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2.5.2 ĨPU−N versus P̃D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.3 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.4 Comparison with Conventional Studies . . . . . . . . . . . . . . . . . . 34

2.6 Nearest Neighbor Decoding for PU . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.1 Effect of Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Energy Detector versus Envelope Detector . . . . . . . . . . . . . . . . . . . . . 36
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3: Communication Channel Allocation by Call Admission and Preemption Control 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 System State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 The MDP Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Dynamic Programming Formulation . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Characterization of Admission and Preemption Control . . . . . . . . . . . . . . 49

3.4.1 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



3.4.2 Upper Bound on Cost to Admit LP call . . . . . . . . . . . . . . . . . . 50
3.4.3 A Sufficient Condition for Inevitability of LP Admission . . . . . . . . . 52
3.4.4 Upper Bound on Cost to Admit HP call for LPAC States . . . . . . . . . 53
3.4.5 Convexity of Cost to Admit LP call in nH . . . . . . . . . . . . . . . . . 53
3.4.6 Optimal LPAC Policy is of Threshold Type . . . . . . . . . . . . . . . . 54
3.4.7 Convexity of Cost to Admit LP call in nL . . . . . . . . . . . . . . . . . 54
3.4.8 A Sufficient Condition for Inevitability of LP Preemption . . . . . . . . . 55
3.4.9 A Particular Optimal LCAP Policy . . . . . . . . . . . . . . . . . . . . . 56
3.4.10 Numerically Searched Optimal Policy Results . . . . . . . . . . . . . . . 56

3.5 Proofs of Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.4 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 4: Optimal Joint Allocation of Control and Communication Channels . . . . . . . . . . . . 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.3 Summary of Our Contributions . . . . . . . . . . . . . . . . . . . . . . 83
4.1.4 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Steady State Distribution of Zn . . . . . . . . . . . . . . . . . . . . . . 93
4.3.3 Conditional Distribution of the Congestion Loss Gn . . . . . . . . . . . 94
4.3.4 Conditional Distribution of Access State Xn . . . . . . . . . . . . . . . . 95
4.3.5 Evaluation of Pr

�
Xn = x

��Ln = l
�

. . . . . . . . . . . . . . . . . . . . . 96
4.3.6 Optimization Problem - The Joint Channel Allocation . . . . . . . . . . 100

4.4 Traffic Aware Channel Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.1 Estimation of Invisible Actual Traffic . . . . . . . . . . . . . . . . . . . 102
4.4.2 Learning the Optimal Channel Allocation . . . . . . . . . . . . . . . . . 102

4.5 Reported Loss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.1 Estimating the Actual Loss Rate . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6.1 Simulation Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.2 Reported versus Actual Loss Rate - Misleadingness of Reported Loss . . 105
4.6.3 Existence of Nxo - Collision and Congestion Trade-off . . . . . . . . . . 105
4.6.4 Channel Allocation Map . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6.5 Time versus Frequency Resources in Control Layer . . . . . . . . . . . . 111
4.6.6 Significance of Collision Loss . . . . . . . . . . . . . . . . . . . . . . . 111
4.6.7 Comparison with Single Control Channel System . . . . . . . . . . . . . 112

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

v



Chapter 5: Segmentation of Talk Group’s Call Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1 Context Tree Model for Variable Length Markov Chain . . . . . . . . . . . . . . 115

5.1.1 BIC Estimation of Context Tree Model . . . . . . . . . . . . . . . . . . 115
5.1.2 Algorithm for Context Tree Estimation . . . . . . . . . . . . . . . . . . 117

5.2 Context Tree based Sequence Segmentation . . . . . . . . . . . . . . . . . . . . 118
5.2.1 Conventional Approach and Limitation . . . . . . . . . . . . . . . . . . 118
5.2.2 Our Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 A Suboptimal Segmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Greedy Binary Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Greedy Binary Split Procedure . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 BIC Bisection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Results based on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.1 Same Length Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.2 Different Length Segments . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Results based on Public Safety Communications Data . . . . . . . . . . . . . . . 126
5.6.1 Talk Group Activity and Communication Behavior . . . . . . . . . . . . 127
5.6.2 Fire Incidents Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.3 Group Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.4 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 6: Summary and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.1 Spectrum Allocation via Cognitive Radio based System . . . . . . . . . . . . . . 132
6.2 Communication Channel Allocation by Call Admission and Preemption Control . 133
6.3 Optimal Joint Allocation of Control and Communication Channels . . . . . . . . 134
6.4 Segmentation of Talk Group’s Call Activity . . . . . . . . . . . . . . . . . . . . 135

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

vi



List of Tables

2.1 Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Optimized Solutions for ∆T = 0.04, PSU = 10, Energy Detector . . . . . . . . . 32
2.3 Optimized Solutions for ∆T = 0.04, PSU = 0.1, Energy Detector . . . . . . . . . 32
2.4 Optimized Solutions for ∆T = 0.04, PSU = 10, Envelope Detector . . . . . . . . 37

3.1 Optimal LPAC Thresholds in Figure 3.1(a) . . . . . . . . . . . . . . . . . . . . . 58
3.2 Optimal LPAC Thresholds in Figure 3.1(b) . . . . . . . . . . . . . . . . . . . . 58

4.1 Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Context Tree Models for Generating Data . . . . . . . . . . . . . . . . . . . . . 123
5.2 Context Tree Models for Experiment Results of Figure 5.7 . . . . . . . . . . . . 125

vii



List of Figures

1.1 PSCS with two talk groups, A and B, within the same site. . . . . . . . . . . . . 2
1.2 PSCS with a group dispersed over multiple sites. Tx is a transmitter or caller radio. 2

2.1 Cognitive radio system model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 DOF available for SU for communications. . . . . . . . . . . . . . . . . . . . . 26
2.3 SU information for single channel-use vs P̃D. . . . . . . . . . . . . . . . . . . . 27
2.4 SU performance curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 PU performance curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 PU performance curves for envelope and energy detectors. . . . . . . . . . . . . 37
2.7 SU performance curves for envelope and energy detectors. . . . . . . . . . . . . 38

3.1 Optimal policy search results (ML = 25, MH = 30, λL = 10, λH = 12, µ = 1). . 57

4.1 A multicast system. Two groups A and B, an access station AS. . . . . . . . . . . 78
4.2 Time-horizon discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 System model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Traffic aware channel allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Simulation results (N = 5, M = 10, s = 4, λ = ω = σ = 0.1). . . . . . . . . . . 106
4.6 Reported versus actual loss rate (Nx = 2, Nc = 3, M = 10, ω = 0.5, s = 10,

σ = 0.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.7 Existence of Nxo (N = 5, M = 10, λ = 0.1, ω = 0.5, s = 10). . . . . . . . . . . 108
4.8 Numerical results without CRP (s = 0, N = 5, M = 10). . . . . . . . . . . . . . 109
4.9 Numerical results with CRP (s = 10, N = 5, M = 10). . . . . . . . . . . . . . . 110

5.1 The context tree estimation procedure. . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 The overall segmentation procedure. . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 The greedy binary segmentation procedure. . . . . . . . . . . . . . . . . . . . . 122
5.4 The greedy binary split procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5 The BIC bisection procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Context tree TB from Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7 BIC compliant candidate segmentations. The finally selected segmentation with

the minimum score βA is for c = 0.3 and c = 0.35. . . . . . . . . . . . . . . . . 126
5.8 Average BIC score βA, and the distance from the original segmentation, for the

candidates shown in Figure 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.9 BIC compliant candidate segmentations. The finally selected segmentation with

the minimum score βA is for c = 0.15. . . . . . . . . . . . . . . . . . . . . . . . 128
5.10 Average BIC score βA, and the distance from the original segmentation, for the

candidates shown in Figure 5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.11 Activity segmentation of talk group CBR-VF-DISP-1. . . . . . . . . . . . . . . . 130
5.12 Activity segmentation of talk group CBR-D2-DISP. . . . . . . . . . . . . . . . . 131
5.13 Context trees T ∗

6
and T

∗
7

for the group CBR-VF-DISP-1. . . . . . . . . . . . . . 131

viii



Abstract

During emergency situations, the public safety communication systems (PSCSs) get overloaded

with high traffic loads. Note that these PSCSs are finite source networks. The goal of our study

is to propose techniques for an efficient allocation of spectrum in finite source networks that can

help alleviate the overloading of PSCSs.

In a PSCS, there are two system segments, one for the system-access control and the other

for communications, each having dedicated frequency channels. The first part of our research,

consisting of three projects, is based on modeling and analysis of finite source systems for optimal

spectrum allocation, for both access-control and communications. In the first project, Chapter 2,

we study the allocation of spectrum based on the concept of cognitive radio systems. In the second

project, Chapter 3, we study the optimal communication channel allocation by call admission

and preemption control. In the third project, Chapter 4, we study the optimal joint allocation of

frequency channels for access-control and communications.

Note that the aforementioned spectrum allocation techniques require the knowledge of the call

traffic parameters and the priority levels of the users in the system. For practical systems, these

required pieces of information are extracted from the call records meta-data. A key fact that should

be considered while analyzing the call records is that the call arrival traffic and the users priority

levels change with a change in events on the ground. This is so because a change in events on

the ground affects the communication behavior of the users in the system, which affects the call

arrival traffic and the priority levels of the users. Thus, the first and the foremost step in analyzing

the call records data for a given user, for extracting the call traffic information, is to segment

the data into time intervals of homogeneous or stationary communication behavior of the user.

Note that such a segmentation of the data of a practical PSCS is the goal of our fourth project,

Chapter 5, which constitutes the second part of our study.
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Chapter 1
Introduction

1.1 Motivation: Public Safety

The main motivation of this study is the overloading issue of the public safety communication sys-

tems (PSCSs) during emergency situations. In these situations, an overwhelmingly large amount

of traffic pours into the network over a hot spot area. This poses a serious threat to the quality of

communications among the first responders, given the limited and fixed amount of network re-

sources to dispense with. Eventually it further creates a threat to public safety and the well-being

of civilian life. Note that PSCSs are finite source networks, as described in Section 1.2. Thus,

the goal of this study is to propose techniques for an efficient allocation of spectral resources in

such systems. These techniques help alleviate the overloading of PSCSs, which in turn ensures

the required quality of communications among the first responders during emergency situations.

A detailed summary of the study is provided in Section 1.3.

1.2 Public Safety Communications: Finite Source Networks

In PSCSs, the coverage area is divided into sites. Also, the users are divided into fleets or groups

normally called talk groups. Each user can only communicate with another user of the same talk

group. When a user needs to talk, it presses the push-to-talk (PTT) button of its radio, in order to

send a call request at the site’s base station or access-station (AS), over a control channel which

is dedicated for the access control process. The AS then assigns the communication resources to

the caller and the rest of the users of the talk group, in order to broadcast the voice call throughout

the group, as shown in Figure 1.1. In this figure, a single site with multiple talk groups is shown.

Note that when the radios from the same talk-group are dispersed over multiple sites, a call from

the group cannot be established until all the radios of the group are reachable with resources to

serve in associated sites. Such a scenario is shown in Figure 1.2.

1

















FIGURE 1.1: PSCS with two talk groups, A and B, within the same site.

FIGURE 1.2: PSCS with a group dispersed over multiple sites. Tx is a transmitter or caller radio.
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Thus, in PSCSs, the channel allocation for communications is performed on the basis of talk

groups. Therefore, instead of radios, the call source units are the talk groups. Note that the PSCSs

have the following properties of the finite source systems:

1. The call source units, i.e., the talk groups, are finite in number.

2. When a user in a talk group talks, the rest of the users only listen. Therefore, a talk-group

under service cannot generate any call. Thus, only an idle source unit, i.e., an idle talk-group

can generate a call in a PSCS.

1.3 Summary of Research Work

We divide our study into two parts as follows:

1. Part-I: System Modeling and Analysis for Spectrum Allocation.

2. Part-II: Data-Driven Characterization of Users’ Stochastic Dynamics.

We briefly discuss both these parts of our study in the subsequent sub-sections.

1.3.1 Part-I: System Modeling and Analysis for Spectrum Allocation

In a control channel based wireless access system, like the one discussed in Section 1.2, there

are two types of frequency channels. One of the types is the access-control or simply control

channel that is dedicated for the access control process, whereas the rest of them are of the type

of communication channels. The first part of our research is based on the modeling and analysis of

the finite source systems for the optimal allocation of frequency channels, for both access-control

and communications. We accomplish this goal in the form of following three projects:

1. Efficient spectrum allocation via cognitive radio based system design.

2. Communication channel allocation by call admission and preemption control.

3. Optimal joint allocation of control and communication channels.
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The first project is discussed in Chapter 2. In this project, we study how an efficient spectrum

allocation can be achieved by adopting a cognitive radio based design approach. Note that only

this project deals with the physical (PHY) layer of the communication system, whereas the second

and third projects deal with the medium access control (MAC) layer. In a cognitive radio based

system, there are two types of users, namely, primary users (PUs) and secondary users (SUs).

PU is a high priority user that can use the allocated frequency channel at any time when needed.

On the other hand, SU is a low priority user that can use the channel allocated for PU, when

PU is idle and the channel is available for SU. One of the challenges faced while designing such

systems is to improve the capability of the SU transmitter (SU-TX) to detect the availability of

the channel. This can be achieved by appropriately selecting the detection parameters of SU-TX’s

signal detector that result in an optimal sensing-throughput tradeoff, as explained in Chapter 2.

In that chapter, we provide the design guidelines for the cognitive radio systems, based on the

transmission-power levels of the users. Note that the design goal in this project is to maximize the

SU performance by keeping the PU performance degradation within a given tolerable range.

The second project is discussed in Chapter 3. In this project, we study the communication

channel allocation as the call admission and preemption control, for finite source systems. To

this end, the system is modeled as a prioritized queueing system, wherein the users are assigned

priority levels, and the system operation is modeled as a Markov decision process (MDP). Based

on these priorities, optimal decisions are determined for admitting a new call or preempting an

already busy call. These policy decisions depend on the priority level of the call and the state of

the system. In this study, we demonstrate that the optimal policies are threshold based policies.

Note that the threshold based policies are easy to design and can be implemented in terms of de-

cision thresholds. These decision thresholds are used to make optimal admission and preemption

decisions during the system operation.

We discuss the third project in Chapter 4. In that chapter, we consider a control channel based

wireless access system, like the one discussed in Section 1.2. In such systems there are two types
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of frequency channels. One of the types is called the control channel that is dedicated for access

control, whereas the rest of the channels are used for communications. Therefore, we can divide

the system into two segments or layers, namely, the access layer and the communication layer.

In order to implement a bandwidth efficient system we need an optimal allocation of control

and communication channels. As explained in detail in Chapter 4, the performance of one layer

significantly affects that of the other one, in case of the finite source wireless systems like PSCSs.

Thus, for such systems, the control and communication layers are inseparable. Therefore we need

a system model that can model both the layers jointly, and thus, can help us devise a mechanism to

optimally allocate the control and communication channels in a wireless access system. However,

in conventional studies on wireless access systems, these layers are modeled separately. Note

that these separate control and communication layer models are only applicable under certain

assumptions that are discussed in Chapter 4, and do not hold for the finite source systems like

PSCSs. Therefore, in this study, we propose a novel statistical model for wireless access systems

that jointly models the control and communication layers, and helps evaluate the optimal number

of control and communication channels. We also propose the concept of a channel allocation

map that helps visualize the optimal channel allocation for all possible values of the call traffic

parameters. Note that the optimal channel allocation also requires the knowledge of the actual

call-arrival traffic load. However, this load is invisible to a practical system, because in practice,

a system does not keep records of the calls that are blocked due to collision at the access layer.

Therefore, in Chapter 4, we also demonstrate the capability of our proposed model in estimating

the invisible actual traffic load. Finally, we provide guidelines for developing an algorithm for the

traffic aware allocation of channels, based on our proposed model.

1.3.2 Part-II: Data-Driven Characterization of Users’ Stochastic Dynamics

The spectrum allocation techniques, e.g., the ones discussed in Part-I of this study, requires the

knowledge of the call traffic parameters and the priority levels of the users in the system. For

practical systems, these required pieces of information are extracted from the call records meta-
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data. A key fact that should be considered while analyzing the call records is that the call arrival

traffic and the users priority levels change with a change in events on the ground. This is so

because a change in events on the ground affects the communication behavior of the talk groups

in the system, which affects the call arrival traffic and the priority levels of the users. For example,

a change from a normal scenario to an emergency situation, which causes a change in the talk

groups’ activities of a PSCS. Thus, the first and the foremost step in analyzing the call records

data for a given talk group, for extracting the call traffic information, is to segment the data into

time intervals of homogeneous or stationary communication behavior of the group. Note that such

a segmentation of the data of a practical PSCS is the goal of Part-II of our study.

This part of the study consists of only a single project discussed in Chapter 5. In this project,

we use the call traffic meta-data of the State of Louisiana’s PSCS. We develop a way to quan-

tify a talk group’s activity as a discrete sequence of symbols. Here a symbol, corresponding to a

call, represents the calling radio-unit in the talk group, as explained in Chapter 5. Note that we

extract this talk group activity from the available data of call records. As described in the last

paragraph, in practice, a talk group’s communication behavior remains consistent during a certain

event happening on the ground. However, with a change in event, the talk group’s behavior also

changes. Thus, a talk group’s activity, extracted as a discrete sequence, from the whole day data

of call records, is not stationary. However, it may consist of many stationary segments depending

on different events that occurred on the ground. Our primary goal is to segment a given whole day

activity of a talk group into stationary segments, each corresponding to a distinct event, and also

quantify the behavior of the talk group within each segment or event. Note that we quantify the

behavior of a talk group in the form of a context tree which represents a variable memory Markov

process of discrete symbols, as explained in Chapter 5. For this project, we use the data mining

techniques that have demonstrated state-of-the-art results in diverse fields, e.g., bioinformatics

(gene sequence analysis), linguistics (language modeling) and information theory (data compres-

sion). We have also made non-trivial modifications to these techniques to match our requirements.
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In Chapter 5, we discuss in detail the representation of a talk group’s communication activity in

terms of a sequence of discrete symbols. We also provide the details of the algorithm that we have

developed for the segmentation of discrete sequences. Finally, we present the segmentation results

for the synthetic and the real data sets that demonstrate the validity of the proposed algorithm.
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Chapter 2
Spectrum Allocation via Cognitive Radio Based
Systems

The users of sophisticated broadband wireless services are increasing day by day, thereby rais-

ing the demand of these services. Therefore, already established networks are expanding their

resources and the new service providers are establishing their infrastructure. This gives rise to the

problem of scarce bandwidth resources. Since most of the available spectrum has already been

licensed, there is almost no room left for accommodating the new demands. There are studies

like [1] which show that vast regions of licensed spectrum are underutilized. These are called

white-spaces. A prospective solution to the problem of scarce bandwidth resources is to use these

white spaces for the new wireless systems instead of issuing the new licenses. The device that can

help us achieve this goal of utilizing the unused channel is the cognitive radio [2, 3]. It is a radio

that can sense and learn, as the word ‘cognitive’ indicates. It has intelligent capabilities to sense

the communication activities over the channel and looks for the opportunities available for itself.

During emergency situations where multiple public safety talk groups are to share resources due

to the lack of sufficient spectrum to accommodate all surging needs, spectrum sharing becomes

necessary. Cognitive radio based systems are proposed to enable such spectrum sharing among

the first responder groups during emergency situations [4–7]. In this study we consider a cognitive

radio (CR) based prioritized public safety communication system. In this system, there are two

categories of talk groups or users. One of them is the high priority talk group called the primary

user (PU), and the other one is the low priority talk group called the secondary user (SU). PU’s

are the users which possess the license for using the channel and can use it for communications

at anytime. On the other hand, SU’s are the unlicensed users and can only use the channel for

communications when it is idle. These SU’s form the nodes of the cognitive radio network and

are intelligent enough to sense whether the channel is being used by a PU or not. This is referred
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to as the channel sensing ability of the SU. Also, SU should leave an occupied channel whenever

a PU starts transmission using that channel.

In this study, we propose a mixture-Gaussian model for a cognitive radio channel to analyze

the interplay between the interference in the system and the degrees-of-freedom (DOF), i.e., the

number of channel uses, used by the secondary user (SU) for communications. In contrast to the

conventional studies, we assume that the SU receiver (SU-RX) does not precisely know whether

the primary-user (PU) transmitter is on or off. Due to this assumption the resulting interference

channel is mixture-Gaussian. Our objective is to find the optimal sensing threshold and sensing

time for the signal detector used by the SU transmitter (SU-TX). Our formulation of the opti-

mization problem reflects the trade-off between SU-TX’s DOF for communications and that for

detection. Both the DOFs affect PU’s interference to SU, and SU’s interference to PU. The latter

interference causes PU performance degradation, which is kept within tolerable range as a con-

straint. As a further contribution, we define interference regimes for SU performance on the basis

of PU transmission power level. We also address the scenario when PU receiver uses the nearest

neighbor decoding while wrongly anticipating that the channel is Gaussian. Finally, we demon-

strate that even if SU-TX’s signal detector performs suboptimally, SU can still achieve the optimal

detector’s performance in the high interference regime by adjusting the sensing parameters. This

study has resulted in two research papers, [8, 9].

2.1 Introduction

We consider a simple cognitive radio system consisting of two transmitter-receiver pairs, one for

the primary user PU and the other for the secondary user SU. They have a common frequency

channel to use for communications and SU communicates whenever the channel is sensed idle.

In order to find out whether the channel is occupied by a PU signal or not, SU transmitter uses a

signal detector, e.g., the energy detector. For this system, the main design problem is to find the

optimal sensing time and threshold for the detector used by SU transmitter. Here we would like to

mention an important remark, i.e., for the rest of the discussion, the signal detector of SU refers
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to the signal detector used by the SU transmitter. The optimality criterion is to maximize the SU

performance while keeping the detection probability above an appropriate threshold level. This

criterion is also called the sensing-throughput trade-off for SU.

Note that in this study, coherence means the availability of the channel state information (CSI)

to the receiver [10–12]. In our model, CSI for the SU receiver is the precise knowledge of the

PU transmitter’s transmission state, i.e., whether it is on or off. The sensing-throughput trade-

off and analysis models have been explored in [13–26], under an assumption that SU receiver

operates coherently with both SU and PU transmitters, i.e., SU receiver precisely knows if SU

and PU transmitters are on or off. We call this the conventional model. However, in this study,

we consider a more practical scenario where SU receiver operates coherently with SU transmitter

but incoherently with PU transmitter, as in our previous work [27]. This means that SU receiver

precisely knows if SU transmitter is on or off, but it does not know the same about PU transmitter.

This model appropriately incorporates the interference experienced by both PU and SU systems

and is practically more rigorous than the conventional model. To the best of our knowledge,

despite such significance, this model has never been studied.

The assumption that whether the SU receiver operates coherently or incoherently with the PU

transmitter, determines the nature of the interference channel in the system model. In the con-

ventional model, due to the coherent operation of SU receiver and PU transmitter, the underly-

ing channel is a regular Gaussian interference channel. On the other hand, in our model, due to

the incoherent operation of SU receiver and PU transmitter, the resulting interference channel is

mixture-Gaussian, as explained in Section 3.2. Due to the mixture-Gaussian nature of the inter-

ference channel, the optimal sensing time and threshold design problem can be better elaborated

with the help of a novel concept of a trade-off, that we propose formally in Section 2.5.1 as the

trade-off between the degrees of freedom available to SU for communications and the interference

experienced by SU due to PU, rather than that of the conventional sensing-throughput trade-off.

In this study, the degrees of freedom available to SU for communications quantify the average
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number of channel-uses per transmission frame, which is used by SU for communications in the

long run, i.e., for infinitely large number of transmission frames, as explained in detail in Sec-

tion 2.5.1. We properly define and elaborate the novel concept of the trade-off in Section 2.5.1,

and before proceeding to it, we also build the required background in the subsequent sections, in

order to help the reader understand the concept nicely.

Due to the incoherence assumption between SU receiver and PU transmitter, the analysis be-

comes more challenging. The first challenge is that the interference channel becomes mixture

Gaussian that requires the evaluation of the entropy of mixture Gaussian random variables, which

does not have a closed form solution. The second challenge is the non-linear interdependence of

quite a few parameters. Thus, the optimization problem under consideration becomes quite com-

plicated and cannot be solved using the conventional optimization techniques, as explained in

Section 2.3.2. Also, it does not have a closed form solution, and therefore, we develop numerical

algorithms to solve it.

Another loose end in the conventional studies is that an arbitrarily high detection-probability

threshold is selected for the detection-probability constraint. In order to tie up this loose end, we

select a meaningful value for this threshold which ensures that the PU performance degradation

remains within a tolerable range. This requires us to explicitly compute PU performance. While

evaluating PU performance, we assume that PU receiver does not know the state of SU transmitter,

i.e., PU receiver also operates incoherently with SU transmitter, in the same way as we assume that

SU receiver operates incoherently with PU transmitter. Note that a degradation in PU performance

is caused by the interference due to SU, when the detection probability is less than 1.

As a further novel contribution, we identify a performance inefficiency region for SU at a very

high detection probability, where SU performance drastically decreases with increase in detection

probability. We call this the energy detector’s inefficiency region and is abbreviated as EDI region.

We also identify the interference regimes for SU performance on the basis of PU transmission

power level PPU. Our study reveals that the tolerance level of PU performance can be exploited to
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increase the SU performance by sacrificing the detection probability, but only for the low interfer-

ence regime for SU. In this regime, the PU transmission power is weak and at a level lower than

some threshold, such that the SU performance increases with decrease in detection probability.

On the other hand, for the high interference regime in which the PU power is stronger, the SU

cannot sacrifice the detection probability at all. This is because the interference caused by PU is

so high that the SU performance decreases with decrease in detection probability for the high in-

terference regime. Therefore, during this regime, the detection probability needs to be kept at the

maximum level for the non-EDI region, such that it is greater than the required minimum thresh-

old but small enough to avoid the EDI region. This change in the interference regimes for the SU

performance is not revealed by the conventional model, and can only be observed under the mix-

ture Gaussian model proposed in our study. Note that we also provide the values of the thresholds

for the PU transmission power that determine the regime change for the SU performance, based

on the numerical results. Furthermore, the discovery of such interesting trends is neither trivial

nor straightforward. Our adopted optimization framework, explained in Sections 2.3.2 and 2.3.3,

helps us identify these trends in SU performance. We finally demonstrate that even if the signal

detector of SU performs suboptimally, SU can still achieve the optimal detector’s performance

level in the high interference regime for SU just by adjusting the sensing parameters accordingly.

Our results provide a guideline for the design of a practical cognitive radio system, based on the

transmission-power levels of the users, to achieve the maximum secondary-user’s performance by

keeping the primary-user’s performance-degradation within a given tolerable range.

Since we are interested in revealing the effect of the mixture-Gaussian interference on the

degrees-of-freedom and interference trade-off, we thus keep our model simple and do not incor-

porate fading and exact information of receivers’ locations. However, these features are required

for a more precise modeling of interference that is left for future exploration. Even in the absence

of these features, the computational complexity of our problem is very high, due to the incoher-

ence assumption between SU receiver and PU transmitter, which results in a mixture Gaussian in-
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terference channel and non-linear interdependence of quite a few parameters in our system model,

as explained in Section 2.3.2. Also recall that we only consider a single point-to-point commu-

nication link for both PU and SU in our system model. Even this simple model poses analytical

challenges and reveals interesting results, as elaborated in this study. However, this basic model

can be used as a building block for a more sophisticated model of cognitive radio networks, which

may consist of large number of nodes and communication links among them. Such complicated

model considerations are left for future work.

In Section 2.6, we also discuss how the analysis will be affected if we assume that the PU

receiver (PU-RX) wrongly anticipates that the channel is Gaussian, and therefore, uses the nearest

neighbor decoding rule, which is the optimal decoding rule for the Gaussian channel. Moreover, in

Section 2.7, we discuss the analysis when the SU transmitter (SU-TX) uses a suboptimal detector,

i.e., the envelope detector, to sense the PU signal. In the same section we also compare the results

for the envelope detector to those for the optimal detector, i.e., the energy detector.

The rest of the chapter is organized as follows. We begin with presenting the system model

in Section 3.2. Later, we formulate the optimization problem in Section 4.3. In Section 2.3.2 we

present the optimization procedure for the formulated problem. We then compare our model with

the conventional one in Section 2.4. Section 2.5 discusses the numerical results thoroughly. In

Section 2.6 we discuss the scenario when nearest neighbor decoding scheme is employed by PU-

RX. In Section 2.7 we present a comparison between the use of the optimal energy detector and

the suboptimal envelope detector for SU-TX. Finally, we conclude in Section 4.7.

2.2 System Model

In Table 2.1 we present the details of the symbols used in this study. We consider a communication

system, consisting of four nodes as shown in Figure 2.1. In our system model, SU-TX and SU-

RX represent the secondary user transmitter and receiver, respectively, whereas, PU-TX and PU-

RX represent the primary user transmitter and receiver respectively. In this study we consider

periodic sensing that enables SU-TX to remain aware of the channel status. This is achieved by
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TABLE 2.1: Table of Symbols

Symbol Definition
N Total number of channel uses in one frame
Ns Number of channel uses in the sensing period of SU frame
Nc Number of channel uses in the communication period of SU frame
τ Portion of the total frame-time that is used by SU-TX for sensing
λ SU-TX sensing threshold
π0 Pr (PU-TX is off for the time of entire frame)
π1 Pr (PU-TX is on for the time of entire frame)
ψ1 Pr (SU-TX is on for the communication period of SU frame)
XPU Transmitted symbol during a single channel use by PU-TX
XSU Transmitted symbol during a single channel use by SU-TX
WPU Noise component in the received symbol for PU-RX during a single channel use
WSU Noise component in the received symbol for SU-RX during a single channel use
YPU Received symbol for PU-RX during a single channel use
YSU Received symbol for SU-RX during a single channel use
α Coupling coefficient for PU-RX
β Coupling coefficient for SU-RX
Pα Pr ( α = 1 )
Pβ Pr ( β = 1 )
PPU PU transmission power level
P̂PU PPU threshold
PSU SU transmission power level
PF False alarm probability
PD Detection probability
P̃D A given fixed value of PD

PDT
The constraint threshold for PD

PDT2
Value of PD at which EDI region starts

H Actual channel-state variable
Ĥ Decision channel-state variable
ISU−N Mutual information for SU system for the entire frame
ÎSU−N SU information rate for a single channel use
ĨSU−N = maxτ,λ ISU−N, s.t. PD = P̃D

˜̂
ISU−N Value of ÎSU−N, when the SU information rate is ĨSU−N

ν1 Upper bound on ISU−N for perfect detection

IPU−N Mutual information for PU system for the entire frame
ĨPU−N = IPU−N, s.t. ISU−N = ĨSU−N

ÎPU−Ns PU information rate for a single channel use during the sensing period of SU
ÎPU−Nc PU information rate for a single channel use during the communication period of SU
∆PU PU performance degradation factor
∆T Maximum allowed value of ∆PU

∆̃0 Value of ∆PU achieved at optimal solution
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FIGURE 2.1: Cognitive radio system model.

using a frame structure [13, 25–27]. In this structure, each frame consists of a sensing period and

a transmission period, while the overall length of the frame is fixed. At the end of each sensing

period, the secondary transmission starts when the PU channel is considered as idle by SU-TX.

Otherwise, SU-TX will wait until the next frame to sense the licensed channel again before any

secondary usage. Thus we assume encoding of SU system is based on this frame structure such

that each frame consists of, say, N channel uses and the information rate is achieved by encoding

for infinitely large number of such frames.

We define a parameter τ as the portion of the total frame-time that is used by SU-TX for sensing

the occupation of the channel by the PU. For SU-TX, Ns = τN represents the number of channel-

uses in a frame out of a total of N that are used for sensing and is therefore called the sensing

period. While Nc = N −Ns = (1− τ)N represents the number of channel-uses in a frame used

for communications whenever there is a transmission opportunity for SU-TX and is thus called

the communication period [13, 25–27].

The encoding of PU system is also based on a frame structure with N channel uses and the

information rate is thus achievable for infinitely large number of transmissions of such frames. We

assume that PU-TX communicates data to PU-RX in an on-and-off manner in the form of frames

over the given frequency channel. This on-and-off operation of PU-TX is modeled such that for
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every frame of N channel uses PU-TX is either off for the time of entire frame with probability

π0 or it is on for the time of entire frame with probability π1 = 1−π0. It is assumed that there is a

precedent learning or estimation phase where long-time scale measurements are taken to estimate

π1. Such learning or estimation problem is beyond the scope of this study, which will be further

investigated and presented in our future works.

Let XPU and XSU denote the independent transmitted symbols during a single channel use

by PU-TX and SU-TX respectively while they access the channel. Similarly, YPU and YSU de-

note the corresponding received symbols for PU-RX and SU-RX respectively. All communica-

tion channels in the system are assumed to be additive white Gaussian noise channels. Let WPU

and WSU denote the independent noise components in the received symbols for PU-RX and SU-

RX respectively. Both these noise components are Gaussian random variables having zero mean

and unit variance. Also the transmitted signal and the noise, and therefore the received signal,

over any given channel-use are independent but distributed identically to those over all the other

channel-uses.

We assume that PU-TX and PU-RX have no knowledge about the existence of SU-TX and

SU-RX in the system. Therefore, perceiving a simple additive Gaussian noise channel, PU-TX

transmits a Gaussian distributed symbol XPU over each single channel use thereby attempting

to gain a maximum capacity. Note, in this work we are not aiming at finding the optimal prob-

ability distributions for XPU and XSU that can achieve the channel capacity in the presence of

interference. Therefore, we assume both as Gaussian random variables. Thus, the transmitters are

assumed to possess a Gaussian code-book. The transmitted symbols are real Gaussian random

variables each of which has a zero mean and a variance that is equal to the average power con-

straint of the transmitter. We use PPU and PSU to denote the average power constraints for PU-TX

and SU-TX respectively.

We adopt a channel sensing model for SU-TX that is based on the energy detection scheme.

The false alarm probability PF and the detection probability PD for our energy detector based
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sensing model are given by, [28], [29], [27], PF = Γ(NS/2,λ/2)
Γ(NS/2)

and PD =
Γ

�
NS/2,

λ

2(1+PPU)

�

Γ(NS/2)
. Here

λ is the sensing threshold and, Γ(.) and Γ(., .) are respectively the complete and upper-incomplete

Gamma functions [30].

The received signals at PU-RX and SU-RX are given by YPU = XPU + WPU + αXSU and

YSU = XSU+WSU+βXPU respectively. Here, XPU and XSU are Gaussian distributed with prob-

ability density functions (PDFs) N (0,PPU) and N (0,PSU) respectively, while WPU and WSU

both are Gaussian distributed with PDF N (0, 1). The random variables, α and β, are called the

coupling coefficients. They appear because of the mutual interference between PU and SU users.

We consider this interference in our system model because we assume that the SU-RX does not

know the state of the channel access by PU-TX. Parameters α and β are Bernoulli random vari-

ables having a value 0 or 1. These coefficients can be described by the probabilities, Pα = Pr(α =

1) and Pβ = Pr(β = 1), respectively, which are given by Pα = Pr(Ĥ = 0|H = 1) = 1−PD and

Pβ = Pr(H = 1|Ĥ = 0) = π1(1−PD)

π0(1−PF )+π1(1−PD)
. Here Ĥ and H denote the decision and actual

channel state variables, respectively, with 0 representing an idle primary channel and 1 for a busy

primary channel.

Using Bayes rule, the PDF of YPU is

fYPU
(x) = (1− Pα)×N (x; 0, 1 + PPU) + Pα ×N (x; 0, 1 + PPU + PSU), (2.1)

and that of YSU is

fYSU
(x) = (1− Pβ)×N (x; 0, 1 + PSU) + Pβ ×N (x; 0, 1 + PPU + PSU). (2.2)

It is evident from (2.1) and (2.2) that, because of the mutual interference between PU and SU the

unwanted disturbance component in the received symbols have mixture Gaussian PDFs instead of

pure Gaussian. Therefore we cannot use the well known result for the Gaussian channel capacity,

log(1 + SNR), as used for the conventional model where the unwanted component is simply

Gaussian [13]. We therefore need to re-evaluate the information rates that are achievable over the

resulting mixture Gaussian channel, in order to analyze the system performance.
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For both SU-RX and PU-RX, the decoding schemes are assumed to be optimal, i.e., the Maxi-

mum Likelihood (ML) decoding. This assumption of using optimal decoding will ensure that the

mutual information rates in our model are achievable and therefore considered as valid metrics

for system throughput. But, it should be noted that ML decoding requires knowledge of channel

statistics at the receiver and is complicated to implement for a non-Gaussian channel, as is our

case. Later in Section 2.6, we comment on the effect of adopting a robust decoding scheme for

PU-RX namely the nearest neighbor decoding [31].

2.3 Problem Formulation and Solution Procedure
2.3.1 Performance Metrics:

The performance metric for the SU system is the mutual information which quantifies the achiev-

able communication rate per transmission frame, between SU-TX and SU-RX, when SU-RX uses

the optimum maximum likelihood decoder, in the presence of an uncertainty of the PU channel

state averaged over the long run, i.e., over infinitely large number of transmissions. Note that the

PU channel state in our study represents whether the PU-TX is on or off. We assume that SU-RX

does not have the knowledge of this PU channel state which causes interference in the SU sys-

tem. Such a situation with a lack of knowledge on the channel quality status is called incoherent

receiver operation [10–12]. Similarly, the performance metric for the PU system is the mutual

information which quantifies the achievable communication rate per transmission frame, between

PU-TX and PU-RX, in the presence of an uncertainty of the SU channel state averaged over the

long run. Recall that the encoding of the SU and PU systems is based on a frame structure with

N channel uses. The channel over each frame varies between good and bad, where good means

no interference from another transmitter, and bad the opposite. The achievable rate is attainable

through the encoding over a large number of frames to average out such channel uncertainties

without delay constraints. If there is a memory between good and bad conditions, we essentially

deal with the Giblert-Elliott channels [11], and such memory is essentially caused by the memory

between on and off of PU-TX. In this study, we assume that PU-TX is either off over the entire
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frame with probability π0, or it is on with probability π1 = 1 − π0, without memory. Therefore,

the mutual information for the PU system over N channel uses of the entire frame is given by

IPU−N = π1

�
Ns ÎPU−Ns +Nc ÎPU−Nc

�
, (2.3)

where ÎPU−Ns is the mutual information for PU over one channel use during the sensing period of

SU-TX and ÎPU−Nc is the mutual information for PU over one channel use during the communi-

cation period of SU-TX. During the sensing period, SU-TX is always silent and the PU channel is

simply an Additive Gaussian Noise (AGN) channel therefore ÎPU−Ns = (1/2) log(1 + PPU). On

the other hand, during the communication period SU-TX may transmit if it detects an opportunity

and thus the PU channel is an Additive Mixture Gaussian (AMG) channel. Therefore,

ÎPU−Nc = h(YPU)− h(YPU|XPU) = h(YPU)− h(ZPU), (2.4)

where h(X) = −
�
fX(x) log [fX(x)] dx is the differential entropy of random variable X having

PDF fX(x) and ZPU = WPU + αXSU is a mixture Gaussian random variable with PDF

fZPU
(x) = (1− Pα)×N (x; 0, 1) + Pα ×N (x; 0, 1 + PSU). (2.5)

SU system only communicates during the communication period whenever SU-TX detects an

opportunity. Therefore, the mutual information for the SU system over N channel uses of the

entire frame is given by

ISU−N = ψ1 Nc ÎSU−Nc. (2.6)

Here the product term ψ1Nc represents the degrees of freedom available to SU for communica-

tions, which quantify the average number of channel-uses per transmission frame used by SU for

communications, in the long run. Note that ψ1 = Pr(SU is on) = (1− PF)π0 + (1− PD)π1 and

ÎSU−Nc is the mutual information for SU over one channel use during the communication period,

given as follows

ÎSU−Nc = h(YSU)− h(YSU|XSU) = h(YSU)− h(ZSU), (2.7)
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where ZSU = WSU + βXPU is a mixture Gaussian random variable with PDF

fZSU
(x) = (1− Pβ)×N (x; 0, 1) + Pβ ×N (x; 0, 1 + PPU). (2.8)

2.3.2 Optimization Problem and Procedure for Solution:

A low detection probability requires small sensing time and thus corresponds to high degrees of

freedom available to SU for communications. At the same time, it causes high interference for

both SU and PU that results in a degradation in performance of both systems, and vice-versa.

Therefore, variations in the sensing time and threshold affect the detection probability which

incurs both loss and gain at the same time for SU, thereby indicating the need of a trade-off for

SU performance. Our objective is to find the optimal sensing threshold λ and sensing time τ

that will maximize the SU performance and at the same time keep the detection quality within a

suitable range. Thus, our objective is to find the optimal τ and λ that will maximize the mutual

information ISU−N under the constraint that PD will not drop below a given threshold PDT
, i.e.,

max
τ,λ

ISU−N, s.t. PD ≥ PDT
. (2.9)

Based on our discussion in Section 3.2 and 2.3.1, we can express the objective function in (4.31)

in a more elaborative form as follows

max
τ,λ

ψ1

�
PD(τ,λ), PF(τ,λ)

�
.(1− τ)N.

�

x∈R
g

�
x, PD(τ,λ), PF(τ,λ)

�
dx, s.t. PD(τ,λ) ≥ PDT

.

(2.10)

Note that g(x, PD, PF)= fYSU
(x)− fZSU

(x), whereas the integral
�
g(x, PD, PF)dx= ÎSU−Nc is

a difference of entropies of mixture Gaussian random variables, as shown in (2.7), which does

not have a closed form solution and needs to be evaluated numerically [32]. Moreover, as ex-

plained in Section 3.2, ψ1 in (2.10) and the distributions of the mixture Gaussian variables in

our model are functions of false alarm and detection probabilities given by PF = Γ(NS/2,λ/2)
Γ(NS/2)

and PD =
Γ

�
NS/2,

λ

2(1+PPU)

�

Γ(NS/2)
. Recall from Section 3.2 that these probabilities are ratios of Gamma

functions which are integrals without closed form solution [30]. Due to this analytical complexity
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of problem (4.31), we cannot use the standard analytical methods for optimization. Therefore, in

this study, we develop a numerical framework to solve the optimization problem (4.31), which is

discussed in Section 2.5. The framework includes the numerical evaluation of entropy of mixture

Gaussian distributions and the numerical solution of problem (4.31). Here, in this Section, we

present our two step optimization procedure that is used in the numerical framework. This opti-

mization procedure enables us to quantify the SU performance as a function of a single variable,

instead of two variables τ and λ, as explained in the subsequent paragraph. This helps generate

SU performance results that are easy to visualize and analyze, and also present useful insights, as

discussed in Section 2.5.

In the first step of optimization, we fix PD to some value say P̃D. For a given PD, ISU−N varies

with PF, as detailed in Sections 3.2 and 4.3. So, we maximize ISU−N over all such τ and λ for

which PD = P̃D. This first step results in the maximum values of ISU−N for each P̃D, which we

represent as ĨSU−N, given by

ĨSU−N = max
τ,λ

ISU−N, s.t. PD = P̃D. (2.11)

ĨSU−N is thus a function of P̃D. Note, that P̃D is used only for expressing the mathematical formu-

lation (2.11), and that P̃D and PD are interchangeable everywhere in our analysis. In the second

step of our optimization procedure, we select the maximum ĨSU−N such that P̃D ≥ PDT
as shown

below in (2.12).

max
P̃D

ĨSU−N, s.t. P̃D ≥ PDT
. (2.12)

This concludes the optimization procedure. Note that the two step optimization procedure enables

us to quantify the SU performance in terms of ĨSU−N which is a function of a single variable P̃D,

instead of ISU−N which is a function of two variables τ and λ and therefore not easy to analyze.

The SU performance, in terms of ĨSU−N, is studied in detail in Section 2.5.

21



2.3.3 The Constraint Threshold PDT
:

We have already introduced ĨSU−N, a function of P̃D, as the performance metric for SU. It is the

maximum value of ISU−N over all such τ and λ for which PD = P̃D. For the same detection

probability, the corresponding value of IPU−N provides the measure of PU performance and is

represented as ĨPU−N, defined as follows

ĨPU−N = IPU−N, s.t. PD = P̃D. (2.13)

Thus ĨPU−N, a function of P̃D, is the performance metric for PU. Also, for all such τ and λ for

which PD = P̃D, IPU−N is a constant as detailed in Section 3.2 and 4.3. Therefore we do not need

to maximize it as we did for ĨSU−N.

A decrease in detection probability always deteriorates the PU performance due to increase

in interference by SU. Thus, ĨPU−N always decreases with decrease in P̃D. Therefore, for the

optimization problem (2.12), at first, we select an appropriate detection probability threshold PDT

such that the PU performance ĨPU−N does not drop below a given threshold. For this, we define

the PU performance degradation (PPD) metric, for a certain value of ĨPU−N, with respect to the

value of ĨPU−N at P̃D = 1. This metric is given as follows

∆PU =
ĨPU−N(PD = 1)− ĨPU−N

ĨPU−N(PD = 1)
. (2.14)

Thus, for some given maximum value of PU performance degradation factor say ∆T, we can find

the minimum eligible value of ĨPU−N. We evaluate PDT
as the value of P̃D corresponding to this

minimum eligible PU rate. Therefore, we can write

PDT
= P̃D, s.t. ∆PU = ∆T. (2.15)

In this way, we find an appropriate value for the constraint threshold PDT
that ensures the PU

performance degradation remains within a given tolerable range. Later, for all P̃D values greater

than or equal to PDT
, we maximize the SU performance ĨSU−N. As a result, we eventually reach
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our goal of maximizing the SU performance for an acceptable degradation in PU performance, as

summarized below.

max
P̃D

ĨSU−N, s.t. P̃D ≥ PDT
,

where, ĨSU−N = max
τ,λ

ISU−N, s.t. PD = P̃D,

and, PDT
= P̃D, s.t. ∆PU = ∆T.

2.4 Comparison with the Conventional Model

To the best of the authors’ knowledge the studies done so far on sensing-throughput trade-off have

implicitly or explicitly made an important assumption that the SU-RX operates coherently with

PU-TX. Under this assumption the received signal at SU-RX is given by

YSU =






XSU +WSU if Ĥ = 0, H = 0.

XSU +WSU +XPU, if Ĥ = 0, H = 1.

(2.16)

While, the SU information rate for this model is given by

ISU−N = Nc I(XSU;YSU|Ĥ,H)

= (1− τ)N

× [Pr(Ĥ = 0, H = 0) I(XSU;YSU|Ĥ = 0, H = 0)

+ Pr(Ĥ = 0, H = 1) I(XSU;YSU|Ĥ = 0, H = 1)]. (2.17)

For this model the capacity can be achieved if XPU and XSU are Gaussian distributed with proba-

bility density functions (PDFs) N (0,PPU) and N (0,PSU) respectively, with WPU and WSU both

are Gaussian distributed with PDF N (0, 1). Under these conditions, the achievable SU informa-

tion becomes [13, 20–26],

ISU−N = (1− τ)N × [π0 (1− PF) log(1 + PSU) + π1 (1− PD) log(1 +
PSU

1 + PPU

)]. (2.18)
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In the conventional studies, optimal τ and λ are found to maximize ISU−N. Thus, the conventional

optimization problem for the sensing-throughput trade-off is given by

max
τ,λ

ISU−N, s.t. PD ≥ PDT
. (2.19)

In the conventional model, the assumption that SU-RX operates coherently with PU-TX has ma-

jor consequences on the sensing-throughput trade-off. Due to this assumption SU information

rates for a single channel use, I(XSU;YSU|Ĥ = 0, H = 0) = log(1 + PSU) and I(XSU;YSU|Ĥ =

0, H = 1) = log(1+ PSU

1+PPU

), are independent of PD. Now, since PF ≤ PD always holds, therefore

according to (2.18) ISU−N is a decreasing function of PD for a fixed τ . Therefore, for the conven-

tional model, PD ≥ PDT
constraint is equivalent to PD = PDT

. Hence, conventional model only

requires maximizing ISU−N with respect to τ for an arbitrarily high value of PDT
.

As a contrast, in our model, we assume that SU-RX is not coherent to PU-TX. Consequently,

we have a mixture Gaussian channel, with a more complicated coupling relationship between the

primary and the secondary users. Such coupling relationship is reflected not only by the presence

or absence of an interference component in the received signals, which already showed up in

conventional models, but also in a more complicated computation of the mutual information under

our proposed mixture model, as explained in Section 2.3.2. This has two implications. Firstly, SU

information rate ÎSU−N for a single channel use depends on PD for a fixed τ so that PD ≥ PDT

constraint is not equivalent to PD = PDT
for our optimization problem. Thus we first maximize

ISU−N with respect to τ for any given PD = P̃D to seek a relationship over all. Secondly, the effect

of PD on SU performance depends on the interference caused by PU. The level of this interference

depends on PPU for a fixed PSU. Due to this, we have identified interference regimes for the SU

performance based on PPU level, as discussed in Section 2.5.1. Also, in our analysis, instead of

assigning an arbitrary value to the optimization problem constraint PDT
we assign a value based

on the tolerable range of PU performance degradation as discussed in Section 2.3.2.
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2.5 Results and Discussion

This section discusses the relationship between the degrees-of-freedom (available to SU for com-

munications) and the interference experienced by SU. This interference is caused by the primary

user signal due to imperfection in detection by SU and it affects the SU channel-information-rate.

Finally at the end of this section, we present and discuss the solution to the optimization problem

under consideration.

As discussed in Sections 3.2 and 4.3, the resulting interference channel for our system model

is mixture Gaussian and in order to evaluate the information rates required for the analysis we

need to compute the differential entropy of mixture Gaussian random variables. However, the

differential entropy of a mixture Gaussian random variable does not have a closed form solution.

Moreover, the optimization problem formulated in Section 4.3 involves quite a few parameters

that are also non-linearly interdependent. Therefore, we have solved the optimization problem

numerically. For the numerical evaluation of differential entropy of a mixture Gaussian random

variable, we have implemented an algorithm based on the methodology proposed in [32]. In this

section, we present the numerical results for π1 = 0.7, N = 100 and PSU = 10. Also, in Sec-

tion 2.5.3 we present the optimal solution for two values of PSU, i.e., 0.1 and 10.

2.5.1 Objective function (ĨSU−N ) versus P̃D

The SU performance metric is ĨSU−N that is the maximum ISU−N at PD = P̃D. ĨSU−N is thus a

function of P̃D as discussed in Section 2.3.2. Here we discuss this SU performance metric as a

function of P̃D in detail in order to elaborate and explain the trade-off between the degrees of

freedom available to SU for communications and the interference experienced by SU due to PU.

Degrees of freedom available to SU: For the SU system, the product Ncψ1 that appears in (2.6)

is the measure of the degrees of freedom (DOF) for communications. It quantifies the average

number of channel-uses per frame used by SU for communications, in the long run, i.e., for

infinitely large number of frames. Recall that we introduced the notions of ‘channel-use’ and

‘frame’ in Section 3.2, where we described a synchronized frame structure for transmission of
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information in the system. The values of this DOF measure such that PD = P̃D and the SU

information rate is ĨSU−N, are plotted against P̃D in Figure 2.2. In this figure we present these

numerical plots for different values of PU transmission power, PPU. The figure shows that DOF
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FIGURE 2.2: DOF available for SU for communications.

available for SU decreases as the detection probability increases for all values of PPU. This is

because, increase in detection probability requires an increase in sensing time τ that results in

a decrease in the communication period available for SU that is Nc = (1 − τ)N . At the same

time, the increase in τ also causes an increase in false alarm probability PF, which in turn causes

an increase in the detection probability. Altogether, this decreases the probability that SU is ON,

i.e., ψ1 = Pr(SU is on) = (1 − PF)π0 + (1 − PD)π1. Hence, we conclude, that an increase in

detection probability corresponds to a decrease in both Nc and ψ1 thereby causing a decrease in

DOF available for SU.

Interference caused by PU: In (2.6), ÎSU−N is the mutual information of the SU system for a

single channel use. It is the indicator for the interference caused by the PU system. The greater

the interference, the lower will be the value of ÎSU−N. We represent the values of ÎSU−N, when

PD = P̃D and the SU information rate is ĨSU−N, as ˜̂
ISU−N, i.e., with both tilde and a hat. ˜̂ISU−N

is plotted against P̃D in Figure 2.3. In this figure we present these numerical plots for different
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FIGURE 2.3: SU information for single channel-use vs P̃D.

values of PU transmission power, PPU. The level of interference in the SU system caused by the

PU is determined by two factors, namely, the level of PU-TX transmission power PPU and the

SU-TX detection quality that is characterized by the value of P̃D. Higher values of PPU and lower

values of P̃D result in high interference levels thereby resulting in lower values of ˜̂
ISU−N in the

SU system, and vice-versa. Thus, for a fixed PPU, ˜̂ISU−N increases with increase in P̃D, as shown

in Figure 2.3. Also for a fixed P̃D �= 1, ˜̂
ISU−N is lower for higher values of PPU, as shown in

Figure 2.3. But, for P̃D = 1, PU and SU do not interfere at all and both PU and SU channels are

simply Gaussian. In that case, ˜̂ISU−N = (1/2) log(1+PSU) and is independent of PPU. Therefore,

all the curves meet at a single point at P̃D = 1.

Degrees of freedom versus interference trade-off for SU: For SU system, on one hand the

increase in detection probability causes a decrease in DOF available to SU for communications

and on the other hand it causes an increase in the information rate for a single channel use.

The overall resulting information rate for SU, i.e., ĨSU−N, is the product of DOF available and

the information rate for a single channel use ˜̂
ISU−N. Hence, there exists a trade-off for the SU

system between the available DOF and the interference level. This trade-off determines the overall
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trends in SU performance. The SU performance curves, for different values of PPU, are shown in

Figure 2.4. These curves are the numerical plots of ĨSU−N versus P̃D.
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FIGURE 2.4: SU performance curves.

Energy detector’s inefficiency region: Near P̃D = 1, a region of sharp decline in ĨSU−N exists,

which we call as the energy detector’s inefficiency (EDI) region. This sharp decline in SU perfor-

mance is due to the energy detection scheme’s behavior depending on the gamma function. Near

P̃D = 1, a very high increase in τ is required for a very small increase in P̃D. The communication

period Nc thus decreases quite significantly with τ , thereby causing a sharp decrease in the degrees

of freedom for communications as shown in Figure 2.2. During this EDI region, P̃D is very high,

i.e., nearly 1. Therefore, in this high-detection-probability region, the interference caused by the

PU system is very negligible and does not affect ˜̂ISU−N much, no matter what the PU transmission

power level is, as depicted in Figure 2.3. Hence, in this region the SU channel-rate ˜̂
ISU−N is almost

constant but the steep decline in DOF causes a similar decline in SU performance, as suggested

by (2.6). For all selected values of PPU, the EDI region starts almost at the same value of P̃D

defined as PDT2
. Numerical results, as presented in Figures 2.4 and 2.5, show that if P̃D exceeds

PDT2
and enters the EDI region, then it will not improve the PU performance much, but deterio-

rate the SU performance quite significantly, even when we are increasing the detection probability.
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This is what we mean by the word ‘inefficiency’ here. Thus, ĨSU−N(PDT2
) >> ĨSU−N(1) while

ĨPU−N(PDT2
) ≈ ĨPU−N(1). Thus, it is better to avoid the inefficient EDI region by sacrificing

some P̃D in order to have a better SU performance at almost no cost of PU performance. Hence,

the appropriate value of P̃D is upper bounded by PDT2
instead of being exactly equal to 1. Our

numerical algorithm can find the value of PDT2
for some higher levels of PU transmission power

as discussed in remark 1 in Section 2.5.3.

Upper bound of SU performance for perfect detection: Consider the case of perfect detec-

tion, i.e., PD = 1. For this case, PU and SU systems do not interfere with each other and both

PU and SU channels are simply Gaussian. Therefore, at PD = 1, the SU information rate for a

single channel use is ÎSU−N (PD = 1) = (1/2) × log(1 + PSU). Also, in the case of perfect

detection, SU remains ON only when PU is OFF and there is no false alarm, i.e., the noise power

level remains below the sensing threshold level λ. In this scenario, probability that SU is ON is

thus given by ψ1(PD = 1) = [1− π1]× [1− PF]. Now consider a limiting case of infinitely high

PU transmission power, to achieve perfect detection. In this case, SU-TX requires infinitesimally

small sensing time, i.e., τ ≈ 0 to achieve perfect detection. Also due to very high PU transmission

power, the false alarm probability can be kept infinitesimally small at the same time, by selecting

a very large sensing threshold and thus PF ≈ 0. For such a scenario, the upper bound on ISU−N for

perfect detection can be achieved and is evaluated as ν1 = 1

2
(1−π1)N log(1+PSU), using (2.6).

PU transmission power threshold: As shown in Figure 2.4, at P̃D = 1, ĨSU−N increases with

increase in PU transmission power PPU but remains below ν1 since it is the upper bound on the

SU information rate at PD = 1. Now, consider the case of P̃D = 0. On one hand, for higher values

of PU transmission powers, ĨSU−N is less than ν1. On the other hand, for certain lower values of

PU transmission powers, ĨSU−N(P̃D = 0) is greater than ν1. This motivates us to categorize SU

performance curves on the basis of SU performance in case of no detection, i.e., when PD = 0.

We therefore define a threshold value of PPU represented as P̂PU such that ĨSU−N(P̃D = 0) = ν1.

We called the region of P̃D ≥ PDT2
as the EDI Region for SU. Thus the region of P̃D ≤ PDT2

is
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the Non-EDI Region for SU and consists of two regimes, namely the High and Low Interference

Regimes for the SU. We define these regimes on the basis of PU transmission power level, as

compared to the threshold P̂PU that we have just introduced. These regimes are discussed in the

subsequent discussion. We numerically estimate the value of P̂PU. For the system parameters that

we have selected for our numerical study, P̂PU ≈ 15. We call the corresponding SU performance

curve as the Neutral ĨSU−N Curve. It shows negligible variations with respect to P̃D, indicating an

underlying balance for the DOF and interference trade-off for SU, for the PU transmission-power

level of P̂PU.

Interference regimes for SU (non-EDI region): The non-EDI region with a weak primary

power, i.e., PPU < P̂PU, is called the Low Interference Regime. The ĨSU−N versus P̃D curves,

above the Neutral ĨSU−N Curve, lie in the Low Interference Regime for SU. There are two different

trends of SU performance in this regime. The first one is for the values of PPU close to P̂PU in

which ĨSU−N first decreases and then increases with increase in P̃D, for the non-EDI region as

shown in Figure 2.4. This trend constitutes the Stronger Low-Interference Regime. The second

trend is for the lower values of PPU for which ĨSU−N decreases with increase in P̃D for the non-

EDI region as shown in Figure 2.4. This is because the effect of DOF dominates that of the

interference in this regime of SU operation. As shown in Figure 2.2, for all values of PPU, DOF

decreases with increase in P̃D. Therefore in this Non-EDI region, ĨSU−N decreases with increase

in P̃D. This trend constitutes the Weaker Low-Interference Regime. The non-EDI region with a

stronger primary power, i.e., PPU > P̂PU, is called the High Interference Regime. The effect of

interference dominates that of the DOF in this regime of SU operation. As shown in Figure 2.3,

for all values of PPU, ˜̂ISU−N increases with increase in P̃D, because of the decrease in interference

within the SU system due to PU. Therefore in this Non-EDI region, ĨSU−N increases with increase

in P̃D. The ĨSU−N versus P̃D curves, below the Neutral ĨSU−N Curve, lie in the High Interference

Regime for SU. Note that such interesting trends in SU performance, based on the interference
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caused by PU, are not revealed by the conventional model and can only be observed under the

mixture Gaussian model proposed in our study.

2.5.2 ĨPU−N versus P̃D

The ĨPU−N versus P̃D curves are the PU performance curves. Figure 2.5 shows that ĨPU−N in-

creases with P̃D for all values of PPU. The trends in these curves are because of the interference

in the PU system due to SU. The effect of this interference in PU system depends on the level of

PPU and the value of P̃D. For a given PPU, an increase in P̃D causes a decrease in interference

from SU and thus PU performance increases. On the other hand, for a given P̃D, increase in PPU

increases the PU information rate thereby increasing the PU performance.
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FIGURE 2.5: PU performance curves.

2.5.3 Optimal Solution

Based on the optimization procedure suggested in Section 2.3.2 we numerically solve prob-

lem (4.31). For quite a few selected values of PPU the results for ∆T = 0.04 are given in Ta-

ble 2.2 and 2.3. Here in these tables, P̃D0 and ∆̃0 are the values of detection probability and ∆PU,

respectively, for the corresponding optimal solution. Following are some remarks related to the

numerical solutions presented in Table 2.2 and 2.3.
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TABLE 2.2: Optimized Solutions for ∆T = 0.04, PSU = 10, Energy Detector

PPU max ISU τ̃0 λ̃0 P̃D0 P̃F0 ∆̃0

1 20.4258 0.3402 40.9927 0.9687 0.2017 0.04
5 30.6721 0.1216 24.9403 0.9812 0.0165 0.04

10 31.7490 0.0900 21.9999 0.9910 0.0089 0.0176
P̂PU ≈ 15 32.0381 0.0800 21.0000 0.9950 0.0071 0.0092

25 32.6405 0.0700 20.9996 0.9970 0.0038 0.0105
75 32.7804 0.0500 19.0121 0.9989 0.0019 0.0067

TABLE 2.3: Optimized Solutions for ∆T = 0.04, PSU = 0.1, Energy Detector

PPU max ISU τ̃0 λ̃0 P̃D0 P̃F0 ∆̃0

0.1 2.0473 0.0938 9.1668 0.5167 0.4472 0.04
2 1.7302 0.0257 9.5706 0.2925 0.0153 0.04

P̂PU ≈ 4.1 1.3386 0.0114 13.2715 0.1350 0.00036 0.04
8 1.2250 0.1100 23.0000 0.9950 0.0177 0.00066

16 1.2820 0.1000 26.000 0.999 0.0037 0.000035

1. When PPU > P̂PU, the SU performance curve is in the High Interference Regime for SU

where ĨSU−N increases with increase in P̃D for the non-EDI region as shown in Figure 2.4.

In this case, maximum value of ĨSU−N is at the maximum allowed value of P̃D, i.e., PDT2
.

We cannot have a better detection probability, because, beyond P̃D = PDT2
the EDI region

begins, and in this region the SU performance decreases with increase in detection proba-

bility, as discussed in Section 2.5.1. Thus we conclude that, for a practical system where

the PU transmission-power level is very high, the SU’s signal detector should be designed

for the maximum allowed detection probability in order to avoid any chance of interference

from PU.

2. Note that for the High Interference Regime for SU, our algorithm gives us the value of

detection probability at which the EDI region begins, i.e., PDT2
, since it is the detection

probability corresponding to the optimal solution for this regime, according to remark 1.

3. When PPU < P̂PU, the SU performance curve is in the Low Interference Regime for SU.

For this regime, the interference caused by PU is so low that the contention occurring due to
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the decrease in detection probability does not deteriorate SU performance much. Rather, it

causes a decrease in sensing time which implies an increase in degrees of freedom for com-

munications. Consequently, this results in an increase in SU information rate with decrease

in detection probability. Below a certain detection probability, the SU performance for the

weaker low interference regime even exceeds ν1, i.e., the upper bound on SU performance

for the high interference regime. Thus, for the Weaker Low Interference Regime ĨSU−N de-

creases with increase in P̃D for the non-EDI region as shown in Figure 2.4. Therefore in

this regime, the maximum value of ĨSU−N is at the minimum allowed P̃D, i.e., PDT
. We

cannot have a further lower detection probability, because, by definition (2.15), PDT
is the

value of detection probability at which the PU performance degradation factor ∆PU is at its

maximum allowed value ∆T. Further decreasing the detection probability increases ∆PU

which violates our optimality constraint.

4. According to remark 3, the value of PU performance degradation factor corresponding to

the optimal solution for the Weaker Low Interference Regime is equal the maximum al-

lowed value ∆T. Thus, ∆̃0 = ∆T for the Weaker Low Interference Regime, as indicated

by the solutions presented in Table 2.2 and 2.3. Therefore we can also infer that, for a

practical system, the tolerance-level for the PU performance-degradation can be exploited

to increase the SU performance by sacrificing PD but only for the Weaker Low Interference

Regime of SU.

5. Table 2.2 shows that for SU transmission power, PSU = 10, the optimal SU information

rate is quite high in case of high PU transmission power provided the detection probability

is very high. Thus for the assumed values of the system parameters we can conclude that if

4% performance degradation can be tolerated by PU then in case of strong SU transmission

power level, e.g., 10, SU has the best optimal-performance in case of High Interference

Regime provided the detection probability is very high. This is because for high SU trans-

33



mission power the detection probability should be as much high as possible, i.e., nearly 1,

in order to avoid a high interference in PU system. Also, for very high detection probabil-

ity, high PU transmission power ensures smaller sensing time for SU thereby causing high

degrees of freedom for communications and hence high information rate for SU.

6. Table 2.3 shows that for a weak SU transmission power, i.e., PSU = 0.1, the optimal SU

information rate is quite high in case of low PU transmission power. This is because, a low

SU transmission power level causes a low interference to the PU system. In this case PU

can tolerate a large extent of contention. This allows SU to operate at such low detection

probability levels such that the sensing time is small which implies high degrees-of-freedom

for communications for SU. This results in a higher SU performance for the weaker low

interference regime which is even higher than the upper bound on SU performance for high

interference regime.

7. According to remarks 5 and 6, for a practical system, the optimal secondary user throughput

is high when both SU and PU transmission-power levels are either low or high.

2.5.4 Comparison with Conventional Studies

Recall from Section 2.4 that in the conventional studies, a major consequence of the assumption

that SU-RX is coherent to PU-TX is that the inequality constraint in (4.31), on the detection prob-

ability, is always equivalent to the equality constraint, regardless of the interference caused by PU

to SU. However, as discussed in Section 2.5.3, our results demonstrate that under the assumption

that SU-RX is incoherent to PU-TX, the SU system can improve its throughput by sacrificing the

detection probability and maintaining only the minimum required detection quality, but for the

low interference regime. Thus, under the incoherent assumption, the inequality constraint on the

detection probability is equivalent to the equality constraint only for this regime. Note that this

does not hold for the high interference regime where the detection probability cannot be sacrificed,

as discussed in Section 2.5.3.
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2.6 Nearest Neighbor Decoding for PU

In the case of a Gaussian channel, the capacity, i.e., 1/2 log(1 + SNR) can be achieved for

Gaussian channel input and the nearest neighbor decoding (NND) is the optimal decoding rule

for the receiver [33]. Since the PU system does not know about the existence of the SU sys-

tem therefore we can assume that it anticipates the channel as Gaussian. For this, PU-TX uses

Gaussian channel-input and NND is the decoding rule for PU-RX. For an ergodic non-Gaussian

channel, the achievable channel capacity is 1/2 log(1 + SNR) if the receiver uses NND [31].

Also, this capacity is achieved for the Gaussian channel-input [31]. Therefore, in our new sce-

nario for PU in which PU-TX still uses the Gaussian channel-input but PU-RX uses the near-

est neighbor decoding rather than the ML, the mutual information for a single channel use is

ÎPU−Nc = 1/2 log[1 + (PPU/σ
2

ZPU
)] during the communication period of SU, where σ2

ZPU
= 1+ (1−

PD)PSU. The mutual information for a single channel use during the sensing period of SU, ÎPU−Ns,

is the same as before. Therefore, the mutual information for the PU system over N channel uses

can be evaluated as follows by using (2.3).

IPU−N = π1N
τ

2
log(1 + PPU) + π1N

(1− τ)

2
log(1 +

PPU

1 + (1− PD)PSU

). (2.20)

Thus, when PU-RX employs NND, only the expression for IPU−N changes. The rest of the details

remains the same as that in case of ML-detector for PU-RX. We can find the new optimal sensing

time and threshold for SU-TX by using the updated expression for IPU−N given by (2.20) and

adopting the same methodology discussed earlier.

2.6.1 Effect of Fading

In this section, we discuss a simple scenario that can give us some idea how fading can affect the

degrees of freedom and interference trade-off. However, a more thorough analysis with fading

needs a dedicated study and is left for future work. For this study, we assume that PU-RX uses

NND decoding and fading only occurs over the SU-TX to PU-RX channel. Let ΦSP be a random

variable representing the fading coefficient over this channel, such that the fading deteriorates the
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SU interference to PU, i.e., θSP = E
�
|ΦSP|

2
�
∈ (0, 1). Note that E[.] represents the expected value

of the random variable. The PU received signal for this scenario will be YPU = XPU+ZPU, where

the noise at the PU receiver is ZPU = WPU + αΦSPXSU. Similar to (2.20), the PU information

rate under the stated fading scenario and NND decoding is given by, [31],

IPU−N = π1N
τ

2
log(1 + PPU) + π1N

(1− τ)

2
log(1 +

PPU

1 + (1− PD)θSPPSU

). (2.21)

Note that here we assume that ΦSP is independent of all other random variables. Since 0 < θSP < 1,

therefore, comparing (2.20) and (2.21) reveals that the PU performance improves under the fad-

ing over SU-TX to PU-RX channel that deteriorates the SU interference to PU. Therefore, for a

fixed minimum allowed degradation in PU performance, PU can tolerate more interference from

SU under such fading scenario. Thus, SU can further improve its performance under such sce-

nario by sacrificing the detection probability further. However, as discussed in Section 2.5.3, such

improvement in SU performance is only possible under the low interference regime.

2.7 Energy Detector versus Envelope Detector

Earlier we assumed that SU-TX uses the optimal signal detector under the Neyman-Pearson

rule [34], i.e., the energy detector in our system model under the Gaussian assumption. In this

section, we numerically solve the same optimization problem for a relatively less sensitive enve-

lope detector. For the envelope detector, instead of evaluating the closed form expressions for PD

and PF, we adopt the Monte Carlo simulation approach. The SU and PU performances versus the

detection probability for both the detectors are presented in Figures 2.6 and 2.7 respectively. A

particular optimal solution for the envelope detector is presented in Table 2.4.

As compared to Table 2.2, Table 2.4 shows that the optimal sensing time is almost the same

as in case of the optimal (energy) detector and the most significant effect of using the envelope

detector instead of the energy detector is a considerable reduction in the value of optimal sensing

threshold λ̃0. This is because the envelope detector is less sensitive to the PU signal than the

energy detector. To compensate this decrease in sensitivity, the sensing threshold needs to be
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FIGURE 2.6: PU performance curves for envelope and energy detectors.

lowered while keeping the sensing time the same as in case of the optimal (energy) detector.

Also, this reduction in the sensing threshold increases the false alarm probability for the envelope

detector as compared to the energy detector while the sensing time remains the same.

TABLE 2.4: Optimized Solutions for ∆T = 0.04, PSU = 10, Envelope Detector

PPU max ISU τ̃0 λ̃0 P̃D0 P̃F0 ∆̃0

1 17.8873 0.3059 21.3106 0.9687 0.3441 0.0398
P̂PU ≈ 15 31.8157 0.0800 11.0000 0.9930 0.0073 0.0135

75 32.6701 0.0500 8.0000 0.9990 0.0047 0.0068

Figure 2.6 shows that there is no significant difference in PU performances for both the de-

tectors. On the other hand, Figure 2.7 shows that in case of the high interference regime there

is almost no difference in SU performances for both the detectors but in case of the low inter-

ference regime SU performance for the envelope detector is slightly less than that for the energy

detector. This is because in the high interference regime PU transmission power is very high, and

together with the appropriate decrease in the sensing threshold, it almost completely compensates

the decrease in detector’s sensitivity.

Frequency bands dedicated for TV-broadcasting are the potential spectral resource that can be

used by the intelligent wireless devices (SUs) that can sense the presence or absence of the TV
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signal in the frequency band of interest and access the channel if it is found idle [35]. Since TV

broadcasting is done at a high transmission power level therefore, according to our results in this

section, even if the signal detector of the SU wireless device performs suboptimally SU can still

achieve the optimal-detector’s performance level just by adjusting the sensing parameters, e.g., in

the same way as the sensing threshold for the envelope detector is tuned to achieve the optimal

detector’s performance level in the high interference regime, in our system model.

2.8 Conclusion

In this study, we explored the degrees-of-freedom and interference trade-off for a simple cog-

nitive radio system under an assumption that the secondary-user (SU) receiver operates incoher-

ently with the primary-user (PU) transmitter. This assumption makes our system model practically

more rigorous, as compared to the conventional studies where a coherent operation is assumed.

Due to the incoherent operation of SU receiver in our model, the resulting interference channel is

mixture-Gaussian. Our objective is to find the optimal sensing threshold and sensing time for the

signal detector that is used by the SU to detect the channel occupancy by the PU. The optimal-

ity criterion is to maximize the SU performance and at the same time keep the PU performance

degradation, caused by the interference due to SU, within a tolerable range. We numerically solve
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this optimization design-problem since the closed form solution is not possible. As a further novel

contribution, we define the interference regimes for SU performances on the basis of PU trans-

mission power level. We also find that the tolerance level for PU performance degradation can

be exploited to increase the SU performance but only for the Weaker Low Interference Regime

for SU. The effect of a more robust decoding strategy, namely, nearest neighbor decoding ap-

proach, at PU-RX is also elaborated. Finally, we demonstrate that even if the signal detector of

SU performs suboptimally, SU can still achieve the optimal detector’s performance level in the

high interference regime just by adjusting the sensing parameters accordingly.
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Chapter 3
Communication Channel Allocation by Call
Admission and Preemption Control

Public safety communication systems are implemented as trunked mobile radio systems. The

finite-source queueing model, i.e., the Engset model, has been suggested as the appropriate model

in literature for these systems. In this study, we present the analytical framework and character-

istics of the optimal call admission and preemption control for such systems. We consider two

classes of users, namely, of high and low priority. We show that the optimal low priority (LP) call

admission policy is a state dependent threshold based policy. We also demonstrate that the opti-

mal LP call preemption policy is a threshold based policy. This study has resulted in two research

papers, [36, 37].

3.1 Introduction

Public safety communication systems are implemented as trunked mobile radio systems [38–40].

In these systems, the coverage area is divided into sites. Also, the users are divided into fleets

or groups normally called talk groups. Each user can only communicate with another user of the

same talk group. When a user needs to talk, it presses the push-to-talk (PTT) button of its radio,

in order to send a call request at the site’s base-station. The base-station assigns communication

resources to the caller and the rest of the users of the talk group, in order to broadcast the voice

call throughout the group. Thus, in these systems, the channel allocation for communication is

performed on talk group basis. Therefore, instead of radios the source units are the talk groups.

These talk groups are also finite in number. In these systems, when a user in a talk group talks,

the rest of the users only listen. Therefore, a talk-group under service cannot generate any call.

Thus, only an idle talk-group can generate a call in a trunked radio system. This makes the system

call arrival rate depend on the number of idle talk groups in the system, which in turn depends on

the system state, defined as the number of busy talk groups in the system. These features of the
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trunked systems, namely, the finite number of talk groups and the state dependent call arrival rates,

are well captured by the finite-source or the Engset model [41], discussed in detail in Section 3.2.

Therefore the finite-source model is suggested for the trunked radio systems in [39, 40]. This

traffic model is different from the Poisson arrival traffic in the Erlang system, where the system

call-arrival rate is state independent [41].

Due to the limited number of channels available, trunking alone is not sufficient to fulfill the

service demand of the system, especially in high call-traffic scenarios, e.g., an emergency or a

disaster event in case of the first responders’ communication systems. To alleviate this problem

talk groups are assigned priority levels, such that the system serves the talk groups according

to the assigned priority, so that whenever there is a high demand of service the high priority

talk groups get least affected. We call this system as a prioritized trunked radio system, i.e., a

system which consists of talk groups of different priority levels. An efficient bandwidth allocation

and management mechanism is required for any prioritized communication system, which has

a limited number of communication resources. This goal can be accomplished by introducing

call admission and preemption mechanisms [42–44]. To the best of our knowledge, the study of

optimal admission and (or) preemption control for the queueing systems has only been done for

the Poisson arrival traffic, i.e., for the Erlang system, see [42, 45–47] and references therein. In

this chapter, we study the admission and preemption control for an Engset (finite source) system,

which is the suggested model for the trunked systems [39, 40].

Our analysis of finite source system is non-trivial in spite of the extensive literature on relevant

analysis for the system with Poisson arrivals, i.e., the Erlang system. This is because the analysis

for the Erlang system cannot be immediately extended to the finite source system due to two

fundamental reasons: 1. firstly, the net call arrival rate in the finite source system depends on

the system state [41], in contrast to the Poisson arrival traffic in the Erlang system where the

call arrival rate is state independent [41]; and 2. secondly, the topology of the state space of the

finite source system is different from the Erlang system, as demonstrated in Section 3.2.1. These
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aspects of the finite source system also make the analysis more challenging as compared to that

of the Erlang system. More specifically, our major contributions are: 1. we present the analytical

framework for the optimal control of both admission and preemption in a two-class finite source

loss system; and 2. we show that the optimal low priority (LP) call admission policy is a state

dependent threshold based policy, which is similar to the result for the optimal admission control

in Erlang system presented in [46]. Also as a further contribution, we provide the sufficient cost

conditions for which the LP call admission and preemption are inevitable, i.e., always optimal,

independent of the system state. Finally, we demonstrate using numerical results that the optimal

LP call preemption policy in a finite source loss system is a threshold based policy.

More Applications: In a broader context, in this study, we investigate the optimal service

allocation for a finite-source queueing system. Apart from trunked radios, this model, and hence

our results, are also applicable to other interesting systems. For example, consider an Internet

of things, similar to one considered in [48]. In such systems, sensor and actuator devices are

connected to Internet via a wireless access point. We can model this as a finite source queueing

system, with devices as source units and the access point as a channel, such that a source-unit

under service does not generate a new service request. This is exactly the model being considered

in this study. Thus, our study can help develop optimal service allocation policy for such systems

as well.

3.2 Mathematical Model

We consider a finite source model for a trunked radio system where the talk groups are the call

source units, as discussed in Section 4.1. We consider a loss system, i.e., a system without a

queueing buffer or zero queue length. We assume two classes of talk groups, namely, the low-

priority (LP) and the high-priority (HP) talk groups. Let ML and MH be the number of LP and

HP talk groups in the system respectively. There are N identical channels in the system. We also

assume that the total number of talk groups in the system is more than the number of channels,

i.e., ML +MH > N . The call service times, or call durations, are independent and exponentially
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distributed, with mean µ
−1, for both the classes. Thus µ is the service completion rate for both

LP and HP calls. We consider the same service rates for both classes as done in [42, 47]. Also,

only an idle talk group can generate a call request as explained in Section 4.1. This makes the

net call arrival rate in the system depend on the system state. We define the system state as the

number of busy channels in the system, that is also equal to the number of busy talk groups. In

this study, the idle times of the talk groups are independent and exponentially distributed. Let

λL and λH be the LP and HP call arrival rates, per idle source, respectively. For a finite-source

loss system, same as the one we are considering in this study, the system steady-state (long-

run) average performance is insensitive to the idle and service times’ distributions of the source

unit [41]. We consider exponential idle and service times for the talk groups, so that the already

established Markov Decision Process (MDP) theory for the exponential queueing systems can be

used, which is presented in detail in Section 3.3.

Decision Control: In this study we are interested in the characteristics of the optimal call ad-

mission and preemption control for the system under consideration. At any given time, the system

sees one and only one arrival, due to the assumption of independent exponentially distributed talk

group idle times [41]. This call can either be an HP or an LP call. We then have two cases. The

first case arises when the arrived call is HP. In this case, the arrived HP call is always admitted if

an idle channel is available. Otherwise, if all channels are busy, then the system needs to decide

out of two options, i.e., either block the arrived HP call or permanently remove an LP call from

the system if there is one already under service. The latter option is known as preemption and this

decision process is called the Low-Priority Preemption Control (LPPC). The second case arises

when the arrived call is LP. In this case, the arrived LP call is always blocked if all channels are

busy. Otherwise, if an idle channel is available, the system needs to decide out of two options,

i.e., either block the arrived LP call or admit it. This decision process is called the Low-Priority

Admission Control (LPAC). Thus, there are two decision controls that we are considering jointly,
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namely, LPPC and LPAC. Together we name the decision control as the LP Call Admission and

Preemption (LCAP) Control.

3.2.1 System State Space

We define the state of the system in the form of a tuple (nL, nH), 0 ≤ nL ≤ M̂L, 0 ≤ nH ≤ M̂H.

Here nL and nH are the numbers of LP and HP calls that are under service in the system, respec-

tively, and M̂L and M̂H denote the maximum number of LP and HP calls that can be in service in

the system at a given time. Mathematically, M̂L = min(ML, N) and M̂H = min(MH, N). In case

of Poisson traffic [47], the number of LP or HP calls under service can only be less than or, at

the most, equal to the number of channels N , i.e., M̂L = M̂H = N . So the system state space, in

case of Poisson traffic, is always in the form of a 2D triangular grid [47]. However, in our finite

source system model, the system state space can be either a 2D triangular grid, when ML ≥ N

and MH ≥ N , or pentagonal, as shown in Figures 3.1(a) and 3.1(c), when ML < N and MH < N ,

or tetragonal grid otherwise.

We define S as the system state space, i.e.:

S = {(nL, nH)
�� 0 ≤ nL ≤ M̂L, 0 ≤ nH ≤ M̂H, nL + nH ≤ N}. (3.1)

We now present a classification of states on the basis of the LCAP decision control described in

Section 3.2. This will help analyze each group of states that is characterized by a certain decision

control as explained below.

LPAC States (G1): Let S1 ⊂ S , defined as:

S1 = {(nL, nH)
�� 0 ≤ nL ≤ M̂L − 1, 0 ≤ nH ≤ M̂H, nL + nH ≤ N − 1}. (3.2)

These states are marked with crosses and circles in Figure 3.1(a) and only with crosses in Fig-

ure 3.1(c). Whenever the system is in any of the states in S1, there is always an idle channel

available in the system. Therefore, all the states in S1 require only the LPAC control that is pre-

sented in Section 3.2.
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LPPC States (G2): Let S2 ⊂ S , defined as:

S2 = {(nL, nH)
�� N − M̂H + 1 ≤ nL ≤ M̂L, nL + nH = N}. (3.3)

These states are marked with asterisks and squares in Figures 3.1(a), and only with asterisks

in Figure 3.1(c). Whenever the system is in any of the states in S2, all the channels are busy

in the system. Therefore, all the states in S2 require only the LPPC control that is presented in

Section 3.2.

Known-LPAC State (G3): Let S3 ⊂ S , defined as:

S3 = {(nL, nH)
�� nL = N − M̂H, nH = M̂H}. (3.4)

This group only consists of a single state. Example of this state is (10, 30) in Figures 3.1(a) and 3.1(c).

This state does not require any LPPC control, but has a known or fixed LPAC policy, i.e., when-

ever an LP call arrives it will always be blocked, according to our decision policy defined in

Section 3.2.

No-Policy States (G4): Let S4 ⊂ S , defined as:

S4 = {(nL, nH)
�� nL = M̂L, 0 ≤ nH ≤ N − M̂L − 1}. (3.5)

This group of states exist when ML < N . These states are marked with diamonds for nL = 25 in

Figures 3.1(a) and 3.1(c). These states neither require an LPAC, as all LP talk groups are busy in

these states, nor they require an LPPC, as an idle channel is always available for a new HP call.

3.2.2 The MDP Approach

Given the stationary LCAP control policy, the state of the system evolves as a 2D continuous-time

Markov Decision Process (MDP) [49]. The MDP parameters of our model are discussed below.

Rewards and Costs: In this study, we do not assign any rewards for call admission or service

completion, rather we only assign costs for blocked and preempted calls. Let constants AL > 0

and AH > 0 be the costs of blocking LP and HP calls respectively. It is reasonable to assume
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AL ≤ AH, due to the priority assignment of the calls. Let K > 0 be the cost of preempting an LP

call which is already under service in the system. A similar cost model is also used in [42].

Discounting: We use discounting at a rate α ≥ 0. This ensures that the costs, at time, say t, are

scaled by a factor of exp(−αt). Note that the equivalence of α discounting and an exponential

lifetime of the system with rate α is well-known [50]. See [46, 47] for more details.

Uniformization: The process we have is a continuous-time Markov chain. We develop the dis-

crete time equivalent of this system using uniformization technique [51]. Without loss of general-

ity, we set the maximum possible rate out of a state to 1, i.e., MLλL+MHλH+Nµ+α = 1. Hence,

an LP call arrives with probability (ML−nL)λL, an HP call arrives with probability (MH−nH)λH,

an LP call completes its service with probability µnL, an HP call completes its service with prob-

ability µnH, the process terminates with probability α and the system stays at the same state, due

to no arrival and no service completion, with probability nLλL + nHλH + (N − nL − nH)µ.

Criterion for Policy Optimization: The objective is to find an optimal LCAP control policy

that minimizes the total expected long-run average cost for the system. However, we formulate and

study the problem for the expected α-discounted cost over the finite horizon, in order to utilize

useful analysis techniques such as induction, as used in [47]. Similarly as claimed in [47], our

results can also be extended to the long run or infinite horizon case, according to the conditions

discussed in [52]. Now, consider the average cost case that corresponds to α → 0 [46, 47]. Since,

our decision control or action space and the system state space are finite, therefore the results for

the the α-discounted case also hold for the average cost case [46, 47].

3.3 Dynamic Programming Formulation

In this section, we formulate our finite-horizon discounted-cost MDP-problem, as a stochastic

dynamic programming (DP) problem [53]. Let m be the observation points left until the end of

the horizon. Note that it is a reversed time index, i.e., m = 0 denotes the end of the horizon. We

define the cost function, Cm(nL, nH), as the minimum expected discounted cost for the system

in the current state (nL, nH) at time period m. We assume that C0(nL, nH) = 0, ∀(nL, nH) ∈ S ,
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same as in [42, 47]. This assumption means that the system closes without paying any cost at the

end of the process horizon. Now, we present the DP equations for m > 0, for each group of states

described in Section 3.2.1. Here we adopt a similar approach to write these equations as done

in [42, 46, 47].

For LPAC States: For these states, the optimal LPAC policy decision in state (nL, nH) at time

m is as follows:

d̂LPAC =






+1, Cm−1(nL + 1, nH) ≤ AL + Cm−1(nL, nH)

−1, otherwise.

(3.6)

Here, +1 and −1 mean “admit LP call" and “block LP call", respectively. Now for these states,

i.e., ∀(nL, nH) ∈ S1, the DP equation for m > 0 is:

Cm(nL, nH) = (ML − nL)λL ×min{AL + Cm−1(nL, nH), Cm−1(nL + 1, nH)}

+ (MH − nH)λHCm−1(nL, nH + 1)

+ nLµCm−1(nL − 1, nH) + nHµCm−1(nL, nH − 1)

+ [nLλL + nHλH + (N − nL − nH)µ]Cm−1(nL, nH). (3.7)

The first term is the contribution to the cost due to an LP arrival. Here, we have the option to

either block the LP call by paying a cost AL or admit it without any cost. The second term is

the contribution to the cost due to an HP arrival. We always admit an arriving HP call in these

states according to our policy structure mentioned in Section 3.2, because there is always an idle

channel available in these states as discussed in Section 3.2.1. The third and fourth terms are the

contributions to the cost due to service completions. The fifth term is a contribution to the cost if

the system remains in the same state due to no arrival and no service completion. The probabilities

corresponding to all these events are mentioned in Section 3.2.2. Similarly, we write the equations

for the rest of the groups of states.
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For LPPC States: For these states, the optimal LPPC policy decision in state (nL, nH) at time

m is as follows:

d̂LPPC =






+2, K + Cm−1(nL − 1, nH + 1) ≤ AH + Cm−1(nL, nH)

−2, otherwise.

(3.8)

Here, +2 and −2 mean “admit HP call by preempting an LP call" and “block HP call", respec-

tively. Now for these states, i.e., ∀(nL, nH) ∈ S2, the DP equation for m > 0 is:

Cm(nL, nH) = (ML − nL)λL [AL + Cm−1(nL, nH)]

+ (MH − nH)λH min{AH + Cm−1(nL, nH), K + Cm−1(nL − 1, nH + 1)}

+ nLµCm−1(nL − 1, nH) + nHµCm−1(nL, nH − 1)

+ [nLλL + nHλH]Cm−1(nL, nH). (3.9)

The first term is the contribution to the cost due to an LP arrival. We always block an LP call

by paying a cost AL in these states, according to our policy structure mentioned in Section 4.1,

because all channels are busy in these states as discussed in Section 3.2.1. The second term is

the contribution to the cost due to an HP arrival. Here, we have the option to either block the HP

call in which case a cost AH is incurred or admit the HP call by preempting an LP call already

in service by paying a cost K. The third and fourth terms are the contributions to the cost due to

service completions. The fifth term is a contribution to the cost if the system remains in the same

state due to no arrival and no service completion.

For Known-LPAC State: For (nL, nH) ∈ S3:

Cm(nL, nH) = (ML − nL)λL [AL + Cm−1(nL, nH)]

+ (MH − nH)λH [AH + Cm−1(nL, nH)]

+ nLµCm−1(nL − 1, nH) + nHµCm−1(nL, nH − 1)

+ [nLλL + nHλH]Cm−1(nL, nH). (3.10)
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The first term is the contribution to the cost due to an LP arrival. The second term is the contri-

bution to the cost due to an HP arrival. We always block an arriving call in this state, by paying

a cost AL for an LP arrival and AH for an HP arrival, as discussed in Section 3.2.1. The third

and fourth terms are the contributions to the cost due to service completions. The fifth term is a

contribution to the cost if the system remains in the same state due to no arrival and no service

completion.

For No-Policy States: ∀(nL, nH) ∈ S4:

Cm(nL, nH) = (MH − nH)λHCm−1(nL, nH + 1)

+ nLµCm−1(nL − 1, nH) + nHµCm−1(nL, nH − 1)

+ [nLλL + nHλH + (N − nL − nH)µ]Cm−1(nL, nH). (3.11)

The first term is the contribution to the cost due to an HP arrival. As discussed in Section 3.2.1,

for these states we cannot have an LP arrival, rather we can only have an HP call arrival which

is always admitted. The second and third terms are the contributions to the cost due to service

completions. The fourth term is a contribution to the cost if the system remains in the same state

due to no arrival and no service completion.

Boundary Conditions: The following boundary conditions are set, ∀m ≥ 0, (nL, nH) ∈ S:

Cm(−1, nH) = Cm(0, nH) Cm(nL,−1) = Cm(nL, 0)

Cm(nL, M̂H + 1) = Cm(nL, M̂H) Cm(M̂L + 1, nH) = Cm(M̂L, nH)

Cm(nL, N − nL + 1) = Cm(nL, N − nL)

This concludes the DP formulation of our MDP problem.

3.4 Characterization of Admission and Preemption Control

In this section, we present interesting properties of the optimal LPAC and LPPC policies. In the

proofs we employ the tools that are usually used for analyzing the MDP based queueing systems,

namely, the sample path argument, as in [46, 47], and the method of induction, as in [47].
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3.4.1 Coupling

In the proofs, based on the sample path argument, we use the method of coupling, and compare

two coupled systems with each other, similar to [46] where the system model assumes Poisson

call arrivals. However, in our study, we have a finite-source model in which calls originate from a

finite number of source units.

In case of Poisson arrivals, the busy calls of both the systems are coupled together. The coupled

systems experience the same sequence of events with same properties. In particular, both the

systems have the same arrival pattern, in case of Poisson arrivals. The calls in both the systems

always complete their services together at the same time and leave the system if they are of the

same class. However, if their classes are different, then both the calls always leave the system

together if and only if both the classes have the same call service rates [46].

We now extend this concept of coupling for our finite source system. In our system, all the

details of coupling remain the same as those mentioned for the Poisson arrivals, except the call

arrival patterns. This is because, in a finite source system, we need to consider the coupling of the

source units, including both the idle and busy sources. The calls from the coupled idle sources

of the same type always arrive together at the same time for both the systems, but the calls from

the coupled idle sources of different types always arrive together at the same time for both the

systems if and only if both the classes have the same call arrival rates.

3.4.2 Upper Bound on Cost to Admit LP call

Here we present a lemma which will set an upper bound for the cost of an additional LP call. The

first part of the lemma is used separately as Theorem 1, while the second part is used during the

proof of Lemma 3.

Lemma 1. ∀m ≥ 0, ∀(nL, nH) ∈ S , s.t., (nL + 1, nH) ∈ S:

1. K ≤ AL =⇒ Cm(nL + 1, nH)− Cm(nL, nH) ≤ AL.

2. K > AL =⇒ Cm(nL + 1, nH)− Cm(nL, nH) ≤ K.
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Proof. The methodology used for proving this lemma is the sample path argument. Consider two

systems, A and B. Assume that system A starts in state (nL, nH) and B starts in state (nL+1, nH).

We couple the two systems such that all the service and idle times, for the channels and sources,

in both the systems are the same, except, the additional idle LP talk group and channel in system

A, and the additional busy LP talk group and channel in system B. Also, assume that system

A follows the optimal policy, while system B imitates all the decisions of system A. Therefore,

Cm(nL, nH) = C
A

m(nL, nH) and Cm(nL + 1, nH) ≤ C
B

m(nL + 1, nH), where C
A

m(nL, nH) and

C
B

m(nL+1, nH) are the expected discounted costs of systems A and B repectively, at time m. Next,

we analyze all the possible cases in which both the systems can completely couple to become

identical systems.

The first case is, when both the systems end up with same costs after being completely coupled.

For this case, there can only be two possible scenarios. In the first scenario, at some point, the

additional idle source of system A may generate an LP call and system A admits it to couple with

system B. In the second scenario, the additional busy channel of system B completes the LP call

service to couple with system A. For both these scenarios:

C
B

m(nL + 1, nH) = C
A

m(nL, nH). (3.12)

The second case is, when both the systems end up with different costs after being completely

coupled. For this case, there can only be two possible scenarios. In the first scenario, system A

has an idle channel available and an LP call arrives. System A admits the call but system B blocks

it by paying the cost AL. Thus for this scenario:

C
B

m(nL + 1, nH)− C
A

m(nL, nH) = AL. (3.13)

In the second scenario, all the channels in system B are busy and an HP call arrives. Now, the

only possibility that the two systems can couple completely, is when system B admits it while

preempting an LP call at a cost K, provided the LP call preemption policy adopted by system B
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permits this, and system A admits the call without preemption, because system A still has an idle

channel available. In this scenario:

C
B

m(nL + 1, nH)− C
A

m(nL, nH) = K. (3.14)

From (3.12), (3.13) and (3.14), we can conclude:

C
B

m(nL + 1, nH)− C
A

m(nL, nH) ≤ max (AL, K). (3.15)

According to our assumption, Cm(nL, nH) = C
A

m(nL, nH) and Cm(nL+1, nH) ≤ C
B

m(nL+1, nH).

Therefore, we have:

Cm(nL + 1, nH)− Cm(nL, nH) ≤ max (AL, K). (3.16)

This completes the proof of Lemma 1.

3.4.3 A Sufficient Condition for Inevitability of LP Admission

The following theorem states a sufficient condition for the inevitability of LP admission, for the

LPAC states.

Theorem 1. It is always optimal to admit an arriving LP call, whenever an idle channel is avail-

able in the system, if the preemption of an LP call, at the most, costs as much as its blocking, i.e.,

∀m ≥ 0, ∀(nL, nH) ∈ S1 ⊂ S , s.t., (nL + 1, nH) ∈ S:

K ≤ AL =⇒ Cm(nL + 1, nH) ≤ AL + Cm(nL, nH). (3.17)

Proof. The theorem is mathematically the same as Lemma 1.1, i.e., part 1 of Lemma 1.

We state Lemma 1.1, separately as a theorem, due to its significance, as it tells us that we only

need to look for an optimal LPAC policy whenever K > AL, otherwise when K ≤ AL, as shown

above, the optimal policy is known for all the states, i.e., admit all arriving LP calls whenever an

idle channel is available.
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3.4.4 Upper Bound on Cost to Admit HP call for LPAC States

Here we present a lemma which will set an upper bound for the cost of an additional HP call, for

the LPAC states. It is also used in the proof of Lemma 3.

Lemma 2. ∀m ≥ 0, ∀(nL, nH) ∈ S1, s.t., (nL, nH + 1) ∈ S:

Cm(nL, nH + 1)− Cm(nL, nH) ≤ AH. (3.18)

Proof. The proof of this lemma is similar to that of Lemma 1, and can be found in Section 3.5.1.

3.4.5 Convexity of Cost to Admit LP call in nH

In this section we show that for a given nL, the cost to add an additional LP call in the system

is monotonically non-decreasing and thus convex in nH, for the LPAC states. This property helps

us prove Theorem 2. As mentioned in Section 3.4.3, we only need to look for an optimal LPAC

policy whenever K > AL, therefore we prove Lemma 3 under this condition. Also, we only

need to consider those LPAC states, i.e., (nL, nH) ∈ S1, such that, the states involved in the

statement (3.20) of Lemma 3 belong to S . Let the set of such LPAC states be S5, then:

S5 = {(nL, nH)
�� (nL + 1, nH), (nL + 1, nH + 1), (nL, nH + 1) ∈ S}

= {0 ≤ nL ≤ M̂L − 1, 0 ≤ nH ≤ M̂H − 1, nL + nH ≤ N − 2}. (3.19)

These are all the states in S1 excluding those for which either nH = M̂H or nL + nH = N − 1.

Now we can present our next lemma, as follows:

Lemma 3. Let K > AL. ∀(nL, nH) ∈ S5 ⊂ S1, ∀m ≥ 0:

Cm(nL + 1, nH)− Cm(nL, nH) ≤ Cm(nL + 1, nH + 1)− Cm(nL, nH + 1). (3.20)

Proof. We prove this lemma by induction on m. The proof can be found in Section 3.5.2.
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3.4.6 Optimal LPAC Policy is of Threshold Type

Theorem 2. The optimal LPAC policy is a state dependent threshold policy, i.e., for a given

number of LP calls in the system nL, there exists an optimal threshold nth(nL) ∈
�
0, 1, . . . , M̂H+

1
�

, such that, if an arriving LP call finds the system in state (nL, nH) ∈ S1 and nH < nth(nL),

the LP call is admitted. Otherwise, the LP call is blocked.

Proof. We need to consider two cases separately, namely, K > AL and K ≤ AL.

Case 1: Let K > AL. In this case, we can use Lemma 3 which implies that an additional

LP call costs the same or more in state (nL, nH + 1) ∈ S1 than it does in state (nL, nH) ∈ S1.

Thus, for a fixed number of LP calls in the system, if it is not optimal to admit an LP call in state

(nL, nH) ∈ S1 then it is never optimal to admit an arriving LP call for all the other states with

higher number of HP calls in the system. This guarantees that the optimal policy is of threshold

type, as stated in Theorem 2. A similar argument is used in [46] to show that the optimal policy

is a state dependent threshold policy.

Case 2: Let K ≤ AL. Here, we can use Theorem 1 which implies that, for this case LP ad-

mission is optimal for all the LPAC states. Such a policy is a special case of a threshold based

LPAC policy with nth(nL) = M̂H + 1 , ∀(nL, nH) ∈ S1. An example of this case is presented in

Figure 3.1(c) and discussed in Section 3.4.10.

This theorem helps simplify the implementation of the policy decision control for the LPAC

states, because, we only need to know the nH-thresholds for each nL, instead of storing the

decisions for all the states of the system. These thresholds can be easily determined using the

well known optimal policy search algorithms, namely value iteration and policy iteration algo-

rithms [53]. In Section 3.4.10, we present results for the policy iteration algorithm.

3.4.7 Convexity of Cost to Admit LP call in nL

In this section we show that for a given nH, the cost to add an additional LP call in the system

is monotonically non-decreasing and thus convex in nL, for the LPAC states. Recall from Sec-
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tion 3.4.3, we only need to look for an optimal LPAC policy whenever K > AL, therefore we

prove Lemma 4 under this condition. Also, we only need to consider those LPAC states, i.e.,

(nL, nH) ∈ S1, such that, the states involved in the statement (3.21) of Lemma 4 belong to S .

Lemma 4. Let K > AL. ∀(nL, nH) ∈ S1, s.t., (nL + 1, nH), (nL + 2, nH) ∈ S , ∀m ≥ 0:

Cm(nL + 1, nH)− Cm(nL, nH) ≤ Cm(nL + 2, nH)− Cm(nL + 1, nH). (3.21)

Proof. The proof of this lemma is given in Section 3.5.3.

3.4.8 A Sufficient Condition for Inevitability of LP Preemption

Firstly we present Lemma 5, that provides an upper bound on the cost difference between two

consecutive diagonal states, under certain conditions. This lemma helps us deduce Theorem 3

which states a sufficient condition for the inevitability of LP preemption, for the LPPC states.

Here we assume that λL ≤ λH. This situation normally occurs during an emergency situation,

when call traffic of high priority talk groups, involved in life saving tasks, becomes higher than

that of low priority talk groups, that are in a normal operating mode. Also note that it is only in

Lemma 5, and Theorem 3 which is based on Lemma 5, that we assume λL ≤ λH. The rest of the

results in this study do not require this condition.

Lemma 5. Let λL ≤ λH and K ≤ AL ≤ AH. ∀m ≥ 0, ∀(nL, nH) ∈ S , s.t., ∀(nL − 1, nH + 1) ∈ S:

Cm(nL − 1, nH + 1)− Cm(nL, nH) ≤ AH −K. (3.22)

Proof. We prove this lemma by induction on m. The proof can be found in Section 3.5.4.

Theorem 3. Assume λL ≤ λH and K ≤ AL ≤ AH. Then, it is always optimal to admit an arriving

HP call by preempting an LP call, whenever all channels are busy in the system with at least one

LP call under service, i.e., ∀m ≥ 0, ∀(nL, nH) ∈ S2, if K ≤ AL ≤ AH then:

K + Cm(nL − 1, nH + 1) ≤ AH + Cm(nL, nH). (3.23)

Proof. This follows directly from Lemma 5.
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Note that Lemma 5 is for all the states, but we also state it separately in this section, as Theo-

rem 3 for LPPC states, because this helps us provide a sufficient condition for the inevitability of

LP preemption.

3.4.9 A Particular Optimal LCAP Policy

Theorem 1 and 3 can be used together to derive a particular optimal LCAP policy, in the form of

a corollary, as follows:

Corollary 1. Assume λL ≤ λH and K ≤ AL ≤ AH. Then, the optimal LP call admission and

preemption (LCAP) policy is as follows:

1. LPAC: Always admit an arriving LP call, whenever there is an idle channel in the system.

2. LPPC: Always admit an arriving HP call by preempting an LP call, whenever all channels

are busy in the system with at least one LP call under service.

Proof. Part 1 of the corollary is implied by Theorem 1 and part 2 is implied by Theorem 3.

Note that Corollary 1 provides sufficient conditions for a myopic policy [54] to be optimal.

3.4.10 Numerically Searched Optimal Policy Results

In this section, we discuss the optimal policy search results for our system, presented in Figure 3.1,

verifying our so far proved results. We present the results under the assumption AL ≤ AH, due

to the priority assignment of the calls, as mentioned in Section 3.2.2. We use the policy iteration

algorithm [53], using the DP equations of our 2D Markov chain, in order to find the optimal

LCAP decisions for each state. Also, our policy results correspond to α → 0 and the infinite

horizon case. As described in detail in Section 3.2.2, though we have proved the results for the

expected α-discounted cost over the finite horizon, our results also hold for α → 0 and the infinite

horizon case.

The results presented in Figure 3.1 show that the optimal LPAC policy is a state dependent

threshold based policy, and thus verify Theorem 2. Tables 3.1 and 3.2 present the optimal state
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FIGURE 3.1: Optimal policy search results (ML = 25, MH = 30, λL = 10, λH = 12, µ = 1).
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dependent LPAC thresholds for the cases presented in Figures 3.1(a) and 3.1(b) respectively.

Since the thresholds depend on the number of LP calls in the system therefore these thresholds

are termed as state dependent. Also, the LPAC policy in Figure 3.1(c) is that LP admission is

optimal for all the LPAC states. This policy is a special case of a threshold based LPAC policy.

For this particular case in Figure 3.1(c), nth(nL) = 31, ∀nL ∈
�
0, 1, . . . , 24

�
. Note that we do not

include 25 in the set of all possible values of nL while defining the LPAC threshold as nL = 25 is

not included in set of LPAC states S1, for this case.

TABLE 3.1: Optimal LPAC Thresholds in Figure 3.1(a)

nL nth(nL)

0 ≤ nL ≤ 9 31
10 29
11 27
12 24
13 20
14 14
15 5

16 ≤ nL ≤ 24 0

TABLE 3.2: Optimal LPAC Thresholds in Figure 3.1(b)

nL nth(nL)

0 14
1 12
2 11
3 9
4 7
5 5
6 4
7 2

8 ≤ nL ≤ 19 0

Figure 3.1(c) clearly verifies Theorems 1 and 3, and Corollary 1. Note that it is only in The-

orem 3, and Corollary 1 which is based on Theorem 3, that we assume λL ≤ λH, as mentioned

in Section 3.4.8. None of our other results requires this condition. Thus, even though rest of our
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results hold for any values of arrival rates, for both classes, we only present numerical results for

λL ≤ λH to avoid redundancy.

We observe in our numerically searched optimal policy results that the LPPC is a threshold

based policy, as shown in Figure 3.1(a). Also, the LPPC policy in Figures 3.1(b) and 3.1(c) is a

special case of a threshold based LPPC policy. This observation for the finite-source loss system

is similar to [46] in which the authors demonstrate a similar result for the optimal preemption con-

trol, but for the Erlang loss system, using numerical examples without a proof. We can formally

state our observation for the LPPC as follows:

Observation 1. The optimal LPPC policy is a threshold policy, i.e., there exists an optimal thresh-

old n̂th ∈
�
0, 1, . . . , M̂H

�
, such that, if an arriving HP call finds the system in state (nL, nH) ∈ S2

and nH < n̂th, the HP call is admitted by preempting an LP call. Otherwise, the HP call is

blocked.

For the results presented in Figures 3.1(a), 3.1(b) and 3.1(c), the LPPC thresholds, i.e., the

values of n̂th, are 24, 20 and 30 respectively.

3.5 Proofs of Lemmas
3.5.1 Proof of Lemma 2

Proof. The methodology used for proving this lemma is also the sample path argument. Consider

two systems, namely A and B. Assume that system A starts in state (nL, nH) and system B starts

in state (nL, nH + 1), with (nL, nH) ∈ S1. We couple the two systems such that all the call

service and idle times, for the channels and sources, in both the systems are the same, except,

the additional idle HP-source and channel in system A, and the additional busy HP-source and

channel in system B. Also, assume that system A follows the optimal policy, while system B

imitates all the decisions of system A, i.e., if system A admits (rejects) an LP call, system B also

admits (rejects) it. Therefore, Cm(nL, nH) = C
A

m(nL, nH) and Cm(nL, nH+1) ≤ C
B

m(nL, nH+1),

where CA

m(nL, nH) is the expected discounted cost of system A and C
B

m(nL, nH+1) is the expected

discounted cost of system B, at time m. Now, we analyze all the possible cases, in the following
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discussion, in which both the systems can completely couple, to become identical systems, and

for each case we shall compare the costs of these systems.

1. The first case is, when both the systems end up with same costs after being completely

coupled. For this case, there can only be two possible scenarios which enable systems A

and B to couple completely. In the first scenario, at some point, the additional idle source

of system A may generate an HP call and system A admits it to couple with system B. In

the second scenario, at some point, the additional busy channel of system B completes the

HP call service. In this way, the additional busy LP talk group and channel in system B

become idle, and it completely couples with system A. For both these scenarios, the two

systems couple completely without any change in their system costs. This is because, for

our system model, we do not have any reward for call admission and completion that can

cause the costs of both the systems to differ in the stated scenarios. Hence, for the first case:

C
B

m(nL, nH + 1) = C
A

m(nL, nH). (3.24)

2. The second case is, when both the systems end up with different costs after being com-

pletely coupled. For this case, there can only be one possible scenario which enables sys-

tems A and B to couple completely. In this scenario, all the channels in system B are busy

and an HP call arrives. Now, the only possibility that the two systems can couple com-

pletely, is when system B blocks it, provided the LP call preemption policy adopted by

system B permits this, and system A admits the call without preemption, because system

A still has an idle channel available. In this scenario, system B needs to pay an extra cost

for blocking the HP call, i.e., AH. This is the only difference in costs of both the systems.

Therefore, for this case, we have:

C
B

m(nL, nH + 1)− C
A

m(nL, nH) = AH. (3.25)
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Based on our results in (3.24) and (3.25), we can now conclude:

C
B

m(nL, nH + 1)− C
A

m(nL, nH) ≤ AH. (3.26)

According to our assumption, Cm(nL, nH) = C
A

m(nL, nH) and Cm(nL, nH+1) ≤ C
B

m(nL, nH+1).

Therefore, we have:

Cm(nL, nH + 1)− Cm(nL, nH) ≤ C
B

m(nL, nH + 1)− C
A

m(nL, nH) ≤ AH. (3.27)

This completes the proof of Lemma 2.

3.5.2 Proof of Lemma 3

Proof. This lemma can be proven by induction on m, the number of periods left in the horizon.

Step-1: Inequality (3.20) holds for m = 0, because, C0(nL, nH) = 0, ∀(nL, nH) ∈ S .

Induction step: Assume that for m ≥ 0, inequality (3.20) holds.

Step-2: Assuming (3.20) holds for m ≥ 0, we show that it holds for m + 1 as well. There are

three cases to consider. We make the distinction among these cases because each state in (3.20)

may belong to a specific group of states, and each group has a different DP cost equation, as

described in Section 3.3. We substitute the DP cost equations and use term by term comparison

as follows.

Case-1: (nL, nH) ∈ S5, s.t., nL + nH ≤ N − 3. These are all the states in S5 excluding the

diagonal states for which nL + nH = N − 2. The excluded diagonal states are analyzed in Cases

2 and 3. In this case, i.e., Case-1, all states in (3.20) are LPAC states, except when ML < N and

nL = ML − 1, which results in states (nL + 1, nH + 1) and (nL, nH + 1) as the no policy states.

All these possibilities are catered by the following general expressions for this case.

Cm+1(nL + 1, nH)− Cm+1(nL, nH)

=
�
[ML − (nL + 1)]λL

×

�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}
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−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.28)

+
�
[MH − (nH + 1)]λH × [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)]

�
(3.29)

+ λH [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.30)

+ nLµ [Cm(nL, nH)− Cm(nL − 1, nH)] (3.31)

+ nHµ [Cm(nL + 1, nH − 1)− Cm(nL, nH − 1)] (3.32)

+
�
[nLλL + nHλH + (N − nL − nH − 2)µ]× [Cm(nL + 1, nH)− Cm(nL, nH)]

�
(3.33)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.34)

+
�
λL

�
Cm(nL + 1, nH)−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.35)

≤

�
[ML − (nL + 1)]λL

×

�
min {Cm(nL + 2, nH + 1), Cm(nL + 1, nH + 1) + AL}

−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

��
(3.36)

+
�
[MH − (nH + 1)]λH × [Cm(nL + 1, nH + 2)− Cm(nL, nH + 2)]

�
(3.37)

+ λH [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.38)

+ nLµ [Cm(nL, nH + 1)− Cm(nL − 1, nH + 1)] (3.39)

+ nHµ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.40)

+
�
[nLλL + nHλH + (N − nL − nH − 2)µ]

× [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)]
�

(3.41)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.42)

+
�
λL

�
Cm(nL + 1, nH + 1)

−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

��
(3.43)

= Cm+1(nL + 1, nH + 1)− Cm+1(nL, nH + 1)
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Now we remark on the relations between the corresponding pairs of terms, on both sides of

the inequality, to conclude the proof for Case-1. The relations (3.29) ≤ (3.37), (3.31) ≤ (3.39),

(3.32) ≤ (3.40) and (3.33) ≤ (3.41) follow directly from the induction hypothesis (3.20). The

relations (3.30) = (3.38) and (3.34) = (3.42) are obvious. However, the relations (3.28) ≤ (3.36)

and (3.35) ≤ (3.43) need further justification, as detailed subsequently.

(3.28) ≤ (3.36):

min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL} (3.44)

=
�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− Cm(nL + 1, nH)

�

−
�
min {Cm(nL + 1, nH), Cm(nL, nH) + AL}− Cm(nL + 1, nH)

�
(3.45)

= min {Cm(nL + 2, nH)− Cm(nL + 1, nH), AL}

+max {0, Cm(nL + 1, nH)− Cm(nL, nH)− AL} (3.46)
(3.20)

≤ min {Cm(nL + 2, nH + 1)− Cm(nL + 1, nH + 1), AL}

+max {0, Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)− AL}

=
�
min {Cm(nL + 2, nH + 1), Cm(nL + 1, nH + 1) + AL}− Cm(nL + 1, nH + 1)

�

−
�
min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}− Cm(nL + 1, nH + 1)

�

= min {Cm(nL + 2, nH + 1), Cm(nL + 1, nH + 1) + AL}

−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

We get (3.45) by adding and subtracting Cm(nL + 1, nH) to (3.44). Then we convert min to max,

to get (3.46). The same procedure is then applied in reverse to the other side of the inequality in

order to justify that (3.28) ≤ (3.36) holds.

(3.35) ≤ (3.43):

Cm(nL + 1, nH)−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

= max {0, Cm(nL + 1, nH)− Cm(nL, nH)− AL}
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(3.20)

≤ max {0, Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)− AL}

= Cm(nL + 1, nH + 1)−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

This concludes Case-1.

Case-2: MH < N , nL = N−MH−1, nH = MH−1. This case deals with only one state. It is one

of the nL+nH = N−2 diagonal states in S5. For example, state (9, 29) in Figures 3.1(a) and 3.1(c).

The rest of the nL+nH = N−2 diagonal states in S5 are analyzed in Case-3. This case, i.e., Case-

2, only exists when MH < N . Also, it is the only case that we need to consider separately. The

rest of the two cases are applicable to all the possible scenarios under our assumption mentioned

in Section 4.1, i.e., the total number of source-units is greater than the channels in the system,

ML + MH > N . In this case, all the states in (3.20) are LPAC states, except (nL + 1, nH + 1),

which is a known-LPAC state.

Cm+1(nL + 1, nH)− Cm+1(nL, nH)

=
�
(ML +MH −N)λL

×

�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.47)

+ λH [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.48)

+ (N −MH − 1)µ [Cm(nL, nH)− Cm(nL − 1, nH)] (3.49)

+ (MH − 1)µ [Cm(nL + 1, nH − 1)− Cm(nL, nH − 1)] (3.50)

+
�
[(N −MH − 1)λL + (MH − 1)λH]× [Cm(nL + 1, nH)− Cm(nL, nH)]

�
(3.51)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.52)

+
�
λL

�
Cm(nL + 1, nH)−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.53)

≤

�
(ML +MH −N)λL

�
Cm(nL + 1, nH + 1) + AL

−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

��
(3.54)
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+ λH [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.55)

+
�
(N −MH − 1)µ× [Cm(nL, nH + 1)− Cm(nL − 1, nH + 1)]

�
(3.56)

+ (MH − 1)µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.57)

+
�
[(N −MH − 1)λL + (MH − 1)λH]

× [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)]
�

(3.58)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.59)

+
�
λL

�
Cm(nL + 1, nH + 1)

−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

��
(3.60)

= Cm+1(nL + 1, nH + 1)− Cm+1(nL, nH + 1)

The relations (3.49) ≤ (3.56), (3.50) ≤ (3.57) and (3.51) ≤ (3.58) follow directly from the

induction hypothesis (3.20). The relations (3.48) = (3.55) and (3.52) = (3.59) are obvious. The

relation (3.53) ≤ (3.60) is the same as (3.35) ≤ (3.43). However, the relation (3.47) ≤ (3.54)

needs further justification.

(3.47) ≤ (3.54):

min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL} (3.61)

=
�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− (Cm(nL + 1, nH) + AL)

�

−
�
min {Cm(nL + 1, nH), Cm(nL, nH) + AL}− (Cm(nL + 1, nH) + AL)

�
(3.62)

= min {Cm(nL + 2, nH)− Cm(nL + 1, nH)− AL, 0}� �� �
≤0

+max {AL, Cm(nL + 1, nH)− Cm(nL, nH)} (3.63)
(3.20)

≤ 0 + max {AL, Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)}

= Cm(nL + 1, nH + 1) + AL −min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}
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We get (3.62) by adding and subtracting Cm(nL +1, nH) +AL to (3.61). Then we convert min to

max, to get (3.63). The same procedure is then applied in reverse to the other side of the inequality

in order to justify that (3.47) ≤ (3.54) holds. This concludes Case-2.

Case-3: (nL, nH) ∈ S5, s.t., N − M̂H ≤ nL ≤ M̂L − 1, nL + nH = N − 2. These are the

nL + nH = N − 2 diagonal states in S5 excluding the Case-2 state. Note that the Case-2 state

only exists when MH < N . In this case, i.e. Case-3, states (nL, nH) and (nL, nH + 1), in (3.20),

are LPAC states, and (nL + 1, nH + 1) is an LPPC state. However, (nL + 1, nH) is an LPAC state,

except when ML < N and nL = ML − 1, which results in state (nL + 1, nH) as a no policy state.

All these possibilities are catered by the following general expressions for this case.

Cm+1(nL + 1, nH)− Cm+1(nL, nH)

=
�
[ML − (nL + 1)]λL

×

�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.64)

+
�
[MH − (nH + 1)]λH × [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)]

�
(3.65)

+ λH [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.66)

+ nLµ [Cm(nL, nH)− Cm(nL − 1, nH)] (3.67)

+ nHµ [Cm(nL + 1, nH − 1)− Cm(nL, nH − 1)] (3.68)

+ [nLλL + nHλH] [Cm(nL + 1, nH)− Cm(nL, nH)] (3.69)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.70)

+
�
λL

�
Cm(nL + 1, nH)−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.71)

≤

�
[ML − (nL + 1)]λL

×

�
Cm(nL + 1, nH + 1) + AL

−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

��
(3.72)
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+

�
[MH − (nH + 1)]λH

×

�
min

�
Cm(nL + 1, nH + 1) + AH, Cm(nL, nH + 2) +K

�
− Cm(nL, nH + 2)

��
(3.73)

+ λH [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.74)

+ nLµ [Cm(nL, nH + 1)− Cm(nL − 1, nH + 1)] (3.75)

+ nHµ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.76)

+
�
[nLλL + nHλH]× [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)]

�
(3.77)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.78)

+
�
λL

�
Cm(nL + 1, nH + 1)

−min {Cm(nL + 1, nH + 1), Cm(nL, nH + 1) + AL}

��
(3.79)

= Cm+1(nL + 1, nH + 1)− Cm+1(nL, nH + 1)

The relations , (3.67) ≤ (3.75), (3.68) ≤ (3.76) and (3.69) ≤ (3.77) follow directly from the

induction hypothesis (3.20). The relations (3.66) = (3.74) and (3.70) = (3.78) are obvious. Justi-

fications of relations (3.64) ≤ (3.72) and (3.71) ≤ (3.79) are same as that of (3.47) ≤ (3.54) and

(3.35) ≤ (3.43), respectively. However, (3.65) ≤ (3.73) needs further justification.

(3.73) ≥ (3.65): There are only two possible cases. For the first one, we assume that the LP call

preemption is the optimal LPPC policy in state (nL + 1, nH + 1). In this case:

min
�
Cm(nL + 1, nH + 1) + AH, Cm(nL, nH + 2) +K

�
− Cm(nL, nH + 2)

= [Cm(nL, nH + 2) +K]− Cm(nL, nH + 2)

= K

≥ Cm(nL + 1, nH + 1)− Cm(nL, nH + 1). (3.80)

Here, (3.80) results from Lemma 1.2 after replacing (nL, nH) with (nL, nH + 1) in the lemma,

under our assumption for Lemma 3, i.e, K > AL.
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Now, for the other case, we assume that the LP call preemption is not the optimal LPPC policy

in state (nL + 1, nH + 1). In this case:

min
�
Cm(nL + 1, nH + 1) + AH, Cm(nL, nH + 2) +K

�
− Cm(nL, nH + 2)

= [Cm(nL + 1, nH + 1) + AH]− Cm(nL, nH + 2) (3.81)

≥ Cm(nL + 1, nH + 1)− Cm(nL, nH + 1). (3.82)

Here, (3.82) is obtained by using inequality (3.18) of Lemma 2 for AH in (3.81), after replacing

(nL, nH) with (nL, nH + 1) in (3.18). This concludes the proof for Lemma 3.

3.5.3 Proof of Lemma 4

Proof. This lemma can be proven by induction on m, the number of periods left in the horizon.

Step-1: Inequality (3.21) holds for m = 0, because, C0(nL, nH) = 0, ∀(nL, nH) ∈ S .

Induction step: Assume that for m ≥ 0, inequality (3.21) holds.

Step-2: Assuming (3.21) holds for m ≥ 0, we show that it holds for m + 1 as well. There are

two cases to consider. We make the distinction among these cases because each state in (3.21) may

belong to a specific group of states, and each group has a different DP cost equation, as described

in Section 3.3. We substitute the DP equations and use term by term comparison as shown in the

following cases.

Case-1: Let nL + nH ≤ N − 3. In this case, i.e., Case-1, all states in (3.21) are LPAC states,

except when ML < N and nL = ML, which results in state (nL + 2, nH) as a no policy state. All

these possibilities are catered by the following general expressions for this case.

Cm+1(nL + 1, nH)− Cm+1(nL, nH)

=
�
[ML − (nL + 2)]λL

×

�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.83)

+ (MH − nH)λH × [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.84)
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+ nLµ [Cm(nL, nH)− Cm(nL − 1, nH)] (3.85)

+ nHµ [Cm(nL + 1, nH − 1)− Cm(nL, nH − 1)] (3.86)

+
�
[nLλL + nHλH + (N − nL − nH − 2)µ]× [Cm(nL + 1, nH)− Cm(nL, nH)]

�
(3.87)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.88)

+

�
λL

�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

− 2×min {Cm(nL + 1, nH), Cm(nL, nH) + AL}+ Cm(nL + 1, nH)

��
(3.89)

≤

�
[ML − (nL + 2)]λL

×

�
min {Cm(nL + 3, nH), Cm(nL + 2, nH) + AL}

−min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

��
(3.90)

+ (MH − nH)λH × [Cm(nL + 2, nH + 1)− Cm(nL + 1, nH + 1)] (3.91)

+ nLµ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.92)

+ nHµ [Cm(nL + 2, nH − 1)− Cm(nL + 1, nH − 1)] (3.93)

+
�
[nLλL + nHλH + (N − nL − nH − 2)µ]

× [Cm(nL + 2, nH)− Cm(nL + 1, nH)]
�

(3.94)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.95)

+

�
λL

�
−min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

+ 2Cm(nL + 2, nH)− Cm(nL + 1, nH)

��
(3.96)

= Cm+1(nL + 2, nH)− Cm+1(nL + 1, nH)

Now we remark on the relations between the corresponding pairs of terms, on both sides of

the inequality, to conclude the proof for Case-1. The relations (3.84) ≤ (3.91), (3.85) ≤ (3.92),

(3.86) ≤ (3.93) and (3.87) ≤ (3.94) follow directly from the induction hypothesis (3.21). The
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relation (3.88) = (3.95) is obvious. However, the relations (3.83) ≤ (3.90) and (3.89) ≤ (3.96)

need further justification, as detailed subsequently.

(3.83) ≤ (3.90):

min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL} (3.97)

=
�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− Cm(nL + 1, nH)

�

−
�
min {Cm(nL + 1, nH), Cm(nL, nH) + AL}− Cm(nL + 1, nH)

�
(3.98)

= min {Cm(nL + 2, nH)− Cm(nL + 1, nH), AL}

+max {0, Cm(nL + 1, nH)− Cm(nL, nH)− AL} (3.99)
(3.21)

≤ min {Cm(nL + 3, nH)− Cm(nL + 2, nH), AL}

+max {0, Cm(nL + 2, nH)− Cm(nL + 1, nH)− AL}

=
�
min {Cm(nL + 3, nH), Cm(nL + 2, nH) + AL}− Cm(nL + 2, nH)

�

−
�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− Cm(nL + 2, nH)

�

= min {Cm(nL + 3, nH), Cm(nL + 2, nH) + AL}

−min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

We get (3.98) by adding and subtracting Cm(nL + 1, nH) to (3.97). Then we convert min to max,

to get (3.99). The same procedure is then applied in reverse to the other side of the inequality in

order to justify that (3.83) ≤ (3.90) holds.

(3.89) ≤ (3.96):

min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

− 2×min {Cm(nL + 1, nH), Cm(nL, nH) + AL}+ Cm(nL + 1, nH) (3.100)

= min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− Cm(nL + 1, nH)

+ 2
�
−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}+ Cm(nL + 1, nH)

�
(3.101)
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= min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− Cm(nL + 1, nH) (3.102)

+ 2
�
max {0, Cm(nL + 1, nH)− Cm(nL, nH)− AL}

�
(3.103)

(3.21)

≤ min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− Cm(nL + 1, nH) (3.104)

+ 2
�
max {0, Cm(nL + 2, nH)− Cm(nL + 1, nH)− AL}

�
(3.105)

= min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− Cm(nL + 1, nH)

+ 2
�
−min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}+ Cm(nL + 2, nH)

�
(3.106)

= −min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

+ 2Cm(nL + 2, nH)− Cm(nL + 1, nH)

We get (3.101) by adding and subtracting Cm(nL + 1, nH) to (3.100). Then we convert min

to max, to get (3.103). Note that (3.102) = (3.104) and according to the induction hypothesis

(3.103) ≤ (3.105). We then convert max to min, and also add and subtract Cm(nL + 2, nH), to get

(3.106). This concludes Case-1.

Case-2: Let nL + nH = N − 2. In this case, i.e., Case-2, all states in (3.21) are LPAC states,

except (nL + 2, nH), which can either be an LPPC or a known-LPAC state. All these possibilities

are catered by the following general expressions for this case.

Cm+1(nL + 1, nH)− Cm+1(nL, nH)

=
�
[ML − (nL + 2)]λL

×

�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL}

��
(3.107)

+ (MH − nH)λH × [Cm(nL + 1, nH + 1)− Cm(nL, nH + 1)] (3.108)

+ nLµ [Cm(nL, nH)− Cm(nL − 1, nH)] (3.109)

+ nHµ [Cm(nL + 1, nH − 1)− Cm(nL, nH − 1)] (3.110)

+
�
[nLλL + nHλH]× [Cm(nL + 1, nH)− Cm(nL, nH)]

�
(3.111)
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+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.112)

+

�
λL

�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

− 2×min {Cm(nL + 1, nH), Cm(nL, nH) + AL}+ Cm(nL + 1, nH)

��
(3.113)

≤

�
[ML − (nL + 2)]λL

×

�
Cm(nL + 2, nH) + AL −min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

��
(3.114)

+

�
(MH − nH)λH

�
min {Cm(nL + 2, nH) + AH, Cm(nL + 1, nH + 1) +K}

− Cm(nL + 1, nH + 1)

��
(3.115)

+ nLµ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.116)

+ nHµ [Cm(nL + 2, nH − 1)− Cm(nL + 1, nH − 1)] (3.117)

+
�
[nLλL + nHλH]

× [Cm(nL + 2, nH)− Cm(nL + 1, nH)]
�

(3.118)

+ µ [Cm(nL + 1, nH)− Cm(nL, nH)] (3.119)

+

�
λL

�
−min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

+ 2Cm(nL + 2, nH)− Cm(nL + 1, nH)

��
(3.120)

= Cm+1(nL + 2, nH)− Cm+1(nL + 1, nH)

The relations (3.109) ≤ (3.116), (3.110) ≤ (3.117) and (3.111) ≤ (3.118) follow directly from

the induction hypothesis (3.21). The relation (3.113) ≤ (3.120) is same as (3.89) ≤ (3.96),

and the relation (3.112) = (3.119) is obvious. However, the relations (3.107) ≤ (3.114) and

(3.108) ≤ (3.115) need further justification. In the subsequent discussion, we provide details for

this justification.
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(3.107) ≤ (3.114): This result is proved as follows.

min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

−min {Cm(nL + 1, nH), Cm(nL, nH) + AL} (3.121)

=
�
min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}− (Cm(nL + 1, nH) + AL)

�

−
�
min {Cm(nL + 1, nH), Cm(nL, nH) + AL}− (Cm(nL + 1, nH) + AL)

�
(3.122)

= min {Cm(nL + 2, nH)− Cm(nL + 1, nH)− AL, 0}� �� �
≤0

+max {AL, Cm(nL + 1, nH)− Cm(nL, nH)} (3.123)
(3.21)

≤ 0 + max {AL, Cm(nL + 2, nH)− Cm(nL + 1, nH)}

= Cm(nL + 2, nH) + AL −min {Cm(nL + 2, nH), Cm(nL + 1, nH) + AL}

We get (3.122) by adding and subtracting Cm(nL + 1, nH) + AL to (3.121). Then we convert

min to max, to get (3.123). The same procedure is then applied in reverse to the other side of the

inequality in order to justify that (3.107) ≤ (3.114) holds.

(3.115) ≥ (3.108): There are only two possible cases. For the first one, we assume that the LP

call preemption is the optimal LPPC policy in state (nL + 2, nH). In this case:

min
�
Cm(nL + 2, nH) + AH, Cm(nL + 1, nH + 1) +K

�
− Cm(nL + 1, nH + 1)

= [Cm(nL + 1, nH + 1) +K]− Cm(nL + 1, nH + 1)

= K

≥ Cm(nL + 1, nH + 1)− Cm(nL, nH + 1). (3.124)

Here, (3.124) results from Lemma 1.2 after replacing (nL, nH) with (nL, nH + 1) in the lemma,

under our assumption for Lemma 4, i.e, K > AL.

Now, for the other case, we assume that the LP call preemption is not the optimal LPPC pol-

icy in state (nL + 2, nH). In this case, (3.115) ≥ (3.108) can be proved as demonstrated by the

subsequent mathematical expressions. Note that, (3.126) is obtained by using inequality (3.18)

73



of Lemma 2 for AH in (3.125), after replacing (nL, nH) with (nL + 2, nH) in (3.18). Finally we

get (3.127) using the induction hypothesis.

min
�
Cm(nL + 2, nH) + AH, Cm(nL + 1, nH + 1) +K

�
− Cm(nL + 1, nH + 1)

= [Cm(nL + 2, nH) + AH]− Cm(nL + 1, nH + 1) (3.125)

≥ Cm(nL + 2, nH + 1)− Cm(nL + 1, nH + 1). (3.126)
(3.21)

≥ Cm(nL + 1, nH + 1)− Cm(nL, nH + 1). (3.127)

This concludes the proof for Lemma 4.

3.5.4 Proof of Lemma 5

Proof. This lemma can be proven by induction on m, the number of periods left in the horizon.

Step-1: Inequality (3.22) holds for m = 0, because, C0(nL, nH) = 0, ∀(nL, nH) ∈ S .

Induction step: Assume that for m ≥ 0, inequality (3.22) holds. This also implies that it is

optimal to admit an HP call by preempting an LP call for all LPPC states, under stated conditions.

The statement of Theorem 3 can help understand this in a better way.

Step-2: Assuming (3.22) holds for m ≥ 0, we show that it holds for m + 1 as well. There are

two cases to consider. We make the distinction among these cases because each state in (3.22)

may belong to a specific group of states, and each group has a different DP cost equation, as

described in Section 3.3. We substitute the DP equations and use term by term comparison as

shown in the following cases. Note that due to the assumption K ≤ AL, it is optimal to admit

an LP call for all LPAC states, according to Theorem 1. Also recall that the induction hypothesis

implies that it is optimal to admit an HP call by preempting an LP call for all LPPC states, under

stated conditions. We write all the DP cost equations in the following cases according to these

optimal policy actions.

Case-1: Let nL + nH ≤ N − 1. In this case, i.e., Case-1, all states in (3.22) are LPAC states,

except when ML < N and nL = ML, which results in state (nL, nH) as a no policy state.

All these possibilities are catered by the following general expressions for this case. Note that
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here we use the induction hypothesis to apply the upper bound for all the terms involving the

cost difference between consecutive diagonal states. We also use the uniformization assumption

MLλL +MHλH +Nµ+ α = 1, along with the assumption that λL ≤ λH.

Cm+1(nL − 1, nH + 1)− Cm+1(nL, nH)

= (ML − nL)λL [Cm(nL, nH + 1)− Cm(nL + 1, nH)]

+ [MH − (nH + 1)]λH [Cm(nL − 1, nH + 2)− Cm(nL, nH + 1)]

+ (nL − 1)µ [Cm(nL − 2, nH + 1)− Cm(nL − 1, nH)]

+ nHµ [Cm(nL − 1, nH)− Cm(nL, nH − 1)]

+ [nLλL + nHλH + (N − nL − nH)µ]× [Cm(nL − 1, nH + 1)− Cm(nL, nH)]

+ λL [Cm(nL, nH + 1)− Cm(nL − 1, nH + 1)]− λH [Cm(nL, nH + 1)− Cm(nL − 1, nH + 1)]� �� �
≤0, as λL≤λH

(3.128)
(3.22)

≤ [MLλL + (MH − 1)λH − µ+Nµ]� �� �
=1−α−λH−µ, as MLλL+MHλH+Nµ+α=1

×(AH −K) + 0 (3.129)

= (1− α− λH − µ)� �� �
≤1, as MLλL+MHλH+Nµ+α=1

×(AH −K) (3.130)

≤ AH −K. (3.131)

This concludes Case-1.

Case-2: Let nL + nH = N . In this case, i.e., Case-2, all states in (3.22) are LPPC states, except

when MH < N and nH = MH − 1, which results in state (nL − 1, nH + 1) as the known-LPAC

state. All these possibilities are catered by the following general expressions for this case.

Cm+1(nL − 1, nH + 1)− Cm+1(nL, nH)

= (ML − nL)λL [Cm(nL − 1, nH + 1)− Cm(nL, nH)]

+ [MH − (nH + 1)]λH [Cm(nL − 2, nH + 2)− Cm(nL − 1, nH + 1)]

+ (nL − 1)µ [Cm(nL − 2, nH + 1)− Cm(nL − 1, nH)]
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+ nHµ [Cm(nL − 1, nH)− Cm(nL, nH − 1)]

+ [nLλL + nHλH]× [Cm(nL − 1, nH + 1)− Cm(nL, nH)]

+ λLAL� �� �
≤λHAH, as λL≤λH ,AL≤AH

−λHK (3.132)

(3.22)

≤ [MLλL + (MH − 1)λH − µ+Nµ]� �� �
=1−α−λH−µ, as MLλL+MHλH+Nµ+α=1

×(AH −K) + λH(AH −K) (3.133)

= (1− α− µ)� �� �
≤1, as MLλL+MHλH+Nµ+α=1

×(AH −K) (3.134)

≤ AH −K. (3.135)

Here we use the induction hypothesis and uniformization assumption, similar to Case-1, along

with the assumptions that λL ≤ λH and AL ≤ AH. This concludes the proof of Lemma 5.
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Chapter 4
Optimal Joint Allocation of Control and
Communication Channels

Public safety communication systems(PSCSs) are finite source multicast systems. In such sys-

tems, the channel allocation is performed on the basis of multicast groups instead of radio units.

Thus, in these systems, the call source units are these groups, that we also call the users. In a prac-

tical system, these users are finite in number and each user or group may consist of many radio

units. In this study, we discuss the coupling of uplink control and communication segments (lay-

ers) of such finite source systems, due to which the performance of one layer directly impacts that

of the other one. However, the conventional theoretical studies model these system segments sep-

arately, therefore unable to capture the coupling issues in networks with finite sources’ constraint.

We first propose a novel model for wireless access systems that incorporates this coupling, by

jointly quantifying both the collision loss at the control layer and congestion loss at the commu-

nication layer. Under our proposed framework, we further optimize the number of uplink control

and communication channels in order to minimize the joint total loss rate given a constraint on

the total number of available channels. The optimization results, under all possible traffic param-

eters needed, are further visualized using our proposed channel allocation map. Note that this

optimal channel allocation also requires knowledge of the actual call-arrival traffic load. We also

demonstrate the capability of our proposed model in estimating the invisible actual traffic load,

and provide guidelines for developing an algorithm for the traffic aware allocation of channels,

based on our proposed model. This study has resulted in two research papers, [55, 56].

4.1 Introduction
4.1.1 Motivation

In multicast wireless access systems, like trunked mobile radio system [57, 58], radio units are di-

vided into multicast talk groups. In such systems, multicasting generated from within a talk group
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is a predominately primary traffic. Also, when a radio talks, the rest of the radios in the group

listen, therefore a group busy in communication does not generate a new call request. Therefore,

in these systems, the number of groups busy in communications affects the call arrival traffic over

the uplink. The future wide-band and nation wide first responder network, the FirstNet [59, 60], is

one of the modern examples of such systems. In these systems, when a radio needs to talk it sends

a call request to the access point over an uplink control channel, which is dedicated for the access

control process, e.g., radio A1 of talk group A and radio B4 of talk group B in Figure 4.1. Note















FIGURE 4.1: A multicast system. Two groups A and B, an access station AS.

that the access point is called the access station (AS) in an infrastructure based system [61, 62],

and the cluster head in an ad hoc setting [63]. After successfully receiving a call request from a

radio, the AS then assigns communication resources to the caller and the rest of the radios of the

group, in order to broadcast the call throughout the group, as shown in Figure 4.1. An interesting

example of such scenario can be a radio unit of a first responder talk group that shares a video

feed of an event’s site, with the rest of its talk group members, to share important visual infor-

mation apart from just voice call [60]. Thus, in such systems, the channel allocation is performed

on group basis. Therefore, instead of radios, the call source units or the system ‘users’ are the

groups. Note that these groups or users are also finite in number in practical systems, therefore
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we call such systems as finite source wireless access systems. However, each user or group may

consist of many radios [64].

In a control channel based wireless access system, like the one discussed above, there are two

types of frequency channels. One of the types is the access-control or simply control channel that

is dedicated for the access control process, whereas the rest of them are of the type of communi-

cation channels. Therefore we divide the system into two layers, on the basis of both operation

and resources, namely, the access layer and the communication layer. Here the term layer does

not correspond to the one used in the Open Systems Interconnection (OSI) model, rather it only

signifies a particular segment of the system. Note that at the access layer, multiple users may

select the same control channel at the same time to send their call requests to the access point,

called the access station (AS), which results in contention. Such contention is taken care of by a

prescribed multiple access (MAC) protocol [65] through which a subset of contending users get

hold of the control channel. As a result, the rest of the failed attempts contributes to the collision

loss. For those calls that successfully go through the control channel, there are still chances of fur-

ther losses due to non-availability of channels at the communication layer. Such losses are coined

as congestion losses in this study.

Since the bandwidth is a scarce resource, we need to efficiently allocate channels for the ac-

cess control and communications. Usually in practical systems, only a single frequency channel

is dedicated for access control, while the rest of the channels are used for communications. This

might not be an optimal allocation strategy, especially in high volume traffic scenarios or in cases

where the response time of each accessing unit is short enough to increase the contention rate.

In these scenarios, the rate at which multiple users can select the same control channel increases,

which increases the collision loss. The collision loss can become so high that even if we have

idle communication channels available, the users will not be able to access them due to being

frequently blocked at the control layer. A way to alleviate collision is to increase the allowed

number of access retrials for every access procedure cycle, which is a standard part of all access
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control protocols. But such retrials can only be finite in number and are upper bounded by the

delay performance of the access protocol. Thus, for high traffic loads, we might need more than

one frequency channels for access control to alleviate collision. However, for a given number

of channels available, if we increase the number of control channels to alleviate collisions, we

shall be decreasing the number of communication channels at the same time, thereby increasing

the congestion loss, and vice-versa. Thus, the channel allocation for access control and commu-

nications introduces a trade-off between congestion and collision losses in the system. Hence,

the wireless access systems need a mechanism for an optimal channel allocation for the access-

control and communications, such that the total system loss is minimized, for a given total number

of channels available. This is the problem under consideration in this study. Note that our results,

presented in Section 4.6.7, demonstrate that the conventional system with a single control channel

performs considerably worse than the system with the same total number of channels but having

an optimal allocation for the access control and communications.

What makes such a trade-off issue even more acute is a persistent coupling relationship between

two types of losses in the networks with finite sources. This is because the number of control

channels and the number of users contending for system access affect the congestion loss by

affecting the number of users further demanding for communication channel access, whereas the

number of communication channels and the service rate affect the collision loss at the MAC layer

by affecting the number of idle and thus potential contending users, given a finite set of users in

the system. The latter effect is because in such networks only idle users (groups) can possibly

become contending ones. Consequently, it is critical to consider allocating channels to jointly

cater the needs for both access control and communication services, in terms of minimizing both

types of losses while considering the coupling, and a constraint on the total number of channels,

for such networks with finite sources. The primary goal of this study is to provide our solutions

to such problems. To this end, we propose such a novel model for these systems that jointly

80



quantifies the collision and congestion losses, and also provides a framework to jointly allocate

the control and communication channels to minimize the total system loss.

Another important issue that needs to be resolved is the limitation of using the model for the

channel allocation for practical systems. The limitation is that the practical multiple access sys-

tems usually only keep records of the calls that successfully get access to the system, but no

record is kept for the call requests that are lost due to collision. Hence, for the practical systems,

the number of calls that successfully get access and the congestion loss are visible, whereas the

actual traffic load and the collision loss are invisible. Note that the optimal channel allocation re-

quires the knowledge of this invisible actual traffic load. Our proposed model can help overcome

this limitation as well, by providing the statistical relationships between the invisible actual traffic

load and the visible system states, which can be used to estimate the invisible actual traffic load

based on the known values of the visible system states. It is this capability of estimating the invis-

ible actual traffic load, provided by our model, which brings the traffic awareness characteristic

to our proposed channel allocation scheme.

Since collision loss is invisible in practical systems, a possibly misleading performance metric,

which we call as the reported system loss rate, is often used as the system’s performance metric.

This reported loss is described in detail in Section 4.5. The reported loss rate is evaluated based on

the available system data of the recorded calls and does not count the collision loss. As discussed

in Section 4.6.6, collision loss is a significant part of the total loss. In fact, most of the time, it

is far more significant than the congestion loss. Therefore, since the reported loss rate does not

incorporate the information of the collision loss, it is a considerably underestimated measure of

system loss. Thus the reported loss is misleading if we try to make system design decisions on its

basis. However, our model resolves this issue by evaluating both the collision and the congestion

losses that can be used to evaluate the actual total system loss. This actual total loss should be

used instead of the misleading reported loss for making the system design decisions.
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4.1.2 Related Works

To the best of our knowledge, the existing works on multicast systems, e.g., [66–72], focus on the

downlink channels, and on such scenarios wherein the multicast traffic is generated from outside

the multicast group. Interesting examples of such a scenario are, mobile TV service provided

to a group of subscribers, and wireless down-streaming of a shared multimedia content over the

Internet. However, in this study, we focus on the uplink channels, and on such scenarios wherein

the multicast traffic is generated from within the multicast group and the number of groups busy

in communications affects the call arrival traffic over the uplink.

Recall that in this study, we address the problem of the joint allocation of control and communi-

cation channels. To the best of our knowledge, not much literature is available on the joint channel

allocation for the access control and communications, while adding the coupled losses over these

two types of channels. In most existing works, collision losses in MAC layer and congestion losses

in data-link layer have been treated separately. For example, earlier studies like [73, 74], and re-

cent studies, e.g., related to trunked radio systems [75], LTE based systems [76], ad hoc wireless

networks [77, 78], underwater acoustic networks [79] and inter-vehicle networks [80, 81]. Note

that these studies focus only on the MAC layer, without considering the communication chan-

nel allocation and the congestion loss. On the other hand, separate studies on the communica-

tion channel allocation are also available, but without considering the control channel allocation,

e.g, [42, 43, 82–85]. In these studies, the communication channel allocation is presented as a call

admission and/or preemption control, under an assumption that there is no collision in the system.

Furthermore, for those works where the finite source systems are studied, e.g., [75], busy sources

are still considered to generate Poisson type traffic, thereby without the coupling problem we

study here. Therefore, the existing models and approaches cannot completely capture the control-

communication coupling that we have addressed in this study and introduced in Section 4.1.1, for

the networks with finite sources. The most relevant works to-date is [86] where a simple dynamic

algorithm for the allocation of control and communication channels is proposed. But [86] neither
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provides any model or analysis for deriving this algorithm, nor does it discuss the optimality of

the proposed algorithm. Rather it only demonstrates, via simulation results, that the proposed dy-

namic algorithm outperforms the fixed channel allocation in case of time varying call traffic. Also,

note that in [86], the objective is to improve the channel utilization. However, in this study, our

objective is to find the optimal number of control and communication channels that minimizes

the total system loss.

4.1.3 Summary of Our Contributions

A summary of our contributions in this study is listed below.

• We propose a novel model for multiple access systems that jointly models the access-control

and communication layers. This model helps us quantify both the collision and congestion

losses in the system, which are then used to evaluate the actual total loss rate. Note that we

discuss the model for a simple access control protocol, however, we can easily incorporate

more sophisticated protocols by simply updating the access state distribution accordingly.

• We then formulate the optimization problem to jointly find the optimal number of control

and communication channels that minimizes the actual total loss rate, for a given number of

channels available in total. Due to its complexity, this optimization problem does not have

a closed form analytical solution. Therefore, we solve the problem numerically.

• Using numerical results, we demonstrate the existence of the optimal solution. Later, we in-

troduce the concept of a channel allocation map to represent the optimal channel allocation

for all possible values of the traffic parameters.

• As a further contribution, we use our model to quantify the reported system loss rate and

elaborate its misleadingness as compared to the actual loss rate.
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• We demonstrate a mechanism, based on our proposed model, which can be used to estimate

the invisible actual traffic load, required for deciding the traffic-aware optimal channel al-

location, and also for estimating the actual loss rate, for a practical system.

• We provide guidelines for developing an algorithm for the traffic aware allocation of control

and communication channels, based on our proposed model and its capability to estimate

the actual invisible traffic load.

• We demonstrate using numerical results that the optimal channel allocation provides a sig-

nificant improvement in performance as compared to the conventional strategy of using a

single control channel.

• Our results show that even though we spend time resources at the control layer, we may

still need more than one frequency channel for access-control, depending on the traffic

parameters.

4.1.4 Organization of the Chapter

The rest of the chapter is organized as follows. We present the system model in Section 4.2. The

problem formulation is discussed in Section 4.3. A demonstration of estimating the invisible ac-

tual traffic load, along with the remarks on the development of the traffic aware channel allocation

algorithm, is discussed in Section 4.4. We then discuss the reported loss rate in Section 4.5, and

present the numerical and simulation results in Section 4.6. Finally, we conclude in Section 4.7.

Also note that for the convenience of the reader, we have presented all the symbols with descrip-

tions in Table 4.1.

4.2 System Model

We consider a single cell or a site of a multiple access communication system, with a finite number

of users (groups), say M , and an access station (AS). The access station consists of N frequency

channels. Assume that all N channels are of same quality. Out of these N channels, there are Nx

number of control channels and Nc = N −Nx number of communication channels. We assume
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TABLE 4.1: Table of Symbols

Symbol Definition

M Number of users
N Total number of channels
Nx Number of access control channels
Nc Number of communication channels
Nxo Optimal Nx

Nco Optimal Nc

In Number of idle users in the nth SP
ω Communication channel occupancy rate
Ln Number of contenders in nth AP
Xn System access state in nth AP
jXn jth access channel state in nth AP
jLn No. of contenders for jth access channel in nth AP
Qn Number of calls blocked due to collision in nth SP
Zn Number of busy communication channels in nth FP
Yn Number of communication channels busy in nth AP
Gn Number of calls blocked due to congestion in nth SP
ΩX Sample space of Xn = {0, 1, . . . , Nx}

ΩY(z1) Space of Yn (given Zn−1 = z1) = {0, 1, . . . , z1}
ΩY Sample space of Yn = {0, 1, . . . , Nc}

ΩXY(z1) = ΩX × ΩY (z1)
ΩXY = ΩX × ΩY

ΩL(z1) Space of Ln (given Zn−1 = z1) = {0, 1, . . . ,M − z1}

ΩL Sample space of Ln = {0, 1, . . . ,M}

ΩZ Sample space of Zn = {0, 1, . . . , Nc}

ΩG Sample space of Gn = {0, 1, . . . , Nx}

β Actual total loss rate
βQ Collision loss rate
βG Congestion loss rate
β̃ Reported loss rate
πz = limn→∞ Pr(Zn = z)
Π Steady state distribution vector for Zn

Pz Transition probability matrix for Zn

λ Call arrival rate per idle user
λ̂n Estimated call arrival rate per idle user until nth SP
σ CRP contending rate per contender
s Maximum number of access-slots per AP for CRP
ψ(lj) Pr(access success per access slot for CRP

��
jLn = lj )

Ψ(lj) Pr(access success for CRP
��
jLn = lj)

∆p %age increment in loss rate for Nx = 1 w.r.t optimal
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that the bandwidths of the control and communication channels are the same. However, in prac-

tice, these bandwidth requirements can be different. Note that our proposed model can be easily

modified to incorporate this scenario, but such modifications in the model and the correspond-

ing analysis are left as a part of future work. The system employs a synchronized random access

protocol, e.g. slotted-Aloha [87, 88]. Under this protocol, in our model, the access procedure is

synchronized and discrete in time. Also, a user only attempts for the system access at the begin-

ning of an access time slot. During the same time slot the user gets a reply from the AS regarding

the success or failure of the access attempt. Note that we consider a loss system, i.e., there is no

queueing buffer for the calls. This assumption helps analyze and highlight the coupling of the

control and communication layers, and its impact on the allocation of channels, which is the main

objective of this study, without making the model too complicated.

We model the system as a discrete time Markov chain (DTMC), with the time horizon divided

into discrete time segments, called the system periods (SPs). We assume that the time scale of

SP is such that each idle user (group) can have at the most one call arrival during an SP. Each

system period is divided into two time segments as shown in Figure 4.2. The time segment, at







 

 

FIGURE 4.2: Time-horizon discretization.

the beginning of an SP, during which all the access process takes place, is called the access

period (AP). During an AP, all the contending users try to access the system and the AS replies

to their requests. At the end of an AP the communication channel allocation occurs that marks

the beginning of the access free period (FP) in the system period. Therefore, an AP can also be

considered as the pre communication channel allocation segment of an SP, whereas an FP can

be considered as the post communication channel allocation segment. Note that a similar time

segmentation is used in [89] as well.
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We present a graphical representation of our system model in Figure 4.3. Consider an nth SP

and suppose there were In−1 number of idle users during the (n − 1)th SP. These are the users







 

 











FIGURE 4.3: System model.

which were not busy in communications, and thus not occupying the communication channels,

during the (n − 1)th FP. Out of these In−1 idle users, some or all users will contend for system

access in the next slot, i.e., the nth SP. Let Ln be the number of contenders during the nth SP, that

decide to contend out of In−1 idle users. Out of these Ln contenders, some users successfully get

access to the system while the rest of the contenders are blocked due to collision. The details of

the access procedure considered for this study are provided in the next paragraph. In Section 4.3.4

we also describe how to incorporate any other access control protocol in the model.

Access control procedure: Assume that a call arrives for an idle user during an (n− 1)th SP.

The user then contends for the system access in the nth AP, by sending a call request to the AS

over a randomly selected control channel. A call request over a control channel successfully gets

access to the system to enter the communication channel allocation process, if and only if, only

one contender selects that channel. Otherwise, if two or more contenders select the same control

channel, in the same AP then all such call requests are blocked due to collision, and the collided

users immediately go into a collision resolution procedure (CRP) mode, explained in the next

paragraph. We assume that a contending user does not change the selected control channel for the

CRP mode. If an access success does not occur, even during the CRP, the call is blocked and is

counted as a collision loss for the user. The user then immediately goes to the idle state.
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Collision resolution procedure (CRP): We consider a simple CRP in which each contender

either contends for the system access with probability σ ∈ (0, 1), at the beginning of each access

slot during an AP, or it waits during that access slot with probability 1− σ. We call σ as the CRP

contending rate per contender, and it is same for all the users. Also, we assume that an AP can

have at the most s ∈ N+ access slots for CRP. Therefore, s is the maximum number of access

retrials per user allowed during an AP. Thus, the CRP ends either when an access success occurs,

or after s access slots in an AP. Note that an access success occurs for an access control channel

when exactly one user selects that channel during a given access slot. This CRP is a special case of

the standard collision avoidance technique, where the random back off method is employed [90].

In our CRP, the back off time, in terms of the number of access slots, is geometrically distributed

with parameter 1− σ.

Let Xn be the number of users or calls successfully getting access to the system out of Ln

contenders and Qn = Ln −Xn be the number of users or call requests blocked due to collision,

during the nth AP. We also call Xn as the system access state. Out of Xn users successfully getting

access to the system, some of the users are allocated communication channels at the beginning

of the nth FP depending on the number of communication channels available. While the rest of

the users are blocked due to congestion, i.e., unavailability of communication channels. Let Zn

be the number of busy communication channels during the nth FP. Note that the number of busy

communication channels and that of users or calls busy in communications are the same. Then

Zn−1 will be the number of busy communication channels during the (n − 1)th FP. Out of these

Zn−1 communication channels, some number of channels, say Yn, still remain busy during the

nth AP and FP. Thus, Yn is also the number of communication channels monitored busy during

the nth AP, before the communication channel allocation for the nth SP. Let ω be the probability

that a communication channel that is busy in a given FP remains busy for the next FP as well. We

call ω as the communication channel occupancy rate per busy user. We assume that ω is same for
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all the users and communication channels. Given Zn−1, Yn is binomially distributed as follows:

Pr
�
Yn = y

��Zn−1 = z1

�
=






�
z1
y

�
ω
y(1− ω)z1−y if y ∈ ΩY(z1),

0 otherwise.
(4.1)

∀y ∈ ΩY and ∀z1 ∈ ΩZ. Here ΩY(z1) = {0, 1, . . . , z1} and ΩY = ΩZ = {0, 1, . . . , Nc}. Note that

here we assume a memoryless and stationary discrete time call-service process. It is similar to

the commonly used exponential service time process, which is also memoryless but continuous

in time, as in [41–43]. In practical systems, the quality of the downlink channels also affect ω.

However, we leave the detailed modeling of the downlink for future work, and in this study, only

consider the coupling between the control and communication layers over the uplink. For this

study, we consider ω as a known traffic parameter that can be evaluated from practical system

data of call records.

Communication channel allocation: The number of idle communication channels during the

nth AP is Nc − Yn, before the allocation of communication channels to the new calls. If Xn ≤

Nc − Yn, i.e., the number of calls successfully getting access to the system is less than or equal to

the number of idle communication channels, then there will be no congestion. In this case, all new

Xn calls are allocated communication channels without any call blocking, making Zn =Xn + Yn.

Otherwise, Xn > Nc − Yn and the system randomly selects Nc − Yn calls out of Xn new calls,

making all the channels busy during the nth FP and thus Zn = Nc. We call this a random call

(or user) selection. The remaining Xn − (Nc − Yn) calls are blocked due to congestion. Thus, we

can write the number of busy communication channels Zn in terms of the Xn and Yn as follows:

Zn =






Xn + Yn if Xn + Yn ≤ Nc,

Nc otherwise.
(4.2)
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Let Gn be the calls lost due to congestion during an nth SP. We can also write Gn in terms of the

Xn and Yn as follows:

Gn =






0 if Xn + Yn ≤ Nc,

Xn + Yn −Nc otherwise.
(4.3)

Note that in finite source wireless systems, e.g., trunked radio systems, a talk group busy in

communications does not generate a new call request. Thus, only an idle user, not busy in com-

munications, can generate a new call request and contend for system access. The number of idle

users during (n− 1)th SP is In−1 = M − Zn−1, where Zn−1 is the number of channels, or equiv-

alently users, busy in communications during the (n − 1)th FP. Out of these In−1 idle users, Ln

users will contend for system access in the next slot, i.e., the nth SP. Let λ be the probability

that a call arrives for an idle user during an SP. We call λ as the call arrival rate per idle user,

and assume that it is same for all the users in the system. Now Ln is binomially distributed and

depends on the number of idle users M − Zn−1 in the (n− 1)th SP, i.e:

Pr
�
Ln = l

��Zn−1 = z1

�
=






�
M−z1

l

�
λ
l(1− λ)M−z1−l if l ∈ ΩL(z1),

0 otherwise.
(4.4)

∀l ∈ ΩL, ∀z1 ∈ ΩZ. Here, ΩL(z1) = {0, 1, . . . ,M − z1} and ΩL = {0, 1, . . . ,M}. Note that for a

sufficiently large M and small λ, the binomial traffic model (4.4) approaches the Poisson model,

which is commonly used for analysis of communication systems, e.g. in [41–43]. Also note that

Pr
�
Ln = l

��Zn−1 = z1

�
is a function of Ln, Zn−1, M and λ, and can be easily updated to incorpo-

rate any other call traffic model of interest.

As explained in the previous paragraph, the call traffic model (4.4) models the arrival of calls

such that the new calls are generated only by the idle users that are not busy in communications.

This also agrees with the operation of practical finite source systems, with both unicast and mul-

ticast traffics, because, in such systems, a user busy in communications does not generate a new

call request. Due to the same phenomenon, the collision loss at the control layer is affected by the
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communication layer performance, as discussed in Section 4.1. Note that we cannot capture this

coupling between control and communication layers without such a traffic model. However, this

dependence of call arrival traffic on the number of idle users is not considered in conventional

studies related to unicast and multicast finite source systems, e.g, in [69, 72, 91].

In our study, we assume that the time horizon begins at n = 0, with the initial values of

all the processes being 0, i.e., L0 = 0, X0 = 0, Y0 = 0, Q0 = 0 and G0 = 0, with probability 1.

Since X0 = 0 and Y0 = 0, therefore Z0 = 0 according to (4.2). Moreover, all the expressions in

this study are for n ∈ N+, where N+ is a set of all strictly positive natural numbers, i.e., natural

numbers without 0.

As described so far, and also illustrated in Figure 4.3; Ln, Xn, Yn, Qn and Gn depend on Zn−1.

Also, given Zn−1; Ln, Xn, Yn, and therefore Qn and Gn are stationary processes. Furthermore,

given Zn−1;
�
Ln

�∞

n=1
,
�
Xn

�∞

n=1
,
�
Yn

�∞

n=1
, and therefore

�
Qn

�∞

n=1
and

�
Gn

�∞

n=1
are sequences

of conditionally independent and identically distributed random variables. Moreover, (4.2) shows

that Zn depends on Xn and Yn both of which, in turn, depend on Zn−1. Thus, Zn depends on

Zn−1, ∀n ∈ N+. Also, Zn depends on its previous history but only through Zn−1, i.e., Zn does

not depend on the rest of the past values given Zn−1. Therefore, the process Zn forms a first order

discrete time Markov chain in our model.

Remarks on Visibility of Parameters: In practice, multiple access systems only keep records

of the calls that successfully get access to the system. But no record is kept for the call requests

that are lost due to collision. Therefore, we classify our model parameters, also illustrated in

Figure 4.3, into two types. The first type of parameters are those which are recorded by or known

to the practical systems, namely, ω, Xn, Zn, Gn, M and N . We call them the visible parameters.

The second type of parameters are those which are not recorded by or unknown to the practical

systems, namely, λ, Ln and Qn. We call them the invisible parameters. The key invisible parameter

is λ and we also call it the invisible actual traffic load. In Section 4.4, we demonstrate how we can

use our model to estimate λ, using the known values of the visible parameters, under the model

91



proposed here. Note that this capability of estimating λ provided by our model brings the traffic

awareness characteristic to our proposed channel allocation scheme, as described in Section 4.4.

Also, in Section 4.5.1, we remark how we can acquire the required knowledge of Ln and Qn based

on the estimated value of λ.

4.3 Problem Formulation
4.3.1 Performance Metric

The performance metric in our study is the total loss rate of the system. We define it as the fraction

of calls blocked during an SP in the long run, i.e., infinite time horizon or n → ∞. It is represented

as β and given by:

β = lim
k→∞

�k
n=1

Qn +Gn�k
n=1

Ln

= βQ + βG. (4.5)

Here βQ and βG are the collision and congestion loss rates of the system respectively, explained in

the following paragraphs. Note that for a given channel allocation and the number of contenders

in the system, the collision and congestion are independent loss events.

Collision Loss Rate: We define the collision loss rate βQ as the fraction of calls blocked due

to collision, during an SP in the long run. Mathematically, irrespective of any assumed access

control and communication channel allocation protocol, for
�

∀z1∈ΩZ
E
�
Ln

��Zn−1 = z1

�
.πz1 �= 0:

βQ = lim
k→∞

�k
n=1

Qn�k
n=1

Ln

(4.6)

=

�
∀z1∈ΩZ

E
�
Qn

��Zn−1 = z1

�
.πz1�

∀z1∈ΩZ
E
�
Ln

��Zn−1 = z1

�
.πz1

. (4.7)

Here ΩZ = {0, 1, . . . , Nc} is the sample space of Zn, E[.] is the expectation operator and πz1 is

the steady state probability of the Markov chain Zn for state Zn = z1, i.e., limn→∞ Pr(Zn = z1).

Note that we get (4.7) from (4.6) by using the Law of Large Numbers, and the fact that given

Zn−1, both
�
Ln

�∞

n=1
and

�
Qn

�∞

n=1
are sequences of conditionally independent and identically

distributed random variables. The steady state probability πz1 is presented in Section 4.3.2. The

numerator in (4.7) is the average number of calls blocked due to collision during an SP, over
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the long run. While the denomenator is the average number of contenders or arrived calls in an

SP, over the long run. Since, given Zn−1, Ln is binomially distributed as shown in (4.4), therefore

E
�
Ln

��Zn−1 = z1

�
= (M − z1)λ. Also, we know that Qn = Ln −Xn, therefore, E

�
Qn

��Zn−1 = z1

�

= E
�
Ln

��Zn−1 = z1

�
− E

�
Xn

��Zn−1 = z1

�
. If we represent the sample space of Xn as the set ΩX,

ΩX = {0, 1, . . . , Nx}, then we have E
�
Xn

��Zn−1 = z1

�
=

�
∀x∈ΩX

xPr
�
Xn = x

��Zn−1 = z1

�
. We

call Pr
�
Xn = x

��Zn−1 = z1

�
as the conditional distribution of the system access state, and is pre-

sented in Section 4.3.4.

Congestion Loss Rate: We define the congestion loss rate βG as the fraction of calls blocked

due to congestion, during an SP in the long run. Mathematically, similar to Equation (4.7), for
�

∀z1∈ΩZ
E
�
Ln

��Zn−1 = z1

�
.πz1 �= 0:

βG = lim
k→∞

�k
n=1

Gn�k
n=1

Ln

(4.8)

=

�
∀z1∈ΩZ

E
�
Gn

��Zn−1 = z1

�
.πz1�

∀z1∈ΩZ
E
�
Ln

��Zn−1 = z1

�
.πz1

. (4.9)

The numerator in (4.9) is the average number of calls blocked due to congestion during an SP,

over the long run. If we represent the sample space of Gn as ΩG = {0, 1, . . . , Nx}, then we have

E
�
Gn

��Zn−1 = z1

�
=

�
∀g∈ΩG

g . Pr
�
Gn = g

��Zn−1 = z1

�
. We call Pr

�
Gn = g

��Zn−1 = z1

�
as the

conditional distribution of the congestion loss, and is presented in Section 4.3.3.

4.3.2 Steady State Distribution of Zn

As mentioned in Section 4.2, Zn forms a discrete time Markov chain (DTMC). Also, this chain

is irreducible and ergodic. Therefore a steady state distribution exists for Zn. Let πz be the

steady state probability of the Markov chain Zn for state Zn = z, i.e., πz = limn→∞ Pr(Zn = z).

Let Π be a column vector such that its zth element is πz. Then the steady state distribution

is the solution of a system of linear equations, i.e., Π = Pt

z
Π and

�
∀z∈ΩZ

πz = 1. Here Pt

z

is the transpose of matrix Pz which is the transition probability matrix for DTMC Zn. Thus,

the element of matrix Pz at z1th row and z2th column is the state transition probability, i.e.,

Pz(z1, z2) = Pr
�
Zn = z2

��Zn−1 = z1

�
, ∀z1, z2 ∈ ΩZ. This transition probability can be evaluated
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by marginalizing the conditional joint distribution Pr
�
Zn = z2, Xn = x, Yn = y

��Zn−1 = z1

�
, as

shown in the following expression.

Pr
�
Zn = z2

��Zn−1 = z1

�
=

�

∀(x,y)∈ΩXY

Pr
�
Zn = z2, Xn = x, Yn = y

��Zn−1 = z1

�
, (4.10)

∀z1, z2 ∈ ΩZ. Also, ΩXY = ΩX × ΩY. The summand in (4.10) can be broken down using the

chain rule of probability and the facts that given Xn and Yn, Zn is independent of Zn−1, and given

Zn−1, Yn is independent of Xn:

Pr
�
Zn = z2, Xn = x, Yn = y

��Zn−1 = z1

�

= Pr
�
Zn = z2

��Yn = y,Xn = x
�
× Pr

�
Yn = y

��Zn−1 = z1

�
× Pr

�
Xn = x

��Zn−1 = z1

�
, (4.11)

∀x ∈ ΩX, ∀y ∈ ΩY and ∀z1, z2 ∈ ΩZ.

Consider the first term in (4.11). It is given by the following equation, based on our knowledge

of (4.2), wherein we express Zn in terms of Xn and Yn.

Pr
�
Zn = z2

��Yn = y,Xn = x
�

=






1 if (x+ y ≤ Nc and z2 = x+ y) or (x+ y > Nc and z2 = Nc),

0 otherwise,
(4.12)

∀x ∈ ΩX, ∀y ∈ ΩY and ∀z1, z2 ∈ ΩZ. The second term in (4.11), Pr
�
Yn = y

��Zn−1 = z1

�
, is given

by (4.1), whereas the last term, Pr
�
Xn = x

��Zn−1 = z1

�
, is presented in Section 4.3.4. Thus, the

summand in (4.10) can be evaluated using (4.11) which can help us evaluating the transition prob-

abilities using (4.10). These transition probabilities are then used to form the transition probability

matrix Pz which in turn is used to evaluate the steady state distribution, πz ∀z ∈ ΩZ. Recall that

these steady state distributions are required for evaluating the collision and congestion loss rates,

using (4.7) and (4.9) respectively.

4.3.3 Conditional Distribution of the Congestion Loss Gn

Now we evaluate the conditional distribution of the congestion loss Gn, Pr
�
Gn = g

��Zn−1 = z1

�
.

For this, we use the same approach as that used in Section 4.3.2. To this end, we marginalize
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the conditional joint distribution Pr
�
Gn = g,Xn = x, Yn = y

��Zn−1 = z1

�
as demonstrated in the

following mathematical expression.

Pr
�
Gn = g

��Zn−1 = z1

�
=

�

∀(x,y)∈ΩXY

Pr
�
Gn = g,Xn = x, Yn = y

��Zn−1 = z1

�
, (4.13)

∀g ∈ ΩG, ∀z1 ∈ ΩZ. The summand in (4.13) can be broken down similar to (4.11), and thus given

by the following expression.

Pr
�
Gn = g,Xn = x, Yn = y

��Zn−1 = z1

�

= Pr
�
Gn = g

��Yn = y,Xn = x
�
× Pr

�
Yn = y

��Zn−1 = z1

�
× Pr

�
Xn = x

��Zn−1 = z1

�
, (4.14)

∀x ∈ ΩX, ∀y ∈ ΩY, ∀g ∈ ΩG and ∀z1 ∈ ΩZ.

Consider the first term in (4.14). It is given by the following equation, based on our knowledge

of (4.3), wherein we express Gn in terms of Xn and Yn.

Pr
�
Gn = g

��Yn = y,Xn = x
�

=






1 if (x+ y ≤ Nc and g = 0) or (x+ y > Nc and g = x+ y −Nc),

0 otherwise,
(4.15)

∀x ∈ ΩX, ∀y ∈ ΩY, ∀z1 ∈ ΩZ and ∀g ∈ ΩG. Similar to Section 4.3.2, the second term in (4.14) is

given by (4.1), whereas the last term, Pr
�
Xn = x

��Zn−1 = z1

�
, is presented in Section 4.3.4. Thus,

the summand in (4.13) can be evaluated using (4.14) which can help us evaluate the required prob-

ability, Pr
�
Gn = g

��Zn−1 = z1

�
, ∀g ∈ ΩG and ∀z1 ∈ ΩZ, using (4.13). Recall that this conditional

distribution of the congestion loss Gn is used to evaluate the expected congestion loss per SP

conditioned on Zn−1, i.e., E
�
Gn

��Zn−1 = z1

�
=

�
∀g∈ΩG

g . Pr
�
Gn = g

��Zn−1 = z1

�
, as mentioned

in Section 4.3.1. This expected congestion loss is required for evaluating the congestion loss rate,

as shown in (4.9).

4.3.4 Conditional Distribution of Access State Xn

Now, in the context of the access control procedure described in Section 4.2, we evaluate the

conditional distribution of Xn, given Zn−1. This distribution can be evaluated by marginalizing the
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conditional joint distribution Pr
�
Xn = x, Ln = l

��Zn−1 = z1

�
, as demonstrated by the following

mathematical expression.

Pr
�
Xn = x

��Zn−1 = z1

�
=

�

∀l∈ΩL

Pr
�
Xn = x, Ln = l

��Zn−1 = z1

�
, (4.16)

∀x ∈ ΩX and ∀z1 ∈ ΩZ. The summand in (4.16) can be broken down using the chain rule of

probability and the fact that given Ln, Xn is independent of Zn−1, also shown by Figure 4.3.

Thus, we can write,

Pr
�
Xn = x, Ln = l

��Zn−1 = z1

�
= Pr

�
Xn = x

��Ln = l
�
× Pr

�
Ln = l

��Zn−1 = z1

�
, (4.17)

∀x ∈ ΩX, ∀l ∈ ΩL and ∀z1 ∈ ΩZ. The second product term in (4.17), Pr
�
Ln = l

��Zn−1 = z1

�
, is

given by (4.4), and in Section 4.3.5 we describe how to evaluate the first term, Pr
�
Xn = x

��Ln = l
�
.

Note that in Section 4.3.5 we present the details according to the assumed access protocol. Also,

it is only Pr
�
Xn = x

��Ln = l
�

which needs to be updated if the protocol changes, the rest of the

framework remains unchanged. This concludes the evaluation of Pr
�
Xn = x

��Zn = z1

�
. Recall

that we need this conditional distribution of the system access state for the analysis discussed

so far. Also note that the evaluation of this distribution requires values of the model parameters,

namely, M , Nx, Nc, s, σ, λ and ω.

4.3.5 Evaluation of Pr
�
Xn = x

��Ln = l
�

We consider three cases for all possible values of Ln, namely Ln = 0, Ln = 1 and Ln ≥ 2. When

Ln = 0, there is no contender in the nth AP. Thus, in that AP, no call gets a successful access to

the system and Xn = 0 with probability 1, so Pr
�
Xn = 0

��Ln = 0
�
= 1. Now consider the case

when Ln = 1. In this case, there is only one contender in the nth AP, and thus no collision.

Therefore, in that AP, this single contender will surely get a successful access to the system, due

to no collision and Xn = 1 with probability 1, so Pr
�
Xn = 1

��Ln = 1
�
= 1. For the case when

Ln ≥ 2, we evaluate the access state probability using a general framework based on the assumed

access control procedure. To this end, firstly, we consider a binary state variable, jXn ∈ {0, 1},
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called the jth access channel state in the nth AP. This access channel state is defined by the

following mathematical expression.

jXn =






1 if jth access channel has an access success in nth AP,

0 otherwise.
(4.18)

Thus, Xn =
�Nx

j=1 jXn. Let
�
j
Xn

�Nx

j=1
∈ {0, 1}Nx represent an Nx-dimensional random-vector,

and
�
xj

�Nx

j=1
= x

Nx

1
∈ {0, 1}Nx represent an Nx-dimensional deterministic-vector. For each x ∈ ΩX,

we define a set SX(x) ⊂ {0, 1}Nx as follows:

SX(x) =
�
x
Nx

1
∈ {0, 1}Nx :

Nx�

j=1

xj = x

�
. (4.19)

Now, the access state distribution, given Ln, can be expressed as:

Pr
�
Xn = x

��Ln = l
�
= Pr

�
�

xNx

1
∈SX(x)

{
�
j
Xn

�Nx

j=1
= x

Nx

1
}

����� Ln = l

�

=
�

∀xNx

1
∈SX(x)

Pr
��

j
Xn

�Nx

j=1
= x

Nx

1

���Ln = l

�
, (4.20)

∀x ∈ ΩX. Note that this expression is a general expression, valid for all l ∈ ΩL = {0, 1, . . . ,M}.

But, since for l = 0 and l = 1 we already know the access state distribution, therefore we only use

this general expression for l ≥ 2. Hence, we can summarize the distribution of the access state,

given Ln, as follows:

Pr
�
Xn = x

��Ln = l
�

=






1 if (x = 0 and l = 0) or (x = 1 and l = 1),

�
∀xNx

1
∈SX(x) Pr

��
j
Xn

�Nx

j=1
= x

Nx

1

��Ln = l

�
if l ≥ 2,

0 otherwise,

(4.21)

∀x ∈ ΩX and ∀l ∈ ΩL. In the following discussion we shall discuss how to evaluate the summand

in (4.21) for the case of Ln ≥ 2.
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Consider an nth access period AP. Assume that there are two or more contenders in this AP

contending for system access, i.e., Ln ≥ 2. According to the access procedure, each contender

randomly selects an access control channel, out of Nx available access channels. Let jLn be

the number of contenders selecting jth access channel, during the nth AP. Thus, Ln =
�Nx

j=1 jLn.

Let
�
j
Ln

�Nx

j=1
∈ (ΩL)Nx represent an Nx-dimensional random-vector, and

�
lj

�Nx

j=1
= l

Nx

1
∈ (ΩL)Nx

represent an Nx-dimensional deterministic-vector. For each l ∈ ΩL, we define a set SL(l) ⊂ (ΩL)Nx

as follows:

SL(l) =
�
l
Nx

1
∈ (ΩL)

Nx :
Nx�

j=1

lj = l

�
. (4.22)

Now, the summand in (4.21), for the case l ≥ 2, can be evaluated by marginalizing a joint distri-

bution as follows:

Pr
��

j
Xn

�Nx

j=1
= x

Nx

1

��Ln = l

�

=
�

∀lNx

1
∈SL(l)

Pr
��

j
Xn

�Nx

j=1
= x

Nx

1
,
�
j
Ln

�Nx

j=1
= l

Nx

1

���Ln = l

�
, (4.23)

∀x
Nx

1
∈ SX(x) and l ≥ 2. Now the summand in (4.23) can be broken down using the chain rule

of probability as follows:

Pr
��

j
Xn

�Nx

j=1
= x

Nx

1
,
�
j
Ln

�Nx

j=1
= l

Nx

1

���Ln = l

�

= Pr
��

j
Xn

�Nx

j=1
= x

Nx

1

���
�
j
Ln

�Nx

j=1
= l

Nx

1
, Ln = l

�
× Pr

��
j
Ln

�Nx

j=1
= l

Nx

1

���Ln = l

�
(4.24)

= Pr
��

j
Xn

�Nx

j=1
= x

Nx

1

���
�
j
Ln

�Nx

j=1
= l

Nx

1

�
× Pr

��
j
Ln

�Nx

j=1
= l

Nx

1

���Ln = l

�
, (4.25)

∀x
Nx

1
∈ SX(x), ∀lNx

1
∈ SL(l) and l ≥ 2. Note that the first product term in (4.24) is equal to that

in (4.25) because for lNx

1
∈ SL(l), the events

�
j
Ln

�Nx

j=1
= l

Nx

1
and Ln = l are equivalent, as shown

by the definition of set SL(l) in (4.22). Recall that according to the access procedure, each con-

tender randomly selects an access control channel out of Nx available channels. Also, all Nx con-

trol channels are equally likely to be selected by each user. Thus, given the number of contenders
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in the nth SP, Ln,
�
j
Ln

�Nx

j=1
follows a multinomial distribution, i.e.,

Pr
��

j
Ln

�Nx

j=1
= l

Nx

1

���Ln = l

�
=

l!
�Nx

j=1
lj!

(
1

Nx

)l, (4.26)

∀l
Nx

1
∈ SL(l), l ≥ 2. This gives the second product term in (4.25). Since, the access procedure

going on for each access channel is independent of that for all other channels, therefore we can

use the chain rule of probability for independent events, to get the first product term in (4.25), as

shown by the following expression,

Pr
��

j
Xn

�Nx

j=1
= x

Nx

1

���
�
j
Ln

�Nx

j=1
= l

Nx

1

�
=

Nx�

j=1

Pr
�
j
Xn = xj

��� jLn = lj

�
, (4.27)

∀x
Nx

1
∈ SX(x), ∀x ∈ ΩX, ∀lNx

1
∈ SL(l) and l ≥ 2. Note that during an nth AP, for jth access con-

trol channel, if jLn = 1 then there will always be an access success and jXn = 1 with probability

1. Otherwise, if jLn ≥ 2, collision occurs and the users go into the CRP mode, thus the access

success for nth AP depends on the outcome of the CRP:

Pr
�
j
Xn = 1

��� jLn = lj

�
=






0 if lj = 0,

1 if lj = 1,

Ψ(lj) if lj ≥ 2.

(4.28)

∀lj ∈ ΩL and ∀j ∈ {0, 1, . . . , Nx}. Here, Ψ(lj) is the probability of access success for CRP. Now

we discuss the evaluation of Ψ(lj). To this end, first let ψ(lj) be the probability that exactly one

out of lj ≥ 2 contenders contends for an access slot during CRP. We also call it the access success

probability per access slot during CRP, and it is given by:

ψ(lj) = ljσ(1− σ)lj−1
, (4.29)

∀lj ∈ ΩL, lj ≥ 2, j ∈ {0, 1, . . . , Nx}. As a result, the probability of access success for the kth

access slot during CRP is
�
1− ψ(lj)

�k−1

ψ(lj). Hence, the probability of access success for CRP,

with at the most s access slots available per AP for CRP, is given by:

Ψ(lj) =
s�

k=1

�
1− ψ(lj)

�k−1

ψ(lj). (4.30)
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∀lj ∈ ΩL and ∀j ∈ {0, 1, . . . , Nx}. Note that here we present Ψ(lj) for the assumed CRP, but

any other protocol can be incorporated in our model by simply updating Ψ(lj) accordingly. This

completes the evaluation of Pr
�
j
Xn = 1

��� jLn = lj

�
. Since jXn ∈ {0, 1}, thus Pr

�
j
Xn = 0

�
=

1 − Pr
�
j
Xn = 1

�
. This concludes the evaluation of the first product term in (4.25). The sec-

ond term is already given by (4.26). Thus, this also concludes the evaluation of the summand

in (4.23), using (4.25). We can now use (4.23) to evaluate the required conditional distribution

Pr
�
Xn = x

��Ln = l
�

using (4.21).

4.3.6 Optimization Problem - The Joint Channel Allocation

Our objective is to find the optimal number of access control and communication channels. The

criterion for optimality is the minimization of the total loss rate of the system β. At the same time

we also have two constraints. The first constraint is that there should always be at least one control

and one communication channel in the system. According to this constraint we need to select the

optimal Nx and Nc out of the set {1, . . . , N − 1}. The second constraint is that the total number

of channels in the system remains constant. According to this constraint we have Nx +Nc = N .

Moreover, we also need to select an optimal σ that minimizes the loss rate, for any given channel

allocation. Thus, for a given N total number of channels, the optimal number of control channels

Nxo is as follows:

Nxo = argmin
Nx∈{1,...,N−1}

β̂(Nx, Nc), subject to:Nx +Nc = N. (4.31)

= argmin
Nx∈{1,...,N−1}

β̂(Nx, N −Nx). (4.32)

Here, ∀Nx = N −Nc ∈ {1, . . . , N − 1},

β̂(Nx, Nc) = min
σ∈(0,1)

β(Nx, Nc, σ). (4.33)

Note that here we have considered the variation in β with respect to Nx, Nc and σ, even though

β depends on other model parameters as well which we assumed to be known for the stated opti-

mization problem. According to the constraint, the optimal number of communication channels is
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Nco = N −Nxo. Also note that this is a discrete optimization problem and does not have a closed

form solution. Therefore, we numerically solve the problem by exhaustive search and analyze

the results in Section 4.6. However, in a practical system, instead of finding the optimal channel

allocation by exhaustive search, an already generated channel allocation map is stored in the sys-

tem’s memory as a lookup table which is used for an instantaneous channel allocation, whenever

there is a change in traffic load. As discussed in detail in Section 4.6.4, the channel allocation map

provides the optimal channel allocation for all possible values of the traffic parameters, namely, λ

and ω. Note that while generating a channel allocation map, the optimal values of σ are also

obtained which can also be stored in the form of a look table, for all values of λ and ω.

4.4 Traffic Aware Channel Allocation

For the given values of system parameters M , N and s, we can solve (4.31) and find the opti-

mal number of control and communication channels, provided we know the values of the traffic

parameters λ and ω. Recall from Section 4.2 that ω is a traffic parameter that is visible to the

system, whereas λ is a parameter that is invisible. However, we can develop an estimator based

on our system model, which uses the values of visible parameters, namely, Xn, Yn and Zn, from

the available system data, to estimate the invisible actual traffic load λ. One such estimator is the

maximum likelihood (ML) estimator [92], discussed in Section 4.4.1. Once we get an estimate of

λ, say λ̂, we can then allocate the control and communication channels optimally, for the known

values of ω and the system parameters, as demonstrated by Figure 4.4.















FIGURE 4.4: Traffic aware channel allocation.
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4.4.1 Estimation of Invisible Actual Traffic

Here we present the ML estimator for the invisible actual traffic load λ. Firstly, we assume that

λ is an unknown parameter whose value needs to be estimated. Now the ML estimate of λ, until

time k ∈ N+, is given by:

λ̂k = argmax
a∈(0,1)

L(xk
0
, y

k
0
, z

k
0
, a). (4.34)

Here L(.) is the likelihood of the visible parameters given a particular value of λ = a,

L(xk
0
, y

k
0
, z

k
0
, a)

= Pr
�
X

k
0
= x

k
0
, Y

k
0
= y

k
0
, Z

k
0
= z

k
0

��λ = a
�

(4.35)

=
k�

n=1

�
Pr
�
Zn = zn

��Xn = xn, Yn = yn

�
× Pr(Yn = yn

��Zn−1 = zn−1)

�
(4.36)

×

k�

n=1

Pr
�
Xn = xn

��Zn−1 = zn−1,λ = a
�
. (4.37)

Here, in order to break up (4.35) into products, we used the chain rule of probability, and the

characteristics of our model as described in Sections 4.2 and 4.3, i.e., X0= Y0= Z0= 0 with prob-

ability 1, Zn is independent of all other random variables given Xn and Yn, Yn is independent of

all other random variables given Zn−1, and Xn is independent of all other random variables given

Zn−1 and λ. Also, Xk
0
= (X0, . . . , Xk), Y k

0
, Zk

0
are (k + 1) dimensional vectors. Note that (4.36)

is independent of λ and thus does not play a role in the ML estimator. Rather, only (4.37) depends

on λ and therefore:

λ̂k = argmax
a∈(0,1)

k�

n=1

Pr
�
Xn = xn

��Zn−1 = zn−1,λ = a
�
. (4.38)

Hence, the ML estimator only requires the conditional distribution of the access state and it can

be evaluated using our model, for each n ∈ N+, as detailed in Section 4.3.4.

4.4.2 Learning the Optimal Channel Allocation

Recall from Section 4.3.4 that for a given value of λ = a, the evaluation of the access state dis-

tribution Pr
�
Xn = xn

��Zn−1 = zn−1,λ = a
�

requires values of the model parameters, namely, M ,
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Nx, Nc, s, σ and ω. Since this distribution is needed to estimate λ, as shown in (4.38), therefore

we need to know the values of Nx, Nc and σ to get the ML estimate of λ, i.e., λ̂, for the given

values of M , N , s and ω. Hence, we can start with arbitrary values of Nx, Nc and σ to get an

initial estimate of λ, using our proposed model and solving (4.38). Later, we can use this estimate

of the invisible traffic load to update the optimal values of Nx, Nc and σ by using our proposed

model and solving (4.31) and (4.33). Recall from Section 4.3.6 that in practical systems, instead

of solving (4.31) and (4.33) every time the load varies, we use the already generated look tables

stored in the system’s memory to get the optimal values of Nx, Nc and σ, for the given values of λ

and ω. This basic idea can help develop an iterative algorithm for the traffic aware joint allocation

of control and communication channels in the system. In this study, we focus on the development

and analysis of the model required for such an algorithm, while a more comprehensive study on

the development of the algorithm is left for future work.

4.5 Reported Loss Rate

In contrast to the actual total loss rate β, defined in Section 4.3, we now define the reported

loss rate of the system based on the visible parameters. We define it as the fraction of visible-

calls that are blocked during an SP in the long run. Here, by visible-calls we mean those calls

that successfully get access to the system and are thus recorded in the practical system data.

Also, the blocked calls that are visible to the system are only those which are blocked due to

congestion. Therefore, similar to (4.7) and (4.9), we can evaluate the reported loss rate as follows,

for
�

∀z1∈ΩZ
E
�
Xn

��Zn−1 = z1

�
.πz1 �= 0:

β̃ = lim
k→∞

�k
n=1

Gn�k
n=1

Xn

(4.39)

=

�
∀z1∈ΩZ

E
�
Gn

��Zn−1 = z1

�
.πz1�

∀z1∈ΩZ
E
�
Xn

��Zn−1 = z1

�
.πz1

. (4.40)

Recall from Section 4.3.1 that the numerator in (4.40) is the expected number of calls blocked due

to congestion, while the denominator is the expected number of calls successfully getting access

to the system, during an SP in the long run. Also note that from (4.7), (4.9) and (4.40), and using
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the fact that Qn = Ln −Xn, we can easily derive:

β̃ =
βG

1− βQ

. (4.41)

We call β̃ as the reported loss rate because it is usually reported by the practical system adminis-

trators as a system performance metric. The administrators evaluate this loss rate using the data

of call records stored by the practical system. In Section 4.6.2 we demonstrate that the reported

loss rate, that is used by the practical system administrators, is a misleading performance met-

ric, as compared to the actual loss rate that can be estimated using our model as explained in

Section 4.5.1.

4.5.1 Estimating the Actual Loss Rate

Recall that the actual loss rate can be evaluated with the help of our model, as explained in

Section 4.3. However, as discussed in the same section, this requires the knowledge of the number

of contenders Ln and the collision loss Qn = Ln −Xn. Note that both Ln and Qn are invisible

system parameters and depend on the invisible parameter λ, as discussed in Sections 4.2 and 4.3.

In Section 4.4, we explain how we can use our model to estimate λ, which can then be used to

evaluate the expected values of Ln and Qn, and finally enable us to evaluate the actual loss rate

for the system.

4.6 Results and Discussion

The problem under consideration is represented by (4.31). Recall that it is a discrete optimization

problem and does not have a closed form solution. Thus, in this section, we numerically solve this

optimization problem and analyze the results. Also, we assume that λ is known. Note that we only

consider λ and ω lying in open intervals (0, 1). We ignore the values, 0 and 1, since they are not

practical cases. Also note that in order to find the optimal channel allocation, we first minimize

the total loss rate over σ, for each possible channel allocation, and later minimize the same over

all possible allocations. Also, in this section we consider M = 10 and N = M/2 = 5, which

is a frequent practical scenario observed in public safety radio networks [64]. Note that in finite

104



source systems, e.g., public safety trunked radio systems, M represents the number of talk groups,

instead of the actual number of radio units, since a single talk group can have many radio units

as its members. Indeed, from the meta data collected on Louisiana Wireless Information Network

(LWIN), M = 10 groups could correspond to as many as hundreds of radio units [64].

4.6.1 Simulation Results:

Recall that the objective function of the optimization problem under consideration is the total loss

rate of the system. Figure 4.5 shows that the value of the total loss rate, which is estimated via

simulation, approaches the value which is numerically evaluated using our proposed framework,

for a large number of regenerative simulation cycles. This demonstrates the validity of the numer-

ical results presented in this section. Note that the total loss rate which is numerically evaluated

using our proposed framework is β =
�

∀z1∈ΩZ
E
�
Qn+Gn

��Zn−1=z1

�
.πz1

�
∀z1∈ΩZ

E
�
Ln

��Zn−1=z1

�
.πz1

, whereas the one estimated

at the kth simulation time is
�

k

n=1
Qn+Gn�

k

n=1
Ln

. Also note that we use the discrete event Monte Carlo

simulation with the regenerative method [41].

4.6.2 Reported versus Actual Loss Rate - Misleadingness of Reported Loss

Both the actual and the reported loss rates of the system monotonically increase with increase in

call arrival traffic λ, as shown in Figure 4.6. Recall that the actual loss rate β incorporates both the

collision and congestion losses, whereas the reported loss rate β̃ only incorporates the congestion

loss. Due to this reason, a significant difference between both the performance measures is evident

in Figure 4.6. This clearly shows that the reported loss rate under estimates the system loss, and

therefore, it is quite misleading to have it as a performance metric.

4.6.3 Existence of Nxo - Collision and Congestion Trade-off

Increasing the number of control channels Nx in the system, while keeping the total number of

channels constant, decreases the number of communication channels Nc, and thus has a two-folds

effect on the total system loss. On one hand an increase in Nx decreases the collision loss by

increasing the expected number of calls successfully getting access to the system. On the other

hand, due to the same reason, the traffic load for the reduced number of communication channels
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FIGURE 4.5: Simulation results (N = 5, M = 10, s = 4, λ = ω = σ = 0.1).

increases, which increases the congestion loss. Thus, with an increase in Nx there exists a trade-

off between collision and congestion losses. In Figure 4.7, this trade-off is clearly evident. For

Nx < 2, the increase in congestion loss is dominated by the decrease in collision loss, thereby

decreasing the total loss rate. At Nx = 2, the minimum total loss rate is achieved for the selected

system and traffic parameters. Now, if Nx is further increased beyond this point, i.e., for Nx > 2,

the decrease in collision loss is dominated by the increase in congestion loss, thereby decreasing

the total loss rate. Thus there exists an optimal number of control channels for the system, e.g.,

Nxo = 2 in Figure 4.7, which corresponds to an optimal trade-off between collision and con-

gestion performance of the system, and minimizes the total loss rate. Also note that in order to

find the optimal channel allocation, we first minimize the total loss rate over σ, for each possible

channel allocation, and later minimize the same over all possible allocations, as shown in (4.33).

Therefore, In Figure 4.7, we have also plotted the corresponding optimal values of σ.
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FIGURE 4.6: Reported versus actual loss rate (Nx = 2, Nc = 3, M = 10, ω = 0.5, s = 10,
σ = 0.4).

4.6.4 Channel Allocation Map

We define the channel allocation map as a color map that is used to present the optimal number

of control channels Nxo, for all possible values of the traffic parameters, namely, λ and ω, for the

given values of system parameters, namely, M , N and s. Also note that the optimal number of

communication channels are simply Nco = N −Nxo. One such map is shown in Figure 4.8(a),

for N = 5 and M = 10, for a system without CRP, i.e., s = 0. In this map, the color indicates the

value of Nxo for the system, for a certain (λ,ω)-pair. Now we shall analyze the variation of Nxo

with respect to λ and ω in the map shown in Figure 4.8(a).

For any fixed λ, the optimal number of control channels Nxo decreases with increase in ω, in

Figure 4.8(a). This is because, for a fixed λ, increase in ω means an increase in expected call

duration which increases the congestion loss. It also decreases the expected number of idle users

per SP, thereby decreasing the expected number of contenders and the collision loss. This increase

in congestion and decrease in collision requires an increase in the number of communication
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FIGURE 4.7: Existence of Nxo (N = 5, M = 10, λ = 0.1, ω = 0.5, s = 10).

channels. Thus, the optimal number of control channels Nxo decreases with increase in ω, for a

fixed λ. Note that this coupling between collision and congestion losses is captured by our finite

source modeling of the system, as detailed in Sections 4.1 and 4.2.

For the variation in Nxo with respect to λ, for a fixed ω, we need to divide the map in Fig-

ure 4.8(a) into two main regions, namely, low-ω and high-ω regions. Consider the low-ω region

in Figure 4.8(a), ω ∈ (0, 0.5). Recall that an increase in λ increases the overall call traffic in the

system, which increases both collision and congestion losses. In the low-ω region, due to the low

value of ω, the increase in congestion loss with increase in λ is dominated by the increase in col-

lision loss. Therefore, in this region, the optimal number of control channels Nxo either increases

or remains constant with increase in λ. This traffic scenario is similar to the small data packet

transmission problem [93], for modern cellular systems.

Next, consider the high-ω region in Figure 4.8(a), ω ∈ (0.5, 1). We divide this region into two

sub-regions, namely, high-ω-low-λ and high-ω-high-λ sub-regions. Consider the high-ω-low-λ

sub-region, which is the region with ω ∈ [0.5, 1) and λ ∈ (0, 0.2). In this sub-region, due to the
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FIGURE 4.8: Numerical results without CRP (s = 0, N = 5, M = 10).

high value of ω and low value of λ, the increase in collision loss is dominated by the increase

in congestion loss, as λ increases within this sub-region. Therefore, in this region, the optimal

number of control channels Nxo either decreases or remains constant with increase in λ.

Finally we consider the high-ω-high-λ sub-region in Figure 4.8(a), which is the region with

ω ∈ [0.5, 1) and λ ∈ [0.2, 1). In this sub-region, the value of λ is so high that the increase in

congestion loss is dominated by the increase in collision loss, as λ increases within this sub-

region, even though ω is high as well. Therefore, in this region, the optimal number of control

channels Nxo either increases or remains constant with increase in λ.
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Channel allocation map with CRP: Figure 4.8(a) shows that without CRP, the optimal num-

ber of control channels is Nxo ≥ 3 for a significant part of the traffic region, for the given system

parameters, N = 5 and M = 10. Also, without CRP, a very small part of the traffic region has a

single control channel as an optimal allocation. On the other hand, Figure 4.9(a) shows that for

the system with CRP the optimal number of control channels is Nxo ≤ 2 for a significant part

of the traffic region. This decrease in optimal number of control channels, in the systems with

CRP, is due to the fact that the collision loss decreases due to use of CRP, therefore the system

requires a lesser number of control channels to achieve the optimal net performance in terms of

the minimum total loss rate.
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FIGURE 4.9: Numerical results with CRP (s = 10, N = 5, M = 10).
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4.6.5 Time versus Frequency Resources in Control Layer

In our model, we represent the number of access slots per AP for CRP by s. It is the maximum

number of access retrials that are allowed per AP in the system. It is also the measure of time

resources spent for CRP at the control layer of the system. So far, we have seen that with CRP

we can reduce the required number of control channels, by spending more time resources at the

control layer with s > 0. But time resources spent for CRP at the control layer, or s, cannot

be increased infinitely, because of the limitations imposed by the control layer design and the

required signaling rate. Thus, s is a bounded resource and cannot be increased to an infinitely large

value. Moreover, for finite values of s, we may need more than one frequency control channel,

depending on the traffic parameters, as shown by our results in Figure 4.9(a).

4.6.6 Significance of Collision Loss

Figures 4.8(b) and 4.9(b) show the percentage of collision loss in total loss, for the optimal chan-

nel allocations shown in respective Figures 4.8(a) and 4.9(a), for different values of λ and ω.

Figures 4.8(b) and 4.9(b) show that for N = 5 and M = 10, more than 40% of the total loss is

due to collision. In fact, for most of the traffic region, collision loss is more than 70% of the to-

tal loss. This indicates that even for the optimal channel allocation, collision loss is a significant

part of the total loss, and hence cannot be ignored. Now we shall explain why the percentage

of collision is so high. Firstly consider the case when collision is very high, e.g., for very high

λ, and thus the expected number of calls successfully getting access to the system is very low.

This results in a very low congestion loss. Therefore, in this scenario, collision loss becomes a

significant part of the total loss. On the other hand, for a relatively lower collision loss, one can

reason that the collision loss per SP can go as high as the total number of users in the system,

whereas the congestion loss per SP can only go as high as the maximum number of users that

can successfully get system access, which is equal to the number of control channels. Since the

number of users is usually much greater than the number of channels, therefore, most of the time,
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even if the absolute magnitudes of the collision and congestion loss rates are low, the collision

loss can proportionately be a significant part of the total loss, as compared to congestion.

4.6.7 Comparison with Single Control Channel System

Figures 4.8(c) and 4.9(c) show the percentage increase in total loss rate when a single control

channel is used instead of the optimal allocation, for N = 5 and M = 10. Let ∆p represent this

percentage increase in loss rate, then we define it mathematically as:

∆p =
β(Nx = 1)− β(Nx = Nxo)

β(Nx = Nxo)
× 100. (4.42)

Figures 4.8(c) and 4.9(c) show that for most of the traffic region ∆p ≥ 20%, for N = 5 and

M = 10. Hence for these values of system parameters, most of the time, using a single control

channel, instead of the optimal channel allocation, results in at least 20% more loss rate, as com-

pared to the optimal allocation. This shows the significance of the optimal channel allocation as

compared to the conventional single control channel system.

4.7 Conclusion

We proposed a novel model for finite source multiple access systems which jointly models the

access-control and communication layers. We then formulated the optimization problem to jointly

find the optimal number of control and communication channels that minimizes the actual total

loss rate, for a given number of channels available in total. Due to its complexity, we solve the

problem numerically. Firstly, we demonstrated the existence of the optimal solution using numer-

ical results. Later, we introduced the concept of a channel allocation map to represent the optimal

channel allocation for all possible values of the traffic parameters. As a further contribution, we

used our model to quantify the reported system loss rate and elaborated its misleadingness as

compared to the actual loss rate. We also demonstrated a mechanism, based on our proposed

model, which can be used to estimate the invisible actual traffic load, required for deciding the

traffic-aware optimal channel allocation, and also for estimating the actual loss rate, for a prac-

tical system. Moreover, we provided guidelines for developing an algorithm for the traffic aware
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allocation of control and communication channels, based on our proposed model and its capabil-

ity to estimate the actual invisible traffic load. Using numerical results, we demonstrated that the

optimal channel allocation provides a significant improvement in performance as compared to the

conventional strategy of using a single control channel. Our results also showed that even though

we spend time resources at the control layer to alleviate collision, we may still need more than

one frequency channel for access-control, depending on the traffic parameters.
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Chapter 5
Segmentation of Talk Group’s Call Activity

The spectrum allocation techniques, e.g., the ones discussed in Part-I of this study, requires the

knowledge of the call traffic parameters and the priority levels of the users in the system. For

practical systems, these required pieces of information are extracted from the call records meta-

data. A key fact that should be considered while analyzing the call records is that the call arrival

traffic and the users priority levels change with a change in events on the ground. This is so

because a change in events on the ground affects the communication behavior of the talk groups

in the system, which affects the call arrival traffic and the priority levels of the users. For example,

a change from a normal scenario to an emergency situation, which causes a change in the talk

groups’ activities of a PSCS. Thus, the first and the foremost step in analyzing the call records

data for a given talk group, for extracting the call traffic information, is to segment the data into

time intervals of homogeneous or stationary communication behavior of the group. In this chapter

we develop an algorithm for such a segmentation of the data of a practical PSCS.

In Section 5.6.1, we propose a way to quantify a talk group’s activity as a discrete sequence

of symbols. Here a symbol, corresponding to a call, represents the calling radio-unit in the talk

group. Note that we extract this talk group activity from the available data of call records. Recall

that in practice, a talk group’s communication behavior remains consistent during a certain event

happening on the ground. However, with a change in event, the talk group’s behavior also changes.

Thus, a talk group’s activity, extracted as a discrete sequence, from the whole day data of call

records, is not stationary. However, it may consist of many stationary segments depending on

different events that occurred on the ground. Our primary goal is to segment a given whole day

activity of a talk group into stationary segments, each corresponding to a distinct event, and also

quantify the behavior of the talk group within each segment or event. Note that we quantify the
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behavior of a talk group in the form of a context tree which represents a variable memory Markov

process of discrete symbols. The manuscript of a research paper based on this project is under

preparation [94].

5.1 Context Tree Model for Variable Length Markov Chain

Here we briefly describe the context tree based model for a variable length Markov chain (VLMC).

Further details can be found in [95]. Let x= x
n
0
= (x0, . . . , xn) be the given sequence of symbols

with length l(x)= n+ 1, which is to be segmented, and A(x) be the set of finite alphabets in x.

We also represent an indexed list, i.e., a vector, of the symbols in A(x) as a(x). Also note that the

given sequence x= x
n
0
= (x0, . . . , xn) represents a realization of a stationary ergodic stochastic

process, X = X
n
0
= (X0, . . . , Xn), [95]. The concatenation of sequences s and u is su. We say

that a sequence u is a suffix of w, denoted by u � w, if there exists an s such that w= su. How-

ever, u is a proper suffix of w, i.e., u ≺ w, if u �= w. We also denote an empty sequence as λ with

l(λ)= 0. A VLMC that generates the sequence x can be modeled as a context tree [95]. This con-

text tree is represented by a list τ of sequences called contexts. These contexts are the leaf nodes of

the context tree. A set of all the nodes of the context tree can be represented as T (τ). These nodes

are the finite suffixes of all the contexts. Each context w= w
j
i in τ is visualized as a path from

the leaf w to the root λ, consisting of l(w) edges, each labeled by the symbols wi, . . . , wj . Corre-

sponding to each context w in τ , there is an indexed list of transition probabilities π(w) such that

its jth element is πj(w)= Pr(Xi = aj

��X i−1

i−l(w)
= w), for all i such that l(w) ≤ i ≤ l(x). Here

0 ≤ j < |a|. We also define depth of context tree as d(τ)= max {l(w),w ∈ τ}.

5.1.1 BIC Estimation of Context Tree Model

An algorithm is proposed in [95] that estimates a context tree for a given sequence x according

to the Bayesian Information Criterion (BIC). Let Nw(x) denote the number of occurrences of

the sequence w in the given sequence x, such that l(w)≤ D. Here, the given parameter D is the
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maximum possible depth of the context tree [95]. Mathematically, Nw(x) can be defined as,

Nw(x) =
���
�
i : l(w) ≤ i ≤ l(x), xi−1

i−l(w)
= w

����. (5.1)

For a given sequence x, a feasible tree [95] is any tree τ of depth d(τ)≤ D, such that Nw(x)≥ 1,

∀w ∈ τ , and each string s with Ns(x)≥ 1 is either a suffix of some w ∈ τ or has a suffix w ∈ τ .

Let FD(x) denote the set of all feasible trees of depth d(τ)≤ D for a given sequence x. Also,

the maximum likelihood (ML) estimate of πj(w)= Pr(Xi = aj

��X i−1

i−l(w)
= w), for all i such that

l(w) ≤ i ≤ l(x), is given by [95]:

π̂j(x,w) =
Nwaj(x)�

aj∈a(x)
Nwaj(x)

, (5.2)

for all 0 ≤ j < |a(x)|, and the maximum likelihood of the given sequence x with a feasible tree

τ is given by [95]:

L̂
�
x, τ

�
=

�

w∈τ

Lw(x), (5.3)

Lw(x) =
|a(x)|−1�

j=0

π̂j(x,w)Nwaj
(x)

. (5.4)

We also define df(τ ,x) as the degrees of freedom of the context tree τ for a given sequence x,

and it is given by [95]:

df(τ ,x) =
�

w∈τ

νw(x) = |τ |.(|A(x)|− 1). (5.5)

Here |τ | represents the number of contexts or leaf nodes in tree τ , and νw(x)= |A(x)|− 1 repre-

sents the degrees of freedom for a context w and it depends on the number of possible transitions

from context w to symbols in A(x). The BIC estimate for the context tree is given by [95]:

τ̂ c(x) = argmin
τ∈FD(x)

BS(x, τ , c). (5.6)

Here BS(x, τ , c) is the BIC score for the sequence x, given a feasible context tree τ and the tree

penalty constant c.

BS(x, τ , c) = − log L̂
�
x, τ

�
+ c .df(τ ,x) . log l(x). (5.7)
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5.1.2 Algorithm for Context Tree Estimation

For a given sequence of symbols x, tree penalty constant c, and maximum context tree depth

D, a context tree satisfying the BIC criterion can be estimated by the procedure in Figure 5.1,

proposed in [95]. Recall that the proper suffix relation ‘≺’, and the list of estimated transition

Estimate_Context_Tree(c, x, D):

• Build a complete tree T (set of all nodes) with depth D.

• Recursively evaluate the following:

Values: V c
w(x), ∀w ∈ T .

Indicators: δcw(x), ∀w ∈ T .

• τ̂ = [ ], p̂ = [ ].

• For w ∈ T :

If δcv(x) = 1 for all v ≺ w, and δ
c
w(x) = 0:

Append w to τ̂ , and π̂(x,w) to p̂.

• Return τ̂ , p̂.

FIGURE 5.1: The context tree estimation procedure.

probabilities π̂(x,w) for a node w in the context tree are defined and explained in Section 5.1.

The values and indicators mentioned in the Estimate_Context_Tree procedure are given by the

following equations, as mentioned in [95]:

V
c
w(x) =






max
�
V̂

c
w(x), Ṽ

c
w(x)

�
, if 0 ≤ l(w) < D,

Ṽ
c
w(x), if l(w) = D.

(5.8)

δ
c
w(x) =






1, if 0 ≤ l(w) < D and V̂
c
w(x) > Ṽ

c
w(x),

0, if 0 ≤ l(w) < D and V̂
c
w(x) ≤ Ṽ

c
w(x),

0, if l(w) = D.

(5.9)
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Here V̂
c
w(x) and Ṽ

c
w(x) are given by,

V̂
c
w(x) =

�

a∈A(x):Naw(x)≥1

V
c
aw(x). (5.10)

Ṽ
c
w(x) = logLw(x)− c.νw(x) log l(x). (5.11)

A more comprehensive detail on this algorithm is provided in [95].

5.2 Context Tree based Sequence Segmentation

We represent a particular segmentation of the given data sequence x as a list i of segment end

indices. Let HS be the set of all possible segmentations of x. The kth segment of x is thus xik
ik−1+1

,

and its minimum BIC score for a given tree penalty constant c and the maximum tree depth D is

given by

βS(x
ik
ik−1+1

, c,D) = min
τ∈FD(x

i
k

i
k−1

+1
)

BS(x
ik
ik−1+1

, τ , c) (5.12)

= BS

�
x
ik
ik−1+1

, τ̂ c(x
ik
ik−1+1

), c
�

(5.13)

Note that i−1 = −1. Thus, we assign a BIC score or a cost βS(x
ik
ik−1+1

, c,D) to the kth segment.

We evaluate this cost by fixing c and then estimating the context tree for the given segment using

the algorithm presented in Section 5.1.1. The BIC score of this tree is βS(x
ik
ik−1+1

, c,D). Now, for

a fixed c, the BIC score of the complete data sequence x for a segmentation i is given by [96],

βD(i, c) =
|i|−1�

k=0

βS(x
ik
ik−1+1

, c,D) +
|i|− 1

2
. log l(x). (5.14)

In this study we also call this score as the cost of segmentation i, for a given c, and denote it

as C(c, i)= βD(i, c). The first term in (5.14) is the sum of the tree scores for all the segments,

whereas the second term is the segmentation penalty, as proposed in [96].

5.2.1 Conventional Approach and Limitation

In [96], an algorithm is proposed to search such a segmentation i for the given sequence x that

minimizes the cost βD(i, c) with a fixed tree penalty constant c = 0.5. However, c = 0.5 is pro-

posed for estimating a context tree for infinite stationary sequence, and not for a non-stationary
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sequence with segments where each segment is characterized by a distinct context tree. Moreover,

our synthetic data results show that c = 0.5 sometimes proves to be higher and results in a lesser

number of segments than the actual. Therefore, under our proposed criterion for segmentation,

presented in Section 5.2.2, we consider c ≤ 0.5.

5.2.2 Our Proposed Approach

Let K be a list of values of c ≤ 0.5. Assuming that c ≤ 0.5 is uniformly distributed, the average

BIC cost or score of a segmentation i, for the given data sequence, is given by

βA(i) =
1

|K|

�

c∈K

βD(i, c). (5.15)

To evaluate this average score, we fix the segmentation boundaries under a given segmentation

i of the data sequence, vary the tree penalty constant c, and evaluate the score βD(i, c) for each

c. Finally we take the average of the scores over all values of c. Note that for every fixed value

of c, we estimate the context trees for all segments to get the segments’ BIC scores for that c.

Our proposed segmentation criterion is to find a segmentation i for the given sequence x that

minimizes this average BIC cost, i.e.,

i∗ = argmin
i∈HS

βA(i) (5.16)

Once the segmentation is finalized, we then estimate the context tree for each segment. Let T ∗

be the list of estimated context trees for all the segments in i∗. The tree for the kth segment is

estimated by minimizing the average BIC score of the segment, averaged over all c in K, i.e.,

T
∗

k = argmin
τ∈FD(x)

1

|K|

�

c∈K

BS(x
i∗
k

i∗
k−1

+1
, τ , c). (5.17)

Recall that D denotes the maximum possible depth of the tree. According to (5.7), for a given

tree, 1/|K|
�

c∈K BS(x
ik
ik−1+1

, τ , c)= BS(x
ik
ik−1+1

, τ , cav), where cav =
�

c/|K|. Thus

T
∗

k = argmin
τ∈FD(x)

BS(x
i∗
k

i∗
k−1

+1
, τ , cav). (5.18)

Our goal in this study is to find the segmentation i∗ and the trees T ∗, for a given sequence x.
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5.3 A Suboptimal Segmentation Algorithm

The search for the optimal segmentation i∗ over the entire set HS is computationally very expen-

sive. Therefore, instead of searching over HS, for a given maximum possible number of segments

Nmax, we search over a reduced hypothesis set of candidate segmentations, HSR(Nmax), given by

HSR(Nmax) =
�
iB(c)

��c ∈ K
�
, (5.19)

iB(c) = argmin
i∈ĤS(Nmax)

C(c, i). (5.20)

Note that ĤS(Nmax) is a set of all possible segmentations of x with at the most Nmax segments.

Recall that C(c, i)= βD(i, c) is the BIC cost of a segmentation for a given c, given by (5.14).

We call iB(c) as the BIC compliant segmentation for a given c, and HSR(Nmax) as the set of

BIC compliant segmentations.

For a large given Nmax, (5.20) is computationally very expensive to solve. Thus, we devise a

greedy binary segmentation procedure to solve (5.20) in order to find a BIC compliant segmen-

tation for a given c. This procedure is discussed in detail in Section 5.4. The overall segmenta-

tion procedure is given in Figure 5.2. Note that the Greedy_Binary_Segmentation procedure is

explained in Section 5.4. Also, lmin represents the minimum segment length, which is a given

parameter, explained in Section 5.4.2.

5.4 Greedy Binary Segmentation

For a given tree penalty constant c, we find the BIC compliant segmentation of the given sequence

x according to the procedure shown in Figure 5.3. We begin with an initial segmentation i0 of the

given sequence x, representing only one segment. Then we keep splitting x iteratively using the

Greedy_Binary_Split procedure, described in Section 5.4.1, until we reach the given maximum

number of segments Nmax. We keep track of all these segmentations, i.e., ik for all k < Nmax, and

compute the cost corresponding to each one of them. Finally we select the segmentation which

has the minimum cost. Recall that the cost for a given segmentation is given by (5.14).
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Segment( ∆c, lmin, Nmax, D):

• K = [∆c, 2∆c, . . . , 0.5]

• For c ∈ K:

iB(c) = Greedy_Binary_Segmentation(c, Nmax, lmin, D)

• Build the set HSR(Nmax) =
�
iB(c)

��c ∈ K
�

• Find i∗ = argmini∈HSR(Nmax)
βA(i)

• For every kth segment in i∗:

xseg = x
i∗
k

i∗
k−1

+1

T
∗

k , P ∗

k = Estimate_Context_Tree(cav, xseg, D)

• Return i∗, T ∗, P ∗

FIGURE 5.2: The overall segmentation procedure.

5.4.1 Greedy Binary Split Procedure

This procedure bisects one of the segments of the input segmentation i and returns the updated

segmentation. The details of the procedure are given in Figure 5.4. This procedure does not bisect

just any segment, rather it selects an appropriate segment to split. To this end, the procedure finds

all possible binary splits, vk for all k < |i|, for the given segmentation i. Each kth binary split,

represented as a list of updated segment end indices vk, is obtained after the bisection of the kth

segment of the given sequence x under segmentation i. Finally the split with the minimum cost is

selected and returned.

Note that a segment is greedily split using the BIC_Bisection procedure, described in Sec-

tion 5.4.2. Here, ‘greedy’ means that a given segment is bisected under the BIC criterion which

results in a bisection with a BIC score that is optimum (minimum) locally for the given seg-

ment, independent of the rest of the segments. Moreover, as explained in detail in Section 5.4.2,
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Greedy_Binary_Segmentation(c, Nmax, lmin, D):

• i0 =
�
l(x)− 1

�

• N =
�
0, 1, 2, . . . , Nmax − 1

�

• For k ∈ N \{0}:

ik = Greedy_Binary_Split(c, ik−1, lmin, D)

• C =
�
C(c, ik)

��k ∈ N
�

• iB = i, s.t. C(c, i) = min C

• Return iB

FIGURE 5.3: The greedy binary segmentation procedure.

BIC_Bisection procedure limits the minimum segment length to be lmin number of symbols, there-

fore the Greedy_Binary_Split procedure only bisects a segment if its length is at least 2lmin.

5.4.2 BIC Bisection Procedure

For a given c, this procedure bisects a given segment of x, which is specified by the segment start

and end indices, i.e., istart and iend respectively, as shown in Figure 5.5. The procedure returns

ibisect, i.e., the segment end index of the first bisection half that resulted after bisection. Note that

the given segment is bisected such that the sum of the BIC scores of both the resulting bisection

halves is the minimum of those of all possible bisections. Moreover, the procedure limits the

minimum segment length to be lmin number of symbols. It is required because we estimate the

context tree for each segment for evaluating its BIC score, as indicated by (5.13). Thus, we need

to set a sufficient limit on the minimum number of data points (symbols) in a segment, in order to

have a reliable estimate of the context tree and the corresponding BIC score.

5.5 Results based on Synthetic Data

To validate the algorithm presented in Section 5.3, we conduct experiments based on synthetic

data. In these experiments, we generate sequences with known segmentation and context tree

models, and then run our segmentation algorithm to detect the segmentation boundaries. In Sec-
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Greedy_Binary_Split(c, i, lmin, D):

• N =
�
0, 1, 2, . . . , |i|− 1

�

• For k ∈ N :

vk = Copy(i)

lk = ik − ik−1

If lk ≥ (2× lmin):

b = BIC_Bisection(c, ik−1 + 1, ik, lmin, D)
Insert b in vk at index k

• C =
�
C(c, vk)

��k ∈ N
�

• vopt = v, s.t. C(c, v) = min C

• Return vopt

FIGURE 5.4: The greedy binary split procedure.

tions 5.5.1 and 5.5.2, we present the details of these experiments along with a comparison between

the actual and the detected segmentation boundaries. The tree models given in Table 5.1 are used

to generate the sequence data in the experiments, as detailed in Sections 5.5.1 and 5.5.2. The

graphical representation of one of these original tree models is also shown in Figure 5.6. Note

that the complete list of the alphabets in our experiments is [0, 1, 2, 3, 4].

TABLE 5.1: Context Tree Models for Generating Data

Context lists Transition probability lists

TA = [[0], [1], [3], [4]] PA = [[0, 0.310, 0, 0.241, 0.448], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0]]
TB = [[0], [2], [4], [0, 1]] PB = [0, 0.248, 0.063, 0, 0.688], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0]]
TC = [[0], [3], [4]] PC = [[0, 0, 0, 0.5, 0.5], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0]]
TD = [[0], [4]] PD = [[0, 0, 0, 0, 1], [1, 0, 0, 0, 0]]

5.5.1 Same Length Segments

We generate a 10 segment sequence from the alphabets [0, 1, 2, 3, 4], shown as the first column

in Figure 5.7, where each segment is of length 200 symbols. The 1st, 5th and 9th segments are
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BIC_Bisection( c, istart, iend, lmin, D):

• ji = istart + lmin − 1

• jf = iend − lmin

• J =
�
ji, ji + 1, . . . , jf

�

• For j ∈ J :

βsum(j) = βS

�
x
j
istart , c,D

�
+ βS

�
x
iend
j+1

, c,D
�

• ibisect = argminj∈J βsum(j)

• Return ibisect

FIGURE 5.5: The BIC bisection procedure.

generated using context tree TA. The 2nd, 6th and 10th segments are generated using context

tree TB. The 3rd and 10th segments are generated using context tree TC. The 4th and 8th seg-

ments are generated using context tree TD. In Figure 5.7, we also present the set HSR of the BIC

compliant candidate segmentations for the generated sequence. Recall that this set HSR is de-

scribed in Section 5.3. Each of this candidate is generated for every c ∈ K, for ∆c = 0.05, using

the Greedy_Binary_Segmentation procedure presented in Section 5.4, with Nmax = 200, lmin = 5

and D = 5.

Figure 5.8 shows the plots of the average BIC score βA, and the distance of each candidate

segmentation from the original. Recall that βA for a given segmentation is given by (5.15), and it

is the score that we is used in our proposed algorithm to select the final segmentation out of the

BIC compliant candidates, as described in the Segment procedure in Section 5.3. Note that we use

the same metric to find the distance between two segmentation models as that proposed in [96].

This distance measure is given by

S(i, v) = max{S̃(i, v), S̃(v, i)}. (5.21)

S̃(i, v) =
1

|i|

|i|−1�

k=−1

min
vl∈[−1,v]

�
|ik − vl|

l(x)

�
(5.22)
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FIGURE 5.6: Context tree TB from Table 5.1.

The measure S̃(i, v) is the distance of each segment boundary or segment end index in seg-

mentation i to the closest segment boundary in segmentation v on average. This distance is also

normalized to the total length of the data sequence x, and thus ranges between 0 and 1. Figure 5.8

clearly shows that the candidate segmentation that minimizes βA is very close to the original

segmentation. For this experiment the candidate segmentations that minimizes βA are the ones

corresponding to c = 0.3 and c = 0.35. Any one of these can be selected as the final segmentation

for the generated sequence. The estimated context trees for the first five segments of the final

selected segmentation are compared to the original trees in Table 5.2.

TABLE 5.2: Context Tree Models for Experiment Results of Figure 5.7

Original context lists Estimated context lists (T ∗
k ) for first five segments

TA = [[0], [1], [3], [4]] T ∗
0
= [[0], [1], [3], [4]]

TB = [[0], [2], [4], [0, 1]] T ∗
1
= [[1], [2], [4], [1, 0], [4, 0], [0, 2, 0]]

TB = [[0], [2], [4], [0, 1]] T ∗
2
= [[0], [1], [4]]

TC = [[0], [3], [4]] T ∗
3
= [[0], [3], [4]]

TD = [[0], [4]] T ∗
4
= [[0], [4]]

5.5.2 Different Length Segments

We generate a 3 segment sequence from the alphabets [0, 1, 2, 3, 4], shown as the first column in

Figure 5.9, with different segment lengths. The 1st and 3rd segments are generated using the con-
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FIGURE 5.7: BIC compliant candidate segmentations. The finally selected segmentation with the
minimum score βA is for c = 0.3 and c = 0.35.

text tree TA. The 2nd segment is generated using the context tree TB. Similar to Section 5.5.1, we

present the set HSR of the candidate segmentations in Figure 5.9. Note that we use the same val-

ues for the input parameters of the segmentation algorithm as those in Section 5.5.1. Figure 5.10

clearly shows that the candidate segmentation that minimizes βA is very close to the original seg-

mentation, similar to the experimental results presented in Section 5.5.1. For this experiment the

candidate segmentation that minimizes βA is the one corresponding to c = 0.15.

5.6 Results based on Public Safety Communications Data

In this study, we use the call records meta-data of the public safety communication system (PSCS)

of the state of Louisiana. PSCSs are implemented as trunked mobile radio systems. In these sys-

tems, the users are divided into fleets or groups normally called talk groups. Each user can only

communicate with another user of the same talk group. When a user needs to talk, it presses the

push-to-talk (PTT) button of its radio, in order to send a call request at the site’s base-station. The

base-station assigns communication resources to the caller and the rest of the users of the talk

group, in order to broadcast the voice call throughout the group.

126



FIGURE 5.8: Average BIC score βA, and the distance from the original segmentation, for the
candidates shown in Figure 5.7.

5.6.1 Talk Group Activity and Communication Behavior

We quantify a talk group’s communication activity as a discrete sequence of symbols [0, 1, 2, 3, 4],

which we extract from the call records data. Symbol 1 represents that the caller radio is the busiest

caller in the talk group. Similarly, symbol 2 represents the 2nd busiest, and symbol 3 shows the

3rd busiest caller radio. Symbol 4 represents that the caller radio is one of the rest of the radios.

Symbol 0 is used to represent an idle duration, where there is no communication activity by the

talk group. Note that the call durations in PSCSs are very small and are of the order of seconds.

However, an idle duration can be very large in PSCSs, as compared to the call durations, and

can be of the order of hours. Therefore, we also incorporate the idle durations while extracting

the activity sequence of a talk group. To this end, we up-sample an idle symbol by a factor of

�idle duration / average idle duration�, if idle duration > average idle duration. We then apply

our segmentation algorithm on these discrete activity sequences.
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FIGURE 5.9: BIC compliant candidate segmentations. The finally selected segmentation with the
minimum score βA is for c = 0.15.

5.6.2 Fire Incidents Data

Note that we do not have any ‘ground truth’ to validate our segmentation results for the real

public safety communications data. Therefore, we use the fire incidents timeline to validate the

segmentation of a talk group’s activity sequence which is suggested by our proposed segmenta-

tion algorithm, as explained in Section 5.6.4. We use the fire incidents data since it is available

online as an open source data set [97]. The first column in Figures 5.11 and 5.12 represents the

occurrences of fire incidents in Baton Rouge, on January 26, 2014, from 00:00:00 to 23:59:59. A

cyan colored window in the first column shows the duration of a fire incident. We generate this

incidents timeline using the open source data available online [97].

5.6.3 Group Selection Criteria

We have used two criteria to select the appropriate talk groups to analyze their call records data

using our segmentation algorithm. Under the first criterion, we select the fire department talk

groups out of the busiest talk groups based on the whole day activity. CBR-VF-DISP-1 is one

such group whose results are presented in Figure 5.11. Under the second criterion, we select such

talk groups that are the busiest groups based on the activity within a fire incident time window.
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FIGURE 5.10: Average BIC score βA, and the distance from the original segmentation, for the
candidates shown in Figure 5.9.

CBR-D2-DISP is one such group whose results are presented in Figure 5.12. Note that this is one

of the busiest group during the second fire incident.

5.6.4 Segmentation Results

In Figures 5.11 and 5.12, the second column represents the segmentation results for the activity

sequences of two talk groups, namely, CBR-VF-DISP-1 and CBR-D2-DISP, for January 26, 2014,

from 00:00:00 to 23:59:59. These groups are selected under the criteria explained in Section 5.6.3.

For segmentation, we use the Segment procedure described in Section 5.3, with parameter val-

ues as follows, ∆c = 0.05, Nmax = 200, lmin = 30 and D = 5. A change in color in the second

column represents a change in the communication behavior of the talk group. Note that the com-

munication behavior of the talk group during an activity segment is quantified as a VLMC of the

activity symbols, represented as a context tree which is estimated for that segment. In Figures 5.11
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and 5.12, we present the segmentation in terms of time indices, in contrast to Section 5.5 where

we present the results in terms of sequence symbol indices.

FIGURE 5.11: Activity segmentation of talk group CBR-VF-DISP-1.

The beginning and ending of an incident window in the first column suggests a change in the

communication behavior of the talk group. A comparison of both the columns in Figures 5.11

and 5.12 shows that a change in communication behavior of the talk group, as suggested by the

beginning and ending of an incident, is captured by our segmentation algorithm. In Figure 5.11

activity segments are detected corresponding to the 1st and 2nd incidents. In Figure 5.12 an ac-

tivity segment is detected by our segmentation algorithm corresponding to the 2nd incident in the

first column. For clarity, we have used dotted red boxes around the activity segments in the second

column and their corresponding incidents windows in the first column. Also, the graphical repre-

sentations of two of the estimated context trees for the group CBR-VF-DISP-1 are also shown in

Figure 5.13, for the segments at indices 6 and 7.
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FIGURE 5.12: Activity segmentation of talk group CBR-D2-DISP.

FIGURE 5.13: Context trees T ∗
6

and T
∗
7

for the group CBR-VF-DISP-1.
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Chapter 6
Summary and Future Works

The goal of our study is to propose techniques for an efficient allocation of spectral resources

in finite source systems. These techniques can help alleviate the overloading of public safety

communication systems during emergency situations. Our study consists of four projects that are

discussed in detail in Chapters 2, 3, 4 and 5. In this chapter, we present a brief summary of our

contributions and discuss interesting future research ideas for each of these projects.

6.1 Spectrum Allocation via Cognitive Radio based System

In Chapter 2, we study how an efficient spectrum allocation can be achieved by adopting a cogni-

tive radio based design approach. In a cognitive radio based system, there are two types of users,

namely, primary users (PUs) and secondary users (SUs). PU is a high priority user that can use

the allocated frequency channel at any time when needed. On the other hand, SU is a low priority

user that can use the channel allocated for PU, when PU is idle and the channel is available for

SU. One of the challenges faced while designing such systems is to improve the capability of the

SU transmitter (SU-TX) to detect the availability of the channel. This can be achieved by appro-

priately selecting the detection parameters of SU-TX’s signal detector that result in an optimal

sensing-throughput tradeoff, as explained in Chapter 2. In that chapter, we provide the design

guidelines for the cognitive radio systems, based on the transmission-power levels of the users.

Note that the design goal in this project is to achieve the maximum SU performance by keeping

the PU performance-degradation within a given tolerable range. Some interesting future research

ideas are as follows.

• The system model discussed in Chapter 2 does not incorporate fading. However, we briefly

discuss the effect of fading on the degrees of freedom and interference trade-off for cogni-

tive radio systems in Section 2.6.1. A more detailed study that includes the incorporation of
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fading in the system model, and its effect on the PU and SU performances, is left as a part

of the future work, that will provide further useful insights.

• Also, in Chapter 2, we only consider a single point-to-point communication link for both

PU and SU in our system model. Even this simple model poses analytical challenges and

reveals interesting results, as elaborated in this study. However, this basic model can be used

as a building block for a more sophisticated model of cognitive radio networks, which may

consist of large number of nodes and communication links among them. Such complicated

model considerations are also left as a part of the future work.

6.2 Communication Channel Allocation by Call Admission and Preemption Control

In Chapter 3, we study the communication channel allocation as the call admission and preemp-

tion control, for finite source systems. To this end, the system is modeled as a prioritized queueing

system, wherein the users are assigned priority levels, and the system operation is modeled as a

Markov decision process (MDP). Based on these priorities, optimal decisions are determined for

admitting a new call or preempting an already busy call. These policy decisions depend on the

priority level of the call and the state of the system. In this study, we demonstrate that the optimal

policies are threshold based policies. Note that the threshold based policies are easy to design and

can be implemented in terms of decision thresholds. These decision thresholds are used to make

optimal admission and preemption decisions during the system operation. Some interesting future

research ideas are as follows.

• In Chapter 3, we consider time-invariant call arrival and service rates. An interesting sce-

nario to analyze as a part of the future work is to consider time varying call arrival and

service rates.

• Also, in Chapter 3, we demonstrate using numerical results that the optimal low priority

call preemption policy is a threshold based policy. However, the analytical proof of this
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observation is left as a part of the future work. We can adopt a similar approach to prove

this result as that adopted for the admission policy.

6.3 Optimal Joint Allocation of Control and Communication Channels

In a control channel based wireless access system, e.g., a public safety communication system

(PSCS), there are two types of frequency channels. One of the types is called the control channel

that is dedicated for access control, whereas the rest of the channels are used for communications.

Therefore, we can divide the system into two segments or layers, namely, the access layer and

the communication layer. In order to implement a bandwidth efficient system we need an optimal

allocation of control and communication channels. As explained in detail in Chapter 4, the perfor-

mance of one layer significantly affects that of the other one, in case of the finite source wireless

systems like PSCSs. Thus, for such systems, the control and communication layers are insepa-

rable. Therefore, in Chapter 4, we propose a novel statistical model for wireless access systems

that jointly models the control and communication layers, and helps evaluate the optimal num-

ber of control and communication channels. We also propose the concept of a channel allocation

map that helps visualize the optimal channel allocation for all possible values of the call traffic

parameters. Note that the optimal channel allocation also requires the knowledge of the actual

call-arrival traffic load. However, this load is invisible to a practical system, because in practice,

a system does not keep records of the calls that are blocked due to collision at the access layer.

Therefore, in Chapter 4, we also demonstrate the capability of our proposed model in estimating

the invisible actual traffic load. Finally, we provide guidelines for developing an algorithm for

the traffic aware allocation of channels, based on our proposed model. Some interesting future

research ideas are as follows.

• In Chapter 4, we assume that the physical layer of the system is simple and perfect, and does

not cause any deterioration in communications. Incorporation of a more sophisticated phys-

ical layer in our system model and analysis, by considering fading and path-loss models, is

left as a part of the future work.
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• Also, in Chapter 4, we assume that the control and the communication channels provide the

same quality of service. Consideration of different qualities of control and communication

channels is also left as a part of the future work.

6.4 Segmentation of Talk Group’s Call Activity

The spectrum allocation techniques, e.g., the ones discussed in Chapters 2, 3 and 4, requires the

knowledge of the call traffic parameters and the priority levels of the users in the system. For

practical systems, these required pieces of information are extracted from the call records meta-

data. A key fact that should be considered while analyzing the call records is that the call arrival

traffic and the users priority levels change with a change in events on the ground. This is so

because a change in events on the ground affects the communication behavior of the talk groups

in the system, which affects the call arrival traffic and the priority levels of the users. Thus, the first

and the foremost step in analyzing the call records data for a given talk group, for extracting the

call traffic information, is to segment the data into time intervals of homogeneous or stationary

communication behavior of the group. A mechanism for such a segmentation of the data of a

practical PSCS is discussed in Chapter 5.

In Chapter 5, we develop a way to quantify a talk group’s activity as a discrete sequence of sym-

bols. Here a symbol, corresponding to a call, represents the calling radio-unit in the talk group, as

explained in Chapter 5. Note that we extract this talk group activity from the available data of call

records. In practice, a talk group’s communication behavior remains consistent during a certain

event happening on the ground. However, with a change in event, the talk group’s behavior also

changes. Thus, a talk group’s activity, extracted as a discrete sequence, from the whole day data

of call records, is not stationary. However, it may consist of many stationary segments depend-

ing on different events that occurred on the ground. Therefore, in Chapter 5, we also propose an

algorithm to segment a given whole day activity of a talk group into stationary segments, each

corresponding to a distinct event, and also quantify the behavior of the talk group within each

segment or event. Note that we quantify the behavior of a talk group in the form of a context
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tree which represents a variable memory Markov process of discrete symbols, as explained in

Chapter 5. Some interesting future research ideas for this project are as follows.

• As a part of the future work, we are interested in developing a metric to quantify the dif-

ference between the context trees estimated for the adjacent segments. In this way, we can

refine our segmentation results by merging the similar segments together, if their context

trees are not very different from each other.

• In Chapter 5, we have only considered the communications within the same given talk

group. However, as a part of the future work, we are also interested in characterization

and analysis of the interaction among different talk groups. The main motivation for this

prospective future work is to develop mechanisms for determining the talk groups’ priority

levels based on their interactions with one another. Note that these priority levels are re-

quired for the resource allocation mechanisms, e.g., the ones discussed in Chapters 2 and 3.

• Also, the segmentation algorithm developed in Chapter 5 is of off-line nature. To learn the

current ongoing contexts, an online algorithm with the features of sequential and context

identification should be investigated. The off-line algorithms, such as the one proposed in

Chapter 5, will allow us to build incidents based lists of high priority groups, also called

the site affiliation templates, in terms of the featured context trees. As a contrast, the online

algorithms will allow us to identify the variation of contexts, as well as the resulting priority

orders of different talk-groups, while these groups are working in the fields. Such knowl-

edge of the priority orders of the groups will be of tremendous help in allocating network

resources in a context-aware manner.
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