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ABSTRACT

In this era of modern technology, image processing is one the most studied disciplines of
signal processing and its applications can be found in every aspect of our daily life. In this
work three main applications for image processing has been studied.

In chapter 1, frequency division multiplexed imaging (FDMI), a novel idea in the field of
computational photography, has been introduced. Using FDMI, multiple images are
captured simultaneously in a single shot and can later be extracted from the multiplexed
image. This is achieved by spatially modulating the images so that they are placed at
different locations in the Fourier domain. Finally, a Texas Instruments digital micromirror
device (DMD) based implementation of FDMI is presented and results are shown.
Chapter 2 discusses the problem of image reassembly which is to restore an image back
to its original form from its pieces after it has been fragmented due to different destructive
reasons. We propose an efficient algorithm for 2D image fragment reassembly problem
based on solving a variation of Longest Common Subsequence (LCS) problem. Our
processing pipeline has three steps. First, the boundary of each fragment is extracted
automatically; second, a novel boundary matching is performed by solving LCS to identify
the best possible adjacency relationship among image fragment pairs; finally, a multi-
piece global alignment is used to filter out incorrect pairwise matches and compose the
final image. We perform experiments on complicated image fragment datasets and
compare our results with existing methods to show the improved efficiency and
robustness of our method.

The problem of reassembling a hand-torn or machine-shredded document back to its

original form is another useful version of the image reassembly problem. Reassembling



a shredded document is different from reassembling an ordinary image because the
geometric shape of fragments do not carry a lot of valuable information if the document
has been machine-shredded rather than hand-torn. On the other hand, matching words
and context can be used as an additional tool to help improve the task of reassembly. In
the final chapter, document reassembly problem has been addressed through solving a

graph optimization problem.



CHAPTER 1.
FREQUENCY DIVISION MULTIPLEXED IMAGING

Frequency division multiplexed imaging (FDMI) [20] enables capturing multiple or sub-
exposure images through optical modulation and Fourier domain space allocation.
Through optical modulation, different band-limited images are placed at non-overlapping
frequency sub-bands, allowing simultaneous capture of multiple images. These images
can then be recovered through band-pass filtering provided that there is no aliasing. In
[20] an optical setup to capture multiple images is presented. Here, another optical setup,
specifically to capture sub-exposure images, is presented. This is achieved through pixel-
by-pixel exposure control, implemented by using a Texas Instruments (TI) DMD chip.
First, the FDMI idea is briefly explained and then the TI DMD based implementation is
discussed in detail.

1.1Introduction

In a variety of image processing and computer vision applications, it is necessary to
capture multiple images of a scene. For example, to form a color image, at least three
spectral channels have to be captured. This is done by using either multiple sensors or a
color filter array that allocates one color component for each pixel. To form a video, on
the other hand, multiple images are sequentially captured by a sensor. These two
applications exemplify the two main approaches of capturing multiple images: space
allocation and time allocation. In the color image capture application, we do space
allocation: there is a color filter array in front of the sensor, assigning a single color
component to a pixel; or there are multiple sensors, each assigned to a color channel. In
the video capture application, we do time allocation: a time slot is allocated to each video
frame. In this work, we discuss a third approach: frequency division multiplexed imaging.
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Inspired from the frequency division multiplexing technique in communication systems,
authors in [20] propose to optically modulate and place different band-limited images at
non-overlapping frequency sub-bands, allowing simultaneous capture of multiple images.
These images can then be recovered through band-pass filtering. The underlying idea of
FDMI is illustrated in Figure 1.1. Suppose that we have two band-limited images: I, (x,y)
and I,(x,y). We modulate these images with masks H; (x,y) and H,(x,y), and capture the
sum of the modulated images:

Ixy) = HiExLEY) + Hx LK) (1.1)
where the masks are sinusoids in horizontal and vertical directions: H;(x,y) =a +
b cos(2muyx) and H,(x,y) = a + b cos(2mnv,y), where a and b are positive constants with
the condition a > b so that the masks are non-negative and therefore can be realized

optically, and u, and v, are the spatial frequencies of the masks. The Fourier transforms

of the masks are H,(u,v) = ad(u,v) + (g) (8(u—ug,v) + 8(u+ up,v)) and Hy(u,v) =

ad(u,v) + (g) (8(u,v—vy) + 8(u,v+vy)). Defining 1;(u,v) and 1,(u,v) as the Fourier
transforms of 1,(x,y) and I,(x,y), respectively, the Fourier transform of the captured
image I(x,y) is

{(u,v) = a[l;(u,v) + ,(uv)] + (g) [T(u—up,v) +T,(u+ug,v)| + (1.2)

b\ .« N

(3) 1w v = vo) + Ty (u, v+ vo)L.
Provided that the images I;(x,y) and I,(x,y) are band-limited and (uy,v,) are large
enough such that there is no overlap of individual terms in I(u,v), we can recover the

images through band-pass filtering the Fourier transform of the capture image I(x,y).
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Figure 1.1: lllustration of frequency division multiplexed imaging (FDMI) idea.
Assuming that the image are band-limited, whose Fourier transforms are indicated by
blue and green circles, and the spatial frequencies (u,, v,) of the masks are large
enough, the modulated image has Fourier transform I(u, v) where the individual Fourier
components can be recovered.

1.2Related Work

In recent years, extensive research has been conducted in the field of computational
photography. In general, computational photography is the field of capturing multiple
images of the same scene for the purpose of creating a better image of that scene by
extracting desirable parts from the taken images and combine them into the final result
image.

Debevec and Malik in [64] proposed a novel idea to from an image in which a wide range
of radiance map is present. To accomplish such a task, a sequence of images with varying
exposure times are captured. The Image with large exposure period will capture the
information from the dark part of the scene accurately but will saturate in the bright parts.
On the other hand, the image with small exposure period, will capture the bright part of

the scene and will lose information in the dark part. By conscious combination of all these

images, a final image is synthesized that will have the information from the dark part of
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the scene from images with large exposure time and the information from the bright part
of the scene from images with small exposure time. Battiato et.at. in [75] and Bandoh
et.al. in [76] discuss the more recent advanced made in this topic.

Another application of computational photography can be found in the subject of focus
stacking. Many cameras provide insufficient control over depth of field. Some have a fixed
aperture; others have a variable aperture that is either too small or too large to produce
the desired amount of blur. To overcome this limitation, one can capture a focal stack,
which is a collection of images each focused at a different depth, then combine these
slices to form a single composite that exhibits the desired depth of field. Jacobs et.al. in
[77] propose a theory of focal stack compositing to computer images with extended depth
of field. Coded aperture imaging [78], panoramic imaging [79], and stereoscopic imaging
are other well-known applications in computational photography.

1.3FDMI Applications in the Form of Experiments

To explain the FDMI idea more clearly, three different experiments has been designed in
[20] that will help us understand different applications of FDMI idea. In the first experiment,
the light modulators are static and will not change during the exposure time. Using this
type of setup and with the help of a beam splitter, multiple images are captured in a single
shot. In the second experiment, light modulators are dynamic, meaning that they change
during the exposure time of a single shot. Using this type of optical setup, sub-exposure
images, as well as full-exposure images, are captured in a single shot and then studied.
Finally, in the third experiment, using dynamic light modulators as in experiment two,
different parts of the scene’s dynamic range are captured for the purpose of high dynamic

range (HDR) imaging.



1.3.1 Experiment 1: Capturing Multiple Images with Static Light Modulators

Figure 1.2 depicts the optical setup that makes the capture of multiple images with a
single shot possible. As is shown, using a beam splitter the camera is focused on two
intermediate image planes simultaneously. One part of the scene is formed on the first
intermediate image plane and the other part of the scene is formed on the second
intermediate image plane. A horizontal grating is placed to the first image plane and a
vertical grating is placed on the second image plane. As the images are formed on these
image planes, they are modulated with these horizontal and vertical gratings respectively

and, as a result, the camera captures the sum of these modulated images.

Tj>ij:i
/ X
;‘/__,/ \\ :

Sensor \

Figure 1.2: Two images are captured simultaneously using static light modulators.
The results of this experiment are presented in figure 1.3. Figure 1.3a is showing the

beam splitter and the static horizontal and vertical gratings. Based in figure 1.2, the
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images are supposed to form on the intermediate focus planes where the gratings are
located. To mimic image formation on the focus planes, two images, shown in figure 1.3b,
are chosen as the two scenes to be captured simultaneously and are places right after
the gratings instead of using a focusing front lens as illustrated in figure 1.2. Figure 1.3c
shows the actual image captured through the beam splitter and figure 1.3d shows it
Fourier transform. By applying band-pass filters as shown in figure 1.3d, the first and
second scenes can be recovered separately as illustrated in figure 1.3e and figure 1.3f.

As FDMI is explained previously, the gratings are assumed to be sinusoids. But the
gratings used in the this experiments are square waves. The Fourier transform of a square

wave with frequency u, is not two impulses anymore but is an impulse train with decaying

magnitudes, Y, sinc (uio)éi(u — Kkuy). This is also visible in the zoomed-in part of figure
1.3d. To maximize the signal to noise ratio, the location of the first impulse is picked for
band-pass filtering.

Looking at figure 1.3d, we notice that the entire frequency range is not utilized; if we had
used spatial gratings with higher spatial frequency (lines per inch), we would have
achieved a better separation between different image components. The highest possible
grating frequency is such that the grating on the image plane has a period of two pixels,
which corresponds to u, = 1/2 on the image plane.

Input images need to be band-limited in order to avoid any aliasing during the multiplexing
process. To make sure that that is the case, a low-pass filter needs to be applied to input
images. One way of achieving low-pass filtered input images in our specific setup is not

to bring the target images to perfect focus in the intermediate focus planes where the

gratings are located and where the images where supposed to form at the first place.



(a) (h)

(e)
Figure 1.3: Demonstration of the frequency division multiplexed imaging idea.
Out-of-focus blur, will reduce the high-frequency components of target images as it acts

as a low-pass filter, and, as a result, aliasing artifacts are kept under control.



1.3.2 Experiment 2: Capturing Sub-Exposure Images with Dynamic Light Modulators

Figure 1.4 depicts the design for optical setup for another application based on the FDMI
idea. In this experiment, a light modulator is placed on the intermediate focus plane as in
experiment 1. But the difference is that the light modulator here is dynamic meaning that
it will change pattern during the exposure time of a single shot. As the pattern changes,
each sub-exposure image is modulated by a different pattern and therefore in placed at
a different location in the Fourier domain. These sub-exposure images, then, can be

recovered through appropriate band-pass filtering as we did in experiment 1.

\‘\ /// Spatial Light Modulator
enenaene "“:;k:\ ------- ereen :
/ 0\ ; ]
/ \ — 1111

Figure 1.4: Sub-exposure images are captured in a single exposure period



(f)

Figure 1.5: Extraction of sub-exposure images.
To demonstrate this idea, simulated data is used for this experiment. Two images of a

video sequence is picked to simulate the motion in a scene during the exposure period of



the shot. These images are modulated with orthogonal gratings, one at +45 and another
at —45 degrees, and are then averaged to simulate the capture process. The result is
shown in figure 1.5a. Figure 1.5b is showing the Fourier transform of the captured image.
Using a low-pass filter, the image shown is figure 1.5c is recovered. This recovered image
is the image that would have been captured assuming there were no gratings to begin
with. On the other hand, using band-pass filters images shown in figure 1.5d and figure
1.5e are recovered. The first image corresponds to the first sub-exposure period and the
second image corresponds to the second sub-exposure period. These images can be
used to different purposes, including scene analysis, optical flow estimation, and motion
deblurring. Figure 1.5f is the result of optical flow estimation between the two sub-
exposure recovered images. The visible artifacts in the recovered images are due to
aliasing and also due the fact that some high frequency components are cut off by the
filters.

In addition to testing the idea with simulated data, is needs to be proved with real data as
well. To prove the feasibility of the idea, real optical set up is needed. A gray-scale LCD
projection panel, connected to a PC with a VGA cable is used. This way, anything that is
on the PC display will also be displayed on the panel as well. Therefore, we can form any
pattern on the panel as shown in figure 1.6. A camera is focused on the panel; a printout
image is placed right after the panel. This imitates an image formed on the focus plane.
The pattern formed on the panel is a horizontal grating for the first half of the exposure
and vertical grating for the second half. The printout image is slightly moved during the
exposure period. The captured image and its Fourier transform are shown in figure 1.7a

and figure 1.7b. The motion-blurred image obtained from the center portion of the Fourier
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(a)

Figure 1.6: LCD projection panel for spatial light modulation. (a) Sharp QA-75 LCD
projection panel, (b) camera focuses on the projection panel, which modulates light
based on the pattern displayed on the panel.

Figure 1.7: Extraction of sub-exposure images.

transform is given in figure 1.7c. The images modulated in the first and second half of

the exposure period are shown in figure 1.7d and figure 1.7e.
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1.3.3 Experiment 3: Capturing HDR Image with Dynamic light modulator

FDMI idea can be used in creating high dynamic range imaging. While photographing a
natural scene, sometimes, we need to increase the exposure period to capture that part
of the dynamic range that is dark. Nevertheless, as a result of the long exposure period,
the bright part of the dynamic range will end up saturated in the captured image. We
propose to modulate the scene image with a horizontal grating for the first half of the
exposure period and to have clear screen for the second half of the exposure period. As
a result, this sub-exposure modulated image from the first half of the exposure period will
contain valid information for the bright part of the dynamic range; and the full exposure
image will contain valid information for the dark part of the dynamic range. This gives us
the opportunity to create a HDR image using the recovered sub-exposure and full
exposure images. This optical setup is displayed in figure 1.8. The region of interest is a
printout with bands of different brightness as shown in figure 1.9c which is cropped out of
the image in figure 1.9b. Figure 1.9d is the Fourier transform of the cropped image. After
a low-pass filter is applied to the central part of the Fourier transform, the recovered image
is shown in figure 1.9e; and figure 1.9f is showing the result of applying band-pass filter
to the Fourier transform. Comparing figure 1.9e and figure 1.9f, we see that parts of the
image that are over-exposed in figure 1.9e due to the full exposure, are well-exposed in
figure 1.9f. On the other hand, well-exposed parts in figure 1.9e are under-exposed in
figure 1.9f due to shortness of the sub-exposure period. For the next two sections,

experiment 3 is repeated, but, this time, with a more accurate real-life setup.
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Figure 1.8: In the first half of exposure period, horizontal grating is applied; in the
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Figure 1.9: Capturing different part of dynamic range.
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1.4Implementing FDMI Using TI DMD

This section presents an optical setup based on the Texas Instruments DLP technology
to capture sub-exposure images with the FDMI idea. A Texas Instruments DLP
Lightcrafter is used as the optical modulator. TI DLP Lightcrafter is a compact evaluation
system for integrating projected light into industrial, medical and scientific applications.
Developers can create and display high-speed pattern sequences through Lightcrafter’s
application program interface (API) and graphical user interface (GUI). The pattern
designed by the developer, horizontal or vertical grid in our case, will be formed on the
digital micromirror device (DMD) of the Lightcrafter. The goal is to form an image on the
DMD while it is bearing the specified grid pattern. The DMD will act as a spatial light
modulator and will be able to modulate the amplitude and direction of incoming light.
Therefore, the image focused on the DMD will be modulated with the grid pattern that is
formed on the DMD.

The DMD on the Lightcrafter is composed of a two-dimensional array of 1-bit CMOS
memory cells. These cells are organized in a grid of 608 memory cell columns by 684
memory cell rows. Optically, the DMD consists of 684x608 highly reflective micromirrors,
organized in a two-dimensional array. Each individual micromirror is placed on top of a
corresponding CMOS memory cell. Each aluminum micromirror is switchable between
two discrete angular positions, specifically —12° and +12°. The angular positions are
measured with respect to 0° flat reference when the mirrors are placed in their inactive
state, parallel to the array plane. The tilt direction is perpendicular to the hinge-axis.

The angular position of each micromirror is determined based on the binary state of the

corresponding CMOS memory cell contents. Writing logic 1 into a CMOS memory cell will
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result in the corresponding micromirror to change to the on-state, that is, +12° angular
position. On the other hand, writing logic 0 into a CMOS memory cell will cause the
corresponding micromirror to switch to the off-state, that is, —12° angular position. We
use dynamic spatial light modulation to capture sub-exposure information from an image.
Through the GUI that comes with the Lightcrafter, we can specify the pattern on the DMD
as a function of time. In the first half of the exposure period, there will be no grating on
the DMD, that is, all the incoming light will be reflected. In the second half of the exposure
time, there will be vertical grating pattern on the DMD, that is, all light from some pixels
will reflected and no light from the others will be reflected. As a result, the second half of
the exposure will be modulated and eventually be recovered. If we would like to modulate
the first half, then we need to apply another grating pattern, e.g. horizontal grating, in the
first half of the exposure period.

Figure 1.10 illustrates the optical setup to capture the sub-exposure information from the
scene. An objective lens forms an image of the scene on the DMD. Based on the grating
pattern on the DMD, the reflected light will be spatially modulated. A camera, focused on
the DMD, captures the modulated image. The beam splitter makes it possible to use the
DMD as the image/focal plane for both the object side and sensor side. One is forming
an image of the scene on the DMD and the other is capturing the modulated light. Figure
1.11a and figure 1.11b show the actual setup the we have used to conduct the
experiments, from two different perspectives.

Figure 1.12a is an image of the DMD when a vertical grid is formed. The image formed
on the DMD through the lens is due to white diffuse light. Figure 1.12b shows a close- up

region of the DMD. The grating pattern is visible. Note that the gratings used in this
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Figure 1.10: Optical configuration for implementing FDMI idea using DMD.
Using a beam splitter, both the camera and the imaging lens are focused on the same
plane. DMD is used as an intermediate focal plane for both optical components. At the
same time, DMD is used as the spatial light modulator. The image of the scene, formed
on the DMD through the imaging lens, is modulated by the pattern on the DMD.
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Figure 1.11: The actual setup used to conduct the experiment.
(a) Top view, (b) Side view.
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experiment are not sinusoids but square waves. The Fourier transform of a square wave

with frequency u, is an impulse train with decaying magnitudes, Y, sinc (uio) S(u — Kkuy).
Further zooming in, as shown in figure 1.12c, we recognize that the vertical pattern has
a period of eight pixels on the image plane, which corresponds to u, = 1/8 in the Fourier
domain. This results in the impulses on the Fourier transform of the signal to happen at
multiples of 1/8. Figure 1.12d illustrates the Fourier transform of the signal.

In order to better utilize the entire frequency range, we should use a grating with spatial
frequency as high as possible. We would have achieved the most separation between
impulses if we could have created a grating which has a period of two pixels on the image
plane. The Fourier transform of such a signal will be an impulse train for which the
impulses occur at multiples of u, = 1/2. This will essentially utilize half of the entire
bandwidth. To achieve this best possible scenario, it is critical to use high-precision tools,
and register the sensor pixels and DMD pixels and keep a sharp focus for the entire image
plane at the same time. Our setup was not implemented with such high-precision tools;
therefore, we demonstrate the idea in a level below the best possible.

1.5Experimental Results

Figure 1.13 shows the results of the experiment. Figure 1.13a displays the image of the
scene formed on the DMD through imaging lens. No pattern is created on the DMD when
this image is captured; that is, this image is the ground truth signal, against which we can
evaluate the quality of our results. Figure 1.13b is the image captured during the actual
experiment. In the first half of the exposure period there is no grating; in the second half
of the exposure, there is vertical grating. The object is quickly moved from its original

position to another position at the beginning of the second half of the exposure.
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Figure 1.12: Square wave grating pattern formation on the DMD.

(a) The image captured from DMD when a vertical grating pattern is formed on the DMD
and the scene is white diffuse light, (b) DMD portion cropped out from the image, (c) A
zoomed-in portion of the modulated image, (d) Fourier transform of the modulated
image (square wave). Fourier transform of a square wave, with period of 8 pixels on
image plane, is an impulse train where the impulses happen at multiples of 1/8.

In figure 1.13c, we have the Fourier transform of the image. We extracted the low-pass
and the band-pass components using the filters shown. The low-pass component is
essentially the image that would be captured as if there was no spatial light modulation;
this component is shown in figure 1.13d. Note that the Fourier transform of the signal we
are trying to recover is repeatedly placed at the locations of the impulses of the impulse
train due to square wave pattern. We pick the location of the first impulse for band-pass

filtering because it has the highest signal to noise ratio. The image extracted from the

band-pass component is shown in figure 1.13e. It is recognizable that our ground truth
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Figure 1.13: Experiment illustrating the FDMI idea with dynamic spatial light modulation.
(a) This image is captured without any grating and serves as the ground truth, (b) This
image is captured during the actual experiment. During the first half of exposure time
there is no pattern on the DMD; and during the second half there is a vertical grating
pattern, (c) Fourier transform of the image given in (b), (d) the image recovered from the
low-pass component, (e) the image recovered from the band-pass component.
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image and this image, which is recovered from a modulated image, have about the
same level of detail.

1.5.1 Analysis and Comparison

In chapter 1, we introduced a novel idea, frequency division multiplexed imaging, to create
a new imaging system, which will help us in different applications in the field of
computational photography.

The experiments in chapter 1 are designed to illustrate the FDMI idea, which is an
alternative to space or time allocation in capturing multiple images. The experiments are
conducted with fixed glass gratings and LCD-based dynamic gratings. With these optical
setups, it is difficult to register the sensor pixels and gratings, and achieve the best
possible results. The results can be improved by using more accurate optical setups,
possibly by using the Texas Instruments DLP technology.

Therefore, another experiment is designed to illustrate the sub-exposure image recovery
with the FDMI technique. The experiment is conducted using the DMD on a TI
Lightcrafter. The benefit of using DMD as opposed to LCD is that we have higher switch
frequency and spatial resolution, no light loss at on-state, and zero light leak at off-state.
With an LCD based system, we cannot have a zero light leak off-state or 100% light
transmission during on-state. With DMD, we can implement high-speed pattern
sequences with minimal transition. The recovered image, shown in figure 1.13e, is still
suffering from some degree of artifacts, which is due to the fact that there is aliasing and
that some high frequency components were cut off by the filters as shown in figure 1.13c.
As seen in figure 1.13c, the Fourier domain is not used as efficient as possible. We can

incorporate other sub-exposure gratings, at different frequencies and angles, and capture
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more sub-exposure images. We can include an optical low-pass filter into the system to

ensure band-limitedness and prevent aliasing.
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CHAPTER 2.
2D FRAGMENTED IMAGE REASSEMBLY

2.1lIntroduction

Fragmented Image reassembly is to reconstruct a 2D image back to its original state,
after it is being torn or damaged for various reasons. Being able to accomplish such a
task with computers will save us the human labor and time. Analyses show [1] that
computers will be able to carry out such a task much faster than humans can do. Many
different fields can benefit from solving such a problem. For example, forensic experts
can save substantial amount of time and energy if the task of reassembling a piece of
evidence that has been torn apart or shredded as an attempt to destroy the evidence can
be handled automatically. Another application is for archeologists trying to reassemble
pieces of artifacts they find through excavation, especially when the pieces are almost
flat and smooth, and can be approximated as 2D image fragments. The reassembly
process can be faster and more accurate if the task is done automatically by a program
compared to when it is done manually.

Existing automatic image reassembly algorithms can be generally categorized into two
main groups: color-based approaches and geometry-based approaches. In color-based
approaches, the color information of the image fragments are used to guide the
reassembly process. This approach can be sensitive to noisy pixel values and also may
fail if there exist a few image fragments with similar texture close to the border areas.
Geometry-based approaches, on the other hand, use the shapes of image fragments and
their borders to find the proper matches. These methods can have big time complexities;
and not taking advantage of the fragment’s color information can be another drawback of
this type of approaches.
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There is another way to look at automatic image reassembly algorithms. Some algorithms
operate on the pixel level to guide the reassembly process. These methods are also
sensitive to noise. Others reassemble fragments by treating them as 2D geometric
regions. Therefore, the time complexity will reduce for the latter approaches compared to
the other category.

The key challenging issue in solving 2D image fragment reassembly problems is finding
reliable matchings between different pieces. Due to small to no overlap between relevant
image fragments in this type of reassembly problem, as opposed to well-studied image
processing problems such as panorama creation or structure-from-motion where two
adjacent frames usually demonstrate significant overlap, finding a reliable match between
fragmented pieces is highly challenging. Therefore, it is essential to have effective
pairwise matching algorithms, either using the fragments’ geometry or color information
to guide us through the inter-fragment alignment process. On the other hand, to avoid
fully relying on the challenging and usually not so reliable pairwise alignments, it is critical
to formulate our approach in the form of a pipeline and design an effective strategy to
globally optimize a groupwise alignment which prunes and refines the pairwise
alignments computed previously by maximizing their mutual consistency.

Our idea is to combine the positive aspects of different approaches mentioned above. We
propose a three step composition pipeline as illustrated in figure 2.1. (1) Artifacts removal:
each image fragment will be scanned and digitized before it is used as an input. The
scanning process often creates undesirable artifacts, especially on and around the border
area. A preprocessing step is introduced that ensures a proper execution of all next steps.

(2) Pairwise matching detection: an effort to find potential matching between pairs of
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image fragments. The pairwise matching step of the algorithm runs without global

understanding of the layout of the other fragmented pieces. Therefore, some alignments

suggested by pairwise matching step can be incorrect. (3) Global matching: a global
matching is adopted to select correct alignments offered by the previous step, by
optimizing the mutual consistency of alignments of multiple pieces together.

The Main contributions of this paper are as follows:

e We develop a necessary artifact removal preprocessing algorithm to eliminate noisy
boundary tissues and smoothen the border of each image fragment to reduce noise
(used in 1%t step of the pipeline).

e Using correlation detection techniques based on deep neural networks, we identify
potentially neighboring fragments to effectively reduce the search space for pairwise
matching detection step (used in 2" step of the pipeline).

e Effective partial matching between two image fragments is essential to the process.
We develop a polygonization algorithm to model image fragment's boundary shape
feature. Then, we formulate the pairwise matching as solving a novel variant of
Longest Common Subsequence (LCS) problem. Compared with existing pairwise
matching techniques, this algorithm improves the time complexity as well as
robustness in handling images with possibly noisy values on borders. This algorithm
effectively utilizes both geometric and color characteristics of image fragments.

2.2Related Work

Finding a relative transformation between adjacent image fragments is the essence of

most proposed automatic reassembly algorithms. Different authors utilize different

measures to investigate a pair of image fragments for any possible matches. The two
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Step 3: Global Matching

Figure 2.1: Three step pipeline
(a) Artifacts on and around the border area removed, (b) Pairwise matching, (c) Final
result after groupwise matching
main approaches are based on color properties of the pixels on and around the border
areas as well as geometry properties of the image fragments such as shape and curvature
of the borders.
In color-based approaches, the color information of the image fragments are used to

guide the reassembly process. Tsamoura and Pitas [1] form a list of pairs of image

fragments that are likely to be adjacent. To build a fragment’s descriptor, they use a neural
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network based color quantization method and a novel approach to color histograms
based on what Cinque et al. proposed in [10], called spatial-chromatic histograms, which
not only considers color information but also considers spatial distribution of color.
Authors in [1] present an algorithm based on LCS for identifying matching partial contour
curves for each pair of fragments. Their approach to fragment contour matching is based
exclusively on pixel color information on the contours. As a result, it loses some efficiency
and is sensitive to noisy pixel values on the borders. In [11], the main focus is on pairwise
matching and the authors also use a matching approach based on LCS. They try to find
the largest common substring with the similar color and curvature information. In [12], the
authors focus on the task of matching two image fragments only, using the information
extracted from the outlines and from the color contents of the fragments. In [32], the
texture of a band outside the border of pieces is predicted by inpainting and texture
synthesis methods proposed in [33]. An FFT-based registration algorithm is then utilized
to find the alignment of the fragment pieces. Color-based approaches can be sensitive to
noisy pixel values and also may fail if there exist a few image fragments with similar
texture close to the border areas.

Geometry-based methods, on the other hand, rely on analyzing the shape of image
fragments and their borders to find the proper matches between adjacent pieces. These
methods are especially effective in aligning fragments when their contour shapes are
irregular. In geometry-based approaches, fragment borders are usually modeled as a 2D
curve. Some use polygon approximation of the curves and some use local curvature
information and shape features of the curves to match image fragments alongside their

boundaries. Justino, Oliveira and Freitas in [4] solve the problem of reconstructing
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shredded documents by first doing a polygonal approximation of the borders to reduce
possible complexity of the boundaries. Then relevant features of each polygon, i.e. angle
of each vertex with respect to its two neighbors and distances between each vertex and
its neighbors, are extracted to lead the matching. In [5], a shape feature, referred to as
the turning function, is calculated and used to investigate the matching of fragment pairs.
Wolfson [14] finds the longest curve subsection being shared between polygonised
fragment borders through geometric hashing. Its pairwise matching scheme lacks
flexibility when it comes to allowing a deletion or mismatch of a pair of segments among
a series of matching pairs of segments. [14] does not introduce a global matching step
and the main focus of the proposed method is on pairwise matching. Zhang and Li in [6]
combine both color-based and geometry-based methods and suggest approximating the
border with a polygon. Instead of working on pixel level, the alignment is found alongside
one of the polygon sides, therefore, reducing the effect of noise on pixel colors and taking
the shapes of the image fragments into account also. In the pairwise matching step, an
exhaustive search is used which is affecting the efficiency of the proposed method
considering the large search space of the pairwise matching step. A global matching
scheme is then proposed in [6] as solving a maximal compatible edge set from a given
graph to reconstruct the original image from calculated local matches. The polygonization,
in general, could be globally affected by the initial pose of the image fragments and the
approximation error bound, and hence, is not completely rotation-invariant and will affect
the subsequent matching and reassembly results. Local curvatures of pixels on the
contour curve as the fragment’s descriptor, on the other hand, will be rotation-invariant

but is sensitive to geometric noise on the image boundary, which is often inevitable.
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Based on an algorithm Smith and Waterman propose in [8], some algorithms [3, 11] try
to find a common subsection between two neighboring border curves. Based on color
values or curvature values at pixels they suggest a sequence of pixels as a possible
common border subsection. In [3] the boundaries are represented by shape feature
strings. A shape feature representing each pixel in the string is an average of the
curvature values of the neighboring pixels. A method based on LCS detects similar
substrings between two image fragments at progressively increasing scales of resolution.
A similar approach is taken in [11] by Kong and Kimia. They try to find the largest common
substring with the similar color and curvature information and their main focus is on
pairwise matching. They use dynamic programing to create a coarse alignment on the
reduced version of the borders. Then, they use dynamic programming again to get a fine-
scale alignment. However, all the LCS-based methods mentioned above operate on pixel
level and do not take advantage of polygonization technique to estimate a border curve
as a polygon. The algorithms operating on pixel level are sensitive to noisy pixel values
on the border. In addition, their time complexity can be big due to the large number of
pixels on each border.

Although many 2D matching algorithms [36, 42, 45, 48, 49] and 3D matching [37, 47, 69,
70, 71, 72] algorithms have been proposed in related literature (some surveys can be
found in [73, 74]), this topic remains challenging and there is, still, room for improvement.
2.3Methodology

To reassemble 2D image fragments back into their original form, a wide range of
approaches are being introduced in existing literature. In this work a novel method is

devised in 3 steps.
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2.3.1 Removing Artifacts

Each image fragment has to be digitized before it can be used as an input. A
knowledgeable choice for background color during scanning process can enhance future
steps to a great extent. The best possible choice for background color is a color that not
only does not exist in the original image but also is furthest from all the existing colors.
The color properties and color histograms of all image fragments are investigated to this
end. This will facilitate segmentation and border extraction during next steps.

As a result of the scanning process, there will be scanning artifacts such as shadow
around the borderlines of each image fragment. Also, before processing an image and
after the foreground of that image is segmented, there will be some undesirable narrow
white regions attached to the main body of the image, i.e. paper tissues. The paper tissue
artifacts could have happened as the original image was being torn apart. These artifacts
will affect both the geometry and color properties of image fragments on and around the
border area and, unless removed, will result in noisy borders and, therefore, will cause
the algorithm to fail eventually. To eliminate these artifacts, the idea is to start with a white-
colored pixel on or close to the border and remove it from the foreground. Next, any white-
colored pixels on the neighboring area of the first pixel are picked and removed from the
foreground. And the same process is repeated until there are no white-colored pixels left
on the neighboring area of the pixels that were picked last. Therefore, the tissue will be
removed but the main body of the foreground will remain intact. After removing the tissue,
some unconnected components might still remain outside of the main body of the image
which will be eliminated using morphological operations [2]. Figure 2.2 depicts a zoomed

in version of the result for better illustration.
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Figure 2.2: A demonstration for first step
(a) Artifacts on and around the border area, (b) Artifacts removed

The border extracted for each image fragment as a curve at this point carries many noise-
like nuances. This curve, B, can be represented as an n-dimensional vector, where n is
the number of pixels on B:

B = [p1, P2, -.,Pn] wWhere p; € R? for Vi€ {1,..,n} (2.1)
Failing to smoothen the boundary curve can cause these noise-like nuances to be
mistaken as feature points. Detecting the correct feature points is vital to our algorithm
because correct polygonization depends on it. The smoothened version of B can be
formulated as the solution to the following optimization problem, namely X =

[X1,X5, ..., X,] where x; € R?:

n—-1

X = argmin < Z I Xj41 — Xj ||2> , S.t. x; €Sleeveg for Vie{1,..,n},

i=1

(2.2)
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where Sleeves is the small expanded area around the original border curve B. As a result,
the noise on the curve will reduce and the border will become smooth. Figure 2.2 depicts
a zoomed in version of the result for better illustration, once before paper tissue and noise
on the border are removed and once after.

2.3.2 Pairwise Matching

The goal of pairwise matching step is to suggest border subsections on a pair of image
fragments that is possibly common between the two of them. Consequently, there will be
a transformation that best fits the image fragments alongside the identified common
border subsection. This step of the algorithm runs for each pair of image fragments
without global understanding of the layout of the other fragmented pieces. Therefore, this
step suggests some correct and some incorrect alignments. The global matching (to be
discussed later) will detect and eliminate incorrect alignments offered by pairwise
matching step.

One major approach to represent the border of an image fragment is to describe it through
geometric information like curvature values or color information at each pixel on the
border [1, 3, 5, 11]. One main drawback for this way of describing an image fragment
border is that it is sensitive to the noise on the border that can be caused as the original
image was being damaged or torn into pieces and is unavoidable in real life scenarios.
The other main drawback is that describing a border at pixel level captures only local
information and will cost us overall geometrical information that is embedded in the shape
of a piece as a whole. Therefore, a more efficient way of representing a border is to
approximate it using a polygon. Therefore, instead of working on pixel level, those

approaches using polygonization to approximate the border curve will look for alignment
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alongside one of the polygon sides [4, 6, 14]. They need to employ an exhaustive search
method to investigate the alignment of each side on one polygon against any other side
on the other polygon in an effort to find the best alignment [6]. Zhang and Li [6] suggest
to approximate the border with a polygon. Instead of working on pixel level, the alignment
is found alongside one of the polygon sides. Therefore, not only the effect of noise on
pixel colors is reduced but the shapes of the image fragments are taken into account also.
On the other hand, each time only two sides, one from each polygon, will be investigated
as the possible common border subsection that the two image fragments can be sharing.
In other words, each side is investigated alone and separated from all the other sides of
the polygon it belongs to. To rank these possible alignments against one another, a
scoring scheme is required. An alternative version of Iterative Closes Point algorithm
[7,13] is proposed to calculate the score for each alignment, which can be time consuming
to evaluate.

But the novelty of our idea is based on the observation that if two image fragments are
adjacent, their simplified polygons usually share more than only one side. Therefore, a
more effective method to search for a common border subsection between two polygons
approximating two fragment border curves is by searching for a sequence of matching
sides, rather than considering one side at a time. We can formulate finding the best fitting
common border subsection between two image fragment border curves as finding the
longest subsequence of sides shared between the two polygons approximating their
respective curves.

We propose to represent a border as a string for which each character describes one of

the sides of the approximating polygon by bearing color and geometrical information of
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that line segment. This will not only capture the local information, but will also help us take
into account some properties of the overall geometrical shape of the polygon such as
angles between two consecutive sides. Detecting the matching portion of two potentially
neighboring borders, then, can be formulated as finding the Longest Common
Subsequence (revised LCS) between the two strings describing the corresponding
approximating polygons. Smith and Waterman [8] propose a solution to a similar problem
based on a dynamic programming approach.
The goal for the pairwise matching step can be stated as calculating a 3 x 3 rigid
transformation, T;;, which aligns iy, and jy, image fragments alongside their potential
common border subsection. This goal is achieved through the following steps. The input
to this part of the algorithm is a pair of image fragments after removal of the artifacts as
explained before. Each boundary curve C; is partitioned into a sequence of curve
segments, each of which is flat and with uniform color and can be approximated by a line
segment. Each curve segment in C; will be denoted as S; . The output of this step is the
best possible sequence of pairings between §;; and S;;,. Finally, a single transformation
that aligns the pairs is calculated. Our pairwise matching step is formulated in three steps.

a) Correlation detection.

b) The border extraction and polygonization using revised DP.

c) Detecting potential alignment based on revised LCS.
2.3.2.1 Correlation Detection
The key observation here is that most natural images display the same structure and color
distribution in an area compared to other areas of the same image. Therefore, a pair of

image fragments that are in fact neighbors are most likely to share same structure and
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Figure 2.3: Results of correlation detection step on an input data set with 36 pieces. The
fragments in each category are more likely to be neighbors.

color distribution as opposed to a pair that are not neighbors. Being able to effectively
identify adjacency relationship of fragments, and therefore group together potentially
adjacent pieces among all the fragments is highly desirable in reassembly, especially
when the number of pieces is big and pairwise alignment is difficult. The reason is that
this will reduce the search space for both pairwise and groupwise matching by limiting the
number of pairwise matches that need to be computed and optimized in groupwise step.
In other words, the need to consider each image fragment with all other image fragments
exhaustively in the pairwise matching step is limited only to the ones that are most likely
in the neighboring area.

We introduce a fragment adjacency estimation algorithm, which is based on [34]. This

method is based on the convolutional neural network (CNN) to suggest adjacent pieces

34



and filter out irrelevant fragments. A typical CNN consists of many layers of convolutional
operations. Each convolutional layer is associated with a collection of image filters. Given
the iy, layer, feature maps corresponding to that layer are extracted through one or more
steps of convolution of previous layer’s feature maps with iy, layer’'s image filters.

For each fragment, a style matrix, S, is calculated which encodes the style and structure
of that image fragment. Assuming we have M feature maps at a specific layer of our CNN,
Sisan M x M matrix built upon the feature maps of this layer:

F;.F,

o - Ti-Fj (2.3)
Y IFil . |F;

, s.t. F;, Fjare flatten vectors of i, ji, feature maps

We then flatten the style matrix for each image fragment into a vector and use their
pairwise cosine similarities to construct a neighboring matrix of size N x N assuming we
have N image fragments in our problem. Image fragments are then categorized into
groups of similar style based on the calculated neighboring matrix and hierarchical k-
medoids clustering method.

Figure 2.3 illustrates the result of this step of the algorithm on an input data set with 36
fragmented pieces. The input pieces are divided into 4 categories of similar structure and

color distribution.

2.3.2.2 Border Extraction and Polygonization Using Revised DP

For each selected pair of image fragments, the first task is to extract the border loop on
each image fragment as a curve and approximate it as a polygon. Polygonising each
contour curve means it is partitioned into a sequence of curve segments, each of which

flat enough to be approximated by a line segment.
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| d is the distance from Vs to (Vi, V) |
V.V, will be divided further |

\ dis the distance from V: to (V:, V3) Il V4V, will not be divided any further
| V.V, will be divided further | | dis the distance from Vi to (Vs, V2)

Figure 2.4: An illustration for DP algorithm
(a) First curve segment to start the partitioning process with, (b) This sub-segment will
be partitioned to V1V5 and V5V3 in the next step, (c) This sub-segment is already
almost flat and there is no need to partition it any further.
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A classic approach to decomposing an open curve into smaller and flatter segments is
through Douglas-Peucker (DP) algorithm [9]. For a curve segment denoted as S = V,V,,
where V; and V, are the starting and ending points of the segment, DP algorithm first uses
a line segment connecting V; and V, to approximate the curve, denoted as (V;,V,) as
shown in figure 2.4a. The distance from each point V; on the curve to line segment (V;,V,)
is calculated. Assuming there exists a point on the curve, V3, with the largest distance to
(V1,V,) while its distance is longer than a predefined threshold, the segment V,V, is
decomposed into two smaller segments, V,V; and V;V,. The DP algorithm then runs
recursively on V;V; and V;V, until no curve segment can be further decomposed. See

figure 2.4b and figure 2.4c. Now, Let us assume C; and C; are the boundary curve loops

extracted for the pair of image fragments at hand. To segment a closed loop, like C; or C;,
DP cannot be applied directly since DP applies to open curves which have starting and
ending points. To start the process, a closed loop like C; needs to be initially segmented
into two or more open curves.

Noticeably, the polygonization of a looped curve could be globally affected by the initial
pose of the image fragment, the approximation error bound and the noise on the border
and hence, could affect the subsequent matching and reassembly results. Therefore,
selecting the correct initial vertices is essential for a successful polygonization. To select
the best possible candidates as initial vertices, we pick the points on the border with
curvature values larger than a threshold as corner feature points. The DP algorithm,
described above, can then run on the initial segments respectively. As a final result, the

boundary loop C; will be partitioned into a sequence of small and flat curve segments Sy,

the ki of such curve segments on C;, for example.
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Figure 2.5: The importance of incorporating the curvature values into the segmentation
process. (a, a’) The original curve to be segmented, (b, c) The decision on where to
break the curve is made, solely, based on the Euclidean distance each pixels makes

with the line segment describing the curve, (b’, ¢, d’, €') The Euclidean distance a pixel
makes with the approximating line segment is scaled based on the curvature value at
that specific pixel. As a result, pixels with high curvature values are more likely to be
picked as vertices during segmentation process. For example, the first vertex to be
picked in (b’) is V5 due to its high curvature value, while there are points on the curve

that have bigger Euclidean distance to the line segment (V;, V).
To reduce the effect of the approximation error bound and the noise on the border in the
polygonization process, we propose to scale the distance of each point on a curve \77\/] to
the line segment (V;, V;) by a factor reflecting the curvature value at that specific point on

the curve. Figure 2.5 is devised for illustration purposes to emphasize the importance of
including curvature value at each point on a curve into that curve’s segmentation process
through a synthetic example. Picking pixels with higher curvature values as vertices of
the polygon, during segmentation process, is closer to the way a human would do such
a task compared to the previous methods proposed.

Figure 2.6 shows how the polygonization of border curves are improved as a result of
artifacts removal (first step in the pipeline) and applying revised DP as compared to
applying just DP to the, rather noisy around the border, original border. This improvement

will be very helpful during the next step in pairwise matching.
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Figure 2.6: Comparing the result of (a) revised DP, (b) DP.

For two adjacent image fragments, there is a common subsection between their border
loops. This common subsection is usually composed of more than one curve segment.
The goal is to find the longest sequence of pairings between segments on the first border

loop and the second border loop. To solve this problem, we revise the Smith-Waterman
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algorithm [8], which uses dynamic programming to find the longest common subsequence
(LCS) between two given strings. The relationship between Smith-Waterman algorithm

and our solving of the problem will be discussed in more details in upcoming sections.

2.3.2.3 Detecting Potential Alignment Based on Revised LCS

After partitioning a boundary curve C; into smaller curve segments, each segment S; on
the boundary can be represented using a descriptor, d(S;x). This descriptor is formed
base on the color and geometric properties of each curve segment and will be in a 4D
(1D length plus 3D color) space. Later we will talk about this descriptor in more details.
Considering each descriptor equivalent to a character, a boundary curve composed of a
sequence of segments, can be represented as a string. The length of the string
representing a boundary will be equal to the number of segments on that boundary.
Finding the longest sequence of curve segments shared between two borders will be
equivalent to the problem of finding the longest subsequence shared between two given
strings.

Let’s consider two long strings C; = di; di di3 ... djn and C; = dj; dj, dj3 ... djm Where
each string represents a border and d;x for 1 <k <n and d;; for 1 <1<m are two
characters equivalent to descriptors representing ki and I curve segments on C; and C;
respectively. Based on Smith-Waterman algorithm we employ a dynamic programming
approach to find a pair of substrings, one from each of two long strings, such that there
is no other pair of subsequences with greater similarity. Through identifying the most
similar subsequences, this approach introduces a matching between their characters. To

make matching between characters flexible, jumping over a character in either one of the
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subsequences and simply leaving it unmatched with any of the characters from the other
substring is allowed.

This act is called a deletion and is justified when, doing so, there will be a prospect of
being able to make more promising matches along the path as we go forward and create
new matches. Approaching the problem from this point of view, the two identified
subsequences do not have to be the longest identical substring that are being shared by
A and B, but they only have to be the most similar ones among all possible choices.

For a matching proposed between any two subsequences, a similarity measure is
calculated by accumulating points as we go along and create matches. The pair of
substrings with the highest similarity measure is considered to be the desired pair with
the desired matches between their characters. In a proposed matching, if a character is
left unmatched, this causes some dissimilarity between the two substrings at hand.
Therefore, a penalty is considered for such a case by adding a negative value to the
accumulated similarity measure calculated up to that point. We represent this negative
penalty by W. If two characters are matched, on the other hand, we represent the

contribution of this match to the accumulated similarity measure by Sim(d;y, d;;). If the
match is a good one, Sim(d;y, d;;) will be a positive value. On the other hand, if it was a
bad match, Sim(d;y,d;;) will be negative and accumulated similarity measure will be
penalized for the dissimilarity being introduced by this bad match. Later, we will elaborate
more on what we mean by a good or a bad match and how to properly calculate
Sim(di,k, d]-,l). Therefore, as we go along we have the option to (1) create a match between
to characters, (2) create a mismatch between two characters, or (3) simply decide to jump

over a character and leave it unmatched with any of the characters on the other
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subsequence. Case 1 will reward accumulated similarity measure by increasing it, while
case 2 and 3 will cause a penalty towards the accumulated similarity measure by
decreasing it. The reason to take such penalties is the hope we have to be able to make
more desirable matches ahead and therefore, make up not only for the negative penalties
taken but even more.
To calculate the pair of subsequences with highest similarity measure, a dynamic
programming approach is utilized. First, an n X m matrix called H is set up, where n is the
length of C; and m is the length of C;. First row and column of H will be initialized to all
zeros. Therefore,
Hyo=Hpy=0for0<k<nand0 <1< m. (2.4)
Preliminary values of H have the interpretation that Hy is the maximum similarity of two
subsequences ending in d;, and d;, respectively. In other words, Hy; is the similarity
measure for the pair of subsequences ending in d; and d;;. These values are obtained
from the relationship
Hi) = max{Hy_1_1 + Sim(d;, d;;), He_1) — W, Hi— — W, 0} (2.5)
foralll<k<nand1<1<m.
The formula for Hy is reached at by considering the possibilities for ending the substrings
atany d;x and d;;.
a) If d;x and d;; are matched, the similarity measure is Hy_q-1 + Sim(d; dj,l).
b) If d;x from C; is not matched with any of the characters in C;, the similarity measure

is Hk—l,l - W.
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c) Ifdj, from C; is not matched with any of the characters in C;, the similarity measure
iS Hyj—q — W.
d) Finally, a zero is included to prevent calculated negative similarity measures,
indicating no similarity up to d;, and d.

The pair of substrings with maximum similarity is found by first locating the maximum
element of H. The other matrix elements leading to this maximum value are then
sequentially determined with a trace-back procedure ending with an element of H equal
to zero. This procedure identifies the subsequences as well as produces the
corresponding matches between their composing characters. The pair of substrings with
the next best similarity is found by applying the trace-back procedure to the second largest
element of H not associated with the first trace-back. Assuming we have already
calculated Sim(dilk, dj,l) forall1 <k <nand1 <1< m, review of the algorithm for this part
is given in figure 2.7.
As mentioned above, each string is another way of representing a border if we think of
characters in that string as equivalents to curve segments in that border loop. The ultimate
goal of this step is to calculate a transformation that aligns the two borders alongside the
identified pair of curve segment sequences. Among proposed matches for an identified
pair of curve segment sequences, those specific curve segments that are left unmatched
due to a deletion operation will be excluded from the final transformation calculation. For
each match, or possibly mismatch, between two curve segments there exists a
transformation that aligns the two borders alongside those specific curve segments and
those specific curve segments only. But we are looking for just one transformation that

after transforming the borders, aligns the most possible number of matched curve
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// n is the number of curve segments on the border of image fragment C;
// m is the number of curve segments on the border of image fragment C;
1  considering a fixed i and a fixed j

2 forall0<k<n

- Heo=0

4 forall0<I<m

5 Ho =0

6 foralll<k<n

7 forall1</<m

8 Hiy = max { Hi-10.1 + Sim(dix, d;j), He-20 - W, Hiri - W, 0 }

9  produce the corresponding matches by starting from the maximum
element of H and tracing back to an element of H equal to zero

Figure 2.7: Review of the algorithm for finding matching curve segments using LCS

segments next to one another. For two adjacent image fragments, the transformations
corresponding to the good matches have to be consistent and will end up being the same
correct transformation we are looking for. On the other hand, a transformation
corresponding to a mismatch will not be consistent with either that one desired
transformation from good matches or other transformations from other mismatches. In
order to exclude the incorrect transformations introduced by mismatches from the final
transformation calculation process, we list all the transformations introduced by all
matches and mismatches and simply pick as our desired transformation the one that

repeats the most, i.e. the mode of the distribution.
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While looking for the most similar pair of curve segment sequences and the possible
matches between them, the fact that some curve segments can be left unmatched due to
a deletion operation, fits the specific layouts of our problem. The reason is that partitioning

a border into smaller curve segments is a difficult problem and is an algorithm that has

Figure 2.8: The result of revised LCS for two image fragments.

The matched segments are color coded. (All matched segments marked with blue
arrows are good matches. The one short curve segment marked with a yellow arrow is
showing a case of deletion due to wrong partitioning of the border. Match (7), marked
with a red arrow, shows a case of a bad match. The two curve segments have different
lengths. These two choices, i.e. deletion and mismatch, are being made for the benefit

of matches (8) and (9) that are coming after them.) When calculating the final
transformation between the two image fragments, the transformations introduced by
matches (1)-(6) will all be consistent and the transformations introduced by (7),(8) and
(9) will be considered as outliers and will not have any effect on the calculation.
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room for improvements. For some instances, a curve segment on the first border that is
also being shared with the second border is partitioned one step further on the second
border and forms two curve sub-segments. In such a case, deletion provides us with the
opportunity to jump over one of the two sub-segments without having to match it with any
other curve segment on the first border and to keep trying to match curve segments that
are further ahead. Figure 2.8 shows the most similar pair of curve segment sequences,
one from each of two long strings, recovered using our version of LCS solution.
For each curve segment, S;y, on a border like C;, we define a descriptor, d(S;x), based
on the color and geometric properties of that curve segment. Assuming S;y and S;, for
specific values of k and |, are the same curve segment shared by borders C; and C;
respectively, the properties to form the descriptor should be chosen in such a way that
Six and S;; end up having similar descriptors. On the other hand, the descriptors should
help us differentiate two curve segments that are not the same. For this reason, we decide
on a descriptor in the 4D space. The descriptor d(S;y) for curve segment S; . will be a 4-
tuple value consisting of the length of S;, and 3D color information representing S;y. To
have only one 3D color value represent a whole curve segment, we have to average red,
green and blue color channels for all the pixels on that curve segment.

d(Six) =< length(Si,k),averagered(si‘k),averagegreen(si’k), averagepue(s;,) > (2:6)
As mentioned begore, for a pair of curve segments S;x and S;; on borders C; and C;
respectively, a Sim(S;}, S;;) will be calculated. The values calculated for Sim(S;y, S;;), for
all possible values of k and |, affect the result of the LCS algorithm profoundly. We know
that if S;x and S;; are similar, then their descriptors, d(S;)) and d(S;;), will be two equal

values in the 4D space we have defined for descriptors. But if the two curve segments

46



are not similar their descriptors will fall far from one another in the 4D space. Based on
this observation, we define Sim(Si,k, S]-,l) for two curve segments S; ; and S; to be 1 if their

descriptors are equal. In case the descriptors are not equal, on the other hand, it means
the two curve segments are forming a mismatch rather than a match. In such a case,
Sim(Si,k, Sj,l) should end up having a negative value. This value is calculated dynamically
based on the length of the curves that are being mismatched. Sim(Si’k, Sj’l) is not
calculated dynamically based on the length of the curves because a match is as much
valuable to us when it happens between two short curve segments as it is when it
happens between two long curve segments, which is not the case with mismatches. In
case of deletion, the penalty also known as W, is also calculated dynamically based on
the length of the curve.

A shared border subsection between two adjacent image fragments is usually composed
of more than one curve segment. The angle each curve segment on the shared border
area of the first image fragment makes with its next and previous curve segments on that
shared border area must be the same as the angles its counterpart makes on the shared
border area of the second image fragment. The shape of the shared border area will not
be the same on both image fragments geometrically if this condition does not satisfy. That

is why, before Sim(Si,k, Sj_l) Is set to 1 or negative value mentioned above, this condition

is checked as well. Each one of the curve segments shared between the two borders are
flat enough to be approximated by a line. These lines can be utilized to define angle
between one curve segment and its next segment on the same border unambiguously.

Figure 2.9 shows an illustration. A review of the algorithm to calculate Sim(Si,k, Sj,l) for two

curve segments S;x and S; is given in figure 2.10.
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Figure 2.9: An illustration for the angle condition
The curve segment marked by number (2) is the match under investigation.

/7 n is the number of curve segments on the border of image fragment (;
/7 m is the number of curve segments on the border of image fragment C;
1 considering a fixed i and a fixed j

2 foralll<k<n

3 calculate d(S;i) as described above

4 foralll<slI<m

5 calculate d(S;;) as described above

6 foralll<k<n

7 foralll1</<m

8 IfF({d(Sis) = d(5;1)] && [angle(Sis, Six+i) = angle(S;1, Siur1)] && [angle(Siw-:, Six) = angle(Si.1, 5i)])
9 Sim(Six, Sip) =1

10 else

11 Sim(Six, S;1) = negative value based on the lengths of 51 and 5,

Figure 2.10: Review of the algorithm to calculate similarity value for two curve segments
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The more accurately we describe two curve segments through their descriptors, the more
accurately we will be able to tell whether they are similar or not. As a result, we can decide
with more confidence whether two curve segments should form a match or a mismatch.
It is for this reason that using better criteria in creating descriptors can lead to better final
outputs.

During the first step of pairwise matching algorithm, the border of an image fragment is
partitioned into curve segments based on DP algorithm. Increasing this DP-threshold
value will result in a coarser partitioning of the border and decreasing it will result in a
finer representation of the border. It is desirable to adaptively choose the DP-threshold
according to the shape and resolution of the image fragments. A too small DP-threshold
will cause the partitioning algorithm to become more sensitive to noisy border areas. As
a result, smallest nuances on the borders will lead to creating new curve segments. On
the other hand, a too large DP-threshold will cause the partitioning algorithm to lose some
details on the border. Therefore, the curve segments will become very long, with deep
curves which cannot be approximated with a line properly. Figure 2.11 depicts an image
fragment and its extracted border. It emphasizes the importance of choosing the proper
DP-threshold based on the resolution of input data set by showing the results of three
different partitioning processes with different DP-thresholds.

The polygonization of the border is also affected by the choice of the starting point Viand
ending point V2. However, when the DP-threshold is small and the curve subdivision is
fine, the approximation result is still mainly decided by the intrinsic geometry of the border

and is not sensitive against the selection of V1 and V2.
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When calculating Sim(Si,k, S]-,l) for S;x and §;;, as mentioned before, the curve segments

are considered similar if their descriptors are equal. Otherwise, they will be considered a

mismatch. In order to be able to tolerate a small level of noise, it is better to consider

d(Six) and d(S;;) equal as long as the Euclidean distance between them is smaller than

Figure 2.11: Boundary extraction and polygonization
(a) The original image fragment, (b) The extracted boundary contour, (c) Polygonization
with DP-threshold equal to 5. The partitioning is too fine in this case. (d) Polygonization
with DP-threshold equal to 20 and (e) Polygonization with DP-threshold equal to 150.
The partitioning is too coarse in this case. (Random colors are being used to color curve
segments for illustration purposes only)
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a predefined threshold in the 4D space, i.e. they will be considered equal if they are close
enough. It is also the case when comparing angles. The difference between two angles
needs to be only smaller than an angle threshold for the two angles to be considered
equal.

2.3.3 Global Matching

Pairwise matching step of the algorithm runs for all possible pairs of image fragments
without global understanding of the layout of the other fragmented pieces. Therefore, it
suggests one or more possible transformations between each pair of image fragments,
among which only some can be correct and some others are incorrect. For the pairs of
image fragments that are not adjacent, none of the proposed transformations between
them are correct. On the other hand, for an adjacent pair of image fragments, one and
only one of the proposed transformations between this pair is correct. We use a global
matching step to detect and eliminate incorrect alignments offered in the previous
pairwise matching step.

Global matching step, in fact, is used to complement the work of pairwise matching. This
means the more sophisticated pairwise matching step we have, the less work we need to
perform in the global matching step. If we develop a simple pairwise matching step on the
other hand, we are simply pushing more work down the pipeline to be accomplished
during the global matching step. For example, in [6], their relatively simple pairwise
matching strategy returns many possible transformations between a pair of image
fragments, and there is a need for a powerful global matching scheme to differentiate
correct transformations from incorrect ones. Here, with a more effective pairwise

matching, the obtained pairwise alignment is more reliable; and therefore, the need for a
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list of possible transformations between a pair of image fragments is less urgent.
Consequently, a simpler global matching algorithm usually suffices to reassemble the
fragments using our pairwise matching results.

Zhang and Li in [6] formulate the global matching scheme as solving a maximal
compatible edge set from a given graph. They propose a greedy algorithm to iteratively
insert an alignment that is consistent with all existing selected alignments and has the
highest accumulated matching scores with all the other pieces. In our framework, we also
adopt this strategy. The reason is that, doing so, instead of having a list of length one for
the potential transformations between a pair of fragments, we can handle a list with the
top 2 possibilities as well. To increase the length of the list from one to two we can simply
extract the next best pair of curve subsequences from the H matrix we developed while
solving LCD problem and find the transformation that corresponds to that. Using global
matching proposed in [6] gives us more assurance about the robustness of our method.
At the same time, it does not increase the time complexity of our algorithm because we
are still dealing with a very short list, i.e. length 2, compared to the list created by the
pairwise matching step of [6]. It is worth mentioning the fact that when the length of the
list of possible transformations is 1 for all pairs of image fragments, the global matching
proposed in [6] will simply reduce to a best-first search strategy. It will lead to the correct
final result only if there is high trust for that one transformation in the list to be the correct
one.

2.4Experimental Results

We perform multiple experiments to evaluate our assembly algorithm. In our experiments,

we print out randomly selected digital images on papers. Most images, after being printed,
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are about 20cm x 25cm. Then, we randomly tear an image into multiple pieces and scan
each image fragment. The size of the fragments is ranging from about 4cm X 4cm to about
7cm X 7cm. Our reassembly algorithm is then used to recompose the scanned digital
image fragments.

The results in figure 2.12 demonstrate the effectiveness and robustness of our approach
for real hand-torn images with increasing number of pieces. Most existing reassembly
methods assume the torn image fragments are free from tearing artifacts like paper
tissues and scanning artifact like shadows around the boundary of an image fragment. In
some other cases this type of noise is handled manually through user interaction in a
preprocessing step. In the case of our method, the results presented in figure 2.12
demonstrate the capability of our approach to handle tearing and scanning artifacts
automatically.

We implemented the approach proposed in [6] for comparison purposes. See figure 2.13
for an illustration. The final results do not show any one algorithm’s superiority over the
other one. But the running time for our method was smaller than the running time for the
algorithm in [6]. It took our method about 5 minutes to create the final output while it took
the other approach around 20 minutes to create the same output. The reason for the
difference in time complexity is explained rigorously later.

We have selected [1] method and implemented their proposed algorithm so that we can
compare its performance with our method. [1] will fail on cases where the tearing or
scanning artifacts on image fragments are not handled properly. Therefore in order to
create a level ground, we created input datasets free of artifacts through simulation. The

comparison is performed on cases with 9 pieces, 18 pieces and 36 pieces.
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Figure 2.12: Demonstrating the effectiveness of out method on real hand-torn images.
(a) 9-piece input data set, (b) Another 9-piece input data set, (c) 12-piece input data set,
(d) 16-piece input data set.
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Figure 2.13: Comparing the results from our approach and others
(a) A data set of nine pieces before reassembly, (b) the result from our approach,
(c) The result from an implementation of the approach in [6] (The two results are
almost similar but our approach demonstrates lower time complexity)
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Figure 2.14: Comparing our method with the method proposed in [1]. First column is the
input data set. Second column shows the result of our method and last column shows
the result of [1]. (&) 9-piece input data set, (b) 18-piece input data set, (c) 32-piece input
data set, (d) another 32-piece input data set.

56



Figure 2.14 shows the results. Most existing reassembly algorithms fail as the number of
image fragments in the input data set increases. Figure 2.14 illustrates the capability of
our approach when tested on a large input data set with 36 pieces for example.

2.4.1 Analysis and Comparison

When comparison with other methods using LCS, the pairings are determined based on
how similar two segments are geometrically and color-wise. In order to decide whether a
string of parings between segments is better than another or not, a variation of LCS
approach is utilized. Others have used this method before but they have tried to pair
pixels. In contrast to previously proposed methods, here we apply this method to curve
segments based on their geometry and overall color properties, also how they are placed
next to their neighbors. This makes our method more robust to possible noise on border
pixels. Let us assume a total of R number of image fragments. Also, let us assume, for a
random choice of a pair of image fragments, an average of N curve segments on first
border and an average of M on second border, with an average length of S. Also, let us
assume an average of U total pixels on the border of the first image and an average of V
total pixels on the border of the second image. Therefore, it follows that U =N x S and
V=MXS.

In [6], in pairwise matching step of the algorithm, a scoring scheme that is based on

revised version of ICP is introduced to rank potential matches between a pair of

fragments. The pairwise matching algorithm runs for @ times exactly for all possible

pairs of image fragments which is of O(R?) complexity. During each iteration of pairwise
matching, since the algorithm investigates the possibility of a potential match between

each one of the curve segments on the first border and each on the curve segments on
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the second border, O(MN) potential matches are calculated between the pair of fragments
at hand. For each one of potential matches ICP is run at least once to calculate the
corresponding score. One iteration of ICP is of O(UV) time complexity, since the algorithm
investigates all the pixels on the whole border of the two fragments regardless of which
pair of curve segments ICP is being run for. Therefore,

total time complexity for pairwise matching step of [6] = (2.7)

O(R?XMxNxUXV).

Our proposed pairwise matching step runs an LCS-based algorithm on shape feature
strings, shape feature being the descriptor calculated for each curve segment. Finally, a
transformation based on the recovered matches is calculated. The pairwise matching step
of our algorithm runs for all possible pairs of image fragments as well, which makes it of
0(R?) complexity too. During each iteration of pairwise matching for two randomly picked
fragments, the algorithms presented before to calculate the descriptors for curve
segments and after that, the most similar sequence of curve segments between two
fragment borders will each run exactly once after one another. Calculating a descriptor
for a curve segment is of O(S) since it investigates all pixels on the segment towards that
purpose. Given that a descriptor is calculated for all curve segments on both borders,
ONXS)+0(MxS),ie.0(U)+ 0(V),isspentto calculate the descriptors (lines 2—5).

To calculate Sim(S;y, S;;) forall 1 <k < nand 1 <1 < m, algorithm runs a nested loop of
O(MN) (lines 6—11) for which all the operations inside are of 0(1) (lines 8—11).
Therefore, time complexity for the algorithm is O(U) + O(V) + O(MN). Revised LCS will
form a matrix, H, of size M x N (lines 6—8). The operations executed to calculate each

element of H (line 8) is of O(1), which makes time complexity for revised LCS of O(MN).
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Since all the algorithms mentioned above each run just once and one after the other, total
time complexity to execute them will be of O(U) + O(V) + O(MN) + O(MN) or simply
O(U) + 0(V) + O(MN). Therefore, we can conclude that,

total time complexity for our pairwise matching step = (2.8)

O(R? X [O(MN) + O(U) + O(V)]).

For low resolution image fragments all three terms in O(U ) + 0(V) + O(MN) are almost
of the same strength. As the resolution of the image fragments increase from case to
case, the O(U) + O(V) term dominates the other one, and the reason is that we hope to
choose DP-threshold adaptively so that M and N do not vary too much with the varying
resolutions of input data sets. In other words, we can replace O(U) + O(V ) + O(MN) with
0O(U) + O0(V) in equation 2.8 and be correct. We can also replace O(U ) + O(V) with O(U)
or O(V) for obvious reasons; and still be correct. Therefore we can have

total time complexity for our pairwise matching step = O(R? x U). (2.9)
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CHAPTER 3.
DOCUMENT REASSEMBLY

3.1lIntroduction

In the final chapter, document reassembly is addressed and some ideas are discussed
as future work. Document reassembly can be considered to be arguably the more
complicated and more useful subcategory of image reassembly in general.

The problem of having to reconstruct shredded documents is often faced by historians
and forensic investigators. Throughout history there have been many examples of a
secret service destroying evidence by shredding them into pieces after they have been
exposed. Solving this sort of puzzles manually is tedious and expensive due to the fact
that the number of possible permutations of fragment arrangements increases
exponentially with the number of constructing pieces. This is why it is necessary to have
automatic or at least semi-automatic tools to help with the task of reassembly.

In document reassembly, depending on whether the pieces are hand-torn or machine
shredded, we are dealing with a different type of problem with slightly different properties.
3.2Related Work

The problem of reassembling shredded documents is closely related to the problem of
reassembling an ordinary image. The difficulty of assembling a document arises due to
the fact that in some cases the shredded pieces are too many in number or too small in
size or have regular shape depending on the case. As a result, the geometric shape of
fragments do not carry a lot of valuable information if the document has been machine-
shredded rather than hand-torn. On the other hand, advantage in the reassembling of a
document comes from the fact that matching partial words and context can be used as
an additional tool to help improve the task of detecting pairwise matches between
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potential neighboring pieces. Existing automatic document reassembly algorithms can
generally be divided into multiple categories depending on whether they take advantage
of this common property of document reassembly compared to plain image reassembly
while trying to detect pairwise matches.

We approach the task of strip-shredded document reassembly as a graph optimization
problem. As explained later in this chapter, the problem is converted into finding a
Traveling Salesperson Path (TSP) with maximum weight in a weighted directed complete
graph. The advantage of doing so is that TSP is a very well-studied problem in computer
science and there already exist many different solutions, greedy of exact, to this problem.
Here, the literature review is divided into two main categories. First is the literature that
investigate document reassembly problem in general; and second is the literature that
investigate that traveling salesperson problem.

3.2.1 Shredded Document Reassembly Problem in Literature

Richer et al. [15] try to solve the problem of document reassembly as a general image
reassembly problem. They deal with hand-torn fragments and, using a SVM classifier,
they identify locations on fragment pairs that belong together based on both shape and
context local features. Therefore, the number of potential fragment matches will reduction
while a sufficient number of correct matches are preserved. Finally an iterative algorithm
is used to align groups of matching fragments until the document has been restored.
Justino et al. in [4] have a similar approach towards document reassembly problem. They
use a polygon approximation to reduce the complexity of the fragment boundaries and
then extract relevant geometric features of the polygons, such as angles on the vertices

and the length of line segments on estimated polygons, in order to perform local
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reconstruction and detect pairwise matches. The ambiguities resulting from the local
reconstruction are resolved and the pieces are merged together as a result of a search
for a global solution. Marques and Freitas deal with strip-shredded-documents in [16] and
they also try to solve the reassembly problem by feature matching. They use color
features of pixels on the borders of the fragments as the only type of feature. Their
baseline system has three stages. The first stage is the feature extraction from the
boundary based on color pixels using two different color models: HSV and RGB. In the
second stage the Nearest Neighbor Algorithm is used as the base for calculating the
Euclidian distance between the feature vectors of the distinct strips. The third stage is to
compare the distances and apply the method called winner-takes-all indicating, in this
case, that the shorter distance is the more likely that those strips will fit together. In all [15]
and [4] and [16], through the process of finding pairs of potential neighboring fragments,
no attempt is made to try to use semantic features such as matching partial words which
is a common feature of all documents. It is due to this observation that these papers and
papers approaching the problem with similar ideas are in the same category when it
comes to solving the problem of document reassembly.

On October 27 of 2011 DARPA presented public with a shredder challenge. In order to
evaluate the possibility of reconstructing shredded documents, a test set of five puzzles
of increasing difficulty was created and presented to public. Some of these puzzles have
pieces exceeding multiple thousands. Deever and Gallagher [17] were successful in
solving two of the presented puzzles completely by proposing a semi-automatic
approach. Automatic algorithms are proposed for segmenting individual shreds. Using

principle component analysis, all extracted pieces are oriented vertically and through
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some shape analysis upside is detected for all pieces in order to form a consistent set of
input fragments. Next, features are computed based on the location of ruler lines or where
the marks meet the border of a piece and are used for ranking potential matches for each
shred. At this point, the size of the problem has reduced considerably and it can be
handled manually through human-computer interaction. Shang et al. [18] propose a semi-
automatic reassembly system to solve the puzzles presented by the DARPA challenge
as well. Through a curve matching scheme, they make a list of most probable neighboring
pieces for each shredded fragment. Afterwards, using user interaction, they narrow down
the choices and try to reassemble the original document by adding correct matching
pieces to an already partially reassembled document. The novelty of their method lies in
the curve matching step where they allow overlap between two pieces that are being
investigated for a pairwise match. Allowing overlapping of pieces during matching helps
cope with shape deformations due to shredding. Both [17] and [18] can be considered
belonging to the same category of document reassembly literature due to the fact that the
alignment of text lines, crossing characters and color information on the pieces, as
properties exclusively belonging to documents rather than images, are utilized to improve
pairwise matching performance. On the other hand, the groupwise matching step in this
group of literature is usually handled through human-computer interaction due to the large
number of pieces in the puzzle, making these methods automatic only in part.

Reassembly of fragment objects from a collection of randomly mixed fragments is a
common problem in classical forensics. Shanmugasundaram et al. address the digital
forensic equivalent of this problem in [19]. They solve the problem of reassembling a

digital file that has been divided into pieces and stored on different locations on storage
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medium. To solve this, a candidate probability for adjacency between each pair of
fragments is calculated using a context-based statistical model that has been trained over
all available pieces. The problem of finding the optimal permutation of fragments among
all possible permutations is formulated as finding a maximum weight Hamiltonian path in
a complete graph.

3.2.2 Traveling Salesperson Problem in Literature

Traveling salesperson problem (TSP) is a graph optimization problem. Graph G is a
directed weighted graph and TSP is the problem of finding a path the goes through each
vertex of the graph once and only once such that the summation of weights of the edges
in the path is minimized. Due to being applicable to many daily optimization problems,
TSP has been the subject of extensive research and studies since 1950s in different
scientific circles. Early attempts at solving the problem were only successful for graphs
with small number of vertices in the order of 10s. It was not until 1960s when a new
approach to the problem began to emerge that instead of seeking optimal solutions one
would look for a near optimal solution whose length is provably close enough to the
optimal length. Karp’s publication in 1972 [21], showing TSP to be NP-complete, was a
good mathematical explanation for this turn towards heuristic method. It is the result of
this observation, that approaches to solve TSP problem can be grouped into two main
categorizes, the first one being the heuristic methods and the second one being
algorithms that solve the problem for the one and only one optimal solution, i.e. exact
algorithms.

Building the tree of all Hamiltonian paths starting at a specific vertex in a graph can be

represented as a tree. The optimal Hamiltonian path, i.e. TSP only optimal solution, is
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one of the branches in this graph. However, the tree expands exponentially as the length
of the paths increase, making it impossible to examine each path in the tree seeking the
optimal solution. Therefore, heuristic methods are proposed to solve this problem. Often
call greedy heuristics, in these approaches, each step looks good but it does not look
ahead to make a decision. One efficient searching strategy frequently used in literature
to search for a near optimal branch in other combinatorial problems or TSP specifically is
af pruning method. The final revision of this algorithm has been proposed by D. Knuth
and R. Moore [31]. It is a search algorithm that seeks to decrease the nhumber of nodes
that are evaluated in the search tree. It stops completely evaluating a move when at least
one possibility has been found that proves the move to be worse than a previously
examined move. Such moves need not be evaluated further. In other words, it prunes
away branches that cannot possibly influence the final decision.

Based on a concept Clarke and Wright [22] presented, Golden [23] proposed a heuristic
method with time complexity of 0(n? 1g(n)) which worst case ratio is bounded by a linear
function of 1g(n). Another approximation approach is called insertion method, also known
as interpolation method, presented by Rosenkrantz et.al. [24]. An insertion procedure
takes a sub-tour of k nodes at iteration k and attempts to determine which node not in the
sub-tour should join the sub-tour next (the selection step) and then determines where in
the sub-tour it should be inserted (the insertion step). There are multiple approaches that
can be taken in both selection step and insertion step which will affect the performance
of the algorithm. However, it is safe to say that most of these approaches perform in
0(n?). When it comes to worst-case ratio, the best-known algorithm is presented by

Christofides [25]. The solution to his algorithm, given in 1976, at worst is 1.5 times longer
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than the optimal solution. Christofides algorithm, at one of its steps, involves finding a
minimum-weight perfect matching for a subgraph, which is a process of 0(n®) and
happens to be the bottleneck for his algorithm. Therefore, the running time for the whole
algorithm will end up being of 0(n®) as well. The drawback for Christofides approach is
that it is applicable only to graphs whose edge weights for a metric space (they are
symmetric and obey the triangle inequality) and, therefore, is not useful for directed
graphs. Kim’s [26] method can be viewed as a modification of Christofides algorithm and
also requires a metric space for edge weights. It has an improved running time of 0(n?),
but has a higher worst-case ratio of 2 when compared with Christofides method. Karp
[21] presents a partitioning algorithm for the TSP in the plane and performs a probabilistic
analysis in order to obtain results. From a practical point of view, his procedure is a
decomposition algorithm, which is capable of solving extremely large TSPs. The key idea
is to partition a large rectangle into a number of sub-rectangles and solve a TSP in each
sub-rectangle. The outcome is an Euler cycle, which can be transformed, into a tour over
all the nodes with minimal effort.

All the heuristics mentioned above have one property in common. In all of them, a solution
is being built from scratch starting with nothing. Another approach to finding a greedy
solution to the TSP problem is improvement methods. These methods start with a feasible
solution and look for an improved solution that can be found by making a small number
of changes to the solution currently at hand. The best-known example for this category is
presented by Lin [27] in 1969, also known as branch exchange algorithm. The branch
exchange procedure terminates at a local optimum. For a given k, if we define a k-change

of a tour as consisting of the deletion of k edges in a tour and their replacement by k other
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edges to form a new tour, then a tour is k-optimal if it is not possible to improve the tour
via a k-change. These branch exchange procedures are important since they illustrate a
general approach to heuristics for combinatorial optimization problems. In addition, they
have been used to generate excellent solutions to large-scale traveling salesman
problems in a reasonable amount of time. This method starts with a feasible solution and
tries to reach a k-optimal tour through repeated k-change operations. The running time
for this method is of O(n').

Finally, a third approach to heuristic solution of a TSP problem is composite heuristics
[28]. A typical composite procedure would obtain an initial tour using one of the tour
construction procedures as the first step. The second step would be to apply an
improvement procedure, like a k-optimal, to the tour found as the result of first step.
Besides the heuristics approaches, the other category to solve TSP algorithm is exact
algorithms. The exact algorithms seek the only optimal solution to the problem and just a
near optimal one is not acceptable. The drawback with these methods is that they are
only applicable to small problem sizes, i.e. graphs with small number of vertices. Because
as the number of vertices increase in a graph, the search space grows exponentially and
makes it impossible to seek the exact optimal solution. Dantzig et.al, in what is considered
the seminal paper on the subject [29], express the problem as an integer linear program
formed by two constraints in the model and then develop the cutting plane method by
adding inequality constraint to gradually converge at an optimal solution. Generally, when
people apply this method to find a cutting plane, they often depend on experience.
Therefore, this method is seldom deemed as a general method. Little et.al. [30] use

branch and bound method to find the solution. Branch-bound algorithm is a search
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algorithm widely used, although it is not good for solving the large-scale problem. It
controls the searching process through effective restrictive boundary so that it can search
for the optimal solution branch from the space state tree to find an optimal solution as
soon as possible. The key point of this algorithm is the choice of the restrictive boundary.
Different restrictive boundaries may form different branch-bound algorithms. The Held—
Karp algorithm, also called Bellman—Held—Karp algorithm, is another algorithm proposed
in 1962 independently by Bellman and by Held and Karp to solve the TPS based on
dynamic programming. This algorithm runs in O(n? 2™). Improving this time bound seems
to be difficult. For example, it has not been determined whether an exact algorithm for
TSP that runs in time 0(1.9999") exists.

3.3Methodology

Although prior research in the related fields of jigsaw puzzle solving and reconstruction
of hand-torn documents provide insights on how to approach the problem, reconstruction
of shredded documents has its own unique difficulties. The first difficulty arises due to the
size and shape of the pieces. Shredders are designed to make pieces that are as small
as possible making features that depend on color, texture and character crossings more
error prone. Further, shreds are of similar shapes, making shape a less distinctive feature.
Another difficulty is the deformations introduced at the edges of the shreds due to the
shredding process, making accurate pairwise matching very difficult. This problem is
further exacerbated by the complications related to scanning, which may involve loss of
some pieces and variations in color leading to incorrect segmentation of individual piece
images. Another difficulty concerns the number of shredded pieces that need to be

considered during reconstruction. Overall, it can be stated that shredded document
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reconstruction is a more complex problem than the ones addressed in related research
fields.

On the other hand, there are some features that are exclusively related to document
fragments. For example, when dealing with documents, it is common to come across
words that are cut in half due to the process of fragmentation and are straddled on the
two opposing sides of a cut line on the border of two neighboring pieces. Text lines can
be mentioned as another example which are present in some documents to guide the
direction of writing. This common features among document pieces can be used as a tool
to detect accurate pairwise matchings between pair of potentially neighboring pieces in
addition to the previously used color features and geometry features which may prove not
to be sufficient when talking about document reassembly.

3.3.1 Pairwise Matching

While trying to detect a possible pairwise match between a pair of fragment pieces, first
the pieces need to be segmented and their border need to be extracted. One way of
finding the best match between two pieces is to try all possible offsets while aligning the
pieces along their border segments that they potentially share. For puzzles with a large
number of shreds this can prove to be intractable and unnecessary. The proposed
method is to classify border pixels into background, text lines and marks. It is known that
true matches will have text lines that extend across the border. Further, it is expected that
text marks near the edge of one shred will often extend across the boundary and into the
neighboring shred. Therefore, instead of having to try all possible offsets along the
potentially shared border segment of a pair of pieces, only offsets will be tried that align

a text line in one with a text line in the other. Other color and geometry features can also
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Figure 3.1: Document reassembly pairwise matching
(a),(b) Shredded piece segmented and its border extracted, (c) border pixels are
sampled and classified, (d) a valid potential match after one possible alignment of text
lines, (e) another valid potential match after another possible alignment of text lines.
be used to verify the validity of a potential match. Figure 3.1 is illustrating this concept.
After determining a set of valid potential matches between a pair of pieces, next step is
to assign probabilities to the likelihood that a valid match is in fact the correct match
between that specific pair of pieces. In a valid potential match, the text line from one piece
extends across the border into the neighboring piece. Therefore, to calculate the
probability value for a valid match, we are proposing to use optical character recognition
algorithms to detect characters close to the border of each piece. One easy way to use
this information is for these characters to be matched against one another to see whether
they form a valid word in the dictionary of the underlying language of the document.
Another possibility is to develop a statistical model that helps us predict the occurrence
probabilities of a group of symbols together. Figure 3.2 depicts the general idea being

proposed here. Tesseract can be a viable option as an optical character recognition

algorithm. It has been considered as one of the most accurate open-source OCR engines
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Figure 3.2: OCR near the borders of potentially matching pair

that has been developed for various operating systems under google sponsorship since
2006 [63].

In this document, we tackle the problem of reassembling strip-shredded document
reassembly. For a strip-shredded document, it can be assumed, with high probability, that
the lines of text are already aligned. Therefore, the half-word at the right border of the first
shred and the half-word at the left border of the second shred are extracted after OCR
and are given a probability that represents the chance of them forming a valid word when
put together. This is done by trying to match the composed word with all the words present
in a dictionary. In the composed word, the letters close to the border area are likely to
have been damaged or recognized incorrectly during the OCR process. It is not wise to
rely on such characters while trying to find matches with dictionary words. For this reason,
we deploy Longest Common Subsequence method to find matches between the
characters of our composed word and the words in the dictionary. LCS allows for deletion
of a character if that helps finding a better match between the characters of the two words
that are being compared. The largest score that LCS calculates as a result of comparing

our composed word with all the words in the dictionary can be considered to be the
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Figure 3.3: Neighboring pair of shreds vs. a non-neighbor pair
(a) The probability of this pair being neighbors is calculated to be 0.85, (b) the
probability of this pair being neighbors is calculated to be 0.61.
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likelihood of that composed word to be a valid word, after going through a normalization
process of course. Figure 3.3a depicts a pair of neighboring shreds and figure 3.3b
depicts a pair of shreds that are in fact not neighbors.

For each pair of shreds, we calculate a score that represents the likelihood of that pair
being neighbors. This score is calculated based on the probability of the composed
wordson the common border of the two shreds. This score for the pair in figure 3.3a is
0.85 and for the pair in figure 3.3b is 0.61. As expected the neighboring relationship can
be detected based on this score correctly.

3.3.2 Groupwise Matching

Assuming we are dealing with strip-shredded documents (in strip-shredded documents,
the strip runs the length of the document), once the adjacency probabilities are assigned
for all pairs of pieces, the permutation of the fragments that leads to correct reassembly,
among all possible permutations, is likely to maximize the sum of probabilities of adjacent
fragments. This observation gives us a technique to identify the correct reassembly with
high probability. This permutation is most likely to be the one that leads to correct
reconstruction of the document. The problem of finding a permutation that maximizes the
sum of probabilities of adjacent fragments can also be abstracted as a graph problem. To
do this we take the set of all probabilities to form an adjacency matrix of a complete
weighted graph of n vertices, where vertex i represents fragment i and the edge weights
quantify the probability of two corresponding fragments being adjacent. The proper
sequence is a path in this graph that traverses all the nodes and maximizes the sum of
probabilities along that path. The problem of finding this path is equivalent to finding a

maximum weight Hamiltonian path in a complete graph. Figure 3.4 is showing a simple
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Figure 3.4: Groupwise matching for document reassembly

example to describe this idea. The optimum solution to this problem turns out to be
intractable. However, there are many heuristics known in the literature, as discussed in
literature review section, and we employ one such heuristic to solve this problem. The
heuristic that we have deployed to solve this TSP problem is called af3 pruning. Even
though of pruning is not an exact algorithm and only a greedy method that grantees a
near optimal solution to the TSP, since the pairwise matching scores calculated in the
previous step are somewhat trustworthy, this search algorithm suffices in our case. A
pseudocode for this search algorithm is presented in figure 3.5.

Using this search algorithm, a path is found that goes through all of the vertices and the
summation of the edges along the path is maximized. This means that this path specifies
an ordered list of vertices, i.e. a permutation of the shredded document fragments for
which the consistency of shredded pieces as a group is maximized. As long as the
number of shredded pieces in our problem is not too big and the pairwise matching scores

are reliable, we can trust this algorithms to return the optimal solution. As the number of
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// 1) there is no beta in this pseudocode. We assume beta = 1. The depth
// for search is alpha = a.

// 2) nis the number of fragments

// 3) vertex is a class whose objects represent image fragments

// 4) nodel represents the first fragment in the reassembled image

// 5) path (a global variable) is an ordered list of vertices and will

// eventually hold the final answer

// 6) alpha(node, a) returns a scalar value, the maximum cost among all
// possible paths of length a that originate at node.father and pass

// through node

// 7) node is an object of class vertex

// each node has a pointer to its father (another object of type vertex)
// each node has a pointer to a vec. of vertices which keeps its children
// (it consists of any vertex that is not in the global variable path yet)

// each node has a pointer to a vertex which is the child that comes after
// it in the optimal path (final answer)

// 8) c¢(node.father, node)is the weight on the edge (on the complete

// weighted directed graph) that goes from a node’s father to that node
01 node := nodel

02 path.append(node)

03 for n-1 times

04 vi=-o0

05 for each node.children

06 Temp := alpha(node.childrenli], a)

07 if (temp >v)

08 v :=temp

09 node.bestChild := node.childrenli]

10 node := node.bestChild

11 path.append(node)

01 function alpha(node, length)
02 iflength = 1 or node is a terminal node

04 return c(node.father, node)
05
06 vi=-oco

07 for each node.children

08 Temp := c(node.father, node) + alpha(node.children[i],length—1)
09 if (temp > v)

10 v :=temp

11  returnv

Figure 3.5: Pseudocode for aff pruning
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Figure 3.6: result of the shredded document reassembly
(a) before the reassembly, shreds are out of order, (b) final result of the reassembly.
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shreds increase, or the pairwise matching calculation gets more complicated, this
algorithm is guaranteed to only return a near optimal solution. In such a case, this solution
has to be viewed as a preliminary giant step toward a manual reassembly of a shredded
document. The other option will be to use an exact algorithm, like the ones mentioned in
the literature review section, toward solving the TSP problem and recover the one and
only one optimal solution to our problem.

3.4Experimental Results

In this section, we present the result of the reassembly of a document that has been
shredded into 12 pieces. The shredding process is simulated. Google has been used for
the optical character recognition purposes. Figure 3.6a shows the shreds before finding
the correct order and figure 3.6b shows the result of the reassembly.

Figure 3.7 shows the result of reassembling an 18-piece document using our method. In
this specific case a is set to be equal to 6. The shreds are grouped into 3 categories. The
order in which shreds appear, in each one of these categories, are correct when
considered separately. But order of categories themselves is not correct and they need a
slight reshuffling.

Figure 3.8 shows the result of reassembling the same document, i.e. the 18-piece
document. However, this time, instead of using aff pruning for groupwise matching step
to solve the traveling salesperson problem, greedy approach has been deployed to solve
the TSP problem. As a result, the shreds are grouped into categories with smaller number
of shreds compared with figure 3.7. Not only groups with correct order of shreds are
smaller in size when compared to previous method, but also the categories need more

intense reshuffling to result in a completely correct reassembly of the document compared
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Figure 3.7: result of the shredded document reassembly

(a) before the reassembly, shreds are out of order, (b) final result of the reassembly
when of} pruning is used with o = 6.
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Figure 3.8: result of the shredded document reassembly

(a) before the reassembly, shreds are out of order, (b) final result of the reassembly
when greedy method is used, i.e. af3 pruning with a = 1.
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to when a3 was used. This example serves to show that deploying af is advantageous
compared to simply using greedy method for groupwise matching.

The other option for solving the TSP, apart from greedy method and af pruning, is
exhaustive search. This method has been investigated through an example with 12
pieces. The search space is so big in this case that causes the running time to grow

exponentially and makes this method impractical in reality.
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CHAPTER 4.
CONCLUSION

In this work, we investigated two main applications of image processing that are palpable
in daily life. First, we introduced a novel idea, frequency division multiplexed imaging, to
create a new imaging system, which will help us in different applications in the field of
computational photography. Second, we dealt with the problem of 2D fragmented image
reassembly and strip-shredded document reassembly.

One possible application of frequency division multiplexed imaging is stereoscopic image
capture. Two images were captured simultaneously through the use of a beam splitter,
two gratings, and a novel optical setup. Through proper optical arrangement, stereoscopic
view of a scene can be obtained. Similarly, camera arrays where multiple images need
to be captured can be implemented with a single camera and through spatial light
modulation to place different images on different parts of the Fourier domain.

With dynamic spatial light modulation, it is possible to capture sub-exposure images. This
can be used to implement a high-speed imaging system with a standard camera as the
gratings can be changed very fast. Being able to capture sub-exposure images can be
used in motion deblurring, object segmentation based on motion, high-dynamic-range
imaging, and focus stacking as well. Optical modulation and Fourier domain allocation
may also lead to new applications in compressed sensing.

In 2D fragmented image reassembly problem, we present a novel computational pipeline
for the automatic reassembly of fragmented images. It consists of three main steps:
removing artifacts, pairwise matching between two image fragments, and global fragment
reassembly. We evaluate our algorithm using various real-world images and demonstrate
that it is fast and robust. We deal with artifact on the border area by removing them
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automatically. Our method to approximate the border curve of each image fragment is
based on DP algorithm. But through smoothening the boundary curve and employing the
curvature values of the pixels on the border, we proposed a revised DP algorithm which
is novel and creates better and more robust polygonization results. Eventually,
formulating the problem of finding the longest common subsequence of polygon sides
shared by two potentially neighboring border polygons into the problem of finding the
longest common subsequence shared by two strings in another contribution of our work.
On the global matching front, more effective graph searching and backtracking algorithms
or some stochastic optimization strategies could be investigated. In addition, adaptive
algorithm to pick the proper DP-threshold for different data sets with different image
resolutions can help generalize our algorithm even more.

The novelty of our method, when dealing with the problem of reassembling strip-shredded
documents, lies in the fact that we formulated the global matching step of our algorithm
as a famous graph optimization problem, i.e. traveling salesperson problem. TSP is a
very well-studied problem in the field of computer science. We adopt a heuristic method
to recover a near optimal solution to our TSP. For pairwise matching step, the method we
use to calculate the neighborhood probability between two strip shreds is another
contribution of our work. However, there is still much room for improvement when it comes
to proposed method of calculating neighborhood probability between a pair of potentially
neighboring strip-shreds. The reliability of the OCR result when it comes to the letters on
the cut is questionable. Through this observation, in a more effective method to compare

concatenated word with the words in the dictionary, the letters that are on the cut need to
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be treated differently from the other letters that we have more confidence in. By devising

a more sophisticated score calculating algorithm, the results can improve.
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