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ABSTRACT
Given a program analysis problem that consists of a program and a property of
interest, we use a data-driven approach to automatically construct a sequence of
abstractions that approach an ideal abstraction suitable for solving that problem.
This process begins with an infinite concrete domain that maps to a finite abstract
domain defined by statistical procedures resulting in a clustering mixture model.
Given a set of properties expressed as formulas in a restricted and bounded variant
of CTL, we can test the success of the abstraction with respect to a predefined
performance level. In addition, we can perform iterative abstraction-refinement of
the clustering by tuning hyperparameters that determine the accuracy of the clus-
ter representations (abstract states) and determine the number of clusters. Our
methodology yields an induced abstraction and refinement procedure for property
verification.

xii



Chapter 1

Introduction

In the first chapter we shall present some background information and motivation

of abstraction-based verification.

1.1 History and Motivation

1.1.1 Program Analysis and Abstract Interpretation

The overall goal of program analysis, is that given a program P and a set Φ of

properties, we hope to discern whether all such properties are true or false on the

program. There are three basic steps towards this goal:

1. Set up a mathematical model for the program P ;

2. Use a formal language to express the properties Φ of interest;

3. Apply an approach to check whether P |= Φ (i.e., whether P satisfies prop-

erties Φ).

Abstract interpretation is a sound tool that can be used to formally verify prop-

erties of programs. It formalizes the idea of semantics-based approximation of a

program with possible loss of information providing a sound framework for program

analysis.

The theoretical framework of abstract interpretation was first introduced by

Patrick and Radhia Cousot [8]. Abstract interpretation provides a practical and

effective method to verify properties of both finite and infinite state systems (pro-

grams).

1



The principle of abstract interpretation is that it involves an infinite domain of

program states we refer to as a concrete domain mapping to a finite height lattice

we refer to as an abstract domain. From there, the abstract lattice is explored

using different techniques to identify fix points. Lastly, since the abstraction and

concretization mappings satisfy a Galois connection, we are guaranteed that said

fix points have a meaningful interpretation in the concrete domain. An abstraction

thus consists of

• a concrete domain and an abstract domain

• a Galois connection that relates the abstract domain to the concrete domain

• a set of (sound) abstract transitions on the abstract domain (that form an

abstract transition system).

Classical abstraction frameworks, such as predicate abstraction1 [15], require

the user to input predicates that enable the creation of a “good” abstraction of

the program. This step necessitates that the user has a thorough understanding

of the program. However, the author of a program and the person verifying it

may be different; as such, the latter may not be well-versed in the intricacies

of the program. In classical abstraction-based program analysis [8], the behavior

of a program analysis tool is not quantitatively characterized in terms of true

positive rate (TPR), false positive rate (FPR), and the number of abstract states.

There are no “hyperparameters” to tune to obtain “better abstractions” eventually

approaching an optimal “operating point” for a given program analysis problem.

1We consider predicate abstraction closest to our work in the conventional verification literature.
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1.1.2 Data-Driven Abstraction

In this work, we propose a new technique, called data-driven abstraction, based

on the classical abstract interpretation framework [8], to effectively and efficiently

verify properties of programs with minimal manual intervention.

We state our problem as follows: given an instrumented program P and a set

of properties Φ (we use temporal formulas to naturally express Φ), we apply data-

driven abstraction approach to automatically generate an ideal abstraction that

determines how to abstract concrete behaviors. The abstraction then induces a

program analyzer such that the temporal formulas in Φ are verified as precisely

and fast as possible, depending on the abstraction.

The verification of such temporal formulas will be executed on an abstract do-

main (abstract model) which is one key ingredient to form an abstraction of the

concrete domain of the program. The size of the abstract domain may be heav-

ily reduced but with properties safely preserved. That is to say, if we can answer

questions about the program in the abstract domain, then we can answer questions

about the program in the original, concrete domain. This one-direction implication

is regarded as weak preservation of properties under the abstraction. We further

wish the converse direction of the implication to hold as well. The implications on

both directions form strong preservation of properties under the abstraction that is

an equivalence of verification of properties on the concrete and abstract domains.

Our data-driven abstraction approach outputs strongly preserving abstract mod-

els constructed through abstract domain refinements that can be used to verify

properties of programs. Our method aims to

• determine the accuracy of the abstraction in terms of an error probability

(E);
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• balance verification accuracy and the cost of computation in terms of a quan-

titative performance measure (S) (see its definition in (5.10)).

We present both a theoretical framework for data-driven abstraction and a prac-

tical tool for program analysis, using a clustering technique based on a distance

metric that results in an abstract cluster domain. Our technique applies a data

driven, query guided refinement process that refines the abstract model by tuning

the hyperparameters that in turn results in modification of the abstract cluster

domain.

Our data-driven abstraction framework is composed of the following steps. A

flow chart of our data-driven abstraction approach is shown in Figure 1.1.

1. The user instruments a program P to sample states occurring at the instru-

mented program points during the execution of the program. The (instru-

mented) program itself is treated as a generative model.

2. Given a set of sampled program states, we show the existence of an abstract

domain consisting of clusters of states where states having similar behavior

belong to the same cluster. We show the existence of a Galois connection

between the concrete domain of program states and the abstract domain of

clusters.

3. We then provide a procedure for drawing from each cluster a sample of

program states (call it a cluster sample) that satisfy a criterion depending

on two hyperparameters β and ε that modulate the characteristics of the

clusters.

4. For each cluster, using the sample of program states drawn above, we es-

timate a probability density function (PDF) representing the distribution

4



of states corresponding to that cluster. Each cluster can now be implicitly

approximated by a PDF.

5. The clusters form the basis of an abstract transition system (ATS), and

the PDFs form the basis of an abstract density transition system (ADTS),

approximating the program.

6. Queries are specified in the verification logic, a restricted and bounded variant

of CTL. The ATS (and/or ADTS) allows us to answer queries about the

program with an error probability E that depends on the hyperparameters

β and ε.

7. We define a quantitative performance measure S for the program analyzer,

in terms of TPR, FPR, and the size of ADTS2. In case S falls below a

threshold δ, we can refine the abstraction by tuning the hyperparameters β

and ε towards achieving an optimal operating point for the given program

analysis problem.

In abstraction-based analysis, the design of an analyzer for a program analysis

problem essentially depends on the construction of an abstract domain (and thus an

abstraction). A successful abstraction is closely related to the property of interest.

Our framework is flexible since the users need only to provide program points of

interest.

1.2 Contributions

Since we verify properties of a program over abstract states (clusters), we need to

know how to compute the abstraction mapping α, i.e., how to determine which

2The size of ADTS is the same as the size of ATS, or the number of PDFs, or the number of abstract clusters.
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abstract state does most precisely represent a given concrete program state. To

determine such an abstract state may be computationally expensive or even un-

decidable. A novel technique used in our framework is to provide a symbolic rep-

resentation of a possibly infinite set of states constituting a cluster by means of

a PDF. We use kernel density estimation (KDE), a non-parametric technique, to

compute the PDF of a random variable representing the distribution of program

states in a cluster, based on the random sampled data drawn from the concrete

program. Using the PDFs representing individual clusters, we can probabilistically

determine α, i.e. determine the cluster in the abstract domain that most precisely

represents a given program state in the concrete domain.

In summary, this work makes the following contributions:

• It introduces a new paradigm of automated program analysis based on data-

driven abstraction. The key ideas are to treat a concrete program as a gen-

erative process and symbolically approximate a possibly infinite set of states

using a PDF. An abstraction of the concrete program is automatically gen-

erated from data sampled from the instrumented program using a clustering

technique.

• The data-driven abstraction paradigm can result in provably sound abstrac-

tions. The abstractions can be created with minimal understanding of the

program under analysis, since the knowledge of the program can be obtained

and updated by drawing samples of program states.

• It introduces the verification logic, a restricted and bounded variant of CTL,

for specifying properties of programs.

• Based on the data-driven abstraction framework, we provide a program anal-

ysis tool that can verify, within an error probability, if a given program sat-
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isfies properties specified in the verification logic. We experimentally demon-

strate the effectiveness of the tool on a test suite of programs from GNU

coreutils, diffutils, and grep.

• It quantitatively characterizes the behavior of a program analyzer in terms of

its true positive rate, false positive rate, and the number of abstract states.

• Our approach allows one to acquire different abstractions by tuning the hy-

perparameters, and provides quantitative evaluation of the performance of

the tool/analyzer at different abstraction levels. Based on a performance

measure, one can determine an “optimal operating point” that serves as an

“ideal” abstraction suitable to solve a program analysis problem.

• It provides an automatic approach to tune a program analyzer in accuracy

and cost.

1.3 Plan of the Manuscript

This work is organized as follows. We first introduce in Chapter 1, the history and

foundation of abstraction interpretation and motivation of creating data-driven

abstraction, explain key challenges to quantitate data-driven abstraction process,

and summarize our contributions. In Chapter 2, we briefly review the mathemat-

ical foundation needed to understand the abstraction interpretation framework.

In Chapter 3 we shall build up a thorough and rigorous formalization of the data

driven abstraction approach. In what follows in Chapter 4 we study a bounded CTL

logic in order to specify properties on programs. Then we systematically define al-

gorithms according to the procedures of our data-driven abstraction in Chapter 5,

in particular algorithms to design abstract domains through statistical mechanics

and domain refinement. We implement the data-driven abstraction approach and
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experimentally validate our approach on standard C programs in Chapter 6. In

particular, we analyze the procedure how to tune the hyperparameters to obtain

an ideal abstraction. Finally, we summarize a few main lines of research works in

the scope of abstract interpretation which is closest to the subject of this work in

Chapter 7, and point out a direction that may further extend this work in Chapter

8. We conclude the work with Appendix A, that includes the quantitative evalua-

tions of performance of our approach on a test suite of C programs selected from

the open-source GNU coreutils, diffutils, and grep.
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Chapter 2

Preliminaries

In this chapter we establish our notation and recall some basic facts from set theory,

lattice theory, and temporal logic. Throughout this manuscript, we denote by R

the set of real numbers, N = {1, 2, 3, . . . }, and N = {0} ∪ N ∪ {∞}.

2.1 Lattice Theory

In this section, we review the basic terminology and notation of orderings and

lattices, and may also discuss some points of elementary logic. These topics are

very well known, and all definitions and propositions presented in this section can

be found in many standard textbooks, for example, [10].

2.1.1 Orderings

Let R ⊆ X ×X be a relation on a set X. Then

1. R is total if for every element x ∈ X there exists y ∈ X such that (x, y) ∈ R.

2. R is reflexive on X if (x, x) ∈ R, for every x ∈ X.

3. R is symmetric if (y, x) ∈ R whenever (x, y) ∈ R.

4. R is anti-symmetric if (x, y) ∈ R and (y, x) ∈ R together imply x = y.

5. R is transitive if (x, y) ∈ R and (y, z) ∈ R together imply that (x, z) ∈ R.

6. R is an equivalence relation on X if R is reflexive, symmetric, and transitive.

7. R is a partial order on X if R is reflexive, anti-symmetric, and transitive.
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A partially ordered set (poset for short) is a set X equipped with a partial order

≤⊆ X × X, denoted by (X,≤). If, in addition, for all x, y ∈ X, at least one of

x ≤ y and y ≤ x holds, a poset (X,≤) is called a totally ordered set.

Let (X,≤) be a poset and Y ⊆ X. We define

Y u := {x ∈ X | (∀y ∈ Y ) y ≤ x}

Y ` := {x ∈ X | (∀y ∈ Y ) x ≤ y}.

The sets Y u and Y ` are the sets of all upper bounds and lower bounds of Y ,

respectively. It is easy to see that ∅u = ∅` = X. A set Y is bounded if it has both

an upper bound and a lower bound.

Consider a poset (X,≤) again. An element ⊥∈ X is said to be a bottom element

(least element) of X if ⊥≤ x for all x ∈ X. An element > ∈ X is a top element

(greatest element) of X if x ≤ > for all x ∈ X. For the power set P(X), we have

⊥= ∅ and > = X. Since ∅u = X,
∨
∅ exists if and only if X has a bottom element

⊥. In this case,
∨
∅ =⊥. Similarly, if X has a top element >,

∧
∅ = >.

The partial order ≤ is called a well-order on X (and (X,≤) is a well-ordered

set) provided that every non-empty subset of X has a least element.

An element µ ∈ X is called the least upper bound of Y , denoted by
∨
X Y (

∨
Y

for short), if

1. µ ∈ Y u; and

2. y ≤ z for every y ∈ Y implies that µ ≤ z (i.e. µ is smallest among Y u).

Similarly, an element ν ∈ X is the greatest lower bound of Y , denoted by
∧
X Y

(
∧
Y for short), if

1. µ ∈ Y `; and

2. y ≥ z for every y ∈ Y implies that ν ≥ z (i.e. ν is greatest among Y `).
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Since not every subset Y ⊆ X has either an upper or a lower bound, least upper

bounds and greatest lower bounds do not exist in every case.

Let (X,≤) be a poset and A ⊆ X. Then A is a downset of X if

∀y ∈ A (∀x ∈ X (x ≤ y)⇒ x ∈ A)

Let x ∈ X. We define

↓ x := {y ∈ X | y ≤ x}.

By the transitivity of the order ≤, we see that ↓ x is a downset for any x ∈ X.

2.1.2 Lattices

For the reader who is interested in the subject of lattices, one of good reference

books is [10].

Let us define two binary operations on X:

• meet ∧ : X ×X → X, x ∧ y is given by the greatest lower bound of {x, y};

• join ∨ : X ×X → X, x ∨ y is given by the least upper bound of {x, y}.

A lattice is a non-empty poset X in which every pair of elements has a least

upper bound and a greatest lower bound, that is, x ∨ y and x ∧ y exist for every

pair x, y ∈ X. A complete lattice is a non-empty poset X in which every arbitrary

subset has a least upper bound (a.k.a join) and a greatest lower bound (a.k.a

meet), that is,
∨
Y and

∧
Y exist for all subsets Y ⊆ X.

The least upper bound and the greatest lower bound of the empty set are the

bottom and top elements of a complete lattice, respectively.

Example 2.1. Consider the set (Z,≤) of integers with the standard partial order

relation ≤. This set is not a complete lattice since Z has neither a least upper

bound nor a greatest lower bound. But we can lift up this set to the extension
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(Z ∪ {±∞},≤) with

−∞ < k <∞ (∀k ∈ Z)

which is a complete lattice.

Let (X,≤) and (Z,⊆) be lattices. We say that a function f : X → Z is monotone

if for x ≤ y we have f(x) ≤ f(y). Monotone maps need not preserve join or meet

(∨ or ∧); on the other hand, any map between lattices preserving join and meet

is monotone. The function f is continuous if for every non-empty subset Y ⊆ X,

whenever
∨
Y exists, we have

∨
f(Y ) exists and

∨
f(Y ) = f(

∨
Y ).

Similarly, f is co-continuous if for every non-empty subset Y ⊆ X, whenever
∧
Y

exists, we have
∧
f(Y ) exists and

∧
f(Y ) = f(

∧
Y ).

2.2 Temporal Logic

In this section, we shall introduce a logic to specify a variety of properties of

transition systems for programs. We choose temporal logic for this purpose, since

temporal logic is a formal language to express sequences of transitions between

program states in a program.

One of the simplest branching-time temporal logics is the standard computation

tree logic (CTL) [13, 12]. CTL combines temporal operators with path quantifica-

tion over runs and describes properties of a computation tree. We define a logic

CTLk that restricts and bounds CTL on k steps with k ∈ N (see examples of CTLk

formulas in Chapter 6 and Appendix A). If k =∞, CTLk formulas are exactly full

CTL formulas. A specification or property of a program is then written as a CTLk

formula.
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2.2.1 Define CTLk Logic

In CTLk formulas consists of bounded path quantifiers and temporal operators.

1. There are two bounded path quantifiers

Ak ←→ for all k-paths

Ek ←→ there exists a k-path

(we will define a k-path soon)

2. and there are the following basic temporal operators

X ←→ next time

F ←→ sometime in the future

G ←→ globally in the future

U ←→ until.

Similar to CTL [13], each bounded path quantifier must be immediately followed

by exactly one of the operators X, F, G, or U, e.g., EkF. Formulas in CTLk

consists of

• state formulas (being true or false in a particular state)

• path formulas (being true or false along a particular path).

Let AP be a finite set of atomic propositions. The choice of atomic propositions

usually does not involve time. The logic CTLk is the set of (state) formulas ϕ

inductively formed by the following grammar (syntax):

ϕk ::= ap | ¬ϕk | ϕ1
k ∨ ϕ2

k | EkX(ϕk−1) | EkG(ap) | Ek(ap1 U ap2) (2.1)

where ap ∈ AP. CTLk formulas are evaluated at states, and they can deal with

both some or all paths, starting from the state they are evaluated at.
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2.2.2 Semantics of CTLk

We define the semantics of CTLk with respect to a Kripke structure.

Definition 2.2 (Kripke structure [7]). A Kripke structure M is a triple (S,R, L)

where

1. S is a set of states;

2. R ⊆ S × S is the transition relation; and

3. L : S → P(AP) is the proposition labeling function, that assigns to each

state a set of atomic propositions true in that state;

where we assume R is total, that is, for each state ~s ∈ S there exists a state ~s′ ∈ S

such that (~s, ~s′) ∈ R.

Definition 2.3 (k-path). Let k ∈ N. We define a k-path in M to be a path of

length k+1, i.e., a sequence of states π = ~s0~s1 · · ·~sk, such that for every 0 < i ≤ k,

(~si−1, ~si) ∈ R, where ~s0 is the current state and ~si is a successor state of ~si−1.

The relation M, s |= ϕ means that the CTLk formula ϕ is true for state s in the

structure M . The notation M is often omitted since we refer to the same model

most of the time. The satisfiability of each primary CTLk formula is defined in the
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following:

~x |= ap ⇐⇒ ap ∈ L(~x)

~x |= ¬ϕk ⇐⇒ ~x 6|= ϕk

~x |= ϕ1
k ∨ ϕ2

k ⇐⇒ ~x |= ϕ1
k or ~x |= ϕ2

k

~x |= EkX(ϕk−1) ⇐⇒ ∃π = ~s0~s1 · · ·~sk with ~s0 = ~x s.t. ~s1 |= ϕk−1

~x |= EkG(ap) ⇐⇒ ∃π = ~s0~s1 · · ·~sk with ~s0 = ~x s.t. ~si |= ap,∀0 ≤ i ≤ k

~x |= Ek(ap1Uap2) ⇐⇒ ∃π = ~s0~s1 · · ·~sk with ~s0 = ~x and ∃ 1 ≤ j ≤ k s.t.

~si |= ap1,∀0 ≤ i < j and ~sj |= ap2.

Denote by the operator X` the `-time concatenations of the next time operator

X. Other than the above primary operators, we are particularly interested in the

following operators in CTLk for our implementation purpose:

~x |= EkF(ap) ⇐⇒ ∃π = ~s0~s1 · · ·~sk with ~s0 = ~x and ∃ 0 ≤ j ≤ k s.t.~sj |= ap

~x |= AkG(ap) ⇐⇒ ∀π = ~s0~s1 · · ·~sk with ~s0 = ~x, ~si |= ap,∀0 ≤ i ≤ k

~x |= EkX
k(ap) ⇐⇒ ∃π = ~s0~s1 · · ·~sk with ~s0 = ~x s.t. ~sk |= ap.

These operators states that

1. EkF(ap) is true at ~x if and only if ap is true somewhere on some k-path

starting from ~x, i.e., it can reach a state within k steps from ~x satisfying ap;

2. AkG(ap) is true at ~x if and only if ap is true everywhere on every k-path

starting from ~x;

3. EkX
k(ap) is true at ~x if and only if ap is true at the last state on some k-path

starting from ~x, i.e., it can reach a state k steps away from ~x satisfying ap.
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Chapter 3

Theory

The abstraction process involves a deep understanding of mathematical structures

of a program and their relationships. This chapter formally builds the mathematical

foundation of abstraction theory for our data-driven abstraction process.

3.1 Semantics of Programs

The theory of abstract interpretation [8] is used to approximate the semantics

of a program. The semantics of a program is an infinite mathematical model of

what the program does. It usually computes all possible program states occurring

in the execution of a program for all possible input, which may practically be

uncomputable. The basic idea of abstraction in the framework of Cousot [8] is that

a (finite or infinite) set of program states is approximated by a finite set of abstract

states (a superset of the set of program states). This thus requires a computable

set of program states that correctly interprets the program.

We shall develop a mathematical semantics of programs in this section, since it

is the foundation (or base) on which an abstraction is built.

3.1.1 Program States and Distances

We introduce a few concepts related to the semantics of a program, following [8]

with some simplifications.

A program P = (Σ,L, T , L) consists of a set Σ of all program states, a set L of

statement locations, a set T of transitions, and the proposition labeling function

L on Σ. We define a program state to be a valuation of all program variables. For

17



~p0 ~p1 · · · · · · ~pk−1 ~pk

~q0 ~q1 · · · · · · ~qk−1 ~qk

~p0
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∼=k−1 ~q1 · · · · · · ~pk−1
∼=1 ~qk−1 ~pk ∼=0 ~qk

t1 t2 tk−1 tk

t1 t2 tk−1 tk

FIGURE 3.1. A sequence of transitions of a program

simplicity, we will denote a program state ~x ∈ Σ (consisting of ` variables) as

~x = (x1, . . . , x`), xj ∈ R, ∀1 ≤ j ≤ `.

Each transition in T is a relation t ⊆ Σ × Σ over program variables that relates

program states to their successors after the transition. For states ~p, ~q ∈ Σ and a

transition t ∈ T , we say ~p
t−→ ~q if (~p, ~q) ∈ t.

We will then define bounded bisimilarity between program states and a distance

metric over program state space, that respects the bisimilarity relation.

Let k ∈ N. The idea of ~p being k-step bisimilar to ~q is that ~p can imitate the

behaviour of ~q for up to k steps, and vice versa, and “divergence” takes place after

k steps, as shown in Figure 3.1 (for simplicity, we consider only one successor of a

state for each transition).

Definition 3.1 (k-step bisimilarity). The k-step bisimilarity on Σ is defined to be

the largest symmetric relation ∼=k⊆ Σ × Σ such that for any two states ~p, ~q ∈ Σ,

~p ∼=k ~q implies that L(~p) = L(~q), and k ∈ N is the largest number for which the

following hold:

1. for any sequence of transitions of length k,

~p0
t1−−−−→ ~p1

t2−−−−→ · · · · · ·
tk−1−−−−→ ~pk−1

tk−−−−→ ~pk, ~p0 := ~p,

there exists a sequence of transitions of length k,

~q0
t1−−−−→ ~q1

t2−−−−→ · · · · · ·
tk−1−−−−→ ~qk−1

tk−−−−→ ~qk, ~q0 := ~q,
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such that

~pj ∼=k−j ~qj, ∀1 ≤ j ≤ k;

2. the same as the previous statement with the roles of ~pj and ~qj interchanged.

Remark 3.2. It is worth mentioning that

1. Two states ~p and ~q are 0-step bisimilar if L(~p) = L(~q) and they are not 1-step

bisimilar.

2. If two program states are k-step bisimilar, they are not s-step bisimilar for

any s ∈ N with s > k.

The performance of our clustering algorithm (cf. Algorithm 2) under unsuper-

vised settings depends critically on a good and meaningful distance metric (or

pseudometric) over the input program state space. Our method is to use the infor-

mation of k-step bisimilarity to find meaningful clusters. More precisely, given a

bounded bisimilarity relation between program states, we would like to construct

a clustering which assigns bisimilar (at least k-step bisimilar for some k) pairs of

states into the same cluster. Therefore, a good metric needs to properly reflect

the k-step bisimilarity relationships between program states in order to maximize

the clustering performance, that is, a good metric should assign small distances

between bisimilar pairs of states (bisimilar states end up close to each other).

Definition 3.3 (Distances between program states). Let ~p, ~q ∈ Σ. The distance

between program states is a function d : Σ× Σ→ [0, 1] defined by

d(~p, ~q) = 2−k (3.1)

where k ∈ N is the number such that ~p and ~q are k-step bisimilar.
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Proposition 3.4. The function d defines a pseudometric on the program state

space Σ.

Proof. Since a state ~p is infinitely bisimilar to itself,

d(~p, ~p) = lim
k→∞

2−k = 0.

However, for two distinct states ~p and ~q, it is possible that ~p can imitate everything

that ~q can do and vice versa, so ~p and ~q are ∞-bisimilar and thus d(~p, ~q) is zero

even for ~p 6= ~q. Next, since ∼=k is a symmetric relation, d(~p, ~q) = d(~q, ~p). Last, d is

subadditive because if ~p ∼=k1 ~q and ~q ∼=k2 ~r for some k1, k2 ∈ N, then ~p ∼=k3 ~r with

k3 = min(k1, k2). It follows that d defines a pseudometric on the program state

space Σ.

3.1.2 The Concrete and Abstract Domains of a Program

In this section we equip the set of program states and its power set with a par-

tial ordering for each, and use them to define the concrete and abstract domains

required for abstract interpretation.

Definition 3.5 (Concrete domain). Let P be a program with corresponding space

Σ of program states. The concrete domain for P , C = (Σ,≤), is the set Σ of program

states equipped with a partial order ≤ where for two states ~x = (x1, . . . , x`) and

~y = (y1, . . . , y`), ~x ≤ ~y if xj ≤ yj for all 1 ≤ j ≤ `.

In this work, we restrict the concrete domain on the real numbers, although a

user may define a well ordering with respect to their particular domain.

Our proposed data-driven technique depends on the concept of a cluster, a well-

known concept in machine learning. Our technique does not learn clusters from a

set of points in the traditional sense. Instead we iteratively construct clusters in

an abstract domain based on root points. Each cluster consists of a downset of the

root. We shall define the abstract domain for a program P as a set of clusters.
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β

B~r ↑

B~r ↓

Concrete domain C Abstract domain A

α

α(~p) = B~r

FIGURE 3.2. Inducing abstract clusters B~r = B~r ↑ ∪B~r ↓

Definition 3.6 (Abstract cluster rooted at a point). Let ~r ∈ C. The abstract

cluster rooted at ~r is the set of program states in the downset ↓ ~r:

B~r =↓ ~r := {~q ∈ C | ~q ≤ ~r}.

Fix a β > 0. Partitioning B~r into two disjoint sets, we define the upper abstract

cluster rooted at ~r as

B~r ↑= {~q ∈ B~r | d(~r, ~q) ≤ β}.

Similarly, we define the lower abstract cluster rooted at ~r as

B~r ↓= {~q ∈ B~r | d(~r, ~q) > β}.

As is shown in Figure 3.2, the cluster B~r in A rooted at ~r consists of all states

in the downset of the root. When the context is clear, we will simply refer to B~r as

a cluster, B~r ↑ as an upper cluster, and B~r ↓ as a lower cluster. We will also refer

to a cluster without specifying its root.

Lemma 3.7. Clusters and upper clusters rooted at some program states are non-

empty.
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Proof. Let B~p be a cluster rooted at ~p. Since ~p ≤ ~p, ~p ∈ B~p. Thus, B~p 6= ∅.

Moreover, since d(~p, ~p) = 0 < β, ~p ∈ B~p ↑. Hence, B~p ↑6= ∅.

The following two lemmas establish clearly that a cluster can be split into two

unique partitions.

Lemma 3.8. For a root point ~p ∈ C, B~p ↑ ∪B~p ↓= B~p.

Proof. This is clear by the definition of a cluster.

Lemma 3.9. For a root point ~p ∈ C, B~p ↑ ∩B~p ↓= ∅.

Proof. Let ~p ∈ C and suppose B~p ↑ ∩B~p ↓6= ∅. Then there exists a program state

~e ∈ B~p ↑ ∩B~p ↓. Then d(~p,~e) ≤ β and d(~p,~e) > β. This is a contradiction since β

is fixed.

Furthermore, because β is fixed, we have

Lemma 3.10. The root of a cluster uniquely determines the cluster.

Next, we establish a hierarchy among all clusters in a domain.

Lemma 3.11. For root points ~p, ~q ∈ C we have ~q ≤ ~p if and only if B~q ⊆ B~p.

Proof. For ⇒: Assume ~q ≤ ~p. Let ~x ∈ B~q. So ~x ≤ ~q and thus ~x ≤ ~p. By the

definition of a cluster, we have ~x ∈ B~p and hence B~q ⊆ B~p.

For ⇐: Assume B~q ⊆ B~p. In case B~q = B~p, it is clear that ~q = ~p. For the case

where B~q ⊂ B~p we want to show ~q < ~p. Suppose that ~p ≤ ~q. It follows from the

first part of this lemma that B~p ⊆ B~q. This yields a contradiction.

We now define the abstract domain as the set of all clusters rooted at points in

the concrete domain.
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Definition 3.12 (Abstract domain). For a program P with concrete domain C =

(Σ,≤), the abstract domain

A = (2Σ,⊆)

is defined to be the power set of Σ, where any B~p in A is a cluster rooted at some

state ~p ∈ C, and all such B~p are partially ordered by inclusion ⊆.

Assume the concrete domain maintains a supremum and an infimum element

respectively:

~>C = (>1, . . . ,>m) ∈ C, ~⊥C = (⊥1, . . . ,⊥m) ∈ C.

It follows that A defines a supremum element

>A =
⋃
~p∈C

{~p} = C.

The singleton set containing ~⊥C is the infimum of A, i.e. ⊥A = {~⊥C}.

Lemma 3.13. The abstract domain A defines a complete lattice.

Proof. Since there are an infimum and a supremum in A, for all subsets X ⊆ A

there exist a meet and a join. Thus, A is a complete lattice.

3.2 Abstraction and Property Preservation

This section introduces the construction abstractions used to verify properties of

complex programs.

3.2.1 Abstraction and Concretization Mappings

To ensure a valid abstract interpretation (cf. [8]) we must relate the abstract do-

main to the concrete domain by means of a Galois connection which consists of an

abstraction mapping α and a concretization mapping γ.

We begin by defining the abstraction mapping via taking a state in the concrete

domain and mapping it to the most appropriate cluster (i.e. the cluster correspond-

ing to the closest root above it).
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Definition 3.14 (Abstraction Mapping). Let P be a program with corresponding

space Σ of program states. Let C be the concrete domain for P , and A the abstract

domain with C1, . . . , Cn the n clusters of A, each with unique respective root

~r1, . . . , ~rn. We assume that d(~ri, ~rj) ≥ ε for i 6= j, where ε is a hyperparameter.

The abstraction mapping α : C → A is defined by α(~p) = Ci, ~p ∈ C, where Ci (for

some 1 ≤ i ≤ n) is determined such that

1. ~p ≤ ~ri; and

2. if ~p ≤ ~rj then d(~p, ~ri) ≤ d(~p, ~rj) for all j 6= i with ties broken arbitrarily.

The hyperparameter ε is the least distance between any two root roots (see

Section 5.1). Definition 3.14 maps a state ~p in the concrete domain to the cluster

in abstract domain A whose root is greater than or equal to ~p and is closer to

~p than any other root. In particular, α(~p) identifies the element in A that most

precisely represents the state ~p. As shown in Figure 3.2, state ~p is mapped under

α to the cluster B~r.

Since a cluster is defined by a root point, we have a natural definition of a

concretization mapping from a cluster in the abstract domain to a state in the

concrete domain; specifically, a cluster is mapped to its root in the concrete domain.

Definition 3.15 (Concretization Mapping). Let B~p ∈ A be a cluster rooted at a

state ~p ∈ C. The concretization mapping γ : A → C is defined by γ(B~p) = ~p.

We now prove some important properties required of the abstraction and con-

cretization maps to ensure a Galois connection.

Lemma 3.16. The abstraction mapping α : C → A is monotone, i.e., order

preserving.
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Proof. Let ~p, ~q ∈ C with ~p ≤ ~q. We need to show α(~p) ⊆ α(~q). Suppose α(~p) = B~ri

and α(~q) = B~rj for some root points ~ri and ~rj. Then ~p ≤ ~ri and ~q ≤ ~rj. In view of

Lemma 3.11, to prove the monotonicity of α, it remains to show ~ri ≤ ~rj. If ~q < ~ri,

then by Definition 3.14,

d(~q, ~rj) < d(~q, ~ri).

But then

d(~p, ~rj) ≤ d(~p, ~ri).

This contradicts to Definition 3.14, since ~ri is supposed to be closer to ~p than any

other root. Therefore, the only possibility is that ~q ≥ ~ri. It follows that ~p ≤ ~ri ≤

~q ≤ ~rj and so B~ri ⊆ B~rj .

Lemma 3.17. The concretization mapping γ : A → C is order preserving.

Proof. Let B~p, B~q ∈ A be clusters rooted at ~p and ~q respectively with B~p ⊆ B~q. By

Lemma 3.11, ~p ≤ ~q. Thus, in view of Definition 3.15, γ(B~p) = ~p ≤ ~q = γ(B~q).

3.2.2 The Galois Connection

For a program P , we define the concrete domain C = (Σ,≤) as an infinite state

space of program states and the corresponding abstract domain A = (2Σ,⊆) as

the set of clusters ordered by inclusion.

We have properly defined correspondence (α, γ) between the concrete and ab-

stract domains. Next we must verify the pair of monotone mappings α and γ form

a Galois connection (named after Évariste Galois) between the concrete and the

abstract domains to ensure a valid abstract interpretation.

A Galois connection framework will require partial orderings on the concrete

and the abstract domains, which clearly have.
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Definition 3.18 (Galois Connection [24]). For partially ordered sets C and A, a

pair (α, γ) of monotone maps, α : C → A and γ : A → C, is a Galois connection if

and only if for any A ∈ A and ~p ∈ C, α(~p) ⊆ A⇔ ~p ≤ γ(A).

We may find it convenient to observe that (α, γ) forms a Galois connection if

and only if ~p ≤ γ(α(~p)) and α(γ(A)) ⊆ A for any ~p ∈ C and A ∈ A.

The partial order relations on the concrete and abstract domains reflect their re-

spective relative precisions. For example, ~p ≤ ~q implies that ~q is an approximation

of ~p (or ~q carries less information than ~p); and B~p ⊆ B~q implies that B~p is more

precise than B~q. This brings out a basic yet important condition for the abstraction

and concretization maps, that is, they preserve the exact approximation orderings

(monotonicity). Galois connection then relates the relative precisions of the con-

crete and abstract domains in the sense that an abstract state A approximates a

concrete state ~p if α(~p) ⊆ A (i.e. ~p ≤ γ(A)).

Proposition 3.19. The maps α and γ defined in Definitions 3.14 and 3.15 satisfy

a Galois connection.

Proof. Let ~x ∈ C be such that α(~x) = B~x ∈ A, a cluster rooted at the point ~x. To

prove that (α, γ) forms a Galois connection, it suffices to prove that for any ~b ∈ C,

α(~b) ⊆ α(~x)⇐⇒ ~b ≤ γ(α(~x)).

Since α(~x) = B~x and γ(B~x) = ~x, we have

~b ≤ γ(α(~x)) ⇐⇒ ~b ≤ γ(B~x)

⇐⇒ ~b ≤ ~x

⇐⇒ α(~b) ⊆ α(~x),

where we use the fact that α and γ are order preserving.
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Lemma 3.20. The abstraction mapping α : C → A is continuous.

Proof. Suppose that T is a subset of C such that the least upper bound of T ,
∨
T ,

exists. By the definition of least upper bound, ~t ≤
∨
T for all ~t ∈ T . It follows from

the monotonicity of α that α(~t) ⊆ α(
∨
T ). This implies that α(

∨
T ) is an upper

bound for the set α(T ) = {α(~t) | ~t ∈ T}. Let A be another upper bound of α(T ).

Then α(~t) ⊆ A and so ~t ≤ γ(A) for all ~t ∈ T since (α, γ) is a Galois connection.

The equation ~t ≤ γ(A) for all ~t ∈ T implies that γ(A) is an upper bound of T . By

the definition of least upper bound, we have
∨
T ≤ γ(A). By the monotonicity of

α and the definition of Galois connections,

α(
∨

T ) ⊆ α(γ(A)) ⊆ A

which proves that α(
∨
T ) is the least upper bound of α(T ), i.e.

α(
∨

T ) =
∨

α(T ) =
∨
{α(~t) | ~t ∈ T}.

Corollary 3.21. The concretization map γ : A → C is co-continuous.

Proof. It is sufficient to show γ preserves greatest lower bounds. We have shown

in Lemma 3.20 that α preserves least upper bounds. By the duality principle, if

for any W ⊆ A,
∧
W exists, then

γ(
∧

W ) =
∧
{γ(A) | A ∈ W}.

3.2.3 Abstract Transition System

In abstraction-based verification, the weak preservation means for a formula ϕ

defined in a temporal language:

A |= ϕ =⇒ C |= ϕ.
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FIGURE 3.3. Verification big picture

It is obvious that abstract verification of a property on the abstract side might

produce false positives because an abstract domain hides certain details of the

concrete domain. Therefore we would like to construct an abstraction that makes

properties strongly preserved (cf. Figure 3.3), that is, a formula ϕ holds on the

abstract domain if and only if it holds on the concrete domain:

A |= ϕ⇐⇒ C |= ϕ. (3.2)

Property preservations between the concrete and abstract domains only depend on

the abstract domain itself, but not on how to abstractly interpret atomic proposi-

tions and logical operators (for our case check (2.1)) on the abstract domain.

The verification of a temporal property will be executed in a sound (and com-

plete) abstraction. For that we should now introduce abstract transitions and ab-

stract transition systems.

Definition 3.22 (Abstract Transitions). For each transition t ⊆ Σ×Σ, we define

an abstract transition t# ⊆ 2Σ × 2Σ such that t# = α ◦ t ◦ γ.

In this case, we say that the abstract transition t# is a sound and complete

approximation on A for the concrete transition t.

While soundness (correctness) is a very basic requirement for our data driven

abstraction approach (in fact, for any approximation approach), a strict loss of
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information may build up in the abstract-side computations. Completeness in ab-

stract interpretation aims to ensure no such loss of precisions. It has been shown

that strong preservation of abstraction-based verification can be carried via sound

and complete abstract interpretation (for example, see [26]).

Transition systems constitute a mathematical object to formalize the evolution

of a program. We need to generate an abstract transition system which strongly

preserves desired properties of the concrete transition system.

Definition 3.23. A (concrete) transition system (CTS) is a pair of the form (C, T ),

where C is the concrete domain, and T is the set of transitions on Σ×Σ. Similarly,

we define the corresponding abstract transition system (ATS) to be (A, T #), where

A is the abstract domain, and T # is the set of abstract transitions on 2Σ × 2Σ as

defined in Definition 3.22.

Thus, the domains (C,A) and the Galois connection (α, γ) together with the ATS

T # induce a sound and complete abstraction. We will use such an abstraction to

check for temporal properties of programs.
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Chapter 4

Verification Logic

As we have seen the approach to bring about preservation of properties from con-

crete domain to abstract domain is to iteratively refine the abstract model such

that each abstract state (in our case, abstract cluster) represents a set of concrete

states which all agree on certain properties. In order to construct a good abstract

model that can preserve some set of logical formulas, each abstract state should

be consistent with all formulas in the logic semantics. This coincides with the con-

struction of a quotient of the abstract model under some behavioural equivalence

that can be defined in terms of program states and transition systems of a program

(we have defined state bisimilarity for this purpose).

We have defined, in Section 2.2, a logic CTLk, a fragment of CTL that ex-

presses properties that hold true over sequences of transitions of length k with

k ∈ N. Therefore, in this chapter, we investigate the correspondence between the

behavioural equivalence defined by k-bisimilarity between states and the logical

equivalence induced by the temporal language CTLk.

Theorem 4.1. Let ~p, ~q ∈ Σ and ϕk a CTLk formula for a k ∈ N. Let s ∈ N with

s ≥ k. Then the following are equivalent:

1. ~p ∼=s ~q; and

2. ~p |= ϕk if and only if ~q |= ϕk.

Remark 4.2. If two program states ~p and ~q are s-step bisimilar with s > k, then

they agree on the same CTLk formulas, too. So it suffices to prove Theorem 4.1

for s = k.
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Proof of Theorem 4.1. We first prove statement 1 ⇒ statement 2:

~p ∼=k ~q =⇒ (~p |= ϕk ⇐⇒ ~q |= ϕk)

i.e., prove k-step bisimilar program states satisfy exactly the same set of CTLk

formulas. Since the logic CTLk is defined as a set of state formulas (cf. the CTLk

syntax (2.1)), it suffices to prove it by the induction on the structures of CTLk

formulas and check it case by case.

For the base case let ap be an atomic proposition. Since ~p ∼=k ~q, by definition of

k-bisimilarity, L(~p) = L(~q). This implies that ~p |= ap if and only if ~q |= ap.

The following are the inductive steps. Assume that (statement 1 ⇒ statement

2) holds for two CTLk formulas ϕk, φk (this is the induction hypothesis).

(1) Consider ¬ϕk:

~p |= ¬ϕk ⇐⇒ ~p 6|= ϕk

(by induction hypothesis) ⇐⇒ ~q 6|= ϕk

⇐⇒ ~q |= ¬ϕk.

(2) Consider ϕk ∨ φk:

~p |= (ϕk ∨ φk) ⇐⇒ (~p |= ϕk) ∨ (~p |= φk)

(by induction hypothesis) ⇐⇒ (~q |= ϕk) ∨ (~q |= φk)

⇐⇒ ~q |= (ϕk ∨ φk).

(3) Consider EkX(ϕk−1). Assume ~p |= EkX(ϕk−1). Then there is a transition t

and a state ~p(1) such that ~p
t−→ ~p(1) and ~p(1) |= ϕk−1. The bisimilarity ~p ∼=k ~q implies

that

∀~p(1)
(

(~p
t−→ ~p(1)) =⇒ ∃~q(1) ((~q

t−→ ~q(1)) ∧ (~p(1) ∼=k−1 ~q
(1)))

)
(4.1)
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By the induction hypothesis, ~p(1) |= ϕk−1 if and only if ~q(1) |= ϕk−1. This implies

that ~q |= EkX(ϕk−1). The converse direction, i.e., to show ~q |= EkX(ϕk−1)⇒ ~p |=

EkX(ϕk−1) follows from the fact that ∼=k is a symmetric relation.

(4) Consider EkG(ap). Assume ~p |= EkG(ap). Let ~p(0) := ~p and ~q(0) := ~q. Then

there is a k-path π1 = ~p ~p(1) · · · ~p(k) such that ~p(i) |= ap for all 0 ≤ i ≤ k (every

state on π1 satisfies ap). Since ~p ∼=k ~q, from the equation (4.1) we see that, for π1

there exists a corresponding k-path π2 = ~q ~q(1) · · · ~q(k) such that for all 0 ≤ i ≤ k,

~p(i) ∼=k−i ~q
(i). By the induction hypothesis, ~p(i) |= ap if and only if ~q(i) |= ap for all

0 ≤ i ≤ k. This implies that ~q |= EkG(ap). The converse direction, i.e., to show

~q |= EkG(ap)⇒ ~p |= EkG(ap) follows by symmetry.

(5) Consider Ek(ap1Uap2). Suppose ~p |= Ek(ap1Uap2). Let ~p(0) := ~p. Then there

exists a path π1 = ~p ~p(1) · · · ~p(k) such that there is a 1 ≤ j ≤ k for which

• ~p(i) |= ap1 for all 0 ≤ i < j; and

• ~p(j) |= ap2.

Since ~p ∼=k ~q, there exists a corresponding path π2 = ~q ~q(1) · · · ~q(k) such that for all

1 ≤ i ≤ k, ~p(i) ∼=k−i ~q
(i). By the induction hypothesis, we must have ~q(i) |= ap1 for

all 0 ≤ i < j, and ~q(j) |= ap2. This implies that ~q |= Ek(ap1Uap2). The converse

direction, i.e., to show ~q |= Ek(ap1Uap2)⇒ ~p |= Ek(ap1Uap2), is similar.

Next we shall prove statement 2 ⇒ statement 1:

(~p |= ϕk ⇐⇒ ~q |= ϕk) =⇒ ~p ∼=k ~q (4.2)

that is, to characterize program states up to k-step bisimilarity by CTLk formulas:

The proof of (4.2) can be done by induction on k.

For the base case (k = 0), since ~p |= ap ⇔ ~q |= ap, L(~p) = L(~q). By the

definition of bisimilar states, we have ~p ∼=0 ~q.
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The following is the induction step. Assume the statement (4.2) is true for k.

We shall show that it is true for k + 1.

To do so, we show that if ~p 6∼=k+1 ~q, then there is CTLk+1 formula ϕ such that

~p |= ϕ, but ~q 6|= ϕ. Let ~p0 := ~p and ~q0 := ~q. The case that ~p 6∼=k+1 ~q can only

happen if there is a (k + 1)-path starting from ~p, say

π~p = ~p0~p1 · · · ~pk~pk+1

but without a corresponding (k + 1)-path starting from ~q, say

π~q = ~q0~q1 · · · ~qk~qk+1

such that

~pj ∼=k+1−j ~qj, 0 ≤ j ≤ k + 1 (4.3)

(note: the roles of ~pj and ~qj can be interchanged). This can be divided into two

possibilities:

• ~p 6∼=k ~q;

• ~p ∼=k ~q but ~p 6∼=k+1 ~q.

The former case follows immediately from the induction hypothesis. For the latter

case, let Q = {~qk+1,1, ~qk+1,2, . . . , ~qk+1,l} (for some l ≥ 1) be the set of all successors

of ~qk. Since the transition system T has finite range, Q is finite. Since there is

no (k + 1)-path starting from ~q satisfying the condition (4.3), there are atomic

propositions api such that

~pk+1 |= api, ~qk+1,i 6|= api, ∀1 ≤ i ≤ l. (4.4)

On the other hand, by the induction hypothesis, there are φj ∈ CTLk−j with

~pj |= φj such that for every ~sj ∈ Σ

~sj |= φj ⇐⇒ ~sj ∼=k−j ~pj, ∀0 ≤ j ≤ k. (4.5)
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Next we define a formula

ϕ := φ0 ∧ Ek+1X(φ1 ∧ (EX(φ2 ∧ · · · ∧ EX(φk ∧ EX(ap1 ∧ · · · ∧ apl) · · · )

where we use the notation EX to indicate there is a successor in some k-path

without specifying the number k explicitly for simplicity. We see that ϕ ∈ CTLk+1.

By the conditions (4.5) and (4.4), we conclude that ~p |= ϕ, but ~q 6|= ϕ. This proves

that (4.2) is true for k + 1.

Remark 4.3. We have k-bisimilar transition systems preserve the same CTLk

formulas.

Recall that we have defined a Galois connection (α, γ) of the abstract domain

A into the concrete domain C in terms of the abstraction map α : C → A and

concretization map γ : A → C. In the next theorem we investigate the Galois

connection with which CTLk formulas are strongly preserved between the concrete

system and the abstract system. We use the abstract transition system (A, T #) to

check for CTLk formulas. Since the clusters in the abstract domain form a basis of

the abstract transition system, we formulate the temporal property preservation

(3.2) by the requirement (cf. [8]):

∀~p ∈ C
(

(C
α

�
γ
A) =⇒ ∀ϕk ∈ CTLk((C, ~p) |= ϕk ⇐⇒ (A, α(~p)) |= ϕk)

)
. (4.6)

Since we need to deal with property verification on abstract domain, we shall

first define abstract atomic propositions. We would like to have as many atomic

propositions as possible to be true in each abstract state (cluster). Thus, we de-

fine a valuation of atomic propositions on abstract states to be the set of atomic

propositions ap such that

α(~p) |= ap ⇐⇒ ~p |= ap, ∀~p ∈ C. (4.7)
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The following theorem relates the concrete transition system and the abstract

transition system with respect to verification of CTLk properties.

Theorem 4.4. For a concrete transition system (C, T ) where C = (Σ,≤), ~p ∈

Σ, a corresponding abstract transition system (A, T #) where A = (2Σ,⊆), and

a CTLk formula ϕk, if d(~p, γ(α(~p))) ≤ 2−k then (C, T ), ~p |= ϕk if and only if

(A, T #), α(~p) |= ϕk.

Proof. We prove for any ~p ∈ C,

(C, ~p) |= ϕk ⇐⇒ (A, α(~p)) |= ϕk

by the induction on the structure of CTLk formula (cf. (2.1)).

For the base case let ap be an atomic proposition. By the definition (4.7), for

any atomic proposition,

~p |= ap ⇐⇒ ap ∈ L(~p)⇐⇒ ap ∈ L(α(~p))⇐⇒ α(~p) |= ap.

The next are the inductive steps.

(1) Consider ¬ϕk. By induction hypothesis, we have

~p |= ¬ϕk ⇐⇒ ~p 6|= ϕk ⇐⇒ α(~p) 6|= ϕk ⇐⇒ α(~p) |= ¬ϕk.

(2) Consider ϕk ∨ φk. By induction hypothesis we have

~p |= ϕk ∨ φk ⇐⇒ (~p |= ϕk) ∨ (~p |= φk)

⇐⇒ (α(~p) |= ϕk) ∨ (α(~p |= φk)

⇐⇒ α(~p) |= ϕk ∨ φk.

(3) Consider EkX(ϕk−1). We first show

~p |= EkX(ϕk−1) =⇒ α(~p) |= EkX(ϕk−1), ∀~p ∈ C.
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Since ~p |= EkX(ϕk−1), there are a state ~p(1) and a transition t such that ~p

t−→ ~p(1)

and ~p(1) |= ϕk−1. Let ~r = γ(α(~p)). If d(~p, ~r) ≤ 1/2k, we have ~p ∼=s ~r for some s ≥ k.

Then there exists a state ~r(1) such that ~r
t−→ ~r(1) and ~p(1) ∼=s−1 ~r

(1). Let C = α(~p)

and C(1) = α(~r(1)). Define an abstract transition t# := α ◦ t ◦ γ. Then C
t#−→ C(1).

Since ~p(1) ∼=s−1 ~r
(1) and ~p(1) |= ϕk−1, by Theorem 4.1, ~r(1) |= ϕk−1. By induction

hypothesis, α(~r(1)) |= ϕk−1, i.e. C(1) |= ϕk−1. This implies that C |= EkX(ϕk−1).

Next we show

α(~p) |= EkX(ϕk−1) =⇒ ~p |= EkX(ϕk−1), ∀~p ∈ C.

Let C = α(~p). Since C |= EkX(ϕk−1), there exists an abstract transition t# and

some cluster C(1) such that C
t#−→ C(1) and C(1) |= ϕk−1. By the definition of an

abstract transition, there must exist a transition t such that t# = α ◦ t ◦ γ. Let

~r = γ(C). Then there exists a state ~r(1) such that ~r
t−→ ~r(1) and α(~r(1)) = C(1).

Since C(1) |= ϕk−1, by induction hypothesis, ~r(1) |= ϕk−1. If d(~p, γ(α(~p))) ≤ 1/2k,

we have ~p ∼=s ~r for some s ≥ k. Then there must exist a state ~p(1) such that ~p
t−→ ~p(1)

and ~p(1) ∼=s−1 ~r
(1). By Theorem 4.1, ~p(1) |= ϕk−1, and so ~p |= EkX(ϕk−1).

(4) Consider EkG(ap). We first show

~p |= EkG(ap) =⇒ α(~p) |= EkG(ap), ∀~p ∈ C.
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Since ~p |= EkG(ap), there is a sequence of transitions ~p
t1−→ ~p(1) t2−→ ~p(2) · · · tk−→ ~p(k)

such that ~p(i) |= ap for all 0 ≤ i ≤ k, where ~p(0) := ~p. Let ~r = γ(α(~p)). If

d(~p, ~r) ≤ 1/2k, we have ~p ∼=s ~r for some s ≥ k. Set ~r(0) = ~r. Then there exist states

~r(i) for 1 ≤ i ≤ k such that ~r(i−1) ti−→ ~r(i) and ~p(i) ∼=s−i ~r
(i). Let C := C(0) = α(~p)

and C(i) = α(~r(i)) for all 1 ≤ i ≤ k. Define abstract transitions t#i := α◦ti◦γ for all

1 ≤ i ≤ k. Then C(i−1)
t#i−→ C(i). Since ~p(i) ∼=s−i ~r

(i) and ~p(i) |= ap, by Theorem 4.1,

~r(i) |= ap. By induction hypothesis, α(~r(i)) |= ap, i.e. C(i) |= ap for all 0 ≤ i ≤ k.

This implies that C |= EkG(ap).

Next we show

α(~p) |= EkG(ap) =⇒ ~p |= EkG(ap), ∀~p ∈ C.

Let C = α(~p) and C(0) := C. Since C |= EkG(ap), there exists a sequence of

abstract transitions C
t#1−→ C(1) t#2−→ C(2) · · ·

t#k−→ C(k) such that C(i) |= ap for all

0 ≤ i ≤ k. By the definition of an abstract transition, there must exist transitions

ti such that t#i = α ◦ ti ◦ γ for all 1 ≤ i ≤ k. Let ~r = γ(C). Then there exists states

~r(i) such that ~r(i−1) ti−→ ~r(i) and α(~r(i)) = C(i) for all 1 ≤ i ≤ k. Since C(i) |= ap, by

induction hypothesis, ~r(i) |= ap. If d(~p, γ(α(~p))) ≤ 1/2k, we have ~p ∼=s ~r for some

s ≥ k. Set ~p(0) = ~p. Then there must exist states ~p(i) such that ~p(i−1) ti−→ ~p(i) and

~p(i) ∼=s−i ~r
(i) for all 1 ≤ i ≤ k. By Theorem 4.1, ~p(i) |= ap for all 0 ≤ i ≤ k, and so

~p |= EkG(ap).

(5) Consider Ek(ap1Uap2). We first show

~p |= Ek(ap1Uap2) =⇒ α(~p) |= Ek(ap1Uap2), ∀~p ∈ C.

Suppose ~p |= Ek(ap1Uap2). Let ~p(0) := ~p. Then there exists a path π1 = ~p ~p(1) · · · ~p(k)

such that there is a 1 ≤ j ≤ k for which

• ~p(i) |= ap1 for all 0 ≤ i < j; and
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• ~p(j) |= ap2.

Let ~r = γ(α(~p)). If d(~p, ~r) ≤ 1/2k, we have ~p ∼=s ~r for some s ≥ k. Set ~r(0) = ~r. Then

there exist states ~r(i) for 1 ≤ i ≤ k such that ~r(i−1) ti−→ ~r(i) and ~p(i) ∼=s−i ~r
(i). Let

C := C(0) = α(~p) and C(i) = α(~r(i)) for all 1 ≤ i ≤ k. Define abstract transitions

t#i := α ◦ ti ◦γ. Then C(i−1)
t#i−→ C(i). Since ~p(i) ∼=s−i ~r

(i) for all 1 ≤ i ≤ k, and since

~p(i) |= ap1 for all 0 ≤ i < j, and ~p(j) |= ap2, by Theorem 4.1, ~r(i) |= ap1 for all

0 ≤ i < j, and ~r(j) |= ap2. By induction hypothesis, α(~r(i)) |= ap1 for all 0 ≤ i ≤ j,

and α(~r(j)) |= ap2. This implies that C |= Ek(ap1Uap2).

Next we show

α(~p) |= Ek(ap1Uap2) =⇒ ~p |= Ek(ap1Uap2), ∀~p ∈ C.

Let C = α(~p). Since C |= Ek(ap1Uap2), there exists a sequence of abstract tran-

sitions C
t#1−→ C(1) t#2−→ C(2) · · ·

t#k−→ C(k) such that there is a 1 ≤ j ≤ k for which

C(i) |= ap1 for all 0 ≤ i ≤ j and C(j) |= ap2. By the definition of an abstract

transition, there must exist transitions ti such that t#i = α ◦ ti ◦γ for all 1 ≤ i ≤ k.

Let ~r = γ(C). Then there exists states ~r(i) such that ~r(i−1) ti−→ ~r(i) and α(~r(i)) = C(i)

for all 1 ≤ i ≤ k. Since C(i) |= ap1 for all 0 ≤ i ≤ j and C(j) |= ap2, by induction

hypothesis, ~r(i) |= ap1 for all 0 ≤ i ≤ j and ~r(j) |= ap2. If d(~p, γ(α(~p))) ≤ 1/2k, we

have ~p ∼=s ~r for some s ≥ k. Set ~p(0) = ~p. Then there must exist states ~p(i) such

that ~p(i−1) ti−→ ~p(i) and ~p(i) ∼=s−i ~r
(i) for all 1 ≤ i ≤ k. By Theorem 4.1, ~p(i) |= ap1

for all 0 ≤ i ≤ j and ~p(j) |= ap2, and so ~p |= Ek(ap1Uap2).

Based on Theorem 4.4, to verify (C, T ), ~p |= ϕk, where C = (Σ,≤), ~p ∈ Σ,

one needs to use the abstraction map α to determine the abstract cluster α(~p)

corresponding to ~p, and if d(~p, γ(α(~p))) ≤ 2−k then we verify (A, T #), α(~p) |= ϕk

on the abstract transition system. However, computing α(~p) requires comparing

among d(~p, ~r) for each root ~r ≥ ~p; this may be computationally expensive.
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We will use an approach where each cluster Ci will be approximately represented

by a probability density function (PDF) that determines the probability that Ci is

the abstract cluster corresponding to a set of states U ⊆ Σ. To verify (C, T ), ~p |=

ϕk, one needs to check if (C, T ), U |= ϕk where U ⊆ Σ is a neighborhood of ~p and

(C, T ), U |= ϕk if and only if for all ~u ∈ U , (C, T ), ~u |= ϕk. Probability density

functions can be estimated using a kernel density estimation (KDE) procedure [32].

We use Gaussian kernels to estimate the desired PDFs in the implementation.

39



Chapter 5

Algorithm for Program Analysis

In this chapter, we formally describe the process that was briefly introduced in

Chapter 1. Our approach for verification is a data-driven approach. We assume a

program P with the corresponding state space Σ.

5.1 Sampling for Cluster Roots

To induce the clusters in the abstract domain, we first sample program states as

root points of clusters. Specifically, we construct a net N from the program state

space Σ such that

• if ~p and ~q are in N , then d(~p, ~q) ≥ ε where ε is a hyperparameter.

The size of N , n = |N |, is finite but unbounded (we will estimate n in Section 5.4).

Each state in N will be the root of a cluster. We apply the constant ε to ensure

unique program states in the net for discrete distribution conditions. Each state

in the net must be at least a distance of ε away from all other states in the net

so that root points are “spread out” enough, and the resulting clusters rooted at

these root points can cover the concrete domain (see Lemma 5.2).

Lemma 5.1. Let En[X] be the expectation of the number X of trials needed to get

n root points. There exists a constant χ, where 0 ≤ χ ≤ 1
ε
, such that

En[X] ≈ n

(1− χε)n(n−1)/2
. (5.1)

Proof. Recall that any two root points ~ri and ~rj in the net N satisfy the condition

d(~ri, ~rj) ≥ ε. Let f be the conditional probability density function (CPDF) for

the distance d(~ri, ~rj). The function f is finite, bounded1, and continuous on [0, 1].

1Notice that the CPDF f and another CPDF f i (we use it later) are not the Dirac delta function.
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Then we have, using the mean value theorem for integrals,

pr(d(~ri, ~rj) ≥ ε) =

∫ 1

ε

f(v) dv

= 1−
∫ ε

0

f(v) dv

= 1− ε · f(v)

for some v ∈ (0, ε). Set χ := f(v). Since 0 ≤ εχ ≤ 1, then 0 ≤ χ ≤ 1
ε
. Thus the

probability to get n root points is

p = pr(|N | = n) = (1− χε)C2
n = (1− χε)

n(n−1)
2 .

Then the expected number of trials needed to get n root points is given by

En[X] ≈ n

p
=

n

(1− χε)
n(n−1)

2

where we apply the law of large numbers.

5.2 Inducing the Abstract Domain

Assuming a net of the concrete state space, N ⊆ Σ, we construct a (sampling)

abstract domain. For each ~r ∈ N , we construct a cluster rooted at ~r. Assume there

exists the supremum element ~>C in the concrete domain C.

Lemma 5.2 (Finite Coverage of Concrete Domain). For a program P with the

program state space Σ, a finite sample N ⊆ Σ will induce a set of clusters

CN = B~>C ∪

(⋃
~r∈N

B~r

)
that is a finite cover of the concrete domain C.

It is natural to define a (sampling) abstract domain to be A := CN .

Proof. Since N is a finite set,
⋃
~r∈N B~r is also finite. We include a cluster induced

by the supremum element ~>C in the concrete domain C. Since B~>C covers all states

in Σ, CN is a finite subcover of the concrete domain C.
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Identify Abstract States. The construction of an abstract domain essentially

depends on determining abstract states (clusters) that most precisely represent

the given (concrete) states. For a state ~p ∈ Σ, if α(~p) = Ci, then the root ri is

the closest to ~p among all root points ~r ≥ ~p. The probability density function

approximately representing Ci will provide a measure of the closeness of a set of

states U to the root ~ri of Ci. An abstract cluster Ci will correspond to a set of

states U ⊆ Σ if the probability of its closeness to the root ~ri is greater than that

of its closeness to all other roots ~r (ties broken arbitrarily). Let F be the set of all

PDFs fC corresponding to C ∈ A.

5.3 Sampling for Clusters

To approximate a probability density function that can be used to estimate for each

abstract cluster Ci with root ~ri, the likelihood that for a state ~p, α(~p) = Ci, we

need to draw a finite sample for each cluster that is an approximate representation

of state ~p such that α(~p) = Ci (we call this sample the cluster sample for Ci).

Observe that if ~p ≤ ~ri and d(~p, ~ri) < ε/2 then α(~p) = Ci (by triangle inequality).

For a state ~p ≤ ~ri such that ε/2 ≤ d(~p, ~ri) ≤ 1, it is possible that α(~p) = Ci with

likelihood increasing with closeness to ~ri.

We form n cluster samples (for the n clusters) from the program state space Σ

such that

• each cluster sample contains m program states (m can be pre-specified; we

assume m ≥ 30 for statistical significance); and

• if ~r is the root point of a cluster and ~x is any state in the cluster sample,

then

d(~r, ~x) ≤ β, and ~x ≤ ~r (5.2)

where β is a hyperparameter determining the accuracy of the sample.
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Algorithm 1 Build a cluster sample

1: procedure BuildCluster(S,~r, β)
Input: the root point ~r and the radius β of the cluster sample
Output: a cluster sample S~r rooted at ~r

2: Begin
3: S~r ← {~r}
4: Σ← Σ \ {~r}
5: while |S~r| < m do
6: ~x← choose(Σ)
7: close ← false
8: if d(~x,~r) > β or ~x > ~r then
9: close ← true

10: break
11: end if
12: if close = false then
13: S~r ← S~r ∪ {~x}
14: Σ← Σ \ {~x}
15: end if
16: end while
17: end procedure

This construction is to guarantee any state in a cluster sample (i.e. within β dis-

tance from the root point of the cluster) is k-step bisimilar (for some k ∈ N) to

the root point, while those states beyond β distance from the root point share less

and less bisimilarities, and thus are less and less likely to share the same CTLk

properties with the root point. Choosing an appropriate value for β depends on

the coarseness of the desired abstraction.

Algorithm BuildCluster(Σ, ~r, β) (cf. Algorithm 1) is based on these conditions,

that acquires a cluster sample of program states. We repeatedly choose valid can-

didate program states using the choose function (cf. line 6 in Algorithm 1).

5.4 Estimate the Number of Clusters

In any clustering technique, it is important and difficult to determine the num-

ber of clusters. We introduce Algorithm 2 to determine the number n of clusters

constructed from observed data, using a stopping criterion. We fix a level of signif-
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icance ν ∈ (0, 1] to indicate the fraction of unclustered program states. The basic

idea is to make the probability of unclustered program states (i.e., states for which

equation (5.2) does not hold true for any cluster) less than or equal to the level of

significance ν.

Let us first observe some facts from probability theory. Let ~p ∈ Σ and ~ri a fixed

root point. We want to determine d(~p, ~ri). Let f i be the conditional probability

density function (CPDF) for the distance d( · , ~ri) from a state to the root point ~ri.

The function f i is finite, bounded, and continuous on [0, 1]. Given a state ~p and a

distance value v ∈ [0, 1], f i(v | ~p) tells us how likely the distance d(~p, ~ri) equals v.

Our goal is to determine the probability

pr(0 ≤ d(~p, ~ri) ≤ β) =

∫ β

0

f i(v | ~p) dv.

By the mean value theorem for integrals, there exists a v ∈ (0, β) such that∫ β

0

f i(v | ~p) dv = f i(v | ~p) · β = χ1 · β (5.3)

where we set χ1 := f i(v | ~p). Since f i is bounded, χ1 is a finite number. Moreover,

0 ≤ χ1β ≤ 1 since the equation (5.3) represents a probability. So 0 ≤ χ1 ≤ 1
β
. The

following proposition gives an upper bound for the number n of clusters.

Proposition 5.3. An upper bound for the expected number n of clusters is given

by

E[n] = log
( ν
$

)
, $ := 2− (c+ χ1β)− cχ1β

where χ1 ∈ [0, 1
β
] is the same constant as in (5.3), and c is the probability of a state

being less than or equal to a root point2.

Proof. The construction of n cluster samples {S~ri}ni=1 is based on the condition

(5.2). In view of (5.3), we see that, for a program state ~x, the probability of ~x

2When a partial order ≤ is given on the concrete domain C, we have for any two element ~x, ~y ∈ C, the probability
pr(~x ≤ ~y) is a constant.
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being unclustered into a cluster sample S~ri is given by

pr(~x /∈ S~ri) = (1− χ1β) + (1− c)− cχ1β = 2− (c+ χ1β)− cχ1β := $

where c (a constant) is the probability of ~x satisfying the condition ~x ≤ ~ri. The

probability of program states unclustered into any of the n cluster samples is

supposed to be less than or equal to the level ν of significance. So we have

pr(∩ni=1(~x /∈ S~ri)) = $n ≤ ν

and thus

n ≤ log
( ν
$

)
. (5.4)

Remark 5.4. Consider the inequality $n ≤ ν. If ν → 0, since c, χ1, and β are

fixed, we have n→∞. This implies that Algorithm 2 will not terminate if ν → 0.

Therefore, we restrict the value of ν on (0, 1].

Proposition 5.5. The following hold true for Algorithm 2:

1. It determines the number n of clusters (this is also the number of root points)

and generates n cluster samples.

2. Each state in a cluster sample is within β-distance from the root point of the

cluster.

3. Any two root points of clusters are at least ε-distance away from each other.

Proposition 5.6 (Time Complexity of Algorithm 2). Without loss of generality

we assume the size of each cluster sample is the same. An upper bound on the

expected run time of Algorithm 2 is given by

Γ

(1− χε)Γ(Γ−1)/2
+

mΓ

cχ1β
, Γ := log

( ν
$

)
(5.5)
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Algorithm 2 Determine the Number of Clusters

1: procedure NOC(Σ, β, ε, ν)
n: the number of clusters; Si: cluster samples, i = 1, . . . , n

2: i← 1, N ← ∅
3: ~pi ← choose(Σ)
4: N ← N ∪ {~pi}
5: Si ← BuildCluster(Σ, ~pi, β)
6: while $i > ν do
7: i← i+ 1
8: repeat
9: ~pi ← choose(Σ \ (S1 ∪ · · · ∪ Si−1))

10: min← d(~pi, ~p1)
11: for all j = 2 : (i− 1) do
12: if d(~pi, ~pj) < min then min← d(~pi, ~pj)
13: end for
14: until min ≥ ε
15: N ← N ∪ {~pi}
16: Si ← BuildCluster(Σ, ~pi, β)
17: end while
18: n← i
19: return n, N
20: end procedure

where c, χ1 and $ are the same as in Proposition 5.3, and χ is the same as in

Lemma 5.1.

Proof. In view of the condition (5.2), we see that the probability of a state being

assigned to a cluster sample is cχ1β. So we need m
cχ1β

(the expected number) trials

to cluster m states into a cluster sample, and thus need n · m
cχ1β

trials to create n

such cluster samples. On the other hand, (5.1) gives the expected number of trails

needed to get n root points. Therefore, using the upper bound for n (cf. (5.4)), the

expectation of the number of trails for Algorithm 2 to terminate is given by

E(run time) =
n

(1− χε)n(n−1)/2
+

nm

cχ1β

≤ Γ

(1− χε)Γ(Γ−1)/2
+

mΓ

cχ1β
, Γ := log

( ν
$

)
.
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5.5 Abstract Density Map and Abstract

Density Transition System

For each cluster Ci, we estimate a PDF fCi from its cluster sample. This fCi

provides an approximate representation of Ci.

Definition 5.7 (Abstract density map). We define an abstract density map η :

2Σ → F that maps U ⊆ Σ to the PDF fCi for Ci ∈ A if

∫
U

fCi(~x)d~x ≥
∫
U

fCj(~x)d~x

for all j (ties broken arbitrarily).

Based on the abstract density map, we define an abstract density transition

system (ADTS) as follows.

Definition 5.8 (ADTS). For each abstract transition t# ∈ T #, we define an

abstract density transition θ# ⊆ F × F such that (fCi , fCj) ∈ θ# if and only if

(Ci, Cj) ∈ t#. Let Θ# be the set of all abstract density transitions. We define the

abstract density transition system (ADTS) to be the pair (F ,Θ#).

To verify (C, T ), U |= ϕk, we verify if (F ,Θ#), η(U) |= ϕk. The ADTS (F ,Θ#)

and (C, T ) are related by the following theorem.

Theorem 5.9. For a program P with the state space Σ and U ⊆ Σ, and a CTLk

formula ϕk, if η(U) = fC ∈ F and fC |= ϕk in the density transition system, then

in the concrete program P,U |= ϕk with an error probability E upper bounded by

1− (c′ε)/2k+1, where c′ ∈ [0, 2k+1

ε
] is a constant.

Proof. Let U ⊆ Σ and η(U) = fC~ri where Ci := C~ri is a cluster rooted at ~ri.

Suppose fCi |= ϕk. Then in the concrete domain, U |= ϕk with an error probability

E given by pr(U 6|= ϕk). We determine an upper bound for E in the following.
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Notice that U 6|= ϕk if there exists a ~p ∈ U such that ~p 6|= ϕk. Thus,

E = pr((~p ∈ U) ∧ (~p 6|= ϕk)) ≤ pr(~p 6|= ϕk) = 1− pr(~p |= ϕk).

We have shown, in Theorem 4.4, that the statement

α(~p) = Ci and d(~p, ~ri) ≤
1

2k
(5.6)

together with the statement

(A, T #), Ci |= ϕk (5.7)

implies the statement

(C, T ), ~p |= ϕk. (5.8)

By the assumption, the statement (5.7) is true and so

statement (5.6) ∧ statement (5.7) = statement (5.6).

Thus we can simplify this implication as

statement (5.6) =⇒ statement (5.8).

The error probability E ≤ 1−pr((5.8)), where pr((5.8)) is the probability that the

statement (5.8) holds true. By probability theory, we see that pr((5.8)) ≥ pr((5.6)).

Notice that if ~p ≤ ~ri and d(~p, ~ri) ≤ ε/2 then α(~p) = Ci (by triangle inequality). For

~p ≤ ~ri such that ε/2 < d(~p, ~ri) ≤ 1, it is possible that α(~p) = Ci with likelihood

increasing with closeness to ~ri. In view of (5.3), there exists a v′ ∈ (0, ε/2) such

that

pr(0 ≤ d(~p, ~ri) ≤
ε

2
) = χ2 ·

ε

2
, χ2 := f i(v

′ | ~p).

Therefore,

pr(α(~p) = Ci) ≥ c · χ2ε

2
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where c is the same constant as given in Proposition 5.3. Similarly, there exists a

constant χ3 such that

pr(0 ≤ d(~p, ~ri) ≤
1

2k
) =

χ3

2k
.

Notice that both χ2ε
2

and χ3

2k
are between zero and one. Hence,

pr((5.6)) = pr(α(~p) = Ci) · (d(~p, ~ri) ≤
1

2k
) ≥ cχ2χ3ε

2k+1
.

Set c′ = cχ2χ3. Then 0 ≤ c′ ≤ 2k+1

ε
. It follows that

pr((5.8)) ≥ c′ε

2k+1
and E ≤ 1− c′ε

2k+1
.

Remark 5.10. When we fix k and ε, the error probability E can be made arbi-

trarily small by repeating the verification process as many times as needed.

5.6 Abstraction Refinement

Given a program and a set of properties, our approach generates an abstraction

on which we verify properties. The associated ATS (or ADTS) allows us to answer

queries about the program within an error probability E .

Performance Evaluation. To evaluate the performance of the program an-

alyzer based on the data-driven abstraction framework, we check the correctness

and accuracy of the abstraction applied to verify properties on a validation set of

program states. This includes the following steps:

1. For a state ~x, using PDFs to identify a cluster C that approximates the

abstract state α(~x);

2. For a given property ϕk, verify C |= ϕk;

3. Go through the same process for each state in the validation set;
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We can compare the verification results obtained based on the ADTS with the

ground truth, and can classify them in one of the four categories, i.e., true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN):

ground truth verification results decision

~x |= ϕk C |= ϕk TP

~x |= ϕk C 6|= ϕk FN

~x 6|= ϕk C |= ϕk FP

~x 6|= ϕk C 6|= ϕk TN

(5.9)

We now present a way to offer a viable performance measure of the program

analysis tool at different abstraction levels. We consider a weighted sum of true

positive rate (TPR) and false positive rate (FPR), and the number n of clusters:

S := w1 log2(TPR + 1)− w2 log2(FPR + 1)− w3 log2(n) (5.10)

where

TPR =
TP

TP + FN
and FPR =

FP

FP + TN

are calculated based on (5.9), and wi’s are weighting factors in [0, 1] that determine

the relative strength of TPR, FPR, and the number n of clusters, respectively. We

can change these parameters to control the relative importance of each term to

our observation. An abstraction enables ideal performances when it has high TPR,

low FPR, and relatively small number n of clusters (for computational efficiency).

We observe the relation between these three terms and the hyperparameter β, and

create an evaluation curve by plotting the weighted sum S against the (modified)

hyperparameter log2 β. This curve illustrates the variation in performance of the

program analyzer created based on the data-driven abstraction framework as its

discrimination hyperparameter is varied.
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Refinement. We compute S for an abstraction generated by our method using

(5.10). If the number S is below a threshold δ, we vary β and the least distance ε

between cluster root points to generate distinct levels of abstractions, on which we

can again answer queries. Based on the computation of the quantitative measure

S, we may iteratively repeat this process until S reaches a stable and optimal value

that induces an ideal abstraction for the given program analysis problem.
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Chapter 6

Experiments

In this chapter, we summarize our experiments and present the verification results

obtained by applying the data-driven abstraction framework on a test suite of C

programs selected from the open-source GNU coreutils, diffutils, and grep. This

will certify the claims we made in this work.

6.1 Experimental Strategy

In this section, we provide details on the strategy used in our experiments.

Experimental Setup. For our experiments we utilized a desktop computer

running Ubuntu Linux 4.4.0-53. The data-driven abstraction framework is imple-

mented in Python and MATLAB.

6.1.1 Generate Sample Data

First we introduce a dynamic analysis approach to generate concrete data.

Programs were selected for instrumentation if they fulfilled several criteria. We

preferred programs that did not alter the system in a way that would be difficult

to clean up after a test run. Programs that utilized generic text file input were

selected, as we can vary the input easily by simply providing a variety of input files,

generated from dictionary data. We picked programs that were intended to take

command line input and run to completion with no user input during execution.

Therefore, we are able to run each instrumented program many times with little

difficulty.

For our experiments we require data on variable values throughout the execu-

tion of a program. To gather this data we have instrumented several programs
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TABLE 6.1. Programs instrumented to examine execution steps and variable values.
Name Package Documented purpose

1 base64 coreutils Base64 encode or decode.
2 cat coreutils Concatenate files to standard output.
3 cmp diffutils Compare two input files byte by byte.
4 comm coreutils Compare sorted input files line by line.
5 cp coreutils Copy a source to a destination.
6 csplit coreutils Output piece of input file separated by input pattern.
7 dd coreutils Copy, convert, and format a file.
8 diff diffutils Compare input files line by line.
9 du coreutils Summarize disk usage of input file(s).

10 fmt coreutils Reformat file by paragraph.
11 fold coreutils Wrap lines in input file.
12 grep grep Search for pattern in input source.
13 truncate coreutils Shrink or extend the size of input file.
14 wc coreutils Print word count for input file.

(Table 6.1), mostly selected from the open-source GNU coreutils, diffutils, and

grep.

Within an instrumented program, we record two types of information. The first

is the states of certain variables, global and local, in a set of meaningful code

locations1 of the program, for a variety of inputs. The first data set allows us to

compare the actual values of the variables at particular locations. The second is

the sequential set of statements that were actually executed in a run. The second

data set, which we will call the traces, allows us to compare any two code locations

across any of our runs and determine bisimilarity (we call the resulting values

bisimilarity data).

We specifically limit ourselves to boolean and numeric variables, as we can draw

clusters around these variables, and meaningfully discuss the distance between one

variable value and another. While we have examined measuring strings and byte

arrays, we are not utilizing those here (see Section 8.2 for more discussion about

extension to other program types).

1By a meaningful code location of a program, we mean the code represents a statement that has side-effect.
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Generating trace data. The instrumentation allows us to collect data (a trace)

from one individual run of a program. This trace will consist of the exact sequence

of significant statements executed in the program, and the values stored in the

variables at every meaningful location in those programs (we call the resulting

values trace data). For some programs, we instrumented only the main method, for

others we instrumented some supporting methods as well. We would instrument

supporting methods if the program was more modular and contained a smaller

main method, or if experimental results showed that merely instrumenting the

main method did not provide enough information to verify any properties. By

executing these instrumented programs with a variety of inputs, we are able to

acquire a sample of traces from the population of all traces available. As the set

of all traces might be infinite, if we consider the set of all possible input files to be

infinite, we cannot examine all possible traces.

We also need to get as much variety as possible in the traces that we execute.

There are two basic kinds of variations we put on user input. The first was using

generated file input to be used by the program. The second was to vary the argu-

ment flags that alter the manner in which the program executes. While file input

can be varied automatically, not every flag combination is relevant for every pro-

gram. For example, consider a program with a flag to trigger verbose output, and

a flag that caused the program to execute in quiet mode and produce no output.

Combining both of those flags in a single execution would not be meaningful. We

created a file that contains a set of reasonable execution commands, each of which

uses a different flag combinations, and one or more locations to insert generated

file input. We created the flag combinations by reading the help data provided for

each program, but for the programs with many flags, not every combination was
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used. Then we were able to run the entire file on a set of generated inputs, to

create a large set of varying execution traces.

We can see a fragment of instrumented code in Figure 6.1. The openStateFile

and finishState functions open and close the file used to store variable state

and trace prefix information. The nvpair array stores information for each vari-

able that we instrument. And appStmt is used to store a unique identifier for each

transitional statement in code, and record the actual variable values after each

such statement. By transitional statement, we mean assignment statements that

change variables’ values, or function calls. Any execution that affects memories is

viewed as a transition. For example, the statement x = 15; would be considered

transitional as it alters the value of the variable x. A conditional such as if(x

> 10) would not be considered a transitional statement as no variable’s state is

altered. Moreover, a variable declaration is not a transitional statement. In all like-

lihood any meaningful if block would contain transitional statements, so while

the statement itself would not be recorded, its impact on control flow would as

we instrument the body of the if block. After making these modifications to the

source file(s) we build new executables that will continue to perform their original

purposes, as well as saving trace and variable information to a file every time the

program is run.

When we store each state name, and each variable value, it is written to a file

as the program is executing. After the program completes execution for a specific

input, the files containing the data collected during the trace are moved to a

collection directory, which will store the other trace and statement sequence data

files created for a specific set of tests.

Determining bisimilarity. In addition to the values of variables, we also con-

structed a sequence of the statements executed for each trace. The sequence of
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1 int main ( int argc , char ∗∗ argv )
2 {
3 bool number=f a l s e ;
4 bool squeeze b lank=f a l s e ;
5 openStateF i l e ( ) ;
6 appStmt ( ”BN” ) ;
7 . . .
8 nvpair ∗ l o c a l s = mal loc ( s izeof ( nvpair ) ∗20) ;
9 . . .

10 l o c a l s [ 1 ] = ( nvpair ){”LOCAL: squeeze b lank ” ,
11 ” bool ” , &squeeze b lank , s izeof ( bool ) } ;
12 l o c a l s [ 2 ] = ( nvpair ){”LOCAL: number” ,
13 ” bool ” , &number , s izeof ( bool ) } ;
14 . . .
15 switch ( c ){
16 case ’ b ’ :
17 number = true ;
18 appStmt ( ”CH” ) ;
19 case ’ s ’ :
20 squeeze b lank = true ;
21 appStmt ( ”CM” ) ;
22 . . .
23 i f ( ! ( number | | show ends | | show nonpr int ing
24 | | show tabs | | squeeze b lank ) )
25 {
26 i n s i z e = MAX ( i , o u t s i z e ) ;
27 appStmt ( ”EA” ) ;
28 . . .
29 }
30 . . .
31 f i n i s h S t a t e ( ) ;
32 }

FIGURE 6.1. Code snippets from cat.c in linux coreutils package. This code has been
edited for formatting, and includes highlighted lines for added instrumentation code.

statements executed at each point in the trace is saved along with the variable val-

ues. These statement sequences are used to construct a bisimilarity measurement

for each point/state in the trace. One trace corresponds to one total sequence of

statements executed, and each point in the trace has executed some prefix of that

total sequence. After running the entire experiment, we can compare those saved
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Trace x complete sequence: Trace y complete sequence:
A,B,C,T,U,X,U,X,Y,Z N,M,O,T,U,X,U,Z
Trace x state ~p prefix: Trace y state ~q prefix:
A,B,C,T N,M,O,T
Trace x state ~p suffix: Trace y state ~q suffix:
U,X,U,X,Y,Z U,X,U,Z

Bisimilar(~p, ~q) = 3

TABLE 6.2. Bisimilarity calculation for two states, ~p and ~q, dropped in one location
from two traces, x and y.

prefixes, along with the complete sequence, and create a suffix that represents

the statements that will be executed moving forward from any point. Bisimilarity

between two states is calculated by determining how long an identical sequence

exists between the suffixes calculated for those two states, as seen in Table 6.2.

The computed bisimilarity values that compare each trace point are then stored

in a bisimilarity matrix. When a state is compared with itself, its bisimilarity is

considered to be infinite, however because all our experiments were run on termi-

nating programs, all calculated bisimilarity values are initially finite integers. An

additional calculation step is performed for a special case where a pair of entire

traces match, i.e., for two states the same sequence of statements executed all the

way up to the end of code, they are considered to be infinite bisimilar to each

other. These bisimilarity values are reset in the matrix to a marker for an infinite

value.

Summary of the dynamic analysis process. As a general rule, in order to instru-

ment more programs, one would need to instrument the program to save the states

of variables, and the sequence of statements executed for one execution of the pro-

gram. Then one would develop a set of input arguments to run the program, and

properties that vary over those input arguments. After this, by executing the pro-
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gram over each argument in the set, one can verify any property at any location,

and compare any execution’s bisimilarity values to any other execution in our set.

6.1.2 Clustering Data

We next cluster the trace data based on the hyperparameters β and ε, which

determine the quality of the abstraction, according to the clustering algorithm

(Algorithm 2). Kernel density estimation (bandwidth = 0.15) is used to estimate

PDFs to approximately represent the abstract clusters. Suppose we are going to

verify a property ϕk for a fixed k ∈ N. Then we would set β = 1/2k, k ∈ N, and ε ≥

2β (to guarantee clusters do not mutually overlap), and tune these hyperparameters

(by varying k and ε) until the quality of the abstraction is satisfactory. While

tuning, we would like to achieve a trade-off between the quality of the abstraction

and the number of clusters which affect computational efficiency.

6.1.3 Verify Properties

Properties of interest are specified as CTLk formulas. Atomic propositions are

boolean formulas on the values of variables from the instrumented program. At

each location in a program’s execution at which we record the variable values,

we can also calculate the truth value of the atomic propositions based on those

variable values.

For example, if we examine the code in Figure 6.1, we can see that the variables

number and squeeze blank may each take on two possible values, both will have

the value false at initialization, and each may take on the value true based on the

execution of a switch statement. We can construct a CTLk property ϕk using this

variable, as seen in Figure 6.2. It means there exists some k-path (i.e. within k steps

of execution) such that either number=true or squeeze blank=true somewhere on

that path.
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EkF(number = T ∨ squeeze blank = T )
FIGURE 6.2. A property based on the value of the number and squeeze blank variables
somewhere on a k-step execution (from the current state) on the program cat.c.

The property in Figure 6.2 uses the CTLk concept of Finally, meaning the prop-

erty itself is true for those traces based on a location within k steps ahead. Suppose

we would like to verify the property in Figure 6.2 for k = 10. Therefore, if a trace

was to execute the statement on line 17 in Figure 6.1, number=true in a state on

a path of length 10 from the current state, we could say that the property’s value

would be true. When we proceed to clustering data from multiple executions, we

will see the relationships between multiple traces and the predictability of property

values made clear.

By tracking the value of a property through the lifetime of a complete program

execution, we can then move forward through that execution, and state what the

property will be at later states. We can, for example, say that a given property will

be true at the tenth step from the current state, or that a property will be true for

everywhere on a 20-step execution from the current state, based on the complete

trace information. When looking ahead at a property’s value at some point later

in the trace, we use the variable k to represent a specific number of execution steps

in the future. Because property values are based on the values of variables, we can

calculate the values of properties at every point for which we have variable values

stored after the program has completed execution.

Remark 6.1. Our properties were chosen to be experimentally interesting, which

we define as having significant variation over the experimental trace set. Whether

these properties are those that correspond to ones that a programmer might find

interesting is more difficult to determine. Often properties do relate to some of the

variables that are most directly impacted by input to the program, such as boolean
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variables that are set based on flags used at the terminal. An example might be the

-s flag used in the cat program, which changes the way that output is processed.

This flag is represented in the cat program as a global boolean variable, and we

use it as a component in some of the properties that we attempt to verify.

6.1.4 Determine an Ideal Abstraction

Recall that we cluster the trace data (with hyperparameters β = 2−k, k ∈ N,

and ε ≥ 2β), and then use the resulting ADTS to verify a given property ϕk.

This abstraction may be too rough to verify ϕk, for example, there may be an

unacceptable number of false positives. We then perform abstraction refinement

by tuning the hyperparameters β and ε to generate a new abstraction. We may

repeat the process until the abstraction can verify the properties accurately or

within an acceptable error probability. At that point, the abstraction is then an

ideal abstraction with respect to a given program analysis problem.

To generate an ideal abstraction, we would like to determine optimal values for

the hyperparameters β and ε that determine the quality of the abstraction. This

amounts to tuning the values of k and ε ≥ 2 ·2−k until the performance measure S

cannot be improved anymore. This is the point where the values of the hyperpa-

rameters β and ε reach an optimal value (and thus provide an optimal operating

point of the program analyzer). Towards this goal, we involve the following steps

(assume ε = 2β for simplicity):

• Initialize k (usually set it to be zero);

• Keep increasing k by a step size;

• For one k value that determines one β value (and thus one ε value), construct

clusters with respect to the β and ε values which form an abstraction.
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• Evaluate the performance measure S for each constructed abstraction;

• Observe each resulting S value. When the S values converge to a value above

a threshold, and tend to be stable (with relatively small amount of deviations

due to noise data), we stop increasing k;

• Choose the maximum from all observed S values and find the corresponding

k, β, ε values which are optimal;

• The abstraction with respect to the optimal β and ε values is thus an ideal

abstraction, and hence provide an optimal operating point of the program

analyzer.

6.2 Experimental Results

We present the results of performance evaluations of the program analyzer based on

the data-driven abstraction framework, and empirically analyze how to determine

an ideal abstraction with respect to a given program analysis problem.

6.2.1 A Result on the Program cat

The following is one of our experimental results taken for the program cat.c

(for detailed experimental results for this program and that for the rest of the C

programs in the test suite we refer the reader to Appendix A). The sample data

was drawn at location main EH in the instrumented cat.c program. Suppose we

want to verify a property

ϕk = EkF(show ends = T ), k = 42 (6.1)

where show end is a boolean variable in the program cat.c. The property ϕk

(k = 42) holds true on a state if there exists a path of length 42 from that state

such that show end=true at some state in that path.

61



FIGURE 6.3. Performance measure on cat: w1 = w2 = 1, w3 = 0.005

Figure 6.3 provides quantitative evaluations for the performance of the program

analyzer for a set of program states (called the validation set; each state corre-

sponding to a neighborhood around itself) for different abstractions used to verify

the property (6.1), along with an optimal operating point. It describes a plot of

S values for the different abstractions with respect to β on a log scale. Table 6.3

describes statistics about the performance of the program analyzer for different

abstractions. We notice two important things:

1. an optimal k value (we set ε = 2(2−k) for this experiment) for which the

value of the performance measure S reaches its maximum (highlighted by

blue bullet); and

2. the value of the performance measure S for the case k = 42 (highlighted by

red bullet).
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TABLE 6.3: Statistical results for program cat at location main EH

k n
average ϕk (k = 42)

S
execution

m TPR FPR time (in sec)

1 1 1158 0.2 0.2 −0.005 0.3477

19 3 386 0 0 −0.01 0.3572

25 4 288 0.2 0.097 0.118 0.3645

29 6 192 0.4667 0.0606 0.454 0.3751

31 9 127 0.5 0.0629 0.48 0.3962

33 14 82 1.0 0.0257 0.944 0.4327

37 22 52 1.0 0 0.978 0.5018

39 27 42 1.0 0 0.976 0.5516

42 32 36 1.0 0 0.975 0.6225

49 39 29 1.0 0 0.973 0.6837

59 39 27 1.0 0 0.973 0.6861

69 39 26 1.0 0 0.973 0.6890

79 39 25 1.0 0 0.973 0.7041

89 39 24 1.0 0 0.973 0.7223

It can be seen from Figure 6.3 and the statistical result in Table 6.3, that the

performance of the abstraction (S = 0.9778) is optimal when k = 37 (with true

positive rate of 1 and false positive rate of 0; see Figure 6.3 for the values of the

parameters w1, w2, and w3). For k = 42 (this is the k value corresponding to the

property (6.1)), the value of S reduces slightly to 0.9749, and reduces to 0.973 for

k > 42 and stabilizes to that value while the execution time keeps increasing. The
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value k = 37 provides the optimal operating point (highlighted by blue bullet)

among all observed abstractions.

We also demonstrate empirically that even when we increased k to 90 or fur-

ther, both the ratio of TPR and FPR, and the number of generated clusters did

not have a significant improvement anymore. The performance of the constructed

abstraction stabilized after the hyperparameter β passed a critical point (in this

example, the critical point occurred at k = 37).

6.2.2 Time Complexity

To estimate the time complexity of the data-driven abstraction approach, we con-

sider the time to construct abstractions plus the time to verify properties of inter-

est. The latter is polynomial in the size and the structure of the given property ϕk.

The former has been determined in Proposition 5.6, where we have shown the clus-

tering algorithm terminates and provided an upper bound (5.5) of the expected

time for the clustering algorithm to terminate. Thus, the run time to construct

abstractions is polynomial in the size of the sample data2, and is parametric to the

pair of hyperparameters β and ε.

In Table 6.3, we record a total time for one entire application of our approach

on a program, including the time to cluster the sample data, compute PDFs to ap-

proximately represent each cluster, verify the given three properties, and evaluate

the performance measure S for the approach.

We will summarize a trend in the execution times for applying our approach on

real programs in Section A.3.

2By the size of sample data we mean the number of program states drawn from the concrete system, that in
turn also depends on the structure of the program P
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6.2.3 A Remark

Our goal is to detect bisimilarities between early execution states, to use those

bisimilarities to build clusters of common states, and to determine the values of

properties at future trace locations based on those similarities.

Because we track multiple properties throughout the lifetime of the entire pro-

gram, not all properties can be meaningfully set and verified at every location

we monitor. Since we work on numeric and boolean data, at the beginning of a

program, before such variables are set, there have not yet been any branches in

execution, no meaningful distinction can yet be drawn between any two traces,

and therefore we have very little information of bisimilarities and little ability to

determine property values based on those similarities. Similarly, near the end of the

program all remaining suffixes will begin to converge, which also limits the ability

to distinguish traces via the bisimilarity measurement. Some programs we worked

with proved more problematic than others, however in every program there were

at least a few locations, and in some programs there were many, in which we were

able to use bisimilarity values to build clusters on which we can verify properties

of interest.
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Chapter 7

Related Work

The construction of property-preserving abstractions for concrete systems has been

one of popular research topics in program analysis.

In counterexample-guided abstraction refinement (CEGAR) [1], the idea is to

investigate and analyze counterexamples, and use the feedback to identify new

predicates and construct more precise abstractions, while our clustering technique

attempts to refine the abstract model by tuning the hyperparameters based on a

distance metric. Moreover, our approach provides a quantitative evaluation of the

program analyzer, yet the CEGAR framework does not do so.

Mauborgne and Rival [20, 27] constructed partitions of the collection of traces

for abstraction and refine them using dynamic partitioning (in trace-based parti-

tioning, elements in a disjunction are related to the history of the concrete compu-

tation). Contrasting, in our data-driven abstraction framework, abstraction refine-

ment is performed by tuning hyperparameters. Laviron and Logozzo [18] incremen-

tally refined abstract transfer functions through syntactic and semantic hints. The

key idea is to determine the constraints that determine the precision of the analy-

sis and use them to refine the transfer functions in the abstract domain. Our data

driven abstraction framework automatically constructs a sequence of abstractions

that approach an ideal abstraction suitable for solving a program analysis prob-

lem. In [30], Sharma et al. theoretically quantified the precision of an abstraction

using VC dimension [5]. They investigated trade-offs between bias and variance to

understand how the performance of a program analyzer varies across different ab-

stractions. They used cross validation to determine the trade-off between bias and
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variance for Microsoft’s program analyzer Yogi and obtained significantly improved

results compared to the original version. In contrast, our data-driven abstraction

framework quantifies the performance of a program analyzer using a particular

abstraction in terms of TPR, FPR, and the number of abstract states. It uses

this quantification to determine an optimal operating point for a given program

analysis problem. There has been some research on generating [25, 28, 14, 29],

pre-conditions and invariants from source code using a data-driven approach.

Yogi [23] uses Synergy [17], an algorithm that combines a procedure for finding

bugs with one for proof search in a way that the information gained from the

former is fed back to the latter and vice-versa. In addition, Yogi uses Dash [2] that

performs abstraction refinement through test generation. In contrast, our data-

driven abstraction framework uses samples of states obtained from an instrumented

program to estimate PDFs that approximately represent abstract states.

Zhang et al. [33] used a counter-example guided query-driven analysis that per-

forms iterative refinement to identify the cheapest abstraction (minimal set of

parameters) or prove that no such abstraction can prove the query. They used an

efficient counterexample-driven technique to search through an infinite space of ab-

stractions at a finer level of granularity to obtain one that is optimal. In contrast,

our technique is data-driven that refines abstractions by tuning hyperparameters.

In [21], the author suggested a method to identify an optimal abstract inter-

preter. Convergence in the finite, abstract domain historically [8] requires the

use of a widening operator. Widening operators are typically greedy for over-

approximation to guarantee convergence and must be designed explicitly for each

abstraction thus requiring a bit of creativity. Our clustering technique allows an

infinite state space in the abstract domain by using a boolean algebra and its corre-

sponding transition system. While [21] removed the necessity of widening through
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a snipping operation (based on edges in dependence graphs) and thus removed

recursive structures, the optimal abstract interpretation arises during the trick-

ling phase where the designer chooses a specific abstraction for specific elements

(leaves) of a data structure (DAG). This technique was not substantiated with

data. Our clustering removes the necessity of the designer playing any role in the

development of the optimal abstraction.

Liang et al. [19] used machine learning techniques to determine the coarsest

possible abstraction needed to answer a set of points-to analysis queries. They

implemented both coarsening and refining approaches, respectively. In contrast,

our framework uses a data-driven approach to obtain an optimal operating point

(abstraction) for a given program analysis problem. We also focus on verifica-

tion of temporal properties specified an a restricted and bounded version of CTL.

Chen et. al. [6] provided a PAC learning-based framework for creating a model

abstracting a program. In contrast, our framework uses a data-driven approach

to obtain an ideal abstraction suitable for solving a program analysis problem.

In [4], the authors provided an automatic technique that infers a static analyzer,

from a dataset containing programs, approximating their behavior. In contrast,

our approach uses states sampled from an instrumented program to approximate

its semantics. In [3], the authors presented a generative model for programs. We

approximate the semantics of a program using a data-drive approach.

B.S. Gulavani et al. [16] automatically and dynamically refined abstract interpre-

tations using a combination of interpolated widening and counter-example guided

refinement and using a DAG independence of the domain and the chosen operators.

However, we automatically refine abstractions by tuning hyperparameters.

There has been application [31, 9, 22] of abstract interpretation to probabilistic

settings. Probabilistic abstract interpretation is based on the assumption that the
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distribution of a program is known. In contrast, our approach uses a nonpara-

metric density estimation technique to approximately represent abstract states.

We sample a program and learn the distribution of that program from the sample

data without assuming any particular type for the distribution. In [11], the authors

used the Skorokhod metric for conformance checking for dynamical systems. The

pseudo-metric d in this paper is designed to respect bounded bisimilarity between

states.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

We present a data-driven abstraction framework and experimental evidence demon-

strating the practicality of our approach for program analysis. The data driven

abstraction framework is a new approach to automatically create a sequence of

abstractions that converge to an ideal abstraction through a particular domain

refinement with minimal manual intervention. The resulting abstraction is able

to describe concrete system behaviors with sufficient accuracy, and suitable for

solving a program analysis problem.

The key is that we construct the abstract domain based on random samples dy-

namically drawn from the concrete program. We use probability density functions

as symbolic representations of abstract states (clusters) which provides a method

to determine the abstraction mapping, i.e., identify a corresponding abstract state

for a given concrete state. This is a fresh idea to approximately represent an infinite

set. Our method enables us to evaluate the accuracy of the abstraction in terms

of probability. On the other hand, since it is based on dynamically randomly gen-

erated sample data drawn from the concrete system, possible incomplete program

executions may affect the guarantee of the accuracy of the abstraction.

We have established a thorough formalization of the data-driven abstraction

approach, have created a practically useful program analysis tool based on the

formalization, that can verify, within an error probability, if a given program sat-

isfies properties specified in the bounded CTL logic, and have actually made a

quantification of this tool and tested its success on a set of standard C programs.
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We believe that our framework is robust and flexible enough to handle realistic

programs.

8.2 Future Work

We have restricted ourselves to program variables that can meaningfully be placed

on an interval. This means our properties are defined in terms of numeric or boolean

variables, and our traces and clustering are based on those variables as well. We

assume the vast majority of programmers using, for example, the integer type,

will consider 42 closer to 43, and farther from 9823. There are exceptions to this,

such as when an integer might be used to store flag values concatenated with the

bitwise or operation. While we initially stored string variables, and other collec-

tions of byte data without consistent frameworks, we found they are difficult to

place on what should be a numeric execution similarity interval. Considering that

we have demonstrated a methodology to verify properties based on variable val-

ues, we consider the following question. Can we extend that verification to build a

classification system for these more difficult types of variables?

If we restrict ourselves first to string type variables, can we take the clustering

algorithm we have developed, and some basic building blocks to automatically

develop a string classification function that will generate a numeric value which will

predict the effects that a particular string would have on program execution? We

might consider a function that looks at the individual bytes in the string variable

as distinct numeric values, discard locations irrelevant to the execution path, and

reorder the remaining values to create a single numeric value for a string. How often

would such an approach produce a numeric value that could be used to predict

program execution? Would any generated functions have a general applicability

outside of the program they were created on? If so, we could build a system to
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help highlight general byte data that might be responsible for abnormal program

execution, or classify strings into formatted common types.

What the trace/clustering model has shown is that there are some variables in

the program (informally integers and bools in our examples), that are “cluster

predictive”. Part of the reason for this is that these variables have universal con-

ventions on how to determine meaning and distance. Therefore, when traced values

from those variables are placed on a number line interval, we can build meaningful

clusters around those values to predict execution.

Another set of variables (informally strings, but also some structs and buffers)

are not as useful, because they are comprised larger byte chunks and not easily

mapped meaningfully to a small interval. We may use concepts like edit distance,

but there are limitations of any of those approaches when applied generally. This

doesn’t mean that these variables don’t alter program flow, however.

If we have a traced program (probably a step up in complexity from the current

ones), with many inputs that has a mix of predictive and not predictive variables,

could we use the predictive variables to assign a meaningful metric to the non-

predictive ones?

So if we divided such a program’s inputs into separate training and verification

sets, could we use the values of nonpredictive variables, linked to the clustered

values of the predictive variables at the same points, in the training set, to create

some function f such that f would take as input an nonpredictive data chunk, and

output a value on an interval that would be predictive? And could we then test the

usefulness of that function f on the verification data? The risk here is that there

is a real possibility that the answer might be “that wouldn’t work since f would

have to be too complex”.
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We are concerned that the “building blocks” to create a function like f might

be a challenge. There are some approaches that might work (permutations of digit

significance, finding the first null terminator to determine a length), but it might be

a challenge. There would also be the question of how general or specific we would

have to make f , would there be a function f that would be useful in several different

programs (say ones that all had a string that was formatted as an address).

73



References

[1] Balarin, F., Sangiovanni-Vincentelli, A.L.: An iterative approach to language
containment. In: Computer Aided Verification, 5th International Conference,
CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings. pp. 29–40
(1993)

[2] Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests.
In: Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008. pp.
3–14 (2008)

[3] Bielik, P., Raychev, V., Vechev, M.T.: PHOG: probabilistic model for code.
In: Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016. pp. 2933–2942 (2016)

[4] Bielik, P., Raychev, V., Vechev, M.T.: Learning a static analyzer from data. In:
Computer Aided Verification - 29th International Conference, CAV 2017, Hei-
delberg, Germany, July 24-28, 2017, Proceedings, Part I. pp. 233–253 (2017)

[5] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and
the vapnik-chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

[6] Chen, Y., Hsieh, C., Lengál, O., Lii, T., Tsai, M., Wang, B., Wang, F.: PAC
learning-based verification and model synthesis. In: Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. pp. 714–724 (2016)

[7] Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)

[8] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In:
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. pp. 238–252. ACM Press, New
York, NY, Los Angeles, California (1977)

[9] Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Program-
ming Languages and Systems - 21st European Symposium on Programming,
ESOP 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings. pp. 169–193 (2012)

[10] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order (2. ed.).
Cambridge University Press (2002)

74



[11] Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using
the skorokhod metric. Formal Methods in System Design 50(2-3), 168–206
(2017)

[12] Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pp. 995–1072
(1990)

[13] Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthe-
size synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

[14] Gehr, T., Dimitrov, D., Vechev, M.T.: Learning commutativity specifications.
In: Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. pp. 307–323
(2015)
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Appendix A

More Experimental Results

In this appendix section, we shall provide and summarize our experimental results

obtained by applying the data-driven abstraction approach on a test suite of C

programs from GNU coreutils, diffutils, and grep.

A.1 Properties of Programs

First, Table A.1 presents properties chosen to be verified on all observed programs

(Table 6.1). These properties (in terms of CTLk formulas) were checked within k

steps. We will provide an explicit k value we use to verify these CTLk formulas for

each observed location in a program.

TABLE A.1: Properties chosen for fourteen observed programs

Program base64

Property 1 EkF(ignore garbage = T ∧ decode = T )

Property 2 EkX
k(wrap column = F )

Property 3 AkG(decode = F )

Program cat

Property 1 EkF(show ends = T )

Property 2 EkX
k(number = T ∨ squeeze blank = T )

Property 3 AkG¬((show nonprinting = T ) ∧ (show tabs = F ))
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Program cmp

Property 1 EkX
k(opt print bytes = T )

Property 2 EkF((opt print bytes = T ) ∧ (ignore initial[2] = F ))

Property 3 AkG((opt print bytes = T ) ∨ (ignore initial[2] = F ))

Program comm

Property 1 EkX
k((only file 2 = T ) ∨ (seen unpairable = T ))

Property 2 EkX
k((both = T ) ∧ (only file 1 = T ))

Property 3 EkX
k((both = T ) ∨ (only file 2 = F ))

Program cp

Property 1 EkX
k((make backups = T ) ∨ (remove trailing slashes = T ))

Property 2 EkX
k((no target directory = T ) ∨ (copy contents = T ))

Property 3 AkG((ok = F ) ∨ (copy contents = T ))

Program csplit

Property 1 EkF((suppress count = T ) ∨ (elide empty files = T ))

Property 2 EkX
k((suppress matched = T ) ∧ (remove files = T ))

Property 3 AkG((remove files = T ) ∨ (elide empty files = T ))

Program dd
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Property 1 EkX
k((w partial = F ) ∧ (w full = F ))

Property 2 AkG(r partial = F )

Property 3 AkG((conversions mask = F ) ∨ (oc = F ))

Program diff

Property 1 EkX
k((new file = F ) ∧ (report identical files = F ))

Property 2 AkG((new file = F ) ∧ (explicit context = T ))

Property 3 EkF(new file = T )

Program du

Property 1 EkX
k((apparent size = T ) ∨ (print grand total = T ))

Property 2 AkG((hash all = F ) ∧ (human output opts = F ))

Property 3 EkF((opt nul terminate = T ) ∨ (opt inodes = T ))

Program fmt

Property 1 EkX
k((crown = T ) ∧ (tagged = T ))

Property 2 EkF((prefix full length = F ) ∧ (split = T ))

Property 3 AkG((uniform = T ) ∨ (prefix length = F ))

Program fold

Property 1 EkX
k(break spaces = T )
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Property 2 AkG((count bytes = F ) ∧ (break spaces = F ))

Property 3 EkF(count bytes = T )

Program grep

Property 1 EkX
k((skip empty lines = T ) ∨ (match words = T ))

Property 2 EkF((out invert = T ) ∧ (suppress errors = F ))

Property 3 AkG((out byte = F ) ∨ (match icase = T ))

Program truncate

Property 1 AkG¬((got size = T ) ∧ (block mode = T ))

Property 2 EkF(no create = T )

Property 3 EkF((got size = T ) ∧ (errors = F ))

Program wc

Property 1 EkX
k((ok = T ) ∨ (print words = F ))

Property 2 AkG((print chars = F ) ∧ (print lines = F ))

Property 3 EkF((print linelength = T ) ∧ (ok = T ))
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A.2 Statistical Results

In the following we present quantitative evaluations of the performance of data-

driven abstraction process on fourteen observed programs, as well as relevant sta-

tistical results.

1. For each of observed programs, we provide a statistics table including the

following terms:

• a chosen observed location (name)

• the number n of clusters

• the average m of sizes of cluster samples

• TPR and FPR for verifying a given property ϕk in Table A.1

• a fixed step number k associated to ϕk

• an optimal k value (If there are multiple optimal values for k, we choose the

smallest one)

• an optimal performance measure S with respect to that optimal k

We name every meaningful code location in an instrumented program in the al-

phabetical order, for example, main A, main AA, main AB, main AC, and so on.

2. Based on the data-driven abstraction framework, we provide a program ana-

lyzer that can be used to verify the chosen properties. For each of observed pro-

grams, we present quantitative evaluations for the performance of the program

analyzer on a validation data set for different levels of abstractions, by graphical

plots (plotting the weighted sum S for different abstractions versus the (modified)

hyperparameter log2 β). When plotting such terms, we took the parameter values

w1 = w2 = 1, w3 = 0.005
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for every observed case.

A.2.1 The Program base64

TABLE A.2: Statistical results for program base64

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main AM 50 56 0.53 0.08 14 33 0.4797

main AO 3 238 1.0 0 15 11 0.9920

main AW 3 356 1.0 0 12 8 0.9920

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main BB 11 97 0.78 0.10 10 45 0.6768

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main AU 2 535 1.0 0 13 5 0.995
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FIGURE A.1. Performance measure on base64, location main AM, property 1

FIGURE A.2. Performance measure on base64, location main AO, property 1
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FIGURE A.3. Performance measure on base64, location main AW, property 1

FIGURE A.4. Performance measure on base64, location main BB, property 2
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FIGURE A.5. Performance measure on base64, location main AU, property 3
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A.2.2 The Program cat

TABLE A.3: Statistical results for program cat

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main A 22 52 1.0 0 41 35 0.9778

main AD 38 30 1.0 0 30 34 0.9737

main AE 38 30 1.0 0 29 33 0.9737

main AN 45 51 0.60 0 14 40 0.648

main AP 23 38 1.0 0 27 29 0.9773

main AQ 23 38 1.0 0 26 28 0.9774

main AS 22 296 1.0 0 19 36 0.9778

main B 14 82 1.0 0 40 31 0.981

main BG 21 309 1.0 0 18 53 0.9779

main CH 18 17 0.52 0 59 41 0.6465

main D 39 29 1.0 0 38 31 0.9791

main DG 21 67 1.0 0 14 44 0.9781

main DT 20 79 1.0 0 9 38 0.9782

main E 39 27 1.0 0 37 31 0.9776

main EH 22 52 1.0 0 42 37 0.9778

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main C 3 386 1.0 0 39 15 0.992

main CF 81 16 0.86 0.10 57 79 0.7209

main DI 44 44 0.998 0.02 5 53 0.9382

main DW 7 229 1.0 0 8 21 0.9859
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main O 32 72 1.0 0 11 34 0.975

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main CF 81 16 0.93 0.18 57 89 0.6792

main CM 3 89 1.0 0 60 3 0.992

FIGURE A.6. Performance measure on cat, location main A, property 1
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FIGURE A.7. Performance measure on cat, location main AD, property 1

FIGURE A.8. Performance measure on cat, location main AE, property 1
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FIGURE A.9. Performance measure on cat, location main AN, property 1

FIGURE A.10. Performance measure on cat, location main AP, property 1
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FIGURE A.11. Performance measure on cat, location main AQ, property 1

FIGURE A.12. Performance measure on cat, location main AS, property 1
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FIGURE A.13. Performance measure on cat, location main B, property 1

FIGURE A.14. Performance measure on cat, location main BG, property 1
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FIGURE A.15. Performance measure on cat, location main CH, property 1

FIGURE A.16. Performance measure on cat, location main D, property 1
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FIGURE A.17. Performance measure on cat, location main DG, property 1

FIGURE A.18. Performance measure on cat, location main DT, property 1
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FIGURE A.19. Performance measure on cat, location main E, property 1

FIGURE A.20. Performance measure on cat, location main C, property 2
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FIGURE A.21. Performance measure on cat, location main CF, property 2

FIGURE A.22. Performance measure on cat, location main DI, property 2
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FIGURE A.23. Performance measure on cat, location main DW, property 2

FIGURE A.24. Performance measure on cat, location main O, property 2
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FIGURE A.25. Performance measure on cat, location main CF, property 3

FIGURE A.26. Performance measure on cat, location main CM, property 3
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A.2.3 The Program cmp

TABLE A.4: Statistical results for program cmp

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main AAN 9 301 0.49 0.19 12 31 0.2994

main AAU 3 178 0.74 0.06 9 25 0.7062

main AN 3 386 0.41 0.06 23 22 0.3984

main J 5 125 0.81 0.03 18 50 0.8029

main P 3 177 0.83 0.15 38 37 0.6659

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main N 3 177 0.69 0.006 39 81 0.7361

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main J 3 208 0.92 0.34 18 3 0.5125
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FIGURE A.27. Performance measure on cmp, location main AAN, property 1

FIGURE A.28. Performance measure on cmp, location main AAU, property 1
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FIGURE A.29. Performance measure on cmp, location main AN, property 1

FIGURE A.30. Performance measure on cmp, location main J, property 1
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FIGURE A.31. Performance measure on cmp, location main P, property 1

FIGURE A.32. Performance measure on cmp, location main N, property 2
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FIGURE A.33. Performance measure on cmp, location main J, property 3
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A.2.4 The Program comm

TABLE A.5: Statistical results for program comm

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main AE 14 89 0.74 0.14 50 49 0.5847

main BN 4 287 0.71 0.36 19 34 0.3173

main CH 6 772 0.42 0.19 6 7 0.2359

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main AE 14 89 0.90 0.16 50 43 0.6937

main BE 27 169 0.82 0.36 40 35 0.3995

main CF 8 570 0.75 0.45 8 8 0.2533

main R 18 54 1.0 0 52 23 0.9791

main T 14 64 0.94 0 57 43 0.9611
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FIGURE A.34. Performance measure on comm, location main AE, property 2

FIGURE A.35. Performance measure on comm, location main BN, property 2
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FIGURE A.36. Performance measure on comm, location main CH, property 2

FIGURE A.37. Performance measure on comm, location main AE, property 3
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FIGURE A.38. Performance measure on comm, location main BE, property 3

FIGURE A.39. Performance measure on comm, location main CF, property 3
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FIGURE A.40. Performance measure on comm, location main R, property 3

FIGURE A.41. Performance measure on comm, location main T, property 3
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A.2.5 The Program cp

TABLE A.6: Statistical results for program cp

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main AA 7 102 1.0 0 3 23 0.757

main AI 7 102 0.72 0.1 3 12 0.627

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main AI 5 143 1.0 0.29 3 3 0.6201

main BB 7 115 1.0 0.24 4 15 0.6764

main BD 10 143 1.0 0.06 4 3 0.9001

main BS 10 303 1.0 0.05 2 7 0.9081

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main AI 5 143 1.0 0.13 3 3 0.8106

main AU 4 156 0.71 0.01 3 16 0.7435

main BB 3 267 1.0 0 4 2 0.992
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FIGURE A.42. Performance measure on cp, location main AA, property 1

FIGURE A.43. Performance measure on cp, location main AI, property 1
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FIGURE A.44. Performance measure on cp, location main AI, property 2

FIGURE A.45. Performance measure on cp, location main BB, property 2
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FIGURE A.46. Performance measure on cp, location main BD, property 2

FIGURE A.47. Performance measure on cp, location main BS, property 2
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FIGURE A.48. Performance measure on cp, location main AI, property 3

FIGURE A.49. Performance measure on cp, location main AU, property 3
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FIGURE A.50. Performance measure on cp, location main BB, property 3
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A.2.6 The Program csplit

TABLE A.7: Statistical results for program csplit

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main AAB 3 624 0.44 0.08 23 23 0.4043

main AC 3 536 0.43 0.1 86 97 0.3584

main AQ 33 616 0.31 0.05 33 75 0.3045

main W 3 89 1.0 0 92 83 0.992

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main CAA 6 446 0.41 0.03 3 42 0.4388

main FAC 2 268 1.0 0.25 2 38 0.6745

main W 2 134 0.59 0 92 33 0.6658

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main Q 4 112 0.8 0 88 89 0.8379
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FIGURE A.51. Performance measure on csplit, location main AAB, property 1

FIGURE A.52. Performance measure on csplit, location main AC, property 1
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FIGURE A.53. Performance measure on csplit, location main AQ, property 1

FIGURE A.54. Performance measure on csplit, location main W, property 1
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FIGURE A.55. Performance measure on csplit, location main CAA, property 2

FIGURE A.56. Performance measure on csplit, location main FAC, property 2
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FIGURE A.57. Performance measure on csplit, location main W, property 2

FIGURE A.58. Performance measure on csplit, location main Q, property 3
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A.2.7 The Program dd

TABLE A.8: Statistical results for program dd

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main AAR 22 252 0.88 0.22 2 40 0.6009

main ABF 18 204 1.0 0.07 8 34 0.8848

main ABG 16 229 1.0 0.06 7 28 0.8899

main ABI 3 445 1.0 0.28 5 16 0.6353

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main ABG 18 204 0.91 0.13 7 32 0.733

main NAA 6 312 1.0 0 14 13 0.987

main X 4 267 1.0 0 13 12 0.99

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main ABF 4 916 0.91 0 8 8 0.9262

main ABG 4 916 0.91 0 7 6 0.9239

main ABI 3 445 0.88 0.06 5 16 0.812
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FIGURE A.59. Performance measure on dd, location main AAR, property 1

FIGURE A.60. Performance measure on dd, location main ABF, property 1
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FIGURE A.61. Performance measure on dd, location main ABG, property 1

FIGURE A.62. Performance measure on dd, location main ABI, property 1
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FIGURE A.63. Performance measure on dd, location main ABG, property 2

FIGURE A.64. Performance measure on dd, location main NAA, property 2
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FIGURE A.65. Performance measure on dd, location main X, property 2

FIGURE A.66. Performance measure on dd, location main ABF, property 3
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FIGURE A.67. Performance measure on dd, location main ABG, property 3

FIGURE A.68. Performance measure on dd, location main ABI, property 3
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A.2.8 The Program diff

TABLE A.9: Statistical results for program diff

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main AAA 2 936 0.9 0.66 34 29 0.1851

main DL 10 241 0.7 0.33 53 49 0.3374

main DR 3 446 0.66 0.42 52 49 0.2132

main DS 4 468 0.75 0.23 51 63 0.5014

main ED 3 624 0.68 0.23 42 41 0.4383

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main BG 2 223 1.0 0 54 3 0.995

main DL 11 219 0.79 0.21 53 101 0.5492
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FIGURE A.69. Performance measure on diff, location main AAA, property 1

FIGURE A.70. Performance measure on diff, location main DL, property 1
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FIGURE A.71. Performance measure on diff, location main DR, property 1

FIGURE A.72. Performance measure on diff, location main DS, property 1
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FIGURE A.73. Performance measure on diff, location main ED, property 1

FIGURE A.74. Performance measure on diff, location main BG, property 3
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FIGURE A.75. Performance measure on diff, location main DL, property 3
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A.2.9 The Program du

TABLE A.10: Statistical results for program du

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main AB 3 475 0.71 0.22 8 31 0.3614

main R 45 226 0.78 0.2 3 48 0.5327

main S 45 225 0.77 0.7 2 44 0.5267

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main AP 2 223 0.7 0.34 4 28 0.3388

main R 45 226 0.97 0.14 3 50 0.76

main S 45 225 0.98 0.12 2 44 0.7906

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main AA 4 357 0.45 0.2 7 32 0.2625

main R 44 233 0.81 0.05 3 27 0.7663

main S 45 225 0.86 0.03 2 42 0.8289
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FIGURE A.76. Performance measure on du, location main AB, property 1

FIGURE A.77. Performance measure on du, location main R, property 1
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FIGURE A.78. Performance measure on du, location main S, property 1

FIGURE A.79. Performance measure on du, location main AP, property 2
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FIGURE A.80. Performance measure on du, location main R, property 2

FIGURE A.81. Performance measure on du, location main S, property 2
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FIGURE A.82. Performance measure on du, location main AA, property 3

FIGURE A.83. Performance measure on du, location main R, property 3
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FIGURE A.84. Performance measure on du, location main S, property 3
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A.2.10 The Program fmt

TABLE A.11: Statistical results for program fmt

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main R 9 158 1.0 0 4 4 0.9841

main T 3 208 0.5 0.14 9 15 0.3886

main U 4 156 0.54 0 2 12 0.6135

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main AB 2 268 0.9 0.24 6 48 0.6093

main U 4 156 1.0 0.22 2 15 0.7032

main Z 3 208 1.0 0.23 1 4 0.6927

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main V 3 178 1.0 0.31 7 43 0.6009
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FIGURE A.85. Performance measure on fmt, location main R, property 1

FIGURE A.86. Performance measure on fmt, location main T, property 1
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FIGURE A.87. Performance measure on fmt, location main U, property 1

FIGURE A.88. Performance measure on fmt, location main AB, property 2
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FIGURE A.89. Performance measure on fmt, location main U, property 2

FIGURE A.90. Performance measure on fmt, location main Z, property 2
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FIGURE A.91. Performance measure on fmt, location main V, property 3

140



A.2.11 The Program fold

TABLE A.12: Statistical results for program fold

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main A 7 204 0.91 0.07 26 28 0.8187

main AB 11 229 0.91 0.04 13 41 0.8676

main BB 5 214 0.81 0.08 29 25 0.7328

main F 4 357 0.78 0.02 24 17 0.8008

main I 3 475 0.86 0.09 21 8 0.7671

main M 68 202 0.91 0.12 11 59 0.7341

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main AA 8 312 0.65 0.21 14 34 0.4317

main H 57 222 0.58 0.23 9 39 0.3289
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FIGURE A.92. Performance measure on fold, location main A, property 1

FIGURE A.93. Performance measure on fold, location main AB, property 1
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FIGURE A.94. Performance measure on fold, location main BB, property 1

FIGURE A.95. Performance measure on fold, location main F, property 1
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FIGURE A.96. Performance measure on fold, location main I, property 1

FIGURE A.97. Performance measure on fold, location main M, property 1
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FIGURE A.98. Performance measure on fold, location main AA, property 2

FIGURE A.99. Performance measure on fold, location main H, property 2
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A.2.12 The Program grep

TABLE A.13: Statistical results for program grep

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main CN 2 223 0.47 0.17 63 37 0.3241

main CQ 3 178 1.0 0 62 61 0.992

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main CO 5 178 1.0 0 63 63 0.9883

main CP 5 178 1.0 0 62 61 0.9883

main CQ 3 178 1.0 0 62 61 0.992

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main AAO 4 646 0.86 0.37 19 22 0.4265

main ABH 5 517 0.81 0.32 10 23 0.4476

main CP 7 127 0.88 0.08 62 67 0.7794

main GE 5 517 0.81 0.36 29 33 0.403
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FIGURE A.100. Performance measure on grep, location main CN, property 1

FIGURE A.101. Performance measure on grep, location main CQ, property 1
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FIGURE A.102. Performance measure on grep, location main CO, property 2

FIGURE A.103. Performance measure on grep, location main CP, property 2
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FIGURE A.104. Performance measure on grep, location main CQ, property 2

FIGURE A.105. Performance measure on grep, location main AAO, property 3
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FIGURE A.106. Performance measure on grep, location main ABH, property 3

FIGURE A.107. Performance measure on grep, location main CP, property 3
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FIGURE A.108. Performance measure on grep, location main GE, property 3
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A.2.13 The Program truncate

TABLE A.14: Statistical results for program truncate

location n
average ϕk: property 1

k
optimal optimal

m TPR FPR k S

main BA 2 535 1.0 0 10 9 0.995

main CE 2 624 1.0 0 5 4 0.995

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main AG 10 276 0.98 0.27 5 6 0.6262

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main BF 4 379 1.0 0 3 3 0.99

FIGURE A.109. Performance measure on truncate, location main BA, property 1
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FIGURE A.110. Performance measure on truncate, location main CE, property 1

FIGURE A.111. Performance measure on truncate, location main AG, property 2
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FIGURE A.112. Performance measure on truncate, location main BF, property 3
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A.2.14 The Program wc

TABLE A.15: Statistical results for program wc

location n
average ϕk: property 2

k
optimal optimal

m TPR FPR k S

main B 4 1248 0.66 0 16 15 0.7191

main C 4 1248 0.67 0 15 12 0.7247

main CD 8 624 0.62 0.12 8 16 0.5223

main DN 8 468 0.55 0 31 27 0.6168

main EU 4 1248 0.66 0 19 20 0.7217

main FD 6 816 0.65 0 18 28 0.7120

location n
average ϕk: property 3

k
optimal optimal

m TPR FPR k S

main DL 12 468 0.58 0.17 32 47 0.4221

main DO 6 253 0.67 0.26 33 53 0.3841
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FIGURE A.113. Performance measure on wc, location main B, property 2

FIGURE A.114. Performance measure on wc, location main C, property 2
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FIGURE A.115. Performance measure on wc, location main CD, property 2

FIGURE A.116. Performance measure on wc, location main DN, property 2
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FIGURE A.117. Performance measure on wc, location main EU, property 2

FIGURE A.118. Performance measure on wc, location main FD, property 2
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FIGURE A.119. Performance measure on wc, location main DL, property 3

FIGURE A.120. Performance measure on wc, location main DO, property 3

159



A.3 Plots of Run Time

To close the entire work, we present here a summary about the run time of data-

driven abstraction approach on the chosen C programs.

We provide line plots of run time versus each observed point/location in one

program. Precisely, we sorted run time for applying data-driven abstraction (DDA)

approach on sample data drawn in each observed location from low to high, and

plotted them in as y-values. The x-values then correspond to the indices of code

locations. These plots give us a general map of how time complexity of DDA varied

over sample data of different sizes randomly drawn from a program. For example, in

the program wc.c, the traces traveled along loops multiple times (more frequently

than in other programs), that resulted in more states drawn at some locations.

Therefore, the Run time for applying DDA approach over those locations was not

surprisingly longer than others, as we can see from the plots shown below.

Moreover, we calculated a 95% confidence interval of run time from sample data.

That means in the future when we run the same clustering algorithm with the same

input setting, it is 95% chances to take the same time as shown in the graphs. We

can freely change this factor in order to meet different needs.
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FIGURE A.121. Execution time of DDA on base64

FIGURE A.122. Execution time of DDA on cat
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FIGURE A.123. Execution time of DDA on cmp

FIGURE A.124. Execution time of DDA on comm
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FIGURE A.125. Execution time of DDA on cp

FIGURE A.126. Execution time of DDA on csplit
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FIGURE A.127. Execution time of DDA on dd

FIGURE A.128. Execution time of DDA on diff
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FIGURE A.129. Execution time of DDA on du

FIGURE A.130. Execution time of DDA on fmt
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FIGURE A.131. Execution time of DDA on fold

FIGURE A.132. Execution time of DDA on grep
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FIGURE A.133. Execution time of DDA on truncate

FIGURE A.134. Execution time of DDA on wc
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