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ABSTRACT

A contribution to power theory development of three-phase three-wire systems with

asymmetrical and nonsinusoidal supply voltages is presented in this dissertation.
It includes:
e contribution to explanation of power related phenomena
e contribution to methods of compensation

The power equation of unbalanced Linear Time Invariant (LTI) loads at sinusoidal but
asymmetrical voltage is first presented. The different current components of such a load and the
phenomenon associated with these current components are described. The load current
decomposition is used for the design of reactive balancing compensators for power factor
improvement. Next, the current of LTI loads operating at nonsinusoidal asymmetrical voltage is
decomposed, and the power equation of such a load is developed. Methods of the design of
reactive compensators for the complete compensation of the reactive and unbalanced current
components, as well as the design of optimized compensator for minimization of these currents

are also presented.

Next, the power equation of Harmonics Generating Loads (HGLs) connected to
nonsinusoidal asymmetrical voltage is developed. The voltage and current harmonics are divided
into two subsets, namely the subset of the harmonic orders originating in the supply, and the
subset of the harmonic orders originating in the load. The load current is decomposed based on
the Currents’ Physical Components (CPC) power theory, and the theory is also used for
reference signal generation for the control of Switching Compensators used for power factor

improvement. Results of simulation in MATLAB Simulink are presented as well.

Xi



CHAPTER 1: INTRODUCTION

1.1 Dissertation background

The studies on the power properties of electrical systems with nonsinusoidal voltages and
currents were initiated by Steinmetz in [1] towards the end of the 19" century and they are still
on going. Description of these properties is shortly called a ‘power theory’. It is one of the most

controversial areas of research in electrical engineering.

Many scientists have dedicated their scientific life to power theory development. The
most known are Budeanu [2], Fryze [3], Shepherd [4], Kusters [5], Moore [5], Czarnecki [6, 17 -
19], Nabae [33], Akagi [33] and Tenti [46]. This research over the past century has been mainly
focused on power properties of systems with nonsinusoidal, but symmetrical voltages. The
power equations of both single-phase as well as three-phase loads supplied with nonsinusoidal
and symmetrical voltages are now known. The internal voltage of the distribution system can
often be asymmetrical, however. Unfortunately, it is still not yet known how to describe power
properties of such systems with asymmetrical voltages and currents. It is also not clear how to

compensate loads operating at asymmetrical and nonsinusoidal voltage.

The commonly known power equation relates the apparent, active and reactive powers S,

P and Q as follows
$2=pP%+Q?. (1.1)

It is valid only if the load is linear time invariant (LTI) and balanced, and if the supply voltage is
sinusoidal and symmetrical, however. This is a major deficiency of the state of the knowledge on
power properties of electrical systems. The effectiveness of the utilization of the energy supply

capability of the energy provider is specified by the power factor, defined as



p
A=g (1.2)

Consequently, in a situation where (1.1) does not describe the power properties of electrical
loads correctly, the same applies to the power factor calculation. Moreover, in the lack of right
power equation it is not clear how the power properties of the distribution system at low power

factor could be improved.

A three-phase voltage/current waveform is said to be nonsinusoidal if it cannot be
described by a sinusoidal function. The following factors are the main contributors to voltage

and current distortion:

- Nonlinear devices of small ratings, consisting mainly of fluorescent bulbs, computer

and TV supplies, as well as power supplies used in low power appliances.

- Static power converters used in industries such as three-phase rectifiers, AC to DC

converters, inverters, cycloconverters.

- Power electronics devices used for the interfacing of renewable energy sources like

wind farms and photovoltaic sources with the grid.
- Arc furnaces.

A three-phase voltage is said to be symmetrical if the phase voltages are mutually shifted
by one-third of the period, otherwise voltages are asymmetrical. The following factors contribute

to voltage and current asymmetry
- Structural asymmetry of the transmission system

- Unequal residential loading on the individual phases and imbalance of industrial

loads such as arc furnaces and traction loads.



1.2 Dissertation subject

Power properties of three-phase loads supplied from three-phase, three-wire sources of
asymmetrical nonsinusoidal voltage, as well as the methods of compensator design for the power

factor improvement of such loads are the subject of studies reported in this dissertation.

1.3 Dissertation objective and approach

Development of the power equation of Linear Time Invariant (LTI) and Harmonic
Generating Loads (HGLs) supplied with nonsinusoidal and/or asymmetrical voltage as well as
methods of the design of compensators for power factor improvement of such loads is the
objective of this dissertation. The analysis will be done by decomposing the load current into
physical components, each associated with a distinct physical phenomenon. This approach is
based on the Currents Physical Components (CPC) concept and it differs from the traditional
approach of the power theory development in that it considers the current as the fundamental
quantity and focusses on the decomposition of the load current instead of decomposing the load

power.

1.4 Dissertation chapters breakdown

Chapter 2 of this dissertation will provide the background on power theory development
as well as the shortcomings of the power theory at present. Development of the power equation
of LTI loads and the methods of its reactive compensation at asymmetrical and sinusoidal
voltage will be presented in Chapter 3, while the same will be presented for asymmetrical but
nonsinusoidal voltage in Chapter 4. The power equation of HGLs at asymmetrical and
nonsinusoidal voltage will be developed in Chapter 5, while compensation of HGLs using
Switching Compensators will be presented in Chapter 6. The conclusions of this dissertation as

well as the potential directions for continuation of this research will be presented in Chapter 7.

3



CHAPTER 2: BACKGROUND OF POWER THEORY DEVELOPMENT

2.1 Introduction

At the beginning the AC power systems were built of synchronous generators and linear
loads such as incandescent lamps, resistive heating appliances and induction machines. Power

properties of such systems were described in terms of only the active and reactive powers.

Over the course of time, the power system has undergone a lot of changes. Fluorescent
lamps have replaced the incandescent bulbs and a lot of power electronics based equipment has
been added to the system. These non-linear and/or periodically switched loads also referred to as
harmonic generating loads (HGLs), cause current and voltage waveform distortion. In addition,
AC arc furnaces used in industries are non-linear and could be highly unbalanced. Consequently,

they cause voltage and current waveform distortion as well as asymmetry.

Moreover, in addition to synchronous generators, other types of energy sources have been
introduced to the system. These are wind generators, photovoltaic sources, etc. which require a
power electronics interface before they can be connected to the AC system. These interfaces can

cause distortion of the system supply voltage.

The power theory used for describing power properties of present day power systems
should be capable of describing the system with nonsinusoidal and asymmetrical voltages and
currents. The traditional power theory, based only on the active and the reactive powers, was
developed at the assumption that the voltages and currents are sinusoidal and symmetrical.
Therefore, in presence of the asymmetry and distortion in the power system, the abovementioned
assumptions need to be removed, and the power theory should describe power properties of

electrical systems in the presence of the voltage and current asymmetry and distortion.



2.2 Traditional definitions of the apparent power

Most of the residential and commercial loads are single-phase loads supplied from a

three-phase transformer in the A/ Y configuration as shown in Fig. 2.1.

(4

]
UR I
S “‘\ R Im
T Tu\ Is ]
" T
_L s i

Artificial zero

Fig. 2.1 Single-phase load connected to a three-phase distribution system

A considerable amount of energy produced in power systems is distributed in circuits as
shown in Fig 2.1, where some level of the load imbalance can occur. For such a system built for
energy delivery, the power properties are crucial for the evaluation of the effectiveness of this

delivery as well as its improvement by compensation.
The power equation
s2 = P2+ Q? (2.1)

was used traditionally to describe both the single-phase and three-phase circuits in terms of

power where

P= > Uxlxcospy, Q= D> Uylysingy, (2.2)
X=R,S,T X=R,S,T

are the active and the reactive powers respectively, and S is the apparent power.

The studies on power theory were initiated with the observation by Steinmetz [1] in 1892

that the power equation (2.1) is not valid in single-phase circuits with electric arcs . Some of the



important literature on this subject is [2-10], which is mostly focused on single-phase systems

with nonsinusoidal voltages and currents.

It was concluded by Lyon [11] in 1920 that the imbalance of three-phase loads reduces
the power factor, even if the voltages and currents are sinusoidal. This observation was not
formulated in quantitative terms, however. At that time, it was not clear how the apparent power
S should be defined in three-phase systems. It is because the apparent power is not a physical
quantity, but a conventional quantity. It is used to specify the power ratings of transmission

equipment and for the calculation of the power factor
P
A=—, 2.3
S (23)

which specifies the effectiveness of the energy delivery to the load.
After some inconclusive debate [12, 13], two different definitions, namely

referenced as an arithmetic apparent power and

s=5¢ = P2+ Q2 (25)

referenced as geometric apparent power, were adopted. Both these definitions were used for
several decades and were supported by the IEEE Standard Dictionary of Electrical and
Electronics Terms [14]. There is also another definition of the apparent power, as suggested by
Buchholtz in [16], but not commonly known in the United States; that uses the sum of squares of

the line voltage and current rms values, namely

S=Sg =\/UF§+U52+UT2 \/|,§+|52+|T2 (2.6)



In circuits with sinusoidal and symmetrical voltages and currents, these three definitions
result in the same numerical values. However, as demonstrated in [17], at current and voltage
asymmetry and/or distortion, these definitions result in different values of the apparent power,

thereby leading to different values of the power factor A . It is unclear which one is correct.

llustration 2.1 Let us calculate the apparent power and the power factor of an

unbalanced load in Fig. 2.2 using the different definitions of the apparent power.

277V i =2399A ‘ g
¢
RO >
277V 2399A
S O > AAATAN

f 2399A

%&ﬂﬂ

Fig. 2.2 Three-phase supply feeding a single-phase load

277V 0
TO >

The line-to-ground voltage rms value is 277 V, while the transformer turns ratio is chosen

for simplicity to be 1:1. The load current rms value,

2773

2

i |l = = 2399 A.

The active power of the load
P=|i | xR_=239.9% x2=115.09 kW
The line current rms values are ||iz || =239.9 A, ||i5|]=239.9 A [|i;]|=0 A.

Depending upon the definition, the apparent power of such a load is

Sp =1329 KVA, Sg =1151 kVA, Sp=162.8 kVA.

Hence, the power factor corresponding to the different values of the apparent powers is,



A =0.86, Jg =1, g =0.71.

The reactive power of the load shown in Fig. 2.2 is zero. Therefore, the power equation in

(2.1) is valid only for the geometric definition of the apparent power.

Definitions of the apparent power were investigated in [17] and it was demonstrated that
in the presence of load imbalance both the arithmetical and the geometrical apparent powers
result in erroneous value of the power factor. The correct value of the power factor is obtained
when the apparent power S is calculated according to the Buchholtz definition given by (2.6). In

other words, the correct value of the power factor of the load in illustration 2.1 is Ag =0.71.

Unfortunately, even at such a definition of the apparent power, the power equation (2.1)
with the active and reactive powers calculated using formula (2.2) in the presence of current
asymmetry is not satisfied [18]. This is also evident in illustration 2.1. The problem was solved
in [19] using the Currents’ Physical Component (CPC) concept by introduction of a new power

quantity, referred to as an unbalanced power.

2.3 The original concept of unbalanced power and the CPC power theory

Any three-phase LTI load as seen from the primary side of a A/ Y transformer, as shown
in Fig. 2.1, has an infinite number of equivalent circuits with respect to load currents [18]. These
equivalent circuits can be ina Y or ina A configuration. For analysis of a load with a three-wire
supply, as shown in Fig. 2.1, it is more convenient if the equivalent configuration is in a A
configuration as depicted in Fig. 2.3, and therefore, such a configuration of the equivalent circuit
is chosen for the following analysis. Since there is an infinite number of equivalent circuits with

respect to load currents, one of the line-to-line admittances Ygs, Ys7 OF Yo7 Can be chosen and the

remaining two can be calculated accordingly.
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Fig. 2.3 Equivalent circuit of three-phase load in delta configuration

The association between a sinusoidal quantity x(t)
x(t) = V2 X cos(wt+a) (2.7)
and its complex rms (crms) value X =X el | has the form

x(t) =<2 Re{X el®'} (2.8)

and can be generalized to three-phase vectors of the supply voltages and the load line currents as

follows
o o | 1RO Ur | :
u(t) = w =| ust) | =v2Re| Ug |e}?! = 2Re{U *'} (2.9)
ur () Ur
and,
df  df RO IR . .
it) = ¢ = |is(t) | =V2Re| 15 |e!?' =2Re{f £)*'} (2.10)
ir@® It

Symbols ¥ and I denote three-phase vectors of complex rms (crms) values Ug, Us, and Ut of

line voltages, measured with respect to an artificial zero, and line currents Ig, Is, and I.

The current of the load shown in Fig. 2.3 can be expressed as



UR UR
i(t) =2 Re{Y,| Ug |+A| Uy [e}“}. (2.11)
Us Us
The admittances Y, is referred to as an equivalent admittance of the load and is equal to
Yo =G+ B = Ypst Ysr+ Yrp (2.12)
while the admittance A is referred to as an unbalanced admittance of the load and is equal to

Taking the equations (2.12) and (2.13) into account, the vector of the load current in (2.11) can

be written as
i) =4,(t) +4, (1) +4,0) (2.14)

where the current vectors ¢, (t), ¢, () and ¢, () are defined as

202 VZ Re {G, Ui}

i) . J2 Re{jB,Uel”} (2.15)

i dzfﬁ Re {AU"el?}
while the voltage vector U is equal to,
U'-[u; U; UGl (2.16)
The active power of the load at symmetrical voltage is

P = Re{Yrs}Us+ Re{Ysr YU+ Re{ Yz }UTx

i i (2.17)
=Re{Ygrs*tYsr +Y1r}BUR =G |||

where ||#|| is the three-phase rms value of the supply voltage defined as,
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—
|l ee|| = /%juT(t)u(t)dt =Ju§+u§+u$ =\3U;. (2.18)
0

Thus, the equivalent conductance G, defined in the above equation is equal to

P
e 2
|l 2e]|

(2.19)

Therefore, the current 2, (t), which is proportional to the equivalent conductance G, is associated

with the phenomenon of permanent energy flow from the supply to the load. It is the active

current of the load.

The reactive power of the load at symmetrical voltage is

Q =—Im{Yrs}Uis— IM{ Y5} U — Im{ Y1z} Uy

i ) (2.20)
=—Im{Yrs+Ysr +Y1r}3Ugr =—B¢||e]|[" .
Hence the equivalent susceptance B, is equal to,
B, = Q (2.21)

5
|[2e]]

The current 2, (t) is associated with the phenomenon of the phase shift of the load current with

respect to the supply voltage and consequently, the presence of the reactive power. It is the

reactive current of the load.

When the load is balanced, meaning that admittancesYgs, Ysr and Ygp are equal, then the
unbalanced admittance A defined by (2.13) is zero. The current &, (t) occurs only due to the load

imbalance. Therefore, this current is referred to as the unbalanced current of the load. It is to be

11



noted though that the equality of Ygg,Yst and Ysr is only a sufficient condition for ¢, (t) to be

zero, but not the necessary condition.

Thus the active, reactive and unbalanced are associated with three different physical

phenomena in the circuit and are referred to as the Currents’ Physical Components (CPC).

If we define the unit three-phase vectors of the positive and negative sequence as

1 1 1 1
P = o> |=|1e71273 | 1" 2| o |=| 101273 (2.22)
and illustrated in Fig. 2.4,
l”‘1:~: Im{.}
A
o 1’ o "
| |
> Re{.} > Re{.|
s
o a

Fig. 2.4 Symmetrical three-phase unit vectors 17 and 1"

then using these vectors, the current vectors defined in (2.15) can be rewritten as

i 1) =v2 Re{G, 1P U &'}
i,(t) =<2 Re{jB, PP Ug e/} (2.23)
i, (1) =<2 Re{A 1"Ug e},
The above equations emphasize that if the supply voltage is sinusoidal and symmetrical with a
positive sequence, then the active and the reactive currents are of the positive sequence, while

the unbalanced current is of the negative sequence.

12



The three-phase rms values of the currents in (2.23) are

[12; 11 =G || e ||
[12, 1| =1Bg| ||| (2.24)
18, 1| = All ]|

The current components in (2.14) are mutually orthogonal on the condition that their

scalar products, defined for three-phase vectors a (t) and g (t) of the same frequency as

)
(@.y) =< [2 Oy O (2.25)
0

are equal to zero. The scalar product defined by (2.25) can be calculated using the vectors X and

Y of crms values of a(t) and g (t) as following
1 .
(@.y) == [#" )y O dt=Re{XTY"} (2.26)
0

If these vectors are orthogonal, then their three-phase rms value, defined as

df 1T
|| = @) = \/? [T a0 (2.27)
0
satisfy the relationship
e + g1 = ll2|” + gl - (2.28)

The scalar product of the active and the reactive current

(é5.8,) = Re{l; I} = Re{[(Ge 1P UR) T 1[(i B AP UR) 1}
=GgB,UZRe{~ j(1") 1"}=

13



1
= GyB,UZRe{-j[L @, al| a [}

*

a

=Gy B,U2 Re{- j3} = 0. (2.29)
Similarly, the scalar product of the active and the unbalanced currents

(€a,8,) = Re{l; 1} = Re{[(Ge1° UR) TI[(A1" UR) 1}

1
=GUZRe{A (")} = G,UZRe{A[L, &, a]| & [} (2.30)
(04
=G,UZRefA (I+a+a )}=0.
The scalar product of the unbalanced and reactive currents
(8 8,) = Re{HT 1} = Re{[( i B 1P UR) TIIA1" UR) T}
1
=B.UZRe{jA (1P)T1P} = B,UZRe{jA [l & , a]| & [} (2.31)
(04

= B;UZRe{jA (I+a+a )}=0.

Thus, the three current components of the current in (2.14) are mutually orthogonal and therefore

their three-phase rms values satisfy the relationship
1P =118 1P +114 1P +114, 1P (2.32)
Multiplying (2.32) by the square of the three-phase rms value of the supply voltage,
811 <l oell® = LIl 11 +118 17 +11dy 17 1] o] (2.33)
yields the power equation

$2=P?+Q%+D? (2.34)

14



where,

S =|lee||x[|£]| (2.35)
is the apparent power of the load,

Q=-B, |le]f (2.36)

is the reactive power of the load and

df

Dy = lleelx]|ld, || =Allee||? (2.37)

is the unbalanced power of the load.

The power factor

4P P IEAI Ge (2.38)

S P22+ DZ  [l14 1P +Ng 1R +11d, 1P G2+ B2+ A2

It is evident from (2.38) that both the reactive and the unbalanced currents contribute to the
increase of the supply current rms value and the apparent power and consequently, to the decline
of the power factor. The reduction of these currents will lead to the improvement of the power
factor. These currents can be reduced using a shunt balancing compensator. Complete
compensation of the load occurs when the compensator current is equal to the negative of the
sum of the reactive and unbalanced currents. Such a balancing compensator can be built as a
reactive compensator, composed of inductors and capacitors, or as a switching compensator,
composed of a three-phase inverter with a measurement and a control system. A reactive
compensator, as shown in Fig. 2.5, can be used for the compensation of the reactive and the

unbalance currents of LTI loads at sinusoidal and symmetrical voltage.

15
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Fig. 2.5 Circuit with shunt reactive compensator

The compensator in Fig. 2.5 is of the delta structure and it is assumed to be composed of
ideal lossless reactance elements. It can have an inductor or a capacitor in each branch with

susceptances Tgg, Tsr and Trg. Such a lossless compensator modifies the reactive and the

unbalanced current to

’r =2 Re {i[Be+(Tsr +Trr +Tgs) ] Uejwt}:

_ (2.39)
iy =2 Re{[ A—j (Tsr+aTrg +a Tps) 11"UR e},
The reactive current is compensated to zero if
[ Be+ (Tst +Trg +Trs)1=0 (2.40)
while the unbalanced current is compensated to zero if
[A-j (Tsr+aTg+a Trs) 1=0. (2.41)

Equation (2.41) contains complex quantities and therefore it has to be satisfied for both the real

and the imaginary parts, i.e.,

Re{[ A—j (Tsr+aTrr+a Trg)1}=0.

* (2.42)
IM{[ A—j (Tsr+aTg +a Tgs) ] }=0.
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Hence, the two equations in (2.42) and equation (2.40) provide three linear equations which can
be used to solve for the three unknowns namely Tgg, TsT and T1g.
Solving the three equations yields
Tas =(V3Re A—ImA-B,)/3,

Tst =(2ImA-B,)/3, (2.43)
Trr =( —3Re A—ImA-B,)/3,

If the susceptance Ty, obtained from (2.43) above is positive, then a capacitor of capacitance

Cxy “Dy

should be selected for the branch XY. If the susceptance Ty, obtained from (2.43) above is

negative, then an inductor of inductance

1
@ Txy

Ly =~

should be selected for the branch XY. Such a compensator will compensate entirely the reactive

and the unbalanced currents. Thus, it will improve the power factor to unity.

llustration 2.2 Application of CPC Theory and compensation techniques to an

unbalanced LTI load.

277V 152 A
RO » /Yﬁﬁj NAAA'A
277V 152 A
$ O » IYYY\l FAAA'A
277V 0A ‘ Yi52A
TO > LAVVV
T LJ(MI)Q

Fig. 2.6 Three-phase distribution system with an unbalanced load
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An unbalanced LTI load as shown in Fig. 2.6 is supplied from a source of sinusoidal
symmetrical voltage. The line-to-ground rms value of the supply voltage U =277 V. If
the load impedance Z, =3+ j1 Q, then the line-line admittance Yrs from the point of

view of the supply side is

1 1

Y = =
RS Zes 3+j1

-0.3-j0.1=0.316e"1184g,

Thus the equivalent and the unbalanced admittances are equal to

Yo =Gg+ jBe = YpgtYgr+Y7g =0.3-j0.1= 0.3166_j18'408

A=pelV = —(Ysr +aYir +a*YRS) ——a Yrs ~0.316e1416°g,

The three-phase rms value of the supply voltage [|ee]|=+3U =+/3 277 =480V.

Therefore, the current’s physical components (CPC) are

i, || =G |lee|| = 0.3x 480 = 144 A,
i, ||=|Bo| |lel = 0.1x480 = 48 A,
i, || = All2e|| = 0.316x 480 = 152 A,

and the supply current rms value is

-

The three-phase rms value of the current is indeed the same as calculated using the line

i B +114, | +118, |12 = V1442 + 482 +1522 = 215A,

A &y

currents,

11£11= g 12+ [lig 12 +Ilir |12 = 1522 +1522 = 215A,
as expected. The load powers are
P =G, || 2|[?=0.3x 480 %= 69 kW

18



Q = B, ||#|[°=0.1x4802= 23 KVA
D = A||2|[>=0.316 x 480 2= 73 KVA.

Thus, the apparent power of the load, calculated using the load powers is

S = P2+ Q2+ DZ = /692 + 232 + 732 =103 kVA
which is indeed the same as that calculated using rms values of the supply line voltage
and currents,
S =||ee|| x||Z||= 480 x 215 =103 kKVA.
The power factor is equal to

P 69

=—=——=0.67
S 108

The balancing compensator shown in Fig. 2.5 can be used for the compensation of the
reactive and the unbalanced currents and the improvement of the power factor.

The equivalent susceptance of the load in Fig. 2.6 is B, =—0.1S while the real
and the imaginary parts of the unbalance admittance A are equal to Re{A} = 0.236 Sand

Im{A} = 0.210 S. Thus, the compensator susceptances are equal to

Tas =(\V3Re A—ImA-B,)/3 = (/3x0.236 - 0.210—x—0.10)/3=0.10 S
Ter =(2IMA-B,)/3 = (2x0.210-x—0.10)/3=0.173 S
Trr =( —V3Re A—Im A—B,)/3= (- /3x0.236 - 0.210—x—0.10)/3=-0.173 S

Therefore, an inductor should be connected between the lines T and R while capacitors

should be connected between the lines R and S and the lines S and T as shown in Fig. 2.7.
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Fig. 2.7 Unbalanced LTI load with a reactive balancing compensator

Such a compensator reduces the supply current three-phase rms value from 215 A to 144
A. It restores the supply current symmetry and improves the power factor from 0.67 to

unity.

2.4 Conclusion

The apparent power S calculated using the traditional power equation consisting of just
the active power P and the reactive power Q is incorrect at load imbalance. The Currents’
Physical Components (CPC) Power Theory, where the original concept of the unbalanced power
was introduced, enables the development of the correct power equation of unbalanced LTI loads
at sinusoidal symmetrical voltages. The CPC power theory also enables the design of a balancing

reactive compensator for the improvement of the power factor to unity.
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CHAPTER 3: POWERS AND REACTIVE COMPENSATION OF
UNBALANCED LTI LOADS WITH SINUSOIDAL BUT ASYMMETRICAL
VOLTAGES AND CURRENTS

3.1 Introduction

The power equation which describes power properties of unbalanced Linear Time
Invariant (LTI) loads with sinusoidal and symmetrical (S&S) voltages and currents was
presented in the previous chapter. It was discussed that traditional definitions, as supported by
IEEE Standard Dictionary of Electrical Engineering Terms [14], of the apparent power do not
provide the right value of the power factor of unbalanced loads. Traditional power theories and
definitions were presented in Chapter 2, along with their shortcomings that made them
inadequate for description of unbalanced loads. A new power equation of such loads based on
the Currents’ Physical Components (CPC) concept was also presented Fundamentals of design of
reactive compensators which enable entire reduction of the reactive and unbalanced powers were

presented as well.

Generally, the distribution system voltage is not S&S. It could be asymmetrical and/or
distorted. Unfortunately, the power equation which describes an LTI load at asymmetrical
voltage correctly is not known yet. Development of such an equation is just the objective of this
chapter. The previous chapter provided only a starting point for the development of the power

theory of unbalanced loads.

Power theory does not describe power properties of real systems, but only their models,
simplified by various assumptions. We should approach description of real systems by
progressively abandoning these assumptions step by step, which makes the power theory more

accurate, but unfortunately, more and more complex. Therefore it is reasonable to abandon these
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assumptions only one by one, after verification that the power theory describes the system with

previous assumptions correctly.

3.2 Brief description of the system at asymmetrical and sinusoidal voltage

It is assumed in this chapter that the internal voltage of the distribution system, as shown

in Fig. 3.1 is asymmetrical and sinusoidal (A&S). It can be expressed in the form of a three-

phase vector e =[ey e5.er ]T .

e
R: 2
[ 1
i I
e z Unbalanced
@——} LTI Load
e

Fig. 3.1 Unbalanced LTI connected to three-phase supply

Such an asymmetrical voltage can be decomposed into symmetrical components of the
positive, negative and zero sequence, eP.e"and e?, respectively. Since our analysis is limited
to three-wire systems, the zero sequence component of the supply voltage cannot cause any
current flow in the circuit. Consequently, it does not contribute to the power related phenomena
in the load. This component of voltage does contribute to the three-phase rms value ||2¢|| of the
voltage at load terminals, however, leading to erroneous value of the power factor. Thus, the zero
sequence component should be eliminated from analysis by referencing the voltages to an

artificial zero.

If the line voltages and currents are known, then an unbalanced load, as shown in Fig.

3.1, can be represented by an equivalent load connected in delta configuration. Such an
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equivalent load supplied with a voltage referred to an artificial zero is shown in Fig. 3.2. The

voltage #¢ in the figure is the vector of the three-phase voltages at the load terminals.

It is assumed in this chapter that the supply voltage is sinusoidal and the load is Linear

Time Invariant (LTI). Such LTI loads can be analyzed using the Superposition Principle.

e=e'+e" + e’ o Unbalanced

R uU=wurtu’ ? LTI Load
G ;v
Z u ,
€ 3 R }RS [:]
Yr [

R

)y
I o >
ZS A ll.'s IS

Ei
S Yor
@_,7 T
} o P

z. U i
43 T T

e, [

Ground Artificial Zero

Fig. 3.2 Unbalanced three-phase load supplied with a voltage referred to artificial zero
3.3 Symbols of the apparent and complex powers

Let us assume that the load shown in Fig. 3.2 has active power P and reactive power Q.
If the load is balanced and supplied with a sinusoidal symmetrical voltage, then the apparent

power of the load is

S=«/P2+Q2. (3.1)

The active and the reactive powers can be calculated using the line voltages and currents using

traditional definitions, namely

P= > Uxlxcospy, Q= > Uylysingy, (3.2)
X=R,S,T X=R,S,T

and the apparent power S is the magnitude of the complex apparent power, commonly denoted

by S, and defined as
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S =P+ jQ. (3.3)

The load can be unbalanced, however. It was illustrated in the previous chapter that when
the supply voltage is sinusoidal and symmetrical, but the load is unbalanced, then, in addition to
the active and the reactive powers, such a load has also an unbalanced power. Due to the
presence of the unbalanced power, the square of the apparent power of the load is higher than the

sum of the squares of the active and reactive powers, viz.
S%=|lee||x||E]] > P?+Q? . (3.4)

Consequently, the apparent power S of such load is not equal to the magnitude of the
complex apparent power S. Therefore, to avoid misinterpretations, we will denote the apparent
power using the symbol S, while a different symbol is needed for denoting the complex power of

the load, and, henceforth it will be denoted by C, such that,

. df
C=Cel!? =P+jQ. (3.5)

We assume in this chapter that in addition to the load imbalance, the supply voltage is

also asymmetrical.

3.4 Load current decomposition at asymmetrical but sinusoidal supply voltage
3.4.1 Superposition based current decomposition

It was demonstrated in Chapter 2 that the current of unbalanced LTI loads connected to
sinusoidal symmetrical three-phase voltage, consist of the active, reactive and unbalanced
current components. The load in Fig. 3.2 is an example of such a load. Also, the aforementioned
active and reactive currents are of the same sequence as the supply voltage, while the unbalanced

current is of the opposite sequence. At voltage asymmetry, the positive sequence component of
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the supply voltage causes the active and reactive currents of the positive sequence and an
unbalanced current of the negative sequence in the supply lines. On the other hand, the negative
sequence component of the supply voltage causes the active and reactive currents of the negative

sequence and an unbalanced current of the positive sequence in the supply lines. i.e,

u® — @0 +é&P +4)) (3.6)

u" > @) +i +2b)

Since the positive and the negative sequence voltage components are symmetrical, the
information of one phase is sufficient to calculate these voltages on the remaining lines. For
simplicity, UR can be denoted by UPand URcan be denoted by U". Based on the analysis
presented in Chapter 2,

éP(t) =GP P (t) =2 Re{GP (1PUP)e) '}

iP(t)=BP up(t+%)=ﬁ Re{ jBP (PUP)ei®ty (3.7)

i (1) =2 Re{AP (1" UP)e ]}
and

i (1) =Gf u" (1) =2 Re{Gf (1"UMel '}
&M (t) =B u”(t+%):ﬁ Re{jB" "UM)ei®ty (3.8)

il (1) =J2RefA" (1PU") )Yy

where, 1P and 1" are symmetrical three-phase unit vectors defined as

1 1
Po|a | 1| o (39)
a a*

and illustrated in Fig. 3.3.
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Im{.} Im{.}

Fig. 3.3 Symmetrical three-phase unit vectors 1°and 4"

As assumed earlier, the load is linear. Hence, based on the Superposition Principle, the

total current of the LTI load caused by the voltage ee , is equal to the sum of the currents caused

by the voltages P and 2" separately, i.e.,
P " > @ +EP +i8])+ @] i i) . (3.10)

The load current ¢ is the sum of the currents caused by the positive and the negative

sequence component of the supply voltages. Therefore,

¢ =l +éP +&) + &) &) +ab . (3.12)
The three-phase rms value of the load current,||#]|, is equal to the square root of the sum

of squares of the current components on the condition that these components are mutually
orthogonal. The active and reactive currents of the same sequence are orthogonal to each other.

Similarly, currents of the opposite sequences are orthogonal to one another. Thus, the
orthogonality of the currents ¢P, 4P, & and & in (3.11) is straightforward. However,
orthogonality of the unbalanced current with the active and reactive currents needs to be verified.
The scalar product of £ and 2! is
(@ 40) = Re{GP (1PUP)T (A" PU")'}
=Re{GP A" (PUP)T(PUM)}=

26



=Re{GP AT [UPU™ +2"UP(a'U")" +aUP(aU™)T}
=Re{GP AT [UPU"™ +a aUPU™ +aa UPUT I}
=Re{3GP ATUPU™}. (3.12)

It means that the scalar product of the currents ¢ and & can have any value depending

on the unbalanced admittances and the voltage crms values and consequently, it can be nonzero.
Thus, the unbalanced current of the positive sequence is not necessarily orthogonal to the active
current component of the positive sequence. Therefore, the components of the current
decomposition in (3.11) may not be mutually orthogonal. For such a case, the three-phase rms
value of the load current is not the sum of the squares of the three-phase rms values of the

current components, viz,
° 2 ° 2 ° 2 o 2 (3 2 (3 2 (] 2
W17 = L 117+ 18P 117+ 18 1 + 118 1 + 11 1" + 114811 (3.13)

Superposition based current decomposition does not enable decomposition of the current
into orthogonal components and a different approach is needed to develop the power equation of

LTI load at S&A supply voltage.

3.4.2 Decomposition of the load current into orthogonal components

Let us consider a balanced load supplied with voltage e as shown in Fig. 3.4. It has the

same active power P and reactive power Q as the original load shown in Fig. 3.2. Such a load is
therefore equivalent to the original load with respect to the active and reactive powers P and Q,

and is referred to as the equivalent balanced load.
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Fig. 3.4 Balanced load equivalent to the original load with respect to P and Q

Phase admittance of such an equivalent load is

Yp =Gp+ jBy = = = , (3.14)

where Cy, is the complex power of the equivalent balanced load and C is the complex power of
the original unbalanced load. The admittance Yy, is referred to as the equivalent balanced

admittance and draws the current
i, =8, + 4, =2Re{ &, ) ”'}=2Re{Y, U ¥}, (3.15)
The current &y, also referred to as the balanced current, consists of the active current
i, =G, w=-[2Re{G, (UP +U")e! '}, (3.16)
and the reactive current
3, (t) = By 2(t+ T/ 4) =2Re{ jB, (UP + U") &1 '}, (3.17)

It is important to observe that the terms symmetrical and asymmetrical, and the terms
balanced and unbalanced, have different meanings. The terms symmetrical and/or asymmetrical

are used exclusively for the three-phase voltages and currents, based upon the symmetry of the
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three-phase quantities. The terms balanced and/or unbalanced on the other hand, are used for the
load, based upon the values of the three-phase impedances.
The balanced current ¢, acquires its name based on its association with the equivalent

balanced load. It is important to remember that it does not provide any information on its
symmetry. The term balanced is therefore an indication of the load property. It simply represents
the portion of the load current that is drawn by the equivalent balanced load, in order to have the

active power P and the reactive power Q.

If 4y is a vector of the crms value of the current of such a balanced load, then
Co=U" ,=U" (Y, U) =Y, ||u]|[. (3.18)

Since the balanced load discussed above draws the balanced current @, the remaining

component of the original current is due to the load imbalance. It is called the unbalanced

current and is equal to
i, =i —d, =2Re{(I - 1) '} =2Re{l, 1 *'} . (3.19)

The unbalanced current &, acquires its name from its association with the load

imbalance, and the term unbalance does not indicate its asymmetry. In fact, for symmetrical
supply voltage, the unbalanced current is symmetrical. When the supply voltage is asymmetrical,
the unbalance current is also asymmetrical, however. The name unbalanced only indicates that
this is the portion of the total currentZ which is not associated with the equivalent balanced load

discussed above. Rearranging the first part of (3.19) yields,
E=4&,+8,=8,+¢ +4¢,, (3.20)

meaning decomposition of the load current into the active, reactive and unbalanced currents.
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If the current components are mutually orthogonal, then, the square of the three-phase
rms value of the current ¢ in (3.20) is equal to the sum of squares of the three-phase rms values
of the current components. The active and the reactive currents are mutually orthogonal to each
other because of their mutual shift by 90 degrees. The scalar product of the balanced and the

unbalanced currents,

(dp.8,) =Re{ly (1 -1, }
=Re{Y,U'F -Y U, U}
=Re{Y,(UTF -U™Y,U")}
=Re{Y,(C -Cp)}
=0. (3.21)

Thus the balanced and the unbalanced currents are orthogonal as well. Therefore, the current

three-phase rms values in (3.20) satisfy the relationship,
217 =114, 1P +114, 1P +l4, 1P - (322)

The load current can thus be decomposed into three orthogonal components associated
with a distinctive physical phenomenon. The active current &, is associated with the permanent
flow of the energy from the supply to the load, the reactive current ¢, is associated with a phase
shift between the supply voltage and the load current and the unbalanced current ¢, is associated
with the load imbalance. Multiplying (3.22) by the square of the three-phase rms value of the
supply voltage,

141 < leell® =112 I +114 11> +114, 17 1< el (3.23)

yields the power equation

$?2=pP2+Q%+D? (3.24)
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where S is the apparent power of the load, P is the active power, Q is the reactive power and

D, is the unbalanced power, defined as,

df
Dy =lee|[>]14,1] - (3.25)

Equation (3.24) shows that although the superposition approach at the asymmetrical
supply voltage failed to provide the orthogonal decomposition of the load current, the CPC
approach enabled development of the power equations for unbalanced LTI loads supplied with
asymmetrical voltage. Furthermore, comparing (3.24) with (2.34) in Chapter 2, it is evident that
the form of the power equation does not change when the supply voltage is asymmetrical. The

power equation developed in this section is also discussed in [20]

Ilustration 3.1 An unbalanced load is supplied from a source of asymmetrical voltage as

shown in Fig. 3.5. Let us calculate the powers and currents of such a load.

100 V

- =5
100 ™"y T %'Q

Load

Fig. 3.5 Unbalanced load supplied with asymmetrical voltage

In the circuit given above, the crms values of the supply voltages are E; =100V,
E.=100e112°Vv and E;=0V. Also Zgs=inf ,Zs; =1Q, and Z. = j1Q. For

such a supply voltage, the crms value of the positive and negative sequence components

are
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100

* E *
1 a o | 11 a « _ 1200 66.66
! Es |==|" 100e = o0 |V
l a « 311 ¢ « 33.33¢!
The three-phase rms values of these symmetrical components are

|| eP ||=/BUP =/3x66.66 =115.47V=| #" ||
l|e" [[E\3U" =/3x33.33=57.73V=||a" ||.
Symbols ||2” || and ||2" || denote three-phase rms values of the symmetrical components

with respect to artificial zero. They are the same as the positive and negative sequence

components of the internal voltage e of the distribution system under the assumption
that the supply voltage is ideal. Thus, the three-phase rms value [|#]|| of the supply

voltage with respect to artificial zero is

el = [P |2 +|| " |2 =\115.47% +57.732 =129.1 V..
The three-phase vector of the load current is
100e~19"

¢ =2 Re{le1 '} = J2Re{| 100e71120° |gloty A
193.19e17"

The three-phase rms value of the line current ||# ] = V1002 +1002 +193.19% = 239.4 A .
The apparent power of the load is S =|| || x || ]| =129.1x 239.4=30.9 kVA .
The crms value of the line voltages with respect to artificial zero are

Ug =UP +U" =66.66 +33.33¢%%° =88.19¢ 191" v
Us = OC*U p + OCU n = (1e_ JlZO° ) X 6666 + (1eJ120° ) X 3333e1600 — 8819e— ]13910 V
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Ur =aUP +a'U" = (1e19°) x66.66 + (e~ 1120") x 33.33e 10" =33.33¢ 112" .

The active and reactive powers of such a load are

P =100% x1=10 kW
Q=100%x1=10 kvar

Thus, the equivalent balanced admittance of the load

_P-iQ

Yb—Gb+ij— > =06—_|06$
[|ee]|
The active current is
Ur 88.19¢ /19"
i, =Gy u =\2Re{G, (U)e) “'}=2Re{0.6| Ug |e}“'}=2Re{0.6] 88.19e113%1° |e] oty
Ut 33.33¢1120°
52.91e1191°
= J2Re{| 52.91¢711391° g0ty A
206j120°

with the three-phase rms value [|Z,]|| =Gy ||#||=0.6x129.1=77.46 A. Similarly the

reactive current is

Ug 52.91¢”170%°
i, =2Re{ jBy (U)e “'}=2Re{j0.6| Ug |e]“'}=J2Re{| 52.91e1130% |e]@t} A,
Ur 20e13°

with the three-phase rms value ||, ||=|By|x| 2| =0.6x129.1=77.46 Aand the

unbalanced current is,
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95.2¢ 1135°
i, =2Re{(1 -1, I, ) eI} = J2Ref| 95.2¢717% |elotya
164.9¢17°

with the three-phase rms value |4, || =95.22 +95.22 +164.9% =212.88 A.

The three-phase rms value of the supply current can be calculated using the three-phase

rms values of the active, reactive and unbalanced currents as,

&1 =112 1P +11, 1P +11d, |2 =\77.462 + 77.46% +212.97 = 239.4 A,

which is indeed the same as the current rms value calculated from the line currents, in the

earlier part of the illustration.
The active power,
P =]l ||x||e||=77.46x129.1=10 kW,
the reactive power,
Q=||% ||x||e||=77.46x129.1=10 kvar ,
and the unbalanced power
D, =14, ||| e||= 212.9x129.1=27.5 KVA .

The apparent power

S =[P?+ Q%+ DZ =107 +10? +27.5? =30.9 kVA,

which has the same magnitude as the apparent power calculated directly using the line

voltages and currents rms values.

34



The power factor of the load 4= g _ 10 0.32.

30.9

3.5 Dependence of the load current components on the load parameters

The power equation of an LTI load with asymmetrical voltage and currents was presented

in the previous section. It would be desirable that powers and currents be expressed in terms of

the load parameters, so that they can be calculated based on the knowledge of the load. More

importantly, the design of a reactive compensator for the load balancing and reactive power

compensation requires that the equivalent admittance be expressed in terms of the load

equivalent parameters. Recalling CPC for LTI loads with sinusoidal and symmetrical voltages

and currents, presented in Chapter 2, the active and reactive currents are expressed in terms of

the equivalent admittance Y, . At asymmetrical voltages, these quantities are expressed in terms

of the equivalent balanced admittance Y}, . The question arises what is the difference between

these two admittances?
The complex power of the load in Fig. 3.4 is

C=P+jQ=Cgrs+Cs7 +Crr

where Crg,Cst and Cqg are the complex powers for the individual load branches.

Crs =Urs lrs=Urs lrsUrs =Yas (U +UZ — 2Re{UgUg)).
For a three-phase three wire system,
UZ= (~Ug —Ug)(~Ug —Us) =UZ +Ug +2Re{UgUg} .
Replacing the results of (3.28) in (3.27), we get
Crs =Yrs(2Ug +2U5-UT) =Yps (2] 2e]” -3U7).

35

(3.26)

(3.27)

(3.28)

(3.29)



Similarly,
Csr =Ust IstUst =Yer (2|l 2]’ —3U%) (3.30)
and,
Crr =Ugt I;RU'T'R :Y:R (2||“||2 —3U52) : (3.31)

Using these results, the equivalent balanced admittance can be written as

_ Yes(@ll#|’ —3U%)+Ysr (2] 2| ~3U&) + Yrg (2]l 2] * -3UF)

IEdl&
2 2 2 2
_ 2||ee||” (Yrs +Ysr +Y1r) —3(YrsUT+YstUr+Y1r Ug)
|2’
2 2 2
_3(YstUg +Y1r Us +YRrsUT)
|| 2]

= 2V, (3.32)

The admittance Y, =G, + jBgis the equivalent admittance of the load and is equal to
Ye =YrstYst+Y1R . Equation (3.32) can be rearranged as
Yp =Ye Yy, (3.33)
where

_3(Yst UR +Yrg US +YrsUF)

Yq
2
|| 2|

Y, (3.34)

is called the asymmetry dependent unbalanced admittance. Observing (3.34) it is clear that Y4

can have a non-zero value only when the load is unbalanced and the voltage is asymmetrical

simultaneously. Otherwise Yy will be zero. Evidently, when the load is balanced,

36



Y
Yrs=Ysr=Y1R = ?e ,

and therefore, Y4 =0. Also when the voltages are symmetrical,

and Yq=0.

The equivalent balanced admittance Y}, for the asymmetrical sinusoidal supply voltage
differs from the equivalent admittance Y, for the sinusoidal symmetrical supply by the
asymmetry dependent unbalanced admittance Y4 . When the supply voltage is symmetrical Yy

becomes zero and Y}, becomes equal to Y.

The supply voltages can be expressed in terms of the crms values of the positive and the

negative sequence symmetrical components as
Ug=UP+U", Ug= & UP+aU", U;= a UP+a UM, (3.35)
Using these relations we can write,

UZ=(UP)2+ (UM)2+ 2Re{up*un},
ul= (up)2+(u”)2+2Re{a*up*U”}, (3.36)

UZ= (UP)2+ (U")2+ 2Re{aup*un},
Since UP =UPel? and U™ =U"el? we can rewrite expression for Y4 in (3.34) as

2(YsrRe{UPU" |+¥raRe{a"UPU" | +YgsRe( 0L}

Yq =

NG (3.37)
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Let us define the ratio of the negative and the positive sequence components of the

supply voltages, called the complex coefficient of the supply voltage asymmetry as

Ut _unel” U g
UP uPele® UP '

a=ael¥ =

Then,

Re{UP'U"} UPU"Refel@ -}

= Cosy,
Up2+Un2 Up2+Un2 1+a v

2

Re{a*Up*Un}_UpUnRe{e_j2”/3 ej(a”—a")}_ a cos( _2_;;)

p*y N pp N j2xl3 Lj(a"-af)
Re{aU" U} UFU" Re{e e }= azcos(y/+2{)

Up2+Un2 - Up2+Un2 1+a

Using the formulae in (3.39), Y4 can be rewritten as

2a
Yq = 5
1+a

[Ysrcosy +Yrgcos(y — Z?ﬂ)"‘YRsCOS( W+ 2?ﬂ)] :

The crms value of the current in line R is equal to

IR =Yrs(Ur —Us) —Y7r (U1 —Ug)
=YrsUr =YrsUs = Yrr Ut +Y1r U +Ys7 Ug — Ysr Ug
=(Yrs +Yst +Y1r)UR —YRsUs —Y7rUT —Y51Ug
=YeUr = (YstUg +Y1rUt +YRsUs).

(3.38)

(3.39)

(3.40)

(3.41)

If we express the line voltages in terms of the symmetrical components as shown in

(3.35), then (3.41) can be rearranged as follows

IR =YUg + APUR + A"UR

where,
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Ap = _(YST + OlYTR + a*YRs) y An = _(YST + a*YTR + aYRs) (343)
Using similar approach, the crms values of the line currents Igand I+ can be written as

Is =Y, Ug+ APUPR + AMUT (3.44)

I+ =Y Ur + APUL + A"US.
The crms values of currents given in (3.42) and (3.44) can be expressed in vector form as

IR
I=| 15 |=Y U+ A1"UP + ANPU". (3.45)

I
Thus the vector of the unbalanced current is

I,=1-1,=YU+A1"UP + AMPU" Y U
=(Ye -Yp) U+ AP1"UP + AMPU"
=YqU + AP1"UP + A"qPU"
=Yq(UP +U")+ AP1"UP + A"PU"
=(A"1PU" +Y,UP) + (AP1"UP 1Y UM)

101" (3.46)
u u

The analysis presented above shows that although the form of the power equation for LTI
loads at asymmetrical supply voltage remains the same as compared to the case with symmetrical
supply voltage, the equivalent load parameters are affected by the voltage asymmetry. In the case

of asymmetrical supply, in addition to the equivalent admittance Y., the load also has an
asymmetry dependent unbalanced admittance Y4, which is not constant, but it is dependent on

the supply voltage asymmetry.
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Illustration 3.2 Let us calculate the unbalanced current of the load shown in Fig. 3.5

using the relations developed in the section above.

The positive and the negative sequence voltage symmetrical components for the circuit in

Fig. 3.5 were calculated earlier in the chapter. We obtained
UP=66.66V, U"=3333e1%" v,
The complex coefficient of asymmetry

. n j60° R
uP 66.66

The unbalance admittances,

Ap = _(YST + OCYTR + O!*YRs) = _(1+ a(— Jl) + 0) =1.932¢e" j165° S
A" = (Yer +a Vi +a¥es) =—(L+a" (- j1)+0)=0518¢ 105°s,

The asymmetry dependent unbalanced admittance is equal to

Yq :Z—aZ[YSTCOS y+Yrreos(y — 2{)+YRSCOS(V/ + 2{)}
1+a

_ 2x05
+0.52

[Lcos(60°) — jcos(60° ~120°)+0] = 0.566e 14" s

Thus, the crms value of the load unbalanced current is

1,=Y,U+ AP1"UP + A"PU"

88.19¢ /191 66.66 33.33¢160°
—0.566e 4% 88,19 11391% | 11 9307 1165°| 66 66ei120° |+ 518¢ 11057 33,33 160°
33.33¢/120° 66.66e 1120° 33.33¢1180°
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95.28¢ 1134.9°
—| 95.28¢717° |A
164.9e¢17%°

and the three-phase rms value of the unbalanced current

114, |I=/95.282 +95.282 +164.92 = 212.95A,

which is the same as the value calculated in Illustration 3.1.

3.6 Reactive compensation

The active current is associated with the permanent energy transfer between the supply
and the load. In other words, it is the portion of the load current related to the active power of the
load. The reactive and the unbalanced currents are superfluous currents which increase the
supply current rms value and consequently, increase the energy losses at delivery. Thereby, they
cause a decline of the power factor. Compensation of these currents is needed for an
improvement of the power factor. Similar to the case when the supply voltage was symmetrical,
a lossless shunt compensator of the delta structure, as shown in Fig. 3.6, can be used for

compensation of the reactive and unbalanced currents.

Let us assume that such a balancing compensator is composed of lossless reactance

elements. It can have a either an inductor or a capacitor in each branch, with susceptances Tgg,
Tst andTr . An inductor may be added in series to the capacitor to avoid resonance with the

source inductance. The balancing compensator serves two main purposes:
- balances the system

- compensates the reactive power of the load.
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Fig. 3.6 Three-phase LTI load with balancing reactive compensator

The compensator reactances are chosen such that the load with the compensator is balanced and

purely resistive.
If the compensator branch susceptances are Tgs, Tst and Tqg, then the unbalanced

admittances Acp, AR and Ygq of the compensator can be found using similar approach as that

used for the calculation of the unbalanced admittances of the load, namely

Acr:) :_j(TST+aTTR+a*TRS)
Acn z_j(TST+a* TrrtaTgs) (3.47)

Yed :ﬁ[TST cosy +Trg COS(y — 2_7[)+TRS cos(y + 2—”)}
1+a2 3 3
The total reactive power of such a compensator is
== (TrgUZs+ Ty U+ T U3 (3.48)
QCb ( RS~ RS ST ¥YST TR ¥ TR ) ' '

The negative sign in (3.48) is in accordance to the convention that the reactive power of

the inductor is positive and that of the capacitor is negative. Also, if the element in the branch is
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capacitive, its susceptance is positive while if the element is an inductor, the susceptance is

negative.
If By is the equivalent susceptance of the compensator, then the total reactive power of

the compensator, Qqp, =—Bgp||2||? . Using this relation, (3.48) can be re written as

2 2 2
_TreUrs+TstUst+ TrrU TR

Beb (3.49)
lle]?
Such a compensator draws reactive current with crms value

Recalling equation (3.17), the reactive current of the load is associated with the

equivalent balanced admittance Yy, in particular the equivalent balanced susceptance By, . Since
the compensator is in parallel with the load, the equivalent susceptance of the load and the

compensator is(Bgp+By). The crms value of the total reactive current of the load and the

compensator is
I'-I1,+1.-jB,U+jBU . (3.51)
Such a compensator reduces the reactive current to zero under the condition that
Bcp+ By =0 (3.52)
The susceptance related equations (3.49) and (3.52) can be combined and rearranged as
Trs Uks+Tsr Udr+Trg Ufg =By |lae|” . (3.53)
The vector of crms values of the unbalanced current of the compensator is

Ioy =(ARPU" + Y UP) + (A" UP vy U™) (3.54)
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and the unbalanced current of the source is the sum of the unbalanced currents of the load and
the compensator, i.e.,
I=1,+1,
=(A"1PU" +YUP)+HAP"UP + YU ) +HAZIPU" + Y qUP)+HAR1"UP + Y UM)
=(Yg +Yca) (U" +UP)+(AP + AD) (1" UP)+A" + AC) (1PUT)
=(Yg +Yeg) UHAP + ADYA"UP)+A" + ADIPU M), (3.55)
Hence, the unbalanced current of the source given in (3.55) is reduced to zero under the

condition that
(Yeg +Yg) U + (A2 + APYA"UP) + (AT + AM)@PU™) =0 . (3.56)

This equation for the current three-phase vector components has to be satisfied for each phase

separately. In particular, for phase R, the following equation has to be satisfied,
(Yeg +Yg)Ur + (A2 + APYUP +(AZ + AMU" =0 . (3.57)

Equation (3.57) contains complex quantities and therefore, to be valid, it has to satisfy the
condition for both the real and the imaginary parts, thereby leading to two equations. These two
equations combined with (3.53) provide three linear equations with three unknowns, namely

Trs, TsT and Ttr . Solution of these equations provide the compensator branch susceptance

values which will reduce both the reactive and unbalanced currents to zero, and improve the

power factor to unity.

The three abovementioned equations are

TrsU ers"'TSTUSZT"'TTRUTZR =-By ||“||2
Re{(Yeq +Yg)Ur + (A2 + APYUP + (AT + AT)U"}=0 (3.58)
Im{(Ycq +Yq)Ug + (A2 + AP)UP + (A + AM)U"}=0.

44



The last two equations of (3.58) contain complex quantities and some rearrangement is needed

before they can be easily used for the calculation of the compensator susceptances.
Dividing (3.57) by UPyields,
(Yeg +Yg)(A+ael¥ ) + (AR + AP) + (A + AM)ael¥ =0. (3.59)

The parameters Y4, APand A" in the above equation can be obtained if the voltages,

currents and the load impedances are given. On the other hand, Y4, Acp and A2 are unknowns

that we need to solve for. To reduce the complexity of the analysis, we can break (3.59) into two
portions such that one of them consists the unknown compensators parameters and the other

contains the given load parameters. Rearranging (3.59) yields,
Yeg(1+ael? )+ Alael? + AR + AP+ v (1+ael¥ ) + AMael¥ =0, (3.60)

The first part of equation (3.60)

Yoa(1+ael¥ ) = (orTsr +Cp Trg +0g Trs J(1+ae ') (3.61)
where,
_ j2a cosy
1+a2
j2a cos(y -2z /3
¢, = Wy —2rl3) (3.62)
1+a
j2a cos(y +2x/3)
C3= > .
1+a
Similarly,
and,
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AL =—j(Tsr+aTmp+a Tgs) . (3.64)
Using equations (3.61) to (3.64) , equation (3.60) can be rearranged to the form
FiTrs +Fo Tst +F3 Trp +F4 =0 (3.65)
where,

Fi=c3 (1+ael?) - j(a" +aael?)

F, :ol(1+aej’/’)— j(1+aej‘/’)

: . (3.66)
Fy=c,(1+ael? ) - j(a+a ael?)
Fy=Yq(1+ael? )+ AP+ AN aelV
Equation (3.65) has to be satisfied for both the real and the imaginary parts, thus,
Trs ReF; +Tgr ReF, +Tg ReF3+ReF, =0 (3.67)

Trs IMFy+Tep IMF, +Tog IMF3+ImF, =0

Equation (3.53) and the two equations in (3.67) can be used as the three linear equations to solve

for the three unknown variables Trg, Tst and Ttgr . They can be rewritten in matrix form as

Ufs U& U ([Tas| |-Bollell
ReFl ReF2 Re F3 TST = —Re F4 (368)
|mF1 |mF2 |mF3 TTR —lmF4

Equation (3.68) is referred to as the compensator equation and can be used to solve for the

compensator susceptances Trg, Tsyand Trg -

Illustration 3.3 Let us design a compensator to improve the power factor of the load
shown in illustration 3.2. A shunt compensator of the delta structure as shown in Fig. 3.6
can be used for compensation of the power factor. The compensator branch susceptances

Trs: Tst and Tyg can be calculated using (3.68).
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The line to line voltages with respect to artificial zero are
Ugs =Ug —Ug =173.2e13%° v
UST = US —UT =1008_J900 V
Urg =Ug —Ug =100e118 v
The square of the magnitudes of these line to line voltage crms values are

U2, =30000 V2, UZ =10000 V?, U2, =10000 V2.

We obtained earlier that ||e¢||=129.1 V. Thus || 2||*=16667 V2.

Therefore,
j2acosy  (j2x0.5cos(60)) .
1l+a 1+0.5
¢ = 12acos(z//;27r/3) _j04
1+a
¢ = JZaCOS(l//-2|-27Z'/3)=_j0.8.
1+a
Next,

F=cs(1+ael? )= j(a" +cael?)=—-j0.8(1+0.5¢/5°)— (" + 2 x0.5e1%)=—0.519
F,=¢ (1+ael¥ ) — j(1+ael¥ )=0.2598 - j0.75

Fy=c,(1+ael? )= j(a+a ael¥)=0.2598+ j0.75

Fy=Yg(1+ael? )+ AP + A" ael¥ = -1.0098 - j1.0098.

The compensator equation,

2 2 2 2
Urs Ust  Utr || Trs —Byp [| 2]
ReF; ReF, ReFs||Tsr |=| —Reky
ImF,  ImF, ImF3 || T4r —ImF4

has the values,
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29998.24 10000 10000 |[Tgs | [10000
~05196 0.2598 0.2598 || Ts7 |=|1.0098
0 075 075 ||Tr | |1.0098

Solving the above equations we get,

Tes | [-0.578
Tor |=| 0.693 |S.
Tre | | 2.039

The structure of the compensator should be as shown in Fig 3.5. If @« =377 rad/sec, then

the compensator branch RS has an inductor Lrs = 4.59 mH, branch ST has a capacitor

Cst = 1.84 mF and branch TR has a capacitor Ctr = 6.35 mF.

The equivalent admittance of the compensator plus the load in parallel is Ye' =1+ j1.155S
Equivalent balanced admittance after compensation Y, =0.6S.
Therefore, G, =0.6S, B,=0S. Hence,
114, 1= Gy, x| 2| |= 77.46 A, M: By x||2||=0A.
The unbalance admittances of the compensator,

AR =227el% 5 Al=227¢I1790% g

Yeq = J 2a2 [Tst cosy+Trg cos(y — 27z  3)+Trg cos(y + 27 [ 3)]
1+a
j2x0.5 o 01000 - j90°
= > [0.693x¢0s(60°) + 2.039 x cos(60° —120°) ~1x —0.578] = j1.5547 =1.5547 ¢ S
1+0.5

(AR + AP)=0611e" 1491°s, (AD + AM) =244 1169 and (Yeq +Yq)()=1.22e/0%s,

The unbalanced current after compensation,
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I,=(Yg +Yeq)U + (AP + ADYA"UP) + (A" + ADY(APUM)

88.19¢1191° 66.66 33.33¢160°
= (1.22e1799%)| 88.19e 11391 |1 (0.611e71491°)| 66.6661120° |+ (2.440711691°)( 33 33 160"
33.33¢1120° 66.66e1120° 33.33¢/180°
0
o] A
0
Sl =0 A,

and this result confirms numerical correctness of the compensator design.

The powers after compensation are equal to,

P = |4, ||x|]ee||=10kW,
Q =|l4; ||x|lee||=0
Dy =114, || x|l ]]=0.

Thus, S =10KVA and the power factor after compensation A =i,=1
S

Hence, the compensator completely compensates the reactive and the unbalanced

currents and improves the power factor to unity.

The results obtained above are illustrated in Fig. 3.7. Note that the supply current after
compensation is not symmetrical. In fact, it has the same asymmetry as that of the supply
voltage referred to an artificial zero. The load and compensator draw just the active
current from the source, and the current is proportional to the supply voltages referenced
to artificial zero. The design of the reactive compensator presented above is also

discussed in [21] and its industrial application is discussed in [22].
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Fig. 3.7 Unbalanced load with a reactive compensator
3.7 Conclusion

The power equation of LTI loads at sinusoidal but asymmetrical supply voltage was
developed using the Currents Physical Components (CPC) based load current decomposition in
this chapter. The form of the power equation at asymmetrical voltage is the same as the one at
symmetrical voltage. Moreover, the load current contains the same current components.
However, the parameters on which the powers and the current components depend upon have
changed. At symmetrical voltage, the currents were dependent on just the equivalent load

admittance Y, while at voltage asymmetry, they are dependent on the equivalent balanced
admittanceYy, and the asymmetry dependent unbalanced admittance Yy, both of which are

dependent on the supply voltage asymmetry. The CPC based current decomposition also enabled
the design of a reactive compensator which completely compensates the reactive and unbalanced
currents and improves the power factor to unity. It is seen that the structure of such a reactive

compensator is not affected by voltage asymmetry.
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CHAPTER 4: POWERS AND REACTIVE COMPENSATION OF
UNBALANCED LTI LOADS WITH NONSINUSOIDAL AND
ASYMMETRICAL VOLTAGES AND CURRENTS

4.1 Introduction

A power theory describes only properties of the energy flow in the cross section of a
power system with a model simplified with various reasonable assumptions. The accuracy of
such a model can be improved by removing the assumptions step by step. The commonly known

power equation
52 =p2+Q? (4.1)

is valid only at the assumption that the voltages and currents are sinusoidal and symmetrical.
Such an assumption is not always valid because the internal voltage of the modern distribution
system can be asymmetrical and distorted. In order to correctly describe power properties of any
load, or for accurate metering, the correct power equation of the load has to be developed for the
given operating conditions. Therefore, it is important to develop the power equation to describe
the power properties of LTI loads at voltage asymmetry and distortion. The power equation of
LTI loads at asymmetrical but sinusoidal voltage was developed in Chapter 3. In this chapter, the
assumption that the supply voltage is sinusoidal is also abandoned, and the power equation of

LTI loads is developed at nonsinusoidal asymmetrical (N&A) supply voltage.

Recalling Chapter 3, load current decomposition was first done based on the
Superposition Principle. That approach was unsuccessful, however, because such a current
decomposition did not result in orthogonal components associated with a distinct physical
phenomenon. The next approach was the Current’s Physical Components (CPC) based load

current decomposition, which enabled the development of the power equation for such a load. It
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also enabled the design of a reactance compensator that reduced completely the reactive and
unbalanced currents and improved the power factor to unity. This chapter is a continuation in the
same direction as the previous one, except it is assumed that the supply voltage can be
nonsinusoidal. The power theory of LTI loads at N&A voltages and currents is presented here

and the theory is used for the design of a reactance compensator for power factor improvement.

4.2 Power equation of LTI loads at nonsinusoidal and asymmetrical supply voltage

The internal voltage of the distribution system, expressed in a form of a three-phase

vector e = [er, es, er]", is assumed to be N&A. Therefore, in addition to the voltage symmetrical

components of the positive and the negative sequence, it can also have a component of the zero

sequence, i.e. it can be expressed in the form

e(t)=2 €= (e +e)+ep)=e e +e’ (4.2)
neN neN

The zero sequence component e of the internal voltage cannot cause current in three-
wire system, but nevertheless, it increases the supply voltage rms value; thereby increasing the
apparent power S and reducing the power factor. Even a balanced resistive load supplied with a
voltage containing the symmetrical component of the zero sequence will have a power factor
lower than one. To avoid this, the zero sequence component of the supply voltage has to be
eliminated by referencing the voltage to an artificial zero as shown in Fig. 4.1. Such a voltage
referred to an artificial zero contains symmetrical components only of the positive and the

negative sequence at the load terminal.
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Fig. 4.1 LTI load supplied from a source with the voltage referenced to artificial zero

Let @ denote a three-phase vector of the line voltages at the load terminals, such that

w(t)=> w,=> () +u))=eP +e" . (4.3)
neN neN

The crms values of the symmetrical components of the supply voltage harmonics UP and

U, are calculated using the formula,
U
Ul 11 o a* RN
{ ”]{ . }usn : (4.4)

When the supply voltage is symmetrical, then the constituent harmonics are also
symmetrical and of a specified sequence. Harmonics of the order n = 3k + 1 are of the positive
sequence; harmonics of the order n = 3k — 1 are of the negative sequence and the harmonics of
the order n = 3k are of the zero sequence, which are eliminated if the supply voltage is referred to
an artificial zero. When the supply voltage is asymmetrical, this property is no longer valid,
however. In particular, the third order harmonic can exist both in the supply voltage and in the

load current, because when the supply voltage is asymmetrical, the third order harmonic is not
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exclusively zero sequence. It can contain symmetrical components of the positive and the

negative sequence.

A N&A voltage can be represented in the form of a three-phase vector as

U (1) Urn|
w(t)=|us(t) |= Y w,=V2Re Y [ Ug, et
Ur (t) neN neN UTn
=2 ReY U et (4.5)
neN

The above vector can be expressed in terms of the crms values of the positive and the negative

sequence voltage symmetrical components Uf and U] as follows,

w(t)=> w,=\2Re U,el"!

neN neN

=2Re > (UP +UMe"t =2 Re 3 (1PUP +1"U[)eln et (4.6)

neN neN

The vectors 1P and 1" are three-phase vectors defined as

1 1
df. |, o o
1P = , 1" = | o (4.7)
a a
and illustrated as
Im{.} Imj{.}
o lp OL$ In
1 1
= Rel.| = Ref.|
E'3
Ccl o

Fig. 4.2 Symmetrical three-phase unit vectors 1°and 1"
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It is to be noticed that the superscripts p and n are used to denote the sequence of a quantity in

this text, while the subscript n is used to denote the harmonic order. The symbol ¢}, for example
denotes the negative sequence voltage symmetrical components of the n" harmonic order while

e} denotes the positive sequence voltage symmetrical component of n™ harmonic order.

Let us assume that an unbalanced LTI load supplied from an asymmetrical and distorted

voltage has the active power P. Such a load as shown in Fig. 4.3(a) is equivalent with respect to

active power P to a balanced resistive load as the one shown in Fig. 4.3(b).

Ro‘—L Ro . ;Ra Gb
L’RS‘ . Uy 3
So s . So Ea @% P
uﬂ Urg., foad Ugr! Ug |
1t [ o |V M Db
a b

Fig. 4.3 A three-phase load (a) and a balanced resistive load (b) equivalent with respect to the active power P

The phase conductance of such a balanced resistive load is

P (4.8)

- 2
|| ee]|

Gp

where || denotes the three-phase rms value of the supply voltage and can be calculated as

(4.9)

2 2 2
leell= \llug I +11us [P +lur P

The current of such an equivalent load is

i, =Gyu=+2Re > G, (PPUR +1"U)elnat |

nekK

(4.10)

and is referred to as the active current, due to its association with the active power P of the load.
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Analysis of LTI loads presented in Chapter 3 was confined to asymmetrical and
sinusoidal (A&S) voltages and currents. The only difference from that to this chapter is that the
voltage is not only asymmetrical but can also be distorted. Since the different order harmonics
are orthogonal to one another, the current response of the load to such an asymmetrical and
distorted voltage can be calculated independently for each harmonic order; for which the supply

voltage is sinusoidal and of the n™ harmonic frequency.

At each harmonic frequency, the load has active and reactive powers that can be
calculated using the line currents and voltages of that particular frequency. In general, for the n™"

harmonic order,
P,=Re{U! [}, Q, =Im{U 1} (4.11)

Although the load can be unbalanced for the n'" order harmonic, but with respect to the

active and reactive powers P, and Q, at voltage @, such a load is equivalent to a balanced

load as shown in Fig. 4.4.

4 Hyy,

Eqv. Balanced Load

Artifical Zero

Fig. 4.4 A balanced load equivalent to the original load with respect to P, and Qn for the ™ harmonic order
and has the phase admittance
I:)n — JQn Cn

Yon =Gpn+ jByn = = (4-12)
I A
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where ||eg,||is the three-phase rms value of the n'™ order harmonic of the supply voltage and is

equal to

oyl = U2 +UG+UZ, (4.13)
The line current of the balanced load shown in Fig. 4.4 is composed of the active current

ian =Gbn », :\/ERG{Gbn (Ure + Ur?)ejnwlt} _

: (4.14)
= V2Re{Gyn (1P UP +1"UN) "

and the reactive current

. T _ .
& =anun(t+4_) — J2Re{jB,,, (UP + UM ety =
" (4.15)

= V2Re{jByy (1P UL +1"U})e "},

The admittance Yy, defined above is the admittance of the equivalent balanced load for

the n™ order harmonic, equivalent to the original load for that harmonic order with respect to the

powers P, andQ,. However, the load for the n" harmonic order can be unbalanced, and

consequently, the current of such a load will also contain the unbalanced current

Eun =8 — 8y =8, — (& + &)=
inot (4.16)
=V2Re{[, - Yy, @PUR +1"UN)]e”" Y.

Thus the total current for the n™ order harmonic, is the sum of the active, reactive and

unbalanced currents mentioned above, namely,
8, = Gyp + &y Ty, (4.17)

and the total load current, which is the sum of the currents for all the harmonic orders, is equal to
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ir()
M) =|ist) | = Z NUES Z (Ban + & +24yy). (4.18)

iT(t) neN neN

Since the active current defined in (4.10) is responsible for permanent energy transfer the

remainder of the current in (4.18) is undesirable, and can be calculated as

§—dy = (D (@an + &y +4yn)) 4,

neN
= Zian —2 + Zirn + Ziun
neN neN neN
=5 +8 +48,. (4.19)
The current
> G =i =\2Re Y jBy, @PUP +1"UN)e ! (4.20)
neN neN

is a reactive current which occurs in the lines because of the mutual phase shift of the load

current with respect to the supply voltage. Similarly the current,

D> dyn =4y (4.21)

neN

is an unbalanced current. It occurs due to the unbalance of the load for the harmonic frequencies.

The current

> dan—d=\2Re Y. Gypn-Gp) AP UL +1"UN) " = 4 (4.22)

neN neN
is the scattered current and it occurs because the equivalent balanced conductance Gy, of the load
differs from the equivalent balanced conductance Gy, for the harmonic frequencies. Formula
(4.19) can be written as

=0, +e,+8 +4,. (4.23)
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The load current is decomposed into four components, each associated with a distinct physical

phenomena in the load. The active current ¢, is associated with the permanent energy delivery to
the load with active power P. The scattered current & is associated with the change of the load
conductance with the harmonic order. The reactive current ¢, is associated with the phase shift
between the load current and the supply voltage, and the unbalanced current #,, is associated with

the load unbalance.

The square of the rms value of the load current ¢ in (4.23) is equal to the sum of squares
of the rms values of the current components if the current components in (4.23) are mutually

orthogonal.

Mutual orthogonality of two quantities can be verified based on the value of their scalar

product. To be more specific, two currents are mutually orthogonal if their scalar product
1T
(x.dy) == [ ®é,0dt (4.24)
0

is equal to zero. Because quantities of different harmonic orders are mutually orthogonal, the
three-phase rms value of each of the currents components above can be calculated using the sum

squares of the particular current component for all the harmonics, viz.,

P s 112 2 2
e ll= | . llénll® = | X Bonlleg 11,

neN neN
W= | S 11dsnll? = | Gpn—Gp)? Il e I (4.25)
neN neN

.o 1_ o 2
|4y [1= ?Z ||yl
neN
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The mutual orthogonality of the active, reactive and unbalanced currents for sinusoidal
system was proven in Chapter 3. These proofs also apply to the different harmonic orders.
Therefore, the active, reactive and unbalanced current components of the n'" order harmonic of

the load current, specified in (4.17) are mutually orthogonal, i.e.,
(ianv irn)=0, (’.an’ iun)zo’ ('.rn’ O.un)zo (4-26)

The current in (4.18) is the sum of the harmonics in (4.17). Since the currents of different
harmonic orders are orthogonal, it implies that the scalar product of two currents is the sum of

the scalar product of the current harmonics, namely,

(#.4y) = Z (€n.tyn) - (4.27)

neN

This means that if two current components are orthogonal for all harmonics of orders n, these

current components are orthogonal to one another, viz.,
(#xn 8yn) =0 — (¢y,4,)=0. (4.28)

The relations in (4.26) and (4.28) imply that the current components in (4.18) are mutually

orthogonal. Hence,

WEP =11 dan 1P +11d, 1P+ 114, 1 . (4.29)
neN
Since
Z T =2, + 2 (4.30)
neN

the currents in (4.23) are mutually orthogonal if the currents ¢, and &5 are orthogonal. Indeed,

the scalar product of these two currents,
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(62.8) =Re{l] £}=Re > {G, U] (Gy,-Gp)U,'}

neN

=GyRe Y {(Gpn—Gp) |12, II* 3

neN
=GyRe Y. {Gpn ||, |I* ~Gy |2, I }

neN
=Gp{Re > Gy, llae, [P -G Re > || 2, |°}

neN neN
=Gy{Re > P, ~Gylle, [I*}

neN
=Gy (P-P)=0. (4.31)

Therefore,
NENP =118 1P + 145 117 + 114, 117 + 114,11 - (4.32)

Multiplying (4.32) by the square of the three-phase rms |ee||® of the supply voltage
lae|? |12 1=l o6l > [1145 |7 + 114 117 + 114 1P + 114, 171,
yields the power equation
$2=P2+ DZ+Q%+D? (4.33)
where,
S=||ee]||x||Z]] is the apparent power of the load,

P =||e||x||2,]| is the active power of the load and is associated with permanent energy transfer

between the supply and the load,

Ds =||e||x]||% || is the scattered power. It is associated with the change in the load conductances

with the harmonic order,
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is the reactive power of the load. It is associated with the phase difference

Q =llee||x]||2
between the supply voltage and load current harmonics

| is the unbalanced power. It is associated with the load imbalance.

and D, =||ee||x ||,

The power factor A of the load shown in Fig. with the different powers as depicted in (4.33) is

P P . (4.34)

ﬂ/:—:
S \/P2+ D32+Q2+ D&

Illustration 4.1 An unbalanced load is supplied from a source of asymmetrical and

nonsinusoidal voltage as shown in Fig. 4.5.

The supply voltages are equal to
er =\2Re{100 &1 4! 1 25¢1°4! 2l TNy v
€s = \2Re{100 e 1120 Jioyt | g 4,j127° JiSayt | 4 (120 ej7a)1t} v
eT :O.

Let us calculate the powers and currents of such a load.

e §5.31 mH

s S
4@ © J- %i.BImH é e
T I.BZmFT % g

Load

Fig. 4.5 Unbalanced LTI load supplied from a three-phase source of nonsinusoidal and asymmetrical voltage

The supply voltage is asymmetrical and it contains the 5 and the 7" order voltage

harmonic components. The crms values of the supply voltage harmonics are as following
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Ery 100 Ers 2.5 Er, 2
Eg, [=[100e71120° v | By |=]33el?" |V, | Eg, |=|4e7 11207 |y
Er 0 Ers 0 Er 0

The impedances for the different harmonic orders are as following:

Zst |=| 2 |Q | Zgs [=]0.007-j0.43| Q, | Zgp; |=/0.002-j0.29 | Q
Zrpy| |1+11 Z1rs 1+]5 Ztry 1+j7

The positive and the negative sequence voltage components are equal to
p ~7| Era * 10 66.67 p
E 1 1 1900 . U
{ a]%[ @« a ] Eq %{ o« a ] 1006~ 1120 :{ jGOO}Vzl 1n]
E 1 1 33.33e
1 a a|Eg, a «a 0 Uq

Similarly,

up| |11e7167€ ub 2.0
= - o Vl = 900 Vl
U | [ 1.93el43 uh| [115e!
The three-phase rms values of the supply voltage harmonics w.r.t. artificial zero can be

calculated as following

e || =] €] || =\BUP = /3% 66.66 =115.5V
e || =1lef || =~3U]" =/3x33.33=57.7V

IIMII=\/]quIIZ+Ilc&f'||2 ~ (11552+57.72 =129.1V

and similarly,

||ees || =3.83 V, ||ee; || =4.0 V.

Thus, the three-phase rms value of the supply voltage is equal to
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laell = Il 2y |2 -+ ot |2 +| 287 | =129.22 V.

The waveform the line currents with respect to artificial zero is equal to

70.7 e_j450 05 e_j78'70 024 e j80.54°
i =2Re{| 507 1120° |glal | |76 114347 IS0 || 13571308 | giTarty A
96.6 ¢1105° 7.8e14%° 13.6 e1148.7°

Hence, the three-phase current rms values for the different harmonic orders are

6||=129.7A, ||| =10.9A,

é; || =19.14A.

Thus, 1111 =\ll&I? +1145 1 +114, I =131.6 A and,

the apparent power of the load S =||ee]|x

7]]=129.2 x131.6=17 kVA.

The active power P of the load is 10 kW.

P__ 10000 _,

Thus, the equivalent conductance of the load, G, = 5 = > =0.
[lee|]? 129.2

599 S.

The equivalent balance admittance for the n harmonic orders are

Yo = Gog-+ jByg = L ’?1 ~06-j03S,
|| 20 ||
Y5 =0.045+ j1.61S, Y7 =0.025+ j3.33S.

For the given circuit, we have

|=77.4 A

=3.13A,

=41.41A,

i |4, i i, ||=97.98A.

Therefore, the load current three-phase rms value calculated using the CPC currents is

NEll = 11812 +11d 1 + 118 I +114, > = 13158A
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which is the same as the current three-phase rms value calculated using the line currents

above. Therefore,

the active power P =||ee]||x||2, || =129.22x 77.4 = 10 kW.

the scattered power Dg =||e||x||4s]] =129.22x 3.13 = 0.41kVA

the reactive power Q =||e||x||4, ||=129.22x 41.4 = 5.35 KVars

the unbalance power D, =||e||x||#, || =129.22x 97.98 = 12.67 kVA

and the apparent power is

S =[P+ D2+ Q%+ DZ =\10% + 0,417 +5.35% +12.67% = 17 KVA .

The power factor of the load, 1 = 2 = 1—7 =0.59 .

4.3 Dependence of powers on load parameters

The power equation (4.33) describes how the apparent power constitutes of various

powers each associated with a distinct physical phenomenon. It is adequate for describing the

power properties of a circuit. Since some of the powers in (4.33) and their associated currents are

undesired, it is logical to view the equation from the perspective of compensation, however. In

that regard, (4.33) does not provide the necessary information about the circuit. To enable the

design of a compensator, the currents and powers should be represented in terms of the load

parameters.

The complex power of the branch RS for the n'™ harmonic order is equal to

* * 2
CRSn =Ugsn lrsn =Yrsn Ursn (4 35)
=Yrsn (U§n+ugn_2Re{URn Usn})
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For a three wire system,
UTzn =(=Ugrn —=Ugrn)(—Ugn _URn)* :UF%n+Uézn+2Re{URn U;n} . (4.36)
Replacing the value of 2Re{Ur,, Us,}in (4.35) we get,

* 2 2 2
Crsn =Yrsn (QUgp+2Ugy—Uzp)

N ) ) (4.37)
=Yrsn (2], || —3U1y).

Similarly,

Csrn =Yorn(2 |leg |> —3UZ 1)

N ) ) (4.38)
Crrn =Y1rn(2 |2, [|© =3Ugy ).

The total complex power of the nth harmonic order is the sum of the complex powers of each of

the branches in the equivalent delta configuration, namely
Ch =Crsn+Csrn+Crrn - (4.39)

The admittance of the equivalent balanced load for the n™" harmonic order, which has the

same active and reactive powers as the original load for the same harmonic is
Cn _Crsn *+Cstn +Crrn
2 2
|| e || | e, ||
2 2 2 2 2 2
:YRSn(2||“n” —3U7n) +Ysrn (Al 2, |I” —3Ugn) +Yrrn (2] 24, |I” —3Usp)
2
|| o0 ||
2|2, [P (Yasp +Yern +Yorn) =3(Yasn UZn+YarnUZ 0+ e nUSH)
— n RSN STn TRN RSN™~Tn STn~Rn TRN™Sn
2
|| o, ||
3(YsrnUZ 1+ Yrrn U+ Yrsn UZ1)
_ STn~¥RnN TRN*™~Sn RSN ~Tn
2
|| 2 ||

Yon =Gpn+t i Bon =

(4.40)

= 2Yen

:Yen _de

where,
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3 2 2 2
Yan =———=(YstnUrn+Y7rnUsn+YrsnUTn) = Yen (4.41)

|l 22, ]

is called the asymmetry dependent unbalanced admittance for the n™" harmonic order. It can
have a nonzero value only when the supply voltage for the n™ order is asymmetrical and

simultaneously the equivalent load for the n™ order is unbalanced.

The crms values of the line voltages for the n order harmonic, expressed in terms of the
crms values of the symmetrical components of positive and negative sequence are
Urp=UR +U[,
Ug, =a*UP +aU] and (4.42)
Urp=aUl +a*U].

This gives,

U2, =(UP)2+(UM)? +2Re{(UP) UM}
U, =(UR)? +(UD)? +2Refa” (URY U} (4.43)
UZ, =(UR)%+(UD)2 +2Refa(UP)UM

where UR =UPe’® and U] =u[ el@m

Let a, be defined as the complex coefficient of the supply voltage asymmetry, such that

. n
a, =a,el"" =U—’;. (4.44)
n
Using (4.43) and (4.44),formula (4.41) can be rearranged as
2a 2 2
Ydn Zﬁ[YSTn COSYp +Yyrp COS(¥/y, _?ﬂ-)"'YRSn cos(yp +?ﬂ)] : (4.45)
n
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If coefficienta, is zero in the above equation, meaning that the supply voltage for the n' order is
symmetrical, then Yy, is zero. Similarly if Ygr, =Ytrn =Yrsn, Meaning that the equivalent delta
load for the n" order is balanced, then also Y4, is zero. Hence the name asymmetry dependent

unbalanced admittance.

The crms of the line current in R for the n™ order harmonic is

Irn =lrsn — lstn
:YRSn(URn _USn)_YTRn(UTn _URn)

=YrsnUrn —YrsnUsn —YtrnUtn +YrrnUrn + YstnUrn = YstnUrn
=(Yrsn +Y7rn +Ystn)Urn _YRSn(Ugn +USnn)_YTRn(U'Fr)n +U'Ir]n)_YSTn(Ulgn +Ugp)
=YenUgrn _YRSn(Uspn JrUgn)_YTRn(UEn +U'rr]n)_YSTn(U£n JrUlgn)

=YenUrn —(Ystn t@Y1rp + @ YRSn)Ulgn —(Ystn+a Y1rn JraYRSn)USn

=YenUrn + ASUR .+ ATUR (4.46)
where,
AD =—(Ysrn +&Y1rn + Yrgn), Al =—(Ysrn +& Yrrn +aVrsn) - (4.47)
Similarly,

Isn =YenUsn + ArEU'?n + ARU'pn

Itn =YenUrn + Areugn + Af?Ugn-

(4.48)

The crms of the currents in equations (4.46) and (4.48) can be presented in the vector form as

IRn
I, =| lg, =Y U, +AP 1" UR + ATP UD (4.49)

ITn
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where 1P and 1" are the unit vectors of the positive and the negative sequences respectively,

defined earlier in the chapter.

The vector of the crms of the unbalanced current is

b =1-1, =(Yen _Ybn)un"‘Atﬁ)"n Ur'?+A1§'1p Urrll : (4.50)

4.4 Reactive compensation
4.4.1 Design of shunt reactive compensator

Recalling equation (4.17), the current for the n'" harmonic order is
8= &an + &y Ty, (4.51)

where 4,, , &, and #,, are the active reactive and unbalanced components of the n" order load
current harmonic respectively. The active current ¢,, is responsible for the permanent energy
transfer between the source and the load. The currents ¢,,and #é,, are surplus currents. To

minimize the losses in the lines and to eventually improve the power factor it is desirable that
only the active current be supplied from the distribution system. This can be done by connecting

a shunt compensator of the delta structure as shown in Fig. 4.6.

The shunt compensator in Fig. 4.6 is composed of lossless reactance elements and can
have either an inductor or a capacitor in each branch. The elements of the compensator are

chosen such that the load with the compensator is balanced and purely resistive.
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Fig. 4.6 LTI load with a reactive compensator

If the compensator branch susceptances are Tggn, Tstn and Trrp, for the n™ harmonic

order, then it has the unbalanced admittances

Acpn == j(Tstn+ @ Trrpt @ Tgsp)

j2a 2 2
Yedn :J—2|:T8Tn cosy + Trrp COS(w ——)* Trsp COS(l//+—)j|.
1+a 3 3

The reactive power of the compensator for the n” harmonic order is

Qcon = - Bepn Il 26, |2 (4.53)

where By is the equivalent susceptance of the compensator for the n harmonic order. Thus,

2 2 2
—Qcbn _ Trsn Ursn*Tstn Ustn* Trrn UTrn . (4.54)
102,117 |22, 17

Bcon =

The compensator draws the reactive current with the crms value
ICrn =] Bebn U, (4-55)

The crms value of the reactive current of the load and the shunt compensator is
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I'=I.,+1,=jBsp, U,+jB, U, (4.56)
and it is reduced to zero under the condition
Bepn+ By =0. (4.57)
Combining the equations (4.54) and (4.57) yields,
Trsn Udsn* Tstn Urn*Trrn UZrn =—Bpn [l o, |7 - (4.58)
The vector of the crms values of the unbalanced current of the compensator is
Toyn =A2 1"UR + Yy n UD) + (AL P U +Yeqn UL (4.59)
The crms value of the unbalanced current of the load and the shunt compensator is

r=1,,+1I,
=(A1"UR +Y4, UD) + (AP UL + Yy, U +
(A2 1" UL +Yegn UR) + (AL, P UL +Yeqn U

=(AY + A2 (TUR) + (A + AC, ) (P Un) + (Yan +Ycan) Uy (4.60)
and is reduced to zero under the condition
(Yedn +Yan)Un + (A8, + ADATUR) +(AZ, +AN(APUR) =0 . (4.61)
This equation has to be satisfied for all three-phases, therefore, in particular for phase R,
(Yedn +Ydn)Urn + (A8, + ARYUP +(AZ, + AU =0 . (4.62)

The above equation contains complex quantities and therefore it provides two equations, one for
the real parts and the other for the imaginary parts. These two equations combined with equation

(4.58) provide three linear equations with three unknowns Tggy,, Tt and Tyr,, , ViZ.
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2 2 2 2
Trsn Ursnt Tstn Ustnt Trrn UtrRn = —Bon || 2, ||
Re {(Ycdn +Ydn)URrn "‘(Agn "'Arﬁ)) Urﬁ)"'(ACnn +Afr1])Urr1]}=O (4.63)
Im {(Yegn +Yan)Urn + (AL, + AN U +(AC, +AT)Up}=0.

The last two equations above and can be further simplified. Dividing (4.62) by U yields,
(Yedn +Yan)A+aged?n )+ (A2 + AP)+ (AL, +Al)a,el¥n =0 . (4.64)
The equation can be rearranged by separating the known and the unknown quantities as
Yean (+aged?n)+AR + AL (a el )+Yy, (1+a,el¥n)+AP + Al(a,el¥n)=0 . (4.65)

The first part of the equation above can be rewritten as

Yedn (1 ane?¥m) =(cin Tstn+ Con Trrn + Can Trsn )1+ 2587Y7) (4.66)
where,
N ayel¥n = j(Tern+a Trra+aTrsy)an €190,
Attn n STn ) TRnN RSn /%n (4.67)
Agn == J(TstntaTrrnt @ Trsp)
and,
j2a, cosy
Cn = : 2 :
1+a]
j2a, cos -2z 13
o =125 5 W ) (4.68)
1+a;
j2a, cos (y,+2713)
Can = > .
1+ay
Equation (4.65) can therefore be rewritten as
Fin Trsn * Fon Tstn + F3n Trrn + Fan=0 (4.69)
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with,

Fin =Can (L+age¥n) — j(a" +a a, el¥n)

Fan =0n (1 agel¥n) - j(1+ 2 1)

_ . _ (4.70)
Fan=Con(1+a,el¥n) - j(a+a a, el¥n)
Fan =Ygn(1+ane!Vn)+ AD + Al a, Vo,
Equation (4.69) contains both real and imaginary terms, and therefore, we can write
Re{Fin Trsn + Fon Tstn + Fan Trrn + F4n}=0 4.71)

IM{F1, Trsn + Fon Tstn + Fan Trrn + Fan}=0.

The equations in (4.71) along with (4.58) provide the three linear equations with three unknown

quantities. These equations can be written in matrix form as

2 2 2 2
Ugrsn Ustn Utrn || Trsn | | —Bonllee, ||
Re(F,) Re(Fyn) Re(Fzn) (| Tstn |=| —Re(Fan) |, (4.72)
Im(Fyn) Im(Fpn) Im(F3p) || Tt —Im(Fy,)

also known as the compensator equation and it can be used to solve for the compensator
susceptances Tgs, , Tstn, and Ty, - It is to be noted that such a balancing compensator only

compensates the reactive and the unbalanced currents. It does not affect the scattered currents in

any way. Hence, such a shunt compensator cannot improve the power factor to unity.
Illustration 4.2 Design of a reactive compensator.

Let us design a reactive compensator to compensate the reactive and the unbalanced

currents of the load shown in Fig. 4.5 in Illustration 4.1.

We obtained from the previous illustration that
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up 66.66 up| |1.1e7167€° uP 2
1= LY S |= v "= IV
Uy 33.33¢160 Ul 1.93e43° U’ 1.15¢190
ThUS, a1=alejl//l =0_5ej6001 ag :1,76€j71'860, ay =0.5789j900-
The unbalance admittances
AP | 0977113 s |[A 2.45¢19435° . AP | [3.44e71922 .
A'| | 026004 | | AN | | 23770884 |7 | AN | | 342671882
The asymmetry dependent unbalance admittance

Y4 =045e7126€°s v =051e/84°s v, =0.015e714"s .
The line to line voltages with respect to artificial zero are
URSl = URl _USl =173261300 V

USTl = USl _UT]_ =1006_11200 V
UTRl :UT]. _URl 21006‘]1800 V

Similarly,
—j30° j41.2°
URSS 5.2? URS? 5.3e .
Ugrs |=| 3.31127° |v, | Ugp, |=| 46711297 |v
Urgrs 2.5¢1180° Urrs 2¢1180°

The square of the magnitudes of these line to line voltage crms values are

U2, =30000 V2, UZ, =10000 V2,  UZ, =10000 V?,
U2 =27.05V2,  UZ:=1089V?,  UZ2;:=625V?, .
U|§S7 =28.1V?, U82T7 =16.0 V2, U%m =4.0 V2,

We obtained earlier that || e ||=129.1 V. Thus || e |[>=16667 V2.

Similarly | ee |[>=14.67 V?and || e |[?=16.0 V2.
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The coefficients,

Cp| | J04 Ci5 jo.27 C17 0
Co1 |= JO4 , Cog |= 1057 Co7 |= J075
C3l - J 0.8 C35 — _] 0.84 C37 - J 0.75
and,
Fi1 -0.519 Fis| [ 0177+ j0.92] [Fy| [-0.72+j0.25
Fpi | |0.2598—j0.75| |Fps| | 1.23-j113 Fp7 | | 058-j1
Fy; | [0.2598+j0.75|" | Fas| | —1.4+j0.21 |" |Fs7 | | 0.14+j0.75

Fa| | 013-j0.64 | |Fys| | -3.06—j265 | |Fyr | | 1.92—j3.48

The compensator equation for the fundamental frequency,

2 2 2 2
Ugrs1 Usti Utri || Trs1| | —Boilleall
Re (F1) Re(F1) Re(Fsp) || Tsti |=| —Re(Fap)
Im (Fpp) Im(Fp1) Im(Fzy) || Trre —Im(F4)

has the values,

30000 10000 10000 |[Trg | [10000
~0519 0.2598 0.2598 || Tg |=| —0.13
0 -075 075 |Trr| | 0.64

Solving the above equations we get,

TRSl 0

Similarly, solving the compensator equation

2 2 2 2
Ugss Usrs UTrs || Trss | | —Bos|lees ||

Re (Fi5) Re(Fp5) Re(Fgs) || Tsts [=| —Re(Fas)

Im (Fi5) Im (Fys) Im (F35) || Trgrs ~Im(Fy5)

for the fifth order harmonic yields,
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Tres | [0.003
Ters | 0171

and solving the compensator equation for the 7! order harmonic

2 2 2 2
Ugrs? Usry UTr; Trs7 —By7 [ 27 ||
Re (Fi7) Re(Fp7) Re(F37) || Tstr |=| —Re(Fa7)
Im (Fi7) Im(Fy7) Im (Fs7) || Trry —Im(F47)
we get,
Trs7 —-0.003
TST7 = _3.36 S.
Tirs | | 0.16

The reactance elements in the branch RS should be chosen in such a way that the
susceptance of the branch is 0'S for the fundamental frequency, 0.003S for the 5" order
harmonic and —0.003S for the 7" order harmonics. Likewise, the reactance elements in
the branch ST should be chosen in such a way that the susceptance of the branch is
—0.173S for the fundamental frequency, —2.31S for the 5™ order harmonic and —3.36S
for the 71" order harmonics. Similarly the reactance elements in the branch TR should be
chosen in such a way that the susceptance of the branch is 0.67 S for the fundamental
frequency, 0.171S for the 5" order harmonic and 0.16 S for the 7™ order harmonics.
Such a reactive compensator will completely compensate the reactive and the unbalanced
currents and significantly improve the power factor. It cannot improve the power factor to
unity, however. This is because the scattered current cannot be compensated using

reactive compensators.
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4.4.2 Properties of shunt reactive compensator

Reactive compensators consist of inductors and capacitors and are regarded as lossless.
Thus, such LC devices are subsets of RLC circuits with R = 0. The immitance of such LC one-
ports is also referred to as Reactance Functions (RFs) and they are a subset of the set of Positive
Real Functions. The detailed theory of RFs and Positive Real Functions is given in [23]. Only

those concepts that are relevant to the design of reactive compensators are briefly discussed here.

RFs have POLEs p, and ZEROs z, on the s-plane. It means that the value of s=p,
when the function F(s) approaches infinity, while the value of s =z, when the function is equal
to zero. The POLEs and ZEROs of RFs are exclusively on the imaginary axis of the s-plane.

A RF is an odd function of s and is represented as a rational function as the ratio of two

polynomials, such that

CNE) W) | aps"+a, s e + g
D) Wm(S) bys™+by 5"+ bys+by

F(s) (4.73)

Therefore, the two polynomials cannot have the same order, or in other words, m=n . Also, since

the orders of the polynomials of Positive Real Functions cannot differ by more than 1,
|n—-mf=1 (4.74)

It means that RFs are ratio of odd and even polynomials. When the odd polynomial is in the
numerator, then the function F(s) approaches zero as s approaches zero, while if the odd
polynomial is in the denominator, the function F(s) approaches infinity as s approaches zero.
Also, if the polynomial of the higher order is in the numerator, then the function F(s) approaches
infinity as s approaches infinity, while if the polynomial of the higher order is in the

denominator, then the function F(s) approaches zero as s approaches infinity.
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The derivative of RFs with respect to frequency on the imaginary axis is always positive,

d .

which means that the susceptance B(w) and the reactance X (@) of a reactance one-port can

only with increase with the increase in frequency. This also implies that when a RF has multiple
POLEs and ZEROs, they have to interlace each other. This is because the reactance can increase
between two ZEROs only if they are separated by a POLE. Also, the reactance between two
POLEs can only increase if they are separated by a ZERO. This is illustrated in the plot of

susceptance against the frequency in Fig. 4.7.

B(w)k

| |
| |
| |
| |
P 172 1P (0]
i |
| I
| |
| |
| |

Fig. 4.7 Plot of susceptance B(w) against frequency

When a reactance one-port is used as a shunt compensator, then it has to have specified
susceptances for each of the supply voltage harmonics. In particular, for a harmonic order n or
frequencynay , the compensator susceptance has to be equal to B¢y, . For such a case, the general
form of the admittance Yc(s) has to be found. Such a form is specified by the number of POLEs
and ZEROs which in turn can be found using a constantly increasing susceptance Bc(w), which

has the value Bgp, for harmonic order n. Finally, the calculated POLEs and/or ZEROs have to be
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added at zero and/or infinity in such a way so as to have a Reactance Function. Mathematically,

such a compensator admittance can be expressed in the form

2,2\ (2.2 As
(" +20)-("*20) i fs)=< A and A>0. (4.76)

(s +pf)...6* + pin) S

Yc(©) = f()

Ilustration 4.3 Let us calculate the compensator branch parameters for the load shown in

Fig. 4.8 supplied from a source with the voltages:

Ug =2Re{100 el@t 1 50el5at | o5 ejmlt} \Y,
Us =x/§Re{1OO o= 1120 Jiayt | £ 0j120 SiSart | op 0~ (120 ej7a)1t} v

UT:O

—( %m &

Load

Fig. 4.8 Unbalanced load supplied from a source of asymmetrical nonsinusoidal voltage

For such a load, the compensator branch susceptances are equal to

Tesy | [-0.578 Tass | [ 0.578 Tasy | [-0.578
Trre| | 2039 Trrs | | —839 Trr7 | | 1182

Let us compute the admittance function Yq(s) for the branch TR. We know that the

compensator branch TR has to compensate the load for the voltage fundamental
harmonic, as well as the fifth and the seventh order harmonics. Also, for such a purpose,

it requires that the compensator branch susceptances are Bcq=2.039S, Bgg=-0.839S
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and Bc7=1.182S. The plot of the compensator susceptance B¢ (w) corresponding to

these values is as shown in Fig. 4.9.

B(w)
A

Fig. 4.9 Plot of susceptance Bc(w)

The following conclusions can be made about the admittance function Yq(s)

e ithasaZERO ats =0, hence the odd polynomial is in the numerator
e it has a POLE at s = infinity, hence the higher order polynomial is in the
numerator

e it has one other ZERO z;

e it has one other POLE p;
Therefore, the admittance function has the form

(s*+2)

(s*+p)

Yc(s) = As

There are three unknowns namely A, 212 and p12 the expression above.
Before we proceed to solve for the compensator parameters, let us normalize the

fundamental frequency ey to 1 rad/s for simplicity of calculations. The calculated values
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can be converted to correspond to the system frequency at the end. We have the three

equations

acip D2+ 7]

:JB
(iDZ+pd]
O [(j5)%+2]
A(j5 2 Tal - g
(j52+pd = O
s\ 2 2
A(J7 [(17) +Zl] :jBC7

[(i7)?+pf]
Observing Fig. 4.9, it is clear that the admittance has a POLE between s =1 and s = 5. If

we choose the pole p; to be at s = 2.7115, then, we will have,

2
A(1)(212—_1) =2.039
(pi-)
2
A(5)(212_—25) =-0.839
(p{—25)
2
A(7) (212_ 49 _1182
(pi—47)

The set of equation have a solution A=0.416, z =567 and p =271. Thus the
admittance function is

(s +32.1)
@2+Z3®'

Yc(s) = 0.4165s
There are two main methods, namely the Foster procedures and the Cauer procedures,
that can be used to develop the reactance one-port structure when the admittance is

known. Each of these two procedures have two sub procedures, one of which has to be

chosen based on the admittance function. The numerator polynomial of the admittance

81



function that we obtained is of the higher degree, and therefore, the Cauer First

procedure is used here for the calculation of the reactance one-port structure.

2 3
Yo(o) = 041655 321D 041655 +13.87
(s°+7.35) (s°+7.35)

_ 0.41655(s? +7.35) — 0.4165x 7.355+13.37s
- (s2+7.35)

10.31s
(s% +7.35)

=0.4165s+

1
=0.41658+ ————=-.
0.097s+ 0.7131

S
As per the Cauer First procedure, C, =d;, L, =d,, C3=d3, etc., therefore, the structure
of the reactance one port corresponding to the above calculated admittance function is as

shown in Fig. 4.10.

C=04165F  L=0.097F

C=0.4165F
LS
o TATATAN
Yo S — G —
O

Fig. 4.10 Branch TR of compensator with Cauer First structure

It is to be noted that these values are corresponding to the normalized frequency. Fig.

4.10 corresponds to the branch TR. The structures of the compensator branches RS and
ST can be found using a similar method.

It is evident from illustration 4.3 that the process of finding the structure of the reactance

compensator branches is complex. In this particular case, a very simple circuit was chosen where
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the supply voltage contains harmonics of only three different orders. As the number of harmonic
orders increases, the filter complexity, as well as the cost of the compensator increases as well.
Therefore, design of such a compensator may become impractical from an application
perspective. One solution to that problem is to design a compensator with reduced complexity,
for example, by assuming that the compensator branch cannot have more elements than two. The
parameters of such an optimized reactance one-port compensator are chosen so that it can have
the highest power factor at no more than two elements per compensator branch. Such a

compensator generally does not improve the power factor to unity, however.

4.4.3 Design of an optimized compensator for the minimization of the unbalanced and reactive
currents

A shunt Two Element Series LC compensator, or simply TESLC compensator, can be
used for the minimization of the supply current three-phase rms value [24]. Such a compensator
has a significantly reduced complexity and the goal of such a TESLC compensator is to reduce
the three-phase rms value of the supply current to its minimum possible value with no more than

two elements per compensator branch. Such a compensator is depicted in Fig. 4.11.

R " 'l _JIJ ll,
G N
Uy Voo T i Al
g
[0} Y ” » > :
S LTI Load
1
o2 > -
u,
A 4 Y Y ji.}
Artificial Zero
DR_\ D\r
o T S —
DTR

TESLC Compensator

COI“]JCI]SHtOl'

Fig. 4.11 Load with an optimized compensator
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Let us recall the compensator shown in Fig. 4.6 above, which has the branch
susceptances Tgs,, Tst, and Tr,, and, completely compensates the reactive and the unbalanced
currents. Its susceptances are specified by equation(4.72), and has a current specified by the

three-phase current vector j7 at the supply phase to phase voltage Uy, -

Let Dgrsn.Dstn @nd Dyg,, be the branch susceptances of the optimized compensator for the

nth harmonic order. Let the current vector of the optimized compensator be 4, , such that

Jo =lirs Jst iR]I"- (4.77)
The effectiveness of the current minimization of the optimized compensator is measured
by the deviation of the current jp of the optimized compensator from the current j7 of the ideal

compensator. Ideally, the deviation should be zero. The sum of the squares of the deviation of

the currents on each of the phases, can be written as

d2 = Z [(TRSn_ DRSn )URSn ]2+[(T5Tn_ DSTn )USTn ]2+[(TTR n— DTR n )UTR n ]2 (478)

neN

which comprises of the components of the form

d)%y = Z [(Txyn— DXYn)UXYn]2: Z d)%yn . (4.79)

neN neN

Due of the presence of the square on the right hand side of the equation, each of the
components is a positive value, and, therefore, for the total deviation defined in (4.78) to be

minimum, each of the three components dy. should be minimum.

The square of the deviation specified in (4.79) is dependent on three components, namely
the susceptances Tyy,, the susceptances Dyy,and the supply line to line voltage harmonic rms

value Uy, . The susceptances Tyy ,Of the ideal compensator are in turn dependent on the load
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parameters as well as the supply voltage rms values, as indicated in equation (4.72). Due to the
source impedance, the supply voltage harmonics are also affected by the change in the source
current after the addition of the compensator. However, if the parameters are chosen so as to
avoid resonance, then the change in the voltage is much smaller compared to the change in the

currents. This means that it is reasonable to assume that the minimization of the deviation dyy
under the assumption that U,., is constant, will not lead to substantial errors in results of the

minimization. Therefore, it is assumed for the following analysis that the source impedance is

zero and that the source voltage is not affected by the compensator.

The supply line to line voltage rms value Uy, of the fundamental harmonic is generally
much higher than the supply line to line voltage rms value Uy, ( n>1) of the higher order
harmonics. Thus, the term (Tyxy;—Dxy)iS the main contributor to the deviationdy, , and,
therefore, a reduction in the term (Tyy;— Dy ) leads to a reduction in dy, . For this purpose, the
signs of the susceptances Tyy;and Dy Should be the same. Hence, if Tyy; <0 , then, a L-type
branch should be chosen so as to make Dy, <0, while, if Tyy,;>0 , then, a LC type branch
should be chosen so as to make Dyy, >0. Note that in the latter case, a LC type branch is chosen

instead of a C type branch in order to avoid the resonance with the source impedance at a
frequency of one of the supply voltage harmonics. In the first case, if the optimum inductance is
Ly , then the square of the deviation,

1 2,12
d2 = T + Uz, . 4.80
Xy n§\l( XYn na}lLXY) XYn ( )

On the other hand, for case two, if the optimum capacitance is Cyy and the optimum inductance

IS Lyy , then the square of the deviation,

85



Na, C
= 3 (o 2“’; XY )2UZ,,. (4.81)
neN @ Cyy Lyy

The rms value of the supply current is minimum when the value of the square of the

deviation mentioned above is minimum. Differentiating equation (4.80) with respect to Ly

yields,

Wy n 2

o(d2
W) 0 S [Ty

Olxy Olxy neN Ny Ly

1 1
=2 2(Tyyn+ ——)Uxynx(0————5—)Uxyn]

neN @ Lxy Ney Ly

1
= Z 2(Tyxynt————)Uxynlx ( Uxvn ) (4.82)
neN Ny Ly noy Liy

For minima,

1 —u?2

XyYn _0

a(dgy)
— Z 2(Tyynt
Olxy  nen Ny Lyy na’l'—xv

=0

2
z (Txyn+ L Ui
neN noplyy ™ N

z _TXYnXUEYn - z

neN n neN n a).I.LXY

2
Usvn

Hence,

2
UXYn

2
———neNT @ (4.83)

2
z TXYnXUXYn
n

neN

LXY

The inductor L, specified in (4.83) is the optimal inductor for the compensator branch XY if

Tyy1 <O.
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For the second case specified above, i.e., when the susceptance Ty, >0,then, the

compensator should have a series LC branch between the lines X and Y. In this case, the

deviation in the compensator current rms values is given by

2 Nay C 2,2
dxy = Z (TXYn_ 2 a)-lé XY ) UXYI’] (484)
neN 1-n"af Cyy Lyy

The inductor Lxy is added in series to the compensator capacitor so as to shift the
resonance with the source impedance to a frequency not present in the supply voltage harmonics.

The resonant frequency,
wp =1/ (L ,Cyy
Hence,
Ly Cyy =1/ 0 (4.85)
If we define
M.c =af Cxy Ly =of / @f (4.86)
we can rewrite (4.84) as,

ne C

2 2
dey = 2, [(TXYn_ﬁ)van] (4.87)

neN - Wlie

The optimal value of the capacitor can be found by differentiating (4.87) with respect to Cyy and

equating it to zero. That is,

odgy)
0Cxy 0Cyy

neN LC

> {[(Txvn_nal\);—c)(;z)uxvn 1%

nay C n
=2 Z(TXYn_%)UXYn]X(O_—@LZ)UXYn =

neN — M n - MLC n
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nayC Nay U2
_ Z 2(Tyyn— ! XYZ) @ XYn2 -0
neN 1- MLC n® 1- MLC n

Rearranging (4.88) we get,

Z[(na’lTxanxvn n? a’lcxv van)] 0.
neN 1- N, 1- M, n?)?

2 2
o, ¥ Nan TxynUxyn _ Y n” of Cxy Ugyn

2 2\2
neN 1_MLC n neN (1_MLC n )

Hence,

2
Z Nay TxynUxyn
neN 1- MLC n2

CXY =
2 2112

Z n“ @ Uxyn

neN (1_ MLC n2 )2

(4.88)

(4.89)

The capacitor C,, specified in (4.89) is the optimal capacitor for the compensator

branch XY under the scenario that Ty, >0.

The above mentioned steps should be repeated for all three phases based on the sign of

the compensator fundamental harmonic susceptance Tyy; , and the optimal L- Branch or the

optimal LC- Branch should be connected between the phases X and Y. Such an optimal

compensator will reduce the three-phase rms value of the supply current to its lowest possible

value for the given number of elements per branch.

Illustration 4.4 Design of an optimized compensator for an unbalanced load supplied

from a source of asymmetrical and nonsinusoidal voltage.
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i e, S
Eg S R=10
—o z
\_/ R=10 T C=2.65mF
E, (D) T 7=531 mH
N
E,= 100V, E,=755e""V, E, =278V,
E,=89e*0V, E =473eMV, E =57V,
E,~781e™V, E_=56e5V, E_ =43¢ V.

THD = 12%
Coefficients of Asymmetry: a,= 0.27 e™*, =031, a=045"",

Fig. 4.12 Unbalanced load supplied from a source of asymmetrical and distorted voltage

Fig. 4.12 above depicts an unbalanced LTI load supplied from a source with high

distortion and asymmetry.

The three-phase rms value of the supply voltage |[ee|| =121.96 V.

The rms values of the line currents,

lir [|=80 A,
Ili || =43.5 A,
llit || =40.4 A,

and the currents three-phase rms value || ¢ :\/“ ir |12 + 1] |I? +]i7 ||* =99.62 A.

The rms values of Currents’ Physical Components (CPC) are as following:
active current || 2, || =67.97 A,

scattered current =7.99 A

3

reactive current |

i ||=2152 A

and unbalanced current ||,

|=69.12 A.

Similarly,
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active power P =8.29 kW,
scattered power Dg =0.98 kVA,
reactive power Q=2.63 kVar,

and unbalanced power D, =8.43 kVA.

The apparent Power

S = /P24 D,2+Q%+ D2 =829 +0.982 +2.63 +8.43° =12.15 kVA

and the power factor 1= g =0.68 .

The results are shown in Fig. 4.13.

R u 80 A
o—g >
TU=898V
5 $5A k=10
o ry >
U=T7479V R=10Q =265 mF
T 404 A L=531 mHT
o >
1U=5062V
P - 829kW
O =2.63 kVar
D =843kVA
Artificial Zero D, = 0.98 kVA
§ = 12.15kVA

L=0.68

Fig. 4.13 Powers and line currents of the load

Design of a Reactive Compensator:

The load has a power factor of 0.68. This can be improved by adding a reactive
compensator of the delta structure shown in Fig. 4.6. Such an ideal reactive compensator

will completely compensate the reactive and the unbalanced currents.
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The steps needed for the calculation of the compensator parameters is presented in detail
in illustration 4.2 above. A similar approach is used in this illustration and only the final
results are presented here. For the parameters of this illustration, the compensator

equations given in (4.72) above leads to the following susceptances for the compensator

branches:
Tesy | [ 0.148 Tess | [ 0.014 Tes; | [ 0.008

The reactance elements in the branch RS should be chosen in such a way that the
susceptance of the branch is 0.148 S for the fundamental frequency, 0.014 S for the 5™
order harmonic and 0.008 S for the 7" order harmonic. Likewise, the reactance elements
in the branch ST should be chosen in such a way that the susceptance of the branch is
0.038 S, 0.067 S and 0.052 S for the fundamental, fifth and the seventh harmonic orders
respectively. Similarly, the reactance elements in the branch ST should be chosen such
that the susceptance of the branch is -0.482 S, -0.196 S and -0.146 S for the fundamental,
fifth and the seventh harmonic orders respectively. The load with the given compensator

shown as a block is depicted in Fig. 4.14.
The addition of such a compensator leads to the following results:

The rms values of the line currents,

Ilir || =45.96 A,
Ilis || = 41.96 A,
Ilir || =28.45 A

and the currents three-phase rms value || Z]| =\/|| i |12+ |1ig 1% +1]i7 ||? =68.43 A,
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D, =098 kVA Ideal D~ 0.98 kVA
8 - 835kVA Compensa[or S = 12.15kVA
1=099 =068

Fig. 4.14 Results after the addition of an ideal LC Compensator

Note that due the asymmetry in the supply voltage, the line currents after compensation

are still asymmetrical. The line currents are proportional, and in phase to the line

voltages, however.

The rms values of Currents’ Physical Components are as following:

active current ||2, || =67.96 A,

scattered current ||é[|=7.99 A,
reactive current ||, || =0,
and unbalanced current [|¢, ||=0 .

Similarly,
active power P =8.29 kW,
scattered power Dg=0.98 KVA,

reactive power Q=0,
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and unbalanced power D, =0.

The apparent Power S = \/P2+ D2+Q%+D,% =8.35 kVA

and the power factor 1= g =0.99

Thus, an ideal reactive balancing compensator as shown in Fig. 4.14 completely
compensates the reactive and the unbalanced currents and improves the power factor to
almost unity. In order to be able to implement the compensator in a real system, we have
to design the compensator branches so as to have the desired reactance properties. For
example, the compensator branch RS should be designed in such a way that its
susceptances for the fundamental, fifth and the seventh harmonic orders are 0.148 S,
0.014 S and 0.008 S respectively. As it was evident for a very similar case in illustration
4.3 earlier in the chapter, the design as well as the structure of such an ideal compensator
is very complex, and, more importantly, it does not have a practical value. Therefore, the
design of the branches of the ideal compensator is not presented here. Rather, let us try to
design an optimized TESLC compensator for the load above, which significantly reduces
the cost and the complexity of the structure of the compensator branches, without making

a significant compromise on the power factor.
Design of a TESLC Compensator:

As described in section 4.4.3 above, a TESLC compensator contains no more than two
elements per compensator branch. Each branch can either have an inductor, or a capacitor
in series with an inductor, depending upon the susceptance of the compensator branch for

the fundamental harmonic. In this case, since Tzg; >0we will choose a LC branch
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between the lines R and S. Since the supply voltage does not contain any components of
the third harmonic order, we can choose the value of the series inductor such that the

resonance is just past the third harmonic. Then,
M. =af | wf =01

Using the equation of the optimal capacitor,

Z na}lTXYnUg\(n
CXY _heN 12_ I\chzn

¥ n a’lUxEnZ

neN =M n%)

to calculate the value of the capacitor for the branch RS, with N = {1,5,7} yields,

2
Z Ny TrsyUgrsy
1-0.1n?

Cps =1<N -—=0319 mF.

2 2
Z n“ o Ugg,
nen (1—0.1n%)?

Then, the series inductor
Los =219 mH.

Thus, the compensator branch RS should have a capacitor of 0.319 mF in series with an

inductor of 2.19 mH.

Similarly, since Tg;, >0, we choose a LC branch between the compensator terminal S and

T. Substituting in the formula for the optimal capacitor,

2
Z Ny Tor YUsrn
1-0.1n?

Cgp =DeN >—=0.079 mF

2 2
Z n“ of Ugr,
nen (1—0.1n%)?
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and, the series inductor Lg; =8.84 mH. Thus, the compensator branch ST should consist

of a capacitor of 0.079 mF in series with an inductor of 8.84 mH.

Finally, since T;r, <0, the compensator branch TR consists of an inductor of the value

2
U TRn

2
L _ neN (O_I_n
TR —

2
Z TTRl>< U TRn
n

=5.49 mH

neN

Thus, a compensator with the parameters calculated above and as shown in Fig. 4.15 is

the optimized compensator that minimizes the supply current three-phase rms

#|| to the

lowest possible value while using no more than two reactive elements per compensator

branch.

The addition of the optimized TESLC compensator leads to the results as shown in Fig.

415,
u 4694 A 80A
Rog > >
U=8298V
42.24 A 435A §R= 10
So ; > > B
U=T479V R=1Q [C=265mF
2822 A 4
To > 40'.: A =531 mH
A
U=5062V L
I oad
Q24247 Y234 Ysisra
P =829kW P=829kW
Artificial Zero 0 = 1.04 kVar C=0.319 mF|C= 0079 mF Q = 2.63 kVar

D =0.66 kVar L=219mH |L=884 mH D =8.43 kVA

D, - 0.98 kVA YW vy D, - 0.98 kVA

§ = 844 kVA § =12.15kVA

VW
h=0098 L.=549 mH h=0.68

Optimized TESLC
Compensator

Fig. 4.15 Results after the addition of an Optimized TESLC Compensator
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The rms values of the line currents,

Ilir ||=46.94 A,
llis ||= 42.24 A,
llit |l=28.22 A

and the currents three-phase rms value || || =\[|| i |12+ |1ig |12 + )iy ||* =69.17 A.

The three-phase rms values of Currents’ Physical Components (CPC) are as following :

active current ||2, || =67.96 A,

scattered current

i ||=7.99 A,
reactive current ||, ||=8.47A,
and unbalanced current ||, ||=5.38 A.
Similarly,
active power P =8.29 kW,
scattered power Dg =0.98 KVA,

reactive power Q=1.04 kVAR,

and unbalanced power D, =0.66 kVA.

The apparent power S =P?+ D2+ Q?+ D2 =8.44 KVA
and the power factor 1= g =0.98

Thus, the optimized TESLC compensator improves the power factor from 0.68 to 0.98. It

is very close to 0.99, which is the value of the power factor after the addition of an ideal
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compensator. The TESLC compensator significantly reduces the cost and complexity of

the compensator, with a very small compromise in the power factor improvement.

4.5 Conclusion

The power equation of LTI loads at nonsinusoidal and asymmetrical three-phase three-
wire supply voltage was presented in this chapter. The Currents’ Physical Components (CPC)
based load current decomposition enabled the development of the power equation. Comparing
the power equation of LTI loads at sinusoidal and asymmetrical voltages presented in Chapter 3,
now the load also has a scattered power; in addition to the active, reactive and unbalanced
powers. The scattered power is associated with the change of the equivalent conductance of the
load with the harmonic order. The CPC concept also enabled the design of a reactive
compensator for the compensation of the reactive and the unbalanced currents. Such a reactive
compensator cannot compensate the scattered current, however. Therefore, when the supply
voltage is N&A, and the load has a scattered power, then the power factor cannot be improved to
unity using reactive compensation. Moreover, it was also demonstrated that the design, as well as
the structure of such a compensator is very complex. As the number of the harmonic orders
present in the supply voltage increases, such a compensator may become impractical. To solve
the problem, an optimized compensator with no more than two elements per compensator branch
(TESLC) was designed and implemented. Such a compensator has a significantly reduced
complexity in design and structure. It cannot compensate the reactive and the unbalanced
currents completely, however. Nonetheless, it was shown that such an optimized compensator
works very well under practical situations and improves the power factor to close to unity. The
significant reduction in cost and complexity of such a compensator outweighs the slight

compromise in the power factor.
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CHAPTER 5: CURRENTS PHYSICAL COMPONENTS (CPC)
OF UNBALANCED HARMONICS GENERATING LOADS
AT ASYMMETRICAL VOLTAGES

5.1 Introduction

Earlier chapters of this dissertation were confined to power properties of systems with
Linear Time Invariant (LTI) loads. The development of the power equation and methods of
reactive compensation of such loads at asymmetrical but sinusoidal voltage were presented in
Chapter 3, while Chapter 4 was focused on the development of the power equation and methods

of reactive compensation at nonsinusoidal and asymmetrical voltage.

A power theory describes power properties of distribution systems simplified by various
assumptions. The accuracy of such a description can be increased by abandoning step by step
these assumptions. The analysis in Chapter 3 was presented at the assumption that the supply
voltage was sinusoidal. That assumption was abandoned in Chapter 4, where, in addition to the
supply voltage asymmetry, also the supply voltage distortion was taken into account. The next
step in power theory development is the description of the power properties of three-phase three-
wire systems with Harmonics Generating Loads (HGLs) at asymmetrical and nonsinusoidal

supply voltage, as presented in this chapter.

5.2 Background on Harmonic Generating Loads (HGLS)

Non-linear and periodically switched loads are commonly referred to as Harmonic
Generating Loads (HGLs). These loads include fluorescent lamps, micro-waves, video and
computer-like equipment, power electronics devices, arc furnaces etc. HGLs are increasingly
common in the commercial and industrial systems, primarily because of the power electronics

equipment used for the control of the energy flow in such systems. HGLs have parameters that
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vary with the voltage or current, and consequently cause periodic distortion of the supply current.

This distortion of the load current is specified in terms of the load generated harmonics.

Transformers were initially considered to be the main sources of harmonics since they
consist of non-linear magnetic cores. Proliferation of power electronics based switching loads in
the last few decades causes that the contribution of transformers to the voltage and current
waveform distortion nowadays is usually much lower as compared to the distortion due to the

power electronics devices.
In general, HGLs can be divided into three categories [25, 26]:

e Nonlinear devices of small ratings consisting mainly of fluorescent bulbs, computer and

TV supplies, and power supplies used in low power appliances

e Static power converters used in industry such as rectifiers, AC to DC converters,

inverters or cycloconverters
e Electric arc furnaces.

A load is non-linear if its parameter changes with a change in the applied voltage or
current, such as it is with diodes or electric arc furnaces. The current of non-linear loads is
nonsinusoidal, even at sinusoidal supply voltages. The v-i relationship of a diode is shown in Fig.

5.1.

On the other hand, periodically switched devices refer to circuits consisting of switches
for the control of energy flow. Examples of periodically switched devices are AC to DC
converters, variable speed drives, static power converters (SPCs) etc. The current of these
devices depends upon the switching of the power semiconductor devices. The current of a

thyristor controlled resistive load at sinusoidal voltage is shown in Fig. 5.2.
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Fig. 5.1 Voltage-current relationship of a diode

Fig. 5.2 Current of a thyristor controlled resistive load
5.3 Equivalent circuit of Harmonics Generating Loads

Let us consider a single phase fluorescent lamp as an example of a HGL as shown in Fig.

5.3.

]
Z||

CD NS

Fig. 5.3 A fluorescent lamp circuit with a thermal starter S and ballast G
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A fluorescent lamp starts to conduct when the supply voltage is close to its rated
operating voltage [27]. The relationship between voltage and current rms values of such a lamp

is shown in Fig. 5.4.

AU
{_

R

U

S

Fig. 5.4 Relationship between the voltage and current rms values of a fluorescent lamp

When the voltage rms value is in a vicinity of the operating point, the current rms value
does not change with small changes AU in the voltage shown in Fig. 5.4. When the voltage rms
value is kept constant in the vicinity of the operating point, the lamp operates like a linear load
with a shunt current source of higher order harmonics. The equivalent circuit of a fluorescent

lamp can be drawn as Fig. 5.5

Harmonies Generating Load

Fig. 5.5 Equivalent circuit of single-phase fluorescent lamp

The voltage and current waveforms of the fluorescent lamp operating close to its

operating point looks like 5.6.
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Fig. 5.6 Voltage and current waveforms of fluorescent lamp at the operating point

The current waveform in Fig. 5.6 is equivalent to the sum of the fundamental component and

higher order harmonics,

i=ig+ > in=i+] . (5.1)
n=2
The admittance Y1 is equal to,
v, =1 (5.2)
1=y :

and the load generated current harmonics are equal to

_df. 0 .
j=2in. (5.3)

n=2
It is necessary to remember that Fig. 5.5 is the correct representation of the fluorescent lamp
shown in 5.3 only when it is operating at a voltage close to its rated operating voltage. If there is
signification deviation in the supply voltage rms value, then the equivalent parameters j and Y1
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will vary. The equivalent circuit of any HGL can be drawn in similar manner using a linear

approximation around a fixed operating point.

5.4 CPC based current decomposition of HGLs at nonsinusoidal and asymmetrical voltage

Let us consider a HGL supplied from a source of nonsinusoidal and asymmetrical voltage
as shown in Fig. 5.7. Such a load causes periodic distortion of the supply currents and

consequently introduces current harmonics into the system.

Supply U & i HGL

C T”S T It G

Fig. 5.7 Three-phase three-wire system with a harmonic generating load

HGLs introduce current harmonics of the order that could be not present in the supply
voltage [17, 19]. As a result, the flow of energy for these harmonics originates in the load, and
the load becomes the source of energy. It means that the active power for these harmonics is
negative [28]. The energy of such a harmonic dissipates in the resistance of the distribution
systems. Since the load is passive, this energy has to be delivered from supply, mainly by the
fundamental components of the voltage and current. The equivalent linear model of a three-phase

HGL is shown in Fig. 5.8.

The active power of the n'" order harmonic is equal to

Py =Re{Cy} = Re{UgIrn*+Usn lsn +UrnlTn} - (5.4)
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Fig. 5.8 Equivalent circuit of a three-phase system with HGL

The active power Pn can be positive or negative [28]. Depending upon the sign of P, , the
set N of all harmonic orders can be decomposed into two subsets, N, and Ng. When the
harmonic active power B, is positive or zero, we assume that the distribution voltage harmonic
u,, is the cause of the energy flow from the source to the load. In such a case, the harmonic order
n belongs to the setN.. On the other hand, if the harmonic active power Pn is negative, we
assume that the current harmonic j, generated in the load is the cause of the energy flow from

the load back to the supply. In such a case, the harmonic order n belongs to the setN, i.e.,

P, >0, > neN¢

(5.5)
P, <0,— neNg.

After the sets N and Ng have been defined, we can associate the voltages, currents, and

the active power components of the various harmonic orders with the direction of energy flow.

All the harmonic orders belonging to the set N specify the voltage and current components ee.

and ¢, , associated with the energy flow from the supply to the load, such that

D dy=dc, D wy=ew:, D B=PF. (5.6)

neN, neN, neN,
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Likewise, the harmonic orders belonging to the set Ng specify the voltage and the current

components ¢, and e , associated with the energy flow from the load to the supply, such that

> dy=ds, > w,=—wg, Y P=—F;. (5.7)

neNg neNg neNg
Thus, the total current, voltage, and the active power can be written as,

> dn=dc+ig, > wn=u.-ug, > P=P.—Fs. (5.8)

neN neN neN

The current components #. and é; do not contain the harmonics of the same order and are
therefore mutually orthogonal. The voltage components #¢- and e are also orthogonal for the
same reason. Thus, the scalar products of the currents é; and #;, and the voltages e, and e are

equal to zero, viz,
(6 2c)=0, (00 265) =0 . (5.9)
Hence, the three-phase rms value of the load current
€17 = llécI? + 181 (5.10)
and the three-phase rms value of the voltage
lee” = |leec||* + |lees I - (5.11)

For the harmonic orders n belonging to the set N, the original system can be regarded as
a system with a passive load. Consequently, for such harmonics, the system is equivalent to a
linear load supplied from a source of nonsinusoidal and asymmetrical voltage. The analysis for
these harmonic orders remains the same as presented in Chapter 4. The equivalent circuit of the

system for these harmonics is as shown in Fig. 5.9.
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Fig. 5.9 Equivalent circuit of the system for harmonics of the order n from subset Nc¢

On the other hand, for the harmonic orders n belonging to the setNg, the same system
can be regarded as a system with current sources j on the load side and a passive distribution

system on the supply side, as shown in Fig. 5.10. Also for these harmonic orders, the voltage

response of the distribution system to the load generated harmonics e , has an opposite direction

as compared to the direction of the distribution voltage ee .

Fig. 5.10 Equivalent circuit of the system for harmonics of the order n from subset Ng

The system comprising of the harmonic orders n belonging to N and shown in Fig. 5.10
has the voltage e, the current ¢, and an LTI load with the active power P.. Such a load is

equivalent to a balanced resistive load as shown in Fig. 5.11.
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Fig. 5.11 Balanced resistive load equivalent to the original load for subset N¢ with respect to active power P

The phase conductance of such a balanced resistive load is

P
|| 2 ||
and it draws the current
éca=Gepte =2 Re Y Ggp (PUP +1"Uf)elnet (5.13)
neN,

referred to as the active current, from the source.

Let P., and Q.,be the active and the reactive powers of the n™ harmonic order of the
subset ne N, . We can imagine a balanced load for the n'" harmonic order which is equivalent to

the original load with respect to P., and Qc, . It has the equivalent balanced admittance

Yeon = Gepn+ jBepy =~ —ben - _Cen_ (5.14)
and draws the active current
tcan (1) =Gepn 2, ()= \ﬁRe{GCbn @Pupf + anR)ejnwlt} (5.15)

and the reactive current,
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. T . j
écrn (1) =Bopn ttn (t+, ) =VZRe{jBepn (IPUR +1"UR)e " (5.16)

and is shown in Fig. 5.12.

R len
=%
Ugy
S
A
uSn
T

Fig. 5.12 Equivalent balanced load for the n" order harmonic of the order n from the subset Nc with respect to the
active power Pcqand reactive power Qcn

In addition to the active and reactive currents of the equivalent balanced load, the load for

the n™ order harmonic also draws the unbalanced current, namely,
icun :"cn _"Cbn = \/ERe{ICn —Yebn (lp Ur‘m) + anr?)ejnwlt} . (5-17)
The total current for the n™ order harmonic belonging to the subset N is equal to
¥cn = can + ¥crn +ecun - (5.18)
Therefore, the total current of all the harmonic orders of the subset ne N is equal to

i = z i, = z (Fcan * ¥crn + Ecun)
neN, neN. (519)
= &gy +ics + g + gy

where,
icy = Gep o (5.20)

is the active current of the load,
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[ [ [ 1 t
s = Z ®can —%ca =V2Re Z (Gcbn_Gcb)(lp Ur’? + anr?)ean' (5.21)
neN, neN,

is the scattered current,

z icrn zicr Z\/ERe z jBCbn (lpUrr])"'anr?)ejnw't (5-22)

neN, neN,
is the reactive current, and,

Z icun =icu (5-23)

neN.

is the unbalanced current.

On the other hand, as described by (5.7) above, the current of the load corresponding to

the harmonic orders n belonging to the subset ne Ng, and shown in Fig. 5.10, is equal to

> =1 (5.24)

neNg
Therefore, the total current of the load is equal to

i: Zin:ic+iG, (5.25)

neN
Using the relations obtained in (5.19) above, the total current of the load can be written as
i:iCa +iCS +iCr +iCU +iG (5.26)

Based on the analysis of LTI loads presented in Chapter 4, we can write that the currents

.. 85, 8o, and ¢, are mutually orthogonal. Moreover, the currents #: and &g are comprised of

different harmonic orders, and therefore they are mutually orthogonal. Hence, the five current
components of the HGL are mutually orthogonal. Thus, the square of the three-phase rms value

of the current of the HGL is equal to
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.12 - 2 o 2 . 2 o 2 s 12
N =1leca llI” + [l cs I + [ ecr I + 18y |1 + 1126 1. (5.27)

The current of a HGL supplied from a source of nonsinusoidal and asymmetrical voltage is
composed of five mutually orthogonal components, each associated with a distinct physical

phenomenon. These are the Currents Physical Components of a Harmonic Generating Load.

The active, reactive, unbalanced and scattered currents are similar to and associated with
the same phenomenon as those in systems with Linear Time Invariant (LTI) loads. It is

interesting to be noted that only a portion of the supply voltage e, namely the voltage ee. affects
these currents, however. The remaining portion of the supply voltage, namely the voltage e,

occurring as a result of the response of the distribution system to the load generated harmonics

Jo » does not affect these currents.

The generation of the current harmonics in the load and the consequent presence of the
negative active power P, in systems with HGLs is a new physical phenomena as compared to
the systems with LTI Loads. Owing to this phenomenon, the energy flows from the load to the
source at certain frequencies. Since the energy has to come from the distribution system, this
further increases the three-phase rms value of the supply current, thereby leading to the

degradation of the power factor.
The apparent power of the load is equal to

S = [ed]| |é]
2 2 [r 02 ne 02 e 02 e 2 us (2
— \leec |2 +Hleeg |2 \ lécall? + lécs|? + lléce |2 + el + Ids (5.28)

=,/s§+s§+s,§

where,
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Sc =lloec|l llécl| = P2+ D2+ Q2+ D2, (5.29)

S =lllees|| llég|l - (5.30)

2 [ J
Se = lleec? Il

2 |oas |I? |lécl® (5.31)

i
Comparing the apparent power of LTI loads with that of the HGLs, it is evident that in

case of HGLs, the apparent power contains additional components which contribute to its

increase. The apparent power S of the HGLs contains the componentsS., S;and S.. The
component S.is the same as the apparent power in systems with LTI loads, while the
components S;and S are not present in systems with LTI loads. The power S depends on the
load generated harmonics j.as well as the distribution system impedance. It is similar to the
apparent power S. in terms of the physical phenomenon that it is associated with, except that it is

originates in the load. It is therefore referred to as load generated apparent power.

The power component S. differs fundamentally from the apparent powers S;and S. in

the regard that it is not associated with any physical phenomenon. Its square is merely the
product of the rms values of the voltages and currents of exclusively different harmonic orders

from the subsets N.and N . It only contributes to the increase of the voltage and current rms

values and is referred to as cross apparent power.

The apparent power of an unbalanced HGL specified in (5.28) can be rewritten using the

various power components as

S = P2+ D2 +Q2+ D2 +52+87 (5.32)
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and the power factor, which specifies the effectiveness of energy delivery from the source to the
load, of such a load is equal to

P P.—P,

ﬂ’:—: .
S /P2+DZ+Q2+D2+82+82

(5.33)

Equation (5.33) reveals how the different components of the power contribute to the degradation
of the power factor in systems with HGLs. It is also important to observe that the load generated
apparent power not only increases the total apparent power of the load, but also reduces the

active power of the load, evident in the numerator of (5.33).

Illustration 5.1 Let us calculate the CPC currents and the various powers of an industrial
arc furnace load approximated by a harmonic generating load. It is assumed that the
furnace has an extinguished arc in phase T and that the internal voltage of the supply is
sinusoidal and symmetrical. The furnace is supplied from a transformer with relatively
low power. The short circuit parameters of the transformer calculated to the secondary
side and the line currents are given. The voltage asymmetry and distortion at the furnace

terminal is caused due to the asymmetry and distortion in the furnace current.

1000 V ; _
R_.=0.10Q I 3 R=1Q
— () — W WMV
ol =03Q w [=1 Q
S I R=1Q
O > ,AN\J‘{W\_
w [=1 Q
o) :
) VW= O—>- o
Harmonic Generating Load
iR= V2 Re{508.55 ¢ /1976 gieyt +100 e/ 2@ + 100 e/ +100 ¢/ 7/ } A

Fig. 5.13 A Harmonic Generating Load supplied from a source of sinusoidal symmetrical voltage
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The internal voltage of the distribution system is sinusoidal and symmetrical and is equal

to

Ep, =1000 V, E,, =1000e~1120° v/, E,, =1000e/12% v/,

The source impedance consists of the impedances

R =0.1Q2 , ol =03Q .

The current on line R is equal to
i, =<2Re{508.5 e 11976 et 1100 )24t +100 )5 +100e/ 74 3 A

The current contains the components of the fundamental, 2", 5" and 7' order harmonics.
Since the supply voltage is sinusoidal, the higher order harmonics are due to the
nonlinearity of the load. Therefore, for this particular illustration the different harmonics

can be categorized into the following subsets:

neNg with No = {1}
neNg with Ng ={2,5,7}.

For the subset ne N, the system is equivalent to one depicted in Fig. 5.14.

All values are RMS

1000 V
12 03Q 5085A

O :
9094V "
: S 508.5A 20

8412V

: T 0
1000V -

Artificial Zero

Fig. 5.14 The equivalent circuit of the system forn =1
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The load line to line admittances for the fundamental frequency are equal to
Yps =0.25— j0.25S, Ygr, =0, Yqg, =0,
while and the line currents rms values are equal to
|, || = 508.6 A, Ilis, || =508.6 A, |lir,]|=0
with the three-phase rms value equal to ||&||=719.2 A.

These currents cause a voltage drop in the source impedances. The voltages across the

load terminals after referring to artificial zero are equal to
Ugy =909.4¢7 1798 v U, =841.1e7 11184 v U =1000e1%" v/
The voltage three-phase rms value is equal to ||eg|| =1592 V .

Next, we need to consider the system for the harmonic orders of the subset ne Ng. For

the approximation of the arc furnace used in this illustration, the Harmonic Generating
Load injects currents of the 2", 51" and the 7" harmonic order. Let us analyze the system

for each of these harmonics one by one.

The system corresponding to the 2" harmonic order is equivalent to the one shown in

Fig. 5.15.

The line current crms values for the 2" order harmonics are as follows,
I, =100 A, Ig, =100 189" A

and the current three-phase rms value ||, || =141.4 A .
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All values are RMS

0L1Q 06Q o 100 A
Wt 608V "
@ J.-1004a
S 100 A
Y= 608 V )
T 0
W —o
0
= -2000 W
Artificial Zero

Fig. 5.15 The equivalent circuit of the system for the 2"@ order harmonic

The line voltages resulting from the drop in the source impedance are equal to
Ug, =60.8e 719957 v/, Ug, =60.8 e180:54° v/
with the three-phase rms value ||z, || =86.0 V
The active power corresponding to the 2! harmonic order is equal to
P, = Re{Ug, I o +Usg; 15,3 = — 2000 W .

Likewise, the system corresponding to the 5" harmonic order is equivalent to Fig. 5.16.

All values are RMS

01Q 159 o l[l(iA
VY 1504 V "
@ J.~ 10
5 100 A
1504 V )
T {]
MW —o0
0
P=-2000 W
Artificial Zero

Fig. 5.16 The equivalent circuit of the system for the 5" order harmonic

Therefore, the crms values of the line currents for the 5" harmonic order are,
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Is =100 A, lgs =100 e1180° A
and the current three-phase rms value || 4 || =141.42 A
The line voltages resulting from the drop in the source impedance are equal to
Ugs =150.4 ¢ 1938 v/, Ugg =150.4 18627 v
with the three-phase rms value || e || =212.6 V
The active power corresponding to the 5™ harmonic order is equal to
P. = Re{Upgs Irs+Usgs Iss}=—2000 W .

Finally, the system corresponding to the 7" harmonic order is as shown in Fig. 5.17.

All values are RMS

019 21Q R Inli.‘\
VY ' 2102V 4
.
@ J.- 104
S 100 A
il 2102V )
T 0
W0 —o
0
P=-2000 W
Artificial Zero

Fig. 5.17 The equivalent circuit of the system for the 7" harmonic order

The crms values of the line currents for the 7" harmonic order are:
lr, =100 A, I;, =100 e/180° A
and the current three-phase rms value ||, || =141.42 A
The line voltages resulting from the drop in the source impedance are equal to

Ugy =210.2e 19273 v/, Ug; =210.2e187% v
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with the three-phase rms value ||ee, || =297.3 V
The active power corresponding to the 7" harmonic order is equal to
P, =Re{Ug, Ig7+Us; Ir7}=—2000 W.

Since the voltages and the currents of different harmonic orders are orthogonal to one

another, the total three-phase voltage rms value is equal to

2 2 2 2 2
el = | llogy 1> = \llogs|> + lees|? + g ? + o[> =1635.6 v

neN

while the current three-phase rms value is equal to

° ° 2 ° 2 ° 2 (3 2 4 2
é)= \/zuonu = IR + 18] + 15| + 1,12 = 759.8A
neN

Thus, the apparent power of the load is equal to
S=|lee]|| || 2] = 1242.7 KVA = 1.243 MVA.
Apparent power calculated using the CPC power components

The rms values of the active and the reactive current components for the subset ne N are

equal to

l8cq Il =324.9 A, |écr || = 3249 A
The positive and the negative sequence components of the unbalanced current are
125, 11=32.3 A, 162, 1] = 317.8A

Hence, the three-phase rms value of the unbalanced current is equal to,

il |2 =\3x\32.32 +317.82 = 553.4 A.
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The different powers that these currents are associated with are equal to

P.=517.2kW, Q.=517.2kVars, Dg, =880.8 kVA.

The apparent power for the subset ne N is equal to

Sc :«/PC2+Q§+ D2, =1145 kVA

The voltage three-phase rms value for the subset ne Ng is equal to

A J S gy = a2 + jegs| + llee; |2 =375.5V

neN,

while the three-phase rms value of the current harmonic j is equal to

%

= [ 3 P = I + ]2 + 11812 =244.9 A
neN,

Thus, the apparent power corresponding to all the harmonics belonging to the subset

neNg is
Sg = |lees]| [[&s]l = 92 KVA.

Likewise, the cross harmonic apparent power

2 12 12 2 12112
SE:\/”“(:” 261" + llea||” [|Ec]l” = 474.4 kKVA.

Thus, the total apparent power calculated using the different components of the apparent

power is equal to,

S=«/S§+Sé+8,§ = 1242.7 kVA |

118



which is the same as value of the apparent power calculated earlier using the three-phase
rms values of the line currents and voltages, calculated earlier in the illustration. This
verifies that the CPC decomposition of the load currents and the powers calculated using

these currents are correct.
The total active power of the load is equal to:

P= > P+ > P, =(517242-2000-2000—2000) W = 511.2 kW

neN. neN,

while the overall power factor of the load is equal to,

P P.— P, 5112
S P2+DL+Q2+DZ+82+57 12427

A =041

Despite the fact that the internal voltage of the distribution system is sinusoidal and
symmetrical, the voltage across the load terminal is highly asymmetrical and distorted,
owing the load generated harmonics as well as the load asymmetry. The vectors of the
line currents and the vector of the line voltages are given below, followed by the voltage

and current waveforms in Fig. 5.18.

The vector of the line currents is equal to

- j19.76°e j2mt j5amrt jTot

508.6¢ Joty100 e

j160.24°

+100 e +100 e

j180° j180° 7wt j180°
e 1180 el18 1100 ¢ 17t 11807 | 1A

+100 ¢ 15!

0

i = [2Re{| 508.6¢ e 1284100 ¢ 1228

Similarly, the vector of the load voltages is equal to

909.46717.98 e jot +60.8 67199.5 e j2ot +150.4e7193.8 e j5at +210.3 e7192.73 e jTot

= 2Re{| 841.26 11184 ¢ 0l g0 g 18054 ¢ 1200 4150 4 ¢1802% 150181010 3 ¢ 1873 170 | Y/

1000 /120" ¢ 1ot

119



Plot af Line Currents

1000
= ® ~ — IR
% $el X | ——1(S)
500 | | 3 #rl—m]
. ol Vo \ £ —
E AT [ “Q
\ i
N ANy /
7 J 5 [,
o T Nt WA
‘ W/

] 0.005 001 0015 0.02 0.03 0.035 004 0.045 005

0.025
time.(in seconds)

Flat of Intertal voltage of distribution aystem

1500
o . FRE s
Pl ; N ooy A Yy y o i [—ER)
10001~ Y 5 5 5 ; ; ‘ ES)
X \ s -
5001~ £ EM
/ \ / A / 4 \
¥ NG o A / i
500 7 y 8 2 | X Y
) / i i K A / . X
- 7 BN P . T N i % 7 R
Sl |~ - i ~ g i
o 0.005 0.01 001 0.02 0.028 0.03 0,036 0.02 0.045 0.05
time.(in seconds)
Plat af load voltages
2000
» / 8 —— UR)
¥ / 3 = J - ks 7\
1000 ot [ i T ) NG LN | —u
o o K T /,\J \/ R ; \ T —um
/ \ f g NN
N/ ez { 9 / \
¥ \ i Y\ -, | |
4 / \ i
{ 0 W ol C VA [ 1 d Y
o e e S
\ R bW, —t " \ ./ NS
0 0.005 0.01 001 0.02 0.03 0,036 0.02 0.045 0.05

0.025
time (in seconds)

Fig. 5.18 Plot of the line currents, the distribution voltage and the load voltages

Ilustration 5.2 Let us calculate the CPC currents and the various powers of the HGL in

the previous illustration when the supply voltage is nonsinusoidal as shown in Fig. 5.19.

R =0.1Q R 1,
m!l‘\‘_: 03Q
s L

o Ll=1Q
.
_@_\/\N\—sz\—o—.__o

Harmonic Generating Load

€,=\2 Re{100 e/ +100 e/ +100 e/ } V

Jae= V2 Re{100 e/ +100 e/ +100 e/ 7' } V
Fig. 5.19 A Harmonic Generating Load supplied from a source of nonsinusoidal symmetrical voltage
The supply voltage is equal to
1000 e '*t+100e 13+ 1006 1594

e =2Re{| 1000 e /1% Jaly1gpe 34ty 100 e 1120°¢ ISt | YV

1000 ¢ 1127 ¢ ot 4100 e 1394+ 100 ¢ ~ 11207 154
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while the load generated harmonics in the current on line R are equal to

jre =+2Re{100 /24t +100 e} 4t +100e1 74 3 A
In a similar manner as the previous illustration, the voltage and the current contains the
harmonics of two subsets, namely,

neN; with N, ={1,3,5}
neNg with Ng={2,4,7}

For the harmonic orders n belonging to the subset Nc, the source of energy flow is the
distribution system, while, for the harmonic orders n belonging to the subset Ng, the
source of the energy flow is the load. Thus, the system has to be analyzed differently for

these two subsets.

Analysis for the subset ne N :

For the fundamental component, the system is equivalent to the one depicted in Fig. 5.20

All values are RMS

1000 V 01Q 03Q 5085 A
_@—\N\/\_'VW\_C t 9094V > »0
—@—\/WL'WW—g 2 §
8412V '
T 0
() ——wWr—o —

’ 1000 V

Artificial Zero

Fig. 5.20 Equivalent circuit of the system forton=1

At the fundamental frequency, the sources impedance

Re =0.1Q, o L =030
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while the load impedance is
Rrs =29, o lgs=2 Q.
Thus, the load line to line admittances for the fundamental frequency are
Yrs; =0.25— j0.25S, Yo =0, Yir, =0.
The line currents rms values are equal to
i, || =508.6 A, Iig, || = 508.6 A, |, [[=0
with the three-phase rms value equal to ||&)||=719.4 A.

These currents cause a voltage drop in the source impedances, and the line voltages after

the drop in the source impedance and after referencing to an artificial zero are equal to
Ug, =909.4e 1798 v U, =841.1e7 111844 v U, =1000e/12% v.
The voltage three-phase rms value is equal to ||eg||=1592 V .
The active power of the fundamental harmonic is equal to
P =Re{Up; I +Usg; 151} =517.6 kW

For the 3@ harmonic order, the system is equivalent to the one shown in Fig. 5.21.

0l 090 R 0

() WV 0 "
: s 0 60

T 0
__.(: ————AM—WV—O » O

0
E, =100¢"V
E,=100¢"V
E,

=100V e
Artificial Zero

Fig. 5.21 The equivalent circuit of the system for n =3
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The 3 harmonic component of the internal voltage of the distribution is

100 &1
E, =|100e1% |V
100e10°

while the load line to line admittances for this frequency are

Ypes =0.05— j0.15S, Yer3 =0, Yigs=0.
Note that the internal voltage of the distribution system is nonsinusoidal but symmetrical.
Hence, the third order voltage harmonics are composed exclusively of the zero sequence.

Therefore, the load voltages after referring to artificial zero are also 0, i.e,

Ups =0, Ug =0, U =0
For a three-wire system, like the one used for analysis in this illustration, a voltage of the
zero sequence cannot cause any current to flow in the system. Hence, the line currents for

the third harmonic order are

Ilirs 11 =0, Ilis3 11 =0, I[irs]1=0

with the three-phase rms value equal to ||&;||=0.
Thus the active power of the 3" harmonic is
P, = Re{Ugslr3+Uss 153} =0 .

Finally, for the 5" harmonic order, the system is equivalent to Fig. 5.22. The crms values

of the 5™ harmonic component of the distribution system voltage are

100
E, =| 100112 | v
100 ¢~ 1120°
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20
S 13.1A g
C ki 84.8V
i 0
o —o
100V
ERS =100 V
ES5 =100 eV
- » H120°
E =100e72"V Artificial Zero

Fig. 5.22 The equivalent circuit of the system corresponding to n =5

The load line to line admittances for this frequency are

YRSS =0.0192 - J 0.0962 S, Y5T5 =0, YTRS =0.

The line current rms values for the 5™ harmonic order are
[ligs [|=13.1 A, [lis I[=13.1 A, [lirs || =0
with the three-phase rms value equal to ||&;||=18.6 A.

Therefore, the load voltages after referring to artificial zero are equal to,

Ugs =82.4e1°% v, Uy =848el112% v, U =100e 1127 v,

Thus the active power of the 5™ order harmonic is
P, =Re{UgsIrs+Uss 553 =350 W .
Analysis for the harmonic orders n belonging to the subset Ng:

Next, we need to consider the system for the harmonic orders of subset ne Ng. For the

approximation of the arc furnace used in this illustration, the Harmonic Generating Load
injects currents of the 2", 4" and the 7™ harmonic orders. Let us analyze the system for

each of these harmonics one by one.
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The system corresponding to the 2" harmonic order is equivalent to the one shown in

Fig. 5.23.

All values are RMS

01Q 06Q o 100 A
A 608V "
@ .J.=100A
S 100 A
VY 608V )
T
——MW—W—o » o
0
P,=-2000 W
Artificial Zero

Fig. 5.23 The equivalent circuit of the system for the 2" order harmonic

The line current crms values for the 2" order harmonics are as follows,

I, =100 A, I, =100 el180° A

and the current three-phase rms value ||, || =141.42 A
The line voltages resulting from the drop in the source impedance are equal to

Ug, = 60.8e7199%° v/, Us, = 60.8 18054 v/

with the three-phase rms value ||, || =86.0 V.

The active power corresponding to the 2! harmonic order is equal to
P, = Re{Ug, I Rp+Ug, 1523 = —2000 W .

Likewise, the system corresponding to the 4™ harmonic order is equivalent to Fig. 5.24.
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All values are RMS

01Q 12Q R 100 A

.
——— WO >

1204V

GD Dj('rd: 100 A

S 100 A

MWW 4

1204V

T

0

P,=-2000 W

Artificial Zero
Fig. 5.24 The equivalent circuit of the system for the 4" order harmonic

Therefore, the crms values of the line currents for the 4" harmonic order are,

Iy =100 A, lg, =100 e/180° A

and the current three-phase rms value ||, || =141.4 A
The line voltages resulting from the drop in the source impedance are equal to

Ugs =120.4e 1947 v, Ugy =120.4 618524

with the three-phase rms value ||, || =170.3 V
The active power corresponding to the 4™ harmonic order is equal to

P, = Re{Ugy I Ra+Ugs 1543 = —2000 W .

Finally, the system corresponding to the 7" harmonic order is as shown in Fig. 5.25.

The crms values of the line currents for the 7' harmonic order are:

lg; =100 A, ls, =100 e1189" A

and the current three-phase rms value ||2; || =141.4 A.
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All values are RMS

0.1Q 210 lanA
VYY ! 2102V "
@ J.~ 104
S 100 A
i 2102V X
T 0
WA=r—o —o
0
P=-2000 W
Artificial Zero

Fig. 5.25 The equivalent circuit of the system corresponding to the 7" harmonic order

The line voltages resulting from the drop in the source impedance are equal to

Ug, =210.2e7 19273 v/, Ug, =210.2¢187%° v

with the three-phase rms value || e, || = 297.3 V
The active power corresponding to the 7" harmonic order is equal to

P, = Re{Ug; I 7 +Us; 1573 = — 2000 W .
Since the voltages and the currents of different harmonic orders are orthogonal to one

another, the total three-phase voltage rms value is equal to

leell= | llogy |12 = \loasl + legy |12 + llags]? + lla, | + o] + log;|[* =1638.1 v

neN

while the current three-phase rms value is equal to

o ° 2 ° 2 ° 2 (] 2 ® 2 (4 2 (4 2
I|0||=\/levn|| = IR + 1112 + sl + P + 15|12 + 1|12 = 759.9A

neN
Thus, the apparent power of the load is equal to

S =|leel| ||€]] = 1244.9 KVA = 1.25 MVA..
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Apparent power calculated using the CPC power components:

The rms values of the active, scattered and the reactive current components for the subset

ne N are equal to

lica [|=3236 A, |ldes|l= 29.1A,  |lég||=3236A.

The positive and the negative sequence components of the unbalanced current are

188, 11=33.4 A, 162, || = 317.8A

Hence, the three-phase rms value of the unbalanced current is equal to,

icu ll=3 \/ il |2 =3\32.32 +317.82 = 5535 A.

The different powers that these currents are associated with are equal to

P 112
&1+

P.=517.6 kW,  D.=468kVA, Q.=520kVars, D, =8853kVA

The apparent power for the subset ne N is equal to

Sc = x/ P2+ D2 +Q2+ D2, =1150.8 kVA

Similarly, the voltage three-phase rms value for the subset ne Ny is equal to

CAE J S gy = ljogs|? + |ogy |2 + |oa; |2 = 3533V

neN,

while the three-phase rms value of the current harmonic j is equal to

[ ) 112+ (|82 +

2 [ J
= Z n :\jcz (7} 2,
neN,

2 _245 A

Thus, the apparent power corresponding to all the harmonics belonging to the subset

neNg is
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Sc =llees|| lésll = 86.5 kKVA

Next, the cross harmonic apparent power

Se = lleec? Il + et | [lic|[> = 467 kvA

Thus, the total apparent power calculated using the different components of the apparent

power is equal to,

S =«/s§+ SZ+S2 = 1244.9 kVA = 1.25 MVA,

which is the same as value of the apparent power calculated earlier using the three-phase
rms values of the line currents and voltages, calculated earlier in the illustration. This
verifies that the CPC decomposition of the load currents and the powers calculated using

these currents are correct.
The total active power of the load is equal to:

P= > P+ > P,=(517589-6000) W =511.6 kW

neN. neN,

while the overall power factor of the load is equal to,

P P.— P, 5116

ﬂ:—: = =
S JP2+DZ+Q2+D2+82+s2 1245

0.41

The waveforms of the line currents as well as the supply and the load voltages are as

following.
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Plat of Ling Currents
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Fig. 5.26 Plot of the line currents, the distribution voltage and the load voltages

Ilustration 5.3 Let us calculate the CPC currents and the various powers of the load in
the previous illustration when the supply voltage is asymmetrical and nonsinusoidal and
is equal to

1000 e 1®+100 e 34

e:\/ERe{ 500e —i120° ot 4 100 @ 1120°, (3wt WV
0

while the load generated harmonics in the current on line R are equal to
jre =V2Re{100 /24! +100 el 4! +100e1 74 3 A
In this case the voltage and the current contains the harmonics of two subsets, namely,

neN. with N ={1,3}
neNg with Ng ={2,4,7}
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Analysis for the subset ne N, :

For the fundamental component, the system is equivalent to the one depicted in Fig. 5.27.

0.1Q 03Q R 3884 A

() Yy 660.3 V 5.3
: S 388.4 A 2Q
4574V

T 0
L (——ww—ro o
2887V

1000V
500 ¢#1 V
0 Arlificial Zero

ER!

E.\'L

ET]
Fig. 5.27 The equivalent circuit of the system forn =1

The internal voltage of the distribution system for the fundamental frequency is

1000

E=|500¢ 1% | Vv

At this frequency, the sources impedance is

R =0.1Q o L =0.3Q
while the load impedance is

Rrs =292, o lgs=2 Q.

Thus, the load line to line admittances for the fundamental frequency are

Yps; =0.25—j0.25S, Yer,; =0, Yip, =0.
The line currents rms values are equal to

lig, ] = 388.41 A, i, || = 388.41A, |lir,||=0
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with the three-phase rms value equal to ||&||=549 A.

These currents cause a voltage drop in the source impedances, and the line voltages after

the drop in the source impedance and after referencing to an artificial zero are equal to
Ugy =660.3e15%%° v, U, =457.4e71152%° vy, =288.7e11%0° v
The voltage three-phase rms value is equal to ||eg|| =853.2 V.
The active power of the fundamental harmonic is equal to
R =Re{Ug; Ir;+Ug; 1513 =301.7 kW.

For the 3@ harmonic order, the system is equivalent to the one shown in Fig. 5.28.

0IQ 09Q 214A
( ) VY ! 68.85V 10
S 214A 6Q
: 70.36 V
T 0
—@—VW"WV‘—C 0
3333
Em =100V
E,=100¢ "V |
E. =0 Artificial Zero

Fig. 5.28 The equivalent circuit of the system for n =3

The crms value of the 3 order harmonic of the internal voltage of the distribution is
100

E, =|100 /%% | v
0

while the load line to line admittances for this frequency are

YRS3 =0.05- J 0.15 S! YST3 = 0, YTR3 =0.
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Note that unlike the previous case, the internal voltage of the distribution system in this
illustration is nonsinusoidal and asymmetrical. Hence, the third order voltage harmonics
are contain the positive as well as the negative sequence voltage components in addition
to the zero sequence components. Therefore, the load voltages after referring to artificial

Zero is,
Ugs =68.8e 11877 v U, =704eI133¢ vy, =333 1120 v,
The line currents for the third harmonic order are
|ligs || = 21.4, Iliss || = 21.4, lirs|=0
with the three-phase rms value equal to ||&;||=30.2 A.
Thus the active power of the 3" harmonic is
P, =Re{Ug3lrg+Us3l53} =910 W .
Analysis for the harmonic orders n belonging to the subset Ng :

Next, we need to consider the system for the harmonic orders of subset ne Ng. Since, the

load generated harmonics in this case are the same as the previous illustration and the fact

that the change in the supply parameters do not affect the analysis for the subset ne Ng.

The analysis for this subset will be the same as it was in the previous illustration.

Therefore, only the results are presented here.

The line current crms values for the 2" order harmonics are
lg, =100 A, I, =100 189" A

and the current three-phase rms value ||, || =141.4 A
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The line voltages resulting from the drop in the source impedance are equal to

Ug, =60.8671995" v, U, =60.8 e180:54° v/
with the three-phase rms value ||, || =86.0 V
The active power corresponding to the 2" harmonic order is equal to

P, = Re{Ug, gy +Ug, Iso}= — 2000 W.

Likewise, for the 4" harmonic order, the line current crms values are

lps =100 A, g, =100e118° A |4, ||=141.42 A
The voltage corms values are equal to,

Ups =1204 1% v Ug, =120.4e182% v/ ||ag,||=1703 V
The active power, P, = Re{Upr, Irg+Uss 1543 = —2000 W .
Finally, for the 7" harmonic order, the currents
ln, =100 A, l;, =100 e/ A and |4, ||=1414 A
while the voltages
Ugy =210.267 19273 v U, =2102e/87% v and  ||ee, |[=297.3V

The active power P, =Re{Ug;Ir7+Us;ls;}=—2000 W .

The total three-phase voltage rms value is equal to

lodl= | lla | = lee? +llg,|* +Ilogs|? +Ijoey |2 +]lag;|[2 =929.5 v

neN

while the current three-phase rms value is equal to
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13 ° 2 ° 2 ° 2 (] 2 (3 2 4 2
Ill= [ 3 Ul = IR + 15112 + 8sl12 + 16,1 +11d; |2 = 602.2 A

neN
Thus, the apparent power of the load is equal to
S =||ed]| ||2]| = 559.8 KVA .

Apparent power calculated using the CPC power components

The rms values of the active, reactive and the scattered current components for the subset

ne N are equal to
lldcq [|=352 A, |léc ||=340A,  ||és||=3545A.
The positive and the negative sequence components of the unbalanced current are
125, 11=64.2 A, 18D, || =114.8A

Hence, the three-phase rms value of the unbalanced current is equal to,

0P =\3V64.22 +114.82 = 227.8 A.

P 12
i1 +

ey I3y
The different powers that these currents are associated with are equal to
P. =302.6 kW, De. =29.2KkVA Q. =304.8kVars, D, =195.9 kVA

The apparent power for the subset ne N is equal to

Sc =P+ D&+ Q2+ DZ, =473 kVA

Similarly, the voltage three-phase rms value for the subset ne Ng is equal to

CAE J S gy = \lee +liog, | + |lee, |2 =353.3v

neN,
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while the three-phase rms value of the current harmonic jg is equal to

neN,

e

Thus, the apparent power corresponding to all the harmonics belonging to the subset

neNg is
Se = leeg | ld]| = 86.5 KVA

Next, the cross harmonic apparent power

2 _286.8 VA

2 2 2
Se = e | + |foeg |

e i

Thus, the total apparent power calculated using the different components of the apparent

power is equal to,

S =«/ SZ+S2+S2 = 559.8 kVA,

which is the same as value of the apparent power calculated earlier using the three-phase

rms values of the line currents and voltages.
The total active power of the load is equal to:

P= Y P+ > P,=296.7 kW

neN, neN,

while the overall power factor of the load is equal to,

P.— P, _296.7
JP2+D2+Q2+ D +52+52 5598

AP ~053
S

The waveforms of the line currents as well as the supply and the load voltages are as

following.
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Plot of Line Currents
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Fig. 5.29 Plot of the line currents, the distribution voltage and the load voltages
5.5 Conclusion

The analysis of circuits with Harmonic Generating Loads (HGLS) supplied from a source
of nonsinusoidal and asymmetrical voltage was presented in this chapter. The load current of a
HGL was decomposed into orthogonal components, also known as Currents’ Physical
Components, each of which is associated with a distinct physical phenomenon. The apparent
power of the HGL is composed of the apparent powersS., S, and S.. The apparent power S.is
the same as the apparent power of the load for LTI systems and is associated with the same
physical phenomena as that in LTI systems. The power S;is a new component of the apparent
power and originates as a result of the load generated current harmonics. In addition to these two
powers, the apparent power also contains the power S, which stems from the increment in the
voltage and current three-phase rms values. The reactive, unbalanced and scattered power

components of the power S.as well as the powers S;and S; all contribute the degradation of
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the power factor of HGLs. Moreover, the harmonic generated apparent power S;not only

increases the apparent power of the load, but also reduces the active power of the load.
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CHAPTER 6: REFERENCE SIGNAL GENERATION FOR SHUNT
SWITCHING COMPENSATORS IN THREE-WIRE SYSTEMS AT
ASYMMETRICAL VOLTAGE

6.1 Introduction

Chapters 3 and 4 of this dissertation were focused on description of the power properties
of linear time invariant (LTI) loads, as well as on the methods of the design of reactive
compensators for power factor improvement. Chapter 5 was dedicated to the development of the
power equation of Harmonic Generating Loads (HGLs) at asymmetrical and nonsinusoidal
supply voltage. The methods of compensation of HGLs were not discussed, however, because
reactive balancing compensators are not as effective for HGLs as compared to LTI loads.
Switching Compensators, also commonly known as Active Power Filters, are used for this

purpose instead.

Switching Compensators (SCs) are power electronics devices that inject the
compensating current into the distribution system. In essence, SCs are controlled current sources
which reproduce the waveform of a reference signal, which in turn depends on the goals of

compensation.

Operating principle of SCs is not the subject of power theory, however. The subject of
this chapter is the compensation of HGLs using SCs as well as the methods used for the
generation of the reference signal of SCs. Therefore the focus of this chapter is on the algorithms
used for the generation of the reference signal, while SCs are modelled as controlled current

sources in this chapter.

Two terms that will be used frequently in this chapter are Supply Quality (SQ) and

Loading Quality (LQ). Supply Quality [29] refers to the properties of the supply voltage. An
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ideal three-phase voltage is one which is symmetrical, sinusoidal, and has a constant RMS value.
Any deviation from these standards leads to the degradation of the Supply Quality. On the other
hand, Loading Quality [29] refers to properties of a load as seen from the supply side. An ideal
three-phase load is balanced, resistive and linear. Any deviation from these properties leads to
the degradation of the Loading Quality. The scope of this chapter, as well as this dissertation, is

limited to the improvement of the Loading Quality.

6.2 Issues with compensation of HGLs at nonsinusoidal voltage

Studies on compensation in the earlier chapters of this dissertation were confined to
reactive compensators, applied mainly to LTI loads. In the case of HGLs, harmonics generated in
such loads can be reduced by Resonant Harmonic Filters (RHFs)[30], which are a kind of
reactive compensators. Branches of such filters provide a short-circuit path to harmonics to
which they are tuned to. Consequently, the load generated harmonics are filtered out and the
supply current waveform is prevented from distortion. Unfortunately, when the supply voltage is
distorted, and in particular, it contains the voltage harmonics of the same order as the load
generated current harmonics, the filter branches tuned for the load generated harmonics
inadvertently amplifies the supply current harmonics. Consequently, efficiency of RHFs in
reduction of distortion declines. Even at relatively low voltage distortion, RHFs can lose

effectiveness [31].

6.3 Background on Shunt Switching Compensators (Active Power Filters)

Distribution system can be protected against harmonics generated in the load by
Switching Compensators (SCs) known mainly as ‘Active Filters’ [32]. Shunt SCs are devices
capable of injecting the compensating current into the distribution system. Loads with degraded
Loading Quality may draw the active, reactive, unbalanced, and scattered currents from the
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source but only the active current contributes to the energy delivery from the source to the load.
Hence, the non-active components of the load current are considered as useless currents as they
increase the supply current RMS value, lead to losses, and reduce the effectiveness of energy
delivery. If the SC injects a current, equal to the difference between the active and the load
current, into the system - the load draws its normal current while the supply sees an ideal load
and is only loaded with the active current. This reduces the losses and improves the effectiveness

of energy delivery.

A SC consists of a PWM Inverter, a Data Acquisition System, and a Digital Signal
Processing System as shown in the Fig. 6.1. Information about the line voltages and currents is
acquired through the Data Acquisition System, using voltage and current sensors. These voltage
and current signals are then fed to the Digital Signal Processing system. An algorithm based on a
specific power theory is then used to generate a reference signal. The reference signal is fed to a
Pulse Width Modulation (PWM) generator which controls the inverter that injects the desired

current into the power system.

.y Voltage and current sensors

S 3

Data Acquisiiion

<~

PWM Inverter L/ DSP and

Compensator Control

HGL

~

Y

Fig. 6.1 Block diagram of PWM Inverter based Switching Compensator
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6.4 Algorithms used for reference signal generation

Reference signal carries the information about the waveform of the compensator current
which is to be produced by PWM Inverter. Once the voltage and current signals are obtained
from the Data Acquisition System, an algorithm, based on a power theory as per the goals of
compensation, is used to generate the reference signal. The eventual purpose of the SC,
regardless of the algorithm that it is being used, is to improve the Loading Quality. Different
approaches have different goals of compensation, however. When the source has ideal Supply
Quality, the goals of compensation of all the approaches should converge. On the other hand,
when the source has degraded Supply Quality, the results of compensation may depend on the
used power theory. Some of the most commonly used power theories for reference signal

generation are discussed below.

6.4.1 Instantaneous Reactive Power (IRP) p-q Theory

The Instantaneous Reactive Power (IRP) p-q Theory [33] is the most commonly used
power theory [34] for the reference signal generation for switching compensators. It was
introduced by Akagi, Kanazawa and Nabae in [33] and has since gone through a lot of
modifications and development, some of which include [35-38]. Although the theory is
sometimes criticized [39, 40] as a power theory due to its shortcomings in the description of the

power phenomenon in the load, it is commonly used for the control of switching compensators.

This theory is based upon two power p and g, which are defined by the instantaneous
values of the voltages and currents. According to the p-q theory the instantaneous active power
of ideal loads should be constant. The control algorithm is also designed on the same principle

[41] and its goal is to compensate the components p and q of the instantaneous power.
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The IRP p-q is built upon the Park and Clark Transforms of the voltages and currents into

orthogonal « and S coordinates, namely,

11
u |t 2 2 ||
{ua}: 3 3 3| (6.1)
p o 2 B,
o2

For three-phase three-wire systems, the information about two line voltages is sufficient

to calculate the Clark Transforms. Formula (6.1) can be simplified to the form

0
{””}: 2 {“R}:c[”ﬂ . 6.2)

. 3 _ _
uH g ltlele] ©

After these transformations, the load is described in terms of two powers, namely,

P=Uyig+Ugig (6.4)

referred to as the instantaneous active power, and

q=Uyig—Ugi, (6.5)

referred to as the instantaneous reactive power.

Having these powers the instantaneous active current
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izu“pizuﬂp (6.6)
ap U§+U% pp U2+ u

and the instantaneous reactive current

i e B g i =t g (6.7)
4 u§+u% Aa U§+U%

are defined.

The names instantaneous active current and instantaneous reactive current can be
misleading, however [39]. These currents have nothing in common with active and reactive
currents known traditionally in electrical systems. The instantaneous reactive current is not
related to the reactive power Q. Likewise, the instantaneous active current is different than the
active current defined by Fryze, which is associated with permanent energy transfer. Also, from
the point of view of compensation, the instantaneous active current is not the current that should
be supplied from the distribution system after compensation. The goal of compensation of the p-
g theory is to compensate the power q as well as the alternating component of the instantaneous

active power p.

The compensation current can be calculated as

i u —u D
P_“}z 1 { @ f’}m . 6.8)
Ip Ug+ug |Us  Ua |LO

The compensator currents expressed in terms of the o and f coordinates are then converted

into phase quantities using Inverse Clark Transform, namely,
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This algorithm used for reference signal generation works well when the supply has ideal
quality because in such a case the instantaneous active power of ideal loads is constant.
Unfortunately, supply voltage distortion or asymmetry often results in an alternating component
in the instantaneous active power, even if the load is ideal. If the goal of compensation is to
compensate the alternating component, then the compensator is often ineffective, while it can

sometimes even be detrimental.

Illustration 6.1 Let us consider a system with a balanced resistive load supplied from a

source of sinusoidal asymmetrical voltage as shown in Fig. 6.2.

u=\2 U cos o/

@

oo & ok

Fig. 6.2 Balanced resistive supplied from a source of asymmetrical voltage

We have,
ug =v2Ucosayt,  ug=0, ur =0.
Therefore,
IR:Z\EUCOSa)lt, iS:—\EUCOSOﬂt_
3R 3R
Thus,
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The instantaneous active power,
P=Uyi,+Ug iﬂ=UZG+UZGcos 2ot
and the instantaneous reactive power
g=Uyig— uﬂ'a:—UZG ~U2Gecos 2aqt.

Thus a balanced resistive load, which has ideal Loading Quality, has an alternating

instantaneous active power component p equal to U2Gcos2at as well as the

instantaneous reactive power componentq equal to —U?G —U2Gcos 2t . The goal of

the IRP p-g Theory based algorithm is to produce the compensator current to compensate

the powers p and g. Unfortunately, such a compensator current will degrade the power
quality. Moreover, since the load is balanced and resistive, it already has ideal Loading
Quality and shunt compensation cannot improve the condition any further. This simple
illustration demonstrates how the failure to distinguish degraded Loading Quality from

degraded Supply Quality can lead to erroneous results.
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The main argument in favor of the IRP p-q Theory is that it supposedly provides the
theoretical fundamentals for the design of control algorithms - and somehow it is not that
important whether or not it interprets the power phenomenon in electrical systems correctly.
Unfortunately, this fundamental deficiency in the p-g theory renders it ineffective when there is
supply voltage asymmetry or distortion. Moreover, since the theory interprets the power
phenomena incorrectly, it can rather lead to the degradation, as opposed to the improvement of
power quality. Examples of a few situations have been presented in [39, 42, 43] where

compensation using the p-q approach leads to detrimental results.

6.4.2 CPC Power theory

Unlike the IRP p-g Theory and the Fryze Power Theory [3, 44] (not discussed in this
chapter), which are based on the time-domain, the CPC power theory is formulated in the
frequency-domain. It is based on the decomposition of the load current into orthogonal
components, each associated with a distinct physical phenomenon. It enables the description of

the power properties of the load.

Although the CPC power theory is based on the frequency-domain, the CPC based
compensation algorithms utilize both the frequency-domain, and the time-domain. The time-
domain is used to expedite the computation of the compensator current. In this approach, the
active current is computed using the frequency-domain, while the remainder of the current,
which can be calculated by subtracting the active current from the load current, is calculated in

time-domain and used for reference signal generation.

The non-active current can be calculated as a combined quantity in order to expedite the
process. The CPC theory does enable the calculation of the physical components of the current,
however. This is particularly important because the CPC theory is the only approach in published
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literature that enables decomposition of the load current into components based on physical
phenomena, thereby enabling the design of hybrid compensators, which compensate these
components separately. A hybrid compensator utilizes reactive compensator for the
compensation of the bulk of the reactive and unbalanced currents, and switching compensators
for the compensation of harmonic currents as well as the scattered current. Such a hybrid
compensator could be capable of handling industrial loads such as arc furnaces with power rating
in the range of hundreds of MVVAs. Compensation of such loads is well beyond the capability of

any approach that relies only on Switching Compensators.

The goal of compensation is to make the load as seen from the supply source as resistive,
balanced and linear as much as possible. In order to do this, first the voltages and currents have
to be sampled and then used to calculate the active current. Next, the non-active current is
calculated and the negative of this current is generated and then injected into the system.

Consequently, the load and the compensator together will only draw the active current from the

supply.

6.5 Reference signal generation based on Currents Physical Component Power Theory

The two main advantages of using CPC based algorithm for reference signal generation is
that it enables compensation at voltage asymmetry and distortion, and provides the flexibility to
choose the current components that are to be compensated. Consequently, CPC based algorithms
enable design of hybrid compensators which can combine SCs of low power fast switching

capabilities with reactive compensators of high power but without adaptive properties.

The first step in the generation of the reference signal is to acquire the line voltages and
currents. For a three-phase three-wire system, the phase voltages and currents have the given
relationships:
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Ug (t) +Ug (t)+ Uy (1) =0 (6.10)
i (1) +ig (1) + it (1) =0. '

Therefore, the information on voltages and currents of two phases is sufficient to calculate them
in the third phase. Hence, only two voltages and currents need to be sampled. Once the samples
of these quantities are obtained, the Fourier Transform of these quantities is done in order to
transform these quantities to the frequency domain. Next, the active power of the load can be

calculated by integrating the instantaneous power over time
1 N
PZ—ZUk ik (611)
N1

or by using the crms values of the line voltages and currents

P=s Y Stk (6.12)

X=R,S,T k
The equivalent conductance of such a load is equal to

P

:Ilullz (6.13)

Gp

where ||2]| is the three-phase rms value of the supply voltage defined earlier in the dissertation

and can be calculated as

ee]] =\/ﬁ S S (6.14)

The active current of the load is equal to

iak = Gb w, . (615)
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Once the active current is known, the compensator current can be calculated by subtracting the

active current from the load current,

ij =ik _iak (616)

6.6 Implementation of Reference signal in PWM Inverter based Switching Compensator

Although the methods used for the calculation of the active current was described in
section 6.4 above, the details of its implementation using a shunt Switching Compensator were
not explained. Since SCs are not the subject of this chapter, and are, moreover, modeled using
controlled current sources in this chapter, these considerations are only shortly described below.

The details of the implementation of SCs can be found in [34, 45].

In addition to the energy transferred to the load, the active current after compensation
should also carry the energy that is dissipated in the compensator in order to maintain the voltage

level of the capacitor used in the PWM Inverter.

After the correct reference signal is calculated in the digital form, the current has to be
produced by the PWM Inverter. In order to do this, the inverter has to be controlled utilizing a
method known as the Space Vector Pulse Width Modulation (SV-PWM) approach [45]. This
method is used to operate the switches of the inverter, so that the desired current output is

obtained across the compensator output terminals.

6.7 Simulation and Results

The simulations were carried out in the Simpowersystem Toolkit of MATLAB. The
voltages and currents were first measured using a Three-Phase V-1 Measurement Block. Then the
active power and the active current were calculated and then used to calculate the reference

signal for compensation. The goal of compensation was to reduce the supply current to just the
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active current. Therefore, the supply current after compensation should be in phase with the
supply voltages. The reference signal was then fed to the controlled current sources which were
used to model the Switching Compensators. Based on the reference signal, the current sources
injected the compensator current into the system and improved the Loading Quality. CPC based
algorithm was used for the compensation of both linear as well as Harmonic Generating loads,
operating at nonsinusoidal as well as asymmetrical supply voltage. The model shown in Fig. 6.3

was used for simulation. Details of the various parts of the model are given in the Appendix

Z_sc R V-| Measurement V- | Measurement Hﬂﬂﬂﬂmisoaﬁdeneranng
Distorted Supply LA AL
B—‘—- A a A a R
A
+ Z sc S
N B /\/\/\/ —aB b B b s
C Il—\_u B—,—- C c C c i
Zsc T Supply side Load Side
=+
Reference Signal Generation
‘:, Switching Compensator Load voltages
Scope2 -
= In1
=
ot Load cuirrents

powergui

nafe— 8 |

A
II Step
c |V_sup
|_load
|_sup

Fig. 6.3 Matlab Simulink model used for simulation

Two V-I Measurement Blocks were used in the model. The first block, namely “Supply
Side” measured the supply voltage and currents while the second block, namely “Load Side”

measured the load side voltages and currents.
1. Balanced resistive LTI load supplied from a source of sinusoidal symmetrical voltage
In this case a balanced resistive load of 1 Ohm was supplied from a sinusoidal

symmetrical voltage source with rms value 100 Volts.
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Fig. 6.4 Simulation results of balanced LTI load supplied with sinusoidal symmetrical voltage

This case is included to verify that the model is operating correctly. As shown in Fig. 6.4, the
line currents and voltages are in phase with one another while the supply current is the same as
the load current. As expected, a balanced resistive load draws sinusoidal symmetrical current

from a source of sinusoidal symmetrical voltage.
2. Unbalanced LTI load supplied from a source of sinusoidal symmetrical voltage

A sinusoidal symmetrical voltage of rms value 100 volts was connected to an unbalanced

LTI load as shown in Fig. 6.5. The results of simulation are shown in Fig. 6.6.
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Fig. 6.5 Unbalanced LTI load

Unbalanced load draws three-phase currents which are also unbalanced. The compensator is
turned on at t = 0.05 s, after which the supply is only loaded with the active current, while the
load still draws its normal current. Supply current after compensation is in phase with the supply

voltage. Also, there is a significant reduction in the supply current rms value after compensation.

|
0oe

Supply Currents

Fig. 6.6 Simulation results of unbalanced LTI load with sinusoidal symmetrical voltage
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3. Unbalanced LTI load supplied from a source of sinusoidal asymmetrical voltage

The same unbalanced load from the previous case and shown in Fig 6.5 was next
connected to a sinusoidal but asymmetrical voltage source. The line voltages were equal to

Ug =100e/% v, Ug =84.8e7 119 vand U, =120e/1%° v, The simulation results are shown in

Fig. 6.7.

Fig. 6.7 Simulation results of unbalanced LTI load connected to sinusoidal asymmetrical voltage

The supply current before compensation is asymmetrical. After the compensator is turned on at t
t = 0.05 s, the compensator compensates the unbalanced and reactive currents. The supply
current contains only the active current and hence it is in phase with the supply voltage. There is
a reduction in the supply current rms value and the supply currents are proportional to the supply

voltages after compensation. The load current is not affected by the addition of the compensator.
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4. Unbalanced LTI load supplied from a source of nonsinusoidal symmetrical voltage

Next, the unbalanced LTI load was connected to a source of symmetrical, but

nonsinusoidal voltage with the crms values of harmonics
Ug, =100e1% v, Ugs =206l v, U, =20e1% v,

Ug, =100 1127 v, Uy =202 v, U, =207 1120 v,
Up, =100 v, Uy =206 12 v, U, =200 v,

The results of simulation are shown in Fig. 6.8. The simulation can be divided into three
sections. The first section is from the beginning to t:=0.05 s, when the supply voltage is
sinusoidal and symmetrical, and the compensator is off. From 0.05 to 0.1 s, the voltage is the
same but the compensator is turned on. The voltage harmonics are introduced at to = 0.1 s with
the compensator remaining on till the end. From the beginning to t1=0.05 s, the supply voltage is
sinusoidal and symmetrical. Since the load is unbalanced, it draws unbalanced current during this
period of time. The supply current is the same as the load current. The compensator is turned on
at t1=0.05 s and kept on until the end of the simulation. After the compensator is in turned on, it
compensates the reactive and unbalanced currents and the supply current is loaded with only the
active current. As the voltage is sinusoidal and symmetrical, the supply current after
compensation is also sinusoidal and symmetrical. The load current is not affected by the addition
of the compensator. Next, voltage harmonics of the fifth and the seventh harmonic orders are
added to the supply voltage at t> = 0.1 s. After the supply is loaded with the voltage harmonics,
there is a change in the load current, as it now draws distorted current from the source. The

compensator adjusts to the change in the voltage and injects the necessary current into the lines
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so that the supply current is equal to the active current. As a result, supply current is proportional

to the supply voltage after compensation.

Line Valtages.
200 T T T T T T

150 |
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I I
ooz a4 008 088 [} a1z 0w 016
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T

Time offset 0

Fig. 6.8 Simulation results of unbalanced LTI load supplied with nonsinusoidal voltage

5. HGL supplied from a source of sinusoidal asymmetrical voltage

Next, a Harmonic Generating Load (HGL) as shown in Fig. 6.9 was connected to a
sinusoidal symmetrical voltage with line voltage rms value equal to 100 volts. This particular
case was included to verify that the model with the HGL is working as per the expectations. The

results of simulation are shown in Fig. 6.10.
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Fig. 6.9 Harmonics Generating Load

Fig. 6.10 Simulation results of HGL connected to sinusoidal asymmetrical voltage

Before the compensator is turned on, the load draws nonsinusoidal current from the source. The
load current is equal to the supply current. This can be seen in the plots from the beginning to t =
0.05 s. After the compensation is turned on at t = 0.05 s, the compensator injects the non-active
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components of the load current into the distribution system and the supply is loaded with only
the active current. As a result, the supply current is in phase with the supply voltage. The peak
and rms values of the supply current waveforms are much smaller compared to those of the load

current after compensation. The load current is not naffected by the compensator.
6. HGL supplied from a source of nonsinusoidal and symmetrical voltage

The HGL shown in Fig. 6.9 was connected to nonsinusoidal voltage with the crms values

of the harmonics

Ug, =100e% v, Ugs=20el% v, Uy, =20e/% v,,

Ug, =100 1127 v, Uy =202 v, U, =207 1120 v,
Up, =100 v, U =202 v, U, =20e12 v,

The voltage harmonics were introduced at t> = 0.1 s while the compensator was turned on at t; =
0.1 s. The result of compensation is shown in Fig. 6.10. Even when the voltage is sinusoidal and
symmetrical, the HGL load draws nonsinusoidal current from the source. This is seen between
the start to t; = 0.05 s in the figure. The compensator current is zero in this period. When the
compensator is turned on at t; = 0.05 s, it injects the non-active components of the current into
the distribution system. As a result, the supply is only loaded with the active currents. The supply
current is proportional to the supply voltage. Since the supply voltage is sinusoidal and
symmetrical, the supply current after compensation is also sinusoidal and symmetrical in this
period of time. The load current on the other hand is unaffected by the compensator and draws its
normal current, which is nonsinusoidal. Next, the voltage harmonics are introduced at t> = 0.1 s.
The load current also changes as a result. Since the compensator is already on, it adjusts to the

change in the supply voltage and injects a different compensator current into the distribution
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system. As a result, the supply current is still in phase with the supply voltage. Observe that the
supply current after compensation is proportional to the supply voltage and since the voltage is
distorted, so is the supply current after compensation. The load with the compensator has ideal

loading quality.

Fig. 6.11 Simulation results of HGL connected to nonsinusoidal voltage

Observe that for each of the cases given above, the supply current is proportional to the
supply voltage after compensation. This result may seem strange, in particular because the
current after compensation in most of the above given cases is either asymmetrical, or distorted,
or both. This is because the goal of compensation of the algorithm used above is to reduce the

supply current after compensation to the active current. As such, whatever the nature of the
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voltage waveform, is reflected on the supply current waveform after compensation. There are
some approaches where the goal of compensation is to get sinusoidal symmetrical current even at
nonsinusoidal or asymmetrical supply voltage. Although achieving such a goal is possible, the
rms of the resulting supply current after compensation is higher than the rms value of the active
current, which is the minimum current necessary for the energy transfer from the supply to the

load.

6.8 Conclusion

Some of the most commonly used algorithms for the generations of the reference current
signal in Switching Compensators do not produce the desired results at voltage asymmetry and
distortion. This is mainly because such algorithms are not able to distinguish the degradation of
Loading Quality from that of Supply Quality. That shortcoming is overcome in this chapter by
developing the compensator reference current algorithm based on the Currents Physical
Components (CPC) power theory which distinguishes degraded Supply Quality from degraded
Loading Quality. As a result, the CPC based algorithm, with the goal of compensation to reduce
the supply current to the active current after compensation, improves the power factor to unity of
both linear as well as Harmonic Generating Loads, at supply voltage asymmetry as well as
distortion. The waveform supply current after compensation is in phase and proportional to the

supply voltage.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Conclusion

This dissertation presents a solution of one of the unsolved problems of electrical
engineering, namely, how to describe power properties and how to compensate three-phase loads

supplied with asymmetrical and nonsinusoidal voltage.
Results obtained in the research and reported in this dissertation enable:

e description of loads supplied with asymmetrical and nonsinusoidal voltage

and currents in power terms
e design of compensator for power factor improvement of such loads.

These results apply to Linear Time Invariant (LTI) as well as to Harmonic Generating Loads

(HGLS).

It is also now known that voltage asymmetry does affect the form of the power equation

of LTI loads. The parameters that the load powers are dependent on are affected, however.

The results presented in this dissertation contribute to closing the chapter on power
theory development of three-phase three-wire systems with periodic voltages and currents.
Results of these studies also provide the answer to one of the most important questions on
compensation, namely the power factor of LTI as well as HGL loads can be improved to unity

even at the supply voltage asymmetry.

This dissertation also demonstrates that the Currents’ Physical Components (CPC)
framework can be extended to three-phase systems with asymmetrical voltages and currents, and

to Harmonic Generating Loads (HGLS).
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7.2 Suggestions for future work

Results in this dissertation were obtained based on theoretical analysis. Their application
to compensator control could be seem as a next step in research. Also, the scope of the research
presented in this dissertation was limited to three-phase three-wire systems. It can be extended to
three-phase four-wire systems. Similarly, this dissertation can be used as a platform for the
description of the power properties of three-phase loads with non-periodic voltages and currents.

The CPC based algorithm can also be used for the design and control of hybrid compensators.
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APPENDIX A — SIMULINK BLOCK DIAGRAMS

Block for active current calculation
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Block for harmonic current components
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APPENDIX B - MATLAB CODES

Code used for Asymmetrical Sinusoidal VVoltage and LTI Load

% IT solves A&S for LTI
% Problem of incorrect Yd corrected in this file

[

% This part is for initialization for constants
clear all

clc

alp = -.5 + ((sqrt(3))/2) * 1i ;

f=60;

omega = 2*pi * f ;

% % Ex.l: Supply is symmetrical and load is balanced and resistive
% %$LOAD PARAMETERS

$ Z rs =1 ;

$ Zz st = 1;

$ Z tr = 1;

% %$SUPPLY PARAMETERS

% U r = 100+01;

% U s = -50 - (50 * sqrt(3))*1i;

$ U t = -50+ (50 * sgrt(3))*1i;

o
o
[l

x:2, Refer illust 4,pg 28 onwards of Ch.7 of Professor's book

% % LOAD PARAMETERS

Z rs = inf ;

Z st = 1;

Z tr = 0+1*11i;

% %% Unbalanced Resistive Load
% Z rs = 140;

% Z_ st = 15;

% Z_tr = 25;

oe

o
°

%$SUPPLY PARAMETERS S&S

oe

% U r = 100+01;
% U s = -50 - (50 * sqrt(3))*1i;
5 U t =-50+ (50 * sqrt(3))*1i;

SUPPLY PARAMETERS : Used for illustration and in General Exam
=100;
= =50 -sqgrt(3)*501i;

o\°

(e e e
t n =

S oHEHEAA AR A A A A A
The actual program starts from here.... everything before this is given
Calculations of basic paramters based on input

oe

oe

Y rs =1/ Z_rs);
Y st =1/ Z_st);
Y tr =1 / 7Z tr);
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U rms = sqrt((U r * conj(U r))+(U s * conj(U s))+(U t * conj(U t))) ; % This
line is key !!!

% Calculation of more specific parameters

Up (1/3) (U r + alp * U s + (power(alp,2)) * U _t);% Pos seq voltage
Un= (1/3) * ( U r + (power(alp,2)) * U s+ alp * U t );%Neg seq vol
Uz=(1/3) * (Ur+ Us+ Ut ); % zero seq voltage

U rms_art = sgrt(3) * sqgrt((U p * conj (U p))+(U n * conj(U n))) ;

Ur art = U p + Un ;

U s art= U p * conj(alp) + alp * U n;

U t art= U p * (alp) + conj(alp) * U n;
U rs art = U r art - U s art ;

U st art = U s art - U t art ;

U tr art = U t art - U r art ;

% BRANCHE CURRENT

irs=Yrs * U rs art ;

i st =Y st * U st art ;

i tr =Y tr * U tr art ;

$LINE CURRENTS

R =1 rs-i tr;

S =1 st-i rs;

T =1 tr-i st;

_rmsl = sqrt( power (abs(i R),2) + power(abs(i S),2) + power(abs(i T),2));
3COMPLEZ POWER

CP =U r art * conj(i R)+ U s art*conj (i S)+U _t art*conj(i T);
POWERS CACULATED FROM COMPLEX POWER

oe

P = real (CP) ;

Q = imag (CP) ;

% EQUIVALENT PARAMETERS FOR THE NEW BALANCED CIRCUIT

Y b = conj(CP) / power (U rms art,2) ;

G b = real(Y b); $ real of Y b or eqv balanced conductance

B b = imag (Y b); % eqv balanced susceptance

Y e=Yrs + Y st + Y tr; % eqv admittance

G e = real (Y e);% eqv conductance

B e = imag(Y e);%eqv susceptance

Yd=Ye-YDb;

Ap=-1%* (Y st +alp * Y tr + (conj(alp)) * Y rs ); % posi. seqg unbalance
admittance

An=-1%* (Y st + conj(alp) * Y tr + alp * Y rs ) ; % neg seq unbalance
admittance

i act = G b * U rms art;

i rea = abs(B b) * U rms_art;

I Ru P=An>*Un+Yd*Up;

I RuN=Ap*Up+Yd*Un;

i unb = sqrt(3) * sgrt( power (abs(I Ru P),2) + power(abs(I Ru N),2) ) ;

i rms = sqrt( power (i act,2) + power(i rea,2) + power(i unb,2) );
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= U rms art * i act ;
U rms_art * i rea ;
= U rms art * i unb ;

O O o
coNN
Il

S= sqgrt( power(P,2) + power(Q,2) + power(D u,2));

pf =P 2/ S ;

a complex = (U n /U p); % this is complex quantity "a"
a=abs (a_complex) ;

theta=angle (a_complex) ;

Y dl = (( 3 / power(U rms_art,2) ) * ( ( Y st * (U r art * conj (U r art)))+ (
Y tr * (U s art * conj (U s art)))+( ¥ rs * (U t art * conj(U_t art))))) -

Y e;

% Y d is Asymmetry dependent unbalance admittance

Bcb=-1%*Bb;

% the following are terms that i used in my analysis to simplify

% expressions... they will be easier to follow if my paperwork is referenced
Ycd tst = (1i * 2*a*cos(theta)) / ( 1 + power(a,2)) ;% this variable is cl in
paper

Ycd ttr = (1i * 2*a*cos(theta-(2*pi/3))) / ( 1 + power(a,2)); % this is c2
Ycd trs = (1i * 2*a*cos(theta+(2*pi/3))) / ( 1 + power(a,2)); % this is c3

%calculated coeffieceints of Trs, Tst and Ttr in equation

oe

again, A B C and D calcualted below are there to simplify analysis. They
will be easier to follow if my paperwork is referenced.

o\°

I am calling the coef or Trs as A , Tst as B and Ttr as C....
= (l+a_complex)* Ycd trs - 1li*(conj(alp)+a complex*alp );
(1+a_complex)* ( Ycd tst - 1i);
(1+a_complex)* Ycd ttr - 1li*(alp+a complex*conj (alp));
=Yd* (1+ a complex) + A p + a complex * A n ;

O QWP oe

oe

calculation of coeffieceints in final equation

[

% real and imaginary parts of the coefficeints...
A real = real(A);

B real = real(B);
C real = real(C);
D real = real(D);
A imag = imag(A);
B imag = imag(B);
C _imag = imag(C);
D imag = imag (D) ;

o\°

Declaring matrices coef mat and cnst mat for solving
Dont confuse these elements A mn and B mn with the earlier A B C and D

o\°

This is to declare matrix as coefficeints of Trs, Tst and Ttr in egns
11 = U rs art*conj (U _rs_art);
A 12 = U st _art*conj (U st art);

oo
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A 13 = U tr art*conj(U_tr art);

A 21 = A real;
A 22 = B real;
A 23 = C real;
A 31 = A imag;
A 32 = B _imag;

A 33 = C_imag;

B 11 = -1 *B b * power(U rms_art,2);
B 21 = -1* D real;
B 31 = -1* D imag;

o)

% declaring matrix

coef mat (A 11,A 12,A 13;A 21,A 22,A 23;A 31,A 32,A 33];
cons mat = [B 11;B 21;B 31];

%% Alternative Compensator

Kcon=Yd*Us art + alp * A p *Up+ An * conj(alp) * U n;
K trs = Ycd trs * U s art- 11 * U p - 1i * U n;

K tst = Ycd tst * U s art- 1i * alp * U p - 1i * conj(alp) * U n;
K ttr = Ycd ttr * U s art- 1i * conj(alp) * U p - 1i *alp * U n;

coef mat alt =

[A 11,A 12,A 13;real (K trs),real (K tst),real (K _ttr);imag(K trs),imag(K tst),1i
mag (K_ttr)];

cons mat alt = [B 11;-real(K con);-imag(K con)];

ans mat alt = inv(coef mat alt) * cons mat alt;

coeff new =
[A 11,A 12,A 13;real (K trs),real (K tst),real (K ttr);A 31,A 32,A 33];

cons new = [B 11;-real (K con);B 31];

ans _mat new = inv(coeff new) * cons new; % the values of compnesator
susceptances

T rs new = ans mat new(1l,1);

T st new = ans mat new(2,1);

T tr new = ans mat new(3,1);

ans_mat = inv(coef mat) * cons mat; % the values of compnesator susceptances
T rs = ans mat (

1, 1)_;
T st = ans mat(2,1);
T tr = ans mat(3,1);

$ n =1 for only original , n= 2 for only alternative, n=0 or other for
% both but the remaining program has original trs

n sel = 0;

% Section to Choose
if n _sel ==
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T rs =
T st =
T tr =
disp( ' ");
disp( ' ORIGINAL
fprintf (' T rs =
fprintf(' T st = %d \n',T_st);
fprintf (' T tr sd \n',T_tr);
disp (' The Structure of Compensator
else if n sel==
T rs = ans mat alt(1l,1);
T st = ans mat _alt(2,1);
T tr ans mat alt(3,1);

ans mat(1,1);
ans_mat(2,1);
ans mat(3,1);

COMPENSATOR VALUES IN SIEMENS');
sd \n',T rs);

")

")
ALTERNATIVE COMPENSATOR VALUES IN SIEMENS
")

disp( '
disp( '
disp( '
remained of the program:

fprintf(' T rs = %d \n',T _rs);
fprintf (' T st = %d \n',T_st);
fprintf(' T tr = %d \n',T_tr);
else

T rs alt = ans mat alt(1l,1);

T st alt = ans_mat _alt(2,1);

T tr alt = ans mat alt(3,1);
disp( " -=====--=  —o-------- ")
disp( " ");
disp( ' ALTERNATIVE COMPENSATOR VALUES IN SIEMENS');

fprintf(' T rs ALT = %d \n',T _rs_alt);
fprintf (' T st ALT = %d \n',T st alt);
fprintf (' T tr ALT = %d \n',T_tr alt);
T rs = ans mat(1l,1);
T st = ans mat(2,1);
T tr = ans mat(3,1);
disp( ' ");
disp( ' ORIGINAL COMPENSATOR VALUES IN SIEMENS');
fprintf(' T rs = %d \n',T _rs);
fprintf (' T st = %d \n',T_st);
fprintf(' T tr = %d \n',T_tr);
disp(' The Structure of Compensator ")
end
end

if T rs <0

X rs =-1/ (omega * T rs ) ;

fprintf (' Branch RS contains inductor of value ( Henry)
else

X rs = T rs / omega ;

fprintf (' Branch RS contains capacitor of value ( Farads)

end
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if T st <0

X st = -1/ ( omega * T st )
fprintf (' Branch ST contains
else
X st = T st / omega ;
fprintf (' Branch ST contains
end
if T tr <0
X tr = -1/ ( omega * T tr )
fprintf (' Branch TR contains
else
X tr = T tr / omega ;
fprintf (' Branch TR contains
end

’

inductor of wvalue

capacitor of wvalue

’

inductor of wvalue

capacitor of wvalue

( Henry)

(

Farads)

( Henry)

(

Farads)

sd \n',X_st);

$d \n',X st);

$d \n',X _tr);

$d \n',X _tr);

% THE FOLLOWING PORTION CALCULATES CURRENTS AND VOLTAGES BEFORE AND AFTER

% THE COMPENSATOR AND CALCULATES THE PF AND VERIFIES IF COMPENS.

$The following are the values before compensation

val =[P,Q,D u,S,pf];

disp( ' ");

disp ("' ")

disp( ' ALL VALUES ARE W.R.T. ARTIFICAL ZERO ' );
disp( ' VALUES BEFORE COMPENSATION : ' );

disp( ' )
fprintf (' Active current = %d \n',i act);
fprintf (' Reactive current = %d \n',i rea);
fprintf (' unbalance current = %d \n',i unb);
fprintf (' Total RMS = %d \n',i rms);

disp( ' )
fprintf (' Current in R Phase = %d \n',abs(i R));
fprintf (' Current in S Phase = %d \n',abs(i S));
fprintf (' Current in T Phase = %d \n',abs(i T));
fprintf (' RMS Current = %d \n',i rmsl);

disp ("' ")

fprintf ('Active Power P = %d \n',P);

fprintf (' Reactive Power QO = %d \n',Q);

fprintf (' Unbalanced Power Du = %d \n',D u);
fprintf (' Apparent Power S = %d \n',S);

fprintf (' Power Factor PF = %d \n',pf);

% The following are the values after compensation

%% Calculation of equivalent admittances after compensation

Y rs new =
Y st new
Y tr new

Y rs + T rs * 11 ;
Y st + T st * 11 ;
Y tr + T tr * 1i;
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% Imp of load and comp in delta structure

Zrsnd=1/Y rs new;

Z st nd=1/ Y st new;

Z tr n d 1/ Y tr new;

Z r nd (Z rsnd™*2trnd) (
Z snd=(2Zstnd?*2Z2Zrsn

Z tnd=(2Z2stnd?®*2trnd) (
i rs comp =T rs*1i * U rs art ;

i st comp = T st*1i * U st art ;
i tr comp T tr*li * U tr art ;

d / Z rs nd+Z st nd+ Z tr n d);
d) / (Zrsnd+Z st nd+ 2z trnd);
d / Z rs nd+Z st nd+ Z tr n d);

i r comp = i rs comp-i tr comp;

i s comp = i st comp- i rs comp;

it comp = i tr comp- i st comp;

i Rnew =1 R + 1 r comp;

i S new =1 S + i s comp;

i Tnew =1 T + 1 t comp;

i R new rms = abs (i R new);

1 S new rms = abs(i_ S new);

1 T new rms = abs (i T new);

% CUrrent may still not be equal... need to calculate reactive and unbl cur
Y e new = Y rs new +Y st newt+Y tr new;

G e new = real(Y e new);

B e new = imag (Y e new);

Y d new = (( 3 / power(U rms_art,2) ) * ( ( Y st new * (U r art *
conj (U r art)))+ ( Y tr new * (U s art * conj(U s art)))+( Y rs new *
(U t art * conj(U_t art))))) - Y e new;

Y_B new = Y e new - Y d new;

G b new = real(Y b new);
B b new = imag (Y b new);

% I tihnk this is where the problem is

A pnew = -1 * (Y st new + alp * Y tr new + (conj(alp)) * Y rs new )

posi. seq unbalance admittance

A n new = -1 * (Y st new + conj(alp) * Y tr new + alp * Y rs new ) ;

sgq_unbalance admittance

i act new = G b new * U rms_art;
i rea new = (B _b new) * U rms_art;

I Ru P new = A n new * U

n d new * U p;
I Ru N new = A p new * U p

+Y_
+ Y d new * U n;

i unb new = sqrt(3) * sqgrt( power (abs(I_Ru P new),2)
power (abs (I _Ru N new),2) ) ;
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% to check for erros

o° oo

$ err2 = An - 11 * ( T st + T tr * conj(alp) + alp * T tr);
$ errl = Ap - 11 * ( T st + T tr * (alp) + conj(alp) * T tr);
% err3 = Y d + ((2*a)/ (l+power(a,2)))*1i * ( T st

o

ERROR CACLULATIONS PART

o\

although A ¢ p and A ¢ n not used in this code, these values used for
checking

o

Acp=-1i * (T st +alp * T tr + (conj(alp)) * T rs ); % posi. seq
unbalance admittance

A cn=-11i * (T st + conj(alp) * T tr + alp * T rs ) ;% neg seqg unbalance
admittance

Y cd= (2%a*li / (1 + power(a,2))) * ( T st * cos (theta) + T tr * cos

(theta - 2*pi/3 ) + T rs * cos(theta+2*pi/3));

errl = T rs * A 11 + T st * A 12 + T tr * A 13 + B b * power (U rms_art,2);
errll = T rs * power(abs(U rs art),2) + T st * power(abs(U st art),2) + T tr
* power (abs (U _tr art),2) + power (U rms art,2)* B b;

err2 = T rs * real(A) + T st * real(B) + T tr * real(C)+ real(D);

err3 = T rs * imag(A) + T st * imag(B) + T tr * imag(C)+ imag(D);
errd = A * T rs +B*T st *C*T tr + D;

err22 = real(T rs * A+ T st * B+ T tr * C + D);
err33 = imag(T rs * A + T st * B + T tr * C + D);
% all athe above were found to be almost or practiacally O

err5 = (Acp+Ap)+ (Acn+ An) *acomplex + (Y cd+ Y d)*(1+
a_complex) ;

% checking to see if the voltages wrt aritifical zeros are in some
% rations..

)

o

jas

K

3

0
|

r art = abs (U r art);
s_art rms = abs (U s art);
t = abs(U_t art);

)
[

| t
H
3
0
|

Rat vol sr U s art rms / U r art rms ;
Rat vol tr = U t art rms / U r art rms ;

Rat cur sr = 1 S new rms / i R new rms ;

Rat cur tr = i T new rms / i R new rms ;

% dISPLAYING results...

i rms new = sqrt( power (i act new,2) + power (i rea new,2) +
power (i unb new,2) );

P new = U rms_art * i act new ;

Q new = U rms _art * i rea new ;
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D u new =
S _new= sqrt( power (P _new,2)

U rms_art * i unb new ;

+ power (Q new, 2)

+ power (D_u new,2));

pf new = P new / S new ;

val =[P new,Q new,D u new,S new,pf new];

disp( ' ");

disp (' ")

disp( ' ALL VALUES ARE W.R.T. ARTIFICAL ZERO ' );

disp( ' VALUES AFTER COMPENSATION : ' );

disp( ' )

fprintf (' Active current = %d \n',i act new);

fprintf (' Reactive current = %d \n',i rea new);

fprintf (' unbalance current = %d \n',i unb new);

fprintf (' Total RMS = %d \n',i_rms_new);

disp( ' ')

fprintf (' Current in R Phase after compensation ( wrt art zero ) = %d
\n',abs (i R new rms));

fprintf (' Current in S Phase after compensation ( wrt art zero ) = %d
\n',abs (i S new rms));

fprintf (' Current in T Phase after compensation ( wrt art zero ) = %d
\n',abs (i T new rms));

fprintf (' RMS Current after compensation ( wrt art zero ) = &d

\n',1i rms new);

disp (' ")
fprintf ('Active Power after compensation P
fprintf (' Reactive Power after compensation Q

fprintf (' Apparent Power after compensation S = %
fprintf (' Power Factor after compensation PF =
disp ( ' )

fprintf (' RMS of voltage Ur wrt art zero =
fprintf (' Angle of voltage Ur wrt art zero
fporintf (' RMS of voltage Us wrt art zero =

(
(
(
fprintf (' Angle of voltage Us wrt art zero
(
(

(
(
fprintf (' Unbalanced after compensation Power Du
(
(

= %d \n',P new);
= %d \n',Q new);
= %d \n',D_u new);
d \n',S new);
%d \n',pf new);

d \n',U r art rms);
%d \n',angle(U r art));
d \n',U s art rms);

3d \n',angle(U_s art));

I o0 I oo I o°

fprintf (' RMS of voltage Ut wrt art zero = %d \n',U t art rms);
fprintf (' Angle of voltage Ut wrt art zero %d \n',angle(U_t art));
fprintf (' RMS of Line current Ir after compensation wrt art zero = %d
\n',1 R new rms);

fporintf (' Angle of Current Ir wrt art zero after compensation = %d
\n',angle (i R new));

fprintf (' RMS of Line current Is after compensation wrt art zero = %d
\n',i S new rms);

fprintf (' Angle of Current Is wrt art zero after compensation = %d

\n',angle (i S new));

fprintf (' RMS of Line current
\n',i T new rms);

fprintf (' Angle of Current It wrt art zero
\n',angle(i T new));

disp(' ");

disp(' Ir,

U s and U_t DY,

It after compensation wrt art zero =

after compensation =

I s and I_t after compensation wrt art zero are in phase with U r,
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disp("' ")

fprintf (' Ratio of voltage Us_art and Ur_art %d \n',Rat_vol sr);

fprintf (' Ratio of current Is art and Ir art = %d \n',Rat cur_ sr);
( )
( )

fprintf (' Ratio of voltage Ut art and Ur art = %d \n',Rat vol tr);
fprintf (' Ratio of current It art and Ir art = %d \n',Rat cur_ tr);
disp (' new test : " );

Y cd = Ycd tst * T st + Ycd ttr * T tr +Ycd trs * T rs ;

Acp = - 1i * (T st + alp * T tr + conj(alp)*T _rs);

Acn = - 1i * ( T st + conj(alp) * T tr + alp*T _rs);

(Y cd + Y d);
(Acp + A p);
(Acn+A n);

eq val = (Y cd + Y d)* U s art + (Acp + A p)*alp*U p +
(Acn+A n) *conj (alp) *U_n;

Code for Asymmetrical nonsinusoidal system

%% INITIAL PARAMETER INITIALIZATION

clc
clear all
alp = -.5 + ((sqrt(3))/2) * 1i ;

[

% This is voltage is similar to illustration

o o oe

o\°
c cc

r = [100,0,0,0,50,0,25];
s =[] -50 - 86.61,0,0,0,-25+443.33,0,-12.5-21.651i];
t (0,0,0,0,0,0,07;

o\°

o\°

This is where the voltage is defined, change here

g r=[100,0,0,0,2.5,0,2];

Us = [ -50 - (50 * sgrt(3))*11,0,0,0,-2+(1.5*sqgrt(3)*11),0,-2-(2 *
sgqrt (3))*1i];

vt=1[0,0,0,0,0,0,01;

oe

% Symmetrical Distorted supply

$ U r = [90+01,0,0,0,9,0,9]1;

$ Us = [ -45 - (45 * sqrt(3))*11,0,0,0,-4.5 + (45 * sqrt(3))*1i,0,-4.5 -
(4.5 * sqrt(3))*1i];

5 U t = [-45+45*sgrt(3)*11,0,0,0,-4.5-4.5*sqrt (3)*11,0,-4.5+4.5*sqrt (3)*1i];
% % % S&S

$ U r = [90+01,0,0,0,0,0,0];

5 U s [-45-45*sgrt (3)*11,0,0,0,0,0,0];

5 U t [-45+45*sqrt (3)*11,0,0,0,0,0,07;

% % Zero Seq

$Ur=1[90,0,0,0,0,0,0];

$Us=1190,0,0,0,0,0,01;
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$ Ut = [90,0,0,0,0,0,0];
U bold = [U r',U s',U t'];

THD r =sqrt( power(abs(U r(l1,5)),2) + power(abs(U r(l,7)),2) Y/

abs (U r(1,1));

U bold = [norm(U_r);norm(U_s);norm(U_t)];

U bold rms = norm(U bold);

U rms tot ~sg=0;P tot sg=0;C n tot=0;i r rms sqg=0;1 a rms sqg=0;i u rms sqg=0;

Q tot sg=0;Du_ tot ~sg=0;1 rms tot _sg= 0; S _ind sqg=0; D scat _sqg=0;C_ nl _tot=0;1i rms
_har sg=0; 1_a_h_sq 0;

i scat _rms sg=0;1i rmsl sg=0;i reac rms sg=0;i act rms sg=0;i unb rms sg=0;1i a
ct n rms sg=0;1i R rms sq = 0 ;i S rms sq = 0;1 T rms sq = 0;

1 R new rms sg=0;1i S new rms sg=0;i T new rms sg=0;U r rms sg=0;U s rms sqg=0;
U t rms sqg=0;

disp( ' ALL VALUES ARE W.R.T. ARTIFICAL ZERO ' );

disp( ' -=—=—===--=  —————————- )

%% CALCULATION OF ACTIVE POWER AND INITIAL BALANCED

for n=[1,5,7]

% THIS PART HAS THE ACTUAL LOAD PARAMETERS... CHANGE HERE
Z rs(l,n)=inf;%

Z_st(l,n)=(l+l*n*li) -2i/n)/ ((1+1*n*1i)-2i/n);%

Z tr(l,n)=1+1*n*11;%

Y rs(l,n)=1/ Z rs(l,n);

Y st(l,n)=1/Z2 st(l,n);

Y tr(l,n)=1/Z2 tr(l,n);

% Calculations of Various voltages ( wrt to Art. Zero )

Up(l,n) = (1/3) * (U r(l,n) + alp * U s(l,n) + (power(alp,2)) * U t(l,n));%
Pos seq voltage

Un(l,n) = (1/3) * (U r(l,n) + (power(alp,2)) * U s(l,n)+ alp * U t(l,n)

) s $Neg seq vol

U z(l,n) = (1/3) * (U r(l,n) + U s(l,n) + U t(l,n) ); %
U rms_art(l,n) = (3) * sgrt((U p(l,n) * conj (U p(l,n)
conj (U_n(l,n))));

U rms tot sg=U rms tot sg+power (U rms art(l,n),2); % adding up squares of RMS
for later

zero seq voltage
)+

))+(U_n(l,n) *

U r art(l,n) = U_p(l n) + Un(l,n) ; % Ur wrt art zero
U s art(1l,n)=U p(l,n) * conj(alp) + alp * U n(l,n);

U t art(1,n)=U p(1l,n ) * (alp) + conj(alp) * U n(l,n);

U rs art(l,n) = U r art(l,n) - U s art(l,n) ;

U st art(1l,n) U s art(l,n) - U t art(l,n) ;

U tr art(l,n) = U t art(l,n) - U_r_art(l n) ;

U r rms _sq = U_r_rms_sq + power (abs (U _r art(l,n)),2);
Uisirmsisq = U s rms_sq + power (abs(U_ s art(l,n)),2);

U t rms sq = U t rms sq + power(abs (U t art(l,n)),2);

U rms_artl(1l,n) = sgrt(power (abs(U r art(l,n)),2) +
power (abs(U_s art(l,n)),2)+power(abs(U_t art(l,n)),2));
& **xFx*x*xx BRANCH CURRENTS ****x*%

i rs(l,n) =Y rs(l,n) * U rs art(l,n) ;

i st(l,n) =Y st(l,n) * U st art(l,n) ;

i tr(l,n) =Y tr(l,n) * U tr art(l,n) ;

% * k Kk Kk kK LINE CURRENTS *kk kK kK

i R(l,n) =i rs(l,n)-1i tr(l,n);

i s(l,n) =1 st(l,n)-1i rs(l,n);
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i T(l,n) =i tr(l,n)-1i st(l,n);

i R rms sqg = 1i R rms sgq + power(abs(i R(1,n)),2);

1 S rms sq = 1 S rms sq + power(abs(i S(1,n)),2);

i T _ 1 T rms sq + power(abs(i T(1l,n)),2);

$Complex Powers for Harmonic and Balanced Admittances

C n(l,n)=U r art(l,n)*conj(i R(1l,n))+

U s art(l,n)*conj (i S(1,n))+U t art(l,n)*conj(i T(1l,n));

C n tot=C n tot+C n(l,n); % The sum of Complex powers for each harmonic.. Is
this mistake like Budanue ?

-
H
-
3
@
0]
Q
Il

Y b(l,n) = (conj(C_n(l,n)))/power (U rms art(l,n),2); % equivalent balanced
admittance or eqgv admittance of balance load

G b(l,n) = real(Y b(l,n)); % real of Y b or eqv balanced conductance

B b(l,n) = imag(Y¥ b(l,n)); % eqgv balanced susceptance

i rmsl(l,n) = sqgrt( power (abs(i R(1,n)),2) + power(abs(i S(1,n)),2) +
power (abs(i T(1,n)),2));

i rmsl sq = i rmsl sq + power (i rmsl(1l,n),2);

end

P n tot= real(C n tot);

G b tot= P n tot/U rms tot sqg;

1 act orig = G b tot * sqrt(U rms tot sq); % TO find the total orginial
conductacne

fprintf (' Supply voltage rms from harmonics : %d \n',sqrt (U _rms_ tot sq));
fprintf (' Line R voltage rms : %d \n', sqrt(U_r rms sq));

fprintf (' Line S voltage rms : %d \n', sqrt(U_s rms sq));

fprintf (' Line T voltage rms : %d \n', sqrt(U_t rms sq));
fprintf (' Supply voltage rms from line voltages : %d
\n',sqrt(U_r rms sq+U s rms sg+U t rms sq));

disp (' Line Current RMS values : ');

fprintf (' [[ir|]| = %d \n',sqrt(i R rms_sq));

fprintf (' [[is|| = %d \n',sqrt(i_ S rms_sq));

fprintf (' ||it]] = %d \n',sqrt(i_T_rms_sq));

fprintf (' total RMS calculated from line currents, ||i|| = %d \n',

sgrt (i R rms sg+i S rms sqg+i T rms sq));
Z mat (2 rs(1,1);Z2 st(1,1);Z tr(1,1)];

%% CALCULATION OF UNBALANCE PARAMTERS AND OTHER POWERS
~a =20 ;
for n=[1,5,7]

-

a complex(l,n) = (U n(l,n) /U p(l,n)); % this is complex quantity "a"
Y e(l,n) =Y rs(l,n) + Y st(l,n) + Y tr(l,n); % egv admittance

G e(l,n) = real(Y e(1l,n));% eqv conductance

B e(l,n) = imag(Y e(l,n));%eqv susceptance

Y d(1,n)= Y e(l,n) - Y b(l,n);

T FxxxkAkx UNBALANCE PARAMETERS* *** % &k

A p(l,n) =-1* (Y st(l,n) + alp * Y tr(l,n) + (conj(alp)) * ¥ rs(l,n) ) ;
posi. seq unbalance admittance
A n(l,n) = -1 * (Y st(l,n) + conj(alp) * Y tr(l,n) + alp * Y rs(l,n) ) ; %

neg seq unbalance admittance
a(l,n)=abs(a _complex(l,n));
theta(l,n)=angle(a complex(1l,n));
deg = theta(l,n)*180/pi;

%*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k~k~k~k~k~k~k~k~k************************

T Fxxxkkkx DIFFERENT CURRENTS FOR THE HARMONICS* ***** % &k

%Section below uses rms for harmonics..which is wrong.
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%1 a h(l,n) = G b(l,n) * U rms_art(l,n);

i a h(l,n) = Gb tot * U rms_art(l,n); 3

i scat rms(l,n) = abs(-G b tot + G b(l,n))* U rms art(l,n);
i rea(l,n) = abs(B b(l,n)) * U rms_art(l,n);

I Ru P(1,n) A n(l,n) * Un(l,n) + Y d(l,n) * U p(l,n);

I RuN(l,n) = A p(l,n) *Up(l,n) + Y d(l,n) * U n(l,n);

i unb(l,n) = sgrt(3) * sgrt( power(abs(I Ru P(1l,n)),2) +
power (abs(I_Ru N(1,n)),2) ) ;

F****SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER****x*

i reac_rms_sg=i reac_rms_sg+power (i rea(l,n),2);

1 unb rms sg=i unb rms sg+power (i unb(1l,n),2);

1 scat rms sq = 1 scat rms sq + power (i scat rms(l,n),2);

% THE FOLLOWING ACTIVE CURRENT IS NOT HTE CORRECT ONE THOUGH.. ITS NOT USED
i a h sg=i a h sgt+power(i a h(l,n),2);

$ TOTAL RMS ..CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS
i rms(l,n) = sgrt( power(i a h(l,n),2) + power(i rea(l,n),2) +
power (i _unb(l,n),2) + power (i scat rms(l,n),2));

i rms _har sq = i rms har sq + power(i rms(1l,n),2);

end

i rms_tot sq = power (i act orig,2)+ i scat rms sq + i unb rms sq +
1 reac_rms_sq ;

P = sqrt (U rms tot sq * 1 a h sq); % This P is using active currents for
each.. which looks like is useless

Pl = sqrt(U_rms_tot sq) * i a h ; % does not look different from above

P act = sqrt(U_rms tot sqg) * i act orig;

D scat = sqgrt(U_rms tot sg * i scat rms_sq);
Q = sqgrt(U_rms_tot sg * i reac rms_sq);

D unb = sqrt(U_rms_tot sqg * i unb rms sq);
$power (P_n tot,2) - power (P,2)%+ power (D scat,2) not useful after error
S 1 sq =1 rms har sq * U rms_tot sqg;% Using act, reac , .. currents

[

S 2 sqg =1 rmsl sq * U rms_tot sqg; % Using Line currents

S 3 sqg =1 rms tot sq * U rms_tot sg;

$Pow diff=(S 1 sg- S 2 sg-power(D scat,2)); % This gave D scatered

S 4 sq = power(P,2) + power (D scat,2) + power(Q,2) + power (D unb,2); % Using
squares of powers for reference

U p;U n;Y e; Y b;Y d;

pf = P / sqrt(S_4 sq);

disp ('CPC currents rms before compensation: ')

fprintf ('Active Current ||ia|| = %d \n',i act orig);

fprintf ('Scattred current |[|is|| = %d \n',sqrt(i scat rms sq));
fprintf ('Reactive current ||ir|| = %d \n',sqrt(i reac rms sq));
fprintf ('Unbalanced current |[|iu|| = %d \n',sqgrt(i unb rms sq));
fprintf ('Total RMS [[i]| = %d \n',sgrt(i rms tot sq));

disp ('Powers before compensation: ')

fprintf ('Active power P = %d \n',P);

fprintf ('Reactive power Q = %d \n',Q);

fprintf ('Unbalanced power Du = %d \n',D unb);

(
(

fprintf ('Scattered power Ds = %d \n',D_scat);
("Apparent power S = %d \n',sqrt(S_2 sq));
(

fprintf
fprintf (' Power factor pf = %d \n',pf);

%% COMPENSTOR RELATED SECTIONS - TOTAL COMPENSATION WITH ideal COMPENSATOR
for n = [1,5,7]
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Ycd tst(l,n) = (1i * 2*a(l,n)*cos(theta(l,n))) / ( 1 + power(a(l,n),2));
Ycd ttr(l,n) = (1i * 2*a(l,n)*cos(theta(l,n)-(2*pi/3))) / (1 +

power (a (1,n),2))

Ycd trs(l,n) = (1i * 2*a(l,n)*cos(theta(l,n)+(2*pi/3))) / (1 +
power(a(l,n),2));

$calculated coeffieceints of Trs,
calcualted below are there to simplify analysis.

% the following are THE THREE TERMS of YcD

Tst and Ttr in equation A B C and D
They

’

% will be easier to follow if my paperwork is referenced.

% I am calling the coef or Trs as A , Tst as B and Ttr as C....

A(l,n) = (l+a _complex(l,n))* Ycd trs(l,n) - 1li*(conj(alp)+a complex(l,n)*alp
) ;

B(l,n) = (l+a_complex(l,n))* ( Ycd tst(l,n) - 1i);

C(l,n) = (l1+a_complex(l,n))* Ycd ttr(l,n) -

li* (alpta complex(1l,n)*conj (alp));

D(l,n) = Y d(1,n) * (1 + a complex(l,n)) + A p(l,n) + a complex(l,n) *

A n(l,n) ;

o

A real(1l,
B real

11(1,n)

[
o]

~

~

~

~

~

R =Rl S = = i e
W W whhDNDNDE -
W NEFE WNRFE WN
Soooooon
5pBBBBBE

~

o)

coef mat

[A 11(1,n
n),A 33(

cons mat

This is to declare matrix as coefficeints of

3 calculation of coeffieceints in final equation
5 real and imaginary parts of the coefficeints...

n) = real(

real

(1,n));

—_— — — — — — ~—

Declaring matrices coef mat and cnst mat for solving
Dont confuse these elements A mn and B mn with the earlier A B C and D

Trs, Tst and Ttr in eqns

U rs art(l,n)*conj (U _rs art(l,n));

¢ declaring matrix

= U st art(l,n)*conj (U st art(l,n));

= U tr art(l,n)*conj (U _tr art(l,n));

= A real(l,n);

= B real(l,n);

= C real(l,n);

= A imag(l,n);

= B imag(l,n);

= C imag(l,n);

= -1 *B b(l,n) * power (U rms art(l,n),2);
= -1* D real(l,n);

= -1* D imag(l,n);

),A 12(1,n),A 13(1,n);A 21(1,n),A 22(1,n),A 23(1,n);A 31(1,n),A 32(1
1 1

,n)1;
[B 11(1,n);B 21(1,n);B 31(1,n)];
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= inv(coef mat) * cons mat; % the values of compnesator susceptances
T rs(l,n) ans mat(1,1);
T st(l,n) = ans mat(2,1);

n) ans mat(3,1);

disp (' ")

fprintf (' HARMONIC ORDER = %d \n',n);
disp( ' ");

disp( ' COMPENSATOR VALUES IN SIEMENS') ;
fprintf(' T rs = %d \n',T _rs(1l,n));
fprintf (' T st = %d \n',T _st(l,n));
fprintf(' T tr = %d \n',T _tr(l,n));

disp( ' )

if T rs(l,n) > 0
E rs(l,n)= T rs(l,n) / (2 * pi * 60 * n);

fprintf (' Compensator element T rs capacitor( Farads) = %d
\n',E_rs(1,n));
else

E rs(l,n)= -1 / (T _rs(l,n)* 2 * pi * 60 * n) ;

fprintf (' Compensator element T rs inductor (H) = 3%d \n',E_rs(l,n));

end

if T st(l,n) > 0
E st(l,n)= T st(l,n) / (2 * pi * 60 * n);

fprintf (' Compensator element T st capacitor( Farads) = %d
\n',E st(l,n));
else
E st(l,n)= -1 / (T_st(l,n)* 2 * pi * 60 * n) ;
fprintf (' Compensator element T st inductor (H) = 3%d \n‘,E_st(l,n));

end

if T tr(l,n) > 0
E tr(l,n)= T tr(l,n) / ( 2 * pi * 60 * n);

fprintf (' Compensator element T tr capacitor( Farads) = %d
\n',E _tr(l,n));
else
E tr(l,n)= -1 / (T_tr(l,n)* 2 * pi * 60 * n) ;
fprintf (' Compensator element T tr inductor (H) = %d \n',E_tr(l,n));
end
end

o\°
o\°

i R comp rms sg=0;1i S comp rms sqg=0;i T comp_ rms sqg=0;
%% Section to calculate the currents and powers overall after comp--
C n tot new=0;i rmsl sq new = 0;

for n=[1,5,7]

Y rs new(l,n) =Y rs(l,n) + T rs(l,n) * 1i ;
Y st new(l,n) =Y st(l,n) + T st(l,n) * 1i ;
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Y tr new(l,n) =Y tr(l,n) + T tr(l,n) * 1i ;

i rs comp(l,n) =T rs(l,n)*1li * U rs art(l,n) ;
i st comp(l,n) = T st(l,n)*1i * U st art(l,n) ;
i tr comp(l,n) = T tr(l,n)*1i * U tr art(l,n) ;
i R comp(l,n) =1 rs comp(l,n)-i tr comp(l,n);
i S comp(l,n) =1 st comp(l,n)-i rs comp(l,n);
1 T comp(l,n) =1 tr comp(l,n)-i st comp(l,n);
1 R comp rms(1l,n) = abs(i R comp(l,n));

1 S comp rms(l,n) = abs(i S comp(l,n));

1 T comp rms(l,n) = abs(i T comp(l,n));

1 R comp rms sq = 1 R comp rms_sq + power (i R comp rms(l,n),2);
i S comp rms_sg i S comp rms sq + power (i S comp rms(l,n),2);
i T comp rms sq = 1 T comp rms_sq + power (i T comp rms(l,n),2);

i R new(l,n) i R(l1,n) + i R comp(l,n);
i S new(l,n) =1 S(1,n) + 1 S comp(l,n);
i T new(l,n) =1 T(l,n) + i T comp(l,n);

= abs(i R new(l,n));
abs (i S new(l,n));
= abs (i T new(l,n));
- . _ 1 R new rms_sq + power (i R new rms(l,n),2);
_new_rms_sq 1 S new rms_sq + power(i S new rms(l,n),2);
_new_rms_sq = 1 T new_rms_sq + power (i T new rms(l,n),2);
" CUrrent may still not be equal... need to calculate reactive and unbl cur
Complex Powers for Harmonic and Balanced Admittances
C n new(l,n)=U r art(l,n)*conj(i R new(l,n))+
U s art(l,n)*conj(i S new(l,n))+U t art(l,n)*conj (i T new(l,n));
C n tot new=C n tot new+C n new(l,n); % The sum of Complex powers for each

| — — —

o\O

o\O

harmonic.. Is this mistake like Budanue °?

Y b new(l,n) = (conj(C_n new(l,n)))/power (U rms art(l,n),2); % equivalent
balanced admittance or eqgv admittance of balance load

G b new(l,n) = real(Y b new(l,n)); % real of Y b or eqv balanced conductance
B b new(l,n) = imag(Y b new(l,n)); % eqv balanced susceptance

i rmsl new(l,n) = sqgrt( power (abs(i R new(l,n)),2) +

power (abs(i S new(l,n)),2) + power(abs(i T new(l,n)),2));

i rmsl sq new = i rmsl sg new + power (i rmsl new(l,n),2);

end

P n tot new= real(C n tot new);

G b tot new= P n tot new/U rms_ tot sg;

i act orig new = G b tot new * sqrt (U rms tot sq);

1 rms har sq new=0;1i reac rms sq new=0;1 unb rms sq new=0;1 scat rms sg new
=0;1 a h sg new=0;

for n=[1,5,7]

a _complex(l,n) = (U n(1l,n) /Uip(l,n)) ; % this is complex quantity "a"
Y e new(l,n) = Y rs new(l,n) + Y st new(l,n) + Y tr new(l,n); % eqv
admittance

G e new(l,n) = real(Y e new(l,n));% eqv conductance
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e new(l,n) = imag(Y¥ e new(l,n));%eqgv susceptance
~d new(l,n)=Y e new(l,n) - Y b new(l,n);
Fxxkxxx UNBALANCE PARAMETERS******x*x%
_p new(l,n) = -1 * (Y st new(l,n) + alp * Y tr new(l,n) + (conj(alp)) *
_rs new(l,n) ) ; posi. seq unbalance admittance
n new(l,n) = -1 (Y st new(l,n) + conj(alp) * Y tr new(l,n) + alp *
~rs new(l,n) ) ; % neg seq unbalance admittance
a(l,n)=abs(a complex(l,n));
theta (1, n)=angle(a complex(l,n));

o

%lw [ vl
*

Ak A Ak kA kA hhhkrA kA hh kA kA hhkdhhkhkrkhkkrhhkhkrhkxhk*x*%x

xHFFxHxxxx DIFFERENT CURRENTS FOR THE HARMONICS*****kkk*xx

o

o

%$Section below uses rms for harmonics..which is wrong.
%1 a h(l,n) = G b(l,n) * U rms art(l,n);
i a h new(l,n) G b tot new * U rms art(l,n);

o©

1 scat rms new(l,n abs (-G _b tot new + G b new(l,n))* U rms art(l,n);
B b

) =
i rea new(l,n) = abs( " new(l,n)) * U rms art(l,n);
I Ru P new(l,n) = A n new(l,n) * Un(l,n) + Y d new(l,n) * U p(l,n);
I Ru N new(l,n) = A p new(l,n) * U p(l,n) + Y d new(l,n) * U n(l,n);
i unb new(l,n) = rt * sqrt( power(abs(I Ru P new(l,n)),2) +
(

(3
power (abs (I _Ru N new (1, )y, 2) )
E****SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER****x*
1 reac_rms_sg new=i reac rms_sq newtpower (i rea new(l,n),2);
i unb rms sq new=i unb rms sq new+power (i unb new(l,n),2);
1 scat rms sg new = i1 scat rms sqg new + power (i scat rms new(l,n),2);
% THE FOLLOWING ACTIVE CURRENT IS NOT HTE CORRECT ONE THOUGH.. ITS NOT USED
i a h sq new=i a h sg newtpower (i a h new(l,n),2);

% TOTAL RMS ..CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS
i rms new(l,n) = sqrt( power(i a h new(l,n),2) + power(i rea new(l,n),2) +

power (i _unb new(l,n),2) + power (i scat rms new(l,n),2));

i rms har sq new = i rms har sq new + power (i rms new(l,n),2);

end

i rms_tot sq new = power (i _act orig new,2)+ 1 scat rms sg new +

i unb rms sq new + 1 reac_rms_sg new ;

P new = sqrt(U rms tot sq * i a h sgq new); % This P is using active currents
for each.. which looks like is useless

Pl new = sqrt (U rms tot sgq) * i a h new ; % does not look different from
above

P act new = sqrt(U rms tot sqg) * i act orig new;

D scat new = sqgrt (U rms tot sg * i scat rms_sqg new);

Q new = sqgrt(U_rms_tot sg * i reac rms_ sg_new);

D unb new = sqgrt(U rms_tot sg * i unb rms sqg new);

$power (P_n tot,2) - power (P,2)%+ power (D _scat,2) not useful after error

S 1 sqg new = i rms har sq new * U rms tot sqg;% Using act, reac , .. currents

S 2 sg_new i rmsl sq new * U rms _tot sq; % Using Line currents

S 3 sqg new = i rms tot sg new * U rms tot sq ;

$Pow diff=(S 1 sq- S 2 sg-power (D scat,2)); % This gave D scatered

S 4 sg new = power (P new,2) + power (D scat new,2) + power(Q new,2) +
power (D _unb new,2);

pf new = P new / sqrt(S_4 sq new);

disp (' ")

disp(' Values after complete compensation using ideal complex compensator ')
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disp (' Line Current RMS values : ');

fprintf (' ||ir|| = %d \n',sgrt(i R new rms sq));
fprintf (' [[is|| = %d \n',sqrt(i_ S new rms sq));
fprintf (' [[it|]| = %d \n',sqrt(i T new rms_sq));
fprintf (' total RMS calculated from line currents, |[|i]] = %d \n',

sgrt (i _R new rms sg+i S new rms sqg+i T new rms_sq));

disp (' Compensator Current RMS values : ');

fprintf (' ||ir com|| = %d \n',sqgrt(i R comp rms sq));

fprintf (' ||is com|| = %d \n',sqrt(i S comp rms sq));

fprintf (' |[[it com|| = %d \n',sqrt(i T comp rms sq));

disp ('CPC currents rms after compensation: ')

fprintf ('Active Current |[[ial| = %d \n',i act orig new);

fprintf ('Scattred current |[is|| = %d \n',sgrt(i_scat rms_sq new));
fprintf ('Reactive current |[ir|| = %d \n',sgrt(i reac_rms_sq new));
fprintf ('Unbalanced current ||iu|| = %d \n',sqrt(i unb rms_sq new));
fprintf ('Total RMS ||i]] = %d \n',sqrt(i_rms_tot_sq_new));

disp ('Powers after compensation: ')

fprintf ('Active power P com = %d \n',P new);

fprintf ('Reactive power Q com = %d \n',Q new);
fprintf ('Unbalanced power Du com = %d \n',D unb_ new);

(
(
fprintf ('Scattered power Ds com = %d \n',D scat new);
(
(

fprintf ('Apparent Power S com = %d \n',sqrt(S 4 sq new));
fprintf ('Power factor pf com = %d \n',pf new);
& —m——————— end of section for powers and pf calculations after comp---

% OPTIMIZATION PORTION

disp( ' )
disp( ' SECTION FOR OPTIMIZATION ' );
disp( ' )

o\°
o\°

% OPTIMIATION PART for branch T rs

lcf = .1 ; % the fraction the inductive reactnace is of the capacitive
if T_rs(1,1)<0 % IF FUNDAMENTAL NEEDS INDUCTOR
fprintf (' Since fund. T rs requires inductor, we choose L branch \n '");
L nume=0;L deno =0;
Lrs = -1 / (T _rs(1l,1)* 2 * pi * 60 * 1); % used when Lrs started as
fundamental
% Section used to calculated the nume and deno of the summaation
forn=1[1,5,7]
L deno = L deno + T _rs(l,n)* power(abs(U rs art(l,n)),2)/n;
L nume = L nume + power (abs(U rs art(l,n)),2)/( 2
*pi*60*n*n) ;
end
L rs op = -1* L nume / L deno;
if L rs op <0
fprintf (' Error in design because reactance is negative !!!! /n")
end
disl=0;
forn=1[1,5,7]
disl = disl + power (((T rs(l,n) + 1 / (2 * pi * 60 * n *
L rs op ) )* abs(U_rs art(l,n))),2);
end
disl;

$%END of nume and deno section
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% % This following section is to compare if the optimized value is the best
dis2=0;

forn=1[1,5,7]
dis2 = dis2 + power (((T rs(l,n) + 1 / ( 2 * pi * 60 * n *
Lrs ) )* abs(U rs art(l,n))),2);
end
dis2;
Sdisp (' $%%5%5%%%%% ") ;
fprintf (' The inductor element for branch T rs = %d \n',L rs op);

% fprintf (' The current dis sqgr using this value = %d \n',disl);
$fprintf (' The current dis sqgr using this funda value = %d \n',dis2);
disp(¢('" - ==== ")
for n=11,5,7] % finding the susceptance of the optimized comp.

T_rs_op(l,n)=—1/ (2*pi*60*n*L_rs op);
end

end

if T_rs(1,1)>0 % IF FUNDAMENTAL NEEDS CAPACITOR
fprintf (' Since fund. T rs needs capacitor, we choose LC Branch \n');
L nume=0;L deno =0;
% Section used to calculated the nume and deno of the summaation
forn=11,5,7]
L nume = L nume + ((2*pi*60)*n*T rs(l,n)*
power(abs(U_rs_art(l,n)),2))/((1—lcf*n*n));
L deno = L deno +
power (abs (U_rs art(l,n)),2)* ((2*pi*60*n)~2)/(( 1-lcf*n*n)"2);
end
C rs op = 1* L nume / L deno;
if C rs op <0

fprintf (' Error in design because reactance is negative !!!! /n")
end
L rs op = lcf / (376.99%376.99*C rs op );
dis C1=0;
forn=1[1,5,7]
dis Cl = dis Cl + power( ( (T rs(l,n)-
(2*pi*60*n*C_rs op)/ (l-lcf*n*n* ((2*pi*60)"2) ) )* abs (U rs art(l,n)) ),2);
end
dis C1;
fprintf (' The capa element for branch T rs = %d \n',C _rs op);
fprintf (' The inductor in series for branch T rs = 3%d \n',L_rs_op);
% fprintf (' The current dis sqr using this value = %d \n',dis CI1);
disp(¢('" —==== ")
for n =1 1,5,7] % finding the susceptance of the optimized comp.
T rs op(l,n)= ( n *
2*pi*60*C _rs op)/ (l+n*n* ((2*pi*60)"2)*C rs op*L rs op)
T rs op(l,n)= ( n * 2*pi*60*C rs op)/(l-n*n*lcf);
end
end
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o\

% END OF OPTIMIZATION PART FOR T RS

o\
o\

S % OPTIMIATION PART for branch T st
if T st(1,1)<0
fprintf (' Since fund. T st requires inductor, we choose L branch \n');
L nume=0;L deno =0;
Lst = -1 / (T _st(1,1)* 2 * pi * 60 * 1); % used when Lst started as
fundamental
% Section used to calculated the nume and deno of the summaation
forn=1[1,5,7]
L deno = L deno + T st(l,n)~* power(abs(U_st_art(l,n)),2)/n;
L nume = L nume + power (abs(U st art(l,n)),2)/( 2
*pi*60*n*n) ;
end
L st op = -1* L nume / L deno;
if L st op <0
fprintf (' Error in design because reactance is negative !!!! \n'")
end
dis3=0;
for n=1[1,5,7]
dis3 = dis3 + power (((T_st(l,n) + 1 / ( 2 * pi * 60 * n *
L st op ) )* abs(U_st art(l,n))),2);
end
dis3;

$%END of nume and deno section

[

% % % This following section is to compare if the optimized value is the best

forn=1[1,5,7]
dis4 = dis4 + power (((T_st(l,n) + 1 / (2 * pi * 60 * n *
Lst ) )* abs(U_st art(l,n))),2);
end
dis4;
fprintf (' The inductor element for branch T st = %d \n‘,L_st_op);

% fprintf (' The current dis sqr using this value = %d \n',dis3);
$fprintf (' The current dis sqgr using this funda value = %d \n',dis4);
disp¢("  ———e- ")
for n=1[1,5,7] % finding the susceptance of the optimized comp.

T st op(l,n)=-1/ (2*pi*60*n*L st op);
end

end

if T st(1,1)>0
fprintf (' Since fund. T st needs capacitor, we choose LC Branch \n');
L nume=0;L deno =0;
% Section used to calculated the nume and deno of the summaation
forn=1[1,5,7]
L nume = L nume + (n*T_st(l,n)*
power (abs (U_st _art(l,n)),2))/((l-1lcf*n*n));
L deno = L deno +
power (abs (U st _art(l,n)),2)* (2*pi*60*n*n)/(( l-lcf*n*n)"2);
end
C st op = 1* L nume / L deno;
if C_st op <0
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fprintf (' Error in design because reactance is negative !!!! /n'")

end
dis C3=0;
L st op = lcf / ( 376.99%376.99*C_st op );
forn=11,5,7]
dis C3 = dis C3 + power( ( (T st(l,n)-
(2*pi*60*n*C_st_op)/(1 lcf*n* n*((2*p1*60) 2) ) )* abs(U_st art(l,n)) ),2);
end
dis C3;
fprintf (' The capa element for branch T st = %d \n',C_st op);
fprintf (' The inductor in series for branch T st = %d \n',L st op);
% fprintf (' The current dis sgr using this value = %d \n',dis C3);
% disp(¢(" === ')
L st op = lcf / ( 376.99%376.99*C_st op );
forn=1[1,5,7] % finding the susceptance of the optimized comp.
T st op(l,n)= ( n *
2*pi*60*C_ st op) /(l *n* ((2*pi*60)~2)*C_st op*L st op);
T st op(l,n)= ( n * 2*pi*60*C_st op) )/ (l-n*n*1cf) ;

end
end
$$END of nume and deno section

oe

% END OF OPTIMIZATION PART FOR T st

oe

o

s % OPTIMIATION PART for branch T tr
if T tr(1,1)<0
% fprintf (' Since fund. T tr requires inductor, we choose L branch \n');
L nume=0;L deno =0;
$Ltr = -1 / (T_tr(l,1)* 2 * pi * 60 * 1); % used when Ltr started as
fundamental
% Section used to calculated the nume and deno of the summaation
forn=1[1,5,7]
L deno = L deno + T tr(l,n)* power (abs(U tr art(l,n) ) /n;

L nume = L_nume + power (abs (U _tr art(l,n)), 2)/( 2
*pi*60*n*n) ;

end
L tr op = -1* L nume / L deno;
if L tr op <0
fprintf (' Error in design because reactance is negative !!!! /n'")
end
dis5=0;
forn=1[1,5,7]
dis5 = dis5 + power (((T tr(l,n) + 1 / (2 * pi * 60 * n *
L tr op ) )* abs(U tr art(l,n))),2);
end
dis5;
fprintf (' The inductor element for branch T tr = %d \n',L _tr op);
% fprintf (' The current dis sqgr using this value = %d \n',dis5);
disp(¢(" === ")
for n=11,5,7] % finding the susceptance of the optimized comp.
T tr op(l,n)=-1/ (2*pi*60*n*L tr op);
end

end
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if T tr(1,1)>0
fprintf (' Since fund. T tr needs capacitor, we choose LC Branch \n');
L nume=0;L deno =0;
% Section used to calculated the nume and deno of the summaation
forn=1[1,5,7]
L nume = L nume + (n*T_tr(l,n)*
power(abs(U_tr_art(l,n)),2))/((1—lcf*n*n));
L deno = L deno +
power(abs(U_tr_art(l,n)),2)*(2*pi*60*n*n)/(( 1-lcf*n*n)"2);
end
C tr op = 1* L nume / L deno;
if C_tr op <O

fprintf (' Error in design because reactance is negative !!!! /n"')
end
L tr op = lcf / ( 376.99%376.99*C _tr op );
dis C5=0;
forn=11,5,7]
dis C5 = dis C5 + power( ( (T tr(l,n)-
(2*pi*60*n*C_tr op)/ (l-lcf*n*n* ((2*pi*60)~"2) ) )* abs(U_tr art(l,n)) ),2);
end
% dis C5;
fprintf (' The capa element for branch T tr = %d \n',C_tr_op);
fprintf (' The inductor in series for branch T tr = 3%d \n',L_tr_op);
% fprintf (' The current dis sqr using this value = %d \n',dis C5);
% disp(¢(" === ),
forn=1[1,5,7] % finding the susceptance of the optimized comp.
T tr op(l,n)= ( n *
2*pi*60*C_tr op)/ (l+n*n* ((2*pi*60)"2)*C_tr op*L tr op);
T tr op(l,n)= ( n * 2*pi*60*C _tr op)/(l-n*n*lcf);
end

end
$T rs op,T st op,T tr op

o\°

% END OF OPTIMIZATION PART FOR T tr

oe

oe

-

R c rms sg=0;1 S ¢ rms sg=0;1 T c rms sqg=0;

%% POWERS ETC OF JUST THE OPT COMP
C n tot ¢c=0;1i rmsl sq c=0;
for n=[1,5,7]

Y rs c(l,n)= T_
Y st c(l,n)= T_
Y tr c(1,n)=T

& x*%x%% BRANCH CURRENTS ****xx*

irs c(l,n) =Y rs c(l,n) * U rs art(l,n) ;
i st c(l,n) =Y st c(l,n) * U st art(l,n) ;
i tr c¢(l,n) =Y tr c(l,n) * U tr art(l,n) ;
% * Kk Kk k kK LINE CURRENTS * Kk Kk Kk Kk xk

i Rc(l,n) =1irs c(l,n)-1i tr c(1l,n);

i S c(l,n) =i st c(l,n)-1i rs c(l,n);

i T c(l,n) =i tr c(l,n)-1i st c(1l,n);
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i R c rms(l,n)=abs(i R c(l,n));
i S c rms(l,n)=abs(i S c(l,n));
1 T c rms(l,n)=abs(i T c(1l,n));
i Rcrms sq =1 R c rms sq + power(i R c rms(l,n),2);
1 S crms sq =1 S c rms _sq + power(i S c rms(l,n),2);
1 Tcrms sq =1 T c rms sq + power(i T c rms(l,n),2);

$Complex Powers for Harmonic and Balanced Admittances

Cn c(l,n)=U r art(l,n)*conj(i R c(l,n))+

U s art(l,n)*conj(i S c(1l,n))+U_t art(l,n)*conj(i T c(l,n));

C n tot ¢c=C n tot c+C n c(l,n); % The sum of Complex powers for each

harmonic.. Is this mistake like Budanue ?

Y b c(l,n) = (conj(C_n_c(l,n)))/power(U_rms_art(l,n),2); % equivalent
balanced admittance or eqv admittance of balance load

G b c(l,n) = real(Y b c(1,n)); % real of Y b or eqv balanced conductance

B b c(l,n) = imag(Y¥Y b c(1l,n)); % egv balanced susceptance

i rmsl c(1l,n) = sqgrt( power(abs(i R c(1l,n)),2) + power(abs(i S c(1l,n)),2) +
power (abs(i T c(1,n)),2));

i rmsl sq ¢ = i rmsl sq ¢ + power (i rmsl c(1l,n),2);

end

U rms_art;

P n tot ¢c= real(C n tot c);

G b tot ¢c= P n tot ¢/U rms_tot sqg;

i act orig ¢ = G b tot ¢ * sqrt(U rms tot sq); % TO find the total orginial
conductacne

%% SECTION TO CALCULATE POEWRS AFTER OPTIMIZATION

C n tot f=0;1i rmsl sq f=0;i R f rms sq =0;1 S f rms sq =0;1i T f rms sq =0;
for n = [1,5,7]

Y rs f(1,n)=Y rs(l,n)+ T rs op(l,n) * 1i ;
Y st £(1,n)=Y st(l,n)+ T st op(l,n) * 1i ;

Y tr £(1,n)=Y tr(l,n)+ T tr op(l,n) * 1i ;

o\°

Section to compare if fundamental element does better than optimal
Y rs f(1,n)=Y rs(l,n)+ T rs(l,1) * 11i ;
Y st £(1,n)=Y st(l,n)+ T st(l,1) * 1i ;
Y tr £(1,n)=Y tr(l,n)+ T tr(l,1) * 1i ;

o od° oe

oe
oe

*%%%%* BRANCH CURRENTS ****%%

- oo

irs f(l,n) =Y rs £f(1,n) * U rs art(l,n) ;

i st £(1,n) =Y st £(1,n) * U st art(l,n) ;

i tr £(1,n) =Y tr £(1,n) * U tr art(l,n) ;

% * Kk k% k% k% % LINE CURRENTS * Kk Kk Kk k% k%

i R f(l,n) =i rs £(1,n)-1i tr £(1,n);

i S f(l,n) =i st £(1,n)-1i rs £(1,n);

i T £(1,n) = i tr £(1,n)-1i st £(1,n);

i Rf rms sq =1 R f rms sq + power(abs(i R £(1,n)),2);
i S f rms sgq =1 S f rms sq + power(abs(i S f(1,n)),2);
i T f rms sq =1 T £ rms _sq + power(abs(i T £(1,n)),2);
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$Complex Powers for Harmonic and Balanced Admittances

Cn f£(1,n)=U _r art(l,n)*conj(i R £(1,n))+

U s art(l,n)*conj(i S f£(1,n))+U t art(l,n)*conj (i T £(1,n));

C n tot f=C n tot f+C n f(1l,n); % The sum of Complex powers for each

harmonic.. Is this mistake like Budanue ?

Y b £f(1,n) = (conj(C n f(1l,n)))/power (U rms art(l,n),2); % equivalent
balanced admittance or eqv admittance of balance load

G b f(l,n) = real(Y b £(1,n)); % real of Y b or eqv balanced conductance

B b f(l,n) = imag(Y b f(1,n)); % eqgv balanced susceptance

i rmsl f(1l,n) = sqgrt( power(abs(i R £(1,n)),2) + power(abs(i S f(1,n)),2) +
power(abs(i T f£(1,n)),2));

i rmsl sq £ =1 rmsl sq f + power (i rmsl £(1,n),2);

end

P n tot f= real(C n tot f);
G b tot f= P n tot f/U rms tot sqg;

i act orig f

G b tot f * sqgrt (U _rms tot sq);
i rms har sq f=0;1i

reac_rms_sqg f=0;1i unb rms sq f=0;i scat rms sqg f

=l

0;

=0;1 a h sq f

dlSp (' )

disp (' Values after optimized compensator ')

fprintf ('Supply current in line R rms | [iR] | %d \n',sqrt(i R f rms sq));
fprintf ('Supply current in line S rms |[|iS|| = %d \n',sqgrt(i S f rms sq));
fprintf ('Supply current in line T rms ||iT|| = %d \n',sqrt(i T f rms sq));
fprintf ('Opt Comp current in line R rms ||iR opl|| = %d
\n',sqgrt(i R c rms _sq));

fprintf ('OPt Comp current in line S rms |[iS op|| = %d
\n',sqrt(i S c rms sq));

fprintf ('Opt Comp current in line T rms | [iT opl| = %d

\n',sqrt(i T c rms_sq));

for n=[1,5,7]

a complex(l,n) = (U n(l,n) /U p(l,n)) ; % this is complex quantity "a"

Y e f(1,n) =Y rs £(1,n) + Y st £(1,n) + Y tr £(1,n); % eqgv admittance

G e f(l,n) = real(Y e f£(1,n));% eqv conductance

B e £f(1,n) = imag(Y e f(1,n));%eqgv susceptance

Y d f(l,n)=Y e £(1,n) - Y b £(1,n);

% * Ak Ak xxx UNBALANCE PARAMETERS* ** %% *x*xx%

A p f(l,n) =-1* (Y st £(1,n) + alp * Y tr £(1,n) + (conj(alp)) *

Y rs f(1,n) ) ; % posi. seq unbalance admittance

An f(l,n) = -1 * (Y st £(1,n) + conj(alp) * Y tr f£(1,n) + alp * ¥ rs f(1,n)
)

; % neg seq unbalance admittance
a(l,n)=abs(a _complex(l,n));
theta(l,n)=angle(a complex(1l,n));

%***********************************************

% ****xxxxx DIFFERENT CURRENTS FOR THE HARMONICS*****xxxxxx

%Section below uses rms for harmonics..which is wrong.

%1 a h(l,n) = G b(l,n) * U rms art(l,n);
iah f(l,n) = Gb tot £ * U rms art(l,n); 3%
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i scat rms f(1l,n) = abs(-G b tot £ + G b f(1,n))* U rms art(l,n)
i rea f(l1,n) = abs(B_b_f(l,n)) * U_rms_art(l,n);

I RuP f(l,n) =An f(l,n) * Un(l,n) +Y d £(1,n) * U p(l,n);

I RuN f(l,n) =Ap f(l,n) * Up(l,n) + Y d f(l,n) * U n(l,n);

i unb f(l,n) = sqrt(3) * sqrt( power(abs(I Ru P f(l,n)),2) +
power (abs(I Ru N f(1,n)),2) ) ;

s****SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER*****

1 reac_rms sq f=i reac rms sq f+power (i rea f(l,n),2);

i unb rms sq f=i unb rms sq f+power (i unb f(1,n),2);

i scat rms sqg f = i scat rms sq f + power(i scat rms f(1l,n),2);

% THE FOLLOWING ACTIVE CURRENT IS NOT HTE CORRECT ONE THOUGH.. ITS NOT USED
i ah sq f=i a h sq f+power(i a h f£(1,n),2);

% TOTAL RMS .CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS
i_rms_f(l,n) = sqrt( power (i _a h f(1,n),2) + power(i rea f(1,n),2) +
power (i _unb f(1 2) + power (i scat rms f(1,n),2));

i rms har sq f = 1_rms_har_sq_f + power (i rms f(1,n),2);

end

i rms _tot sq f = power (i act orig f,2)+ 1 scat rms sq f + i unb rms sq f +
i reac_rms _sq_ f ;

P f = sqrt (U rms tot sq * i a h sq f); % This P is using active currents for
each.. which looks like is useless

Pl £ = sgrt(U_rms_tot sq) * i a h £ ; % does not look different from above

P act f = sqrt(U_rms tot sqg) * i act orig f;

D scat f = sqrt(U_rms tot sqg * 1_scat_rms_sq_f);

Q f = sqrt(U_rms_tot sq * i reac rms sq f);

D unb f = sgrt(U_rms_tot sg * i unb rms sq f);

spower (P_n tot,2) - power(P,2)%+ power (D scat,2) not useful after error
S 1 sqg f=1irms har sq £ * U rms tot sqg;% Using act, reac , .. currents
S 2 sqg f=1irmsl sq £ * U rms _tot sq; % Using Line currents

S 3 sqg f =1 rms tot sq £ * U rms tot sq ;

$Pow diff=(S 1 sg- S 2 sg-power (D scat,2)); % This gave D scatered

S 4 sq f = power(P_f,2) + power (D scat f,2) + power(Q f,2) +

power (D unb f,2);

pf £ =P f / sgqrt(S_4 sq f);

3 % —mmm——————- end of section for powers and pf calculations after opt---
%% PRINTING SOME VALUES FOR CHECKING
%P,Q,D unb,D scat,pf,P new,Q new,D unb new,D scat new,pf new,P f£f,Q f,D unb f,
scat f,pf £
Y rs, Yirsif Y rs new

Y st,Y st £f,Y st new

Y tr,Y tr £,Y tr new

oe o T

oe

fprintf ('Supply Current active component rms ||ial|= %d
\n',sqrt(i a h sq f));

fprintf ('Supply Current Scattered component rms ||is]||= %d
\n',sqrt (i scat rms sq f));

fprintf ('Supply Current reactive component rms | |ir||= %d
\n',sqrt(i reac rms sq f));

fprintf ('Supply Current unbalanced component rms ||iul|= %d
\n',sqrt (i unb rms sqgq f));
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"y P _f)
\n',Q f);
%d \n',D unb_ f);

fprintf ('Active power P op = %d \n
fprintf ('Reactive power Q op = %d
fprintf ('Unbalanced power Du op =
fprintf ('Scattered power Ds op = %d \n',D scat f);
fprintf ('Apparent Power S op = %d \n',sqrt(S_4_sq_f));
fprintf ('Power factor pf op = %d \n',pf f);

Code of HGL

o)

% This is modified for latest version.. measured at line terminals

% START FROM THIS POINT ONWARDS TO CHECK IF THE CIRCUIT CONFGURATIONS IS THE

SAME AND FOLLOW DOWNWARDS. ..

clc

clear all

alp = -.5 + ((sqrt(3))/2) * 1i ;
$ % SUPPLY PARAMETERS

oe
oe

%% Symmetrical and Sinusoidal
[1000,0,0,0,0,0,07;

[-500-866.031,0,0,0,0,0,0
[-500+866.031,0,0,0,0,0,01

o
o

o
o
® ® O

T
s
t

o
o

oe
oe

oe
oe

00,0,0,100
+0,0,0,0,0];
0,0,0,0,0

4

i h rs par = [
i h st par [
i h tr par = [

o
o

O O O
~
o O =

o
o

4

o
o

% Symmetrical but Nonsinusoidal

r = [1000,0,100,0,100,0,07;

s = [-500-866.031,0,100,0,-50+86.61,0,07;
t [-500+866.031,0,100,0,-50-86.61,0,01;

o

o\°
® ® O

oe

oe

o\°

ihrs par = [0,100,0,100,0,0,100];
i h st par = [0,0,0,0,0,0,0]
i h tr par = [0,0,0,0,0,0,0]

o\°

o\°

’
4 4 4

o\°

%% Asymmetrical but Sinusoidal

~r = [1000,0,0,0,0,0,07;

s = [-353.56 - 353.561,0,0,0,0,0,0]
t = [-353.56 + 353.561,0,0,0,0,0,0]

o\°

oe
® ® O

’
’

oe

o\°
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% ih rs par = [0,100,0,0,100,0,100];
% 1 h st par = [0,0,0,0,0,0,0];
$ 1 h tr par = [0,0,0,0,0,0,0];

Asymmetrical but Nonsinusoidal

er [1000,0,100,0,0,0,01;
e s = [-250-433.021,0,-50+86.61,0,0,0,0];
e t =1[0,0,0,0,0,0,0];

100,0,
0,0,01;
0,0,01;

i h rs par = [ 0,1001;
i h st par

i h tr par = [

Il
—

o o o
~

o o
~

o o o
~

o o o
~

4 4

%% Declare here
U rms_tot sg=0;P tot sg=0;C n tot=0;i r rms sg=0;i a rms sqg=0;i u rms_sqg=0;
Q tot sg=0;Du_tot sg=0;i rms tot sg=0;S ind sqg=0;D scat sg=0;C nl tot=0;
i scat rms sg=0;i rmsl sg=0;i reac rms sqg=0;i act rms sg=0;i unb rms sqg=0;
i unb p sq = 0;i unb n sg=0;
fprintf (' Results for the n belonging to Nc \n');
for n=1 : 1 : 7
$fprintf (' Results for n = %d \n',n);
% THIS PART HAS THE ACTUAL LOAD PARAMETERS... CHANGE HERE
Z sou(l,n)= 0.1+0.3*n*1i ; % Source inductance is 3*.000265 H
Z rs(l,n) 2+n*21,
Z st (l,n)=inf;
Z tr(l,n)= 1nf,o,
Y rs(l,n)=1/Z2 rs(l,n);
Y st(l,n)=1/Z2 st(l,n);
Y tr(l,n)=1/Z tr(l,n);
ir(l,n) = (er(l,n) -es(l,n) ) / (2 * 2z sou(l,n) + Z rs(l,n) );
is(l,n) = (es(l,n) -exr(l,n) )/ (2 * Z sou(l,n) + 2 rs(l,n) );
i t(l,n) =20 ;
U r(l,n) e r(l,n) - 2 sou(l,n) ir(l,n);
U s(1,n) e s(l,n) - Z sou(l,n) * i s(l,n);
U t(1l,n) e t(l,n) - Z sou(l,n) i t(l,n);
% Calculations of Various voltages ( wrt to Art. Zero )
Up(l,n) = (1/3) * (U r(l,n) + alp * U s(l,n) + (power(alp,2)) * U t(l,n));%
Pos seqg voltage
Un(l,n) = (1/3) * ( U r(l,n) + (power(alp,2)) * U s(l,n)+ alp * U _t(1l,n)
) s 3Neg seqg vol
U z(l,n) = (1/3) * (U r(l,n) + U s(l,n) + U t(l,n)); % zero seqg voltage
U rms_art(l,n) = (3) * sqrt((U p(l,n) * conj (U p(l,n)))+(U n(l,n) *
conj(U_n(l,n)))) ;

U rms_tot sg=U rms_ tot sqg+power (U rms art(1,n)
for later

12): 5

U r art(l,n) = U_p(l n) + U n(l,n) % Ur wrt art zero
U s art(1,n)=U p(l,n) * conj(alp) + alp * U n(l,n)

U t art(1,n)=U p(1l,n) * (alp) + conj(alp) * U n(l,n)

U rs art(l,n) = U r art(l,n) - U s art(l,n) ;
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U st art(l,n) = U s art(l,n) - U t art(l,n) ;

U tr art(l,n) = U t art(l,n) - U r art(l,n) ;

U rms _artl(l,n) = sqrt(power (abs(U r art(l,n)),2) +
power (abs(U_s art(l,n)),2)+power (abs(U_t art(l,n)),2));

% ***x*xxx BRANCH CURRENTS ******

i rs(l,n) =Y rs(l,n) * U rs art(l,n) ;
i st(l,n) =Y st(l,n) * U st art(l,n) ;
i tr(l,n) =Y tr(l,n) * U tr art(l,n) ;
% * k% k% k% k% % LINE CURRENTS * Kk Kk kK% k%

i R(l,n) =i rs(l,n)-1i tr(l,n);

i S(l,n) =i st(l,n)-1i rs(l,n);

i T(l,n) =i tr(l,n)-1i st(l,n);

i r rms = abs(i R(1,n))

i s rms= abs(i S(1,n))

i _t rms= abs(i T(1l,n))

%Complex Powers for Harmonic and Balanced Admittances

C n(l,n)=U r art(l,n)*conj(i R(1l,n))+

U s art(l,n)*conj(i S(1,n))+U_t art(l,n)*conj(i T(1l,n))

C n tot=C n tot+C n(l,n); % The sum of Complex powers for each harmonic..
Mistake like Budanue do not use this

if U rms_art(1l, ):= 0
Y b(1,n)=0;G b(l,n)=0;B b(l,n)=0;
else
Y b(l,n) = (conj(C_n(l,n)))/power(U_rms_art(l,n),2); B
equivalent balanced admittance or eqv admittance of balance load
G b(l,n) = real(Y b(l,n)); % real of Y b or eqv balanced
conductance
B b(l,n) = imag(Y¥ b(l,n)) ;% eqv balanced susceptance
end
% Y b(l,n) = (conj(C_n(l,n)))/power(U rms art(l,n),2) % equivalent balanced
admittance or eqv admittance of balance load
% G b(l,n) = real(Y b(l,n)); % real of Y b or eqv balanced conductance
% B b(l,n) = imag(Y b(l,n)); % eqgv balanced susceptance
i rmsl(l,n) = sgrt( power (abs(i R(1,n)),2) + power(abs(i S(1,n)),2) +

power (abs (i T(1,n)),2));
i rmsl sq = i rmsl sq + power (i rmsl(l,n),2);
% fprintf (' Positive sequence voltage Up = %d at %d \n',

abs (U p(1,n)),angle(U p(l,n))*180/pi);

% fprintf (' Negative sequence voltage Un = %d at %d \n',
abs (U n(l,n)),angle(U n(l,n))*180/pi);

% fprintf (' Zero sequence voltage Uz = %d at %d \n',

abs (U _z(1,n)),angle(U_z(1,n))*180/pi);

U
n_tot= real (C_n tot);
b tot= P n tot/U rms_tot sqg;

for n=1 :1 : 7
a _complex(l,n) = (U n(l,n) /U_p(l,n)) ; % this is complex quantity "a"
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Y e(l,n) =Y rs(l,n) + Y st(l,n) + Y tr(l,n); % egv admittance

G e(l,n) = real(Y e(1 ))'% eqv conductance

B e(l,n) = imag(Y e(l,n));%eqv susceptance

Y d(l,n)=Y e(l,n) - Y ~b(l,n);

& Fxxxkxx UNBALANCE PARAMETERS********

A p(l,n) =-1* (Y st(l,n) + alp * Y tr(l,n) + (conj(alp)) * Y rs(l,n) ) ;
posi. seq unbalance admittance

A n(l,n) = -1 * (Y st(l,n) + conj(alp) * Y tr(l,n) + alp * Y rs(l,n) ) ; %

neg seq unbalance admittance
a(l,n)=abs(a _complex(l,n));
theta(l,n)=angle(a complex(l,n));

QA AR A AR A AR A AR A KRR A KRR A KRR A KRR A KRR A AR A AR AR AR A A XA A A XA, X K

% ****xxxxx DIFFERENT CURRENTS FOR THE HARMONICS*****xxxxxx

S iiact(l,n) =G b(l,n) * U rms art(l,n);

i act(l,n) = G_b_tot * U rms_art(l,n);

i scat rms(l,n) = abs (- G_b_tot + G b(l,n))* U rms _art(l,n);
i rea(l,n) = abs(B b(l,n)) * U rms_art(l,n);

I Ru P(1,n) = A n(l n) * Un(l,n) +Y d(l,n) * U p(l,n);

I Ru N(1,n) = A p(l,n) * U p(l,n) + Y d(l,n) * U n(l n);

i unb p sqg = 1_unb_p_sq + power (abs(I _Ru P(1l,n)),2);

i unb n sqg = i unb n sgq + power (abs(I_Ru N(l,n)),2);

i unb(l,n) = sgrt(3) * sgrt( power(abs(I Ru P(1l,n)),2) +
power (abs(I Ru N(1,n)),2) ) ;

$*¥***SQUARING ALL CURRENTS OF EACH HARMONIC TO FIND POWERS LATER*****
1 _reac_rms_sg=i reac_rms_sg+power (i rea(l,n),2);

i act rms_sg=i act rms_ sg+power (i act(l,n),2);

i unb rms_sg=i unb rms_ sg+power (i unb(1l,n),2);

1 scat rms sq = i scat rms _sqg + power (i scat rms(l,n),2);
% TOTAL RMS ..CALCULATED FOR REFERENCE .... TO COMPARE BOTH WAYS
i rms(l,n) = sgrt( power(i act(l,n),2) + power(i rea(l,n),2) +

power (i _unb(l,n),2) + power (i scat rms(l,n),2));
i rms_tot sq = i rms tot sg + power(i rms(l,n),2);

end

Com pow = C nj;

i rms = sqrt(i _rms tot sq);

i acti = sgrt(i_act rms sq);

i react = sqrt(i reac rms_sq);
i unbal = sqrt(i unb rms sq);

1 scater = sqgrt(i_scat rms_sq);

i diffl = i rmsl sq - i rms tot sg ;% This suggests that the first RMS
current calculated usING Ir Is It doesnt give scattered

i diff2 = i rms tot sq - i reac rms sg- i act rms sg-i unb rms sqg-

i scat _rms sqg;

P = sqrt (U rms tot sg * i _act rms sq);

D scat = sqgrt (U rms tot sg * i scat rms_sq);

Q = sqgrt(U_rms_tot sg * i reac rms sq);

D unb = sqgrt(U_rms_tot sg * i unb rms sq);

$power (P_n tot,2) - power (P,2)%+ power (D _scat,2) not useful after error
S 1 sqgq =1 rms tot sq * U rms_tot sqg; % Using act, reac , .. currents
S_2_sq =1 rmsl sqg * U rms _tot sq ; % Using Line currents

$Pow diff=(S 1 sq- S 2 sg-power (D scat,2)); % This gave D scatered

S 3 sq = power(P,2) + power (D scat,2) + power(Q,2) + power (D unb,2); % Using
squares of powers for reference

AppPow=sgrt (S_2 sq);

U p;U n;Y e; Y b;Y d;
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fprintf (' || u || total Voltgae three phase rms : %d \n',sqgrt(U_rms tot sq));
fprintf(' || i || total current three phase rms : %d \n',

sgrt (i_rms_tot sq));

fprintf(' || i al| Active Current RMS %d \n',i acti )

fprintf(' || i r|| reactove Current RMS %d \n',i react )

fprintf (' || i s|| Scattered Current RMS %d \n',i scater )

fprintf (' ||i u p|| Unbalanced Current pos seq RMS %d \n',sqgrt(i _unb p sq));
fprintf (' ||i u n|| Unbalanced Current neg seq RMS %d \n',sqgrt(i unb n sq));
fprintf(' || i ul| Unbalanced Current RMS %d \n',i unbal )

fprintf(' || i al| Active Power : %d \n',P);

fprintf (' Q Reactive Power : %d \n',Q);

fprintf (' D s Scattered Power : %d \n',D_scat);

fprintf (' D _u Unbalanced Power : %d \n',D_unb);

fprintf (' S ¢ Apparent Power : %d \n',AppPow);

oe

% Section for the HGL
It is assumed that the generated harmonics are of the 2,4 and 7 sequence

o

u hgl rms sq = 0 ; i rms hgl sg=0;

P h n tot=0;U h rms tot sg=0;i h rmsl sg=0;S h tot sg=0;

for n = [1:1:7]
disp (' ")
fprintf (' KA KKK For HGL Order n = %d *****xkx \n',n )

Z sou(l,n)= 0.1+40.3*n*1i ;

i h rs(l,n) =1 h rs par(l,n) ;%* (2+n*21i) / (2+n*2i+7 sou(l,n));
i h st(l,n) = 1i h st par(l,n) ;%* (2+n*21i) / (2+n*2i+7 sou(l,n));
i h tr(l,n) = 1i h tr par(l,n) ;%* (2+n*21i) / (2+n*2i+7 sou(l,n));

%1 load(1l,n)

=1 h rs par(l,n) - i h rs(l,n);
%abs (1 _load(l,n));

g *kxxxkx LINE CURRENTS ****%%x

i h R(1,n) = ih rs(l,n)-1i h tr(l,n);
i h S(l,n) =1ih st(l,n)-1i h rs(l,n);
ih T(l,n) =ih tr(l,n)-1i h st(l,n);

abs(i h R(l,n));abs(i h S(1,n));abs(i h T(l,n));

Uh r(l,n) = - Z sou(l,n) i h R(1,n);
Uh s(l,n) = - Z sou(l,n) * i h S(1,n);
Uh t(l,n) = - Z sou(l,n) i h T(1,n);
% Calculations of Various voltages ( wrt to Art. Zero )
Uh p(l,n) = (1/3) * (U h r(l,n) + alp * U h s(l,n) + (power(alp,2)) *
U h t(l,n));% Pos seq voltage
Uh n(l,n) = (1/3) * ( U h r(l,n) + (power(alp,2)) * U h s(l,n)+ alp *
U h t(l,n) );%Neg seq vol
Uh z(1l,n) = (1/3) * (U h r(l,n) + U h s(l,n) + Uh t(l,n)) ;% zero seq
voltage
U h rms _art(l,n) = sqrt(3) * sqgqrt((U_h p(l,n) * conj(U h p(l,n)))+(U_h n(l,n)
* conj (U_h_n(1,n)))) ;
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U h rms tot sg=U h rms tot sg+power (U h rms art(l,n),2); % adding up squares
of RMS for later

Uh r art(l,n) = U h p(l,n) + U h n(l,n) $ Ur wrt art zero
U h s art(1,n)=U_h p(l,n) * conj(alp) + alp * U h n(l,n)

U h t art(1,n)=U_h p(l,n) * (alp) + conj(alp) * U h n(l,n)

U h rs art(l,n) = U h r art(l,n) - U h s art(1l,n) ;

U h st art(l,n) = U h s art(l,n) - U h t art(l,n) ;

U h tr art(l,n) = U h t art(l,n) - U h r art(l,n) ;

U h rms artl(l,n) = sqgrt(power(abs(U h r art(l,n)),2) +
power (abs(U_h s art(l,n)),2)+power(abs(U h t art(l,n)),2));

i h rmsl(1l,n) = sqgrt( power(abs(i h R(1,n)),2) + power(abs(i h S(1,n)),2) +
power (abs(i h T(1,n)),2));

S n(l,n) = U h rms artl(l,n)*i h rmsl(1l,n);

i h rmsl sqg i h rmsl sg + power (i _h rmsl(1l,n),2);

%Complex Powers for Harmonic and Balanced Admittances
U h r art(1l,n)*conj(i_h R(1,n));
U h s art(l,n)*conj(i_h S(1,n));
U h t art(l,n)*conj(i_h T(1,n));

" n(l,n)=U_h r art(l,n)*conj(i h R(1,n))+
~h s art(l,n)*conj(i_ h S(1,n))+U h t art(l,n)*conj(i h T(1l,n));
n(l,n)= real(C_h n(l,n));

v @]
n e ge

P hn tot = P hn tot + P h n(l,n);

fprintf ('Harmonic Current:%d at %d

\n',abs(i h rs(l,n)),angle(i h rs(l,n))*180/pi);
fprintf('Line R Current:%d at %d

\n',abs(i h R(l1,n)),angle(i h R(1,n))*180/pi);
fprintf('Line S Current:%d at %d
\n',abs(i_h_S(l,n)),angle(i_h_S(l,n))*180/pi);

fprintf ('Current 3 phase rms :%d \n',i h rmsl(l,n));
fprintf ('Voltage Ur :%d at %d

\n',abs (U h r art(l,n)),angle(U h r art(l,n))*180/pi);
fprintf ('Voltage Us :%d at %d
\n',abs(U_h_s_art(l,n)),angle(U_h_s_art(l,n))*180/pi);
fprintf ('Voltage 3 phase rms :%d \n',U_h_rms_artl(l,n));
fprintf ('Active Power:%d \n',P_h_n(l,n));

end

P;

Com pow har = C h n;

P all =P + P h n tot;

U all rms sq = U rms_tot sq + U h rms tot sg; % Total VOltage RMS sqgq
i all rms sq = i_rms_tot sq + i _h rmsl sqg;
S all sqg = U all rms sq * 1 all rms sq;

S hl sqg = U h rms _tot sq * i h rmsl sqg;
S E sq=Urms tot sq * i h rmsl sq + U h rms tot sq * i rms tot sqg;
S 1 all sq =8 1 sq+ S hl sq + S E sq;

S 1 all = sqrt(S_1 all sq) ;
pf all = P all / S 1 all;

199



pf 1 = P / AppPow;

disp ( ") ;

disp(' Final Results of Power )

disp (' ")

fprintf ('Uh - Harmonic Voltage 3 phase rms :%d \n',sqrt(U_h rms tot sq));

fprintf ('ITh Harmonic Geenrated Current 3 phase rms :%d
\n',sqrt(i h rmsl sq));

fprintf ('SG - Harmonic Apparent Power SG = :%d \n',sqrt(S_hl sq));
fprintf ('SE -Cross Harmonic Apparent Power SE = :%d \n',sqrt(S_E sq));
fprintf ('SC - Supp;ly Apparent Power SC = :%d \n',AppPow);

fprintf ('S - Apparent Power from diff power S = :%d \n',S 1 all);

fprintf ('U rms 3 ph voltage three phase RMS value :%d
\n',sqrt(U_all rms sq));

fprintf('I rms 3 ph - current three phase RMS value :%d
\n',sqrt(i all rms_sq));

fprintf ('S - Apparent Power voltage and currents S = :%d
\n',sqrt(S_all sq));
fprintf ('Total Active Power P = :%d \n',P_all);

fprintf (' pf Power Factor overall %d \n',pf all);

%% Section to calculate things to Plot

i h R;

i R;

disp (' Current waveforms values : ');

forn=1:1 :7

i h R(1,n) i R(1,n)+1i h R(1,n);

i hs(l,n) =1 S(1,n)+i h S(1,n);

Uh r art(l,n) = U r art(l,n)+U h r art(l,n);

U h s art(1l,n) U s art(1l,n)+U_h s art(l,n);

U h t art(l,n) = U t art(l,n)+U h t art(l,n);

% fprintf (' U r - n = %d %$d at %d \n ',
n,abs(U_h_r_art(l,n)),angle(U_h_r_art(l,n))*180/pi);
% fprintf(' U s - n = %d : %d at %d \n ',
n,abs(U_h_s_art(l,n)),angle(U_h_s_art(l,n))*180/pi);
% fprintf (' U t - n = %d %$d at %d \n ',
n,abs(Uihitiart(l,n)),angle(Uihitiart(l,n))*lSO/pi);
$ fprintf(' i r - n = %d %d at %d \n ',
n,abs(i_h_R(l,n)),angle(i_h_R(l,n))*180/pi);

$ fprintf(' i s - n = %d %d at %d \n ',
n,abs(iihis(l,n)),angle(iihis(l,n))*lSO/pi);

end

i h R;

U h r art;

Fc=60;

Fs = 8000; % samples per second
dt = 1/Fs; % seconds per sample
StopTime = .05;

nh=[1,2,3,5,7];
i R plot=0;i S plot=0;i T plot=0;
E R plot = 0; E S plot 0; E T plot = 0;
VR=0; Vs =20; VT=0;
for n = 1:1:7
t = (0:dt:StopTime-dt) '; $ seconds

i R plot = i R plot + abs(i_h R(1l,n))*sgrt(2) * sin(2*pi*n*Fc*t+

angle(i h R(1,n)));
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i S plot = i S plot + abs(i_h S(1,n))*sgrt(2) * sin(2*pi*n*Fc*t+
angle(i h s(1,n)));

E R plot = E R plot + abs(e r(l,n))*sqrt(2) * sin(2*pi*n*Fc*t+
angle(e r(l,n)));

E S plot = E S plot + abs(e_s(l,n))*sqrt(2) * sin(2*pi*n*Fc*t+
angle(e _s(l,n)));

E T plot = E T plot + abs(e _t(l,n))*sqrt(2) * sin(2*pi*n*Fc*t+

)))

VR =V R+ abs(U h r art(l,n))*sgrt(2) * sin(2*pi*n*Fc*t+
angle(U _h r art(l,n)));

V.S =V S + abs(U h s art(l,n))*sqrt(2) * sin(2*pi*n*Fc*t+
angle(U h s art(l,n)));

VT =V T+ abs(U_h t art(l,n))*sgrt(2) * sin(2*pi*n*Fc*t+
angle(U h t art(l,n))):;
end

figure;

axis;

subplot (3,1,1)

axis;

plot(t,i R plot,'b',t,i S plot,'r',t,i T plot,'qg');

xlabel ("time (in seconds)');

title('Plot of Line Currents ');
grid on ;

Zoom XOn;

legend ('IT(R) ", "TI(S)"',"I(T)")

subplot(3,1,2)

plot(t,E R plot,'b',t,E S plot,'r',t,E T plot,'qg');
xlabel ('"time (in seconds)');

title('Plot of Intertal voltage of distribution system');
legend ('E(R) ', "E(S) ', 'E(T)")

grid on ;

zoom xXon;

subplot (3,1, 3)

plot(t,V R,'b',t,V.S,'r',t,V.T,'g");

xlabel ('time (in seconds)');

title('Plot of load voltages ');

legend ('U(R) ", 'U(S)"','U(T)")

grid on ;

zZoom XOn;

oe
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