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ABSTRACT 

 Hybrid Electronic Materials (HEMs), as defined for this dissertation, are 

combinations of organic and inorganic materials as may be used to fabricate active device 

components in “beyond the transistor” electronics. However, the use of organics is often limited 

by issues such as thermal stability, compatibility with traditional (semiconductor) materials, and 

current processing technology. Thus, we began our exploration of HEMs with a “new” class of 

materials called GUMBOS (Group of Uniform Materials Based on Organic Salts) as derived 

from ionic liquids. For this first segment of our work, we investigated selected species of 

GUMBOS and nanoGUMBOS via their current-voltage characteristics, electronic sensing 

capabilities, and amenability to thin-film formation using the technique of electrospraying. 

 For the next segment, and primarily thin-film portion of this research, we elected 

to include the now more “traditional” material of carbon nanotubes (CNTs). Although 

reasonably well-characterized, CNTs still offer a significant challenge in terms of thin-film 

deposition, particularly upon non-conductive substrates. Electrophoretic deposition (EPD) is a 

solution-based technique that we have previously researched for the deposition of CNT thin-

films onto metal and semiconductor substrates. However, EPD is limited by its need for 

conductive electrodes. We eliminate the latter through an electrospray-assisted form of EPD 

which accomplishes the twofold task of successfully depositing CNT thin-films onto non-

conductive material while increasing the utility of EPD as it applies to HEMs. We also 

characterized the effect of our electrospray-assisted EPD technique upon CNT film thickness, 

quality, and morphology. 

Our investigation concludes with the prototype development of a new method of 

electrospraying based upon Faraday waves.  In conjunction with characterization and thin-film 
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deposition, this prototype demonstrates a means by which to scale HEMs to feasible commercial 

utilization. 
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CHAPTER 1: BRIEF DESCRIPTION OF CHAPTER CONTENT 

This chapter gives a brief description of the chapters 2 to 7 of this work.  

Chapter 2 (“Introduction and Literature Review”) gives a brief introduction to hybrid 

materials and their applications.  It describes several methods used in the literature for 

developing hybrid materials and discusss the methods used for thin-film deposition. 

Electrospraying as a method of thin-film deposition is reviewed. Several modes of the 

electrospraying phenomenon are described in addition to the needle electrospraying method used 

in this work. Atomic force microscopy as it is used in for imaging and as a conductive probe for 

understanding the electrical properties of nanomaterials is reviewed. Several modes of AFM 

operation are discussed, and the operation of CP-AFM is described. Scanning electron 

microscopy as technique used for studying the morphology of thin-films is also briefly described.  

Chapter 3 (“Motivation and Research Goals”) describes the motivation of the work and 

the goals to which this research as aspired. Motivation behind characterization of a new class of 

nanomaterials and thin films deceptions is discussed. The chapter also includes reasons for the 

deposition of CNTs on non-conductive substrates and motivation for the development of new 

electrospraying methods using Faraday waves.  

Chapter 4(“NanoGUMBOS: Characterization and Thin-film deposition”) describes 

various methods of synthesizing nanoGUMBOS in general and also discusses the methods used 

for the synthesis of specific nanoGUMBOS candidates used in this work. This chapter also gives 

a detailed account of experiments conducted for electrical characterization of [R6G][TPB] 

nanoparticles, [R6G][TPB] nanowires, [TC2][BETI] nanowires, [PIC][BETI] and [PIC][NTf2] 

nanostructures. Electrical characteristics obtained using AFM imaging, CP-AFM, and the 

fabrication details interdigitated structure used for electrical measurements are discussed in 

detail. Deposition of thin-films of [TC2][BETI] using electrospraying are discussed. Further, 
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detailed account of the use of [TC2] [BETI] nanowires and its thin-films for chemical vapor 

sensing is discussed. 

Chapter 5 (“Study of Electrospray Assisted Electrophoretic Deposition of Carbon 

Nanotubes on Insulator Substrates”) describes a unique method of deposition for multi-walled 

carbon nanotubes on non-conductive substrates using electrospraying and electrophoretic 

deposition as it was specifically developed for this work.  Experimental account of the deposition 

of the initial layer of CNTs using electrospraying and further use of this initial layer for 

electrophoretic deposition of thicker CNTs layer is covered. Further, several parameters of 

electrosprayed thin-film on the final CNTs film are investigated and discussed in detail. Raman 

spectrograph results indicating the morphological changes in CNTs structures throughout the 

process are also discussed.  

  Chapter 6 (“Faraday Electrospraying”) discusses the design and development of a new 

technique for electrospraying using Faraday waves. Brief review of techniques for 

electrospraying from the open-solution surface is discussed. Experimental setup developed to 

study Faraday electrospraying is discussed.  

Chapter 7 (“Summary and Recommendations for Future work”) is as stated by its title. 
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CHAPTER 2: INTRODUCTION AND LITERATURE REVIEW 

2.1: Electronics at the Nanoscale 

According to the National Nanotechnology Initiative, “Nanotechnology is the ability to 

control and restructure the matter at the atomic and molecular levels in the range of 

approximately 1–100 nm, and exploiting the distinct properties and phenomena at that scale as 

compared to those associated with single atoms or molecules or bulk behavior”[1].  Due to the 

shift in physical and chemical properties of materials of these dimensions, great interest has 

developed around all things nanotechnological. A characteristic as straightforward as the surface-

to-volume ratio of these nanostructures enhances physical properties such as absorption 

wavelength, chemical reactivity; and oftentimes the exhibition of electrical properties when 

compared to their bulk counterparts.  For example, the physical manifestation of the reduction in 

the size of gold from the bulk to nanoparticles is a change in color due to scattering of light in the 

nanoscale [2].  In conjunction with tools of molecular and atomic level imaging and 

manipulation such as Scanning Tunneling Microscopy (STM)[3-5], Atomic Force Microscopy 

(AFM)[6], and Dip-Pen Nanolithography (DPN)[7], to name a few, the now seminal Feynman 

talk entitled “There’s Plenty of Room at the Bottom” has become a discussion of pragmatic 

rather than prophetic applications [8]. In short, the “nano”-scale has opened up “big” 

opportunities in the next-generation of electronics[9].  

In order to understand the context in which nanoscale effects in electronic materials are 

addressed in this dissertation, a brief review of electronic devices is in order.  Historically, 

electronics has come a long way since the invention of the solid-state point contact transistor by 

John Bardeen, William Shockley, and Walter Brattain in 1947[10, 11].  Without exaggeration, it 

can be stated that solid state electronics, especially based on silicon, has exponentially 

transformed everyday life[1, 12-14]. The trend of doubling the number of transistors every 
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eighteen months, as was predicted by Dr. Gordon Moore in 1975[15, 16] has driven the 

computer industry and all functions with which it can be associated[17].  Even as Moore’s law 

holds true to-date with state-of-the-art technology for next generation processors based on, for 

example, a 15 nm channel length, the key challenging issue is not just the scale but improving 

both the reliability and versatility of these devices.  

To address next-generation device and circuit challenges, researchers have typically 

taken one of two paths—either the “top down” or the “bottom up” approach.  Manipulating 

larger size materials using physical and chemical processes to fabricate nanoscale structures is 

known as the top-down approach.  This approach relies heavily upon the precision and the ability 

of macroscale equipment to resolve nanoscale features[18-20].  Although excellent progress has 

been made in electronics as devices have progressed from micron, submicron, and the 

aforementioned nanometer ranges, the demand for smaller feature sizes has been accompanied 

by an almost prohibitive increase in fabrication cost from this top-down perspective[21]. With 

the practical motivation of such economic issues alongside the scientific curiosity-driven 

research of nanoscale phenomena, industrial technologists and researchers are now taking the 

“bottom-up” approach as well. The latter takes its inspiration, at least in part, from biology which 

uses physical and chemical forces such as self-assembly to create a plethora of biological 

organisms as extensive as the human genome[22]. Thus, the aptly named field of molecular 

electronics falls under the umbrella of the bottom-up approach[23, 24].  Self-assembly of 

nanomaterials to form desired structures without any external manipulation shows a great deal of 

potential as an alternative to the current top-down approach, and, several nanoscale structures 

have been demonstrated[25-28].  However, for bottom-up production at the commercial level, 

there are several challenges in terms of integration, scale of self-assembly, ease of production, 
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and environmental effects. Insomuch as “materials” are the basis for the successful and 

ultimately commercial exploitation of nanoscale phenomena, this dissertation presents original 

research aimed at addressing select aspects of the above challenges. Through the characterization 

of electronic properties, in addition to the exploration of techniques for thin-film deposition, a 

study of a series of unique or “hybrid” (organic-inorganic) combinations of materials will be 

described in the discussion to follow. 

 

2.2: Hybrid Electronic Materials  

Recent years have seen an increase in the use of non-traditional materials in electronics. 

Organic materials are being increasingly integrated into solar cells, organic LED’s, and opto-

electronics[29-31], and it was less than twenty years ago that the Nobel prize in chemistry was 

awarded for research on conductive polymers[32]. A material which includes two or more of 

moieties combined at the molecular scale to create a new material is called a “hybrid material.” 

Usually these include  organic and inorganic materials. The nature of interaction between organic 

and inorganic material determines the kind of hybrid material it creates[33-36]. These 

interactions can be loosely classified into Class I and Class II materials. Class I materials show 

weak interaction between the organic and inorganic matrix. These interactions include van der 

Waals, hydrogen bonding, and electrostatic forces. Class II materials show strong interactions 

between the organic and inorganic matrix. These interaction include covalent, ionic, and 

coordinative interactions.  Hybrid materials are also synthesized to improve structural properties 

of materials like elasticity, thermal stability, and refractive index and also to improve surface 

properties of the materials like hydrophobicity, permeability, and surface energy. Several 

methods for synthesis of hybrid materials are used. The most common methods are discussed 

here. 
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i) Formation of components by in-situ technique  

In this process the formation of hybrid materials is solely dependent on the chemical 

transformation of the precursors involved throughout the preparation of the materials. New 

molecules of the precursors get a total makeover and exhibit completely different properties from 

the original precursors involved. The reaction conditions and composition of the precursors 

decides the final properties of the resulting material. Control over the reaction conditions are of 

immense importance due to their effect on the properties of the final material obtained. 

ii) Formation of inorganic materials by in-situ technique  

In this process in-situ formation of inorganic materials require covalent bond in solutions. 

This low-temperature process employed most often yields thermodynamically stable structures. 

Often inorganic materials formed by this method are amorphous in nature while crystallinity 

only exists in the nanoscale of its structure. The main techniques for in-situ formation of 

inorganic materials are the—a) Sol-gel process, b) Non-hydrolytic Sol-gel process, and c) Sol-

gel reaction of non-silicates. 

iii) Formation of organic polymers by pre-formed inorganic materials 

To make organic monomers compatible with inorganic materials, the inorganic surface 

can be treated with surfactants. Here Class I materials are formed if the inorganic component 

does not interact or interacts very weakly with the organic polymer. If the inorganic component 

interacts very strongly with the organic polymer, Class II materials are formed. 

iv) Synthesis by forming both components simultaneously 

           Homogeneous types of interpenetrating networks are formed by simultaneous formation 

of the organic and inorganic polymers. For organic polymerization, the monomers are mixed 

with the precursor of a Sol-gel process, and all the steps are done simultaneously in the presence 
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or absence of a solvent. This method of synthesizing creates increases the reaction rate for the 

following processes: 

 The rate of chemical reaction of the polymerization of the organic phase 

 The rate of chemical reaction of the hydrolysis and condensation creating the inorganic 

phase 

 Phase separation thermodynamics between two phases 

 

v) Building block approach  

In this method, the building blocks will react with one another forming a final hybrid 

structure in which the precursor will partially keep its structure. These building blocks could be 

molecular or nano-sized to form the nano-composites. Thus, the structure of the initial materials 

used will be present in the final hybrid structure. This approach has one major advantage over 

the in-situ process as the hybrid material will partially keep the property of one of the building 

blocks. Therefore, structure-property prediction is possible to a certain extent. Recently there has 

been increased interest in use of hybrid materials for electronic applications. Figure 2-1 shows 

the increase in publications (using keywords “hybrid materials” or “electronic”) from 1996 to 

2015(June). The ease of chemical modification and large scale economic production are key 

factors driving interest in these materials. Towards this end, combinations of both organic and 

inorganic materials, dubbed “hybrid electronic materials” (HEMs) show great promise in terms 

uniting the bottom-up approach with traditional microfabrication techniques [22, 25, 37].  

 

2.3: Thin-film deposition methods  

Since the development of materials for electronic devices and circuits, a range of 

techniques have been used to obtain thin-films[38, 39]. Planar processing relies on the deposition 

of layers of materials which can be selectively placed one after another. Each layer is used to 

build what will become device components through, for example, photolithographic 
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techniques[40, 41]. In nanoelectronics one focus is upon the reduction of device feature sizes. 

However, for applications beyond experimental curiosity, it is necessary to find ways to quickly 

and reproducibly deposit thinfilms which, for hybrid electronic materials, may be newly 

synthesized materials (i.e.-GUMBOS, Chapter 4) or nanostructures (i.e.-carbon nanotubes, 

Chapter 5). Of the many methods of thin film deposition, one promising technique for meeting 

the aforementioned criteria is that of electrospraying, the particulars of which are introduced 

below. 

Figure 2-1: Number of publications since 1996 based on a literature search (Web of Science) 

using the keywords “hybrid materials” and “electronic.” 
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 Electrospraying  2.3.1:

Intense research into the economical production of nanoparticles and nanofibers in recent 

years has driven the search for new technologies. Electrospraying, a century old technique for 

producing fibers, has generated newfound interest as a means of producing various 

nanostructures [42-51]. Most notably, electrospraying is used in nano-electronics[42], tissue 

engineering[52], and the deposition of carbon nanotubes[53]. Our long-term interest in 

electrospraying stems from the desire to generate thin-films of nanoGUMBOS and carbon 

nanotubes as may be used in the development of hybrid electronic devices.  Words such as 

“electrospraying” and “electrospinning” are often used interchangeably, although a distinction 

may be made depending on the type of deposition i.e., a viscoelastic solution (polymer, 

electrospinning) or otherwise (electrospraying). Moreover, depending on the nature of the 

applied electric field, electrospraying is considered to be of the direct current (DC) or of the 

alternating current (AC) type. DC electrospraying has been extensively used in laboratory and 

industrial settings due to its simplicity and was the method of choice for our work.  

The effect of high electrostatic force on a liquid drop is of immense importance in 

electrospraying. When a liquid droplet is subjected to high electrostatic force, there is a decrease, 

albeit nonlinear, in the net surface tension of the droplet.  

 ϒ =  ϒ0 − 𝐸0 (2-1) 

 

A simple relation for the following can be given as equation (2-1), where ϒ and ϒ0 are the net 

and initial surface tension on the droplet, respectively, in a constant electric field (E0). The graph 

in Figure 2-2 depicts the change in droplet net surface tension with respect to an increasing 

potential difference.   
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Figure 2-2: Surface tension as a function of applied potential (Reprinted with permission 

from[45]. Copyright (1987) Elsevier) 

 

As the potential difference between the nozzle and the target is increased from 0 kV to 

4.5 kV ( Figure 2-3, left to right) on a hexadecane pendant droplet, shape distortion of the droplet 

can be observed[45].  If the potential across the droplet is further increased, an electro-

hydrodynamic (EHD) force overcomes the surface tension (E0 > ϒ0), thus causing the droplet to 

split apart into several smaller droplets. In a uniform electric field, this process is repeated until 

the electrostatic field is smaller than the surface tension of the droplets, in turn, causing the 

droplets to become smaller in diameter. 
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 Figure 2-3: Pendant drops of hexadecane at increasing potential, showing distortion of the drop 

due to the applied field a) 0 kV b) 1.0 kV c) 2.0 kV d) 3.0 kV e) 4.0 kV and f) 4.5 kV. (Reprinted 

with permission from[45]. Copyright (1987) Elsevier) 

 

 Needle electrospraying  2.3.2:

Needle electrospraying is a widely used electrospraying technique. A schematic of needle 

electrospraying is shown in Figure 2-4. As the potential on the needle is increased, the resultant 

spraying broadly operates in three modes as follows: i) dripping mode, ii) pulsating mode, and 

iii) jetting modes.  

 

2.3.2.1: Dripping mode 

When no potential is applied between nozzle and grounded collector, liquid pumped 

through the nozzle drips down in the form of large droplets. As the potential is increased, 

gradually EHD forces emerge causing deformation of the droplets. In 1882 Lord Rayleigh, L. et 

al. investigated the theoretical limit of charge density on a droplet, after which the original 

droplet splits into smaller ones. This phenomenon is called the Rayleigh Limit[54].  Droplets are 

drawn towards the collector depending on the applied potential and the drop size.  In fact, as 

droplets emerge from the end of the capillary, electrostatic force pulls them, thus increasing the 

dripping rate. This is the basis for the “dripping mode.” 
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Figure 2-4: Schematic of Needle Electrospraying 

2.3.2.2: Pulsating mode 

As the voltage is slightly increased from the dripping mode, charge density on the 

droplets increases. This induces instability in the droplets which, in turn, causes them to eject 

even smaller droplets or long filaments.  As filaments are formed, they break down into a burst 

of droplets.  This is repeated in cycles and is known as “pulsating mode.” 

 

2.3.2.3: Jetting modes 

As the voltage (and electrostatic field) is further increased above pulsating mode, liquid 

from the filament formed in pulsating mode is split up into fine droplets with narrow diameter 

distribution. A series of jetting modes are formed, starting with a stable cone jet mode, and a 

conical structure is observed at the apex of the nozzle (as shown in Figure 2-5). Oscillating and 

precession modes are caused by induced instability in the cone jet mode due increased electric 

field. Further increases in potential create multiple jets along the perimeter of the capillary. This 
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leads to the stabilizing of these jets and the formation of a multi jet mode. Figure 2-5 depicts the 

series of modes of electrospraying using the capillary method. As electric field is increased even 

further, depending on the solution properties, a steady and stable jet is formed. 

 

 

Figure 2-5:  Various modes of electrospraying (Reprinted with permission from[42]. Copyright 

(2008) Elsevier) 

 

 Electrospraying parameters 2.3.3:

The size of the droplets or fiber formation depends on several factors including solution 

properties, distance between the capillary and collector, potential applied, flow rate, shape of the 
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collector, and the assumption that temperature and the ambient (air) are constant. The versatility 

of electrospraying lies in its ability to tune several of the aforementioned to achieve the desired 

droplet or fiber size. Ultimately, size distribution can be controlled using these parameters as 

well [43, 55-57].  

 

2.4: Analytical Methods and Instruments Used   

Several analytical methods are used in this work to characterize and analyze the materials 

we studied. This section gives a brief overview of methods and instruments used in this work.  

 

 Atomic Force Microscopy   2.4.1:

Since the 1980s, the development of practical instrumentation for various forms of 

scanning probe microscopy has opened up an entirely new era of understanding with respect to 

the surface properties of materials[3-5].  A case in point would be the realization of Atomic 

Force Microscopy (AFM) in 1986 by Binning, Quate, and Gerber[6].  AFM uses a sharp tip 

whose radius at its widest point is in the nanometer range to scan the topography of a sample.  

Likewise, surface forces with high precision, on the order of 10
-18

 N/m, can be measured using 

AFM.  The imaging resolution of this technique is in the range of nanometers, also due to the 

sharp tip, and is not limited by wavelength like other optical or electron-based instruments.  The 

dependence of AFM on physical interaction with a surface provides ample data in terms of 

surface forces, viscoelasticity, and Van der Waals forces.  AFM is also one of the few 

instruments that can give three dimensional images of surfaces at the nanoscale.  

For our work we used a Pacific Nanotechnology (now Agilent) NanoR AFM. A 

schematic of the essential components of this instrument is shown in Figure 2-6.  As indicated, 

the tip (attached to a cantilever) is rastered across the surface of a sample. As the tip is moved 
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along the surface, light from a laser is reflected off of the back of the cantilever onto a 

photodetector resulting in the transfer of the mechanical motion of the tip-cantilever combination 

to that of an optical signal received by a photodetector.  This detector serves as the source of an 

electrical signal to a highly sensitive and precise controller and feedback system. As the tip 

interacts with the surface, via van der Waals attraction or even direct physical contact with the 

particles, the feedback system directs the tip to respond in the Z-direction, depending on the 

amount of deflection in the cantilever.  Simultaneously, the tip follows the envelope of the 

surface line-by-line, as controlled by an X-Y motion generator, which guides the direction and 

speed of the raster scan.  Ultimately, each scan line of data is added to form an image matrix 

which itself can be manipulated and analyzed by the AFM system software. Both two and three 

dimensional images of the scanned surface can be generated. 

 

 

Figure 2-6: Schematic of the essential components of an Atomic Force Microscope 

 

2.4.1.1: Feedback Control   

The feedback control for an AFM consists of force sensors, a feedback control circuit, 

and error signal generation. The feedback control circuit continuously monitors the force sensors 

and compares their data to a set point. The difference between these sensors and set point 
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generates a corresponding error signal. A proportional Z displacement generated results in a new 

error signal.  This is a form of negative feedback which is repeated to minimize the overall error 

signal by moving the Z Piezo accordingly.  For a regular scan, XY movement in the form of a 

raster scan, is achieved by feeding saw-tooth waveforms of different widths.  

 

2.4.1.2: Piezoelectric transducers   

Materials which change their physical size due to the application of charge are called 

piezoelectric materials. Their accuracy and reproducibility of size are critical to controlling the 

AFM tip at the nanometer scale. Piezoceramics have a natural resonance frequency that depends 

on their size and shape. Electronically, piezoelectric materials act as capacitors that, when 

charged, change dimensions and remain at that size and shape until they discharge. Circuits 

driving piezoelectrics are usually large capacitor driving circuits. The direction and magnitude of 

change depends on several factors such as the material, crystal orientation, and applied voltage.  

Piezoelectric materials have hysteresis and creep.  Creep occurs due to the application of voltage 

impulses across the crystal.  However, the relationship between crystal dimensions and the 

applied voltage is usually not linear, exhibiting an undesirable hysteresis, drift, creep and other 

nonliearlities in the tip operation. Inherent nonlinearity, hysteresis, creep and drift are 

compensated for by a combination of software and hardware modifications [58-60]. Mokaberi et 

al have investigated the elimination of creep and hysteresis by using an in-situ computation of 

compensation factors[61]. Inverse model parameters are used to generate a desired input signal 

to correct the creep, drift and hysteresis. The application of a compensation factor results in high 

accuracy and predictability of the piezoelectric transducers. 
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2.4.1.3: Force Sensor   

A force sensor measures the van der Walls forces between the tip and the surface. This 

sensor is very sensitive to any changes down to the picoNewton range.  Light-lever AFM force 

sensors are the most widely used as shown in Figure 2-6. When light from a diode laser shines 

on the back of the cantilever, this light is deflected and impinges upon a photo-detector array.  

Typically, the light must be aligned manually when a new cantilever is installed to optimize 

reflection from the cantilever into the photo-detector. Ultimately, changes in the topography of a 

sample are reproduced in this light-lever sensing arrangement.  Thus, mechanical motion is 

translated to an opto-electronic signal which can be processed to produce an AFM image.  

 

2.4.1.4: Image processing  

Movement of the tip up and down as it scans along the line causes deflection of the 

incident laser signal. This deflection is measured by the photodetector, which generates a 

proportional electric signal. A continuous acquisition of the deflection caused by the tip is 

recorded to generate the topography of the observation as shown in Figure 2-7. The acquired line 

images are stored and stitched together by the software to generate a three dimensional image. 

Since, all of the experiments are conducted with a NanoR model Pacific Nanotechnlogy (now 

Agilent) AFM,  Nanorule software is used for the post-processing of the images. The latter 

includes application of image processing techniques to remove artifacts generated by the AFM. 

Nanorule software is also used for measurements on the images to estimate height, width, and 

area of the three dimensional structures.  
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Figure 2-7: Topographic image generated by the AFM tip 

 

2.4.1.5: Modes of AFM operation   

AFM is used to measure several physical properties such as topography, viscoelasticity, 

and surface roughness and can be used for surface modification as may be needed in conjunction 

with lithographic processing.  Determination of this wide range of properties requires operating 

the AFM in several modes, depending on the material type and the property to be measured.  

These operating modes have been widely divided into two categories of Contact Mode and 

Vibrating mode as follows: 

a. Contact Mode   

In contact mode, the tip is in contact with the sample surface. This contact is actually 

with the thin layer of water vapor and contaminants that coat the sample in an ambient room 

temperature AFM operation. (However, the latter is not an impediment to imaging the nanoscale 

topology of the sample.) To obtain an image a constant force is applied as the AFM tip is 

rastered across the sample. Negative feedback from the force sensor is used to maintain a 

constant force; any deviation from the setpoint is used to determine the actual topography of the 

sample. Several lines generated in this way are stitched together by the software to generate a 



19 
 

topographical image. Contact mode is used for “hard” (solid) as opposed to “soft” (biological, 

highly malleable, or liquid) materials.  High resolution images on the order of <1 nm have been 

reported using this method[62].  Contact mode tips typically have a resonant frequency of less 

than 50 kHz and a lower Young's modulus to allow for the degree of flexibility needed to follow 

the topography of rough surfaces.  A typical contact tip can dynamically adapt up to several 

microns of variation in height in this mode of operation.  

b. Vibration Mode  

Scanning over soft and semi-elastic samples is difficult using contact mode AFM. 

Contact mode is typically used to provide information on sample topography or for surface 

potential mapping. However, to know the viscoelastic and friction properties of a material AFM 

is operated in vibration mode.  In this mode the AFM tip is oscillated at a high frequency on the 

order of 170 kHz. As the tip vibrates over the surface, there is a change in tip frequency due to 

interaction with surface forces (i.e.-attractive, repulsive, van der Walls). The change in frequency 

compared to the initial frequency is used to generate a proportional voltage. This proportional 

voltage is measured to estimate the actual topography of the sample.  Deviation from  the actual 

frequency due to attractive and repulsive forces is recorded to generate an image in this mode.   

Vibrating mode tips are stiff (high Young’s modulus) and have a high resonant frequency 

(several hundreds of kHz).  Depending upon how closely the tip is oscillated with respect to the 

surface, vibration mode is categorized into two types i) close contact and ii) intermittent contact.  

In close contact mode the tip oscillates inside the natural “contamination layer” that resides on 

any material exposed to the atmosphere.  Scans taken in close contact mode yield high resolution 

images.  In intermittent mode the tip is oscillated just outside of the contamination layer.  This 

mode requires a greater amplitude of oscillation to overcome surface capillary forces.  The risk 



20 
 

of damaging the tip is higher in the intermittent mode.  Close contact is the more frequently used 

of the vibrational operating modes. 

 

2.4.1.6: Force-Distance Curves  

The precise control of vertical distance in an atomic force microscope down to 0.1 nm 

and force sensitivity of 1 pN makes it an ideal instrument for measuring the surface forces of 

materials.  When an AFM tip in contact with a surface is raised at a constant velocity, the surface 

forces on the tip cause a change in the tip’s velocity and shape (low Young’s modulus).  These 

changes in shape and velocity can be monitored and recorded using the Z force sensor of the 

AFM.  The change in shape or displacement of the tip is proportional to surface forces which are 

reflected in the deflection of the cantilever.  Hooke's law equation (2-2) of proportionality is used 

to convert the Z displacement obtained from the AFM to force data.  

 𝐹 = 𝑘𝑥 (2-2) 

 

where k is the force constant and depends on the Young's modulus of the tip. A typical force-

distance curve as obtained from an AFM is shown in Figure 2-8.  Force distance curves provide 

information about the tip-sample interaction, F(D), and the elastic force of the cantilever. Figure 

2-8(a) represents the tip-sample interaction force. The lines 1-3 represent the elastic force of the 

cantilever.  Each point on (b) represents an equilibrium reached by the tip, due to the cantilever 

deflection, caused by the inherent elastic force of the cantilever and the tip-sample interaction. 

Plotting the force-distance curves of a material can provide information about properties such as 

viscoelasticity, surface charge densities, and the hydrophobicity of the material[63].  
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Figure 2-8: Graphical construction of an AFM force-displacement curve. In panel (a) the curve 

F(D) represents the tip-sample interaction and the lines 1, 2, and 3 represent the elastic force of 

the cantilever. At each distance the cantilever deflects until the elastic force equals the tip-sample 

force and the system is in equilibrium. The force values fa, fb, and fc at equilibrium are given by 

the intersections a, b, and c between lines 1, 2, and 3 and the curve F(D). (Reprinted with 

permission from[63] . Copyright (2011) American Chemical Society) 

 

 Conductive Probe Atomic Force Microscopy (CP-AFM)   2.4.2:

Conductive Probe Atomic Force Microscopy converts an AFM into an instrument from 

which nanoscale electronic properties can be obtained and characterized. As per its name, CP-

AFM uses a conductive tip as an electrode.  Typical CP-AFM tips consist of silicon nitride 
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coated with gold (Au) or platinum (Pt).  The extra layer of conductive material coating increases 

the diameter of the tip and its force constant, thus resulting in stiffer tips. Therefore, higher 

resolution imaging is sacrificed in lieu of electronic characterization.   

Parametric current-voltage (I-V) characteristics can be measured using this method.  

Figure 2-9 shows the schematic of a CP-AFM where the conductive Pt coated probe acts as one 

electrode and a gold coated conductive substrate acts as another electrode, thereby forming a 

metal (Pt)-particle(nanowire or nanoparticle)-metal (Au) junction.  Current is applied through the 

sample via the tip, and the corresponding voltage is measured. In order to limit the possibility of 

a short circuit, external limiting resistors are placed in series.  A Keithley 4200 Semiconductor 

Characterization System (SCS) was used in our experiments in the process of obtaining 

electronic material sample data and as a protective device.  For example, the SCS can be 

programmed to limit the amount of current, thereby preventing damage to the tip.  The 

conductive tips were obtained from MikroMasch. Our typical tip of choice is MikroMasch model 

DPE 14 /no Al. It is made from etched silicon with a 30 nm Pt coating. The radius is less than 40 

nm and the height is approximately 20-25 µm with a cone angle below 40
o
 and a resonant 

frequency of approximately 160 kHz. The DPE14 with Pt coating has a force constant of 

approximately 5.7 N/m. As is necessitated by CP-AFM measurements, lower force constant tips 

are used in the contact mode (section 2.4.1.5:a ) now required for electrical characterization. 

Using the aforementioned contact mode, images of CP-AFM samples can be obtained, 

albeit with less than the highest possible resolution (due to the coating on the tip).  Therefore, for 

this work, prior to the I-V measurements, AFM images were obtained. We used a Pacific 

Nanotechnology tip (Model: P-MCU-SICT-O) in contact mode. Our images were processed 

using our instrument’s manufacturer supplied NanoRule post processing software for the 
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removal of artifacts and imaging errors. The tips used for all of the imaging and CP 

measurements were chosen carefully to minimize delamination or adsorption of the particles to 

the tip surface. 

 

 

Figure 2-9: Schematic of a Conductive Probe Atomic Force Microscopy system 

 

 Scanning Electron Microscopy  2.4.3:

Scanning Electron Microcopy uses a focused electron beam to raster scan the surface of 

the specimen. The interaction of the electron beam with the specimen causes both elastic and 

inelastic scattering of electrons.  Elastically scattered electrons with a scattering angle of more 

than 90
o
 are known as backscattered electrons.  Inelastic scattering is caused by a substantial 

transfer of energy from the incident electrons to the atoms of specimen. Incident electrons 

ionizing the sample atoms lead to secondary electrons (SE) and also generate Auger electrons, x-

rays, and produce cathodoluminescence. Secondary electrons emitted due to inelastic scattering 

have low energy and are usually collected in the proximity of the sample using a positively 

biased detector. Secondary electrons are widely used to obtain topographic and morphological 

information from the sample.  SE signal can resolve structures less than 10 nm, depending on the 

material. The incident electron beam of the SEM is focused using a magnetic lens and is raster 

scanned across the sample. Organic samples emit low secondary and back scattered electrons due 

to their composition of low atomic number elements. Organic samples act as insulating materials 

resulting in a charging phenomenon. A thin (<5 nm) layer of conductive gold or platinum can be 
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sputter-coated on non-conducting and organic samples to create the conductive surface necessary 

for characterization using SEM[64].  

 



25 
 

CHAPTER 3: MOTIVATION AND RESEARCH GOALS 

In this work, we investigate—1) the electronic characteristics of an essentially new class 

materials as well as, 2) new techniques of thin-film deposition for hybrid electronic materials 

(HEMs).  Item 1 is based upon a form of nanomaterial, fairly recently introduced into the 

literature by Professor Isiah M. Warner (LSU Dept. of Chemistry)[65]. Known as GUMBOS, or 

a Group of Uniform Materials Based on Organic Salts, these materials have already exhibited 

potential “device-useful” properties such as fluorescence and magnetism [66-68].  GUMBOS 

piqued our interest as a potential component of next-generation HEMs intended for use in 

nanoelectronic devices, and to the best of our knowledge, this work represents a first-time 

investigation into their electrical properties.  Item 2 above is based upon our innovations in  

techniques and equipment that we have newly designed to deposit thin-films of HEMs  involving 

new materials such as GUMBOS as well as the more extensively studied carbon nanotubes 

(CNTs).  Note that for the thin-film aspect of our work, we included CNTs which, albeit having 

more well-known material properties, do still present challenging problems in term of their 

deposition and integration into device technology. By working to understand the physical 

characteristics and fundamental electronic phenomena of a unique component of HEMs (i.e.-

GUMBOS), while researching and developing the means by which to successfully synthesize 

and deposit HEM thin-films (i.e.-GUMBOS/CNTs), our research contributes to the scientific 

understanding of new materials while addressing the engineering innovations needed for their 

application to next-generation nanoscale device technology.  
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CHAPTER 4: NANOGUMBOS: CHARACTERIZATION AND THIN-FILM 

DEPOSITION 

 

4.1: Introduction  

The HEMs of interest in this work have originated from a well-known category of 

classification of substances known as ionic liquids (ILs).  Ionic liquids are compounds whose 

melting point is less than or equal to 100 
o
C.  They consist of free anions and cations in the liquid 

form.  Although these compounds have been a part of the chemistry community since 1914, 

recent increase in interest in ILs is due to their use in solar cells[69, 70] as green solvents[71, 

72], biomedical imaging[73] and fluorescence[74].  Ionic liquids can be carefully tuned for the 

required application by selecting and synthesizing particular combinations of anions and cations.  

Inorganic ionic compounds like table salt have small ions compared to typical ILs which have 

large and asymmetric ions that are both organic and inorganic.  The asymmetry in the anion and 

cation sizes is one of the factors that affect their melting point.  These relatively large ions are 

extremely tunable, thus making these materials highly functionalizable.  The latter allows for the 

potential realization of a range of physical and chemical properties such as conductivity, 

fluorescence, and chirality.  Figure 4-1 shows commonly used anions and cations of well-known 

ILs. There are several potential sites that can be functionalized to obtain the desired properties.  

 

4.2: Group of Uniform Materials Based on Organic Salts (GUMBOS) 

One of the challenges in the use of conventional organic materials in consumer 

electronics is their limited thermal stability.  Ionic liquids whose melting points exceed room 

temperature (25 
o
C) are called frozen ionic liquids (FILs)[76]. Although much less extensively 
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studied than ILs, FILs have been used as solvents for polar and non-polar species[75].  Rutten, et 

al.(2007) used FILs as substrates for rewriting imaging[73].  However, in the overall scheme of 

IL research, FILs have generally taken a “backseat” in terms of detailed scientific investigation 

and fruitful engineering applications. 

 

 

Figure 4-1: Commonly used anions and cations of Ionic Liquids (Reprinted with permission 

from [75]. Copyright (2011) American Chemical Society) 

 

Thus, the synthesis of a Group of Uniform Materials Based on Organic Salts 

(GUMBOS), by the Warner Group, has come into the fore as a major breakthrough in IL and 

particularly FIL research[77-83]. GUMBOS are FILs whose melting points are in the range of 25 

to 250 
o
C.  The precursor to the materials which came to be known as GUMBOS was first 

reported in a 2008 NanoLetters article, also from the Warner Group, which described melt-

quench-emulsion as the method of micro and nanoparticle synthesis [65]. GUMBOS can be 

tuned to exhibit the wide range of physical and chemical properties for which ILs are known.  

Moreover, through functionalization of selected anions and cations for specific applications, 

GUMBOS have exhibited characteristics such as fluorescence, magnetism, and even anti-

microbial effects [80]. For our interests, GUMBOS have high ionic conductivity and high 

thermal stability which, in turn, bode well for potential HEMs device applications.  
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 Synthesis of GUMBOS: General Techniques 4.2.1:

Although the scientific focus of our work has been primarily upon the characterization of 

GUMBOS and nanoGUMBOS for their potential amenability to next-generation nano-devices, 

we have been likewise motivated, from an engineering (and possibly long-term commercial) 

perspective, by the facile and relatively economical methods of preparation of these materials.  

Thus, in the way of background information, a brief description of some of the primary 

techniques for synthesizing these materials is now in order. 

 

4.2.1.1: Micro-emulsion quench approach   

This method of preparation was originally reported by the previously referenced 2008 

NanoLetters by Tesfai et al.  It uses an oil-in-water micro-emulsion approach for the creation of 

micro and nanoparticles. The IL 1-butyl-2,3-dimethylimidazolium hexafluorophosphate 

([bm2Im][PF6]) has a melting point of 42 
o
C.  This [bm2Im][PF6] is rinsed in de-ionized water 

and heated to 70 
o
C in a sealed vial with ultrapure water to melt the IL. The dispersion of the IL 

along with the DI water can be seen in Figure 4-2. The solution is uniformly mixed using a 

homogenizer, while maintaining the temperature at 70 
o
C for 10 minutes.  Once a uniform 

mixture as desired is obtained, the resulting solution is sonicated for 10 minutes.  The mixture is 

then rapidly cooled by placing it in an ice bath.  This last step allows the temperature to drop 

drastically and thus form particles. The diameter of the nanoparticles was reported to be in the 

range of 60 to 120 nm. The simplicity of synthesis shows great potential for scalability. 
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Figure 4-2: (as quoted from [65]) Micro quench emulsion method (A) Solid [bm2Im][PF6] in 

water at room temperature; (B) molten-state [bm2Im][PF6] phase separated from water at 70 
o
C; 

(C) o/w emulsion containing [bm2Im][PF6] as the inner phase; (D) [bm2Im][PF6] nanoparticle 

crop suspended in water at room temperature. In these images, [bm2Im][PF6] was stained with a 

water-insoluble dye (Nile Red) for visualization purposes. (Reprinted with permission from [65]. 

Copyright (2008) American Chemical Society) 

 

4.2.1.2: Micro-emulsion quench with emulsifying agent   

In this method, 1-butyl-2,3-dimethylimidazolium hexafluorophosphate [bm2Im][PF6] is 

rinsed in de-ionized water.  Brij 35, an emulsifying agent, is added to ultrapure de-ionized water 

making it 1% Brij 35 solution.  The solution is heated to 70 
o
C and [bm2Im][PF6] is added to the 

heated Brij 35 solution drop by drop while homogenizing.  This is similar to the method (without 

emulsifying agent) above.  The resulting solution is sonicated for 10 minutes to generate a 

uniform mixture.  Following this, a rapid chilling is done by placing the solution in an ice bath, 

thereby decreasing the temperature far below the melting point.  Here again, nanoparticles are 

formed. These nanoparticles are reported as having average sizes from 38 to 52 nm[65]. This 

result illustrates how the addition of the emulsifying agent has stabilized the solution resulting in 

even smaller nanoparticles. Detailed synthesis steps for the above two methods are reported 

elsewhere.[65]   
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4.2.1.3: Reverse micellar templating method   

The reverse micellar templating method uses two precursor salts for an ion-exchange 

reaction. Two separate water-in-oil microemulsions are prepared using the precursor salts. 

Combining both micro emulsions in a 1:1 ratio due to diffusion followed by an ion-exchange 

reaction results in the formation of nanoGUMBOS.  Tesfai, A., et al. (2009) synthesized 

magnetic and non-magnetic nanoparticles using this method [68]. The series of steps of the 

reaction are illustrated in the Figure 4-3. The sizes of the resulting particles can be controlled by 

the concentration of the solution. 

 

 

Figure 4-3: Basic processes for nanoparticle formation within reverse micelles. Individual 

reverse micelles are shown without free surfactants: (a) [Bm2Im][BF4] nanoGUMBOS; 

(b)[Bm2Im][FeCl4] magnetic GUMBOS particles. (Reprinted with permission from[68] . 

Copyright (2011) Royal Society of Chemistry) 

 

 Synthesis of nanoGUMBOS: Specific Species 4.2.2:

NanoGUMBOS are known as “designer nanoparticles” since modifications to the cation-

anion combinations of which they are comprised result in the manifestation of a host of 

interesting physical (i.e.-melting point, viscosity) and chemical (i.e.-fluorescence, antimicrobial 
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effects) properties[84]. In this work we have investigated several GUMBOS based candidates for 

their electrical characteristics. As an effectively a new class of materials with a wide range of 

potential applications, our research has sought to determine electro-optical characteristics of 

these materials that may be amenable to nanoscale electronics. This chapter describes the 

synthesis of various nanoGUMBOS candidates for electrical characterization.  

 

4.2.2.1: Rhodamine 6G Tetraphenylborate ([R6G][TPB])  

Detailed description of [R6G][TPB] synthesis can be obtained from [85]. In brief, 

rhodamine 6G Tetraphenylborate ([R6G][TPB]) is prepared by anion exchange reaction starting 

with two precursor salts, rhodamine 6G chloride ([R6G][Cl]) and sodium tetraphenylborate 

([Na][TPB]).  The aforementioned are used for the metathesis reaction in a biphasic mixture of 

water and dichloromethane (DCM).  This reaction results in the formation of [R6G][TPB] 

GUMBOS, which are rinsed several times with DI water.  Repeated rinsing removes the NaCl 

by-product as [R6G][TPB] is insoluble in water.  The DCM solvent is dried to obtain the dry 

[R6G][TPB].  Figure 4-4 shows the chemical structure of the [R6G][TPB].  

 
 

Figure 4-4: Chemical structure of [R6G][TPB] (Reprinted with permission from [85]. Copyright 

(2011) Royal Society of Chemistry) 
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(a) [R6G][TPB] nanoparticles  

Nanoparticles of [R6G][TPB] are prepared by using the melt-quench-emulsion method. 

In this case, 100 µL of 1 mM [R6G][TPB] ethanol solution is added to 5 mL of DI water.  The 

resulting solution is sonicated for 5 minutes. Filtration of the water and ethanol was performed 

using 0.45 μm nylon membrane filters prior to preparation of the nanoGUMBOS.  The 

suspended nanoGUMBOS in DI water were then aged for 1 hour in the dark.  

 
 

Figure 4-5: Fabrication of [R6G][TPB] nanowires and nanoarrays by AAO templating. 

(Reprinted with permission from [85]. Copyright (2011) Royal Society of Chemistry) 

 

(b) [R6G][TPB] nanowires  

A detailed description of the preparation of [R6G][TPB] nanowires can be obtained from 

[85]. A nano-porous anodic aluminum oxide (AAO) template was used to synthesize nanowires 

of [R6G][TPB]. As illustrated in Figure 4-5, an anodic template is submerged in a saturated 

solution of [R6G][TPB] in acetone and heated to 60
o
C.  This is done to evaporate the acetone 

and to fill up the nanopores with [R6G][TPB]. The anodic template itself is dissolved using a 1.0 

M phosphoric acid solution.  What remains are the [R6G][TPB] 1D nanowires.  These nanowires 

are rinsed in DI water several times and dried to obtain nanowire arrays. Figure 4-5 shows the 
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series of steps needed to form the 1D structures.  Electrical characteristics of [R6G][TPB] 

nanowires are discussed in the results section 4.4.2:.  

 

4.2.2.2: Pseudoisocyanine bis(pentafluoroethanesulfonyl)imide [PIC][BETI]  

A detailed description of [PIC][BETI] synthesis is provided in[86]. Pseudoisocyanine 

bis(pentafluoroethanesulfonyl)imide [PIC][BETI] is prepared by an anion exchange method.  

Precursor salts, pseudoisocyanine (PIC) iodide and lithium bis(pentafluoroethanesulfonyl)imide 

(LiBETI), were dissolved in a biphasic solution of methylene chloride and water (2:1, v/v) and 

stirred for a day at room temperature.  The resultant solution is washed thoroughly using DI 

water to remove the LiI by-product.  Methyl chloride is removed by vacuum drying at 40 
o
C to 

thereafter obtain [PIC][BETI] by freeze-drying.  Figure 4-6 shows the flow of the reaction and 

the chemical structure of [PIC][BETI].  The melting point of [PIC][BETI] is determined to be in 

the range of 169-171 
o
C.  NanoGUMBOS of [PIC][BET] are prepared by using an additive-free 

reprecipitation method as discussed in [66, 87].  A 150 µL of 1 mM [PIC][BETI] methanol 

solution is added to the 5 mL of DI water.  This solution is sonicated for 5 minutes, obtaining 

nanoGUMBOS of [PIC][BETI].  Optical characterization is discussed elsewhere [86]. Figure 4-7 

shows the TEM and SEM micrographs of [PIC][BETI] nanoGUMBOS.  Rod-like structures with 

an average length of 0.8-2.2 µm and diameter of 60-100 nm are observed.  

 

Figure 4-6: Synthesis of [PIC][BETI] (Reprinted with permission from[86]. Copyright (2012) 

Royal Society of Chemistry) 
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Figure 4-7: a) TEM and b) SEM micrographs of the [PIC][BETI] nanoGUMBOS (Reprinted 

with permission from[86]. Copyright (2012) Royal Society of Chemistry) 

 

4.2.2.3:  Pseudoisocyanine bis(trifluoromethanesulfonyl)imide [PIC][NTf2]  

A detailed description of [PIC][NTf2] synthesis is provided in[86]. Pseudoisocyanine 

bis(trifluoromethanesulfonyl)imide [PIC][NTf2] is prepared by an anion exchange method.  

Precursor salts, pseudoisocyanine (PIC) iodide and lithium bis(trifluoromethanesulfonyl)imide 

(LiNTf2) were dissolved in a biphasic solution of methylene chloride and water (2:1, v/v) and 

stirred for one day at room temperature.  The resulting solution is washed thoroughly using DI 

water to remove the LiI byproduct.  Methyl chloride is removed by vacuum drying at 40 
o
C and 

then used to obtain [PIC][ NTf2] by freeze drying.  Figure 4-8 shows the flow of the reaction and 

the chemical structure of the [PIC][ NTf2].  A melting point of [PIC][ NTf2] is determined to be 

in the range of 243-248 
o
C, notably quite high for an ionic liquid-based material.  

NanoGUMBOS of [PIC][NTf2] are prepared by using an additive-free reprecipitation method 

discussed in [66, 87].  Next, 150 µL of 1 mM [PIC][ NTf2] methanol solution is added to the 5 

mL of DI water.  The resulting solution is sonicated for 5 minutes, obtaining nanoGUMBOS of 

[PIC][NTf2].  Optical characterization is discussed elsewhere [86]. Figure 4-9 shows the TEM 
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and SEM micrographs of the [PIC][ NTf2] nanoGUMBOS.  Interestingly, diamond shaped 

structures are observed with an average length of 0.8-2.2 µm and diameter of 60-100 nm. The 

diamond shape was determined to be due to a head-to-tail type of molecular orientation stacking 

within the [PIC][NTf2].  

 
Figure 4-8: Synthesis of [PIC][ NTf2] (Reprinted with permission from[86]. Copyright (2012) 

Royal Society of Chemistry) 

 

 
Figure 4-9: a) TEM and b) SEM micrographs of the [PIC][ NTf2] nanoGUMBOS (Reprinted 

with permission from[86]. Copyright (2012) Royal Society of Chemistry) 

 

4.2.2.4:  Thiacarbocyanine (TC) nanoGUMBOS  

Thiacarbocyanines, a family of dyes, has been of great interest due to their aggregates 

and the structures which they form. The presence of the [BETI−] anion imparts hydrophobicity 

to the GUMBOS, creating a variety of ionically self-assembled structures.  GUMBOS of TC 

dyes are prepared by using thiacarbocyanine (TC) dyes 3,3-diethylthiacyanine iodide ([TC0][I]), 

3,3-diethylthiacarbocyanine iodide ([TC1][I]), 3,3-diethylthiadicarbocyanine iodide ([TC2][I]) 
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and lithium bis(pentafluoroethane)-sulfonimide (LiBETI) salts at a molar ratio of 1 to 1.1.  The 

reaction was performed in a biphasic mixture of water and dichloromethane (DCM) (1:5, v/v) 

under stirring for 24 hours. The remaining solution is washed thoroughly using DI water to 

remove the LiI byproduct.  DCM is removed by vacuum drying at 40 
o
C to obtain TC GUMBOS 

by freeze-drying.  The chemical structure of TC GUMBOS is shown in Figure 4-10.  

 
Figure 4-10: Chemical structure of TC GUMBOS (Reprinted with permission from [88]. 

Copyright (2012) American Chemical Society) 

 

TC nanoGUMBOS are prepared by using the additive-free reprecipitation method 

discussed in detail elsewhere [66, 87].  Here 100 µL of 0.1 mM TC GUMBOS ethanol solution 

is added to the 5 mL of DI water. The resulting solution is sonicated for 5 minutes and allowed to 

equilibrate for 10 minutes, obtaining nanoGUMBOS of TC GUMBOS.  SEM images (Figure 

4-11) of [TC0][BETI], [TC1][BETI], [TC2][BETI] nanoGUMBOS show that each have unique 

morphology and size. . Detailed synthesis and optical characterization is discussed elsewhere 

[88].  
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Figure 4-11: SEM micrographs of (A) [TC0][BETI], (B) [TC1][BETI], and (C) [TC2][BETI] 

aggregates (Reprinted with permission from [88]. Copyright (2012) American Chemical Society)  

 

4.3: Experimental setup 

 Substrate preparation 4.3.1:

Glass slides (Corning plain microscope slides, thickness ~1 mm) were cleaned with warm 

piranha solution (H2SO4:H2O2=1:1) for about 30 minutes to remove any organic impurities. A 

thin layer of gold (thickness ~200 nm) was deposited onto the glass by thermal evaporation. The 

gold coated glass slides were further cleaved into smaller pieces (1-1.5 x 1-1.5 cm
2
) to serve as 

substrates for CP-AFM sample characterization. 

 

 Atomic Force Microscopy (AFM) imaging  4.3.2:

A NanoR model atomic force microscope (AFM) from Pacific Nanotechnology (now 

Agilent) with a conductive tip is used for electrical characterization. The tip (DPE 14 /no Al), 

purchased from MikroMasch, is made of silicon with a 30 nm platinum (Pt) coating. The radius 

is less than 40 nm and height is ~20-25 µm, cone angle less than 40
o
 with resonant frequency of 

approximately 160 kHz and force constant of 5.7 N/m. The conducting probe is mounted on a 

rectangular 3.4 x 1.6 x 0.4 mm silicon chip. 
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 Conductive Probe Atomic Force Microscopy (CP-AFM) 4.3.3:

The AFM was operated in contact mode to obtain current-voltage (I-V) characteristics, 

where the conductive tip is used as one of the electrodes with the other being a gold substrate 

(section 4.3.1:), thereby forming a metal (Pt)-particle-metal (Au) junction. Prior to I-V 

measurements, AFM images were obtained by surface scanning in contact mode. The CP-AFM 

schematic is shown in Figure 2-9.  The test site for CP-AFM is determined using AFM imaging. 

Applying a constant bias of 0.25 V, the tip is lowered in small increments to detect any signs of 

change in current to detect the nanoparticles. Using the SCS, voltage is swept in 0.05 V steps 

while simultaneously measuring the current.  

 
Figure 4-12: Schematic of the dropcasting of nanoparticles suspended in solution on the gold 

coated glass substrate 

 

 Sample preparation of [R6G][TPB] nanoparticles  4.3.4:

The [R6G][TPB] nanoparticles were deposited onto the gold coated glass substrates 

(section 4.3.1:) by the dropcasting. A schematic of the dropcasting process in shown in Figure 

4-12 . The [R6G][TPB] nanoparticle solution was kept in an ultrasonic bath for 15 minutes prior 

to the deposition process to minimize aggregation of the particles in the solution.  Approximately 

10 µL of [R6G][TPB] nanoGUMBOS in aqueous solution was dispensed onto the substrates. 
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The dispensed droplet was allowed to spread out evenly on the surface and dried in ambient air 

for 24 hours before further characterization experiments. 

 

 Test structure for characterization of [R6G][TPB] nanowires  4.3.5:

[R6G]TPB nanowires were characterized using a gold (Au) inter-digitated comb or 

“finger” microstructure as shown in Figure 4-13. The [R6G][TPB] nanowires were dropcast 

across the microfabricated finger electrodes. This gold interdigitated structure served as a device 

 
Figure 4-13: Schematic of nanowires dropcasted on interdigitated structure  

 

 prototype through which the electronic responses of the nanowires were measured. All of the 

measurements were done using a Semiconductor Characterization System (Keithley 4200 SCS) 

in a custom built vacuum chamber. The schematic of the experimental setup is shown in Figure 

4-14(a). The vacuum chamber is pumped down to approximately 0.1 torr, then purged with dry 

nitrogen to maintain an inert ambient.  The bottom plate of the chamber is designed for electrical 

connections from which measurements may be recorded (Figure 4-14 (b)). 
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Figure 4-14:  (a) Schematic of the Isolation chamber with electrical characterization system (b) 

Bell jar vacuum chamber with electrical connections 
 

Gold interdigitated electrodes are fabricated using photolithography. A photolithographic 

mask was designed with interdigitated electrode spacing of 10 µm. The interdigitated structure 

was chosen to give flexibility and robustness in electronic characterization. The following 

procedure was followed for development of the interdigitated structure using optical lithography:  

i) mask design and printing, ii) spin coating of photoresist, iii) exposing and developing, iv) gold 

deposition, and v) photoresist liftoff.  

 

4.3.5.1: Mask design and printing   

The photolithographic mask was designed using AutoCAD in the LSU Division of 

Electrical and Computer Engineering’s Electronic Material Device Laboratory (EMDL) and was 

printed at the University of Illinois Urbana-Champaign.  Figure 4-15(a) shows the schematic and 

(b) actual mask image.  
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Figure 4-15: a) Schematic b) actual mask of the interdigitated structure with inter-finger distance 

of 10µm.   

 

4.3.5.2: Spin coating of photoresist  

Shipley 1813 positive photoresist was used for developing the mask template.  Glass 

substrates were cleaned and heated for 1 minute on a hot plate of 100 
o
C to remove moisture.  A 

thin layer of Hexamethyldisilazane (HMDS) is used to coat the glass as it promotes adhesion of 

the photoresist. The substrate was then spin coated with Shipley 1813 with the spin curve shown 

in Figure 4-16.  This sequence was used to achieve a target thickness of 1.4 µm.  This treated 

substrate was pre-baked at a constant 100 
o
C temperature in an Ultra Clean 100™ oven.  

 
Figure 4-16: Spin curve for photoresist Shipley 1813 
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4.3.5.3: Exposure and development of photoresist  

A Quintel 4000 ultraviolet (UV) mask aligner was used for a predetermined time (for 

Shipley 1813) to obtain uniform exposure based upon a lamp power of 150 mW per square inch 

of substrate.  The substrate was agitated in MF 354 developer for 30-45 seconds and then with 

DI water to develop the resist. This was followed by a post-bake for 1 minute at 100 
o
C to 

remove moisture and to strengthen the photoresist structure.  

 

4.3.5.4: Thermal Evaporation of gold 

Gold (Au) of 99.99% purity from Sigma-Aldrich in the form of pellets was used as 

obtained. A 0.1 µm thick Au layer was evaporated onto the lithographic structure using an NRC 

703™ Thermal Evaporator.    

 

 
Figure 4-17: a) Optical microscope image of gold interdigitated structure, b) A pair of fingers of 

the interdigitated structure 

 

4.3.5.5: Photoresist stripping and liftoff 

The Au evaporated structure was immersed into an acetone bath. The bath was agitated 

by an ultra-sonicator for approximately 45 seconds, allowing the photoresist to dissolve. The 
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resulting structure was agitated in methanol and DI water for 30 seconds each to obtain the 

desired interdigitated structure as shown in the Figure 4-17. 

 

 Sample preparation of [PIC][BETI] and [PIC][NTf2] 4.3.6:

[PIC][BETI] and [PIC][NTf2] are characterized using CP-AFM. These nanomaterials are 

dropcast on the gold coated glass substrates and allowed to dry at room temperature. Dried 

samples are used to obtain AFM images, after which CP-AFM was conducted. The same CP-

AFM settings and sample preparation as discussed for [R6G][TPB] nanoparticles (section 4.3.4:) 

are used for both [PIC][BETI] and [PIC][NTf2] nanostructures.  

 

 Sample preparation of [TC2][BETI] nanoGUMBOS for vapor sensing 4.3.7:

When thiacarbocyanine (TC) GUMBOS solution is dropcast onto a substrate, as the solvent 

evaporates the nanowires therein self-assemble into nanostructures of various dimensions.  This 

is due to the [BETI-] anion as it induces hydrophobicity and high surface energy causing the 

material to form rod-like structures. Two milligrams of the dry form of [TC2][BETI] GUMBOS 

was dissolved in 5 mL of ethanol. This preparation was sonicated for 10 minutes to obtain a 

uniform solution. 

 

 Test structure for characterization of [TC2][BETI] nanoGUMBOS for vapor sensing 4.3.8:

Various forms of thiacarbocyanines are known for their chemical sensing properties[89, 

90]. In this work we have investigated [TC2][BETI] nanowires for their vapor sensing abilities. 

To do so we used two primary methods—1) Direct analyte injection (Method 1), and 2) Carrier 

gas (Method 2).  Each method involves a custom designed interdigitated (“fingers”) sample 

mount with contact pads (see section 4.3.5:) onto which [TC2][BETI] nanowires have been 
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dropcast or electrosprayed.  The finger-contact pad combination provides the necessary electrical 

connection between the nanowires and the external electronics of the experimental setup.  This 

mount is housed within a 2.3 liter glass chamber in which the gas may be contained.   

 

4.3.8.1: Direct analyte injection test structure (Method 1) 

[TC2][BETI] nanowires were dropcast onto the interdigitated structure to form a 

nanowire sensor or test structure. (The interdigitated structure here is the same as that which was 

developed for the [R6G][TPB] nanowires; see section 4.3.5: In this method, the analyte is 

injected into the glass chamber directly and allowed to evaporate while the I-V response of the 

nanowire sensor is recorded. Selected inlets and outlets of the glass housing, as indicated in 

Figures 4-16 and 4-17, are used to purge the chamber with dry nitrogen as well as to provide a 

pathway for the electrical connections between the test structure and an external Semiconductor 

Characterization System (Keithley SCS 4200, not shown). 

  

 

Figure 4-18: Schematic of the direct injection method 

 

Initially the chamber is purged with dry nitrogen for 10 minutes to create an inert 

environment. Voltage across the electrodes of the test structure is swept from -20 V to +20 V 
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using the SCS and current is recorded without any analyte in the chamber to obtain a reference 

value for the sensor.  Once reference values are obtained, a known amount of analyte is injected 

into the chamber via a micro needle inserted through the septum as shown in the aforementioned 

figures. In general, when a VOC (volatile organic chemical) is evaporated, depending on its 

density and molecular weight, it exerts vapor pressure. 

 
 

Figure 4-19: Direct injection vapor sensing experimental setup 

 

Thus, the concentration of the analyte inside a chamber, i.e.- Cppm (concentration in parts 

per million), varies from analyte to analyte. In order to compare the sensing results of the 

nanowires due to various analytes, the Cppm needs to be constant. To keep the Cppm of all the 

VOCs inside the camber constant, the volume of liquid injected is calculated using the equation 

shown[91] 

 

  
𝐶𝑝𝑝𝑚 =

10𝐶𝑜𝑝𝑉𝑣𝑜𝑙𝑅𝑇

𝑀𝑃𝑜𝑉𝑜
 

(4-1) 
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where 𝐶𝑝𝑝𝑚  is the concentration of VOC in parts per million inside the chamber once 

evaporated.  Also,  

𝐶𝑜 is the initial concentration of the liquid (100) 

𝑝 is density of the VOC 

𝑅, Universal Gas Constant (0.08205746 Latm K
−1

mol
−1

) 

𝑇, Room temperature 300
o
K 

𝑀, Molecular Weight of the VOC 

𝑃𝑜, Pressure inside the chamber (1 atm) 

𝑉𝑜, Volume of the chamber (2.3 L). 

 

Cppm for aniline, dimethylamine, nitromethane, cyclohexane, trimethylamine are 

calculated with the Vvol of 1µL. The obtained Cppm values are scaled down using Cppm=100 to 

obtain Vvol (µL) of the analyte.  The caluclated Vvol values for the different analytes are listed in 

Table 4-1 below.  

Table 4-1: Table showing the calculated volume of VOC to be injected into the chamber 

Analyte 
Density 

(p) 
Molecular weight(M) Vvol (µL) 

Aniline (C6H5NH2) 1.0217 93.13 0.8 

Dimethylamine [(CH3)2NH] 0.68 45.08 0.6 

Nitromethane (CH3NO2) 1.127 61.04 0.5 

Cyclohexane [C6H12] 0.779 84.16 1.0 

Trimethylamine [(CH3)3N] 0.63 59.11 0.8 

 

To assist in the evaporation of the injected analyte, a filter paper and a small DC fan is 

placed at the bottom of the chamber as shown in the schematic Figure 4-18. Most of the analytes 

used evaporate in approximately 2 minutes; however, the fan is allowed to run for 4 minutes to 

make sure that the vapor will mix uniformly in the chamber. Using the SCS voltage is swept 

from -20 to +20 V across the test structure as current measurements are recorded simultaneously.   
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4.3.8.2: Carrier gas injection experimental setup and test structure (Method 2)  

(a) Carrier gas experimental setup 

A schematic of the carrier gas setup used for vapor sensing is shown in Figure 4-20. This 

method uses the same glass chamber used in the direct gas method (Figure 4-18). However, 

instead of injection of analyte directly into the chamber, nitrogen (carrier gas) is used to carry the 

analyte into the chamber.  Dry nitrogen is used as a carrier gas, for purging, and to maintain an 

inert environment in the 2.3 liter glass chamber. The flow rate of the dry nitrogen is controlled 

using a mass flow controller (MFC) which is calibrated for flow control to as low as 100 

mL/min. The MFC flow rate is monitored and fine-tuned by an external controller. To start the 

process of detecting VOCs, the chamber is purged with dry nitrogen before any measurements. 

Once purged, inlet and outlet ports are closed to maintain the inert environment. A constant 

voltage is applied and current is measured using the SCS for reference before the introducing the 

analyte. A controlled amount of analyte carried by carrier gas (N2) is introduced while a constant 

voltage is applied. During the process, change in the current is measured using the SCS.  

 

 
Figure 4-20: Schematic of the vapor sensing using carrier gas method 
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(b) Carrier gas test structure  

For carrier gas method [TC2][BETI] nanowires are deposited on the interdigitated 

structure using electrospraying to create uniform coverage. Electrospraying was discussed in 

detail in section 2.3.1:. Electrospraying of [TC2][BETI] solution generates fine droplets when 

deposited onto the interdigitated structure, and upon the evaporation of solvent (ethanol), 

[TC2][BETI] self-assembles into nanowires.  

 

Figure 4-21: Needle electrospraying setup 

Figure 4-21 is a photograph of our electrospraying setup. A syringe pump (NE-300, New 

Era Pumping systems) is used for flow control of the solution down to as low as 1 µL/hr for BD-

1 mL syringe and 1257 mL/hr for BD-60 mL syringe. A DC power supply with range of 0 to 30 

kV (Gamma High Voltage) is used. A needle of BD 25G was blunted using sand paper to obtain 

a uniform electric field. The syringe has an internal diameter of 4.699 mm (BD syringe). A DC 

high voltage is applied to the needle while the collector is connected to ground.  
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The collector is spun at a constant speed by placing it on a DC motor for the purpose of 

obtaining a uniform deposition.  An optical microscope is focused on the tip of the needle to 

monitor and record the electrospraying.  High intensity back light is shone as pictured on the end 

of the blunted needle to illuminate the spray droplets. Piranha cleaned 1 x 1 cm substrates are 

glued to the collector using conductive double-sided tape. The distance between needle and the 

substrate and applied potential are varied to obtain a cone jet mode for [TC2][BETI] GUMBOS.  

A successful electrospray is achieved for a distance of 3 cm, with voltage range of 4.5 kV to 7 

kV. Voltages above 7 kV are avoided due to electric arc generation breakdown from needle to 

ground. Figure 4-22 shows scanning electron microscope (SEM) micrographs of [TC2][BETI]  

nanowires deposited by needle electrospraying on glass. In preparation for SEM imaging, the 

samples were sputter coated with 5 nm of platinum. A reasonably full coverage of the glass 

substrate by nanowires is observed. Nanowire thickness varied from 200 to 400 nm with an 

average length of 5 µm. The nanowire network is a highly porous structure with a high surface 

area.   

 
Figure 4-22: SEM images of the [TC2][BETI] nanowires deposited with electrospraying for 

carrier gas method 

 

 

2 µm 10 µm 
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4.4: Results and Discussion 

 [R6G][TPB] nanoparticles: Imaging and I-V Characterization 4.4.1:

Figure 4-23 shows the AFM topographic image of the [R6G][TPB] nanoparticles 

dropcasted onto the gold substrate. These images are obtained prior to CP-AFM experiments. 

Topographic AFM indicates aggregation of nanoparticles on the gold substrate. Aggregation of 

the nanoparticles is due both their high surface energy and dropcasting (method of deposition). 

Below the topographic image of Figure 4-23 is a line scan that represents the diameter of the 

deposited (aggregated) nanoparticles of [R6G][TPB]. Sizes of the nanoparticles obtained from 

the line varied from 200-500 nm due to their aggregation.  

 
Figure 4-23: Atomic Force Microscopy (AFM) images of [R6G][TPB] nanoGUMBOS,  

topographic image of the dropcasted [R6G][TPB] nanoparticles on gold surface  
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As AFM images indicated aggregation of the [R6G][TPB] nanoparticles, CP-AFM 

measurements were used to investigate the electrical responses of the particles for this 

morphology. Using a Pt coated conductive AFM tip as one electrode and the Au substrate of the 

sample as the other (see section 2.4.2:), a metal-nanoparticle-metal junction was formed.  Figure 

4-24 shows the I-V characteristics of the [R6G][TPB] nanoparticles where each colored trace 

represents a different test site on the sample. A fairly linear I-V characteristic is evident for each 

site to which the conductive probe was applied.  The current response of the nanoparticles 

through the Pt-[R6G][TPB]-Au junction was in the range of 10
-7

 to 10
-6

 A for a corresponding 

voltage sweep from 0 to 1 V. 

 
 

Figure 4-24: I-V characteristics of [R6G][TPB] nanoparticles with CP-AFM. Each colored trace 

is representative of the I-V characteristics for various test sites along the sample (Reprinted with 

permission from Springer [93]). 
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The current response for this kind of junction has been investigated and reported as being 

due to a combination of several factors such as the injection of carriers at the junction barrier, 

metal-semiconductor-metal junction, and particle aggregation[92]. As a fundamental function, 

the nanoparticles do conduct, albeit with resistance calculated from the curve in the range of 0.3 

MΩ to 3 MΩ. The inset graph in Figure 4-24 shows I-V characteristics of the platinum coated tip 

directly in contact with the gold surface (short-circuit) for reference with current limited to 1 mA 

to avoid excessive heating of tip-substrate junction. The short circuit characteristic is linear with 

very high current on the order of 10
-3 

A as expected due to the radius of the tip (< 40 nm) and the 

thickness of the Au (100 nm).  

 

 [R6G][TPB] nanowires: Imaging and I-V Characterization 4.4.2:

Synthesis of [R6G][TPB] nanowires using an anodic aluminum oxide template method is 

discussed in section 4.2.2.1:. An approximately 10 μL aqueous solution of [R6G][TPB] 

nanowires was dispensed and dried on Au-coated glass substrates for AFM imaging. The AFM 

images and height profiles of the dropcasted [R6G][TPB] solution of nanowires are shown in 

Figure 4-25. Dropcasting of nanowires results in a degree of aggregation which leads to 

discontinuity in the surface coverage, random orientation, and the stacked nature of the nanowire 

ensembles. The aggregation of functional nanomaterials and structures in dropcasted samples has 

been a challenging issue in materials research which can lead to a fairly wide distribution of their 

measured dimensions[94]. The acquired images from our scans revealed the presence of 

cylindrical wires with thicknesses ranging from approximately 200 nm to 400 nm. These values 

do correspond to the pore size variations of the anodic templates in which the nanowires were 

grown. The length of the nanowires varied from 1 µm to 3 µm. The red line across each AFM 

scan in Figure 4-18 corresponds to the height profiles shown below the images of the samples. 
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Current-Voltage characteristics of the [R6G][TPB] nanowires are obtained by dropcasting them 

onto the gold interdigitated structure. Detailed fabrication of this structure is discussed in section 

4.3.5:. Ten microliters of DI water suspended nanowires are dropcast onto the inter-digitated 

structure and allowed to dry in a 0.1 torr vacuum for 30 minutes. Figure 4-26 depicts an array of 

I-V curves acquired from the Au-[R6G][TPB]-Au junction for a series of electrical 

measurements. 

 
Figure 4-25: a) Atomic force microscopy images of the [R6G][TPB] nanowires, b) Red line 

represents the height profile line scan (shown below the topographic images) of the nanowires. 

 

The current measurements through the junction varied from 0.8 µA to 1.8 µA for voltage sweeps 

from 0 to 1 V. The threshold voltage for molecule stability for a reproducible I-V response was 

around 1 V, beyond which irreversible breakdown of the R6G molecular structure followed. A 

low leakage current through the substrate, on the order of 10
-11 

A (as shown in the inset of Figure 

4-26), was obtained from the underlying interdigitated Au comb devoid of dropcasted nanowires. 

The charge transfer model across two-electrode metal-molecule-metal junctions (or donor-

molecular bridge-acceptor geometry) has been reported to be a sensitive function of the nanowire 
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diameter, contact area of the active elements (i.e.-the number of molecules participating in the 

electron transfer), through bond (TB) tunneling, and the nature of electronic coupling between 

the metal electrodes and the molecule[94]. Further studies in this direction have shown that there 

is a strong correlation between the current flow or electron transfer and the molecular structure 

of the incorporated molecule. The precise control of energy gap (ΔE) between the energy states 

(HOMO-LUMO) of the molecular bridge and the energy level of the donor-acceptor metal units 

have been identified as relevant factors in determining the electron transfer rate[94-96]. 

 
Figure 4-26: Current voltage characteristics of [R6G][TPB] nanowires swept from 0 to 1V. Each 

trace shows data acquired from each of several [R6G][TPB] nanowire samples. Inset showing 

leakage current on the order of 10
-11

A through the Au on glass substrate devoid of nanowires. 

 

The current variation from sample to sample in our measurements could be primarily due 

to the nature of the aggregation and the surface alignment of the [R6G][TPB] nanowires across 

the interdigitated electrodes.  
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 [PIC][BETI] and [PIC][NTf2] nanoGUMBOS: Imaging and I-V Characterization 4.4.3:

The [PIC][NTf2] and [PIC][BETI] nanoGUMBOS were dropcast onto gold coated glass 

substrates and dried under ambient conditions. Conductive probe AFM (CP-AFM) 

measurements of [PIC][NTf2] and [PIC][BETI] are made in the same AFM setting, including the 

kind of tip (DPE 14/no Al), as was used for [R6G][TPB] nanoparticles. The voltage was swept 

from -1 V to +1 V, and the electrical response was recorded using the SCS. Prior to the I-V 

measurements, AFM images of the GUMBOS and nanoGUMBOS were also obtained by 

scanning (Pacific Nanotechnology, Model: P-MCU-SICT-O tip) in contact mode to study their 

respective morphologies. The raster scan by AFM was performed at a constant frequency of 1 

Hz. Figure 4-27 shows the AFM images of [PIC][BETI] and [PIC][NTf2] nanowires.  

Diamond-shaped structure formations were observed with [PIC][NTf2] nanoGUMBOS 

with approximate lengths and widths
1
 of 1 µm and 600 nm, respectively. This self-assembled 

diamond shaped structure is attributed to repeated head-to-tail molecular stacking. [PIC][BETI] 

forms rod like structures due to parallel stacking instead of head-to tail stacking. The 

[PIC][BETI] nanoform has an average length and width  of 2 µm and 200 nm, respectively, as 

shown in Figure 4-27(b). 

                                                 
1
 In this context width (or height) is defined as the dimention from the substrate to the top of the nanowire. 
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Figure 4-27: Atomic Force Microscopy images of (a) [PIC][NTf2] and (b) [PIC][BETI] 

nanoGUMBOS on gold substrate (Reprinted with permission from Springer[97]).  

 

Figure 4-28 depicts the family of I-V plots on a logarithmic scale as obtained for 

nanoGUMBOS via CP-AFM at different locations on the dropcasted samples. The CP-AFM 

results are generally dominated by varying distributions of particle sizes and their aggregates or 

ensembles at different locations. The I-V data measured for both [PIC][NTf2] and [PIC][BETI] 

nanoGUMBOS show similar magnitude for current values ranging from 10
-10

 A to 10
-8

 A. The 

curves also represent an approximately symmetric behavior for the applied sweep between ±1 V. 

The observed electrical characteristics are in agreement with the literature [98-101]. The non-

linearity in the I-V relationship obtained by the CP-AFM technique has been reported to be a 

sensitive function of a number of factors, e.g. the nature of aggregation of the nanomaterials, 

interaction at the AFM tip-nanoparticle-substrate interface, and the injection of charges (or flow 

of current due to electron tunneling) through the tip-nanoparticle junction barrier.    
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Figure 4-28: Log plot of Current-voltage (I-V) curves of [PIC][NTf2] and [PIC][BETI] 

nanoGUMBOS obtained by conductive probe atomic force microscopy (CP-AFM) (Reprinted 

with permission from Springer [97]). 

 

 [TC2][BETI] nanoGUMBOS: Direct analyte injection method 4.4.4:

The test structure developed for the direct gas method (see section 4.3.8.1:) is used for a 

dropcasted solution of [TC2][BETI]. Responses in the form of current to various vapors were 

recorded. Since different vapors have different vapor pressures, the precise volume of analyte to 

be injected into the given volume of the experimental chamber was calculated (Table 4-1).  

Figure 4-29 depicts the normalized current response of the nanowires (recorded from the test 

structure) due to different analytes. As all of the current-voltage (I-V) responses are symmetric, 

all of the compared values are taken at +20 V. The [TC2][BETI] nanowires, acting as a sensor, 

exhibited the maximum change in current due to aniline vapor. Various responses to other vapors 

such as diethylamine, triethylamine, nitromethane, and cyclohexane were observed as are also 

shown in Figure 4-28. These normalized current values are comparable to the values reported in 

the literature[102]. Figure 4-30 shows the sensor response to various concentrations of aniline 

injected into the chamber. The trend is close to linear in that as the volume of the aniline is 

increased, the current also increased.   
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Figure 4-29: Normalized current response of test structure to various analytes 

 

 
Figure 4-30: Response of [TC2][BETI] nanowires to an increasing volume of aniline injected 

into the gas containment chamber  

 

  [TC2][BETI] nanoGUMBOS: Carrier gas method 4.4.5:

[TC2][BETI] nanowires were electrosprayed as a thin-film onto an interdigaited test 

structure as discussed in detail in section 4.3.8.2: (b).  As is also described in 4.3.8.2: (b), this test 

structure was placed in an inert (N2) environment of a 2.3 L glass gas containment chamber. An 

Volume of liquid Aniline injected [µL] 
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analyte was conducted into the containment chamber by a carrier gas (N2). The response of the 

nanowire sensor to the analyte was measured via changes in current.  This response was recorded 

for different flow rates of the carrier gas. As the flow rate varies, a proportional amount of 

analyte is carried along with it. For different flow rates, different amounts of the VOC (aniline) 

were carried by the carrier gas. The graph in Figure 4-31 shows the effect of flowrate of injected 

anline (analyte) on the [TC2][BETI] nanowire sensor response time. In Figure 4-31, the y-axis 

represents the time (minutes) over which there is increase in the current through the sensor.   

 
Figure 4-31: Carrier gas method used for detection of aniline vapors at different flow rates. 

 

 

As seen in the Figure 4-31, for a 175 mL/min flowrate the [TC2][BETI] nanowire sensor 

responded for approximately 176 minutes and over time reached a peak value of 1.3 nA 

(average) for 107 minutes (Figure 4-32). As the volume of the analyte decreased, the current 

followed the aniline as expected. For a 350 mL/min flowrate, the nanowire sensor responded to 
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the analyte for approximately 100 minutes. In this case, over time the sensor reached a maximum 

current value of 1.2 nA—approximately the same current as in the 175 mL/min flowrate case—

and remained saturated for approximately 51 minutes (Figure 4-32).  For the 700 mL/min flow 

rate, nanowire sensor responded for approximately 36 minutes. However, it only reached 

maximum value of 0.65 nA (Figure 4-32), unlike in the 350 and 175 mL/min cases.  We suspect 

the reason for the lower current may have been due to the faster removal of aniline vapor from 

the chamber under the higher flowrate of 700 mL/min.  

 
Figure 4-32: Maximum sensor currents for different aniline flow rates 

 

These results illustrate the affinity of [TC2][BETI] nanowires for aniline vapors. 

However, the sensor response was proportional to the amount of the aniline and was completely 

reversible, indicating that sensing is due to the physical adsorption of the analyte onto the 

nanowires.  With a decrease in the magnitude of current due to removal of adsorbed aniline 
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molecules on the nanowires, the [TC2][BETI] sensor returns to its initial state. Likewise, the 

sensitivity of the sensor was found to increase linearly with respect to the concentration of 

aniline vapor, as per our previous experiments. Constant current over a period of time for the 350 

and 175 mL/min flow rates is indicative of the saturation level of [TC2][BETI] nanowires as 

aniline sensors in this set of experiments.  

 

4.5: Conclusions 

We have successfully characterized a new class of nanomaterials known as 

nanoGUMBOS. This work represents first time characterization of these materials to investigate 

their electrical properties. AFM surface scanning and height profiling of nanostructures was used 

for thickness and width measurements. Conductive probe AFM was used to measure I-V 

response of [R6G][TPB] nanoparticles, [PIC][BETI] and [PIC][NTf2] nanostructures. The I-V 

response of [R6G][TPB] nanowires and [TC2][BETI] nanowires are investigated using 

interdigitated electrodes. Thin-films of [TC2][BETI] are developed using electrospray 

deposition. The vapor sensing characteristics of the film are investigated. These nanowires 

exhibited sensing capability with respect  to various vapors and maximum response for aniline 

vapors. The nature of sensing is determined to be physical adsorption of analyte molecules on the 

nanowires using carrier gas method.  
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CHAPTER 5: STUDY OF ELECTROSPRAY ASSISTED ELECTROPHORETIC 

DEPOSITION OF CARBON NANOTUBES ON NON-CONDUCTIVE SUBSTRATES
2
 

5.1: Introduction 

The invention of helical microtubules of graphitic carbon by Iijima in 1991 has inspired 

substantial research into the application of single-walled and multi-walled carbon nanotubes 

(SWCNTs and MWCNTs) in field emission devices, chemical sensors, and thin film transistors 

(TFT) technology [103-105]. In recent years, carbon nanotube based thin films have been 

extensively investigated due to their high surface area per mass ratio, mesoporous structures, 

electrical conductivity and their high chemical stability [106]. Some of the potential applications 

in this direction include super-capacitors [107], batteries[108], microelectronics[109], gas[110]  

and analyte sensing[111], flexible displays[112], and for electrode material[113]. For the above 

applications, CNTs need to be deposited on a range of substrates, both conductive and non-

conductive.  The conventional direct growth models of CNTs, e.g. arc-discharge, laser ablation 

and chemical vapor deposition (CVD) [114-117], are generally characterized by high 

temperature processing (typically ~800–900 °C), the presence of unwanted metal catalysts, soot-

like carbonaceous skeins in the final nanotube yield and the need for expensive vacuum systems. 

These growth parameters pose serious complications to the direct incorporation of CNTs in 

several applications viz. low temperature micro-electromechanical systems (MEMS), flexible 

and printable thin film transistor (TFT) technology [118] and molecular electronics. To mitigate 

these challenges, in recent years, numerous research initiatives have been undertaken in the 

development of facile, room temperature, economical CNT wet coating techniques from 

different stable suspensions such as the Langmuir-Blodgett (LB) method, self-assembly of 

                                                 
2
 This chapter in its current form is accepted for a journal article publication.  Kanakamedala  K , DeSoto J, Sarkar 

A, Daniels-Race T.,” Study of Electrospray assisted Electrophoretic deposition of Carbon Nanotubes on Insulator 

Substrates”. Electronic Materials Letters.  It is reproduced by permission from Electronic Materials Letters 

(Appendix D) 
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functionalized CNTs on chemically modified substrates, dip coating, drop casting, spin coating, 

and more[119] . However, the non-reproducibility of most of these processes in regard to the 

deposition yield, non-uniformity of the deposits and limitations in multi-layer film growth with 

precise control over the thickness add to the bottlenecks of these methods. 

With prevailing interests in search of a reliable and efficient solution-based deposition 

method, electrophoretic deposition (EPD) [120, 121]has emerged as a promising technique over 

the last decade. The benefits of EPD include an economical approach towards thin film 

fabrication due to its cost-effectiveness, the need for a relatively simple apparatus, 

reproducibility and precise control in the deposit thickness, high deposition rate and the ability to 

scale up to large product volumes and sizes. 

 

 Electrophoretic Deposition 5.1.1:

The mechanism of EPD can be generally conceptualized by two steps[122, 123]. In the 

first step, known as electrophoresis, charged particles that have been dispersed in a liquid 

suspension migrate towards the electrode of opposite polarity due to the application of a direct or 

pulsed current electric field across the suspension. In the second step, referred to as the 

deposition step, the particles coagulate and adhere to the electrode surface, thereby assembling as 

a coherent deposit.                

Conventionally, one of the pressing factors in EPD has been the requirement of an 

electrically conductive target substrate.  For most EPD processes reported in the literature, the 

substrates have been metallic or carbon/graphite sheets. However, contrary to this common 

assumption, recent research findings outline the deposition of nanomaterials onto porous non-

conducting alumina and NiO-YSZ surfaces which, prior to, had been deposited on 

carbon/graphite sheets [124-126]. Our research, on the other hand, has focused upon the 
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feasibility of EPD of CNT networks onto semi-conducting and insulator substrates used in 

transistor technology. In this direction, we have recently demonstrated EPD of CNTs on 

semiconductor (silicon) [127, 128] and insulator (glass) [129] substrates functionalized with self-

assembling organosilane (3-aminopropyl-triethoxysilane or APTES) molecules. EPD of CNT 

films onto glass substrates was accomplished by drop-casting an initial thin layer of CNTs onto 

hydrophilic APTES treated glass substrates. The initial drop-casted layer of CNTs on the surface 

functionalized glass substrates served as the underlying conductive layer to assist in the 

migration of CNTs during the electrophoresis process.  However, the inherent non-reliability of 

the initial CNT drop casting method in obtaining continuous CNT deposits on the APTES treated 

glass substrates was the limiting factor in the reproducibility of the sequential EPD process. 

Additionally, the incorporation of non-conducting APTES binder molecules in the deposition 

process flow adversely affected the conductivity of the final CNT deposits. The present 

communication reports significant progress in the fabrication of uniform CNT coatings on bare 

glass substrates, without organosilane surface treatment, by the sequential combination of 

electrospraying with the conventional EPD process. Electrospraying has been widely used as a 

technique for the deposition of various compatible nanomaterials dispersed in a solution. 

 

 Electrospray Deposition  5.1.2:

Electrospraying is a simple, cost-effective process for liquid atomization by subjecting 

the liquid droplets from an orifice, e.g. syringe needle, to an intense electric force (on the order 

of kV) causing them to break down into smaller droplets [130]. The charged droplets 

continuously disintegrate into smaller charged droplets until the surface tension on the smaller 

droplets is greater than the applied electric field. Owing to the nature of the electrospraying 

technique, the charge distribution on the generated droplets results in inter-particle repulsion, 



65 
 

which forces them to spread out and create a very uniform film in the deposition of 

nanomaterials [45, 131-134]. The droplet size and the final spread can be precisely controlled by 

optimizing the applied voltage, flow rate, and the distance between the tip and the target [42]. 

The proposed electrospray-assisted EPD technique eliminates the use of organic self-

assembling silane molecules from the deposition process flow, and it addresses the non-

reliability of the CNT drop casting method for glass surfaces. As will be discussed, we have 

successfully used the electrospraying process to create a continuous thin film CNT deposition 

onto glass substrates which, in turn, further assisted in the reproducible growth of CNT films by 

the subsequent EPD process. Figure 5-1 represents the over-all fabrication strategy as proposed 

in this report. The relevant sections of this study reveal pertinent details with regard to 

preparation of the CNT suspension, electrospraying and the EPD experimental set-up.  

Furthermore, surface characterization of the deposited CNT films, including the effect of the 

initial electrosprayed CNT layer on the final film thickness, is discussed in relation to various 

deposition parameters. To the best of our knowledge, no prior work of such kind has been 

reported in the CNT deposition literature. Thus, the results of this study potentially pave the way 

to the integration of the electrospray-assisted EPD technique in a wide range of materials 

research and technology. 

 
 Figure 5-1: Schematic diagram of the electrospray-assisted electrophoretic deposition strategy 
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5.2: Experimental Procedure: 

 Acid-refluxing of the carbon nanotubes  5.2.1:

A quantity in the amount of 100 mg of as-purchased multi-walled CNTs (purity: > 95%, 

dimension: 6–13 nm (OD) × 2.5–20 μm (length), CVD, Sigma Aldrich, St. Louis, MO, USA) 

was acid refluxed in 40 mL concentrated sulfuric (H2SO4) and nitric (HNO3) acid (volume ratio 

= 3:1, respectively). The CNT-acid solution was then heated at 120 °C for 30 minutes on a hot 

plate. The acid-heat treatment of the CNT solution produced a black slurry, which was cooled for 

1 hour in a fume hood. The acid-refluxed solution was then carefully diluted with deionized (DI) 

water (18.2 MΩ-cm) and filtered through a Buchner funnel using medium retentive filter papers 

(pore size: ~11μm). The exact quantitative value of CNTs lost in the filtration process is difficult 

to measure but was estimated to be ~30%. The filter papers with the accumulated CNTs were 

further used for the preparation of electrospray and EPD solutions. 

 

 Preparation of electrospray and EPD CNT solution 5.2.2:

The electrospray solution was prepared by submerging the filter paper containing acid-

treated CNTs into 120 mL of ethanol (EtOH) and ultrasonicating for 2 hours to obtain a uniform 

dispersion. The concentration of the final CNT-EtOH solution was estimated to be ~ 0.58mg/mL. 

Following the same acid treatment and Buchner filtration process, the CNT solution for EPD was 

prepared by submerging the filter paper in 10mL of isopropyl alcohol (IPA). This mixture was 

then ultrasonicated for 1 hour to obtain a uniformly dispersed CNT solution (concentration: 

~7mg/mL). Before each set of deposition experiments, the CNT-EtOH and CNT-IPA solution 

were ultrasonicated for 2 minutes to minimize agglomeration of the CNTs in the media.  
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 Substrate preparation 5.2.3:

For all of the deposition experiments, microscopy-grade non-conducting glass slides (2 

cm x 1 cm) were used as the target substrates. The glass pieces were thoroughly treated with a 

warm piranha solution (H2SO4: H202) for 30 minutes to remove any organic contamination. This 

treatment also rendered the surfaces of the glass samples sufficiently hydrophilic to aid in 

interfacial adhesion. The pieces were then allowed to cool, washed thoroughly with DI water, 

and finally dried in a nitrogen stream. 

 

 Deposition of initial CNT layer by electrospraying 5.2.4:

A schematic of the electrospraying setup is shown in Figure 5-2.. The glass substrate 

was mounted onto a grounded aluminum target. A 10 mL syringe was filled with ethanol-CNT 

solution. A steel syringe needle (23G) was blunted to obtain a uniform electric field. A voltage of 

8.5kV was applied between the steel needle tip and the ground electrode using a high voltage 

power supply (0-30 kV) from Gamma High Voltage Research, Inc. A constant liquid flow rate 

was maintained at 50 µL/min throughout the deposition process. The distance (d) between the 

syringe needle tip and target substrate was held constant at 5 cm. The deposition parameters were 

thus optimized to obtain a uniform Taylor Cone [130]. The ground electrode was spun at a 

constant velocity to ensure uniform deposition. After the electrospraying process, the deposited 

thin films were dried in a laminar flow system.  
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                          Figure 5-2: Schematic diagram of the electrospray deposition  

 

 Electrophoretic deposition of CNTs 5.2.5:

In the EPD step, glass substrates with the initial electrosprayed layer of CNTs were 

utilized as the anode. A schematic diagram of the electrophoretic deposition process is shown in 

Figure 5-3.  A copper sheet (2cm x 1cm) was used as the cathode. The inter-electrode distance is 

kept constant at 2.54 cm. After deposition, the samples were dried in a dry nitrogen environment 

before further analysis. 

 

 
 

Figure 5-3: Schematic diagram of the electrophoretic deposition  
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5.3: Results and Discussion 

The acid refluxing treatment imparts covalent surface functionalization of the as-

purchased CNTs, thereby attaching carboxylic groups (–COOH-) on the surface of the tubes, 

which induces negative surface charges. The resultant electrostatic repulsion between the surface 

charges prevents inter-tubular agglomeration and ensures appreciable stability of the CNT-EtOH 

and CNT-IPA suspensions all throughout the deposition experiments. Additionally, dissolution 

of unwanted, residual metal growth catalysts, the formation of carbonaceous skeins in the 

nanotube powder, and shortening of the nanotubes were all also accomplished by the acid-heat 

treatment [135].  

 
 

Figure 5-4: Electrospraying coating results on non-conducting glass substrates with an applied 

constant voltage of 8.5 kV and constant flow rate of 50 µL/min for (a) for 5 min showing poor 

CNT coating, (b) for 10 min showing improved coating, (c) for 20 min, and (d) SEM imaging 

with 20 min deposition duration showing high quality surface coating. 

 

Figure 5-4 (a-c)
3
 depicts the electrospray coating results with varying time duration on 

the bare glass substrates without any surface silane functionalization. It was observed that for 

spraying duration of 5 mins, the deposition was almost negligible, as shown in Figure 5-4 (a). 

Optical microscopic observation revealed formation of non-uniform and discontinuous CNT 

                                                 
3
  Figure 5-4 (a-c) were obtained by photographing the electrosprayed CNT-on-glass samples after 5, 10, and 20 

minutes (respectively) using a digital camera. 
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deposits on the sample. The coating quality improved substantially as the spraying duration was 

increased to 10 mins, above which high quality, continuous CNT coated surfaces were observed. 

The optical image presented in Figure 5-4 (b) with deposition duration of 10 mins shows 

improvement in CNT surface coverage, and Figure 5-4 (c) with duration of 20 mins displays the 

superior nature of the CNT deposits.  The SEM image in Figure 4 (d), with electrospraying 

deposition of 20 mins, indicates appreciable coverage and packing density without any 

microstructural voids or discontinuities in the CNT films. Quantitative film thickness 

measurements were also performed using a KLA-Tencor D-100 Alpha Step surface profiler. It 

was noted that for constant flow rate and inter-electrode E-field, the CNT film thickness showed 

a linearly increasing trend with increasing electrospraying deposition duration (in mins), as 

displayed in Figure 5-5. 

 
Figure 5-5: Thickness of CNT coating electrosprayed on glass substrates as a function of 

deposition time for an applied E-field of 8.5 kV and flow rate of 50 µL/min. 
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The uniformity and continuity of the underlying CNT coating was identified as an 

important parameter critical to the quality of the eventual CNT film growth by EPD. In order to 

investigate the effect, a series of EPD experiments was performed on different electrosprayed 

samples with varying spraying times. As depicted in Figure 5-6(a), the electrophoretic deposition 

(with an applied E-field = 60 V/cm, time duration = 3 mins) from CNT-IPA solution on the glass 

samples electrosprayed for 5 mins resulted in discontinuous and non-uniform film growth. This 

agrees with the results presented in Figure 5-4 (a), which showed almost negligible or 

discontinuous CNT deposits for spraying duration of 5 mins. As the continuity and the CNT 

coating quality improved underneath with increasing spraying duration of 10 mins and above, the 

EPD results showed significant improvement. Figure 5-6(b) and Figure 5-6 (c) show the superior 

nature of the final CNT yield and quality obtained on electrosprayed samples with spray duration 

of 10 mins and 20 mins, respectively. The SEM image (Figure 5-6(d)) of the sample in Figure 

5-6(c) also revealed appreciable surface coverage and homogenous packing density in the CNT 

layer without any microstructural discontinuities. These results reiterate the critical role of the 

electrospraying step in the proposed fabrication strategy.  

 
Figure 5-6: EPD (performed with E-field = 60 V/cm, deposition time = 3 min) results on 

electrosprayed samples (a) for 5 min showing poor CNT coverage, (b) for 10 min showing 

improved surface coverage, (c) for 20 min, and (d) SEM imaging with 20 min electrospraying 

time showing dense CNT packing without microstructural dis-continuity. The results substantiate 

the effect of underlying coating on the final CNT film growth. 
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To explore the effect of varying electrospraying duration on the final thickness of the 

CNT films, quantitative thickness measurements were performed using a KLA-Tencor D-100 

Alpha Step surface profiler. It was observed that for constant electrospraying duration of 20 mins 

and constant EPD time for 3 mins, the film thickness increased as the applied inter-electrode E-

field during EPD increased from 10 V/cm to 60 V/cm. This trend supports the traditional 

Hamaker equation [123] of electrophoresis that establishes a linear relationship between the 

weight of the particles (or the thickness of the films) deposited per unit area of electrode with the 

applied potential during the deposition step.  

CNT films as thick as ~4.5 µm were fabricated using this technique, as presented in 

Figure 5-7(a). CNT film thickness with constant EPD parameters (inter-electrode E-field = 60 

V/cm and deposition time = 3 mins) showed an initially increasing trend with increasing 

electrospraying duration and eventually became saturated for samples electrosprayed for 30 mins 

to 60 mins (Figure 5-7(b)). This observation is also supported by our resistivity measurements 

(as can be noted in Figure 5-8(b) of the next section), which showed saturated values for samples 

electrosprayed for 30 mins and above. 

 

 Resistivity measurements 5.3.1:

It has been reported that multiple factors, e.g., the chirality of the nanotubes, defects 

introduced during the synthesis and post-synthesis deposition methods, degree of dispersion, 

presence of residual surfactant and CNT morphology influence the over-all sheet resistance 

values of the CNT films fabricated by different wet coating methods[136]. Resistivity 

measurements of the deposited CNT films in our experiments were performed by the four-point 

probe measurement technique. As has been pointed out in section 5.2:, electrospray deposition of 
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the CNTs results in a thin and uniform spread of CNTs across the substrate due to inter-particle 

repulsion arising from the charge distribution of the spray droplets. 

 
 

Figure 5-7: Thickness values of the CNT films (a) with varying E-field during EPD with 

constant deposition time of 3 min on samples electrosprayed for 20 min, and (b) varying 

electrospraying deposition time with constant EPD parameters (E-field= 60 V/cm and time= 3 

min). 
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As has been pointed out in section 5.2:, electrospray deposition of the CNTs results in a 

thin and uniform spread of CNTs across the substrate due to inter-particle repulsion arising from 

the charge distribution of the spray droplets. With the gradual increase in electrospraying time, 

interconnections among the deposited CNTs increase, resulting in the growth of a continuous 

film on the glass surfaces.  The number of interconnections obtained in the electrosprayed layer 

affects the conductivity of the CNT films which, in turn, directly affects the thickness and 

morphology of the eventual CNT film growth by the conventional EPD technique. Figure 5-8 (a) 

shows the variation in sheet resistance of the electrosprayed CNT films in relation to the duration 

of deposition (mins) with the applied E-field and inter-electrode distance held at constant values. 

As the thickness of the CNT films increased with the increase in the electrospraying deposition 

time (from 10 mins to 60 mins), the measured sheet resistance values (in Ω/□) of the films 

showed an initial decreasing trend with eventual saturation for deposition duration of 40 mins 

and above, as shown in Figure 5-8(a). As can be noted in the figure (Y-axis represented in log 

scale), the sheet resistance obtained after 10 mins of deposition, measured on the order of 100 

MΩ/□, exponentially decreased to the order of 0.1MΩ/□ for 20 mins of deposition, before 

saturating at ~10kΩ/□ for higher deposition duration. The higher sheet resistance for 10 mins of 

deposition time can be attributed to fewer interconnections between the nanotubes resulting into 

a more porous morphology of the deposits.  This porous nature is known to have an effect on the 

charge transport mechanisms of the thin films [137].   Figure 5-8 (b) represents the sheet 

resistance values of the final CNT films by EPD (performed at constant E-field: 60 V/cm and 

constant time duration of 3 mins in the CNT-IPA solution) in relation to the varying 

electrospraying duration (10 mins to 60 mins) of the underlying CNT coating. The resistance 

values in general exhibited similar trend with a high initial value (~4.7 kΩ/□). The porous 
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morphology of the highly resistive underlying electrosprayed CNT coating obtained after 10 

mins of deposition is expected to contribute to this result. The effect of the electrospraying 

duration beyond 10 mins was observed to be less pronounced on the final resistivity of the CNT 

films by continuous EPD, as the sheet resistance values saturated to ~218Ω/□ from 20 mins to 60 

mins. 

 
Figure 5-8:  (a) Variation in sheet resistance of the electrosprayed CNT films as a function of 

deposition time from 10 min to 60 min, and (b) variation of sheet resistance values of the final 

CNT coating by EPD in relation to varying electrospraying deposition time from 10 min to 60 

min (EPD was performed at a constant applied E-field of 60 V/cm with 3 min of deposition on 

the underlying CNT coating). 
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 Comparison of Raman spectra of different CNT samples: 5.3.2:

Raman spectroscopy of different CNT samples was studied using a Jobin Yvon Horiba 

Labram Raman spectrometer with a HeNe laser of incident wavelength 638.4 nm. The Raman 

spectra of as-received MWCNTs (>99.5% pure), acid refluxed CNTs dispersed in ethanol (CNT-

EtOH), and acid refluxed CNTs dispersed in IPA (CNT-IPA) are shown in Figure 5-9 (a), (b), 

and (c), respectively.  Figure 5-9 (d) represents the spectrum of the initial thin CNT films 

deposited by the electrospraying method only while Figure 5-9 (e) depicts the spectrum of the 

final CNT deposits obtained by the electrospray-assisted EPD process. All of the spectra have 

been plotted from 1000 cm
-1

 to 2800 cm
-1

 wavenumber as no significant radial breathing modes 

(RBMs) were observed, which also indicated the absence of SWCNTs in the CNT samples. The 

typical Raman bands of the CNT structure at ~1337 cm
-1

 (D-band), ~1572 cm
-1

 (G-band), ~1608 

cm
-1

 (D’-band) and ~2648 cm
-1

 (G’-band) were observed for all of the analysed spectra.  

 

Table 5-1: IG/ID ratio for Pristine CNTs, CNTs in EPD solution, Electrospray Solution 

Sample Pristine EPD solution 
Electrospray 

solution 

IG/ID 0.65 0.50 0.43 

 

Similar wavenumbers prove conclusively that the pre-deposition processing steps (acid 

refluxing treatment and ultrasonication) of the CNT powder and the subsequent deposition 

experiments did not induce any significant modification in the vibrational nature of CNTs. The 

D-band is indicative of the inherent structural disorder and defective nature of the CNT structure. 

As reported in the literature[138, 139], the intensity ratio of G-band (IG) to the D-band (ID) in the 

Raman spectra can be represented as an estimation of the degree of defects induced in the carbon 

network during CNT synthesis and post-synthesis deposition steps. The decrease in the value of 
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the IG/ID ratio from 0.65 in the pristine CNT samples to 0.43 in the CNT-EtOH electrospraying 

solution and from 0.65 to 0.5 in the CNT-IPA EPD solution (shown in Table 5-1) can be 

attributed to the increase in the structural defects of the CNTs due to the combined effect of the 

acid-refluxing treatment followed by the prolonged ultrasonication step in our dispersion 

experiments 

 
 

Figure 5-9: Raman spectra of (a) pristine MWCNTs, (b) acid refluxed and ultrasonicated CNT 

solution in ethanol, (c) ultrasonicated electrospray CNT-IPA for EPD, (d) electrosprayed CNT 

coating on glass substrate, and (e) final CNT coating obtained by EPD. All of the spectra 

displayed signature Raman peaks of MWCNTs at 1336 cm
-1

, 1587 cm
-1

 and 2648 cm
-1

 

wavenumber. 
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5.4: Conclusions  

In this communication, a unique fabrication strategy of combining an electrospraying 

coating technique with electrophoretic deposition (EPD) has been successfully demonstrated to 

fabricate thick CNT films on non-conducting glass substrates. CNT film as thick as ~ 4.5 µm 

was fabricated on glass samples at an applied E-field of 60 V/cm for 3 mins on an initial 

electrosprayed CNT coating of ~ 100nm thickness. The quality and thickness of the final CNT 

deposit by EPD were observed to be dependent on the initial surface coverage by the 

electrosprayed CNT layer, on the applied E-field, and on the duration of deposition by the EPD 

process. These results represent significant progress with respect to our previous EPD research 

on semiconductor and insulator substrates in that this deposition model eliminates the need for 

polymer binder molecules and substitutes the drop-casting process by an electrospraying 

technique. The experimental results in this report are indicative of an innovative, economically 

viable, and reproducible fabrication strategy in the development of scalable and uniform CNT 

depositions on non-conductive substrates. With regard to potential future work in this direction, 

our research efforts will focus upon extending the proposed electrospray-assisted EPD technique 

to deposit CNTs onto SiO2 and Si3N4 surfaces for thin film transistor technology without major 

variations in the deposition setup. Research endeavours are also underway for detailed 

investigation of surface properties of the final CNT films in relation to various process 

parameters, e.g. variation in the E-field, inter-electrode distance, and concentration of the 

solution during the electrospray process. A quantitative study in the estimation of adhesion 

strength between the deposited CNT films and the glass surface is also in progress. 
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CHAPTER 6: FARADAY ELECTROSPRAYING 

6.1: Introduction 

Needle electrospraying as discussed in this chapter is a viable and versatile tool for the 

deposition of thin films over a small area. However, there are several key challenges to this 

technique for large scale deposition. For large area deposition using needle electrospraying, a 

matrix of needles is required, which increases the chance of needles becoming clogged due to the 

creation of complex electric fields. To overcome the limitations of needle electrospraying several 

alternative methods have been proposed. Among these are porous and upward needleless 

electrospinning. Mainly for high production rates, higher rates of solution delivery via 

electrospraying are needed. For some perspective on this problem, the aforementioned methods 

will be discussed followed by an inventive solution as derived from our research.  

 

 Porous electrospinning method 6.1.1:

This method was reported by Dosunmu, O. O, et al. (2006)[140]. The solution form of 

the material to be deposited is pumped through a porous cylindrical metal structure, to which a 

high voltage is applied, causing the liquid to spray in all directions. Fibers produced by this 

process are collected on the co-axial cylindrical structure. This method delivers a high solution 

rate compared to needle electrospraying. Although this method produces a large throughput of 

fibers, it also produces variation in the fiber diameter and has a high chance of hole clogging, 

both of which would lead to a decrease in the rate of production.  

 

 Multiple spikes electrospinning method 6.1.2:

This method relies on a magnetic field for the generation of spikes on the free surface of 

a ferromagnetic liquid.  Two layers of solution are required for the deposition. As shown in 
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Figure 6-1, the bottom layer is the ferromagnetic liquid which is subjected to a changing 

magnetic field and will become the source of “spikes” (peaks) on the free surface. A polymer 

solution is deposited and serves as the top layer.  When a high electrostatic potential is applied to 

the free liquid surface, these spikes in the ferromagnetic liquid now act as jetting centers for the 

polymer solution. As several hundreds of spikes can be generated by the magnetic field, multiple 

jets emerge from the free surface, resulting in a higher deposition rate.  A sawtooth collector is 

used to stabilize the jets.  This method increases the production rate; however complications can 

develop as a result of the magnetic field.  Solvents for the material to be deposited must be 

selected carefully so that they are not miscible with the underlying ferromagnetic liquid. A more 

detailed description of this method can be found in the literature [141]. 

 
Figure 6-1: Schematic of the multiple spikes electrospraying method 

 

6.2: Faraday Electrospraying 

Sound waves are propagated by the compression and relaxation of the given medium. As 

they are mechanical waves, they cause mechanical disturbances in the medium through which 

they travel. Sound travels in three media (gases, liquids and solids) depending on the density of 

the medium. When sound energy is applied to liquid, depending on the density and viscosity of 

that liquid, mechanical disturbances are created. Figure 6-2 illustrates the effect of liquid in a 

small container subjected to sound waves. Wave-like motion on the surface of the liquid is 
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observed due to sound waves. When the container is conductive, the application of high voltage 

from the liquid surface to collector (as shown in the Figure 6-3) produces the electrospraying 

effect.  The latter is due to the waves acting as high charge density centers at the crest of the 

liquid disturbances. Due to the Rayleigh Limit [54], the crest of the waves (due to high charge 

density) become the source of electrospraying from the solution.  

 

 

 

Figure 6-2: Disturbances on the liquid surface due to sound waves.  

 

 Experimental setup  6.2.1:

A schematic of the experimental setup is shown in Figure 6-4. An aluminum container of 

3 cm radius is used for containing the liquid. A syringe pump is used to feed the container with 

the solution to be deposited. An audio speaker with frequency response of 95 to 4000 Hz, power 

rating 175 W RMS, and an input impedance of 8 ohms is used to excite the liquid. Various 

frequencies are applied through a function generator and power amplifier.  
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Figure 6-3: Application of high potential to the free surface of the liquid causing electrospraying.  

 

 

 

 

Figure 6-4: Schematic of electrospraying with sound waves setup 

H.V (KV) 
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 Results and Discussion  6.2.2:

Disturbances on the surface of the liquid are observed depending on the frequency of 

excitation. The frequency of the audio speaker is varied from 10 Hz to 4 kHz.  As the frequency 

applied to the contained solution is increased, the waves produced on the surface form patterns of 

increasing frequency as well. Figure 6-5 shows the liquid wave patterns generated for 1 mL of 

ethanol at 240 Hz frequency.   

 

Figure 6-5: Liquid wave patterns on the free surface generated by the sound waves  

 

When a high potential of 25 kV is applied to these liquid wave patterns, electrospraying 

of the liquid was observed.  In our tests of this unique technique, ethanol was used as the 

solution.  Figure 6-6 shows the electrospray of ethanol from the free surface.  
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Figure 6-6: Electrospray of ethanol with Faraday waves 

 Conclusions 6.2.3:

Initial results show that electrospraying with Faraday waves has the potential for high 

solution delivery. This method can also avoid the clogging observed in the needle 

electrospraying method and eliminates the solvent miscibility issues with the multiple spikes 

method.  
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CHAPTER 7: SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 

7.1: Summary of results  

 

NanoGUMBOS characterization 

In this work, we have examined the electrical characteristics of several interesting 

nanoGUMBOS candidates that belong to a new class of materials. Interest in these materials 

stems from their extended range of thermal stability (compared to traditional ionic liquids) and 

their ease of synthesis into various nanoforms. Images of samples via Atomic Force Microscopy 

(AFM) were obtained for [R6G][TPB], [PIC][BETI], and [PIC][NTf2] nanostructures to 

understand their morphology. Conductive probe atomic force microscopy (CP-AFM) was used to 

understand their electrical behavior. Nanowires of [R6G][TPB] and [TC2][BETI] were 

characterized using an interdigitated structure. [TC2][BETI] forms in-situ nanowires upon 

deposition onto substrates due to aggregation as the solvent evaporates. This phenomenon was 

used to deposit thin-films of [TC2][BETI] using electrospaying. [TC2][BETI] films showed 

uniform coverage of the substrate. Further, we have demonstrated that these [TC2][BETI] thin-

films can be used as electronically responsive chemical sensors of various vapors.  

 

Carbon Nanotubes thin-films deposition on non-conductive substrates 

Carbon Nanotube (CNT) thin-films have been extensively investigated for various 

applications ranging from opto-electronics to biological applications. CNTs thin-films are 

deposited upon a variety of substrates including conductors, semi-conductors, and insulators. Of 

these, CNT deposition on insulators is both interesting and a challenging task. In this we work, 

we have developed a technique for the deposition of carbon nanotubes onto non-conductive 

substrates. A combination of electrospraying and electrophoretic deposition techniques was used 
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to deposit a uniform conductive initial layer. This initial layer of CNTs thin-film (nm) was used 

as a conductive substrate for deposition of denser and thicker films (µm) using electrophoretic 

deposition. Surface coverage, uniformity, and the conductivity of the final film deposited were 

observed to be dependent on the quality of the underlying initial CNT film. This method of 

deposition eliminates the need for surface functionalization of substrates using polymer or 

organic layers prior to CNT deposition. Electrospraying of the initial layer also ensured a 

uniform coverage of the film, which proved critical for final thin-film properties. This 

completely solution based room temperature deposition of CNTs of this method has potential for 

the large scale production of high quality CNTs films .    

 

Faraday Electrosparying 

Traditional electrospraying has been increasingly used for thin-film deposition.  

However, its application to industrial thin-film processes are limited due to inadequate solution 

delivery rates and complexities arising from the scalability of typical needle electrospraying 

configurations. In this work we have designed and investigated an alternative method of 

electrospraying.  Our method, for which we have adopted the term “Faraday electrospraying,” 

emits the electrospray from an open solution surface. This is achieved by the use of Faraday 

waves that form on the surface of liquid when subjected to mechanical waves such as sound 

waves. When the solution is subjected to the external sound waves, crests and troughs (wave 

maxima and minima) are formed.  Moreover, when a uniform high electric field (kV/cm) is 

applied, the crests of the solution (due to sound waves) take on a high charge density (Rayleigh 

Limit), causing the solution to spray. In this study, we have successfully constructed a prototype 

apparatus to observe these phenomena of electrospraying from the crests of a solution.  Ethanol 
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was sprayed using this technique. This initial study showed that the rate of deposition can be 

controlled both via the applied electric field (E) and also applied mechanical parameters 

(frequency and amplitude) as found in sound waves.  

7.2: Recommendations for future work  

NanoGUMBOS Characterization 

a) Characterization of NanoGUMBOS as active components of opto-electronics devices 

In this work, we have investigated fundamental electrical characteristics of a new class of 

nanomaterials which have exhibited potential for use as active components of opto-electronic 

devices. One prospective device candidate is the solar cell which, in its “dye sensitized” form has 

been studied for their amenability to ionic liquids. Future work from the hybrid electronic 

materials/electrical engineering perspective could consist of designing devices which integrate 

the properties of nanoGUMBOS into a light-to-electrical energy conversion process. 

 

b) Optimization of thin-film deposition of NanoGUMBOS using electrospraying  

NanoGUMBOS formed by self-aggregation on the substrate have great potential for thin-film 

development. In this work we have successfully deposited [TC2][BETI] nanowires using 

electrospraying.  Deposition of in-situ nanostructures ([TC2][BETI]) due to aggregation on the 

substrate makes them interesting candidates for thin-films development. As these nanostructures 

are formed in-situ, the size of the solution droplet can be controlled in the electrospraying, 

resulting in control of the size of the nanostructures. Future work could entail optimization of 

electrospraying apparatus for use in nanoscale materials processing.  
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CNTs thin-film deposition on non-conductive substrates  

a) Comparative study of CNTs deposition for various non-conductive substrates  

In this study CNTs are deposited on glass substrates using electrospray-assisted 

electrophoretic deposition (EPD).  This technique can be used to deposit nanomaterials onto a 

variety of substrates ranging from polymers to plastics and flexible substrates.  A comparative 

study of the initial CNT layer morphology and conductivity on a wider range of substrates (e.g. 

Si3N4, SiO2) would contribute to the current state-of-the-art understanding of CNTs and their 

thin-film properties.  

 

b) Effect of solvent evaporation dynamics on the initial layer morphology  

EPD deposition of CNTs on non-conductive substrates are primarily dependent on the 

underlying layer deposited by the electrospraying. Electrospraying creates micro-scale droplets 

due to droplet fission which, in turn, are deposited onto a target to form a CNT thin-film. The 

evaporation dynamics of the deposited CNTs suspended in solvent droplets are critical as these 

phenomena depend, not only the solvent, but also the underlying substrate (target). Ultimately, 

the aforementioned affect the morphology of the electrosprayed film and the properties of the 

EPD film. Future work toward a better understanding of these evaporation dynamics would 

provide insight into the morphology of the resulting surface and its effect on the conductivity of 

the final CNTs film.   
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Faraday Electrospraying  

a) Effect of frequency of sound waves on the generation of electrospray 

In this work, Faraday waves on a solution surface are generated by the use of sound waves. 

For a fixed amount of solution in a container, different frequencies of sound waves create a 

different number of peaks (crests) in the solution; this in turn affects the number of sprays 

generated when an electric field is applied. Also, different frequencies of sound waves interact 

differently with the same material due to dampening and sound absorption. Ongoing work to 

better understand the effect of the frequency of a sound wave applied to solution is critical to 

understanding the electrospray generated and to controlling the final thin film morphology.  

 

b) Understanding the behavior of self-assembling solution peaks at high electric fields 

Electrospray is generated at the peaks (crests) of the solution due to the sound waves and 

uniform electric field (Rayleigh Limit). As there is a matrix of peaks simultaneously generating 

electrospray, there is a mutual repulsion which forces the peaks to readjust their positions in the 

matrix. This phenomenon is more pronounced when very high electric fields are applied and also 

depends on the viscosity and conductivity of the solution (kV/cm). Future work to better 

understand the relationship between an applied sound wave frequency and resultant self-

assembling peaks (crests) will help to determine the optimal electric field needed for the 

formation of maximum and stable peaks (crests).  

 

c) Study of solution viscosity and its effects on solution delivery rate 

As discussed, the above solution parameters (especially the viscosity of the solution) play a 

critical role in the Faraday electrospraying process. Most of our study, thus far, has focused on 
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Newtonian fluids as these react (linearly) to the applied force and are easiest to handle in the 

initial investigation.  However, viscosity of the liquid is a critical factor for self-adjusting peaks; 

more viscous solutions can withstand higher electric field before the self-adjusting of peaks 

occur when compared to the less viscous liquids.  Future work to develop a clearer understanding 

of the role of solution viscosity in Faraday electrospraying will assist in better estimation of the 

applied electric field necessary for the maximum solution delivery rate. 

  

7.3 Final Remarks 

This dissertation has presented a comprehensive study of selected hybrid electronic materials 

(HEMs) in terms of their characterization and thin-film deposition. Ranging from the relatively 

recently discovered GUMBOS/nanoGUMBOS to the more fully characterized but “processing 

challenged” carbon nanotubes (CNTs, thin-films), this research has produced first-time results 

and innovative solutions to the literature, the scientific investigations of, and engineering 

developments in HEMs. As a body of original research, the work of this dissertation is a notable 

step in the efforts to move “beyond the transistor” in next-generation electronics. 
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