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ABSTRACT 

A contribution to power theory development of three-phase three-wire systems with 

asymmetrical and nonsinusoidal supply voltages is presented in this dissertation. 

It includes: 

 contribution to explanation of power related phenomena

 contribution to methods of compensation

The power equation of unbalanced Linear Time Invariant (LTI) loads at sinusoidal but 

asymmetrical voltage is first presented. The different current components of such a load and the 

phenomenon associated with these current components are described. The load current 

decomposition is used for the design of reactive balancing compensators for power factor 

improvement. Next, the current of LTI loads operating at nonsinusoidal asymmetrical voltage is 

decomposed, and the power equation of such a load is developed. Methods of the design of 

reactive compensators for the complete compensation of the reactive and unbalanced current 

components, as well as the design of optimized compensator for minimization of these currents 

are also presented.   

Next, the power equation of Harmonics Generating Loads (HGLs) connected to 

nonsinusoidal asymmetrical voltage is developed. The voltage and current harmonics are divided 

into two subsets, namely the subset of the harmonic orders originating in the supply, and the 

subset of the harmonic orders originating in the load. The load current is decomposed based on 

the Currents’ Physical Components (CPC) power theory, and the theory is also used for 

reference signal generation for the control of Switching Compensators used for power factor 

improvement. Results of simulation in MATLAB Simulink are presented as well. 
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CHAPTER 1: INTRODUCTION 

1.1 Dissertation background 

The studies on the power properties of electrical systems with nonsinusoidal voltages and 

currents were initiated by Steinmetz in [1] towards the end of the 19th century and they are still 

on going. Description of these properties is shortly called a ‘power theory’. It is one of the most 

controversial areas of research in electrical engineering.     

Many scientists have dedicated their scientific life to power theory development. The 

most known are Budeanu [2], Fryze [3], Shepherd [4], Kusters [5], Moore [5], Czarnecki [6, 17 -

19], Nabae [33], Akagi [33] and Tenti [46]. This research over the past century has been mainly 

focused on power properties of systems with nonsinusoidal, but symmetrical voltages. The 

power equations of both single-phase as well as three-phase loads supplied with nonsinusoidal 

and symmetrical voltages are now known. The internal voltage of the distribution system can 

often be asymmetrical, however. Unfortunately, it is still not yet known how to describe power 

properties of such systems with asymmetrical voltages and currents. It is also not clear how to 

compensate loads operating at asymmetrical and nonsinusoidal voltage. 

The commonly known power equation relates the apparent, active and reactive powers S, 

P and Q as follows 

2 2 2S P Q   . (1.1) 

It is valid only if the load is linear time invariant (LTI) and balanced, and if the supply voltage is 

sinusoidal and symmetrical, however. This is a major deficiency of the state of the knowledge on 

power properties of electrical systems. The effectiveness of the utilization of the energy supply 

capability of the energy provider is specified by the power factor, defined as 



2 

P

S
   . (1.2) 

Consequently, in a situation where (1.1) does not describe the power properties of electrical 

loads correctly, the same applies to the power factor calculation. Moreover, in the lack of right 

power equation it is not clear how the power properties of the distribution system at low power 

factor could be improved. 

A three-phase voltage/current waveform is said to be nonsinusoidal if it cannot be 

described by a sinusoidal function. The following factors are the main contributors to voltage 

and current distortion:  

- Nonlinear devices of small ratings, consisting mainly of fluorescent bulbs, computer 

and TV supplies, as well as power supplies used in low power appliances. 

- Static power converters used in industries such as three-phase rectifiers, AC to DC 

converters, inverters, cycloconverters. 

- Power electronics devices used for the interfacing of renewable energy sources like 

wind farms and photovoltaic sources with the grid. 

- Arc furnaces.  

 A three-phase voltage is said to be symmetrical if the phase voltages are mutually shifted 

by one-third of the period, otherwise voltages are asymmetrical. The following factors contribute 

to voltage and current asymmetry 

- Structural asymmetry of the transmission system 

- Unequal residential loading on the individual phases and imbalance of industrial 

loads such as arc furnaces and traction loads. 
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1.2 Dissertation subject  

Power properties of three-phase loads supplied from three-phase, three-wire sources of 

asymmetrical nonsinusoidal voltage, as well as the methods of compensator design for the power 

factor improvement of such loads are the subject of studies reported in this dissertation.  

1.3 Dissertation objective and approach  

Development of the power equation of Linear Time Invariant (LTI) and Harmonic 

Generating Loads (HGLs) supplied with nonsinusoidal and/or asymmetrical voltage as well as 

methods of the design of compensators for power factor improvement of such loads is the 

objective of this dissertation. The analysis will be done by decomposing the load current into 

physical components, each associated with a distinct physical phenomenon. This approach is 

based on the Currents Physical Components (CPC) concept and it differs from the traditional 

approach of the power theory development in that it considers the current as the fundamental 

quantity and focusses on the decomposition of the load current instead of decomposing the load 

power.   

1.4 Dissertation chapters breakdown   

Chapter 2 of this dissertation will provide the background on power theory development 

as well as the shortcomings of the power theory at present. Development of the power equation 

of LTI loads and the methods of its reactive compensation at asymmetrical and sinusoidal 

voltage will be presented in Chapter 3, while the same will be presented for asymmetrical but 

nonsinusoidal voltage in Chapter 4. The power equation of HGLs at asymmetrical and 

nonsinusoidal voltage will be developed in Chapter 5, while compensation of HGLs using 

Switching Compensators will be presented in Chapter 6. The conclusions of this dissertation as 

well as the potential directions for continuation of this research will be presented in Chapter 7. 
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CHAPTER 2: BACKGROUND OF POWER THEORY DEVELOPMENT   

2.1 Introduction 

At the beginning the AC power systems were built of synchronous generators and linear 

loads such as incandescent lamps, resistive heating appliances and induction machines. Power 

properties of such systems were described in terms of only the active and reactive powers.   

Over the course of time, the power system has undergone a lot of changes. Fluorescent 

lamps have replaced the incandescent bulbs and a lot of power electronics based equipment has 

been added to the system. These non-linear and/or periodically switched loads also referred to as 

harmonic generating loads (HGLs), cause current and voltage waveform distortion. In addition, 

AC arc furnaces used in industries are non-linear and could be highly unbalanced. Consequently, 

they cause voltage and current waveform distortion as well as asymmetry. 

Moreover, in addition to synchronous generators, other types of energy sources have been 

introduced to the system. These are wind generators, photovoltaic sources, etc. which require a 

power electronics interface before they can be connected to the AC system. These interfaces can 

cause distortion of the system supply voltage. 

The power theory used for describing power properties of present day power systems 

should be capable of describing the system with nonsinusoidal and asymmetrical voltages and 

currents. The traditional power theory, based only on the active and the reactive powers, was 

developed at the assumption that the voltages and currents are sinusoidal and symmetrical. 

Therefore, in presence of the asymmetry and distortion in the power system, the abovementioned 

assumptions need to be removed, and the power theory should describe power properties of 

electrical systems in the presence of the voltage and current asymmetry and distortion.  
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2.2 Traditional definitions of the apparent power 

Most of the residential and commercial loads are single-phase loads supplied from a 

three-phase transformer in the Y/  configuration as shown in Fig. 2.1. 

 

Fig. 2.1 Single-phase load connected to a three-phase distribution system 

 A considerable amount of energy produced in power systems is distributed in circuits as 

shown in Fig 2.1, where some level of the load imbalance can occur. For such a system built for 

energy delivery, the power properties are crucial for the evaluation of the effectiveness of this 

delivery as well as its improvement by compensation. 

 The power equation  

 2 2 2 = + S P Q   (2.1) 

was used traditionally to describe both the single-phase and three-phase circuits in terms of 

power where   

 X X X X X X

X=R,S,T X=R,S,T

cos sinP U I , Q U I ,      (2.2) 

are the active and the reactive powers respectively, and S is the apparent power.  

The studies on power theory were initiated with the observation by Steinmetz [1] in 1892 

that the power equation (2.1) is not valid in single-phase circuits with electric arcs . Some of the 
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important literature on this subject is [2-10], which is mostly focused on single-phase systems 

with nonsinusoidal voltages and currents. 

It was concluded by Lyon [11] in 1920 that the imbalance of three-phase loads reduces 

the power factor, even if the voltages and currents are sinusoidal. This observation was not 

formulated in quantitative terms, however. At that time, it was not clear how the apparent power 

S should be defined in three-phase systems. It is because the apparent power is not a physical 

quantity, but a conventional quantity. It is used to specify the power ratings of transmission 

equipment and for the calculation of the power factor 

P

S
   , (2.3) 

which specifies the effectiveness of the energy delivery to the load. 

After some inconclusive debate [12, 13], two different definitions, namely 

A R R S S T T  S S U I +U I +U I  (2.4) 

referenced as an arithmetic apparent power and 

G
2 2

 = + S S P Q (2.5) 

referenced as geometric apparent power, were adopted. Both these definitions were used for 

several decades and were supported by the IEEE Standard Dictionary of Electrical and 

Electronics Terms [14]. There is also another definition of the apparent power, as suggested by 

Buchholtz in [16], but not commonly known in the United States; that uses the sum of squares of 

the line voltage and current rms values, namely 

B R S T R S T
2 2 2 2 2 2

 = + + + +S S U U U I I I (2.6) 
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In circuits with sinusoidal and symmetrical voltages and currents, these three definitions 

result in the same numerical values. However, as demonstrated in [17], at current and voltage 

asymmetry and/or distortion, these definitions result in different values of the apparent power, 

thereby leading to different values of the power factor . It is unclear which one is correct. 

Illustration 2.1 Let us calculate the apparent power and the power factor of an 

unbalanced load in Fig. 2.2 using the different definitions of the apparent power.   

Fig. 2.2 Three-phase supply feeding a single-phase load  

The line-to-ground voltage rms value is 277 V, while the transformer turns ratio is chosen 

for simplicity to be 1:1. The load current rms value, 

r
277 3

239 9 A
2

|| i || .  . 

The active power of the load 

 
2 2

r L 239 9 2 115 09 kWP || i || R . .    

The line current rms values are R S T239 9 A, 239 9 A, 0 A|| i || . || i || . || i ||   . 

Depending upon the definition, the apparent power of such a load is 

A G B132 9 kVA, 115 1 kVA, 162 8 kVA.S . S . S .  

Hence, the power factor corresponding to the different values of the apparent powers is, 
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A G B0 86, 1 , 0 71. . .      

The reactive power of the load shown in Fig. 2.2 is zero. Therefore, the power equation in 

(2.1) is valid only for the geometric definition of the apparent power.     

Definitions of the apparent power were investigated in [17] and it was demonstrated that 

in the presence of load imbalance both the arithmetical and the geometrical apparent powers 

result in erroneous value of the power factor. The correct value of the power factor is obtained 

when the apparent power S is calculated according to the Buchholtz definition given by (2.6). In 

other words, the correct value of the power factor of the load in illustration 2.1 is B 0 71.  .   

Unfortunately, even at such a definition of the apparent power, the power equation (2.1) 

with the active and reactive powers calculated using formula (2.2) in the presence of current 

asymmetry is not satisfied [18]. This is also evident in illustration 2.1. The problem was solved 

in [19] using the Currents’ Physical Component (CPC) concept by introduction of a new power 

quantity, referred to as an unbalanced power. 

2.3 The original concept of unbalanced power and the CPC power theory 

 Any three-phase LTI load as seen from the primary side of a Y/  transformer, as shown 

in Fig. 2.1, has an infinite number of equivalent circuits with respect to load currents [18]. These 

equivalent circuits can be in a Y or in a   configuration. For analysis of a load with a three-wire 

supply, as shown in Fig. 2.1, it is more convenient if the equivalent configuration is in a   

configuration as depicted in Fig. 2.3, and therefore, such a configuration of the equivalent circuit 

is chosen for the following analysis. Since there is an infinite number of equivalent circuits with 

respect to load currents, one of the line-to-line admittances RS ST,Y Y or STY can be chosen and the 

remaining two can be calculated accordingly.    
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Fig. 2.3 Equivalent circuit of three-phase load in delta configuration 

 The association between a sinusoidal quantity ( )x t   

 ( ) 2 cos( + )x t X t    (2.7) 

and its complex rms (crms) value e jXX
 , has the form   

 ( ) 2 Re{ e }j tx t X
   (2.8) 

and can be generalized to three-phase vectors of the supply voltages and the load line currents as 

follows  

 

R Rdf df

S S

T T

( )

( ) ( ) 2 Re e 2 Re{ e }

( )

j t j t

u t

t u t

u t

U

U

U

 
   
   

   
   
      

u u U   (2.9) 

and, 

 

R Rdf df

S S

T T

( )

( ) ( ) 2 Re e 2 Re{ e }

( )

j t j t

i t

t i t

i t

I

I

I

 
   
   

   
   
      

i i I   (2.10) 

Symbols U  and I  denote three-phase vectors of complex rms (crms) values UR, US, and UT of 

line voltages, measured with respect to an artificial zero, and line currents IR, IS, and IT. 

 The current of the load shown in Fig. 2.3 can be expressed as 
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R R

S T

T S

e( ) 2 Re{ e }.j tt

U U

Y U A U

U U


  
  

 
  
     

i   (2.11) 

The admittances eY is referred to as an equivalent admittance of the load and is equal to  

 RS ST TRe ee += = + +G j BY Y Y Y   (2.12) 

while the admittance A is referred to as an unbalanced admittance of the load and is equal to    

 ST TR RS( + )+j *AeA Y Y Y
    .  (2.13) 

Taking the equations (2.12) and (2.13) into account, the vector of the load current in (2.11) can 

be written as 

 a r u( ) ( ) ( ) ( )t t t t  i i i i   (2.14) 

where the current vectors a ( )ti , r ( )ti  and u ( )ti  are defined as  

 

df

df

df

a e

r e

#
u

( ) 2 Re { e }

( ) 2 Re { e }

( ) 2 Re { e }

j t

j t

j t

t G

t j B

t A













i

i

i

U

U

U

  (2.15) 

while the voltage vector #
U  is equal to, 

 R T S
# T[ ]U U UU   (2.16) 

The active power of the load at symmetrical voltage is  

 
RS RS ST ST TR TR

RS ST TR R

2 2 2

2 2
e

Re{ } Re{ } Re{ }

Re{ }3+ +

P U U U

U G || ||

Y Y Y

Y Y Y

  

  u
  (2.17) 

where || ||u  is the three-phase rms value of the supply voltage defined as, 
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 R S T R
T 2 2 2

0

1
( ) ( ) 3

T

|| || t t dt U U U U .
T

    u u u   (2.18) 

Thus, the equivalent conductance eG  defined in the above equation is equal to   

 e 2

P
G

|| ||


u
  (2.19) 

Therefore, the current a ( ),ti which is proportional to the equivalent conductance e ,G is associated 

with the phenomenon of permanent energy flow from the supply to the load. It is the active 

current of the load.  

 The reactive power of the load at symmetrical voltage is  

 RS RS ST ST TR TR

RS ST TR R

2 2 2

2 2
e

Im{ } Im{ } Im{ }

Im{ }3+ +

Q U U U

U B || || .

Y Y Y

Y Y Y

   

   u
  (2.20) 

Hence the equivalent susceptance eB  is equal to,  

 e 2

Q
B

|| ||
 

u
.  (2.21) 

The current r ( )ti  is associated with the phenomenon of the phase shift of the load current with 

respect to the supply voltage and consequently, the presence of the reactive power. It is the 

reactive current of the load.  

 When the load is balanced, meaning that admittances RS ST,Y Y  and STY  are equal, then the 

unbalanced admittance A defined by (2.13) is zero. The current u ( )ti occurs only due to the load 

imbalance. Therefore, this current is referred to as the unbalanced current of the load. It is to be 
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noted though that the equality of  RS ST,Y Y  and STY  is only a sufficient condition for u ( )ti  to be 

zero, but not the necessary condition.  

 Thus the active, reactive and unbalanced are associated with three different physical 

phenomena in the circuit and are referred to as the Currents’ Physical Components (CPC).   

If we define the unit three-phase vectors of the positive and negative sequence as  

 2 3 2 3

2 3 2 3

p n

1 11 1

1 ,     1

1 1

j / j /

j / j /

* e e

*e e

 

 

 

 





      
      

         
            

  1 1   (2.22) 

and illustrated in Fig. 2.4,  

 

Fig. 2.4 Symmetrical three-phase unit vectors 1P and 1n  

then using these vectors, the current vectors defined in (2.15) can be rewritten as   

 

R

R

R

a e

r e

u

p

p

n

( ) = 2 Re{ e }

( ) = 2 Re{ e }

( ) = 2 Re{ e }.

j t

j t

j t

t G

t j B

t

U

U

A U







i

i

i

1

1

1

  (2.23) 

The above equations emphasize that if the supply voltage is sinusoidal and symmetrical with a 

positive sequence, then the active and the reactive currents are of the positive sequence, while 

the unbalanced current is of the negative sequence.  
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 The three-phase rms values of the currents in (2.23) are  

 

a e

r e

u

|| || G || ||

|| || | B | || ||

|| || A|| ||







i u

i u

i u

  (2.24) 

The current components in (2.14) are mutually orthogonal on the condition that their 

scalar products, defined for three-phase vectors ( )tx  and ( )ty of the same frequency as  

 T

0

1
( , ) ( ) ( )

T

t t dt
T

 x y x y   (2.25) 

are equal to zero. The scalar product defined by (2.25) can be calculated using the vectors X and 

Y of crms values of  ( )tx  and ( )ty as following 

 T T *

0

1
( , ) ( ) ( ) Re{ }

T

t t dt
T

 x y x y X Y   (2.26) 

If these vectors are orthogonal, then their three-phase rms value, defined as  

 
df

T

0

1
|| || ( , ) ( ) ( )

T

t t dt
T

  x x x x x   (2.27) 

satisfy the relationship 

 2 2 2|| + || || || || || x y x y  . (2.28) 

The scalar product of the active and the reactive current 

T *
R R

R

T
a r a r e e

2 T
e e

p p

p n

( ) Re{ } = Re{[( ) ][( ) ]}

Re{ ( ) }

*, G j B

G B U j

U U

  

i i I I 1 1

1 1
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R

R

2
e e

2
e e

1

= Re{ [1 ] } 

Re{ 3} = 0.

*

*

G B U j , ,

G B U j

  



 
 

  
 
 

   (2.29) 

Similarly, the scalar product of the active and the unbalanced currents  

 

T *
R R

R R

R

T
a u a u e

2 T 2
e e

2
e

p n

p p

 ( ) Re{ } = Re{[( ) ][( ) ]}

1

Re{ ( ) } = Re{ [1 ] }

Re{ (1+ )} = 0 .

*

* * * *

* *

, G

G U G U , ,

G U

U A U

A A

A

  



 



 
 

  
 
 

 

i i I I 1 1

1 1   (2.30) 

The scalar product of the unbalanced and reactive currents 

 

T *
R R

R R

R

T
a u r u e

2 T 2
e e

2
e

p n

p p

 ( ) Re{ } = Re{[( ) ][( ) ]}

1

Re{ ( ) } = Re{ [1 ] }

Re{ (1+ )} = 0.

*

* * * *

* *

, j B

B U j B U j , ,

B U j

U A U

A A

A

  



 



 
 

  
 
 

 

i i I I 1 1

1 1   (2.31) 

Thus, the three current components of the current in (2.14) are mutually orthogonal and therefore 

their three-phase rms values satisfy the relationship 

 2 2 2 2
a r u=|| || || || || || || || i i i i   (2.32) 

 Multiplying (2.32) by the square of the three-phase rms value of the supply voltage, 

 2 2 2 2 2 2
a r u= [ ]|| || || || || || || || || || || ||   i u i i i u   (2.33) 

yields the power equation 

 2 2 2 2
uS P Q D     (2.34) 
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where, 

 S || || || || u i   (2.35) 

is the apparent power of the load, 

 2
eQ B || ||  u   (2.36) 

is the reactive power of the load and  

 
df

2
u uD || || || || A || ||  u i u   (2.37) 

is the unbalanced power of the load.  

The power factor 

 a e

2 2 2 2 2 2 2 2 2
u a r u e e

|| || GP P

S P Q D || || || || || || G B A

    

     

i

i i i
 . (2.38) 

It is evident from (2.38) that both the reactive and the unbalanced currents contribute to the 

increase of the supply current rms value and the apparent power and consequently, to the decline 

of the power factor. The reduction of these currents will lead to the improvement of the power 

factor. These currents can be reduced using a shunt balancing compensator. Complete 

compensation of the load occurs when the compensator current is equal to the negative of the 

sum of the reactive and unbalanced currents. Such a balancing compensator can be built as a 

reactive compensator, composed of inductors and capacitors, or as a switching compensator, 

composed of a three-phase inverter with a measurement and a control system. A reactive 

compensator, as shown in Fig. 2.5, can be used for the compensation of the reactive and the 

unbalance currents of LTI loads at sinusoidal and symmetrical voltage.  
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Fig. 2.5 Circuit with shunt reactive compensator  

The compensator in Fig. 2.5 is of the delta structure and it is assumed to be composed of 

ideal lossless reactance elements. It can have an inductor or a capacitor in each branch with 

susceptances RS STT ,T and TRT . Such a lossless compensator modifies the reactive and the 

unbalanced current to  

 
ST TR RS

P
ST TR RS R

'
r e

' n
u

2 Re { [ ( + + ) ] e },

2 Re { [ ( + + ) ] e }.

j t

* j t

j B T T T

j T T TA U



 

 

 

i

i

U

1

  (2.39) 

The reactive current is compensated to zero if  

 ST TR RSe[ ( + + )] 0B T T T    (2.40) 

 while the unbalanced current is compensated to zero if  

 ST TR RS[ ( + + ) ] 0*j T T T .A      (2.41) 

Equation (2.41) contains complex quantities and therefore it has to be satisfied for both the real 

and the imaginary parts, i.e.,  

 
ST TR RS

ST TR RS

Re{ [ ( + + ) ] } 0

Im{ [ ( + + ) ] } 0

*

*

j T T T .

j T T T .

A

A

 

 

 

 
  (2.42) 
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Hence, the two equations in (2.42) and equation (2.40) provide three linear equations which can 

be used to solve for the three unknowns namely RS STT ,T  and TRT .  

Solving the three equations yields 

 

RS

ST

TR

e

e

e

( 3 Re Im ) /3,

( 2 Im ) /3,

( 3 Re Im ) /3.

T B

T B

T B

A A

A

A A

  

 

   

  (2.43) 

If the susceptance XYT obtained from (2.43) above is positive, then a capacitor of capacitance 

 XY
XY

1

T
C


   

should be selected for the branch XY. If the susceptance XYT obtained from (2.43) above is 

negative, then an inductor of inductance  

 XY
XY1

1
L

T
    

should be selected for the branch XY. Such a compensator will compensate entirely the reactive 

and the unbalanced currents. Thus, it will improve the power factor to unity.  

Illustration 2.2 Application of CPC Theory and compensation techniques to an 

unbalanced LTI load.  

 

Fig. 2.6 Three-phase distribution system with an unbalanced load  
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An unbalanced LTI load as shown in Fig. 2.6 is supplied from a source of sinusoidal 

symmetrical voltage. The line-to-ground rms value of the supply voltage 277 VU  . If 

the load impedance L 3 1jZ    , then the line-line admittance YRS from the point of 

view of the supply side is    

RS
RS

18 41 1
0 3 0 1 0 316 S.

3 1

j .. j . . e
j

Y
Z

     


 

Thus the equivalent and the unbalanced admittances are equal to  

e e RS ST TR

ST TR RS RS

18 4
e

41 6

0 3 0 1 0 316 S

( + ) 0 316 S.

+ +

+

j .

j * * j .

G j B . j . . e

Ae . e

Y Y Y Y

A Y Y Y Y
  

 



     

     
 

The three-phase rms value of the supply voltage 3 3 277 480V. || || U  u  

Therefore, the current’s physical components (CPC) are  

a e

r e

u

0 3 480 144 A,

0 1 480 48 A,

0 316 480 152 A,

|| || G || || .

|| || | B | || || .

|| || || || .A

   

   

   

i u
i u
i u

 

and the supply current rms value is  

2 2 2 2 2 2
a r u 144 48 152 215A.|| || || || || || || ||      i i i i  

The three-phase rms value of the current is indeed the same as calculated using the line 

currents,  

R S T
2 2 2 2 2152 152 215A,|| || || || || || || ||i i i     i  

as expected. The load powers are  

2 2
e 0 3 480 69 kWP G || || .   u  
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2 2
e

2 2

0 1 480 23 kVA

0 316 480 73 kVA.

Q B || || .

D A|| || .

   

   

u

u
 

Thus, the apparent power of the load, calculated using the load powers is   

2 2 2 2 2 2
u 69 23 73 103 kVAS P Q D        

 which is indeed the same as that calculated using rms values of the supply line voltage 

and currents, 

480 215 103 kVA.S || || || ||    u i  

The power factor is equal to     

69
0 67

103

P
. .

S
     

The balancing compensator shown in Fig. 2.5 can be used for the compensation of the 

reactive and the unbalanced currents and the improvement of the power factor.  

The equivalent susceptance of the load in Fig. 2.6 is e 0 1SB .   while the real 

and the imaginary parts of the unbalance admittance A are equal to Re{ } = 0.236 SA and 

Im{ } = 0 210 S.A . Thus, the compensator susceptances are equal to   

RS

ST

TR

e

e

e

( 3 Re Im ) /3 = ( 3 0 236 0 210 0 10) /3 0 10 S

( 2 Im ) /3 ( 2 0 210 0 10) /3 0 173 S

( 3 Re Im ) /3 (  3 0 236 0 210 0 10) /3 0 173 S

T B . . . .

T B . . .

T B . . . .

A A

A

A A

      

     

          

 

Therefore, an inductor should be connected between the lines T and R while capacitors 

should be connected between the lines R and S and the lines S and T as shown in Fig. 2.7. 
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Fig. 2.7 Unbalanced LTI load with a reactive balancing compensator  

Such a compensator reduces the supply current three-phase rms value from 215 A to 144 

A. It restores the supply current symmetry and improves the power factor from 0.67 to 

unity.  

2.4 Conclusion  

The apparent power S calculated using the traditional power equation consisting of just 

the active power P and the reactive power Q is incorrect at load imbalance. The Currents’ 

Physical Components (CPC) Power Theory, where the original concept of the unbalanced power 

was introduced, enables the development of the correct power equation of unbalanced LTI loads 

at sinusoidal symmetrical voltages. The CPC power theory also enables the design of a balancing 

reactive compensator for the improvement of the power factor to unity.  
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CHAPTER 3: POWERS AND REACTIVE COMPENSATION OF 

UNBALANCED LTI LOADS WITH SINUSOIDAL BUT ASYMMETRICAL   

VOLTAGES AND CURRENTS   

3.1 Introduction 

The power equation which describes power properties of unbalanced Linear Time 

Invariant (LTI) loads with sinusoidal and symmetrical (S&S) voltages and currents was 

presented in the previous chapter. It was discussed that traditional definitions, as supported by 

IEEE Standard Dictionary of Electrical Engineering Terms [14], of the apparent power do not 

provide the right value of the power factor of unbalanced loads. Traditional power theories and 

definitions were presented in Chapter 2, along with their shortcomings that made them 

inadequate for description of unbalanced loads. A new power equation of such loads based on 

the Currents’ Physical Components (CPC) concept was also presented Fundamentals of design of 

reactive compensators which enable entire reduction of the reactive and unbalanced powers were 

presented as well.  

Generally, the distribution system voltage is not S&S. It could be asymmetrical and/or 

distorted. Unfortunately, the power equation which describes an LTI load at asymmetrical 

voltage correctly is not known yet. Development of such an equation is just the objective of this 

chapter. The previous chapter provided only a starting point for the development of the power 

theory of unbalanced loads.     

Power theory does not describe power properties of real systems, but only their models, 

simplified by various assumptions. We should approach description of real systems by 

progressively abandoning these assumptions step by step, which makes the power theory more 

accurate, but unfortunately, more and more complex. Therefore it is reasonable to abandon these 
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assumptions only one by one, after verification that the power theory describes the system with 

previous assumptions correctly. 

3.2 Brief description of the system at asymmetrical and sinusoidal voltage     

It is assumed in this chapter that the internal voltage of the distribution system, as shown 

in Fig. 3.1 is asymmetrical and sinusoidal (A&S). It can be expressed in the form of a three-

phase vector  R S T
T

, ,e e ee .   

 

Fig. 3.1 Unbalanced LTI connected to three-phase supply  

Such an asymmetrical voltage can be decomposed into symmetrical components of the 

positive, negative and zero sequence, p n,e e and ze , respectively. Since our analysis is limited 

to three-wire systems, the zero sequence component of the supply voltage cannot cause any 

current flow in the circuit. Consequently, it does not contribute to the power related phenomena 

in the load. This component of voltage does contribute to the three-phase rms value || ||u  of the 

voltage at load terminals, however, leading to erroneous value of the power factor. Thus, the zero 

sequence component should be eliminated from analysis by referencing the voltages to an 

artificial zero.  

If the line voltages and currents are known, then an unbalanced load, as shown in Fig. 

3.1, can be represented by an equivalent load connected in delta configuration. Such an 
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equivalent load supplied with a voltage referred to an artificial zero is shown in Fig. 3.2. The 

voltage u  in the figure is the vector of the three-phase voltages at the load terminals. 

It is assumed in this chapter that the supply voltage is sinusoidal and the load is Linear 

Time Invariant (LTI). Such LTI loads can be analyzed using the Superposition Principle.     

 

Fig. 3.2 Unbalanced three-phase load supplied with a voltage referred to artificial zero 

3.3 Symbols of the apparent and complex powers    

Let us assume that the load shown in Fig. 3.2 has active power P  and reactive power Q . 

If the load is balanced and supplied with a sinusoidal symmetrical voltage, then the apparent 

power of the load is  

 2 2= +S P Q .   (3.1) 

The active and the reactive powers can be calculated using the line voltages and currents using 

traditional definitions, namely 

 X X X X X X

X=R,S,T X=R,S,T

cos sinP U I , Q U I ,      (3.2) 

and the apparent power S  is the magnitude of the complex apparent power, commonly denoted 

by S , and defined as    
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 P+ jQ.S    (3.3) 

The load can be unbalanced, however. It was illustrated in the previous chapter that when 

the supply voltage is sinusoidal and symmetrical, but the load is unbalanced, then, in addition to 

the active and the reactive powers, such a load has also an unbalanced power. Due to the 

presence of the unbalanced power, the square of the apparent power of the load is higher than the 

sum of the squares of the active and reactive powers, viz. 

 2 2 2S || || || || P Q   u i  . (3.4) 

Consequently, the apparent power S of such load is not equal to the magnitude of the 

complex apparent power S. Therefore, to avoid misinterpretations, we will denote the apparent 

power using the symbol S, while a different symbol is needed for denoting the complex power of 

the load, and, henceforth it will be denoted by C, such that, 

 
df

jC e P+ jQC
   . (3.5) 

We assume in this chapter that in addition to the load imbalance, the supply voltage is 

also asymmetrical. 

3.4 Load current decomposition at asymmetrical but sinusoidal supply voltage 

3.4.1 Superposition based current decomposition  

It was demonstrated in Chapter 2 that the current of unbalanced LTI loads connected to 

sinusoidal symmetrical three-phase voltage, consist of the active, reactive and unbalanced 

current components. The load in Fig. 3.2 is an example of such a load. Also, the aforementioned 

active and reactive currents are of the same sequence as the supply voltage, while the unbalanced 

current is of the opposite sequence. At voltage asymmetry, the positive sequence component of 
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the supply voltage causes the active and reactive currents of the positive sequence and an 

unbalanced current of the negative sequence in the supply lines. On the other hand, the negative 

sequence component of the supply voltage causes the active and reactive currents of the negative 

sequence and an unbalanced current of the positive sequence in the supply lines. i.e, 

 
p p p n

a r u

n n n p
a r u

( )

( )

  

  

u i i i

u i i i
  (3.6) 

Since the positive and the negative sequence voltage components are symmetrical, the 

information of one phase is sufficient to calculate these voltages on the remaining lines. For 

simplicity, R
p

U can be denoted by p
U and R

n
U can be denoted by n

U . Based on the analysis 

presented in Chapter 2, 

 

p p p p p p
a e e

p p p p p p
r e e

n p n p
u

( ) (t) 2 Re{ ( ) }

( ) ( + ) 2 Re{ ( ) }
4

( ) 2 Re{ ( ) }

j t

j t

j t

t G G e

T
t B t j B e

t e

U

U

A U







 

 



i u

i u

i 1

1

1   (3.7) 

and  

 

n n n n n n
a e e

n n n n n n
r e e

p n p n
u

( ) ( ) 2 Re{ ( ) }

( ) ( + ) 2 Re{ ( ) }
4

( ) 2 Re{ ( ) }

j t

j t

j t

t G t G e

T
t B t j B e

t e

U

U

A U







 

 



i u

i u

i 1

1

1   (3.8) 

where, p
1 and n

1 are symmetrical three-phase unit vectors defined as  

 p n

1 1
*

*

, 

 

   
   

    
   

  

1 1   (3.9) 

and illustrated in Fig. 3.3. 
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Fig. 3.3 Symmetrical three-phase unit vectors 1P and 1n 

As assumed earlier, the load is linear. Hence, based on the Superposition Principle, the 

total current of the LTI load caused by the voltage u , is equal to the sum of the currents caused 

by the voltages pu  and nu separately, i.e.,    

 p n p p n n n p
a r u a r u( ) + ( )     u u i i i i i i  . (3.10) 

The load current i is the sum of the currents caused by the positive and the negative 

sequence component of the supply voltages. Therefore, 

 p p n n n p
a r u a r u     i i i i i i i  . (3.11) 

The three-phase rms value of the load current, || ||i , is equal to the square root of the sum 

of squares of the current components on the condition that these components are mutually 

orthogonal. The active and reactive currents of the same sequence are orthogonal to each other. 

Similarly, currents of the opposite sequences are orthogonal to one another. Thus, the 

orthogonality of the currents p p n
a r a, ,i i i and n

ri in (3.11) is straightforward. However, 

orthogonality of the unbalanced current with the active and reactive currents needs to be verified. 

The scalar product of p
ai and p

ui is 

p

p p p p p T n p n
a u e

p n p T p n
e

( ) Re{ ( ) ( ) }

Re { ( ) ( ) }

*

* *

, G

G

U A U

A U U



 

i i 1 1

1 1  



27 

 

 

p n p n p n p n
e

p n p n p n p n
e

p n p n
e

Re{ [ ( ) ( ) ]}

Re{ [ ]}

Re{3 }

* * * * * *

* * * * * *

* *

G

G

G .

A U U U U U U

A U U U U U U

A U U

   

  

  

  

   (3.12) 

It means that the scalar product of the currents p
ai and p

ui can have any value depending 

on the unbalanced admittances and the voltage crms values and consequently, it can be nonzero. 

Thus, the unbalanced current of the positive sequence is not necessarily orthogonal to the active 

current component of the positive sequence. Therefore, the components of the current 

decomposition in (3.11) may not be mutually orthogonal. For such a case, the three-phase rms 

value of the load current is not the sum of the squares of the three-phase rms values of the 

current components, viz,  

 2 p 2 p 2 p 2 n 2 n 2 n 2
a r u a r u|| || || || || || || || || || || || || ||     i i i i i i i  . (3.13) 

Superposition based current decomposition does not enable decomposition of the current 

into orthogonal components and a different approach is needed to develop the power equation of 

LTI load at S&A supply voltage.  

3.4.2 Decomposition of the load current into orthogonal components 

Let us consider a balanced load supplied with voltage u as shown in Fig. 3.4. It has the 

same active power P and reactive power Q as the original load shown in Fig. 3.2. Such a load is 

therefore equivalent to the original load with respect to the active and reactive powers P and Q, 

and is referred to as the equivalent balanced load.  
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Fig. 3.4 Balanced load equivalent to the original load with respect to P and Q  

Phase admittance of such an equivalent load is    

 
*
b

b b b 2 2 2

*P jQ
G jB

|| || || || || ||

C C
Y


    

u u u
 , (3.14) 

where bC  is the complex power of the equivalent balanced load and C is the complex power of 

the original unbalanced load. The admittance bY is referred to as the equivalent balanced 

admittance and draws the current  

 b a r b b+ 2Re{ e } 2Re{ e }j t j t .Y
 i = i i = =I U   (3.15) 

The current bi , also referred to as the balanced current, consists of the active current  

 p n
a b b2Re{ ( )e }j tG G ,i = u= U U   (3.16) 

and the reactive current 

   p n
r b b(t) 4 2Re{ ( ) e }j tB t T/ jB .  i u = U U   (3.17) 

It is important to observe that the terms symmetrical and asymmetrical, and the terms 

balanced and unbalanced, have different meanings. The terms symmetrical and/or asymmetrical 

are used exclusively for the three-phase voltages and currents, based upon the symmetry of the 
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three-phase quantities. The terms balanced and/or unbalanced on the other hand, are used for the 

load, based upon the values of the three-phase impedances.       

The balanced current bi acquires its name based on its association with the equivalent 

balanced load. It is important to remember that it does not provide any information on its 

symmetry. The term balanced is therefore an indication of the load property. It simply represents 

the portion of the load current that is drawn by the equivalent balanced load, in order to have the 

active power P and the reactive power Q.    

If bI is a vector of the crms value of the current of such a balanced load, then  

 T T * 2
b b b b( )* * || ||C Y Y   uU I U U .  (3.18) 

Since the balanced load discussed above draws the balanced current bi , the remaining 

component of the original current is due to the load imbalance. It is called the unbalanced 

current and is equal to  

 u b b u2Re{( ) e } 2Re{ e }j t j t  i = i i = =I I I  . (3.19) 

The unbalanced current ui acquires its name from its association with the load 

imbalance, and the term unbalance does not indicate its asymmetry. In fact, for symmetrical 

supply voltage, the unbalanced current is symmetrical. When the supply voltage is asymmetrical, 

the unbalance current is also asymmetrical, however. The name unbalanced only indicates that 

this is the portion of the total current i  which is not associated with the equivalent balanced load 

discussed above. Rearranging the first part of (3.19) yields, 

 b u a r u=    i i i i i i , (3.20) 

meaning decomposition of the load current into the active, reactive and unbalanced currents.  
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If the current components are mutually orthogonal, then, the square of the three-phase 

rms value of the current i  in (3.20) is equal to the sum of squares of the three-phase rms values 

of the current components. The active and the reactive currents are mutually orthogonal to each 

other because of their mutual shift by 90 degrees.  The scalar product of the balanced and the 

unbalanced currents,  

 

  T
b u b b

T T * *
b b b

T T * *
b b

b b

Re{ ( ) }

Re{ }

Re{ ( )}

Re{ ( )}

0

*

*

*

 

.

 

,

Y Y Y

Y Y

Y C C

 

 



 





i i I I I

U I U U

U I U U

  (3.21) 

Thus the balanced and the unbalanced currents are orthogonal as well. Therefore, the current 

three-phase rms values in (3.20) satisfy the relationship, 

 2 2 2 2
a r u=|| || || || || || || || i i i i  . (3.22) 

The load current can thus be decomposed into three orthogonal components associated 

with a distinctive physical phenomenon. The active current ai is associated with the permanent 

flow of the energy from the supply to the load, the reactive current ri  is associated with a phase 

shift between the supply voltage and the load current and the unbalanced current ui is associated 

with the load imbalance. Multiplying (3.22) by the square of the three-phase rms value of the 

supply voltage, 

 2 2 2 2 2 2
a r u=[ ]|| || || || || || || || || || || ||   i u i i i u   (3.23) 

 yields the power equation 

 2 2 2 2
uS P Q D     (3.24) 
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where S  is the apparent power of the load, P  is the active power, Q  is the reactive power and 

uD is the unbalanced power, defined as, 

 
df

u uD || || || || u i  . (3.25) 

Equation (3.24) shows that although the superposition approach at the asymmetrical 

supply voltage failed to provide the orthogonal decomposition of the load current, the CPC 

approach enabled development of the power equations for unbalanced LTI loads supplied with 

asymmetrical voltage. Furthermore, comparing (3.24) with (2.34) in Chapter 2, it is evident that 

the form of the power equation does not change when the supply voltage is asymmetrical. The 

power equation developed in this section is also discussed in [20] 

Illustration 3.1 An unbalanced load is supplied from a source of asymmetrical voltage  as 

shown in Fig. 3.5. Let us calculate the powers and currents of such a load.    

 

Fig. 3.5 Unbalanced load supplied with asymmetrical voltage  

In the circuit given above, the crms values of the supply voltages are R 100VE  ,

S
120100 VjeE   and  T 0 VE  . Also RS infZ  , ST 1 ,Z    and TR 1jZ   . For 

such a supply voltage, the crms value of the positive and negative sequence components 

are 
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R

S

T

p
120

60n

100
66 661 11 1

100 V
3 3 33 331 1 0

* *
j

j* *

.
e

. e

E
U

E
U E

   

   

 


           
                              

. 

The three-phase rms values of these symmetrical components are  

p p p

n n n

3 3 66 66 115 47V=

3 3 33 33 57 73V=

|| || . . || ||

|| || . . || || .

U

U

   

   

e u

e u
 

Symbols p|| ||u and n|| ||u denote three-phase rms values of the symmetrical components 

with respect to artificial zero. They are the same as the positive and negative sequence 

components of the internal voltage e of the distribution system under the assumption 

that the supply voltage is ideal. Thus, the three-phase rms value || ||u  of the supply 

voltage with respect to artificial zero is  

p 2 n 2 2 2115 47 57 73 129 1 V|| || || || || || . . .    u u u . 

The three-phase vector of the load current is  

90

120

75

100

2 Re{ e } 2Re{ 100 e }

193 19

j

j t j j t

j

e

e

. e

 

 

 



 
 
  
 
 
 

i I  A. 

The three-phase rms value of the line current 2 2 2100 100 193 19 239 4 A|| || . .   i  .  

The apparent power of the load is 129 1 239 4 30 9 kVAS || || || || . . .    u i  . 

The crms value of the line voltages with respect to artificial zero are  

R

S

p n 60 19 1

p n 120 120 60 139 1

66 66 33 33 88 19 V

(1 ) 66 66 (1 ) 33 33 88 19 V

j j .

* j j j j .

. . e . e

e . e . e . e

U U U

U U U 

 

     

    

      
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T
p n 120 120 60 120(1 ) 66 66 (1 ) 33 33 33 33 V.* j j j je . e . e . eU U U              

The active and reactive powers of such a load are  

2

2

100 1 10 kW

100 1 10 kvar

P

Q

  

  
 

Thus, the equivalent balanced admittance of the load  

b b b 2
0 6 0 6 S

P jQ
G jB . j .

|| ||
Y


    

u
. 

The active current is  

19 1

R
139 1

a b b S

120
T

19 1

139 1

120

88 19

2Re{ ( )e } 2Re{0 6 e } 2Re{0 6 88 19 e }

33 33

52 91

2Re{ 52 91 e } A

20

j .

j t j t j . j t

j

j .

j . j t

j

. e

G G . . . e

. e

. e

. e

e

U

U

U

  





 





 



 
   
    
   
    

 

 
 
 
 
 
 

i = u= U

 

with the three-phase rms value a b 0 6 129 1 77 46 A|| || G || || . . .   i u . Similarly the 

reactive current is 

R

S

T

70 9

130 9
r b

30

52 91

2Re{ ( )e } 2Re{ 0 6 e } 2Re{ 52 91 e } A

20

j .

j t j t j . j t

j

. e

jB j . . e

e

U

U

U

  

 





 
   
    
   
    

 

i = U , 

with the three-phase rms value r b| 0 6 129 1 77 46 A|| || B | || || . . .    i u and the 

unbalanced current is, 
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135

75
u a r

75

95 2

2Re{( ) e } 2Re{ 95 2 e }A

164 9

j

j t j j t

j

. e

. e

. e

 

 

 



 
 
   
 
 
 

i = I I I  , 

with the three-phase rms value 2 2 2
u 95 2 95 2 164 9 212 88 A|| || . . . .   i . 

The three-phase rms value of the supply current can be calculated using the three-phase 

rms values of the active, reactive and unbalanced currents as,  

2 2 2 2 2 2
a r u 77 46 77 46 212 9 239 4 A|| || || || || || || || . . . .      i i i i , 

which is indeed the same as the current rms value calculated from the line currents, in the 

earlier part of the illustration. 

The active power, 

a 77 46 129 1 10 kWP || || || || . .    i u , 

the reactive power,  

r 77 46 129 1 10 kvarQ || || || || . .    i u , 

and the unbalanced power  

u u 212 9 129 1 27 5 kVAD || || || || . . .    i u . 

The apparent power 

2 2 2 2 2 2
u 10 10 27 5 30 9 kVAS P Q D . .       , 

which has the same magnitude as the apparent power calculated directly using the line 

voltages and currents rms values.  
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The power factor of the load 
10

0 32
30 9

P
.

S .
    . 

3.5 Dependence of the load current components on the load parameters  

The power equation of an LTI load with asymmetrical voltage and currents was presented 

in the previous section. It would be desirable that powers and currents be expressed in terms of 

the load parameters, so that they can be calculated based on the knowledge of the load. More 

importantly, the design of a reactive compensator for the load balancing and reactive power 

compensation requires that the equivalent admittance be expressed in terms of the load 

equivalent parameters. Recalling CPC for LTI loads with sinusoidal and symmetrical voltages 

and currents, presented in Chapter 2, the active and reactive currents are expressed in terms of 

the equivalent admittance eY . At asymmetrical voltages, these quantities are expressed in terms 

of the equivalent balanced admittance bY . The question arises what is the difference between 

these two admittances?   

The complex power of the load in Fig. 3.4 is  

 RS ST TR+ +P jQC = = C C + C  , (3.26) 

where RSC , STC  and TRC are the complex powers for the individual load branches.  

 RS RS RS RS RS RS RS R S R S
* * * 2 2 *= ( 2Re{ })* U U .C U I U I U Y U U      (3.27) 

For a three-phase three wire system, 

 T R S R S R S R S
2 2 2 *= ( )( ) = + +2Re{ }*U U UU U U U U U     . (3.28) 

Replacing the results of (3.28) in (3.27), we get  

 RS RS R S T RS T
2 2 2 2 2(2 +2 ) (2 3 )* *U U U || || U .C Y Y   u   (3.29) 
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Similarly, 

 ST ST ST ST ST R
* * 2 2(2 3 )* || || UC U I U Y  u   (3.30) 

and, 

 TR RT TR TR TR S
* * 2 2(2 3 )* || || UC U I U Y  u  . (3.31) 

Using these results, the equivalent balanced admittance can be written as 

 

RS ST TR

RS ST R TR S

RS ST TR RS T ST R TR S

ST R TR S RS T

b 2 2

2 2 2 2 2 2
T

2

2 2 2 2

2

2 2 2

e 2

+

(2 3 )+ (2 3 ) (2 3 )

2 ( ) 3( )

3( + + )
2

* * **

|| || || ||

|| || U || || U || || U

|| ||

|| || U U U

|| ||

U U U
.

|| ||

C C + CC
Y

Y Y + Y

Y Y + Y Y Y Y

Y Y Y
Y

 

  


   


 

u u

u u u

u

u

u

u
  (3.32) 

The admittance e e e+G j BY  is the equivalent admittance of the load and is equal to 

RS ST TRe + +Y Y Y Y . Equation (3.32) can be rearranged as  

 b e d ,Y Y Y    (3.33) 

where  

 ST R TR S RS T
2 2 2

d e2

3( + + )U U U

|| ||

Y Y Y
Y Y 

u
  (3.34) 

 is called the asymmetry dependent unbalanced admittance. Observing (3.34) it is clear that dY

can have a non-zero value only when the load is unbalanced and the voltage is asymmetrical 

simultaneously. Otherwise dY will be zero. Evidently, when the load is balanced,  
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RS ST TR
e= = = ,

3

Y
Y Y Y  

and therefore, d 0Y  . Also when the voltages are symmetrical,  

R S T

2
2 2 2

3

|| ||
U U U ,  

u
 

and d 0Y  .  

The equivalent balanced admittance bY for the asymmetrical sinusoidal supply voltage 

differs from the equivalent admittance eY for the sinusoidal symmetrical supply by the 

asymmetry dependent unbalanced admittance dY . When the supply voltage is symmetrical dY

becomes zero and bY becomes equal to eY .    

The supply voltages can be expressed in terms of the crms values of the positive and the 

negative sequence symmetrical components as    

 R S T
p n * p n p * n= + , = + , = + .U U U U U U U U U      (3.35) 

Using these relations we can write, 

 

 

 

 

R

S

T

2 p 2 n 2 p n

2 p 2 n 2 p n

2 p 2 n 2 p n

= ( ) + ( ) + 2Re

= ( ) + ( ) +2Re

= ( ) + ( ) + 2Re

*

* *

*

U U U ,

U U U ,

U U U ,

U U

U U

U U





  (3.36) 

Since p p j= U eU   and n n j= U eU  , we can rewrite expression for dY in (3.34) as   

 
      ST TR RS

p n p n p n

d p2 n2

2 Re + Re + Re

+

* * * *

U U

Y U U Y U U Y U U
Y

 
  . (3.37) 
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Let us define the ratio of the negative and the positive sequence components of the 

supply voltages, called the complex coefficient of the supply voltage asymmetry as  

 

n

pn

p

n n j n
( )

p pp j

j jU e U
ae e .

UU e

U
a

U


  



      (3.38) 

Then, 
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  
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  (3.39) 

Using the formulae in (3.39), dY can be rewritten as  

 ST TR RSd 2

2 2 2
[ cos + cos( )+ cos( )]

3 31+

a

a
Y Y Y Y

 
     . (3.40) 

The crms value of the current in line R is equal to  

 

RS R S TR T R

RS R RS S TR T TR R ST R ST R

RS ST TR R RS S TR T ST R

R ST R TR T RS S

R

e

= ( ) ( )

= +  

( )

( ).

I Y U U Y U U

Y U Y U Y U Y U Y U Y U

Y Y Y U Y U Y U Y U

Y U Y U Y U Y U

  

   

     

      (3.41) 

If we express the line voltages in terms of the symmetrical components as shown in 

(3.35), then (3.41) can be rearranged as follows  

 R R RR
pp n n

e=I Y U A U A U    (3.42) 

where, 
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 ST TR RS ST TR RS
p n( ) ( ).* *,A Y Y Y A Y Y Y             (3.43) 

Using similar approach, the crms values of the line currents SI and TI  can be written as  

 
S S TT

T T SS

pp n n
e

pp n n
e

=

= .

I Y U A U A U

I Y U A U A U

 

 
  (3.44) 

The crms values of currents given in (3.42) and (3.44) can be expressed in vector form as  

 

R

S

T

p n p n p n
e .

I

I Y + A U + A U

I

 
 

 
 
  

I U 1 1   (3.45) 

Thus the vector of the unbalanced current is  

 

p n p n p n
u b e b

p n p n p n
e b
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d d
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=
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( ) ( )

.

Y + A U + A U Y
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 



 

   

 

I I I U U

U

U

U U

U U

I I

1 1

1 1

1 1

1 1

1 1

  (3.46) 

The analysis presented above shows that although the form of the power equation for LTI 

loads at asymmetrical supply voltage remains the same as compared to the case with symmetrical 

supply voltage, the equivalent load parameters are affected by the voltage asymmetry. In the case 

of asymmetrical supply, in addition to the equivalent admittance eY , the load also has an 

asymmetry dependent unbalanced admittance dY , which is not constant, but it is dependent on 

the supply voltage asymmetry.  
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Illustration 3.2 Let us calculate the unbalanced current of the load shown in Fig. 3.5 

using the relations developed in the section above.    

The positive and the negative sequence voltage symmetrical components for the circuit in 

Fig. 3.5 were calculated earlier in the chapter. We obtained 

p n 6066 66 V, 33 33 Vj. . eU U
  . 

 The complex coefficient of asymmetry  

n 60
60

p

33 33
0 5

66 66

j
j j. e

ae . e
.

U
a

U




    . 

 The unbalance admittances,  
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The asymmetry dependent unbalanced admittance is equal to  

 

ST TR RSd 2

45

2

2 2 2
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3 31+

2 0 5
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Thus, the crms value of the load unbalanced current is  

p n p n p n
u d
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95 28

95 28 A

164 9

j .

j

j

. e

. e

. e

 

 



 
 
 
 
 
 

 

and the three-phase rms value of the unbalanced current 

2 2 2
u 95 28 95 28 164 9 212 95A|| || . . . .   i , 

which is the same as the value calculated in Illustration 3.1.  

3.6 Reactive compensation 

The active current is associated with the permanent energy transfer between the supply 

and the load. In other words, it is the portion of the load current related to the active power of the 

load. The reactive and the unbalanced currents are superfluous currents which increase the 

supply current rms value and consequently, increase the energy losses at delivery. Thereby, they 

cause a decline of the power factor. Compensation of these currents is needed for an 

improvement of the power factor.  Similar to the case when the supply voltage was symmetrical, 

a lossless shunt compensator of the delta structure, as shown in Fig. 3.6, can be used for 

compensation of the reactive and unbalanced currents.  

Let us assume that such a balancing compensator is composed of lossless reactance 

elements. It can have a either an inductor or a capacitor in each branch, with susceptances RST ,

STT and TRT . An inductor may be added in series to the capacitor to avoid resonance with the 

source inductance. The balancing compensator serves two main purposes: 

- balances the system  

- compensates the reactive power of the load. 
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Fig. 3.6 Three-phase LTI load with balancing reactive compensator 

The compensator reactances are chosen such that the load with the compensator is balanced and 

purely resistive. 

If the compensator branch susceptances are RS STT , T and TRT , then the unbalanced 

admittances CC
p n,A A  and CdY  of the compensator can be found using similar approach as that 

used for the calculation of the unbalanced admittances of the load, namely  
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C ST TR RS

C ST TR RS
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d 2
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2 2 2
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3 31+

*

*

j T T T

j T T T

j a
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a
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Y
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 

 
  

   

   

 
   

 

  (3.47) 

The total reactive power of such a compensator is  

 C RS RS ST ST TR TR
2 2 2

b ( )Q T U +T U +T U   . (3.48) 

The negative sign in (3.48) is in accordance to the convention that the reactive power of 

the inductor is positive and that of the capacitor is negative. Also, if the element in the branch is 
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capacitive, its susceptance is positive while if the element is an inductor, the susceptance is 

negative.   

If CbB is the equivalent susceptance of the compensator, then the total reactive power of 

the compensator, C C
2

b bQ B || ||  u . Using this relation, (3.48) can be re written as   

 RS RS ST ST TR TR
C

2 2 2

b 2

T U +T U +T U
B

|| ||


u
 . (3.49) 

Such a compensator draws reactive current with crms value 

 C Cr bj BI U  . (3.50) 

Recalling equation (3.17), the reactive current of the load is associated with the 

equivalent balanced admittance bY , in particular the equivalent balanced susceptance bB . Since 

the compensator is in parallel with the load, the equivalent susceptance of the load and the 

compensator is  Cb bB B . The crms value of the total reactive current of the load and the 

compensator is   

 C Cr r b bj B jB   I' I I U U  . (3.51) 

Such a compensator reduces the reactive current to zero under the condition that 

 Cb b 0B B    (3.52) 

The susceptance related equations (3.49) and (3.52) can be combined and rearranged as 

 RS RS ST ST TR TR
2 2 2 2

bT U +T U +T U B || ||  u  . (3.53) 

The vector of crms values of the unbalanced current of the compensator is  

 C C CC
pn p n p n p n

Cu d d( ) ( )A U Y A U Y   I U U1 1  , (3.54) 
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and the unbalanced current of the source is the sum of the unbalanced currents of the load and 

the compensator, i.e.,  

 

C

C C CC

C CC

C CC

u u u

pn p n p p n p n n p n p n p n
d d d d

pn p p n p n n p n
d d

pp n p n n p n
d d

=( )+( )+( )+( )

=( )( )+( )( )+( )( )

=( ) +( )( )+( )( ).
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   

  

'
I I I

U U U U

U U

U

1 1 1 1

1 1

1 1   (3.55) 

Hence, the unbalanced current of the source given in (3.55) is reduced to zero under the 

condition that   

 C CC
p p n p n n p n

d d( ) ( )( ) ( )( ) 0Y Y A A U A A U     U 1 1  . (3.56) 

This equation for the current three-phase vector components has to be satisfied for each phase 

separately. In particular, for phase R, the following equation has to be satisfied,  

 C CC
p p p n n n

d d R( ) ( ) ( ) 0Y Y U A A U A A U       . (3.57) 

Equation (3.57) contains complex quantities and therefore, to be valid, it has to satisfy the 

condition for both the real and the imaginary parts, thereby leading to two equations. These two 

equations combined with (3.53) provide three linear equations with three unknowns, namely 

RS STT , T  and TRT . Solution of these equations provide the compensator branch susceptance 

values which will reduce both the reactive and unbalanced currents to zero, and improve the 

power factor to unity.  

The three abovementioned equations are  

 

RS RS ST ST TR TR

C CC

C CC

2 2 2 2
b

p p p n n n
d d R

p p p n n n
d d R

Re{( ) ( ) ( ) } 0

Im{( ) ( ) ( ) } 0

T U +T U +T U B || ||

.

Y Y U A A U A A U

Y Y U A A U A A U

 

     

     

u

  (3.58) 
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The last two equations of (3.58) contain complex quantities and some rearrangement is needed 

before they can be easily used for the calculation of the compensator susceptances. 

Dividing (3.57) by p
U yields,  

 C CC
p p n n

d d( )(1+ ) ( ) ( ) 0j jae ae .Y Y A A A A
         (3.59) 

The parameters dY , pA and nA in the above equation can be obtained if the voltages, 

currents and the load impedances are given. On the other hand, C C
p

d ,Y A  and C
nA  are unknowns 

that we need to solve for.  To reduce the complexity of the analysis, we can break (3.59) into two 

portions such that one of them consists the unknown compensators parameters and the other 

contains the given load parameters. Rearranging (3.59) yields, 

 C C C
pn p n

d d(1+ ) (1+ ) 0j j j jae ae ae aeY A A A Y A
         .  (3.60) 

The first part of equation (3.60)  

 C ST TR RSd 1 2 3(1+ ) ( + + )(1+ )j jae c T c T c T aeY
    (3.61) 

where, 

 

1 2

2 2

3 2
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2 cos( 2 3)
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2 cos( 2 3)
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a
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 
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
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


  (3.62) 

Similarly, 

 C ST TR RS
n ( )j * ja e j T T T a eA

        (3.63) 

and, 
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 ST TR RSC
p

( )*j T T TA       . (3.64) 

Using equations (3.61) to  (3.64) , equation (3.60) can be rearranged to the form  

 RS ST TR1 2 3 4+ + + =0T T TF F F F   (3.65) 

where, 
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  (3.66) 

Equation (3.65) has to be satisfied for both the real and the imaginary parts, thus, 

 RS ST TR

RS ST TR

1 2 3 4

1 2 3 4

Re + Re + Re +Re =0

Im + Im + Im +Im =0

T T T

T T T

F F F F

F F F F
  (3.67) 

Equation (3.53) and the two equations in (3.67) can be used as the three linear equations to solve 

for the three unknown variables RST , STT and TRT . They can be rewritten in matrix form as  

 
RS ST TR RS

ST

TR

2 2 2 2
b

1 2 3 4

1 2 3 4

Re Re Re Re

Im Im Im Im

U U U T B || ||

T

T

F F F F

F F F F

    
    

     
         

u
  (3.68) 

Equation (3.68) is referred to as the compensator equation and can be used to solve for the 

compensator susceptances RS STT ,T and TRT . 

Illustration 3.3 Let us design a compensator to improve the power factor of the load 

shown in illustration 3.2. A shunt compensator of the delta structure as shown in Fig. 3.6 

can be used for compensation of the power factor. The compensator branch susceptances

RST , STT and TRT can be calculated using (3.68).  
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The line to line voltages with respect to artificial zero are  
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The square of the magnitudes of these line to line voltage crms values are 
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Next,  
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The compensator equation,  
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has the values,  
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Solving the above equations we get, 
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TR
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0 693 S

2 039

T .
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. 

The structure of the compensator should be as shown in Fig 3.5. If 377  rad/sec, then 

the compensator branch RS has an inductor LRS = 4.59 mH, branch ST has a capacitor 

CST = 1.84 mF and branch TR has a capacitor CTR = 6.35 mF.  

The equivalent admittance of the compensator plus the load in parallel is '
e 1 1 155 Sj .Y      

Equivalent balanced admittance after compensation '
b 0 6S.Y  . 

Therefore, ' '
b b0 6 S, =0 SG . B . Hence, 
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a b r b77 46A 0A' '|| || G || || . , B || ||     i u i u . 

The unbalance admittances of the compensator, 
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The unbalanced current after compensation, 
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u 0 A'|| || i , 

 and this result confirms numerical correctness of the compensator design. 

The powers after compensation are equal to,  

a

r

u u

10kW

0

0

' '

' '
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P || || || || ,

Q || || || ||

D || || || || .

  

  

  

i u

i u
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Thus, 10KVA'S   and the power factor after compensation 1
'

'

'

P

S
     

Hence, the compensator completely compensates the reactive and the unbalanced 

currents and improves the power factor to unity. 

The results obtained above are illustrated in Fig. 3.7. Note that the supply current after 

compensation is not symmetrical. In fact, it has the same asymmetry as that of the supply 

voltage referred to an artificial zero. The load and compensator draw just the active 

current from the source, and the current is proportional to the supply voltages referenced 

to artificial zero. The design of the reactive compensator presented above is also 

discussed in [21] and its industrial application is discussed in [22].  
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Fig. 3.7 Unbalanced load with a reactive compensator  

3.7 Conclusion 

The power equation of LTI loads at sinusoidal but asymmetrical supply voltage was 

developed using the Currents Physical Components (CPC) based load current decomposition in 

this chapter. The form of the power equation at asymmetrical voltage is the same as the one at 

symmetrical voltage. Moreover, the load current contains the same current components. 

However, the parameters on which the powers and the current components depend upon have 

changed. At symmetrical voltage, the currents were dependent on just the equivalent load 

admittance eY , while at voltage asymmetry, they are dependent on the equivalent balanced 

admittance bY , and the asymmetry dependent unbalanced admittance dY , both of which are 

dependent on the supply voltage asymmetry. The CPC based current decomposition also enabled 

the design of a reactive compensator which completely compensates the reactive and unbalanced 

currents and improves the power factor to unity. It is seen that the structure of such a reactive 

compensator is not affected by voltage asymmetry.    
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CHAPTER 4: POWERS AND REACTIVE COMPENSATION OF 

UNBALANCED LTI LOADS WITH NONSINUSOIDAL AND 

ASYMMETRICAL VOLTAGES AND CURRENTS 

4.1 Introduction 

A power theory describes only properties of the energy flow in the cross section of a 

power system with a model simplified with various reasonable assumptions. The accuracy of 

such a model can be improved by removing the assumptions step by step. The commonly known 

power equation  

 2 2 2S P +Q   (4.1) 

is valid only at the assumption that the voltages and currents are sinusoidal and symmetrical. 

Such an assumption is not always valid because the internal voltage of the modern distribution 

system can be asymmetrical and distorted. In order to correctly describe power properties of any 

load, or for accurate metering, the correct power equation of the load has to be developed for the 

given operating conditions. Therefore, it is important to develop the power equation to describe 

the power properties of LTI loads at voltage asymmetry and distortion. The power equation of 

LTI loads at asymmetrical but sinusoidal voltage was developed in Chapter 3. In this chapter, the 

assumption that the supply voltage is sinusoidal is also abandoned, and the power equation of 

LTI loads is developed at nonsinusoidal asymmetrical (N&A) supply voltage.  

Recalling Chapter 3, load current decomposition was first done based on the 

Superposition Principle. That approach was unsuccessful, however, because such a current 

decomposition did not result in orthogonal components associated with a distinct physical 

phenomenon. The next approach was the Current’s Physical Components (CPC) based load 

current decomposition, which enabled the development of the power equation for such a load. It 
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also enabled the design of a reactance compensator that reduced completely the reactive and 

unbalanced currents and improved the power factor to unity. This chapter is a continuation in the 

same direction as the previous one, except it is assumed that the supply voltage can be 

nonsinusoidal. The power theory of LTI loads at N&A voltages and currents is presented here 

and the theory is used for the design of a reactance compensator for power factor improvement. 

4.2 Power equation of LTI loads at nonsinusoidal and asymmetrical supply voltage 

The internal voltage of the distribution system, expressed in a form of a three-phase 

vector e = [eR, eS, eT]T, is assumed to be N&A. Therefore, in addition to the voltage symmetrical 

components of the positive and the negative sequence, it can also have a component of the zero 

sequence, i.e. it can be expressed in the form 

   p n z p n z
n ( )n n n

n n

t

N N 

       =e e e e e e e e   (4.2) 

 The zero sequence component ze of the internal voltage cannot cause current in three-

wire system, but nevertheless, it increases the supply voltage rms value; thereby increasing the 

apparent power S and reducing the power factor. Even a balanced resistive load supplied with a 

voltage containing the symmetrical component of the zero sequence will have a power factor 

lower than one. To avoid this, the zero sequence component of the supply voltage has to be 

eliminated by referencing the voltage to an artificial zero as shown in Fig. 4.1. Such a voltage 

referred to an artificial zero contains symmetrical components only of the positive and the 

negative sequence at the load terminal. 
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Fig. 4.1 LTI load supplied from a source with the voltage referenced to artificial zero 

Let u denote a three-phase vector of the line voltages at the load terminals, such that 

   p n p n( )n n n
n n

t

N N 

     =u u u u u u  . (4.3) 

The crms values of the symmetrical components of the supply voltage harmonics p
nU  and 

n
nU are calculated using the formula,  

 

R

S

T

p

n

11

13

n
n

n

n
n

*

*

U
U

U
U U

 

 

                   

. (4.4) 

  When the supply voltage is symmetrical, then the constituent harmonics are also 

symmetrical and of a specified sequence. Harmonics of the order n = 3k + 1 are of the positive 

sequence; harmonics of the order n = 3k 1 are of the negative sequence and the harmonics of 

the order n = 3k are of the zero sequence, which are eliminated if the supply voltage is referred to 

an artificial zero. When the supply voltage is asymmetrical, this property is no longer valid, 

however. In particular, the third order harmonic can exist both in the supply voltage and in the 

load current, because when the supply voltage is asymmetrical, the third order harmonic is not 
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exclusively zero sequence. It can contain symmetrical components of the positive and the 

negative sequence.  

A N&A voltage can be represented in the form of a three-phase vector as 

 

  1

1

R R

S S

T T

( )

( ) 2 Re

( )

2 Re

n
jn t

n n
n n

n

jn t
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u t

t u t e

u t

e .

N N

N

U

U

U





 



  
  

  
  
     



 



u u

U   (4.5) 

The above vector can be expressed in terms of the crms values of the positive and the negative 

sequence voltage symmetrical components p
nU  and n

nU as follows, 

 

1

1 1
p n p p n n

( ) 2 Re

2 Re ( ) 2 Re ( )

jn t
n n

n n

jn t jn t
n n n n

n n

t e

e e .
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

 

 

 

 

   

 

 

u u U

U U 1 1   (4.6) 

The vectors p
1 and n

1  are three-phase vectors defined as  

 
df. df.

p n

1 1
*

*

, 

 

   
   

    
   

  

1 1   (4.7) 

and illustrated as  

 

Fig. 4.2 Symmetrical three-phase unit vectors 1P and 1n  
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It is to be noticed that the superscripts p and n are used to denote the sequence of a quantity in 

this text, while the subscript n is used to denote the harmonic order. The symbol n
nu , for example 

denotes the negative sequence voltage symmetrical components of the nth harmonic order while 

p
nu  denotes the positive sequence voltage symmetrical component of nth harmonic order.     

Let us assume that an unbalanced LTI load supplied from an asymmetrical and distorted 

voltage has the active power P. Such a load as shown in Fig. 4.3(a) is equivalent with respect to 

active power P to a balanced resistive load as the one shown in Fig. 4.3(b). 

 

Fig. 4.3 A three-phase load (a) and a balanced resistive load (b) equivalent with respect to the active power P 

The phase conductance of such a balanced resistive load is  

 b 2

P
G

|| ||


u
  (4.8) 

where u denotes the three-phase rms value of the supply voltage and can be calculated as  

 R S T
2 2 2|| || ||u || ||u || ||u ||  u  . (4.9) 

 The current of such an equivalent load is  

 1
p p n n

a b b2 Re ( ) jn t
n n

n K

G G eU U




  i u 1 1  , (4.10) 

 and is referred to as the active current, due to its association with the active power P of the load.  
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Analysis of LTI loads presented in Chapter 3 was confined to asymmetrical and 

sinusoidal (A&S) voltages and currents. The only difference from that to this chapter is that the 

voltage is not only asymmetrical but can also be distorted. Since the different order harmonics 

are orthogonal to one another, the current response of the load to such an asymmetrical and 

distorted voltage can be calculated independently for each harmonic order; for which the supply 

voltage is sinusoidal and of the nth harmonic frequency. 

At each harmonic frequency, the load has active and reactive powers that can be 

calculated using the line currents and voltages of that particular frequency. In general, for the nth 

harmonic order,   

 T TRe{ } Im{ }* *
n n n n n nP , Q U I U I   (4.11) 

Although the load can be unbalanced for the nth order harmonic, but with respect to the 

active and reactive powers nP  and nQ  at voltage nu , such a load is equivalent to a balanced 

load as shown in Fig. 4.4.  

 

Fig. 4.4 A balanced load equivalent to the original load with respect to Pn and Qn for the nth harmonic order  

and has the phase admittance 

 b b b 2 2

*
n n n

n n n

n n

P jQ
G jB

|| || || ||

C
Y


   

u u
  (4.12) 
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where || ||nu is the three-phase rms value of the nth order harmonic of the supply voltage and is 

equal to   

 R S T
2 2 2|| ||n n nnU U U  u  . (4.13) 

The line current of the balanced load shown in Fig. 4.4 is composed of the active current 
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1

p n
a b b

p p n n
b
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                     = 2 Re{ ( ) }

jn t
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jn t
n n n
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G e

+

U + U





 i u

 

U  U

1 1
 (4.14) 

and the reactive current 

 

1

1

p n
r b b

p p n n
b

( + ) 2 Re{ ( ) } = 
4

                              = 2 Re{ ( ) }.

jn t
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jn t
n n n

T
B t jB e

n

jB e

+

U + U





 i u

 

U  U

1 1

  (4.15) 

The admittance bnY  defined above is the admittance of the equivalent balanced load for 

the nth order harmonic, equivalent to the original load for that harmonic order with respect to the  

powers nP  and nQ . However, the load for the nth harmonic order can be unbalanced, and 

consequently, the current of such a load will also contain the unbalanced current 

 
1

u b a r

p p n n
n b

( )

      = 2 Re{[ ( )] }.

n n n n n n

jn t
n n n eY U + U



     



i i i i i i

 I 1 1
  (4.16) 

Thus the total current for the nth order harmonic, is the sum of the active, reactive and 

unbalanced currents mentioned above, namely, 

 a r un n n n= + +i i i i   (4.17) 

and the total load current, which is the sum of the currents for all the harmonic orders, is equal to  
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R

S

T

a r u

( )

( ) ( ) ( ) = ( )

( )

n n n n
n N n N

i t

t i t t + + .

i t  

 
 

  
 
 

 i i i i i   (4.18) 

Since the active current defined in (4.10) is responsible for permanent energy transfer the 

remainder of the current in (4.18) is undesirable, and can be calculated as  

 

a a r u a

a a r u

s r u

( ( ))n n n
n N

n n n
n n n

+ +

.

N N N



  

  

   

  



  

i i i i i i

i i i i

i i i   (4.19) 

The current  

 1
p p n n

r r b2 Re ( )
jn t

n n n n
n N n N

jB eU + U


 

  i i  1 1   (4.20) 

is a reactive current which occurs in the lines because of the mutual phase shift of the load 

current with respect to the supply voltage. Similarly the current,  

 u un
n N

 i i   (4.21) 

is an unbalanced current. It occurs due to the unbalance of the load for the harmonic frequencies. 

The current 

 1
p p n n

a a b b s2 Re ( )( )
jn t

n n n n
n N n N

G G eU + U


 

    i i  i1 1   (4.22) 

is the scattered current and it occurs because the equivalent balanced conductance bG of the load 

differs from the equivalent balanced conductance bnG for the harmonic frequencies. Formula  

(4.19) can be written as   

 a s r u .   i i i i i   (4.23) 
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The load current is decomposed into four components, each associated with a distinct physical 

phenomena in the load. The active current ai is associated with the permanent energy delivery to 

the load with active power P. The scattered current si is associated with the change of the load 

conductance with the harmonic order. The reactive current ri is associated with the phase shift 

between the load current and the supply voltage, and the unbalanced current ui is associated with 

the load unbalance.  

The square of the rms value of the load current i in (4.23) is equal to the sum of squares 

of the rms values of the current components if the current components in (4.23) are mutually 

orthogonal.  

 Mutual orthogonality of two quantities can be verified based on the value of their scalar 

product. To be more specific, two currents are mutually orthogonal if their scalar product  

 T
x y x y

0

1
( , ) ( ) ( )

T

t t dt
T

 i i i i   (4.24) 

 is equal to zero. Because quantities of different harmonic orders are mutually orthogonal, the 

three-phase rms value of each of the currents components above can be calculated using the sum 

squares of the particular current component for all the harmonics, viz., 

 

2 2 2
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2 2 2
s s b b
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=
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  (4.25) 
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 The mutual orthogonality of the active, reactive and unbalanced currents for sinusoidal 

system was proven in Chapter 3. These proofs also apply to the different harmonic orders. 

Therefore, the active, reactive and unbalanced current components of the nth order harmonic of 

the load current, specified in (4.17) are mutually orthogonal, i.e., 

 a r a u r u( , ) 0 ( , ) 0 ( , ) 0n n n n n n, ,  i i i i i i   (4.26) 

 The current in (4.18) is the sum of the harmonics in (4.17). Since the currents of different 

harmonic orders are orthogonal, it implies that the scalar product of two currents is the sum of 

the scalar product of the current harmonics, namely, 

 x v x v
N

( , ) ( , )n n
n

 i i i i  . (4.27) 

This means that if two current components are orthogonal for all harmonics of orders n, these 

current components are orthogonal to one another, viz.,  

 x v x v( , ) 0 ( , ) 0n n   i i i i .  (4.28) 

 The relations in (4.26) and (4.28) imply that the current components in (4.18) are mutually 

orthogonal. Hence,  

 2 2 2 2
a r u| n

n N

|| | || || || || || ||



  i i i i  . (4.29) 

Since 

 a a sn
n N

  i i i   (4.30) 

the currents in (4.23) are mutually orthogonal if the currents ai  and si  are orthogonal. Indeed, 

the scalar product of these two currents,  
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  (4.31) 

 Therefore, 

 2 2 2 2 2
a s r u| | | | || || | || | || | || | ||   i i i i i  . (4.32) 

 Multiplying (4.32) by the square of the three-phase rms 2|| ||u of the supply voltage 

2 2 2 2 2 2 2
a s r u| | | [ | | | | ]| || | || | || | || | || | || | ||     u i u i i i i  , 

yields the power equation 

 2 2 2 2 2
s uS P D Q D      (4.33) 

where, 

| |S | || | || u i  is the apparent power of the load,  

a| |P | || | || u i  is the active power of the load and is associated with permanent energy transfer 

between the supply and the load, 

s s| |D | || | || u i  is the scattered power. It is associated with the change in the load conductances 

with the harmonic order, 
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r| |Q | || | || u i  is the reactive power of the load. It is associated with the phase difference 

between the supply voltage and load current harmonics  

and u u| |D | || | || u i  is the unbalanced power. It is associated with the load imbalance. 

The power factor   of the load shown in Fig. with the different powers as depicted in (4.33) is  

 
2 2 2 2

s u

P P

S P D Q D

  

  

 . (4.34) 

Illustration 4.1 An unbalanced load is supplied from a source of asymmetrical and 

nonsinusoidal voltage as shown in Fig. 4.5.  

The supply voltages are equal to  
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Let us calculate the powers and currents of such a load.  

 

Fig. 4.5 Unbalanced LTI load supplied from a three-phase source of nonsinusoidal and asymmetrical voltage   

The supply voltage is asymmetrical and it contains the 5th and the 7th order voltage 

harmonic components. The crms values of the supply voltage harmonics are as following  
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The impedances for the different harmonic orders are as following: 
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The positive and the negative sequence voltage components are equal to  
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The three-phase rms values of the supply voltage harmonics w.r.t. artificial zero can be 

calculated as following   

p p p
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and similarly, 

5 73 83 V,                     4 0 V|| || . || || . u u . 

Thus, the three-phase rms value of the supply voltage is equal to  
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2 2 2
1 5 7 129 22 V|| || || || || || || || .   u u u u  . 

The waveform the line currents with respect to artificial zero is equal to  
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Hence, the three-phase current rms values for the different harmonic orders are  
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Thus, 2 2 2
1 5 7 131 6 A|| || || || || || || || .   i i i i  and, 

the apparent power of the load | | 129 2 131 6 17 kVA.S | || | || . .    u i    

The active power P of the load is 10 kW. 

Thus, the equivalent conductance of the load, b 2 2
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The equivalent balance admittance for the n harmonic orders are  
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For the given circuit, we have  

a s r u| 77 4 A, | 3 13A, | 41 41 A, | 97 98A.| || . | || . | || . | || .   i i i i  

Therefore, the load current three-phase rms value calculated using the CPC currents is    

2 2 2 2
a s r u| | | | 131 58A| || | || || || | || | || .    i i i i i  
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which is the same as the current three-phase rms value calculated using the line currents 

above. Therefore,  

the active power a| | 129 22 77 4 = 10 kW.P | || | || . .   u i   

the scattered power s s| | 129 22 3 13 = 0 41 kVAD | || | || . . .   u i   

the reactive power r| | 129 22 41 4 = 5.35 kVarsQ | || | || . .   u i   

the unbalance power u u| | 129 22 97 98 = 12.67 kVAD | || | || . .   u i   

and the apparent power is 

2 2 2 2 2 2 2 2
s u 10 0 41 5 35 12 67 17 kVAS P D Q D . . .         . 

The power factor of the load, 
10

0 59
17

P
.

S
    .   

4.3 Dependence of powers on load parameters  

The power equation (4.33) describes how the apparent power constitutes of various 

powers each associated with a distinct physical phenomenon. It is adequate for describing the 

power properties of a circuit. Since some of the powers in (4.33) and their associated currents are 

undesired, it is logical to view the equation from the perspective of compensation, however. In 

that regard, (4.33) does not provide the necessary information about the circuit. To enable the 

design of a compensator, the currents and powers should be represented in terms of the load 

parameters.   

The complex power of the branch RS for the nth harmonic order is equal to 

 
RS RS RS RS RS

RS R S R S

* 2

* 2 2 *( 2Re{ }).

*
n n n n n

n n n n n

U

U U

C U I Y

Y U U

 

  
  (4.35) 
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For a three wire system,  

 T R R R R R S R S
2 2 2 *( )( ) 2Re{ }*

n n n n n n n n nU U UU U U U U U         . (4.36) 

Replacing the value of R S
*2Re{ }n nU U in (4.35) we get,  

 RS RS R S T

RS T

* 2 2 2

* 2 2

(2 2 )

= (2 | 3 ).

n n n n n

n n n

U U U

| || U

C Y

Y

  

u
 (4.37) 

Similarly, 

 ST ST R

TR TR S

* 2 2

* 2 2

(2 | 3 )

(2 | 3 ).

n n n n

n n n n

| || U

| || U

C Y

C Y

 

 

u

u
  (4.38) 

The total complex power of the nth harmonic order is the sum of the complex powers of each of 

the branches in the equivalent delta configuration, namely  

 RS ST TRn n n nC C C C    . (4.39) 

The admittance of the equivalent balanced load for the nth harmonic order, which has the 

same active and reactive powers as the original load for the same harmonic is  
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  (4.40) 

 where,  
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 ST R TR S RS T
2 2 2

d e2

3
( )

|
n n n n n n n n

n

U U U
| ||

Y Y Y Y Y   
u

  (4.41) 

is called the asymmetry dependent unbalanced admittance for the nth harmonic order. It can 

have a nonzero value only when the supply voltage for the nth order is asymmetrical and 

simultaneously the equivalent load for the nth order is unbalanced.  

The crms values of the line voltages for the nth order harmonic, expressed in terms of the 

crms values of the symmetrical components of positive and negative sequence are  

 

R

S

T

p n

p n

p n

and

n n n

n n n

n n n

,

*

* .

U U U

U U U

U U U

 

 

 

 

 

  (4.42) 

This gives,  

 

R

S

T

2 p 2 n 2 p n

2 p 2 n 2 p n

2 p 2 n 2 p n

( ) ( ) 2Re{( ) }

( ) ( ) 2Re{ ( ) }

( ) ( ) 2Re{ ( ) }
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n n n n n

* *
n n n n n
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n n n n n

U U U
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U U

U U

U U





  

  

  

  (4.43) 

where pp p j
n nU e nU


  and nn n

n n 
j

U e nU


 .  

Let na be defined as the complex coefficient of the supply voltage asymmetry, such that  

 
n

p
nj n

n n

n

a e .
U

a
U


    (4.44) 

Using (4.43) and (4.44),formula (4.41) can be rearranged as  

 ST TR RSd 2

2 2 2
[ cos cos( ) cos( )]

3 31

n
n n n n n n n

n

a

a
Y Y Y Y

 
      


 . (4.45) 
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If coefficient na is zero in the above equation, meaning that the supply voltage for the nth order is 

symmetrical, then d nY is zero. Similarly if ST TR RSn n nY Y Y  , meaning that the equivalent delta 

load for the nth order is balanced, then also dnY is zero. Hence the name asymmetry dependent 

unbalanced admittance.    

The crms of the line current in R for the nth order harmonic is  

R RS ST

RS R S TR T R

RS R RS S TR T TR R ST R ST R
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p p pn n n

p pn n
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     

        

      RR

R ST TR RS ST TR RS RR

R RR

p n

p n
e

pp n n
e

( )

( ) ( )

n nn

* *
n n n n n n n n nn

n n n n nn

U U

Y U Y Y Y U Y Y Y U

Y U A U A U

   



      

     (4.46) 

where, 

 ST TR RS ST TR RS
p n( ) ( )* *
n n n n n n n n,A Y Y Y A Y Y Y            . (4.47) 

Similarly, 

 
S S TT

T T SS

pp n n
e

pp n n
e

n n n n n nn

n n n n n nn .

I Y U A U A U

I Y U A U A U

  

  

 (4.48) 

The crms of the currents in equations (4.46) and (4.48) can be presented in the vector form as  

 

R

S

T

p n p n p n
e

n

n n n n n n n n

n

I

I Y A U A U

I

 
 

   
 
  

I U 1 1   (4.49) 
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where p
1 and n

1 are the unit vectors of the positive and the negative sequences respectively, 

defined earlier in the chapter.    

The vector of the crms of the unbalanced current is 

 p n p n p n
u b e b( )n n n n n n n n nY Y A U A U     I I I U 1 1  . (4.50) 

4.4 Reactive compensation  

4.4.1 Design of shunt reactive compensator  

Recalling equation (4.17), the current for the nth harmonic order is  

 a r un n n n= + + ,i i i i   (4.51) 

where a ni , r ni and u ni  are the active reactive and unbalanced components of the nth order load 

current harmonic respectively. The active current a ni is responsible for the permanent energy 

transfer between the source and the load. The currents r ni and u ni are surplus currents. To 

minimize the losses in the lines and to eventually improve the power factor it is desirable that 

only the active current be supplied from the distribution system.  This can be done by connecting 

a shunt compensator of the delta structure as shown in Fig. 4.6.  

The shunt compensator in Fig. 4.6 is composed of lossless reactance elements and can 

have either an inductor or a capacitor in each branch. The elements of the compensator are 

chosen such that the load with the compensator is balanced and purely resistive. 
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Fig. 4.6 LTI load with a reactive compensator  

If the compensator branch susceptances are RS STn nT , T and TR nT for the nth harmonic 

order, then it has the unbalanced admittances  
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3 31+
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 
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   
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 
   

 

  (4.52) 

The reactive power of the compensator for the nth harmonic order is  

 C C
2

b bn n nQ B || ||  u   (4.53) 

where CbnB is the equivalent susceptance of the compensator for the nth harmonic order. Thus,  

 C RS RS ST ST TR TR
C

2 2 2
b

b 2 2
n n n n n nn

n

n n

Q T U +T U +T U
B .

|| || || ||


 

u u
  (4.54) 

The compensator draws the reactive current with the crms value  

 C Cr bn n nj B .I U   (4.55) 

The crms value of the reactive current of the load and the shunt compensator is  
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 C Cr r b bn n n n n nj B j B   I' I I U U   (4.56) 

and it is reduced to zero under the condition 

 Cb b 0n nB B .    (4.57) 

Combining the equations (4.54) and (4.57) yields, 

 RS RS ST ST TR TR
2 2 2 2

bn n n n n n n nT U +T U +T U B || ||  u  . (4.58) 

The vector of the crms values of the unbalanced current of the compensator is 

 C C CC
p n p p n p n n

Cu d d( ) ( )nnn n n n n n nA U Y A U Y   I U U1 1  . (4.59) 

The crms value of the unbalanced current of the load and the shunt compensator is 
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1 1

1 1

1 1   (4.60) 

and is reduced to zero under the condition 

 C CC
p p n p n n p n

d d( ) ( )( ) ( )( ) 0nnn n n n n n nY Y A A U A A U     U 1 1  . (4.61) 

This equation has to be satisfied for all three-phases, therefore, in particular for phase R, 

 C CC
p p p n n n

d d R( ) ( ) ( ) 0nnn n n n n n nY Y U A A U A A U       . (4.62) 

The above equation contains complex quantities and therefore it provides two equations, one for 

the real parts and the other for the imaginary parts. These two equations combined with equation 

(4.58) provide three linear equations with three unknowns RS STn nT , T and TR nT , viz. 
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  (4.63) 

 The last two equations above and can be further simplified. Dividing (4.62) by p
nU  yields, 

   C CC
pj jp n n

d d( )(1+ ) ( ) ( ) 0n n
nnn n n n n na e a eY Y A A A A

 
       . (4.64) 

The equation can be rearranged by separating the known and the unknown quantities as 

  C CC
pj j j jn p n

d d(1+ )+ ( )+ (1+ )+ ( ) = 0n n n n
nnn n n n n n n na e a e a e a eY A A Y A A
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   . (4.65) 

The first part of the equation above can be rewritten as   

 C ST TR RSd 1 2 3(1+ ) ( + + )(1+ )n n
n n n

j j
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   (4.66) 

where, 
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  (4.67) 

and, 
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  (4.68) 

Equation (4.65) can therefore be rewritten as  

 RS ST TR1 2 3 4+ + + = 0n n nn n n nT T TF F F F   (4.69) 
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with, 
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  (4.70) 

Equation (4.69) contains both real and imaginary terms, and therefore, we can write  

 RS ST TR

RS ST TR

1 2 3 4

1 2 3 4
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Im{ + + + }= 0
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n n n
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  (4.71) 

The equations in (4.71) along with (4.58) provide the three linear equations with three unknown 

quantities. These equations can be written in matrix form as  
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u
  (4.72) 

also known as the compensator equation and it can be used to solve for the compensator 

susceptances RSnT  , STnT and TR nT . It is to be noted that such a balancing compensator only 

compensates the reactive and the unbalanced currents. It does not affect the scattered currents in 

any way. Hence, such a shunt compensator cannot improve the power factor to unity. 

Illustration 4.2 Design of a reactive compensator.  

Let us design a reactive compensator to compensate the reactive and the unbalanced 

currents of the load shown in Fig. 4.5 in Illustration 4.1.    

We obtained from the previous illustration that  
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The asymmetry dependent unbalance admittance  
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The square of the magnitudes of these line to line voltage crms values are 
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We obtained earlier that 1|| ||u =129.1 V. Thus 2 2
1 16667 V|| || u . 

Similarly 2 2
5 14 67 V|| || .u and 2 2

7 16 0 V|| || .u . 
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The coefficients,  
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The compensator equation for the fundamental frequency,  

RS1 ST1 TR1 RS1

ST1

TR1

2 2 2 2
b1 1

11 21 31 41

11 21 31 41

Re ( ) Re ( ) Re ( ) Re( )

Im ( ) Im ( ) Im ( ) Im( )

U U U T B || ||

T

T

F F F F

F F F F

    
    

     
         

u
 

has the values,  

RS

ST

TR

30000 10000 10000 10000

0 519 0 2598 0 2598 0 13

0 0 75 0 75 0 64

T

. . . T .

. . T .

     
     
  
     
          

 

Solving the above equations we get, 

RS1

ST1

TR1

0

0 173 S

0 67

T

T .

T .

   
   

 
   
      

. 

Similarly, solving the compensator equation  

RS5 ST5 TR5 RS5

ST5

TR5

2 2 2 2
b5 5

15 25 35 45

15 25 35 45

Re ( ) Re ( ) Re ( ) Re( )

Im ( ) Im ( ) Im ( ) Im( )

U U U T B || ||

T

T

F F F F

F F F F

    
    

     
         

u
 

for the fifth order harmonic yields, 
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RS5

ST5

TR5

0 003

2 31 S

0 171

T .

T .

T .

   
   

 
   
     

, 

and solving the compensator equation for the 7th order harmonic 

RS7 ST7 TR7 RS7

ST7

TR7

2 2 2 2
b7 7

17 27 37 47

17 27 37 47

Re ( ) Re ( ) Re ( ) Re( )

Im ( ) Im ( ) Im ( ) Im( )

U U U T B || ||

T

T

F F F F

F F F F

    
    

     
         

u
 

we get, 

RS7

ST7

TR7

0 003

3 36 S

0 16

T .

T .

T .

   
   

 
   
     

. 

The reactance elements in the branch RS should be chosen in such a way that the 

susceptance of the branch is 0 S for the fundamental frequency, 0 003. S for the 5th order 

harmonic and 0 003. S for the 7th order harmonics. Likewise, the reactance elements in 

the branch ST should be chosen in such a way that the susceptance of the branch is 

0 173. S for the fundamental frequency, 2 31. S for the 5th order harmonic and 3 36. S 

for the 7th order harmonics. Similarly the reactance elements in the branch TR should be 

chosen in such a way that the susceptance of the branch is 0 67. S for the fundamental 

frequency, 0 171. S for the 5th order harmonic and 0 16. S for the 7th order harmonics. 

Such a reactive compensator will completely compensate the reactive and the unbalanced 

currents and significantly improve the power factor. It cannot improve the power factor to 

unity, however. This is because the scattered current cannot be compensated using 

reactive compensators.   
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4.4.2 Properties of shunt reactive compensator     

Reactive compensators consist of inductors and capacitors and are regarded as lossless. 

Thus, such LC devices are subsets of RLC circuits with R = 0. The immitance of such LC one-

ports is also referred to as Reactance Functions (RFs) and they are a subset of the set of Positive 

Real Functions. The detailed theory of RFs and Positive Real Functions is given in [23].  Only 

those concepts that are relevant to the design of reactive compensators are briefly discussed here.  

RFs have POLEs rp  and ZEROs kz  on the s-plane. It means that the value of rs p

when the function F(s) approaches infinity, while the value of ks z when the function is equal 

to zero. The POLEs and ZEROs of RFs are exclusively on the imaginary axis of the s-plane. 

 A RF is an odd function of s and is represented as a rational function as the ratio of two 

polynomials, such that  

 
1

1 1 0
1

1 1 0

( )( )
( ) = 

( ) ( )

n n
n n n

m m
m m m

W s a s a s ....a s aN s
F s

D s W s b s b s ....b s b







  
 

  
 . (4.73) 

Therefore, the two polynomials cannot have the same order, or in other words, m n . Also, since 

the orders of the polynomials of Positive Real Functions cannot differ by more than 1,  

 1| n m|    (4.74) 

 It means that RFs are ratio of odd and even polynomials. When the odd polynomial is in the 

numerator, then the function F(s) approaches zero as s approaches zero, while if the odd 

polynomial is in the denominator, the function F(s) approaches infinity as s approaches zero. 

Also, if the polynomial of the higher order is in the numerator, then the function F(s) approaches 

infinity as s approaches infinity, while if the polynomial of the higher order is in the 

denominator, then the function F(s) approaches zero as s approaches infinity.   
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 The derivative of RFs with respect to frequency on the imaginary axis is always positive, 

i.e.,  

 ( ) 0
( )

d
F j

d j



  , (4.75) 

which means that the susceptance ( )B   and the reactance ( )X   of a reactance one-port can 

only with increase with the increase in frequency. This also implies that when a RF has multiple 

POLEs and ZEROs, they have to interlace each other. This is because the reactance can increase 

between two ZEROs only if they are separated by a POLE. Also, the reactance between two 

POLEs can only increase if they are separated by a ZERO. This is illustrated in the plot of 

susceptance against the frequency in Fig. 4.7.  

 

Fig. 4.7 Plot of susceptance B(𝜔) against frequency  

    When a reactance one-port is used as a shunt compensator, then it has to have specified 

susceptances for each of the supply voltage harmonics. In particular, for a harmonic order n or 

frequency 1n  , the compensator susceptance has to be equal to CnB . For such a case, the general 

form of the admittance YC(s) has to be found. Such a form is specified by the number of POLEs 

and ZEROs which in turn can be found using a constantly increasing susceptance BC(), which 

has the value CnB  for harmonic order n. Finally, the calculated POLEs and/or ZEROs have to be 
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added at zero and/or infinity in such a way so as to have a Reactance Function. Mathematically, 

such a compensator admittance can be expressed in the form   

 
2 2 2 2

1
C 2 2 2 2

1

( + )...( + )
( ) = ( ) ,     with ( ) =      and  > 0.

( + )...( + )

n

m

As
s z s z

Y s f s f s AA
s p s p

s







  (4.76) 

Illustration 4.3 Let us calculate the compensator branch parameters for the load shown in 

Fig. 4.8 supplied from a source with the voltages: 

1 1 1

1 1 1

R

S

T

5 7

5 7120 120 120

2Re{100 e 50 e 25 e } V

2Re{100 e e 50 e e 25 e e } V

0

j t j t j t

j t j t j tj j j

u

u

u

  

   

  

  



  

 

Fig. 4.8 Unbalanced load supplied from a source of asymmetrical nonsinusoidal voltage 

For such a load, the compensator branch susceptances are equal to 

 

RS1 RS5 RS7

ST1 ST5 ST7

TR1 TR5 TR7

0 578 0 578 0 578

0 693 S 0 693 S 0 693 S

2 039 839 1 182

and

T . T . T .

T . , T . T . .

T . T . T .

           
          

   
          
                    

  

Let us compute the admittance function C( )Y s  for the branch TR. We know that the 

compensator branch TR has to compensate the load for the voltage fundamental 

harmonic, as well as the fifth and the seventh order harmonics. Also, for such a purpose, 

it requires that the compensator branch susceptances are 1 2 039 SCB . , 5 0 839 SCB .   
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and 7 1 182 SCB . .  The plot of the compensator susceptance ( )CB  corresponding to 

these values is as shown in Fig. 4.9.  

 

Fig. 4.9 Plot of susceptance BC(𝜔) 

The following conclusions can be made about the admittance function C( )Y s   

 it has a ZERO at s = 0, hence the odd polynomial is in the numerator  

 it has a POLE at s = infinity, hence the higher order polynomial is in the 

numerator  

 it has one other  ZERO 1z   

 it has one other POLE 1p    

Therefore, the admittance function has the form  

2 2
1

C 2 2
1

( + )
( ) =      

( + )

s z
Y s As

s p
 

There are three unknowns namely A , 2
1z  and 2

1p  the expression above.    

Before we proceed to solve for the compensator parameters, let us normalize the 

fundamental frequency 1  to 1 rad/s for simplicity of calculations. The calculated values 
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can be converted to correspond to the system frequency at the end.  We have the three 

equations 

2 2
1

12 2
1

2 2
1

52 2
1

2 2
1

72 2
1

[( 1) + ]
( 1)    =

[( 1) + )]

[( 5) + ]
( 5)    =

[( 5) + ]

[( 7) + ]
( 7)    =

[( 7) + ]

C

C

C

j z
A j j B

j p

j z
A j j B

j p

j z
A j j B

j p

 

 Observing Fig. 4.9, it is clear that the admittance has a POLE between s = 1 and s = 5. If 

we choose the pole 1p  to be at s = 2.7115, then, we will have,  

2
1
2
1

2
1
2
1

2
1
2
1

( 1)
(1)    = 2 039

( 1)

( 25)
(5)    = 0 839

( 25)

( 49)
(7)   = 1 182

( 47)

z
A .

p

z
A .

p

z
A .

p














 

The set of equation have a solution 0 416A . , 1 5 67z .  and 1 2 71p . .  Thus the 

admittance function is  

2

C 2

( +32 11)
( ) = 0 4165 .     

( +7 35)

s .
Y s . s

s .
 

There are two main methods, namely the Foster procedures and the Cauer procedures, 

that can be used to develop the reactance one-port structure when the admittance is 

known. Each of these two procedures have two sub procedures, one of which has to be 

chosen based on the admittance function. The numerator polynomial of the admittance 
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function that we obtained is of the higher degree, and therefore, the Cauer First 

procedure is used here for the calculation of the reactance one-port structure. 

2 3

C 2 2

( +32 11) 0 4165 +13.37
( ) = 0 4165

( +7 35) ( +7 35)

s . . s s
Y s . s

s . s .
      

2

2

2

0 4165 ( +7 35) 0 4165 7 35 13.37

( +7 35)

10 31
0 4165

( +7 35)

1
0 4165

0 7131
0.097

. s s . . . s s

s .

. s
. s

s .

. s .
.

s
s

  


 

 



 

 As per the Cauer First procedure, 1 1C d ,  2 2L d , 3 3C d ,  etc., therefore, the structure 

of the reactance one port corresponding to the above calculated admittance function is as 

shown in Fig. 4.10.  

 

Fig. 4.10 Branch TR of compensator with Cauer First structure 

It is to be noted that these values are corresponding to the normalized frequency.  Fig. 

4.10 corresponds to the branch TR. The structures of the compensator branches RS and 

ST can be found using a similar method.  

 It is evident from illustration 4.3 that the process of finding the structure of the reactance 

compensator branches is complex. In this particular case, a very simple circuit was chosen where 
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the supply voltage contains harmonics of only three different orders. As the number of harmonic 

orders increases, the filter complexity, as well as the cost of the compensator increases as well. 

Therefore, design of such a compensator may become impractical from an application 

perspective. One solution to that problem is to design a compensator with reduced complexity, 

for example, by assuming that the compensator branch cannot have more elements than two. The 

parameters of such an optimized reactance one-port compensator are chosen so that it can have 

the highest power factor at no more than two elements per compensator branch. Such a 

compensator generally does not improve the power factor to unity, however.   

4.4.3 Design of an optimized compensator for the minimization of the unbalanced and reactive 

currents  

A shunt Two Element Series LC compensator, or simply TESLC compensator, can be 

used for the minimization of the supply current three-phase rms value [24]. Such a compensator 

has a significantly reduced complexity and the goal of such a TESLC compensator is to reduce 

the three-phase rms value of the supply current to its minimum possible value with no more than 

two elements per compensator branch. Such a compensator is depicted in Fig. 4.11. 

 

Fig. 4.11 Load with an optimized compensator  
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Let us recall the compensator shown in Fig. 4.6 above, which has the branch 

susceptances RS STn n,T T  and TR nT , and, completely compensates the reactive and the unbalanced 

currents.  Its susceptances are specified by equation(4.72), and has a current specified by the 

three-phase current vector Tj  at the supply phase to phase voltage XY nU . 

Let RS STn nD ,D  and TR nD be the branch susceptances of the optimized compensator for the 

nth harmonic order. Let the current vector of the optimized compensator be Dj  , such that  

 T
D RS ST  TR[  ]j j jj .  (4.77) 

 The effectiveness of the current minimization of the optimized compensator is measured 

by the deviation of the current Dj  of the optimized compensator from the current Tj of the ideal 

compensator. Ideally, the deviation should be zero. The sum of the squares of the deviation of 

the currents on each of the phases, can be written as  

 RS RS RS ST ST ST TR TR TR
2 2 2 2[( ) ] +[( ) ] +[( ) ]n n n n n n n n n

n

d T D U T D U T D U

N

      (4.78) 

which comprises of the components of the form 

 XY XY XY
2 2 2
xy xy[( ) ] =n n n n

n N n N

d T D U d

 

   .  (4.79) 

Due of the presence of the square on the right hand side of the equation, each of the 

components is a positive value, and, therefore, for the total deviation defined in (4.78) to be 

minimum, each of the three components XYd should be minimum.  

 The square of the deviation specified in (4.79) is dependent on three components, namely 

the susceptances XY nT , the susceptances XY nD and the supply line to line voltage harmonic rms 

value XY nU . The susceptances XY nT of the ideal compensator are in turn dependent on the load 
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parameters as well as the supply voltage rms values, as indicated in equation (4.72). Due to the 

source impedance, the supply voltage harmonics are also affected by the change in the source 

current after the addition of the compensator. However, if the parameters are chosen so as to 

avoid resonance, then the change in the voltage is much smaller compared to the change in the 

currents. This means that it is reasonable to assume that the minimization of the deviation XYd

under the assumption that XY nU is constant, will not lead to substantial errors in results of the 

minimization. Therefore, it is assumed for the following analysis that the source impedance is 

zero and that the source voltage is not affected by the compensator.  

The supply line to line voltage rms value XY1U  of the fundamental harmonic is generally 

much higher than the supply line to line voltage rms value XY nU ( n>1) of the higher order 

harmonics. Thus, the term XY1 XY1( )T D is the main contributor to the deviation XYd , and, 

therefore, a reduction in the term XY1 XY1( )T D leads to a reduction in XYd . For this purpose, the 

signs of the susceptances XY1T and XY1D should be the same. Hence, if XY1 0T   , then, a L-type 

branch should be chosen so as to make XY1 0D  , while, if XY1 0T   , then, a LC type branch 

should be chosen so as to make XY1 0D  . Note that in the latter case, a LC type branch is chosen 

instead of a C type branch in order to avoid the resonance with the source impedance at a 

frequency of one of the supply voltage harmonics. In the first case, if the optimum inductance is 

XYL , then the square of the deviation, 

 XY XY

XY

2 2 2
xy

1

1
( )n n

n

d T U
n L

N




  .   (4.80) 

 On the other hand, for case two, if the optimum capacitance is XYC and the optimum inductance 

is XYL , then the square of the deviation,  



86 

 

 XY
XY

XY XY

XY
2 2 21
xy 2 2

1

( )
1

nn

n

n C
d T U

n C LN





 


 .  (4.81) 

The rms value of the supply current is minimum when the value of the square of the 

deviation mentioned above is minimum. Differentiating equation (4.80) with respect to XYL

yields,  
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For minima,  
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Hence,  
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  (4.83) 

The inductor XYL specified in (4.83) is the optimal inductor for the compensator branch XY if 

XY1T <0.  
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For the second case specified above, i.e., when the susceptance XY1 0T , then, the 

compensator should have a series LC branch between the lines X and Y. In this case, the 

deviation in the compensator current rms values is given by  

 
XY

XY

XY XY

XY
2 2 21
xy 2 2

1

( )
1

nn

n N

n C
d T U

n C L




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   (4.84) 

The inductor LXY is added in series to the compensator capacitor so as to shift the 

resonance with the source impedance to a frequency not present in the supply voltage harmonics.  

The resonant frequency,  

XY XY1 L Cr /   

Hence, 

 XY XY
2L C 1 r/    (4.85) 

If we define 

 
LC XY XY

2 2 2
1 1 rM C L /      (4.86) 

we can rewrite (4.84) as,   
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The optimal value of the capacitor can be found by differentiating (4.87) with respect to XYC and 

equating it to zero. That is,    
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Rearranging (4.88) we get, 
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Hence, 
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  (4.89) 

           The capacitor XYC specified in (4.89) is the optimal capacitor for the compensator 

branch XY under the scenario that XY1T >0.  

The above mentioned steps should be repeated for all three phases based on the sign of 

the compensator fundamental harmonic susceptance XY1T  , and the optimal L- Branch or the 

optimal  LC- Branch should be connected between the phases X and Y. Such an optimal 

compensator will reduce the three-phase rms value of the supply current to its lowest possible 

value for the given number of elements per branch.   

Illustration 4.4 Design of an optimized compensator for an unbalanced load supplied 

from a source of asymmetrical and nonsinusoidal voltage.   
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Fig. 4.12 Unbalanced load supplied from a source of asymmetrical and distorted voltage 

Fig. 4.12 above depicts an unbalanced LTI load supplied from a source with high 

distortion and asymmetry.  

The three-phase rms value of the supply voltage 121|| || = 96 V.u .   

The rms values of the line currents, 

R

S

T

80 A,

43 5 A,

40 4 A.

|| i ||

|| i || .

|| i || .





  

and the currents three-phase rms value R S T
2 2 2= 99 62 A.|| || || i || || i || || i || .  i  

The rms values of Currents’ Physical Components (CPC) are as following:  

active current a 67 97 A,|| || .i  

scattered current s 7 99 A,|| || .i  

reactive current r 21 52 A,|| || .i  

and unbalanced current u 69 12 A.|| || .i   

Similarly,  
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active power 8 29 kW,P .  

scattered power S 0 98 kVA,D .  

reactive power 2 63 kVar,Q .  

and unbalanced power u 8 43 kVA.D .   

The apparent Power  

2 2 2 2 2 2 2 2
s u 8.29 0.98 2.63 8.43 12 15 kVAS P D Q D .          

and the power factor 0 68
P

.
S

    . 

The results are shown in Fig. 4.13. 

 

Fig. 4.13 Powers and line currents of the load  

Design of a Reactive Compensator: 

The load has a power factor of 0.68. This can be improved by adding a reactive 

compensator of the delta structure shown in Fig. 4.6. Such an ideal reactive compensator 

will completely compensate the reactive and the unbalanced currents.  
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The steps needed for the calculation of the compensator parameters is presented in detail 

in illustration 4.2 above. A similar approach is used in this illustration and only the final 

results are presented here. For the parameters of this illustration, the compensator 

equations given in (4.72) above leads to the following susceptances for the compensator 

branches:  

RS1 RS5 RS7

ST1 ST5 ST7

TR1 TR5 TR7

0 148 0 014 0 008

0 038 S 0 067 S 0 052 S

0 482 0 196 0 146

and

T . T . T .

T . , T . T . .

T . T . T .

          
          

  
          
                      

 

The reactance elements in the branch RS should be chosen in such a way that the 

susceptance of the branch is 0.148 S for the fundamental frequency, 0.014 S for the 5th 

order harmonic and 0.008 S for the 7th order harmonic. Likewise, the reactance elements 

in the branch ST should be chosen in such a way that the susceptance of the branch is 

0.038 S, 0.067 S and 0.052 S for the fundamental, fifth and the seventh harmonic orders 

respectively. Similarly, the reactance elements in the branch ST should be chosen such 

that the susceptance of the branch is -0.482 S, -0.196 S and -0.146 S for the fundamental, 

fifth and the seventh harmonic orders respectively. The load with the given compensator 

shown as a block is depicted in Fig. 4.14. 

The addition of such a compensator leads to the following results:   

The rms values of the line currents, 

R

S

T

45 96 A,

41 96 A,

28 45 A

|| i || .

|| i || .

|| i || .







 

and the currents three-phase rms value R S T
2 2 2= 68 43 A.|| || || i || || i || || i || .  i  
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Fig. 4.14 Results after the addition of an ideal LC Compensator  

Note that due the asymmetry in the supply voltage, the line currents after compensation 

are still asymmetrical. The line currents are proportional, and in phase to the line 

voltages, however. 

The rms values of Currents’ Physical Components are as following:  

active current a 67 96 A,|| || .i  

scattered current s 7 99 A,|| || .i  

reactive current r 0|| || ,i  

and unbalanced current u 0|| || i  . 

Similarly,  

active power 8 29 kW,P .  

scattered power S 0 98 kVA,D .  

reactive power 0,Q   
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and unbalanced power u 0.D    

The apparent Power 2 2 2 2
s u 8 35 kVAS P D Q D .      

and the power factor 0 99
P

.
S

    

Thus, an ideal reactive balancing compensator as shown in Fig. 4.14 completely 

compensates the reactive and the unbalanced currents and improves the power factor to 

almost unity. In order to be able to implement the compensator in a real system, we have 

to design the compensator branches so as to have the desired reactance properties. For 

example, the compensator branch RS should be designed in such a way that its 

susceptances for the fundamental, fifth and the seventh harmonic orders are 0.148 S, 

0.014 S and 0.008 S respectively. As it was evident for a very similar case in illustration 

4.3 earlier in the chapter, the design as well as the structure of such an ideal compensator 

is very complex, and, more importantly, it does not have a practical value. Therefore, the 

design of the branches of the ideal compensator is not presented here. Rather, let us try to 

design an optimized TESLC compensator for the load above, which significantly reduces 

the cost and the complexity of the structure of the compensator branches, without making 

a significant compromise on the power factor.   

Design of a TESLC Compensator:      

As described in section 4.4.3 above, a TESLC compensator contains no more than two 

elements per compensator branch. Each branch can either have an inductor, or a capacitor 

in series with an inductor, depending upon the susceptance of the compensator branch for 

the fundamental harmonic. In this case, since RS1 0T  we will choose a LC branch 
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between the lines R and S. Since the supply voltage does not contain any components of 

the third harmonic order, we can choose the value of the series inductor such that the 

resonance is just past the third harmonic. Then,  

LC

2 2
1 0 1rM / .    

Using the equation of the optimal capacitor,   

LC

LC

XY

XY

XY

XY

 

2
1

2

2 2 2
1

2 2

1

(1 )

n n

n N

n

n N

n T U

M n
C

n U

M n


















 

 to calculate the value of the capacitor for the branch RS, with N = {1,5,7} yields,  

RS1 RSn

RS 

RSn

2
1

2

2 2 2
1

2 2

1 0 1
0 319 mF

(1 0 1 )

n N

n N

n T U

. n
C .

n U

. n










 







. 

Then, the series inductor  

RS 2 19 mHL . . 

Thus, the compensator branch RS should have a capacitor of 0.319 mF in series with an 

inductor of 2.19 mH.  

Similarly, since ST1 0T  , we choose a LC branch between the compensator terminal S and 

T. Substituting in the formula for the optimal capacitor,  

ST1 ST

STn

n

ST 

2
1

2

2 2 2
1

2 2

1 0 1
0 079 mF

(1 0 1 )

n N

n N

n T U

. n
C .

n U

. n










 






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and, the series inductor ST 8 84 mHL . .  Thus, the compensator branch ST should consist 

of a capacitor of 0.079 mF in series with an inductor of 8.84 mH.  

Finally, since TR1 0T  , the compensator branch TR consists of an inductor of the value 

TRn

TR1 TRn

TR

2

2
1

2

 

5 49 mHn

n

U

n
L .

T U

n

N

N





  






 

Thus, a compensator with the parameters calculated above and as shown in Fig. 4.15 is 

the optimized compensator that minimizes the supply current three-phase rms || ||i to the 

lowest possible value while using no more than two reactive elements per compensator 

branch.  

The addition of the optimized TESLC compensator leads to the results as shown in Fig. 

4.15.  

 

Fig. 4.15 Results after the addition of an Optimized TESLC Compensator  
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The rms values of the line currents, 

R

S

T

46 94 A,

42 24 A,

28 22 A

|| i || .

|| i || .

|| i || .







 

and the currents three-phase rms value R S T
2 2 2= 69 17 A|| || || i || || i || || i || .  i . 

The three-phase rms values of Currents’ Physical Components (CPC) are as following :  

active current a 67 96 A,|| || .i  

scattered current s 7 99 A,|| || .i  

reactive current r 8 47A|| || . ,i  

and unbalanced current u 5 38 A|| || .i . 

Similarly,  

active power 8 29 kW,P .  

scattered power S 0 98 kVA,D .  

reactive power 1 04 kVAR,Q .  

and unbalanced power u 0 66 kVA.D .   

The apparent power 2 2 2 2
s u 8 44 kVAS P D Q D .      

and the power factor 0 98
P

.
S

    

Thus, the optimized TESLC compensator improves the power factor from 0.68 to 0.98. It 

is very close to 0.99, which is the value of the power factor after the addition of an ideal 
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compensator. The TESLC compensator significantly reduces the cost and complexity of 

the compensator, with a very small compromise in the power factor improvement.     

4.5 Conclusion   

The power equation of LTI loads at nonsinusoidal and asymmetrical three-phase three-

wire supply voltage was presented in this chapter. The Currents’ Physical Components (CPC) 

based load current decomposition enabled the development of the power equation. Comparing 

the power equation of LTI loads at sinusoidal and asymmetrical voltages presented in Chapter 3, 

now the load also has a scattered power; in addition to the active, reactive and unbalanced 

powers. The scattered power is associated with the change of the equivalent conductance of the 

load with the harmonic order. The CPC concept also enabled the design of a reactive 

compensator for the compensation of the reactive and the unbalanced currents. Such a reactive 

compensator cannot compensate the scattered current, however. Therefore, when the supply 

voltage is N&A, and the load has a scattered power, then the power factor cannot be improved to 

unity using reactive compensation. Moreover, it was also demonstrated that the design, as well as 

the structure of such a compensator is very complex. As the number of the harmonic orders 

present in the supply voltage increases, such a compensator may become impractical. To solve 

the problem, an optimized compensator with no more than two elements per compensator branch 

(TESLC) was designed and implemented. Such a compensator has a significantly reduced 

complexity in design and structure. It cannot compensate the reactive and the unbalanced 

currents completely, however. Nonetheless, it was shown that such an optimized compensator 

works very well under practical situations and improves the power factor to close to unity. The 

significant reduction in cost and complexity of such a compensator outweighs the slight 

compromise in the power factor.        
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CHAPTER 5: CURRENTS PHYSICAL COMPONENTS (CPC)  

OF UNBALANCED HARMONICS GENERATING LOADS  

AT ASYMMETRICAL VOLTAGES    

5.1 Introduction 

Earlier chapters of this dissertation were confined to power properties of systems with 

Linear Time Invariant (LTI) loads. The development of the power equation and methods of 

reactive compensation of such loads at asymmetrical but sinusoidal voltage were presented in 

Chapter 3, while Chapter 4 was focused on the development of the power equation and methods 

of reactive compensation at nonsinusoidal and asymmetrical voltage.  

A power theory describes power properties of distribution systems simplified by various 

assumptions. The accuracy of such a description can be increased by abandoning step by step 

these assumptions. The analysis in Chapter 3 was presented at the assumption that the supply 

voltage was sinusoidal. That assumption was abandoned in Chapter 4, where, in addition to the 

supply voltage asymmetry, also the supply voltage distortion was taken into account. The next 

step in power theory development is the description of the power properties of three-phase three-

wire systems with Harmonics Generating Loads (HGLs) at asymmetrical and nonsinusoidal 

supply voltage, as presented in this chapter. 

5.2 Background on Harmonic Generating Loads (HGLs) 

Non-linear and periodically switched loads are commonly referred to as Harmonic 

Generating Loads (HGLs). These loads include fluorescent lamps, micro-waves, video and 

computer-like equipment, power electronics devices, arc furnaces etc. HGLs are increasingly 

common in the commercial and industrial systems, primarily because of the power electronics 

equipment used for the control of the energy flow in such systems. HGLs have parameters that 
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vary with the voltage or current, and consequently cause periodic distortion of the supply current. 

This distortion of the load current is specified in terms of the load generated harmonics.  

Transformers were initially considered to be the main sources of harmonics since they 

consist of non-linear magnetic cores. Proliferation of power electronics based switching loads in 

the last few decades causes that the contribution of transformers to the voltage and current 

waveform distortion nowadays is usually much lower as compared to the distortion due to the 

power electronics devices.  

In general, HGLs can be divided into three categories [25, 26]:  

 Nonlinear devices of small ratings consisting mainly of fluorescent bulbs, computer and 

TV supplies, and power supplies used in low power appliances  

 Static power converters used in industry such as rectifiers, AC to DC converters, 

inverters or cycloconverters 

 Electric arc furnaces.  

 A load is non-linear if its parameter changes with a change in the applied voltage or 

current, such as it is with diodes or electric arc furnaces. The current of non-linear loads is 

nonsinusoidal, even at sinusoidal supply voltages. The v-i relationship of a diode is shown in Fig. 

5.1.  

On the other hand, periodically switched devices refer to circuits consisting of switches 

for the control of energy flow. Examples of periodically switched devices are AC to DC 

converters, variable speed drives, static power converters (SPCs) etc. The current of these 

devices depends upon the switching of the power semiconductor devices. The current of a 

thyristor controlled resistive load at sinusoidal voltage is shown in Fig. 5.2. 



100 

 

 

Fig. 5.1 Voltage-current relationship of a diode  

  

 

Fig. 5.2 Current of a thyristor controlled resistive load   

5.3 Equivalent circuit of Harmonics Generating Loads  

Let us consider a single phase fluorescent lamp as an example of a HGL as shown in Fig. 

5.3.   

 

Fig. 5.3 A fluorescent lamp circuit with a thermal starter S and ballast G     
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 A fluorescent lamp starts to conduct when the supply voltage is close to its rated 

operating voltage [27]. The relationship between voltage and current rms values of such a lamp 

is shown in Fig. 5.4.  

 

Fig. 5.4 Relationship between the voltage and current rms values of a fluorescent lamp  

 When the voltage rms value is in a vicinity of the operating point, the current rms value 

does not change with small changes U  in the voltage shown in Fig. 5.4. When the voltage rms 

value is kept constant in the vicinity of the operating point, the lamp operates like a linear load 

with a shunt current source of higher order harmonics. The equivalent circuit of a fluorescent 

lamp can be drawn as Fig. 5.5 

  

Fig. 5.5 Equivalent circuit of single-phase fluorescent lamp 

The voltage and current waveforms of the fluorescent lamp operating close to its 

operating point looks like 5.6.  
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Fig. 5.6 Voltage and current waveforms of fluorescent lamp at the operating point  

The current waveform in Fig. 5.6 is equivalent to the sum of the fundamental component and 

higher order harmonics,   

 1 1
2

n
n

i i i i j




     . (5.1) 

The admittance Y1 is equal to,  

 1
1 ,

I
Y

U
   (5.2) 

and the load generated current harmonics are equal to  

 
df.

2
n

n

j i




  . (5.3) 

It is necessary to remember that Fig. 5.5 is the correct representation of the fluorescent lamp 

shown in 5.3 only when it is operating at a voltage close to its rated operating voltage. If there is 

signification deviation in the supply voltage rms value, then the equivalent parameters j and Y1 
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will vary. The equivalent circuit of any HGL can be drawn in similar manner using a linear 

approximation around a fixed operating point.  

5.4 CPC based current decomposition of HGLs at nonsinusoidal and asymmetrical voltage  

Let us consider a HGL supplied from a source of nonsinusoidal and asymmetrical voltage 

as shown in Fig. 5.7. Such a load causes periodic distortion of the supply currents and 

consequently introduces current harmonics into the system.   

 

Fig. 5.7 Three-phase three-wire system with a harmonic generating load  

HGLs introduce current harmonics of the order that could be not present in the supply 

voltage [17, 19]. As a result, the flow of energy for these harmonics originates in the load, and 

the load becomes the source of energy. It means that the active power for these harmonics is 

negative [28]. The energy of such a harmonic dissipates in the resistance of the distribution 

systems. Since the load is passive, this energy has to be delivered from supply, mainly by the 

fundamental components of the voltage and current. The equivalent linear model of a three-phase 

HGL is shown in Fig. 5.8. 

The active power of the nth order harmonic is equal to  

 R S TR S TRe{ } = Re{ + }n n n
* * *

n n n n nP C U I U I U I   .  (5.4) 
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Fig. 5.8 Equivalent circuit of a three-phase system with HGL 

The active power Pn can be positive or negative [28]. Depending upon the sign of nP , the 

set N of all harmonic orders can be decomposed into two subsets, CN  and GN . When the 

harmonic active power nP is positive or zero, we assume that the distribution voltage harmonic 

nu is the cause of the energy flow from the source to the load. In such a case, the harmonic order 

n belongs to the set CN . On the other hand, if the harmonic active power Pn is negative, we 

assume that the current harmonic nj  generated in the load is the cause of the energy flow from 

the load back to the supply. In such a case, the harmonic order n belongs to the set GN , i.e.,   

 C

G

0

0

n

n

P , n N

P , n N .

  

  
 (5.5) 

After the sets CN and GN have been defined, we can associate the voltages, currents, and 

the active power components of the various harmonic orders with the direction of energy flow. 

All the harmonic orders belonging to the set CN specify the voltage and current components Cu

and Ci , associated with the energy flow from the supply to the load, such that  

 

C C C

C C Cn n n
n N n N n N

, , P P .
  

    i i u u   (5.6) 
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Likewise, the harmonic orders belonging to the set GN specify the voltage and the current 

components Gi  and Gu , associated with the energy flow from the load to the supply, such that 

 

G G G

G G Gn n n
n N n N n N

, , P P .
  

      i i u u   (5.7) 

Thus, the total current, voltage, and the active power can be written as,  

 C G C G C Gn n n
n N n N n N

, , P P P .
  

       i i i u u u   (5.8) 

The current components Ci and Gi do not contain the harmonics of the same order and are 

therefore mutually orthogonal. The voltage components Cu and Gu are also orthogonal for the 

same reason. Thus, the scalar products of the currents Ci and Gi , and the voltages Cu and Gu are 

equal to zero, viz,  

 C G C G) = 0  ,                 ) = 0( (, ,i i u u  . (5.9) 

Hence, the three-phase rms value of the load current 

 C G
2 2 2|| || || || || || , i i i   (5.10) 

and the three-phase rms value of the voltage 

 C G
2 2 2|| || || || || || u u u  . (5.11) 

For the harmonic orders n belonging to the set CN , the original system can be regarded as 

a system with a passive load. Consequently, for such harmonics, the system is equivalent to a 

linear load supplied from a source of nonsinusoidal and asymmetrical voltage. The analysis for 

these harmonic orders remains the same as presented in Chapter 4. The equivalent circuit of the 

system for these harmonics is as shown in Fig. 5.9.  
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Fig. 5.9 Equivalent circuit of the system for harmonics of the order n from subset NC  

On the other hand, for the harmonic orders n belonging to the set GN , the same system 

can be regarded as a system with current sources Gj on the load side and a passive distribution 

system on the supply side, as shown in Fig. 5.10. Also for these harmonic orders, the voltage 

response of the distribution system to the load generated harmonics Gu , has an opposite direction 

as compared to the direction of the distribution voltage Cu .  

 

Fig. 5.10 Equivalent circuit of the system for harmonics of the order n from subset NG  

The system comprising of the harmonic orders n belonging to CN and shown in Fig. 5.10 

has the voltage Cu , the current Ci , and an LTI load with the active power CP . Such a load is 

equivalent to a balanced resistive load as shown in Fig. 5.11.  
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Fig. 5.11 Balanced resistive load equivalent to the original load for subset Nc with respect to active power P 

The phase conductance of such a balanced resistive load is  

 
C

C
Cb 2

P
G

|| ||


u
  (5.12) 

and it draws the current 

 1

C

CC C C
p p n n

a b b2 Re ( )
jn t

n n
n

G G e

N

U U




  i u 1 1   (5.13) 

referred to as the active current, from the source.  

Let CnP  and CnQ be the active and the reactive powers of the nth harmonic order of the 

subset Cn N . We can imagine a balanced load for the nth harmonic order which is equivalent to 

the original load with respect to CnP  and CnQ . It has the equivalent balanced admittance  

 C C C
C C Cb b b 2 2

*
n n n

n n n

n n

P jQ
G jB

|| || || ||

C
Y


   

u u
  (5.14) 

and draws the active current 

 1

C C C
p p n n

a b b( ) ( )= 2 Re{ ( ) }
jn t

n n n n n nt G t G eU + U


i u  1 1   (5.15) 

and the reactive current, 
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 1

C C C
p p n n

r b b( ) ( + ) 2 Re{ ( ) }
4

jn t
n n n n n n

T
t B t jB e

n
U + U


 i u  1 1   (5.16) 

and is shown in Fig. 5.12. 

 

Fig. 5.12 Equivalent balanced load for the nth order harmonic of the order n from the subset NC with respect to the 

active power PCn and reactive power QCn 

In addition to the active and reactive currents of the equivalent balanced load, the load for 

the nth order harmonic also draws the unbalanced current, namely, 

 1

C C C C C
p p n n

u b b= 2 Re{ ( ) }
jn t

n n n n n n n eY U + U


  i i i  I 1 1  . (5.17) 

The total current for the nth order harmonic belonging to the subset CN is equal to  

 C C C Ca r un n n n= + +i i i i  . (5.18) 

Therefore, the total current of all the harmonic orders of the subset Cn N is equal to  

 C C

C C C C C

C C C C

a r u

a s r u

 = ( )n n n n
n N n N

+ +

 



   

 i i i i i

i i i i
  (5.19) 

where,  

 CC Ca bGi u   (5.20) 

is the active current of the load,  
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 1

C

C C C C C
p p n n

s a a b b2 Re ( )( )
jn t

n n n n
n N n N

G G e

C

U + U


 

    i i i  1 1   (5.21) 

is the scattered current,  

 1

C C
p p n n

r r bC2 Re ( )
jn t

n n n n
n N n N

jB e

C C

U + U


 

  i i  1 1  (5.22) 

is the reactive current, and,  

 C Cu un
n N

C


 i i   (5.23) 

is the unbalanced current. 

On the other hand, as described by (5.7) above, the current of the load corresponding to 

the harmonic orders n belonging to the subset Gn N , and shown in Fig. 5.10, is equal to  

 

G

Gn
n N

 i i   (5.24) 

Therefore, the total current of the load is equal to  

 C Gn
n N

,


  i i i i   (5.25) 

Using the relations obtained in (5.19) above, the total current of the load can be written as  

 C C C C Ga s r u .    i i i i i i   (5.26) 

Based on the analysis of LTI loads presented in Chapter 4, we can write that the currents 

C C Ca s r, ,i i i  and Cui  are mutually orthogonal. Moreover, the currents Ci and Gi are comprised of 

different harmonic orders, and therefore they are mutually orthogonal. Hence, the five current 

components of the HGL are mutually orthogonal. Thus, the square of the three-phase rms value 

of the current of the HGL is equal to  
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 C C C C G
2 2 2 2 2 2

a s r u| | | | | || || | || | || | || | || | || .    i i i i i i   (5.27) 

The current of a HGL supplied from a source of nonsinusoidal and asymmetrical voltage is 

composed of five mutually orthogonal components, each associated with a distinct physical 

phenomenon. These are the Currents Physical Components of a Harmonic Generating Load.  

The active, reactive, unbalanced and scattered currents are similar to and associated with 

the same phenomenon as those in systems with Linear Time Invariant (LTI) loads. It is 

interesting to be noted that only a portion of the supply voltage u , namely the voltage Cu affects 

these currents, however. The remaining portion of the supply voltage, namely the voltage Gu , 

occurring as a result of the response of the distribution system to the load generated harmonics 

Gj  , does not affect these currents.  

The generation of the current harmonics in the load and the consequent presence of the 

negative active power nP  in systems with HGLs is a new physical phenomena as compared to 

the systems with LTI Loads. Owing to this phenomenon, the energy flows from the load to the 

source at certain frequencies. Since the energy has to come from the distribution system, this 

further increases the three-phase rms value of the supply current, thereby leading to the 

degradation of the power factor.  

The apparent power of the load is equal to  

 

C G E

C G C C C C G

2 2 2

2 2 2 2 2 2 2
a s r u|| || || || || || || || || ||

|| || || ||

|| || || ||

S

S S S



    

 

 i i i i

u i

u u i   (5.28) 

where, 
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C C C C Cs C Cu
2 2 2 2|| || || ||S P D Q D  u i  ,  (5.29) 

G G G||| || || ||S  u i  ,  (5.30) 

E C G G C
2 2 2 2|| ||  || || || ||  || ||S  u i u i  .  (5.31) 

 Comparing the apparent power of LTI loads with that of the HGLs, it is evident that in 

case of HGLs, the apparent power contains additional components which contribute to its 

increase. The apparent power S of the HGLs contains the components CS , GS and ES . The 

component CS is the same as the apparent power in systems with LTI loads, while the 

components GS and ES  are not present in systems with LTI loads. The power GS  depends on the 

load generated harmonics Gj as well as the distribution system impedance. It is similar to the 

apparent power CS in terms of the physical phenomenon that it is associated with, except that it is 

originates in the load. It is therefore referred to as load generated apparent power.  

 The power component ES  differs fundamentally from the apparent powers GS and CS in 

the regard that it is not associated with any physical phenomenon. Its square is merely the 

product of the rms values of the voltages and currents of exclusively different harmonic orders 

from the subsets CN and GN . It only contributes to the increase of the voltage and current rms 

values and is referred to as cross apparent power.  

 The apparent power of an unbalanced HGL specified in (5.28) can be rewritten using the 

various power components as  

 C Cs C Cu G E
2 2 2 2 2 2S P D Q D S S       (5.32) 
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and the power factor, which specifies the effectiveness of energy delivery from the source to the 

load, of such a load is equal to  

 C G

C Cs C Cu G E
2 2 2 2 2 2

P PP

S P D Q D S S


 


 

  

 . (5.33) 

Equation (5.33) reveals how the different components of the power contribute to the degradation 

of the power factor in systems with HGLs. It is also important to observe that the load generated 

apparent power not only increases the total apparent power of the load, but also reduces the 

active power of the load, evident in the numerator of (5.33). 

Illustration 5.1 Let us calculate the CPC currents and the various powers of an industrial 

arc furnace load approximated by a harmonic generating load. It is assumed that the 

furnace has an extinguished arc in phase T and that the internal voltage of the supply is 

sinusoidal and symmetrical. The furnace is supplied from a transformer with relatively 

low power. The short circuit parameters of the transformer calculated to the secondary 

side and the line currents are given. The voltage asymmetry and distortion at the furnace 

terminal is caused due to the asymmetry and distortion in the furnace current. 

 

Fig. 5.13 A Harmonic Generating Load supplied from a source of sinusoidal symmetrical voltage  
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The internal voltage of the distribution system is sinusoidal and symmetrical and is equal 

to   

R1 S1 T1
120 1201000 V ,            1000 V,             1000 V .j je eE E E

      

The source impedance consists of the impedances  

1sc sc0 1 0 3R . , L . .     

The current on line R is equal to  

1 1 1 1

R
2 5 7- 19.762Re{508.5 +100 +100 +100 } A.j t j t j t j tji e e e e e     

The current contains the components of the fundamental, 2nd, 5th and 7th order harmonics. 

Since the supply voltage is sinusoidal, the higher order harmonics are due to the 

nonlinearity of the load. Therefore, for this particular illustration the different harmonics 

can be categorized into the following subsets:  

C

G

C

G

with  = {1}

with  = {2,5,7}.

n N N

n N N




 

For the subset Cn N , the system is equivalent to one depicted in Fig. 5.14.  

 

Fig. 5.14 The equivalent circuit of the system for n = 1 
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The load line to line admittances for the fundamental frequency are equal to  

RS1 ST1 TR10 25 0 25 S , 0 0. j . ,Y Y Y    , 

while and the line currents rms values are equal to   

R1 S1 T1508 6 A,         508 6 A 0 || i || . || i || . , || i ||    

with the three-phase rms value equal to 1|| || 719 2 A.i . 

These currents cause a voltage drop in the source impedances. The voltages across the 

load terminals after referring to artificial zero are equal to   

S1 T1R1
7 98 118 44 120909 4 V, 841 1 V 1000 Vj . j . j. e . e , e .U U U

        

The voltage three-phase rms value is equal to 1|| || = 1592 Vu . 

Next, we need to consider the system for the harmonic orders of the subset Gn N . For 

the approximation of the arc furnace used in this illustration, the Harmonic Generating 

Load injects currents of the 2nd, 5th and the 7th harmonic order. Let us analyze the system 

for each of these harmonics one by one.  

The system corresponding to the 2nd harmonic order is equivalent to the one shown in 

Fig. 5.15.  

The line current crms values for the 2nd order harmonics are as follows,   

R2 S2
180100 A 100 Aj, eI I

   

and the current three-phase rms value 2 141 4 A|| || .i  . 
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Fig. 5.15 The equivalent circuit of the system for the 2nd order harmonic 

The line voltages resulting from the drop in the source impedance are equal to   

R2 S2
99 5 80 5460 8e V 60 8 e Vj . j .. , .U U

     

with the three-phase rms value 2 86 0 V|| || .u   

The active power corresponding to the 2nd harmonic order is equal to   

2 R2 S2R2 S2Re{ + } 2000 W* *P U I U I   . 

Likewise, the system corresponding to the 5th harmonic order is equivalent to Fig. 5.16. 

 

Fig. 5.16 The equivalent circuit of the system for the 5th order harmonic 

Therefore, the crms values of the line currents for the 5th harmonic order are,  
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R5 S5
180100 A 100 Aj, eI I

   

and the current three-phase rms value 5 141 42 A|| || .i    

The line voltages resulting from the drop in the source impedance are equal to   

R5 S5
93 8 86 2150 4 e V 150 4 e Vj . j .. , .U U

     

with the three-phase rms value 5 212 6 V|| || .u   

The active power corresponding to the 5th harmonic order is equal to   

5 R5 S5R5 S5Re{ + } 2000 W* *P U I U I   . 

Finally, the system corresponding to the 7th harmonic order is as shown in Fig. 5.17. 

 

Fig. 5.17 The equivalent circuit of the system for the 7th harmonic order 

The crms values of the line currents for the 7th harmonic order are:   

R7 S7
180100 A 100 Aj, eI I

   

and the current three-phase rms value 7 141 42 A|| || .i    

The line voltages resulting from the drop in the source impedance are equal to   

R7 S7
92 73 87 3210 2e V 210 2e Vj . j .. , .U U

     
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with the three-phase rms value 7 297 3 V|| || .u   

The active power corresponding to the 7th harmonic order is equal to   

7 R7 S7R7 R7Re{ + } 2000 W* *P U I U I   . 

Since the voltages and the currents of different harmonic orders are orthogonal to one 

another, the total three-phase voltage rms value is equal to  

n 1 2 5 7
2 2 2 2 2 1635 6 V|| || || || || || || || || || || ||

n N

.



     u u u u u u  

while the current three-phase rms value is equal to 

n 1 2 5 7
2 2 2 2 2 759 8A|| || || || || || || || || || || ||

n N

.



     i i i i i i  

Thus, the apparent power of the load is equal to  

1242 7 kVA = 1.243 MVA|| || || ||S . u i . 

Apparent power calculated using the CPC power components 

The rms values of the active and the reactive current components for the subset Cn N are 

equal to  

C Ca r324 9 A, 324 9 A. || || . || || . i i  

The positive and the negative sequence components of the unbalanced current are  

CuCu
p n32 3 A, 317 8A|| || . || || . i i  

Hence, the three-phase rms value of the unbalanced current is equal to,  

C CuCu
p 2 n 2 2 2

u 3 3 32 3 317 8 553 4 A|| || || || || || . . .      i i i . 
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The different powers that these currents are associated with are equal to  

C C Cu517 2 kW, 517 2 kVars, 880 8 kVAP . Q . D . .    

The apparent power for the subset Cn N is equal to  

C C C uC
2 2 2 1145 kVAS P Q D    

The voltage three-phase rms value for the subset Gn N  is equal to  

G

G n 2 5 7
2 2 2 2 375 5V|| || || || || || || || || ||

n N

.



    u u u u u  

while the three-phase rms value of the current harmonic Gj is equal to 

G

G n 2 5 7
2 2 2 2 244 9 A|| || || || || || || || || ||

n N

.



    i i i i i  

Thus, the apparent power corresponding to all the harmonics belonging to the subset

Gn N  is  

G G G|| || || || = 92 kVAS  u i . 

Likewise, the cross harmonic apparent power 

E C G G C
2 2 2 2 474 4 kVA|| ||  || || || ||  || ||S .  u i u i . 

Thus, the total apparent power calculated using the different components of the apparent 

power is equal to,  

C G E
2 2 2 1242 7 kVAS S S S .   , 
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which is the same as value of the apparent power calculated earlier using the three-phase 

rms values of the line currents and voltages, calculated earlier in the illustration. This 

verifies that the CPC decomposition of the load currents and the powers calculated using 

these currents are correct.  

The total active power of the load is equal to:  

C G

n n (517242 2000 2000 2000) W = 511.2 kW

n N n N

P P P

 

        

while the overall power factor of the load is equal to,   

C G

C Cs C Cu G E
2 2 2 2 2 2

511 2
0 41

1242 7

P PP .
.

S .P D Q D S S


 


   

  

 

Despite the fact that the internal voltage of the distribution system is sinusoidal and 

symmetrical, the voltage across the load terminal is highly asymmetrical and distorted, 

owing the load generated harmonics as well as the load asymmetry. The vectors of the 

line currents and the vector of the line voltages are given below, followed by the voltage 

and current waveforms in Fig. 5.18.  

The vector of the line currents is equal to  

1 1 1 1

1 1 1 1

t 2 t 5 t 7 t- 19 76

t 2 t 5 t 7 t160 24 180 180 180

508.6e e +100 e +100 e +100 e 

2Re{ 508.6e e 100 e e +100 e e +100 e e

0

+  }A

j j j jj .

j j j jj . j j j

   

   



   


 
 
 
 
 
 

i  

Similarly, the vector of the load voltages is equal to  

1 1 1 1

1 1 1 1

1

t 2 t 5 t 7 t7 98 99 5 93 8 92 73

t 2 t 5 t 7 t118 44 80 54 86 2 87 3

t120

909 4 e +60.8 e e +150.4e e +210.3 e e 

2Re{ 841 2 e +60 8 e e +150.4 e e +210 3 e e 

1000 e 

 }V

j j j jj . j . j . j .

j j j jj . j . j . j .

jj

. e

. e . .

e

   

   



       

    





 
 
 
 
 
 

u  
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Fig. 5.18 Plot of the line currents, the distribution voltage and the load voltages 

Illustration 5.2 Let us calculate the CPC currents and the various powers of the HGL in 

the previous illustration when the supply voltage is nonsinusoidal as shown in Fig. 5.19.  

 

Fig. 5.19 A Harmonic Generating Load supplied from a source of nonsinusoidal symmetrical voltage  

The supply voltage is equal to 

 

1 1 1

1 1 1

1 1 1

t 3 t 5 t

t 3 t 5 t120 120

t 3 t 5 t120 120

1000  + 100  + 100  

2Re{ 1000   + 100  + 100   

1000   + 100  + 100   

 }V        

j j j

j j jj j

j j jj j

e e e

e e e e e

e e e e e

  

  

  

  

  



 
 
 
 
 
 

e  
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while the load generated harmonics in the current on line R are equal to 

1 1 1

RG
2 4 72Re{100 +100 +100 } Aj t j t j tj e e e   . 

In a similar manner as the previous illustration, the voltage and the current contains the 

harmonics of two subsets, namely,  

C C

G G

with  = {1,3,5}

with = {2,4,7}

n N N

n N N




 

For the harmonic orders n belonging to the subset NC, the source of energy flow is the 

distribution system, while, for the harmonic orders n belonging to the subset NG, the 

source of the energy flow is the load. Thus, the system has to be analyzed differently for 

these two subsets.  

Analysis for the subset Cn N  : 

For the fundamental component, the system is equivalent to the one depicted in Fig. 5.20   

 

Fig. 5.20 Equivalent circuit of the system for to n = 1 

At the fundamental frequency, the sources impedance    

1sc sc0 1 0 3R . , L .     
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while the load impedance is  

RS 1 RS2 2R , L    . 

Thus, the load line to line admittances for the fundamental frequency are   

RS1 ST1 TR10 25 0 25 S 0 0. j . , ,Y Y Y    . 

The line currents rms values are equal to   

R1 S1 T1508 6 A,         508 6 A 0 || i || . || i || . , || i ||    

with the three-phase rms value equal to 1|| || 719 4 A.i . 

These currents cause a voltage drop in the source impedances, and the line voltages after 

the drop in the source impedance and after referencing to an artificial zero are equal to  

S1 T1R1
7 98 118 44 120909 4 V 841 1 V, 1000 Vj . j . j. e , . e e .U U U

        

The voltage three-phase rms value is equal to 1|| ||=1592 Vu . 

The active power of the fundamental harmonic is equal to   

1 R1 S1R1 S1Re{ + } 517 6 kW* *P .U I U I  . 

For the 3rd harmonic order, the system is equivalent to the one shown in Fig. 5.21.  

 

Fig. 5.21 The equivalent circuit of the system for n = 3 
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The 3rd harmonic component of the internal voltage of the distribution is  

3

0

0

0

100

100 V

100

j

j

j

e

e

e

E







 
 
 
 
 
 

 

while the load line to line admittances for this frequency are    

RS3 ST3 TR30 05 0 15 S 0 0. j . , ,Y Y Y    . 

Note that the internal voltage of the distribution system is nonsinusoidal but symmetrical. 

Hence, the third order voltage harmonics are composed exclusively of the zero sequence. 

Therefore, the load voltages after referring to artificial zero are also 0, i.e,   

S3 T3R3 0 0 0, ,U U U    

For a three-wire system, like the one used for analysis in this illustration, a voltage of the 

zero sequence cannot cause any current to flow in the system. Hence, the line currents for 

the third harmonic order are    

R3 S3 T30,         0 0 || i || || i || , || i ||    

with the three-phase rms value equal to 3|| || 0i . 

Thus the active power of the 3rd harmonic is    

3 R3 S3R3 S3Re{ + } 0* *P U I U I  . 

Finally, for the 5th harmonic order, the system is equivalent to Fig. 5.22. The crms values 

of the 5th harmonic component of the distribution system voltage are   

5
120

120

100

100 e V

100 e

j

j

E


 

 
 

  
 
 
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Fig. 5.22 The equivalent circuit of the system corresponding to n = 5 

The load line to line admittances for this frequency are    

RS5 ST5 TR50 0192 0 0962 S, 0 0. j . ,Y Y Y    . 

The line current rms values for the 5th harmonic order are    

R5 S5 T513 1 A,         13 1 A 0 || i || . || i || . , || i ||    

with the three-phase rms value equal to 5|| || 18 6 A.i . 

Therefore, the load voltages after referring to artificial zero are equal to,    

S5 T5R5
5 6 112 2 12082 4 e V 84 8 e V, 100 e Vj . j . j. , .U U U

      . 

Thus the active power of the 5th order harmonic is     

5 R5 S5R5 S5Re{ + } 350 W* *P U I U I  . 

Analysis for the harmonic orders n belonging to the subset NG: 

Next, we need to consider the system for the harmonic orders of subset Gn N . For the 

approximation of the arc furnace used in this illustration, the Harmonic Generating Load 

injects currents of the 2nd, 4th and the 7th harmonic orders. Let us analyze the system for 

each of these harmonics one by one.  



125 

 

The system corresponding to the 2nd harmonic order is equivalent to the one shown in 

Fig. 5.23.  

 

Fig. 5.23 The equivalent circuit of the system for the 2nd order harmonic 

The line current crms values for the 2nd order harmonics are as follows,   

R2 S2
180100 A 100 Aj, eI I

   

and the current three-phase rms value 2 141 42 A|| || .i    

The line voltages resulting from the drop in the source impedance are equal to   

R2 S2
99 5 80 5460 8e V 60 8 e Vj . j .. , .U U

     

with the three-phase rms value 2 86 0 V|| || .u . 

The active power corresponding to the 2nd harmonic order is equal to   

2 R2 S2R2 S2Re{ + } 2000 W* *P U I U I   . 

Likewise, the system corresponding to the 4th harmonic order is equivalent to Fig. 5.24. 
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Fig. 5.24 The equivalent circuit of the system for the 4th order harmonic 

Therefore, the crms values of the line currents for the 4th harmonic order are,  

R4 S4
180100 A 100 Aj, eI I

   

and the current three-phase rms value 4 141 4 A|| || .i    

The line voltages resulting from the drop in the source impedance are equal to   

R4 S4
94 7 85 24120 4 e V 120 4 e Vj . j .. , .U U

     

with the three-phase rms value 4 170 3 V|| || .u   

The active power corresponding to the 4th harmonic order is equal to   

4 R4 S4R4 S4Re{ + } 2000 W* *P U I U I   . 

Finally, the system corresponding to the 7th harmonic order is as shown in Fig. 5.25. 

The crms values of the line currents for the 7th harmonic order are:   

R7 S7
180100 A 100 Aj, eI I

   

and the current three-phase rms value 7 141 4 A|| || .i .  
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Fig. 5.25 The equivalent circuit of the system corresponding to the 7th harmonic order 

The line voltages resulting from the drop in the source impedance are equal to   

R7 S7
92 73 87 3210 2e V 210 2e Vj . j .. , .U U

     

with the three-phase rms value 7 297 3 V|| || .u   

The active power corresponding to the 7th harmonic order is equal to   

7 R7 S7R7 S7Re{ + } 2000 W* *P U I U I   . 

Since the voltages and the currents of different harmonic orders are orthogonal to one 

another, the total three-phase voltage rms value is equal to   

n 1 2 3 4 5 7
2 2 2 2 2 2 2 1638 1 V|| || || || || || || || || || || || || || || ||

n N

.



       u u u u u u u u  

while the current three-phase rms value is equal to 

n 1 2 3 4 5 7
2 2 2 2 2 2 2 759 9A|| || || || || || || || || || || || || || || ||

n N

.



       i i i i i i i i  

Thus, the apparent power of the load is equal to  

1244 9 kVA = 1.25 MVA|| || || ||S . u i . 
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Apparent power calculated using the CPC power components: 

The rms values of the active, scattered and the reactive current components for the subset 

Cn N are equal to  

C C Ca s r323 6 A, 29 1 A, 323 6 A. || || . || || . || || .  i i i  

The positive and the negative sequence components of the unbalanced current are  

CuCu
p n33 4 A, 317 8A|| || . || || . i i  

Hence, the three-phase rms value of the unbalanced current is equal to,  

C CuCu
p 2 n 2 2 2

u 3 3 32 3 317 8 553 5 A|| || || || || || . . .    i i i . 

The different powers that these currents are associated with are equal to  

C sC C uC517 6 kW, 46 8 kVA, 520 kVars, 885 3 kVAP . D . Q D .     

The apparent power for the subset Cn N is equal to  

C C Cs C Cu
2 2 2 2 1150 8 kVAS P D Q D .     

Similarly, the voltage three-phase rms value for the subset Gn N  is equal to  

G

G n 2 4 7
2 2 2 2 353 3V|| || || || || || || || || ||

n N

.



    u u u u u  

while the three-phase rms value of the current harmonic Gj is equal to 

G

G n 2 4 7
2 2 2 2 245 A|| || || || || || || || || ||

n N

    i i i i i  

Thus, the apparent power corresponding to all the harmonics belonging to the subset

Gn N  is  
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G G G|| || || || = 86.5 kVAS  u i  

Next, the cross harmonic apparent power 

E C G G C
2 2 2 2 467 kVA|| ||  || || || || || ||S   u i u i  

Thus, the total apparent power calculated using the different components of the apparent 

power is equal to,  

C G E
2 2 2 1244 9 kVA = 1.25 MVAS S S S .   , 

which is the same as value of the apparent power calculated earlier using the three-phase 

rms values of the line currents and voltages, calculated earlier in the illustration. This 

verifies that the CPC decomposition of the load currents and the powers calculated using 

these currents are correct.  

The total active power of the load is equal to:  

C G

n n (517589 6000) W = 511.6 kW

n N n N

P P P

 

      

while the overall power factor of the load is equal to,   

C G

C Cs C Cu G E
2 2 2 2 2 2

511 6
0 41

1245

P PP .
.

S P D Q D S S


 


   

  

 

The waveforms of the line currents as well as the supply and the load voltages are as 

following.  
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Fig. 5.26 Plot of the line currents, the distribution voltage and the load voltages 

Illustration 5.3 Let us calculate the CPC currents and the various powers of the load in 

the previous illustration when the supply voltage is asymmetrical and nonsinusoidal and 

is equal to  

1 1

1 1

t 3 t

t 3 t120 120

1000  + 100  

2Re{ 500   + 100   

0

 }V  

j j

j jj j

e e

e e e e

 

   


 
 
 
 
 
 

e  

while the load generated harmonics in the current on line R are equal to 

1 1 1

RG
2 4 72Re{100 +100 +100 } Aj t j t j tj e e e   . 

In this case the voltage and the current contains the harmonics of two subsets, namely,  

C C

G G

with  = {1,3}

with  = {2,4,7}

n N N

n N N




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Analysis for the subset Cn N :  

For the fundamental component, the system is equivalent to the one depicted in Fig. 5.27.   

 

Fig. 5.27 The equivalent circuit of the system for n = 1 

The internal voltage of the distribution system for the fundamental frequency is  

120

1000

500

0

 V  j
eE
 



 
 
 
 
 

 

At this frequency, the sources impedance is     

1sc sc0 1 0 3R . , L .     

while the load impedance is  

RS 1 RS2 2R , L    . 

Thus, the load line to line admittances for the fundamental frequency are   

RS1 ST1 TR10 25 0 25 S, 0 0. j . ,Y Y Y    . 

The line currents rms values are equal to   

R1 S1 T1388 41 A,         388 41A 0 || i || . || i || . , || i ||    
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with the three-phase rms value equal to 1|| || 549 Ai . 

These currents cause a voltage drop in the source impedances, and the line voltages after 

the drop in the source impedance and after referencing to an artificial zero are equal to  

S1 T1R1
5 55 152 9 150660 3 V, 457 4 V, 288 7 Vj . j . j. e . e . eU U U

       

The voltage three-phase rms value is equal to 1|| || = 853.2 Vu . 

The active power of the fundamental harmonic is equal to   

1 R1 S1R1 S1Re{ + } 301 7 kW* *P .U I U I  . 

For the 3rd harmonic order, the system is equivalent to the one shown in Fig. 5.28.  

 

Fig. 5.28 The equivalent circuit of the system for n = 3 

The crms value of the 3rd order harmonic of the internal voltage of the distribution is  

3
120

100

100 V

0

jeE


 
 

  
 
 

 

while the load line to line admittances for this frequency are    

RS3 ST3 TR30 05 0 15 S, 0 0. j . ,Y Y Y    . 
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Note that unlike the previous case, the internal voltage of the distribution system in this 

illustration is nonsinusoidal and asymmetrical. Hence, the third order voltage harmonics 

are contain the positive as well as the negative sequence voltage components in addition 

to the zero sequence components. Therefore, the load voltages after referring to artificial 

zero is,   

S3 T3R3
18 7 133 6 12068 8 V 70 4 V 33 3 Vj . j . j. e , . e , . eU U U

       . 

The line currents for the third harmonic order are    

R3 S3 T321 4,         21 4 0 || i || . || i || . , || i ||    

with the three-phase rms value equal to 3|| || 30 2 A.i . 

Thus the active power of the 3rd harmonic is    

3 R3 S3R3 S3Re{ + } 910 W* *P U I U I  . 

Analysis for the harmonic orders n belonging to the subset NG : 

Next, we need to consider the system for the harmonic orders of subset Gn N . Since, the 

load generated harmonics in this case are the same as the previous illustration and the fact 

that the change in the supply parameters do not affect the analysis for the subset Gn N . 

The analysis for this subset will be the same as it was in the previous illustration. 

Therefore, only the results are presented here.   

The line current crms values for the 2nd order harmonics are    

R2 S2
180100 A 100 Aj, eI I

   

and the current three-phase rms value 2 141 4 A|| || .i    
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The line voltages resulting from the drop in the source impedance are equal to   

R2 S2
99 5 80 5460 8e V 60 8 e Vj . j .. , .U U

     

with the three-phase rms value 2 86 0 V|| || .u   

The active power corresponding to the 2nd harmonic order is equal to   

2 R2 S2R2 S2Re{ + } 2000 W* *P U I U I   . 

Likewise, for the 4th harmonic order, the line current crms values are   

R4 S4 4
180100 A 100 A, 141 42 A.j, e || || .I I

  i  

The voltage corms values are equal to,    

R4 S4 4
94 7 85 24120 4 e V 120 4 e V, 170 3 Vj . j .. , . || || .U U

    u  

The active power, 4 R4 S4R4 S4Re{ + } 2000 W* *P U I U I   . 

Finally, for the 7th harmonic order, the currents     

R7 S7 7
180100 A 100 A and 141 4 Aj, e || || .I I

  i  

while the voltages 

R7 S7 7
92 73 87 3210 2e V 210 2e V and  297 3 Vj . j .. , . || || .U U

    u  

The active power 7 R7 S7R7 S7Re{ + } 2000 W* *P U I U I   . 

The total three-phase voltage rms value is equal to   

n 1 2 3 4 7
2 2 2 2 2 2 929 5 V|| || || || || || || || || || || || || ||

n N

.



      u u u u u u u  

while the current three-phase rms value is equal to 
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n 1 2 3 4 7
2 2 2 2 2 2 602 2 A|| || || || || || || || || || || || || ||

n N

.



      i i i i i i i  

Thus, the apparent power of the load is equal to  

559 8 kVA|| || || ||S . u i . 

Apparent power calculated using the CPC power components 

The rms values of the active, reactive and the scattered current components for the subset 

Cn N are equal to  

sC C Ca r352 A, 34 0 A 354 5 A. || || || || . , || || .  i i i  

The positive and the negative sequence components of the unbalanced current are  

CuCu
p n64 2 A, 114 8A|| || . || || . i i  

Hence, the three-phase rms value of the unbalanced current is equal to,  

C CuCu
p 2 n 2 2 2

u 3 3 64 2 114 8 227 8 A|| || || || || || . . .    i i i . 

The different powers that these currents are associated with are equal to  

C Cs C Cu302 6 kW, 29 2 kVA 304 8 kVars, 195 9 kVAP . D . Q . D .     

The apparent power for the subset Cn N is equal to  

C C Cs C Cu
2 2 2 2 473 kVAS P D Q D     

Similarly, the voltage three-phase rms value for the subset Gn N  is equal to  

G

G n 2 4 7
2 2 2 2 353 3V|| || || || || || || || || ||

n N

.



    u u u u u  
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while the three-phase rms value of the current harmonic Gj is equal to 

G

G n 2 4 7
2 2 2 2 245 A|| || || || || || || || || ||

n N

    i i i i i  

Thus, the apparent power corresponding to all the harmonics belonging to the subset

Gn N  is  

G G G|| || || || = 86.5 kVAS  u i  

Next, the cross harmonic apparent power 

E C G G C
2 2 2 2  286 8 kVA|| || || || || || || ||S .  u i u i  

Thus, the total apparent power calculated using the different components of the apparent 

power is equal to,  

C G E
2 2 2 559 8 kVAS S S S .   , 

which is the same as value of the apparent power calculated earlier using the three-phase 

rms values of the line currents and voltages.  

The total active power of the load is equal to:  

C G

n n 296.7 kW

n N n N

P P P

 

     

while the overall power factor of the load is equal to,   

C G

C Cs C Cu G E
2 2 2 2 2 2

296 7
0 53

559 8

P PP .
.

S .P D Q D S S


 


   

  

 

The waveforms of the line currents as well as the supply and the load voltages are as 

following.  
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Fig. 5.29 Plot of the line currents, the distribution voltage and the load voltages 

5.5 Conclusion 

The analysis of circuits with Harmonic Generating Loads (HGLs) supplied from a source 

of nonsinusoidal and asymmetrical voltage was presented in this chapter. The load current of a 

HGL was decomposed into orthogonal components, also known as Currents’ Physical 

Components, each of which is associated with a distinct physical phenomenon. The apparent 

power of the HGL is composed of the apparent powers CS , GS  and ES . The apparent power CS is 

the same as the apparent power of the load for LTI systems and is associated with the same 

physical phenomena as that in LTI systems. The power GS is a new component of the apparent 

power and originates as a result of the load generated current harmonics. In addition to these two 

powers, the apparent power also contains the power ES , which stems from the increment in the 

voltage and current three-phase rms values. The reactive, unbalanced and scattered power 

components of the power CS as well as the powers GS and ES  all contribute the degradation of 



138 

 

the power factor of HGLs. Moreover, the harmonic generated apparent power GS not only 

increases the apparent power of the load, but also reduces the active power of the load.  
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CHAPTER 6: REFERENCE SIGNAL GENERATION FOR SHUNT 

SWITCHING COMPENSATORS IN THREE-WIRE SYSTEMS AT 

ASYMMETRICAL VOLTAGE 

6.1 Introduction 

 Chapters 3 and 4 of this dissertation were focused on description of the power properties 

of linear time invariant (LTI) loads, as well as on the methods of the design of reactive 

compensators for power factor improvement. Chapter 5 was dedicated to the development of the 

power equation of Harmonic Generating Loads (HGLs) at asymmetrical and nonsinusoidal 

supply voltage. The methods of compensation of HGLs were not discussed, however, because 

reactive balancing compensators are not as effective for HGLs as compared to LTI loads. 

Switching Compensators, also commonly known as Active Power Filters, are used for this 

purpose instead. 

 Switching Compensators (SCs) are power electronics devices that inject the 

compensating current into the distribution system. In essence, SCs are controlled current sources 

which reproduce the waveform of a reference signal, which in turn depends on the goals of 

compensation. 

 Operating principle of SCs is not the subject of power theory, however. The subject of 

this chapter is the compensation of HGLs using SCs as well as the methods used for the 

generation of the reference signal of SCs. Therefore the focus of this chapter is on the algorithms 

used for the generation of the reference signal, while SCs are modelled as controlled current 

sources in this chapter. 

Two terms that will be used frequently in this chapter are Supply Quality (SQ) and 

Loading Quality (LQ). Supply Quality [29] refers to the properties of the supply voltage. An 
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ideal three-phase voltage is one which is symmetrical, sinusoidal, and has a constant RMS value. 

Any deviation from these standards leads to the degradation of the Supply Quality. On the other 

hand, Loading Quality [29] refers to properties of a load as seen from the supply side. An ideal 

three-phase load is balanced, resistive and linear. Any deviation from these properties leads to 

the degradation of the Loading Quality. The scope of this chapter, as well as this dissertation, is 

limited to the improvement of the Loading Quality.  

6.2 Issues with compensation of HGLs at nonsinusoidal voltage  

Studies on compensation in the earlier chapters of this dissertation were confined to 

reactive compensators, applied mainly to LTI loads. In the case of HGLs, harmonics generated in  

such loads can be reduced by Resonant Harmonic Filters (RHFs)[30], which are a kind of 

reactive compensators. Branches of such filters provide a short-circuit path to harmonics to 

which they are tuned to. Consequently, the load generated harmonics are filtered out and the 

supply current waveform is prevented from distortion. Unfortunately, when the supply voltage is 

distorted, and in particular, it contains the voltage harmonics of the same order as the load 

generated current harmonics, the filter branches tuned for the load generated harmonics 

inadvertently amplifies the supply current harmonics. Consequently, efficiency of RHFs in 

reduction of distortion declines. Even at relatively low voltage distortion, RHFs can lose 

effectiveness [31]. 

6.3 Background on Shunt Switching Compensators (Active Power Filters)  

Distribution system can be protected against harmonics generated in the load by 

Switching Compensators (SCs) known mainly as ‘Active Filters’ [32]. Shunt SCs are devices 

capable of injecting the compensating current into the distribution system. Loads with degraded 

Loading Quality may draw the active, reactive, unbalanced, and scattered currents from the 
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source but only the active current contributes to the energy delivery from the source to the load. 

Hence, the non-active components of the load current are considered as useless currents as they 

increase the supply current RMS value, lead to losses, and reduce the effectiveness of energy 

delivery. If the SC injects a current, equal to the difference between the active and the load 

current, into the system - the load draws its normal current while the supply sees an ideal load 

and is only loaded with the active current. This reduces the losses and improves the effectiveness 

of energy delivery.  

A SC consists of a PWM Inverter, a Data Acquisition System, and a Digital Signal 

Processing System as shown in the Fig. 6.1. Information about the line voltages and currents is 

acquired through the Data Acquisition System, using voltage and current sensors. These voltage 

and current signals are then fed to the Digital Signal Processing system. An algorithm based on a 

specific power theory is then used to generate a reference signal. The reference signal is fed to a 

Pulse Width Modulation (PWM) generator which controls the inverter that injects the desired 

current into the power system. 

 

Fig. 6.1 Block diagram of PWM Inverter based Switching Compensator 
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6.4 Algorithms used for reference signal generation  

Reference signal carries the information about the waveform of the compensator current 

which is to be produced by PWM Inverter. Once the voltage and current signals are obtained 

from the Data Acquisition System, an algorithm, based on a power theory as per the goals of 

compensation, is used to generate the reference signal. The eventual purpose of the SC, 

regardless of the algorithm that it is being used, is to improve the Loading Quality. Different 

approaches have different goals of compensation, however. When the source has ideal Supply 

Quality, the goals of compensation of all the approaches should converge. On the other hand, 

when the source has degraded Supply Quality, the results of compensation may depend on the 

used power theory. Some of the most commonly used power theories for reference signal 

generation are discussed below.  

6.4.1 Instantaneous Reactive Power (IRP) p-q Theory  

The Instantaneous Reactive Power (IRP) p-q Theory [33] is the most commonly used 

power theory [34] for the reference signal generation for switching compensators. It was 

introduced by Akagi, Kanazawa and Nabae in [33] and has since gone through a lot of 

modifications and development, some of which include [35-38]. Although the theory is 

sometimes criticized [39, 40] as a power theory due to its shortcomings in the description of the 

power phenomenon in the load, it is commonly used for the control of switching compensators.  

 This theory is based upon two power p and q, which are defined by the instantaneous 

values of the voltages and currents. According to the p-q theory the instantaneous active power 

of ideal loads should be constant. The control algorithm is also designed on the same principle 

[41] and its goal is to compensate the components p  and q of the instantaneous power.  
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 The IRP p-q is built upon the Park and Clark Transforms of the voltages and currents into 

orthogonal   and   coordinates, namely, 

 

R

S

T

1 1
1

2 22

3 3 3
0

22

u
u

u
u

u





 
                  

 

 . (6.1) 

For three-phase three-wire systems, the information about two line voltages is sufficient 

to calculate the Clark Transforms. Formula (6.1) can be simplified to the form 

 R R

S S

3
0

2

1
2

2

u u u

u u u





 
      
       
      
 
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C  . (6.2) 

Similarly, the Clark Transform of the line currents is equal to  

 R R

S S

3
0

2

1
2

2

i i i

i i i





 
      
       
      
 
 

C  . (6.3) 

 After these transformations, the load is described in terms of two powers, namely,  

 p u i u i       (6.4) 

referred to as the instantaneous active power, and  

 q u i u i       (6.5) 

referred to as the instantaneous reactive power.  

Having these powers the instantaneous active current 
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  (6.6) 

and the instantaneous reactive current  

 
2 2 2 2q q

u u
i q, i q

u u u u

 
 

   


 

 
  (6.7) 

are defined.  

The names instantaneous active current and instantaneous reactive current can be 

misleading, however [39]. These currents have nothing in common with active and reactive 

currents known traditionally in electrical systems. The instantaneous reactive current is not 

related to the reactive power Q. Likewise, the instantaneous active current is different than the 

active current defined by Fryze, which is associated with permanent energy transfer. Also, from 

the point of view of compensation, the instantaneous active current is not the current that should 

be supplied from the distribution system after compensation. The goal of compensation of the p-

q theory is to compensate the power q as well as the alternating component of the instantaneous 

active power p. 

The compensation current can be calculated as 

 
2 2

1
=

u uj p

j u u qu u

 

   

    
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      

 . (6.8) 

The compensator currents expressed in terms of the   and  coordinates are then converted 

into phase quantities using Inverse Clark Transform, namely, 
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C   (6.9) 

This algorithm used for reference signal generation works well when the supply has ideal 

quality because in such a case the instantaneous active power of ideal loads is constant. 

Unfortunately, supply voltage distortion or asymmetry often results in an alternating component 

in the instantaneous active power, even if the load is ideal. If the goal of compensation is to 

compensate the alternating component, then the compensator is often ineffective, while it can 

sometimes even be detrimental.  

Illustration 6.1 Let us consider a system with a balanced resistive load supplied from a 

source of sinusoidal asymmetrical voltage as shown in Fig. 6.2. 

 

Fig. 6.2 Balanced resistive supplied from a source of asymmetrical voltage 

We have, 

R S T12 0 0u U cos t, u , u .    

Therefore, 

R S
1 12 2 2

3 3

U cos t U cos t
i , i

R R

 
  . 

Thus,  
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C . 

The instantaneous active power, 

2 2
1cos 2p u i u i U G U G t         

and the instantaneous reactive power 

2 2
1cos 2q u i u i U G U G t         . 

Thus a balanced resistive load, which has ideal Loading Quality, has an alternating 

instantaneous active power component p  equal to 2
1cos 2U G t  as well as the 

instantaneous reactive power component q  equal to 2 2
1cos 2U G U G t  .The goal of 

the IRP p-q Theory based algorithm is to produce the compensator current to compensate 

the powers p  and q . Unfortunately, such a compensator current will degrade the power 

quality. Moreover, since the load is balanced and resistive, it already has ideal Loading 

Quality and shunt compensation cannot improve the condition any further. This simple 

illustration demonstrates how the failure to distinguish degraded Loading Quality from 

degraded Supply Quality can lead to erroneous results.  
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The main argument in favor of the IRP p-q Theory is that it supposedly provides the 

theoretical fundamentals for the design of control algorithms - and somehow it is not that 

important whether or not it interprets the power phenomenon in electrical systems correctly. 

Unfortunately, this fundamental deficiency in the p-q theory renders it ineffective when there is 

supply voltage asymmetry or distortion. Moreover, since the theory interprets the power 

phenomena incorrectly, it can rather lead to the degradation, as opposed to the improvement of 

power quality. Examples of a few situations have been presented in [39, 42, 43] where 

compensation using the p-q approach leads to detrimental results. 

6.4.2 CPC Power theory 

Unlike the IRP p-q Theory and the Fryze Power Theory [3, 44] (not discussed in this 

chapter), which are based on the time-domain, the CPC power theory is formulated in the 

frequency-domain. It is based on the decomposition of the load current into orthogonal 

components, each associated with a distinct physical phenomenon. It enables the description of 

the power properties of the load.   

 Although the CPC power theory is based on the frequency-domain, the CPC based 

compensation algorithms utilize both the frequency-domain, and the time-domain. The time-

domain is used to expedite the computation of the compensator current. In this approach, the 

active current is computed using the frequency-domain, while the remainder of the current, 

which can be calculated by subtracting the active current from the load current, is calculated in 

time-domain and used for reference signal generation.    

The non-active current can be calculated as a combined quantity in order to expedite the 

process. The CPC theory does enable the calculation of the physical components of the current, 

however. This is particularly important because the CPC theory is the only approach in published 
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literature that enables decomposition of the load current into components based on physical 

phenomena, thereby enabling the design of hybrid compensators, which compensate these 

components separately. A hybrid compensator utilizes reactive compensator for the 

compensation of the bulk of the reactive and unbalanced currents, and switching compensators 

for the compensation of harmonic currents as well as the scattered current. Such a hybrid 

compensator could be capable of handling industrial loads such as arc furnaces with power rating 

in the range of hundreds of MVAs. Compensation of such loads is well beyond the capability of 

any approach that relies only on Switching Compensators.  

The goal of compensation is to make the load as seen from the supply source as resistive, 

balanced and linear as much as possible. In order to do this, first the voltages and currents have 

to be sampled and then used to calculate the active current. Next, the non-active current is 

calculated and the negative of this current is generated and then injected into the system. 

Consequently, the load and the compensator together will only draw the active current from the 

supply. 

6.5 Reference signal generation based on Currents Physical Component Power Theory    

The two main advantages of using CPC based algorithm for reference signal generation is 

that it enables compensation at voltage asymmetry and distortion, and provides the flexibility to 

choose the current components that are to be compensated. Consequently, CPC based algorithms 

enable design of hybrid compensators which can combine SCs of low power fast switching 

capabilities with reactive compensators of high power but without adaptive properties.  

The first step in the generation of the reference signal is to acquire the line voltages and 

currents. For a three-phase three-wire system, the phase voltages and currents have the given 

relationships: 
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Therefore, the information on voltages and currents of two phases is sufficient to calculate them 

in the third phase. Hence, only two voltages and currents need to be sampled. Once the samples 

of these quantities are obtained, the Fourier Transform of these quantities is done in order to 

transform these quantities to the frequency domain. Next, the active power of the load can be 

calculated by integrating the instantaneous power over time 

 k k
k=1

1 N

P u i
N

    (6.11) 

or by using the crms values of the line voltages and currents  
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The equivalent conductance of such a load is equal to  

 b 2

P
G

|| ||


u
  (6.13) 

where || ||u  is the three-phase rms value of the supply voltage defined earlier in the dissertation 

and can be calculated as  

 kx

X=R,S,T

2

k

1
|| || u

N
  u   (6.14) 

The active current of the load is equal to  

 ak b kGi = u  . (6.15) 



150 

 

Once the active current is known, the compensator current can be calculated by subtracting the 

active current from the load current,  

 k akj i = i i   (6.16)  

6.6 Implementation of Reference signal in PWM Inverter based Switching Compensator 

Although the methods used for the calculation of the active current was described in 

section 6.4 above, the details of its implementation using a shunt Switching Compensator were 

not explained. Since SCs are not the subject of this chapter, and are, moreover, modeled using 

controlled current sources in this chapter, these considerations are only shortly described below. 

The details of the implementation of SCs can be found in [34, 45]. 

 In addition to the energy transferred to the load, the active current after compensation 

should also carry the energy that is dissipated in the compensator in order to maintain the voltage 

level of the capacitor used in the PWM Inverter. 

 After the correct reference signal is calculated in the digital form, the current has to be 

produced by the PWM Inverter. In order to do this, the inverter has to be controlled utilizing a 

method known as the Space Vector Pulse Width Modulation (SV-PWM) approach [45]. This 

method is used to operate the switches of the inverter, so that the desired current output is 

obtained across the compensator output terminals. 

6.7 Simulation and Results  

The simulations were carried out in the Simpowersystem Toolkit of MATLAB. The 

voltages and currents were first measured using a Three-Phase V-I Measurement Block. Then the 

active power and the active current were calculated and then used to calculate the reference 

signal for compensation. The goal of compensation was to reduce the supply current to just the 
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active current. Therefore, the supply current after compensation should be in phase with the 

supply voltages. The reference signal was then fed to the controlled current sources which were 

used to model the Switching Compensators. Based on the reference signal, the current sources 

injected the compensator current into the system and improved the Loading Quality. CPC based 

algorithm was used for the compensation of both linear as well as Harmonic Generating loads, 

operating at nonsinusoidal as well as asymmetrical supply voltage. The model shown in Fig. 6.3 

was used for simulation. Details of the various parts of the model are given in the Appendix 

section.  

 

Fig. 6.3 Matlab Simulink model used for simulation 

Two V-I Measurement Blocks were used in the model. The first block, namely “Supply 

Side” measured the supply voltage and currents while the second block, namely “Load Side” 

measured the load side voltages and currents.  

1. Balanced resistive LTI load supplied from a source of sinusoidal symmetrical voltage  

 In this case a balanced resistive load of 1 Ohm was supplied from a sinusoidal 

symmetrical voltage source with rms value 100 Volts.  
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Fig. 6.4 Simulation results of balanced LTI load supplied with sinusoidal symmetrical voltage 

This case is included to verify that the model is operating correctly. As shown in Fig. 6.4, the 

line currents and voltages are in phase with one another while the supply current is the same as 

the load current. As expected, a balanced resistive load draws sinusoidal symmetrical current 

from a source of sinusoidal symmetrical voltage. 

2. Unbalanced LTI load supplied from a source of sinusoidal symmetrical voltage  

A sinusoidal symmetrical voltage of rms value 100 volts was connected to an unbalanced 

LTI load as shown in Fig. 6.5. The results of simulation are shown in Fig. 6.6.  
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Fig. 6.5 Unbalanced LTI load  

Unbalanced load draws three-phase currents which are also unbalanced. The compensator is 

turned on at t = 0.05 s, after which the supply is only loaded with the active current, while the 

load still draws its normal current. Supply current after compensation is in phase with the supply 

voltage. Also, there is a significant reduction in the supply current rms value after compensation. 

 

Fig. 6.6 Simulation results of unbalanced LTI load with sinusoidal symmetrical voltage 
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3. Unbalanced LTI load supplied from a source of sinusoidal asymmetrical voltage  

The same unbalanced load from the previous case and shown in Fig 6.5 was next 

connected to a sinusoidal but asymmetrical voltage source. The line voltages were equal to 

R
0 V100 jeU  , S

100 V84 8 j. eU   and T
135 V120 jeU  . The simulation results are shown in 

Fig. 6.7.  

 

Fig. 6.7 Simulation results of unbalanced LTI load connected to sinusoidal asymmetrical voltage  

The supply current before compensation is asymmetrical. After the compensator is turned on at t 

t = 0.05 s, the compensator compensates the unbalanced and reactive currents. The supply 

current contains only the active current and hence it is in phase with the supply voltage. There is 

a reduction in the supply current rms value and the supply currents are proportional to the supply 

voltages after compensation. The load current is not affected by the addition of the compensator.  
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4. Unbalanced LTI load supplied from a source of nonsinusoidal symmetrical voltage  

Next, the unbalanced LTI load was connected to a source of symmetrical, but 

nonsinusoidal voltage with the crms values of harmonics  

R1 R5 R7
0 0 0V 20 V V100 20j j j, ,e e eU U U     , 

S1 S5 S7
120 120 120V 20 V V100 20j j j, , ,e e eU U U        

T1 T5 T7
120 120 120V 20 V V100 20j j j, , .e e eU U U       

The results of simulation are shown in Fig. 6.8. The simulation can be divided into three 

sections. The first section is from the beginning to t1=0.05 s, when the supply voltage is 

sinusoidal and symmetrical, and the compensator is off. From 0.05 to 0.1 s, the voltage is the 

same but the compensator is turned on. The voltage harmonics are introduced at t2 = 0.1 s with 

the compensator remaining on till the end. From the beginning to t1=0.05 s, the supply voltage is 

sinusoidal and symmetrical. Since the load is unbalanced, it draws unbalanced current during this 

period of time. The supply current is the same as the load current. The compensator is turned on 

at t1=0.05 s and kept on until the end of the simulation. After the compensator is in turned on, it 

compensates the reactive and unbalanced currents and the supply current is loaded with only the 

active current. As the voltage is sinusoidal and symmetrical, the supply current after 

compensation is also sinusoidal and symmetrical. The load current is not affected by the addition 

of the compensator. Next, voltage harmonics of the fifth and the seventh harmonic orders are 

added to the supply voltage at t2 = 0.1 s. After the supply is loaded with the voltage harmonics, 

there is a change in the load current, as it now draws distorted current from the source. The 

compensator adjusts to the change in the voltage and injects the necessary current into the lines 
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so that the supply current is equal to the active current. As a result, supply current is proportional 

to the supply voltage after compensation. 

 

Fig. 6.8 Simulation results of unbalanced LTI load supplied with nonsinusoidal voltage   

5. HGL supplied from a source of sinusoidal asymmetrical voltage  

Next, a Harmonic Generating Load (HGL) as shown in Fig. 6.9 was connected to a 

sinusoidal symmetrical voltage with line voltage rms value equal to 100 volts. This particular 

case was included to verify that the model with the HGL is working as per the expectations. The 

results of simulation are shown in Fig. 6.10.  
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Fig. 6.9 Harmonics Generating Load 

 

 

Fig. 6.10 Simulation results of HGL connected to sinusoidal asymmetrical voltage 

Before the compensator is turned on, the load draws nonsinusoidal current from the source. The 

load current is equal to the supply current. This can be seen in the plots from the beginning to t = 

0.05 s. After the compensation is turned on at t = 0.05 s, the compensator injects the non-active 
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components of the load current into the distribution system and the supply is loaded with only 

the active current. As a result, the supply current is in phase with the supply voltage. The peak 

and rms values of the supply current waveforms are much smaller compared to those of the load 

current after compensation. The load current is not naffected by the compensator. 

6. HGL supplied from a source of nonsinusoidal and symmetrical voltage 

The HGL shown in Fig. 6.9 was connected to nonsinusoidal voltage with the crms values 

of the harmonics 

R1 R5 R7
0 0 0V 20 V V100 20j j j, , ,e e eU U U     , 

S1 S5 S7
120 120 120V 20 V V100 20j j j, , ,e e eU U U        

T1 T5 T7
120 120 120V 20 V V100 20j j j, ,e e eU U U      . 

The voltage harmonics were introduced at t2 = 0.1 s while the compensator was turned on at t1 = 

0.1 s. The result of compensation is shown in Fig. 6.10. Even when the voltage is sinusoidal and 

symmetrical, the HGL load draws nonsinusoidal current from the source. This is seen between 

the start to t1 = 0.05 s in the figure. The compensator current is zero in this period. When the 

compensator is turned on at t1 = 0.05 s, it injects the non-active components of the current into 

the distribution system. As a result, the supply is only loaded with the active currents. The supply 

current is proportional to the supply voltage. Since the supply voltage is sinusoidal and 

symmetrical, the supply current after compensation is also sinusoidal and symmetrical in this 

period of time. The load current on the other hand is unaffected by the compensator and draws its 

normal current, which is nonsinusoidal. Next, the voltage harmonics are introduced at t2 = 0.1 s. 

The load current also changes as a result. Since the compensator is already on, it adjusts to the 

change in the supply voltage and injects a different compensator current into the distribution 
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system. As a result, the supply current is still in phase with the supply voltage. Observe that the 

supply current after compensation is proportional to the supply voltage and since the voltage is 

distorted, so is the supply current after compensation. The load with the compensator has ideal 

loading quality. 

 

Fig. 6.11 Simulation results of HGL connected to nonsinusoidal voltage 

Observe that for each of the cases given above, the supply current is proportional to the 

supply voltage after compensation. This result may seem strange, in particular because the 

current after compensation in most of the above given cases is either asymmetrical, or distorted, 

or both. This is because the goal of compensation of the algorithm used above is to reduce the 

supply current after compensation to the active current.  As such, whatever the nature of the 
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voltage waveform, is reflected on the supply current waveform after compensation. There are 

some approaches where the goal of compensation is to get sinusoidal symmetrical current even at 

nonsinusoidal or asymmetrical supply voltage. Although achieving such a goal is possible, the 

rms of the resulting supply current after compensation is higher than the rms value of the active 

current, which is the minimum current necessary for the energy transfer from the supply to the 

load.    

 6.8 Conclusion 

Some of the most commonly used algorithms for the generations of the reference current 

signal in Switching Compensators do not produce the desired results at voltage asymmetry and 

distortion. This is mainly because such algorithms are not able to distinguish the degradation of 

Loading Quality from that of Supply Quality. That shortcoming is overcome in this chapter by 

developing the compensator reference current algorithm based on the Currents Physical 

Components (CPC) power theory which distinguishes degraded Supply Quality from degraded 

Loading Quality. As a result, the CPC based algorithm, with the goal of compensation to reduce 

the supply current to the active current after compensation, improves the power factor to unity of 

both linear as well as Harmonic Generating Loads, at supply voltage asymmetry as well as 

distortion. The waveform supply current after compensation is in phase and proportional to the 

supply voltage. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK  

7.1 Conclusion 

This dissertation presents a solution of one of the unsolved problems of electrical 

engineering, namely, how to describe power properties and how to compensate three-phase loads 

supplied with asymmetrical and nonsinusoidal voltage. 

 Results obtained in the research and reported in this dissertation enable:  

 description of loads supplied with asymmetrical and nonsinusoidal voltage 

and currents in power terms  

 design of compensator for power factor improvement of such loads.  

These results apply to Linear Time Invariant (LTI) as well as to Harmonic Generating Loads 

(HGLs). 

It is also now known that voltage asymmetry does affect the form of the power equation 

of LTI loads. The parameters that the load powers are dependent on are affected, however.  

 The results presented in this dissertation contribute to closing the chapter on power 

theory development of three-phase three-wire systems with periodic voltages and currents. 

Results of these studies also provide the answer to one of the most important questions on 

compensation, namely the power factor of LTI as well as HGL loads can be improved to unity 

even at the supply voltage asymmetry.    

 This dissertation also demonstrates that the Currents’ Physical Components (CPC) 

framework can be extended to three-phase systems with asymmetrical voltages and currents, and 

to Harmonic Generating Loads (HGLs).  
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7.2 Suggestions for future work 

Results in this dissertation were obtained based on theoretical analysis. Their application 

to compensator control could be seem as a next step in research. Also, the scope of the research 

presented in this dissertation was limited to three-phase three-wire systems. It can be extended to 

three-phase four-wire systems. Similarly, this dissertation can be used as a platform for the 

description of the power properties of three-phase loads with non-periodic voltages and currents. 

The CPC based algorithm can also be used for the design and control of hybrid compensators. 
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APPENDIX A – SIMULINK BLOCK DIAGRAMS 

Block for active current calculation  

 

Block for compensator current generation 
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Block for harmonic current components   

 

 

 



169 

 

APPENDIX B – MATLAB CODES 

Code used for Asymmetrical Sinusoidal Voltage and LTI Load  

% IT solves A&S for LTI   
% Problem of incorrect Yd corrected in this file  

  
% This part is for initialization for constants 
clear all 
clc 
alp = -.5 + ((sqrt(3))/2) * 1i ;  
f=60;  
omega = 2*pi * f ; 

  
% % Ex.1: Supply is symmetrical and load is balanced and resistive 
% %LOAD PARAMETERS 
% Z_rs = 1 ; 
% Z_st = 1;  
% Z_tr =  1;  
% %SUPPLY PARAMETERS 
% U_r = 100+0i; 
% U_s = -50 - (50 * sqrt(3))*1i; 
% U_t = -50 + (50 * sqrt(3))*1i; 

  
%%Ex:2, Refer illust 4,pg 28 onwards of Ch.7 of Professor's book 
% % LOAD PARAMETERS 
Z_rs = inf ; 
Z_st = 1;  
Z_tr = 0+1*1i;  

  
% %% Unbalanced Resistive Load  
% Z_rs = 140; 
% Z_st = 15; 
% Z_tr = 25; 
%% 
% %SUPPLY PARAMETERS S&S 
% U_r = 100+0i; 
% U_s = -50 - (50 * sqrt(3))*1i; 
% U_t = -50 + (50 * sqrt(3))*1i; 

  
% SUPPLY PARAMETERS : Used for illustration and in General Exam  
U_r =100; 
U_s= -50 -sqrt(3)*50i; 
U_t =0; 

  

  
% ##################################################################### 
% The actual program starts from here.... everything before this is given 
% Calculations of basic paramters based on input 

  
Y_rs = 1 / ( Z_rs); 
Y_st = 1 / ( Z_st); 
Y_tr = 1 / ( Z_tr); 
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%U_rms = sqrt((U_r * conj(U_r))+(U_s * conj(U_s))+(U_t * conj(U_t))) ; % This 

line is key !!! 

  

  
% Calculation of more specific parameters 

  
U_p = (1/3) * ( U_r + alp * U_s + (power(alp,2)) * U_t);% Pos seq voltage 
U_n = (1/3) * ( U_r + (power(alp,2)) * U_s+ alp * U_t );%Neg seq vol 
U_z = (1/3) * ( U_r +  U_s + U_t ); % zero seq voltage  
U_rms_art = sqrt(3) * sqrt((U_p * conj(U_p))+(U_n * conj(U_n))) ; 

  
% VOLTAGES 
U_r_art = U_p + U_n ; 
U_s_art= U_p * conj(alp) + alp * U_n; 
U_t_art= U_p * (alp) + conj(alp) * U_n; 
U_rs_art = U_r_art - U_s_art ; 
U_st_art = U_s_art - U_t_art ; 
U_tr_art = U_t_art - U_r_art ; 
% BRANCHE CURRENT 
i_rs = Y_rs * U_rs_art ; 
i_st = Y_st * U_st_art ; 
i_tr = Y_tr * U_tr_art ; 
%LINE CURRENTS 
i_R = i_rs-i_tr; 
i_S = i_st-i_rs; 
i_T = i_tr-i_st; 
i_rms1 = sqrt( power(abs(i_R),2) + power(abs(i_S),2) + power(abs(i_T),2)); 
%COMPLEZ POWER 
CP = U_r_art * conj(i_R)+ U_s_art*conj(i_S)+U_t_art*conj(i_T); 
% POWERS CACULATED FROM COMPLEX POWER 
P = real (CP) ; 
Q = imag (CP) ; 
% EQUIVALENT PARAMETERS FOR THE NEW BALANCED CIRCUIT 
Y_b = conj(CP) / power (U_rms_art,2) ; 
G_b = real(Y_b); % real of Y_b or eqv balanced conductance 
B_b = imag(Y_b); % eqv balanced susceptance 

  
Y_e = Y_rs + Y_st + Y_tr; % eqv admittance 
G_e = real(Y_e);% eqv conductance 
B_e = imag(Y_e);%eqv susceptance 

  
Y_d = Y_e - Y_b ; 
A_p = -1 * ( Y_st + alp * Y_tr + (conj(alp)) * Y_rs );  % posi. seq unbalance 

admittance 
A_n = -1 * ( Y_st + conj(alp) * Y_tr + alp * Y_rs ) ; % neg seq unbalance 

admittance 

  
i_act = G_b * U_rms_art; 
i_rea = abs(B_b) * U_rms_art; 
I_Ru_P = A_n * U_n + Y_d * U_p; 
I_Ru_N = A_p * U_p + Y_d * U_n; 
i_unb = sqrt(3) * sqrt( power(abs(I_Ru_P),2) + power(abs(I_Ru_N),2) ) ; 

  
i_rms = sqrt( power(i_act,2) + power(i_rea,2) + power(i_unb,2) ); 
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P_2 = U_rms_art * i_act ; 
Q_2 = U_rms_art * i_rea ; 
D_u = U_rms_art * i_unb ; 

  
S= sqrt( power(P,2) + power(Q,2) + power(D_u,2)); 

  
pf = P_2 / S ; 

  
a_complex = (U_n /U_p);  % this is complex quantity "a"  
a=abs(a_complex); 
theta=angle(a_complex); 

  
Y_d1 = (( 3 / power(U_rms_art,2) ) * ( ( Y_st * (U_r_art * conj(U_r_art)))+ ( 

Y_tr * (U_s_art * conj(U_s_art)))+( Y_rs * (U_t_art * conj(U_t_art))))) - 

Y_e;  
% Y_d is Asymmetry dependent unbalance admittance 
B_c_b = -1 * B_b ;  

  
% the following are terms that i used in my analysis to simplify 
% expressions... they will be easier to follow if my paperwork is referenced 
Ycd_tst = (1i * 2*a*cos(theta)) / ( 1 + power(a,2)) ;% this variable is c1 in 

paper  
Ycd_ttr = (1i * 2*a*cos(theta-(2*pi/3))) / ( 1 + power(a,2)); % this is c2 
Ycd_trs = (1i * 2*a*cos(theta+(2*pi/3))) / ( 1 + power(a,2)); % this is c3 

  
%calculated coeffieceints of Trs, Tst and Ttr in equation 

  
% again, A B C and D calcualted below are there to simplify analysis. They 
% will be easier to follow if my paperwork is referenced. 

  
% I am calling the coef or Trs as A , Tst as B and Ttr as C.... 
A = (1+a_complex)* Ycd_trs - 1i*(conj(alp)+a_complex*alp ); 
B = (1+a_complex)* ( Ycd_tst - 1i); 
C = (1+a_complex)* Ycd_ttr - 1i*(alp+a_complex*conj(alp)); 
D = Y_d * ( 1 + a_complex) + A_p + a_complex * A_n ; 

  
% calculation of coeffieceints in final equation 
 % real and imaginary parts of the coefficeints...  
A_real = real(A); 
B_real = real(B); 
C_real = real(C); 
D_real = real(D); 
A_imag = imag(A); 
B_imag = imag(B); 
C_imag = imag(C); 
D_imag = imag(D); 

  
% Declaring matrices coef_mat and cnst_mat for solving  
% Dont confuse these elements A_mn and B_mn with the earlier A B C and D 

  
% This is to declare matrix as coefficeints of Trs, Tst and Ttr in eqns 
A_11 = U_rs_art*conj(U_rs_art); 
A_12 = U_st_art*conj(U_st_art); 
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A_13 = U_tr_art*conj(U_tr_art); 
A_21 = A_real; 
A_22 = B_real; 
A_23 = C_real; 
A_31 = A_imag; 
A_32 = B_imag; 
A_33 = C_imag; 

  
B_11 = -1 *B_b *  power(U_rms_art,2); 
B_21 = -1* D_real; 
B_31 = -1* D_imag; 

  
% declaring matrix 

  
coef_mat = [A_11,A_12,A_13;A_21,A_22,A_23;A_31,A_32,A_33]; 
cons_mat = [B_11;B_21;B_31]; 

  
%% Alternative Compensator  

  
K_con = Y_d * U_s_art + alp * A_p * U_p + A_n * conj(alp) * U_n; 
K_trs = Ycd_trs * U_s_art- 1i * U_p - 1i * U_n; 
K_tst = Ycd_tst * U_s_art- 1i * alp * U_p - 1i * conj(alp) * U_n; 
K_ttr = Ycd_ttr * U_s_art- 1i * conj(alp) * U_p - 1i *alp *  U_n; 

  
coef_mat_alt = 

[A_11,A_12,A_13;real(K_trs),real(K_tst),real(K_ttr);imag(K_trs),imag(K_tst),i

mag(K_ttr)]; 
cons_mat_alt = [B_11;-real(K_con);-imag(K_con)]; 
ans_mat_alt = inv(coef_mat_alt) * cons_mat_alt; 

  

  
coeff_new = 

[A_11,A_12,A_13;real(K_trs),real(K_tst),real(K_ttr);A_31,A_32,A_33]; 
cons_new = [B_11;-real(K_con);B_31]; 

  

  

  
ans_mat_new = inv(coeff_new) * cons_new;  % the values of compnesator 

susceptances 
T_rs_new = ans_mat_new(1,1); 
T_st_new = ans_mat_new(2,1); 
T_tr_new = ans_mat_new(3,1); 
%% 
ans_mat = inv(coef_mat) * cons_mat;  % the values of compnesator susceptances 
T_rs = ans_mat(1,1); 
T_st = ans_mat(2,1); 
T_tr = ans_mat(3,1); 

  
% n = 1 for only original , n= 2 for only alternative, n=0 or other for 
% both but the remaining program has original trs  

  
n_sel = 0; 
% Section to Choose  
if n_sel ==1  
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     T_rs = ans_mat(1,1); 
     T_st = ans_mat(2,1); 
     T_tr = ans_mat(3,1); 
    disp( ' '); 
    disp( ' ORIGINAL COMPENSATOR VALUES IN SIEMENS'); 
    fprintf(' T_rs = %d \n',T_rs); 
    fprintf(' T_st = %d \n',T_st); 
    fprintf(' T_tr = %d \n',T_tr); 
    disp(' The Structure of Compensator : ');     
else if n_sel==2 
    T_rs = ans_mat_alt(1,1); 
        T_st = ans_mat_alt(2,1); 
        T_tr = ans_mat_alt(3,1); 

  
disp( ' ---------      ----------'); 
disp( ' '); 
disp( ' ALTERNATIVE COMPENSATOR VALUES IN SIEMENS : these used for the 

remained of the program: '); 
fprintf(' T_rs = %d \n',T_rs); 
fprintf(' T_st = %d \n',T_st); 
fprintf(' T_tr = %d \n',T_tr); 

             
      else  
        T_rs_alt = ans_mat_alt(1,1); 
        T_st_alt = ans_mat_alt(2,1); 
        T_tr_alt = ans_mat_alt(3,1); 

  
disp( ' ---------      ----------'); 
disp( ' '); 
disp( ' ALTERNATIVE COMPENSATOR VALUES IN SIEMENS'); 
fprintf(' T_rs_ALT = %d \n',T_rs_alt); 
fprintf(' T_st_ALT = %d \n',T_st_alt); 
fprintf(' T_tr_ALT = %d \n',T_tr_alt); 
    T_rs = ans_mat(1,1); 
     T_st = ans_mat(2,1); 
     T_tr = ans_mat(3,1); 
    disp( ' '); 
    disp( ' ORIGINAL COMPENSATOR VALUES IN SIEMENS'); 
    fprintf(' T_rs = %d \n',T_rs); 
    fprintf(' T_st = %d \n',T_st); 
    fprintf(' T_tr = %d \n',T_tr); 
    disp(' The Structure of Compensator : '); 

     
   end  
end 

  

  
if T_rs < 0  
    X_rs = -1 / ( omega * T_rs ) ; 
    fprintf(' Branch RS contains inductor of value ( Henry) : %d \n',X_rs); 
else   
    X_rs = T_rs / omega ; 
    fprintf(' Branch RS contains capacitor of value ( Farads) : %d \n',X_rs); 
end  
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if T_st < 0  
    X_st = -1 / ( omega * T_st ) ; 
    fprintf(' Branch ST contains inductor of value ( Henry) : %d \n',X_st); 
else   
    X_st = T_st / omega ; 
    fprintf(' Branch ST contains capacitor of value ( Farads) : %d \n',X_st); 
end  

  
if T_tr < 0  
    X_tr = -1 / ( omega * T_tr ) ; 
    fprintf(' Branch TR contains inductor of value ( Henry) : %d \n',X_tr); 
else   
    X_tr = T_tr / omega ; 
    fprintf(' Branch TR contains capacitor of value ( Farads) : %d \n',X_tr); 
end  

  

  
% THE FOLLOWING PORTION CALCULATES CURRENTS AND VOLTAGES BEFORE AND AFTER 
% THE COMPENSATOR AND CALCULATES THE PF AND VERIFIES IF COMPENS. WORKS 

  
%The following are the values before compensation 

  

  
val =[P,Q,D_u,S,pf]; 
disp( ' '); 
disp('             '); 
disp( ' ALL VALUES ARE W.R.T. ARTIFICAL ZERO ' ); 

  
disp( ' VALUES BEFORE COMPENSATION : ' ); 
disp( '                              ' ); 
fprintf(' Active current = %d \n',i_act); 
fprintf(' Reactive current  = %d \n',i_rea); 
fprintf(' unbalance current  = %d \n',i_unb); 
fprintf(' Total RMS = %d \n',i_rms); 
disp( '                              ' ); 
fprintf(' Current in R Phase  = %d \n',abs(i_R)); 
fprintf(' Current in S Phase  = %d \n',abs(i_S)); 
fprintf(' Current in T Phase  = %d \n',abs(i_T)); 
fprintf(' RMS Current =  %d \n',i_rms1); 

  
disp('                  '); 
fprintf('Active Power P = %d \n',P); 
fprintf(' Reactive Power Q = %d \n',Q); 
fprintf(' Unbalanced Power Du = %d \n',D_u); 
fprintf(' Apparent Power S = %d \n',S); 
fprintf(' Power Factor PF = %d \n',pf); 

  
% The following are the values after compensation :  

  
%% Calculation of equivalent admittances after compensation 

  
Y_rs_new = Y_rs + T_rs * 1i ;  
Y_st_new = Y_st + T_st * 1i ;  
Y_tr_new = Y_tr + T_tr * 1i;   
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% Imp of load and comp in delta structure  
Z_rs_n_d = 1 / Y_rs_new; 
Z_st_n_d = 1 / Y_st_new; 
Z_tr_n_d = 1 / Y_tr_new; 

  
Z_r_n_d = ( Z_rs_n_d * Z_tr_n_d ) / ( Z_rs_n_d +Z_st_n_d + Z_tr_n_d); 
Z_s_n_d = ( Z_st_n_d * Z_rs_n_d ) / ( Z_rs_n_d +Z_st_n_d + Z_tr_n_d); 
Z_t_n_d = ( Z_st_n_d * Z_tr_n_d ) / ( Z_rs_n_d +Z_st_n_d + Z_tr_n_d); 

  
i_rs_comp = T_rs*1i * U_rs_art ; 
i_st_comp = T_st*1i * U_st_art ; 
i_tr_comp = T_tr*1i * U_tr_art ; 

  
i_r_comp = i_rs_comp-i_tr_comp; 
i_s_comp = i_st_comp- i_rs_comp; 
i_t_comp = i_tr_comp- i_st_comp; 

  
i_R_new = i_R + i_r_comp; 
i_S_new = i_S + i_s_comp; 
i_T_new = i_T + i_t_comp; 

  
i_R_new_rms = abs(i_R_new); 
i_S_new_rms = abs(i_S_new); 
i_T_new_rms = abs(i_T_new); 
% CUrrent may still not be equal... need to calculate reactive and unbl cur 

  
Y_e_new = Y_rs_new +Y_st_new+Y_tr_new; 

  
G_e_new = real(Y_e_new); 
B_e_new = imag(Y_e_new); 

  
Y_d_new = (( 3 / power(U_rms_art,2) ) * ( ( Y_st_new * (U_r_art * 

conj(U_r_art)))+ ( Y_tr_new * (U_s_art * conj(U_s_art)))+( Y_rs_new * 

(U_t_art * conj(U_t_art))))) - Y_e_new; 
Y_b_new = Y_e_new - Y_d_new; 

  
G_b_new = real(Y_b_new); 
B_b_new = imag(Y_b_new); 

  
% I tihnk this is where the problem is ...  
A_p_new = -1 * ( Y_st_new + alp * Y_tr_new + (conj(alp)) * Y_rs_new ) ; % 

posi. seq unbalance admittance 
A_n_new = -1 * ( Y_st_new + conj(alp) * Y_tr_new + alp * Y_rs_new ) ; % neg 

seq unbalance admittance 

  
i_act_new = G_b_new * U_rms_art; 
i_rea_new = (B_b_new) * U_rms_art; 

  
I_Ru_P_new = A_n_new * U_n + Y_d_new * U_p; 
I_Ru_N_new = A_p_new * U_p + Y_d_new * U_n; 

     
i_unb_new = sqrt(3) * sqrt( power(abs(I_Ru_P_new),2) + 

power(abs(I_Ru_N_new),2) ) ; 
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% % to check for erros 
%  
% err2 = A_n - 1i * ( T_st + T_tr * conj(alp) + alp * T_tr); 
% err1 = A_p - 1i * ( T_st + T_tr * (alp) + conj(alp) * T_tr); 
% err3 = Y_d + ((2*a)/(1+power(a,2)))*1i * ( T_st 

  
% ERROR CACLULATIONS PART ....  

  
% although A_c_p and A_c_n not used in this code, these values used for 
% checking ...  

  
A_c_p = -1i * ( T_st + alp * T_tr + (conj(alp)) * T_rs );  % posi. seq 

unbalance admittance 
A_c_n = -1i * ( T_st + conj(alp) * T_tr + alp * T_rs )  ;% neg seq unbalance 

admittance 
Y_c_d =  ( 2*a*1i / ( 1 + power(a,2))) * ( T_st * cos (theta) + T_tr * cos 

(theta - 2*pi/3 ) + T_rs * cos(theta+2*pi/3)); 

  

  
err1 = T_rs * A_11 + T_st * A_12 + T_tr * A_13 + B_b * power (U_rms_art,2); 
err11 = T_rs * power(abs(U_rs_art),2) + T_st * power(abs(U_st_art),2) + T_tr 

* power(abs(U_tr_art),2) + power(U_rms_art,2)* B_b; 
err2 = T_rs * real(A) + T_st * real(B) + T_tr * real(C)+ real(D); 

  
err3 = T_rs * imag(A) + T_st * imag(B) + T_tr * imag(C)+ imag(D); 
err4 = A * T_rs + B * T_st * C * T_tr + D; 

  
err22 = real(T_rs * A + T_st * B + T_tr * C + D); 
err33 = imag(T_rs * A + T_st * B + T_tr * C + D); 
% all athe above were found to be almost or practiacally 0  

  
err5 = (A_c_p + A_p ) + ( A_c_n + A_n) * a_complex + ( Y_c_d + Y_d )*(1 + 

a_complex); 

  
% checking to see if the voltages wrt aritifical zeros are in some 
% rations.. 
U_r_art_rms = abs(U_r_art); 
U_s_art_rms = abs(U_s_art); 
U_t_art_rms = abs(U_t_art); 

  
Rat_vol_sr = U_s_art_rms / U_r_art_rms ; 
Rat_vol_tr = U_t_art_rms / U_r_art_rms ; 

  
Rat_cur_sr = i_S_new_rms / i_R_new_rms ; 
Rat_cur_tr = i_T_new_rms / i_R_new_rms ; 

  
% dISPLAYING    results...  

  
i_rms_new = sqrt( power(i_act_new,2) + power(i_rea_new,2) + 

power(i_unb_new,2) ); 

  
P_new = U_rms_art * i_act_new ; 
Q_new = U_rms_art * i_rea_new ; 
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D_u_new = U_rms_art * i_unb_new ; 
S_new= sqrt( power(P_new,2) + power(Q_new,2) + power(D_u_new,2)); 

  
pf_new = P_new / S_new ; 

  
val =[P_new,Q_new,D_u_new,S_new,pf_new]; 
disp( ' '); 
disp('             '); 
disp( ' ALL VALUES ARE W.R.T. ARTIFICAL ZERO ' ); 

  
disp( ' VALUES AFTER COMPENSATION : ' ); 
disp( '                              ' ); 
fprintf(' Active current = %d \n',i_act_new); 
fprintf(' Reactive current  = %d \n',i_rea_new); 
fprintf(' unbalance current  = %d \n',i_unb_new); 
fprintf(' Total RMS = %d \n',i_rms_new); 
disp( '                              ' ); 
fprintf(' Current in R Phase after compensation ( wrt art zero ) = %d 

\n',abs(i_R_new_rms)); 
fprintf(' Current in S Phase after compensation ( wrt art zero ) = %d 

\n',abs(i_S_new_rms)); 
fprintf(' Current in T Phase after compensation ( wrt art zero ) = %d 

\n',abs(i_T_new_rms)); 
fprintf(' RMS Current after compensation ( wrt art zero ) =  %d 

\n',i_rms_new); 

  
disp('                  '); 
fprintf('Active Power after compensation P = %d \n',P_new); 
fprintf(' Reactive Power after compensation Q = %d \n',Q_new); 
fprintf(' Unbalanced after compensation Power Du = %d \n',D_u_new); 
fprintf(' Apparent Power after compensation S = %d \n',S_new); 
fprintf(' Power Factor after compensation PF = %d \n',pf_new); 

  
disp ( '                  ' ); 
fprintf(' RMS of voltage Ur wrt art zero = %d \n',U_r_art_rms); 
fprintf(' Angle of voltage Ur wrt art zero = %d \n',angle(U_r_art)); 
fprintf(' RMS of voltage Us wrt art zero = %d \n',U_s_art_rms); 
fprintf(' Angle of voltage Us wrt art zero = %d \n',angle(U_s_art)); 
fprintf(' RMS of voltage Ut wrt art zero = %d \n',U_t_art_rms); 
fprintf(' Angle of voltage Ut wrt art zero = %d \n',angle(U_t_art)); 

  
fprintf(' RMS of Line current Ir after compensation wrt art zero = %d 

\n',i_R_new_rms); 
fprintf(' Angle of Current Ir wrt art zero after compensation = %d 

\n',angle(i_R_new)); 
fprintf(' RMS of Line current Is after compensation wrt art zero = %d 

\n',i_S_new_rms); 
fprintf(' Angle of Current Is wrt art zero after compensation = %d 

\n',angle(i_S_new)); 
fprintf(' RMS of Line current It after compensation wrt art zero = %d 

\n',i_T_new_rms); 
fprintf(' Angle of Current It wrt art zero after compensation = %d 

\n',angle(i_T_new)); 
disp(' '); 
disp(' Ir, I_s and I_t after compensation wrt art zero are in phase with U_r, 

U_s and U_t '); 



178 

 

  
disp(' '); 
fprintf(' Ratio of voltage Us_art and Ur_art  = %d \n',Rat_vol_sr); 
fprintf(' Ratio of current Is_art and Ir_art  = %d \n',Rat_cur_sr); 
fprintf(' Ratio of voltage Ut_art and Ur_art  = %d \n',Rat_vol_tr); 
fprintf(' Ratio of current It_art and Ir_art  = %d \n',Rat_cur_tr); 

  
disp (' new test : ' ); 
Y_cd = Ycd_tst * T_st + Ycd_ttr * T_tr +Ycd_trs * T_rs ;  
Acp = - 1i * ( T_st + alp * T_tr + conj(alp)*T_rs); 
Acn = - 1i * ( T_st + conj(alp) * T_tr + alp*T_rs); 

  
(Y_cd + Y_d); 
(Acp + A_p); 
(Acn+A_n); 
eq_val = (Y_cd + Y_d)* U_s_art + (Acp + A_p)*alp*U_p + 

(Acn+A_n)*conj(alp)*U_n; 

  

 

 

Code for Asymmetrical nonsinusoidal system 

%% INITIAL PARAMETER INITIALIZATION 
clc 
clear all 
alp = -.5 + ((sqrt(3))/2) * 1i ;  
% % This is voltage is similar to illustration  
%  
% U_r = [100,0,0,0,50,0,25]; 
% U_s = [ -50 - 86.6i,0,0,0,-25+43.3j,0,-12.5-21.65i]; 
% U_t = [0,0,0,0,0,0,0]; 

  
% This is where the voltage is defined, change here  
U_r = [100,0,0,0,2.5,0,2]; 
U_s = [ -50 - (50 * sqrt(3))*1i,0,0,0,-2+(1.5*sqrt(3)*1i),0,-2-(2 * 

sqrt(3))*1i]; 
U_t = [0,0,0,0,0,0,0]; 

  
% % Symmetrical Distorted supply   
% U_r = [90+0i,0,0,0,9,0,9]; 
% U_s = [ -45 - (45 * sqrt(3))*1i,0,0,0,-4.5 + (45 * sqrt(3))*1i,0,-4.5 - 

(4.5 * sqrt(3))*1i]; 
% U_t = [-45+45*sqrt(3)*1i,0,0,0,-4.5-4.5*sqrt(3)*1i,0,-4.5+4.5*sqrt(3)*1i]; 

  
% % % S&S  
% U_r = [90+0i,0,0,0,0,0,0]; 
% U_s = [-45-45*sqrt(3)*1i,0,0,0,0,0,0]; 
% U_t = [-45+45*sqrt(3)*1i,0,0,0,0,0,0]; 

  
% % Zero Seq 
% U_r = [90,0,0,0,0,0,0]; 
% U_s = [90,0,0,0,0,0,0]; 
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% U_t = [90,0,0,0,0,0,0]; 

  
U_bold = [U_r',U_s',U_t']; 

  
THD_r =sqrt( power(abs(U_r(1,5)),2) + power(abs(U_r(1,7)),2) )/ 

abs(U_r(1,1)); 
U_bold = [norm(U_r);norm(U_s);norm(U_t)]; 
U_bold_rms = norm(U_bold); 
U_rms_tot_sq=0;P_tot_sq=0;C_n_tot=0;i_r_rms_sq=0;i_a_rms_sq=0;i_u_rms_sq=0; 
Q_tot_sq=0;Du_tot_sq=0;i_rms_tot_sq=0;S_ind_sq=0;D_scat_sq=0;C_n1_tot=0;i_rms

_har_sq=0;i_a_h_sq=0; 
i_scat_rms_sq=0;i_rms1_sq=0;i_reac_rms_sq=0;i_act_rms_sq=0;i_unb_rms_sq=0;i_a

ct_n_rms_sq=0;i_R_rms_sq = 0 ;i_S_rms_sq = 0;i_T_rms_sq = 0; 
i_R_new_rms_sq=0;i_S_new_rms_sq=0;i_T_new_rms_sq=0;U_r_rms_sq=0;U_s_rms_sq=0;

U_t_rms_sq=0; 
disp( ' ALL VALUES ARE W.R.T. ARTIFICAL ZERO ' ); 
disp( ' ---------      ----------'); 
%% CALCULATION OF ACTIVE POWER AND INITIAL BALANCED  
for n=[1,5,7] 

     
    % THIS PART HAS THE ACTUAL LOAD PARAMETERS... CHANGE HERE ...  
    Z_rs(1,n)=inf;% 
    Z_st(1,n)=(1+1*n*1i)*(-2i/n)/ ((1+1*n*1i)-2i/n);% 
    Z_tr(1,n)=1+1*n*1i;% 
    Y_rs(1,n)=1/ Z_rs(1,n); 
    Y_st(1,n)=1/Z_st(1,n); 
    Y_tr(1,n)=1/Z_tr(1,n); 

  
% Calculations of Various voltages ( wrt to Art. Zero ) 
U_p(1,n) = (1/3) * ( U_r(1,n) + alp * U_s(1,n) + (power(alp,2)) * U_t(1,n));% 

Pos seq voltage 
U_n(1,n) = (1/3) * ( U_r(1,n) + (power(alp,2)) * U_s(1,n)+ alp * U_t(1,n) 

);%Neg seq vol 
U_z(1,n) = (1/3) * ( U_r(1,n) +  U_s(1,n) + U_t(1,n) ); % zero seq voltage  
U_rms_art(1,n) = sqrt(3) * sqrt((U_p(1,n) * conj(U_p(1,n)))+(U_n(1,n) * 

conj(U_n(1,n))));  
U_rms_tot_sq=U_rms_tot_sq+power(U_rms_art(1,n),2); % adding up squares of RMS 

for later 
U_r_art(1,n) = U_p(1,n) + U_n(1,n) ;  % Ur wrt art zero 
U_s_art(1,n)=U_p(1,n) * conj(alp) + alp * U_n(1,n); 
U_t_art(1,n)=U_p(1,n) * (alp) + conj(alp) * U_n(1,n); 
U_rs_art(1,n) = U_r_art(1,n) - U_s_art(1,n) ; 
U_st_art(1,n) = U_s_art(1,n) - U_t_art(1,n) ; 
U_tr_art(1,n) = U_t_art(1,n) - U_r_art(1,n) ; 
U_r_rms_sq = U_r_rms_sq + power(abs(U_r_art(1,n)),2); 
U_s_rms_sq = U_s_rms_sq + power(abs(U_s_art(1,n)),2); 
U_t_rms_sq = U_t_rms_sq + power(abs(U_t_art(1,n)),2); 
U_rms_art1(1,n) = sqrt(power(abs(U_r_art(1,n)),2) + 

power(abs(U_s_art(1,n)),2)+power(abs(U_t_art(1,n)),2)); 
% ****** BRANCH CURRENTS ****** 
i_rs(1,n) = Y_rs(1,n) * U_rs_art(1,n) ; 
i_st(1,n) = Y_st(1,n) * U_st_art(1,n) ; 
i_tr(1,n) = Y_tr(1,n) * U_tr_art(1,n) ; 
% ****** LINE CURRENTS ******* 
i_R(1,n) = i_rs(1,n)-i_tr(1,n); 
i_S(1,n) = i_st(1,n)-i_rs(1,n); 
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i_T(1,n) = i_tr(1,n)-i_st(1,n); 
i_R_rms_sq = i_R_rms_sq + power(abs(i_R(1,n)),2); 
i_S_rms_sq = i_S_rms_sq + power(abs(i_S(1,n)),2); 
i_T_rms_sq = i_T_rms_sq + power(abs(i_T(1,n)),2); 
%Complex Powers for Harmonic and Balanced Admittances 
C_n(1,n)=U_r_art(1,n)*conj(i_R(1,n))+ 

U_s_art(1,n)*conj(i_S(1,n))+U_t_art(1,n)*conj(i_T(1,n));  
C_n_tot=C_n_tot+C_n(1,n); % The sum of Complex powers for each harmonic.. Is 

this mistake like Budanue ?  

  
Y_b(1,n) = (conj(C_n(1,n)))/power(U_rms_art(1,n),2); % equivalent balanced 

admittance or eqv admittance of balance load 
G_b(1,n) = real(Y_b(1,n)); % real of Y_b or eqv balanced conductance 
B_b(1,n) = imag(Y_b(1,n)); % eqv balanced susceptance 
i_rms1(1,n) = sqrt( power(abs(i_R(1,n)),2) + power(abs(i_S(1,n)),2) + 

power(abs(i_T(1,n)),2)); 
i_rms1_sq = i_rms1_sq + power (i_rms1(1,n),2); 
end 
P_n_tot= real(C_n_tot); 
G_b_tot= P_n_tot/U_rms_tot_sq; 
i_act_orig = G_b_tot * sqrt(U_rms_tot_sq); % TO find the total orginial 

conductacne 
fprintf(' Supply voltage rms from harmonics  : %d \n',sqrt(U_rms_tot_sq));  
fprintf (' Line R voltage rms : %d \n', sqrt(U_r_rms_sq)); 
fprintf (' Line S voltage rms : %d \n', sqrt(U_s_rms_sq)); 
fprintf (' Line T voltage rms : %d \n', sqrt(U_t_rms_sq)); 
fprintf(' Supply voltage rms from line voltages : %d 

\n',sqrt(U_r_rms_sq+U_s_rms_sq+U_t_rms_sq));  
disp(' Line Current RMS values : '); 
fprintf(' ||ir|| = %d \n',sqrt(i_R_rms_sq)); 
fprintf(' ||is|| = %d \n',sqrt(i_S_rms_sq)); 
fprintf(' ||it|| = %d \n',sqrt(i_T_rms_sq)); 
fprintf(' total RMS calculated from line currents, ||i|| = %d \n', 

sqrt(i_R_rms_sq+i_S_rms_sq+i_T_rms_sq)); 
Z_mat = [Z_rs(1,1);Z_st(1,1);Z_tr(1,1)]; 

  
%% CALCULATION OF UNBALANCE PARAMTERS AND OTHER POWERS  
i_a = 0 ; 
for n=[1,5,7] 
a_complex(1,n) = (U_n(1,n) /U_p(1,n));  % this is complex quantity "a"  
Y_e(1,n) = Y_rs(1,n) + Y_st(1,n) + Y_tr(1,n); % eqv admittance 
G_e(1,n) = real(Y_e(1,n));% eqv conductance 
B_e(1,n) = imag(Y_e(1,n));%eqv susceptance 
Y_d(1,n)= Y_e(1,n) - Y_b(1,n); 
% ******* UNBALANCE PARAMETERS******** 
A_p(1,n) = -1 * ( Y_st(1,n) + alp * Y_tr(1,n) + (conj(alp)) * Y_rs(1,n) ) ; % 

posi. seq unbalance admittance 
A_n(1,n) = -1 * ( Y_st(1,n) + conj(alp) * Y_tr(1,n) + alp * Y_rs(1,n) ) ; % 

neg seq unbalance admittance 
a(1,n)=abs(a_complex(1,n)); 
theta(1,n)=angle(a_complex(1,n)); 
deg = theta(1,n)*180/pi; 
%*********************************************** 
% ******** DIFFERENT CURRENTS FOR THE HARMONICS********** 

  
%Section below uses rms for harmonics..which is wrong.  
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%i_a_h(1,n) = G_b(1,n) * U_rms_art(1,n);  
i_a_h(1,n) = G_b_tot * U_rms_art(1,n); %  

  
i_scat_rms(1,n) = abs(-G_b_tot + G_b(1,n))* U_rms_art(1,n); 
i_rea(1,n) = abs(B_b(1,n)) * U_rms_art(1,n); 
I_Ru_P(1,n) = A_n(1,n) * U_n(1,n) + Y_d(1,n) * U_p(1,n); 
I_Ru_N(1,n) = A_p(1,n) * U_p(1,n) + Y_d(1,n) * U_n(1,n); 
i_unb(1,n) = sqrt(3) * sqrt( power(abs(I_Ru_P(1,n)),2) + 

power(abs(I_Ru_N(1,n)),2) ) ; 

  
%****SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER***** 
i_reac_rms_sq=i_reac_rms_sq+power(i_rea(1,n),2); 
i_unb_rms_sq=i_unb_rms_sq+power(i_unb(1,n),2); 
i_scat_rms_sq = i_scat_rms_sq + power(i_scat_rms(1,n),2);  
% THE FOLLOWING ACTIVE CURRENT IS NOT HTE CORRECT ONE THOUGH.. ITS NOT USED 
i_a_h_sq=i_a_h_sq+power(i_a_h(1,n),2); 

  
% TOTAL RMS ..CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS 
i_rms(1,n) = sqrt( power(i_a_h(1,n),2) + power(i_rea(1,n),2) + 

power(i_unb(1,n),2) + power(i_scat_rms(1,n),2)); 
i_rms_har_sq = i_rms_har_sq + power(i_rms(1,n),2); 
end 
i_rms_tot_sq = power (i_act_orig,2)+  i_scat_rms_sq + i_unb_rms_sq + 

i_reac_rms_sq ; 
P = sqrt(U_rms_tot_sq * i_a_h_sq); % This P is using active currents for 

each.. which looks like is useless 
P1 = sqrt(U_rms_tot_sq) * i_a_h ; % does not look different from above  
P_act = sqrt(U_rms_tot_sq) * i_act_orig; 
D_scat = sqrt(U_rms_tot_sq * i_scat_rms_sq); 
Q = sqrt(U_rms_tot_sq * i_reac_rms_sq); 
D_unb = sqrt(U_rms_tot_sq * i_unb_rms_sq); 
%power(P_n_tot,2) - power(P,2)%+ power(D_scat,2) not useful after error  
S_1_sq = i_rms_har_sq * U_rms_tot_sq;% Using act, reac , .. currents 
S_2_sq = i_rms1_sq * U_rms_tot_sq; % Using Line currents  
S_3_sq = i_rms_tot_sq * U_rms_tot_sq;  
%Pow_diff=(S_1_sq-  S_2_sq-power(D_scat,2));  % This gave D scatered  
S_4_sq = power(P,2) + power(D_scat,2) + power(Q,2) + power(D_unb,2);  % Using 

squares of powers for reference  
U_p;U_n;Y_e; Y_b;Y_d; 
pf = P / sqrt(S_4_sq); 
disp ('CPC currents rms before compensation: ') 
fprintf('Active Current ||ia||  = %d \n',i_act_orig); 
fprintf('Scattred current ||is|| = %d \n',sqrt(i_scat_rms_sq)); 
fprintf('Reactive current ||ir|| = %d \n',sqrt(i_reac_rms_sq)); 
fprintf('Unbalanced current ||iu|| = %d \n',sqrt(i_unb_rms_sq)); 
fprintf('Total RMS ||i|| = %d \n',sqrt(i_rms_tot_sq)); 
disp ('Powers before compensation: ') 
fprintf('Active power P  = %d \n',P); 
fprintf('Reactive power Q = %d \n',Q); 
fprintf('Unbalanced power Du = %d \n',D_unb); 
fprintf('Scattered power Ds = %d \n',D_scat); 
fprintf('Apparent power S = %d \n',sqrt(S_2_sq)); 
fprintf(' Power factor  pf = %d \n',pf); 

  
%% COMPENSTOR RELATED SECTIONS - TOTAL COMPENSATION WITH ideal COMPENSATOR  
for n = [1,5,7] 
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% the following are THE THREE TERMS of YcD 
Ycd_tst(1,n) = (1i * 2*a(1,n)*cos(theta(1,n))) / ( 1 + power(a(1,n),2)); 
Ycd_ttr(1,n) = (1i * 2*a(1,n)*cos(theta(1,n)-(2*pi/3))) / ( 1 + 

power(a(1,n),2)); 
Ycd_trs(1,n) = (1i * 2*a(1,n)*cos(theta(1,n)+(2*pi/3))) / ( 1 + 

power(a(1,n),2)); 

  
%calculated coeffieceints of Trs, Tst and Ttr in equation A B C and D 

calcualted below are there to simplify analysis. They 
% will be easier to follow if my paperwork is referenced. 
% I am calling the coef or Trs as A , Tst as B and Ttr as C.... 
A(1,n) = (1+a_complex(1,n))* Ycd_trs(1,n) - 1i*(conj(alp)+a_complex(1,n)*alp 

); 
B(1,n) = (1+a_complex(1,n))* ( Ycd_tst(1,n) - 1i); 
C(1,n) = (1+a_complex(1,n))* Ycd_ttr(1,n) - 

1i*(alp+a_complex(1,n)*conj(alp)); 
D(1,n) = Y_d(1,n) * ( 1 + a_complex(1,n)) + A_p(1,n) + a_complex(1,n) * 

A_n(1,n) ; 

  
% calculation of coeffieceints in final equation 
 % real and imaginary parts of the coefficeints...  
A_real(1,n) = real(A(1,n)); 
B_real(1,n) = real(B(1,n)); 
C_real(1,n) = real(C(1,n)); 
D_real(1,n) = real(D(1,n)); 
A_imag(1,n) = imag(A(1,n)); 
B_imag(1,n) = imag(B(1,n)); 
C_imag(1,n) = imag(C(1,n)); 
D_imag(1,n) = imag(D(1,n)); 

  
% Declaring matrices coef_mat and cnst_mat for solving  
% Dont confuse these elements A_mn and B_mn with the earlier A B C and D 

  
% This is to declare matrix as coefficeints of Trs, Tst and Ttr in eqns 
A_11(1,n) = U_rs_art(1,n)*conj(U_rs_art(1,n)); 
A_12(1,n) = U_st_art(1,n)*conj(U_st_art(1,n)); 
A_13(1,n) = U_tr_art(1,n)*conj(U_tr_art(1,n)); 
A_21(1,n) = A_real(1,n); 
A_22(1,n) = B_real(1,n); 
A_23(1,n) = C_real(1,n); 
A_31(1,n) = A_imag(1,n); 
A_32(1,n) = B_imag(1,n); 
A_33(1,n) = C_imag(1,n); 

  
B_11(1,n) = -1 *B_b(1,n) *  power(U_rms_art(1,n),2); 
B_21(1,n) = -1* D_real(1,n); 
B_31(1,n) = -1* D_imag(1,n); 

  
% declaring matrix 

  
coef_mat = 

[A_11(1,n),A_12(1,n),A_13(1,n);A_21(1,n),A_22(1,n),A_23(1,n);A_31(1,n),A_32(1

,n),A_33(1,n)]; 
cons_mat = [B_11(1,n);B_21(1,n);B_31(1,n)]; 
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ans_mat = inv(coef_mat) * cons_mat;  % the values of compnesator susceptances 
T_rs(1,n) = ans_mat(1,1); 
T_st(1,n) = ans_mat(2,1); 
T_tr(1,n) = ans_mat(3,1); 

  

  
disp( ' '); 
disp('             '); 

  
fprintf(' HARMONIC ORDER = %d \n',n); 
disp( ' '); 
disp( ' COMPENSATOR VALUES IN SIEMENS'); 
fprintf(' T_rs = %d \n',T_rs(1,n)); 
fprintf(' T_st = %d \n',T_st(1,n)); 
fprintf(' T_tr = %d \n',T_tr(1,n)); 
disp( '                              ' ); 

  
if T_rs(1,n) > 0 
    E_rs(1,n)= T_rs(1,n) / ( 2 * pi * 60 * n); 
    fprintf(' Compensator element T_rs capacitor( Farads) = %d 

\n',E_rs(1,n)); 
else  
    E_rs(1,n)= -1 / (T_rs(1,n)* 2 * pi * 60 * n)  ; 
    fprintf(' Compensator element T_rs inductor(H) = %d \n',E_rs(1,n)); 
end  

  
if T_st(1,n) > 0 
    E_st(1,n)= T_st(1,n) / ( 2 * pi * 60 * n); 
    fprintf(' Compensator element T_st capacitor( Farads) = %d 

\n',E_st(1,n)); 
else  
    E_st(1,n)= -1 / (T_st(1,n)* 2 * pi * 60 * n)  ; 
    fprintf(' Compensator element T_st inductor(H) = %d \n',E_st(1,n)); 
end  

  
if T_tr(1,n) > 0 
    E_tr(1,n)= T_tr(1,n) / ( 2 * pi * 60 * n); 
    fprintf(' Compensator element T_tr capacitor( Farads) = %d 

\n',E_tr(1,n)); 
else  
    E_tr(1,n)= -1 / (T_tr(1,n)* 2 * pi * 60 * n)  ; 
    fprintf(' Compensator element T_tr inductor(H) = %d \n',E_tr(1,n)); 
end  

  
end 

  

  
%% 
i_R_comp_rms_sq=0;i_S_comp_rms_sq=0;i_T_comp_rms_sq=0; 
%% Section to calculate the currents and powers overall after comp-- 
C_n_tot_new=0;i_rms1_sq_new = 0; 
for n=[1,5,7] 

  
Y_rs_new(1,n) = Y_rs(1,n) + T_rs(1,n) * 1i ;  
Y_st_new(1,n) = Y_st(1,n) + T_st(1,n) * 1i ;  
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Y_tr_new(1,n) = Y_tr(1,n) + T_tr(1,n) * 1i ;  

  
i_rs_comp(1,n) = T_rs(1,n)*1i * U_rs_art(1,n) ; 
i_st_comp(1,n) = T_st(1,n)*1i * U_st_art(1,n) ; 
i_tr_comp(1,n) = T_tr(1,n)*1i * U_tr_art(1,n) ; 

  
i_R_comp(1,n) = i_rs_comp(1,n)-i_tr_comp(1,n); 
i_S_comp(1,n) = i_st_comp(1,n)-i_rs_comp(1,n); 
i_T_comp(1,n) = i_tr_comp(1,n)-i_st_comp(1,n); 

  
i_R_comp_rms(1,n) = abs(i_R_comp(1,n)); 
i_S_comp_rms(1,n) = abs(i_S_comp(1,n)); 
i_T_comp_rms(1,n) = abs(i_T_comp(1,n)); 

  
i_R_comp_rms_sq = i_R_comp_rms_sq + power(i_R_comp_rms(1,n),2); 
i_S_comp_rms_sq = i_S_comp_rms_sq + power(i_S_comp_rms(1,n),2); 
i_T_comp_rms_sq = i_T_comp_rms_sq + power(i_T_comp_rms(1,n),2); 

  

  
i_R_new(1,n) = i_R(1,n) + i_R_comp(1,n); 
i_S_new(1,n) = i_S(1,n) + i_S_comp(1,n); 
i_T_new(1,n) = i_T(1,n) + i_T_comp(1,n); 

  
i_R_new_rms(1,n) = abs(i_R_new(1,n)); 
i_S_new_rms(1,n) = abs(i_S_new(1,n)); 
i_T_new_rms(1,n) = abs(i_T_new(1,n)); 
i_R_new_rms_sq = i_R_new_rms_sq + power(i_R_new_rms(1,n),2); 
i_S_new_rms_sq = i_S_new_rms_sq + power(i_S_new_rms(1,n),2); 
i_T_new_rms_sq = i_T_new_rms_sq + power(i_T_new_rms(1,n),2); 
% CUrrent may still not be equal... need to calculate reactive and unbl cur 
%Complex Powers for Harmonic and Balanced Admittances 
C_n_new(1,n)=U_r_art(1,n)*conj(i_R_new(1,n))+ 

U_s_art(1,n)*conj(i_S_new(1,n))+U_t_art(1,n)*conj(i_T_new(1,n));  
C_n_tot_new=C_n_tot_new+C_n_new(1,n); % The sum of Complex powers for each 

harmonic.. Is this mistake like Budanue ?  

  
Y_b_new(1,n) = (conj(C_n_new(1,n)))/power(U_rms_art(1,n),2); % equivalent 

balanced admittance or eqv admittance of balance load 
G_b_new(1,n) = real(Y_b_new(1,n)); % real of Y_b or eqv balanced conductance 
B_b_new(1,n) = imag(Y_b_new(1,n)); % eqv balanced susceptance 
i_rms1_new(1,n) = sqrt( power(abs(i_R_new(1,n)),2) + 

power(abs(i_S_new(1,n)),2) + power(abs(i_T_new(1,n)),2)); 
i_rms1_sq_new = i_rms1_sq_new + power (i_rms1_new(1,n),2); 
end  
P_n_tot_new= real(C_n_tot_new); 
G_b_tot_new= P_n_tot_new/U_rms_tot_sq; 
i_act_orig_new = G_b_tot_new * sqrt(U_rms_tot_sq); 
i_rms_har_sq_new=0;i_reac_rms_sq_new=0;i_unb_rms_sq_new=0;i_scat_rms_sq_new 

=0;i_a_h_sq_new=0; 

  
 for n=[1,5,7] 
a_complex(1,n) = (U_n(1,n) /U_p(1,n)) ; % this is complex quantity "a"  
Y_e_new(1,n) = Y_rs_new(1,n) + Y_st_new(1,n) + Y_tr_new(1,n); % eqv 

admittance 
G_e_new(1,n) = real(Y_e_new(1,n));% eqv conductance 
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B_e_new(1,n) = imag(Y_e_new(1,n));%eqv susceptance 
Y_d_new(1,n)= Y_e_new(1,n) - Y_b_new(1,n); 
% ******* UNBALANCE PARAMETERS******** 
A_p_new(1,n) = -1 * ( Y_st_new(1,n) + alp * Y_tr_new(1,n) + (conj(alp)) * 

Y_rs_new(1,n) ) ; % posi. seq unbalance admittance 
A_n_new(1,n) = -1 * ( Y_st_new(1,n) + conj(alp) * Y_tr_new(1,n) + alp * 

Y_rs_new(1,n) ) ; % neg seq unbalance admittance 
a(1,n)=abs(a_complex(1,n)); 
theta(1,n)=angle(a_complex(1,n)); 

  
%*********************************************** 
% ******** DIFFERENT CURRENTS FOR THE HARMONICS********** 

  
%Section below uses rms for harmonics..which is wrong.  
%i_a_h(1,n) = G_b(1,n) * U_rms_art(1,n);  
i_a_h_new(1,n) = G_b_tot_new * U_rms_art(1,n); %  

  
i_scat_rms_new(1,n) = abs(-G_b_tot_new + G_b_new(1,n))* U_rms_art(1,n); 
i_rea_new(1,n) = abs(B_b_new(1,n)) * U_rms_art(1,n); 
I_Ru_P_new(1,n) = A_n_new(1,n) * U_n(1,n) + Y_d_new(1,n) * U_p(1,n); 
I_Ru_N_new(1,n) = A_p_new(1,n) * U_p(1,n) + Y_d_new(1,n) * U_n(1,n); 
i_unb_new(1,n) = sqrt(3) * sqrt( power(abs(I_Ru_P_new(1,n)),2) + 

power(abs(I_Ru_N_new(1,n)),2) ) ; 

  
%****SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER***** 
i_reac_rms_sq_new=i_reac_rms_sq_new+power(i_rea_new(1,n),2); 
i_unb_rms_sq_new=i_unb_rms_sq_new+power(i_unb_new(1,n),2); 
i_scat_rms_sq_new = i_scat_rms_sq_new + power(i_scat_rms_new(1,n),2);  
% THE FOLLOWING ACTIVE CURRENT IS NOT HTE CORRECT ONE THOUGH.. ITS NOT USED 
i_a_h_sq_new=i_a_h_sq_new+power(i_a_h_new(1,n),2); 

  
% TOTAL RMS ..CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS 
i_rms_new(1,n) = sqrt( power(i_a_h_new(1,n),2) + power(i_rea_new(1,n),2) + 

power(i_unb_new(1,n),2) + power(i_scat_rms_new(1,n),2)); 
i_rms_har_sq_new = i_rms_har_sq_new + power(i_rms_new(1,n),2); 
end 
i_rms_tot_sq_new = power (i_act_orig_new,2)+  i_scat_rms_sq_new + 

i_unb_rms_sq_new + i_reac_rms_sq_new ; 
P_new = sqrt(U_rms_tot_sq * i_a_h_sq_new); % This P is using active currents 

for each.. which looks like is useless 
P1_new = sqrt(U_rms_tot_sq) * i_a_h_new ; % does not look different from 

above  
P_act_new = sqrt(U_rms_tot_sq) * i_act_orig_new; 
D_scat_new = sqrt(U_rms_tot_sq * i_scat_rms_sq_new); 
Q_new = sqrt(U_rms_tot_sq * i_reac_rms_sq_new); 
D_unb_new = sqrt(U_rms_tot_sq * i_unb_rms_sq_new); 
%power(P_n_tot,2) - power(P,2)%+ power(D_scat,2) not useful after error  
S_1_sq_new = i_rms_har_sq_new * U_rms_tot_sq;% Using act, reac , .. currents 
S_2_sq_new = i_rms1_sq_new * U_rms_tot_sq; % Using Line currents  
S_3_sq_new = i_rms_tot_sq_new * U_rms_tot_sq ; 
%Pow_diff=(S_1_sq-  S_2_sq-power(D_scat,2));  % This gave D scatered  
S_4_sq_new = power(P_new,2) + power(D_scat_new,2) + power(Q_new,2) + 

power(D_unb_new,2); 
pf_new = P_new / sqrt(S_4_sq_new); 
disp ('                                         ') 
disp(' Values after complete compensation using ideal complex compensator ') 
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disp(' Line Current RMS values : '); 
fprintf(' ||ir|| = %d \n',sqrt(i_R_new_rms_sq)); 
fprintf(' ||is|| = %d \n',sqrt(i_S_new_rms_sq)); 
fprintf(' ||it|| = %d \n',sqrt(i_T_new_rms_sq)); 
fprintf(' total RMS calculated from line currents, ||i|| = %d \n', 

sqrt(i_R_new_rms_sq+i_S_new_rms_sq+i_T_new_rms_sq)); 

  
disp(' Compensator Current RMS values : '); 
fprintf(' ||ir_com|| = %d \n',sqrt(i_R_comp_rms_sq)); 
fprintf(' ||is_com|| = %d \n',sqrt(i_S_comp_rms_sq)); 
fprintf(' ||it_com|| = %d \n',sqrt(i_T_comp_rms_sq)); 
disp ('CPC currents rms after compensation: ') 
fprintf('Active Current ||ia||  = %d \n',i_act_orig_new); 
fprintf('Scattred current ||is|| = %d \n',sqrt(i_scat_rms_sq_new)); 
fprintf('Reactive current ||ir|| = %d \n',sqrt(i_reac_rms_sq_new)); 
fprintf('Unbalanced current ||iu|| = %d \n',sqrt(i_unb_rms_sq_new)); 
fprintf('Total RMS ||i|| = %d \n',sqrt(i_rms_tot_sq_new)); 
disp ('Powers after compensation: ') 
fprintf('Active power P_com = %d \n',P_new); 
fprintf('Reactive power Q_com = %d \n',Q_new); 
fprintf('Unbalanced power Du_com = %d \n',D_unb_new); 
fprintf('Scattered power Ds_com = %d \n',D_scat_new); 
fprintf('Apparent Power S_com = %d \n',sqrt(S_4_sq_new)); 
fprintf('Power factor pf_com = %d \n',pf_new); 
% ---------- end of section for powers and pf calculations after comp--- 

  
  % OPTIMIZATION PORTION 
disp( '                              ' ); 
disp( ' SECTION FOR OPTIMIZATION ' ); 
disp( '                              ' ); 

  
% % =================================================================== 
% OPTIMIATION PART for branch T_rs 
lcf = .1 ; % the fraction the inductive reactnace is of the capacitive 
if T_rs(1,1)<0 % IF FUNDAMENTAL NEEDS INDUCTOR  
     fprintf(' Since fund. T_rs requires inductor, we choose L branch \n '); 
    L_nume=0;L_deno =0; 
    Lrs = -1 / (T_rs(1,1)* 2 * pi * 60 * 1); % used when Lrs started as 

fundamental 
% Section used to calculated the nume and deno of the summaation      
    for n = [ 1,5,7] 
                 L_deno = L_deno + T_rs(1,n)* power(abs(U_rs_art(1,n)),2)/n; 
                 L_nume = L_nume + power(abs(U_rs_art(1,n)),2)/( 2 

*pi*60*n*n); 
    end 
    L_rs_op = -1* L_nume / L_deno; 
    if L_rs_op <0 
         fprintf(' Error in design because reactance is negative !!!! /n') 
    end 
    dis1=0; 
    for n = [ 1,5,7] 
                 dis1 = dis1 + power(((T_rs(1,n) + 1 / ( 2 * pi * 60 * n * 

L_rs_op ) )* abs(U_rs_art(1,n))),2); 
    end    
    dis1; 
%%END of nume and deno section 
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% % This following section is to compare if the optimized value is the best  
dis2=0; 
    for n = [ 1,5,7] 
                 dis2 = dis2 + power(((T_rs(1,n) + 1 / ( 2 * pi * 60 * n * 

Lrs ) )* abs(U_rs_art(1,n))),2); 
    end 
    dis2; 
  %disp('                    %%%%%%%%%'); 
   fprintf(' The inductor element for branch T_rs = %d \n',L_rs_op); 
%   fprintf(' The current dis sqr using this value = %d \n',dis1);   
  %fprintf(' The current dis sqr using this funda value = %d \n',dis2);   
  disp('                   -----                         '); 

     
  for n = [ 1,5,7] % finding the susceptance of the optimized comp. 
                 T_rs_op(1,n)=-1/ (2*pi*60*n*L_rs_op); 
  end 
end 

  
if T_rs(1,1)>0 % IF FUNDAMENTAL NEEDS CAPACITOR  
     fprintf(' Since fund. T_rs needs capacitor, we choose LC Branch \n'); 
    L_nume=0;L_deno =0; 
    % Section used to calculated the nume and deno of the summaation      
    for n = [ 1,5,7] 
                 L_nume = L_nume + ((2*pi*60)*n*T_rs(1,n)* 

power(abs(U_rs_art(1,n)),2))/((1-lcf*n*n)); 
                 L_deno = L_deno + 

power(abs(U_rs_art(1,n)),2)*((2*pi*60*n)^2)/(( 1-lcf*n*n)^2); 
    end 
    C_rs_op = 1* L_nume / L_deno; 
    if C_rs_op <0 
         fprintf(' Error in design because reactance is negative !!!! /n') 
    end 
    L_rs_op = lcf / (376.99*376.99*C_rs_op ); 
    dis_C1=0; 
    for n = [ 1,5,7] 
                 dis_C1 = dis_C1 + power( (  ( T_rs(1,n)-

(2*pi*60*n*C_rs_op)/(1-lcf*n*n*((2*pi*60)^2) ) )* abs(U_rs_art(1,n)) ),2); 

                  
    end    
    dis_C1; 
     fprintf(' The capa element for branch T_rs = %d \n',C_rs_op); 
     fprintf(' The inductor in series for branch T_rs = %d \n',L_rs_op); 
%     fprintf(' The current dis sqr using this value = %d \n',dis_C1);   
    disp('                   -----                         '); 

     

    
    for n = [ 1,5,7] % finding the susceptance of the optimized comp. 
                 %T_rs_op(1,n)= ( n * 

2*pi*60*C_rs_op)/(1+n*n*((2*pi*60)^2)*C_rs_op*L_rs_op) 
                 T_rs_op(1,n)= ( n * 2*pi*60*C_rs_op)/(1-n*n*lcf); 

                  
    end  

        
end 
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% % END OF OPTIMIZATION PART FOR T_RS 
% % ====================================================================== 

  

  

  
% % ===================OPTIMIATION PART for branch T_st=================== 
if T_st(1,1)<0 
     fprintf(' Since fund. T_st requires inductor, we choose L branch \n'); 
    L_nume=0;L_deno =0; 
    Lst = -1 / (T_st(1,1)* 2 * pi * 60 * 1); % used when Lst started as 

fundamental 
% Section used to calculated the nume and deno of the summaation      
    for n = [ 1,5,7] 
                 L_deno = L_deno + T_st(1,n)* power(abs(U_st_art(1,n)),2)/n; 
                 L_nume = L_nume + power(abs(U_st_art(1,n)),2)/( 2 

*pi*60*n*n); 
    end 
    L_st_op = -1* L_nume / L_deno; 
    if L_st_op <0 
         fprintf(' Error in design because reactance is negative !!!! \n') 
    end 
    dis3=0; 
    for n = [ 1,5,7] 
                 dis3 = dis3 + power(((T_st(1,n) + 1 / ( 2 * pi * 60 * n * 

L_st_op ) )* abs(U_st_art(1,n))),2); 
    end    
    dis3; 
%%END of nume and deno section 
% % % This following section is to compare if the optimized value is the best  
dis4=0; 
    for n = [ 1,5,7] 
                 dis4 = dis4 + power(((T_st(1,n) + 1 / ( 2 * pi * 60 * n * 

Lst ) )* abs(U_st_art(1,n))),2); 
    end 
    dis4; 
   fprintf(' The inductor element for branch T_st = %d \n',L_st_op); 
%   fprintf(' The current dis sqr using this value = %d \n',dis3);   
  %fprintf(' The current dis sqr using this funda value = %d \n',dis4); 
  disp('                   -----                         '); 
  for n = [ 1,5,7] % finding the susceptance of the optimized comp. 
                 T_st_op(1,n)=-1/ (2*pi*60*n*L_st_op); 
  end 
end 

  
if T_st(1,1)>0 
     fprintf(' Since fund. T_st needs capacitor, we choose LC Branch \n'); 
    L_nume=0;L_deno =0; 
    % Section used to calculated the nume and deno of the summaation      
    for n = [ 1,5,7] 
                 L_nume = L_nume + (n*T_st(1,n)* 

power(abs(U_st_art(1,n)),2))/((1-lcf*n*n)); 
                 L_deno = L_deno + 

power(abs(U_st_art(1,n)),2)*(2*pi*60*n*n)/(( 1-lcf*n*n)^2); 
    end 
    C_st_op = 1* L_nume / L_deno; 
    if C_st_op <0 
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         fprintf(' Error in design because reactance is negative !!!! /n') 
    end 
    dis_C3=0; 
    L_st_op = lcf / ( 376.99*376.99*C_st_op ); 
    for n = [ 1,5,7] 
                 dis_C3 = dis_C3 + power( (  ( T_st(1,n)-

(2*pi*60*n*C_st_op)/(1-lcf*n*n*((2*pi*60)^2) ) )* abs(U_st_art(1,n)) ),2); 
    end    
    dis_C3; 
     fprintf(' The capa element for branch T_st = %d \n',C_st_op); 
     fprintf(' The inductor in series for branch T_st = %d \n',L_st_op); 
%     fprintf(' The current dis sqr using this value = %d \n',dis_C3); 
%     disp('                   -----                         '); 
    L_st_op = lcf / ( 376.99*376.99*C_st_op ); 
    for n = [ 1,5,7] % finding the susceptance of the optimized comp. 
                 %T_st_op(1,n)= ( n * 

2*pi*60*C_st_op)/(1+n*n*((2*pi*60)^2)*C_st_op*L_st_op); 
                 T_st_op(1,n)= ( n * 2*pi*60*C_st_op)/(1-n*n*lcf); 
    end 
end 
%%END of nume and deno section 

  
% % END OF OPTIMIZATION PART FOR T_st 
% 

%=========================================================================== 

  
% % ===================OPTIMIATION PART for branch T_tr=================== 
if T_tr(1,1)<0 
%     fprintf(' Since fund. T_tr requires inductor, we choose L branch \n'); 
    L_nume=0;L_deno =0; 
    %Ltr = -1 / (T_tr(1,1)* 2 * pi * 60 * 1); % used when Ltr started as 

fundamental 
% Section used to calculated the nume and deno of the summaation      
    for n = [ 1,5,7] 
                 L_deno = L_deno + T_tr(1,n)* power(abs(U_tr_art(1,n)),2)/n; 
                 L_nume = L_nume + power(abs(U_tr_art(1,n)),2)/( 2 

*pi*60*n*n); 
    end 
    L_tr_op = -1* L_nume / L_deno; 
    if L_tr_op <0 
         fprintf(' Error in design because reactance is negative !!!! /n') 
    end 
    dis5=0; 
    for n = [ 1,5,7] 
                 dis5 = dis5 + power(((T_tr(1,n) + 1 / ( 2 * pi * 60 * n * 

L_tr_op ) )* abs(U_tr_art(1,n))),2); 
    end    
    dis5; 
   fprintf(' The inductor element for branch T_tr = %d \n',L_tr_op); 
%   fprintf(' The current dis sqr using this value = %d \n',dis5);   
  disp('                   -----                         '); 
  for n = [ 1,5,7] % finding the susceptance of the optimized comp. 
                 T_tr_op(1,n)=-1/ (2*pi*60*n*L_tr_op); 
  end 
end 
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if T_tr(1,1)>0 
     fprintf(' Since fund. T_tr needs capacitor, we choose LC Branch \n'); 
    L_nume=0;L_deno =0; 
    % Section used to calculated the nume and deno of the summaation      
    for n = [ 1,5,7] 
                 L_nume = L_nume + (n*T_tr(1,n)* 

power(abs(U_tr_art(1,n)),2))/((1-lcf*n*n)); 
                 L_deno = L_deno + 

power(abs(U_tr_art(1,n)),2)*(2*pi*60*n*n)/(( 1-lcf*n*n)^2); 
    end 
    C_tr_op = 1* L_nume / L_deno; 
    if C_tr_op <0 
         fprintf(' Error in design because reactance is negative !!!! /n') 
    end 
    L_tr_op = lcf / ( 376.99*376.99*C_tr_op ); 
    dis_C5=0; 
    for n = [ 1,5,7] 
                 dis_C5 = dis_C5 + power( (  ( T_tr(1,n)-

(2*pi*60*n*C_tr_op)/(1-lcf*n*n*((2*pi*60)^2) ) )* abs(U_tr_art(1,n)) ),2); 
    end    
%     dis_C5; 
     fprintf(' The capa element for branch T_tr = %d \n',C_tr_op); 
     fprintf(' The inductor in series for branch T_tr = %d \n',L_tr_op); 
%     fprintf(' The current dis sqr using this value = %d \n',dis_C5); 
%     disp('                   -----                         '); 

     
    for n = [ 1,5,7] % finding the susceptance of the optimized comp. 
                 %T_tr_op(1,n)= ( n * 

2*pi*60*C_tr_op)/(1+n*n*((2*pi*60)^2)*C_tr_op*L_tr_op); 
                 T_tr_op(1,n)= ( n * 2*pi*60*C_tr_op)/(1-n*n*lcf); 
    end  
end 
%T_rs_op,T_st_op,T_tr_op  

  
% % END OF OPTIMIZATION PART FOR T_tr 
% 

%=========================================================================== 
i_R_c_rms_sq=0;i_S_c_rms_sq=0;i_T_c_rms_sq=0; 

  
%% POWERS ETC OF JUST THE OPT COMP 
C_n_tot_c=0;i_rms1_sq_c=0; 
for n=[1,5,7] 

     
    Y_rs_c(1,n)= T_rs_op(1,n) * 1i  ; 
    Y_st_c(1,n)= T_st_op(1,n) * 1i  ; 
    Y_tr_c(1,n)= T_tr_op(1,n) * 1i  ; 

     
% ****** BRANCH CURRENTS ****** 
i_rs_c(1,n) = Y_rs_c(1,n) * U_rs_art(1,n) ; 
i_st_c(1,n) = Y_st_c(1,n) * U_st_art(1,n) ; 
i_tr_c(1,n) = Y_tr_c(1,n) * U_tr_art(1,n) ; 
% ****** LINE CURRENTS ******* 
i_R_c(1,n) = i_rs_c(1,n)-i_tr_c(1,n); 
i_S_c(1,n) = i_st_c(1,n)-i_rs_c(1,n); 
i_T_c(1,n) = i_tr_c(1,n)-i_st_c(1,n); 
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i_R_c_rms(1,n)=abs(i_R_c(1,n)); 
i_S_c_rms(1,n)=abs(i_S_c(1,n)); 
i_T_c_rms(1,n)=abs(i_T_c(1,n)); 

  
i_R_c_rms_sq = i_R_c_rms_sq + power(i_R_c_rms(1,n),2); 
i_S_c_rms_sq = i_S_c_rms_sq + power(i_S_c_rms(1,n),2); 
i_T_c_rms_sq = i_T_c_rms_sq + power(i_T_c_rms(1,n),2); 

  
%Complex Powers for Harmonic and Balanced Admittances 
C_n_c(1,n)=U_r_art(1,n)*conj(i_R_c(1,n))+ 

U_s_art(1,n)*conj(i_S_c(1,n))+U_t_art(1,n)*conj(i_T_c(1,n));  
C_n_tot_c=C_n_tot_c+C_n_c(1,n); % The sum of Complex powers for each 

harmonic.. Is this mistake like Budanue ?  
Y_b_c(1,n) = (conj(C_n_c(1,n)))/power(U_rms_art(1,n),2); % equivalent 

balanced admittance or eqv admittance of balance load 
G_b_c(1,n) = real(Y_b_c(1,n)); % real of Y_b or eqv balanced conductance 
B_b_c(1,n) = imag(Y_b_c(1,n)); % eqv balanced susceptance 
i_rms1_c(1,n) = sqrt( power(abs(i_R_c(1,n)),2) + power(abs(i_S_c(1,n)),2) + 

power(abs(i_T_c(1,n)),2)); 
i_rms1_sq_c = i_rms1_sq_c + power (i_rms1_c(1,n),2); 
end 
U_rms_art; 
P_n_tot_c= real(C_n_tot_c); 
G_b_tot_c= P_n_tot_c/U_rms_tot_sq; 
i_act_orig_c = G_b_tot_c * sqrt(U_rms_tot_sq); % TO find the total orginial 

conductacne 

  

  
% ----------------- END OF COMPENSATOR POWER SECTION ------------------- 

  
%% SECTION TO CALCULATE POEWRS AFTER OPTIMIZATION 

  
C_n_tot_f=0;i_rms1_sq_f=0;i_R_f_rms_sq =0;i_S_f_rms_sq =0;i_T_f_rms_sq =0; 
for n = [1,5,7] 

     
    Y_rs_f(1,n)=Y_rs(1,n)+ T_rs_op(1,n) * 1i  ; 
    Y_st_f(1,n)=Y_st(1,n)+ T_st_op(1,n) * 1i  ; 
    Y_tr_f(1,n)=Y_tr(1,n)+ T_tr_op(1,n) * 1i  ; 

     
%     Section to compare if fundamental element does better than optimal 
%     Y_rs_f(1,n)=Y_rs(1,n)+ T_rs(1,1) * 1i  ; 
%     Y_st_f(1,n)=Y_st(1,n)+ T_st(1,1) * 1i  ; 
%     Y_tr_f(1,n)=Y_tr(1,n)+ T_tr(1,1) * 1i  ; 
% %      
% ****** BRANCH CURRENTS ****** 
i_rs_f(1,n) = Y_rs_f(1,n) * U_rs_art(1,n) ; 
i_st_f(1,n) = Y_st_f(1,n) * U_st_art(1,n) ; 
i_tr_f(1,n) = Y_tr_f(1,n) * U_tr_art(1,n) ; 
% ****** LINE CURRENTS ******* 
i_R_f(1,n) = i_rs_f(1,n)-i_tr_f(1,n); 
i_S_f(1,n) = i_st_f(1,n)-i_rs_f(1,n); 
i_T_f(1,n) = i_tr_f(1,n)-i_st_f(1,n);   
i_R_f_rms_sq = i_R_f_rms_sq + power(abs(i_R_f(1,n)),2); 
i_S_f_rms_sq = i_S_f_rms_sq + power(abs(i_S_f(1,n)),2); 
i_T_f_rms_sq = i_T_f_rms_sq + power(abs(i_T_f(1,n)),2); 
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%Complex Powers for Harmonic and Balanced Admittances 
C_n_f(1,n)=U_r_art(1,n)*conj(i_R_f(1,n))+ 

U_s_art(1,n)*conj(i_S_f(1,n))+U_t_art(1,n)*conj(i_T_f(1,n));  
C_n_tot_f=C_n_tot_f+C_n_f(1,n); % The sum of Complex powers for each 

harmonic.. Is this mistake like Budanue ?  
Y_b_f(1,n) = (conj(C_n_f(1,n)))/power(U_rms_art(1,n),2); % equivalent 

balanced admittance or eqv admittance of balance load 
G_b_f(1,n) = real(Y_b_f(1,n)); % real of Y_b or eqv balanced conductance 
B_b_f(1,n) = imag(Y_b_f(1,n)); % eqv balanced susceptance 
i_rms1_f(1,n) = sqrt( power(abs(i_R_f(1,n)),2) + power(abs(i_S_f(1,n)),2) + 

power(abs(i_T_f(1,n)),2)); 
i_rms1_sq_f = i_rms1_sq_f + power (i_rms1_f(1,n),2); 

  
end 

  
P_n_tot_f= real(C_n_tot_f); 
G_b_tot_f= P_n_tot_f/U_rms_tot_sq; 

  
i_act_orig_f = G_b_tot_f * sqrt(U_rms_tot_sq); 
i_rms_har_sq_f=0;i_reac_rms_sq_f=0;i_unb_rms_sq_f=0;i_scat_rms_sq_f 

=0;i_a_h_sq_f=0; 

  
disp ('                                         ') 
disp(' Values after optimized compensator  ') 
fprintf('Supply current in line R rms ||iR|| = %d \n',sqrt(i_R_f_rms_sq)); 
fprintf('Supply current in line S rms ||iS|| = %d \n',sqrt(i_S_f_rms_sq)); 
fprintf('Supply current in line T rms ||iT|| = %d \n',sqrt(i_T_f_rms_sq)); 
fprintf('Opt Comp current in line R rms ||iR_op|| = %d 

\n',sqrt(i_R_c_rms_sq)); 
fprintf('OPt Comp current in line S rms ||iS_op|| = %d 

\n',sqrt(i_S_c_rms_sq)); 
fprintf('Opt Comp current in line T rms ||iT_op|| = %d 

\n',sqrt(i_T_c_rms_sq)); 

  

  

  
 for n=[1,5,7] 
a_complex(1,n) = (U_n(1,n) /U_p(1,n)) ; % this is complex quantity "a"  
Y_e_f(1,n) = Y_rs_f(1,n) + Y_st_f(1,n) + Y_tr_f(1,n); % eqv admittance 
G_e_f(1,n) = real(Y_e_f(1,n));% eqv conductance 
B_e_f(1,n) = imag(Y_e_f(1,n));%eqv susceptance 
Y_d_f(1,n)= Y_e_f(1,n) - Y_b_f(1,n); 
% ******* UNBALANCE PARAMETERS******** 
A_p_f(1,n) = -1 * ( Y_st_f(1,n) + alp * Y_tr_f(1,n) + (conj(alp)) * 

Y_rs_f(1,n) ) ; % posi. seq unbalance admittance 
A_n_f(1,n) = -1 * ( Y_st_f(1,n) + conj(alp) * Y_tr_f(1,n) + alp * Y_rs_f(1,n) 

) ; % neg seq unbalance admittance 
a(1,n)=abs(a_complex(1,n)); 
theta(1,n)=angle(a_complex(1,n)); 
%*********************************************** 
% ******** DIFFERENT CURRENTS FOR THE HARMONICS********** 

  
%Section below uses rms for harmonics..which is wrong.  
%i_a_h(1,n) = G_b(1,n) * U_rms_art(1,n);  
i_a_h_f(1,n) = G_b_tot_f * U_rms_art(1,n); %  
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i_scat_rms_f(1,n) = abs(-G_b_tot_f + G_b_f(1,n))* U_rms_art(1,n); 
i_rea_f(1,n) = abs(B_b_f(1,n)) * U_rms_art(1,n); 
I_Ru_P_f(1,n) = A_n_f(1,n) * U_n(1,n) + Y_d_f(1,n) * U_p(1,n); 
I_Ru_N_f(1,n) = A_p_f(1,n) * U_p(1,n) + Y_d_f(1,n) * U_n(1,n); 
i_unb_f(1,n) = sqrt(3) * sqrt( power(abs(I_Ru_P_f(1,n)),2) + 

power(abs(I_Ru_N_f(1,n)),2) ) ; 

  
%****SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER***** 
i_reac_rms_sq_f=i_reac_rms_sq_f+power(i_rea_f(1,n),2); 
i_unb_rms_sq_f=i_unb_rms_sq_f+power(i_unb_f(1,n),2); 
i_scat_rms_sq_f = i_scat_rms_sq_f + power(i_scat_rms_f(1,n),2);  
% THE FOLLOWING ACTIVE CURRENT IS NOT HTE CORRECT ONE THOUGH.. ITS NOT USED 
i_a_h_sq_f=i_a_h_sq_f+power(i_a_h_f(1,n),2); 

  
% TOTAL RMS ..CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS 
i_rms_f(1,n) = sqrt( power(i_a_h_f(1,n),2) + power(i_rea_f(1,n),2) + 

power(i_unb_f(1,n),2) + power(i_scat_rms_f(1,n),2)); 
i_rms_har_sq_f = i_rms_har_sq_f + power(i_rms_f(1,n),2); 
end 
i_rms_tot_sq_f = power (i_act_orig_f,2)+  i_scat_rms_sq_f + i_unb_rms_sq_f + 

i_reac_rms_sq_f ; 
P_f = sqrt(U_rms_tot_sq * i_a_h_sq_f); % This P is using active currents for 

each.. which looks like is useless 
P1_f = sqrt(U_rms_tot_sq) * i_a_h_f ; % does not look different from above  
P_act_f = sqrt(U_rms_tot_sq) * i_act_orig_f; 
D_scat_f = sqrt(U_rms_tot_sq * i_scat_rms_sq_f); 
Q_f = sqrt(U_rms_tot_sq * i_reac_rms_sq_f); 
D_unb_f = sqrt(U_rms_tot_sq * i_unb_rms_sq_f); 
%power(P_n_tot,2) - power(P,2)%+ power(D_scat,2) not useful after error  
S_1_sq_f = i_rms_har_sq_f * U_rms_tot_sq;% Using act, reac , .. currents 
S_2_sq_f = i_rms1_sq_f * U_rms_tot_sq; % Using Line currents  
S_3_sq_f = i_rms_tot_sq_f * U_rms_tot_sq ; 
%Pow_diff=(S_1_sq-  S_2_sq-power(D_scat,2));  % This gave D scatered  
S_4_sq_f = power(P_f,2) + power(D_scat_f,2) + power(Q_f,2) + 

power(D_unb_f,2); 
pf_f = P_f / sqrt(S_4_sq_f); 

  

  
% % ----------- end of section for powers and pf calculations after opt--- 
%% PRINTING SOME VALUES FOR CHECKING  
%P,Q,D_unb,D_scat,pf,P_new,Q_new,D_unb_new,D_scat_new,pf_new,P_f,Q_f,D_unb_f,

D_scat_f,pf_f 
%Y_rs,Y_rs_f,Y_rs_new 
% Y_st,Y_st_f,Y_st_new 
% Y_tr,Y_tr_f,Y_tr_new 

  
fprintf('Supply Current active component rms ||ia||= %d 

\n',sqrt(i_a_h_sq_f)); 
fprintf('Supply Current Scattered component rms ||is||= %d 

\n',sqrt(i_scat_rms_sq_f)); 
fprintf('Supply Current reactive component rms ||ir||= %d 

\n',sqrt(i_reac_rms_sq_f)); 
fprintf('Supply Current unbalanced component rms ||iu||= %d 

\n',sqrt(i_unb_rms_sq_f)); 
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fprintf('Active power P_op = %d \n',P_f); 
fprintf('Reactive power Q_op = %d \n',Q_f); 
fprintf('Unbalanced power Du_op = %d \n',D_unb_f); 
fprintf('Scattered power Ds_op = %d \n',D_scat_f); 
fprintf('Apparent Power S_op = %d \n',sqrt(S_4_sq_f)); 
fprintf('Power factor pf_op = %d \n',pf_f); 

  

 

 

 

 

Code of HGL 

% This is modified for latest version.. measured at line terminals ..  

  
% START FROM THIS POINT ONWARDS TO CHECK IF THE CIRCUIT CONFGURATIONS IS THE 

SAME AND FOLLOW DOWNWARDS... 
clc 
clear all 
alp = -.5 + ((sqrt(3))/2) * 1i ;  

  
% % SUPPLY PARAMETERS  

  
% % %% Symmetrical and Sinusoidal 
% % e_r = [1000,0,0,0,0,0,0]; 
% % e_s = [-500-866.03i,0,0,0,0,0,0]; 
% % e_t = [-500+866.03i,0,0,0,0,0,0]; 
% %  
% % i_h_rs_par = [0,100,0,0,100,0,100]; 
% % i_h_st_par = [0,0,0,0,0,0,0]; 
% % i_h_tr_par = [0,0,0,0,0,0,0]; 

  
% %% Symmetrical but Nonsinusoidal 
% e_r = [1000,0,100,0,100,0,0]; 
% e_s = [-500-866.03i,0,100,0,-50+86.6i,0,0]; 
% e_t = [-500+866.03i,0,100,0,-50-86.6i,0,0]; 
%  
% i_h_rs_par = [0,100,0,100,0,0,100]; 
% i_h_st_par = [0,0,0,0,0,0,0]; 
% i_h_tr_par = [0,0,0,0,0,0,0]; 

  
% %% Asymmetrical but Sinusoidal 
% e_r = [1000,0,0,0,0,0,0]; 
% e_s = [-353.56 - 353.56i,0,0,0,0,0,0]; 
% e_t = [-353.56 + 353.56i,0,0,0,0,0,0]; 
%  
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% i_h_rs_par = [0,100,0,0,100,0,100]; 
% i_h_st_par = [0,0,0,0,0,0,0]; 
% i_h_tr_par = [0,0,0,0,0,0,0]; 

  
%% Asymmetrical but Nonsinusoidal 
e_r = [1000,0,100,0,0,0,0]; 
e_s = [-250-433.02i,0,-50+86.6i,0,0,0,0]; 
e_t = [0,0,0,0,0,0,0]; 

  
i_h_rs_par = [0,100,0,100,0,0,100]; 
i_h_st_par = [0,0,0,0,0,0,0]; 
i_h_tr_par = [0,0,0,0,0,0,0]; 

  
%% Declare here  
U_rms_tot_sq=0;P_tot_sq=0;C_n_tot=0;i_r_rms_sq=0;i_a_rms_sq=0;i_u_rms_sq=0; 
Q_tot_sq=0;Du_tot_sq=0;i_rms_tot_sq=0;S_ind_sq=0;D_scat_sq=0;C_n1_tot=0; 
i_scat_rms_sq=0;i_rms1_sq=0;i_reac_rms_sq=0;i_act_rms_sq=0;i_unb_rms_sq=0; 
i_unb_p_sq = 0;i_unb_n_sq=0; 
%% 

  
fprintf(' Results for the n belonging to Nc \n'); 
for n= 1 : 1 : 7 
    %fprintf(' Results for n = %d \n',n); 
    % THIS PART HAS THE ACTUAL LOAD PARAMETERS... CHANGE HERE ...  
    Z_sou(1,n)= 0.1+0.3*n*1i ; % Source inductance is 3*.000265 H 
    Z_rs(1,n)=2+n*2i;% 
    Z_st(1,n)=inf;% 
    Z_tr(1,n)=inf;%; 
    Y_rs(1,n)=1/Z_rs(1,n); 
    Y_st(1,n)=1/Z_st(1,n); 
    Y_tr(1,n)=1/Z_tr(1,n); 

     
   i_r(1,n) = ( e_r(1,n) - e_s(1,n) ) / ( 2 * Z_sou(1,n) + Z_rs(1,n) ); 
   i_s(1,n) = ( e_s(1,n) - e_r(1,n) ) / ( 2 * Z_sou(1,n) + Z_rs(1,n) ); 
   i_t(1,n) = 0 ;  

  

   
U_r(1,n) = e_r(1,n) - Z_sou(1,n) * i_r(1,n); 
U_s(1,n) = e_s(1,n) - Z_sou(1,n) * i_s(1,n); 
U_t(1,n) = e_t(1,n) - Z_sou(1,n) * i_t(1,n); 

  
    % Calculations of Various voltages ( wrt to Art. Zero ) 
U_p(1,n) = (1/3) * ( U_r(1,n) + alp * U_s(1,n) + (power(alp,2)) * U_t(1,n));% 

Pos seq voltage 
U_n(1,n) = (1/3) * ( U_r(1,n) + (power(alp,2)) * U_s(1,n)+ alp * U_t(1,n) 

);%Neg seq vol 
U_z(1,n) = (1/3) * ( U_r(1,n) +  U_s(1,n) + U_t(1,n)); % zero seq voltage  
U_rms_art(1,n) = sqrt(3) * sqrt((U_p(1,n) * conj(U_p(1,n)))+(U_n(1,n) * 

conj(U_n(1,n)))) ; 
U_rms_tot_sq=U_rms_tot_sq+power(U_rms_art(1,n),2); % adding up squares of RMS 

for later 
U_r_art(1,n) = U_p(1,n) + U_n(1,n)   % Ur wrt art zero 
U_s_art(1,n)=U_p(1,n) * conj(alp) + alp * U_n(1,n) 
U_t_art(1,n)=U_p(1,n) * (alp) + conj(alp) * U_n(1,n) 
U_rs_art(1,n) = U_r_art(1,n) - U_s_art(1,n) ; 
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U_st_art(1,n) = U_s_art(1,n) - U_t_art(1,n) ; 
U_tr_art(1,n) = U_t_art(1,n) - U_r_art(1,n) ; 
U_rms_art1(1,n) = sqrt(power(abs(U_r_art(1,n)),2) + 

power(abs(U_s_art(1,n)),2)+power(abs(U_t_art(1,n)),2)); 
% ****** BRANCH CURRENTS ****** 
i_rs(1,n) = Y_rs(1,n) * U_rs_art(1,n) ; 
i_st(1,n) = Y_st(1,n) * U_st_art(1,n) ; 
i_tr(1,n) = Y_tr(1,n) * U_tr_art(1,n) ; 
% ****** LINE CURRENTS ******* 
i_R(1,n) = i_rs(1,n)-i_tr(1,n); 
i_S(1,n) = i_st(1,n)-i_rs(1,n); 
i_T(1,n) = i_tr(1,n)-i_st(1,n); 
i_r_rms = abs(i_R(1,n)) 
i_s_rms= abs(i_S(1,n)) 
i_t_rms= abs(i_T(1,n)) 

  
%Complex Powers for Harmonic and Balanced Admittances 
C_n(1,n)=U_r_art(1,n)*conj(i_R(1,n))+ 

U_s_art(1,n)*conj(i_S(1,n))+U_t_art(1,n)*conj(i_T(1,n)) 
C_n_tot=C_n_tot+C_n(1,n); % The sum of Complex powers for each harmonic.. 

Mistake like Budanue do not use this    

  
        if U_rms_art(1,n)== 0 
                Y_b(1,n)=0;G_b(1,n)=0;B_b(1,n)=0; 
        else 
                Y_b(1,n) = (conj(C_n(1,n)))/power(U_rms_art(1,n),2); % 

equivalent balanced admittance or eqv admittance of balance load 
                G_b(1,n) = real(Y_b(1,n)); % real of Y_b or eqv balanced 

conductance 
                B_b(1,n) = imag(Y_b(1,n)) ;% eqv balanced susceptance 
        end 

  

  
% Y_b(1,n) = (conj(C_n(1,n)))/power(U_rms_art(1,n),2) % equivalent balanced 

admittance or eqv admittance of balance load 
% G_b(1,n) = real(Y_b(1,n)); % real of Y_b or eqv balanced conductance 
% B_b(1,n) = imag(Y_b(1,n)); % eqv balanced susceptance 

  
i_rms1(1,n) = sqrt( power(abs(i_R(1,n)),2) + power(abs(i_S(1,n)),2) + 

power(abs(i_T(1,n)),2)); 
i_rms1_sq = i_rms1_sq + power (i_rms1(1,n),2); 
% fprintf(' Positive sequence voltage Up = %d at %d  \n', 

abs(U_p(1,n)),angle(U_p(1,n))*180/pi); 
% fprintf(' Negative sequence voltage Un = %d at %d  \n', 

abs(U_n(1,n)),angle(U_n(1,n))*180/pi); 
% fprintf(' Zero sequence voltage Uz = %d at %d  \n', 

abs(U_z(1,n)),angle(U_z(1,n))*180/pi); 

  
end 
% U_rms_art; 
P_n_tot= real(C_n_tot); 
G_b_tot= P_n_tot/U_rms_tot_sq; 

  
for n= 1 :1 : 7 
a_complex(1,n) = (U_n(1,n) /U_p(1,n)) ; % this is complex quantity "a"  
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Y_e(1,n) = Y_rs(1,n) + Y_st(1,n) + Y_tr(1,n); % eqv admittance 
G_e(1,n) = real(Y_e(1,n));% eqv conductance 
B_e(1,n) = imag(Y_e(1,n));%eqv susceptance 
Y_d(1,n)= Y_e(1,n) - Y_b(1,n); 
% ******* UNBALANCE PARAMETERS******** 
A_p(1,n) = -1 * ( Y_st(1,n) + alp * Y_tr(1,n) + (conj(alp)) * Y_rs(1,n) ) ; % 

posi. seq unbalance admittance 
A_n(1,n) = -1 * ( Y_st(1,n) + conj(alp) * Y_tr(1,n) + alp * Y_rs(1,n) ) ; % 

neg seq unbalance admittance 
a(1,n)=abs(a_complex(1,n)); 
theta(1,n)=angle(a_complex(1,n)); 
%*********************************************** 
% ******** DIFFERENT CURRENTS FOR THE HARMONICS********** 
% i_act(1,n) = G_b(1,n) * U_rms_art(1,n); 
i_act(1,n) = G_b_tot * U_rms_art(1,n); 
i_scat_rms(1,n) = abs(-G_b_tot + G_b(1,n))* U_rms_art(1,n); 
i_rea(1,n) = abs(B_b(1,n)) * U_rms_art(1,n); 
I_Ru_P(1,n) = A_n(1,n) * U_n(1,n) + Y_d(1,n) * U_p(1,n); 
I_Ru_N(1,n) = A_p(1,n) * U_p(1,n) + Y_d(1,n) * U_n(1,n); 
i_unb_p_sq = i_unb_p_sq + power(abs(I_Ru_P(1,n)),2); 
i_unb_n_sq = i_unb_n_sq + power(abs(I_Ru_N(1,n)),2); 
i_unb(1,n) = sqrt(3) * sqrt( power(abs(I_Ru_P(1,n)),2) + 

power(abs(I_Ru_N(1,n)),2) ) ; 
%****SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER***** 
i_reac_rms_sq=i_reac_rms_sq+power(i_rea(1,n),2); 
i_act_rms_sq=i_act_rms_sq+power(i_act(1,n),2); 
i_unb_rms_sq=i_unb_rms_sq+power(i_unb(1,n),2); 
i_scat_rms_sq = i_scat_rms_sq + power(i_scat_rms(1,n),2);  
% TOTAL RMS ..CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS 
i_rms(1,n) = sqrt( power(i_act(1,n),2) + power(i_rea(1,n),2) + 

power(i_unb(1,n),2) + power(i_scat_rms(1,n),2)); 
i_rms_tot_sq = i_rms_tot_sq + power(i_rms(1,n),2); 
end 
Com_pow = C_n; 
i_rms = sqrt(i_rms_tot_sq); 
i_acti = sqrt(i_act_rms_sq); 
i_react = sqrt(i_reac_rms_sq); 
i_unbal = sqrt(i_unb_rms_sq); 
i_scater = sqrt(i_scat_rms_sq); 
i_diff1 = i_rms1_sq - i_rms_tot_sq ;% This suggests that the first RMS 

current calculated usING Ir Is It doesnt give scattered 
i_diff2 = i_rms_tot_sq  - i_reac_rms_sq- i_act_rms_sq-i_unb_rms_sq-

i_scat_rms_sq; 
P = sqrt(U_rms_tot_sq * i_act_rms_sq); 
D_scat = sqrt(U_rms_tot_sq * i_scat_rms_sq); 
Q = sqrt(U_rms_tot_sq * i_reac_rms_sq); 
D_unb = sqrt(U_rms_tot_sq * i_unb_rms_sq); 
%power(P_n_tot,2) - power(P,2)%+ power(D_scat,2) not useful after error  
S_1_sq = i_rms_tot_sq * U_rms_tot_sq; % Using act, reac , .. currents 
S_2_sq = i_rms1_sq * U_rms_tot_sq ; % Using Line currents  
%Pow_diff=(S_1_sq-  S_2_sq-power(D_scat,2));  % This gave D scatered  
S_3_sq = power(P,2) + power(D_scat,2) + power(Q,2) + power(D_unb,2); % Using 

squares of powers for reference  
AppPow=sqrt(S_2_sq); 
U_p;U_n;Y_e; Y_b;Y_d; 
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fprintf(' || u || total Voltgae three phase rms : %d \n',sqrt(U_rms_tot_sq)); 
fprintf(' || i || total current three phase rms : %d \n', 

sqrt(i_rms_tot_sq)); 
fprintf(' || i_a|| Active Current RMS %d \n',i_acti ) 
fprintf(' || i_r|| reactove Current RMS %d \n',i_react ) 
fprintf(' || i_s|| Scattered Current RMS %d \n',i_scater ) 
fprintf(' ||i_u_p|| Unbalanced Current pos seq RMS %d \n',sqrt(i_unb_p_sq)); 
fprintf(' ||i_u_n|| Unbalanced Current neg seq RMS %d \n',sqrt(i_unb_n_sq)); 
fprintf(' || i_u|| Unbalanced Current RMS %d \n',i_unbal ) 
fprintf(' || i_a|| Active Power : %d \n',P); 
fprintf(' Q Reactive Power : %d \n',Q); 
fprintf(' D_s Scattered Power : %d \n',D_scat); 
fprintf(' D_u Unbalanced Power : %d \n',D_unb); 
fprintf(' S_c Apparent Power  : %d \n',AppPow); 

  
%% Section for the HGL   
% It is assumed that the generated harmonics are of the 2,4 and 7 sequence 

  
u_hgl_rms_sq = 0 ; i_rms_hgl_sq=0; 

  
P_h_n_tot=0;U_h_rms_tot_sq=0;i_h_rms1_sq=0;S_h_tot_sq=0; 
for n = [1:1:7] 
disp('               '); 
fprintf('    ******   For HGL Order n = %d ********       \n',n ) 

  
Z_sou(1,n)= 0.1+0.3*n*1i ; 

  
i_h_rs(1,n) = i_h_rs_par(1,n) ;%* (2+n*2i) / (2+n*2i+Z_sou(1,n)); 
i_h_st(1,n) = i_h_st_par(1,n) ;%* (2+n*2i) / (2+n*2i+Z_sou(1,n)); 
i_h_tr(1,n) = i_h_tr_par(1,n) ;%* (2+n*2i) / (2+n*2i+Z_sou(1,n)); 

  
%i_load(1,n)= i_h_rs_par(1,n) - i_h_rs(1,n); 
%abs(i_load(1,n)); 

  
% ****** LINE CURRENTS ******* 
i_h_R(1,n) = i_h_rs(1,n)-i_h_tr(1,n); 
i_h_S(1,n) = i_h_st(1,n)-i_h_rs(1,n); 
i_h_T(1,n) = i_h_tr(1,n)-i_h_st(1,n); 

  
abs(i_h_R(1,n));abs(i_h_S(1,n));abs(i_h_T(1,n)); 

  
U_h_r(1,n) =  - Z_sou(1,n) * i_h_R(1,n); 
U_h_s(1,n) =  - Z_sou(1,n) * i_h_S(1,n); 
U_h_t(1,n) =  - Z_sou(1,n) * i_h_T(1,n); 

  
   % Calculations of Various voltages ( wrt to Art. Zero ) 
U_h_p(1,n) = (1/3) * ( U_h_r(1,n) + alp * U_h_s(1,n) + (power(alp,2)) * 

U_h_t(1,n));% Pos seq voltage 
U_h_n(1,n) = (1/3) * ( U_h_r(1,n) + (power(alp,2)) * U_h_s(1,n)+ alp * 

U_h_t(1,n) );%Neg seq vol 
U_h_z(1,n) = (1/3) * ( U_h_r(1,n) +  U_h_s(1,n) + U_h_t(1,n)) ;% zero seq 

voltage  
U_h_rms_art(1,n) = sqrt(3) * sqrt((U_h_p(1,n) * conj(U_h_p(1,n)))+(U_h_n(1,n) 

* conj(U_h_n(1,n)))) ; 
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U_h_rms_tot_sq=U_h_rms_tot_sq+power(U_h_rms_art(1,n),2); % adding up squares 

of RMS for later 

  
U_h_r_art(1,n) = U_h_p(1,n) + U_h_n(1,n)   % Ur wrt art zero 
U_h_s_art(1,n)=U_h_p(1,n) * conj(alp) + alp * U_h_n(1,n) 
U_h_t_art(1,n)=U_h_p(1,n) * (alp) + conj(alp) * U_h_n(1,n) 
U_h_rs_art(1,n) = U_h_r_art(1,n) - U_h_s_art(1,n) ; 
U_h_st_art(1,n) = U_h_s_art(1,n) - U_h_t_art(1,n) ; 
U_h_tr_art(1,n) = U_h_t_art(1,n) - U_h_r_art(1,n) ; 
U_h_rms_art1(1,n) = sqrt(power(abs(U_h_r_art(1,n)),2) + 

power(abs(U_h_s_art(1,n)),2)+power(abs(U_h_t_art(1,n)),2)); 

  
i_h_rms1(1,n) = sqrt( power(abs(i_h_R(1,n)),2) + power(abs(i_h_S(1,n)),2) + 

power(abs(i_h_T(1,n)),2)); 
S_n(1,n) = U_h_rms_art1(1,n)*i_h_rms1(1,n); 
i_h_rms1_sq = i_h_rms1_sq + power (i_h_rms1(1,n),2); 

  
%Complex Powers for Harmonic and Balanced Admittances 
U_h_r_art(1,n)*conj(i_h_R(1,n)); 
U_h_s_art(1,n)*conj(i_h_S(1,n)); 
U_h_t_art(1,n)*conj(i_h_T(1,n)); 

  
C_h_n(1,n)=U_h_r_art(1,n)*conj(i_h_R(1,n))+ 

U_h_s_art(1,n)*conj(i_h_S(1,n))+U_h_t_art(1,n)*conj(i_h_T(1,n));  
P_h_n(1,n)= real(C_h_n(1,n)); 

  
P_h_n_tot = P_h_n_tot + P_h_n(1,n);  
fprintf('Harmonic Current:%d at %d 

\n',abs(i_h_rs(1,n)),angle(i_h_rs(1,n))*180/pi);  
fprintf('Line R Current:%d at %d 

\n',abs(i_h_R(1,n)),angle(i_h_R(1,n))*180/pi);  
fprintf('Line S Current:%d at %d 

\n',abs(i_h_S(1,n)),angle(i_h_S(1,n))*180/pi);  
fprintf('Current 3 phase rms :%d  \n',i_h_rms1(1,n)); 
fprintf('Voltage Ur :%d at %d 

\n',abs(U_h_r_art(1,n)),angle(U_h_r_art(1,n))*180/pi); 
fprintf('Voltage Us :%d at %d 

\n',abs(U_h_s_art(1,n)),angle(U_h_s_art(1,n))*180/pi); 
fprintf('Voltage 3 phase rms :%d  \n',U_h_rms_art1(1,n)); 
fprintf('Active Power:%d \n',P_h_n(1,n)); 
end  
P; 
Com_pow_har = C_h_n; 
P_all = P + P_h_n_tot; 

  
U_all_rms_sq = U_rms_tot_sq + U_h_rms_tot_sq;  % Total VOltage RMS sq 
i_all_rms_sq = i_rms_tot_sq + i_h_rms1_sq; 
S_all_sq = U_all_rms_sq * i_all_rms_sq; 
%  
S_h1_sq = U_h_rms_tot_sq * i_h_rms1_sq; 

  
S_E_sq = U_rms_tot_sq * i_h_rms1_sq + U_h_rms_tot_sq * i_rms_tot_sq;  
S_1_all_sq = S_1_sq + S_h1_sq + S_E_sq; 
S_1_all = sqrt(S_1_all_sq) ; 
pf_all = P_all / S_1_all; 
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pf_1 = P / AppPow; 
disp('               '); 
disp(' Final Results of Power     '); 
disp('               '); 
fprintf('Uh -  Harmonic Voltage 3 phase rms :%d  \n',sqrt(U_h_rms_tot_sq)); 
fprintf('Ih  Harmonic Geenrated Current 3 phase rms :%d  

\n',sqrt(i_h_rms1_sq)); 
fprintf('SG -  Harmonic Apparent Power SG =  :%d  \n',sqrt(S_h1_sq)); 
fprintf('SE  -Cross Harmonic Apparent Power SE =  :%d  \n',sqrt(S_E_sq)); 
fprintf('SC - Supp;ly Apparent Power SC =  :%d  \n',AppPow); 
fprintf('S - Apparent Power from diff power S =  :%d  \n',S_1_all); 
fprintf('U rms 3 ph voltage three phase RMS value :%d  

\n',sqrt(U_all_rms_sq)); 
fprintf('I rms 3 ph - current three phase RMS value :%d  

\n',sqrt(i_all_rms_sq)); 
fprintf('S - Apparent Power voltage and currents S =  :%d  

\n',sqrt(S_all_sq)); 
fprintf('Total Active Power P =  :%d  \n',P_all); 
fprintf(' pf  Power Factor overall %d \n',pf_all); 

  
%% Section to calculate things to Plot  
i_h_R; 
i_R; 
disp (' Current waveforms values : '); 
for n = 1 : 1 : 7  
i_h_R(1,n) = i_R(1,n)+i_h_R(1,n); 
i_h_S(1,n) = i_S(1,n)+i_h_S(1,n); 
U_h_r_art(1,n) = U_r_art(1,n)+U_h_r_art(1,n); 
U_h_s_art(1,n) = U_s_art(1,n)+U_h_s_art(1,n); 
U_h_t_art(1,n) = U_t_art(1,n)+U_h_t_art(1,n); 

  
% fprintf(' U_r - n = %d : %d at %d \n ', 

n,abs(U_h_r_art(1,n)),angle(U_h_r_art(1,n))*180/pi);  
% fprintf(' U_s - n = %d : %d at %d \n ', 

n,abs(U_h_s_art(1,n)),angle(U_h_s_art(1,n))*180/pi);  
% fprintf(' U_t - n = %d : %d at %d \n ', 

n,abs(U_h_t_art(1,n)),angle(U_h_t_art(1,n))*180/pi);  
% fprintf(' i_r - n = %d : %d at %d \n ', 

n,abs(i_h_R(1,n)),angle(i_h_R(1,n))*180/pi);  
% fprintf(' i_s - n = %d : %d at %d \n ', 

n,abs(i_h_S(1,n)),angle(i_h_S(1,n))*180/pi);  
end 
i_h_R; 
U_h_r_art; 
Fc=60; 
Fs = 8000;                   % samples per second 
dt = 1/Fs;                   % seconds per sample 
StopTime = .05;  
nh=[1,2,3,5,7]; 
i_R_plot=0;i_S_plot=0;i_T_plot=0; 
E_R_plot = 0; E_S_plot = 0; E_T_plot = 0; 
V_R = 0; V_S = 0; V_T = 0; 
for n = 1:1:7 
 t = (0:dt:StopTime-dt)';     % seconds 
    i_R_plot = i_R_plot + abs(i_h_R(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(i_h_R(1,n))); 
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    i_S_plot = i_S_plot + abs(i_h_S(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(i_h_S(1,n))); 
    E_R_plot = E_R_plot + abs(e_r(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(e_r(1,n))); 
    E_S_plot = E_S_plot + abs(e_s(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(e_s(1,n))); 
    E_T_plot = E_T_plot + abs(e_t(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(e_t(1,n))); 

  
    V_R = V_R + abs(U_h_r_art(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(U_h_r_art(1,n))); 
    V_S = V_S + abs(U_h_s_art(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(U_h_s_art(1,n))); 
    V_T = V_T + abs(U_h_t_art(1,n))*sqrt(2) * sin(2*pi*n*Fc*t+ 

angle(U_h_t_art(1,n))); 
end 

  

  

      
   figure; 
   axis; 
   subplot(3,1,1) 
   axis; 
   plot(t,i_R_plot,'b',t,i_S_plot,'r',t,i_T_plot,'g'); 
   xlabel('time (in seconds)'); 
   title('Plot of Line Currents '); 
   grid on ; 
   zoom xon; 
   legend('I(R)','I(S)','I(T)') 

  
   subplot(3,1,2) 
   plot(t,E_R_plot,'b',t,E_S_plot,'r',t,E_T_plot,'g'); 
   xlabel('time (in seconds)'); 
   title('Plot of Intertal voltage of distribution system'); 
   legend('E(R)','E(S)','E(T)') 
   grid on ; 
   zoom xon; 
   subplot(3,1,3) 
   plot(t,V_R,'b',t,V_S,'r',t,V_T,'g'); 
   xlabel('time (in seconds)'); 
   title('Plot of load voltages '); 
   legend('U(R)','U(S)','U(T)') 
   grid on ; 
   zoom xon; 
%     
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