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ABSTRACT

The application of information technology in network control systems introduces the

potential threats to the future industrial control system. The malicious attacks undermine

the security of network control system, which could cause a huge economic loss. This thesis

studies a particular cyber attack called the replay attack, which is motivated by the Stuxnet

worm allegedly used against the nuclear facilities in Iran. For replay attack, this thesis injects

the narrow-band signal into control signal and adopts the spectrum estimation approach to

test the estimation residue. In order to protect the information of the injected signal from

knowing by attackers, the frequency hopping technology is employed to encrypt the frequency

of the narrow-band signal. The detection method proposed in the thesis is illustrated and

examined by the simulation studies, and it shows the good detection rate and security.

iv



CHAPTER 1

INTRODUCTION

As evidenced in the past two decades, the information technology (IT) such as wireless

and networking technologies have been making profound impacts not only on our daily life

but also on various engineering branches. In particular networked control systems (NCS)

are made possible in which the physical system and feedback controller are situated in two

different locations and connected through wireless networks. The new development of the

NCS is important as often robots and other controlled systems have to work in hazardous

environments where wired connection is not allowed or prohibited. Moreover, the NCS

often shares communication channels with other users, which improves the efficiency of

communication. The block diagram in Figure 1.1 illustrates schematically the structure of

the NCS.

Discretized System

Digital Controller

Network N1 Network N2

-

6

?

�

Figure 1.1: Networked control system (NCS)

The NCS overturns the traditional structure of the control system that is a point-to-point

single loop control strategy, and allows multiple physical plants, controllers, actuators and

sensors to be integrated into a system of systems. This new structure helps control systems

to be adapted to the development of science and technology. It makes possible to integrate a

large number of nodes distributed in a large area into a large system, such as mobile sensor

networks [1], multi-agent systems [2], and automated highway systems [3] etc. In the near

future, the NCS can even be implemented through the internet so that control systems can

be distributed around the world. Furthermore, the NCS can reduce the cost, and is easy
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to maintain. Hence the NCS can be widely deployed in the industry, agriculture, military

defense, and out-space exploitation.

In the past decade, researchers in the control community have mainly focused their

research on packet loss, time delay, and synchronization problems of the NCS. However the

development of the NCS also gives rise to the security problem, due to the use of wireless

and networking technologies. Adversaries can launch attacks anywhere and anytime. The

security problem of the NCS has attracted great attention from the research community since

2010, especially after the news of the Stuxnet malware was made public. It was allegedly

designed to attack Siemens controller known as P.C.S.−7, and caused a huge loss on Iran’s

nuclear enrichment factories in 2009 [4], [5]. The Stuxnet malware can reside in computer

systems and programmable logic controllers (PLCs), and it can migrate from computers to

PLCs, and from PLCs to computers without launching attacks until it is populated to a large

percentage of computers and PLCs. When the Stuxnet malware finally launches attacks, it

replays the past outputs of the PLCs to conceal the actual situation of the control processes

from the supervisory control and data acquisition (SCADA) system. Hence often the SCADA

fails to detect the replay attacks, and the results of the attack can be catastrophic. Since

the PLCs are widely used in the industrial control processes around the world, and Stuxnet

malware has since spread to many window-based computer systems, it becomes a very urgent

research problem for engineers and researches to develop new approaches and methods to

detect the replay attacks, and protect the industrial control systems.

1.1 Overview of the Existing Work

In the past several years, quite a few researchers ([6], [7], [8], [9], [10], and [11]) have paid

great attention to the replay attack in the NCS, motivated by the Stuxnet malware. An

overview of the existing work will be provided as follows.

Mo and Sinopoli are the first to study the replay attack in the NCS [6]. They assume that

the physical system is a discrete time linear time invariant system, and the feedback controller
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is designed based on the infinite horizon Linear Quadratic Gaussian (LQG) method. The

simplest replay attack is considered in [6]: the replay attacker first hijacks the sensors and

records secretly the system output for certain period of time; when the attack is launched,

the past readings of the output data are replayed to the feedback controller so that the

attacks to the physical system can be hidden from being detected until it is too late. It is

observed by Mo and Sinopoli that the LQG controller uses the control input

u(t) = u∗(t) = Fx̂(t|t− 1), (1.1)

where t is integer valued, F is the controller gain, and x̂(t|t − 1) is the optimal estimation

of the system state of time t based on the output measurements up to time t− 1. Since the

LQG controller is the Kalman filter that is the optimal one-step predictor, the control signal

u∗(t) is readily available. Assuming that the system output is given by y(t) = Cx(t) + v(t)

with x(t) the system state and v(t) is white Gauss distributed, the output estimation error

δy(t) = y(t)− Cx̂(t|t− 1)

is also white and Gauss distributed. As a result, ‖δy(t)‖2 has a χ2 distribution. For this

reason, Mo and Sinopoli proposes to use the χ2 failure detector to detect the reply attack,

i.e., the detector is described by the following equation:

gt =
t∑

k=t−N+1

[y(k)− Cx̂(k|k − 1)]′P−1 [y(k)− Cx̂(k|k − 1)] ≶ threshold, (1.2)

where C is the system output matrix, N is the detection window, and P is the covariance

of δy(t) = yt − Cx̂t|t−1. If the plant model is stable, then the output estimation error δy(t)

remains the same as pointed in [6], due to the fact that the attacker feedbacks the system

output in the distant past. Consequently χ2 failure detector fails to detect the replay attack.

Therefore Mo and Sinopoli propose to inject an independent identically distributed (i.i.d.)
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zero-mean Gaussian noises, denoted as 4u into the control input. Roughly speaking the

injected white Gauss noises are the authentication signal that serve as the time stamp. The

Kalman filter knows the injected Gauss white noises, and thus δy(t) remains the same when

the replay attacks are absent. However the injected Gauss white noises cannot be canceled

by the Kalman filter, if the adversaries launch the replay attack, and thus the χ2 failure

detector can successfully detect the replay attack. In addition [6] provides the quantitative

analysis on the relationship between the control system performance and the the variance of

the injected authentication signal, and the relationship between the detection rate and the

variance of injected authentication signal.

The work of [6] motivates others to follow. Because the injected white Gauss authentica-

tion signal degrades the control system performance, Thien-Toan Tran, Oh-Soon Shin, and

Jong-Ho Lee proposes a modification in [9] in studying the replay attack detection problem

in smart grid systems. In order to protect the customer equipment and obtain the accurate

power usage data from the smart meters, they propose to modify the original solution in [6]

so that it can efficiently detect replay attacks without increasing the burden to the system.

Specifically, they inject the authentication random signal 4u periodically and keep it on for

a certain time duration and set it off for another certain time duration within each period.

By carefully adjusting the portion of the period to add the authentication signal, the neg-

ative impact to the system is reduced while χ2 failure detector can still retain its sufficient

detection capability.

Fei Miao, Miroslav Pajic, and George J. Pappas propose a method in [10] to tradeoff the

control system performance and the detection rate for replay attack from another standpoint

of view. They believe that the competitive relationship between the attacker and the control

system can be described as a noncooperative game model. The outline of their paper can be

summarized as following.

The authors assume that both the control system and the replay attacker are able to

observe the state of the game, but none of them has the exact previous behavior information
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of the other. The game is assumed to work in three modes: safe, no detection, and false

alarm trigger. According to the state transition probability and the attacker’s action space,

the optimal switching control policy can be obtain to minimize the worst case control and

detection cost. The controller will shift between control cost optimal mode and the secure

mode as shown in Figure 1.2. By utilizing the suboptimal algorithm based on the value iter-

ation method for finite horizon stationary stochastic game, they obtain the optimal control

strategy at each stage.

Figure 1.2: The diagram of the switching controller

Due to the added authentication signal degrade the control system performance, Bixi-

ang Tang, Luis D. Alvergue, and Guoxiang Gu consider the method without injecting any

authentication signal into control input to detect the replay attack in [11]. They assume

that the communication channel is additive white Gaussian noise (AWGN), and the output

addictive noise η(t) is composed of the measurement noise ηo(t) and the communication error

ηc(t). A whitening filter is designed to convert the input and output signals into white signal
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w(t). When the replay attack takes place, the PSD of the controller input w(t) will not

be white anymore. Because the falsified feedback signal adds the communication error up,

which changes the PSD of the feedback signal at some frequency ωh at which the controller

has a high gain. In the absent of the replay attack, the PSD of w(t) is

Φw(ωh) = δ2dV (ejωh)V (ejωh)∗, (1.3)

In the presence of the replay attack, the PSD of w(t) is

Φw(ωh) = δ2dV (ejωh)V (ejωh)∗ + 2δ2ηcIm, (1.4)

where V (z) is related to the whitening filter, and δ2d depends on the variance of the process

and measurement noises, while δ2ηc represents the channel noise variance. The PSD detector

can be constructed as

Φw(ωh) ≷ threshold. (1.5)

By utilizing the communication error, the proposed method in [11] does not need to inject

the authentication signal into the control system while being capable of detecting the replay

attack. Hence this method does not degrade the control system performance. More impor-

tantly this method works for non-LQG control systems, and hence has more applicability

compared to other known methods.

1.2 Thesis Contribution

As discussed in the previous section, Mo and Sinopoli [6] are the first to study the replay

attack in the LQG based NCS, and proposed a method to tackle the detection of the replay

attack. By injecting the white Gaussian authentication signal with suitable large variance

into the control input, the replay attack can be detected by the χ2 failure detector by

testing the output estimation error that is white and Gauss distributed due to the use of the
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Kalman filter in the LQG controller. However the control system performance is degraded

by the injected authentication signal with large variance. Authors of [9] try to tradeoff

the control system performance and the detection rate by periodically injecting the white

Gauss authentication signal. It reduces the negative impact of the injected signal on control

system, but the detection time depends on the frequency of the injected signal. Moreover this

method can cause large time delay in detecting replay attacks due to the periodic absence

of the injected authentication signal. The results in [11] present an ideal method to detect

replay attack without injecting any authentication signal into control input. However this

ideal method is based on a very strong assumption that the communication channel of the

NCS is white addictive Gaussian channel. Otherwise the method proposed in [11] will not

work. Although [10] proposes another way to study the detection problem of the replay

attack, it does not balance well the control system performance and the detection rate. The

reason lies in the fact that the method based on the noncooperative game theory cannot

provide accurate prediction of the replay attack, which determines the switching between

the LQG controller and the secure controller (with injected authentication Gauss signal). As

a result it causes degradation of the control system performance seriously or induces large

delay in detecting the attacks.

The inadequacies of the existing detection methods motivate us to continue investigation

for detection of the replay attack, and to develop new methods and new ideas in order to

improve the existing detection method. The contribution of this thesis is summarized next.

• We propose to inject narrow-band authentication signal in the control input, contrast-

ing to the white Gaussian noises used in the known work. Specifically pure sinusoidal

signals are injected to the control input which clearly have narrow-band. As a result

spectrum estimation methods can be used to detect the replay attack. Because the

PSD of this narrow-band signal concentrates at certain frequency, it is possible to in-

ject the authentication signal with large variance while keeping the minimum negative

impact to the control system performance.
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• In our studies, we discover the replay attacker can evade the detection by launching a

smart attack strategy, if the frequency of the injected signal is known by the attacks who

may have the capability to estimate the frequency of the narrow-band authentication

signal. So we propose to employ the frequency hopping detection method to encrypt the

frequency of the injected signal. This way helps to protect the spectrum information of

the authentication signal from being estimated by attackers. Although the randomly

shifting frequency affects the detection rate to some extend, the frequency hopping

method still shows the high detection rate if large detection window size is used.

• Simulation studies are carried out for detection of the replay attacks. First the known

method based on white Gaussian authentication signals is studied using numerical

simulations. Second the spectrum detection method based on our proposed narrow-

band authentication signals is also studied in numerical simulations. The results are

compared, and conclusions are drawn, which show the superiority of the spectrum

detection method.

1.3 Organization of the thesis

The mathematical notation is standard, and will be made clear in later chapters. This section

outlines organization of the thesis.

• Chapter 1 provides the overview of the existing work, and the contribution of this

thesis.

• In Chapter 2, we introduce the background material, including knowledge on systems

and signals. For signals, sinusoidal functions and their PSDs are used to illustrate

random processes. For systems, state space descriptions are employed. This chapter

also covers the stability of finite dimensional linear time-invariant systems.

• In Chapter 3, we cover the LQG controller and Kalman filter. The LQG controller is

composed of two parts: one is the optimal state feedback controller, and the other is
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the optimal state estimator. Assuming that the system states are measurable, then we

can obtain the optimal state feedback controller. When the system states are not mea-

surable and the process and measurement noises are all white and Gauss distributed,

then the optimal state estimator, that is the Kalman filter, can be employed to obtain

the optimal state estimation. The use of the estimated state and the Kalman filter in

the optimal state feedback controller constitutes the LQG controller. The whiteness

property of the output estimation error is highlighted.

• In Chapter 4, the white noise method proposed in [6] is studied first. We then inves-

tigate the spectrum method by injecting the narrow-band authentication signal in the

control input to detect the replay attack. Because the spectrum detection method can

fail when the replay attacker knows the characteristics such as angular frequency of the

injected authentication signal, we propose to employ the frequency hopping communi-

cation technology to encrypt the frequency of the narrow-band signal. The simulation

results show that the performance of the frequency hopping detection method is better

than that of the white noise method under the same condition.

• Chapter 5 concludes the thesis by summarizing the research work and by outlining the

possible directions for future studies.
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CHAPTER 2

BACKGROUND MATERIAL

This chapter provides the background material of this thesis, including random signals,

power spectrum density, and state space description for linear time-invariant systems. All

signals and systems are in discrete-time with t for time index.

2.1 Signals and Systems

Signals can be mainly divided into two categories: one is the determinist signal, and the

other is the random signal. We will focus on vector-valued random signals in this paper.

For a vector signal s(t), its autocorrelation sequence (ACS) is defined by

Rs(k, t) := E {s(t)s(t− k)∗} , k = 0,±1,±2, · · · (2.1)

which is a square matrix and depends on both t and k in general. If Rs(k) = Rs(k, t) is

independent of t, then s(t) is said to be wide-sense stationary (WSS). In this case, the power

spectral density (PSD) of s(t) is defined by

Φs(ω) =
∞∑

k=−∞

Rs(k)e−jkω, (2.2)

that is the discrete-time Fourier transform (DTFT) of s(t). The mean power of s(t) is

Ps = E{‖s(t)‖2}, and the power norm of s(t) is defined by

‖s‖P :=
√
Ps =

√
E{‖s(t)‖2} =

√
Tr{Rs(0)}. (2.3)

The following is an example of a WSS random signal.

Example 1. Consider a random signal

s(t) = A cos(ω0t+ Θ), 0 < ω0 < 2π,
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where ω0 is real constant, A and Θ are real random variables, independent to each other,

and uniformly distributed over [0, 1] and [0, 2π), respectively. The mean value of the signal

can be easily computed as follows:

E{s(t)} = E{A cos(ω0t+ Θ)}

= E{A}E{cos(Θ)} cos(ω0t)− E{A}E{sin(Θ)} cos(ω0t) = 0
(2.4)

by independence of A and Θ, and E{cos(Θ)} = E{sin(Θ)} = 0. The ACS of the signal can

be obtained by straightforward calculation:

E{s(t)s̄(t− k)} = E{A2 cos(ω0t+ Θ) cos(ω0(t− k) + Θ)}

= 1
2
E{A2}E{cos(ω0k) + cos(2ω0t− ω0k + 2Θ)}

= 1
2
E{A2} cos(ω0k) = 1

6
cos(ω0k) =: rs(k),

(2.5)

that is independent of time index t. Hence s(t) is a WSS process.

A linear time-invariant system (LTI) can be considered as a map that maps the system

input to the system output as shown in Figure 2.1.

G(z)- -

u(t) y(t)

Figure 2.1: The LTI system

Let g(t) be the impulse response, the transfer function of the system in Figure 2.1 is the

Z-transform of its impulse response:

G(z) =
∞∑

t=−∞

g(t)z−t, z ∈ C. (2.6)

The LTI system in Figure 2.1 is assumed to be bound-input and bound-output (BIBO)

stable. Furthermore, the functional relationship of the system input and output is given by

the convolution:
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y(t) = g(t) ∗ u(t) =
∞∑

t=−∞

g(t− k)u(k). (2.7)

If the input u(t) is a WSS signal, then the output y(t) is also a WSS signal in steady-

state. More importantly, the PSD of the output is related to the PSD of the input according

to the following mathematical relation:

Φy(ω) = G(ejω)Φu(ω)G(ejω)∗ (2.8)

Let the input signal u(t) be white process with mean zero and covariance identity. Then the

output mean power is obtained as

Py = E
{
‖y(t)‖2

}
= Tr [E {Ry(0)}] = Tr

{
1

2π

∫ π

−π
G(ejω)G(ejω)∗dω

}
(2.9)

by the fact that Φu(ω) = I ∀ ω. The above introduces the H2 norm of G(z):

‖G‖2 =

√
Tr

{
1

2π

∫ π

−π
G(ejω)G(ejω)∗dω

}
=

√√√√Tr

{
∞∑

t=−∞

g(t)g(t)∗

}
(2.10)

2.2 State Space Descriptions

If every entry of G(z) in Figure 2.1 is a rational function of z, then it can be described by

state-space equations:

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, (2.11a)

y(t) = Cx(t) +Du(t), (2.11b)

where (A,B,C,D) is a realization of the system with transfer matrix G(z), and x(t) ∈ Rn

is the state vector, u(t) ∈ Rm is the input, and y(t) ∈ Rp is the output. It follows that

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
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Recall that G(z) is the transfer matrix of system, which admits state-space description (2.11).

We denote

G(z) =

 A B

C D

 := D + C(zI − A)−1B. (2.12)

For the above system described in (2.11), (A,B) is said to be controllable, if

rank

{[
B AB · · · An−1B

]}
= n. (2.13)

Similarly (C,A) is said to be observable, if

rank





C

CA

· · ·

CAn−1




= n. (2.14)

In addition, (A,B) is said to be stabilizable, if

rank

{[
A− λI, B

]}
= n, ∀|λ| ≥ 1. (2.15)

The above is equivalent to that if x∗A = λx∗ satisfying

x ∈ Rn, x∗ 6= 0, and | λ| ≥ 1,

then there holds x∗B 6= 0. Similarly (C,A) is said to be detectable, if

rank


 A− λI

C


 = n, ∀|λ| ≥ 1. (2.16)

Equivalently if Ax = λx satisfying

x ∈ Rn, x 6= 0, and |λ| ≥ 1,

then there holds Cx 6= 0.
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The state space system described in (2.11) is said to be internally stable, if all eigenvalues

of A lie strictly inside the unit circle. Considering the linear system described by (2.11), the

following results is well known [12]:

Theorem 1. The system described by (2.11) is said to be internally stable, if and only if for

any given Q = Q′ > 0, there exists a positive definite solution X to

X = AXA′ +Q. (2.17)

If (A,B) is controllable, then the system described in (2.11) is internally stable, if and only

if there exists a positive definite solution X to the Lyapunov equation

X = AXA′ +BB′. (2.18)

If (A,B) is stabilizable, then the system described in (2.11) is internally stable, if and only

if there exists a positive semi-definite solution X to (2.18).

Performance optimization is a central objective in feedback system design in addition

to feedback stability. An important performance measure for feedback control systems is

disturbance rejection. Its general formulation is schematically illustrated in the next page.

In Figure 2.2, d(t) ∈ Rm1 is the disturbance input and u(t) ∈ Rm2 is the control input,

while ω(t) ∈ Rp1 is the output signal to be controlled and y(t) ∈ Rp2 is measured output.

The transfer matrix from {d(t), u(t)} to {w(t), y(t)} is given by

G(z) =


A B1 B2

C1 D11 D12

C2 D21 D22

 (2.19)

where Gij(z) = Dij +Ci(zI−A)−1Bj for i, j = 1, 2 and A ∈ Rn×n. The transfer matrix K(z)

represents the feedback controller. Hence the closed-loop transfer matrix from disturbance
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 A B1 B2

C1 D11 D12

C2 D21 D22

-

K(z)

-

d(t)

u(t) y(t)

w(t)

-

�

Figure 2.2: LTI feedback control system

input d(t) to system controlled output w(t) is obtained as

Tdω(z) = G11(z) +G12(z)K(z)[I −G22(z)K(z)]−1G21(z) =: F`[G(z), K(z)]

that is the lower linear fractional transform (LFT). Minimization of the power norm of w(t)

is equivalent to minimization of the H2 norm of Tdw(z), subject to the feedback stability,

which is referred to as H2 control. If in addition, K(z) is required to be strictly proper in

minimizing the H2 norm of Tdw(z), then this is called linear quadratic Gauss (LQG) control.

We will be more specific in the next chapter.

15



CHAPTER 3

PROBLEM FORMULATION

Recall the feedback system in Figure 2.2. The state-space model of the generalized plant

G(z) is described by

x(t+ 1) = Ax(t) +B1d(t) +B2u(t), (3.1a)

w(t) = C1x(t) +D11d(t) +D12u(t), (3.1b)

y(t) = C2x(t) +D21d(t) +D22u(t), (3.1c)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp2 is the output vector, d(t) ∈ Rm1 is the noise

vector, u(t) ∈ Rm2 is the control vector, and w(t) ∈ Rp1 is the vector to be estimated, both

m2 and p2 usually are strictly smaller than n.

In this chapter we briefly describe the LQG controller design and Kalman filter design

based on which the existing detection strategies to replay attack will be introduced.

3.1 LQG Control

Linear Quadratic Gaussian (LQG) control is aimed at minimizing the variance or mean-

power of the controlled signal w(t), in addition to feedback stabilization. It consists of the

optimal state feedback control and the optimal state estimation. The optimal controller

minimizes mean-power of the controlled signal w(t) based on state feedback control, and

the optimal estimator provides the minimum mean-squared error (MMSE) estimation of the

system state. Because H2 is more general, we begin with the design of the H2 controller

before we introduce the LQG control.

Assuming that D22 is zero and the system state and external disturbance are known, the

H2 control law will be the full information (FI) controller:

u(t) = uF (t) = Fx(t) + F0d(t). (3.2)
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Recall the system performance index E{‖w(t)‖2}. If the feedback system is internally

stable under the FI control, then w(t) is a wide-sense stationary (WSS) process asymptot-

ically and thus E{‖w(t)‖2} is independent of time t asymptotically. Substituting the FI

control law (3.2) in to (3.1a) and (3.1b) yields

x(t+ 1) = (A+B2F )x(t) + (B1 +B2F0)d(t), (3.3a)

w(t) = (C1 +D12F )x(t) + (D11 +D12F0)d(t). (3.3b)

Hence the FI controller is required to minimize the H2-norm of the transfer matrix from

the disturbance input d(t) to controlled signal w(t). That is, the FI controller needs to be

designed to minimize the H2-norm of following transfer matrix:

Tdw(z) = TFI(z) :=

 A+B2F B1 +B2F0

C1 +D12F D11 +D12F0

 . (3.4)

The H2 solution to minimizing ‖TFI‖2 is given by

F = −(R +B∗2XB2)
−1(B∗2XA+D∗12C1), R = D∗12D12, (3.5a)

F0 = −(R +B∗2XB2)
−1(B∗2XB1 +D∗12D11), (3.5b)

where X ≥ 0 is the stabilizing solution of the algebraic riccati equation (ARE):

X = Ã∗X(In +B2R
−1B∗2X)

−1
Ã+ C∗1(I −D12R

−1D∗12)C1, Ã = A−B2R
−1D∗12C1. (3.6)

Since the system state and external disturbance may not be measured directly in practice,

the true system true state and disturbance need to be estimated. The corresponding problem

of the output estimation can be described by
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x(t+ 1) = Ax(t) +B1d(t) +B2u(t), (3.7a)

u(t) = uFI(t) := Fx(t) + F0d(t), (3.7b)

y(t) = C2x(t) +D21d(t). (3.7c)

Our goal is to estimate uFI(t) based on measurements of y(t). In order to obtain the optimal

FI estimation, and control law, the MMSE estimator needs to be developed, assuming white

Gaussian noise d(t), which has the form:

x̂(t+ 1) = Ax̂(t) + L [C2x̂(t)− y(t)] +B2u(t), (3.8a)

u(t) = û(t) := Fx̂(t) + L0[C2x̂(t)− y(t)], (3.8b)

where L and L0 are the respective state and disturbance estimation gain of the output

estimator. The MMSE estimation (L,L0) gains are obtained as

L = −(AY C∗2 +B1D
∗
21)(R̃ + C2Y C

∗
2)−1, (3.9a)

L0 = −(FY C∗2 + F0D
∗
21)(R̃ + C2Y C

∗
2)−1, (3.9b)

where R̃ = D21D
∗
21 > 0 and Y ≥ 0 is the stabilizing solution to the ARE

Y = AR̃Y (I + C∗2 R̃
−1C2Y )−1A∗

R̃
+B1(I −D∗21R̃−1D21)B

∗
1 , AR̃ = A−B2D

∗
21R̃

−1D21C2.

(3.10)

Substituting (3.8b) into (3.8a) yields the state description of the optimal H2 feedback

controller described by state space equation

x̂(t+ 1) = (A+B2F + LC2 +B2L0C2)x̂(t)− (L+B2L0)y(t),

u(t) = (F + L0C2)x̂(t)− L0y(t)
(3.11)
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Let Â, B̂, Ĉ, D̂ be realization of K(z) described in (3.11). If D22 = 0, then

Â = A+B2F + LC2 +B2L0C2, B̂ = L+B2L0,

Ĉ = F + L0C2, D̂ = L0.

It is important to note that the estimator in (3.8a) and (3.8b) makes the use of y(t) in

estimation of uFI(t). Hence K(z) = D̂ + Ĉ(zI − Â)−1B̂ is called the H2 controller. If y(t) is

not allowed in estimation of uFI(t), then L0 = 0 can be taken, which is referred to as LQG

controller.

3.2 Kalman Filter

In engineering practice, various disturbances are unavoidable in operating systems, which

affect adversely to the controlled system outputs. Most these disturbances are white noises

with Gauss distribution. Therefore Kalman filter is widely employed in engineering practice

for estimation due to its easy installation, fast computation, low storage requirement, and

being the MMSE estimation. This section is focused on Kalman filtering.

Consider the more generally time-varying state-space system described by

x(t+ 1) = Atx(t) +Btv(t)

y(t) = Ctx(t) +Dtv(t),
(3.12)

where At, Bt, Ct, Dt are allowed to be time-varying, and v(t) is the random process with

Gaussian distribution of zero mean and identity covariance. Let x̂(t|k) be the MMSE esti-

mate of x(t) based on measurements of y(·) up to time k. Then the Kalman filter can be

obtained as follow:
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x̂(t+ 1|t) = (At +KtCt)x̂(t|t− 1)−Kty(t), x̂(0| − 1) = x̄(0), (3.13a)

Kt = −AtΣtC
∗
t (Rt + CtΣtC

∗
t )−1, (3.13b)

Σt+1 = AtΣtA
∗
t +BtB

∗
t +KtCtΣtA

∗
t , Σ0 = P0. (3.13c)

whereΣk = Σk|k−1, and BtD
∗
t = 0 and Rt = DtD

∗
t ≥ 0 ∀ t ≥ 0 are assumed. For the case

BtD
∗
t 6= 0, the above Kalman filter can be replaced by

x̂(t+ 1|t) = (At +KtCt)x̂(t|t− 1)−Kty(t), x̂(0| − 1) = x̄(0), (3.14a)

Kt = −(AtΣtC
∗
t +BtD

∗
t )(Rt + CtΣtC

∗
t )−1, (3.14b)

Σt+1 = Ãt(In + ΣtC
∗
tR
−1
t Ct)

−1ΣtÃ
∗
t + B̃tB̃

∗
t , Σ0 = P0, (3.14c)

where Ãt = At − BtD
∗
tR
−1
t Ct and B̃t = Bt(I − DtR

−1
t Dt). The Kalman filter provides an

efficient and recursive algorithm for computing the MMSE estimate of the system state. An

important property of the Kalman filter is the following:

Proposition 2. For the Kalman filter described in (3.13a)- (3.13c), the output estimate error

δy(t) = y(t)− ŷ(t) is a white process.

Proof. For convenience, we denote x̂(t) = x̂(t|t − 1). Let x̂e(t) = x(t) − x̂(t) be the state

estimation error. Its dynamics are described by

x̂e(t+ 1) = (At + LtCt)x̂e(t) + (Bt + LtDt)v(t),

δy(t) = Ctx̂e(t) +Dtv(t),
(3.15)

where ŷ(t) = Ctx̂(t). The associated error covariance of x̂e(t) satisfies the following difference

Lyapunov equation

Xt+1 = (At + LtCt)Xt(At + LtCt)
∗ + (Bt + LtDt)(Bt + LtDt)

∗, (3.16)

20



by the independent of x̂e(t) and v(t). In addition, the cross-covariance

E{x̂e(t+ 1)δy(t)∗} = (Bt + LtDt)D
∗
t + (At + LtCt)XtC

∗
t = 0, (3.17)

in light of the fact Lt = −(BtD
∗
t + AtXtC

∗
t )(DtD

∗
t + CtXtC

∗
t )−1. We note that the error

covariance in (3.15) have the same form as the original random process (3.12) except that

(At, Bt) are replaced by (At +LtCt, Bt +LtDt). Thus denoting Φ̃t,k as the transition matrix

from time k to t−1 associated with (At+LtCt) and Φ̃t,k = (At−1+Lt−1Ct−1) · · · (Ak+LkCk).

We obtain that for t > k ≥ 0,

E{δy(t)δy(k)∗} = CtΦ̃t,kXkC
∗
k + CkΦ̃t,k+1(Bk + LkDk)D

∗
k

= CtΦ̃t,k+1[(Ak + LkCk)XkC
∗
k + (Bk + LkDk)D

∗
k] = 0,

(3.18)

If k = t, then E{δy(t)δy∗(k)} = CtXtC
′
t +DtD

′
t for xe(t) and v(t) are independent with each

other.

3.3 Replay Attack

Since the networked control system (NCS) employs the information technology (IT) to im-

plement the system control through a shared network, it is vulnerable to malicious attacks.

A typical vicious attacker is the replay attack that attacks the NCS by concealing the mon-

itors or feeding the false information to the controllers. The replay attack undermines the

system stability and can damage the system infrastructures that typically employ many con-

trol systems. Therefore, detection of the replay attack is a very important subarea of the

security in NCSs. In this section, the replay attack will be described.

An example of the known replay attack is launched by the Stuxnet malware, which

allegedly is designed to attack the Iran’s uranium enrichment plant in 2009 and caused one

fifth of the centrifuges damaged [13]. According to the news media [4], Stuxnet secretly

recorded the normal operations status when system runs under normal condition, and then
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played those readings back to the system operators when the systems failed. It would

appear to the operator that everything was running smoothly while the system was already

damaged. It prevents the system from doing some actions to prevent abnormal operation.

Since 2009, the Stuxnet malware has been spread all over the world, which has been detected

on the computer systems in Iran, India, Indonesia and other countries [13]. This impels us

to develop methods to protect our infrastructures from the replay attack.

The first paper discussed the replay attack in networked control system is [6] that was

published in 2009. The idea of this paper is to inject a white Gauss signal in the control

input, and test the estimation residue for the output estimation error of the Kalman filter.

In [6], the χ2 failure detector used to detect the presence of the replay attack based on the

assumption that, the control system is discrete time linear invariant (LTI) with an infinite

horizon Linear quadratic Gaussian (LQG) controller in which a Kalman filter is employed to

estimate the system’s state. The output estimation error variance of the Kalman filter will be

larger if the replay attack exists, than that when the replay attack is absent. This is because

the added Gauss signal is known to the controller and can be canceled in the Kalman filter

when replay attack is absent; Otherwise, it cannot be canceled that results in higher output

estimation error. Although the injected authentication signal helps to detect the replay

attack, it degrades the system control performance. In order to reduce the degradation of

the system control performance, a new detection strategy is proposed in [9]. By periodically

injecting the Gauss white noise into the control input, we can tradeoff the detection rate

versus system control performance. A new method is developed in [11] that employs the

channel noise and measurement noise to detect the replay attack, which avoids the injection

of the authentication noise, and hence avoids degrading the control performance. Besides

above methods, the game theory is introduced in [10] to detect replay attack. It opens a new

way to tradeoff the replay attack detection rate and system control performance. In [9], [14]

the replay attack detection strategy that injecting the Gaussian noise in the control input

method is discussed in smart grid.
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CHAPTER 4

FREQUENCY HOPPING METHOD

The existing detection method for replay attack as proposed in [6] does not have good

detection rate, because the injected authentication white signal cannot have large variance.

If it has large variance, the control system performance will be degraded significantly. The

reason lies in the white signal that is a wide-band signal, and it cannot have both small

mean power and high detection rate. In order to improve the detection rate and reduce the

adverse impact on control system performance, a new detection method is proposed in our

study. The narrow-band signal rather than the white signal is injected in the control input.

The narrow-band signal is centered at a certain frequency, and it can have small variance.

Thus it dose not degrade the control system performance seriously. More importantly the

proposed narrow-band signal helps to achieve much better detection rate than that of the

white noise, if both have the same variance.

4.1 White Noise Method

Mo and Sinopoli [6] are the first to consider the replay attack in the NCS that employs the

LQG controller. Their detection method for replay attack is based on the feedback control

system shown in Figure 2.2 of Chapter 2. The main idea for detecting the replay attack in

the LQG based NCS is to inject an authentication white signal in the control input and to

test the estimation residue of the output estimation error of the Kalman filter used in the

LQG controller. In the following we outline the detection method proposed in [6].

For the linear time invariant generalized plant model described in the previous chapter,

assumptions on D11 = D22 = 0, D∗12C1 = 0, and B1D
∗
21 = 0 are assumed in [6] for the

simplicity reason. Hence the state space description for the generalized plant model is given

by
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x(t+ 1) = Ax(t) +B1d(t) +B2u(t),

w(t) = C1x(t) +D12u(t),

y(t) = C2x(t) +D21d(t),

(4.1)

where x(t) ∈ Rn is the vector of state variables at time t, d(t) ∈ Rn is the process noise

at time t, d(t) and x0 are the independent Gaussian random variables. As a result, the

controller and estimator gains of the LQG controller can be obtained as

F = −(R +B∗2XB2)
−1B∗2XA, (4.2)

L = −AY C∗2(R̃ + C2Y C
∗
2)−1, (4.3)

respectively, where X ≥ 0 and Y ≥ 0 are the stabilizing solutions to the following respective

Algebraic Riccati equations (AREs):

X = A∗XA+ C∗1C1 − A∗XB2(R +B∗2XB2)
−1B∗2XA, (4.4)

Y = AY A∗ +B1B
∗
1 − AY C∗2(R̃ + C2Y C

∗
2)−1C2Y A

∗. (4.5)

Set the system control input as

u(t) = u∗(t) + u4(t), (4.6)

where u∗(t) = Fx̂(t|t − 1) is the optimal LQG control input and u4(t) is the injected

authentication signal. See Figure 4.1 for the LQG based feedback control system. The

output estimation error δy(t) = y(t)−C2x̂(t|t− 1) is temporally white in the absence of the

replay attack. In this case the covariance of this error is given by

Ω2 = E{[y(t)− C2x̂(t|t− 1)][y(t)− C2x̂(t|t− 1)]′} = R̃ + C2Y C
′
2. (4.7)
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C1 0 D12
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y(t)

w(t)

-

�

Figure 4.1: LQG control system with injected authentication signal

Let p be the dimension of y(t). Defining ε(t) = Ω−1[y(t)− C2x̂(t|t− 1)], yields

1
p
E{ε(t)′ε(t)} = 1

p
Tr[E{ε(t)ε(t)′}]

= 1
p
Tr{Ω−1E{δy(t)δy(t)′}Ω−1}

= 1
p
Tr{Ip} = 1.

(4.8)

It follows that ε(t) is both temporally and spatially white. If the replay attack is present,

then it is shown in [6] that 1
p
E{‖ε(t)‖2} is greater than 1, but how much greater depends

on the mean power of the injected white noise. The above analysis leads to the following χ2

failure detector:

1

Np

(
t∑

k=t−N

‖ε(k)‖2
)

≷ τ, (4.9)

where τ is a threshold and N is the detection window size. In practice, it is desirable to have

big detection rate and small false alarm rate. However, if τ � 1, then both the detection

rate and false alarm rate become small. On the other hand, if τ � 1, then both the detection

rate and false alarm rate become big. Hence there is a tradeoff between the detection rate

and false alarm rate by designing an appropriate threshold τ .
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Consider the LQG control for the temperature control system discussed in [6], that aims

at controlling the temperature inside a room. Suppose that T ∗ is the desired temperature

and T (t) is the temperature of the room at time t. A simple plant model for the temperature

control system can be described by

x(t+ 1) = x(t) + u(t) + vp(t),

y(t) = x(t) + vm(t)
(4.10)

where the system state is x(t) = T (t)−T ∗, u(t) is the control input, vp(t) is the process noise,

y(t) is the measurement of the temperature tracking error, and vm(t) is the measurement

noise.

It is assumed in [6] that the process noise vp(t) and measurement noise vm(t) are inde-

pendent to each other, and they have the variance 1 and 0.1 respectively. Setting

w(t) =

 1

0

x(t) +

 0
√

0.1

u(t) (4.11)

as in (4.1) results in the state feedback and state estimation gains

F = −0.618, L = −0.916 ,

respectively. If no authentication signal is injected, then the LQG cost is J = 1.7096. If an

authentication white signal is injected at the control input with variance vad, then the LQG

cost is changed to

J ′ = J + 2.618vad. (4.12)

Following the study in [6], we also carried out the simulation study for this particular

example. In the following simulation, we set the simulation time length to be 200s, and

replay attack takes place at t = 100s. The delay time τ can be set advance or randomly

decide by the replay attacker. The system output y(t) will be τ seconds delay after the

replay attack takes place, giving rise to

26



ya(t) = y(t− τ), t ≥ τ. (4.13)

In order to obtain the statistical detection rate, 2000 trials are carried out in every

simulation. We also set the false alarm rate to be 5% at each trial.

Figure 4.2 shows the detection rate of χ2 failure detector for replay attack when the

detection window size is N = 5, the delay time τ = 100s , and no authentication signal is

injected in the system control input. From Figure 4.2, we find χ2 failure detector successfully

detects replay attack at the beginning of attack, but the detection rate goes to zero as time

goes. The reason of χ2 failure detector transiently detects replay attack can be developed as

follows.
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Figure 4.2: Detection rate without injecting authentication signal

27



According to (4.10) and (4.11), we obtain the estimate output error referring to (3.15) in

proposition of Chapter3.

δy(t+ 1) = ỹ(t+ 1)− ŷ(t+ 1)

= {C2x̃(t+ 1) +D21ṽm(t+ 1)} − {C2x̂(t+ 1|t)}

= C2

{
Ax̃(t) +B1vp(t) +B2F ˆ̃x(t|t)

}
+D21ṽm(t+ 1)− C2 {Ax̂(t|t) +B2Fx̂(t|t)}

= C2A {x̃(t)− x̂(t|t)}+ C2B2F
{

ˆ̃x(t|t)− x̂(t|t)
}

+ C2B1vp(t) +D21ṽm(t+ 1)

(4.14)

where ỹ(t + 1) is the false feedback signal, and ˆ̃x(t|t) 6= x̂(t|t) and x̃(t) 6= x(t) since replay

attacker feedbacks the previous system state to control system. We find that δy(t + 1)

should be very small when there is not replay attack, because x̃(t) − x̂(t|t) is approximate

to zero, ˆ̃x(t|t)− x̂(t|t) is zero, and measurement noise and process noise do not provide large

error. Otherwise, the output estimation error can be large unless the false feedback signal is

carefully designed.

In Figure 4.3, we find that the χ2 failure detector cannot detect replay attack at the

beginning of the attack. Moreover, the delay time in Figure 4.3 τ = 6 which is defined by

replay attacker. This is because the 95th control system output is the optimal false signal

that is close to the system output at 100s, and it can minimize the output estimation error

to avoid being detected by χ2 failure detector. Because the χ2 failure detector fails to detect

the replay attack, Mo and Sinopoli proposed to inject white Gaussian authentication signal

in control input to detect replay attack in [6]. The results in their paper are as follows.

Figure 4.4, Figure 4.5, and Figure 4.6 show the detection rate with different detection

window size when the injected white Gaussian signal of variance 0.2, 0.4, and 0.6, respectively.

The delay time τ is decided by the replay attacker.

These three figures indicate two features: 1) the bigger the detection window size, the

higher the detection rate; 2) the larger variance of authentication signal yields higher detec-

tion rate. However, the large window size implies large time delay for the detection. The

large variance of the injected authentication signal implies poor system control performance.

28



20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

Simulation time (t/s)

D
et

ec
tio

n 
ra

te

Figure 4.3: Detection rate under intelligent replay attack
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Figure 4.4: Detection rate with injected white Gaussian signal of variance 0.2
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Figure 4.5: Detection rate with injected white Gaussian signal of covariance 0.4
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Figure 4.6: Detection rate with injected white Gaussian signal of covariance 0.6
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With 0.2, 0.4, and 0.6 for the variance of the injected white authentication signal, the highest

detection rate is 11.5%, 23%, and 44% respectively, which correspond to the loss of LQG

performance is 30.6%, 61.25%, and 91.88%, respectively, compared with the optimal LQG

cost. It is noticed that the highest detection rate is 44% when the variance of the injected

authentication signal is 0.6 and detection window size is N = 10. This highest detection rate

scarifies 91.88% of system control performance with time delay of 10s in detecting replay

attack. Overall, the detection method for the replay attack with injected white Gaussian

signal is not efficient and practical. Therefore, more efficient detection method should be

worked out to tradeoff the detection rate and the system control performance.

Figure 4.7 shows the detection rate of injected white Gaussian authentication signal with

different variance but the same detection window size N = 5. In the next section, we will
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Figure 4.7: Detection rate with injected white Gaussian signal of detection window size 5

introduce a new detection method by injecting a narrow-band signal in the control input to

improve the detection rate without sacrificing much the control system performance.
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4.2 Spectrum Detection Method

It is desirable to develop detection methods that have high detection rate, while keeping the

minimum impact on the control system performance. The existing method cannot achieve

this goal, because it injects white authentication signal and the PSD spreads over all fre-

quencies. In light of the fact that the mean power of the authentication signal cannot be

large in order to minimize the adverse effect on the control performance, the way to overcome

the weakness of the existing method in [6] is to replace the white authentication signal by

narrow-band signals. We propose to inject the following narrow-band signal:

u4(t) = α cos(ω0t+ θ) (4.15)

over [t0, t0 + Tw], where Tw specifies the time horizon, and α and θ are random variables,

uniformly distributed over [0, αmax] and [0, 2π), respectively.

Comparing to the white noise detection method, the spectrum detection method, provides

higher detection rate, and is more sensitive to replay attack. This is because the injected

narrow-band signal with the same variance does not affect the system control performance

too much, but offers a higher detection rate than that of the white signal at frequency ω0.

In the absence of replay attack, the output estimation error δy(t) has the same covariance

as in (4.7). That is, the injected cosine signal is canceled completely. Recall that u4(t) is

known by the controller. However, when replay attack is present, then the injected cosine

signal cannot be canceled completely, if the adversary has no knowledge on the frequency ω0.

As a result, the output estimation error δy(t) will have a cosine component at frequency ω0.

Therefore, we can employ the spectrum estimation method to detect replay attack. In this

section we will use spectrum detection method to detect replay attack. A non-parametric

estimation method is summarized as follows [15]. We only consider the case p = 1.

For a given discrete time signal {s(k)}Nk=1, the simplest method to estimate its PSD at

frequency ωh can be obtained according to [15] (page 22-24).
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Φ̂p(ωh) =
1

N

∣∣∣∣∣
N∑
k=1

s(k)e−jωh(k−1)

∣∣∣∣∣
2

. (4.16)

The standard biased ACS estimate of s(k) can be obtained as

R̂p(τ) =
1

N

N∑
k=τ+1

s(k)s′(k − τ), 0 ≤ τ < N − 1. (4.17)

A different estimate of the PSD can be obtained as

Φ̂c(ωh) =
N−1∑

τ=−(N−1)

R̂c(τ)e−jωhτ . (4.18)

where R̂c is the standard unbiased ACS estimate and it holds

R̂c(τ) =
1

N − τ

N∑
k=τ+1

s(k)s′(k − τ), 0 ≤ τ < N − 1. (4.19)

The unbiased ACS estimate has a windowing effect and offers a more sophisticated estimation

method which introduces the windowing technique by taking the PSD estimate at frequency

ωh as

Φ̂s(ωh) =
N−1∑

τ=−(N−1)

win(τ)R̂s(τ)e−jωhτ . (4.20)

The above cover the case of ACS estimate are in the average sense. The advantages and

disadvantages of common used window as Barlett, Hanning, Hamming, and Blackman will

not be discussed here.

By utilizing the spectrum estimation method, the simulation results of detecting replay

attack are as follows.

Figure 4.8 shows the detection rate of replay attack with injected fixed amplitude and

fixed frequency cosine authentication signal. In Figure 4.8, the amplitude, the frequency

and the variance of the injected cosine signal are 0.6325, 1.26 and 0.2, respectively. The
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detection window size is N = 5. The detection rate of the χ2 failure detector and spectrum

detection method are shown in Figure 4.8. The spectrum detection method provides higher

detection rate than that of χ2 failure detector. Moreover, the detection rate with injected

fixed amplitude cosine signal is higher than that with injected white Gaussian signal under

the same condition. Corresponding to the peak detection rate of 9% in Figure 4.7, the

peak detection rate in Figure 4.8 is 14.2%. Although the detection rate is oscillating when

injecting the cosine authentication signal in the system control input, it effectively detects the

replay attack. However, there is a drawback to detect replay attack with injected sinusoidal

authentication signal: The injected signal can be copied if the attacker is intelligent enough,

causing this replay attack detection method to fail. According to our analysis, the spectrum

detection method fails when the attacker knows the frequency ω0 and sets the time delay to

satisfy relation:
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Figure 4.8: Detection rate with injected fixed amplitude cosine signal
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τω0 = 2πn. (4.21)

By doing so, the injected cosine authentication signal is repeated in the attacking duration,

and can thus be canceled in the Kalman filter.

Figure 4.9 shows that the spectrum detection method fails when the frequency of the

injected authentication cosine signal is 1.2566 and the time delay τ = 100s that satisfies

(4.21). The detection rate in Figure 4.9 validates the fact that the spectrum detection method

can fail, if the adversary has the knowledge of the frequency of the injected sinusoidal signal.

But it’s interesting to notice that the detection rate of the χ2 failure detector in Figure 4.9

is similar to that of Figure 4.2. Indeed, the pulse can also be canceled when the attacker

feedbacks the optimal false signal satisfies the two conditions, one is the constraint of (4.21),

and the other one is that the feedback false signal should as close as the system output at

the attack moment.
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Figure 4.9: Detection rate with injected fixed amplitude cosine signal under the intelligent
attack
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Figure 4.10 is the simulation result when injecting random amplitude cosine signal with

frequency 1.2566 in the control input and the time delay τ = 100s. The detection rate is
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Figure 4.10: Detection rate with injected random amplitude cosine signal

similar to that in Figure 4.9. Indeed, it does not change too much even if we inject fixed

frequency cosine authentication signal with randomly varying amplitude in the control input.

The simulation results in in Figure 4.9 and Figure 4.10 illustrate the difficulty of using the

spectrum method for detecting the replay attack.In order to prevent the adversaries from

knowing the characteristics of the injected signal, we propose the other detection method in

this thesis by injecting authentication signal with random amplitude and random frequency.

Referring to (4.15), we set ω0 to change from one time horizon to another time horizon.

Hence we call it the frequency hopping method.
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4.3 Frequency Hopping Method

Frequency hopping method that is referred to frequency hopping communication in which the

frequency of the carrier signal varies from time to time to avoid interception and interruption,

is introduced in this subsection to detect replay attack. Before developing the frequency

hopping method, the frequency hopping communication is briefly discussed in the following

subsection.

4.3.1 Frequency Hopping Communication

Frequency hopping has been widely used in military communication and Bluetooth trans-

mission, since it has two outstanding properties: high security to protect from interception

and good resistance to the narrow-band interference. The principle of frequency hopping

communication is to extend the narrow-band signal from narrow-band to wide-band by mul-

tiplying the narrow-band signal with a wide-band signal. The covariance of the extended

signal is very small at all frequencies in [16]. More importantly, the narrow-band signal

shifts between different frequencies according to a encrypted pseudorandom sequence. Thus,

it is difficult to be intercepted and has a strong resistance to the narrow-band noise. The

frequency hopping method used in the thesis refers to frequency hopping spread spectrum

(FHSS) communication technology, which will be briefly discussed next.

Consider using binary frequency shift keying (BFSK) as the first data modulation scheme

to modulate the signal s(tc), which has been discussed in Chapter 2. The output signal of

the first modulation can be obtained as [17]

sd(tc) = s(tc) cos (2π(f0 + bif4)tc) , (i− 1)Ts < tc < iTs, (4.22)

where f0 is the base frequency with unit Hertz, f4 is the frequency separator in the BFSK

scheme, bi is the ith bit of pseudo-noise sequence which is generated by linear feedback shift

register (LFSR), LFSR will not be discussed here, Ts is the duration of a single bit, and tc
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is the continuous time variable. Suppose that the frequency fi of the second modulation is

also determined by the pseudo-noise sequence. Then the resulting signal is

sp(tc) = s(tc) cos(2π(f0 + bif4)tc) cos(2πfitc)

= s(tc)(cos(2π(f0 + bif4 + fi)tc) + cos(2π(f0 + bif4 − fi)tc)).
(4.23)

Eliminating the second part of the above sum, we can obtain the signal with frequency

centered around f0 + fi. By doing reverse process, the original signal can be recovered when

the pseudo-noise sequence and binary sequence are known by the receiver. When M-ary

frequency shift keying (MFSK) scheme is applied in the modulation, bi in (4.22) becomes a

variable that changes between [0, 1, · · ·M ]. A MFSK example can be found in Figure 4.11,

T is the duration of a bit, Ts is the duration of signal element, Tc is the interval duration of

frequency hopping in sub-channels.

Figure 4.11: Slow Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)
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4.3.2 Proposed Detection Method

To overcome the shortcoming of spectrum detection method proposed in Section 4.2, we

employ frequency hopping technology in detecting replay attack. By randomly shifting the

frequency of injected signal, we can encrypt the injected authentication signal to make it

difficult to be copied. The simulation results are based on the temperature control system

model discussed in Section 4.1 [6]. The difference from the previous two detection methods

is to inject cosine authentication signal with random frequency in the control input. The

frequency of cosine signal is controlled by a pseudo-noise sequence generator that randomly

generates 5 different frequencies. They are 1, 1.2, 1.4, 1.6, and 1.8. We set the injected

cosine authentication signal with different variance of 0.2, 0.4, and 0.6, respectively. The

corresponding amplitude of injected signal are 0.6325, 0.8944, and 1.0954, respectively. We

set the detection window size N = 5 and time horizon Tw = 10. The frequency of the injected

cosine authentication signal will hop every Tw = 10s. We carry out simulation studies with

injected cosine signal with fixed amplitude and random amplitude. The simulation results

are as follows.

Figure 4.12 shows the detection rate of frequency hopping method with injected fixed

amplitude cosine signal. The peak detection rate in Figure 4.12 is 35 %, when the variance

of injected cosine authentication signal is 0.6 and the detection window size is N = 5. When

the variance of the injected signal is 0.2, the detection rate of spectrum estimation method is

not good enough. Moreover, the detection rate oscillates irregularly. But the detection rate

of frequency hopping detection method is generally better than that of white noise detection

method shown in Figure 4.7.

Figure 4.13 shows the detection rate of χ2 failure detector when injecting the fixed am-

plitude cosine authentication signal in control input. The detection rate shown in Figure

4.13 does not change a lot from that of Figure 4.12.

Figure 4.14 shows the detection rate of frequency hopping method with the injected

cosine signal of random amplitude. The amplitude of the injected signal are random variables
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Figure 4.12: Detection rate with injected fixed amplitude cosine signal
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Figure 4.13: Detection rate of χ2 failure detector with injected fixed amplitude cosine signal
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Figure 4.14: Detection rate with injected random amplitude cosine signal

between (0, 1.0954], (0, 1.5492], and (0, 1.8974], respectively. There is not a big difference

between Figure 4.14 and Figure 4.12.

Figure 4.15 shows the detection rate of χ2 failure detector when injecting random am-

plitude cosine authentication signal. Figure 4.12, Figure 4.13, Figure 4.14, and Figure 4.15

show that the frequency hopping method doesn’t not improve the detection rate a lot than

that of the χ2 failure detector. Moreover, the detection rate of using frequency hopping

method doesn’t show a big progress than that of white noise method in the results. After

carefully analysis the detection window size and (4.16), we find that we cannot obtain the

accurate PSD when the detection window size is too small.

Therefore, we adjust the simulation conditions to do some simulation studies of frequency

hopping method. We set the simulation time T = 500s, the replay attack takes place at

250s, the detection window size N = 20, and the time horizon Tw = 60. The time delay τ is

decided by the intelligent replay attacker according to (4.21). The variance of the injected
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authentication signal is 0.2 and 0.4, respectively. We do 2000 trials each time to obtain the

statistic detection rate.
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Figure 4.15: Detection rate of χ2 failure detector with injected random amplitude cosine
signal

Figure 4.16 shows the detection rate of the white noise method and frequency hop-

ping method that with injected signal variance of 0.2 and 0.4, respectively. In Figure 4.16,

W − variance = 0.2 represents the detection rate of white noise method with the inject-

ed signal of variance 0.2. Slimily, F− variance = 0.2 denotes the detection rate of fre-

quency hopping method with the injected signal of variance 0.2. W − variance = 0.4 and

F− variance = 0.4 have the similar meaning. The detection rate of the frequency hopping

method periodically oscillates and drops between the time horizons. The shifting frequency

induces the estimation error in calculating the PSD of output error.

Figure 4.17 shows the detection rate of the spectrum detection method and χ2 failure

detector with frequency hopping technology, respectively. The S.D.M with variance 0.2

means the detection rate of the spectrum detection method with injected signal of variance
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Figure 4.16: The detection rate comparison between white noise detection method and fre-
quency hopping method

0.2. The similar meaning of S.D.M with variance 0.4. χ2 with variance 0.2 and χ2 with

variance 0.2 means the detection rate of the χ2 failure detector with injected signal of variance

0.2 and 0.4, respectively. The Figure 4.17 shows that the detection rate of χ2 failure detector

is smoother than that of the spectrum detection method, but the average detection rate is

lower.

After adjusting the detection window size, we increase the detection rate of both the

white noise detection method and the frequency hopping method. But Figure 4.16 shows

that the detection rate of the frequency hopping detection method is higher than that of

white noise method. It indicates that the frequency hopping method is better than white

noise method. More importantly, the frequency hopping method improve the security of

control system because this detection method can encrypt the injected signal. The encrypted

control system strength the resistance of malicious intelligent attack. Therefore, we can claim

that the frequency hopping detection method is more advanced than white noise method.
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Figure 4.17: The detection rate comparison between χ2 failure detector and spectrum de-
tection method

Moreover, the simulation studies show that the spectrum detection method reveals better

detection rate than χ2 failure detector with the frequency hopping technology. Although

the detection rate can be improved by increasing detection window size, both the frequency

hopping method and the white noise method scarify the detection time. Both of these

detection methods cannot perfectly tradeoff the control system performance, variance of the

injected signal, and detection time. The more effective detection method of replay attack

need to be studied in the future.
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CHAPTER 5

CONCLUSION

With the advancement of automation and wide deployment of the information technol-

ogy (IT), networked control systems (NCS) become more and more important in today’s

digital economy. Compared to the traditional control system, the NCS can reduce the cost,

and is easy to maintain. More importantly, the NCS makes remote control possible, and

enable robots and other controlled systems to work in hazardous environments where wired

connection is not allowed or prohibited. As such the NCS is expected to be an essential part

and plays a crucial role in future industry, agriculture, and military, because the underlying

infrastructures are full of feedback control systems. However, along with the development

and the application of the NCS, its security becomes a more and more critical issue. Due

to the utilization of the IT, especially the shared wireless communication networks, NCSs

are vulnerable to malicious attackers. In this thesis, we have focused on one type of attacks,

referred to as replay attack that can be launched by malicious attackers from Cyber. Re-

play attacks can penetrate in control system secretely, reprogram embedded actuators and

sensors, or copy the system information and feedback the false output data to the control

system. Such attacks can destabilize control systems without being detected, or even destroy

hardware facilities. More seriously, replay attacks can damage important military facilities

of the country and cause huge financial loss. Therefore, it is crucial to develop efficient

methods to detect replay attacks. Although there are some studies in the existing literature,

the known solutions are not satisfactory which motivate this thesis research. We proposed

a new method in this thesis to detect the replay attack and this new detection method is

examined by our simulation studies. The thesis work is summarized in the following section.

5.1 Summary

In this thesis, we aimed at solving the detection problem for the replay attack. Since the

traditional χ2 detector does not perform well in detecting the replay attack by injecting
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white authentication signal, a new effective detection method is proposed in this thesis. Our

research on the replay attack detection problem are summarized next.

The existing method [6] injects white Gaussian noise as the authentication signal into the

control input. Although it is capable of detecting replay attacks, the variance of the injected

noises needs to be large, which degrades the control system performance. On the other

hand large variance authentication signal degrades the control system performance. For this

reason tradeoff has to be made between the detection rate and loss of the control system

performance. There exists some works trying to tradeoff the detection rate and system

control performance, but none of them achieves this goal. Basically the high detection

rate cannot be obtained without injecting white Gaussian authentication signal with large

variance, posing a significant challenge to the detection problem for replay attacks.

In this thesis, a new narrow-band authentication signal rather than the white Gaussian

signal, is proposed to be injected to the feedback control system at the plant input. Compared

to the white noise method that consists of the χ2 detector and the white Gaussian noises, the

spectrum detection method with injected narrow-band signal works better in detecting replay

attacks. Specifically the PSD of the narrow-band signal concentrates at a fixed frequency and

its neighborhood, contrasting to the PSD of the injected white Gaussian signal, which spans

uniformly to the whole spectrum. In addition it is possible to obtain high detection rate by

injecting narrow-band authentication signal with large variance without adversely affecting

control system performance seriously. Indeed we can inject the narrow-band authentication

signal at the frequency that is far away from the frequency content of the control signal.

The high detection rate based on the spectrum detection method can be obtained by

injecting the narrow-band authentication signal with fixed frequency and fixed amplitude in

the control input. The detection rate curve of the spectrum detection method with narrow-

band authentication signal can be seen in Figure 4.8. However, this high detection rate is

obtained assuming that the product of the time delay and the frequency of the injected signal

is not multiple of 2π. When the adversaries are intelligent enough, they can estimate the
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frequency and the amplitude of the injected authentication signal, and set the time delay

to be multiple of 2π. As a result, the spectrum detection method can fail in detecting the

replay attack when the intelligent attack deploys the above strategy. This is validated by

our simulation result in Figure 4.9 and Figure 4.10.

In order to protect the information of the injected authentication signal from being

estimated by replay attackers, we propose to encrypt the frequency of the injected signal by

employing the frequency hopping communication technology, which is termed as frequency

hopping detection method. See Section 4.3 for details. When injecting the narrow-band

authentication signal at high frequencies, better detection rates than that of the white noise

method can be obtained, assuming the same variance for the narrow-band authentication

signal and for the white Gauss authentication signal. Moreover the longer the detection

window size is employed, can the better detection rate be obtained. Figure 4.16 demonstrates

the effectiveness of the frequency hopping detection method. To be specific, it injects narrow-

band authentication signal with smaller variance than that of the white Gauss authentication

signal. Yet the simulation results show that that the frequency hopping detection method

can provide better detection rate than that of the χ2 detector associated with white Gauss

authentication signal. However large detection window size implies large time delay that is

the cost associated with our proposed frequency hopping detection method.

5.2 Future Studies

In this thesis, we have studied the detection of replay attacks. The frequency hopping detec-

tion method is proposed and shown to be successful in detecting replay attacks. However, the

research work in this thesis is not completed yet. The following outlines possible directions

for future studies in this important research problem area.

1. In [6], Mo and Sinopoli provide the integral theoretic analysis of the relationship be-

tween the detection rate of the replay attack, and the LQG performance loss when

injected authentication signals are white Gaussian noises. These analysis results help
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readers to understand the quantitative tradeoffs between the detection rate and per-

formance loss using the χ2 detector. Similar to [6], the theoretical study on the use

of narrow-band signal in detection of the replay attack needs to be carried out. For

instance the quantitative analysis on the loss of the LQG performance cost needs to be

derived. At present we do not have an explicit expression on the LQG cost loss when

the narrow-band signals are employed authentication signals.

2. Most of the existing works analyze the detection rate of the replay attack has been

focused on the plant input by injecting the authentication signal at the control input.

Because replay attacks employ delayed output measurements, injecting the authen-

tication signal at the plant outputs should be more effective. In [11], it shows that

the channel noise at the system output can be more effective than injected noises at

the system input in detection of the replay attacks. It will be interesting to study

how the authentication signal can be injected at the system output in order to im-

prove the detection rate while keeping minimum adverse effects on the control system

performance.

3. Even though the existing works and our work in this thesis demonstrate the effective-

ness of the various detection methods, not all the control systems are based on LQG

controller. Therefore, it is essential to study the detection method for replay attacks

for more general types of the feedback control systems, including those based on Bode

design methods, PID control, and H∞ control.
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