
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2016

A Study of FPGA Resource Utilization for
Pipelined Windowed Image Computations
Aswin Vijaya Varma
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Vijaya Varma, Aswin, "A Study of FPGA Resource Utilization for Pipelined Windowed Image Computations" (2016). LSU Master's
Theses. 3086.
https://digitalcommons.lsu.edu/gradschool_theses/3086

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3086?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3086&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

A STUDY OF FPGA RESOURCE UTILIZATION FOR PIPELINED

WINDOWED IMAGE COMPUTATIONS

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

in

The School of Electrical Engineering and Computer Science

by

Aswin Vijaya Varma

B.Tech, Mahatma Gandhi University, 2010

August 2016

ii

Acknowledgments
I would like to express my most sincere gratitude to my advisor Dr. Ramachandran

Vaidyanathan for his exemplary support, patience and excellent guidance throughout my thesis

implementation and writing. Without his valuable suggestions and constructive directions, this

thesis would not have been successful. I also thank Dr. Suresh Rai and Dr. Lu Peng for agreeing

to be on my thesis committee and giving their valuable suggestions to improve my thesis. I express

my sincere thanks to Mohammed Nashid Hassan, the ex-IT Manager of LSU Continuing

Education for providing me the financial stability by offering Graduate Assistantship in his

department throughout my time at LSU.

I thank my loving parents Vijaya Varma and Jayasree Varma for being a constant source

of inspiration and motivation as being role models to me throughout my life. Without their support,

I wouldn’t have been what I am today, both as a person and as a professional. I would like to thank

my friend Tom, for his patience of explaining me the concepts of Image Processing and being

there as a constant knowledge source throughout my thesis. I would like to express my sincere

gratitude and love towards my extended family in the USA, my friends, Padmapriya, Nikhil, and

Hari. I would like to extend a special thanks to my beloved friend, late Dr. Anton Joe for showing

how to motivate oneself to be a graduate research student by constantly asking questions and

finding answers to them. Last, but never the least, I would like to thank my fiancé Parvathy Varma,

for her endless encouragement and motivation, to help me complete writing this thesis.

iii

Table of Contents

ACKNOWLEDGMENTS .. ii

LIST OF TABLES ... iv

LIST OF FIGURES ...v

ABSTRACT ... viii

 1 INTRODUCTION ...1

 2 PRELIMINARIES ...5

2.1 FPGA Architecture ..5

 2.2 Vivado Design Tool ...11

 3 WINDOWED IMAGE COMPUTATION ..15

 3.1 Windowed Computation ..17

3.2 Tiles and Windows ..19

3.3 Effect of Expanding the Image ..24

 4 HANDSHAKING ..27

 4.1 Handshaking in this thesis ...27

 4.2 Single Sender to Single Receiver (1-to-1 system) ...29

 4.3 Single Sender, Multiple Receivers (1-to-many) ..32

 4.4 Multiple Senders and Single Receiver (many-to-1)...33

 5 THE PIPELINE ARCHITECTURE ..35

 5.1 Memory Requirement and Overall Architecture ...36

 5.2 Structure within the FPGA...43

 5.3 Pipeline Stage...46

5.4 Memory Interface...48

 6 SIMULATION RESULTS ..51

 7 CONCLUDING REMARKS ...74

BIBLIOGRAPHY ..76

VITA ..79

iv

List of Tables

6.1 Limiting values for Artix-7 ..53

6.2 Table of resource utilization for window parameter w=0 for Artix-7; the last row in

each table corresponds to the largest implementable value of z.57

6.3 Table of resource utilization for window parameter w=1 for Artix-758

6.4 Table of resource utilization for window parameter w=2 for Artix-759

6.5 Table of resource utilization for window parameter w=3 for Artix-760

6.6 Table of resource utilization for window parameter w=4 for Artix-761

6.7 Limiting values for Kintex-7 ...67

6.8 Table of resource utilization for window parameter w=0 for Kintex-7; the last row

in each table corresponds to the largest implementable value of z68

6.9 Table of resource utilization for window parameter w=1 for Kintex-769

6.10 Table of resource utilization for window parameter w=2 for Kintex-770

6.11 Table of resource utilization for window parameter w=3 for Kintex-771

6.12 Table of resource utilization for window parameter w=4 for Kintex-772

v

List of Figures

2.1 Basic FPGA Architecture ..6

2.2 Contemporary FPGA Architecture ..7

2.3 Basic CLB structure ...9

2.4 Structure of SLICEM ...10

2.5 Basic design flow ...11

3.1 Example of image thresholding ...16

3.2 Median Filter Example ..16

3.3 Windowed operation of size 3; the dark colored pixel is transformed using its own

value and the 8 neighbors ..18

3.4 Varying output tile sizes ..20

3.5 Input tile sizes for ith stage ...20

3.6 The 𝑛 × 𝑛 output from a (𝑛 + 2𝑤) × (𝑛 + 2𝑤) array for the windowed

computation of a tile. ...22

3.7 Compute Fabric ..23

3.8 Expanded Image of size 𝑄 × 𝑄 (shown in solid lines) ..24

4.1 Simple Handshaking ..28

4.2 Module X, receiving from XA and sending to XB ..29

4.3 Pseudo-code for receive, compute and send phases (1-to-1 system)30

vi

4.4 Three state cycle ..31

4.5 Pseudo-code for receive, compute and send phases (1-to-many system)32

4.6 Pseudo-code for receive, compute and send phases (many-to-1 system)33

5.1 Basic Architecture ..36

5.2 Received tile (τi, j) shown hatched from south west to north east; processed tile

shown hatched from north west to south east ..37

5.3 Tile Ordering ..38

5.4 Pictorial representation of the horizontal and vertical data inside the compute fabric

..40

5.5 A schematic of the memory interface. Handshaking signals are red40

5.6 Windowed Computation Pipeline ...43

5.7 Windowed Computation Stage ...44

5.8 Basic Stage ..47

5.9 Compute fabric structure for 𝑤 = 1 ...48

5.10 Truth table for simple priority encoder ..49

6.1 Window Parameter (𝑤) in x-axis vs maximum Tile Size (𝑛max) in y-axis for Artix-

7..53

6.2 Window Parameter (𝑤) in x-axis vs maximum no. of stages (𝑧max) in y-axis for

Artix-7 ..54

6.3 Window Parameter (𝑤) in x-axis vs clock frequency (𝑓max and 𝑓min) in y-axis for

Artix-7 ..54

vii

6.4 Plot of Resource Usage vs the Number of Stages for w=0 for the Artix-7 FPGA

..62

6.5 Plot of Resource Usage vs the Number of Stages for w=1 for the Artix-7 FPGA

..63

6.6 Plot of Resource Usage vs the Number of Stages for w=2 for the Artix-7 FPGA

..64

6.7 Plot of Resource Usage vs the Number of Stages for w=3 for the Artix-7 FPGA

..65

6.8 Plot of Resource Usage vs the Number of Stages for w=4 for the Artix-7 FPGA

..66

viii

Abstract

In image processing operations, each pixel is often treated independently and operated upon by

using values of other pixels in the neighborhood. These operations are often called windowed

image computations (or neighborhood operations).

In this thesis, we examine the implementation of a windowed computation pipeline in an FPGA-

based environment. Typically, the image is generated outside the FPGA environment (such as

through a camera) and the result of the windowed computation is consumed outside the FPGA

environment (for example, on a screen for display or an engine for higher level analysis). The

image is typically large (over a million pixels 1000 × 1000 image) and the FPGA input-output

(I/O) infrastructure is quite modest in comparison (typically a few hundred pins). Consequently,

the image is brought into the chip a small piece (tile) at a time.

We define a handshaking scheme that allows us to construct an FPGA architecture without

making large assumptions about component speeds and synchronization. We define a pipeline

architecture for windowed computations, including details of a stage to accommodate FPGA pin-

limitation and bounded storage. We implement a design to better suit FPGAs where it ensures a

smoother (stall-resistant) flow of the computation in the pipeline. Based on the architecture

proposed, we have analytically predicted resource usage in the FPGA. In particular, we have

shown that for an 𝑁 × 𝑁 image processed as 𝑛 × 𝑛 tiles on a 𝑧-stage windowed computation with

parameter 𝑤, Θ(𝑛2 + log 𝑁 + log 𝑧) pins are used and Θ(𝑛2𝑧) memory is used. We ran

simulations that validated these predictions on two FPGAs (Artix-7 and Kintex-7) with different

resources. As we had predicted, the pins and distributed memory are the most used resources. Our

simulations also show that the operating clock speed of the design is relatively independent of the

ix

number of stages in the pipeline; this is in line with what is expected with the handshaking scheme

that isolates the timing of communicating modules.

This work, although aimed at FPGAs, could also be applied to any I/O pin-limited devices

and memory limited environments.

Chapter 1

Introduction

In image processing operations, each pixel is often treated independently and operated

upon by using values of other pixels in the neighborhood. The neighborhood pixels whose values

determine a given pixel’s transformation is a window. A windowed operation (or a neighborhood

operation) slides the window through the image and manipulates each pixel. Informally for any

pixel 𝑝, a windowed computation of size 𝑤 uses the (2𝑤 + 1) × (2𝑤 + 1) pixels around pixel 𝑝

to compute a new value for 𝑝. A complete image processing algorithm applies several such

window functions (in sequence) to an image to get the desired result. These windowed

computations, typically form a 𝑧-stage pipeline (for some integer 𝑧 ≥ 1) with stage 𝑖 receiving its

input from stage 𝑖 − 1 and producing an output for stage 𝑖 + 1.

In this thesis, we examine the implementation of a windowed computation pipeline in an

FPGA-based environment. Typically, the image is generated outside the FPGA environment (such

as through a camera) and the result of the windowed computation is consumed outside the FPGA

environment (for example, in a screen for display or an engine for higher level analysis). The image

is typically large (over a million pixels 1000 × 1000 image) and the FPGA input-output (I/O)

infrastructure is quite modest in comparison (typically a few hundred pins). Consequently, the

image is brought into the chip a small piece (tile) at a time.

We discuss the implementation of the windowed computation pipeline technique discussed

in Vaidyanathan et al. [9], modified for suitability to an FPGA environment. An 𝑁 × 𝑁 image is

divided into tiles of size 𝑛 × 𝑛 and processed as a series of 𝑧 windowed computations, each of

2

“size 𝑤.” In general, the size of the windowed computation may differ across the stages of the

pipeline; we, however, assume a fixed 𝑤 (maximum of the window sizes) for simplicity of

discussion and to account for a key component in our design that depends on the maximum value.

An 𝑛 × 𝑛 tile denotes the smallest unit of image that can be moved between each of the 𝑧 stages.

This is reflective of the I/O bandwidth (pins) that the FPGA affords.

We implement a general handshaking scheme that allows for the stages and other modules

(both within and outside the stage) to operate relatively independently. This allows for a general

study of our implementation of the windowed computation pipeline across FPGA types and even

across multiple FPGA platforms.

The problem of dealing with windowed computation of images is as old as image

processing as a field itself. For example, the paper titled “Computer Architectures for Pictorial

Information Systems” talks about how image parallelism brings about cost effectiveness into

image processing [8]. There are many technical papers which discuss different types of windowed

computation techniques. In fact, each image processing algorithm is based on a different windowed

computation technique.

In previous work related to this paper, pipelined scheduling has been studied by [1].

However, an analytical framework has been laid in the field of windowed image computation only

by Vaidyanathan et al. [9]. Reuse of hardware components by reconfiguration could be seen as an

effective way to reduce hardware costs of the design. Pipeline reconfiguration is discussed by

Goldsten et al. [13]. Benoit et al. gives a survey of pipelined workflow scheduling, discussing

various models and algorithms on pipelined workflow scheduling [1]. Others discuss the

implementation of image processing on specific platforms [2], [5]. S. Asano et al. compare the

performance of FPGA, GPU and CPU using three image processing applications and draws a

3

conclusion on which one is faster under which conditions [12]. Bishop et al. [21] and Srivastava

et al. [22] have also studied image algorithms on reconfigurable platforms.

Our aim is to analytically study windowed computation and implement it on different

FPGAs and vary the design parameters to see the effect on the pipeline and the utilization of FPGA

resources. The contribution of this work are the following:

 We define a handshaking scheme that allows us to construct an FPGA architecture without

making large assumptions about component speeds and synchronization. This also extends

the relevance of this work to other FPGAs and I/O bandwidth limited modules.

 We define a pipeline architecture for windowed computations, including details of a stage

to accommodate FPGA pin-limitation and bounded storage. This architecture is also

generic with the potential for extension to other environments.

 We modify the method of Vaidyanathan et al. [9] to better suit FPGAs where it ensures a

smoother (stall-resistant) flow of the computation in the pipeline.

 Based on the architecture proposed, we analytically predict resource usage in the FPGA.

In particular, we show that for an 𝑁 × 𝑁 image processed as 𝑛 × 𝑛 tiles on a 𝑧-stage

windowed computation with parameter 𝑤:

- Θ(𝑛2 + log 𝑁 + log 𝑧) pins are used.

- Θ(𝑛2𝑧) memory is used.

 We run simulations that validate these predictions on two FPGAs (Artix-7 and Kintex-7)

with different resources. As predicted, the pins and distributed memory turns out to be the

most used resources. Our simulations also show that the operating clock speed of the design

is relatively independent of the number of stages in the pipeline; this is in line with what

4

would be expected with the handshaking scheme that isolates the timing of communicating

modules.

In the next Chapter, we discuss general structure of an FPGA, explaining various FPGA

resources that are important to this work. We also discuss the Xilinx Vivado design tool that was

used to implement the design in Chapter 5. Chapter 3 discusses windowed image computations

that are the main focus of this work. Another central idea, handshaking, used to synchronize the

various modules that are working independently is discussed in Chapter 4. The main chapter of

this thesis, Chapter 5, goes on to discuss about the structure of windowed computation pipeline

and its implementation. The simulation results obtained from the Xilinx Vivado tool is tabulated

and expressed in plots, in Chapter 6. Finally, in Chapter 7, we summarize on results and make

some concluding remarks.

5

Chapter 2

Preliminaries

In this chapter, we describe ideas central to the work in the thesis. Specifically, in Section

2.1, we describe a generic structure of an FPGA, focusing mainly on portions important to this

work. In Section 2.2 we describe the Xilinx Vivado design tool that we used for this work.

2.1 FPGA Architecture

Field Programmable Gate Arrays (FPGAs) [3, 4] are integrated circuits with logic elements

that can be programmed to fit the designer’s needs. Specifically, the hardware functionality and

interconnects can be programmed to build a custom circuit suited for a particular purpose.

Depending on the type and size of the design, the utilization of FPGA resources varies. The study

in this thesis deals with the utilization of these FPGA resources. Hence, it is important to know

details of these resources. In describing them, we broadly use terminology from Xilinx FPGAs

[16]. In this thesis, we have used the Xilinx Artix-7 and Kintex-7 [16] FPGA devices. However,

the ideas described apply to other FPGAs as well.

The general structure of an FPGA is shown in Figure 2.1. Broadly it contains the following

elements:

 Configurable Logic Blocks (CLBs) are the basic hardware elements that can be configured

to construct modules for simple logic functions. They comprise of Look-up tables (LUTs),

flip-flops, registers, multiplexers and other logic resources.

6

 The interconnection fabric consists of a set of wires and configurable switches that connect

the CLBs and I/O pins. By suitably configuring the interconnection fabric and the CLBs,

the FPGA forms a circuit suited to the problem at hand.

 Switches as noted earlier, connect CLBs to the interconnection fabric. Typically, they are

reconfigurable.

 Input/output (I/O) pads are interfaces that allow movement of data in and out of the FPGA.

Figure 2.1: Basic FPGA Architecture. This figure has been adapted from the Xilinx 7 series

FPGAs configurable logic block user guide [15].

Apart from these basic elements, an FPGA could have additional elements to increase the

efficiency and throughput of the design. These elements (see Figure 2.2) include the following:

Switches

I/O pads

Interconnection

fabric

7

 Multiply-accumulate blocks (useful for dot products, and logic functions in DSP

operations).

 Block RAM (BRAM) that are memory banks (within the chip) used typically for storing

on-chip data.

 High speed serial transceivers that provide the interface needed (for example SerDes) to

rapidly communicate across a pin-limited interface.

 Phase-locked loops (PLLs) to drive the FPGA at different clock speeds.

 Memory controllers for use with external memory, through address and data buses and

control signals.

Figure 2.2: Contemporary FPGA Architecture. This figure has been taken from the Xilinx 7

series FPGAs configurable logic block user guide [15].

8

The focus of this thesis is to study the dependence of windowed image computations on FPGA

resources. The image is typically too large to bring into the FPGA in its entirety as the number of

pins available and the on-chip memory is restricted. The processing of the image across a

multistage pipeline requires storage of a large fraction of the image. This too imposes significant

restrictions on BRAM use within the FPGA. The image pipeline stages themselves require FPGA

real estate (CLBs and interconnects). Thus the three main resources that we consider are CLBs, in

particular, LUTs used as “distributed memory”, I/O pins, and BRAMs. We now elaborate on these

resources.

CLBs

The logic elements, LUTs and Flip-flops are a part of a configurable logic block (CLB) in

the FPGA. Each CLB contains two “slices” connected to a switch matrix to provide routes to other

FPGA resources (see Figure 2.3). Figure 2.4 shows a detailed view of a slice. The slice contains

an input stage of flip-flops (that may be bypassed). These, broadly speaking, lead to a stage of

LUTs whose inputs can come from various sources. The LUTs can be configured to perform

various logic functions and their outputs exit the slice directly or through another stage of LUTs

(functions).

A carry chain (CIN, COUT in Figure 2.4) allows for communication between a column of slices.

Other interconnect resources can also be used to connect CLBs.

The flip-flops can also be configured as latches. Figure 2.4 illustrates, what is known as, a

SLICEM. Here the LUT can also be used for storage of data (not just for the truth table of a logic

function). This collection of storage spread across SLICEMs is called distributed memory. They

provide a potentially faster alternative to the BRAM. Only one-third of the total slices available

9

are of type SLICEM described above. The remaining slices are of type SLICEL whose LUTs

cannot be used as distributed memory.

Figure 2.3: Basic CLB structure. This figure has been taken from Xilinx 7 Series FPGAs

Configurable Logic Block guide. [15]

Slice resources

The CLBs labeled CLB_LL have only slices that can be used for logic. The CLBs labeled

CLB_LM have both types of slices that can be used as logic and memory. CLB_LM accounts for

one quarter of the CLBs in the Xilinx Kintex-7.

Block RAM

A Xilinx 7-series FPGA device contains several block RAM memory elements that can be

configured as general-purpose 36kB or 18kB RAM/ROM memories. These single-port (or dual-

port), block RAM memories offer fast and flexible storage of large amounts of on-chip data. On-

chip memory is a scarce resource.

10

Figure 2.4: Structure of SLICEM. This figure has been taken from Xilinx 7 Series FPGAs

Configurable Logic Block guide. [15]

11

2.2 Vivado Design Tool

The implementation, testing and resource utilization study of the windowed computation

pipeline was on the Xilinx Vivado HL Webpack design tool. This section talks about the steps

involved in specifying a design starting from design enetry, through RTL design all the way to the

place and route step in the tool design flow. We had access to two 7-series FPGAs namely, Artix-

7 and Kintex-7, available with the WebPack version of the design tool.

The basic steps involved in our design implementation are as follows (see Figure 2.5):

Figure 2.5: Basic design flow [18]

Design Entry: This step first creates a project with a desired name and specifies the output

directory location. The design tool provides the flexibility to choose from a variety of project

12

options, such as RTL project, post-synthesis project, I/O planning project, imported project, or an

example project (using a pre-defined template). For Verilog code, Vivado synthesis supports a part

of the Verilog constructs specified in the IEEE Standard for Verilog Hardware Description

Language (IEEE Std 1364-2005) [6]. In the next step, sources, Intellectual Properties (IPs) and

constraints are added and the user can specify existing configurable IP provided by the tool to be

used in the design or add physical and timing constraints to the project. Finally, a target device is

selected (FPGA or Evaluation board). For our implementation, we have selected the Kintex-7

(XC7K70T) and Artix-7 (XC7A200) as the target devices. [16]

Behavioral Simulation: This step in the design flow make sure that the design does what it is

intended to do. From the simulation settings, one can change the target simulator, the target

simulation language and specify the top module of the design. After the initial compilation of the

source files, the elaboration phase creates a hierarchical representation of the modules involved in

the design going into the in-depth details to specify the design in terms of the most basic primitive

elements, typically gates. Finally, a simulation phase executes the elaboration phase snapshot. This

phase also includes waveform debug, where a test bench provides inputs for the design and

generates outputs from it. These input-output combinations can be used for the formal verification

of the design.

Synthesis: This step transforms the user’s HDL code into gate-level primitives. The Vivado

synthesis tool uses the selected target FPGA architecture to map the HDL logic into the various

components inside the device.

The synthesis tool recognizes various logic elements such as flip-flops and registers, that

can be implemented using the Configurable Logic Blocks (CLBs) in Xilinx FPGAs [16]. The

synthesis tool also interprets various styles in which a RAM or ROM can be coded. Based on the

13

type of memory that the user wants to implement, the synthesis tool interprets various memories

as distributed RAM or block RAMs. Our implementation makes extensive use of this distinction

between the two memory types. Usually, for larger memories, it is a safe practice to make the tool

infer block RAMs. Trying to make the synthesis tool infer distributed RAM for larger memories

will lead to excessive CLB utilization with a potential performance slowdown. The dedicated

Block RAM is identified with synchronous writes and synchronous reads, whereas, the distributed

RAM has synchronous writes and asynchronous reads.

Place and Route: After the synthesis step, the Vivado tool outputs a netlist file, which is the

description of a gate-level circuit. The place and route phase takes the netlist and places it on the

FPGA device and provides necessary routing between the components. This process produces an

output known as Native Generic Database (NGD) file. The map process in the implementation

step maps the NGD file into FPGA logic components such as CLBs and IOBs [15]. The output of

this process is called a Native Circuit Description (NCD) file which gives the physical

representation of the design mapped to the FPGA components. The NCD file is used as input for

bitstream generation by the Place and Route process. The Bitstream file is used to configure a

physical target device (FPGA or evaluation board). We have not created a bitstream file for our

study.

Resource Utilization Report: Once the implementation step is completed, Vivado produces

multiple reports, of which the reports that are of significance to us are as follows.

 Vivado Synthesis Report gives a brief description of which code construct is mapped to

what logic element in the FPGA.

14

 Utilization Report is produced right after the synthesis step which gives an estimation of

how many resources are required for the design to be implemented on the target device.

The resources of interest to us include Slice LUTs, BRAMs and IOBs.

 Post-implementation Utilization report is produced after the implementation phase. During

the implementation phase, the tool optimizes the design so as to save resources. Generally,

this utilization report gives a better representation of how many logical elements are used

versus how many are available in the target device.

 Timing summary report gives a timing summary, if the design met all of the user-defined

timing constraints, like clock period, input and output delays.

15

Chapter 3

Windowed Image Computation

Often, an image is transformed into another image, typically to improve the quality of the

image or to implement a more complex process defined in computer vision function. An image

processing algorithm takes an image as its input and gives a transformed image as its output. A

raw image, for example from a camera, must be processed through a series of steps (such as noise

filtering and edge detection) before it can be used in an application. This series of transformations

is performed through an image pipeline [11]. As noted in Chapter 2, we consider a pipeline of

windowed image computations (or neighborhood operations) in this thesis. Based on the type of

transformation, a windowed computation can be classified as point, local or global.

In each of these transformations, an input image 𝐼 is transformed into an output image 𝐽.

Let the pixels at position (𝑥, 𝑦) be 𝐼(𝑥, 𝑦) and 𝐽(𝑥, 𝑦). Each output pixel 𝐽(𝑥, 𝑦) is a function of a

subset of pixels of 𝐼. In a point algorithm, each output pixel 𝐽(𝑥, 𝑦) is dependent only on input

pixel 𝐼(𝑥, 𝑦). For example, in image thresholding, each output pixel is based on the following

equation:

𝐽(𝑥, 𝑦) = {
1, if 𝐼(𝑥, 𝑦) ≥ 𝑇

0, if 𝐼(𝑥, 𝑦) < 𝑇

Here, T is the threshold which is the basis for deciding whether the output pixel is a 1 or a 0.

Consider the images in Figure 3.1. Figure 3.1(b) is a binary image with values, either 1 or 0

depending on the threshold level of the input image in Figure 3.1(a). These algorithms are a special

case of windowed computations.

16

In a local algorithm, the output pixel depends on a small portion of the input image in the

vicinity of the input pixel. Many algorithms, including commonly used filters are a part of this

category. This is a widely used algorithm type in many image processing techniques.

 (a) (b)

Figure 3.1: Example of image thresholding. Figure taken from [20]

The figures 3.2(a) and 3.2(b) shows the input and output images of a median filter application

implemented in Matlab for a software validation of our implementation (see Chapter 5).

Figure 3.2 Median Filter Example

Input Output

(a) 16x16 Image

Input Output

(b) 1024x1024 Image

17

At the other extreme, in global algorithms each output pixel depends on a large portion of input

image or in the worst case, the complete image. An example in this category is compressing an

image using JPEG 2000 [7].

All of the above algorithms (point, local and global) can be expressed as special case of a

general framework called windowed computations.

3.1 Windowed Computation

 The processing of an individual pixel using the values of other pixels in the neighborhood

is known as a windowed operation (or a neighborhood operation). The size of the “window”

depends on the number of neighborhood pixels required for that particular operation. Applying a

separate windowed operation on every pixel of the image is known as windowed computation.

Let 𝑤 ≥ 0 be an integer; we will call this the window parameter. Let 𝑊 be a (2𝑤 + 1) × (2𝑤 + 1)

matrix called the window function; the quantity (2𝑤 + 1) will be called the window size. The

elements of 𝑊 are denoted by 𝑊(𝑢, 𝑣), when − 𝑤 ≤ 𝑢, 𝑣 ≤ 𝑤. In general, a windowed operation

𝑓 performed on a pixel 𝐼(𝑥, 𝑦) produces an output pixel 𝐽(𝑥, 𝑦), where

𝐽(𝑥, 𝑦) = 𝑓(𝑊; {𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) : − 𝑤 ≤ 𝑢, 𝑣 ≤ 𝑤})

That is 𝐽(𝑥, 𝑦) is a function of the window function and the pixel within maximum distance 𝑤

along the 𝑥 or 𝑦 axes from point (𝑖, 𝑗). Applying the above function to 𝑓 to every pixel 𝐼(𝑥, 𝑦) of

the entire image is a windowed computation. Observe that the point algorithm is a windowed

computation with 𝑤 = 0 (uses a 1 × 1 matrix). As another example, if 𝑤 = 1, then 𝐽(𝑥, 𝑦)

depends on (2w+1)2 = 9 pixels of the input image 𝐼; here the window is a 3 × 3 matrix and 𝐽(𝑥, 𝑦)

depends on the 9 pixels of the input image 𝐼 with co-ordinates (𝑥 − 1, 𝑦 − 1), (𝑥 − 1, 𝑦), (𝑥 −

1, 𝑦 + 1), (𝑥, 𝑦 − 1), (𝑥, 𝑦), (𝑥, 𝑦 + 1), (𝑥 + 1, 𝑦 − 1), (𝑥 + 1, 𝑦), (𝑥 + 1, 𝑦 + 1). This is

18

expressed in Figure 3.3, where the dark colored pixel is subject to transformation depending on

the 8 neighboring pixels and the dark colored pixel itself. Often, the function 𝑓 is a sum of pixels

weighted by elements of the window; here the window elements are real numbers. In this case, we

have

𝐽(𝑥, 𝑦) = ∑ ∑ (𝑊(𝑢, 𝑣))

𝑤

𝑣=−𝑤

∙ (𝐼(𝑥 + 𝑢, 𝑦 + 𝑣))

𝑤

𝑢= −𝑤

Figure 3.3: Windowed operation of size 3; the dark colored pixel is transformed using its own

value and the 8 neighbors (shown shaded)

As an example of this type of computation, consider 𝑤 =1 (resulting in a 3x3 window) and let each

element of the window be 1/9. Then Equation becomes

𝐽(𝑥, 𝑦) =
1

9
∑ ∑ 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣)

3

𝑣=−3

3

𝑢=−3

which is simply the average of all 9 pixels in the window centered around 𝐼(𝑥, 𝑦). This filter is

called a median filter (see Figure 3.2).

Neighboring pixel values for border pixels (that may be outside the image) can be

considered constant or a simple function of the image within the window. We will ignore them in

19

this thesis as this static computation will not take up significant FPGA resources. The value of the

window parameter 𝑤 defines the type of computation. For example, 𝑤 = 0 implies a local

computation with a 1 × 1 window matrix and 𝐽(𝑥, 𝑦) depends only on 𝐼(𝑥, 𝑦). If 𝑤 is very large,

then we have a global algorithm. Typically, 𝑤 is small ranging from 0 to 5 for local algorithms.

This means that the window is of size 1 × 1, 3 × 3, 5 × 5 and so on. Moreover, image processing

is often performed on a pipeline of windowed operations [11].

3.2 Tiles and Windows

Since FPGAs are pin and memory limited (see Chapter 2), an entire image cannot be

brought into the FPGA. Consequently, only a small part of the image is processed at a time.

Let the image 𝐼 be an 𝑁 × 𝑁 array of pixels. Let a small part of the image represented by an 𝑛 × 𝑛

“tile” be brought into the FPGA at a time; here 𝑛 ≪ 𝑁. Consider a case where the FPGA has 𝑧

pipeline stages (numbered 0,1,…., 𝑧-1) and each stage (for ease of explanation) using a windowed

computation with parameter 𝑤.

Vaidyanathan et al. [9] have provided an analytical framework for scheduling tiles of the

image through the pipeline. This approach delays certain elements to ensure a smooth movement

of the image through the pipeline and ignores the computational overhead needed to manage this

delay. The following example illustrates this.

Figure 3.4 shows the tile sizes (unaltered) for stage 0, 1, 2 of the pipeline. The input to

stage 0 is a set of 𝑛 × 𝑛 tiles (25 tiles in the example, each of size 𝑛 × 𝑛, indicated by dotted lines);

all tiles are of the same size. Tile 0 produces an output of size (𝑛 − 𝑤) × (𝑛 − 𝑤) (indicated in

Figure 3.4 by dashed lines) as the neighboring pixels, for example for (𝑛 − 1, 𝑛 − 1), are not yet

available. Thus tile 0 of stage 1 is of size (𝑛 − 𝑤) × (𝑛 − 𝑤). For the same reason, tile 0 of stage

20

2 is of size (𝑛 − 2𝑤) × (𝑛 − 2𝑤). Tiles 1,2,3 are of size (𝑛 − 𝑖𝑤) × 𝑛 for stage 𝑖 and tile 4 is of

size (𝑛 + 𝑖𝑤) × 𝑛.

Figure 3.4: Varying output tile sizes (taken from Vaidyanathan et al. [9])

Figure 3.5 shows the tile sizes input to the various stages.

Figure 3.5: Input tile sizes for ith stage

21

Specifically, at stage 𝑖; 0 ≤ 𝑖 < 𝑧

 tile 0 is of size (𝑛 − 𝑖𝑤) × (𝑛 − 𝑖𝑤)

 tiles 1 𝑡𝑜 3 are of size (𝑛 − 𝑖𝑤) × 𝑛

 tile 4 is of size (𝑛 − 𝑖𝑤) × (𝑛 + 𝑖𝑤)

 tiles 5, 10, 15 are of size 𝑛 × (𝑛 − 𝑖𝑤)

 tiles 9, 14, 19 are of size 𝑛 × (𝑛 + 𝑖𝑤)

 tile 20 is of size (𝑛 + 𝑖𝑤) × (𝑛 − 𝑖𝑤)

 tiles 21, 22, 23 are of size (𝑛 + 𝑖𝑤) × 𝑛

 tile 24 is of size (𝑛 + 𝑖𝑤) × (𝑛 + 𝑖𝑤)

 all other tiles (6, 7, 8, 11, 12, 13, 16, 17, 18)are of size 𝑛 × 𝑛

Thus, most tiles are of size 𝑛 × 𝑛, but the existence of larger and smaller tiles around the perimeter

can stall the pipeline. For example, tile 9, say in stage 1, has size 𝑛 × (𝑛 + 𝑤), whereas tile 10 in

stage 1 has size 𝑛 × (𝑛 − 𝑤). So by delaying the processing of 𝑛𝑤 elements of tile 9 to be with

tile 10, both computations can be of “size” 𝑛 × 𝑛, allowing for a smoother pipeline operation.

Consider stages 0 and 1. All tiles of stage 0 are of size 𝑛 × 𝑛 and require 𝑐𝑛2 time (say) to

process, where c is some constant. Consider stage 1 and tiles 9 and 10. These tiles are of size 𝑛 ×

(𝑛 + 𝑤) and 𝑛 × (𝑛 − 𝑤) which requires 𝑐(𝑛2 + 𝑛𝑤) and 𝑐(𝑛2 − 𝑛𝑤) times, where stage 0 is at

tile 10, stage 1 is at tile 9. Stage 0 require 𝑐𝑛2 time whereas stage 1 require 𝑐(𝑛2 + 𝑛𝑤). So stage

0 has to wait before it can pass its tile to stage 1. Similarly, when stage 0 is on tile 11 again requiring

𝑐𝑛2 time, stage 1 is on tile 10 requiring only 𝑐(𝑛2 − 𝑛𝑤) time and having to wait on stage 0 for

𝑐𝑛𝑤 time. If stage 1 could defer 𝑐𝑛𝑤 tiles of the work of tile 9 to be done with tile 10, the pipeline

could flow more smoothly. This is one of the main ideas in Vaidyanathan et al. [9].

22

However, this ignores the storage of the 𝑛𝑤 elements and the reorganization of data

required for a static computational fabric that the FPGA provides. To allow for fixed sized tiles,

we alter the algorithm of Vaidyanathan et al. [9] as follows. The FPGA has an (𝑛 + 2𝑤) × (𝑛 +

2𝑤) array to perform a windowed computation of size 𝑤 on an 𝑛 × 𝑛 tile. The output of this

computation corresponds to the 𝑛 × 𝑛 area shown shaded in Figure 3.6.

Figure 3.6: The 𝑛 × 𝑛 output from a (𝑛 + 2𝑤) × (𝑛 + 2𝑤) array for the windowed computation

of a tile.

This array represents a fixed hardware fabric in the FPGA. So before this hardware is

triggered, one has to ensure that correct values are “loaded” into the matrix. For example, the pixels

at position b and c must be the neighbors of the pixel at position a in the original image.

Now consider tiles 9 and 10 in stage 1 (of size 𝑛 × (𝑛 + 𝑤) and 𝑛 × (𝑛 − 𝑤)), respectively with

the assumption that an 𝑛 × 𝑤 “chunk” of tile 9 will be used with tile 10.

23

 Tile 9 (a) Tile 10 (b)

 (c) (d)

Figure 3.7: Compute Fabric

Figures 3.7 (a) and (b) illustrate the layout of tiles 9 and 10. Processing square A as shown in

Figure 37 (c) is fine. However, rectangle B is not a right neighbor of rectangle C and processing

cannot be done as in Figure 3.7 (d). Hence additional effort must be used to realign the data. To

simplify this, we use an image that is larger than the original 𝑁 × 𝑁 size (padded with dummy

elements) to produce tiles of constant size 𝑛 × 𝑛.

24

Figure 3.8: Expanded Image of size 𝑄 × 𝑄 (shown in solid lines)

As shown in Figure 3.8, we overlay a grid of 𝑛 × 𝑛 tiles on the image to include the dummy values

(shown shaded) that need not be received. So the extra work of tile 9 is deferred to a new tile 9’

(also of size 𝑛 × 𝑛 but possibly containing some irrelevant values). This maintains a constant tile

size, albeit with a larger number of tiles.

3.3 Effect of Expanding the Image

Specifically, we expand the given 𝑁 × 𝑁 image to a 𝑄 × 𝑄 image, where 𝑄 = 𝑛 ⌈
𝑁+𝑛

𝑛
⌉.

This ensures that 𝑄 is divisible by 𝑛.

Observe that,

𝑄

𝑁
=

𝑛

𝑁
⌈
𝑁 + 𝑛

𝑛
⌉ ≤

𝑛

𝑁
 (

𝑁 + 𝑛

𝑛
+ 1) =

𝑛

𝑁
 (

𝑁

𝑛
+ 2)

 = 1 + 2
𝑛

𝑁
 ≅ 1 (𝑎𝑠 𝑛 ≪ 𝑁)

25

Thus, the expansion of the image is not very large. In terms of time, the total number of tiles

handled is expanded by

(
𝑄

𝑁
)

2

≤ 1 + 4
𝑛

𝑁
+ 4

𝑛2

𝑁2
 ≅ 1

Since 𝑧 stages with 𝑇 tiles in an ideal pipeline requires 𝑇 + 𝑧 – 1 units of time, the extra time

needed here is

𝑄2

𝑛2
+ 𝑧 − 1 − (

𝑁2

𝑛2
+ 𝑧 − 1)

=
𝑄2 − 𝑁2

𝑛2
=

𝑁2

𝑛2
(

𝑄2

𝑁2
− 1)

≤
𝑁2

𝑛2
 (4

𝑛

𝑁
+ 4

𝑁2

𝑁2
) = 4

𝑁

𝑛
+ 4

This quantity could be large as 𝑛 ≪ 𝑁. However, this analysis assumes no overhead for aligning

data in the computation fabric; this, as illustrated in Figure 3.7, is not the case. Therefore, in the

FPGA environment, our approach is quite competitive with that of Vaidyanathan et al. [9]. A more

detailed analysis appears below.

Let 𝑇1 denote the time to run a 𝑧-stage windowed computation of size 𝑤 on an 𝑁 × 𝑁 image.

Vaidyanathan et al. [9] show that

𝑇1 =
𝑁2

𝑛2
(1 + (

𝑛

𝑁
+

6𝑛3

𝑤𝑁2
+

𝑧𝑤

𝑁
+

𝑧𝑛2

𝑁2
))

Let T2 be the corresponding time for the enlarged image of size 𝑄 × 𝑄, where 𝑄 = 𝑛 ⌈
𝑁+𝑛

𝑛
⌉.

𝑇2 = 𝑧 + ⌈
(𝑁 + 𝑛)2

𝑛2
⌉ − 1 ≤ 𝑧 − 1 + (

𝑁 + 𝑛

𝑛
+ 1)

2

26

We can further simplify this equation as follows:

𝑇2 = 𝑧 − 1 + (
𝑁

𝑛
+ 2)

2

 = 𝑧 − 1 +
𝑁2

𝑛2
+ 4

𝑁

𝑛
+ 4

 =
𝑁2

𝑛2
 (𝑧

𝑛2

𝑁2
+ 1 + 4

𝑛

𝑁
+ 3

𝑛2

𝑁2
)

The extra time that we spent in processing the padded tiles can be calculated by subtracting T1

from T2 as follows:

𝛥𝑇 = 𝑇2 − 𝑇1

 =
𝑁2

𝑛2
 (3

𝑛

𝑁
+ 3

𝑛2

𝑁2
−

6𝑛3

𝑤𝑁2
−

𝑧𝑤

𝑁
)

 = 3
𝑁

𝑛
+ 3 − 6𝑛 −

𝑧𝑁𝑤

𝑛2

While the highest growing term is 3
𝑁

𝑛
 (which is only a bit smaller than 4

𝑁

𝑛
), in practical case the

negative term will further reduce the overhead for our approach.

27

Chapter 4

Handshaking

In this chapter, we explain the idea of a handshaking protocol and how it is applied in this

thesis. Handshaking, generally speaking, is the set of signals and rules used for communication

between a sender and a receiver. Handshaking protocols are used in many applications, for

example, TCP (3-way handshake) [12], Simple Mail Transfer Protocol (SMTP) [23], TLS

handshake [24], WPA2 wireless (4-way handshake) [25] and dial-up access modems.

The role of the handshaking protocol is to ensure proper communication within the given context.

For example, the 3-way TCP handshake involves a request from the potential sender, an

acknowledgment (ack) from the receiver and an acknowledgment of the acknowledgment. This

ensures that (in an environment in which packets could be lost) the sender and receiver are both

on the same page. Other protocol details such as timeouts ensure a reliable practical performance.

We now explain handshaking in the context of this work.

4.1 Handshaking in this thesis

In our implementation, we deal with multiple modules in the architecture (see Chapter 5),

all of which operate independently and simultaneously. Each module behaves in an event-driven

manner. That is, particular processes (such as send, receive or compute) are triggered by particular

events. This ensures that all modules can operate independently (and asynchronously). The

handshaking protocol serves to synchronize the interaction between them.

Unlike the networking case, our environment is assumed to be free of errors, so acks are not used.

Our handshaking is in the nature of “ready” and “done;” that is a sending process indicates that it

28

is ready to send to a receiver and a receiving process indicates that it is done with receiving. This

ensures that a sender will not overwrite receiver data and that a receiver will not consume stale or

un-updated data. The data path itself is static, the handshaking simply enables the data to be loaded

into a register or latch. Figure 4.1 shows the signals between a sender and a receiver.

Figure 4.1: Simple Handshaking

In this thesis, we will refer to our 2-way handshaking as the simple handshaking protocol.

This protocol has been studied before [26]. Other protocols also exist for pipeline control in

FPGAs, for example [27]. The simple protocol we use is not particular to pipelines; it can be

used in any situation requiring asynchronous communication between modules.

This thesis uses modules configured in the following way:

a) Single sender to single receiver (1-to-1)

b) Single sender to multiple receivers (1-to-many); at most 3 receivers in our case.

c) Multiple senders to a single receiver (many-to-1); at most 3 senders in our case.

These cases require slightly different handling. We now explain these cases with the most detail

on the first. Others follow on similar lines.

29

4.2 Single Sender to Single Receiver (1-to-1 system)

Consider a module X shown in Figure 4.2, that receives data A from module XA and sends

data B to module XB. Module X acts as both receiver (from XA) and sender to XB. The handshaking

signals readyA, doneA, readyB, doneB are shown in the figure. Signal doneA issued by X indicates

to XA that it is ready to receive the next data from XA. Signal doneB is similarly generated by XB.

Signal readyB issued by X inidicate XB that X is ready with a new data that is available for XB.

Signal readyA is similarly issued by XA.

We now examine the action of module X relative to this interaction with module XA and XB.

Figure 4.2: Module X, receiving from XA and sending to XB.

Each module (including X) goes through a cycle of three phases: receive data, compute,

send result. Depending on the module in question, these tasks could take different amounts of time.

In some cases, a particular phase may even be “empty”; for instance, a register does not transform

the data in any way, so its compute part is empty. The image generator can be thought of as a

module with an empty receive phase and the consumer of the image has an empty send phase.

Figure 4.3 shows a pseudo-code of the three phases in module X.

30

Observe that if module X executes Receive, then after exiting Algorithm Receive, it sets

Ready_to_Compute to 1. This ensures that it executes Algorithm Compute next. At the end of this

algorithm, it sets readyB to 1, which causes it to execute Algorithm Send. Finally, Algorithm Send

sets doneA to 1 which takes the execution back to Algorithm Receive. Also verify that the condition

for only one of the algorithms is met at any time. Thus each module operates in a three “state”

cycle shown in Figure 4.4.

Figure 4.3: Pseudo-code for receive, compute and send phases (1-to-1 system)

31

Figure 4.4: Three state cycle

We now argue that the simple handshaking ensures correct operation. Specifically, the following

three considerations must be addressed.

a) A receiver does not consume data from a sender until the sender has the latest value on its

data line.

b) A sender’s data is not overwritten by newly received data until it has been consumed by a

receiver.

c) There is no deadlock.

The initialization of the various modules ensures that the safety (a, b) and liveness (c) conditions

are met. Specifically, we will assume that modules complete their tasks in finite time including

supplying the image to the pipeline and consuming its output.

32

The 3-state diagram of Figure 4.4 ensures that conditions (a) and (b) are met. To see this, doneA =

0 until module X has sent its data to module XB. This ensure that any new data from XA does not

arrive before the current data is consumed. Similarly, readyB = 0 until module XB has consumed

the data sent by module X. This ensure that module X will not request for data to its sender before

XB is done receiving.

At this point, we have established that the simple handshaking works in the 1-to-1 case. We now

consider the other cases.

4.3 Single Sender, Multiple Receivers (1-to-many)

The main difference here is that the single sender must wait until all of its receivers have

received the data. Let module X send to modules XB, XC and XD with corresponding signal readyB,

doneB, readyC, doneC, readyD, and doneD.

Figure 4.5 shows the altered code for send and compute; algorithm receive remains unchanged.

Figure 4.5: Pseudo-code for receive, compute and send phases (1-to-many system)

The correctness follows along the same lines as in Section 4.2.

33

 4.4 Multiple Senders and Single Receiver (many-to-1)

Let module X receive data from modules XA1, XA2, and XA3, with corresponding

handshaking signals readyA1, doneA1, readyA2, doneA2, doneA3, and readyA3. Here, each sender

behaves as before (either sending to a single receiver or multiple receivers). The receiver should

ensure that it has received everything before a compute is initiated.

In the multiple receiver case, each receiver receives data at about same time and is instructed by

the sender (possibly independently) to use this data. We do not have a situation when a receiver

receives the data but another receiver’s data is not ready.

The situation with multiple (independent) senders is different. If sender XA1 has finished

sending its data to X and XA2 or XA3 have not yet, then X cannot proceed to the compute phase.

However, it should not hold XA1 from receiving and processing its next data.

To account for this, we will have independent receive algorithms for each sender and all

three (in this case) must have been executed before we proceed to the compute phase.

Figure 4.6: Pseudo-code for receive, compute and send phases (many-to-1 system)

34

Notice here, that Receive i (for multiple values of i) could be executing concurrently. The order in

which X executes each of them is immaterial. Again, as in Section 4.2, this method works

correctly.

35

Chapter 5

The Pipeline Architecture

In this chapter, we discuss the structure and the components of the windowed computation

pipeline that we have implemented for this thesis. The pipeline consists of a series of 𝑧 stages each

representing a windowed computation of size (2w + 1). As noted in Section 3.2, the windowed

computation is performed over a padded image of size 𝑄 × 𝑄. This image is brought into the FPGA

as tiles each of size 𝑛 × 𝑛 in a row major order. Each stage of the pipeline accepts input and output

tiles of size 𝑛 × 𝑛.

We begin with the overall architecture needed for the windowed computation (Section 5.1).

This includes the FPGA and all external entities it interacts with. Next, in Section 5.2, we will

describe the pipeline and a key interfacing module that are all internal to the FPGA. In Section 5.3,

we will expand each pipeline stage and describe the functionality of its components. Section 5.4

is devoted to a memory interface module needed to co-ordinate the interaction between pipeline

stage (in FPGA) and external memory.

Recall that independent modules communicate using the simple handshaking protocol (Chapter

4). The overall structure of the windowed computation pipeline architecture is as shown in Figure

5.1.

As shown in Figure 5.1, the system receives an input image, typically from a camera or

some other image source, into the FPGA (a tile at a time) and the processed final image (again, a

tile at a time) is consumed by an image consumer such as a monitor or a TV. Generally, the image

source is an online source like a camera and its output is available only once. If portions of the

36

image are required for later use (as is the case here), we need to store the image for subsequent

processing. The external memory in Figure 5.1 stores parts of the image needed between iterations

of our algorithm which is brought in correctly when requested. A separate Memory Management

Unit (MMU) associated with external memory is assumed. While we do not implement the external

memory or the MMU, its functionality is discussed in Section 5.4.

Figure 5.1: Basic Architecture

We now describe the need for such an external memory.

5.1 Memory Requirement and Overall Architecture

Recall that the modified image is of size 𝑄 = 𝑛 ⌈
𝑁+𝑛

𝑛
⌉ (see Section 3.3) and that each tile

is an 𝑛 × 𝑛 array; 𝑤 is the window parameter, resulting in a (2𝑤 + 1) × (2𝑤 + 1) window around

each pixel. Thus the image has (
𝑄

𝑁
)

2

 tiles denoted by τi, j (where 0 ≤ 𝑖, 𝑗 <
𝑄

𝑛
) and numbered in

37

row major order from 0 to (
𝑄

𝑛
)

2

− 1; that is, τi, j is tile 𝑖 (
𝑄

𝑛
) + 𝑗. Recall also that the tile numbering

reflects the order in which the tiles are input and output across the pipeline.

Thus when tile 𝑢 is received, all tiles 0, 1, 2, … . , n − 1 have also been received. Put differently, if

τi, j is received when τu, v have been received for all 0 ≤ 𝑢 ≤ 𝑖 and 0 ≤ 𝑣 ≤ 𝑗. In terms of a tile, not

all elements of a currently received tile can be processed as some of the pixels near the border

require knowledge of subsequent pixels (that will be received later).

Consider Figure 5.2. The figure shows the currently received tile τi, j hatched from south

west to north east. However, the part that can be processed is shown hatched from north west to

south east.

Figure 5.2: Received tile (τi, j) shown hatched from south west to north east; processed tile shown

hatched from north west to south east.

This is because, for example, the bottom rightmost pixel 𝑥 of τi, j needs pixels from τi, j-1, τi-1, j, τi-1,

j-1 before it can be processed (assuming 𝑤 ≥ 1). Thus the portion of the image that needs to be

38

stored for future use is as shown in Figure 5.3; this has also been elaborated upon in Vaidyanathan

et al. [4]. The memory requirement is 2𝑁𝑤 + 2𝑤𝑛. Given that 𝑁 ≫ 𝑛, it is unreasonable to find

enough storage within the FPGA. This is the reason for the external memory. In fact, of the two

components of this storage, the 2𝑁𝑤 part is stored in the external “horizontal” storage and the

2𝑤𝑛 part (“vertical storage”) is stored within the FPGA in its Block RAM.

The next question is whether a different order of inputing tiles would reduce the storage

requirement. We conjecture that it would not as is evidenced in the example below.

In snake-like row major (see Figure 5.3 (a)), the tiles are proximate to each other (no jump from

last tile of a row to first tile of next). However, here too, the memory requirement is proportional

to 𝑄𝑤 (see Figure 5.3 (b)). Other tile ordering such as the diagonal snake-like row-major ordering

or other proximity ordering such as the Z-ordering [10] will also require 𝜃(𝑄𝑤) memory (see

Figures 5.3 (c), (d)).

(a) Row-major ordering of tiles

39

(b) Snake-like row-major ordering of tiles

(c) Diagonal snake-like row-major ordering of tiles

40

(d) Z-ordering of tiles

Figure 5.3: Tile Ordering

Thus, as seen from the above examples, an external memory is required. We now detail the

components of the architecture.

The nature of a windowed computation is such that, computing the new value of a pixel

requires the value of the surrounding pixels within the (2𝑤 + 1) × (2𝑤 + 1) sized window. The

image pipeline, as expected, strings the 𝑧 stages (Stage 0 to Stage 𝑧 − 1) together as shown in the

top half of Figure 5.6. As discussed previously in this chapter, processing tile τi, j requires

information from tiles τi, j-1, τi-1, j, τi-1, j-1. Some of this information (τi, j-1) is available locally within

the FPGA (described further in Section 5.3). The remainder, τi-1, j and τi-1, j-1 is in the external

storage. Likewise, parts of the current tile τi, j must be saved in the external storage for later use.

This applies to every tile of every stage. Within a stage, previous tiles are requested in succession,

but across stages, these requests could be simultaneous. The memory interface acts as the go

41

between among the stages and the external memory. To conserve pins (a scarce resource), the

memory interface transacts data for only one stage at a time.

Before we proceed, let us see what happens when tile τi, j is received. To process elements

of this tile, portions of tiles τi, j-1, τi-1, j-1 and τi-1, j are required. In addition, a portion of τi, j itself

must be stored for future use. Of the three tiles other than τi, j needed for current computation, call

the data from τi, j-1 as the vertical data and the remaining data from tiles τi-1, j-1 and τi-1, j as horizontal

data (see Figure 5.4). Similarly, τi, j, has a horizontal and vertical part (not necessarily disjoint)

that needs to be stored for the future (shown as in Figure 5.4). We will store horizontal and vertical

data in horizontal and vertical memories that are outside and inside, respectively of the FPGA.

Figure 5.4: Pictorial representation of the horizontal and vertical data inside the compute fabric.

42

We now describe the overall functionality in some detail (see Figure 5.5). The figure shows (in

red) the handshaking signals between the module; these are in Chapter 4 and we do not discuss

them here. The data signals are in black and additional (non-data, non-handshaking) information

is conveyed through lines in blue.

Figure 5.5: A schematic of the memory interface. Handshaking signals are red.

Each stage receives an 𝑛 × 𝑛 tile from the previous stage (or image source). It outputs an

𝑛 × 𝑛 processed tile to the next stage (or image consumer). A stage also interacts with the external

memory through the memory interface (which we have segmented into the input and output

interfaces in Figure 5.5). When a stage wishes to obtain horizontal data, say of tile τi-1, j-1 and τi-1, j,

it sends a request (using handshaking) to the input interface. This request includes the tile number

(𝑖, 𝑗) and the stage number and is of length log(𝑧) + log(2𝑄) = log(𝑧) + log 𝑄 + 1 = 𝛼 (say).

43

The input interface picks up the requests (one at a time) and transmits them to the MMU, which

translates each request to a memory address and accesses the data. This data is sent back to the

input interface along with the α-bit information that came with the request. The return data has

size 2𝑛𝑤 + 𝑤2 bits. The input interface passes this on to the correct stage (using the α-bit

information). Notice that, the α-bit information is passed through bidirectional pins.

Similarly, when horizontal data for τi, j is exported to the memory, the stage sends α bits of

identifying information and the data to the output interface, which passes it on to the MMU.

5.2 Structure within the FPGA

The Figure 5.6 gives more details on how individual stages are arranged inside the FPGA.

It also illustrates a memory interface that allows stages to access the external memory.

Figure 5.6: Windowed Computation Pipeline

44

An image processing algorithm usually is implemented through a number of stages where the size

and value of the window function could change between stages according to the nature of the

algorithm. Figure 5.7 shows the structure of a single stage with just the modules that deal with data

(without control modules).

From Figure 5.7, we estimate the FPGA resources that are required to implement the design in any

FPGA. To begin with, we estimate the number of I/O pins that are required to bring the input tile

into the FPGA, the processed tile to be taken out of the FPGA and the additional pins that are

needed for each stage to send their storage data out through the memory interface.

Figure 5.7: Windowed Computation Stage

Total number of pins required, 𝑃 = Number of input pins + number of output pins +

Number of address and data pins needed for the memory interface.

45

𝑃 = 𝑛2 + 𝑛2 + ((2𝑛𝑤 + 2𝑛𝑤 + 𝑤2) + (2 log 𝑁𝑤) + (2 log 𝑧))

 = 2𝑛2 + 4𝑛𝑤 + 𝑤2 + 2 log 𝑁 + 2 log 𝑤 + 2 log 𝑧

In the above equation, the term (2 log 𝑁𝑤) represents the address for the interface and

2 log 𝑧 represents the stage number which is requesting for priority to send its storage data out.

From the equation, it is evident that the total number of pins that are required for the windowed

computation pipeline to be implemented in an FPGA is proportional to 𝑛2 (square of the tile size).

We also try to estimate the amount of distributed memory required to implement our design. The

two modules inside a stage which will be implemented using a distributed memory are the

temporary input storage and the storage in the compute module. In each stage, the amount of

distributed memory needed will be the sum of the sizes of both the modules. Assuming that these

two modules are the main part which requires distributed memory, we estimate the distributed

memory utilization to be:

𝐷𝑀 = Number of stages

∗ (Memory required for input temp storage

+ memory required for compute module)

 = 𝑧 ∗ (𝑛2 + (𝑛 + 2𝑤)2)

Finally, block RAM is another resource whose utilization has to be estimated. From Figure 6.4,

the modules Input Buffer and Vertical Storage will be implemented using a dedicated block RAM

(BRAM). In each stage, the amount of block RAM that is required to implement the design will

be the sum of the size of both the modules. The estimate of utilization of BRAM inside the FPGA

is:

46

𝐵𝑀 = Number of stages

∗ (Memory required for input buffer + memory required for vertical storage)

 = 𝑧 ∗ (𝑛2 + 2𝑛𝑤)

We now get into the implementation details of the modules in each stage (Section 5.3) and the

memory interface for the pipeline (Section 5.4).

5.3 Pipeline Stage

Figure 5.8 shows the modules within each stage of the pipeline. The functionality of the

modules shown in the figure are as follows:

a) Input Buffer module is an 𝑛 × 𝑛 memory which is used to store the data coming from the

previous stage. In the case of the first stage in the pipeline, this data comes from outside

the FPGA; in fact, this is the main image data entering the FPGA and the main contributor

to input pin usage. The input buffer module is implemented to infer to the FPGA’s block

RAM resource.

47

Figure 5.8: Basic Stage

(b) Temp Storage module is created to route parts of the input tile data into different modules

(vertical storage, compute module and output interface). It is implemented in the

distributed RAM.

(c) Vertical Storage module stores the vertical data from the present tile for use in the next

iteration. This is implemented in the BRAM.

(d) Compute module – This is the heart of the windowed computation in which the window is

applied to tile of pixels (see Equation 3.1). We assume a median filter (only for illustration

purposes); a different operation can also be implemented, as our simulations (Chapter 6)

indicate a lot of spare CLB resources.

Figure 5.9 shows the structure of the Compute unit for 𝑤 = 1.

48

Figure 5.9: Compute fabric structure for 𝑤 = 1

The memory is in the distributed RAM of the FPGA and the computing hardware (weight same in

our case) is implemented in the CLBs.

5.4 Memory Interface

Each stage in the pipeline outputs horizontal data to and inputs old horizontal data from

the external memory. Due to a limitation in the I/O pin count for the FPGA, we cannot let each

stage output/input its horizontal data at the same time. We use a priority encoder to prioritize which

stage gets to transact its horizontal data in and out of the device.

The idea is to prioritize request from earlier stages. This is because, without activity in the earlier

stage, the later stages cannot proceed. However, our simple handshaking scheme ensures that an

earlier stage will not proceed until its output has been consumed by the next stage. Thus this

49

approach is self-regulating and prevents earlier stages (with higher priority) from monopolizing

the memory interface bandwidth.

Figure 5.10 shows the truth table for a simple priority encoder with 𝑧 stages.

Figure 5.10: Truth table for simple priority encoder

A valid bit indicates that whether there is a current request.

Memory Management Unit

As noted earlier, we do not implement the external memory or the memory management

unit (MMU). Here we indicate how the MMU would work.

The input to the MMU can either be from the input or output interface. An input from the input

interface includes a request for data from tiles τi-1, j-1 and τi-1, j for stage 𝑠. This is conveyed as

number 𝑖, 𝑗 and 𝑠. The MMU translates this information to retrieve 2𝑛𝑤 + 𝑤2 pixels and sends it

back to the input interface.

Likewise, an input from the output interface has 𝑖, 𝑗, 𝑣 and 2𝑛𝑤 pixels of data then it needs to store

in a location corresponding to tile τi, j. We now explain how this could be done in the MMU.

50

When 𝑖, 𝑗, 𝑠 is sent, it saves the duplicate part and the rest in clearly identified places. Let these go

to locations ℎ𝑜𝑟(𝑖, 𝑗, 𝑠) and 𝑑𝑢𝑝(𝑖, 𝑗, 𝑠). For example, the MMU could compute or store in a table,

the starting address ℎ𝑜𝑟(𝑖, 𝑗, 𝑠) and the block size (𝑛 − 2𝑤) ∗ 2𝑤 for this case. When a request

𝑖, 𝑗, 𝑠 arrives, the MMU sends data from ℎ𝑜𝑟(𝑖 − 1, 𝑗, 𝑠) (of size (𝑛 − 2𝑤) ∗ 2𝑤) and from

𝑑𝑢𝑝(𝑖 − 1, 𝑗 − 1, 𝑠) (of size 2𝑛𝑤).

51

Chapter 6

Simulation Results
So far we have designed a broad approach to running a 𝑧-stage windowed computation

pipeline in an FPGA (or any other pin-limited environment). To measure the effectiveness of our

approach and to obtain better insight into it, we implemented our architecture on a commercially

available FPGA (through CAD tools) and observed the amount of resources used for various

problem sizes. This chapter reports the results of these simulations.

The resources studied are the following:

a) I/O Banks (IOBs) or Pins.

b) Distributed memory (LUTs as memory).

c) LUTs (a reflection of CLB usage).

d) B-RAMs

e) Operating clock frequencies.

As noted in Chapter 2, the first four are the main resources that constrain FPGA-based design.

The operating clock frequency is a good indication of the speed of the pipeline.

Design Methodology

The parameters that affect the performance of the pipeline include:

(a) 𝑁 = image parameter

(b) 𝑛 = tile parameter

(c) 𝑤 = window parameter

(d) 𝑧 = number of stages

52

(e) FPGA type.

For this study, we used two FPGA types (Artix-7 and Kintex-7); these were the largest two

accessible through the free distribution of the Vivado HL Webpack software.

In general, we use an image with 𝑁 ≅ 1024 and kept this fixed for all our experiments. As noted

earlier (Chapter 5), the value of 𝑁 only affects the number of IOBs used, that too logarithmically.

Therefore, not much insight would be gained by varying 𝑁.

The following methodology was used to run several simulations.

For a fixed FPGA, 𝑁 ≅ 1024 and a fixed value of 𝑤:

1. The largest value of 𝑛, with 𝑧 = 1 for which a feasible implementation was possible was

determined. This 𝑛 is called 𝑛max, the largest tile parameter possible (due to pin limitations).

2. Next, the value of 𝑧 was increased from 1 to 𝑧max, the largest number of stages that could

be accommodated; 𝑛 = 𝑛max for all these values of 𝑧.

3. Finally, 𝑧 was increased beyond 𝑧max and 𝑛 reduced from 𝑛max to accommodate the increase

in 𝑧. This was continued until 𝑛 ≥ 2𝑤.

4. Each of these was implemented for optimized clock. We examined two situations, one with

𝑧 = 1 and the other with 𝑧 = 𝑧max. In both cases, 𝑛 = 𝑛max. The maximum attainable clock

frequency for 𝑧 = 𝑧max and 𝑧 = 1 are denoted by 𝑓min and 𝑓max, respectively.

For all these runs, the resource utilization report provided by Vivado tool was used to observe

the resource usage. Table 6.1 shows the different values of window parameter (𝑤) against, the

maximum values of 𝑛, 𝑧 possible for that particular 𝑤. It also shows 𝑓max and 𝑓min, the maximum

frequency of the clock and minimum frequency of clock possible for a particular window

53

parameter. Each of these parameters, 𝑛, 𝑧, 𝑓max and 𝑓min is plotted against the corresponding 𝑤 as

shown in Figures 6.1, 6.2 and 6.3.

w nmax zmax fmax (MHz) fmin (Mhz)

0 15 6 20.00 18.87

1 14 5 18.51 17.86

2 13 5 16.67 16.13

3 11 5 15.87 15.63

4 11 5 15.38 15.15

Table 6.1: Limiting values for Artix-7

Figure 6.1: Window Parameter (𝑤) in x-axis vs maximum Tile Size (𝑛max) in y-axis for Artix-7

10

11

12

13

14

15

16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

nmax

54

Figure 6.2: Window Parameter (𝑤) in x-axis vs maximum no. of stages (𝑧max) in y-axis for Artix-

7

Figure 6.3: Window Parameter (𝑤) in x-axis vs clock frequency (𝑓max and 𝑓min) in y-axis for

Artix-7

4

4.5

5

5.5

6

6.5

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

zmax

0

5

10

15

20

25

0 1 2 3 4 5

C
lo

ck
 F

re
q

u
en

cy

w

Clock Frequency vs Window Parameter

fmax

fmin

55

Table 6.1 (and Figures 6.1 – 6.3) show the following. The tile parameter 𝑛max reduces quite

markedly from 𝑤 = 0 to 𝑤 = 4. However, the maximum number of pipeline stages, 𝑧max, does not

vary much. This indicates a higher sensitivity of the design to I/O resources (as opposed to

resources within the FPGA); this observation is further in the data presented next.

There is little difference between 𝑓max and 𝑓min, indicating that the current “path length” does not

depend much on the number of stages. Thus any improvement in the design of a stage would not

have a multiplication effect on a large number of stages (other than the parallelism due to a deep

pipeline).

Each of the modules of Figure 5.8 operates in one clock cycle. The flow of information between

modules is defined by the handshaking signals. Normally, the following sequence of actions could

happen.

 At time 𝑡 = 0, data arrives at the input buffer.

 At 𝑡 = 1, it is available to the temporary storage.

 At 𝑡 = 2, it is available at the vertical storage and the compute module. It is also sent to the external

memory.

 At 𝑡 ≤ 2, horizontal data is available to the compute module.

 At 𝑡 = 3, the compute module produces the output.

 At 𝑡 = 3, the new vertical storage data is.

Thus stage produces an output every 3 clock cycles. With 𝑧 stages, the time to produce the tiles of

an 𝑁 × 𝑁 image is 3*(
𝑄2

𝑛2
+ 𝑧 − 1) clock cycles. Even with a safety factory of 5, we have

15*(
𝑄2

𝑛2
+ 𝑧 − 1)

2

 ≅ 15*(
𝑁

𝑛
)

2

 clock cycles to process the image.

56

With 𝑁 ≅ 1000, 𝑛 ≅ 10 and 𝑓 ≅ 15 Mhz, the image can be processed in

15 ∙ (
1000

10
)

2

∙
1

15×106 =
1

100
 seconds, or

At the rate of 100 picture frames/sec where each picture is of size 1000 × 1000 pixels. This is a

reasonable rate for most real time processing scenarios.

Tables 6.2 – 6.6 shows the absolute, percentage and normalized resource utilization for

various window parameters, ranging from 0 to 4 for the Artix-7 FPGA. The absolute resource

utilization number is the exact number as provided by the Vivado tool, whereas percentage

utilization is the percentage of resource utilized from the maximum that is available for the

particular FPGA, the normalized utilization is the ratio of absolute value to the maximum of all

absolute values among the cases considered.

57

 LUTs (Total = 133800) Distributed Memory (Total = 46200)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 15 10920 8.16 0.155 7594 16.43 0.165

2 14 22394 16.73 0.318 14874 32.19 0.324

3 14 34004 25.41 0.483 22800 49.35 0.497

4 14 45326 33.87 0.644 30004 64.94 0.654

5 14 55842 41.73 0.793 38120 82.51 0.831

6 14 70384 52.6 1.000 45829 99.19 1.000

 BRAMs (Total = 365) IOBs (Total = 500)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 15 4 1.09 0.210 500 100.0 1.000

2 14 7 1.91 0.368 444 88.8 0.888

3 14 11 3.01 0.579 446 89.2 0.892

4 14 14.5 3.97 0.763 446 89.2 0.892

5 14 16 4.38 0.842 448 89.6 0.896

6 14 19 5.20 1.000 448 89.6 0.896

Table 6.2: Table of resource utilization for window parameter w=0 for Artix-7; the last row in

each table corresponds to the largest implementable value of z.

58

 LUTs (Total = 133800) Distributed Memory (Total = 46200)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 14 11850 8.85 0.207 7704 16.67 0.198

2 14 23439 17.51 0.410 15408 33.35 0.396

3 14 35028 26.18 0.613 23112 50.02 0.594

4 14 46764 34.95 0.819 30816 66.70 0.791

5 13 57052 42.64 1.000 38920 84.24 1.000

 BRAMs (Total = 365) IOBs (Total = 500)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 14 4.5 1.09 0.272 496 99.2 0.992

2 14 8 1.91 0.484 498 99.6 0.996

3 14 11.5 3.01 0.696 500 100.0 1.000

4 14 15 3.97 0.909 500 100.0 1.000

5 13 16.5 4.38 1.000 446 89.2 0.892

Table 6.3: Table of resource utilization for window parameter w=1 for Artix-7.

59

 LUTs (Total = 133800) Distributed Memory (Total = 46200)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 13 12402 9.27 0.204 7896 17.09 0.193

2 13 24286 18.15 0.399 15792 34.18 0.386

3 13 36164 27.03 0.595 23688 51.27 0.580

4 13 48132 35.97 0.792 31584 68.36 0.773

5 13 60090 44.91 0.989 39480 85.45 0.967

6 12 60764 45.41 1.000 40824 88.36 1.000

 BRAMs (Total = 365) IOBs (Total = 500)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 13 5 1.37 0.263 492 98.4 0.988

2 13 8.5 2.33 0.447 494 98.8 0.992

3 13 12 3.29 0.631 496 99.2 0.996

4 13 15.5 4.25 0.816 496 99.2 0.996

5 13 19 5.20 1.000 498 99.6 1.000

6 12 19 5.20 1.000 442 88.4 0.887

Table 6.4: Table of resource utilization for window parameter w=2 for Artix-7.

60

 LUTs (Total = 133800) Distributed Memory (Total = 46200)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 11 12158 9.08 0.176 7740 16.75 0.172

2 11 23862 17.83 0.346 15480 33.50 0.344

3 11 35572 26.58 0.516 23220 50.26 0.516

4 11 47276 35.33 0.686 30960 67.01 0.689

5 11 58974 43.94 0.856 38700 83.76 0.861

6 9 68860 51.46 1.000 44928 97.24 1.000

 BRAMs (Total = 365) IOBs (Total = 500)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 11 8 2.19 0.267 428 85.6 0.986

2 11 13.5 3.69 0.450 430 86.0 0.991

3 11 19 5.20 0.633 432 86.4 0.995

4 11 24.5 6.71 0.817 432 86.4 0.995

5 11 30 8.22 1.000 434 86.8 1.000

6 9 26.5 7.26 0.883 330 66.0 0.760

Table 6.5: Table of resource utilization for window parameter w=3 for Artix-7.

61

 LUTs (Total = 133800) Distributed Memory (Total = 46200)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 11 12304 9.19 0.208 7884 17.06 0.200

2 11 24012 17.95 0.406 15768 34.13 0.400

3 11 37518 28.04 0.634 23652 51.19 0.600

4 11 47428 35.45 0.802 31536 68.26 0.800

5 11 59133 44.19 1.000 39420 85.32 1.000

 BRAMs (Total = 365) IOBs (Total = 500)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 11 9 2.46 0.290 472 94.4 0.987

2 11 14.5 3.97 0.468 474 94.8 0.992

3 11 20 5.48 0.645 476 95.2 0.996

4 11 25.5 6.98 0.822 476 95.2 0.996

5 11 31 8.49 1.000 478 95.6 1.000

Table 6.6: Table of resource utilization for window parameter w=4 for Artix-7.

62

Figures below present this data as a plot.

Figure 6.4: Plot of Resource Usage vs the Number of Stages for w=0 for the Artix-7 FPGA

0

20

40

60

80

100

120

1 2 3 4 5 6

R
es

o
u

rc
e

%
 U

sa
ge

z

Resource % Usage vs No. of Stages

LUT % Usage Distributed Memory % Usage BRAM % Usage IOB % Usage

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

R
es

o
u

rc
e

N
o

rm
al

iz
ed

 U
sa

ge

z

Resource Normalized Usage vs No. of Stages

LUT Normalized Usage Distributed Memory Normalized Usage

BRAM Normalized Usage IOB Normalized Usage

63

Figure 6.5: Plot of Resource Usage vs the Number of Stages for w=1 for the Artix-7 FPGA

0

20

40

60

80

100

120

1 2 3 4 5

R
es

o
u

rc
e

%
 U

sa
ge

z

Resource % Usage vs No. of Stages

LUT % Usage Distributed Memory % Usage BRAM % Usage IOB % Usage

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

R
es

o
u

rc
e

N
o

rm
al

iz
ed

 U
sa

ge

z

Resource Normalized Usage vs No. of Stages

LUT Normalized Usage Distributed Memory Normalized Usage

BRAM Normalized Usage IOB Normalized Usage

64

Figure 6.6: Plot of Resource Usage vs the Number of Stages for w=2 for the Artix-7 FPGA

0

20

40

60

80

100

120

1 2 3 4 5 6

R
es

o
u

rc
e

%
 U

sa
ge

z

Resource % Usage vs No. of Stages

LUT % Usage Distributed Memory % Usage BRAM % Usage IOB % Usage

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

R
es

o
u

rc
e

N
o

rm
al

iz
ed

 U
sa

ge

z

Resource Normalized Usage vs No. of Stages

LUT Normalized Usage Distributed Memory Normalized Usage

BRAM Normalized Usage IOB Normalized Usage

65

Figure 6.7: Plot of Resource Usage vs the Number of Stages for w=3 for the Artix-7 FPGA

0

20

40

60

80

100

120

1 2 3 4 5 6

R
es

o
u

rc
e

%
 U

sa
ge

z

Resource % Usage vs No. of Stages

LUT % Usage Distributed Memory % Usage BRAM % Usage IOB % Usage

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

R
es

o
u

rc
e

N
o

rm
al

iz
ed

 U
sa

ge

z

Resource Normalized Usage vs No. of Stages

LUT Normalized Usage Distributed Memory Normalized Usage

BRAM Normalized Usage IOB Normalized Usage

66

Figure 6.8: Plot of Resource Usage vs the Number of Stages for w=4 for the Artix-7 FPGA

0

20

40

60

80

100

120

1 2 3 4 5

R
es

o
u

rc
e

%
 U

sa
ge

z

Resource % Usage vs No. of Stages

LUT % Usage Distributed Memory % Usage BRAM % Usage IOB % Usage

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

R
es

o
u

rc
e

N
o

rm
al

iz
ed

 U
sa

ge

z

Resource Normalized Usage vs No. of Stages

LUT Normalized Usage Distributed Memory Normalized Usage

BRAM Normalized Usage IOB Normalized Usage

67

Now we present the data for Kintex-7 which has 400 I/O pins, 35000 LUTs that can be

configured as distributed memory and 325 BRAMs. Tables 6.7, 6.8 – 6.12 show similar data for

the Kintex-7 FPGA (that has fewer pins and internal resources than the Artix-7 FPGA).

w nmax zmax fmax fmin

0 13 5 43.47 41.67

1 12 5 40.00 35.71

2 11 4 33.33 31.25

3 10 4 30.30 29.41

4 9 4 28.57 27.77

Table 6.7: Limiting values for Kintex-7

Tables 6.8 – 6.12 shows the absolute, percentage and normalized resource utilization for

various window parameters, ranging from 0 to 4 for the Kintex-7 FPGA. The absolute resource

utilization number is the exact number as provided by the Vivado tool, whereas percentage

utilization is the percentage of resource utilized from the maximum that is available for the

particular FPGA, the normalized utilization is the ratio of absolute value to the maximum of all

absolute values among the cases considered.

68

 LUTs (Total = 101400) Distributed Memory (Total = 35000)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 13 8764 8.64 0.183 5346 15.27 0.170

2 13 18213 17.96 0.381 11788 33.68 0.376

3 13 28012 27.62 0.587 18134 51.81 0.578

4 13 37827 37.30 0.792 24784 70.81 0.790

5 13 47724 47.06 1.000 31340 89.54 1.000

 BRAMs (Total = 325) IOBs (Total = 400)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 13 2.5 0.77 0.200 388 97.0 0.984

2 13 5 1.54 0.400 390 97.5 0.989

3 13 7.5 2.30 0.600 392 98.0 0.995

4 13 10 3.07 0.800 392 98.0 0.995

5 13 12.5 3.84 1.000 394 98.5 1.000

Table 6.8: Table of resource utilization for window parameter w=0 for Kintex-7; the last row in

each table corresponds to the largest implementable value of z.

69

 LUTs (Total = 101400) Distributed Memory (Total = 35000)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 12 9952 9.81 0.202 6524 18.64 0.200

2 12 19694 19.42 0.401 13048 37.28 0.400

3 12 29411 29.00 0.599 19572 55.92 0.600

4 12 39278 38.73 0.801 26096 74.56 0.800

5 12 49029 48.35 1.000 32620 93.20 1.000

 BRAMs (Total = 325) IOBs (Total = 400)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 12 3.5 1.07 0.260 386 96.5 0.984

2 12 6 1.84 0.440 388 97.0 0.989

3 12 8.5 2.61 0.630 390 97.5 0.995

4 12 11 3.38 0.810 390 97.5 0.995

5 12 13.5 4.15 1.000 392 98.0 1.000

Table 6.9: Table of resource utilization for window parameter w=1 for Kintex-7.

70

 LUTs (Total = 101400) Distributed Memory (Total = 35000)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 11 11220 11.06 0.256 7344 20.98 0.250

2 11 22060 21.75 0.504 14688 41.96 0.500

3 11 32904 32.44 0.752 22032 62.94 0.750

4 11 43746 43.14 1.000 29376 83.93 1.000

w=2

 BRAMs (Total = 325) IOBs (Total = 400)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 11 6.5 2.00 0.302 382 95.5 0.989

2 11 11.5 3.53 0.534 384 96.0 0.995

3 11 16.5 5.07 0.767 386 96.5 1.000

4 11 21.5 6.61 1.000 386 96.5 1.000

Table 6.10: Table of resource utilization for window parameter w=2 for Kintex-7.

71

 LUTs (Total = 101400) Distributed Memory (Total = 35000)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 10 12372 12.20 0.256 7920 22.62 0.250

2 10 24353 24.01 0.503 15840 45.25 0.500

3 10 36337 35.83 0.752 23760 67.88 0.750

4 10 48320 47.65 1.000 31680 90.51 1.000

 BRAMs (Total = 325) IOBs (Total = 400)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 10 7 2.15 0.318 374 93.5 0.989

2 10 12 3.69 0.545 376 94.0 0.995

3 10 17 5.23 0.772 378 94.5 1.000

4 10 22 6.77 1.000 378 94.5 1.000

Table 6.11: Table of resource utilization for window parameter w=3 for Kintex-7.

72

 LUTs (Total = 101400) Distributed Memory (Total = 35000)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 9 11902 11.73 0.256 7488 21.39 0.250

2 9 23414 23.09 0.504 14976 42.78 0.500

3 9 34909 34.42 0.752 22464 64.18 0.750

4 9 46411 45.77 1.000 29952 85.57 1.000

 BRAMs (Total = 325) IOBs (Total = 400)

z n

Absolute

Usage

%

Usage

Normalized

Usage

Absolute

Usage

%

Usage

Normalized

Usage

1 9 6 1.84 0.363 360 90.0 0.989

2 9 9.5 2.92 0.575 362 90.5 0.995

3 9 13 4.00 0.787 364 91.0 1.000

4 9 16.5 5.07 1.000 364 91.0 1.000

Table 6.12: Table of resource utilization for window parameter w=4 for Kintex-7.

73

On the whole, we observe that the design bottleneck (as evidenced from Table 6.1 as well)

is the I/O resources. They typically saturate close to 100% of the % usage in Tables 6.2 – 6.6. The

few case where they are less than 100% are due to the use of 𝑛 < 𝑛max and discretization effect

due to integer value of 𝑛.

The next most important resource is the distributed memory, particularly for a large number

of pipeline stages. This is used for the temporary storage and the compute module. By carefully

designing the stage to eliminate or reduce the duplication due to the input buffer and temporary

storage, the distributed memory usage could be cut by almost 30% (from 2𝑛2 + (𝑛 + 2𝑤)2 to

𝑛2 + (𝑛 + 2𝑤)2). This could also reduce the number of cycles needed at each stage to 2 clock

cycles (rather than 3).

74

Chapter 7

Concluding Remarks
In this thesis, we have considered the running of a windowed computation on an FPGA.

Specifically, we have addressed the following; we have defined a handshaking scheme that

allowed us to construct an FPGA architecture without making large assumptions about component

speeds and synchronization. The relevance of this work extends to other FPGAs and I/O bandwidth

limited modules. We defined a pipeline architecture for windowed computations, including details

of a stage to accommodate FPGA pin-limitation and bounded storage. This architecture is also

generic with the potential for extension to other environments. We have modified the method of

Vaidyanathan et al. [9] to better suit FPGAs where it ensures a smoother (stall-resistant) flow of

the computation in the pipeline. Based on the architecture proposed, we have analytically predicted

resource usage in the FPGA. In particular, we have shown that for an 𝑁 × 𝑁 image processed as

𝑛 × 𝑛 tiles on a 𝑧-stage windowed computation with parameter 𝑤; Θ(𝑛2 + log 𝑁 + log 𝑧) pins are

used and Θ(𝑛2𝑧) memory is used. We ran simulations that validated these predictions on two

FPGAs (Artix-7 and Kintex-7) with different resources. As we had predicted, the pins and

distributed memory turned out to be the most used resources. Our simulations have also shown

that the operating clock speed of the design is relatively independent of the number of stages in

the pipeline; this is in line with what was expected with the handshaking scheme that isolates the

timing of communicating modules.

This work opens up many directions for future work. Can the temporary input buffer be

removed? This would greatly reduce the amount of distributed memory used. Would the predicted

trends of resource use translate to other FPGAs (we expect it would)? Would this translate to other

modules, where the ratio of I/O resources to other resources may be greater? It would also be

75

interesting to run the algorithm to account for pipeline timing. This would address the efficiency

of the memory interface and the effect of expanding the compute fabric to perform more complex

operations.

76

Bibliography

1. A. Benoit, U. V. Catalyurek, Y. Robert and E. Saule, “A Survey of Pipelined Workflow

Scheduling: Models and Algorithms,” LIP Research Report RR-LIP-2010-28, Ecole Normale

Sup´erieure ´ de Lyon, France, 2010.

2. B. A. Draper, J. R. Beveridge, A. P. W. B¨ohm and M. Chawathe, “Accelerated Image Processing

on FPGAs,” IEEE Trans. Image Processing, vol. 12, no. 12, Dec. 2003, pp. 1543–1551.

3. Stephen D. Brown, Robert J. Francis, Jonathan Rose, Zvonko G. Vranesic. Field-programmable

gate arrays. Vol. 180. Springer Science & Business Media, 2012.

4. Ebeling, William HC, and Gaetano Borriello. "Field programmable gate array." U.S. Patent No.

5,208,491. 4 May 1993.

5. I. K. Park, N. Singhal, M. H. Lee, S. Cho and C. W. Kim, “Design and Performance Evaluation

of Image Processing Algorithms on GPUs,” IEEE Trans. Parallel and Distributed Systems, vol.

22, issue 1, pp. 91–104.

6. IEEE Standard for Verilog Hardware Description Language," in IEEE Std 1364-2005 (Revision of

IEEE Std 1364-2001) , vol., no., pp.0_1-560, 2006

7. Marcellin, Michael W., et al. "An overview of JPEG-2000." Data Compression Conference,

2000. Proceedings. DCC 2000. IEEE, 2000.

8. P. E. Danielsson and S. Levialdi, "Computer Architectures for Pictorial Information Systems,"

in Computer, vol. 14, no. 11, pp. 53-67, Nov. 1981. doi: 10.1109/C-M.1981.220251,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1667158&isnumber=34899

9. R. Vaidyanathan and P. Vinukonda, "On Running Windowed Image Computations on a

Pipeline," Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),

2012 IEEE 26th International, Shanghai, 2012, pp. 813-820.

http://ieeexplore.ieee.org.libezp.lib.lsu.edu/stamp/stamp.jsp?tp=&arnumber=1667158&isnumber=34899

77

10. R. Vaidyanathan and J. L. Trahan, "Dynamic Reconfiguration: Architectures and

Algorithms," 2003, Kluwer Academic/ Plenum Publishers, New York.

11. Ramanath, Rajeev, Wesley E. Snyder, Youngjun Yoo, and Mark S. Drew. "Color image

processing pipeline." IEEE Signal Processing Magazine 22.1 (2005): 34-43.

12. S. Asano, T. Maruyama and Y. Yamaguchi, “Performance Comparison of FPGA, GPU and CPU

in Image Processing,” Proc. Field Programmable Logic and Applications (FPL), 2009, pp. 126–

131.

13. S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe and R. R. Taylor, "PipeRench: a

reconfigurable architecture and compiler," in Computer, vol. 33, no. 4, pp. 70-77, Apr 2000. doi:

10.1109/2.839324,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=839324&isnumber=18132

14. Xilinx Inc., 7 Series CLB Architecture. 2016.

http://www.xilinx.com/video/fpga/7-series-clb-architecture.html. 16 May 2016

15. Xilinx Inc., 7 Series FPGAs Configurable Logic Block. 2016.

http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf. 17 June 2016

16. Xilinx Inc., 7 Series FPGAs Overview. 2016.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_desig

n.htm. 17 June 2016.

17. Xilinx Inc., Implementation. 2016.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_desig

n.htm. 16 May 2016.

18. Xilinx Inc., Logic Simulation. 2016.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug900-vivado-logic-

simulation.pdf. 16 May 2016.

http://ieeexplore.ieee.org.libezp.lib.lsu.edu/stamp/stamp.jsp?tp=&arnumber=839324&isnumber=18132
http://www.xilinx.com/video/fpga/7-series-clb-architecture.html.%2016%20May%202016
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_design.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_design.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_design.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_design.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug900-vivado-logic-simulation.pdf

78

19. Xilinx Inc., Synthesis. 2016.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug901-vivado-

synthesis.pdf. 16 May 2016.

20. Keinert, Joachim and Jürgen Teich. Design of Image Processing Embedded Systems Using

Multidimensional Data Flow. New York: Springer, 2011. Print.

21. S. L. Bishop, S. Rai, B. Gunturk, J. L. Trahan and R. Vaidyanathan, “Reconfigurable

Implementation of Wavelet Integer Lifting Transforms for Image Compression,” Proc. IEEE

International Conference on Reconfigurable Computing and FPGAs, 2006, pp 20-22.

22. N. Srivastava, J. L. Trahan, R. Vaidyanathan and S. Rai, “Adaptive Image Filtering using Run-

Time Reconfiguration,” Proc. Reconfigurable Architectures Workshop, 2003. p. 180.

23. J. B. Postel, “SIMPLE MAIL TRANSFER PROTOCOL,” RFC 821 (August 1982).

24. P. Morrissey, N. P. Smart, and B. Warinschi. 2010. The TLS Handshake Protocol: A Modular

Analysis. J. Cryptol. 23, 2 (April 2010), 187-223. DOI=http://dx.doi.org/10.1007/s00145-009-

9052-3.

25. IEEE Draft Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003) Amendment 7: 4.9 GHz5

GHz Operation in Japan (As Amended by IEEE Stds 802.11a-1999, 802.11b-1999, 802.11b-

1999/Cor 1-2001, 802.11d-2001, 802.11g-2003, 802.11h-2003), and 802.11i-2004)," in IEEE Std

P802.11j/D1.6 , vol., no., pp., 2004

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4040936&isnumber=4040935

26. B. Lloyd, W. Simpson, “PPP Authentication Protocols,” RFC 1334 (October 1992).

27. D. L. Oliveira, K. Garcia and R. d'Amore, "Using FPGAs to implement asynchronous

pipelines," Circuits and Systems (LASCAS), 2014 IEEE 5th Latin American Symposium on,

Santiago,2014, pp.1-4. doi:10.1109/LASCAS.2014.6820272.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6820272&isnumber=6820243

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug901-vivado-synthesis.pdf.%2016%20May%202016
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug901-vivado-synthesis.pdf.%2016%20May%202016
http://ieeexplore.ieee.org.libezp.lib.lsu.edu/stamp/stamp.jsp?tp=&arnumber=4040936&isnumber=4040935
http://ieeexplore.ieee.org.libezp.lib.lsu.edu/stamp/stamp.jsp?tp=&arnumber=6820272&isnumber=6820243

79

Vita
 Aswin Vijaya Varma was born in April of 1989, in Alleppey, India to P. R. Vijaya Varma

and Jayasree S. Varma. In June 2010, he received his Bachelor’s degree in Electronics and

Communication Engineering from Mahatma Gandhi University, Kottayam, India. In January

2013, he joined the Department of Electrical and Computer Engineering at Louisiana State

University, Baton Rouge, Louisiana. He worked as a graduate assistant at the LSU Continuing

Education, while pursuing Masters thesis research under the supervision of Dr. R. Vaidyanathan.

He will receive his Master of Science degree in Electrical Engineering in the Summer of 2016.

	Louisiana State University
	LSU Digital Commons
	2016

	A Study of FPGA Resource Utilization for Pipelined Windowed Image Computations
	Aswin Vijaya Varma
	Recommended Citation

	tmp.1483774927.pdf.ESOjK

