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Abstract
The advantages envisioned from using large antenna arrays have made massive multiple-

input multiple-output systems (also known as massive MIMO) a promising technology for

future wireless standards. Despite the advantages that massive MIMO systems provide,

increasing the number of antennas introduces new technical challenges that need to be

resolved. In particular, symbol detection is one of the key challenges in massive MIMO.

Obtaining accurate channel state information (CSI) for the extremely large number of chan-

nels involved is a difficult task and consumes significant resources. Therefore for Massive

MIMO systems coherent detectors must be able to cope with highly imperfect CSI. More

importantly, non-coherent schemes which do not rely on CSI for symbol detection become

very attractive.

Expectation propagation (EP) has been recently proposed as a low complexity algo-

rithm for symbol detection in massive MIMO systems , where its performance is evaluated

on the premise that perfect channel state information (CSI) is available at the receiver.

However, in practical systems, exact CSI is not available due to a variety of reasons in-

cluding channel estimation errors, quantization errors and aging. In this work we study

the performance of EP in the presence of imperfect CSI due to channel estimation er-

rors and show that in this case the EP detector experiences significant performance loss.

Moreover, the EP detector shows a higher sensitivity to channel estimation errors in the

high signal-to-noise ratio (SNR) regions where the rate of its performance improvement

decreases. We investigate this behavior of the EP detector and propose a Modified EP

detector for colored noise which utilizes the correlation matrix of the channel estimation

error. Simulation results verify that the modified algorithm is robust against imperfect CSI

and its performance is significantly improved over the EP algorithm, particularly in the

higher SNR regions, and that for the modified detector, the slope of the symbol error rate

(SER) vs. SNR plots are similar to the case of perfect CSI.

Next, an algorithm based on expectation propagation is proposed for noncoherent sym-

x



bol detection in large-scale SIMO systems. It is verified through simulation that in terms

of SER, the proposed detector outperforms the pilotbased coherent MMSE detector for

blocks as small as two symbols. This makes the proposed detector suitable for fast fading

channels with very short coherence times. In addition, the SER performance of this detec-

tor converges to that of the optimum ML receiver when the size of the blocks increases.

Finally it is shown that for Rician fading channels, knowledge of the fading parameters is

not required for achieving the SER gains.

A channel estimation method was recently proposed for multi-cell massive MIMO sys-

tems based on the eigenvalue decomposition of the correlation matrix of the received vectors

(EVD-based). This algorithm, however, is sensitive to the size of the antenna array as well

as the number of samples used in the evaluation of the correlation matrix. As the final

work in this dissertation, we present a noncoherent channel estimation and symbol de-

tection scheme for multi-cell massive MIMO systems based on expectation propagation.

The proposed algorithm is initialized with the channel estimation result from the EVD-

based method. Simulation results show that after a few iterations, the EP-based algorithm

significantly outperforms the EVD-based method in both channel estimation and symbol

error rate. Moreover, the EP-based algorithm is not sensitive to antenna array size or the

inaccuracies of sample correlation matrix.
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Chapter 1

Introduction

The limited resources of wireless communication systems, including the limited energy

and radio spectrum, is a major bottleneck for serving ever increasing number of users[2, 3]

and introducing new wireless services. The capabilities of multiple-antenna systems in

improving the system capacity (or throughput), bandwidth efficiency, power efficiency and

link reliability of wireless systems was first demonstrated in the vertical Bell laboratories

layered space-time (V-BLAST) project [4], as well as in early theoretical studies in [5]

and [6]. Since then and in the past two decades, multiple-antenna systems, also known

as multiple-input multiple-output (MIMO)1, have been the subject of intense academic

research and have now become an integral part of many standards. Many of the recent

wireless standards such as WiFi, WiMAX, HSPA, LTE, etc., rely on MIMO systems.

In general, improvements from MIMO systems are achieved by either combating or

exploiting the multipath fading effects of the wireless channels[7]. In spatial diversity

techniques, MIMO is used to alleviate the harmful effects of multipath scattering and to

increase communication reliability. On the other hand in spatial multiplexing, MIMO

is deployed for exploiting the signal scattering of the multipath fading channel to serve a

higher number of data streams. All MIMO-based wireless standards use one or both spatial

diversity and spatial multiplexing techniques.

The promising advantages of MIMO techniques cannot be realized without the avail-

ability of the instantaneous channel coefficients (also known as channel state information

(CSI)) either at the receiver or the transmitter. In this regard, MIMO systems can be

classified into open-loop or closed-loop systems. In an open-loop MIMO system only the

receiver needs the CSI, whereas in a closed-loop system both the receiver and the transmit-

ter use the CSI. In general, in spatial diversity MIMO receivers use CSI for data detection

1Following the similar nomenclature of MIMO, the traditional single-antenna systems are also called
single-input single-output (SISO).
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and in multiplexing techniques MIMO transmitters use CSI for transmit diversity and

beamforming. Thus, depending on the availability of CSI at the receiver and/or trans-

mitter, combination of spatial techniques can be used. Table 1.1 shows examples of this

combination[7].

Table 1.1: Examples of open-loop and closed-loop MIMO systems.

Open-loop Closed-loop

Spatial Diversity Space-Time Coding (STC) Transmit Selection Diversity (TSD)

Spatial Multiplexing BLAST Eigenbeamforming

Conventional MIMO systems, which consist of one multiple-antenna transmitting node

and one multiple-antenna receiving node, are referred to as single-user MIMO (SU-MIMO)

or point-to-point MIMO. Cellular communication systrems, however, employ multi-user

MIMO (MU-MIMO), where one multiple-antenna base station (BS) serves several single-

antenna users or mobile stations (MS). Since the users in MU-MIMO are single-antenna

systems, their throughput improvement will be limited. However, the entire network will

experience increase in the overall throughput2.

1.1 Massive MIMO

Since the gains offered by MIMO systems scale with the number of transmit and receive

antennas, research on high-order MIMO (also referred to as massive MIMO) system has

been accelerated in recent years [8, 9, 10, 11]. Early studies have demonstrated the benefits

of massive MIMO systems [12], and some field trials have been carried out to show the

possibilities and limitations of this technology [13, 14, 15]. Massive MIMO is a MU-MIMO

in which the BS is equipped with an order of magnitude larger number of antennas with

respect to traditional MIMO systems. For example, while an LTE-A base station can

deploy up to 8 antennas, a massive MIMO base station may use tens or even hundreds of

antennas. Fig. 1.1 shows a sample prototype of a massive MIMO BS at 3.7 GHz with 160

2In fact, all single-antenna nodes can be considered as an integrated node with distributed antennas.
Therefore, a MU-MIMO network with single-antenna users may be viewed as a SU-MIMO system.
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Figure 1.1: An implemented massive MIMO BS with 160 dual-polarized patch antennas
[1].

dual-polarized patch antennas, with the total array size of 60 × 120 cm [1].

In a MIMO system with Nr and Nt receiving and transmitting antennas, respectively,

the small-scale fading channel can be expressed by an Nr ×Nt matrix as H . According to

the statistical matrix theory, as the dimensions of this random matrix grow, the distribution

of singular values of H become independent of the statistical distribution of its entries and

will only depend on the ratio Nt/Nr [16]. An immediate affect of this property is that

very tall or very wide (very small or very large Nt/Nr, respectively) channel matrices are

vey well conditioned [17]. This property also implies that the histogram of singular values

of any single realization of H become very close to the average distribution of singular

values. This phenomenon is also known as the channel hardening property. For example,

in the reverse link of a MU-MIMO system with a fixed number of mobile users, if Nr

increases, the ratio Nt/Nr becomes very small. Based on the channel hardening property,

this implies more dominant diagonal and very small off-diagonal entities of HHH , such

that the eigenvalues of HHH/Nr approache to 1 [12]. This property can also be expressed

in term of orthogonality of rows or columns of H in two extreme cases of Nr ≪ Nt or

Nt ≪ Nr[12]. According to [9], when Nr ≪ Nt and Nt → ∞ the row vectors of H will
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Figure 1.2: Network model in massive MIMO.

become asymptotically orthogonal and hence we have

HHH ≈ NtINr
, (1.1)

and similarly, when Nt ≪ Nr and Nr → ∞ the columns of H will become asymptothically

orthogonal such that

HHH ≈ NrINt
. (1.2)

Properties (1.1) or (1.2) are also referred to as the favorable propagation conditions.

Consider a MU-MIMO network with L cells with one base station and K users in each

cell. Assume the base stations have M antennas and all users are single-antenna terminals.

A simple schematic of this network is demonstrated in Fig. 1.2. The narrow band block

fading channel is assumed. The channel gain between the m-th antenna of the l-th base

station and k-th user located in i-th cell is denoted as h̃limk. Each channel factor h̃limk can

be modeled as follows

h̃limk = g̃limk

√

βlik (1.3)

in which, g̃limk and βlik represent the independent small-scale fading and large-scale shad-
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owing effects, respectively. In this model, g̃limk is the fast changing fading channel between

m-th antenna of the base station l and the k-th user in cell i, and βlik is the slow changing

shadowing gain between the l-th base station and the k-th user in cell i. As the indexes

show, βlik is independent of the base station’s array number m and is identical for all

antenna elements at the base station. Denoting g̃lik as an M × 1 vector of small-scale

fading gains between the l-th base station and k-th user in cell i, the total fading channel

between all users of cell i and the l-th base station can be represented by theM×K matrix

G̃li = [g̃li1 . . . g̃liK ]. Consequently, by including the shadowing factors, the total channel

gain is given as

H̃li = G̃liD
1

2

li (1.4)

where, Dli is a diagonal matrix with βlik values for k = 1, . . . , K on its main diagonal, i.e.

Dli =



















βli1 0 . . . 0

0 βli2 . . . 0

...

0 0 . . . βliK



















(1.5)

To show the effects of deploying a large number of antennas at the base stations, consider

the single-cell network, i.e. L = 1. To simplify the notations, we ignore the cell indexes.

The received vector at the base station in the reverse link is given by the following equation

y =
√
ρH̃x+ n (1.6)

in which, x is the transmitted vector of unit-energy symbols, n is the additive zero-mean

Gaussian noise with identity covariance matrix, and ρ is the signal power-to-noise power

ratio. For large M and based on the favorable channel condition in (1.2), we have

H̃HH̃ ≈MD (1.7)
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The capacity for this link is then given as

C = log2 det(IK + ρHHH), (1.8)

which by using the channel hardening property in (1.7) at large M can be simplified as [8]

C ≈
K
∑

k=1

log2(1 +Mρβk) bits/s/Hz. (1.9)

This formula clearly shows the dependency of the achievable throughput to M . It can

be shown that the throughput in (1.9) can be achieved by a simple matched filter (MF)

receiver [10].

By assuming time-division duplexing (TDD) mode, the transmissions over forward and

reverse links will be done in the same frequency band. Therefore, based on the channel

reciprocity property, the forward link’s channel matrix will be the transposed version of

the reverse link’s channel matrix. Consequently, the received vector for the forward link is

given as

y =
√
ρH̃Tx+ n (1.10)

The capacity of this link is given by

C = max
P

log2 det(IM + ρH̃PH̃H), (1.11)

in which, P is a positive diagonal matrix of allocated powers to transmitting antennas such

as p1, . . . , pK , where
∑K

k=1 pk = 1 [18]. Under the favorable channel condition and by using

the identity det(I + AAH) = det(I + AHA), the given capacity simplifies to

C ≈ max
P

log2 det(IK + ρMPD) bits/s/Hz. (1.12)

This equation demonstrates the direct dependency of the throughput to M.
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The promising benefits of large antenna arrays in massive MIMO systems can be clas-

sified into two major areas of enhancing the channel throughput [8] (as shown in above

analysis by (1.9) and (1.12)) and improving the energy efficiency [19]. Despite these advan-

tages, there are some issues in deploying systems with a large number of antennas which

need to be addressed. In particular in this report, the implementation issues of channel es-

timation and symbol detection, as the two dominant challenges in massive MIMO systems,

are introduced.

1.2 Challenges in Channel Estimation in Massive MIMO

Systems

As discussed previously, both open and closed-loop MIMO configurations require CSI.

In MU-MIMO CSI is used for multi-user precoding in the forward link and symbol detec-

tion in both forward and reverse links. Due to time-varying nature of cellular channels, CSI

changes over time and therefore must be periodically updated at relatively short times3.

The process of updating or estimating CSI consumes time, bandwidth , power and com-

putational resources. Usually, the CSI estimation is accomplished by transmitting a set

of known pilot sequences. The length of pilot should be at least equal to the number of

transmitting antennas. Therefore, the required resources for channel estimation in MIMO

systems is proportional to the number of transmiting antennas and is independent of the

number of receiving antennas.

Since the estimated CSI will be valid for a short time instance, the pilot and payload

transmissions should be accomplished in a time/frequency slot in which the channel is

nearly constant. This duration depends on several factors, including the carrier frequency,

propagation environment, and user mobility, and can be measured as the product of the

channel’s coherence time (Tc) and coherence bandwidth (Bc). For multi-carrier modulation

techniques, such as OFDM, the fading channel will be (frequency) flat and can be assumed

3We will see shortly, that the duration in which the channel remains static depends on the coherence
parameters of the fading chanel.
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static for the duration of the coherence time. For exampel, a channel with Tc = 1 ms and

Bc = 100 kHz will remain constant for about 100 transmission symbols.

Like any wireless technique, MIMO tranceivers can work in either frequency-division

duplexing (FDD) or TDD mode. The above fact about the limited number of symbols

experiencing a static channel, will differently affect the channel estimation of FDD and

TDD modes. If FDD is used, which means the forward and reverse links are in different

frequency bands, the downlink and uplink channels (or CSIs) will be different. In the reverse

link, the base station receives the pilots transmitted by mobile terminals and estimates their

channel. Required resources for uplink channel estimation is independent of the massive

number of antennas at the base station. Unlike the reverse link, the forward link CSI must

be achieved in two stages. At first the base station transmits a pilot sequence and each user

estimates its own downlink CSI. Then terminals must transmit their CSI measurements

back to the base station. Since the resources required for this procedure is proportional to

the number of the base station’s antennas, at best case, the whole Tc × Bc symbols which

are experiencing a static channel, must be dedicated to pilot symbols. Therefor, despite its

practical advantages, deploying FDD in massive MIMO is still an open problem [11].

In the case of TDD, in which the forward and reverse transmissions are at the same

frequency band but in different time slots, the channel reciprocity can be exploited4. Con-

sequently, the estimated uplink CSI can also be used as downlink CSI. Therefore, in TDD

mode, first the mobile terminals transmit the pilot sequences and the base station estimates

the uplink CSI by receiving those pilots. Next, the base station uses the estimated CSI

for detecting uplink symbols as well as downlink beamforming. To achieve the best uplink

CSI estimation, the pilot sequences of different mobile users must be orthogonal. However,

due to the restriction of the coherence properties of the channel, the number of orthogonal

sequences are limited. Accordingly, the pilot sequences employed by adjacent cells may be

4While in the TDD the physical channels of forward and reverse links are identical, the two links
experience different electrical circuitary. Therefore, pure reciprocity does not exist even in TDD mode.
However, by applying proper periodical calibrations, the two links can be approximated as identical[1].
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nonorthogonal, leading to the so called pilot contamination problem[8]. We will see shortly

that unlike the intera-cell multi-user interference, which can be mitigated be employing

large antenna arrays, the inter-cell interference caused by pilot contamination cannot be

removed by increasing the number of antennas in base stations.

To show the harmful effects of pilot contamination, we can use the introduced multi-cell

massive MIMO model in Fig. 1.2. Assume the worst case scenarion, in which mobile users

synchronously and simultaneously transmit pilot sequences for uplink channel estimation.

As another important assumption, suppose the complete intera-cell orthogonality among

pilots and that the identical set of pilots are used in all cells. By assuming τ as the length

of pilots, the pilot sequence of the k-th users in all cell can be considered by a 1 × τ row

vector denoted as pk. Consequently, we can represent the matrix of all K orthogonal pilots

inside each cell by P = [pT
1 , . . . ,p

T
K ]

T , which is a K× τ matrix. By intra-cell orthogonality

we have PPH = τIK . Without loss of generality, assume the uplink channel estimation in

the first base station, i.e. l = 1. From (1.6) and by the above assumptions, the received

matrix at this base station can be written as

Y1 =
√
ρ

L
∑

l=1

H̃1lP +N1 (1.13)

where H̃1l ∈ CM×K is defined in (1.4), and N1 ∈ CM×K is the additive noise matrix of the

first base station during the pilot transmission.

For channel estimation, the target base station must project the received signals to the

space of orthogonal pilots. This can be implemented by multiplying the received matrix

by the PH [10]. Therefore, H11 as the estimation of H̃11 is given as

H11 =
1

τ
√
ρ
Y1P

H (1.14)

= H̃11 +
∑

i 6=l

H̃il +
1

τ
√
ρ
N1P

H (1.15)
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(a) (b)

Figure 1.3: Direct inter-cell reverse link interference due to pilot contamination. (a) Per-
fect beamforming (without pilot contamination), (b) distorted beamforming (with pilot
contamination).

The second term in the right hand side of (1.15) shows the effect of pilot contamination

which appears as an extra noise to the final estimation. Considering that all variables in this

model are complex-valued, reveals that even a small complex noise can adversely affect the

phase of resultant estimations. Since the base station uses this estimation for beamforming

in forward link, the channel estimation error creates directional side-lobes toward the other

users in adjacent cells, which will be an important source of directional interference. While

the intra-cell interference can be mitigated by deploying massive MIMO, the harmful effects

of this inter-cell interference cannot be alleviated by increasing the number of antennas.

This issue is depicted in Fig. 1.3.

In addition to estimation errors, CSI is subject to errors due to aging and quantization

[20, 21, 22, 23]. Therefore, assuming perfect CSI in analysis may lead to incorrect or

infeasible results.
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1.3 Challenges in Symbol Detection in Massive MIMO

Systems

Symbol estimation and detection in MIMO is generally a challenging process. To make

it more clear, lets consider the reverse link of a MU-MIMO system, as in (1.6). In this

model, the base stations receives the M × 1 vector y and should detect the transmitted

symbols in the K× 1 vector x. Assuming M-ary modulation scheme, symbols are selected

from the constellation set AM. If we assume a coherent detection mechanism in which

the perfect CSI is available at the basestation, and that transmitted symbols are equally

probable, the maximum likelihood (ML) detection rule is given as

x̂ML = argmax
x∈AK

M

p(y|x, H̃) (1.16)

To solve this optimization problem, the receiver must search MK different K-tuples

with elements in AM. Therefore, the optimum MIMO detection by ML is essentially an

exhaustive search method which is an NP-hard problem and its complexity increases ex-

ponentially with the number of transmitters and the modulation order. Moreover, the

performance of linear schemes such as zero-forcing (ZF) and minimum-mean-squared-error

(MMSE) decoders (which have polynomial-time complexity [24]) is poor. Successive inter-

ference cancellation (SIC) was shown to improve the performance of ZF in the early MIMO

project V-BLAST [25] and later was extended to MMSE [26]. However, the performances

of MMSE-SIC and ZF-SIC are still far from that of the ML decoder.

Masive MIMO, on the other hand, by employing an order of magnitude more antennas

at the base station provides an opportunity for deploying linear detectors. As is shown in

[8], under the favorable channel condition, the capacity in (1.9) is achievable by using a

simple linear matched filter detector. This fact can also be understood intuitively. Since

in favorable channel conditions the channel vectors of different users become mutually

orthogonal, the receiver will be able to remove the interference with deploying even a
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simple linear algorithm. As explained before, favorable propagation condition will occur

in presense of two extreme cases of very large antenna array (Nr → ∞) and very small

number of transmitters (Nt ≪ Nr). However, in many real propagation environments,

increasing Nr does not necessarily creates orthogonality [27]. Moreover, to increase the

system’s spectral efficiency, it is more appealing to serve larger number of users. These

facts reveal the possible practical restrictions in using linear detectors in massive MIMO

systems. Therefore, nonlinear detection algorithms which provide better performance at

the cost of higher complexity, are still possible solutions for symbol detection in massive

MIMO systems [10].

1.4 Outline of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the

recently suggested MIMO detection technique based on Expectation Propagation. We will

show that the proposed algorithm is very sensitive to the quality of the channel state infor-

mation at the receiver. Therefore, a modification to the algorithm is suggested to enhance

the detector’s robustness against the incomplete knowledge of the channel coefficients at

the receiver.

A noncoherent detector, based on the Expectation Propagation algorithm, is suggested

for Single Input Multiple Output (SIMO) systems in Chapter 3. The inherent phase am-

biguity in the estimated channel coefficients can be bypassed by employing differentially

encoded modulation symbols. It is shown that the algorithm can easily outperform the

coherent Minimum Mean Square Error (MMSE) detectors. Also, the performance of the

optimum Maximum Likelihood (ML) detector is achievable with large enough blocks.

In Chapter 4 a joint channel estimation and symbol detection algorithm based on the

Expectation Propagation is suggested for multi-user multi-cell MIMO systems. It is shown

that by initializing the Expectation Propagation algorithm with results of a rough and

inaccurate noncoherent channel estimator, such as the EVD-based algorithm, considerable

improvements in channel estimation and symbol detection performances is achieved. It is
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also shown that the combination of the two algorithms can significantly decrease the overall

rate of erroneous blocks. Finally, the conclusions are given in Chapter 5.
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Chapter 2

MIMO DetectionWith Imperfect

Channel State Information Using

Expectation Propagation

2.1 Introduction

Multiple-input multiple-output (MIMO) technology can significantly increase system

capacity (throughput) and improve the reliability of wireless communication systems, and

is now incorporated into many wireless standards such as WiFi, WiMAX, LTE, etc. Since

the gains offered by MIMO systems scale with the number of transmit and receive antennas,

research on high-order MIMO (also referred to as massive MIMO) has been accelerated in

recent years [8, 9, 10]. Early studies have demonstrated the benefits of massive MIMO

systems [12], and some field trials have been carried out to show the possibilities and

limitations of this technology [13, 14, 15].

In massive MIMO systems employing a high-order modulation scheme, symbol detec-

tion is a particularly challenging problem. The complexity of the optimal maximum likeli-

hood (ML) decoder is exponential in the number of transmit antennas and it is essentially an

exhaustive search method. Moreover, the performance of linear schemes such as zero-forcing

(ZF) and minimum-mean-squared-error (MMSE) decoders (which have polynomial-time

complexity [24]) is poor. Successive interference cancellation (SIC) was shown to improve

the performance of ZF in the early MIMO project V-BLAST [25] and later was extended

to MMSE [26]. However, the performances of MMSE-SIC and ZF-SIC are still far from

that of the ML decoder.

It is shown in [12] that for a fixed number of transmit antennas Nt
1, as the number of

receive antennas Nr increases, the channel vectors become orthogonal. This phenomenon

referred to as channel hardening occurs when the loading factor Nt

Nr
<< 1. Therefore for

1Equivalently, a fixed number of synchronous single-antenna users.
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such systems simple linear detectors such as ZF and MMSE detectors show acceptable

performance [8]. However, the spectral efficiency of these systems is low due to the small

number of transmit antennas Nt. On the other hand, increasing Nt improves the system

spectral efficiency, but severely degrades the performance of linear decoders.

Graph-based statistical inference techniques such as Belief Propagation (BP) have

proven to be powerful tools for detection problems and also practically viable, particularly

in models with a large number of variables or high degrees of freedom [28]. Unfortunately,

when the underlying graph has many short cycles, the performance of these algorithms is

not satisfactory; and the graph corresponding to symbol detection in MIMO systems is a

fully connected graph [29]. To overcome this difficulty, in [29] the authors find a Gaussian

Tree Approximation (GTA) on the posterior distribution of the transmitted symbols. The

BP algorithm is then used to compute an approximation of this posterior distribution. In

[30] GTA has been enhanced with successive interference cancellation (GTA-SIC).

More recently the Expectation Propagation (EP) algorithm of [31] has been applied

to symbol detection in MIMO systems [32]. Briefly, EP attempts to find the closest ap-

proximation for the conditional marginal distribution of a desired variable in an iterative

refinement procedure. Therefore, it can be employed in MIMO detection for finding the

posterior distribution of the transmitted symbols. As shown in [32], in terms of symbol error

probability, the EP detector outperforms other detectors such as GTA-SIC and MMSE-SIC

with low complexity2.

The performance of EP in [32] is evaluated on the premise that perfect channel state

information (CSI) is available at the receiver. However, in MIMO systems, channel coeffi-

cients are typically estimated at the receiver from finite-length pilot sequences [33, 34]. In

cellular networks using massive MIMO systems, pilot interference from neighboring cells

limits the accuracy of channel estimation giving rise to the so-called pilot contamination

problem [35]. In addition to estimation errors, CSI is subject to errors due to aging and

2For a careful comparison of the computational complexity of the above algorithms we refer the reader
to [32].
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quantization [20, 36, 22, 23]. In [37] the authors formulate the ML decoder under imperfect

CSI and propose recursive tree search algorithms for the implementation of their decoders.

Degradation of the performance of ZF in the case of imperfect CSI is analyzed in [23].

However, to the best of our knowledge, the performance of EP algorithm under imperfect

CSI has not been studied.

In this paper we show that although channel estimation improves by increasing the

signal-to-noise ratio (SNR), surprisingly, at high SNR values, the rate of improvement

of symbol error rate (SER) vs. SNR decreases. We investigate this behavior of the EP

detector in the case of imperfect CSI and propose a modified detector in order to recover

some of the performance loss of the EP detector. Simulation results verify that the proposed

modification improves the performance of EP in the case of imperfect CSI, particularly in

higher SNR regions, and that for the modified detector the slope of the SER vs. SNR plots

are similar to the case of perfect CSI.

The rest of this chapter is organized as follows. The system model is presented in

Section 2.2. A brief review on the EP algorithm is presented in Section 2.3. Section

2.4 contains the derivation of EP for the general model with imperfect CSI followed by

the calculations of covariance matrix of channel estimation error. Finally the simulation

results are presented in Sections 2.5.

Notations: Throughout this paper, small letters (x) are used for scalars, bold small

letters (x) for vectors, and capital letters (X) denote matrices. R and C represent the set

of real and complex numbers, respectively. R(z) and I(z) denote the real and imaginary

parts of the complex variable z. For a set of complex variables A = {z1, z2, · · · }, we denote

R(A) , {R(z1),R(z2), · · · } and I(A) , {I(z1), I(z2), · · · }. The superscripts (.)T , (.)H ,

and (.)−1 represent transpose, Hermitian transpose, and matrix inverse, respectively. Also,

⊗ denotes the matrix Kronecker product. For a probability density function (PDF) p(.),

Ep denotes the expectation operator with respect to p(.). IN denotes the N × N identity

matrix. Finally, vec(A) and ||a|| denote the vectorization of the matrix A and the ℓ2 norm
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of vector a, respectively.

2.2 System Model

Consider a MIMO system with Nr and Nt receive and transmit antennas, respectively3.

The vector of transmitted symbols at each channel use is denoted as ũ = [ũ1, . . . , ũNt
]T ∈

CNt×1, where ũi’s are symbols from an M-ary modulation constellation ÃM with av-

erage energy Es. The channel matrix denoted by H̃ ′ ∈ CNr×Nt is a realization from

a zero-mean complex symmetric Gaussian distribution with covariance matrix R̃h, i.e.,

h̃
′
= vec(H̃ ′) ∼ CN (h̃

′|0, R̃h). We assume a block fading channel where the channel ma-

trix H̃ ′ remains constant for the duration of a transmission block which includes several

transmission vectors.

The received vector ỹ is given by

ỹ = H̃ ′ũ+ ñ, (2.1)

where ỹ ∈ CNr×1, and ñ ∈ CNr×1 is the zero-mean white Gaussian noise vector with

ñ ∼ CN (ñ|0, σ2
nINr

). Assuming independent and identically distributed (iid) transmitted

symbols, the a posteriori distribution of the transmitted symbols is given by

p
(

ũ|ỹ, H̃ ′
)

∝ N
(

ỹ|H̃ ′ũ, σ2
nINr

)

Nt
∏

i=1

Iũi∈ÃM
(2.2)

in which IA is the indicator function of the event A.

We denote the receiver’s estimate of the channel matrix by H̃ . Therefore, the receiver’s

view of the model in (2.1) is given by

ỹ = H̃ũ+ ñ. (2.3)

Consequently, the receiver assumes that the a posteriori distribution of the transmitted

3This model is also applicable to a multi-user system in which Nt single-antenna users synchronously
transmit to an Nr-antenna receiver.
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symbols is given by

p
(

ũ|ỹ, H̃
)

∝ N
(

ỹ|H̃ũ, σ2
nINr

)

Nt
∏

i=1

Iũi∈ÃM
. (2.4)

The distributions in (2.2) and (2.4) have a multiplicative form with respect to the unknown

variables which makes it suitable for employing the EP algorithm [31]. However, it should

be noted that the receiver assumes the a posterior distribution in (2.4) an it is to this

form that the EP algorithm will be applied. In Section 2.4.1 we describe the deleterious

consequences of this approach.

2.3 Expectation Propagation

EP is an iterative algorithm for finding the best approximation to a desired distribution

from within a tractable family of distributions.

Following the proposed algorithm in [38] and [31], suppose the parameter θ must be

estimated from some independent measurements x1, . . . , xn. As is common in Bayesian

estimation, it is assumed that the prior distribution of θ is known. Therefore the posterior

distribution is given by

p(θ|x1, . . . , xn) ∝ p(θ)
n
∏

i=1

p(xi|θ) ,
n
∏

i=0

pi(θ) (2.5)

where p0(θ) , p(θ) and pi(θ) , p(xi|θ) for i = 1, 2 · · · , n. EP exploits this factorized

structure for approximating the above conditional distribution by a distribution from the

exponential family, q(θ), of the form

q(θ) ∝
n
∏

i=0

qi(θ) (2.6)

where qi(θ), i = 0, 1, · · · , n is from an exponential family. Several properties of the ex-

ponential family are helpful in simplifying the computations. Two of these properties are

extensively used in the computations involved in EP. First is that as in (2.6), multiplication
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(or division) of two exponential distributions results in an exponential distribution. More-

over, the parameters of the resulting distribution are easily computed from the parameters

of the constituent distributions. Next, the EP algorithm tries to iteratively find the closest

q(θ) to the distribution p(θ|x1, . . . , xn) where closeness is in terms of the Kullback–Leibler

divergence. Therefore, q(θ) is the solution of the following optimization problem:

q∗(θ) = argmin
q∈F

KL(p(θ|x1, . . . , xn)‖q(θ)) (2.7)

where F is a family of exponential distributions. It turns out that when F is the exponential

family with sufficient statistics T1(θ), T2(θ), . . . , TS(θ), then the solution of (2.7) is obtained

from the moment matching condition, namely

Eq[Ti(θ)] = Ep[Ti(θ)], i = 1, 2, . . . , S (2.8)

In other words in each step of the optimization we need to match the moments between q(θ)

and p(θ|x1, · · · , xn). For example if we choose q(θ) from the family of normal distributions,

this is equivalent to equating the mean and variance of q(θ) and p(θ|x1, . . . , xn). However,

EP implements this process in a subtle way, in which instead of finding the best q(θ) at once,

it finds the best factors of q(θ) one by one and refines them through successive iterations.

At first, the algorithm starts by initializing all the factors qi(θ) and consequently q(θ) itself.

Denoting the computed q(θ at the lth iteration by q(l)(θ), then all the factors of q(l)(θ) are

updated as follows. To update the i-th factor, a so called cavity distribution4 is derived, in

which the effect of the ith factor is eliminated from q(l)(θ). Therefore, the i-th cavity PDF

is given by

q\i(θ) =
q(l)(θ)

q
(l)
i (θ)

(2.9)

Then by combining pi(θ), the i-th factor of p(θ|x1, . . . , xn), and this cavity factor, a new

4Also known as partial belief.
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intermediate distribution is obtained as

p̂i(θ) =
1

Zi
q\i(θ)pi(θ) (2.10)

in which Zi = Eq\i [pi(θ)] =
∫ +∞

−∞
pi(θ)q

\i(θ) dθ. Since in general pi(θ) and consequently p̂i(θ)

are not members of the exponential family, the algorithm now finds the closest distribution

from the exponential family, qnew(θ), to p̂i(θ) using the moment matching condition. After

calculating qnew(θ), the refined version of the i-th factor is obtained as

q
(l+1)
i (θ) = Zi

qnew(θ)

q\i(θ)
(2.11)

After updating all the factors q
(l+1)
i (θ), i = 0, 1, · · · , n, q(l+1)(θ) is obtained using (2.6), and

the process is repeated with the next iteration and until a termination criterion is satisfied.

The above procedure is summarized in Algorithm 1. Finally, if we denote the output of

the EP algorithm by q̂(θ), the parameter θ is estimated as θ̂ = Eq̂[θ].

Data: The main conditional PDF from (2.5)
Result: A member of exponential family as (2.6) which is closest to (2.5)
begin

Initialize all qi factors;
Calculate q by (2.6);
while termination criteria has not been met do

for i=0,. . . ,n do

Calculate the cavity PDF by (2.9);
Calculate the new intermediate PDF by (2.10);
Find qnew by moment matching;
Update the i-th factor by (2.11);
Update q by (2.6);

end

end

end

Algorithm 1: EP algorithm
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2.4 EP algorithm for imperfect CSI

2.4.1 Motivation

In Fig. 2.1 we show the performance of the EP algorithm in terms of symbol error rate

(SER) vs. SNR for the cases of perfect and imperfect CSI. For the case of imperfect CSI,

the CSI is estimated from a pilot sequence using MMSE estimation. The pilot sequence

is assumed to be orthogonal as described in more detail in Section 2.5. The performance

of the CSI estimator is also shown in terms of normalized estimation error δh vs. SNR,

where δh , 10 log10 ||h̃
′ − h̃||2/||h̃′||2, where as before, h̃

′
= vec(H̃ ′) and h̃ = vec(H̃). It is

assumed that the pilots are transmitted with the same power as the information symbols.

Therefore the SNR represents the SNR of the pilot signals as well as the information

symbols. Clearly as SNR increases, channel estimation improves and the estimation error

is reduced. However, as the figure shows, the performance of EP with the imperfect CSI

has a much lower slope and the performance loss with respect to the case of perfect CSI

increases with SNR. In particular for SER=10−5, the performance loss is about 15 dB. In

this figure (on the right hand side) we also show the channel estimation error δh vs. SNR

(of the pilot sequence). Therefore this figure can also be viewed as a graph of SER vs.

channel estimation error. For example for an SNR of 35 dB, the graph of EP detector

with imperfect CSI shows that SER≈ 10−4 and the axis on the right shows that the

estimation error δh ≈ −39 dB. Therefore, we conclude that for the estimation error of

−39 dB, SER≈ 10−4. However, it is important to note here that this value of δh is the

actual estimation error that a practical system will experience when the pilot symbols have

SNR=35 dB and MMSE estimation is used.

To further illustrate the sensitivity of the EP detector to channel estimation errors, the

SER performances of MMSE and EP detectors vs. δh are compared in Fig. 2.2 for a 20×20

MIMO system. The figure shows that while the EP detector outperforms the MMSE detec-

tor for all values of δh, its performance is significantly more sensitive to channel estimation

error, and that for the EP detector, SER increases sharply with channel estimation error.
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Our motivation in this paper is to improve the EP algorithm by incorporating channel

estimation into this algorithm so as to recover some of this performance loss.
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Figure 2.1: Decoding performance of the EP decoder and the channel estimation error for
12× 12 antenna configuration and 16-QAM modulation.
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Figure 2.2: Decoding performance of MMSE and EP decoders versus the channel estimation
mean square error for 20× 20 antenna configuration and 16-QAM modulation.

The reason for this behavior of the EP detector at high SNRs is discussed below. Since
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the receiver’s view of the a posteriori distribution is given by (2.4), the EP algorithm starts

by replacing the non-Gaussian factors in (2.4) by (unnormalized) Gaussian factors to get

q(ũ) ∝ N
(

ỹ|H̃ũ, σ2
nINr

)

Nt
∏

i=1

eγiũi−Γiũ
2
i /2 (2.12)

The constants γi and Γi > 0 are then computed iteratively from the EP algorithm [32].

However, as mentioned previously, the true a posteriori distribution is given by (2.2). In

other words, the actual mean of the received vector is located at H̃ ′ũ. However, due to the

imperfect CSI, the receiver search area is centered around H̃ũ, as shown in Fig. 2.3(a).

As SNR increases, the distance between the actual mean and the center of the search area,

given by ‖(H̃ ′− H̃)ũ‖, increases5. Equivalently we may consider that the distance remains

the same but the search area becomes smaller6. This makes it more difficult for EP to find

a good approximation to the true a posterior distribution. As a result the performance is

degraded. Furthermore, increasing the SNR does not alleviate this problem. Obviously, as

SNR goes to infinity, the two SER curves meet. However, as our results show, this does

not occur for practical values of SNR.

In order to address this problem and to modify the EP algorithm for the case of

imperfect CSI, in the next section we discuss the problem of MIMO channel estimation

based on a pilot sequence. We will show that by taking into consideration the channel

estimation error, the search area can be aligned toward the actual mean as in Fig. 2.3(b),

which leads to a much better detection performance and lower sensitivity of the algorithm

to imperfect CSI.

2.4.2 Channel estimation

Due to its simplicity and accuracy, MMSE is commonly used in many pilot-based

channel estimation applications. Therefore, we assume that at the receiver CSI is obtained

5In practice, an increase in SNR is due to an increase in transmit power Es.
6In other words, we may assume that the transmit power remains constant and the increase in SNR is

due to a reduction in noise power.
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(a) (b)

Figure 2.3: The search regions for the EP and Modified EP algorithms. (a) EP with
uncorrelated covariance, and (b) Modified EP with correlated covariance.

using the pilot-based MMSE channel estimation algorithm.

Denote the transmitted pilot matrix by P = [p(1), . . . ,p(τ)] ∈ CNt×τ where τ denotes

the length of the pilot sequence. Therefore according to (2.1), the received matrix is given

by Ỹ = H̃ ′P + Ñ , in which Ỹ ∈ CNr×τ . Applying matrix vectorization to both sides of

this equation results in ỹ = P̃ h̃′ + ñ, where ỹ , vec(Ỹ ), h̃′ , vec(H̃ ′), ñ , vec(Ñ), and

P̃ , P T ⊗ INr
. Considering that h̃

′ ∼ CN (h̃
′|0, R̃h) and ñ ∼ CN (ñ|0, σ2

nIτNr
), the MMSE

estimate of h̃
′
is given by [39]

h̃ = R̃hP̃
H(P̃ R̃hP̃

H + σ2
nIτNr

)−1ỹ (2.13)

The receiver uses the estimated channel matrix H̃ instead of the actual channel matrix

H̃ ′. Denoting E as the estimation error, we can write H̃ ′ = H̃ + E, or in the vector

form, h̃
′
= h̃ + e, where e = vec(E). Since h̃ is obtained from a linear operation on ỹ, h̃

is a multivariate Gaussian vector. Therefore, the estimation error e is also a zeros-mean

Gaussian random vector. From (2.13), The covariance matrix of e can be calculated as

Re = R̃h − R̃hP̃
H(P̃ R̃hP̃

H + σ2
nIτNr

)−1P̃ R̃h (2.14)

Now, if we denote E = [e1, . . . , eNt
], then e = [eT1 , . . . , e

T
Nt
]T . Therefore, the covariance
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matrix of e can be written as

Re =













R1,1 . . . R1,Nt

...
...

RNt,1 . . . RNt,Nt













(2.15)

in which Ri,j , E[eie
H
j ].

It can be verified that RE , E[EEH ] =
∑Nt

i=1Ri,i. Therefore, after calculating Re from

(2.14), RE can be calculated by adding the Nt matrices of size Nr×Nr located on the main

diagonal of Re.

From the system model in (2.1), we can write

ỹ = H̃ũ+ w̃ (2.16)

where w̃ ∈ CNr×1 is a new additive noise vector defined as w̃ = Eũ + ñ. Assuming a

symmetric modulation set such as QAM, for which E[ũ] = 0, we get E[w̃] = 0 and

R̃w = EsRE + σ2
nINr

, (2.17)

Considering the fact that the off-diagonal elements of RE may be non-zero, w̃ must be

treated as colored noise. In the case of perfect CSI, the channel estimation error is zero

and, consequently, R̃w = σ2
nINr

. In this case the EP algorithm has very good performance

and in fact outperforms other algorithms including GTA [32]. However, in the case of

imperfect CSI, Rw is given by (2.17) and as discussed previously, the EP algorithm has

a significant performance loss. In the next section we present a Modified EP algorithm

for colored noise which is very effective in reducing the sensitivity of the EP algorithm to

channel estimation errors.
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To simplify notation, we transform (2.16) into an all-real equation as follows







R(ỹ)

I(ỹ)






=







R(H̃) −I(H̃)

I(H̃) R(H̃)













R(ũ)

I(ũ)






+







R(w̃)

I(w̃)






(2.18)

Equivalently, this can be written as y = Hu + w with y ∈ R2Nr×1, H ∈ R2Nr×2Nt ,

u ∈ R2Nt×1, and finally w ∈ R2Nr×1. In this model, the elements of u belong to AM =

R(ÃM) ∪ I(ÃM). In the case of symmetric M-ary QAM, AM can be considered as the set

of underlying PAM symbols with average energy of 0.5Es. Moreover, the covariance matrix

of w is given by

Rw =







1
2
R̃w 0

0 1
2
R̃w






(2.19)

Similar to (2.4), the a posteriori PDF for this model is given by

p(u|y, H) ∝ N (y|Hu, Rw)
2Nt
∏

i=1

Iui∈AM
. (2.20)

In the following section the proposed algorithm in [32] is extended into this more general

model.

2.4.3 EP formulation for correlated noise channel

Following the standard methodology of EP algorithm introduced in Section 2.3, the

algorithm exploits the factorized form of (2.20) by replacing each factor by a member of the

exponential family of distributions. Next, the algorithm refines each factor by applying the

moment matching condition. Therefore, we replace each factor Iui∈AM
in (2.20) by a Gaus-

sian PDF qi(ui) = N (ui|mi, ψi), in which mi and ψi ≥ 0 are the mean and variance of the

distribution, respectively. As a result, the a posteriori PDF in (2.20) can be approximated

by q(u) ∝ N (y|Hu, Rw)
∏2Nt

i=1 qi(ui), which we write as

q(u) ∝ N (y|Hu, Rw) exp(u
Tm− 1

2
uTV u), (2.21)
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wherem = [m1/ψ1, . . . , m2Nt
/ψ2Nt

]T , and V is a diagonal matrix given by V = diag(1/ψ1, . . . , 1/ψ2Nt
).

Now (2.21) can be written as

q(u) ∝ N (u|µ,Σ) (2.22)

with the covariance matrix Σ and the mean vector µ where

Σ = (HTR−1
w H + V )−1 (2.23)

and,

µ = Σ(HTR−1
w y+m) (2.24)

Since the factors qi(ui), i = 1, 2, · · · , Nt depend on distinct variables, they can be

updated individually and in parallel by updating the mean and variance pair (mi, ψi) [40].

After updating all the factors, q(u) can be updated from (2.21).

As q(u) is a multivariate Gaussian distribution, its marginal PDFs are also Gaussian.

Let fi(ui) = N (ui|µi, νi) denote the marginal PDF of ui, where µi = µ(i) and νi = Σ(i, i).

EP uses fi(ui) for tuning the i-th corresponding factor. Towards this, the i-th cavity

distribution is calculated as q\i(ui) = fi(ui)/qi(ui). It can be easily shown that q\i(ui) ∝

N (ui|µ\i, ν\i), where

ν\i = (ν−1
i − ψ−1

i )−1 (2.25)

and

µ\i = ν\i(µi/νi −mi/ψi). (2.26)

Next, by combining the i-th factor from (2.20) and the corresponding cavity distribu-
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tion, we compute the following intermediate PDF

p̂i(ui) =
1

Zi
q\i(ui)Iui∈AM

(2.27)

in which Zi = Eq\i [Iui∈AM
]. Now using the moment matching condition, fi(ui) is updated by

equating its first and second moments with the PDF p̂i(ui). Accordingly, the new moments

of fi(ui) are calculated as µnew
i = Ep̂i[ui] and νnewi = Ep̂i[u

2
i ] − (µnew

i )2. It can be verified

that

Zi =
∑

a∈AM

q\i(a) (2.28)

Ep̂i [ui] =
1

Zi

∑

a∈AM

aq\i(a) (2.29)

Ep̂i [u
2
i ] =

1

Zi

∑

a∈AM

a2q\i(a) (2.30)

After updating fnew
i (ui), the new qi(ui) is obtained from qnewi (ui) ∝ fnew

i (ui)/q
\i(ui). There-

fore, the values for the new pair (mnew
i , ψnew

i ) are given by

ψnew
i =

(

(νnewi )−1 − (ν\i)−1
)−1

, (2.31)

and

mnew
i = ψnew

i (µnew
i (νnewi )−1 − µ\i(ν\i)−1). (2.32)

After obtaining all the pairs (mnew
i , ψnew

i ), i = 1, 2, · · · , 2Nt, in parallel, the updates

Σnew and µnew and qnew(u) can be calculated from (2.23), (2.24) and (2.22), respectively.

The above procedure is now repeated with this new distribution qnew(u) until a termination

criterion is satisfied.

In order to improve the stability of the update rules in (2.31)-(2.32), when
(

(νnewi )−1 − (ν\i)−1
)−1 ≥
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ǫ, we employ the following smoothing mechanism as suggested in [32], [40]

ψnew
i = β

(

(νnewi )−1 − (ν\i)−1
)−1

+ (1− β)ψi (2.33)

and,

mnew
i = β

µnew
i ν\i − µ\iνnewi

ν\i − νnewi

+ (1− β)mi, (2.34)

where 0 < β < 1.

At the end of the iterations, an estimate of the transmitted symbols denoted by û =

[û1, û2, · · · , ûNt
]T is obtained as follows7. For each i = 1, 2, · · · , Nt,

ℜ(ûi) = argmin
u∈R(ÃM )

|u− µ(i)|2 (2.35)

ℑ(ûi) = argmin
u∈I(ÃM )

|u− µ(Nt + i)|2. (2.36)

2.5 Simulation Results and Observations

In this section, we present several simulation results to demonstrate the effectiveness

of the proposed modification for the EP detector.

2.5.1 Simulation setup

Our simulation setup is as follows. Given the channel covariance matrix Rh, the sim-

ulation starts by generating a channel matrix H̃ ′ ∈ CNr×Nt such that h̃
′
= vec(H̃ ′) ∼

CN (h̃
′|0, R̃h). Next, a block of symbols starting with the pilot vectors followed by the

information symbols is generated and transmitted over this channel (according to (2.1))

which is assumed to remain constant throughout the transmitted block. The pilots are

assumed to be known at the receiver. Using the received signal corresponding to the trans-

mitted pilots, the receiver estimates the channel matrix H̃ using the MMSE algorithm in

(2.13). Next, the receiver detects the information symbols using the estimated channel

matrix H̃. The SER performance of the receiver is evaluated by repeating this procedure.

7Note that for i = 1, 2, · · · , Nt, ûi ∈ ÃM .
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We have considered two different MIMO channel models. First we assume an uncor-

related channel model where R̃h = INrNt
. Next we consider the Kronecker model where

the channel covariance matrix is expressed as the Kronecker product of the covariance ma-

trices of the transmitter side (denoted by R̃t) and the receiver side (denoted by R̃r), i.e.,

R̃h = R̃t⊗ R̃r [41]. For each of the covariance matrices R̃t and R̃r the following exponential

model is considered:

R̃t =



















1 ρt . . . ρNt−1
t

ρt 1 . . . ρNt−2
t

...

ρNt−1
t ρNt−2

t . . . 1



















(2.37)

and

R̃r =



















1 ρr . . . ρNr−1
r

ρr 1 . . . ρNr−2
r

...

ρNr−1
r ρNr−2

r . . . 1



















. (2.38)

The MMSE channel estimation uses τ pilot symbols where, as before, the pilot matrix

is denoted by P . It is shown in [42] that for an uncorrelated channel, the best MMSE

estimation is achieved if the orthogonality condition holds for the pilot matrix8, i.e.,

PPH ∝ τINt
(2.39)

Moreover, to achieve the maximum channel capacity, the optimal choice for τ is given by

τ = Nt [42]. Therefore in the following simulations we first assume that PPH ∝ NtINt
.

However, in order to investigate the effect of non-orthogonal pilots on the performance of

the proposed algorithm, we also present simulation results for semi-orthogonal pilots.

Signal to noise ratio (SNR) is defined as 10 log10(NtEs/σ
2
n)

9 and the modulation scheme

8We are not aware of an equivalent result for correlated channels.
9Note that in the given definition of SNR, the total received power from all transmitters over all the

receiving antennas is considered. Therefore, the SNR values are larger than the actual ratio of signal energy
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in all the simulations is 16-QAM. The smoothing parameters are chosen as β = 0.2 and

ǫ = 5 × 10−7 and the Kronecker channel parameters are ρt = 0.1 and ρr = 0.4. In all of

our simulations each value of SER is evaluated using at least 107Nt transmitted symbols.

2.5.2 Numerical results

In the following figures, the EP detector in [32] and the proposed Modified EP detector

in this paper are referred to as EP, and Modified EP, respectively.
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MMSE-SIC: imperfect CSI
EP: perfect CSI
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Figure 2.4: Detection performance for the MIMO system with 16-QAM modulation and
orthogonal pilot vectors with Nr = Nt = 32 and uncorrelated MIMO channel.

Figs. 2.4 and 2.5 show the SER vs SNR for an Nr ×Nt = 32× 32 and 64× 64 MIMO

system, respectively, for the MMSE, MMSE-SIC, EP and Modified EP detectors and for

the cases of perfect and imperfect CSI. The uncorrelated MIMO channel is assumed. In the

case of imperfect CSI, channel estimation is performed using the orthogonal pilot sequences

where the SNR of the pilot sequence is the same as the SNR for information symbols shown

on the horizontal axis. The EP and Modified EP decoders were run for 10 iterations each.

It can be seen that for both antenna configurations, with imperfect CSI, the performance

of all detectors is degraded with respect to the case when perfect CSI is available. However,

to the noise power Es/σ
2

n
. In fact, SNR = 10 log10(Es/σ

2

n
) + 10 log10(Nt).
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Figure 2.5: Detection performance for the MIMO system with 16-QAM modulation and
orthogonal pilot vectors with Nr = Nt = 64 and uncorrelated MIMO channel..

the results also show that the EP algorithm is much more sensitive to the CSI errors than

MMSE and MMSE-SIC.

Examining the covariance matrix of the total error given in (2.17), we find that at low

SNR values the noise plays a dominant role over the CSI estimation errors. Therefore, as

Figs 2.4 and 2.5 show, at very low SNR values the SER performances of EP and Modified

EP detectors are close. However, as SNR increases, the term in (2.17) related to channel

estimation error becomes more dominant. In this case, without compensating for the effect

of channel estimation errors, the EP algorithm does not converge to the correct symbol

values. This deteriorates the SER performance such that for higher SNR values, the SER

curves reach a plateau or even start to rise. On the other hand, these results also show

that the slope of the SER vs. SNR plots for the Modified EP detector with imperfect CSI

is similar to that of the EP detector with perfect CSI, and that the Modified EP detector

provides a much better performance at higher SNR values. For example, Fig. 2.4 shows

that for SER of 10−4, the Modified EP detector outperforms the EP detector by about 5

dB. Moreover, at SNR= 36 dB, the performance of EP starts to deteriorate.
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As discussed previously, Fig. 2.3(b) provides an intuitive explanation for the perfor-

mance improvements of the Modified EP detector. As shown in this figure, the Modified

EP detector aligns its search area to the direction of the estimation error by employing the

proper error covariance matrix Rw and, as a result performs significantly better at higher

SNR values.

Figs. 2.6, 2.7 and 2.8 show the SER vs SNR for an Nr × Nt = 12 × 12, 20 × 20,

and 32 × 32 MIMO system, respectively, for the MMSE, MMSE-SIC, EP and Modified

EP detectors and for the cases of perfect and imperfect CSI, where the Kronecker channel

model is assumed. Channel estimation in the case of imperfect CSI is the same as in Figs.

2.4 and 2.5. The EP and Modified EP decoders were run for 10 iterations each. It can be

seen that as in the case of uncorrelated channels, the EP algorithm is much more sensitive

to CSI errors than MMSE and MMSE-SIC.
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Figure 2.6: Detection performance for the MIMO system with 16-QAM modulation and
orthogonal pilot vectors with Nr = Nt = 12 over the correlated channel.

Comparing the results in Figs. 2.6-2.8 reveals that the sensitivity of the EP algorithm

to channel estimation errors increases for larger antenna arrays. It can be seen that for

this correlated channel model, again the proposed modified EP detector helps recover a
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Figure 2.7: Detection performance for the MIMO system with 16-QAM modulation and
orthogonal pilot vectors with Nr = Nt = 20 over the correlated channel.

great deal of performance loss of the EP detector. For example, Fig. 2.7 shows that for

Nr = Nt = 20 and SER of 3×10−4, the Modified EP detector outperforms the EP detector

by about 5 dB. Moreover, the improvements are larger at higher SNR values.

Fig. 2.9 shows the performances of MMSE, MMSE-SIC, EP and Modified EP in the

case of imperfect CSI for an 80 × 80 MIMO system and the Kronecker channel model.

As indicated in the figure, the EP and Modified EP algorithms are evaluated for 2 and

4 iterations. This figure illustrates the effectiveness of the proposed method for large

scale systems. For example, for SER of 3 × 10−4, the proposed Modified EP algorithm

outperforms the EP algorithm by more than 3 dB.

It is interesting to note from Fig. 2.9 (as well as in some cases in the previous figures),

that the successive interference cancellation technique is not effective and the MMSE de-

coder outperforms MMSE-SIC decoder. The reason is that for the large value of Nt = 80,

and the given values of SNR in this figure, the ratio of Es/σ
2
n is small (e.g., for SNR=30 dB,

Es/σ
2
n = 10.97 dB), and for such small values of Es/σ

2
n, successive interference cancellation

is not effective resulting in poor performance for MMSE-SIC.
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Figure 2.8: Detection performance for the MIMO system with 16-QAM modulation and
orthogonal pilot vectors with Nr = Nt = 32 over the correlated channel.

As discussed previously, orthogonal pilots result in the best MMSE estimation for un-

correlated channels. However, orthogonal codes are not available for arbitrary values of

Nt
10. Using non-orthogonal pilot sequences increases the channel estimation error. There-

fore considering non-orthogonal pilots can also emulate the pilot contamination scenario

in massive MIMO systems which inevitably results in increased channel estimation error.

For the above reasons, in the next two simulations we assume semi-orthogonal pilot se-

quences which are generated using Gold sequences [43, 24]. As in the previous simulations,

we assume τ = Nt and the channel model is the same as that described in (2.37)-(2.38).

Channel estimation is performed using the pilot sequences as described in Section 2.4.2,

and the EP and Modified EP detectors are implemented using the estimated CSI. The EP

and Modified EP detectors are simulated with 4 iterations.

Fig. 2.10 shows the SER vs. SNR for the Nr×Nt = 32×25 and 100×25 MIMO system

10While OFDM-based wideband MIMO standards, such as LTE use temporal and frequency orthog-
onality for pilots, here we assume the pilot symbols of all transmit antennas (or users) are transmitted
simultaneously in the same frequency band. In other words, orthogonality among the pilot sequences is
provided by codeword orthogonality. It is well known that such orthogonal codes (e.g., Walsh-Hadamard
codes) do not exist for arbitrary values of Nt [24].
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Figure 2.9: Detection performance for the MIMO system with 16-QAM modulation and
orthogonal pilot vectors with Nr = Nt = 80 over the correlated channel.

configurations. It can be seen that in both configurations, for a large range of SNR values,

the EP detector does not converge. After increasing SNR above a certain threshold (about

65 dB for the 32×25 configuration and 55 dB for the 100×25 configuration), the EP detector

starts to improve and its SER decreases sharply. In contrast, the Modified EP detector

presents a more robust performance against channel estimation errors and outperforms the

EP detector for all SNR values. In particular, for SER= 10−4, the performance gain of

the Modified EP algorithm is more than 20 dB for both configurations. Fig. 2.11 shows a

similar result for a 200× 30 MIMO system. Similar conclusions can be drawn in this case.
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Figure 2.10: Decoding performance of 32×25 and 100×25 MIMO systems, with imperfect
CSI, 16-QAM modulations and non-orthogonal pilot vectors .
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Figure 2.11: Decoding performance of 200×30 MIMO system, with imperfect CSI, 16-QAM
modulations and non-orthogonal pilot vectors .
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Chapter 3

Noncoherent SIMO Detection by

Expectation Propagation

3.1 Introduction

The advantages envisioned from using large antenna arrays have made massive multiple-

input multiple-output (MIMO) systems a promising technology for future wireless stan-

dards [9, 10]. Massive MIMO systems are expected to provide unprecedented gains in

spectral and energy efficiency along with low-complexity linear processing. One of the

roadblocks to achieving the promise of massive MIMO systems is the need for accurate

knowledge of channel state information (CSI) at the receiver for a large number of channels

[44]. Acquiring CSI through transmission of pilot sequences, as is common in many wireless

standards, is a resource-consuming task. Since the number of transmitters determines the

minimum length of the pilot sequence, increasing the number of antennas in massive MIMO

systems intensifies this issue. In particular, the required time for transmitting pilot symbols

over the forward link of a massive MIMO system may exceed the nominal coherence time

of the channel. Consequently, deployment of massive MIMO systems in frequency division

duplexing (FDD) mode is still an open problem [10]. Even in time division duplexing

(TDD) mode, due to lack of enough orthogonal sequences, pilots must be shared among

cells, giving rise to the so-called pilot contamination problem [9]. This challenge has mo-

tivated many researchers to investigate efficient noncoherent or pilotless symbol detection

algorithms.

Noncoherent techniques based on sphere decoding determine an efficient search radius

in order to reduce the detection complexity [45, 46]. However, sphere decoding based

algorithms still suffer from the well-known drawback of high complexity at low SNR values.

A noncoherent SIMO detection over uncorrelated Rician fading channel is proposed in [47].

The suggested algorithm is based on a proposed modulation technique in which information
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is carried in the power of the transmitted symbols. Since the proposed method relies on

averaging the received power over all the receiving antennas, it may need unreasonably

large antenna arrays to achieve the desired performance. Therefore, the authors suggest

deploying a random code to improve detection performance for smaller antenna arrays [48].

Also, boundary regions in the suggested algorithm are determined by prior knowledge of

the channel statistics. As a result, the overall performance strongly depends on the quality

of prior knowledge about the Rician channel factor K and the noise power. In [49] the

authors propose an optimal constellation for achieving the minimum noncoherent detection

error, where the dependency on large scale channel statistics is reduced by applying proper

constellation design. Another algorithm in [50] proposes a noncoherent scheme for large

scale SIMO systems based on the knowledge of the average received powers from different

users. The authors present a specific constellation design such that the receiver can separate

the users.

In this paper we propose a noncoherent detection scheme for SIMO systems based on

the expectation propagation (EP) algorithm [38, 31]. The proposed EP detector iteratively

searches for the best approximation of the joint probability density function (pdf) of the

channel coefficients and the transmitted symbols. The output pdf is used for direct esti-

mation of the channel coefficients, as well as the transmitted symbols. We show that for

block fading channels, the proposed detector outperforms the pilot-based MMSE detector

for both Rayleigh and Rician channels (without prior knowledge of Rician channel factor),

for block sizes as small as two symbols. This makes this detector suitable for fast fad-

ing channels with very short coherence time. In addition, numerical results show that the

performance of this detector converges to that of the optimal maximum likelihood (ML) de-

tector with perfect channel state information (CSI), when the size of the transmitted block

increases. Finally, the proposed method does not rely on specific signal constellations and

can be used for any differential modulation scheme.

The rest of this chapter is organized as follows. The system model is presented in
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Section 3.2. The proposed algorithm is presented in Section 3.3. Finally the simulation

results are presented in Sections 3.4.

Notations: Throughout this paper, small letters (x) are used for scalars, bold small

letters (x) for vectors, and capital letters (X) for matrices. R and C represent the set

of real and complex numbers, respectively. The superscripts (.)T , (.)H , and (.)−1 rep-

resent transpose, Hermitian transpose, and matrix inverse, respectively. Also, ⊗ de-

notes the matrix Kronecker product. For a complex-valued vector z = [z1, z2, · · · , zn]T ,

R(z) , [R(z1),R(z2), · · · ,R(zn)]
T and I(z) , [I(z1), I(z2), · · · , I(zn)]T where R(zi) and

I(zi) denote the real and imaginary parts of the complex variable zi, respectively. For a

pdf p(.), Ep denotes the expectation operator with respect to p(.). IN denotes the N ×N

identity matrix. Finally, vec(A) and ||a|| denote the vectorization of the matrix A and the

ℓ2 norm of vector a, respectively.

3.2 System Model

Consider a SIMO system with Nr receiving antennas. The transmitted symbol at t-th

channel use, denoted by s̃t, belongs to an M-ary modulation constellation AM with average

energy Es. The channel vector denoted by h̃ ∈ CNr×1 is a circularly symmetric Gaussian

random vector with mean vector m̃0 and covariance matrix Ṽ0, i.e., h̃ ∼ CN (h̃|m̃0, Ṽ0).

Note that for modeling the Rician fading channel with factor K, we can choose elements

of the mean vector such that |m̃0i|2 = K/(K + 1), and the covariance matrix as Ṽ0 =

1/(K + 1)INr
.

We assume a narrowband block fading channel where h̃ remains constant for the du-

ration of T transmitted symbols. The t-th received vector ỹt is given by

ỹt = sth̃+ w̃t (3.1)

where ỹt ∈ CNr×1, and w̃t ∼ CN (w̃t|0, σ2
wINr

). To simplify notation, we consider the
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all-real equivalent of (3.1) as follows







R(ỹt)

I(ỹt)






=













R(st) −I(st)

I(st) R(st)






⊗ INr













R(h̃)

I(h̃)






+







R(w̃t)

I(w̃t)






. (3.2)

Equivalently, this can be written as

yt = Sth+wt (3.3)

with yt ∈ R2Nr×1, h ∈ R2Nr×1, St ∈ R2Nr×2Nr , and finally wt ∈ R2Nr×1. For the new

channel vector h we have h ∼ p(h) = N (h|m0, V0), where m0 = [R(m̃0)
T
I(m̃0)

T ]T and

V0 =
1
2
I2 ⊗ Ṽ0. Similarly, wt ∼ N (wt|0, 12σ2

wI2Nr
).

Assume a block of T independent transmitted symbols denoted as s , [s1, . . . , sT ].

Using (3.3), the corresponding received vectors are given by Y , [y1 . . . yT ]. We are

interested in a noncoherent detector where the channel vector h is unknown and must be

estimated along with the transmitted symbols s. The posterior joint distribution of the

unknown vectors s and h is given by

p(s,h|Y ) ∝ p(s,h)p(Y |s,h)

∝
(

p(h)

T
∏

t=1

p(st)

)

T
∏

t=1

p(yt|st,h) (3.4)

in which p(st) is the probability mass function (pmf) of the t-th transmitted symbol. Since

the matrix St only depends on the single symbol st, we have p(yt|st,h) = p(yt|St,h) =

N
(

yt|Sth,
1
2
σ2
wI2Nr

)

.

The optimum receiver finds the maximizer of (3.4), i.e.,

(s,h)∗ = argmax
s∈AT

M
,h∈R2Nr

p(s,h|Y ) (3.5)

Due to the complexity of (3.4), finding the optimum solution is generally very difficult and
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requires multidimensional integration. The proposed EP algorithm in the next section ex-

ploits the multiplicative nature of (3.4) to find a simpler approximation for the conditional

joint distribution of (s,h) such that the marginals can be calculated with much less effort.

3.3 EP formulation for noncoherent detection

Let F denote a family of exponential distributions. Using EP we exploit the factorized

structure of (3.4) to approximate the posterior distribution p(s,h|Y ) with distributions

from F (for a review of the EP algorithm please refer to [51]). To this end we propose the

following approximation for p(s,h|Y ),

q′(s,h) ∝
(

p(h)

T
∏

t=1

p(st)

)

q(s,h) (3.6)

in which q(s,h) ∈ F may be considered as the approximation to the likelihood function

p(Y |s,h). As such, q(s,h) can be used for maximum likelihood estimation. However, the

receiver can use the prior pdfs to perform a Bayesian estimation from (3.6). Therefore,

we only need to apply the EP algorithm to the likelihood pdf of the received vectors.

We also note that since the channel vector is continuous and the transmitted symbols are

discrete, this will be a hybrid model [51]. The proposed approximation q(s, h) can be

further factorized as

q(s,h) ∝
T
∏

t=1

qt(st,h) ∝
T
∏

t=1

qt(st)qt(h) ∝ q(h)q(s) (3.7)

in which, qt(st,h) ∝ qt(st)qt(h), q(h) ∝
∏T

t=1 qt(h) and q(s) =
∏T

t=1 qt(st). We note that if

we select each factor qt(h) from F , then q(h) ∈ F , and consequently, q(s,h) ∈ F .

We assume that all qt(h) factors are multivariate Gaussian pdfs, i.e.,

qt(h) = N
(

h|mh(t), Vh(t)
)

. (3.8)
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Therefore q(h) = N (h|mh, Vh), where

Vh =

(

T
∑

t=1

Vh(t)
−1

)−1

(3.9)

and

mh = Vh

T
∑

t=1

Vh(t)
−1mh(t). (3.10)

Also, each qt(st) factor is assumed to be the pmf of its corresponding random symbol st.

Considering the M-ary modulation constellation AM = {a1, . . . , aM}, the pmf for st is the

set of probabilities as follows

qt(st) =
{

P[st = a1], . . . ,P[st = aM ]
}

. (3.11)

We use the t-th factor in the likelihood function, i.e., p(st,h|yt), for refining the t-th

approximating distribution, qt(st,h). Toward this, the t-th cavity distribution is calculated

as q\t(s,h) ∝ q(s,h)/qt(st,h) ∝ q\t(h)q\t(s), where q\t(h) ∝ q(h)/qt(h) and q\t(s) =

q(s)/qt(st) =
∏T

i=1,i 6=t qi(si). It can be shown that q\t(h) ∝ N (h|m\t
h , V

\t
h ), where

V
\t
h = (V −1

h − Vh(t)
−1)−1 (3.12)

m
\t
h = V

\t
h (V −1

h mh − Vh(t)
−1mh(t)) (3.13)

Next, by combining the t-th factor of p(Y |s,h), given in (3.4), and the corresponding cavity

distribution, we compute the following intermediate pdf

p̂t(s,h) =
1

Zt
q\t(s,h)p(yt|st,h), (3.14)
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where Zt = Eq\t(s,h)[p(yt|st,h)] is the normalization constant and can be calculated as

Zt =
∑

st∈AM

N
(

yt|Stm
\t
h , StV

\t
h S

T
t +

1

2
σ2
wI2Nr

)

(3.15)

Since p̂t(s,h) is not a member of the exponential family, it is replaced with the closest

distribution in F , denoted as qnew(s,h) = qnew(h)qnew(s), where closeness is in the sense

of Kullback-Leibler (K-L) divergence. Therefore,

qnew(s,h) = argmin
q(s,h)∈ F

KL
(

p̂t(s,h)||q(s,h)
)

(3.16)

It can be verified that the above optimization problem can be replaced with,

qnew(h) = argmin
q(h)∈ F

KL
(

p̂t(h)||q(h)
)

(3.17)

and,

qnew(s) = argmin
q(s)

KL
(

p̂t(s)||q(s)
)

(3.18)

where p̂t(s) and p̂t(h) are the respective marginal distributions of s and h, derived from

their joint distribution p̂t(s,h). In the following we will solve (3.17) and (3.18) separately

and use the solutions for updating the distributions of the corresponding factors.

Calculating qnew(h) and updating qt(h)

The marginal distribution of h is given by

p̂t(h) =
∑

s∈AT
M

p̂t(s,h) =
1

Zt
q\t(h)ψt(h) (3.19)

where ψt(h) ,
∑

st∈AM
p(yt|st,h), and the normalization constant Zt = Eq\t(h)[ψt(h)]. Ob-

viously, calculating Zt by this formula will give us the same result as in (3.15). The interme-

diate distribution p̂t(h) should be approximated by a pdf of the form q(h) = N (h|mh, Vh)
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which satisfies (3.17). It turns out that the solution is obtained from the so-called moment

matching condition [38], resulting in the new moments of q(h) given by

mnew
h = m

\t
h + V

\t
h ∇m (3.20)

and,

V new
h = V

\t
h − V

\t
h (∇m∇T

m − 2∇v)V
\t
h (3.21)

where, ∇m and∇v are gradients defined as∇m ,

(

∂ logZt/∂m
\t
h

)T

and∇v ,

(

∂ logZt/∂V
\t
h

)T

,

respectively. Using (3.15), it can be shown that (the proofs are omitted because of space

limitation)

∇m =
1

Zt

∑

st∈AM

[

N
(

yt|Stm
\t
h ,Σt

)

ST
t Σ

−1
t ζt

]

(3.22)

and,

∇v =
1

2Zt

∑

st∈AM

[

N
(

yt|Stm
\t
h ,Σt

)

×

(

ST
t Σ

−1
t ζtζ

T
t Σ

−1
t St − ST

t Σ
−1
t St

)

]

(3.23)

where, ζt = yt − Stm
\t
h and

Σt = StV
\t
h S

T
t +

1

2
σ2
wI2Nr

. (3.24)

After updating q(h), its t-th factor qt(h), as in (3.8), is obtained from qnewt (h) ∝

qnew(h)/q\t(h). Therefore, the new values for mh(t) and Vh(t) are given by

V new
h (t) =

(

(

V new
h

)−1 −
(

V
\t
h

)−1

)−1

(3.25)

and,

mnew
h (t) = V new

h (t)

(

(

V new
h

)−1
mnew

h −
(

V
\t
h

)−1
m

\t
h

)

. (3.26)
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Note that these updates do not depend on a specific value of the transmitted symbol st, and

in fact a form of averaging over all possible values of this symbol appears in the formulas.

Calculating qnew(s) and updating qt(st)

The marginal distribution of s is given by

p̂t(s) =

∫

h

p̂t(s,h)dh =
1

Zt
q\t(s)N

(

yt|Stm
\t
h ,Σt

)

(3.27)

in which, Σt is given by (3.24). Therefore, the K-L divergence in (3.18) can be written as

KL(p̂t(s)||q(s)) =
∑

s∈AT
M

p̂t(s) log
p̂t(s)

q(s)
(3.28)

=
∑

st∈AM

N
(

yt|Stm
\t
h ,Σt

)

Zt

× log

N

(

yt|Stm
\t
h
,Σt

)

Zt

qt(st)
(3.29)

The minimizer of (3.29) for every st ∈ AM and t = 1, . . . , T is given by

qnewt (st) =
1

Zt

N
(

yt|Stm
\t
h ,Σt

)

(3.30)

Note that solving (3.18) only updates the pmf of the t-th symbol, namely qt(st).

Each EP iteration involves updating all the T factors of qt(h) by (3.20) and (3.21)

and qnewt (st) in (3.30). After the EP algorithm converges, mh is adopted as the Maximum

likelihood (ML) estimate of the unknown channel, i.e, h′ = mh. Consequently, the channel

vector in (3.1) is given by

h̃
′
= mh,1:Nr

+ jmh,Nr+1:2Nr
. (3.31)

Also, the following ML detection rule is employed for the transmitted symbols

s′t = argmax
a∈AM

qt(a), t = 1, . . . , T. (3.32)
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As pointed out previously, the update rules for the moments of qt(h) in (3.25) and

(3.26) reveal that they are independent of the specific value of the symbol st. In other

words, refining the pdf factors for the channel is independent of refining the pdf factors for

the transmitted symbols. This is to be expected since the channel vector is constant over

all the received vectors1. Consequently, we do not need to updated the pmf of the symbols

at each iteration. In fact, calculations of (3.30) for all symbols may be postponed to the

end of the EP iterations, where the uncertainty about h is very small.

Now, at each iteration of the EP algorithm, the estimation of h gets closer to its actual

value. This implies that the mean of q(h) approaches the actual value of the channel vector

h and the elements of the covariance matrix of q(h) become smaller. Therefore, after an

adequate number of iterations, the factors qt(h) become almost identical and independent

of t. In other words, after a number of iterations, we will have mh(1) ≈ . . . ≈ mh(T ) and

Vh(1) ≈ . . . ≈ Vh(T ). Inserting these values into (3.9) and (3.10), we get mh = mh(1)

and Vh = Vh(1)/T . Then, from (3.12) and (3.13) we can write, m
\t
h = mh and V

\t
h =

Vh(1)/(T − 1) ≈ Vh. Therefore, (3.30) can be calculated after the final iteration of EP

using these values of m
\t
h and V

\t
h . Moreover, since after an adequate number of iterations,

the elements of V
\t
h will become very small, we can further simplify the calculation of qt(st)

by replacing Vh with the all-zero matrix. Finally, for every st ∈ AM and t = 1, . . . , T , the

pmf of the transmitted symbols can be calculated from

qt(st) =
N
(

yt|Stmh,
1
2
σ2
wI2Nr

)

∑

s′t∈AM
N
(

yt|S ′
tmh,

1
2
σ2
wI2Nr

) (3.33)

Therefore, the ML detection rule of (3.32) reduces to

s′t = argmin
st∈AM

||yt − Stmh||2, t = 1, . . . , T. (3.34)

1Note that this may not be true in the case of fast fading channels where the channel vector may
change from symbol to symbol. In this case estimation of the channel coefficients at time t and detection
of the transmitted symbol at time t will be interconnected.
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Since at this stage the channel vector h̃
′
is already estimated and known, other alter-

native detection algorithms can also be used. For example, the receiver can employ the

following MMSE detector

s′t = argmin
st∈AM

∣

∣

∣
st −

(

h̃
′H
h̃
′
+
σ2
w

Es

)−1

h̃
′
ỹt

∣

∣

∣
, t = 1, . . . , T (3.35)

The proposed procedure of channel estimation and symbol detection is summarized in

Algorithm 2.

Data: The block of T received vectors and p(yt|st,h) distributions in (3.4)
Result: A member of exponential family as (3.7) which is the closest pdf to (3.4),

an estimation of the channel vector, and detected symbols
begin

Initialize all qt(h) factors for t = 1, . . . , T ;
Calculate q(h) by (3.9) and (3.10);
while termination criteria has not been met do

for t=1,. . . ,T do

Calculate the cavity pdf by (3.12) and (3.13);
Find qnew(h) by (3.20) and (3.21);
Update qt(h) by (3.25) and (3.26);

end

end

Calculate the estimated channel vector by (3.31);
Decode the symbols by ML rule in (3.34) or by MMSE rule in (3.35);

end

Algorithm 2: Noncoherent SIMO symbol detection by EP.

If the prior pdf p(h) is available at the receiver, by considering q′(h) ∝ p(h)q(h) from

(3.6), the Bayesian estimation of the channel vector can be obtained as h′
B = (V −1

0 +

V −1
h )−1(V −1

0 m0 + V −1
h mh). However, it is shown in the next section that the proposed

noncoherent algorithm does not require any channel statistics such as the Rician K-factor.

The complexity of this algorithm is dominated by channel estimation part in equations

(3.20), (3.21), (3.25), and (3.26), and is given by O(ITMN3
r ), where where I denotes the

number of iterations of the EP algorithm. Considering the complexity of MMSE channel

estimator as O(N3
r ) shows that the proposed EP algorithm is about ITM times more
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complex than the pilot-based MMSE algorithm. However, as we will show in Section 3.4,

the EP-based noncoherent algorithm can outperform MMSE estimator with only a single

iteration (I = 1) over a fairly small block size T . Therefore, the overall complexity of the

algorithm is not significantly higher.

3.4 Numerical Results

In this section we investigate the channel estimation and symbol detection performances

of the proposed algorithm for the ML detector in (3.34) and the MMSE detector in (3.35),

which will be referred to as EP-ML and EP-MMSE, respecticely. We compare the results

with a coherent detector which first estimates the channel coefficients using the pilot-based

MMSE algorithm and then uses that estimation for MMSE symbol detection. In all of

our simulations, we have assumed a single pilot symbol for this coherent MMSE detector.

To show the best possible achievable detection performance, we have also included the

performance of the optimal ML receiver which has perfect knowledge of the CSI.

The differentially-encoded M-ary PSK modulation with symbol energy Es is used in

all the simulations. The signal-to-noise ratio (SNR) is defined as 10 log10(Es/σ
2
w)

2. For

evaluating the channel estimation accuracy, the normalized estimation error between the

channel vector h and its estimate h′ is considered as δh = 10 log10
(

||h−h′||2/||h||2
)

. Also,

for measuring the accuracy in the estimation of the magnitude of the channel vector, we

use δ|h| = 10 log10
(∣

∣

∣

∣|h| − |h′|
∣

∣

∣

∣

2
/
∣

∣

∣

∣|h|
∣

∣

∣

∣

2)
. For the EP algorithm, the mean vectors and

covariance matrices of all the T factors of h are initialized as mh(t) = y1 and Vh(t) = I2Nr
,

respectively.

Fig. 3.1 shows the channel estimation performance of the proposed EP and the pilot-

based MMSE estimators vs SNR for a SIMO system with Nr = 100 receiving antennas,

which uses 8-DPSK modulation over Rayleigh fading channel (K = 0). The EP algorithm

is run for a single iteration, i.e., I=1. As δh curves show, the pilot-based MMSE estimator

outperforms the EP algorithm for all SNR values. This is mainly due to the inherent

2We assume that the channel power is one, i.e., E|hi|2 = 1 for all i.
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inability of noncoherent algorithms (such as the proposed EP detector) to remove the

phase ambiguity in the channel. Also, due to this issue, increasing the block size results in

only minor improvements in δh as can be seen in Fig. 3.1. Clearly for symbol detection,

the effects of phase ambiguity can be alleviated by using a differential coding scheme. On

the other hand, the δ|h| curves show the advantage of the noncoherent EP estimator in

estimating the magnitude of the channel vector. This figure shows that for T = 2, the

performance of EP converges to that of MMSE as SNR increases. Moreover, increasing T

from 2 to 20 and 50, results in estimation gains over the pilot-based MMSE of 10 dB and 15

dB, respectively. We would like to point out that the improved estimation of the magnitude

of the channel is highly valuable in applications where power control is employed.
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Figure 3.1: Channel estimation performance of a SIMO system with Nr = 100 and 8-
DPSK, for pilot-based MMSE estimator, and the proposed EP estimator with I = 1 and
block sizes T = 2, 20, 50.

The SER performance of the SIMO system of Fig. 3.1 for coherent ML, coherent

MMSE, and noncoherent EP detectors is depicted in Fig. 3.2. This figure shows that the

proposed EP detector outperforms the coherent MMSE detector. Moreover, for large values

of T = 20, 50, the performance of noncoherent EP-ML detector is very close to the optimal
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Figure 3.2: Detection performance of a SIMO system with Nr = 100 and 8-DPSK modu-
lation, for coherent ML detector, coherent MMSE detector, and noncoherent EP detector
with I = 1 and block sizes T = 2, 20, 50.

ML detector as SNR increases. Interestingly, this figure also shows that even for a block

size of T = 2 symbols and with a single iteration, the proposed EP detector outperforms

the pilot-based MMSE detector. It is important to note that the computational complexity

of the detection method will be very small for such small values of T and I. In addition, the

proposed method can also be used for fast fading channels with channel coherence times

as low as two symbol durations.

Figs. 3.3 and 3.4 show the performance of channel estimation and symbol detection,

respectively, for a SIMO system with Nr = 100 receiving antennas, T = 5 and 50 symbol

blocks and 16-DPSK modulation over a Rayleigh fading channel. The number of iterations

of the EP algorithm are I = 1 and I = 4. Fig. 3.3 shows that EP outperforms MMSE in the

estimation of the magnitude of the channel coefficients. Moreover, increasing the number

of iterations from 1 to 4 results in only a small improvement in the performance of EP.

Fig. 3.4 shows that at SER = 10−4, the noncoherent EP-ML/EP-MMSE outperforms the

coherent MMSE by about 1 dB for T = 5 symbol blocks and EP-ML outperforms coherent
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MMSE by about 3 dB for T = 50. This figure also shows that by increasing the size of

the blocks to 50 symbols, SER performance of EP-ML converges to that of the optimal

ML receiver. Comparing the SER curves of the two EP detectors reveals that increasing T

results in only a small improvement in the performance of EP-MMSE. As before, increasing

the number of iterations has a negligible effect on the SER performance.

Fig. 3.5 shows the SER performance of three SIMO configurations with Nr = 10, 30,

and 60 antennas which use the proposed EP detector over a Rician fading channel with a

Rician factor of K = 10. Blocks of length T = 5 with 8-DPSK modulation are considered.

Also all EP algorithms are assumed to work with I = 1 iteration and without any prior

knowledge of K. This figure shows that for all configurations the proposed noncoherent

algorithm outperforms the coherent MMSE detector.

0 1 2 3 4 5 6
SNR (dB)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

δ
h (

dB
) 

or
 δ

|h
| (

dB
)

Pilot-based MMSE (δ
h
 )

Noncoherent EP, T=5, I=1(δ
h
 )

Noncoherent EP, T=5, I=4(δ
h
)

Noncoherent EP, T=50, I=1(δ
h
 )

Noncoherent EP, T=50, I=4(δ
h
)

Pilot-based MMSE (δ
|h|

)

Noncoherent EP, T=5, I=1(δ
|h|

)

Noncoherent EP, T=5, I=4(δ
|h|

)

Noncoherent EP, T=50, I=1(δ
|h|

)

Noncoherent EP, T=50, I=4(δ
|h|

)

Figure 3.3: Channel estimation performance of a SIMO system with Nr = 100 and 16-
DPSK modulation, for MMSE estimator with a single-symbol pilot, and EP estimators
with block sizes T = 5, 50 and two different iterations I = 1 and I = 4.
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Figure 3.4: Detection performance of a SIMO system with Nr = 100 and 16-DPSK modu-
lation, for MMSE estimator with a single-symbol pilot, and EP estimators with block sizes
T = 5, 50 and two different iterations I = 1 and I = 4.
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Figure 3.5: Detection performance of coherent MMSE and noncoherent EP detectors over
Ricain fading channel with K = 10, 8-DPSK modulation, I = 1, T = 5, and three different
antenna configurations.

53



Chapter 4

Joint Channel Estimation and

Symbol Detection for Multi-Cell

Massive MIMO Using Expectation

Propagation

4.1 Introduction

Since the gains offered by multiple-input multiple-output (MIMO) systems scale with

the number of transmitting and receiving antennas, research on high-order MIMO (also

referred to as massive MIMO) systems has been accelerating in recent years [8, 9, 10, 11].

Massive MIMO is a multi-user MIMO (MU-MIMO) system in which the base station (BS) is

equipped with an order-of-magnitude larger number of antennas compared to the traditional

MIMO systems. Early studies have demonstrated the benefits of massive MIMO systems

[12], and some field trials have been carried out to show the possibilities and limitations of

this technology [13, 14, 15].

In order to realize the potential advantages of massive MIMO systems, several technical

challenge must be addressed. Chief among them is the fact that symbol detection in

the receiver requires accurate knowledge of channel state information (CSI) for a large

number of channels [44]. Acquiring the CSI through transmission of pilot sequences, as is

common in many wireless standards, is a resource-intensive process, due to the large number

of channels involved. Moreover, since the number of transmitter antennas determines

the minimum length of the pilot sequence, increasing the number of antennas in massive

MIMO systems increases the length of pilot sequences. In particular, the required time

for transmitting pilot symbols over the forward link may exceed the nominal coherence

time of the channel. Consequently, deployment of massive MIMO systems in frequency

division duplexing (FDD) mode remains an open problem [11]. Even in time division
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duplexing (TDD) mode, due to lack of enough orthogonal sequences, pilots must be shared

among the cells, giving rise to the so-called pilot contamination problem [9, 52]. This

has motivated many researchers to investigate efficient noncoherent or pilotless symbol

detection algorithms which do not require pilot transmission for CSI acquisition.

Noncoherent detection for single-input multiple-output (SIMO) systems is suggested

in several previous works. For instance, [45] and [46] propose techniques based on sphere

decoding with an efficient search radius. Another noncoherent technique based on a pro-

posed modulation technique in which information is carried in the power of the transmitted

symbols over uncorrelated Rician fading channel, is suggested in [47] and [48]. In [49] the

authors propose an optimal constellation for achieving the minimum noncoherent detection

error, where the dependency on large scale channel statistics is reduced by applying proper

constellation design. Another algorithm in [50] proposes a noncoherent scheme for large

scale SIMO systems based on the knowledge of the average received powers from different

users. In [53] we have developed a joint channel estimation and symbol detection algorithm

for SIMO systems based on Expectation Propagation (EP). It is shown in this work that

the proposed detector outperforms the pilot-based MMSE detector for both Rayleigh and

Rician fading channels.

When the ratio of the number of transmitting antennas to the number of receiving

antennas is small, as is common in the forward link of massive MIMO systems, there

will be a large degree of freedom which can be exploited by noncoherent algorithms. For

example, [54] suggests a noncoherent channel estimation technique for multi-cell massive

MIMO systems based on the eigenvalue decomposition (EVD) of the correlation matrix

of the received vectors. However, the proposed algorithm is sensitive to the size of the

antenna array as well as the accuracy of the empirically calculated correlation matrix of

the received vectors. A noncoherent algorithm based on subspace projection and random

matrix theory is suggested in [55, 56, 57]. Assuming that the number of users per cell

remains fixed, the authors show that under certain conditions on the powers of the trans-
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mitting users, the spectrum of the sample covariance matrix asymptotically decomposes

into the signal eigenvalue spectrum and the interference-plus-noise eigenvalue spectrum as

the number of BS antennas grows [56]. The limiting support of the two spectra are approx-

imately characterized and a bound on the power difference of the signal and interference

is determined in order for the two to become disjoint. It is noted in [58] that this bound

is independent of the noise variance and, as a result, becomes inaccurate under low signal-

to-noise ratio (SNR) regime. A new asymptotic condition on spectrum separability is then

derived in [58] by considering the exact asymptotic characterization of interference-plus-

noise spectrum. These algorithms reduce pilot contamination by appropriate power control

and estimate the channel matrix of the desired cell. Finally [59] exploits the sparsity of

the massive MIMO channels and transforms the channel estimation problem into learning

on a Gaussian mixture model, which can be solved using algorithms such as Expectation

Maximization.

Coherent MIMO detection based on EP was recently suggested in [32], where the per-

formance of the algorithm is evaluated on the premise that perfect channel state information

(CSI) is available at the receiver. However, as mentioned earlier, providing perfect CSI in

massive MIMO systems is a challenging problem. At best, only a noisy estimate of the

channel coefficients will be available at the receiver. Also, other detrimental effects, such as

pilot contamination, aging and quantization errors, limit the accuracy of the CSI estimates.

In [60] we show that although channel estimation improves by increasing the signal-to-noise

ratio (SNR)1, surprisingly, at high SNR values, the rate of improvement of symbol error

rate (SER) vs. SNR decreases. We investigate this behavior of the EP detector in the case

of imperfect CSI and propose a modified detector in order to recover some of the perfor-

mance loss of the EP detector. Simulation results verify that the proposed modification

improves the performance of EP in the case of imperfect CSI, particularly in higher SNR

regions, and that for the modified detector, the slope of the SER vs. SNR plots are similar

1The SNR of the pilot and information sequences are assumed to be the same
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to the case of perfect CSI.

In this work we propose a noncoherent channel estimation and symbol detection tech-

nique for multi-cell massive MIMO systems based on the Expectation Propagation (EP)

algorithm [38, 31]. Since the channel matrix and the transmitted vectors are both un-

known, the proposed EP-based algorithm is applied on a hybrid model [51], and iteratively

searches for the best approximation of the joint probability density function (PDF) of these

unknowns. The output PDF is used for direct estimation of the channel coefficients, as well

as the transmitted symbols. To overcome the inherent ambiguity of noncoherent estimators,

we use the output of the EVD-based estimator in [54] to initialize the channel coefficients

in our algorithm. This allows for the EP-based receiver to improve its performance over the

EVD-based algorithm. We show that the proposed EP estimator outperforms the EVD-

based algorithm in both channel estimation and symbol detection. Moreover, this approach

diminishes the sensitivity of the EVD-based algorithm to the array and transmission block

sizes.

The rest of this chapter is organized as follows. The system model is presented in

Section 4.2. Section 4.3 covers a brief review of the EVD-based algorithm. The proposed

algorithm is presented in Section 4.4. Finally, simulation results are presented in Section

4.5.

Notations: Throughout this paper, small letters (x) are used for scalars, bold small

letters (x) for vectors, and capital letters (X) for matrices. R and C represent the set

of real and complex numbers, respectively. R(z) and I(z) denote the real and imaginary

parts of the complex variable z. For a set of complex variables A = {z1, z2, · · · }, we

denote R(A) , {R(z1),R(z2), · · · } and I(A) , {I(z1), I(z2), · · · }. The superscripts (.)T ,

(.)H , and (.)−1 represent transpose, Hermitian transpose, and matrix inverse, respectively.

Also, ⊗ and ◦ denote the matrix Kronecker and Hadamard products, respectively. For a

probability density function (PDF) p(.), Ep denotes the expectation operator with respect

to p(.). IN denotes the N × N identity matrix and diag[λ1, λ2, . . . , λn] denotes the n × n
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diagonal matrix with λ1, λ2, . . . , λn as its main diagonal. Finally, vec(A), ‖a‖, and ‖A‖F
denote the vectorization of the matrix A, the ℓ2 norm of vector a, and the Frobenius norm

of matrix A, respectively.

4.2 System Model

Consider a multi-user MIMO network consisting of L cells each served with its own BS

and with K users in each cell. Assume the base stations haveM antennas and all users have

single-antenna transceivers. A simple schematic of this network is demonstrated in Fig.

4.1. The channel gain between the m-th antenna of the l-th BS and the k-th user located

in the i-th cell is denoted by h̃limk. Each channel coefficient h̃limk can be decomposed into

two parts as

h̃limk = g̃limk

√

βlik, (4.1)

in which, g̃limk denotes the fast fading coefficient from the k-th user in cell i to the m-th

antenna of BS l, and βlik represents the geometric attenuation and the shadowing effects

which is assumed to be independent of the antenna index m and to be constant and known

a priori.

Figure 4.1: Multi-cell multi-user MIMO network.

The M × 1 fast fading vector from user k in cell i to the BS antenna array at cell l is

denoted by g̃lik = [g̃li1k, g̃li2k, . . . , g̃liMk]
T , and the M ×K fading matrix from all the users

of cell i to the l-th BS is denoted by G̃li = [g̃li1, . . . , g̃liK ]. Consequently, the total channel
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gain between users in cell i and the BS in cell l will be an M ×K matrix denoted by H̃li

and given by

H̃li , G̃liD
1

2

li (4.2)

where Dli , diag[βli1, βli2, . . . , βliK ].

Assuming that the fast fading coefficients between different channels and/or users are

independent and identically distributed (iid) with E[g̃limkg̃
∗
l′i′m′k′] = δll′δii′δmm′δkk′, we get

E[G̃liG̃
H
lj ] = KIMδij . Therefore,

E[H̃liH̃
H
lj ] = E[H̃liH̃

H
li ]δij = E[G̃liDliG̃

H
li ]δij (4.3)

=
K
∑

k=1

βlikE[g̃likg̃
H
lik]δij =

(

K
∑

k=1

βlik

)

IMδij (4.4)

Without loss of generality, suppose we are interested in the first cell, i.e., l = 1. There-

fore, the received vector at this BS at t-th channel use is given by

ỹ1(t) =
L
∑

i=1

H̃1is̃i(t) + w̃1(t) (4.5)

=H̃11s̃1(t) +

L
∑

i=2

H̃1is̃i(t) + w̃1(t) (4.6)

where s̃i(t) = [s̃i1(t), s̃i2(t), . . . , s̃iK(t)]
T is the vector of transmitted symbols by users in cell

i. The symbols s̃ij(t) are assumed to be independently selected from an M-ary modulation

constellation denoted as ÃM, with zero mean and average energy Es. Therefore we have

E
[

s̃i(t)s̃j(t)
H
]

= EsδijIK . Also, w̃l(t) ∼ CN (w̃l|0, IM) is the circularly symmetric additive

white Gaussian noise at the l-th BS and are assumed to be independent for different BS’s.

Setting w̃′
1(t) ,

∑L
i=2 H̃1is̃i(t) + w̃1(t) as the combination of interference plus noise at BS

1, we can write

ỹ1(t) = H̃11s̃1(t) + w̃′
1(t) (4.7)
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We can treat w̃′
1(t) as a new additive noise vector. The mean of w̃′

1(t) is given by E[w̃′
1(t)] =

0 and its covariance matrix can be calculated as follows.

R′
w ,E[w̃′

1(t)
(

w̃′
1(t)
)H

] (4.8)

=

L
∑

i=2

L
∑

j=2

E

[

H̃1iE
[

s̃i(t)s̃j(t)
H
]

H̃H
1j

]

+ IM (4.9)

=Es

L
∑

i=2

E

[

H̃1iH̃
H
1i

]

+ IM (4.10)

=Es

L
∑

i=2

(

K
∑

k=1

β1ikIM

)

+ IM (4.11)

=
(

Es

L
∑

i=2

K
∑

k=1

β1ik + 1
)

IM (4.12)

Assuming that the product KL is large, we invoke the central limit theorem and assume

that the mulit-user interference
∑L

i=2 H̃1is̃i(t) is a Gaussian random vector. It then follows

that the received vector at the first BS is given by (4.7), where w̃′
1(t) ∼ CN

(

w̃′
1|0, σ′2

wIM

)

,

and where

σ′2
w , Es

L
∑

i=2

K
∑

k=1

β1ik + 1 (4.13)

To simplify our notations, for the received vector of the target BS in a multi-cell multi-user

model at t-th channel use, in the sequel we rewrite (4.7) as

ỹt = H̃ s̃t + w̃′
t, (4.14)

in which, s̃t ∈ ÃK
M is the vector of transmitted symbols with entries in ÃM, H̃ ∈ CM×K

is the channel matrix, and w̃′
t ∈ CM×1 is the additive noise vector such that w̃′

t ∼

CN (w̃′
t|0, σ′2

wIM) with σ′2
w given in (4.13).

By applying the vectorization property vec(ABC) = (CT ⊗ A)vec(B), (4.14) can be

expressed as

ỹt = S̃th̃+ w̃′
t (4.15)
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in which, S̃t , s̃Tt ⊗ IM and h̃ , vec(H̃). The all-real equivalent of (4.15) is given by







R(ỹt)

I(ỹt)






=







R(S̃t) −I(S̃t)

I(S̃t) R(S̃t)













R(h̃)

I(h̃)






+







R(w̃′
t)

I(w̃′
t)






(4.16)

Denoting yt ,
(

R(ỹT
t ) I(ỹ

T
t )
)T

, St ,







R(S̃t) −I(S̃t)

I(S̃t) R(S̃t)






, h ,

(

R(h̃
T
) I(h̃

T
)
)T

, and w′
t ,

(

R(w̃′T
t ) I(w̃′T

t )
)T

, (4.16) can be written as

yt = Sth+w′
t. (4.17)

Finally it follows from the properties of circularly symmetric Gaussian random vectors that

w′
t ∼ N (w′|0, 1

2
σ′2
wI2M).

For the noncoherent detector being considered here, the channel vector, h, as well as

the transmitted symbols, St, are unknown. Therefore, a joint symbol detection and channel

estimation algorithm must be employed at the receiver to estimate the channel vector and

detect the transmitted symbols.

Consider a block of T transmitted vectors S̃ , [s̃1, . . . , s̃T ] and the corresponding re-

ceived vectors Y , [y1 . . . yT ]. We assume a block fading channel where the channel

matrices remain unchanged for the duration of a transmission block consisting of T trans-

mitted symbols. The posterior distribution of S̃ and h is given by

p(S̃,h|Y ) ∝ p(S̃,h)p(Y |S̃,h)

∝
(

p(h)
T
∏

t=1

p(s̃t)

)

T
∏

t=1

p(yt|s̃t,h) (4.18)

in which p(s̃t) is the probability mass function (pmf) of the t-th transmitted vector, p(h)

is the prior PDF of the channel vector,2 p(yt|s̃t,h) is the a posteriori distribution of the

2In developing the noncoherent receiver, we assume that h is an unknown constant vector during the
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t-th received vector, which from (4.17) is given by p(yt|s̃t,h) = N
(

yt|Sth,
1
2
σ′2
wI2M

)

.3

The optimum receiver finds the unknowns as the maximizers of (4.18), namely,

(S̃,h)∗ = argmax
S̃∈ÃK×T

M ,h∈R2M

p(S̃,h|Y ) (4.19)

The optimization in (4.19) is not tractable due to the complexity of the posterior distribu-

tion in (4.18). In fact the optimization requires the computation of marginal distributions

which demand extensive multi-dimensional numerical integrations. In Section 4.4 we de-

velop an estimation technique based on the EP algorithm. This approach exploits the

multiplicative nature of (4.18) to find an approximation for the posterior distribution of

(S̃,h) so that the marginals can be easily computed.

4.3 Review of the EVD-Based Massive MIMO Chan-

nel Estimation

A channel estimation algorithm based on the existing degrees of freedom in massive

MIMO systems is suggested in [54]. The proposed algorithm estimates the channel vectors

from the eigenvectors of the sample correlation matrix of the received vectors at the BS.

Suppose that we are interested in estimating the channel matrix of the first cell in the

multi-user multi-cell network. The received vector at the first BS at time t is given by

(4.5). The correlation matrix of this vector is given by

Ry , E[ỹ1(t)ỹ
H
1 (t)]

= E
[(

L
∑

i=1

H̃1is̃i(t) + w̃1(t)
)(

L
∑

j=1

H̃1j s̃j(t) + w̃1(t)
)H]

= Es

L
∑

i=1

H̃1iH̃
H
1i + IM = Es

L
∑

i=1

G̃1iD1iG̃
H
1i + IM (4.20)

observation period T . However, to estimate it using the EP algorithm, we estimate a PDF for h from
which the ML estimate of h is obtained.

3Note that the matrix St only depends on the vector s̃t. Therefore, for the conditional PDF of yt we
can write p(yt|St,h) = p(yt|s̃t,h).
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Under the so-called favorable propagation condition, [9], the channel vectors of different

terminals will be mutually orthogonal, i.e., as M −→ ∞,

1

M
G̃H

li G̃lj −→ IKδij (4.21)

Therefore, multiplying Ry by G̃11 and using (4.21) we get

RyG̃11 ≈ Es

L
∑

i=1

G̃1iD1iG̃
H
1iG̃11 + G̃11

= G̃11(EsMD11 + IK). (4.22)

Note that Λ11 , EsMD11 + IK is a diagonal matrix with {EsMβ11k + 1, k = 1, . . . , K}

as its main diagonal. Therefore, RyG̃11 = G̃11Λ11 along with the pairwise orthogonality

of columns of G̃11 shows that (4.22) can be considered as the characteristic equation of

the correlation matrix Ry. Therefore, the kth column of G̃11 is proportional to the kth

eigenvector of Ry corresponding to the eigenvalue EsMβ11k+1. Assuming that EsMβ11k+1,

k = 1, 2, . . . , K are distinct and known a priori, the ordering of the eigenvectors among the

K users can be determined up to a constant factor. In other words, if U1 is the M × K

matrix whose columns are the eigenvectors of Ry, then the estimate of G̃11, denoted by Ĝ11

is given by Ĝ11 = U1C1, where C1 is a diagonal matrix. Since C1 is unknown at the BS, it

is estimated using a short pilot sequence.

Suppose each user transmits τ pilot symbols. Assuming that the pilots of different cells

are mutually orthogonal, the received M × τ matrix at the 1st BS is given by

Ỹ1 = H̃11P1 + W̃1 (4.23)

where P1 is theK×τ matrix of pilots from the K users in cell 1, and W̃1 is the noise matrix.

The ambiguity matrix C1 can now be estimated by solving the following optimization
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problem

Ĉ1 = argmin
C1∈Θ

‖Ỹ1 − U1C1D
1/2
11 P1‖2F , (4.24)

in which Θ is the set of all K ×K diagonal matrices in CK×K .

Denoting J , ‖Ỹ1 − U1C1D
1/2
11 P1|‖2F and considering the optimization constraint, the

derivative of J with respect to C1 is given by

∂J

∂C1
= (D

1/2
11 P1P

H
1 D

1/2
11 C

H
1 U

H
1 U1 −D

1/2
11 P1Ỹ

H
1 U1) ◦ IK (4.25)

Solving ∂J/∂C1 = 0 leads to

(ΞĈH
1 Φ) ◦ IK = Ψ ◦ IK , (4.26)

in which, Ξ = D
1/2
11 P1P

H
1 D

1/2
11 , Φ = UH

1 U1, and Ψ = D
1/2
11 P1Ỹ

H
1 U1. Now, suppose the

vector of K diagonal elements of Ĉ1 is denoted by ĉ1. Then, it can be easily shown that

the solution of (4.26) is

ĉ1 = (ΦH ◦ Ξ∗)−1(Ψ ◦ IK)1K , (4.27)

in which, 1K is a K × 1 all-one vector.

After calculating the constant matrix, the channel can be estimated as

Ĥ11 = U1Ĉ1D
1

2

11 (4.28)

In practice the correlation matrix Ry is not available and the sample covariance matrix

is used instead. Using a block ofN samples, the sample correlation matrix can be calculated

as

R̂y =
1

N

N
∑

n=1

ỹ1(n)ỹ
H
1 (n) (4.29)

As mentioned in [54], error in the calculated sample correlation matrix due to the
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limited block size N and lack of true channel mutual orthogonality, particularly for smaller

antenna arrays, are two major sources of error in the proposed algorithm. In this paper

we develop an EP-based noncoherent detector which is initialized with the output of the

EVD-based detector. After a few iterations, the proposed detector significantly improves

the performance of the EVD-based detector.

4.4 EP Formulation for Noncoherent Detection

Let F denote a family of exponential distributions. Using EP we exploit the factorized

structure of (4.18) to approximate the posterior distribution p(S̃,h|Y ) with distributions

from F (for a review of the EP algorithm please refer to [38, 31]). To this end, we employ

the following approximation for the posterior distribution p(S̃,h|Y ),

q′(S̃,h) =

(

p(h)

T
∏

t=1

p(s̃t)

)

q(S̃,h) (4.30)

in which q(S̃,h) ∈ F is considered as an approximation to the likelihood function p(Y |S̃,h).

Since the channel vector is a continuous vector and the transmitted symbols are discrete

random variables, this will be a hybrid model [51]. After calculating q(S̃,h) from EP as the

best approximation (in F) to p(Y |S̃,h), an approximation to the a posterior distribution

can be calculated using (4.30). However, assuming independent, identically distributed (iid)

transmitted vectors, the solution to (4.19) can be equivalently obtained from maximizing

the likelihood function p(Y |S̃,h). Therefore, we do not need to evaluate (4.30). The

transmitted vectors and channel coefficients can be estimated by maximizing q(S̃,h).

The proposed approximation q(S̃, h) is further written in a factorized form as follows.

q(S̃,h) ∝
T
∏

t=1

qt(s̃t,h) ∝
T
∏

t=1

qt(s̃t)qt(h) (4.31)

∝ q(S̃)q(h) (4.32)

in which, q(h) ∝∏T
t=1 qt(h) and q(S̃) =

∏T
t=1 qt(s̃t). We note that by selecting each factor
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qt(h) from F , we are ensured that their product, q(h), is also in F . Moreover, multiplying

q(h) by the pmf q(S̃) will not change its structure. Therefore q(S̃,h) will also be in the

family of exponential distributions.

We consider the family of multivariate Gaussian distributions for F . In particular,

we assume that all qt(h) factors are multivariate Gaussian with mean vector mh(t) and

covariance matrix Vh(t), i.e., qt(h) = N (h|mh(t), Vh(t)). Therefore their product will be

proportional to a multivariate Gaussian distribution q(h) = N (h|mh, Vh), with covariance

matrix

Vh =

(

T
∑

t=1

Vh(t)
−1

)−1

(4.33)

and mean vector

mh = Vh

T
∑

t=1

Vh(t)
−1mh(t). (4.34)

Also, all q(s̃t) factors are assumed to be pmf of their corresponding random vectors. Since s̃t

is aK-dimensional vector with elements from ÃM, for each possible vector s̃t, q(s̃t) will be a

set of MK probabilities. Denoting the set of all K-tuples over ÃM by A = {a1, . . . , aMK},

then q(s̃t) can be defined as follows

q(s̃t) =
(

P[s̃t = a1], . . . ,P[s̃t = aMK ]
)

. (4.35)

EP uses the t-th factor in the likelihood function p(Y |S̃,h), i.e., p(yt|s̃t,h), for refin-

ing the t-th approximating distribution qt(s̃t,h). Toward this, the so called t-th cavity

distribution is calculated as

q\t(S̃,h) ∝ q(S̃,h)

qt(s̃t,h)
=

q(h)q(S̃)

qt(h)qt(s̃t)
(4.36)

∝ q\t(h)q\t(S̃) (4.37)
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in which,

q\t(h) ∝ q(h)

qt(h)
=

N (h|mh, Vh)

N (h|mh(t), Vh(t))
(4.38)

∝ N (h|m\t
h , V

\t
h ) (4.39)

where it can be shown that

V
\t
h = (V −1

h − Vh(t)
−1)−1 (4.40)

m
\t
h = V

\t
h

(

V −1
h mh − Vh(t)

−1mh(t)
)

. (4.41)

Moreover,

q\t(S̃) ∝ q(S̃)

qt(s̃t)
=

∏T
i=1 qi(s̃i)

qt(s̃t)
(4.42)

∝
T
∏

i=1
i 6=t

qi(s̃i) (4.43)

Combining the t-th factor in the likelihood function with the cavity distribution, we

compute the following intermediate distribution.

p̂t(S̃,h) =
1

Zt

q\t(S̃,h)p(yt|s̃t,h) (4.44)

where it is shown in Appendix F that the normalization constant Zt is given by

Zt =
∑

s̃t∈ÃK
M

N
(

yt|Stm
\t
h ,Σt

)

(4.45)

where Σt , StV
\t
h S

T
t + 1

2
σ′2
wI2M .

Since p̂t(S̃,h) is not a member of the exponential family, it should be mapped to the
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closest distribution in F , denoted by qnew(S̃,h) = qnew(S̃)qnew(h), such that

qnew(S̃,h) = argmin
q(S̃,h)∈ F

KL
(

p̂t(S̃,h)‖q(S̃,h)
)

(4.46)

= argmin
q(S̃,h)∈ F

KL
(

p̂t(S̃,h)‖q(S̃)q(h)
)

. (4.47)

It is shown in Appendix G that the above optimization problem can be divided into the

following two separate optimizations:

qnew(h) = argmin
q(h)

KL
(

p̂t(h)‖q(h)
)

, (4.48)

and

qnew(S̃) = argmin
q(S̃)

KL
(

p̂t(S̃)‖q(S̃)
)

(4.49)

where p̂t(h) and p̂t(S̃) are the marginal distributions of h and S̃, respectively, derived from

their joint distribution p̂t(S̃,h).

In the following we solve the optimizations in (4.48) and (4.49) in that order. It turns

out that the solution of (4.48) is obtained from the so-called moment matching condition

[38], and (4.49) can be solved directly.

4.4.1 Calculation of qnew(h) and updating of qt(h)

The marginal distribution of h is given by

p̂t(h) =
∑

s̃1,...,s̃T∈ÃK
M

p̂t(S̃,h)

=
1

Zt

∑

s̃1,...,s̃T∈ÃK
M

q\t(S̃,h)p(yt|s̃t,h)

=
1

Zt

q\t(h)
(

∑

s̃1,...,s̃T∈ÃK
M

q\t(S̃)p(yt|s̃t,h)
)
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=
1

Zt
q\t(h)

∑

s̃t∈ÃK
M

p(yt|s̃t,h)

=
1

Zt
q\t(h)ψt(h) (4.50)

where in (4.50), ψt(h) ,
∑

s̃t∈ÃK
M
p(yt|s̃t,h), and Zt = Eq\t(h)[ψt(h)]. As expected, calcu-

lating Zt from this gives the same result as in (4.45).

The intermediate distribution p̂t(h) is then approximated by qnew(h) = N (h|mnew
h , V new

h ).

By using the standard assumed density filtering (ADF) update equations [31], we compute

the new moments of qnew(h) as follows.

mnew
h = m

\t
h + V

\t
h ∇m (4.51)

and,

V new
h = V

\t
h − V

\t
h (∇m∇T

m − 2∇v)V
\t
h (4.52)

where ∇m ,

(

∂ logZt

∂m
\t
h

)T

and ∇v ,

(

∂ logZt

∂V
\t
h

)T

are calculated from (4.45) as follows.

∇m =
1

Zt

(∂ logZt

∂m
\t
h

)T

=
1

Zt

∑

s̃t∈ÃK
M

[

N
(

yt|Stm
\t
h ,Σt

)

ST
t Σ

−1
t ζt

]

(4.53)

and,

∇v =
1

Zt

(∂ logZt

∂V
\t
h

)T

=
1

2Zt

∑

s̃t∈ÃK
M

[

N
(

yt|Stm
\t
h ,Σt

)

×
(

ST
t Σ

−1
t ζtζ

T
t Σ

−1
t St − ST

t Σ
−1
t St

)]

(4.54)

where, ζt , yt − Stm
\t
h .
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After qnew(h) is obtained, we can update qt(h) to get qnewt (h) = N (h|mnew
h (t), V new

h (t))

where

qnewt (h) ∝ qnew(h)

q\t(h)
=

N (h|mnew
h , V new

h )

N (h|m\t
h , V

\t
h )

(4.55)

It is straightforward to show that,

V new
h (t) =

(

(

V new
h

)−1 −
(

V
\t
h

)−1
)−1

(4.56)

and,

mnew
h (t) = V new

h (t)

(

(

V new
h

)−1
mnew

h −
(

V
\t
h

)−1
m

\t
h

)

. (4.57)

Note that these updates do not depend on a specific value of the transmitted vector s̃t ,

and in fact a form of averaging over all possible values of this vector appears in (4.45),

(4.50), (4.53) and (4.54).

4.4.2 Calculation of qnew(S̃) and updating of qt(s̃t)

The marginal distribution of S̃ can be calculated as follows:

p̂t(S̃) =

∫

h

p̂t(S̃,h)dh

=
1

Zt

∫

h

q\t(S̃,h)p(yt|s̃t,h) dh

=
1

Zt
q\t(S̃)

∫

h

N
(

h|m\t
h , V

\t
h

)

N
(

yt|Sth,
1

2
σ′2
wI2M

)

dh

=
1

Zt

q\t(S̃)N
(

yt|Stm
\t
h ,Σt

)

=
1

Zt

(

T
∏

i=1
i 6=t

qi(s̃i)
)

N
(

yt|Stm
\t
h ,Σt

)

(4.58)

Given this, the K-L divergence in (4.49) can be written as

KL(p̂t(S̃)‖q(S̃)) =
∑

s̃1,...,s̃T∈ÃK
M

p̂t(S̃) log
p̂t(S̃)

q(S̃)
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=
∑

s̃1,...,s̃T∈ÃK
M

(

T
∏

i=1
i 6=t

qi(s̃i)
)N

(

yt|Stm
\t
h ,Σt

)

Zt

×
[

log
N
(

yt|Stm
\t
h ,Σt

)

Zt

− log qt(s̃t)
]

=
∑

s̃t∈ÃK
M

N
(

yt|Stm
\t
h ,Σt

)

Zt

×
[

log
N
(

yt|Stm
\t
h ,Σt

)

Zt

− log qt(s̃t)
]

(4.59)

The minimizer of (4.59) will be

qnewt (s̃t) =
1

Zt

N
(

yt|Stm
\t
h ,Σt

)

; ∀s̃t ∈ ÃK
M (4.60)

Note that solving (4.49) only updates the pmf of the t-th vector, namely s̃t.

Each iteration of the EP detector involves updating all the T factors of qt(h) using

(4.56) and (4.57) and updating qnewt (st) using (4.60). After the EP algorithm converges,

mh is selected as the maximum likelihood (ML) estimate of the unknown channel, i.e,

h′ = mh. Consequently, the channel vector in (4.15) is given by

h̃
′
= mh,1:Nr

+ jmh,Nr+1:2Nr
. (4.61)

Moreover, the following ML detection rule can be employed for the transmitted symbols

s̃′t = argmax
a∈AK

M

qt(a), t = 1, . . . , T. (4.62)

Remark 1. As pointed out previously, the update rules for the moments of qt(h) in (4.56)

and (4.57) reveal that they are independent of the specific value of the symbol s̃t. In other

words, refining the PDF factors for the channel is independent of refining the pmf factors

for the transmitted vectors. This is to be expected since the channel vector is constant over
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the T received vectors. Consequently, it is not necessary to update the pmf of the transmitted

vectors at each iteration of the EP algorithm while the moments of qt(h) are being updated

using (4.56) and (4.57). In fact, calculations of (4.60) for all symbol vectors may be

postponed to the end of the EP iterations, where a good estimate of h is at hand. Therefore,

the transmitted vectors can be detected by computationally efficient linear algorithms such as

zero forcing (ZF) or minimum mean-squared error (MMSE). Denoting by H̃ ′ the estimated

channel matrix at the end of the EP algorithm, the MMSE estimates of the transmitted

vectors in (4.14) are given by

s̃′t = (H̃ ′HH̃ ′ + σ′2
wIM/Es)

−1H̃ ′Hỹt, t = 1, . . . , T. (4.63)

The transmitted symbols can then be detected using a demodulator which maps each

component of s̃′t to the nearest constellation point in ÃM.

4.4.3 A Low-Complexity Approximation

A close examination of (4.45), (4.53) and (4.54) reveals that the estimation of h is

fairly complex due to the summations involving MK terms. In the following we describe

a procedure which simplifies these computations. As the iterations of the EP algorithm

proceed, we expect a reduction in the uncertainty regarding the channel coefficients. In

other words, the mean vectors mh(t) approach the actual channel vector h, and the entries

of the covariance matrices Vh(t), and consequently Σt, become smaller. As a result, the

Gaussian PDF N
(

yt|Stm
\t
h ,Σt

)

will become very narrow and except for yt close to its

mean Stm
\t
h , the function will be negligible. This implies that the values of these PDFs

are negligible except for a single symbol vector. Therefore in the summations in (4.45),

(4.53) and (4.54) we can ignore all the terms except for a single dominant term. To find

this dominant term and the corresponding symbol vector, we assume a vectorized MIMO

system similar to (4.15), in which the channel vector is given by m
\t
h . Now the transmission
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symbol is estimated using a simple linear detector, such as ZF. Let x̃t ∈ ÃK
M denote the

vector which maximizes N
(

yt|Stm
\t
h ,Σt

)

. Then (4.53) and (4.54) can be simplified to get

∇m ≈ XT
t Σ

−1
t ζt, (4.64)

and

∇v ≈ XT
t Σ

−1
t ζtζ

T
t Σ

−1
t Xt −XT

t Σ
−1
t Xt, (4.65)

where,

Xt =







R(x̃T
t ⊗ IM) −I(x̃T

t ⊗ IM)

I(x̃T
t ⊗ IM) R(x̃T

t ⊗ IM)






. (4.66)

Inserting the above approximations for ∇m and ∇v into (4.51) and (4.52), the moments of

q(h) can be updated. Furthermore, in order to improve the stability of these update rules,

we employ the following smoothing mechanism [40]

mnew
h = α(m

\t
h + V

\t
h ∇m) + (1− α)mh (4.67)

and,

V new
h = α

(

V
\t
h − V

\t
h (∇m∇T

m − 2∇v)V
\t
h

)

+ (1− α)Vh, (4.68)

where 0 < α < 1 is a smoothing factor. After calculating qnew(h), the moments of the

refined version of the t-th factor are obtained as in (4.56) and (4.57).

Algorithm 3 summarizes the proposed procedure. To alleviate the ambiguity in channel

estimation and to start the algorithm with a good initial value, we use the output of an

EVD-based estimator to initialize the mean values of the channel coefficients, mh(t).

The complexity of these operations is dominated by updating the moments of qnew(h)

and qnewt (h) in equations (4.56), (4.57), (4.67), and (4.68), which involve basic matrix oper-

ations such as multiplications and inversions. Accordingly, the complexity of the proposed
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Data: A block of T received vectors and p(yt|s̃t,h) distributions in (4.18)
Result: A member of exponential family as in (4.30) which is the closest PDF to

(4.18), an estimation of the channel vector, and detected transmitted
symbols

begin

Estimate the channel with the EVD-based algorithm;
Initialize all qt(h) factors for t = 1, . . . , T ;
Calculate q(h) using (4.33) and (4.34);
while termination criteria has not been met do

for t=1,. . . ,T do

Calculate the cavity PDF using (4.40) and (4.41);

Estimate the maximizer vector x̃t by m
\t
h ;

Calculate ∇m and ∇v by (4.64) and (4.65), respectively;
Find qnew(h) by (4.67) and (4.68);
Update qt(h) by (4.56) and (4.57);

end

end

Calculate the estimated channel vector by (4.61);
Detect the transmitted vectors using MMSE algorithm in (4.63);

end

Algorithm 3: Noncoherent MIMO symbol detection using expectation propagation.

algorithm can be expressed as O
(

IT (K3M3+K2M2)
)

, where where I denotes the number

of iterations of the EP algorithm4.

4.5 Numerical Results

In this section we investigate the channel estimation and symbol detection performances

of the proposed EP algorithm, referred to as EP in the figures. We compare the result with

those from EVD-based noncoherent channel estimator, which is referred to as EVD. For

symbol detection we employ the MMSE algorithm for both EP and EVD receivers.

A cellular system with L = 3 cells, with each cell having K = 3 users is considered in

the simulations. Without loss of generality, we consider the performance of the algorithms

in the first cell. The shadowing factors for the 3 cells are chosen as β11 = [0.98, 0.63, 0.47],

β12 = [0.36, 0.29, .05], and β13 = [0.32, 0.14, 0.11].

4We assumed the complexity of the direct method for matrix multiplications and Gauss-Jordan elimi-
nation algorithm for matrix inversion. Therefore, the complexity of multiplying an n×p matrix by a p×m
matrix is given by O(npm), and the complexity of inverting an n× n matrix will be O(n3).
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Figure 4.2: Channel estimation performance versus the receiver’s antenna-array size M ,
for EVD and EP estimators, with symbol block sizes N = 20, 50, 100 and EP block size
T = N .

We consider QPSK modulation with Es = 20 dB. The EVD algorithm is assumed to

work with only one pilot vector, i.e., τ = 1. The EP algorithm uses the EVD’s channel

estimation result for initializing the mean vectors mh(t). Starting with a wide search area

helps in convergence of the algorithm. Therefore, we suggest initializing the covariance

matrices Vh(t) with fairly large values, such as 100I2MK . In our numerical results the

EP algorithm was run for only 2 iterations using the smoothing factor α = 0.5, and was

applied to the entire block, i.e., T = N . For evaluating the channel estimation accuracy,

the normalized estimation error between the channel matrix H̃11 and its estimate H̃ ′
11 is

considered given by δh , 10 log10
(

‖H̃11 − H̃ ′
11‖2F/‖H̃11‖2F

)

.

Remark 2. In the multi-cell system model and considering the equivalent noise power in

(4.13), it is evident that interference is the dominant term in (4.13). Increasing the symbol

energy Es also increases the interference and hence has a negligible effect on the signal-to-

interference-plus-noise ratio (SINR). For this reason we have not shown the performance
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Figure 4.3: SER performance versus the receiver’s antenna-array size M , for EVD and EP
algorithms with symbol block sizes N = 20, 50, 100 and EP block size T = N .

of the algorithm versus SINR.

The channel estimation accuracy of the two noncohorent algorithms versus the num-

ber of receiving antennas, M , and the size of blocks, N , is depicted in Fig. 4.2. This

figure shows that the performance of the two algorithms improve as M or N increases.

This behavior originates from the improvements of the EVD algorithm with M and N .

As discussed in Section 4.3, as M increases, the channel properties approach the favorable

propagation condition, where the columns of the channel matrix become mutually orthog-

onal. Therefore, using larger array sizes leads to better channel estimation by EVD. On

the other hand, increasing N improves the accuracy of the empirically calculated sample

correlation matrix in (4.29) resulting in improved channel estimation by EVD. Since the

channel estimates from EVD are used as the initial values for mh(t), increases in M or N

also result in improvements in the performance of the EP algorithm. Fig. 4.2 aslo shows

that the EP algorithm significantly outperforms the EVD algorithm, and the improvement

gain increases at higher values of M or N . For example, for M = 100, channel estimation
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using EP improves over EVD by 7.5 dB for N = 50 and by 10 dB for N = 100.

Fig. 4.3 shows the Symbol Error Rate (SER) performance of EVD and EP algorithms

versus M for three different block sizes of N = 20, 50 and 100 symbols. This figure also

clearly shows that the proposed EP algorithm outperforms EVD. More interestingly, and

similar to Fig 4.2, as the performance of EVD improves (with increases in M or N), the

gain of EP over EVD also increases.

While Figs. 4.2 and 4.3 show the improvements of EP over EVD, they do not capture

the entire picture. While in the case of EVD, the symbol errors are random, in the case of

EP they appear in bursts. In other words, in the case of EVD, a large number of blocks

will contain symbol errors whereas in the case of EP, most blocks are error free and a few

blocks contain a large number of symbol error. This is demonstrated in Table 4.1 as well

as in Fig. 4.4 where the percentage of symbol blocks (frames) with error is shown for both

EVD and EP. According to this table, the proposed EP algorithm significantly reduces

the frame error rate of the EVD algorithm. For example, for a system with M = 150

antennas and N = 100, EP reduces the percentage of erroneous frames from about 32% to

1.3%. As shown in Fig. 4.4, even for blocks as small as 10 symbols, EP reduces the frame

error rate by more than 35%. As N increases, the frame error rate of the EP algorithm

decreases sharply. The reason for this effect is that for the overwhelming majority of the

frames where the EP algorithm converges, there are no errors in the frame. On the other

hand, for some frames EP does not converge. In this case there will be a large number of

Table 4.1: The percentage of the erroneous detected frames.

N=20 N=50 N=100

M EVD EP EVD EP EVD EP

50 76.90 33.00 74.30 19.90 72.70 13.60
80 71.00 21.20 61.40 9.00 53.90 5.80
100 67.10 19.50 55.30 7.10 48.70 3.50
120 64.40 17.50 49.30 6.00 39.90 2.50
150 60.00 15.50 43.50 4.50 32.10 1.30
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Figure 4.4: Percentage of erroneous detected frames versus symbol block size N for a MIMO
system with the receiver’s antenna-array size M = 100 and EP block size T = N , for EVD
and EP algorithms.

symbol errors in the frame. This property of EP is very advantageous for systems using

Automatic Repeat-reQuest (ARQ). The reduction in frame error rate results in significant

improvements in average throughput and reduces the link delays.

The channel estimation and SER performances of the MIMO system with M = 60 and

100 receiving antennas versus block size N are depicted in Figs. 4.5 and 4.6, respectively.

Again, these figures show the improvements of EP over EVD. Moreover, as the performance

of EVD improves, the gain of EP over EVD also increases.

Fig. 4.7 shows the effectiveness of the EP algorithm in combating inter-cell interference.

The SER performances of the two algorithms versus M are shown for a multi-cell and

a single-cell system. Comparing the performance of EVD for single-cell and multi-cell

systems clearly shows the adverse effect of intra-cell interference. In contrast, the EP

algorithm shows only a minor degradation in performance due to the additional intra-cell

interference.
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Figure 4.5: Channel estimation performance of EVD and EP algorithms versus symbol
block size N for a MIMO system with the receiver’s antenna-array sizes M =60,100, and
EP block size T = N .
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Figure 4.6: SER performance of EVD and EP algorithms versus symbol block size N for
a MIMO system with the receiver’s antenna-array sizes M =60,100, and EP block size
T = N
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Figure 4.7: Multi-cell versus single-cell performances for EVD and EP detectors.
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Chapter 5

Conclusion

In Chapter 2 we investigate the performance of the expectation propagation (EP) detec-

tor in practical situations in which perfect channel state information (CSI) is not available

at the receiver. As expected and verified by the simulation results, lack of perfect CSI re-

sults in significant performance loss for the EP detector. Moreover, the EP detector shows

a higher sensitivity to the channel estimation error at high signal-to-noise ratios (SNR) and

the rate of its performance improvement decreases at higher SNRs. To rectify this problem

we propose a Modified EP algorithm for correlated noise which utilizes the correlation ma-

trix of the channel estimation error. Simulation results show that the modified algorithm

is robust against imperfect CSI and its performance is significantly improved over the EP

algorithm.

A noncoherent detector for large-scale SIMO systems using the Expectation Propaga-

tion algorithm is proposed in Chapter 3. We show through simulation that with only a

single iteration and for block sizes as small as two symbols, the proposed algorithm outper-

forms the pilot-based MMSE detector in term of symbol error rate (SER). This property

makes the proposed algorithm suitable for channels with coherence times as short as two

symbol durations. Moreover, the simulation results verify that as the symbol block size

increases, the SER performance of the algorithm converges to that of the optimal ML re-

ceiver which has perfect knowledge of channel state information. The proposed detector

does not rely on prior knowledge of channel statistics and it is shown that for a Rician

fading channel, it can outperform the coherent MMSE detector without using Rician K-

factor. Finally, the proposed method does not rely on specific signal constellations and can

be used for any differential modulation scheme.

In Chapter 4 we propose a noncoherent channel estimation and symbol detection al-

gorithm for multi-cell multi-user massive MIMO systems based on the expectation propa-
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gation algorithm. The proposed algorithm is initialized with the channel estimation result

from the EVD-based method. Simulation results show that after a few iterations, the

EP-based algorithm significantly outperforms the EVD-based method in both channel es-

timation and symbol error rate. Moreover, the EP-based algorithm is not sensitive to

antenna array size or the inaccuracies of sample correlation matrix.
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Appendix A

Statistical Inference by Message

Passing

In this appendix we briefly introduce some useful graphs and the sum-product algorithm

over them. To show the applicability of the algorithms in digital communications, two

simple examples in MIMO detection problem are presented.

A.1 Graphical Structures

In general, graph-based statistical inference algorithms start with modeling the joint

probability distributions with a graphical model. Factor graphs and Markov random fields,

as two common and useful graphs for statistical inference problems, will be introduced in

following sections.

Factor Graphs: Factor graphs1 consist of two types of nodes (or vertices), namely,

variable nodes and factor nodes. What makes these graphs distinguishable is that their

graph edges are only connected between a variable node and a factor node. Any factorisable

joint PDF can be modeled with a factor graph. For example, suppose the joint PDF of

four random variables can be factorized as p(x1, x2, x3, x4) = f1(x1)f2(x1, x4)f3(x2, x3, x4).

Then, as depicted in Fig. A.1, this PDF can be modeled with a factor graph consists of

four variable nodes and three factor nodes

Accordingly, the general form of a factorisable joint distribution of n random variables,

such as x1, . . . , xn, that can be modeled with a factor graph is as follows

p(x1, . . . , xn) =
∏

j

fj(Xj) (A.1)

in which, Xj is a subset of the set of random variables.

Markov Random Fields: A Markov random field (MRF) is a graph structure in

1Also known as bipartite graphs.
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Figure A.1: A sample factor graph representing f1(x1)f2(x1, x4)f3(x2, x3, x4).

which the conditional distribution of each node, given its neighbors, is independent of the

other nodes in the graph. In other words,

p(xi|x1, . . . , xi−1, xi+1, . . . , xn) = p(xi|N (xi)) (A.2)

in which, the neighbouring nodes of xi are denoted by N (xi).

A fully-connected subgraph in a MRF is known as a clique. A MRF with the maximum

clique size of two is called pairwise MRF. One useful pairwise MRF for the applications of

statistical inference is shown in Fig. A.2. As can be seen, the nodes in this type of graph

can be categorized in the observed variables (shown by filled circles) and hidden variables.

The conditional distribution of the observed variables, given it adjacent hidden variable,

is independent of all other hidden nodes. Also, each hidden node follows the Markovian

property given in (A.2). Suppose the hidden nodes and observed nodes are denoted by xis

and yis, respectively. It is common to model the dependency between an observed node

like and its corresponding hidden node with a function like φi(xi, yi). Also, the dependency

between each hidden node and its neighbors are modeled with compatibility functions as

ψij(xi, xj). Consequently, the joint PDF of hidden and observed variables in a pairwise
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MRF can be represented as [61]

p(x1, . . . , xn, y1, . . . , yn) =
1

Z

∏

i,j

ψij(xi, xj)
∏

i

φi(xi, yi), (A.3)

in which, Z is a normalization constant.

Figure A.2: A sample pairwise MRF.

Since the observations are fixed during the inference process, they can be omitted in

the joint PDF. Therefore a pairwise MRF can also be modeled as [61]

p(x1, . . . , xn) =
1

Z

∏

i,j

ψij(xi, xj)
∏

i

φi(xi) (A.4)

A.2 Sum-Product Algorithm

The sum-product or belief propagation (BP) is an algorithm for calculating the marginal

PDF of variables by iteratively exchanging messages or beliefs between the nodes in a graph

[62, 61, 63]. This algorithm can be applied to both graphical structures we introduced ear-

lier.

In a factor graph, the sum-product algorithm needs two types of messages, one from

a variable node to a factor node and the other type of message for the reverse direction.
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Following the well-known notation in [62], the sum-product messages from a variable node

x to a factor node f , and vice versa, in a factor graph are given as follows

µx→f(x) =
∏

h∈N (x)\{f}

µh→x(x) (A.5)

and

µf→x(x) =
∑

∼{x}

f(X)
∏

y∈N (f)\{x}

µy→f(y) (A.6)

where, N (x) shows the neighbours of x, ∼ {x} means all variables but x, and the backslash

signes in \{f} and \{x} simply mean excluding the factor node f or variable node x,

respectively. After algorithm’s convergence, the marginal distribution of each variable

node can be calculated as

f(x) =
∏

h∈N (x)

µh→x(x) (A.7)

The sum-product algorith can be implemented in pairwise MRF by exchanging the

following message between the hidden nodes[61]:

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k∈N (i)\j

mki(xi). (A.8)

which can also be considered as the believe of the i-th hidden node in the value of the j-th

hidden node. Finally, the belief of the i-th hidden node is given as

bi(xi) = kφi(xi)
∏

j∈N (i)

mji(xi). (A.9)
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A.3 Applications of the BP Algorithm in MIMO De-

tection

To show the applicability of the BP algorithm to digital communications, in this section

we present two examples of MIMO detection by this algorithm.

Assume a MIMO system with M receiving and K transmitting antennas. The received

vector for this model is given as

y = Hx+ n, (A.10)

in which, y ∈ CM×1 is the received vector, x ∈ CK×1 is the vector of K transmitted symbols

as x = [x1, . . . , xK ]
T , n ∈ CM×1 is the AWGN noise vector with distribution CN (0, σ2IM),

and H ∈ CM×K is the known channel matrix.

MIMO detection can be considered as a statistical inference problem. In fact, the sym-

bol detection is equivalent to find the marginal PDF of the transmitted vectors. Therefore,

as we will show in following parts, by assigning the transmitted symbols to the variable

nodes of a factor graph or the hidden nodes of a pairwise MRF, it is possible to iteratively

find their marginals by BP algorithm.

MIMO Detection by Factor Graph Model: As is depicted in Fig.A.3, the MIMO

detection problem can be modeled with a factor graph where its variable nodes are the

transmitted symbols and its factor nodes are the received signals [64]. This leads to a

densely connected graph with lots of cycles which affect the detection performance and

accuracy of the detector.

By assuming BPSK symbols, the log likelihood ratio of the j-th transmitted symbol

given the i-th received signal is given as

log
p(xj = 0|yi)
p(xj = 1|yi)

= log

∑

x,xj=0 p(x|yi)
∑

x,xj=1 p(x|yi)
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(a) (b)

Figure A.3: Graphical model for MIMO detection. (a) Factor Graph, (b) Messages.

= log

∑

x,xj=0 p(x)p(yi|x)
∑

x,xj=1 p(x)p(yi|x)

= log

∑

x,xj=0 p(x1, . . . , xK)p(yi|x)
∑

x,xj=1 p(x1, . . . , xK)p(yi|x)

= log
p(xj = 0)

p(xj = 1)
+ log

∑

x,xj=0 p(yi|x)
∏

k 6=j p(xk)
∑

x,xj=1 p(yi|x)
∏

k 6=j p(xk)
. (A.11)

By defining αj , log
p(xj=0)

p(xj=1)
, we can write

p(xj) =
e−αj

1 + e−αj
eαjxj (A.12)

By denoting the i-th row of the channel matrix by hi, the i-th received signal can be

written as yi = hix + ni. Therefore,

p(yi|x) =
1

πσ2
exp

(

− 1

σ2
|yi − hix|2

)

. (A.13)

Therefore, the log likelihood ration in (A.11) can be written as

log
p(xj = 0|yi)
p(xj = 1|yi)

= αj + βi→j (A.14)

in which,

βi→j = log

∑

x,xj=0 exp
(

− 1
σ2 |yi − hix|2 +

∑

k 6=j αkxk
)

∑

x,xj=1 exp
(

− 1
σ2 |yi − hix|2 +

∑

k 6=j αkxk
) . (A.15)

According to the sum-product algorithm, the message from j-th variable node to the
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i-th factor node is given as

αj→i =
M
∑

m=1,m6=i

βm→j (A.16)

Finally, the belief of the j-th transmitted symbol can be calculated as

L(xj) =

M
∑

m=1

βm→j (A.17)

The detector can use the L(.) values to decide about the transmitted symbols.

MIMO Detection by Markov Random Field Model: To fit the MIMO detection

problem to a pairwise MRF, first we have to transform the joint distribution of hidden

nodes into the structure given in (A.4). The joint conditional PDF of the trasnmited

symbols is given as follows [29]

P (x|y) = P (y|x)P (x)

=
1

(πσ2)M
e−

1

σ2 (y−Hx)H (y−Hx)
K
∏

i=1

P (xi)

∝ exp

(

− 1

σ2
(xHHHHx− yHHx− xHHHy)

) K
∏

i=1

exp(lnP (xi))

∝ exp

(

− 1

σ2
[xHHHHx− 2ℜ(xHHHy)]

) K
∏

i=1

exp(lnP (xi)). (A.18)

By assuming R = HHH and z = HHy, the above expression can be further simplified as

P (x|y) ∝ exp

(

− 1

σ2
[xHRx− 2ℜ(xHz)]

) K
∏

i=1

exp(lnP (xi)) (A.19)

94



Also,

xHRx =

[

x∗1 . . . x
∗
K

]













r11 . . . r1K
...

. . .
...

rK1 . . . rKK

























x1
...

xK













=
K
∑

i=1

K
∑

j=1

x∗i rijxj

=

K
∑

i=1

NT
∑

j=1,j 6=i

x∗i rijxj +

K
∑

i=1

|xi|2rii

=
K
∑

i=1

∑

j<i

2ℜ(x∗i rijxj) +
K
∑

i=1

|xi|2rii (A.20)

and,

xHz =

[

x∗1 . . . x
∗
K

]













z1
...

zK













=
K
∑

i=1

x∗i zi (A.21)

Finally,

P (x|y) ∝ exp

(

− 1

σ2
[

K
∑

i=1

∑

j<i

2ℜ(x∗i rijxj) +
K
∑

i=1

|xi|2rii − 2

K
∑

i=1

ℜ(x∗i zi)]
)

×
K
∏

i=1

exp(lnP (xi))

∝ exp

(

− 2

σ2

K
∑

i=1

∑

j<i

ℜ(x∗i rijxj)
)

exp

(

− 1

σ2
[

K
∑

i=1

|xi|2rii − 2
K
∑

i=1

ℜ(x∗i zi)]
)

×
K
∏

i=1

exp(lnP (xi))

∝
K
∏

i=1

∏

j<i

exp

(

− 2

σ2
ℜ(x∗i rijxj)

)
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×
K
∏

i=1

exp

(

− 1

σ2
[|xi|2rii − 2ℜ(x∗i zi)] + lnP (xi)

)

(A.22)

Comparing (A.22) with (A.4) reveals that

ψij(xi, xj) = exp

(

− 2

σ2
ℜ(x∗i rijxj)

)

(A.23)

and,

φi(xi) = exp

(

− 1

σ2
[|xi|2rii − 2ℜ(x∗i zi)] + lnP (xi)

)

(A.24)

By these functions, the receiver can calculate the messages given in (A.8). After enough

number of iterations, the receiver can finally calculate the belief of each transmitted symbol

by (A.9).
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Appendix B

Properties of Gaussin Random

Vectors

The following two properties are widely used in finding the marginal and conditional

distributions of Gaussian random vectors.

A.1

Suppose x ∼ N (x|mx, Vx) and n ∼ N (n|0, Vn) are two independent Gaussian random

vectors. Therefore, the joint PDF of x and y = Hx+ n is given as

(

x

y

)

∼ N
(

(

x

y

)

∣

∣

∣

∣

∣

(

mx

Hmx

)

,







Vx VxH
T

HVx HVxH
T + Vn







)

(B.1)

A.2

Assume the joint PDF of two random vectors x ∈ Rm and y ∈ Rn as follows

(

x

y

)

∼ N
(

(

x

y

)

∣

∣

∣

∣

∣

(

mx

my

)

,







Vx Vxy

V T
xy Vy







)

(B.2)

Then the marginal and conditional distributions of the two variables are given as

x ∼ N (x|mx, Vx) (B.3)

y ∼ N (y|my, Vy) (B.4)

x|y ∼ N
(

x|mx + VxyV
−1
y (y−my), Vx − VxyV

−1
y V T

xy

)

(B.5)

y|x ∼ N
(

y|my + V T
xyV

−1
x (x−mx), Vy − V T

xyV
−1
x Vxy

)

(B.6)
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Appendix C

Assumed Density Filtering

Assume x as the latent variable and yt as the measured sample at time index t. There-

fore the measurements in a duration of T time indexes can be represented by the vector

y1:T = (y1, . . . , yt, yt+1, . . . , yT ). (C.1)

We also consider the conditionally independent measurements for which the current mea-

surement yt given the latent variable is independent of all previous t−1 measurements, i.e.

p(yt|x,y1:t−1) = p(yt|x).

Generally, the two probability density functions (PDF) p(x|y1:T ) and p(y1:T ) are im-

portant for estimation of the latent variable and system modeling, respectively. The aim

in the online Bayesian inference methodology is to calculate these distributions iteratively

after each measurement. Therefore, instead of calculating p(x|y1:T ) after collecting all T

measurements, the online algorithm calculates p(x|y1:t) by receiving t-th measurement yt,

as follows

p(x|y1:t) =
p(x,y1:t)

P (y1:t)

=
p(x,y1:t−1, yt)

p(y1:t−1, yt)

=
p(x,y1:t−1)p(yt|x,y1:t−1)

p(y1:t−1)p(yt|y1:t−1)

=
p(x|y1:t−1)p(yt|x)

p(yt|y1:t−1)
(C.2)

Therefore,

p(x|y1:t) =
1

Zt
p(yt|x)p(x|y1:t−1) (C.3)

in which, the constant Zt is defined as Zt , p(yt|y1:t−1). Equation (C.3) is used in the
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update step of Bayesian inference algorithms, like Kalman filters. Considering the definition

of Zt, p(y1:T ) can be calculated as follows

p(y1:T ) = p(y1, . . . , yT ) (C.4)

= p(y1)p(y2|y1) . . . p(yT |y1, . . . , yT−1) (C.5)

= Z1Z2 . . . ZT (C.6)

One big problem in (C.3) is its dependency to all t − 1 previous measurements. As

t grows up, the complexity of calculating and handling p(x|y1:t−1) increases. One subtle

way to solve this problem is using an approximation of p(x|y1:t−1) which is more tractable.

In assumed density filtering (ADF) algorithm, p(x|y1:t−1) is approximated by a member of

the exponential family of distributions, denoted by F , as q\t(x). Consequently, (C.3) can

be written as the following intermediate distribution

p̂(x|y1:t) =
1

Zt
p(yt|x)q\t(x) (C.7)

in which, Zt , Eq\t [p(yt|x)]. Since p̂(x|y1:t) generally is not a member of the exponential

family, it should be approximated by a PDF like q\t+1(x) from this family such that satisfies

the following optimization problem

q\t+1(x) = argmin
q(x)∈F

KL

(

p̂(x|y1:t)||q(x)
)

(C.8)

In the other word, the approximating PDF has the minimum Kullback-Leibler divergence

to the exact distribution. We will see that the solution of this optimization problem can

be easily found by the so called moment matching property.
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Appendix D

Proof of the Moment Matching

Property

Any member of the family of exponential distribution, like q(x), can be represented as

q(x) = h(x)g(η) exp
(

ηTu(x)
)

(D.1)

in which u(x) is the vector of sufficient statistics and η is the vector of natural parameters.

g−1(η) is the partition function and can be calculated as

g(η) =
1

∫

x
h(x) exp

(

ηTu(x)
)

dx
. (D.2)

And its logarithm is given as

log g(η) = − log

∫

x

h(x) exp
(

ηTu(x)
)

dx. (D.3)

By calculating the gradient of (D.3) with respect to the vector of natural parameters, we

can write

∇η log g(η) = − 1
∫

x
h(x) exp

(

ηTu(x)
)

dx
∇η

∫

x

h(x) exp
(

ηTu(x)
)

dx

= −g(η)
∫

x

h(x) exp
(

ηTu(x)
)

u(x)dx

= −
∫

x

q(x)u(x)
)

u(x)dx

= −Eq[u(x)]. (D.4)
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Suppose we are interested in the solution of the following optimization problem:

q∗(x) = argmin
q(x)∈F

KL

(

p(x)||q(x)
)

(D.5)

where p(x) is an arbitrary PDF not necessarily in F . According to the definition of KL

divergence, the expression under optimization can be expanded as follows1

KL

(

p(x)||q(x)
)

=

∫

x

p(x) log
p(x)

q(x)
dx

=

∫

x

p(x) log p(x)dx−
∫

x

p(x) log
(

h(x)g(η) exp(ηTu(x))
)

dx

= −
∫

x

p(x) log g(η)dx−
∫

x

p(x)ηTu(x)dx+ C

= − log g(η)− ηT
Ep[u(x)] + C (D.6)

in which, C is a constant value with respect to η. By setting the gradient of this statement

with respect to η to zero,

Ep[u(x)] = − 1

g(η)
∇ηg(η) = −∇η log g(η) (D.7)

Comparing (D.7) and (D.4) results

Eq[u(x)] = Ep[u(x)] (D.8)

Therefore, the optimum solution to (D.5) satisfies (D.8). If q(x) is selected as a Gaussian
distribution, then x and x2 will be its sufficient statistics. In this case, (D.8) imply the mean
and the variance under q(x) should be equal to mean and variance under p(x), respectively.
Threfore, this property is known as moment matching.

1Although continues distributions are considered, similar results hold for discrete distributions.
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Appendix E

ADF Equations for Gaussian

Random Vectors

Consider the following intermediate PDF for the latent vector x:

p̂(x) =
1

Zi
fi(x)q

\i(x) (E.1)

in which q\i(x) ∈ F , and Zi =
∫

x
fi(x)q

\i(x)dx = Eq\i[fi(x)].

As discussed in ADF algorithm in Appendix C, we are interested in finding a PDF as

q(x) which is the best approximation of p̂(x) in F , or in the other word, is its projection

in F . Therefore, we must deal with the following problem:

q∗(x) = argmin
q(x)∈F

KL

(

p̂(x)||q(x)
)

(E.2)

In this section we solve this optimization problem for the specific case of Gaussian variables.

Suppose q\i(x) = N (x|m\i, V \i) and q(x) = N (x|m, V ) are Gaussian distributions.

Finding q(x) by moment matching in (D.8) is equivalent to calculate its mean vector and

covariance matrix as follows:

m = Eq[x] = Ep̂[x] (E.3)

and

V = Eq[xx
T ]− Eq[x]Eq[x]

T

= Ep̂[xx
T ]− Ep̂[x]Ep̂[x]

T (E.4)

Therefor we must calculate Ep̂[x] and Ep̂[xx
T ]. We start with definition of Zi which is

given as
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Zi =
1

|2πV \i|1/2
∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

dx (E.5)

in which, ωi = x−m\i.

In following parts we calculate two multidimensional gradient ∇m , ∇m\i logZi and

∇V , ∇V \i logZi.

Calculating ∇m:

The differential of logZi with respect to m\i can be calculated as follows:

d logZi =
1

Zi
dZi

=
1

Zi

1

|2πV \i|1/2
∫

x

fi(x)d
[

exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

]dx

=
1

Zi

1

|2πV \i|1/2
∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

d
[

− 1

2
ωT

i (V
\i)−1ωi

]

dx

=
1

Zi

1

|2πV \i|1/2
∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)[

− ωT
i (V

\i)−1dωi

]

dx

=
1

Zi

1

|2πV \i|1/2
∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)[

ωT
i (V

\i)−1dm\i
]

dx

=

(

1

Zi

1

|2πV \i|1/2
∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

ωT
i (V

\i)−1dx

)

dm\i

=

(

∫

x

p̂(x)ωT
i (V

\i)−1dx

)

dm\i

=

(

(V \i)−1(Ep̂[x]−m\i)

)T

dm\i (E.6)

Therefore,

∂ logZi

∂m\i
=

(

(V \i)−1(Ep̂[x]−m\i)

)T

(E.7)

By considering ∇m = ∇m\i logZi = (∂ logZi

∂m\i )
T , we can write

∇m = (V \i)−1(Ep̂[x]−m\i) (E.8)
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Finnaly, by (E.3) and (E.8),

m = Ep̂[x] = m\i + V \i∇m (E.9)

Calculating ∇V :

The differential of logZi with respect to V \i can be calculated as follows:

d logZi = d

(

log

∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

dx− 1

2
log |2πV \i|

)

=
1

Zi|2πV \i|1/2d
(

∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

dx

)

−1

2
tr
(

(V \i)−1dV \i
)

=
1

Zi|2πV \i|1/2 ×
∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

(
1

2
)tr
(

(V \i)−1ωiω
T
i (V

\i)−1dV \i
)

dx

−1

2
tr
(

(V \i)−1dV \i
)

(E.10)

Therefore,

∂ logZi

∂V \i
=

1

2

1

Zi|2πV \i|1/2
∫

x

fi(x) exp
(

− 1

2
ωT

i (V
\i)−1ωi

)

(V \i)−1ωiω
T
i (V

\i)−1dx

−1

2
(V \i)−1

=
1

2

∫

x

p̂(x)(V \i)−1ωiω
T
i (V

\i)−1dx− 1

2
(V \i)−1

=
1

2
(V \i)−1

(

∫

x

p̂(x)(x−m\i)(x−m\i)Tdx

)

(V \i)−1 − 1

2
(V \i)−1

=
1

2
(V \i)−1

(

Ep̂[xx
T ]− Ep̂[x]m

\iT −m\i
Ep̂[x

T ] +m\im\iT

)

(V \i)−1

−1

2
(V \i)−1 (E.11)
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By considering ∇V = ∇V \i logZi = (∂ logZi

∂V \i )T , we can write

Ep̂[xx
T ] = 2V \i∇V V

\i + Ep̂[x]m
\iT +m\i

Ep̂[x
T ]−m\im\iT + V \i (E.12)

By using (E.9) and plugging the equivalent expression of Ep̂[x], we can write

Ep̂[xx
T ] = 2V \i∇V V

\i + (m\i + V \i∇m)m
\iT +m\i(m\i + V \i∇m)

T

−m\im\iT + V \i (E.13)

By (E.4),

V = 2V \i∇V V
\i + (m\i + V \i∇m)m

\iT +m\i(m\i + V \i∇m)
T

−m\im\iT + V \i − (m\i + V \i∇m)(m
\i + V \i∇m)

T

= 2V \i∇V V
\i − V \i∇m∇T

mV
\i + V \i (E.14)

which can finaly expressed as

V = V \i − V \i(∇m∇T
m − 2∇V )V

\i (E.15)

Equations (E.9) and (E.15) are known as ADF equations and are very useful in up-
dating statistics of multidimensional Gaussian random variables in ADF or expectation
propagation algorithms.
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Appendix F

Calculating Zt

The constant Zt can be calculated as follows:

Zt = Eq\t(S̃,h)[p(yt|s̃t,h)]

=
∑

s̃1,...,s̃T∈ÃK
M

∫

q\t(S̃,h)p(yt|s̃t,h)dh

=
∑

s̃1,...,s̃T∈ÃK
M

∫

q\t(S̃,h)p(yt|s̃t,h)dh

=
∑

s̃1,...,s̃T∈ÃK
M

q\t(S̃)

∫

N
(

h|m\t
h , V

\t
h

)

N
(

yt|Sth,
1

2
σ′2
wI2M

)

dh

=
∑

s̃1,...,s̃T∈ÃK
M

q\t(S̃)N
(

yt|Stm
\t
h , StV

\t
h S

T
t +

1

2
σ′2
wI2M

)

=
∑

s̃1,...,s̃T∈ÃK
M







T
∏

i=1
i 6=t

qi(s̃i)






N
(

yt|Stm
\t
h , StV

\t
h S

T
t +

1

2
σ′2
wI2M

)

=







∑

s̃1,...,s̃t−1,s̃t+1,...,s̃T∈ÃK
M

T
∏

i=1
i 6=t

qi(s̃i)







∑

s̃t∈ÃK
M

N
(

yt|Stm
\t
h , StV

\t
h S

T
t +

1

2
σ′2
wI2M

)

=
∑

s̃t∈ÃK
M

N
(

yt|Stm
\t
h , StV

\t
h S

T
t +

1

2
σ′2
wI2M

)

(F.1)
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Appendix G

Hybrid K-L Divergence Optimization

Problem

Consider the following optimization problem on the hybrid K-L divergence:

min
q(S,h)∈ F

KL
(

p̂t(S,h)||q(S)q(h)
)

, (G.1)

in which, S = [s1, . . . , sT ] is a K × T matrix of discrete symbols in AM, i.e. S ∈ AK×T
M ,

and h is the continues channel vector. By using the definition of K-L divergence, we can

write

KL
(

p̂t(S,h)||q(S)q(h)
)

= Ep̂t(S,h)

[

log
p̂t(S,h)

q(S)q(h)

]

=
∑

s1,...,sT∈AK
M

∫

h

p̂t(S,h) log
p̂t(S,h)

q(S)q(h)
dh

=
∑

s1,...,sT∈AK
M

∫

h

p̂t(S,h) log p̂t(S,h)dh−

∑

s1,...,sT∈AK
M

∫

h

p̂t(S,h) log
(

q(S)q(h)
)

dh (G.2)

Since the optimization in (G.1) is over the functional q(S,h), the first term in (G.2) will

be a constant with respect to q(S,h) and can be replaced with letter C. Therefore we can

continue (G.2) as follows:

KL
(

p̂t(S,h)||q(S)q(h)
)

= −
∑

s1,...,sT∈AK
M

∫

h

p̂t(S,h) log
(

q(S)q(h)
)

dh+ C

= −
∑

s1,...,sT∈AK
M

∫

h

p̂t(S,h) log q(S)dh

−
∑

s1,...,sT∈AK
M

∫

h

p̂t(S,h) log q(h)dh+ C
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= −
∑

s1,...,sT∈AK
M

log q(S)

∫

h

p̂t(S,h)dh

−
∫

h

log q(h)
(

∑

s1,...,sT∈AK
M

p̂t(S,h)
)

dh+ C

= −
∑

s1,...,sT∈AK
M

p̂t(S) log q(S)

−
∫

h

p̂t(h) log q(h)dh+ C (G.3)

in which,

p̂t(S) =

∫

h

p̂t(S,h)dh (G.4)

and

p̂t(h) =
∑

s1,...,sT∈AK
M

p̂t(S,h) (G.5)

are respective marginal distributions of S and h from p̂t(S,h).

By adding and subtracting two constant terms
∑

s1,...,sT∈AK
M
p̂t(S) log p̂t(S) and

∫

h
p̂t(h) log p̂t(h)dh to (G.3), we can write it as

KL
(

p̂t(S,h)||q(S)q(h)
)

=
∑

s1,...,sT∈AK
M

p̂t(S) log
p̂t(S)

q(S)
+

∫

h

p̂t(h) log
p̂t(h)

q(h)
dh+ C ′

= KL
(

p̂t(S)||q(S)
)

+KL
(

p̂t(h)||q(h)
)

+ C ′ (G.6)

The first term in (G.6) totally depends on q(s) and the second term only depends

on q(S). Therefore the first two terms of (G.3) are changing independently. Therefore,

the minimization of (G.3) will be equivalent to minimization of both of these two terms.

Consequently, (G.1) can be broken into the following optimization problems:

qnew(S) = argmin
q(S)

KL
(

p̂t(S)||q(S)
)

(G.7)
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and

qnew(h) = argmin
q(h)

KL
(

p̂t(h)||q(h)
)

(G.8)
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