRFET need to be used in order to investigate the GNRFET performance. 

Quantum-based simulation is the most computationally demanding approach as the 

quantum effects become more and more important by scaling down the channel length. The most 

accurate quantum-based method for bottom-up device simulation is non-equilibrium Green’s 

function (NEGF) approach, where Schrӧdinger equation is solved under non-equilibrium 

condition. NEGF formalism provides the atomistic description of channel material as well as the 

effects of contacts and scattering on carriers transport in the channel. The discretization of device 

Hamiltonian provides two alternative approaches for applying NEGF formalism: real space 

formulation [77] which can be used directly for any geometry and mode space formulation [78] 

which splits up the device simulation into a set of 1D problems over subbands. Mode-space 

approach can be applied for simulation of GNRFET by assuming smooth edges and negligible 

potential variation in transverse direction. It has been successfully applied for simulating a 

variety of nanometer channel materials such as carbon nanotube [79, 80], silicon MOS FET [81] 

and graphene nanoribbon [82, 83].  

There is not much reported work on the scaling of GNRFETs, especially below 10 nm 

channel length, in which direct tunneling through channel potential barrier can be significant. 

Yoon et al. [84] investigates the scaling behavior of graphene-based transistors by performing 
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quantum transport simulations, but limited the scaling down to 30 nm channel length. With the 

same simulation approach, Ouyang et al. [75] performed a comprehensive study on the scaling 

behavior of GNRFETs down to 10 nm. Similarly, research on the width-dependent study of 

GNRFET with respect to GNR index is also limited. Ouyang et al. [75] showed the scaling 

behavior of GNRFETs considering only one semiconducting family of armchair GNRs. Raza 

and Kau [85] classified armchair GNRs into three families but considered only the bandgap and 

effective mass of first subband. Sako et al. [86] investigated the effects of edge bond relaxation 

in GNRFET with 10 nm channel length by considering only the effective mass of first subband 

in top-of-the barrier model. Kliros [87] studied the effect of width-dependent performance of 

GNRFETs using an analytical model. However, performance studies of armchair GNR families 

with channel length below 10 nm is to be researched and a more comprehensive investigation is 

thus warranted based on more sophisticated approaches. A full quantum transport model based 

on NEGF formalism is developed for the simulation of GNRFET [88, 89], where the energy-

position dependent Hamiltonian is employed using non-parabolic effective mass model [90]. The 

existence of mismatch between the parabolic band approximation and the exact dispersion 

relation in analytical models [87], top-of-the-barrier model [74] or semi-analytical model [91] 

may not correctly estimate the actual concentration of carriers in the channel. The quantum 

transport model of GNRFETs has been developed and used for investigating the scaling of its 

channel length down to 2.5 nm, as well as the width-dependence performance of GNRFETs with 

respect to GNR index. 

1.6       Outline of Dissertation 

In this dissertation, organization of the work which has been carried out is as follows. In 

Chapter 2, the structure of graphene and its electronic properties are discussed in context of basic 
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graphene-based field effect transistor. The physical model of carrier transport based on non-

equilibrium Green function (NEGF) formalism is described in Chapter 3. The carrier transport in 

graphene nanoribbon field effect transistor (GNRFET) is simulated by NEGF formalism, in 

which the device structure has double gate with high-k dielectric materials in order to reduce the 

short channel effects (SCE) and prevent an undesirable increase in leakage current. The proposed 

GNRFET forms the basis of following chapters as described. In Chapter 4, scaling effects on 

statics metric and switching attributes are presented. Width dependent performance of GNRFET 

is studied in Chapter 5, followed by conclusion and future scope of work in Chapter 6. The 

MATLAB code for NEGF function with energy-position dependent Hamiltonian is summarized 

in Appendix A. 
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CHAPTER 2 

GRAPHENE NANORIBBON FIELD EFFECT TRANSISTOR (GNRFET) 

Graphene is a 2D material made of carbon atoms in a honeycomb-like hexagonal lattice 

as shown in Figure 2.1(a). The carbon atoms form strong σ covalent bonds by three in-plane sp
2 

hybridized orbitals, whereas the fourth bond is a π bond in z-direction [92]. The electron in this 

bond can move freely in the delocalized π-electronic system referred as the π-band and π*-bands 

[93]. The lattice structure of graphene made out of two interpenetrating triangular lattices results 

in a unit cell consisting of two atoms as shown in Figure 2.1(b). The lattice vectors can be 

written as follows: 

 1 3, 3
2

cca
a     ,    2 3, 3

2

cca
a                                         (2.1)                                  

where 1.42cca  Å is the carbon-carbon distance and (p,q) implies vector px qy , where x  and 

y are unit vectors along x and y directions. Since electronic transport can be two-dimensional in 

a graphene lattice, the dispersion relation for graphene has also two dimensions. The reciprocal 

lattice vectors can be obtained as follows: 

 1

2
1, 3

3 cc

b
a


     ,     2

2
1, 3

3 cc

b
a


                                      (2.2)                                  

Due to honey-comb lattice structure, there are two sets of three cone-like points K and 

K  on the edge of the Brillouin zone named Dirac points, where the conduction and valence 

bands meet each other in momentum space [92] as follows: 

2 2
,

3 3 3cc cc

K
a a

  
   
 

    ,   
2 2

,
3 3 3cc cc

K
a a

  
   
 

                              (2.3) 

The behavior of charge carriers near Dirac points resembles the Dirac spectrum for 

massless fermions [17] and can be described by linear dispersion relation as  follows: 
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Figure 2.1: (a) Two dimensional honeycomb lattice of graphene, which consists of two triangular 

sub-lattices. (b) Bravais lattice and reciprocal lattice of graphene. (c) Graphene band 

structure and first Brillouin zone in momentum space. Note: The position of Dirac 

points, K , K   and reciprocal lattice vectors are also shown underneath of the 

graphene band structure. (d) Linear band near Dirac point and the position of Fermi 

level. 
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  FE k k                                                            (2.4)   

where k   is the momentum near the Dirac point,  is reduced Planck constant and F  is the 

Fermi velocity. Charge carriers near Dirac points behave like relativistic particles ideally 

transporting with Fermi velocity, which is theoretically 300 times smaller than the speed of light 

[17]. Assuming the first nearest neighbor interaction, the close form of dispersion relation near 

Dirac points can be obtained [92] as follow: 

2

 

3
( ) 1 4     4 cos

2 2 2

y cc y ccx cc
k a k ak a

E k t cos cos                             (2.5) 

where cca  is the carbon-carbon atomic distance, xk  and yk  are wave vectors in x  and y  

directions, and t = -2.7 eV is the nearest neighbor hopping energy. Minus and plus signs 

correspond to the conduction and valence bands, respectively. Graphene band structure has 2D 

Brillouin zone in momentum space as shown in Figure 2.1(c). From Figure 2.1(d), it can be seen 

that the energy dispersion around the band edges of graphene is linear instead of quadratic [94].  

A field effect transistor (FET) consists of four terminals, gate, source, drain and substrate 

together with insulating dielectric over a conducting channel as shown in Figure 2.2(a). The 

Fermi energy of carriers in the channel will rise in the presence of an applied electric field 

corresponding to the applied gate voltage and needs to be placed in the middle of bandgap to turn 

the device off because it can minimize both the electrons in conduction band and holes in 

valence band and thereby minimizes the contribution of electrons and holes in leakage current. 

Figure 2.2(b) shows the three Fermi levels in correspondence with three gate voltages applied to 

a graphene with zero bandgap. At positive VGS1, the Fermi level ( 1FE ) is near or inside 

conduction band and electrons contribute to current transport. Decreasing the gate  voltage  shifts  
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Figure 2.2:  (a) Schematic of a field-effect transistor (FET) and symbol of graphene FET. (b) 

Large-area graphene with zero bandgap. Three Fermi levels are shown in E-k 

diagram and the corresponding gate voltages are also shown in its current-voltage 

characteristic. (c) Graphene nanoribbon with opened bandgap. Similarly, three Fermi 

levels are shown in E-k diagram and the corresponding gate voltages are also shown 

in its current-voltage characteristic. Note: Two graphs in (b) and (c) are sketched to 

convey the concept, i.e. the importance of bandgap in transfer characteristics, and are 

not in actual, exact scale with each other.  
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the Fermi  level  toward  the  valence  band,  the  total  carrier  in  the  channel  decreases  and 

consequently minimizes at VGS2 corresponding to charge neutrality point (CNP), where the 

electron density is equal to the hole density. The equal densities of electrons and holes 

correspond to the equal contributions of electrons and holes to the total drain-source current due 

to the same effective mass of conduction and valence bands. The populations of carriers in 

conduction and valence bands follow the Fermi-Dirac distribution function and can be significant 

due to the lack of bandgap and thereby the transistor cannot be fully off by placing the Fermi 

level in the middle of conduction and valence bands. While this is not an issue for analog 

applications and graphene has still potential due to very high mobility [95], this limits its 

application as logic transistors [96, 97]. Semi-metallic nature of graphene with overlapping 

bandgap is clearly an obstacle with regards to its application in semiconducting devices as it 

cannot be fully switched off by tuning the Fermi level at the energy that conduction and valence 

bands touch each other [98]. Most gated graphene FETs on various substrates showed ON OFFI I  

ratios less than 50 while it needs to be between 10
4
 and 10

7
 to compete with what is currently 

required in traditional silicon MOSFETs [3]. 

In order to turn-off a FET device with graphene channel, a bandgap of several hundred 

meV is required and thus, opening the bandgap is the most important task in making the 

graphene transistor become a practical channel material. Patterning large-area graphene into 

nanoribbon strips can split up 2D energy dispersion into multiple 1D modes due to quantum 

confinement of carriers in one-dimensional graphene, called graphene nanoribbon (GNR) [97, 

99]. Producing graphene nanoribbons as a way to induce a band gap is widely considered to be 

the most elegant and useful methodology due to the fact that keeping device dimensions at the 

nanoscale dimension urged by the scaling trend of silicon as well. As can be seen in Figure 
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2.2(c), Fermi level can be placed in the middle of bandgap where the total number of electrons in 

conduction band and holes in valence band are minimized leading to very small leakage current. 

A GNRFET can be used in logic circuits in much the same way as in CMOS logic [14].  

Width confinement of graphene down to the sub-10 nm scale is essential to open a 

bandgap that is sufficient for room temperature transistor operation. The size of the induced 

energy gap is a direct function of the nanoribbon width, such that decreasing the width  increases  

the  bandgap [100, 101]. For exfoliated GNR with width of 15 nm, the bandgap of 0.3 eV was 

first measured in 2007 [102]. The induced bandgap in excess of 1 eV can be opened for a GNR 

with a width below 2 nm [103]. Several experimental methods have been already proposed for 

narrowing width by etching down GNR to 4 nm [52] and chemical synthesis down to 2 nm [53]. 

Other lithography methods based on Atomic Force Microscopy (AFM) [104] and Scanning 

Tunneling Microscopy (STM) [105] have been proposed for the fabrication of GNRs. Graphene 

nanoribbons with few nanometer width can be produced by unzipping carbon nanotubes with 

bottom-up chemical approach [56]. This method can reduce the edge roughness induced by e-

beam lithography and recover zigzag or armchair edges of GNRs [106]. Mass production of 

GNRs can be made possible by using multi-walled CNTs (MWCNTs) as precursors such that the 

GNR widths can be controlled by controlling the size of the starting MWCNTs and the 

conditions of dry etching [107] or solution-based oxidative process [108]. 

The ribbon width is not the only factor and the nano-cutting of large-area graphene needs 

special attention on the type of edge boundary (or chiral angle) as it can determine whether the 

GNRs are metallic or semiconducting. The chiral angle represents the crystallographic direction 

of the axis of the GNR and comes from theoretical studies of CNTs corresponding to chiral 

vector, 1 2hC na ma  , and CNT indices: CNT(n,m), where 1a  and 2a  are the unit vectors for the 
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graphene hexagonal structure, n and m are the integer coefficients along the 
1a  and 

2a directions, 

as shown in Figure 2.3(a). This unique notation of an individual CNT traces the CNT around its 

circumference from one carbon atom (called the reference point) back to itself. Atomistic 

structure of GNRs can be considered as the unfolded of the corresponding CNTs with the desired 

width to adopt the same terminology for the GNRs. Among all the possible chiral angles (or 

CNT indices) special attention is payed to the zigzag GNRs (n, n), and armchair GNRs (n, 0). 

For example, the circumference edge of CNT(n,n) is along armchair direction and thereby 

unzipping this CNT results in the zigzag edge GNR(n,n). Figure 2.3(b) shows the different nano-

cutting directions of graphene lattice for producing nanoribbons with armchair and zigzag edges. 

The angles between zigzag and armchair edges are multiples of 30 degrees, such that GNRs with 

either zigzag or armchair edges can be chosen by changing the direction of nano-cutting by 30 

degrees. Figure 2.3(c), adopted from [109], shows the optical and AFM images of the graphene 

sheet. It can be seen that crystalline orientations of the graphene sheet as well as zigzag and 

armchair edges can be identified from AFM image. 

The electronic structure of a GNR can be obtained from that of infinite graphene. Zigzag 

and armchair GNRs can be produced from an infinite graphene sheet by cutting in the (10) and 

(11) directions, respectively, in a 2D space. In the reciprocal space these directions correspond to 

the Γ-M and Γ-K paths in the Brillion zone for zigzag and armchair terminations, respectively. 

The wavevector in the transverse direction, Tk , becomes quantized, whereas the longitudinal 

wavevector, Lk , remains continuous for a GNR of infinite length as shown in Figure 2.3(d). 

Thus, the energy bands consist of a set of one-dimensional energy dispersion relations which are 

cross sections of those for infinite graphene. The energy dispersion relations of two-dimensional 

graphene are shifted from OO  by discretized reciprocal vector Tnk  (n = 1, 2,..., N-1)  in  parallel  
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Figure 2.3: (a) Unfolding carbon nanotube with armchair edge results in graphene nanoribbon 

with zigzag edge. (b) Cuts along two directions of a graphene sheet to produce 

zigzag (red) and armchair (green, blue) termination of the GNRs. (c) Optical image 

of the graphene sheet (left) and a lattice resolution AFM image (right) to identify the 

graphene crystalline orientation. Superimposing the hexagons onto the optical image, 

the crystallographic orientation of the edges I (zigzag) and II (armchair) are shown. 

The figure is adopted by permission from [109]. Permission letter is attached. (d) 

Discretized transverse wavevector of armchair and zigzag graphene nanoribbons due 

to the confinement in transverse direction.  
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with 
Lk , resulting in N pairs of 1D energy dispersion curves corresponding to the cross sections 

of the 2D energy dispersion surface. If the cutting line passes through the Dirac point of the 2D 

Brillouin zone, where the conduction and the valence energy bands of pristine graphene touch 

each other, the one-dimensional energy spectra have a zero energy gap [110]. This corresponds 

to zigzag GNRs with conducting behavior as shown in Figure 2.4(a). 

The armchair GNR can either yield conducting or semiconducting characteristics 

depending on the number of atoms in transverse direction. The electronic structure of armchair 

GNRs is closely related to that of zigzag CNTs and needs to be classified into three groups as 

their bandgap changes with a period-three modulation depending on the number of atoms in 

confined transverse direction. For an arbitrary integer p, two thirds of armchair GNRs, (3p,0) and 

(3p+1,0), are semiconducting while the third subclass, (3p+2,0), has a very small bandgap 

showing metallic behavior. The first principle calculation can be used to obtain the electronic 

structure of graphene nanoribbon. It can be solved either by Dirac’s equation of massless 

particles with an effective speed of light [111] or simple tight-binding approximation [100, 112]. 

Figure 2.4(b) shows the bandgap of each GNR group versus the number of dimer lines in 

transverse direction. Figure 2.4(c) shows the calculated dispersion relations of GNR(12,0), 

GNR(13,0) and GNR(14,0) as a representative of three GNR families (N,0) = (3p,0), (3p+1,0) 

and (3p+2,0), respectively, where p is an arbitrary integer. It can be seen that removing or adding 

one edge atom along the nanoribbon can significantly change the bandgap energy of the GNR.  

The all-graphene architecture [113] has been recently proposed, in which both GNR-

based devices and interconnects can be concurrently patterned to capture the possibility of 

bandgap engineering in graphene for integrated circuit design. It is a promising design for the 

graphene applications in both low-power and high-performance circuits as the GNR interconnect  
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Figure 2.4: (a) Schematic of a zigzag GNR and the corresponding energy dispersion graphs. (b) 

Bandgap energy of three GNR families of armchair GNR versus GNR index. p is an 

arbitrary integer larger than 2. The inset shows the schematic of an armchair GNR 

and the description of number of dimer lines. (c) Energy dispersion relation of 

GNR(12,0), GNR(13,0) and GNR(14,0). 
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is   extremely   short   and    there   is   minimum   connections  to  conventional   metal  contacts. 

Figure 2.5(a) shows the 3D schematic of all-graphene circuit for an example of inverter chains, 

in which both GNR-based devices and interconnects concurrently fabricated by monolithically 

patterning a single sheet of graphene. Unlike conventional technology, the material for producing 

devices and interconnects are graphene, which would bring some release from the contact 

resistance of metal-to-graphene contacts [10, 34]. The structure can potentially reduce the 

complex fabrication process for local interconnect in nanoscale dimensions, leading to ultra-

dense and thin integrated circuits [113]. It is not possible to completely get rid of metal contacts 

and interconnects since the gate and source/drain electrodes cannot share the same graphene 

sheet. While a modern day CMOS circuit has approximately 10 interconnect layers, using 

graphene can reduce the number of intra-layer local interconnects for gate-level designs, in 

which transistors can be mapped in a planar topology. In all-graphene logic gates, both the width 

and the bending type of GNR are critically important for using GNR as channel material and 

local interconnects as shown in Figure 2.5(b). The band gap of graphene can be adjusted for 

GNR interconnects by pattering it with larger width and different orientation since zigzag edge 

GNRs have metallic behavior with very small bandgap and GNRs with armchair edges can 

exhibit semiconducting behavior [71]. 

In conventional MOSFET, the bandgap of silicon is fixed and thereby the choice of gate 

electrode material, dielectric constant and thickness of oxide layer and substrate doping are 

common method to tune its threshold voltage and the corresponding supply voltage, while that of 

GNRFET can be tuned by the bandgap engineering of GNR, such that GNRs with wider width 

can operate under scaled supply voltages. In conventional CMOS logic, the responses of pull-up 

and pull-down networks are different due to the difference between electron and hole mobilities,  
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Figure 2.5: (a) 3D schematic of all-graphene circuit for an example of inverter chains, in which 

both GNR-based devices and interconnects concurrently fabricated by monolithically 

patterning a single sheet of graphene [113]. Note: The corresponding circuit 

schematic including the graphene and metallic interconnects along with contact 

resistors are also shown. Nr represents the number of parallel GNRs for a GNRFET. 

(b) Graphene lattice must be patterned considering the GNR width and angle such 

that armchair and zigzag edge nanoribbon have been used as channel material and 

local interconnects, respectively. (c) 3D view of a GNRFET with one ribbon of 

armchair GNR(N,0) as channel material. Note: The doped extensions of source and 

drain regions have the same length as the channel length.   



29 

and thereby the physical channel width of the p-type FETs in the pull-up network needs to be 

larger to compensate the asymmetric electron and hole effective mass. In GNRFET, the effective 

masses of electrons and holes are symmetric and thus the p-type GNRFET has equal and 

opposite response, which makes the design of GNRFET logic circuit easier than conventional Si-

CMOS logic circuits [114]. The 3D view of a GNRFET with one GNR channel is shown in 

Figure 2.5(c), where the ribbon of armchair chirality GNR is the channel material in MOSFET-

like structure. This structure is expected to demonstrate a higher ON OFFI I  ratio, outperforming 

the GNR FET with Schottky barriers in logic  application [115]. The GNRFET structure has 

been simulated using a quantum transport model (Chapter 3) to study the scaling of its channel 

length down to 2.5 nm (Chapter 4) as well as the width-dependence performance of the device 

(Chapter 5). 
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CHAPTER 3 

CARRIER TRANSPORT MODEL 
 

3.1    Simulation Algorithm  

To evaluate the performance of GNRFETs, different carrier transport models can be used 

including either simplified semi-classical transport models [72, 73, 86] or quantum transport 

models [75, 82]. The former methods cannot treat short gate-length electrostatic effects and 

quantum tunneling effects such as direct source-to-drain tunneling in short channel GNRFET or 

band-to-band tunneling at the source and drain junctions [116]. In addition, the existence of 

mismatch between the parabolic band approximation and the exact dispersion relation in 

analytical models [87], top-of-the-barrier model [74] or semi-analytical model [91] may not 

correctly estimate the actual concentration of carriers in the channel. Thus, the quantum-based 

transport simulation is the most computationally efficient approach as the quantum effects 

become more and more significant by scaling down the channel length. The most accurate 

quantum-based method for bottom-up device simulation is non-equilibrium Green’s function 

(NEGF) approach, where Schrӧdinger equation is solved under non-equilibrium condition. 

NEGF formalism provides the atomistic description of channel material as well as the effects of 

contacts on carriers transport in the channel, leading to accurate results and physical insight into 

investigating GNRFET performance in sub-10 nm channel length.  

The traditional approach is not suitable as the assumption of significant scattering inside 

the channel is not valid for short-channel length as the mean-free-path (MFP) for carriers is 

much smaller than the channel length [117]. The mean-free-path in smooth-edge nanoribbons is 

around hundreds of nanometers at room temperature due to weak electron-phonon interaction 

[15]. In principle, there are two alternative approaches for applying NEGF formalism: the real 
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space formalism which is directly applicable to any geometry and the mode space formalism 

which splits-up 2D GNR into a set of 1D problems corresponding to the generated subbands due 

to structural confinement in transverse direction as explained in Chapter 2. The mode-space 

approach can be applied for the GNRFET by assuming smooth edges and negligible potential 

variation in transverse direction, resulting in a considerable computational advantage while 

maintaining the accuracy of device simulation.  

Figure 3.1(a) shows iterative procedure between electrostatic and transport solutions, in 

which calculating potential profile depends on the carrier density and calculating carrier density 

needs the potential profile along the device. As such, before calculating drain-to-source current 

for a bias condition, the potential profile and charge density needs to be obtained by constructing 

a self-consistent calculation between Poisson equation and transport equations. Figures 3.1(b) 

and 3.1(c) show the overview of NEGF simulation and an example of Poisson solution in a 

transistor, respectively, which are discussed later in this section. Figure 3.1(d) illustrates a 

flowchart for the detail of self-consistent algorithm, which has been explained in following seven 

steps.  

Step I: For a given width, the effective masses of the lowest subbands have been extracted by 

tight-binding calculation for a slab with zero potential in order to use in the successive transport 

calculations of the self-consistent loop.  

For obtaining GNR dispersion relation, tight-binding (TB) calculation can be employed 

based on nearest neighbor orthogonal pz orbitals as basis functions. One pz orbital is enough for 

the atomistic physical description of graphene since energy levels of s, px, and py orbitals are far 

from the Fermi level and do not play important  roles  for  carrier  transport. Figure 3.2(a)  shows  
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Figure 3.1: (a) Self-consistent calculation between electrostatic (Poisson equation) and transport 

(NEGF formalism) solutions, (b) conceptual sketch of the armchair edge GNR 

channel including the quantities used in the NEGF formulism, (c) an example of 3D 

potential distribution calculated by solving 3D Poisson equation, and (d) flowchart 

for the self-consistent algorithm as described in step I through step VII in the text. 

Note: The value of convergence condition   in step VI has been set 0.001.  
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Figure 3.2: (a) Schematic cross-section of an armchair GNR(13,0) and the corresponding slab 

used in TB calculation in transverse direction. (b) Bandgap energy of three GNR 

families versus GNR index. Note: the calculated bandgap energy in this work has 

been compared with those of [86]. 
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the atomic view of armchair-edged GNR(
aN ,0), where ribbon index aN =13  is  the  number  of 

dimer lines in transverse direction. The GNR width is commonly defined as 

( 1) 3 / 2GNR a ccW N a  , where 
cca  is carbon-carbon bonding length. Calculating TB inside the 

slabs with the length of 3acc and 2 aN  atoms can give the required information of GNR subbands 

[118] for the transport calculation. The matrix element of the Hamiltonian between the α
th

 atom 

within the n
th

 slab and the β
th

 atom within the m
th

 slab is written as follows: 

0

, , ,n m n m n m n
H H U

      
                                               (3.1) 

where δnα,mβ is the Kronecker delta and Unα is the electrostatic potential energy at the (n,α) atom 

site. 0

,n m
H

 
 is equal to the nearest neighbor hopping energy, t = - 2.7 eV if the atoms (n,α) and 

(m,β) are first nearest neighbors and equal to zero otherwise. The graphene lattice has been 

abruptly terminated at the edge and occupied by hydrogen atoms, which can be modeled if the 

hopping energy for pairs of atoms along the edges of the GNR is assumed t(1+γ) for the 

correction factor of γ = 0.12 [100]. The TB model of edge bond relaxation has been verified by 

the first principle calculations showing the identical results for the band structure of GNR near 

the Fermi level [90]. The edge bond relaxation has a significant effect on both the bandgap 

energy and effective mass of GNR subbands [100]. Figure 3.2(b) shows the close agreement of 

the calculated bandgap energy in this work with those of [86]. The quantum confinement of 

carriers in one-dimension can open the bandgap at the expense of reducing the electron velocity 

and degrading the band linearity near the Dirac point. The non-linearity can be corrected for each 

subband using an effective mass model given by [90], 

2 2

*

( )1
( )

2 2 2

b

g b
b b

g b

E E k k
E k

E m

  
      

                                        (3.2) 
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where b

gE  is the energy gap, ( )bE k is the energy and *

bm  is the effective mass for a subband 

index b. The TB band diagram, the non-parabolic effective mass (NPEM) model and the constant 

effective mass model of GNR(7,0), GNR(25,0), GNR(6,0) and GNR(24,0) are shown in Figure 

3.3. It can be seen that the difference between the two models is increased by increasing the 

GNR width. 

Step II. Considering an initial potential distribution in

nU  , the extrema energies ( )b

cE x  and ( )b

vE x  

as well as wavefunction, ( )b

n x  for subband index b are obtained as a function of longitudinal 

direction by repeating tight-binding calculation for every slab of the ribbon only at k = 0.  

Step III. The Hamiltonian Matrix ( )bH E , Green’s function ( )bG E , contacts self-energies 

/ ( )b

S D E  and the corresponding level broadening function / ( )b

S D E  have been obtained for a 

given subband, b, where E is electron energy.   

The transport equations based on NEGF formalism has a Hamiltonian similar to TB case 

with the 1D discretization step equal to the slab width 3 ccX a  , in which the non-parabolic 

band diagram has been corrected by constructing a position-energy dependent effective mass 

model as follows [90]: 

*

*
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1 ( )
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b
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b ib
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b
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m if E E x

E x
m x E

E x E
m if E E x

E x

  
   

   
  

  
   

   

                                   (3.3)               

where ( )b

iE x  is a mid-gap energy and *

bm  is the effective mass for a subband index b calculated 

from Equation (3.2). Based on the obtained Hamiltonian, the retarded Green’s function is 

constructed as follows: 
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Figure 3.3: Band structure of two members of semiconducting families (a) GNR(3p+1,0) and (b) 

GNR(3p,0) near charge neutrality point along with the curves of non-parabolic 

effective mass model and constant (parabolic) effective mass model. The blue line is 

the energy obtained from tight-binding calculation.  
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1( ) [ ]b b

b b S DG E EI H                                              (3.4) 

where E is energy, I is identity matrix, b

S  and b

D  are the self-energy matrices of source and 

drain contacts as shown in Figure 3.1(b), which incorporates the effect of the contacts on channel 

subbands. The self-energy matrices have the same dimension as Hamiltonian N N , where N is 

the number of slabs in longitudinal direction. For the Hamiltonian with scalar elements, the only 

non-null elements of the matrices are (1,1)b

S  and ( , )b

D N N , which have been obtained using 

the piecewise equation in [119] as follows: 

2

2

2

( 1) 2 0

(1,1) / ( 1) 2 0 2

( 1) 2 2

b

S

x x x x

t x i x x x

x x x x

      



      


     

                                       (3.5) 

where ( (1)) / 2b

cx E E t   if (1)b

iE E  and otherwise ( (1) ) / 2b

Vx E E t  . t  and (1)b

iE  is the 

nearest neighbor hopping energy and mid-gap energy at the first slab on the source side, 

respectively. The Hamiltonian bH  depends on energy through the position-dependent effective 

mass in Equation (3.3).  

Before connecting the GNR channel to source and drain contacts, the density of states 

(DOS) of GNR channel consists of sharp levels at the subband minimum energies due to 

quantum confinement while there is a continuous distribution of states in source and drain 

contacts. Coupling the discretized states in the channel to the continuous states in the contacts, 

part of the sharp states in the channel spreads into contacts and part of the contact states spread 

into the channel. As such, the initial sharp structures of DOS of GNR channel spread out over a 

range of energies and broaden around the initial sharp levels. The level broadening quantities 𝛤S  
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and 𝛤D for a subband b can be calculated as follows: 

( )b b b

S S Si                                                              (3.6) 

( )b b b

D D Di       

where i and superscript + refer to the imaginary unit and the Hermitian transpose operator, 

respectively.  

Step IV: Calculate the source and drain correlation functions ( )bG E  and ( )bG E  as well as the 

corresponding electron number, ln  and hole number, lp  . 

The electron and hole correlation functions can be calculated by,  

( ) ( )[ ( ) ( )] ( )b b

b b S D bG E G E E E G E                                            (3.7) 

( ) ( )[ ( ) ( )] ( )b b

b b S D bG E G E E E G E                                        

where / ( )b

S D E  is the inflow of carriers from the source and drain contacts into the channel 

region for subband, b, as shown in Figure 3.1(b). Similarly, / ( )b

S D E  is the outflow of carriers 

from the channel region into the source and drain contacts for subband, b. These quantities 

depend on the condition in the contacts (Fermi levels) and the channel coupling to the contacts 

(level broadening), which can be obtained as follows: 

/ / /( ) ( )b b

S D S D S DE i f E                                                   (3.8) 

/ / /( ) [1 ( )]b b

S D S D S DE i f E                                                (3.9) 

where / ( )S Df E is the Fermi functions of source and drain contacts as follows: 

/ 1

/ ( ) [1 exp( )]S DF

S D

B

E E
f E

k T




                                          (3.10) 
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In Equation (3.10), Bk  is Boltzmann constant, 
SF FE E  and  

DF F DSE E qV   are Fermi 

levels of the source and drain contacts, respectively, as shown in Figure 3.1(b). EF is the 

reference Fermi level of GNR and VDS is the applied drain-to-source voltage. The electron and 

hole numbers at (n,α) atom site, where α is the index of atom in the n
th

 slab, can be achieved by 

summations over all subbands as follows: 

2

( )

1

2
2 [ ( , ; ) ]

b
i

b

n n b

b E x

n i G n n E dE 





                                   (3.11) 
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2 1
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2 [ ( , ; ) ]

b
iE x

b

n n b

b

p i G n n E dE 


 



                                   (3.12) 

Step V: Insert the electron/hole numbers into the Poisson equation to obtain a new potential 

energy nU  . 

The actual potential inside the channel in response to the voltages applied to the external 

electrodes is required to calculate full current–voltage characteristics. In order to obtain the 

electrostatic potential energy ( )nU r  and use it as the diagonal entry of the TB Hamiltonian 

matrices in Step II, the three-dimensional Poisson equation is solved as follows:  

       .[ ( ) ( )] ( )nr U r qQ r                                           (3.13) 

where ( )r  is the permittivity of dielectric materials, q is electron charge and ( )Q r is the net 

charge density distribution determined by the doping profile and the calculated electron and hole 

numbers of GNR channel. Considering the profile of charge density and the potentials at 

electrodes, the Poisson equation is solved using the finite difference method by considering 

Drichlet boundary condition [120] at the metallic gate electrodes U = VG and Neumann boundary 
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condition [120] at the remaining boundaries, e.g. dielectric materials,  where the electric field 

perpendicular to the boundary is assumed to be zero.  

Step VI: Check the convergence condition: old

n nU U    . If yes, go to the next step; otherwise 

replace old

nU   by the calculated nU   and go to step II.  

Step VII: Determine the transmission function ( )T E  and evaluate the corresponding drain-

source current, IDS.   

Finally, the total current can be calculated as follows: 

 
2

4
( , 1; ) ( 1, ; )DS b b

b

q

h q
I H n n E G n n E dE







                          (3.14) 

where h is the Planck constant and symbol   indicates real part. Considering coherent transport, 

the equation can be reduced to Landauer formalism [119] as follows: 

2
( )[ ( ) ( )]DS S D

q

h
I T E f E f E dE





                                 (3.15) 

where ( ) ( )b

b

T E T E  is the total transmission coefficient with ( )bT E  being the transmission 

coefficient of the b
th

 subband described by, 

 

( ) [ ]b b

b S b D bT E Trace G G                                        (3.16)  

G
+
 is the advanced Green’s function. 

3.2       Quantum Capacitance in GNRFET  

The total charge density Q can be obtained by summing the electron and hole densities in 

the channel from Equation (3.11) and (3.12). Figure 3.4(a) shows an example of charge density 

and the  corresponding  1D  potential  profile  as  a  function  of  position  along  the  longitudinal  
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Figure 3.4: (a) An example of 1D Potential profile (right axis) and the charge density per unit 

length as a function of position along the longitudinal direction, computed for 

GNR(13,0) at VDS = 0.5 V and VGS = 0.2 V. (b) Series configuration of electrostatic 

capacitance and quantum capacitance. (c) Density of states vs. energy for 1D, 2D, 

and 3D semiconductors. (d) Channel charge and (e) corresponding quantum 

capacitance versus gate voltage for GNR(6,0) and GNR(10,0). Note: LCH = 10 nm, 

VDS = 0.5V, and the dielectric layer is assumed aluminum nitride (AlN) with the 

relative dielectric permittivity k = 9. (f) and (g) show the energy dispersion and 

density of states of two members of GNR families (3p,0) and (3p+1,0) with 

approximately same bandgap close to Eg = 1.1 eV.  
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direction, which has been simulated using NEGF formalism. As edge states are small in armchair 

GNRs and consequently charge distribution in the transverse direction is uniform, the 

electrostatic potential on the GNR and voltage drop over the gate oxide are also uniform [121]. 

Thus, the gate voltage, VG is simply the summation of the voltage drop over the gate oxide, Vox 

and the electrostatic potential on the GNR, VS, leading to the expression in Equation (3.17). 

G S OX
dV dV dV

dQ dQ dQ
                                                   (3.17)                                                                                                        

By defining the quantum capacitance as Q SC dQ dV and the gate insulator capacitance 

per unit area as ins OXC dQ dV , the total gate-to-source capacitance, CG, can be obtained as 

follows: 

1 1 1

G Q insC C C
                                                    (3.18)                                                                                                                 

where insC is given by, 

0
( )

ins G

ins

GW
C N

t
                                                (3.19) 

where NG is the number of gates, equal to 2 for the DG geometry,   is the relative dielectric 

constant of the insulator material, tins is the gate insulator thickness, GW  is the width of gate 

metal contact set equal to the GNR width, GNRW  in the simulation and 1   is a dimensionless 

fitting parameter due to the electrostatic edge effect. The gate insulator capacitance increases 

linearly with GNR width due to the increase in the area of GNR [121]. The effective gate-to-

source capacitance is obtained by the series combination of insulator capacitance and quantum 

capacitance as shown in Figure 3.4(b). In order to have the same gate electrostatic control on the 

channel by scaling down the gate length, the  strategy was to scale down the insulator thickness 
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for decades [122]. In typical silicon MOSFETs, the gate insulator capacitance is smaller and 

thereby it is the dominant factor in calculating the equivalent gate-to-source capacitance.  

For nanostructures like GNR, the carriers exhibit a 1D transport and the corresponding 

density of state is very low (see Figure 3.4(c)) because it is atomically thin in vertical direction 

and quantum mechanically confined in the transverse direction. Thus, the quantum capacitance 

of GNRFET can be very small, such that the total gate-to-source capacitance of a GNRFET is 

dominantly determined by the quantum capacitance of GNR. Hence, increasing insulator 

capacitance cannot make significant increase in equivalent gate-to-source capacitance of 

GNRFET at quantum capacitance limit (QCL). In fact, the application of high-k gate dielectrics 

and high-geometry gate for GNRFET together with vertical scaling of insulator thickness 

increase the insulator (geometrical) capacitance, insC , strongly promote the device operation 

close to QCL [123]. The assumption of QCL and neglecting Cins is exclusively correct for long 

channel GNRFET as the channel potential energy is dominantly controlled by the gate electrode 

and a simple analytical closed-form model can be developed [124]. By scaling the channel, 

however, the drain and source voltages can change the potential profile and the corresponding 

charges in the channel, especially when the quantum capacitance is increased at on-state. Thus, 

the full dominance of quantum capacitance may not be an accurate assumption. In addition, the 

density of state of GNR and the corresponding quantum capacitance as a function of gate voltage 

can be also altered by scaling the width of GNR in GNRFET [87]. Thus, the numerical 

simulation is required for the accurate investigation of GNRFET performance [75]. In QCL 

regime, the density of states of a graphene nanoribbon is an important factor, which can alter the 

channel charge and the corresponding quantum capacitance depending on the relative location of 
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the Fermi level and the position of GNR subbands in energy. For instance, the channel charge 

and the  quantum  capacitance  of  GNR(6,0)  and  GNR(10,0)  are  shown  in  Figure  3.4(d)  and  

3.4(e), respectively. While both of GNRs have the same bandgap energy of Eg = 1.1eV, they 

exhibit different quantum capacitance due to the location of upper subbands and the difference in 

their density of states as shown in Figure 3.4(f) and 3.4(g). GNR(6,0) has larger quantum 

capacitance with steeper increase with increasing gate voltage because the second subband of 

GNR(10,0) is close to the first subband and both subbands have larger effective masses than the 

first subband of GNR(6,0).   

3.3    Computational Time  

Accurate results and deeper physical insight can be achieved by atomistic quantum 

transport models at the expense of long computational time. Yet, a considerable computational 

advantage and relatively accurate results can be achieved by solving the self-consistent NEGF 

formalism in mode space basis as has been already employed for the simulation of conventional 

MOS FETs [120, 125], carbon nanotube FETs [18, 126] and GNRFETs [78, 88]. The transverse 

confinement of GNR converts the transport problem into a few 1D subbands, allowing us to 

obtain further computational advantage by incorporating only a few lowest subbands which 

participate in carrier transport within the energy interval under investigation. As can be seen 

from the charge density and the drain current of four GNRs in Figure 3.5(a) and (b), the third and 

fourth subbands contribute mostly in charge density calculation of wider GNRs and need to be 

considered in the self-consistent loop. While these have minor effects on the amount of the drain 

current and charge density of the narrower  GNRs, which can be neglected at a range of bias 

voltage in the width study, leading to a large computational advantage.  
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Figure 3.5: Contribution of subbands in (a) charge density in the channel, (b) drain current for 

GNRFET with four GNRs of (7,0), (13,0), (19,0) and (25,0) and (c) tight binding 

computational time versus GNR width for energy grid equal to 0.001 eV. 
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The tight binding computational time is increased by increasing GNR width as shown in 

Figure 3.5(c). The TB calculation can be very computationally intensive [127] as it needs to be 

repeated for every slab of the ribbon to extract the subband energies and the square moduli of the 

eigenfunction as a function of longitudinal direction, leading to TB calculation equal to 

/ 3G ccL a times in a self-consistent loop. Thus, for only one bias condition, the required time for 

TB routine is equal to ( / 3 )G cc SCTBCT L a N  , where SCN  is number of self-consistent loop 

repetitions and TBCT  is tight binding computational time. Using the non-parabolic effective 

mass model, the effective masses of the lowest subbands have been extracted by only one TB 

calculation for a slab with zero potential in order to use in the successive self-consistent 

calculations. Then, in self-consistent field (SCF) loop, the transverse wave functions and the 

energy profile of subbands as a function of longitudinal direction have been obtained for every 

slab of the ribbon only at wave vector k = 0, leading to the computational time equal to 

( / 3 ) /G cc SC ETBCT TBCT L a N N   , where EN  is the number of energy discretization. By 

increasing GNR index, this can dramatically increase the computational time with respect to TB 

model as more subbands are required to be considered in transport calculation by decreasing 

bandgap. Consequently the computational time can be very intensive depending on the energy 

discretization and the bias conditions. The non-parabolic effective mass (NPEM) model can lead 

to roughly two orders of magnitude saving in computational time for GNRFET simulation with 

0.001 eV energy grid.  
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CHAPTER 4                                                                                                                            

SCALING EFFECTS ON STATIC METRICS AND  

SWITCHING ATTRIBUTE OF GNRFET 

International Technology Roadmap of Semiconductors (ITRS 2013) has specified the 

emerging application of alternate channel materials in order to continue the production of a 

switching transistor for the two categories of high-performance and low-power digital integrated 

circuits. The performance improvement has been achieved by shortening the gate length by 

decreasing the capacitance and supply voltage, VDD, together with increasing on-current, which 

characterized by the transistor intrinsic speed as a guiding metric of roadmap projection in 

emerging technology [3].  

There is not much reported work on the scaling of GNRFETs below 10 nm channel 

length. Yoon et al. [84] investigates the scaling behavior of graphene-based transistors by 

performing self-consistent atomistic quantum transport simulations down to 30 nm channel 

length. With the same simulation approach, Ouyang et al. [75] performed a comprehensive study 

on the scaling behaviors of GNRFETs down to 10 nm. In this chapter, the performance and 

limitation of GNRFETs are investigated by reducing the channel length down to 2.5 nm when 

the vertical scaling of oxide thickness become less important by approaching quantum 

capacitance limit. The GNRFET structure has been simulated by self-consistent solution of the 

3D Poisson equation and 1D Schrödinger equation within the non-equilibrium Green’s function 

(NEGF) formalism in mode space as discussed in Chapter 3. The model can fully treat short 

channel-length electrostatic effects and contacts effects on the carriers transport in GNR channel 

along with the quantum tunneling effects such as direct source-to-drain tunneling in short 

channel GNRFET and band-to-band tunneling at the channel-drain junctions in small bandgap 

GNRs [28, 116].  
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4.1   GNRFET Structure 

The double gate GNRFET structure used in investigating scaling effects is shown in 

Figure 4.1. In this structure, the armchair GNR is sandwiched between two thin aluminum nitride 

(AlN) insulator layers with the relative dielectric permittivity 9  and the oxide thickness tins = 

1 nm in a double metal gate topology. The large-scale and cost-efficient production of thin AlN 

dielectric layer with good reproducibility and uniformity  [128, 129] can result in small 

equivalent oxide thickness (EOT) while reducing phonon scattering in epitaxial graphene, 

enabling near ballistic carrier transport in short channel GNRFET [130]. The double gate 

geometry with high-k dielectric constant offers large gate electrostatic control and consequently 

large insulator capacitance, which lead to the operation of the GNRFET close to quantum 

capacitance limit (QCL), (e.g. Cins > 10 CQ). While two metals for the source and drain contacts 

can be directly connected to both sides of an intrinsic GNR channel in a Schottky barrier 

graphene nanoribbon field effect transistor (SB-GNRFET), in MOSFET type GNRFET, the 

extensions of GNR on both sides of the intrinsic channel are needed to be doped in order to tune 

the carrier injection from the source (drain) reservoirs to the GNR channel [75]. In GNRFETs, 

drain and source contacts are assumed to be ohmic similar to contacts in conventional 

MOSFETs. The current is modulated by varying the height of the channel barrier due to the 

electrostatic potential induced by the applied voltage at the gate. This structure is expected to 

demonstrate a high ON OFFI I ratio, outperforming the SB-GNRFET for logic applications [115]. 

The extension of source and drain regions with the length of LS and LD are heavily doped with 

the concentration of 0.01 n-type dopants per carbon atom and are kept equal to the length of 

intrinsic GNR channel in our simulation. The channel between two metallic gates is an intrinsic 

GNR whose length and width are same as the top and bottom gates in the simulation.
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Figure 4.1: (a) Vertical cross-section of a double gate GNRFET and (b) 3D schematic of double gate GNRFET structure. 
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4.2    Results and Disscusion 

Figure 4.2(a) shows transfer characteristics IDS - VGS for different drain voltages of the 

GNRFET geometry in Figure 4.1. For a given drain voltage, a minimum current occurred at the 

charge neutrality point (CNP), where the hole concentration is equal to the electron concentration 

and the charge carriers are changed due to the induced electrostatic potential of the gate voltage 

on subbands in the channel. Since the hole mobility is equal to the electron mobility as a result of 

the symmetric conduction and valence subbands, the contribution of electrons and holes in 

minimum currents is also same, min 2n pI I I  .  The ambipolar transport is partially recovered 

with regard to GNR bandgap as demonstrated experimentally for the GNR with the reduced 

impurity similar to large-area graphene [118]. The minimum current is increased and shifted by 

increasing the drain voltage because the accumulation of holes in the channel is increased as a 

result of the band-to-band tunneling from the source contact to channel together with DIBL 

effect in short channel devices. The IDS versus VDS for different VGS values of the armchair  

GNR(7,0) is shown in Figure 4.2(b), which shows strong saturation region in even the short 

channel length LG = 5 nm, indicating good MOSFET type device behavior. It is expected by 

ITRS that saturation drive current of n-MOSFET with channel lengths below 10 nm drops 

because of the VDD scaling and significant source-drain tunneling [3]. In GNRFET, the saturation 

slope mainly depends on GNR width because increasing VDS in wider GNR can increase the 

depletion of electrons in the valence band and therefore the accumulation of positive charges in 

the GNR channel, which can lead to non-dependence of saturation region to decreasing channel 

length [3].  
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Figure 4.2:  (a) IDS – VGS and (b) IDS – VDS of GNR(7,0) with LG = 5 nm. The test device 

parameters are given in Section 4.1. 
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Figure 4.3(a) and (b) shows the transfer characteristics of GNRFET for different GNR 

channel length of GNR(7,0) and GNR(13,0), respectively. The band gaps of GNR(7,0) and 

GNR(13,0) have been calculated using TB method, which result in Eg = 1.53 eV and Eg = 0.86 

eV, respectively. The transconductance curves of GNRFETs are shown inside the Figure 4.3(b), 

which indicates the linear dependence to gate voltage after threshold voltage. Down-scaling of 

the channel length decreases the gate control on GNR channel due to short channel effects, but 

more significant factor is GNR width as it can change the size of bandgap, the effective mass of 

carriers and the number of available conducting subbands in an energy range. This drastically 

alters band-to-band tunneling at off-state and the equivalent gate-to-source capacitance of short 

channel device at QCL. By scaling the gate length, there is a shift of the gate voltage at charge 

neutrality point, which is experimentally interpreted [131] as the signatures of short channel 

effects in graphene device. 

4.2.1   Scaling Effects on Static Metric of GNRFET 

Off-current as the main indicator of low-power design is increased by scaling down the 

gate length for a given GNR width. Both the height and width of channel potential barrier are 

decreased in the short channel GNRFET, which increase both the thermionic emission of carriers 

passing over the channel barrier and the direct tunneling of carriers through the potential barrier 

[75].  As it can be seen in Figure 4.4(a), the off-current per channel width of the FET with 

GNR(7,0) channel is changed from -92.2×10 μA/μm  to -54.8×10 μA/μm , and that of GNR(13,0)   

channel    has   higher   minimum  current    changing   from   -72.6×10 μA/μm   to -11.2×10  

μA/μm  for scaling  the  GNR channel  length  from  15 nm  down  to 2.5 nm. Therefore, 

GNR(13,0) not only shows larger off-current than GNR(7,0) by scaling the channel  length  but  
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Figure 4.3: Transfer characteristics of (a) GNR(7,0) and (b) GNR(13,0) channels for different 

channel lengths at VDS = 0.5V. Inside graph shows the corresponding 

transconductance of GNR(13,0) versus gate voltages. Note: Same legend as in (a) are 

considered for (b). The test device parameters are given in Section 4.1. 
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Figure 4.4: (a) Off-current versus channel-length, (b) ION/IOFF ratio versus channel length for 

GNRFET with channel of GNR(7,0) and GNR(13,0). Note: Off-current of GNRFET 

with GNR channel (13,0) has been obtained at VDS = 0.5V and for VGS close to 

charge neutrality point, assuming 0.4 eV work function difference between metal 

gate and graphene. ION/IOFF ratio is obtained referring to on-current at VGS = VOFF + 

0.8 V. The test device parameters are given in Section 4.1. 
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also has higher increasing trend in off-current by scaling the channel length, resulting in 

GNRFET with reduced robustness to short channel effects. For GNRFET with wider GNR, e.g. 

GNR(13,0), the bandgap is smaller and the carriers has lighter effective mass, which increase the 

band-to-band tunneling between the hole states in the channel and the electron states in the drain 

to some extent, degrading the off-state device performance of wider GNR channel. The OFF-

current of narrow GNR channel is promising, comparing with the design criterions of silicon-

based channels, 100 nA/μm  and 10 nA/μm  for high-performance and low power digital 

integrated circuits (ICs). 

Both on- and off- currents are increased by decreasing channel length and increasing the 

GNR width, however, the off-current is increased more by tunneling effects, which lead to a 

significant change in ION/IOFF ratio as shown in Figure 4.4(b). For instance, six times shrinking 

the channel length from 15 nm to 2.5 nm decreases the ION/IOFF of 15 nm GNR(7,0) from 
109 10  

to 
81.1 10 , approximately three orders of magnitude, while scaling up the channel width 

approximately twice to GNR(13,0) can deteriorate it more to 
76.7 10 . In an effort to improve 

ION/IOFF ratio, a novel GNRFET structure composed of two side metal gates with smaller work-

function has been presented [88], which suppresses short channel effects in GNRFETs by 

inducing the inversion layers next to drain and source regions. As can be seen, ION/IOFF of 

GNR(13,0) can only meet the criterion of high-performance design and cannot be a proper 

channel material for low-power design. 

One of the important figures of merit for the standby power dissipation of FET in 

integrated circuits is subthreshold swing (SS), which has the fundamental limit of 60 mV/decade 

at 300K due to the thermal emission of carriers over the channel potential barrier. In the same 
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scenario as leakage current, the subthreshold slope of GNR(7,0) is sharper than GNR(13,0). 

Scaling down the channel length from 15 nm to 2.5 nm increases the subthreshold slope of 

GNR(7,0) from 65 mV/decade to 72 mV/decade while that of GNR(13,0) increases from 88 

mV/decade to 128 mV/decade as shown in Figure 4.5(a). The subthreshold slopes of narrower 

GNR, i.e. GNR(7,0), are smaller than 90 mV/decade and 125 mV/decade reported for a 10 nm-

scaled Si MOSFET and double-gate FinFET, respectively [132]. This indicates the advantage of 

bandgap engineering in reducing leakage current, together with better gate control on the 

monolayer GNR channel compared to silicon-based MOSFETs. 

The short channel effects degrade the controllability of the gate voltage to drain current, 

which mainly arises from the barrier lowering at the beginning of the channel due to the change 

in drain voltage, known as the drain-induced barrier lowering (DIBL). DIBL is a less important 

performance factor for high performance logic design [3], but it can be important for low power 

IC design. As shown in Figure 4.5(b), the DIBL of 15 nm channel length of GNR(7,0) is very 

small, ~ 7 mV/V while significantly increasing by channel length scaling to ~ 200 mV/V for 2.5 

nm gate length.  

The local density of states and current spectrums of GNR(7,0) channel for two gate 

lengths of 15 nm and 2.5 nm are shown in Figure 4.6. It is apparent from the energy-position-

resolved local density of states of the device, LDOS(x,E), that the channel potential barrier is 

decreased by the drain voltage in 2.5 nm gate length, leading to significant increase in the 

thermionic emission of carriers passing over the channel barrier and the direct tunneling of 

carriers through the potential barrier. For a given channel length, DIBL of GNR(13,0) channel is 

larger  due  to  the  increase  in  the  contribution  of  subbands  in  drain  current,  which leads  to 
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Figure 4.5: (a) Subthreshold swing and (b) DIBL versus channel length for GNRFET with 

channel of GNR(7,0) and GNR(13,0). Note: Subthreshold swing is obtained at VDS = 

0.5V and DIBL is calculated for the change in threshold voltage for drain voltages of 

0.1V and 0.5V. The test device parameters are given in Section 4.1. 
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Figure 4.6.  Local density of states of GNR(7,0) FET for electrons in the conduction band with 

the gate lengths equal to (a) 15nm and (b) 2.5nm. The first two subbands are 

considered in the transport calculation. The solid lines indicate the band diagram of 

the first subband (conduction band) and the corresponding current spectrums 

( )[ ]( ) ( )S DT E f E f E  at two drain voltages of VDS = 0.1V and 0.6V (0.3V) are shown 

in the figure. Note: The color bar shows the number of electrons per unit energy 

( n E  ) in correspondence with the density of states (DOS). The test device 

parameters are given in Section 4.1. 
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decrease in the gate electrostatic ability to control the increase in current with increasing drain 

voltage at a given gate length. 

Further increase of GNR width (smaller bandgap) and the large band bending generated 

by drain voltage at low gate voltage (smaller gate electrostatic) can increase the band-to-band-

tunneling (BTBT) in the drain-side of the GNR channel, where the electrons in the valence band 

of the GNR channel are almost in equilibrium with the Fermi level in drain region. The 

phenomena can be observed from LDOS(x,E) of GNR(18,0) FET with 10 nm gate length in 

Figure 4.7(a). In Fig 4.7(a), the bandgap with small LDOS (approximately zero), the source and 

drain barriers and the quantum interference pattern due to the incident and reflected waves in the 

generated quantum well in the valence band of the channel can be easily identified. The IDS – 

VDS is shown in Fig 4.7(b), which has no saturation region and not suitable for logic operation 

due to high output conductance ( ds DS DSg I V   ). Thus, after on-set of BTBT tunneling 

(depending on GNR width and bias voltage), the reduction in device performance is not due to 

the short channel effects anymore (DIBL and effective channel length modulation) and thereby, 

there is no benefit for long channel length. Otherwise, this can increase the number of localized 

states and consequently the positive charge accumulation in the channel, leading to the static 

feedback and further reduction of the potential energy barrier [133]. 

In addition to the bandgap requirement for low power design, the complementary 

operation (normally-off and normally-on devices) is required for digital logic applications. A 

complementary logic inverter can be designed as one of the main building blocks by integrating 

two complementary GNRFETs if transistors operate at two sides of their Dirac points [134]. In 

GNRFET, the effective masses of electrons and holes are symmetric and thereby the response of  
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Figure 4.7: (a) Local density of states of GNR(18,0) channel. Note: The positions of four 

subbands as well as the conduction and valence bands are shown in figure. (b) IDS-

VDS characteristics of GNR(18,0) channel. Note: The color bar shows the number of 

electrons and holes per unit energy. The other parameters of the test device are given 

in Section 4.1. 



61 

 

pull-up and pull-down networks is equal and opposite while the asymmetric electron and hole 

effective mass in conventional silicon CMOS logic needs to be compensated by scaling the 

physical channel width of the p-type FETs in the pull-up network. Thus, the design of GNRFET 

logic circuit is easier than conventional Si-CMOS circuits, e.g. the switching threshold voltage of 

GNRFET-based inverter is in the middle of voltage transfer characteristic (VTC) close to VDD/2 

[114].  

The maximum voltage gain of inverter (AINV) and noise margin (NM) are two functional 

criteria of an inverter which relate to the maximum possible value of a superimposed noise on a 

digital signal without causing a malfunction of an inversion operation. The maximum voltage 

gain of inverter, AINV can be defined by the maximum slope of VTC in the transition region and 

NM can be calculated as OH IH DD(V -V ) V where OHV  and IHV  are the output and input at the unity 

gain as shown conceptually inside Figure 4.8(a). The VTC of several GNRFET inverters are 

shown in Figure 4.8(a). It can be seen that GNR(7,0) with 5 nm gate length exhibits clear voltage 

inversion with AINV = 4.6 and an ideal rail-to-rail output voltage behavior with NM = 33%VDD. 

Replacing the channel with GNR(13,0) degrades the AINV and NM of VTC to 4.1 and 29%VDD, 

respectively due to the increase in BTBT. Increasing the dielectric constant to 24   (HfO2) 

cannot lead to a significant increase in the gate control at QCL regime, consequently, there is no 

benefit to use insulator material with larger dielectric permittivity. By shrinking the length of 

GNR(13,0) channel to 2.5 nm, the increase in direct tunneling current through the channel 

potential barrier results in further degradation of AINV and NM to 3.7 and 24%VDD, respectively. 

By increasing the GNR width in GNRFET-based circuits, the narrow bandgap increases the 

BTBT leakage current and prevents the pull-down and pull-up networks from completely turning  
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Figure 4.8: (a) Voltage transfer characteristics of GNR-based inverter for the proposed GNRFET 

structure with variation of GNR width, gate length and dielectric constant. Note: 

Charge neutrality point is shifted to VGS = 0 by assuming the design with the proper 

choice of gate work function. Inset conceptually explains the calculation of the noise 

margin and voltage gain using VTC of an inverter. (b) Noise margin and (c) 

maximum gain of GNRFET-based inverters versus scaled supply voltage VDD for the 

5 nm channel length of GNR(7,0), GNR(13,0) and GNR(18,0). The other parameters 

of the test device are given in Section 4.1. 



63 

 

off when its complement network is active. It can be seen that the VTC of GNRFET with 

GNR(18,0) channel is significantly deteriorated such that  the  output  voltage swing VOS and 

gain AINV are decreased to 0.48V and 1.6, respectively, and the noise margin regions are nearly 

diminished. Figure 4.8(b) shows the NM degradation of GNRFET inverters by   scaling  down  

the  supply  voltage  VDD  for  the  5 nm  channel  length  of  GNR(7,0)   and GNR(13,0). It can 

be seen that GNR(7,0) shows larger NM than GNR(13,0) by scaling VDD such that its NM is 

above the typical functional criterion of 30%VDD in CMOS logic for scaling down the VDD down 

to 0.4V. In the same scenario, GNR(7,0) shows larger maximum inverter gain than GNR(13,0) 

as shown in Figure 4.8(c). It can be seen that GNR(18,0) has been already deteriorated by BTBT 

leakage current and its AINV is almost constant close to unity regardless of the value of scaled 

supply voltage.  

4.2.2   Scaling Effects on Switching Attributes of GNRFET 

As a result of the exceptional properties of graphene, including the mobility, thermal 

conductivity and mechanical strength, research is also focused on understanding the switching 

capabilities of graphene for post-silicon logic applications. The capacitance-voltage (C-V) 

characteristics are required in order to investigate the GNR intrinsic speed ( DS G GS
I C V ) as an 

important speed metric, where GC  is the gate-to-source capacitance. In QCL, the gate-to-source 

capacitance is mainly determined by the small density of states of GNR, enforced by the particle 

in a box boundary condition in the transverse direction, resulting estimation and comparison for 

the upper limit performance of the GNRFETs. Figures 4.9(a) and (b) show the gate-to-source 

capacitance versus gate voltage for different channel lengths of GNR(7,0) and GNR(13,0), 

respectively. It is apparent that the amount of  gate-to-source  capacitance  is  decreased  by  gate  
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Figure 4.9: Gate capacitance versus gate voltage at VDS = 0.5V for different channel lengths of 

(a) GNR(7,0) and (b) GNR(13,0), respectively. The other parameters of the test 

device are given in Section 4.1.  
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length scaling while its behavior versus gate voltage  remains same for all channel lengths. The 

gate-to-source capacitance becomes very small by approaching charge  neutrality  point  due  to 

small charge in the channel, where the density of states in the energy range created by drain 

voltage is negligible. It is increased away from charge neutrality point corresponding to its small 

density of states and maximized after reaching threshold voltage as the most of higher subbands 

get populated.  

It is apparent from Figure 4.3 that the trend of voltage supply scaling by scaling channel 

length is different for GNR(7,0) and GNR(13,0), such that the voltage supply of wider GNR can 

be scaled much more than the narrow one. For instance, considering the ON current of 1.5 µA as 

the criterion, the gate voltage can scale down from 0.83V to 0.67V for scaling the channel length 

of GNR(7,0) from 10 nm to 2.5 nm while the gate voltage of GNR(13,0) channel can reduce 

from 0.62V to 0.1V for the same channel length scaling. This may not be attractive for digital 

design as the wider GNR has higher leakage current, but it can be used to the advantage of low 

voltage design with very short channel GNRFET. It is predicted that increase of current density 

with the difficulty of scaling VDD results in the enhancement of dynamic power density (CV
2
) 

with channel-length scaling [3], while GNRFET with short channel length can provide high 

current density and reach to on-region of operation with small supply voltage together with the 

other advantages at QCL [135]. 

Figure 4.10 shows the intrinsic cut-off frequency / (2 )
T m G

f g C , versus gate voltage for 

different channel lengths of GNR(7,0) and GNR(13,0), where CG is gate-to-source capacitance. 

The intrinsic cut-off frequency for all channel lengths has reached to THz range in on-state, but 

GNR(13,0) has larger cut-off frequency than GNR(7,0) as the threshold voltage  and  the  impact  
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Figure 4.10: Intrinsic cut-off frequency versus gate voltage for different channel lengths of (a) 

GNR(7,0) and (b) GNR(13,0), respectively. Note: The inset shows the intrinsic cut-

off frequency of two GNRs versus channel length for the gate voltages of 0.4V and 

0.7V. The other parameters of the test device are given in Section 4.1. 
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of density of states are shifted to smaller gate voltages by increasing the GNR width. Decreasing 

the GNR width opens bandgap and suppresses the band-to-band tunneling in GNRFET, which is 

achieved at the expense of reducing the electron velocity and degrading the band linearity near 

Dirac points. The curve inside of Figure 4.10(b) depicts the intrinsic cut-off frequency of two 

GNRs versus channel length for the gate voltages of 0.4V and 0.7V. It can be seen, for a given 

channel length below 7.5 nm, the down scaling of voltage supply can be done for GNR(13,0) 

channel without significant drop in the intrinsic cut-off frequency while GNR(7,0) channel 

results in much lower values by down-scaling of the voltage supply with reducing the channel 

length. It should be noticed that the THz operation range is due to the assumption of purely 

ballistic transport, no external series resistance and negligible parasitic capacitances in order to 

provide a comparison of the intrinsic upper limit of GNRFET performance, e.g. intrinsic cut-off 

frequency, intrinsic gate-delay time and power-delay product. It is worth mentioning that 

terahertz operation of graphene transistor with sub-10 nm gate length has been already 

demonstrated both theoretically [136] and experimentally [137]. 

Figure 4.11 shows the intrinsic gate-delay time [3],   G GS DSC V I   for scaling the 

channel length of GNR(7,0) and GNR(13,0) at three different gate voltages versus the /ON OFFI I  

ratio for comparison. It is obvious that GNR(13,0) has smaller intrinsic gate-delay time along 

with smaller /ON OFFI I  ratio than GNR(7,0) as upper subbands can get highly populated for 

smaller band gap and also subbands of GNR(13,0) have lighter effective masses and 

consequently  larger carrier injection velocity, which result in higher drive currents at lower 

supply voltage. The objective is to keep the slope of intrinsic gate-delay time versus /ON OFFI I  

ratio as  low  as  possible  while  scaling  down  the  supply  voltage  for  the  sake  of  decreasing  
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Figure 4.11: Intrinsic gate-delay time versus the ION/IOFF ratio corresponding to scaling of the 

channel length of GNR(7,0) and GNR(13,0) at three different gate voltages. The 

other parameters of the test device are given in Section 4.1. Note: The arrows show 

the channel scaling (CS) and voltage scaling (VS). The projection of gate-delay 

time reported for low-power and high-performance designs by ITRS are shown as 

well. CS: Channel Scaling, VS: Voltage Scaling, LP: Low Power, HP: High 

Performance. The other parameters of the test device are given in Section 4.1. 
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switching power consumption. Thus, improved transistor operation can be achieved if the 

difference between ON and OFF currents and the switching speed between these states can be 

maximized while the supply voltage can be scaled down at the same time. As shown in the figure 

by arrows, the slopes of the curves can be kept approximately constant for three scaling 

transitions of channel length from 10 nm to 7.5 nm, from 7.5 nm to 5 nm and from 5 nm to 2.5 

nm while the corresponding gate voltages are scaled down from 0.9V to 0.8V and then 0.7V. In 

other words, when the GNRFET operates at saturation region, the slopes of both GNR(7,0) and 

GNR(13,0) are approximately same for all three transitions of channel scaling. However, for a 

given channel length, the intrinsic gate-delay time of GNR(7,0) is increased more by voltage 

scaling (VS) than that of GNR(13,0). It has been predicted by ITRS that such materials can 

continue the improvement of switching speed at the same time with much lower switching power 

consumption [3]. It can be seen in the figure that both GNR(7,0) and GNR(13,0) can outperform 

the projection of silicon MOS FET for low-power and high performance designs predicted by 

ITRS, such that GNR(13,0) have about 50 times smaller gate-delay time than scaled MOS FET 

with 5 nm channel length in the year 2028. 

The energy required for switching a device can be calculated by the power-delay product 

(PDP), .
G

P Q dV    where Q  is magnitude of charge in the GNR channel. Chin et al. [138] have 

shown that  GNRFET-based logic shows smaller PDP than Si-MOSFET by scaling the channel 

length as higher carrier velocity of GNR results in higher drive current and thereby smaller delay 

at the same time with smaller leakage current due to the possibility of bandgap engineering and 

better control of gate electrostatic on the monolayer GNR channel. Figure 4.12 shows that the 

power-delay product is decreased by scaling the channel length for both GNR(13,0) and 
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GNR(7,0), while the static power is increased by scaling the channel length corresponding to the 

off-current in Figure 4.4(a). The trend in reducing PDP by scaling the channel length is more 

significant at higher gate voltage. GNR(13,0) has smaller PDP at VGS = 0.9V for all the channel 

lengths below 15 nm, which remains lower than GNR(7,0) by scaling down both the channel 

length and supply voltage. The power-delay product is expected by ITRS to reduce from current 

value of ~ 0.8( / )fJ m , reaching to ~ 0.37( / )fJ m in year 2025 for the channel length 

7.5GL nm and supply voltage 0.7DDV V . GNR(7,0) and GNR(13,0) show approximately 

~ 0.45( / )fJ m and ~ 0.18( / )fJ m  for the same channel length and supply voltage. GNR(13,0) 

has smaller power-delay product but larger power dissipation for stand-by mode due to the 

higher IOFF,  demonstrating better switching behavior.  

 

 
 

Figure 4.12: Power-delay product versus channel length for GNR(13,0) and GNR(7,0) channels 

at three different gate voltages. The other parameters of the test device are given in 

Section 4.1. 
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CHAPTER 5 

WIDTH-DEPENDENT PERFORMANCE OF GNRFET 

The electronic structure of GNR is very sensitive to the channel width due to its 

extremely low dimensionality of quasi-1D channel. The quantum confinement of graphene sheet 

in the form of one-dimensional (1D) nanoribbon with very narrow width (~1-3 nm) provides the 

energy gap of several hundred meV required for FET operation in digital applications [97, 99]. 

However, the precise control of the ribbon width down to the nanometer size as an important 

technical problem in the experimental characterization of GNRFET [17] since GNR width can 

significantly change the bandgap by removing or adding one edge atom along the nanoribbon. 

Thus, a precise simulation study is required to explore theoretical performance and limitation of 

GNRFETs for future integrated circuits.  

There is not much reported work on the width-dependent study of GNRFET with respect 

to GNR index. In 2007, Ouyang et al. [75] showed the scaling behavior of GNRFETs 

considering only one semiconducting family of armchair GNRs. In 2008, Raza and Kau [85] 

extracted analytical expressions for bandgap and effective mass of first subband versus GNR 

width by categorizing them into three families. In 2011, Sako et al. [86] investigated the effects 

of edge bond relaxation in device performance using top-of-the barrier model for the 10 nm gate 

length by incorporating the effective mass of first subband. More recently, in 2013, Kliros [87] 

studied the effect of width-dependent performance of GNRFETs using an analytical model. 

However, performance studies of armchair GNR families with channel length below 10 nm is to 

be researched and a more comprehensive investigation is thus warranted based on more 

sophisticated approaches.  
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In recent years, hexagonal boron nitride (h-BN) with 2D atomic structure similar to 

graphene has been proposed as a promising complementary insulator layer [139-142]. As atomic 

thick graphene is susceptible to environmental conditions of growth, h-BN promotes the growth 

of uniform and charge trapping free high-k gate insulator [89, 143]. It has large surface optical 

phonon modes and consequently the lowest remote phonon scattering in thin insulators [144]. 

This increases the high-temperature and high-electric field performance of graphene on h-BN 

substrate. The h-BN has the same dielectric constant ( 4)   and breakdown voltage 

B(V = 0.7 V/nm)  as SiO2 insulator layer. However, it has smaller band gap than SiO2 

-(  = 5.9eV)g hBNE  and atomically smoother surface with similar lattice constant close to ~ 1.7 per 

cent that is free of dangling bonds and charge traps [145]. Epitaxial growth of graphene on SiC 

substrate is also promising as it allows the mass production and increases the effective van der 

Waal distance due to the existence of an intermediate dead layer between graphene and SiC 

substrate. However, the growth of epitaxial graphene on SiC substrate is still a high cost process 

[146]. In addition, the carrier motilities of epitaxial graphene on SiC substrate are smaller than 

exfoliated graphene on SiO2 substrates [34]. 

First principle method predicts that the difference in interaction energy between the 

carbon–nitrogen and carbon–boron can open the bandgap of 50 meV [147], however, there is no 

experimental evidence of such a bandgap due to lack of control on crystallographic alignment 

[143]. The effect of such induced bandgap on static performance of GNRFET has been studied in 

this work considering the fact that the h-BN buffer layer can make the ballistic transport 

assumption more accurate than SiO2 dielectric layer in earlier studies. In Equation (3.2), the 
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equivalent band-gap is used as ,    b b GNR

g g hBNE E E   , where ,b GNR

gE  is the bandgap energy of 

GNR for a subband b and hBNE is the induced bandgap due to the h-BN layer.  

In this chapter, we have made an attempt to provide a comprehensive study on the width-

dependent static metrics and switching attributes of two semiconducting families of armchair 

GNRs (3p,0) and (3p+1,0) by solving quantum transport equation with self-consistent 

electrostatics in mode space. The direct source-to-drain tunneling in short channel GNRFET and 

band-to-band tunneling at the source and drain junctions of wider GNR(small band gap) can be 

captured using the proposed quantum transport model. The effect of non-parabolic band structure 

of GNRFET is incorporated using an energy-position effective mass correction in quantum 

transport model (Equation 3.2), which can be important in determining the subthreshold current, 

especially by increasing the GNR width as it increases the mismatch between parabolic band and 

the exact dispersion relation. This discrepancy can lead to approximately three orders of 

magnitude underestimation of leakage current for wider GNRs. Regarding induced bandgap due 

to h-BN insulator layer, we have assumed that the induced bandgap of h-BN layer is equal to 

zero in our simulation, unless stated otherwise. As both bandgap and band linearity are altered by 

GNR width, the importance of non-parabolic correction in static characteristics can be revealed 

by comparing with h-BN induced bandgap 50meVhBNE  . 

5.1       GNRFET Structure 

The double gate GNRFET structure used in our simulation is shown in Figure 5.1. In this 

structure, the GNR is sandwiched between two thin insulator layers in a double metal gate 

topology in order to  maximize  the  electrostatic  control  of  the  gate  electrode  over  the  GNR 

channel. A  h-BN  layer  has  been  used  as  a  buffer  layer [148], which  results  in  high-k  gate 
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Figure 5.1: (a) Vertical cross-section of a double gate GNRFET and (b) 3D schematic of the 

proposed DG GNRFET. Note: The armchair GNR channel under the gate area is un-

doped and the source and drain regions are n-type doped. Simulation domain which 

contains the source, gate, and drain regions in longitudinal direction are shown with 

the dashed line. The top view of GNR sandwiched between two h-BN layers is also 

shown.  
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insulator free from charge trapping and thereby protection to GNR against environmental 

influence [89]. The proposed GNRFET has the HfO2 dielectric layer with the  relative  dielectric 

permittivity 𝛆r = 24 and the oxide thickness tox = 1.2 nm, while the dielectric permittivity of h-BN 

layers is 𝛆r = 4 and the interlayer spacing between graphene and h-BN layers is assumed 0.3 nm 

[149]. Thus, the insulator combination of h-BN and HfO2 dielectrics results in an approximate 

equivalent silicon oxide thickness (EOT) of 0.5 nm (5 Å), leading to ultimate gate control over 

the GNR channel [150], which fulfills the criterion of ITRS. In addition, the length of intrinsic 

GNR channel, LG = 7.5 nm and power supply voltage is based on scaling criteria as in ITRS for 

commercial high-performance and low power FET for digital integrated circuits. Similar to 

Section 4.1, the symmetric regions of GNR channel is heavily doped with the concentration of 

0.01 n-type dopants per carbon atom as extensions of source and drain regions and connected to 

two large metallic contacts. 

5.2       Results and Discussion 

Figure 5.2 shows the energy of the first four subbands at charge neutrality point versus 

GNR width. It can be seen that the higher subbands also follow their own repeating pattern with 

reduced values in energies by increasing the width of GNRs. The GNR family (3p+1,0) has 

larger bandgap than its neighbor GNR family (3p,0). The second subband of GNRs (3p+1,0) has 

energy close to the first subband energy, which can significantly contribute to carrier transport. 

Two GNRs (6,0) and (10,0) with the same bandgap Eg = 0.6 eV have been compared in reference 

[86] using a semi-classical model considering only the energy and effective mass of first subband 

while we demonstrate that the second subband of GNRs (3p+1,0) can contribute largely in 

carrier transport.  
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Figure 5.2: Energy of first four subbands at charge neutrality point versus GNR width. 
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The effective masses of the first four subbands at charge neutrality point for different 

members of two GNR groups are shown in Figure 5.3. The effective masses and energies of 

second subband can be important for the off-state current calculation of  GNR group (3p+1,0)  as  

it  can contribute in carrier transport even in low bias condition due to the small energy 

difference with first subbands. The effective mass of first subband adopted from [85] 

demonstrates a close agreement with our results as shown in Figure 5.3. It can be seen that the 

effective mass of the narrow GNR is very sensitive to the width, such that the effective mass of 

the first subband crosses the second one and the third subband crosses the fourth one for GNR 

group (3p+1,0). Likewise effective mass of the second subband crosses the third one for the 

GNR group (3p,0). Thus, the accurate TB calculation is required to obtain effective mass and 

correspondingly correct the non-parabolic band diagram of GNR for width smaller than 3 nm.   

Figure 5.4 shows the drain current as a function of negative and positive voltage at the 

gate and drain terminals of the proposed GNRFET in Figure 5.1. For a given drain voltage, a 

minimum current occurs at the charge neutrality point (CNP), where the hole current is equal to 

electron current and the charge carriers are changed due to induced electrostatic potential of the 

gate voltage on subbands in the channel. Increasing the drain voltage to positive values leads to 

the accumulation of holes in the channel due to the increase in band-to-band tunneling from the 

source contact to channel together with DIBL effect in a short channel device. This increases the 

minimum current value and shifts it to positive gate voltage. In similar scenario, an increase in 

the drain voltage to negative values can lead to the band-to-band tunneling from the drain contact 

to channel,  increasing and  shifting  the  minimum  current  at  CNP  to  negative  gate  voltages. 

Increasing (decreasing) gate voltage increases the electron (hole) carriers in the GNR channel by 
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Figure 5.3: Effective mass of the first four subbands obtained by TB calculation for (a) GNR 

group (3p+1,0) and (b) GNR group (3p,0). Note: The arrow shows the value from 

[85].  
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Figure 5.4: Drain current as a function of negative and positive voltage at gate and drain terminals for the GNRFET with the channel 

of armchair GNR(13,0). Note: The channel length, width of metal gate and gate dielectric thickness are 7.5 nm, 1.48 nm, 

and 1.2 nm, respectively. The other parameters of the test device are given in Section 5.1. The dielectric constant of HfO2 

insulator layer and h-BN buffer layer are 24 and 4, respectively. Arrow indicates the passing through mid-gap energy 

corresponding to the charge neutrality point.  
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shifting the Fermi energy toward the conduction (valence) subbands. The ambipolar transport is 

partially recovered with regard to subthreshold region created due to generated bandgap of GNR. 

This has been already demonstrated experimentally for the GNR with the reduced impurity 

similar to that of large-area graphene [118]. 

5.2.1   Width-dependent Static Metrics of GNRFET 

In order to investigate the static characteristics of the GNRFET as a function of GNR 

width, the armchair GNRs needs to be classified in two groups of (3p+1,0) and (3p,0) as their 

band structure is different and can be altered differently by changing the GNR width. The IDS 

versus VDS characteristics for two GNR groups of (3p+1,0) and (3p,0) are shown in Figure 5.5 

for the test structure in Figure 5.1. The strong saturation region for even the short channel length 

LG = 7.5 nm, indicates good MOS FET type behavior. On the other hand, the saturation drive 

current of a typical silicon MOSFET with channel lengths below 10 nm drops due to VDD scaling 

and significant source-drain tunneling [3]. In addition to short channel effects, the saturation 

slope depends on GNR width, such that increasing VDS in a wide GNR can significantly increase 

the depletion of electrons in the valence band which corresponds to the accumulation of holes in 

the GNR channel.  

Thus, the degradation of subthreshold swing for a short channel GNRFET with a wide 

GNR is mostly associated with band-to-band-tunneling and to some extend the direct source-to-

drain tunneling, which decreases the dependence of saturation slope to short channel effects 

[133]. As predicted by ITRS, high mobility and light effective masses of carriers in graphene 

results in high drive currents at low supply voltage, which can continue the improvement of both 

the switching speed and low  switching  power  consumption  at  the  same  time [3].  Both  GNR 
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Figure 5.5: Output characteristics for two families (a) GNRs (3p+1,0) and (b) GNRs (3p,0). The 

parameters of the test device are given in Section 5.1. 
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families can provide approximately an order of magnitude higher drive current than the projected 

silicon MOS FETs [5]. As can be seen, GNRs (3p,0) can have about two times higher drive 

current than GNRs (3p+1,0) because more subbands can get populated for smaller band gap 

under the same bias condition. In order to increase the drive strength of GNRFET with narrow 

GNR, multiple ribbons can be implemented in parallel, which  can  be  connected  to  two  wider 

contacts [52]. 

The transfer characteristics IDS-VGS for two GNR groups are shown in Figure 5.6. For fair 

comparison between different curves of transfer characteristics, the off-voltage of GNRFET, 

VG,min, has been shifted to VG ≈ 0 as the CNP of GNRs can be tuned by properly designing the 

gate work function [75]. In general, increasing GNR width shifts the curve to the smaller gate 

voltage, leading to smaller threshold voltage for wider GNRs. For GNR group (3p,0), the drain 

current is larger and the threshold voltage can be lower than those of GNR group (3p+1,0). As 

can be seen, both on- and off- currents are increased by increasing the width of GNR due to a 

smaller band gap and higher number of available conducting subbands at a given bias condition.  

The first and the narrowest member of GNR family (3p+1,0) has the off-current close to 

16~ 2.5 10 A, 5 orders of magnitude lower than the corresponding first member of GNR family 

(3p,0). Significant drain current is due to the thermionic transport of electrons with energies 

above the potential barrier, however, decreasing the band gap and effective mass of wider GNRs 

results in an increase of the band-to-band tunneling the electrons in the channel into the drain 

region as shown in Figure 5.7. This BTBT current is still small compare to the thermionic current 

component. Figure 5.7 shows the energy-position-resolved local density of states of two GNRs 

(9,0) and (24,0), respectively. The bandgap with quite low local density of states and  the  source  
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Figure 5.6: Transfer characteristics for two families (a) GNRs (3p,0) and (b) GNRs (3p+1,0) at 

VDS = 0.5V. The parameters of the test device are given in Section 5.1. 
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Figure 5.7: Local density of states in (a) GNR(9,0) and (b) GNR(24,0) calculated with the non-

parabolic effective mass (NPEM) model considering first two subbands at VGS = 0.1 

V and VDS = 0.4 V. Note: The conduction and valence bands as well as source and 

drain Fermi levels are shown in the figure. The parameters of the test device are 

given in Section 5.1. 
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and drain barriers can be easily identified. The quantum interference pattern due to incident and 

reflected waves in the generated quantum well in valence band of the channel is also apparent, 

which has significant contribution at subthreshold regions for the wide GNRs. This can also 

increase the leakage current of GNRFET, leading to the operation of the FET like a conductor 

rather than a transistor. 

In a typical MOSFET, the off-state current is mostly due to the thermionic emission of 

carriers from over the channel barrier in a longer channel, while in a short channel device, the 

decrease in both height and width of potential barrier in the channel increases the direct 

tunneling of carriers through the barrier [75]. In GNRFET, the band gap and effective mass 

depends on the type of GNRs, such that the off-state current is increased by increasing GNR 

width as shown in Figure 5.8(a). The off-state current of GNRs (3p,0) is larger than GNRs 

(3p+1,0) as it has smaller bandgap, which provides more available subbands to contribute in 

band-to-band tunneling from drain contact to channel. In addition, the effective mass and the 

energy position of upper subbands are different for two GNR families which can significantly 

change their off-state current. As can be seen in Figure 5.8(a), GNR(19,0) and GNR(12,0) have 

different off-state characteristics while they have approximately the same bandgap close to Eg = 

0.6 eV. GNR(19,0) has larger effective mass equal to 0.075m0 and 0.085m0 for the first and 

second subbands than that of GNR(12,0) equal to 0.055m0, which results in smaller off-state 

current close to ~ 4.9 µA/µm compared with ~ 11 µA/µm for GNR(19,0). This reveals the 

importance of non-parabolic correction of GNR band structure, which becomes more important 

by increasing the GNR width due to increase in band linearity near the CNP as shown in Figure 

5.8. For a given GNR width, the parabolic assumption leads to smaller off-state current as shown 
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Figure 5.8: (a) Off-state current and (b) ION/IOFF ratio of GNRFET for two GNR families 

(3p+1,0) and (3p,0) versus GNR width. Note: For comparison with NPEM model, 

the CEM model is shown with dotted line in (a). The effect of induced bandgap of 

h-BN insulator layer equal to ∆Eh-BN = 50 meV is shown with dashed line. The off-

current criterions and ION/IOFF ratio is also shown. LP: low power and HP: high 

performance.  Two GNRs (12,0) and (19,0) with the same bandgap of 0.6 eV are 

shown in (a). The parameters of the test device are given in Section 5.1. 
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in Figure 5.8(a). The difference between the non-parabolic effective mass (NPEM) model and 

constant effective mass (CEM) model is increased by increasing GNR width as the wider GNRs 

have smaller effective mass and the parabolic assumption can be more erroneous. 

The off-current is one of the design criterions of MOS FET, as predicted (for the year 

2025 [3]) to be 100 nA/μm and 30 pA/μm for high-performance and low-power digital ICs, 

respectively. It can be seen that the first three members of GNRs (3p+1,0) and the  first  member 

of GNRs (3p,0) have smaller off-current than the scaled MOS transistor, promising lower energy 

consumption of GNRFET-based circuits in the off-state. The linearity of GNR energy dispersion 

is increased by increasing the GNR width, which increases the importance of non-parabolic 

correction in determining off-state current. In other word, wider GNRs have lighter effective 

mass of carriers which can result in higher leakage current, thus requiring the non-parabolic 

correction. The effect of possible induced bandgap of h-BN layer has been shown to be a 

function of GNR width. In the same scenario, the bandgap of GNR is decreased by increasing 

GNR width making ∆EhBN an important portion of equivalent bandgap energy such that the 

leakage current of wide GNR is decreased more than narrow GNRs. Though, the effect of non-

parabolic band in increasing the off-current cannot be possibly reduced by the induced bandgap 

of h-BN layer. 

/ON OFFI I  ratio is decreased by increasing GNR width, following the same trend as the 

band gap dependence of GNR width as shown in Figure 5.8(b). The narrowest ribbon in GNRs 

(3p+1,0) has the highest ION/IOFF ratio 9~ 4.5 10  which is about 350 times and five orders of 

magnitude larger than the target ION/IOFF ratio for low power and high performance designs, 

respectively. However, the fifth member of GNRs (3p+1,0) and the third member of GNRs 
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(3p,0) have smaller /ON OFFI I  ratio. In an effort to improve /ON OFFI I  ratio, a GNRFET structure 

composed of two side metal gates with smaller work-function has been presented in [88], which 

suppresses short channel effects in GNRFETs by inducing the inversion layers next to drain and 

source regions. While the h-BN layer decreases both the off-current and on-current, the ION/IOFF 

ratio can be increased due to the increase in the bandgap of GNRs.  

The subthreshold swing is an important off-state figure of merit for FETs, which 

corresponds to the standby power dissipation in integrated circuits. The subthreshold has 

physical limits and cannot be below ( )ln(10) 60 mV/decBn k T q   due to the thermal emission of 

carriers over channel barrier, where n is subthreshold slope factor. While thermionic current is 

the dominant current for the gate voltage away from CNP, the band-to-band tunneling current 

can strongly contribute to sub-threshold current. It can be seen from Figure 5.6 that the 

subthreshold slope is decreased by GNR width as decreasing bandgap increases the contribution 

of BTBT current. Figure 5.9 shows the width dependence of subthreshold swing for two GNR 

families (3p+1,0) and (3p,0). As the GNRs (3p+1,0) has larger bandgap than GNRs (3p,0), it 

demonstrates smaller subthreshold swing such that the range and trend of subthreshold of GNR 

group (3p,0) are more sensitive to width than that of group (3p+1,0). The first member of GNRs 

(3p,0) has the subthreshold swing (SS) equal to 90 mV/dec while the first member of GNRs 

(3p+1,0) with SS = 67 mV/dec can have superior subthreshold performance close to the physical 

limit of 60 mV/dec for MOS transistors. This value is much smaller than 125 mV/dec and 90 

mV/dec reported [132] for a 10 nm scaled double gate Fin-FET and MOSFET, respectively. It 

shows the advantage of bandgap engineering of GNRFET as well as better control of gate 

electrostatic over atomically thin GNR channel in  reducing  subthreshold  slope. The  range  and  
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Figure 5.9: Width dependence of subthreshold swing for two GNR families (3p+1,0) and (3p,0) at VDS = 0.5 V. The parameters of the 

test device are given in Section 5.1. 
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trend of subthreshold curves indicate that the GNRs in group (3p,0) are more sensitive to width 

variation than group (3p+1,0). 

5.2.2   Width-dependent Switching Attribute of GNRFET 

In this section, we continue the width-dependent performance of GNRFET for two 

semiconducting families of armchair GNRs (3p,0) and (3p+1,0), focusing on its switching 

attributes such as threshold voltage, transconductance, gate-to-source capacitance, intrinsic cut-

off frequency and  intrinsic gate-delay time. From transfer characteristics, the threshold voltage 

of GNRFET with different widths can be extrapolated as shown in Figure 5.10(a). The increase 

in GNR width results in smaller bandgap and thereby decreases the threshold voltage for both 

GNR families as shown in Figure 5.10(b). For a GNR with smaller bandgap, higher number of 

carriers can be induced in conduction and valence bands by gate potential leading to smaller 

threshold voltage. In the same scenario, threshold voltages of GNR(3p,0) are smaller than 

GNR(3p+1,0) for approximately same GNR widths as the former has smaller bandgap. For 

example, the width of GNR(24,0) and (25,0) are 3.07 nm and 3.19 nm, respectively, with the 

width difference of only one carbon atom. However, the threshold voltage of GNR(25,0) is 

approximately 0.3 V while that of GNR(24,0) is close to 0.2 V. In addition, the drain current of 

GNR(25,0) at VGS = 0.4 V is approximately 5.6 µA while that of GNR(24,0) is close to 18 µA. 

The transconductance versus gate bias is shown in Figure 5.11(a) and 5.11(c). It can be 

seen that there is a linear dependence to gate voltage around threshold voltage, followed by a 

maximum plateau region. For approximately same GNR width, GNR(3p,0) has larger 

transconductance than GNR(3p+1,0) as the formers smaller bandgap results in higher 

contribution of subbands  in  carrier  conduction, showing  an  inverse  trend  between  

transconductance  and  bandgap. From Figure 5.11(b) and 5.11(d), it can be seen that  the  higher  



91 

 

 

Figure 5.10: (a) Extrapolation of threshold voltages from transfer characteristic. (b) Threshold 

Voltage versus GNR Width for two GNR families (3p+1,0) and (3p,0). The 

parameters of the test device are given in Section 5.1. 
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Figure 5.11: Transconductance versus (a) gate voltage, (b) drain current for seven members of 

GNR(3p+1,0). Transconductance versus (c) gate voltage and (d) drain current for 

seven members of GNRs (3p,0). The parameters of the test device are given in 

Section 5.1. 
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transconductance of GNR(3p,0) comes with higher drive current for approximately the same 

GNR width. For instance, the transconductance and drive current of GNR(24,0) at VGS = 0.45 V 

are approximately 82 µS and 22 µA, respectively, while these are approximately 62 µS and 8 µA 

for GNR(25,0). 

The gate-to-source capacitances of GNRFETs in two armchair GNR families are shown 

in Figure 5.12(a) and (d). As explained in Figure 3.4, the gate-to-source capacitance of 

GNRFETs becomes very small by approaching zero gate voltage, which corresponds to shift of 

the Fermi level to mid-bandgap energy of GNRs and small charge inside the channel. The 

maximum peak followed by a minimum plateau corresponds to the condition in which fermi 

level passes a peak in the density of state of GNRs. The local maximum of gate-to-source 

capacitance of GNRFET decreases in value and shifts to smaller gate voltage by increasing the 

GNR width in both GNR families. In order to explain the different behaviors of the GNR 

capacitances versus gate voltage, the conventional sketch of DOS, similar to Figure 5.12(c) and 

5.12(f), has been converted to color bar versus vertical energy axis for two GNR families as 

shown in Figure 5.12(b) and 5.12(e). The blue areas correspond to bandgap energy of GNRs with 

very small DOS while red areas have highest DOS (peaks) corresponding to the location of 

minimum energies of subbands. Shifting the Fermi level in the channel from mid-energy of 

bandgap toward higher energies, the first subband of GNR(25,0) is the first subbands that gets 

populated around EF1 = 0.2 eV and results in the corresponding peak in the curve of gate-to-

source capacitance versus gate voltage. As explained in Section 3.2, the quantum capacitance is 

dominant in the equivalent capacitance of GNRs and thus the gate-to-source capacitance is 

related to the derivative of channel charge as follows: ( )G QC C Q V n E       . Thus, with 
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Figure 5.12: Gate capacitance as a function of gate voltage for seven members of (a) GNR(3p+1,0) and (d) GNR(3p,0). Density of 

states for the families of (b) GNR(3p+1,0) and (e) GNR(3p,0) converted to the color bar schematics. The conventional 

DOS of (c) GNR(25,0) and (f) GNR(24,0) for comparison. The parameters of the test device are given in Section 5.1.



95 

 

regard to the location of first subband in energy, the peak of GNRs with wider bandgaps occurs 

at higher gate voltage, such that GNR(7,0) with largest bandgap in this study has a peak in its 

gate-to-source capacitance around the gate voltage of 0.8V corresponding to locating the channel 

Fermi level around its first subband, 0.8eV (see EF2 in Figure 5.12(b)). In the same scenario, the 

behavior of GNR families (3p,0) in Figure 5.12(d) can be interpreted using the DOS of GNRs 

versus energy in Figure 5.12(e). By comparing the peaks and plateaus of the gate-to-source 

capacitances for two GNR families in Figure 5.12(a) and 5.12(d), it can be seen that GNR(3p,0) 

has slightly smaller gate-to-source capacitances than (3p+1,0) for approximately same GNR 

width and they also occur at smaller gate voltages. This can be interpreted by comparing the 

Fermi levels EF1 in Figure 5.12(b) and 5.12(e) with regard to the first subband of GNR(25,0) and 

that of GNR(24,0). The GNR(25,0) has the second subband near the first subband that can 

increase the carrier density in the channel, resulting in higher gate-to-source capacitance for 

GNR(25,0). These two subbands are located at higher energies than the first subband of 

GNR(24,0), which leads to a shift in the behavior of gate-to-source capacitance of GNR(25,0) to 

the higher gate voltages.  

The intrinsic cut-off frequency versus gate voltage and drain current of two GNR groups 

are shown in Figure 5.13. In general, the wider GNR corresponds to lower band gap, which leads 

to observation of higher cut-off frequency at smaller gate bias. It can be seen that GNR(3p,0) has 

larger intrinsic cut-off frequency by approximately twice as of GNR(3p+1,0). The peak of 

intrinsic cut-off frequency is increased and shifted to lower gate voltages by increasing GNR 

width, such that GNR(3p,0) has not only higher peak of cut-off frequency but also it occurs at 

lower gate voltage and higher drain current. For instance, GNR(25,0) has  the  cut-off  frequency,  
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Figure 5.13: Intrinsic cut-off frequency versus drain current for seven members of (a) 

GNR(3p+1,0) and (b) GNR(3p,0). The inset shows the intrinsic cut-off frequency 

versus gate voltage. Note: VDS = VDD. The parameters of the test device are given 

in Section 5.1. 
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fT = 25.5 THz at VGS = 0.5 V and ID = 11.5 µA while its counterpart, GNR(24,0), in another 

group with approximately the same width has higher cut-off frequency, fT = 55 THz at VGS = 

0.35 V and ID = 14 µA. It should be noticed that extremely short channel length, LG = 7.5 nm and 

the assumption of ballistic transport and negligible parasitic capacitances provide an estimation 

for upper limit of the device performance metrics. Figure 5.14 shows the intrinsic gate-delay 

time. The Intrinsic gate-delay time is increased by decreasing GNR width, corresponding to 

increase in ION/IOFF ratio. GNR(3p,0) has approximately an order of magnitude smaller intrinsic 

gate-delay time for approximately the same width since their smaller band gap and effective 

mass can lead to more populated upper subband and larger average carrier injection velocity. 

 

 

Figure 5.14: Intrinsic gate-delay time versus ION/IOFF ratio and GNR width for two families 

GNRs (3p+1,0) and GNRs (3p,0) at VDS = 0.5Vand VGS = 0.7V. The parameters of 

the test device are given in Section 5.1. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1       Results Summary 

Although aggressive scaling of transistor dimensions and increasing chip complexity has 

satisfied the demand for increasing the performance of integrated circuits (IC), the drain-source 

leakage current and corresponding power density significantly increase in sub-10 nm channel 

length and thus the well-known Moore’s law will be approaching to an end in next decade. There 

is increasing efforts in search of new materials such as carbon nanotubes (CNT) and graphene 

possibly substituting silicon in integrated circuits. While, graphene has exceptional properties 

such as large carrier motility, high carrier concentration, high thermal conductivity and 

atomically thin planar structure, it doesn’t have the required bandgap for logic application and 

cannot be fully switched off. Patterning large-area graphene into nanoribbon strips is widely 

considered to be the most elegant and useful methodology to induce a band gap in graphene.  

As the fabrication of a transistor with reduced dimensionality is not experimentally 

available, optimization and prediction of the device characteristics need to be performed by 

modeling and simulation based on quantum mechanics in order to capture the effects of quantum 

tunneling on carrier transport in sub-10 nm dimension. The quantum-based transport simulation 

can effectively treat short gate-length electrostatic effects and quantum tunneling effects such as 

direct source-to-drain tunneling in short channel GNRFET or band-to-band tunneling at the 

source and drain junctions. An accurate quantum-based method for bottom-up device simulation 

is non-equilibrium Green’s function (NEGF) approach, where Schrӧdinger equation is solved 

under non-equilibrium condition. This carrier transport model provides the atomistic description 
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of channel material, a comprehensive understanding of tunneling effects, as well as the effects of 

contacts on carriers transport in the channel. 

Major part of this research work involves the simulation of GNRFET based on NEGF 

approach and presents a study on the GNRFET characteristics at the nanoscale channel length for 

emerging technology. An accurate and relatively fast numerical algorithm has been presented 

based on NEGF formalism to evaluate the scaling effects and the width-dependent of graphene 

nanoribbon on static metrics and switching attributes of the double gate GNRFETs with high-k 

dielectric materials. The double gate GNRFET has been simulated by solving quantum transport 

equation with self-consistent electrostatics in mode space, where the non-parabolic band 

structure of GNRFET is incorporated by energy-position effective mass Hamiltonian. This non-

parabolic correction can be important in determining the subthreshold current, especially by 

increasing the GNR width as it increases the mismatch between parabolic band and the exact 

dispersion relation. This discrepancy can lead to approximately three orders of magnitude 

underestimation of leakage current for wider GNRs. The direct source-to-drain tunneling in short 

channel GNRFET and band-to-band tunneling at the source and drain junctions of wider GNR 

(small band gap) can be captured in the current model while reducing the computational time 

with respect to tight-binding model. 

The ultimate gate electrostatic control over the channel of a GNRFET is achieved by 

approaching quantum capacitance limit, such that the scaling of oxide thickness can no longer 

result in significant improvement in the GNRFET robustness to short channel effects. Thus, the 

focus of this research has been on studying off- and on-state performance and limitation of 

GNRFETs by down scaling of two dimensions, channel length and GNR width as the vertical 

scaling of oxide thickness become less important by approaching quantum capacitance limit 
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(QCL). Potential application of GNRFET has been explored for low-power and high-

performance integrated circuit designs. 

6.1.1.   Scaling down the channel length of GNRFET 

By scaling the gate length, the potential and the corresponding charge in the channel is 

not only controlled by  gate  electrostatic  but   also  the  drain  and  source  contacts,  which  can  

degrade  the  static performance due to short channel effects and change the strength of quantum 

capacitance limit at on-state, showing the importance of self-consistent solution for channel 

length study of GNRFET. In addition, scaling the GNR width can change both the static 

performance by increase in band-to-band tunneling current and the on-state performance as the 

insulator capacitance and quantum capacitance of GNR as a function of gate voltage can be 

altered depending on the GNR width. 

The static device metrics and switching attributes of test GNRFET structure in Section 

4.1 have been investigated for scaling down the channel length from 15 nm to 2.5 nm, focusing 

on off-current, ION/IOFF ratio, subthreshold swing, drain-induced barrier lowering (DIBL), 

intrinsic frequency and gate-delay time as well as power-delay product. By scaling the channel 

length, the GNR FET with narrower armchair GNR channel shows superior static performance 

than wider armchair GNRs, indicating a more preferable attribute for low power IC design. Scaling 

down the channel length of GNR(7,0) from 15 nm to 2.5 nm decreases off-current from 1.7×10
-18 

A to 3.7×10
-14 

A, /ON OFFI I  ratio decreases from 9×10
10

 to 1.1×10
8
, subthreshold swing increases 

from 65 meV/decade to 72 meV/decade and DIBL increases from 7 mV/V to 200 mV/V. For the 

same change in the length of GNR(13,0) channel, off-current increases from 3.8×10
-16 

A to 1.8 

×10
-10 

A, /ON OFFI I  ratio decreases from 7×10
7
 to 5×10

4
, subthreshold swing increases from 87 
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meV/decade to 126 meV/decade and DIBL increases from 30 mV/V to 280 mV/V. As such, the 

bandgap engineering by scaling the GNR width allows us to compensate the degradation due to 

down- scaling of the channel, improving the device robustness to short channel effects. 

To the contrary, GNRFET with wider GNR channel shows better on-state performance 

by scaling the channel length and supply voltage, indicating a more preferable behavior for low 

power IC design. Scaling down the channel length of GNR channel from 15 nm to 2.5 nm results 

in significant decrease in the intrinsic gate-delay times, such that both GNR(7,0) and GNR(13,0) 

can outperform the ITRS projection of silicon MOSFET for low-power and high performance 

designs. For instance, GNR(13,0) have about 50 times smaller gate-delay time than scaled 

MOSFET with 5 nm channel length in the year 2028.  

The power-delay product (PDP) is decreased by scaling the channel length for both A-

GNR(13,0) and A-GNR(7,0), while A-GNR(13,0) shows smaller power-delay product by scaling 

both the channel length and supply voltage. GNRFET shows smaller PDP than conventional 

MOSFET by scaling the channel length as higher carrier velocity of GNR results in higher drive 

current and thereby smaller delay. The power-delay product is expected by ITRS to reduce from 

current value of ~ 0.8 fJ/µm, reaching to ~ 0.37 fJ/µm in year 2025 for the channel length 

GL = 7.5nm and supply voltage DDV = 0.7V . The PDP of GNR(7,0) and GNR(13,0) are 

approximately ~ 0.45 fJ/µm and ~ 0.18 fJ/µm for the same scaled channel length and supply 

voltage. Thus, GNR(13,0) have a promising power-delay product, but larger power dissipation 

for stand-by mode due to the higher IOFF,  demonstrating better switching behavior. 

6.1.2.   Width-dependent performance of GNRFET 

This study has been provided the systematic investigation and optimization of GNR 

width in order to reveal the potential benefits and limitation of GNR FETs in future VLSI 
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technology. Increasing the GNR width can improve the on-state device performance, but to some 

extent since the band-to-band tunneling of the electrons from the valence band of GNR channel 

into the empty states in the drain region can be occurred for a wide GNR, e.g. GNR(18,0). This 

tunneling current deteriorates the voltage gain due to lack of current saturation at on-state and 

also degrades the static performance of GNR FET, much more important than the increase in 

direct tunneling due to short channel effects. Though, by scaling the channel length, the bandgap 

engineering of GNRFET-based circuits provides another degree of freedom for IC designers in 

order to use GNRFETs with wide and narrow GNR channels for high-performance switching 

and low-power transistors in integrated circuits. 

An accurate investigation of the static and switching attributes of GNRFETs are 

performed for two semiconducting families of armchair GNRs (3p,0) and (3p+1,0), focusing on 

off-current, ION/IOFF ratio, subthreshold swing, DIBL, transconductance, quantum capacitance, 

intrinsic cut-off frequency and intrinsic gate-delay time. It is found that by increasing the GNR 

width in both GNR families, the leakage current, subthreshold swing, transconductance and 

maximum cut-off frequency are increased while /ON OFFI I  ratio, maximum gate-to-source 

capacitance and intrinsic gate-delay time are decreased. In this scenario, the larger bandgaps of 

GNRs(3p+1,0) results in superior off-state performance including smaller subthreshold swing, 5 

order of magnetite lower off-current and approximately 50 times higher ION/IOFF ratio. To the 

contrary, GNRs(3p,0) has smaller bandgap and effective masses, which leads to superior on-state 

performance such as approximately an order of magnitude smaller intrinsic gate-delay time, 

larger drain current and more than twice higher intrinsic cut-off frequency at lower gate voltages.  

Removing or adding one edge atom along the nanoribbon can significantly change the 

bandgap energy of the GNR. For example, the width of GNR(24,0) and (25,0) are 3.07 nm and 
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3.19 nm, respectively, with the width difference of only one carbon atom, but significant 

difference of switching attributes: The threshold voltage of GNR(25,0) is approximately 0.32 V, 

while that of GNR(24,0) is close to 0.19 V; The drive current of GNR(25,0) at VGS = 0.45 V is 

approximately 8 µA, while that of GNR(24,0) is close to 22 µA; The transconductance of 

GNR(25,0) at VGS = 0.45 V are approximately 62 µS, while that of GNR(24,0) are 

approximately 82 µS; The maximum intrinsic cut-off  frequency of GNR(25,0) is 25.5 THz at 

VGS = 0.5 V, while that of GNR(24,0) is 55 THz at VGS = 0.35 V.  

The effect of non-parabolic band structure of GNRFET is investigated in determining its 

static performance. Increasing the GNR width increases the mismatch between the assumption of 

parabolic band and the exact dispersion relation, leading to an erroneous underestimation of 

leakage current for wider GNRs. The difference between the non-parabolic effective mass 

(NPEM) model and constant effective mass (CEM) model is increased by increasing GNR width, 

such that, GNR(24,0) and GNR(25,0) show two and three orders of magnitude erroneous  

underestimation of off-current, respectively.  

It has been found that the first and the narrowest three members of GNRs (3p+1,0) and 

the  first  member of GNRs (3p,0) have smaller off-current than the design criterions of 

MOSFET projected by ITRS (100 nA/μm for high-performance digital ICs in the year 2025), 

showing narrower GNRFETs as promising alternatives with lower energy consumption in the 

off-state. In addition, the effect of the possible induced bandgap due to the h-BN layer has been 

studied for both GNR groups. It has found that this effect can possibly decrease the large leakage 

current of wider GNRs, leading to approximately an order of magnitude reduction in their off-

current.  
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6.2       Recommendation for Future Works 

Atomically thin structure of monolayer graphene in GNRFETs results in better gate 

control over the channel, which can be fabricated as an individual GNR or multiple GNRs in an 

array connected to the same wide GNRs as shown in Fig. 2.5. As the nanometer-wide GNR has 

small drive current, the fabrication of multiple parallel GNRs as the channels can increase the 

drive current of a GNRFET. While the number of GNR channel represents the corresponding 

integer increment of W/L in conventional CMOS, the GNR width is another degree of freedom in 

designing GNRFET-based circuits as the bandgap of GNRs can be inversely changed by the 

ribbon width. 

While the bottom-up approaches or unzipping the MWCNT can be used for producing a 

GNRFET with one GNR channel, the fabrication of a GNRFET with multi-GNR channels 

connected to a zigzag GNR as source and drain region as well as interconnect in all-graphene 

architecture can be produced by atomic precision control, which is beyond the precision limit of 

modern lithographic approach. Thus, patterning a graphene flake in the form of multi-GNR 

channels can lead to the introduction of dangling bonds at the edges. The edge roughness is a key 

issue has crucial effects in shortening the mean free path (MFP) of electrons in GNR such that it 

can eliminate the attractive electron transport properties of graphene. It increases the 

backscattering probability of electrons due to side wall scattering and thereby decreases the ratio 

of longitudinal to transverse velocity of electrons in GNRs. The edge roughness generates edge 

states in the bandgap, which can significantly enhance the leakage current and reduce the drive 

current. 

Further work is needed to develop an edge roughness model and simulate the multi-GNR 

channel device. This is very useful to examine the effect of process variation on circuit 
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performance of GNR FET. The dispersion of the electrical characteristics due to random edge 

defects in realistic nanoribbons can be precisely evaluated by statistical analysis at the device-

level, based on the atomistic quantum transport simulations of large ensembles of randomly-

generated GNRs. In this dissertation, the ideal smooth-edge GNR FETs with one GNR channel 

has been simulated, which gives an estimation of the upper bound performance. However, 

incorporating the line-edge roughness needs to be considered for practical GNR FETs which can 

deteriorate the GNRFET performance. 
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APPENDIX B 
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