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Abstract

Advances in microelectronics, communication and signal processing have enabled the

development of inexpensive sensors that can be networked to collect vital information from

their environment to be used in decision-making and inference. The sensors transmit their

data to a central processor which integrates the information from the sensors using a so-

called fusion algorithm. Many applications of sensor networks (SNs) involve hypothesis

testing or the detection of a phenomenon. Many approaches to data fusion for hypothesis

testing assume that, given each hypothesis, the sensors’ measurements are conditionally

independent. However, since the sensors are densely deployed in practice, their field of

views overlap and consequently their measurements are dependent. Moreover, a sensor’s

measurement samples may be correlated over time. Another assumption often used in

data fusion algorithms is that the underlying statistical model of sensors’ observations is

completely known. However, in practice these statistics may not be available prior to

deployment and may change over the lifetime of the network due to hardware changes,

aging, and environmental conditions. In this dissertation, we consider the problem of

data fusion in heterogeneous SNs (SNs in which the sensors are not identical) collecting

dependent data. We develop the expectation maximization algorithm for hypothesis testing

and model estimation. Copula distributions are used to model the correlation in the data.

Moreover, it is assumed that the distribution of the sensors’ measurements is not completely

known. we consider both parametric and non-parametric model estimation. The proposed

approach is developed for both batch and online processing. In batch processing, fusion

can only be performed after a block of data samples is received from each sensor, while in

online processing, fusion is performed upon arrival of each data sample. Online processing

is of great interest since for many applications, the long delay required for the accumulation

of data in batch processing is not acceptable. To evaluate the proposed algorithms, both

simulation data and real-world datasets are used. Detection performances of the proposed

algorithms are compared with well-known supervised and unsupervised learning methods

iv



as well as with similar EM-based methods, which either partially or entirely ignore the

dependence in the data.
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Chapter 1
Introduction to Sensor Networks and Data Fusion

Advances in microelectronics communication and signal processing has enabled the

development of inexpensive sensors that can be networked to collect vital information that

can be used in decision making, including estimation and detection. Today, sensor networks

(SNs) are widely used in many diverse applications including environmental control for

buildings [1–3], health monitoring [4–7], human activity detection [8–14], human identity

detection [17–21], improving the quality of medical images [22–25, 27–29], detecting and

tracking speakers [30–33], disaster management [34–37], precision agriculture [15, 38–40],

highway monitoring [16, 41–44], and underwater surveillance [45–49].

There are two principal paradigms of operation for SNs. In a distributed (infrastructure-

less) mode, autonomous sensors make local decisions based on their own measurements and

the information they receive from their neighbors without a central controller. Distributed

algorithms which enable the operation of such networks have been the subject of several

studies in recent years [50–56]. The scope of such algorithms, however, is somewhat lim-

ited as they are not applicable for many practical scenarios. The other paradigm which

is considered here is sometimes referred to as centralized. In this approach, each sen-

sor sends its measurements to a central controller referred to as the Fusion Center (FC).

The FC then combines the data received from all the sensors using a data fusion algo-

rithm. Design of the fusion algorithm has been the subject of numerous studies in recent

years [18, 33, 50, 56, 60–62].

The size of a SN in terms of the number of sensors is determined by the application

and affects the complexity of the fusion rule. For example in applications such as identity

detection, medical image fusion, and patient home monitoring, the number of sensors is

small (at most a few tens) and it may not be possible to increase the number of sensors.

Consider a SN used to identify people based on their biometric data. Such an identity

detection method, uses biometric data such as facial, fingerprint or iris images. Since bio-
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metrics are unique for different people, this is an inherently secure and reliable method

for human identity detection, for example, for secure building access control. It is clear

that the number of biometric data is limited to fewer than ten and within that limitation

each sensor added to the biometric-based detection network will greatly increase the pro-

cessing and hardware cost. Similarly, consider a SN used for permitting home monitoring

for chronic and elderly patients. For example, small wearable sensory devices have been

developed which collect heart rate, oxygen saturation, and EKG data and relay the data

over a short-range (100-m) wireless network to any number of receiving devices, including

PDAs, laptops, or ambulance-based terminals [5]. The number of sensors collecting data

in such applications is also small.

On the other hand, in applications such as precision agriculture or disaster man-

agement, a large number of inexpensive sensors, on the order of thousands, maybe in-

stalled [15, 34–40]. As an example, Intel recently installed a large number of small sensors

in a vineyard in Oregon to monitor microclimates. The sensors measured temperature,

humidity, and other factors to monitor the growing cycle of the grapes.The data was used

to help prevent frostbite, mold, and other agricultural problems. In a disaster manage-

ment scenario, a large number of inexpensive sensors maybe dropped from a helicopter and

networked to detect survivors and assist in rescue operations.

In most applications of SNs the senors employed in the network are not identical. This

may be due to physical and/or environmental conditions (e.g. hardware variations, device

age, noise, etc.), or the type of data that the sensors collect. In either case the measurements

of each sensor may follow a distinct probabilistic model and the fusion algorithm requires a

multimodal modeling and signal processing approach [60]. Such networks are referred to as

heterogeneous SNs. In the latter case, since each sensor has its own measurement modality,

heterogeneity in the SN can take advantage of the complementary information from the

different types of sensors. For example, a SN used for energy monitoring and control

in buildings can take advantage of a heterogeneous framework by employing sensors that
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measure temperature, light, humidity, CO2, or sound to detect room occupancy [2], [3]. The

purpose of such heterogeneous SNs can be to improve thermal comfort, air quality, health,

safety, or security for the occupants of a building. Moreover, they can reduce greenhouse

gas emission and energy consumption resulting from air conditioning in buildings. Also in

biometric-based identity detection, there has been a lot of interest in using a heterogeneous

SN sometimes referred to as Multibiometrics which fuses different biometrics for better

identification [17–21].

Another example for the application of SNs where the heterogeneity of the network

plays an important role is combining different medical imaging modalities. More specifi-

cally, the complementary temporal and spatial resolutions of functional MRI (fMRI) and

electroencephalography (EEG) signal modalities make them attractive candidates to be

fused. EEG signals achieve a temporal resolution in the millisecond range, whereas the

spatial localization of EEG signals has a precision on the scale of the centimeter only. On

the other hand, fMRI offers a very high spatial resolution reaching sub-millimetric scale

whereas its temporal resolution is limited to the order of seconds. Thus, by fusing these

two signals, functional neuroimaging data with high spatial and temporal resolution can

be obtained for improved brain activity detection [22–25]. Another good example for fus-

ing different medical imaging modalities, is the fusion of therapeutic ultrasound (US) with

a navigational modality, such as Computed Tomography (CT) in order to improve guid-

ance when activating drugs, ablating tumors or delivering drugs beyond the blood brain

barrier [27–29].

Another group of applications where heterogeneous SNs are used is human activity

recognition which is important for providing activity assistance and care for users. In

activity recognition problems, the data collected from a heterogeneous network of motion

sensors is used to detect the activity performed by a human subject. For example, in [13,14],

3D acceleration, 3D gyro, and 3D magnetometer data were collected from sensors placed on

the chest, the left ankle, and the right lower arm in order to detect the user’s activity among
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many classes of activities including standing still, sitting, lying down, walking, climbing

stairs, waist bend forward, frontal elevation of arms, knees bending, cycling, jogging, run-

ning, jumping front and back. Other studies on human activity detection include [8–11]. In

collaboration with the Motion Analysis Laboratory at the Spaulding Rehabilitation Hospi-

tal, Harvard University has also developed a tiny wearable device, consisting of three-axis

accelerometer, gyroscope, and electromyogram sensors, for monitoring the limb movements

and muscle activity [4–7]. The receiving device collecting data from such sensory devices

can be programmed to fuse the different vital sign data and/or the motion data, for exam-

ple, to make a binary decision and signaling to a nearby EMT or paramedic for help when

there is an adverse change in patient status.

Many approaches to data fusion assume that, given the state of nature, the sensors’

local measurements are conditionally independent. However, in most practical cases this

assumption fails as the data collected by the sensors can be dependent over time (e.g.,

when the sensors’ noise is dependent [63,64]), as well as among the sensors (e.g., when the

sensors have overlapping coverage area [65]). In some applications such as human identity

detection, although different biometrics (data from different sensors) of a single individual

are correlated but the biometrics of one person do not effect the biometrics or identity of

another person, i.e., the data samples from each sensor are independent over time. On

the other hand, in other applications, such as combining EEG and fMRI data, the data

samples are dependent both among the sensors and over the time samples of each sensor

[22–25]. As another example, we refer to applications with spatially-temporally correlated

fields involving time-varying observations such as monitoring water contamination, or the

temperature of an environment with time-varying observations [66]. Recently, the impact

of temporal correlation of parameters on collaborative estimation systems has been studied

in [66].

One popular approach to modeling the distribution of dependent data is the use of

copula distributions. The popularity of copula distributions is due to their many advantages
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such as their inherent decoupling property. Copulas separate the effect of the marginal

distributions and the dependence structure in the data [60]. Therefore, in a copula-based

detection method, changes in both complementary and mutual information can be detected

due to this inherent decoupling in the copula theory. Furthermore, this feature of the copula

opens up a lot of opportunities in statistical modeling by allowing us to model nonlinear

dependencies or to represent joint probability density function (PDF) models that do not

necessarily have a closed form.

In probability and statistics, copula theory has been used extensively to model de-

pendent random variables. Recently several authors have used copula theory to model

dependent data in signal processing and detection applications. Employing copulas for

texture classification and multi-component image segmentation problems has been investi-

gated in [67] and [68], respectively. In [62], copulas were used to fuse acoustic and seismic

measurements in a footstep detection problem. In [69], copula theory was used to detect

changes between two remotely sensed images before and after the occurrence of an event.

1.1 Estimation and Detection in Sensor Networks

In many applications of SNs, the fusion algorithm intends to detect a phenomenon

(referred to as the state of nature) or to estimate a set of parameters. Estimation and

detection strategies can be categorized as centralized or decentralized. In centralized de-

tection, the sensor nodes transmit their actual (raw) measurements to the FC without any

pre-processing. On the other hand, in decentralized detection, each node quantizes its data

before transmission to the FC. For example in a hypothesis testing problem with K dif-

ferent hypotheses, each sensor may make a local decision and send its decision to the FC.

The FC then judiciously combines the decisions of the sensors and makes a final decision.

The log-likelihood ratio test (LLRT) and the generalized likelihood ratio test (GLRT)

are two common approaches for both centralized and decentralized estimation and detection

in SNs. The problem of binary hypothesis testing based on the LLRT has been considered

in [18] in a biometric-based detection problem where the face matching results from two
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different face matching algorithms are combined to detect the identity of an individual. The

authors consider a centralized detection strategy where at each time, each face matching

algorithm sends a single continuous number to the FC. The data sent from the two face

matching algorithms follow different probabilistic models and are dependent. Here the

author use copula distributions to model the distribution of the dependent data. Fusion of

dependent decisions of sensors in a decentralized framework using LLRT and GLRT has also

been recently studied in [60,61]. Here the observations of all the sensors at each time instant

are assumed to be dependent while, the observation samples of each sensor are assumed

to be independent and identically distributed (iid) over time and copula distributions are

used to model the dependence in the data. In [60, 61] the authors also study the effect

of copula mis-specification. To improve the computational complexity of fusing discrete

decisions using GLRT, the authors have proposed to inject noise into the local sensor

decisions which, as a result, decreases the signal-to-noise ratio of the quantized data.

1.1.1 Parametric and non-parametric estimation

In many real-world scenarios the exact underlying statistics of the sensors’ measure-

ments is not available. Moreover, these statistics may vary over time and with deployment

scenarios. Therefore prior to detecting the state of nature, an estimation of the sensors’

measurement statistics is necessary. There are two general approaches to system model

estimation, namely parametric and non-parametric estimation. If the estimation algorithm

assumes that the distributions of sensors’ measurements are known except for a set of pa-

rameters which may differ from sensor to sensor and for different networks in different envi-

ronmental conditions, then the algorithm is based on a parametric estimation approach. In

such cases, the FC first performs parametric estimation to estimate unknown parameters of

the distribution of sensors’ measurements and then using the complete data model it detects

the state of nature. On the other hand, some estimation algorithms assume that the under-

lying distribution of the sensors’ measurements is completely unknown and may not even

match a distribution function with a closed form. In that case we employ non-parametric
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estimation where the entire distribution of the sensors’ measurements is estimated before

the state of nature is detected. There are two approaches for non-parametric estimation of

distribution functions: the histogram-based method, and the kernel-based method. In the

histogram-based method, the data sample space is partitioned into bins. Let j = 1, · · · , J

represent the bin number, 2∆ the duration of each bin, N the total number of samples and

Nj the number of data samples in the interval Rj = [x0 + 2(j − 1)∆, x0 + 2j∆) where x0

is the starting point of the first bin. The probability density function of the data at each

point x ∈ Rj is then approximated by

f(x) =
Nj

2∆N
, x ∈ Rj , j = 1, · · · , J. (1.1)

Note that although the histogram-based estimation is easy to compute, it only approx-

imates the density at the center of each bin Rj and uses that value for all data samples

in Rj. Moreover, histogram-based estimation produces a staircase function which is not

differentiable. This will produce a difficulty for detection methods based on likelihood

maximization.

Kernel-based estimation is a generalization of the histogram-based estimation allowing

different levels of smoothness for the estimated density function. Let K(.) represent a

kernel function and ∆ denote the bandwidth of the kernel. Let yn, n = 1, · · · , N represent

the data samples. Then the density function at each point x is given by

f(x) =
1

∆N

N∑
n=1

K(
x− yn
∆

). (1.2)

Let 1(.) denote the characteristic function where for a set A,

1A(x) =


1 for x ∈ A

0 for otherwise.

(1.3)
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Using (1.3), we can rewrite (1.1) as

f(x) =
1

2∆N

N∑
n=1

1Bn(x), (1.4)

where Bn = [yn − ∆, yn + ∆]. We can see that by choosing K(.) to be the uniform

density in the kernel-based estimation, i.e., K(x−Yn
∆

) = 1
2
1Bn(x), we obtain the histogram-

based estimation. Other examples of kernel functions include the Gaussian kernel, the

Epanechnikov Kernel, the Laplacian Kernel, and the Quartic kernel [70].

1.1.2 Supervised versus unsupervised learning algorithms

State detection and model estimation methods consist of machine learning algorithms

such as classification and regression. Most machine learning algorithms use labeled data

known as training data to determine the data model and/or estimate the unknown model

parameters. A labeled data is a data sample for which we already know the state of nature

or equivalently the class to which the data sample belongs. Machine learning algorithms

which require labeled data are categorized as supervised learning algorithms. Some common

supervised learning algorithms include K-Nearest Neighbor (KNN) and Support Vector

Machines (SVM). After building a KNN or SVM classifier using training data samples, we

wish to use the classifier to detect the state of nature at the arrival of a new data sample

or to equivalently classify a newly received data sample. Let M denote the total number

of classes, and let x denote the newly received data sample. Upon receiving x, the KNN

classifier draws a sphere centered at x containing K samples from the training dataset

regardless of their class. Let Km denote the number of samples in the training dataset that

are from class m and fall inside the sphere. The KNN classifier will assign class m∗ to x

where m∗ = argmaxm{Km}, with ties broken arbitrarily. For K = 1, the KNN method is

called the Nearest Neighbor (NN) method since any arriving data sample will be assigned

to the same class as the data sample closest to it from the training dataset [71].

On the other hand, the SVM classifier is a fundamentally binary classifier which clas-
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sifies the data samples based on a hyperplane which separates the data points of the two

classes from each other. The best hyperplane for an SVM classifier is the one with the

largest distance between the hyperplane and the point/points that are closest to it. This

distance is referred to as the margin between the classes and the hyperplane. The data

samples that lie on the boundary of this margin are called the support vectors. Since the

support vectors are the data samples that build an SVM classifier, these classifiers are

named SVM. Note that in general, it may not always be possible to separate the data

by a hyperplane. In that case, SVM finds a hyperplane that separates many, but not all

data points based on a penalty parameter. This is called a soft margin. Moreover, most

practical classification scenarios involve M-ary classification where M > 2. Thus, there

have been may attempts to build M-ary SVM classifiers by combining a number of binary

SVMs. One approach called the one-versus-the-rest approach constructs M binary SVM

classifiers, where the binary classification decision for each classifier involves being in a class

m or not [71]. A major drawback of the one-versus-the-rest approach is that the training

sets are imbalanced. To over come this issue a variant of the one-versus-the-rest scheme

was proposed which modifies the cost values so that each binary classifier uses the weight

one for the decision of being in a class m and the weight 1/(M − 1) for being in any class

except class m [71]. Another approach is to train M(M − 1)/2 binary SVM classifiers on

all possible pairs of classes, and then to classify test points by taking a majority vote on

the results of all the binary classifiers. This is called the one-versus-one approach [71]. The

major drawback of this method is its high computational cost.

An alternative approach to the supervised learning approach is to devise learning algo-

rithms that do not require labeled data. Such an approach in learning algorithms is referred

to as the unsupervised learning approach. This is an important advantage of unsupervised

learning methods since in many applications, providing labeled data requires a high effort

or can even be impossible [1]. For example, consider a smart heating system for optimizing

the energy consumption. To decide whether or not to heat a room, these systems need
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to detect room occupancy. However, labeling occupancy data is not always possible [1].

Thus, developing estimation and detection algorithms that do not require labeled data is

important in such applications. Some unsupervised learning algorithms used for room oc-

cupancy detection include the geometric moving average (GeoMA) and the Page-Hinkley

test (PHT). In the GeoMA, after all data samples are received, the geometric average of

data samples within a sliding window are calculated. For each sample greater than the

geometric average calculated at that sample point, the room is said to be occupied and

otherwise unoccupied. The PHT is a more sophisticated version of GeoMA. After all data

samples are received, the PHT detects increasing and decreasing changes in the stream of

data samples. Upon finding an increasing change, the occupancy state at that time is set

to one and upon finding a decreasing change the occupancy state at that time is set to zero

and in the case of no change, the occupancy state is set to that of the previous sample.

Other popular methods for unsupervised classification are the maximum Likelihood

(ML) and the Expectation Maximization (EM) algorithms. In the ML algorithm, a class

m∗ is assigned to data sample x if it maximizes the probability p(x|m = m∗; θ) where

θ represents the model parameters. If the model parameters are latent and unavailable,

maximizing the probability p(x|m = m∗; θ), which is referred to as the likelihood function,

can be a very complex problem. The EM algorithm is one method for jointly estimating

the parameters θ and solving the ML classification problem by maximizing the expectation

of the probability function p(x,m|θ) given x and the current estimation of θ instead of

directly maximizing the likelihood function. Let θold denote the current estimation of θ

and Q(θ; θold) , Em|x,θold [log p(x,m|θ)] represent the expectation of p(x,m|θ) given x and

θold. The EM algorithm is an iterative algorithm where each iteration of the algorithm

consists of two steps: the expectation step and the maximization step. In the expectation

step, Q(θ; θold) is evaluated for using the current estimate of the parameter set and in the

maximization step, Q(θ; θold) is maximized with respect to θ to obtain a new estimation

for the parameter set. The expectation and maximization steps are iteratively performed
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until convergence is reached.

1.1.3 Online versus batch-mode processing in estimation and de-

tection

Estimation and detection at the FC can be performed via either online or batch-mode

processing. In online processing, data is processed on a sample by sample basis whereas in

batch-mode processing, an entire batch of data samples are processed after they have been

received at the FC. All the aforementioned studies which consider estimation and detection

using correlated data modeled by the copula theory ( [18, 51, 60, 61, 72]), consider batch-

mode processing at the FC. However, there are major drawbacks to batch-mode processing.

One important drawback is that they require a lot of memory resource and complicated

computational ability at the fusion center which also means high energy-consumption.

Another important drawback is the significant delay caused by the FC accumulating a

large number of samples before processing can commence. For many applications such

long delays are unacceptable. For instance, consider a room occupancy detection problem

for energy efficiency. In such applications detection has to be done at every time instance

to decide whether or not to turn on the air-conditioning system without having to wait

for sensor measurements to be collected over all time instances up until the end of the

day for example. Similarly, in a security application where biometric data are combined to

detect the identity of each individual in a group, the decision regarding the identity of each

individual has to be made upon receiving the individuals biometrics and without having

to wait for the data from the rest of the group. In such applications an online detection

of the state of nature at each time instant is inherently necessary and thus, batch-mode

based estimation and detection algorithms cannot be applied.

Recently, online EM-like algorithms have been developed to solve online classification

problems. There are two dominant approaches to online EM-like estimation. Studies in the

first approach including [73–76], follow the method proposed by Titterington [73]. In this

method, a stochastic approximation algorithm is employed in the M-step of the algorithm.
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More specifically, after each new observation is received, the unknown parameters are

updated using the gradient of the incomplete data likelihood weighted by the complete

data Fisher information matrix. The Titterington algorithm maximizes complete data

likelihood given old parameters and new data using Newton’s method in which he replaces

the Hessian matrix term by its expectation. Moreover, he shows that, in exponential

family models in which the parameters are the expected value of the sufficient statistics,

the recursion is exact. The second approach is more aligned with the principles of the

offline EM algorithm [77, 78]. In this approach, the E-step is replaced by a stochastic

approximation of the offline E-step in order to incorporate the information brought by

the new observation. However, the M-step remains the same as the M-step of the offline

EM algorithm. The authors show that when the data likelihood belongs to the curved

exponential family, Cappe’s approach to online EM converges.

1.2 Contribution of this Dissertation

In this research we have considered an hypothesis testing problem using measurements

collected from a heterogeneous SN. We derive a mathematical framework based on the cop-

ula theory to model the dependence in the data. It is further assumed that the distributions

of sensors’ measurements are not completely known and thus model estimation is required

along with hypothesis testing. We convert the detection problem to an equivalent esti-

mation problem. Thus, we first propose an unsupervised parametric estimation algorithm

based on the EM and online EM algorithms in order to estimate the model parameters and

jointly detect the state of nature at each time instant. Then, we consider the case where

underlying distribution of the sensors’ measurements are completely unknown and we pro-

pose a kernel-based non-parametric estimation algorithm to estimate the distribution of

the sensors’ measurements and to detect the state of nature.

In chapter 2, the online EM-based estimation and detection algorithm is proposed

where the FC can process the data on a sample-by-sample basis. In the data model, in

this case, we assume that the measurements of different sensors may be correlated with
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each other while the measurements of each sensor are independent over time. In practical

situations, the hypothesis may not be the only factor changing the sensors’ measurements.

Some environmental conditions which are not necessarily of our interest to detect, may also

effect the sensors’ measurements. For example, when detecting room occupancy via multi-

sensing, the light and temperature in a room are not only affected by the presence of people

inside the room but also by the time of the day such as morning or night, or by the season of

the year. Thus, it is assumed that the data from each sensor are drawn from one of several

different distributions each modeling the distribution of the sensor’s measurements under

a different environmental condition. It is worth mentioning that since the exact number of

distributions to be considered is not always known, we later show that considering a larger

number of distributions will not degrade the detection performance. Whereas, failing to

consider different distributions in the model will significantly deteriorate the detection

performance. In chapter 3, the EM-based estimation and detection algorithm is presented

for the case where we assume that the data received from the sensors are dependent both

over time and among the sensors. In many applications (e.g., biomedical or object tracking)

there is non-negligible dependence among the samples collected by each sensor, which if

ignored, can result in significant degradation in the performance of the detection scheme.

In this chapter we once again consider that the distributions of sensors’ measurements are

known except for a set of parameters and thus the proposed algorithm includes parameter

estimation as well as hypothesis detection. We devise a model based on the copula theory

and Markov chains to account for the dependency in the data collected by different sensors

and over time. Finally, in chapter 4, we extend the proposed EM-based algorithm to

the case where the distribution of each sensors’ measurements are unknown and a non-

parametric estimation of the sensors’ measurements are required for hypothesis testing. In

this case, we develop the EM algorithm for both batch-mode and online processing.
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Chapter 2
Online Hypothesis Testing and Parameter Estimation with
Observations Correlated only Among Sensors

2.1 Introduction

In this chapter, we study the problem of hypothesis testing and model parameter

estimation using correlated observations from a heterogeneous network of sensors. Many

approaches to estimation and detection assume that, given each hypothesis, the sensors

local measurements are conditionally independent. However, due to the overlap in the

sensors’ field of view, in most practical scenarios the data collected by different sensors are

correlated [65]. Therefore several authors have recently applied copula theory to model

this correlation and to develop fusion techniques for this case [18, 51, 60, 61, 72]. These

studies, however, rely on batch processing at the FC. Batch processing algorithms have large

memory, computational and energy requirements. More importantly, since the FC must

accumulate a large number of samples before processing can commence, batch processing

entails significant delay. For many applications, however, such long delays are unacceptable.

For instance, consider a room occupancy detection problem for energy efficiency. In such

applications detection has to be done at every time instance without having to wait until

the end of the day. Similarly, in a security application where biometric data are combined

to detect the identity of each individual in a group, the decision has to be made for every

individual without having to wait for the data from the rest of the group. Here, we present

an online processing solution to the hypothesis testing problem where the copula theory is

used to model the correlation in the data.

Moreover, most detection algorithms are developed using supervised learning algo-

rithms which require training with labeled data. However, in many applications, providing

labeled data requires a high effort or can even be impossible [1]. Here, we present an un-

supervised detection algorithm based on the EM and online-EM algorithms. The novelty

of the proposed algorithm lies with in the two following facts: it incorporates correlated
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data modeling in an online detection and estimation algorithm, moreover, it is a learning

algorithm that is both unsupervised and performs detection on a sample-by-sample basis.

The rest of this chapter is organized as follows. In Section 2.2 the problem is defined

and the system model is described. In Sections 2.3.1 and 2.3.2, the batch-mode and online

EM-based hypothesis testing algorithms are developed. Numerical results are presented

and discussed in Section 2.4. Finally, conclusions are drawn in Section 2.5.

2.2 Problem Formulation and the System Model

We consider a network of L heterogeneous sensors employed to detect the state of

nature H ∈ {H0, H1, · · · , HK−1}. At time t, sensor l transmits its measurement, denoted 

by dl,t ∈ ℜ, to the FC. After T time instances, the FC has received LT measurements 

which we collect into the L × T measurement matrix D = [dl,t]. It is assumed that for 

each l = 1, 2, . . . , L and any t1 < t2, given the hypotheses at times t = t1, t1 + 1, . . . , t2, the

sensor measurements dl,t1 , dl,t1+1, . . . , dl,t2 are iid. However, at each time t, the data samples 

dl,t, l = 1, 2, · · · , L, are correlated. Let dt , (d1,t, d2,t, · · · , dL,t)T r where the superscript T r 

denotes matrix transpose. The vector ht = (h0,t, h1,t, · · · , hK−1,t)
T r is used to denote the 

state of nature at time t. If at time t, the state of nature is Hi, then ht = ei where ei is 

the ith standard basis vector for ℜK . For the entire observation period we construct the 

K × T hypothesis matrix H = [hk,t].

In an offline EM algorithm, having received the measurement matrix D, the FC must

detect the state of nature for t = 1, 2, · · · , T . To develop this algorithm, we need to evaluate 

the distribution of D given the hypothesis matrix H.

Denote the conditional cumulative distribution function (CDF) and PDF of dl,t given Hi 

by Fi,l(dl,t; ψ̃i,l) and fi,l(dl,t; ψ̃i,l), respectively, where ψ̃i,l is the set of unknown parameters 

of the, otherwise known, distribution. Next, we model the joint distribution of the sensors’

measurements given Hi by the copula distribution Cm(.; λm,i) where m denotes the type 

of copula being considered, and λm,i denotes the set of unknown parameters of the copula

distribution Cm(.; .) under hypothesis Hi. Therefore, the conditional distribution of dt
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given ht is given by

F (dt|ht;Ψ,Λm) =
K−1∏
i=0

Cm

(
Fi,1(d1,t; ψ̃i,1), · · · , Fi,L(dL,t; ψ̃i,L);λm,i

)hi,t
(2.1)

where Ψ , {ψ̃i,l; 0 ≤ i ≤ K− 1, 1 ≤ l ≤ L} is the set of distribution parameters containing

KL elements and Λm , {λm,0, λm,1, · · · , λm,K−1} is the set of parameters of the copula

distribution m. From (2.1), the conditional PDF of dt given ht is given by

Pr(dt|ht;Ψ,Λm) =
K−1∏
i=0

[
cm

(
Fi,1(d1,t; ψ̃i,1), · · · , Fi,L(dL,t; ψ̃i,L);λm,i

)
L∏
l=1

fi,l(dl,t; ψ̃i,l)

]hi,t
(2.2)

where cm(.; .) denotes the copula density function of Cm(.; .).

We define the auxiliary probabilities P (hi,t = 1) , [ϕi,t], which represent the probability

of hypothesis Hi at time t. Note that these are not prior probabilities. Rather they are only

used as a tool to help us transform the hypothesis detection problem into an estimation

problem for ϕi,t which we can solve using the EM algorithm. We denote Φ , [ϕi,t].

Our goal is to estimate the unknown parametersΦ,Ψ,Λm, and calculate the hypothesis

matrix H using the estimated value for Φ denoted by Φ̂. With this approach the state of

nature at time t is detected as

ĥi∗,t =


1 , i∗ = argmax ϕ̂i,t

0≤i≤K−1

0 , else

(2.3)

In this chapter, we consider three types of copulas, namely the Gaussian (G), the

Student’s t (T ), and the product (P) copulas, for their wide practical application, and

define M , { G, T ,P} . It should be noted however, that our approach is not limited to

these cases and a similar approach can be applied in the case of other copulas. The PDF
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of the Gaussian copula is given by

cG(u1, · · · , uN ;R) =
1

|R| 12
exp

[
− 1

2
zTr(R−1 − IN)z

]
, (2.4)

where z = [z1, · · · , zN ]Tr, zn = G−1(un; 0, 1), for n = 1, · · · , N , and G(.;µ, σ) is the

Gaussian cumulative distribution with mean µ and standard deviation σ. Moreover, IN

represents the N ×N identity matrix, R is the N ×N correlation matrix of the Gaussian

copula. The Student’s t copula is given by

cT (u1, · · · , uN ;R, η) = |R|
−1
2

a(η,N)
(
1 + 1

η
wTrR−1w

)− η+N
2∏N

n=1(1 +
1
η
w2
n)

− η+1
2

, (2.5)

where w = [w1, · · · , wN ]Tr, wn = St−1
η (un), for n = 1, · · · , N , where Stη is the standard

Student’s t distribution with parameter η. Moreover, R is the N ×N correlation matrix, η

is the degree of freedom of the Student’s t copula and a(η,N) =
Γ( η+N

2
)Γ( η

2
)N−1

Γ( η+1
2

)N
. We assume

that η is known and thus the parameter set of the Gaussian and Student’s t copulas

consist only of their correlation matrices. Note that the Product copula does not have any

parameters and cP(u1, · · · , uN) = 1.

To model the marginal distribution of each sensors’ data, we consider P different Gaus-

sian distributions. Let ζ be a 3-D matrix containing the variables ζi,p,t ∈ {0, 1} where

ζi,p,t = 1 if at time instance t, the state of nature is Hi and the data are drawn from the

pth distribution, and 0 otherwise. Then we can write

Fi,l(dl,t; ψ̃i,l)
hi,t =

P∏
p=1

[
G(dl,t;µi,l,p, σi,l,p)

]ζi,p,t (2.6)

where, µi,l,p and σi,l,p denote the mean and standard deviation of the data collected by

the lth sensor, under the pth distribution and hypothesis Hi. In the following we use the

shorthand notation G(dl,t;ψi,l,p) and g(dl,t;ψi,l,p) for the Gaussian distribution and PDF,
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respectively, where ψi,l,p , {µi,l,p, σi,l,p}.

We define Θ , [Ω,Ψ,Λm] as the set of unknown parameters of the model, where Ω ,

[ωi,p,t] and ωi,p,t , Pr(ζi,p,t = 1). Note that
∑K−1

i=0

∑P
p=1 ωi,p,t = 1 and ϕi,t =

∑P
p=1 ωi,p,t.

Now,

Pr(dt, ζi,p,t = 1;Θ) = Pr(ζi,p,t = 1;Θ)Pr(dt|ζi,p,t = 1;Θ) =

ωi,p,t cm (G(d1,t;ψi,1,p), · · · , G(dL,t;ψi,L,p);λm,i)
L∏
l=1

g(dl,t;ψi,l,p), (2.7)

Thus, the joint probability model given the unknown parameters of the model is given by

Pr(D, ζ;Θ) =
T∏
t=1

K−1∏
i=0

P∏
p=1

Pr(dt, ζi,p,t = 1;Θ)ζi,p,t . (2.8)

2.3 Proposed EM-Based Algorithm

To estimate Θ, we employ the EM algorithm which iterates between the expectation

step (E-step) and the maximization step (M-step) until convergence is reached. The E-

step computes the expectation of the log-likelihood function of complete data (D, ζ) with

respect to ζ, given the current estimate of the parameters Θn−1, namely

Q(Θ;Θ(n−1)) , Eζ|D;Θ(n−1) [lnP (D, ζ;Θ)] (2.9)

In the M-step, Q(Θ;Θ(n−1)) is maximized with respect to Θ to obtain the new estimate

Θ(n), i.e.

Θ(n) = argmaxΘ{Q(Θ;Θ(n−1))}, (2.10)

The idea used in [77] is to replace the expectation step with a stochastic approximation

step, while keeping the M-step unchanged. Following [77], the stochastic approximation of
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the E-Step at time t is given by

Q(Θ;Θ(t)) = (1− ϵ(t))Q(Θ;Θ(t−1)) + ϵ(t)Eζi,p,t|dt;Θ(t−1) [lnP (dt, ζi,p,t;Θ)] , (2.11)

where {ϵ(t)} is a decreasing sequence of positive step sizes. The M-step remains unchanged

and is given by

Θ(t+1) = argmaxΘ{Q(Θ;Θ(t))}, (2.12)

In [77], the authors focus on the case where the complete data likelihood belongs to an

exponential family satisfying

f(x; Θ) = h(x) exp{−b(Θ)+ < s(x), r(Θ) >}, (2.13)

where, < ., . > denotes the scalar product between two vectors and s(x) denotes the

complete data sufficient statistic. In this case, the optimization problem in (2.10) reduces

to

θ(s) , argmaxΘ{−b(Θ)+ < s, r(Θ) >}. (2.14)

Equation (2.14) indicates that to update the parameters in each iteration of EM, the

updating function, θ(s), only requires the sufficient statistic s(x). Therefore, to find the final

estimate of the unknown parameters, we do not need to update Q(Θ;Θ(t)) in each iteration,

as in (2.11). Instead we only need to update the sufficient statistic s(x). Therefore, defining

S(t∗) , 1

t∗

t∗∑
t=1

Eζi,p,t|dt;Θ(t−1) [s(dt, ζi,p,t)] , (2.15)

where s(dt, ζi,p,t) is the sufficient statistic for the complete data, the online update rule is
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given by

S(t∗) = (1− ϵ(t
∗))S(t∗−1) + ϵ(t

∗)Eζi,p,t∗ |dt∗ ;Θ
(t∗−1) [s(dt∗ , ζi,p,t∗)] . (2.16)

Eq. (2.16) constitutes the E-Step of online EM and the parameter update rule, M-step, is

given by

Θ(t∗) = θ(S(t∗)). (2.17)

For the convergence properties of the online EM algorithm using the stochastic approxi-

mation for the E-step we refer to [77].

In what follows we first develop the batch mode EM algorithm for which we define

statistics similar to those in [77] and show that these statistics are sufficient for updating

the parameters in the M-step. Later we extend the proposed method for online processing

where the E-step only updates those sufficient statistics according to (2.16).

2.3.1 Proposed Batch-Mode EM-Based Algorithm

In the following the superscript (n, T ) on a parameter denotes the estimated value of

the parameter in the nth iteration of EM using T data samples. Moreover, the subscript

m denotes the copula type where m ∈ M.

• Expectation Step (Batch Mode)

To derive the expectation of the log-likelihood function, we start by deriving the log-

likelihood function

L(D, ζ;Θ) , logPr(D, ζ;Θ) =
T∑
t=1

K−1∑
i=0

P∑
p=1

ζi,p,t

[
logωi,p,t +

L∑
l=1

log g(dl,t;ψi,l,p) + log cm (G(d1,t;ψi,1,p), · · · , G(dL,t;ψi,L,p);λm,i)
]
.

(2.18)
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Define α(n−1,T )(i, p, t) , E[ζi,p,t|D;Θ(n−1,T )]. Then the expectation of the log-likelihood

function given the current estimate of the parameters Θ(n−1,T ) is given by

Qm(Θ;Θ(n−1,T )) , Eζ|D;Θ(n−1,T ) [logPr(D, ζ;Θ)] =
T∑
t=1

K−1∑
i=0

P∑
p=1

α(n,T )(i, p, t)
[ L∑
l=1

log g(dl,t;ψi,l,p) + log cm(G(d1,t;ψi,1,p), · · · , G(dL,t;ψi,L,p);λm,i) + logωi,p,t

]
.

(2.19)

More specifically, we can write Qm(Θ;Θ(n−1,T )) for the three copula types under consider-

ation as follows. For the Product copula we have

QP(Θ;Θ(n−1,T )) =
T∑
t=1

K−1∑
i=0

P∑
p=1

α(n,T )(i, p, t)

[
−L
2
log 2π + log |Σi,p| −

1

2
yi,p(t)

Tryi,p(t) + logωi,p,t

]
, (2.20)

where,Σi,p , diag {1/σi,1,p, · · · , 1/σi,L,p}, yi,p(t) , Σi,p

(
dt − µi,p

)
, µi,p , [µi,1,p, · · · , µi,L,p]Tr,

|A| denotes the determinant of matrix A. For the Gaussian copula we have

QG(Θ;Θ(n−1,T )) =
T∑
t=1

K−1∑
i=0

P∑
p=1

α(n,T )(i, p, t)

2

[
−L log 2π + 2 log |Σi,p| − log |λG,i| −

(
yi,p(t)

)Tr (
λ−1
G,i
)
yi,p(t) + 2 logωi,p,t

]
,

(2.21)

and finally for the Student’s t copula,

QT (Θ;Θ(n−1,T )) = QP(Θ;Θ(n−1,T )) +
T∑
t=1

K−1∑
i=0

P∑
p=1

α(n,T )(i, p, t)

[
−1

2
log |λT ,i|

−η + 1

2
log

∣∣∣∣IL +
1

η
Vi,p(t)

∣∣∣∣− η + L

2
log

(
1 +

1

η
vi,p(t)

Trλ−1
T ,ivi,p(t)

)
+ ã(η, L)

]
, (2.22)
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where vi,p(t) , [vi,p,1(t), vi,p,2(t), · · · , vi,p,L(t)]Tr, and Vi,p(t) , diag {vi,p,1(t), · · · , vi,p,L(t)},

where vi,p,l(t) = St−1(G(dl,t;ψi,l,p)), and ã(η, L) = log a(η, L).

In the Expectation step, we need to calculate α(n,T )(i, p, t) which is evaluated from

α(n,T )(i, p, t) = E[ζi,p,t|D;Θ(n−1,T )] = Pr(ζi,p,t = 1|D;Θ(n−1,T )) =

Pr(dt, ζi,p,t = 1;Θ(n−1,T ))∑K−1
j=0

∑P
q=1 Pr(dt, ζj,q,t = 1;Θ(n−1,T ))

. (2.23)

• maximization step

In the Maximization step, we maximize Qm(Θ;Θ(n−1,T )) with respect to Θ to obtain

the new parameters Θ(n,T ). For brevity the proofs of the lemmas stated in this section are

presented in the appendix A.

To obtain the new estimate of Ω, we solve

Maximize
ωi,p,t

Qm(Θ;Θ(n−1,T )) (2.24)

Subject to :
K−1∑
i=0

P∑
p=1

ωi,p,t = 1,

for m ∈ M. Defining the function ω(x) , x, we have

Lemma 1. By solving the optimization problem in (2.24), the parameter update formula

for ωi,p,t is given by

ω
(n,T )
i,p,t = ω(α(n,T )(i, p, t)) = α(n,T )(i, p, t). (2.25)

To obtain the new estimate of Λm,m ∈ {G, T } 1 , we solve the constrained optimization

1As mentioned previously, the Product copula does not have any parameters.
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problem

Minimize
λ−1
m,i

Qm(Θ;Θ(n−1,T )) (2.26)

Subject to : λ−1
m,i ∈ Υ+

L , 0 ≤ i ≤, K − 1,

where Υ+
L is the set of L × L positive semi-definite matrices. It can be shown that

Qm(Θ;Θ(n−1,T )) is a convex function of λ−1
m,i for m ∈ {G, T }.

Let us define,

y
(n−1,T )
i,p (t) , Σ

(n−1,T )
i,p (dt − µ(n−1,T )

i,p ), (2.27)

v
(n−1,T )
i,p (t) , [v

(n−1,T )
i,p,1 (t), v

(n−1,T )
i,p,2 (t), · · · , v(n−1,T )

i,p,L (t)]Tr, (2.28)

where v
(n−1,T )
i,p,l (t) = St−1(G(dl,t;ψ

(n−1,T )
i,l,p )), and the function

λm

(
S
(n,T )
m,1 (i), S

(n,T )
2 (i)

)
,
S
(n,T )
m,1 (i)

S
(n,T )
2 (i)

, (2.29)

where

S
(n,T )
G,1 (i) , 1

T

T∑
t=1

P∑
p=1

α(n,T )(i, p, t)y
(n−1,T )
i,p (t)(y

(n−1,T )
i,p (t))Tr, (2.30)

S
(n,T )
T ,1 (i) , η + L

T

T∑
t=1

P∑
p=1

α(n,T )(i, p, t)v
(n−1,T )
i,p (t)(v

(n−1,T )
i,p (t))Tr

η + (v
(n−1,T )
i,p (t))Tr(λ

(n−1,T )
i )−1v

(n−1,T )
i,p (t)

, (2.31)

S
(n,T )
2 (i) , 1

T

T∑
t=1

P∑
p=1

α(n,T )(i, p, t), (2.32)
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Lemma 2. The solution to the optimization problem in (2.26) is given by

λm,i = λm

(
S
(n,T )
m,1 (i), S

(n,T )
2 (i)

)
.

We would like to point out that S
(n,T )
G,1 (i) is the weighted sample correlation matrix of

the data and S
(n,T )
2 (i) is the mean of the weights (Both averaged over time and distribution

types.). Therefore in the case of the Gaussian copulas, the solution to (2.26) is the empirical

correlation matrix.

As T −→ ∞,2 the matrix obtained from λm

(
S
(n,T )
m,1 (i), S

(n,T )
2 (i)

)
will be almost surely

positive definite (PD). However, it does not necessarily have unit diagonal values. In order

to have a valid correlation matrix, we apply the algorithm proposed by Higham [79] to

obtain the closest correlation matrix to the solution of (2.26). Therefore the parameter

update rule is given by

λ
(n,T )
m,i = λm

(
S
(n,T )
m,1 (i), S

(n,T )
2 (i)

)
. (2.33)

To obtain the new estimate of Ψ, we solve the optimization problems

Maximize
µi,p

Qm(Θ;Θ(n−1,T )), (2.34)

Minimize
σi,l,p

Qm(Θ;Θ(n−1,T )) (2.35)

Subject to : σi,l,p > 0,

Note that due to the decoupling obtained by copula based modeling, Q(Θ;Θ(n−1,T ))

consists of the summation of two major parts, one influenced by the marginal distribution

of the sensors data and the other by the copula function. However, according to [72] and the

theory of Inference Functions for Margins (IFM) 3 [57], the latter part of Q(Θ;Θ(n−1,T ))

2In fact when observations are independent samples of a continuous random variable, this property
holds for T ≥ L.

3Using IFM, extension of the proposed approach to other copulas such as the Arcamedian family and
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does not play a considerable role in the optimization of Q(Θ;Θ(n−1,T )) with respect to

ψi,l,p. Since in the case of maximizing Q(Θ;Θ(n−1,T )) with respect to Ψ for m = T , a closed

form solution cannot be obtained, we instead solve the more simple problem of maximizing

the first part of Q(Θ;Θ(n−1,T )) with respect to Ψ for which a closed form solution can be

obtained.

Once again the optimization problems in hand are convex and we define the function

µ
(
S
(n,T )
3 (i, p), S

(n,T )
4 (i, p)

)
, S

(n,T )
3 (i, p)

S
(n,T )
4 (i, p)

, (2.36)

where

S
(n,T )
3 (i, p) , 1

T

T∑
t=1

α(n,T )(i, p, t)dt, (2.37)

and

S
(n,T )
4 (i, p) , 1

T

T∑
t=1

α(n,T )(i, p, t). (2.38)

Note, that S
(n,T )
3 (i, p) is the weighted empirical mean of the data and S

(n,T )
4 (i, p) is the

mean of the weights (Both averaged over time).

Lemma 3. By solving the optimization problem in (2.34) for m ∈ M, the parameter update

formula for µi,p is given by

µ
(n,T )
i,p = µ

(
S
(n,T )
3 (i, p), S

(n,T )
4 (i, p)

)
. (2.39)

Let us define

γ
(n,T )
i,l,p , γ

(
S
(n,T )
5 (i, l, p), λ

(n−1,T )
i

)
,
(
(λ

(n−1,T )
i )−1

)
l,l
S
(n,T )
5 (i, l, p), (2.40)

solving the corresponding optimization problems is straight forward.
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where

S
(n,T )
5 (i, l, p) , 1

T

T∑
t=1

α(n,T )(i, p, t)
(
dl,t − µ

(n−1,T )
i,l,p

)2
(2.41)

is the weighted empirical variance of the data (averaged over time), and (A)k,l denotes the

element from the k th row and l th column of the matrix A. Moreover,

β
(n,T )
i,l,p , β

(
S(n,T )

\l (i, l, p), (λ
(n−1,T )
i )\l

)
, 1

2

L∑
k=1
k ̸=l

(
(λ

(n−1,T )
i )−1

)
k,l

S(n,T )
k (i, l, p), (2.42)

where the vector S(n,T )(i, l, p) =
[
S(n,T )
k (i, l, p)

]
L
is defined as

S(n,T )(i, l, p) , 1

T

T∑
t=1

α(n,T )(i, p, t)
(
dt − µ(n−1,T )

i,p

)
⊙ y

(n,T )
i,p (t), (2.43)

and ⊙ denotes element-wise product. Moreover, in (2.42), the notation A\l denotes all the

elements of the lth column of the matrix A expect for the lth element and for a vector a,

the notation a\l denotes all the elements expect for the lth element of the vector a. We

define the functions

σG

(
S
(n,T )
4 (i, p), β

(n,T )
i,l,p , γ

(n,T )
i,l,p

)
,

γ
(n,T )
i,l,p

−β(n,T )
i,l,p +

√
(β

(n,T )
i,l,p )2 + γ

(n,T )
i,l,p S

(n,T )
4

, (2.44)

and for m ∈ {T ,P},

σm

(
S
(n,T )
4 (i, p), S

(n,T )
5 (i, p)

)
, S

(n,T )
5 (i, p)

S
(n,T )
4 (i, p)

. (2.45)

Lemma 4. By solving the optimization problem in (2.35) for m ∈ M, the parameter update
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formula for σi,l,p is given by

σ
(n,T )
i,l,p =


σm

(
S
(n,T )
4 , β

(n,T )
i,l,p , γ

(n,T )
i,l,p

)
, for m = G,

σm

(
S
(n,T )
4 , S

(n,T )
5

)
, for m ∈ {T ,P}.

(2.46)

2.3.2 Proposed Online EM-Based Algorithm

Similar to the approach in [80], our proposed online algorithm consists of two stages. In

the first stage which is called the initialization stage, an initial estimate of the parameters

are calculated. To this end, the batch-mode EM algorithm, described in Section 2.3.1, is

performed using a small number of data samples, say T0 ≪ T .

In the second stage, upon receiving a measurement sample from the sensors at time

t∗ > T0, the FC forms the vector dt∗ = [d1,t∗ , . . . , dL,t∗ ]
Tr and performs the two steps of the

online algorithm for a predetermined small number of N “mini-iterations”. To initialize the

parameters, at any time t ≥ T0, we set Θ
(0,t+1) = Θ(N,t). In other words the last estimated

parameter from the N mini-iterations from the t-th data sample will be used as the initial

parameter for the mini-iterations of t+ 1 sample.

To develop the online EM algorithm for the problem at hand, we need to derive the

stochastic approximation of batch-mode E-step. The online M-step will be the same as the

M-step of the batch-mode EM.

The update formulas for the M-step of the batch-mode EM in (2.25), (2.29), (2.39),

and (2.42), (2.40), (2.46) indicate that the updated quantities are functions of the statistics

Sm,1, m ∈ {G, T } Sj, j = 2, . . . , 5, and S defined in (2.30), (2.31), and (2.32), (2.37), (2.38),

(2.41), and (2.43), respectively. Therefore, as in the online version of EM, we only need to

update the statistics sufficient for updating the parameters in the M-step. Thus we define

S
(n,t∗)
m,1 =

1

t∗

t∗∑
t=1

Eζi,p,t|dt;Θ(n−1,t)

[
s
(n)
m,1(ζ

(n)
i,p,t)

]
, (2.47)
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for m ∈ {G, T }, and

S
(n,t∗)
j =

1

t∗

t∗∑
t=1

Eζi,p,t|dt;Θ(n−1,t)

[
s
(n)
j (ζ

(n)
i,p,t)

]
, (2.48)

for j = 2, · · · , 5, and

S(n,t∗) =
1

t∗

t∗∑
t=1

Eζ(i,p,t)|dt;Θ(n−1,t)

[
∫ (n)(ζ

(n)
i,p,t)

]
. (2.49)

Note that in the online case, the superscript (n, t) denotes estimated parameter in the nth

iteration (1 ≤ n ≤ N) at time instant t and

s
(n)
G,1(ζ

(n)
i,p,t) =

P∑
p=1

ζ
(n)
i,p,ty

(n−1)
i,p (t)(y

(n−1)
i,p (t))Tr, (2.50)

s
(n)
T ,1(ζ

(n)
i,p,t) = (η + L)

P∑
p=1

ζ
(n)
i,p,tv

(n−1)
i,p (t)(v

(n−1)
i,p (t))Tr

η + (v
(n−1)
i,p (t))Tr(λ

(n−1,t)
T ,i )−1v

(n−1)
i,p (t)

, (2.51)

s
(n)
2 (ζ

(n)
i,p,t) =

P∑
p=1

ζ
(n)
i,p,t, (2.52)

s
(n)
3 (ζ

(n)
i,p,t) = ζ

(n)
i,p,tdl,t, (2.53)

s
(n)
4 (ζ

(n)
i,p,t) = ζ

(n)
i,p,t, (2.54)

s
(n)
5 (ζ

(n)
i,p,t) = ζ

(n)
i,p,t(dl,t − µ

(n−1,t)
i,l,p )2, (2.55)

∫ (n)(ζ
(n)
i,p,t) = ζ

(n)
i,p,t(dt − µ

(n−1,t)
i,p )⊙ y

(n)
i,p (t). (2.56)

Moreover,

α(n)(i, p, t) , Eζ(i,p,t)|dt;Θ(n−1,t)

[
ζ
(n)
i,p,t

]
=

P (dt, ζ
(n)
i,p,t = 1|Θ(n−1,t))∑M−1

j=0

∑P
q=1 P (dt, ζ

(n)
j,q,t = 1|Θ(n−1,t))

(2.57)
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and

P (dt, ζ
(n)
i,p,t = 1|Θ(n−1,t)) = ω

(n−1)
i,p,t

L∏
l=1

g(dl,t;ψ
(n−1,t)
i,l,p )

G
(
G(d1,t;ψ

(n−1,t)
i,1,p ), · · · , G(dL,t; (n−1,t)

i,L,p );λ
(n−1,t)
i

)
. (2.58)

Remark 5. A comparison of (2.30), (2.31), (2.32), (2.37), (2.38), (2.41), (2.43), with

(2.50), (2.51), (2.52), (2.53), (2.54), (2.55), (2.56), respectively, reveals the motivation for

the definition of the sufficient statistics in (2.50)-(2.56). As can be seen the sufficient statis-

tics in (2.50)-(2.56) lack the averaging over time. This averaging, however, is performed

in (2.47), (2.48) and (2.49).

Let ϵ(t
∗) be a decreasing sequence. Then, using (2.16), the E-step of our proposed

online algorithm is given by

S
(n,t∗)
m,1 = (1− ϵ(t

∗))S
(N,t∗−1)
m,1 + ϵ(t

∗)E
ζ
(n)
i,p,t∗ |dt∗ ;Θ

(n−1,t∗) [s
(n)
m,1(ζ

(n)
t∗ )], m ∈ { G, T } ,

S
(n,t∗)
j = (1− ϵ(t

∗))S
(N,t∗−1)
j + ϵ(t

∗)E
ζ
(n)
i,p,t∗ |dt∗ ;Θ

(n−1,t∗) [s
(n)
j (ζ

(n)
t∗ )], j = 2, · · · , 5,

S(n,t∗) = (1− ϵ(t
∗))S(N,t∗−1) + ϵ(t

∗)E
ζ
(n)
i,p,t∗ |dt∗ ;Θ

(n−1,t∗) [∫ (n)(ζ
(n)
i,p,t∗)]. (2.59)

The M-step of the proposed online algorithm does not change and consists of the update

functions

ω
(n)
i,p,t∗ = ω

(
α(n)(i, p, t∗)

)
, (2.60)

µ
(n,t∗)
i,p = µ(S

(n,t∗)
3 , S

(n,t∗)
4 ), (2.61)
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σ
(n,t∗)
i,l,p =


σG(S

(n,t∗)
4 , βn,t

∗

i,l,p , γ
n,t∗

i,l,p ), m = G,

σm(S
(n,t∗)
4 , S

(n,t∗)
5 ), m ∈ {T ,P} ,

(2.62)

when m ∈ M, and

λ
(n,t∗)
m,i = λm

(
S
(n,t∗)
m,1 , S

(n,t∗)
2

)
, (2.63)

for m ∈ {G, T }. In (2.62),

β
(n,t∗)
i,l,p = β

(
S(n,t∗)

\l , (λ
(n−1,t∗)
i )\l

)
, (2.64)

γ
(n,t∗)
i,l,p = γ

(
S
(n,t∗)
4 , (λ

(n−1,t∗)
i )l,l

)
. (2.65)

For each time instant t, we need to initialize the algorithm for the first iteration (n = 1)

of the N mini-iterations. Therefore, for i = 0, · · · , K − 1, p = 1, · · · , P , and l = 1, · · · , L,

we let ω
(n−1)
i,p,t∗ = ω

(0)
i,p,t∗ =

1
KP

,
(n−1,t∗)
i,l,p =

(0,t∗)
i,l,p =

(N,t∗−1)
i,l,p , and λ

(n−1,t∗)
i = λ

(0,t∗)
i = λ

(N,t∗−1)
i .

At each time instant t∗, at the end of the N mini-iterations, we compute ϕi,t∗ =∑P
p=1 ω

(N)
i,p,t∗ . The detection rule then decides Hi∗ as the state of nature at t∗ where i∗ =

argmax ϕi,t∗

0≤i≤K−1

. The entire procedure for the estimation of the parameter set and the detection

of the hypotheses is summarized in Algorithm 1.

2.4 Numerical Results

In this section we present numerical results from both simulation data and two real-

world datasets to verify the efficacy of the proposed method.

In Step 1 of the algorithm we set the initial values of the probabilities ωi,p,t =
1
KP

= 1
4
.

The initial values of the copula parameters λm,i are chosen to be the L×L identity matrix

for m ∈ {G, T }. The initial values of µi,l,p and σi,l,p are obtained from the unsupervised

method of K-means. Also the number of mini-iterations is set to N = 4. Finally in
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Data: dt; sensor measurements’ at time instance t > T0.
Result: online updated of Θ and detection of ht.

begin
Step1: initialization:
Assume an initial value for Θ as follows:

Set ω̃
(0,1)
i,p,t = 1

KP
,

Set λ
(0,1)
m,i = IL,m ∈ {G, T },

Apply K-means to d1:T0 and set
(0,1)
i,p,l as cluster means of the K-means;

Apply batch EM on d1:T0 to compute Θ(N,T0) ;
Step2: online updates:
while dt is received, t > T0 do

initialize parameters using Θ(0,t) = Θ(N,t−1);
for 1 ≤ n ≤ N do

online E Step:
Find α(n)(i, p, t) using (2.57);
Update Sj, Sm,1, S for m ∈ {G, T } and 2 ≤ j ≤ 5 using (2.47)-(2.49);

online M Step:
Update ω

(n)
i,p,t using (2.60),

Update λ
(n,t)
m,i , m ∈ {G, T } using (2.63),

Calculate β
(n,t)
i,l,p , γ

(n,t)
i,l,p using (2.64), (2.65),

Update µ
(n,t)
i,p and σ

(n,t)
i,l,p using (2.61) and (2.62),

end

Compute ϕi,t =
∑P

p=1 ω
(N)
i,p,t;

Calculate i∗ = argmax ϕi,t
0≤i≤K−1

;

Set ht = ei∗ .
end

end

Algorithm 1: Online parameter estimation and hypothesis detection.

the stochastic approximation of the E-step, we use ϵ(t
∗) = 1

t∗
. This sequence satisfies

the sufficient condition for the convergence of the online algorithm [77]. We should point

out that in the online processing of all our simulations, by t = 2000, all the estimated

parameters have converged to a relative distance of less than 0.1 from their actual values.

To evaluate the detection performance of the algorithms, we define the metric hypothesis
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discriminability ∆H(t) given by

∆H(t) ,
1

Kt

K−1∑
i=0

t∑
τ=1

∣∣∣hi,τ − ĥi,τ

∣∣∣ . (2.66)

We present hypothesis discriminability for each of the models based on the Gaussian,

Student’s t, and Product copulas, denoted by MBGC, MBSC, and MBPC, respectively.

We compare their performances with the case where the model parameters are completely

known. Since the latter provides the best possible detection performance, it is referred to

as the lower bound (LB).

2.4.1 Simulations

In the simulations, an online binary hypothesis testing problem is considered, i.e., K =

2. We assume that the measurement data are collected under two different environmental

conditions, i.e., P = 2. To model the correlation among the sensors’ data, we consider

two cases of sensors placement, a 1D array and a 2D grid. The first case, referred to as

case (a) herein, is used in applications such as traffic monitoring where the sensors may be

positioned along a road. The second case, referred to as case (b), is used in applications

such as disaster management and precision agriculture. In these cases the data collected

by neighboring sensors are highly correlated, but as the euclidean distance between two

sensors increases the correlation in their measurements decreases. Let ρ(l2, l1) denote the

distance between two sensors l1 and l2. The correlation between the two sensors’ data

denoted by (λm,i)l1,l2 is assumed to be given by [58,59],

(λm,i)l1,l2 = exp{−ρ(l2, l1)}. (2.67)

Once the simulated data is generated, we run the proposed online method as described

in Algorithm 1. In all our simulations, for Step 1 of the proposed algorithm, where the

batch-mode EM is executed to initialize the online EM, the number of time samples is set
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to T0 = 10L.
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Figure 2.1: Hypothesis discriminability versus the number of samples t for MBGC, MBPC
and LB. Top: L = 10 sensors. Bottom: L = 20 sensors.

Hypothesis discriminability ∆H as a function of the number of samples t is shown in

Fig. 2.1 for the three algorithms MBGC, MBPC, and LB, for both cases (a) and (b) for

L = 10 and L = 20. It can be seen that as the new data samples arrive, the performance

of the proposed online algorithm improves significantly. Moreover, MBPC which ignores

the correlation in the data has a significant performance loss compared with the proposed

correlation based method. Moreover, as t increases, the advantage of MBGC over MBPC

improves. In addition, the performance of MBGC converges to that of the lower bound

LB which has perfect knowledge of the underlying model parameters. For example, in case

(a), for t = 4000, L = 20, LB is only 17% better than MBGC. We would like to reiterate

that the difference between MBGC and LB is that, while LB only attempts to detect the
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state of nature, MBGC must estimate the model parameters as well as detect the state of

nature.

Clearly the computational complexity of MBGC and MBSC are higher than that of

MBPC and LB. In particular, the computational complexity of MBPC is O(NPML). On

the other hand the complexity of MBGC and MBSC which needs to estimate the correlation

matrices λG,i and λT ,i are both O(NPML4). In practice, the number of mini-iterations

N , the number of distributions P and the number of hypotheses M are not very large.

Therefore the computational complexity of MBGC and MBSC are mostly determined by

the number of sensors L. Thus for networks consisting of a large numbers of sensors, MBGC

and MBSC become computationally expensive.

∆

×

Figure 2.2: Hypothesis discriminability of MBGC, MBPC and LB versus t, for L = 5, and
independent data.

When the sensors’ measurements are independent, MBPC is the appropriate model for

the data and other copula-based methods do not match the nature of the sensors’ data. In

order to determine the performance loss due to this mismatch, in Fig. 2.2 we present the

hypothesis discriminability for MBGC, MBPC, and LB when the data from L = 5 sensors

are independent. It can be seen that the performance of MBPC converges to that of LB and

that given enough data samples, the performance of MBGC is only slightly worse than that
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of LB. This indicates that given enough data samples, MBGC can correctly estimate the

correlation matrix as the identity matrix and achieve similar performance as MBPC. Also

note that since the sensors’ measurements are independent, they carry more information

than when they are correlated. As a result hypothesis discriminability is lower for L = 5

sensors than the case of L = 10 sensors in Fig. 2.1.

Hitherto we have assumed that if the sensor measurements are samples from P different

marginal PDFs, the algorithm also assumes P ∗ = P different marginals. If the algorithm

assumes P ∗ > P marginals, there will not be any performance loss. The algorithm will

resolve this over-fitting and will evaluate only P different parameters for the marginal

PDFs. On the other hand, when P ∗ < P , there will be a performance loss due to the

under-fitting of the data. In Table 2.1 we present the minimum achievable value of ∆H for

this case when the sensor measurements are samples from P = 2 different marginal PDFs,

while the algorithm assumes P ∗ ∈ {1, 2, 3, 4, 5} marginal PDFs. Comparing the results

for P ∗ = 1 with the case that P ∗ = 2 shows that, due to this mismatch, ∆H increases by an

order of magnitude while ∆H for P ∗ > 2 is similar to when P ∗ = 2. This shows that when

the actual value of P is unknown, one should over estimate it and select a larger value for

the algorithm. This increases the complexity of the algorithm, somewhat, but would result

in better performance.

Table 2.1: Minimum hypothesis discriminability for P = 2 and L = 20

.

P ∗ 1 2 3 4 5

∆H for case (a) 2e− 4 3e− 5 4e− 5 5e− 5 5e− 5
∆H for case (b) 3e− 3 6e− 4 7e− 4 8e− 4 9e− 4

In Fig. 2.3, ∆H for case (a) is plotted versus the number of sensors for MBGC, MBPC

and LB. The number of samples is t = 4000. Note that for this number of samples, ∆H for

all three algorithms has reached its floor value. Fig. 2.3 shows that MBGC’s performance

is close to that of LB and shows a clear advantage over MBPC which ignores the correlation

in the data.

The figure also shows that as the number of sensors increases, the advantage of MBGC
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Figure 2.3: Hypothesis discriminability versus L, for t = 4000 samples for MBGC, MBPC
and LB and case (a).

over MBPC increases. The figure also shows a trade-off in the number of sensors vs. the

complexity of the fusion algorithm. For example ∆H for MBGC with L = 20 sensors is the

same as ∆H for MBPC with L = 25 sensors. It should be noted however, that in real world

scenarios, it may not always be possible to increase the number of sensors. For example

in multimodal sensing where sensors measure a limited number of parameters. We also

observe that as L increases, the performance of MBGC is degraded slightly compared to

that of LB. The reason is that for each time instant, MBGC must estimate 4+4L+4L+2L2

parameters 4 , as a result, a good estimation of these parameters becomes more difficult

and requires more data samples.

In Fig. 2.4, we present ∆H for MBSC, MBPC and LB for L = 6 sensors for both cases

(a) and (b). Similar conclusions as in the case of MBGC can be drawn for the MBSC

results.

To demonstrate the accuracy of parameter estimations using the IFM method, we

evaluate the estimation errors of the mean and standard deviation for the Student’s t and

4This corresponds, respectively, to {ωi,p,t}, {µi,p}, {σi,l,p}, {λG,i}.
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Figure 2.4: Hypothesis discriminability versus the number of samples t for MBSC, MBPC
and LB, L = 6 sensors.
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Figure 2.5: Estimation errors, ∆T
µ , ∆

P
µ , and ∆T

σ , ∆
P
σ , versus the number of samples t for

MBSC, MBPC and LB, L = 6 sensors.

product copulas (m ∈ {P , T }) using

∆m
µ (t) =

1

KPL

K−1∑
i=0

P∑
p=1

L∑
l=1

|
µ
(N,t)
i,l,p − µActual

i,l,p

µActual
i,l,p

|, (2.68)

∆m
σ (t) =

1

KPL

K−1∑
i=0

P∑
p=1

L∑
l=1

|
σ
(N,t)
i,l,p − σActual

i,l,p

σActual
i,l,p

|. (2.69)

The results presented in Fig. 2.5, for L = 6 indicate the accuracy of parameter estimation

and that parameter estimation errors are smaller for MBSC. Moreover, as t increases the

37



improvement of MBSC over MBPC increases.

2.4.2 Numerical Results for Real Data

We also evaluate the performance of the proposed algorithm using two real-world

datasets, namely, the Room Occupancy Detection (ROD) [2] and Activity Recognition based

on Multisensor data fusion (AReM) [8] datasets, both available at https://archive.ics.uci.edu.

The ROD dataset consist of temperature, humidity, light, and CO2 sensory data used for

binary hypothesis testing where H0 represents an unoccupied room and H1 represents an

occupied room. In this dataset, ground-truth occupancy was obtained from time stamped

pictures that were taken every minute. The AReM dataset contains data collected from

a wireless SN worn by an actor with the purpose of detecting the actor’s daily activities.

Here, we consider three activities, bending, cycling, and lying down, which correspond to

Hi for i = 0, 1, 2, respectively. In this dataset, L = 6, i.e., there are 6 streams of data over

time which can be fused to detect Hi.

We define 1−∆H as the Detection Accuracy (DA) and compare the performance of the

proposed method with other well-known supervised and unsupervised methods in terms of

DA. We consider both MBPC and MBGC for the proposed method. However, note that

neither of these two copulas, perfectly match the correlation structure in the data. For the

AReM dataset, we consider T0 = 1500 and for the ROD dataset, we consider T0 = 2000.

The supervised methods include Support Vector Machines (SVM) and K-Nearest Neighbor

(KNN). As for the unsupervised methods with which we compare the proposed method, for

the AReM dataset we consider the Kmeans method, and for the ROD dataset, we consider

the Page-Hinkley Test (PHT) and the Geometric Moving Average (GeoMA) which are two

unsupervised methods devised specifically for room occupancy detection problems [1]. We

should point out that these unsupervised methods all use batch-mode processing. To train

the supervised learning algorithms, a training dataset of 8144 samples is used for the ROD

dataset. As for the AReM dataset, 70% of the data samples are used to train the supervised

algorithms and the remaining 30% are used for testing.
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Figure 2.6: DA for different methods using real-world datasets. Top: ROD dataset (M=2,
L=3). Bottom: AReM dataset (M=3, L=6).

In Fig. 2.6, DA is presented for 9000 and 8460 testing samples of the ROD and the

AReM datasets, on the top and bottom rows respectively. In this figure, B-MBGC and

O-MBGC denote the batch and online modes of MBGC, respectively. Similarly, B-MBPC

and O-MBPC denote the batch and online modes for MBPC, respectively. Figure 2.6 shows

that the proposed batch-mode algorithm has higher DA than other unsupervised and even

some supervised methods. The DA of the proposed algorithm for online processing is worse

than its DA in batch-mode. However, we know that as T0 increases, DA of the proposed

online algorithm increases converging to DA of the proposed batch mode algorithm. For

example for the ROD dataset when T0 increases from 2000 samples to 4000 samples, DA

values of O-MBPC and O-MBGC increase from 0.824 and 0.829 (reported in Fig. 2.6) to

0.894 and 0.905, respectively. Moreover, as discussed before, online processing is inevitable

in many practical scenarios.

In Fig. 2.7, the actual state of nature at each time instance of the ROD dataset

is plotted as well as the detection results achieved at each time instance with different

supervised and unsupervised methods (SVM, PHT, Geo-MA, B-MBGC, and O-MBGC)

using the ROD dataset.
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Figure 2.7: The actual (top row) and estimated values of the state of nature at each time
instance using different methods (SVM, PHT, Geo-MA, B-MBGC, and O-MBGC) for the
ROD dataset.

2.5 Conclusion

An online expectation maximization (EM) based algorithm is presented for data fusion

involving model parameter estimation and hypothesis testing based on observations from a

network of heterogeneous sensors. The sensor measurements are assumed to be correlated

and copula theory is used to model this correlation. Moreover, it is assumed that the

statistical model for the sensor data is not completely known.

The batch-mode EM is first developed for case studies of this problem including the

Gaussian, Student’s t, and product copulas where model parameters are estimated and the

40



state of nature is detected at all time instances. This algorithm is then extended to an

online EM based approach. In the online method, upon receiving sensors’ measurements at

each time instance, the model parameters are updated and the state nature at the current

time is detected.

Results obtained from both simulation and real-world data show significant improve-

ments in hypothesis testing compared to other unsupervised and even some supervised

learning methods. Moreover, in the case where data are correlated, the proposed method

including copula modeling outperforms the method ignoring the correlation in sensors’ mea-

surements while in the case where the data are independent, given enough data samples,

the performance of the proposed method converges to that of the method which correctly

assumes an independent data model.
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Chapter 3
Hypothesis Testing and Parameter Estimation with Observations
Correlated Both Among Sensors and Over Time

3.1 Introduction

In this chapter we consider centralized detection in a sensor network consisting of

heterogeneous sensors whose received data,under each hypothesis, are drawn from different

marginal PDFs. It is assumed that the data received from the sensors are dependent

over time and among the sensors. Moreover, we consider the scenario in which the joint

distribution (and by extension, the marginal distributions) of the sensor observations are

not completely known.

In many applications (e.g., biomedical or object tracking) there is non-negligible depen-

dence among the samples collected by each sensor, which if ignored, can result in significant

degradation in the performance of the detection scheme. Our goal is to model the depen-

dent observations of the sensors and devise a data fusion algorithm to detect the state

of nature. To model the dependence in the data collected by different sensors and over

time, the copula theory and Markov chains are employed. There are many advantages in

employing the copula distribution for modeling the distribution of dependent data. One

of the most important is that copulas separate the effect of the marginal distributions and

the dependence structure in the data [60]. Therefore, in a copula-based detection method,

changes in both complementary and mutual information can be detected due to this inher-

ent decoupling in the copula theory. Furthermore, this feature of the copula opens up a lot

of opportunities in statistical modeling by allowing us to model nonlinear dependencies or

to represent joint PDF models that do not necessarily have a closed form.

The problem of binary hypothesis testing and dependent data fusion based on the LLRT

has been considered in [18] where the face matching results from two different face matching

algorithms are combined to detect the identity of an individual. Using the LLRT and the

GLRT, fusion of dependent decisions of sensors has been recently studied in [60, 61] where
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it is further assumed that the copula function may be mis-specified.To improve the com-

putational complexity of fusing discrete decisions using GLRT, the authors have proposed

to inject noise into the local sensor decisions which, as a result, decreases the signal-to-

noise ratio of the quantized data. In [18, 60, 61], at each time instant the observations of

all the sensors are assumed to be dependent. However, dependence of data samples over

time is not investigated since the observation samples of each sensor are assumed to be

independent and identically distributed (iid) over time.

In this chapter, we develop a method based on the EM algorithm to estimate the

unknown parameters of the underlying joint and marginal PDFs, and to detect the hy-

potheses at each time. While parameter estimation in the presence of latent variables has

been studied extensively before [71], parameter estimation in this dissetation is in the con-

text of hypothesis testing which has not been previously investigated in the case of our

general data models.

The rest of this chapter is organized as follows. In section 3.2, the problem is formulated

and a probabilistic model is derived for the system under consideration. In section 3.3, the

proposed EM-based algorithm is described to solve the estimation and detection problem.

In section 3.4, we investigate a case study including the Gaussian and Student’s t copulas.

In section 3.5, our simulation method is presented, and in section 3.6, simulation results

are presented and discussed. Finally, the chapter ends with a conclusion in section 3.7.

3.2 Problem Formulation and System Model

We consider a sensor network consisting of L heterogeneous sensors employed to detect

the state of nature H ∈ {H0, H1}. By heterogeneous sensors we mean that each sensor’s 

measurement follows a different parametric distribution. At time t, sensor l transmits its

measurement, denoted by dl,t ∈ ℜ to the FC. After T time instances, the FC has received 

LT measurements from all the sensors which we denote by the L × T matrix D = [dl,t]. 

Two variables h0,t and h1,t are used to denote the state of nature at time t where hi,t ∈ {0, 1} 

for i = 0, 1. Here h0,t = 1 − h1,t and hi,t = 1 indicates that the state of nature at time t is
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Hi. For the entire observation period we construct a 2× T matrix H = [hi,t] which we call

the hypothesis matrix.

Regarding the dependency of observations in time, we assume that if the state of nature

at time t is different from that at time t−1, i.e., hi,t ̸= hi,t−1, then the sensors’ observations

at time t are independent from the observations at time t − 1. However, if the state of

nature does not change from t−1 to t, i.e., hi,t = hi,t−1, then the observations are dependent

in time and follow a Markovian model. More specifically, we assume that given dl,t−1, dl,t is

conditionally independent of all the past measurements of all the sensors. Therefore, given

that hi,t = 1 ̸= hi,t−1
1, we denote the conditional distribution function of dl,t (given H)

by Fi,l(dl,t|H;ψi,l), where ψi,l is the set of unknown parameters of the, otherwise known,

distribution function Fi,l(dl,t|H;ψi,l). On the other hand, if hi,t = 1 = hi,t−1
2, we denote

the conditional distribution function of dl,t given dl,t−1 (and H) by Fi,l(dl,t|dl,t−1, H; ψ̃i,l),

where ψ̃i,l denotes the set of unknown parameters of the, otherwise known, distribution

function Fi,l(dl,t|dl,t−1, H; ψ̃i,l).

Regarding the dependency of observations among the sensors, two cases are consid-

ered. First, when the state of nature changes at time t, the dependency among sensors’

measurements is modeled by the copula distribution given by

F (dt|H; Ψ, λ1,i) = C1 (Fi,1(d1,t|H;ψi,1), · · · , Fi,L(dL,t|H;ψi,L);λ1,i) (3.1)

where it is assumed that the hypothesis at t is Hi, dt = [d1,t, d2,t, · · · , dL,t]Tr, where su-

perscript Tr denotes transpose, and Ψ = {ψi,l} is the collection of unknown distribution

parameters. Moreover, λ1,i, i = 0, 1 denotes the set of unknown parameters of the copula

distribution C1(.) under the hypothesis Hi. We denote Λ1 , {λ1,0, λ1,1}. Next, when the

state of nature does not change at time t, the dependency of sensors’ measurements is

1This implies that the state of nature at time t is Hi and is different from the state at time t− 1.
2This implies that the state of nature at time t is Hi and is the same as the state at time t− 1.
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modeled by a different copula distribution given by

F (dt|dt−1, H; Ψ̃, λ2,i) =

C2

(
Fi,1(d1,t|d1,t−1, H; ψ̃i,1), · · · , Fi,L(dL,t|dL,t−1, H; ψ̃i,L);λ2,i

)
(3.2)

where again, it is assumed that the hypothesis at time t is Hi, and Ψ̃ = {ψ̃i,l} denotes

the collection of unknown distribution parameters. Moreover, λ2,i, i = 0, 1 denotes the

set of unknown parameters of the copula distribution C2(.) under the hypothesis Hi. We

denote Λ2 , {λ2,0, λ2,1}. For the two copula distributions C1(.) and C2(.) it is assumed that

their distribution types are known a priori. However, their parameters Λ1,Λ2, are unknown

and need to be estimated. Thus, the set of all unknown parameters can be denoted by

Θ̃ = {Ψ, Ψ̃,Λ1,Λ2}.

Taking the derivative of the distribution functions in (3.1) and (3.2), we obtain the

corresponding PDFs. In order to unify our notations and to show the dependence of

these quantities on the set of parameters, we denote these PDFs by P (dt|H; Θ̃) and

P (dt|,dt−1, H; Θ̃), respectively, as

P (dt|H; Θ̃) =

(
L∏
l=1

fi,l(dl,t;ψi,l)

)

c1

(
Fi,1(d1,t;ψi,1), F

(2)
i (d2,t;ψ

(2)
i ), · · · , Fi,L(dL,t;ψi,L)

)
, (3.3)

and

P (dt|dt−1, H; Θ̃) = (3.4)(
L∏
l=1

fi,l(dl,t|dl,t−1; ψ̃i,l)

)
c2

(
Fi,1(d1,t|d1,t−1; ψ̃i,1), · · · , Fi,L(dL,t|dL,t−1; ψ̃i,L)

)
,

where cj(.) represented the derivative of Cj(.) for j = 1, 2. The joint PDF of (d1,d2, · · · ,dT )
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can now be written as

P (d1, · · · ,dT |H; Θ̃) =
T∏
t=1

1∏
i=0

P (dt|H; Θ̃)hi,th1−i,t−1P (dt|,dt−1, H; Θ̃)hi,thi,t−1 (3.5)

It should be noted that in (3.5), at each time t only one of the two cases of time-dependent or

time-independent holds. This is ensured by the exponents hi,thi,t−1 and hi,th1−i,t−1. Using

(3.3) and (3.4) in (3.5) and replacing the measurement matrix, D, for (d1,d2, · · · ,dT ) we

get

P (D|H; Θ̃) =
T∏
t=1

1∏
i=0

(3.6)

[(
L∏
l=1

fi,l(dl,t;ψi,l)

)
c1 (Fi,1(d1,t;ψi,1), · · · , Fi,L(dL,t;ψi,L);λ1,i)

]hi,th1−i,t−1

×[(
L∏
l=1

fi,l(dl,t|dl,t−1; ψ̃i,l)

)

c2

(
Fi,1(d1,t|d1,t−1; ψ̃i,1), · · · , Fi,L(dL,t|dL,t−1; ψ̃i,L);λ2,i

)]hi,thi,t−1

Having received the measurement matrixD, the FC desires to detect the state of nature

during each time instant in the observation period T . In order to effectively accomplish

this task, the FC must also estimate the unknown parameters Θ̃. To this end we assign

probabilities ϕ0,t and ϕ1,t = 1 − ϕ0,t to the states H0 and H1 at time t, respectively, and

for i, j = 0, 1 we define ϕ̃i,j,t = P (hi,t = 1, hj,t−1 = 1). Note that these are not prior

probabilities and are only used as a tool to help us decide on the state of H at time

t. In the following sections, we estimate ϕ̃i,i,t and ϕ̃i,1−i,t, and then using the fact that

ϕ0,t = ϕ̃0,0,t + ϕ̃0,1,t and ϕ1,t = ϕ̃1,0,t + ϕ̃1,1,t, the values of ϕ0,t, and ϕ1,t are calculated. The

state of nature is then estimated to be H0 if ϕ0,t > ϕ1,t, and H1, otherwise
3. It can be

observed that since ϕ0,t + ϕ1,t = 1, then
∑0

i=1

∑0
j=1 ϕ̃i,j,t = 1 should hold.

3In this way the detection of the hypotheses is transformed into an estimation problem for Φ , [ϕi,t]
which we can be solved using the EM algorithm.
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Let

Φ̃ ,



ϕ̃0,0,1 ϕ̃0,0,2 · · · ϕ̃0,0,T

ϕ̃0,1,1 ϕ̃0,1,2 · · · ϕ̃0,1,T

ϕ̃1,0,1 ϕ̃1,0,2 · · · ϕ̃1,0,T

ϕ̃1,1,1 ϕ̃1,1,2 · · · ϕ̃1,1,T


(3.7)

denote the 4 × T joint hypothesis probability matrix. The complete unknown parameter

set is now defined by Θ ,
{
Φ̃,Ψ, Ψ̃,Λ1,Λ2,

}
.

The maximum likelihood estimation of Θ from D is given by Θ̂ = argmaxΘP (D|Θ).

However, the distribution P (D|Θ) is not directly available and can only be obtained from

P (D|Θ) =
∑

H P (D,H|Θ). Using (3.6), the probability, P (D,H|Θ), is given by

P (D,H|Θ) = P (D|H; Θ)P (H|Θ) =
T∏
t=1

1∏
i=0[

ϕ̃i,1−i,t
ϕ1−i,t−1

c1 (Fi,1(d1,t), · · · , Fi,L(dL,t))
L∏
l=1

fi,l(dl,t)

]hi,th1−i,t−1

×

[
ϕ̃i,i,t
ϕi,t−1

c2 (Fi,1(d1,t|d1,t−1), · · · , Fi,L(dL,t|dL,t−1))
L∏
l=1

fi,l(dl,t|dl,t−1)

]hi,thi,t−1

. (3.8)

Hereafter, for the sake of brevity we drop the parameters , λ1,i, λ2,i, ψi,l, and ψ̃i,l from the no-

tations of the PDFs c1(Fi,1(dl,t), · · · , Fi,L(dL,t);λ1,i) and c2(Fi,1(dl,t|dl,t−1), · · · , Fi,L(dL,t|dL,t−1);λ2,i),

and from the notations of the distribution functions Fi,1(d1,t;ψi,l) and Fi,1(d1,t|d1,t−1; ψ̃i,l),

and their respective PDFs.

In (3.8), we assume that at the starting time, i.e., t = 1, the hypothesis is independent

of its state in the previous time, namely at t = 0. Thus, for hi,1 = 1, we set h1−i,0 = 1 and

only the first term in the equation holds where ϕ1−i,t−1 = 1 for t = 1.

To estimate the parameter set, Θ, we employ the EM algorithm in which the state of

nature during the observation period, H, constitutes the latent variable.
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3.3 The Proposed EM-Based Algorithm

In order to estimate the parameter set Θ with the EM algorithm, we use the joint

conditional PDF of the measurement matrix D and the hypotheses matrix H given the

parameter set Θ where we choose H to be the latent variable.

3.3.1 The Expectation Step
In the expectation step of EM, the expectation of the log-likelihood function, L(Θ;D,H) ,

logP (D,H|Θ), denoted by Q(Θ;Θ(n−1), is calculated with respect to H, given the mea-

surement matrix, D, and the recent estimate of the parameter set Θ(n−1). This is de-

rived in (3.9) and (3.10), where for i = 0, 1, α
(n)
1 (i, t) , E[hi,th1−i,t−1|D; Θ(n−1)] and

α
(n)
2 (i, t) , E[hi,thi,t−1|D; Θ(n−1)]. Evaluation of α

(n)
1 (i, t) and α

(n)
2 (i, t) is discussed in

Appendix B.

L(Θ;D,H) =
T∑
t=1

1∑
i=0

L∑
l=1

hi,th1−i,t−1

[
1

L
log(

ϕ̃i,1−i,t
ϕ1−i,t−1

) +
1

L
log c1 (Fi,1(d1,t), · · · , Fi,L(dL,t)) + log fi,l(dl,t)

]

+ hi,thi,t−1

[
1

L
log(

ϕ̃i,i,t
ϕi,t−1

) +
1

L
log c2 (Fi,1(d1,t|d1,t−1), · · · , Fi,L(dL,t|dL,t−1))

+ log fi,l(dl,t|dl,t−1)] , (3.9)

Q(Θ;Θ(n−1)) , EH|D;Θ(n−1) [L(Θ;D,H)] =
T∑
t=1

1∑
i=0

L∑
l=1

α
(n)
1 (i, t)

[
1

L
log

ϕ̃i,1−i,t

ϕ̃1−i,i,t−1 + ϕ̃1−i,1−i,t−1

+
1

L
log c1 (Fi,1(d1,t), · · · , Fi,L(dL,t)) + log fi,l(dl,t)

]

+ α
(n)
2 (i, t)

[
1

L
log

ϕ̃i,i,t

ϕ̃i,i,t−1 + ϕ̃i,1−i,t−1

+
1

L
log c2 (Fi,1(d1,t|d1,t−1), · · · , Fi,L(dL,t|dL,t−1))

+ log fi,l(dl,t|dl,t−1)] (3.10)
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3.3.2 The Maximization Step

In the maximization step, Q(Θ;Θ(n−1)) is maximized with respect to the parameter set

Θ to obtain the next parameter set.

To maximize Q(Θ;Θ(n−1)) with respect to ϕ̃i,j,t, i, j = 0, 1 we need to consider the

constraint
∑1

i=0(ϕ̃i,i,t + ϕ̃i,1−i,t) = 1. Therefore, we use the Lagrangian Lϕ, given by

Lϕ , Q(Θ;Θ(n−1)) + ϵϕ

[
1∑
i=0

(ϕ̃i,i,t + ϕ̃i,1−i,t)− 1

]
(3.11)

whose derivatives with respect to ϕ̃i,i,t and ϕ̃i,1−i,t are

∂Lϕ
∂ϕ̃i,1−i,t

=
α
(n)
1 (i, t)

ϕ̃i,1−i,t
+ ϵϕ = 0 (3.12)

∂Lϕ
∂ϕ̃i,i,t

=
α
(n)
2 (i, t)

ϕ̃i,i,t
+ ϵϕ = 0 (3.13)

Multiplying the two sides of (3.12) and (3.13) by ϕ̃i,1−i,t and ϕ̃i,i,t, respectively, and sum-

ming the results together and over i gives ϵϕ = −
∑1

i=0[α
(n)
1 (i, t) + α

(n)
2 (i, t)] = −1. From

this we get that ϕ̃
(n)
i,1−i,t = α

(n)
1 (i, t) and ϕ̃

(n)
i,i,t = α

(n)
2 (i, t).

To maximize Q(Θ;Θ(n−1)) with respect to ψi,l and ψ̃i,l for i = 0, 1 and l = 1, · · · , L, the

constraints imposed by the selected distributions of sensors’ measurements must be taken

into account. In general, we solve

Maximize
ψi,l

Q(Θ;Θ(n−1)) (3.14)

Subject to :

∫ ∞

−∞
fi,l(x;ψi,l) dx = 1, 1 ≤ l ≤ L, i = 0, 1
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to obtain Ψ and similarly for Ψ̃. For the parameters of the copula distributions, we solve

Maximize
λj,i

Q(Θ;Θ(n−1)) (3.15)

Subject to :

∫ 1

0

· · ·
∫ 1

0

cj(x;λj,i) dx = 1, j = 1, 2, i = 0, 1

to obtain Λ1 and Λ2.

In the next section, we consider a case study including two important classes of copu-

las, namely the Gaussian and the Student’s t copulas and, we solve the two optimization

problems presented above for these two cases. It should be pointed out, however, that

the proposed system model and the EM-based algorithm is not limited to this case. In

particular, it can be used for any marginal PDFs and copula density functions for which

the optimization problems in the maximization step of EM can be solved.

3.4 A Case Study: Gaussian and Student’s t Copulas

In this section we derive the update equations of the unknown parameters for the case

where the PDFs of the measurement data from each sensor under the hypothesis Hi can be 

modeled by a Gaussian PDF. More specifically, we assume that fi,l(dl,t) ∼ N (ψi,l, (σi,l)2), 

where the variance (σi,l)2 is known, and the mean ψi,l is unknown. In addition, we require 

a model to represent the first order dependence in the data collected over time for when

the state of nature does not change at time t. The Autoregressive Model (AR), has been

widely used as a first-order Markov process for parametric analysis and modeling of signals

in a variety of contexts including speech and seismic signal processing, spectral estimation,

process control and others [81]. Thus, we assume that when the state of nature does not

change at time t, the samples collected from each sensor follow a first order AR model with

parameter ξ, namely

dl,t = ξdl,t−1 + νi,l,t, (3.16)
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where for i = 0, 1, {νi,l,t} is the iid Gaussian innovation process with unknown mean ψi,l

and known standard deviation σi,l. Therefore, fi,l(dl,t|dl,t−1; ψ̃i,l) ∼ N (ψ̃i,l, (σi,l)
2), where

ψ̃i,l = ηdl,t−1 + ψi,l. We first study the case where the two copulas c1(.) and c2(.) are

modeled by the Gaussian copula and next we consider the case where they are modeled by

the Student’s t copula.

3.4.1 The Gaussian Copula

From (2.4), it is apparent that the Gaussian copula is parametrized solely by its corre-

lation matrix R 4. Therefore, in our model of the sensors’ measurements, we assume that,

for j = 1, 2 and i = 0, 1, λj,i constitutes the unknown correlation matrix of copula cj(.)

under hypothesis Hi.

QG(Θ;Θ(n−1)) =
T∑
t=1

1∑
i=0

L∑
l=1

α
(n)
1 (i, t)

L
log

ϕ̃i,1−i,t

ϕ̃1−i,i,t−1 + ϕ̃1−i,1−i,t−1

+
α
(n)
2 (i, t)

L
log

ϕ̃i,i,t

ϕ̃i,i,t−1 + ϕ̃i,1−i,t−1

−
2∑
j=1

α
(n)
j (i, t)

2L

[
log |λj,i|+ yj,i(t)

Tr(λ−1
j,i − IL)yj,i(t)

]
−

2∑
j=1

αj(i, t)

2

[
log(2π(σi,l)

2) + yj,i(t)
Tryj,i(t)

]
(3.17)

Using the Gaussian marginals and the Gaussian copulas in (3.10) we obtain (3.17), where

yj,i(t) = [yj,i,1(t), · · · , yj,i,L(t)]Tr, for j = 1, k = 1, 2, · · · , L,

yj,i,k(t) = G−1(Fi,k(dk,t); 0, 1) = (dk,t − ψi,k)/σi,k, (3.18)

4In the case where the marginal distributions are also Gaussian, as is in this case study, the corresponding
multivariate distribution is the multivariate Gaussian distribution. In this case, let the variances of the N
marginal distributions be denoted by σ2

i for i = 1, · · · , N . Then, the correlation matrix of the copula, R, is
related to the covariance matrix of the multivariate distribution, which we denote by Σxx, in the following
manner:

R =


1 · · · ρ1,N

ρ1,2 · · · ρ2,N
...

...
ρ1,N · · · 1

 , Σxx =


σ2
1 · · · σ1σNρ1,N

σ1σ2ρ1,2 · · · σ2σNρ2,N
...

...
σ1σNρ1,N · · · σ2

N

 .
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and for j = 2, k = 1, 2, · · · , L,

yj,i,k(t) = G−1(Fi,k(dk,t|dk,t−1); 0, 1) = (dk,t − ψ̃i,k)/σi,k, (3.19)

where G−1(.; 0, 1) is the inverse of the Gaussian CDF with mean zero and variance one.

First, we consider maximization of QG(Θ;Θ(n−1)) with respect to the correlation matri-

ces λ1,i and λ2,i. Clearly, the correlation matrix λj,i is a positive definite (PD) matrix with

unit diagonal elements. However, at this point we relax these constraints and only require

that λj,i be a positive semi-definite (PSD) matrix. We will later discuss how a solution is

obtained which satisfies the required constraints. Let Υ+
L denote the convex set of L × L

PSD matrices. Then, it can be seen that maximization of QG(Θ;Θ(n−1)) with respect to

λj,i is equivalent to the following optimization problem.

Minimize
λj,i

r(λj,i) =
T∑
t=1

α
(n)
j (i, t)

[
log |λj,i|+ y

(n−1)
j,i (t)Trλ−1

j,i y
(n−1)
j,i (t)

]
(3.20)

Subject to : λj,i ∈ Υ+
L

It is well known that for any matrix A ∈ Υ+
L , the function log |A| is concave while the

function A−1 is convex. This implies that r(λj,i) is not a convex function. To get around

this problem, let Ej,i , λ−1
j,i . Clearly, Ej,i ∈ Υ+

L . Then, the optimization problem in (3.20)

can be written as

Minimize
Ej,i

r̃(Ej,i) =
T∑
t=1

α
(n)
j (i, t)

[
− log |Ej,i|+ y

(n−1)
j,i (t)TrEj,iy

(n−1)
j,i (t)

]
(3.21)

Subject to : Ej,i ∈ Υ+
L

Now, in the objective function in (3.21), the first term is convex and the second term is

linear. Therefore the objective function is convex. In addition, the set Υ+
L is closed and

convex. Therefore, (3.21) has a unique solution. In particular, the gradient of the objective
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function is given by

∇Ej,i
(r̃(Ej,i)) = −

{
T∑
t=1

α
(n)
j (i, t)

}
E−1
j,i +

T∑
t=1

α
(n)
j (i, t)y

(n−1)
j,i (t)y

(n−1)
j,i (t)Tr (3.22)

Therefore, setting the gradient to zero we get

λ
(n)
j,i = (E

(n)
j,i )

−1 =

∑T
t=1 α

(n)
j (i, t)y

(n−1)
j,i (t)y

(n−1)
j,i (t)Tr∑T

t=1 α
(n)
j (i, t)

(3.23)

Remark 6. Examination of (3.23) shows that these are weighted empirical correlation

matrices calculated from the data and since the values of α1(i, t) and α2(i, t) are either very

close to zero or very close to one, the weighting acts as selecting the appropriate data to

calculate the best estimation for the correlation matrix. For example, for calculating λ1,i,

only the data collected at the time instances when the hypotheses change from H1−i to Hi

are involved while for calculating λ2,i, only the data collected at the time instances when

the hypotheses do not change from Hi are involved.

It is straightforward to verify that these matrices are PSD, i.e., λ1,i, λ2,i ∈ Υ+
L . However,

to be legitimate correlation matrices for the copula densities, they must also have unit

diagonal elements and be non-singular. In what follows we discuss these issues.

As discussed previously, λj,i is an L × L matrix where L is the number of sensors.

From (3.23), it is evident that up to T rank-one matrices are added to obtain the new

value for λj,i. It turns out that if there are L linearly independent vectors in the set Yj =

{αj(i, t)yj,i(t), t = 1, 2, · · · , T}, then λj,i will be full rank and, therefore, positive definite.

Now, since for t = 1, 2, · · · , T , y1,i(t) are independent samples (see (3.18)), as T −→ ∞,

almost surely the set Y1 will have L linearly independent vectors. In the case of λ2,i, the

samples in the set Y2 are dependent. However, they contain an innovation component

which is an iid sequence (see (3.16) and (3.18)). Therefore, as T −→ ∞, again the set Y2

will (almost surely) have L linearly independent vectors. In fact, it is easy to see that for

the case of continuous random vectors (e.g., Gaussian random vectors under consideration),
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for any T ≥ L, with probability one the set of vectors {y1,i(t), t = 1, 2, · · · , T} are linearly

independent, and similarly for the set of vectors {y2,i(t), t = 1, 2, · · · , T}, In practice we

choose T >> L in order to obtain a good estimate of the correlation matrices and this

ensures that the estimated matrices are non-singular.

The second constraint for λj,i is that it must have unit diagonal elements. This is not

guaranteed. To resolve this issue, we propose to use the method suggested by Higham [79],

where it is shown that given a symmetric matrix, there exists a unique correlation matrix

(i.e., a matrix which is PSD and has unit diagonal elements), which is closest to the

symmetric matrix in the sense of weighted Frobenius norm. This is actually a projection

of the symmetric matrix on the set of PSD matrices with unit diagonal. We use the

iterative algorithm proposed in [79] to compute the nearest correlation matrix to each of

the symmetric matrices, λ1,i and λ2,i.

Next, we maximize QG(Θ;Θ(n−1)) with respect to ψi,l which is equivalent to maximizing

A(ψi) = −
T∑
t=1

2∑
j=1

α
(n)
j (i, t)

2
yj,i(t)

Tr(λ
(n−1)
j,i )−1yj,i(t) (3.24)

with respect to ψi = [ψi,1, ψ
(2)
i , · · · , ψi,L]Tr. Thus, we calculate the gradient of A(ψi) with

respect to ψi which is given by

∇ψi
(A(ψi)) =

T∑
t=1

2∑
j=1

α
(n)
j (i, t)(Σ

(n−1)
i λ

(n−1)
j,i )−1yj,i(t) (3.25)

where Σ
(n−1)
i = diag(σ

(n−1)
i,1 , σ

(n)
i,2 , · · · , σ

(n−1)
i,L ). Setting (3.25) to zero we obtain the new
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value of ψi as

ψ
(n)
i =(
T∑
t=1

2∑
j=1

α
(n)
j (i, t)(λ

(n−1)
j,i )−1

)−1 T∑
t=1

α
(n)
1 (i, t)(λ

(n−1)
1,i )−1dt + α

(n)
2 (i, t)(λ

(n−1)
2,i )−1(dt − ξdt−1)

(3.26)

Equation (3.26) implies that the estimated mean is similar to the empirical mean of the

data weighted by the inverse of the correlation matrices. The new value of ψ̃i,l is then

obtained from ψ̃
(n)
i,l = ξdl,t−1 +

(n)
i,l .

3.4.2 The Student’s t Copula

Considering the degree of freedom to be known, the Student’s t copula is also parametrized

by its correlation matrix, R.

In this case, we need to maximize QT (Θ;Θ(n−1)) with respect to λj,i for j = 1, 2

and i = 0, 1. For the case of Student’s t copulas, we only need to consider the term in

QT (Θ;Θ(n−1)) which contains λj,i, namely

Bj,i(λj,i) ,
T∑
t=1

α
(n)
1 (i, t) log cj(Fi,1(d1,t), · · ·Fi,L(dL,t);λj,i). (3.27)

In this case, cj is the Student’s t copula, and λj,i’s are the unknown correlation matrices

of the copulas (denoted by R). The degrees of freedom is assumed to be known for both

copulas and denoted by ηj,i for copula cj, j = 1, 2 under hypothesis Hi, i = 0, 1. Replacing

(2.5) into (3.27), we get

Bj,i(λj,i) =
T∑
t=1

α
(n)
j (i, t)

[
γ
(n−1)
j,i − 1

2
log |λj,i| −

ηj,i + L

2
log(1 +

1

ηj,i
v
(n−1)
j,i (t)Trλ−1

j,i v
(n−1)
j,i (t))

]
(3.28)

In (3.28), v
(n−1)
j,i (t) = [v

(n−1)
j,i,1 (t), v

(n−1)
j,i,2 (t), · · · , v(n−1)

j,i,L (t)]Tr where, for l = 1, · · · , L and i =
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0, 1, v
(n−1)
1,i,l (t) = St−1[Fi,l(dl,t;ψ

(n−1)
i,l )], v

(n−1)
2,i,l (t) = St−1[Fi,l(dl,t|dl,t−1; ψ̃

(n−1)
i,l )], St−1[.] is the

inverse of the standard Student’s t distribution, and,

γ
(n−1)
j,i = log

Γ(
ηj,i+L

2
)Γ(

ηj,i
2
)L−1

Γ(
ηj,i+1

2
)L
∏L

l=1(1 +
1
ηj,i
v
(n−1)
j,i,l (t)2)−

ηj,i+1

2

(3.29)

In (3.28), the convexity of the term log(1 + 1
ηj,i

v
(n−1)
j,i (t)Trλ−1

j,i v
(n−1)
j,i (t)) can not be

established since it is a composition of a convex function (matrix inversion) with a concave

function (log function). Therefore, once again we apply the change of variable Ej,i = λ−1
j,i

to get

B̃j,i(Ej,i) =
T∑
t=1

α
(n)
j (i, t)

[
γ
(n−1)
j,i +

1

2
log |Ej,i| −

ηj,i + L

2
log(1 +

1

ηj,i
v
(n−1)
j,i (t)TrEj,iv(n−1)

j,i (t))

]
.

(3.30)

Note that the optimization of the function in (3.30) is equivalent to the optimization of

Q(Θ;Θ(n−1)) with respect to λj,i. The function in (3.30) is the difference of two concave

functions. Optimization of such functions has been fully investigated in the literature [82],

[83]. In particular, in the case of optimizing the difference of two convex functions over a

bounded polyhedral set, convergence to the global solution is achieved in finite time [84].

We would like to note that this is the case for the problem at hand.

Now, setting the derivative of B̃j,i with respect to Ej,i to zero we get

(E (n)
j,i )

−1 =
ηj,i + L∑T
t=1 α

(n)
j (i, t)

T∑
t=1

α
(n)
j (i, t)v

(n−1)
j,i (t)v

(n−1)
j,i (t)Tr

ηj,i + v
(n−1)
j,i (t)TrEj,iv(n−1)

j,i (t)
(3.31)

We use the method suggested in [85] to solve (3.31) iteratively with the starting point

being the estimate of the correlation matrix for the Gaussian copula. In other words the

initial point of the iterations is calculated using (3.23). When the iterations converge, we

directly obtain (E (n)
j,i )

−1 = λ
(n)
j,i . Once again, the matrices calculated by (3.31) are PD when

T is large enough but the matrices are not guaranteed to have unit diagonal values. Thus,
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we apply the algorithm in [79], to obtain the nearest correlation matrices to the matrices

obtained from (3.31).

Next, we need to optimize Q(Θ;Θ(n−1)) with respect to ψi,l for i = 0, 1 and l = 1, · · · , L.

Unfortunately, it is not possible to derive a closed form solution for this optimization prob-

lem. However, (3.26) shows that the copula function only slightly modifies the empirical

estimation of ψi,l by weighting the empirical mean using the inverse of the correlation ma-

trices. Therefore, in each iteration of the EM algorithm we only use the empirical mean of

the data, i.e.,

(n)
i,l =

∑T
t=1 α

(n)
1 (i, t)dl,t + α

(n)
2 (i, t)(dl,t − ξdl,t−1)∑T

t=1 α
(n)
1 (i, t) + α

(n)
2 (i, t)

, (3.32)

as the updating formula forψ i,l in the case of the Student’s t copula. The numerical results

in Section 3.6 show that the error in our estimates of the parametersψ i,l is very small.

The entire procedure for the estimation of the parameter set and the detection of the

hypotheses is summarized in Algorithm 2.

3.5 Simulation

In this section we describe the simulation set up used to obtain the numerical results.

Experiments are performed for various types of sensors with L = 4 and L = 8. The obser-

vation data from the sensors are produced by simulation. In order to generate dependent

data over time we use the auto-regressive model in (3.16), where for i = 0, 1, {νi,l,t} is an 

iid Gaussian process with mean ψi,l and standard deviation σi,l. The values used for ψi,l 

and σi,l in this example are presented in Table 3.1. In other words, as mentioned previ-

ously, for the case that the hypothesis changes, the data is generated according to the PDF

fi,l(dl,t) ∼ N (ψi,l, (σi,l)2), whereas for the case that the hypothesis does not change, the 

data is generated according to the PDF fi,l(dl,t|dl,t−1) ∼ N (ξdl,t−1 +ψi,l, (σi,l)2). Note that 

the parameters σi,l, and ξ are assumed to be known a priori but the mean values ψi,l are

unknown and will be estimated using the proposed method.
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Data: Measurement matrix, D
Result: Estimation of the parameter set, Θ, detection of the hypotheses, H.

begin
Estimating parameters set, Θ, using the EM Algorithm:
Assume an initial value for Θ as follows:

ϕ̃
(0)
i,j,t = .25 for i, j = 0, 1, t = 1, · · · , T ,
λ
(0)
j,i = IL for j = 1, 2, i = 0, 1,

Apply K-means to D then, initialize
(0)
i,l as the cluster means;

while e > 10−2 do
E Step:

Find α
(n)
j (i, t), using (B.2);

M Step:
Update Φ̃ with ϕ̃

(n)
i,1−i,t = α

(n)
1 (i, t) and ϕ̃

(n)
i,i,t = α

(n)
2 (i, t),

Update Ψ using (3.26)/(3.32) for Gaussian/Student’s t copulas,
Update Λ using (3.23)/(3.31) for Gaussian/Student’s t copulas;

Calculate convergence criterion;

eψ = 1
2L

∑1
i=0

∑L
l=1 |

ψ
(n)
i,l −ψ(n−1)

i,l
(n−1)
i,l

|,

eλ =
1

4L2

∑2
j=1

∑1
i=0

∥λ(n)
j,i −λ

(n−1)
j,i ∥1

∥λ(n−1)
j,i ∥1

,

e = (eψ + eλ)/2;

end

Calculate ϕ̂i,t =
ˆ̃
ϕi,i,t +

ˆ̃
ϕi,1−i,t for i = 0, 1, t = 1, · · · , T ;

Calculate i∗ = argmax ϕ̂i,t
i

;

Set the state of nature at time t as H∗
i ;

end

Algorithm 2: Estimating the parameter set and detecting the hypotheses.

To establish the dependence among the data collected by different sensors, we generate

the data according to the Gaussian and Student’s t copulas as discussed in Section 3.4.

Once the simulated data is generated, we run the proposed method as described in

Section 3.3. We set the initial values of the probabilities ϕ̃i,j,t = .25. The initial values of

the copula parameters λ1,i and λ2,i are chosen to be the L×L identity matrix. Finally, the

initial values of ψi,l are obtained from the unsupervised method of K-means [71].

The proposed EM-based algorithm converges empirically and in all our experiments

the convergence is reached in fewer than 10 iterations. Once the final estimate Θ̂ =

{ Ψ̂, ˆ̃Ψ, Λ̂1, Λ̂2,
ˆ̃Φ} is obtained, we use ˆ̃Φ to detect the hypothesis Ĥ as described in Section
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Table 3.1: values of the means, ψi,l, and the standard deviations, σi,l, used to produce the
simulated measurement data received from each sensor l under the hypothesis Hi.

l ψ0,l σ0,l ψ1,l σ1,l
1 -1 4 15 3.2
2 -7 4 13 3.2
3 -13 3 -7 2.4
4 -11 2.5 1 2
5 -.2 2.5 -.1 2
6 7 1.5 13 1.2
7 6 1.5 12 1.2
8 1 1 11 .8

3.2.

As mentioned previously, hypothesis testing where dependence is accounted for both

among the data collected by different sensors and among the samples collected over time

by a single sensor has not been previously considered. Therefore, in order to demonstrate

the effect of considering dependence both over time and among the sensors, we compare

the proposed method (subsequently referred to as Case 1 ) with the EM methods which

consider only some of the dependence in the data as discussed below.

1. Case 2 : Dependence in the data collected by different sensors is included in the model

but dependence in the samples collected by each sensor over time is ignored. In this

case, the updating formulas for the expectation step of the EM algorithm will be

α(n)(i, t) =

ϕ
(n−1)
i,t c (Fi,1(d1,t), · · · , Fi,L(dL,t))

L∏
l=1

fi,l(dl,t)

1∑
j=0

ϕ
(n−1)
j,t c (Fj,1(d1,t), · · · , Fj,L(dL,t))

L∏
l=1

fj,l(dl,t)

,

and the updating formulas for the maximization step of the EM algorithm will be
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ϕ
(n)
i,t = α(n)(i, t) and,

λ
(n)
i =

∑T
t=1 α

(n)(i, t)y
(n−1)
i (t)y

(n−1)
i (t)Tr∑T

t=1 α
(n)(i, t)

, ,

ψ
(n)
i =

(
T∑
t=1

α(n)(i, t)(λ
(n−1)
i )−1

)−1( T∑
t=1

α(n)(i, t)(λ
(n−1)
i )−1dt

)
,

for the case of the Gaussian copula, and

λ
(n)
i =

µi + L∑T
t=1 α

(n)(i, t)

T∑
t=1

α(n)(i, t)y
(n−1)
i (t)y

(n−1)
i (t)Tr

µi + y
(n−1)
i (t)Tr(λ

(n)
i )−1y

(n−1)
i (t)

,
(n)
i,l =

∑T
t=1 α

(n)(i, t)dl,t∑T
t=1 α

(n)(i, t)
,

for the case of the Student’s t copula. Note that, in this case, there is only one copula.

Therefore, the subscript j in αj(i, t), cj, λj,i, ηj,i and yj,i(t) is dropped.

2. Case 3 : Dependence in the data samples collected by each sensor over time is included

in the model but dependence among the data collected by different sensors is ignored.

In this case, there are no copulas in the model and the updating formulas for the

expectation step of the EM algorithm is obtained by (B.2) where, in this case,

Pr(dt,dt−1|hi,t = 1, hi,t−1 = j − 1;Θ(n−1)) =
∏L

l=1 fi,l(dl,t)f1−i,l(dl,t−1) ; for j = 1∏L
l=1 fi,l(dl,t|dl,t−1)fi,l(dl,t−1) ; for j = 2

and the updating formulas for the maximization step of the EM algorithm will be

ϕ
(n)
i,t = α

(n)
1 (i, t) + α

(n)
2 (i, t), and

(n)
i,l =

∑T
t=1 α

(n)
1 (i, t)dl,t + α

(n)
2 (i, t)(dl,t − ξdl,t−1)∑T

t=1 α
(n)
1 (i, t) + α

(n)
2 (i, t)

.

3. Case 4 : Dependence among the data collected by different sensors and dependence

among the data samples collected over time by each sensor are both ignored in the
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model. In this case, there are no copulas in the model and the updating formulas for

the expectation step of the EM algorithm will be

α(n)(i, t) =
ϕ
(n−1)
i,t

∏L
l=1 fi,l(dl,t)

1∑
j=0

ϕ
(n−1)
j,t

L∏
l=1

fj,l(dl,t)

,

and the updating formulas for the maximization step of the EM algorithm will be

ϕ
(n)
i,t = α(n)(i, t) and

(n)
i,l =

∑T
t=1 α

(n)(i, t)dl,t∑T
t=1 α

(n)(i, t)
.

3.6 Numerical Results and Discussion

To evaluate the detection performance of our algorithm we define the metric hypothesis

discriminability ∆H given by

∆H , 1

2T

1∑
i=0

T∑
t=1

∣∣∣hi,t − ĥi,t

∣∣∣ (3.33)

and to evaluate the accuracy of our estimations we define

∆Ψ , 1

2L

1∑
i=0

L∑
l=1

∣∣∣∣∣ ψ̂i,l − ψi,l
ψi,l

∣∣∣∣∣ (3.34)

and

∆Λ , 1

4L2

2∑
j=1

1∑
i=0

∥λ̂j,i − λj,i∥1
∥λj,i∥1

(3.35)

In (3.35) we have used the 1-norm in order to measure the error between the estimated

and actual correlation coefficients of pairs of sensors.

In simulations for Figs. 3.1-3.3, the data received by the FC is dependent among the
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Figure 3.1: Simulation results for Cases 1-4 with the model based on the Gaussian copula
and L = 4.

sensors and over time. However, as discussed in Section 3.5, only our proposed algorithm

(Case 1) exploits both dependencies while the other three cases ignore part or all of the

dependence. Our goal is to demonstrate the improvement that can be achieved when all

the dependence in the data is utilized.

The results of hypothesis discriminability, the error in estimation of the marginal dis-

tribution parameters and the copula parameters for Cases 1-4 are presented in Fig.’s 3.1,

3.2, and 3.3 as a function of the number of time samples T . In Figs. 3.1 and 3.3, the model

is based on the Gaussian copula with L = 4 and L = 8, respectively, whereas in Fig. 3.2,

L = 4 and the model based on the Student’s t copula is used. The computation time for

all four cases are also presented in Fig.’s 3.1-3.3. The execution times are measured on a

computer with 8 GB RAM and an Intel(R) Xeon(R) @ 2.00 GHz CPU with 2 processors,
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Figure 3.2: Simulation results for Cases 1-4 with the model based on the Student’s t copula
and L = 4.

and the program is executed with MATLAB R2013a.

It can be seen that the performances of hypothesis testing as well as parameter esti-

mations improve significantly in Case 1, where the algorithm is capable of exploiting the

dependence among the sensors along with the dependence among the data samples from

each sensor. For example, in the model based on the Gaussian copula, for L = 4, when the

number of time samples is larger than 100, the hypothesis discriminability of the proposed

method improves by about .002 (or 25%) compared with Case 2, and by about .012 (or

65%) compared with Case 3. Similarly, in the model based on the Student’s t copula, for

L = 4, when the number of time samples is larger than 300, the hypothesis discriminability

of the proposed method (Case 1) improves by about .006 (or 60%) compared with Case 2

and by about .016 (or 80%) compared with Case 3. In addition, the improvement gained
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Figure 3.3: Simulation results for Cases 1-4 with the model based on the Gaussian copula
and L = 8.

by using the proposed model is even higher when the number of sensors increases from

L = 4 to L = 8. For example, in the model based on the Gaussian copula, for L = 8,

when the number of time samples are larger than 640, the hypothesis discriminability for

Case 1 is about .0017 (or 85%) less than Case 2, and about .045 (or 99%) less than Case

3. We should point out that when the number of samples T is very small (less than 20 for

L = 4 and less than 40 for L = 8), the correlation matrices estimated in the EM algorithm

are ill-conditioned. As a result, the copula densities cannot be defined and the proposed

algorithm fails.

By comparing Figs. 3.1 and 3.3, we observe that, as expected, when the number of time

samples, T , increases, the reliability of estimations improve. However, since the number

of hypotheses to be detected is equal to T , as T increases, the hypothesis discriminability
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reaches a floor5. Another observation is that for a larger L, a larger number of time samples

are required to achieve the best possible detection performance that the proposed algorithm

can offer. This is due to the fact that for a larger L, more parameters must be estimated.

Moreover, Figs. 3.1-3.3 show that Cases 1 and 2 which exploit the dependence among

sensors’ data reach their best possible performance with a larger number of data samples.

This can be better observed in Fig. 3.3 where L is larger. This is due to the fact that, the

latter two algorithms need to estimate the L× L correlation matrices. A good estimate of

these matrices requires a larger number of samples T and this value also increases with L.

Figs. 3.1-3.3 also show that the performance of the case that ignores the dependence

of data over time (Case 2) is worse than the performance of the algorithm that ignores de-

pendence over time and among the sensors (Case 4). This indicates that a bad dependence

model has a more destructive effect than assuming independence. Therefore, in cases where

the data is dependent over time, ignoring this dependence and only modeling the depen-

dence among the sensors not only does not improve but also degrades the results. Modeling

the dependence among the data from different sensors and assuming that the data sam-

ples from each sensor are iid is only effective if the data samples are actually iid [60, 61].

However, if the data are dependent over time (as is the case in many practical applica-

tions), then ignoring the dependence over time and only modeling the dependence among

the sensors results in a worse performance than ignoring the dependencies all together.

Finally, the results show that ignoring the dependence of data over time has a more

destructive effect on the performance of the algorithm in comparison to ignoring the depen-

dence among the data collected by different sensors. This is expected since the dependence

over time directly effects the mean value of the marginal PDFs, i.e., in the cases where

dependence over time is ignored, ψi,l is used as the mean instead of ψ̃i,l = ξdl,t + ψi,l.

Since for binary hypothesis testing, the mean value of the PDFs under each hypothesis

directly effects the decision threshold, incorrect estimates of these mean values results in

5The initial improvements in hypothesis discriminability are due to the improved estimation of the
parameter set Θ as T increases.
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Case 3 (black curve) when T = 500L2. The data collected by different sensors are actually
independent from each other.

poor detection performance.

In some practical applications, we may not know whether the data collected from dif-

ferent sensors are dependent or not. Therefore, an important question is how would the

proposed algorithm perform if the sensor data is in fact independent. Fig.’s 3.4 and 3.5

show the performance of Case 1 and Case 3 when the data collected by different sensors

are independent. For Case 1 we assume a Gaussian copula. In Fig. 3.4 the hypothesis
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discriminability is plotted vs. T for L = 4. It can be seen that as T increases the perfor-

mance of Case 1 approaches that of Case 3. Therefore, given enough data samples, the

model which assumes dependent data among the sensors will perform as well as the model

that is “matched” to the data and assumes independent data. This is due the fact that

given enough data samples the algorithm in Case 1 will be able to compute the correlation

matrices accurately. In Fig. 3.5 hypothesis discriminability is plotted vs the number of

sensors L for the number of samples T = 500L2. It can be seen that in this case the two 

algorithms (Case 1 and Case 3) have similar performances.

3.7 Conclusion

We consider the problem of binary hypothesis testing in a wireless sensor network con-

sisting of heterogeneous sensors. The sensors’ measurements are assumed to be dependent

both among the samples collected by each sensor and among the data collected by different

sensors. The dependence in the data is modeled using the copula theory. It is assumed

that the probability distribution of the sensors’ data involves unknown parameters. We

proposed a method based on the expectation maximization (EM) algorithm to estimate

the unknown parameters and to detect the state of nature given the measurements of all

sensors. We formulate our problem for the cases of two copulas, namely the Gaussian and

Student’s t copulas. Results are presented for four different cases where the model: 1)

assumes dependence over time and among the sensors, 2) ignores the dependence over time

only, 3) ignores the dependence among the sensors only, 4) ignores all the dependence in

the data. These results quantify the performance of the algorithms in terms of detecting

the sate of nature and in estimating the unknown parameters. It is shown that ignoring the

dependence over time is more detrimental than ignoring the dependence among the sen-

sors. However, including both dependencies results in the best performance as expected.

It is also shown that when the data is independent among the sensors, given enough data

samples, the proposed algorithm which assumes dependence among the sensors is able to

estimate the actual correlation matrices and accurately detect the hypotheses.
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Chapter 4
Online Hypothesis Testing and Non-Parametric Model
Estimation Based on Correlated Observations

4.1 Introduction

In this chapter, we study the problem of hypothesis testing and non-parametric model

estimation using correlated observations from a heterogeneous network of sensors. Once

again we use the copula theory to model the dependence in the data and an EM based

algorithm is used to perform estimation and detection via an unsupervised learning process.

Consequently, the proposed algorithm does not require any labeled data. Moreover, we once

again present an online as well as a batch-mode processing approach to the estimation and

detection problem. In online processing, data samples are processed, system model is

updated and a decision regarding the state of nature is made, all upon the arrival of each

data sample, i.e., on an sample-by-sample basis. This is in contrast to batch processing

which operates on a long data block to perform the above operations.

In previous chapters we have considered that the underlying marginal PDF of the

sensors’ data is known except for some parameters which need to be estimated.There we

used parametric estimation methods to solve the problem. However, in some practical

applications a Gaussian PDF or any other well-known distribution in closed form may not

closely match the distribution of the sensors’ data. To illustrate this point, we consider

three real-world datasets: the Room Occupancy Detection (ROD) dataset available in [2],

the face matching (NIST-face) dataset available at [86], and the Activity Recognition based

on Multisensor data fusion (AReM) dataset available in [8].

The ROD dataset is used for binary hypothesis testing where H0 represents an unoc-

cupied room and H1 represents an occupied room. In this chapter we use Light (in Lux) 

and CO2 (in ppm) sensory data from the ROD dataset to detect the occupancy status of a

room. The ground-truth occupancy for this room was obtained from time stamped pictures

taken every minute. In Fig. 4.1, the histogram of the data of each sensor is plotted under
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H0 (in orange color) and H1 (in blue color), respectively.

The NIST-face dataset contains face matching scores from applying two different face

matching algorithms to pairs of facial images. Here we combine the two face matching scores

for binary hypothesis testing where H1 indicates that the pair of facial images match and

H0 indicates that the pair of facial images do not match. In Fig. 4.2, the histogram of

each face matching score is plotted under H0 (in orange color) and H1 (in blue color),

respectively.

The AReM dataset contains data collected from a wireless SN worn by an actor per-

forming activities including bending, cycling, and lying down. Infrared Intelligent Spec-

troradiometer (IRIS) sensors were placed on the actors chest, right ankle and left ankle.

When a sensor is transmitting, all other sensors receive the data and calculate the Received

Signal Strength (RSS). The data being fused at the fusion center are the set of RSS values

between the transmitting sensors and the other sensors. Thus, in this dataset, six types of

data, namely the average RSS for Chest-Right Ankle, Chest-Left Ankle, Right Ankle-Left

Ankle, and the variance RSS for Chest-Right Ankle, Chest-Left Ankle, Right Ankle-Left

Ankle, are combined at the FC. The goal is to detect the activity performed by the actor at

each time using these 6 streams of data. In Fig. 4.3, the histograms of the average RSS for

Chest-Right Ankle, Chest-Left Ankle, and Right Ankle-Left Ankle are plotted given the

bending (blue colored), cycling (purple colored) and lying down (orange colored) activities,

respectively.

Figure 4.1: Histogram of Light and CO2 sensory data plotted under H0 (red color) and H1

(blue color).

From Fig.’s 4.1-4.3 it is clear that one or P Gaussian PDFs or other well-known distri-
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Figure 4.2: Histogram of face matching scores obtained from face matching Algorithm 1
and 2, plotted under H0 (red color) and H1 (blue color).

butions that have a closed form cannot match the marginal distribution of the collected data

very well. To better model the distribution of data, in such cases, a non-parametric estima-

tion approach is preferred to estimate the marginal PDFs of the sensors’ data. Therefore,

in this chapter we devise an online EM based algorithm for nonparametric estimation of

the underlying PDF of each sensor’s measurements under each hypothesis while detecting

the state of nature at each time instant.

The novelty of the proposed algorithm is that: it develops an online detection and non-

parametric model estimation algorithm for correlated observations, moreover, as a learning

algorithm it is an unsupervised method.

The rest of this chapter is organized as follows. In Section 4.2 the problem is defined

and the system model is described. In Sections 4.3.1 and 4.3.2, the batch-mode and online

EM-based hypothesis testing algorithms are developed. Numerical results are presented

and discussed in Section 4.4. Finally, conclusions are drawn in Section 4.5.

4.2 Problem Formulation and the System Model

We consider a network of L heterogeneous sensors employed to detect the state of

nature H ∈ {H0, H1, · · · , HK−1}. At time t, sensor l transmits its measurement, denoted 

by dl,t ∈ ℜ, to the FC. After T time instances, the FC has received LT measurements 

which we collect into the L × T measurement matrix D = [dl,t]. It is assumed that for 

each l = 1, 2, . . . , L and any t1 < t2, given the hypotheses at times t = t1, t1 + 1, . . . , t2, the

sensor measurements dl,t1 , dl,t1+1, . . . , dl,t2 are iid. However, at each time t, the data samples
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Figure 4.3: Histogram of average and variance RSS for Chest-Right Ankle, Chest-Left
Ankle, and Right Ankle-Left Ankle plotted given the bending (blue colored), cycling (purple
colored) and lying down (red colored) activities, respectively.

dl,t, l = 1, 2, · · · , L, are correlated. Let dt , (d1,t, d2,t, · · · , dL,t)Tr where the superscript Tr

denotes matrix transpose. The vector ht = (h0,t, h1,t, · · · , hK−1,t)
Tr is used to denote the

state of nature at time t. If at time t, the state of nature is Hi, then ht = ei where ei is

the ith standard basis vector for ℜK . For the entire observation period we construct the

K × T hypothesis matrix H = [hk,t].

In an offline EM algorithm, having received the measurement matrix D, the FC must

detect the state of nature for t = 1, 2, · · · , T . To develop this algorithm, we need to evaluate

the distribution of D given the hypothesis matrix H.

Let Fi,l(dl,t) and fi,l(dl,t) denote the cumulative distribution function (CDF) and PDF of

sensor l under hypothesis Hi evaluated at dl,t. Note that Fi,l(dl,t) and fi,l(dl,t) are assumed

to be unknown and should be estimated. Let F , {fi,l(.)} be the set of unknown density

functions with KL elements. We model the joint distribution of the sensors’ measurements

under Hi by the copula distribution Cm(Fi,1(d1,t), · · · , Fi,L(dL,t;λm,i) where m denotes the

type of copula being considered, and λm,i denotes the set of unknown parameters of the
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copula distribution Cm(.; .) under hypothesis Hi. Therefore, the conditional distribution of

dt given ht is given by

F (dt|ht;F ,Λm) =
K−1∏
i=0

Cm (Fi,1(d1,t), · · · , Fi,L(dL,t);λm,i)hi,t (4.1)

where Λm , {λm,0, λm,1, · · · , λm,K−1} is the set of parameters of the copula distribution

m. From (4.1), the conditional PDF of dt given ht is given by

Pr(dt|ht;F ,Λm) =
K−1∏
i=0

[
cm (Fi,1(d1,t), · · · , Fi,L(dL,t);λm,i)

L∏
l=1

fi,l(dl,t)

]hi,t
(4.2)

where cm(.; .) denotes the copula density function of Cm(.; .).

We define the auxiliary probabilities P (hi,t = 1) , ϕi,t, which represent the probability

of hypothesis Hi at time t. Note that these are not prior probabilities. Rather they are only

used as a tool to help us transform the hypothesis detection problem into an estimation

problem for ϕi,t which we can solve using the EM algorithm. We denote Φ , [ϕi,t] and

define Θ , [Φ,F ,Λm] as the set of unknown parameters and functions of the model.

Our goal is to estimate the unknown parameters and functions Θ, and calculate the

hypothesis matrix H using the estimated value for Φ denoted by Φ̂. With this approach

the state of nature at time t is detected as

ĥi∗,t =


1 , i∗ = argmax ϕ̂i,t

0≤i≤K−1

0 , else

(4.3)

Thus, the joint probability model given the unknown parameters of the model is given

by

Pr(D,H;Θ) =
T∏
t=1

K−1∏
i=0

Pr(dt, hi,t = 1;Θ)hi,t , (4.4)
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where

Pr(dt, hi,t = 1;Θ) = Pr(hi,t = 1;Θ)Pr(dt|hi,t = 1;Θ)

= ϕi,t cm (Fi,1(d1,t), · · · , Fi,L(dL,t);λm,i)
L∏
l=1

fi,l(dl,t), (4.5)

4.3 Proposed EM-Based Algorithm

To estimate Θ, we employ the EM algorithm which iterates between the expectation

step (E-step) and the maximization step (M-step) until convergence is reached. The E-

step computes the expectation of the log-likelihood function of complete data (D, H) with

respect to H, given the current estimate of the parameters Θn−1, namely

Q(Θ;Θ(n−1)) , EH|D;Θ(n−1) [lnP (D,H;Θ)] (4.6)

In the M-step, Q(Θ;Θ(n−1)) is maximized with respect to Θ to obtain the new estimate

Θ(n), i.e.,

Θ(n) = argmaxΘ{Q(Θ;Θ(n−1))}, (4.7)

As mentioned in Chapter 2, the idea used in [77] is to replace the expectation step with

a stochastic approximation step, while keeping the M-step unchanged. However, in cases

where the updating functions in the maximization step are only functions of the complete

data sufficient statistics, s(dt, hi,t), we do not need to update Q(Θ;Θ(t)) in the expectation

step. Alternatively, we update the expectation of the sufficient statistic s(dt, hi,t) as in

S(t∗) =(1− ϵ(t
∗))S(t∗−1) + ϵ(t

∗)Ehi,t∗ |dt∗ ;Θ
(t∗−1) [s(dt∗ , hi,t∗)] , (4.8)

where {ϵ(t)} is a decreasing sequence of positive step sizes. The unchanged M-step, is then
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given by

Θ(t∗) = θ(S(t∗)), (4.9)

where the function θ(.) is obtained from the batch EM by θ(S(n)) , argmaxΘ{Q(Θ;Θ(n−1))}

where S(n) = 1
T

∑T
t=1Ehi,t|dt;Θ(n−1) [s(dt, hi,t)].

In what follows we first develop the batch mode EM algorithm for which we define

statistics similar to those in [77] and show that these statistics are sufficient for updating

the parameters in the M-step. Later we extend the proposed method for online processing

where the E-step only updates those sufficient statistics according to (4.8).

4.3.1 Proposed Batch-Mode EM-Based Algorithm

In the following the superscript (n, T ) on a parameter denotes the estimated value of

the parameter in the nth iteration of EM using T data samples. Moreover, the subscript

m denotes the copula type where m ∈ M.

To derive the expectation of the log-likelihood function, we start by deriving the log-

likelihood function

L(D,H;Θ) , logPr(D,H;Θ) =
T∑
t=1

K−1∑
i=0

hi,t

[
log ϕi,t +

L∑
l=1

log fi,l(dl,t) + log cm (Fi,1(d1,t), · · · , Fi,L(dL,t);λm,i)
]
. (4.10)

Define α(n−1,T )(i, t) , E[hi,t|D;Θ(n−1,T )]. Then the expectation of the log-likelihood func-

tion given the current estimate of the parameters Θ(n−1,T ) is given by

Qm(Θ;Θ(n−1,T )) , EH|D;Θ(n−1,T ) [logPr(D,H;Θ)] =
T∑
t=1

K−1∑
i=0

α(n,T )(i, t)
[ L∑
l=1

log fi,l(dl,t) + log cm(Fi,1(d1,t), · · · , Fi,L(dL,t);λm,i) + log ϕi,t

]
. (4.11)
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In the Expectation step, we need to calculate α(n,T )(i, t) which is evaluated from

α(n,T )(i, t) = E[hi,t|D;Θ(n−1,T )] = Pr(hi,t = 1|D;Θ(n−1,T ))

=
Pr(dt, hi,t = 1;Θ(n−1,T ))∑K−1
j=0 Pr(dt, hj,t = 1;Θ(n−1,T ))

. (4.12)

In the Maximization step, we maximize Qm(Θ;Θ(n−1,T )) with respect to Θ to obtain the

new parameters Θ(n,T ). To obtain the new estimate of Φ, we solve

Maximize
ϕi,t

Qm(Θ;Θ(n−1,T )) (4.13)

Subject to :
K−1∑
i=0

ϕi,t = 1,

for m ∈ M. Defining the function ϕ(x) , x, we have

Lemma 7. By solving the optimization problem in (4.13), the parameter update formula

for ϕi,t is given by 1

ϕ
(n,T )
i,t = ϕ(α(n,T )(i, t)) = α(n,T )(i, t). (4.14)

To obtain the new estimate of F , we use the kernel-based non-parametric estimation

method given by

f
(n,T )
i,l (x) =

1

σi,l
∑T

t=1 α
(n,T )(i, t)

T∑
t=1

α(n,T )(i, t)g(x; dl,t, σi,l), (4.15)

where g(.; dl,t, σi,l) is the Gaussian kernel with mean dl,t and standard deviation σi,l. Equa-

tion (4.15) indicates that a kernel is placed at every data point and the weights α(n,T )(i, t)

ensure that the contribution of each data point dl,t to the distribution of data under each

hypothesis depends on the probability of that hypothesis being true at time t. Moreover,

1The proof of lemma 7, follows from the proof of lemma 1.
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to update the functions F , only the kernel weights α(n,T )(i, t) are updated at each iteration

and the parameter σi,l is not updated at each iteration. On the contrary, at the start of

the EM algorithm an initial estimate of the parameter σi,l is calculated with an ad hoc

approach and then held fixed throughout the iterations. To calculate the initial estimate

of σi,l, we calculate two quantities which have direct relationship with the standard devia-

tion of the l th sensors’ data under Hi. Then, σi,l will be calculated in proportion to the

multiplication of these two factors. To obtain the first factor we compute the histogram of

all measurements of the lth sensor under Hi at the tallest bin, i.e., max{Histi,l}. The first

factor is the logarithm of the ratio of max{Histi,l} over the total number of data samples

collected by the lth sensor under Hi. Let [d]l,i denote the data samples collected by the lth

sensor under Hi, and n(a) represent the number of elements in the vector a, then the first

factor is chosen as log
max{Histi,l}
n([d]l,i)

. For the second factor we compute the difference between

the first and third quartiles of dl,i which we denote by qi,l,1 and qi,l,3. Now, the second factor

is the logarithm of the ratio of qi,l,3− qi,l,1 over the range of dl,i , i.e., log qi,l,3−qi,l,1
max{[d]l,i}−min{[d]l,i}

.

We then set

σi,l = 2 log
max{Histi,l}
n([d]l,i)

log
qi,l,3 − qi,l,1

max{[d]l,i} −min{[d]l,i}
. (4.16)

Note that the two factors effecting the calculation of σi,l, represent a rough estimation for

how narrow the largest peak of the density function fi,l(.) is. For example, the second

factor represents a rough estimation of whether most of the data in [d]l,i are within a small

portion of the entire range of the data in [d]l,i. This is an indication of a narrow peak of

significant height in the density function fi,l(.). For density functions with narrow peaks of

significant height, a kernel with smaller bandwidth is required to ensure that the significant

peak in the function can be well-represented.
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To obtain the new estimate of Λm, we solve the constrained optimization problem

Minimize
λ−1
m,i

Qm(Θ;Θ(n−1,T )) (4.17)

Subject to :

∫ 1

0

· · ·
∫ 1

0

cm

(
F

(n−1,T )
i,1 (x1) · · ·F (n−1,T )

i,L (xL);λm,i

)
dx1 · · · dxL = 1.

The solution to the optimization problem in (4.17) depends on the copula type and thus to

present a more detailed mathematical solution to the problem, in what follows we consider a

case study including the Gaussian and Product copulas for their wide scope of applications

and we present closed form solutions to the optimization problem in (4.17) for these copulas.

However, note that the proposed method for model estimation and hypothesis detection is

not limited to these two copulas and can be applied to any copula for which the optimization

problem in (4.17) has a solution. The solution to the optimization problem in (4.17)

depends on the copula type and thus to present a more detailed mathematical solution to

the problem, in what follows we consider a case study including the Gaussian and Product

copulas for their wide scope of applications and we present closed form solutions to the

optimization problem in (4.17) for these copulas. However, note that the proposed method

for model estimation and hypothesis detection is not limited to these two copulas and can

be applied to any copula for which the optimization problem in (4.17) has a solution.

• Case Study: Gaussian and Product Copulas

For this case study, (4.11) can be written more accurately as

QP(Θ;Θ(n−1,T )) =
T∑
t=1

K−1∑
i=0

α(n,T )(i, t)
[ L∑
l=1

log fi,l(dl,t) + log ϕi,t

]
, (4.18)

for the Product copula, and as

QG(Θ;Θ(n−1,T )) =
T∑
t=1

K−1∑
i=0

α(n,T )(i, t)
[ L∑
l=1

log fi,l(dl,t)

− 1

2
log |λG,i| −

1

2
(yi(t))

Tr (λ−1
G,i − IL

)
yi(t) + log ϕi,t

]
, (4.19)
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for the Gaussian copula, where, |A| denotes the determinant of matrix A,

yi(t) , [G−1(Fi,1(d1,t); 0, 1), · · · , G−1(Fi,L(dL,t); 0, 1)]
Tr and G−1(.; 0, 1) is the inverse of the

Gaussian distribution with mean zero and variance one.

Note that in the case of the Product copula, measurements of different sensors are

assumed to be independent and there are no copula parameters Λm. On the other hand,

in the case of the Gaussian copula, the unknown parameter of the copula consists of its

correlation matrix, in other words, λG,i’s are L × L positive definite matrices with unit

diagonal values. Thus to obtain the solution to the optimization problem in (4.17), we first

solve the optimization problem

Minimize
λ−1
G,i

QG(Θ;Θ(n−1,T )) (4.20)

Subject to : λ−1
G,i ∈ Υ+

L , 0 ≤ i ≤, K − 1,

where Υ+
L is the set of L × L positive semi-definite matrices. It can be shown that

QG(Θ;Θ(n−1,T )) is a convex function of λ−1
G,i. Let us define, the function

λG

(
S
(n,T )
1 (i), S

(n,T )
2 (i)

)
, S

(n,T )
1 (i)

S
(n,T )
2 (i)

, (4.21)

where

S
(n,T )
1 (i) , 1

T

T∑
t=1

α(n,T )(i, t)y
(n−1,T )
i (t)(y

(n−1,T )
i (t))Tr, (4.22)

S
(n,T )
2 (i) , 1

T

T∑
t=1

α(n,T )(i, t). (4.23)

Lemma 8. The solution to the optimization problem in (4.20) is given by

λG,i = λG

(
S
(n,T )
1 (i), S

(n,T )
2 (i)

)
.
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The proof of lemma 8, follows from the proof of lemma 2.

We would like to point out that S
(n,T )
1 (i) is the weighted sample correlation matrix of

the data and S
(n,T )
2 (i) is the mean of the weights (averaged over time.). Therefore in the

case of the Gaussian copulas, the solution to (4.20) is the empirical correlation matrix.

As T −→ ∞,2 the matrix obtained from (4.21) will be almost surely positive definite

(PD). However, it does not necessarily have unit diagonal values. In order to have a

valid correlation matrix, we apply the algorithm proposed by Higham [79] to obtain the

closest correlation matrix to the solution of (4.20). Let, NC{A} represent the operation of

obtaining the nearest correlation matrix to the matrix A, then the parameter update rule

is given by

λ
(n,T )
G,i = NC

{
λG

(
S
(n,T )
1 (i), S

(n,T )
2 (i)

)}
. (4.24)

4.3.2 Proposed Online EM-Based Algorithm

Our proposed online algorithm consists of two stages. In the first stage which is called

the initialization stage, an initial estimate of the parameters and the unknown marginal

density functions are calculated. To this end, the batch-mode EM algorithm, described in

Section 4.3.1, is performed using a small number of data samples, say T0 < T .

In the second stage, upon receiving a measurement sample from the sensors at time

t∗ > T0, the FC forms the vector dt∗ = [d1,t∗ , . . . , dL,t∗ ]
Tr and performs the two steps of the

online algorithm. To initialize the unknown parameters and functions, at any time t > T0,

we use their estimate at the previous time instant, i.e., Θ(t−1).

To develop the online EM algorithm for the problem at hand, we need to derive the

stochastic approximation of batch-mode E-step. The online M-step will be the same as the

M-step of the batch-mode EM.

The update formulas for the M-step of the batch-mode EM in (4.13), (4.15), and (4.24),

2In fact when observations are independent samples of a continuous random variable, this property
holds for T ≥ L.
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indicate that the updated quantities are functions of the statistics S1 and S2. Therefore,

as in the online version of EM, we only need to calculate the new value of α(t)(i, t) and

update the sufficient statistics for updating the parameters in the M-step. Thus we define

S
(t∗)
j =

1

t∗

t∗∑
t=1

Ehi,t|dt;Θ(t−1)

[
s
(t)
j (hi,t)

]
, (4.25)

for j = 1, 2. Note that in the online case, the superscript (t) denotes estimated parameter

at the tth time and

s
(t)
1 (hi,t) = hi,ty

(t−1)
i (t)(y

(t−1)
i (t))Tr, (4.26)

s
(t)
2 (hi,t) = hi,t, (4.27)

where, y
(t−1)
i (t) = [y

(t−1)
i,1 (t), · · · , y(t−1)

i,L (t)] and

y
(t−1)
i,l (t) = G−1(F

(t−1)
i,l (dl,t); 0, 1). (4.28)

Moreover,

α(t)(i, t) , Ehi,t|dt;Θ(t−1) [hi,t] =
P (dt, hi,t = 1|Θ(t−1))∑M−1
j=0 P (dt, hj,t = 1|Θ(t−1))

(4.29)

and

P (dt, hi,t = 1|Θ(t−1)) =

ϕ
(t−1)
i,t

L∏
l=1

f
(t−1)
i,l (dl,t)cm

(
F

(t−1)
i,1 (dl,t), · · · , F (t−1)

i,L (dl,t);λ
(t−1)
m,i

)
. (4.30)

Remark 9. A comparison of (4.22), (4.23) with (4.26), (4.27) , respectively, reveals the

motivation for the definition of the sufficient statistics in (4.26), (4.27). As can be seen the

sufficient statistics in (4.26), (4.27) lack the averaging over time. This averaging, however,
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is performed in (4.25).

Let ϵ(t
∗) be a decreasing sequence and ht∗ = [h0,t∗ , · · · , hM−1,t∗ ]. Then, using (4.8), the

E-step of our proposed online algorithm is given by

S
(t∗)
j = (1− ϵ(t

∗))S
(t∗−1)
j + ϵ(t

∗)Ehi,t∗ |dt∗ ;Θ
(t∗−1) [s

(t∗)
j (ht∗)], j = 1, 2. (4.31)

The M-step of the proposed online algorithm does not change and includes the param-

eter update equations

ϕ
(t∗)
i,t∗ = ϕ

(
α(t∗)(i, t∗)

)
, (4.32)

λ
(t∗)
G,i = λG

(
S
(t∗)
1 , S

(t∗)
2

)
. (4.33)

As for updating the marginal density functions in the online case we need to take into

consideration that the memory is limited and thus as new data are received it is not possible

to assign and store kernels for each of them in order to later reconstruct the marginal PDFs.

As a result we suggest uniformly sampling the PDFs estimated at N points and only storing

the N samples from the PDFs. Let x
(t)
i,l,n, n = 1, · · · , N denote the N uniform samples of

the measurement space of sensor l under Hi at time t. In this case, the online update of

the marginal PDF consists of updating the evaluation of the function at these N points.

Note that in cases where the newly arrived data point does not fall within the range of

the previously received data points, a re-sampling is performed and thus x
(t)
i,l,n will not be

the same as x
(t−1)
i,l,n for all n = 1, · · · , N . To perform a resampling in online processing, we

define the statistics

S
(t)
3 = [min((S

(t−1)
3 )1,i, δmn,1,i,t), · · · ,min((S

(t−1)
3 )L,i, hi,tδmn,L,i,t)], (4.34)

S
(t)
4 = [min((S

(t−1)
4 )1,i, δmx,1,i,t), · · · ,min((S

(t−1)
4 )L,i, δmx,L,i,t)], (4.35)
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for t ≤ T0, where, δmn,l,i,t =


dl,t, hi,t = 1

∞, hi,t = 0

, δmx,l,i,t =


dl,t, hi,t = 1

−∞, hi,t = 0

. Moreover,

(S
(T0)
3 )l,i = min(δmn,l,i,1, · · · , δmn,l,i,T0), (S

(T0)
4 )l,i = max(δmx,l,i,1, · · · , δmx,l,i,T0). (4.36)

Then, the range of the measurements of each sensor l under Hi will be updated at each

time t according to (S
(t)
4 )l,i − (S

(t)
3 )l,i which we divide by the number of samples N to get

the uniform sampling x
(t)
i,l,n.

Now, upon arrival of each data dt, first the density functions is updated at the previous

sampling points according to

f
(t)
i,l (x

(t−1)
i,l,n ) =

1

S
(t)
2

(
S
(t−1)
2 f

(t−1)
i,l (x

(t−1)
i,l,n ) +

α(t)(i, t)

σi,l
g(x

(t−1)
i,l,n ; dl,t, σi,l)

)
. (4.37)

Then, using linear interpolation, the density function is evaluated at the new sampling

points x
(t)
i,l,n.

At each time instant t∗, after executing the expectation and maximization steps, the

detection rule decides Hi∗ to be the state of nature at t∗ where i∗ = argmax ϕi,t∗

0≤i≤K−1

. The

proposed algorithm is summarized in Algorithm 3.
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Data: dt; sensor measurements’ at time instance t > T0.

Result: online updated value of Θ and detection of ht.

begin

Step1: initialization:

Assume an initial value for Θ as follows:

Set ϕ̃
(0,T0)
i,t = 1

K
, λ

(0,T0)
G,i = IL;

Apply K-means to d1:T0 ;

Calculate σi,l using (4.16) and the K-means clustering results;

Calculate f
(0,T0)
i,l (dl,t) for t = 1, · · · , T0, using (4.15) and the computed σi,l;

Apply batch EM on d1:T0 to compute Θ(N,T0);

Evaluate f
(N,T0)
i,l (xi,l,n) at uniform sample points xi,l,n using (4.15);

Set Θ(T0) = Θ(N,T0) ;

Step2: online updates:

while dt is received, t > T0 do

initialize parameters and functions using Θ(t) = Θ(t−1);

online E Step:

Find α(t)(i, t) with (4.29), update Sj, j = 1, · · · , 4 with (4.31),(4.34),(4.35);

online M Step:

Update ϕ
(t)
i,t , λ

(t)
G,i, F

(t) using (4.32), (4.33), (4.37), respectively;

online Detection:

Calculate i∗ = argmax ϕi,t
0≤i≤K−1

and set ht = ei∗ .

end

end

Algorithm 3: Online parameter estimation and hypothesis detection.
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4.4 Numerical Results and Discussion

We evaluate the performance of the proposed algorithm using real-world datasets,

namely, the Room Occupancy Detection (ROD) [2], the NIST-face [86], and the Activity

Recognition based on Multisensor data fusion (AReM) [8] datasets, introduced in Section

4.1. Table 4.1, summarizes the parameters used for applying the proposed algorithm to

each dataset.

Table 4.1: Parameters used for each dataset in the proposed algorithm

.

Dataset # of hypotheses (K) # of sensors (L) # of samples (N) T0 T

ROD 2 2 100 2000 8000

NIST-face 2 2 100 500 5000

AReM 3 6 100 1500 4500

To model the correlation in the data, we consider both Product and Gaussian copulas

in the proposed method. Once again, to evaluate the detection performance of the proposed

algorithm with both batch and online processing, we use hypothesis discriminability (∆H)

and Detection Accuracy (DA) as defined in previous chapters. The notations BEMm

and OEMT0
m denote the batch and online modes of the proposed EM algorithm using T0

initialization samples and the copula type m, where m = P,G denote the Product and

Gaussian copulas, respectively. Moreover, ∆m
H represents the hypothesis discriminability

of the proposed algorithm using the copula type m. Finally, the notation Histi,l represents

the histogram of the data collected by sensor l under hypothesis Hi.

Figures 4.4-4.6, present the histogram of the data collected by each sensor under each

hypothesis along with the corresponding estimated marginal PDF using the proposed al-

gorithm in batch mode. Since the PDF estimation results look similar for both copulas,

we have only presented one of them (the Gaussian copula) as an example. In all cases, σi,l

is calculated according to (4.16). Moreover, in Fig.’s 4.4-4.6, hypothesis discriminability is

presented for the batch EM algorithm using both copulas. According to these results, for

the NIST-face and AReM datasets, the Gaussian copula slightly outperforms the Product
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copula in terms of hypothesis discriminability, whereas for the ROD dataset, ∆G
H = ∆P

H .

In the ROD dataset, the correlation matrix of the data is close to the identity matrix and

thus the Product copula is a better match rather than the Gaussian copula. However,

using T = 8000 data samples in the batch mode, the Gaussian copula performed as well

as the Product copula in terms of hypothesis discriminability since the method using the

Gaussian copula had enough data samples to estimate the correlation matrix λi to be close

to the identity matrix.

Figure 4.4: Estimation and detection results in batch mode for the NIST-face dataset.

Figure 4.5: Estimation and detection results in batch mode for the AReM dataset.

Figures 4.7-4.9, present the histogram of the data collected by each sensor under each

hypothesis along with the corresponding estimated marginal PDF using the proposed al-

gorithm in online mode. In the online mode uniform sampling of the estimated PDFs are
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Figure 4.6: Estimation and detection results in batch mode for the ROD dataset.

used in order to keep required memory fixed. In Fig.’s 4.7 and 4.9, the effect of using dif-

ferent number of samples (N) for storing the marginal pdfs is shown for the NIST-face and

ROD datasets, respectively. In Fig. 4.8, the estimated marginal PDF using the proposed

algorithm in online mode with N = 100, is presented for the AReM dataset. Moreover, in

Fig.’s 4.7-4.9, hypothesis discriminability is presented for the online EM algorithm for each

value of N .

Figure 4.7: Estimation and detection results in online mode for the NIST-face dataset.

In Fig.’s 4.10-4.12, DA of the proposed algorithm in both batch and online modes are

presented and compared with other well-known supervised and unsupervised methods for

the NIST-face, AReM, and ROD datasets, respectively. In Fig.’s 4.10 and 4.11, DA is

presented for both Gaussian and Product copulas and the results show a degradation in

DA when ignoring the correlation in the data (i.e., using the Product copula). However,

the effect of modeling the correlation in the data is more prominent for the NIST-face

86



Figure 4.8: Estimation and detection results in online mode for the AReM dataset.

Figure 4.9: Estimation and detection results in online mode for the ROD dataset.

dataset. Thus, for the NIST-face datast, the effect of using these two different copula types

are compared in Fig. 4.10 for both batch and online processing. For the AReM dataset,

the effect of using different number of samples T0 in Step 1 of algorithm 3 is also presented

in Fig. 4.11. This figure shows that the proposed algorithm is sensitive to the initialization

(Step 1 of algorithm 3), as using T0 = 3000 brings DA very close to the DA achieved in the

batch mode whereas the DA using T0 = 1500 is drastically less than the DA using T0 = 3000.

For the ROD dataset, the Product copula is a better match and thus DA is the same using

the Gaussian and Product copulas in batch mode, however, in the online mode, DA is
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Figure 4.10: Detection Accuracy of different methods for the NIST-face dataset.
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Figure 4.11: Detection Accuracy of different methods for the AReM dataset.

slightly worse when using the Gaussian copula rather than the Product copula. As a result

in Figure 4.12, DA is presented for the Product copula in both batch and online modes and

for different values of T0. This figure shows that as T0 increases, DA increases. To compare

with other methods, we use the Support Vector Machines (SVM) and K-Nearest Neighbor

(KNN) methods as supervised learning methods. As for the unsupervised methods with

which we compare our proposed method, for the NIST-face and AReM datasets we consider

the Kmeans clustering method, and for the ROD dataset, we consider the Page-Hinkley

Test (PHT) and the Geometric Moving Average (GeoMA) which are two unsupervised

methods devised specifically for room occupancy detection problems [1]. We should point

out that these unsupervised methods all use batch-mode processing. For the supervised

learning algorithms, a different training dataset is also required. For the NIST-face, ROD,

and AReM datasets, training datasets containing 5000, 8144, and 3000 labeled data samples
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Figure 4.12: Detection Accuracy of different methods for the ROD dataset.

were used, respectively. Fig.’s 4.10-4.12 show that the proposed algorithm in both batch and

online modes have higher DA than other unsupervised and even some supervised methods.

In Fig.’s 4.13-4.15, the actual state of nature at each time instance (HActual) is plot-

ted along with the detected hypothesis at each time instance using different supervised

and unsupervised methods (Hmethod name) for the NIST-face, AReM, and ROD datasets,

respectively.
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Figure 4.13: The actual (top row) and estimated values of the state of nature at each
time instance using different methods (SVM, KNN, Kmeans, BEMG, and OEM500

G ) for
the NIST-face dataset.

Finally, we compare the non-parametric based estimation method presented in this sec-
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Figure 4.14: The actual (top row) and estimated values of the state of nature at each time
instance using different methods (SVM, KNN, Kmeans, BEMG, and OEM1500

G ) for the
AReM dataset.

tion with the parametric based estimation method presented in Chapter 2. Once again we

use the ROD, NIST-face and AReM datasets. In table 4.2, hypothesis discriminability is

presented for the three datasets using the non-parametric and parametric based estimation

methods in batch mode. Table 4.2 shows that for the NIST-face and AReM datasets, non-

parametric estimation outperforms parametric estimation whereas for the ROD dataset,

parametric estimation slightly outperforms non-parametric based estimation. This indi-

cates that for the ROD dataset, the model using one of P possible Gaussian distributions

is a perfect match to this problem. We can conclude that in cases (such as the ROD dataset)

where the assumptions of the parametric model accurately match the physics of the prob-

lem, parametric estimation is the preferred choice. However, in such cases, non-parametric

based estimation performs nearly as good as parametric based estimation in terms of hy-

pothesis discriminability. On the contrary, in cases where the parametric model does not

accurately match the distribution of the data (such as the NIST-face and AReM datasets),

using non-parametric estimation results in significantly better hypothesis discriminability.
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Figure 4.15: The actual (top row) and estimated values of the state of nature at each time
instance using different methods (SVM, KNN, PHT, GeoMA, BEMP , and OEM2k

P ) for
the ROD dataset.

Table 4.2: Comparing hypothesis discriminability using parametric and non-parametric
based estimation.

Dataset ROD NIST-face AReM
Parametric (P -Gaussians) .031 .070 .017

Non-Parametric (kernel-based) .032 .052 .0098

4.5 Conclusion

An online expectation maximization (EM) based algorithm is presented for data fusion

involving non-parametric model estimation and hypothesis testing based on observations

from a network of heterogeneous sensors. The sensor measurements are assumed to be cor-

related and copula theory is used to model this correlation. Moreover, it is assumed that

the statistical model for the sensor data is not completely known. The batch-mode EM is

first developed for case studies of this problem including the Gaussian and product copulas

where marginal density functions of the measurements of all sensors are estimated along

with other model parameters and the state of nature is detected at all time instances. This

algorithm is then extended to an online EM based approach. In the online method, upon
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receiving sensors measurements at each time instance, the density functions and model

parameters are updated and the state nature at the current time is detected. Results ob-

tained from real-world data show significant improvements in hypothesis testing compared

to other unsupervised and even some supervised learning methods. Moreover, in the case

where data are correlated, the proposed method including copula modeling outperforms

the method ignoring the correlation in sensors measurements while in the case where the

data are independent, given enough data samples, the performance of the proposed method

converges to that of the method which correctly assumes an independent data model.
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Appendix A
Proof of Lemmas

A.1 Proof for Lemma 1
To solve (2.24), we define the Lagrangian function

Lm,ω = Q̃m,ω(ωi,p,t) + ϵω

[
1−

K−1∑
i=0

P∑
p=1

ωi,p,t

]
. (A.1)

Taking the derivative of Lm,ω with respect to ωi,p,t and setting it to zero we get

∂Lm,ω
∂ωi,p,t

=
α(n,T )(i, p, t)

ωi,p,t
+ ϵω = 0. (A.2)

Multiplying both sides of (A.2) by ωi,p,t and summing the results over i and p gives ϵω =

−
∑K−1

i=0

∑P
p=1 α

(n,T )(i, p, t) = −1. From this we get that

ωi,p,t = α(n,T )(i, p, t). (A.3)

A.2 Proof for Lemma 2
To solve (2.26), we take the derivative of Q̃m,λ

(
λ−1
m,i

)
with respect to λ−1

m,i where m ∈
{G, T }. We have

∂Q̃G,λ
(
λ−1
G,i
)

∂λ−1
G,i

=
T∑
t=1

P∑
p=1

α(n,T )(i, p, t)

2

[
y
(n−1,T )
i,p (t)

(
y
(n−1,T )
i,p (t)

)Tr
− λG,i

]
, (A.4)

∂Q̂T ,λ
(
λ−1
T ,i
)

∂λ−1
T ,i

=
T∑
t=1

P∑
p=1

α(n,T )(i, p, t)

2

[
−λT ,i +

(η + L)v
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i,p (t)(v
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i,p (t))Tr

η + (v
(n−1,T )
i,p (t))Trλ−1

T ,iv
(n−1,T )
i,p (t)

]
. (A.5)

Setting (A.4) and (A.5) to zero, we get

λG,i =

T∑
t=1

P∑
p=1

α(n,T )(i, p, t)y
(n−1,T )
i,p (t)(y

(n−1,T )
i,p (t))Tr

TS
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1 (i)

, (A.6)

and

λT ,i =
(η + L)

TS
(n,T )
1 (i)
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P∑
p=1

α(n,T )(i, p, t)v
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i,p (t)(v
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i,p (t))Tr

η + (v
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i,p (t)Tr)λ−1

T ,iv
(n−1,T )
i,p (t)

, (A.7)

respectively.
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Q ) with respect to µi,p. For m ∈
A.3 Proof for Lemma 3

To solve (2.34), we take the derivative of ˜m,µ(µ−
i,p
1 

{G, T , P}, we have

∂Q̃m,µ(µi,p)

∂µi,p
=

T∑
t=1

α(n,T )(i, p, t)Σ
(n−1,T )
i,p (λ̃

(n−1,T )
m,i )−1Σ

(n−1,T )
i,p

(
µi,p − dt

)
. (A.8)

Setting (A.8) to zero, we get

Σ
(n−1,T )
i,p (λ̃

(n−1,T )
m,i )−1Σ

(n−1,T )
i,p

T∑
t=1

α(n,T )(i, p, t)dt =
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i,p (λ̃

(n−1,T )
m,i )−1Σ

(n−1,T )
i,p µi,p

T∑
t=1

α(n,T )(i, p, t). (A.9)

However, since the matrices Σ
(n−1,T )
i,p and (λ̃

(n−1,T )
m,i )−1 are both invertible, (A.9) reduces to

µi,p =

∑T
t=1 α

(n,T )(i, p, t)dt

TS
(n,T )
4 (i)

. (A.10)

Q

A.4 Proof for Lemma 4
To solve (2.35), we take the derivative of ˜m,σ(σi,p,l) with respect to Σi,p. For m ∈ M, 

we have

∂Q̃m,σ(σ
−1
i,l,p)

∂Σi,p

=
T∑
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)Tr]
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(A.11)

Setting (A.11) to zero, we get

Σ−1
i,p (λ̃
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i,p =
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)Tr
TS

(n,T )
4 (i)

. (A.12)

Consequently, for m = G, we have

σi,l,p =
γ
(n,T )
i,l,p

−β(n,T )
i,l,p +

√
(β

(n,T )
i,l,p )2 + γ
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4

, (A.13)

and for m ∈ {T ,P}, we have

σi,l,p =

∑T
t=1 α

(n,T )(i, p, t)(dl,t − µ
(n−1,T )
i,l,p )2

TS
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4 (i, p)

, (A.14)
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Appendix B
Expectation Step of Algorithm Proposed in Chapter 3

Following the discussion in section 3.3.1, α
(n)
1 (i, t) , E[hi,th1−i,t−1|D; Θ(n−1)] and α

(n)
2 (i, t) ,

E[hi,thi,t−1|D; Θ(n−1)] are calculated in the Expectation step of the proposed EM-based al-

gorithm. In this section, we discuss the evaluation of α
(n)
j (i, t), j = 1, 2. According to the

definition we have

α
(n)
j (i, t) = Pr(hi,t = 1, hi,t−1 = j − 1|D; Θ(n−1)) =∑
H̃ P (D, hi,t = 1, hi,t−1 = j − 1, H̃|Θ(n−1))∑

H P (D,H|Θ(n−1))
, (B.1)

where, H̃ is a 2× (T − 2) matrix containing all columns of H except for the two columns
corresponding to times t − 1 and t. The number of terms in the summation in (B.1)
increases exponentially with T . Therefore, we propose using a reasonable approximation
to calculate αj(i, t) as presented in (B.2), where only the data from two time instances,
namely the current and the previous time, are directly involved in the decision made about
the state of nature at the current and the previous time. Thus, we have

α
(n)
j (i, t) ≈ Pr(hi,t = 1, hi,t−1 = j − 1|dt,dt−1; Θ

(n−1)) =

Pr(dt,dt−1|hi,t = 1, hi,t−1 = j − 1;Θ(n−1))ϕ̃
(n−1)
i,nj,i,t

1∑
k=0

2∑
l=1

Pr(dt,dt−1|hk,t = 1, hk,t−1 = l − 1;Θ(n−1))ϕ̃
(n−1)
k,nl,k,t

(B.2)

where, nl,k = |l − 2 + k|,

Pr(dt,dt−1|hi,t = 1, hi,t−1 = 0;Θ(n−1)) = (B.3)

Pr(dt|dt−1, hi,t = 1, hi,t−1 = 0;Θ(n−1))Pr(dt−1|hi,t = 1, hi,t−1 = 0;Θ(n−1)) =

Pr(dt|hi,t = 1, hi,t−1 = 0;Θ(n−1))Pr(dt−1|hi,t = 1, hi,t−1 = 0;Θ(n−1)) =[
c1 (Fi,1(d1,t), · · · , Fi,L(dL,t))

L∏
l=1

fi,l(dl,t)

][
c1 (Fi,1(d1,t−1), · · · , Fi,L(dL,t−1))

L∏
l=1

fi,l(dl,t−1)

]
,

and,

Pr(dt,dt−1|hi,t = 1, hi,t−1 = 1;Θ(n−1)) = (B.4)

Pr(dt|dt−1, hi,t = 1, hi,t−1 = 1;Θ(n−1))Pr(dt−1|hi,t = 1, hi,t−1 = 1;Θ(n−1))

=

(
L∏
l=1

fi,l(dl,t|dl,t−1)

)
c2 (Fi,1(d1,t|dl,t−1), · · · , Fi,L(dL,t|dl,t−1))

×

(
L∏
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fi,l(dl,t−1)

)
c1 (Fi,1(d1,t−1), · · · , Fi,L(dL,t−1)) .
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