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ABSTRACT 

Off-chip memory bandwidth has been considered as one of the major limiting 

factors to processor performance, especially for multi-cores and many-cores. 

Conventional processor design allocates a large portion of off-chip pins to deliver power, 

leaving a small number of pins for processor signal communication. We observed that the 

processor requires much less power than that can be supplied during memory intensive 

stages in some cases. In this work, we propose a dynamic pin switch technique to 

alleviate the bandwidth limitation issue. The technique is introduced to dynamically 

exploit the surplus pins for power delivery in the memory intensive phases and uses them 

to provide extra bandwidth for the program executions, thus significantly boosting the 

performance. We also explore its performance benefit in the era of Phase-change memory 

(PCM) and prove that the technique can be applied beyond DRAM-based memory 

systems. 

On the other hand, the end of Dennard Scaling has led to a large amount of 

inactive or significantly under-clocked transistors on modern chip multi-processors in 

order to comply with the power budget and prevent the processors from overheating. This 

so-called “dark silicon” is one of the most critical constraints that will hinder the scaling 

with Moore’s Law in the future. While advanced cooling techniques, such as liquid 

cooling, can effectively decrease the chip temperature and alleviate the power constraints; 

the peak performance, determined by the maximum number of transistors which are 

allowed to switch simultaneously, is still confined by the amount of power pins on the 

chip package. In this paper, we propose a novel mechanism to power up the dark silicon 

by dynamically switching a portion of I/O pins to power pins when off-chip 
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communications are less frequent. By enabling extra cores or increasing processor 

frequency, the proposed strategy can significantly boost performance compared with 

traditional designs.  

Using the switchable pins can increase inter-socket bandwidth as one of performance 

bottlenecks. Multi-socket computer systems are popular in workstations and servers. 

However, they suffer from the relatively low bandwidth of inter-socket communication 

especially for massive parallel workloads that generates many inter-socket requests for 

synchronizations and remote memory accesses. The inter-socket traffic poses a huge 

pressure on the underlying networks fully connecting all processors with the limited 

bandwidth that is confined by pin resources. Given the constraint, we propose to 

dynamically increase the inter-socket bandwidth, trading off with lower off-chip memory 

bandwidth when the systems have heavy inter-socket communication but few off-chip 

memory accesses. The design increases the physical bandwidth of inter-socket 

communication via switching the function of pins from off-chip memory accesses to 

inter-socket communication. 
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 INTRODUCTION 

1.1. MOTIVATIONS 

As memory-intensive applications such as web servers, database software, and 

tools for data analysis prevail, the focus of computer architects shifts from Instruction 

Level Parallelism (ILP) to Memory Level Parallelism (MLP). The term “Memory Wall” 

was coined to describe the disparity between the rate of core performance improvement 

and the relatively stagnant rate of off-chip memory bandwidth increase. Additional cores, 

when integrated on the same die, and supplemental applications serve to widen this gap, 

since each individual core may generate substantial memory requests that need to be 

queued and served by the memory subsystem. Obviously, the capability of the off-chip 

memory system largely determines the per-core or even the overall performance of the 

entire system. In scenarios where the off-chip memory is insufficiently fast to handle all 

memory transactions in a timely manner, the system performance is highly likely to be 

bottlenecked by the slow memory accesses. An intuitive solution to this problem is to 

increase the off-chip memory bandwidth by enabling more memory channels. Figure 1-1 

illustrates the variation of normalized throughput with the number of memory channels 

increased from 1 to 4 when 4 lbm programs are running on an X86 platform. As can be 

seen from the figure, enabling more memory channels significantly increases the off-chip 

bandwidth, which in turn translates to an impressive boost of the system performance. 

Furthermore, compared to compute-intensive stages, processors consume much less 

power during memory-intensive phases when cores wait for data to be fetched from main 

memory. 
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Motivated by this observation, we propose an innovative technique to mitigate the 

shortage of off-chip bandwidth during the memory-intensive phases of program 

executions, in order to enhance the overall performance. Our scheme is built on top of a 

novel switchable pin design and accurate identifications of memory-intensive phases. 

Pins can be dynamically altered for power delivery or signal transmission via accessory 

circuits. These circuits enable pins to deliver quality power or signal with relatively low 

area overhead. On the other hand, we identify the memory-intensive phases by observing 

the key performance metrics at runtime. Extra off-chip bandwidth is demanding in phases 

with high memory intensity. Therefore, by switching the pins and providing additional 

bandwidth for off-chip memory transactions, the performance of memory-intensive 

stages can be boosted, thus impressively accelerating the overall execution.  

On the other hand, “dark silicon” can be mitigated via the switchable pins. In the 

current industry, there are two commonly accepted reasons for power constraints that 

cause dark silicon: thermal constraints and power delivery [41]. The slow improvement 

of per-transistor switch energy along with the fast growing transistor density has led to a 

considerable rise in the power consumption per unit area (i.e., power density). Provided 

that inexpensive cooling techniques such as air cooling are still the mainstream solution 

  

 

Figure 1-1. Normalized weighted speedup and off-chip bandwidth of 4 lbm co-running 

on a processor with 1,2,3,4 memory channels 
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Figure 1-2. Power and memory bandwidth (8 copies of DEALII from SPEC2006) 
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to heat dissipation for desktop and mobile platforms, such increasing of the power density 

tends to generate substantial heat that outstrips the chip’s heat spreading capability. In 

this situation, the maximum power consumption of the chip cannot go beyond a threshold 

in order to maintain a safe working temperature for the entire processor. This power limit 

is usually referred to as the thermal design power (TDP). Some high-end processors with 

a higher TDP use backplate liquid cooling [33] to avoid thermal issues. 

The underlying power delivery system, on the other hand, constrains the amount 

or the frequency of simultaneously active transistors as it determines the maximum power 

that is able to be provided to the chip irrespective of the thermal concern. To alleviate this 

constraint, we consider increasing the power envelope with minimum circuit change to 

the existing computer systems, in order to enable more transistors or raise the operating 

frequency in the power-hungry phases during program execution. Figure 1-2 plots a 

snapshot of the execution of 8 copies of DEALII from SPEC2006 on an 8-core processor, 

visualizing a representative scenario that motivates our work. The off-chip memory 

traffic and processor power consumption both vary in different execution phases. More 

interestingly, the two traces generally show an opposite trend during the execution; when 

the memory traffic is relatively light, the total power consumption is quite considerable 
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(e.g., time interval 106 – 151ms). On the other hand, a duration of memory-intensive 

execution will correspond to a low-power period. The underlying reason for this 

phenomenon is that frequent misses in the last-level cache and the resultant off-chip 

memory accesses will largely slow down the overall execution rate, leading to a decrease 

in the processor’s power consumption.  

This intuitive observation implies an important opportunity for performance 

improvement and dark silicon mitigation by appropriately balancing the power delivery 

and off-chip traffic. To exploit this potential benefit, we propose a novel mechanism to 

dynamically switch a portion of I/O pins for extra power delivery when off-chip memory 

accesses are infrequent, thus powering up the dark silicon for performance boost. During 

a phase when off-chip activities are relatively high, we switch back the pins for signal 

transmission. 

Pin Switching provides a great opportunity for increasing the off-chip bandwidth 

of CPUs using Phase-change memory (PCM). As DRAM is experiencing difficulties with 

memory technology scaling, architects are intensively studying potential alternative 

memory technologies such as PCM. Although PCM exhibits different features from 

DRAM, Pin Switching is expected to also improve the performance of PCM subsystems. 

This work investigates the potential benefit of Pin Switching in the era of PCM.  

Pin Switching also provides an opportunity for increasing the inter-socket 

bandwidth as one of performance bottlenecks. Multi-socket systems are widely used to 

boost the throughput of massive parallel workloads that generate intensive local traffic, 

between processors and off-chip memory devices such as DRAM, and remote traffic for 

inter-socket communication. The limited local bandwidth of main memory bounds the 
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performance of parallel workloads, since it serializes the parallel memory requests and 

offsets the benefit of memory level parallelism, especially considering the ever-

increasing data size of workloads and number of cores per die. This problem is addressed 

by many architects by boosting the system throughput via advanced algorithms for off-

chip memory requests [11], increasing the physical memory bandwidth at the cost of 

lower core frequency [6], or reducing traffic via using a stacked DRAM, which has 

higher bandwidth than off-chip memory devices and a larger size than a SRAM-based 

cache [18]. These solutions relieve the performance bottleneck, while remote inter-socket 

bandwidth emerges as a new performance bottleneck for workloads with intensive inter-

socket communication. 

 Remote bandwidth bounds the performance of workloads that frequently fetch 

data from the cache of other processors or remotely from main memory. Inadequate 

remote bandwidth serializes memory requests and limits the benefits of memory level 

parallelism. The bottleneck of inter-socket communications such as QuickPath 

Interconnect (QPI) [20] was hidden, as remote main memory access is constrained by off-

chip bandwidth, but is now revealed by the volume of requests directly to the DRAM 

 

Figure 1-3. The latency breakdown of un-core requests in the simulated 

system with two sockets 
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cache that do not use off chip bandwidth. The QPI bandwidth becomes a greater concern 

than off chip bandwidth when data is more likely to be fetched from stacked DRAM, 

which has superior bandwidth compared to the remote bandwidth. This bottleneck is 

shown in Figure 1-3 that breaks down the latencies of un-core requests. 

qSwitch, which dynamically allocates off-chip bandwidth between local and 

remote accesses, is proposed to relieve the bottleneck constraining remote accesses. The 

total number of pins bound the bandwidth as a scarce resource [24] that power delivery 

networks and I/O compete for. Additionally, increasing the total number of signal pins is 

prohibitive since routing traces beneath processors is becoming very difficult. qSwitch 

dynamically shifts a portion of local off-chip bandwidth for accessing main memory into 

remote inter-socket communication bandwidth when low local access activities are 

observed without increasing the total number of signal pins. qSwitch improves the 

performance of workloads suffering from limited inter-socket bandwidth, based on a 

vertical design from the circuit to architecture level.  

1.2. DISSERTATION ORGANIZATION 

The dissertation first presents a pin switch technique to increase off-chip 

bandwidth based on switchable pins. It demonstrates applying the switchable pins to 

mitigate dark silicon by boosting core frequency. Additionally, it explores the benefit of 

the pin switch technique in the era of PCM with multi-threaded workloads. Based on the 

underlying idea of the pin switch technique, it proposes another pin switch technique to 

increase inter-socket bandwidth. In general, the main contributions of this work are 

summarized as follows: 
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 We propose a switchable pin design which can convert a power pin to a signal 

pin or the other way around for increasing off-chip bandwidth. Detailed 

examinations at both the circuit and architectural level are conducted to 

validate the feasibility of the proposed design. We examine the performance 

improvement of the design in various memory configurations. A sensitivity 

study is conducted to compare the benefit of our design with a different 

number of channels, buses, banks and ranks. We design Dynamic Switching 

to alleviate the negative side-effects of pin switching by actively identifying 

memory-intensive phases and only switching when the condition is satisfied. 

Without prior knowledge of program characteristics, this policy switches the 

system to prioritize memory bandwidth or core performance according to the 

identified phase. Our experiments show that significant performance 

improvement can be achieved for memory-intensive workloads while 

maintaining the same performance for compute-intensive workloads as the 

system without Pin Switching. 

 We give a circuit implementation for mitigating dark silicon, using minor 

changes to existing processor and motherboard circuitry. We further design a 

rigorous statistical model that correlates the historical execution behaviors and 

off-chip access intensities in upcoming intervals. The established model can 

be employed by the operating system or equivalent supervisor to guide pin 

switching at runtime. We conduct a series of simulations to evaluate the 

performance, energy efficiency, and thermal impact of the proposed design on 

a chip multi-processor (CMP) in the dim silicon [81]. 
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 We integrate a PCM model into our simulations to evaluate the benefits of Pin 

Switching in the era of PCM. Pin Switching significantly improves the 

performance of the PCM memory subsystem in our evaluation. We also show 

that multi-threaded workloads can benefit from Pin switching as long as they 

share the performance bottleneck of off-chip bandwidth.  

 We identify that the latency of inter-socket communication as the major 

bottleneck for massive parallel workloads that intensively share data across 

sockets. We propose qSwitch for improving the performance of the workloads 

on a multi-socket system in which switching agents turn on/off memory 

channels, QPI buses, and off-chip bus connections. We evaluate the 

performance of qSwitch with the selected multi-thread workloads. We also 

investigate the runtime overhead and signal integrity for qSwitch.  

The remainder of the dissertation is organized as follows. We present the design 

which increase off-chip bandwidth via switchable pins in chapter 2, and the design which 

mitigate dark silicon in chapter 3. We propose boosting off-chip bandwidth with PCM 

and improve the performance of multi-threaded programs in chapter 4. Finally, we 

propose increasing inter-socket bandwidth via switchable pins in chapter 5.  
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 INCREASING OFF-CHIP BANDWIDTH IN 

MULTI-CORE PROCESSORS WITH SWITCHABLE PINS 

2.1.  DESIGN OVERVIEW 

Our design aims to boost computer system performance especially for memory-

intensive programs. In conventional designs, the performances of these workloads are 

degraded by a shortage of memory buses which limits off-chip bandwidth. We provide 

increased memory bandwidth, thereby reducing the average latency of off-chip memory 

access, at the expense of a lower core frequency. Rather than retaining a fixed number of 

buses connected to the DRAM (typically one bus per channel), our design dynamically 

switches buses between signal and power pins (VDD or GND) to reduce the latency for 

these workloads. This is referred to as multi-bus mode henceforth, as opposed to single-

bus mode similar to conventional processor operation. Switchable pins facilitate changing 

between these two modes as discussed below. This paper focuses on how to fully exploit 

the benefits of substituting power pins for I/O pins during memory-intensive programs 

without interfering with compute-intensive programs. 

 Pin Switch 

Figure 2-1 depicts the schematic of two switches and a signal buffer which serve 

as the basic units for exchanging power pins for signal pins. The signal-to-power switch 

shown in  

Figure 2-1 (a) is key to alternate a regular pin between the two modes. As 

illustrated in this figure, we utilize a dedicated power switch [59] which sits on the power 

delivery path to minimize the corresponding IR drop and power consumption with its 
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ultra-low switch-on resistance, measuring as low as 1.8mΩ. While in the single-bus mode, 

the power  switch is turned on while two 5 stage tri-state buffers on the signal line are off. 

Otherwise, the power switch is turned off to block noisy interference from the power line, 

and the tri-state buffers are turned on in one direction according to whether data is read 

from the memory or written by the memory controller. To compensate for the parasitic 

capacitances of the power switch, we place the 5 stage tri-state buffers in signal lines to 

Common 
terminal

Power

Signal

Power switch

Five Stage Tri-state Buffer

Ctrl_P

Ctrl w

Ctrl R

Ctrl

Five Stage Tri-state Buffer
1 2 5

 

(a) The circuit of a signal-to-power switch 
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(b) The circuit of a signal switch 
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Signal buffer  

(c) The circuit of a signal buffer 

 

Figure 2-1. The circuit of pin switch 
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amplify I/O signals. Between each stage, the buffer size is increased by four times to 

amplify the signal with small delay. In total, the 5 stage tri-state buffer incurs a 0.9ns 

delay. On the other hand, the die area of the aforementioned power switch is 

commensurate to that of 3,000 traditional transistors [59]. The number of signal pins for a 

DRAM bus could slightly vary depending on different processors (e.g. with or without 

ECC). We pick up 125 power switches per bus which consists of 64 data pins and 61 

address and command pins from the pin allocation of an i5-4670 Intel Processor [7]. The 

total die area consumes 375,000 (3,000 * 125) traditional transistors. Considering a 

billion-transistor chip, the area overhead for the 3 buses which will be used in our work is 

less than 0.12% of the total chip area. 

The signal switch shown in Figure 2-1 (b) is employed to guarantee that data in 

the DRAM can be accessed in two modes. The signal switch uses two pairs of 5 stage tri-

state buffers to enable memory devices that can be accessed via two buses. The buffers 

identical to that in the signal-to-power switch can resist noise from a channel when the 

other channel is selected. On the other hand, the signal buffers shown in Figure 2-1 (c) 

also have strong peak-drive current and sink capabilities. They are utilized to amplify the 

signal in order to offset the effect of the parasitic capacitance. 

Processors possess specific pin allocations depending on the package, power 

consumption, and hardware interface (the number of memory channels). For our 

experiment, we use the pin allocation of an i5-4670 Intel Processor [7] shown in Table 

2-1. While this processor includes 4 cores and 2 memory channels, 54.6% of the pins are 

used for power delivery. Out of the 628 power pins, 125 of these can be replaced with 

switchable pins for a single bus. To maintain the same ratio of VDD to GND pins, we 
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allocate 30 of the 125 switchable pins as VDD pins and the remaining 95 as GND pins. In 

our experiment we will allocate at most three additional buses via pin switching because 

adding more leads to a considerable drop in performance.  

 Off-Chip Bus Connection 

Designing a memory interface which could take the advantage of the switchable 

pins to dynamically increase off-chip bandwidth is non-trivial. In this section, we propose 

an off-chip bus connection and instructions to configure the switchable pins for power 

delivery or for signal transmission.  

The two modes of the off-chip bus connection could be described as the multi-bus 

mode and the single-bus mode, as shown in Figure 2-2. In multi-bus mode, several buses 

(assuming N) are connected to private DRAM interfaces via the individual buses. On the 

other hand, single-bus mode can only access DRAM by a single bus. Two signal-to-

power switches and a signal switch for each signal wire of N-1 buses are needed. These 

signal-to-power switches configure the switchable pins for signal transmission where the 

signal switches connect the bus to DRAM devices in the multi-bus mode, otherwise the 

switchable pin is configured for power delivery where the DRAM devices are connected 

to the shared bus.  

 In order to implement the mechanism, we control the signal-to-power switch 

detailed in Figure 2-1 (a) and the signal switch detailed in Figure 2-1 (b) to route signal 

and power in the two modes. The signal to the DRAM interface could be divided into two 

groups: command signals and data signals. The command signals running in one 

direction could be routed via the two switches which only need one direction buffer 
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instead of a pair. On the other hand, the data signals (DQ) are bi-directional and the 

switches shown in Figure 2-2 could receive and send signals in both directions. 

For the placements of the switches on the printed circuit board (PCB), one signal-  

to-power switch for each signal line should be placed close to the processor package in  

  

 

Figure 2-2. The overview of the hardware design of off-chip bus connection for switching 

between the Multi-bus mode and the Single-bus mode 

Table 2-1. Pin allocation of an Intel Processor i5-4670 

VDD GND DDR3 Others Total 

153 475 250 272 1150 
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order to shorten the signal wire which has to bear high current for power delivery. To 

avoid signal reflections caused by an impedance mismatch, we keep the width of the 

signal wires and conduct an experiment to test the feasibility of high current via these 

signal wires. Based on a specification from the PCB manufacturer [9] and the DDR3 

PCB layout guidelines [8], our simulation with COMSOL shows the MTTF of the 6mil 

signal wire could be more than 2.5 x 105 hours with a 1A current. On the other hand, the 

signal switch should be placed near the corresponding DRAM device to reduce signal 

reflections. 

 Memory Controller 

The data availability of the memory controller is our primary concern. All the 

available memory buses in the multi-bus mode must be fully utilized to achieve 

maximum bandwidth while still allowing all the data in single-bus mode to be accessed. 

Due to the complicated synchronization of memory requests between memory controllers, 

the switch between the two bus modes is only implemented inside the memory controller. 

Within a memory controller, a memory interface is designed for each bus to fully exploit 

the benefit of the multi-bus mode without the interference of traffic from other buses 

compared to the design of multiple buses sharing a single memory interface. 

The memory controller in our design includes dedicated request queues which 

buffer the incoming requests to the buses shown in Figure 2-3. Queues individually 

receive the requests from the front arbiter which employs its address mapping policy 

when dispatching requests. Once the requests are residing in the queues, they are fetched 

by the back arbiter. While in multi-bus mode, the requests are fed into their 

corresponding buses via the corresponding DRAM interfaces. Because memory 
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interfaces can operate independently and in parallel, the memory bandwidth can be 

amplified by a factor of the number of memory buses. In the single-bus mode, the 

memory controller works similar to a conventional processor and communicates with the 

attached DIMMs as appended ranks. 

 Area Overhead 

The circuit overhead of our design consists of the front arbiter, the end arbiter, 

and  extra DRAM interfaces. As a result of both arbiters, the cost of dispatching requests 

without buffering them should be negligible. Furthermore, the cost of the additional 

DRAM interface is inexpensive. The estimated net area of a typical DRAM interface 

from Opencore [1] is 5,134 µm2 in 45 nm technology. This estimation is conducted by 

the Encounter RTL Compiler [5] with the NanGate Open Cell Library [6]. No more than 
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Figure 2-3. The Overview of the hardware design of memory controller for switching 

between the Multi-bus mode and the Single-bus mode  
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three additional buses in total are used in our experiment thus creating a maximum 

hardware overhead less than 0.00015 cm2 which is significantly less than the typical 1 

cm2 die area. 

 Address Mapping 

Data accesses interleave at the page level via different buses exploiting the benefit 

of memory-level parallelism while maintaining a high row buffer hit ratio. Interleaving at 

the block level considerably decreases the row buffer hit ratio resulting in longer off-chip 

latency per request and extended queue delay. To reduce row-buffer conflicts, we employ 

XOR banking indexing which could effectively reduce bank conflicts resulting from 

resource-contention-induced traffic and write-backs. This permutation distributes the 

blocks stored in the last level cache into different banks as opposed to possibly including 

tags of physical addresses containing the same bank index. 

 Signal Integrity 

Signal integrity is analyzed to demonstrate feasibility in the single-bus and the 

multi-bus modes. We simulate SPICE models of our accessory circuit as well as PCB 

transmission lines, bond wire inductance, and driver capacitance associated with the 

device package in the AMS packages of Mentor Graphic as shown in Figure 2-4. The 

parameters are derived from previous works [58][62]. Signal integrity challenges are 

alleviated since the DDR3 command signal is unidirectional and its speed is no more than 

that of the data signals [58]. In this study, we only analyze the effect of our accessory 

circuit on the data signals which could be viewed as the worst case for all the signals.  
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In Figure 2-5 (a-d), the eye patterns of writing data (controller to device) and 

reading data (device to controller) in the two modes are derived from the corresponding 

SPICE models in Figure 2-4 (a-d) respectively. They have clear eyes since the signal-to-

power switch alleviates the effect of the parasitic capacitance of the power switches.  

Furthermore, the signal switches as well as signal buffers alleviate the signal reflections 

caused by discontinuities. Thus, the results indicate our accessory circuit could maintain 

the signal quality in the two modes. 
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Figure 2-4. Spice models for signal integrity simulation 
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 Power Delivery Simulation 

In this section, we assess the repercussions experienced by the power delivery  

network (PDN) when the switchable pins are shifted from single-bus mode to multi-bus 

mode. The PDN is depicted in Figure 2-6 (a). The power delivery path is modeled with 

RL components (i.e. resistors and inductors) connected in series across the PCB, the 

 

 (a) DQ Read in multi-bus mode (Device to Controller) 

 

(b) DQ Write in multi-bus mode (Controller to Device) 

 

(c) DQ Read in single-bus mode (Device to Controller) 

 

(d) DQ write in single bus mode (Controller to Device) 

 

Figure 2-5. The eye diagrams 
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package, and the silicon die. Decoupling capacitors are introduced between each 

individual PDN to control any voltage fluctuations. The on-chip power grids and 

processor circuits on the silicon die are modeled separately as RL components with an 

ideal current source.  

Figure 2-6 (b) illustrates the RL model of the Controlled Collapse Chip 

Connection (C4) pads [31] in which the resistance of the on-state power switches is taken 

into consideration. Table 2-2 lists the parameter values obtained from prior work [45]. 

PDN simulations are performed in PSPICE to evaluate the impact of Pin 

Switching. Due to resistance along the power delivery path, an IR drop exists between the 

supply voltage and load voltage as current flows through the PDN. We assume a 

normalized IR drop should be upper-bounded by 5% as prior work dictates [52][56]. This 

implies that the maximum currents are 125A, 104A, 80A, and 56A for the baseline and 

then for Pin Switching mechanisms with one, two, and four borrowed buses respectively. 

In other words, the three Pin Switching diagrams switch 125, 250, and 375 power pins to 

signal pins providing 16.8%, 36.0%, and 55.2% less current with 19.9%, 39.8% and 59.7% 

less power pins respectively. The percentage of current decrease is less than that of 

Table 2-2. Power network model parameters 

Resistance Value Inductance Value 

RPCB 0.015 mΩ LPCB 0.1 nH 

RPKG, C 0.2 mΩ LPKG,C 1 pH 

RLOAD,C 0.4 mΩ LLOAD,C 1 fH 

RGRID 0.01 mΩ LGRID 0.8 fH 

RC4, SINGLE 40 mΩ LC4, SINGLE 72 pH 

RSWITCH,ON 1.8 mΩ   

Capacitance 

CPKG,C 250 µF CLOAD,C 500 nF 
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proportional power pin quantity decrease because the IR drop depends on the resistance 

in the PCB and power grids. 

We assume the processor employs a dynamic voltage and frequency scaling 

(DVFS) mechanism supporting 4 voltage and frequency operating points. The frequency 

can be scaled down from 4.0GHz to 1.2GHz. Correspondingly, the voltage will be 

decreased from 1.0V to 0.64V. According to McPAT [56], the baseline design can work 

at a frequency of 4.0GHz given the power delivery information. However, the processor 

frequency must be decreased individually to 3.2GHz, 2.4GHz, and 1.2GHz when the 

power pins for one, two, and three sets of memory channel pins are borrowed as I/O pins 

respectively. The results shown in Table 2-3 are used in the following evaluation. 
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Figure 2-6. RLC power delivery model 
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 Runtime Switch Conditions 

Designing a predictor to choose the most beneficial mode for the next interval is 

non-trivial for multi-program workloads. Simply switching based on the amount of 

consumed off-chip bandwidth is not sophisticated enough to improve the overall 

performance of a system in which only some of the programs that suffer from long off- 

chip access latency are likely to benefit from multi-bus mode. To identify intervals that 

will benefit from Pin Switching it is necessary to estimate both the performance change 

of each program and the overall benefit of switching for the following interval based on 

the current performance before a switching occurs. We introduce a metric called the 

switching benefit Bij(Tc) to help identify the most beneficial mode for each 1 millisecond 

interval, where Bij(Tc) represents the estimated reward for running the interval following 

time Tc in mode j instead of mode i. Based on the history of the switching benefit, we 

predict B̃ij(Tc) as the switching benefit for the following interval using B̃ij(Tc) =

 ∑ Bij(Tc − k ∗ Tinterval)
N
k=1 , where Bij(Tc − k ∗ Tinterval)  represents the switching 

benefits detailed in equation (1) and can be measured from the N intervals ago and N is 

the length of the history to consider which were carefully chosen to be 2 for our 

experiment. If the predicted switching benefit is negative, the system will stay in mode i, 

otherwise, it will switch to mode j.  

Table 2-3. Processor power and frequency parameters for different number of buses 

BUS 1 2 3 4 

Current (A) 125 104 80 56 

Voltage (V) 1 0.88 0.76 0.64 

Power (W) 125 92 61 36 

Frequency (GHz) 4 3.2 2.4 1.2 
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The switching benefit is calculated using the following equation: 

Bij(Tc) = ∑ (WSj,k(Tc)
p
k=1 − WSi,k(Tc))      2-1 

Where WSi,k(Tc) and WSj,k(Tc) stand for the estimated weighted speedups for program k 

at time Tc  in mode i and mode j respectively, while p represents the number of 

simultaneously executing programs which is equal to 4 in our experiment. The weighted 

speedup of each program in mode i during the interval can be estimated based on the 

information derived from hardware counters and off-line profiling, since the system is 

running in mode i during the current interval. The weighted speedup is calculated as 

follows: 

 WSi,k(Tc) =  Talone,i,k(Tc)/Tshared,i,k(Tc)      2-2 

  Talone,i,k(Tc) =  Committed Instalone,k(Tc)/(average IPSalone,k)   2-3 

where Talone,i,k(Tc) stands for the execution time of the same instructions running without 

interference from co-runners and Tshared,i,k(Tc) denotes the execution time of a fraction 

of program k running with others during the current interval which is equal to the length 

of an interval (1 millisecond). Furthermore, Committed Instalone,i,k(Tc) stands for the 

number of committed instructions during the interval following Tc of program k, directly 

derived from a hardware counter since it should be identical to the number when program 

k shares the main memory system with others. Average IPS obtained from off-line 

profiling denotes the average number of executed Instructions Per Second (IPS) when 

program k running alone. These values are used to approximate  Talone,i,k(Tc) based on 

the assumption that the IPS of each program is relatively steady when it runs alone, since 

an accurate estimation of  Talone,i,k(Tc) is challenging [65].  
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The estimation of the weighted speedup of each program in currently unused 

mode j is more difficult compared to that in current mode i, since we can only estimate 

the performance of mode j according to the information collected in mode i. The 

weighted speedup is calculated as follows: 

WSj,k(Tc) =  Talone,j,k(Tc)/Tshared,j,k(Tc)       2-4 

Tshared,j,k(Tc) = Ton−core,j,k(Tc) +  Toff−core,j,k(Tc)     2-5 

Where Talone,j,k(Tc)  is identical to Talone,i,k(Tc  ) and Tshared,j,k(Tc)  represents the 

execution time of program k running with others in mode j. It can be divided into two 

parts based on whether the execution times vary with core frequency: Ton−core,j,k(Tc) 

denotes the portion of the execution time spent inside the core which is inversely 

proportional to core frequency, while Toff−core,j,k(Tc) expresses the portion of execution 

time incurred by activity outside the core. We estimate Ton−core,j,k(Tc) based on the 

corresponding time Ton−core,i,k(Tc) in mode i using:  

Ton−core,j,k(Tc) = Ton−core,i,k(Tc) ∗
freqi,k

freqj,k
⁄      2-6 

Where freqi,k  and freqj,k  are the frequencies in mode i and mode j respectively. We 

estimate Ton−core,i,k(Tc) with the same breakdown using 

Ton−core,i,k(Tc) = Tinterval − Toff−core,i,k(Tc)      2-7 

Toff−core,i,k(Tc) = TLLC,i,k(Tc) + TDRAM,i,k(Tc)      2-8 

where TLLC,i,k(Tc) is the execution time incurred in the shared last level cache (LLC) in 

mode i, which is estimated using the number of the accesses to LLC, and TDRAM,i,k(Tc) 

denotes the execution time incurred by activity in the DRAM controller in mode i. 

TDRAM,i,k(Tc)  is the cumulative time spent when there is at least one in-flight read 
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requests in the DRAM controller, since it can avoid the overestimation due to the overlap 

of multiple in-flight read requests for single thread [68]. 

On the other hand, Toff−core,j,k(Tc) is mainly affected by the number of buses 

between different modes since the queue delay inside the DRAM controller is typically 

decreased as more off-chip buses are added. We calculate the time using:  

Toff−core,j,k(Tc) = Toff−core,i,k(Tc) + Tqueue delay,j,k(Tc) − Tqueue delay,i,k(Tc) 2-9 

Tqueue delay,j,k(Tc) =  Tqueue delay,i,k(Tc) ∗
Nrequest,j,k(Tc)

Nrequest,i,k(Tc)⁄   2-10 

where Tqueue delay,i,k(Tc)  and Tqueue delay,j,k(Tc)  denote the execution time incurred 

inside the queue of the DRAM controller in modes i and j respectively, while 

Nrequest,i,k(Tc)and Nrequest,j,k(Tc) stand for the average number of waiting requests per 

incoming read requests which have to wait until they have been completed in modes i and 

j. Tqueue delay,i,k(Tc) can be estimated by the time when there is at least one read request 

in the queue of DRAM controller. Tqueue delay,j,k(Tc) can be estimated by sampling the 

number of waiting requests in different modes 

 Switching Overhead 

Any runtime overhead incurred by switching comes from the DVFS and IR drop 

fluctuations caused by the pin switch. The overhead for DVFS is 20µs [57] and the time 

for the IR drop to re-stabilize is also bounded by 20µs according to our power delivery 

simulation. Because both of these delays overlap each other, the estimated total overhead 

is 20µs and is taken into consideration. Therefore, the penalty is 40µs when a phase is 

incorrectly identified. However, the overall switching overhead is still negligible since 
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the average length of the identified phases shown is much longer than the overhead in our 

workloads. Since most programs only switch a few times during execution, nearly all the 

program phase transitions have been identified by the predictor.  

2.2. EXPERIMENTAL SETUP 

To evaluate the benefit of our design, we simulate the x86 system documented in 

Table 2-4 using the Gem5 simulator [24]. We modify the DRAM model integrated in 

Gem5 to accurately simulate the proposed method. Throughout the experiments, multi-

bus mode will utilize all available buses with the corresponding core frequency shown in 

Table 2-3. The buses are partially unutilized with a high core frequency between multi-

bus and single-bus modes. We employ off-chip DVFS to maintain the same frequency on 

all 4 cores at any given time. 

 Performance and Energy Efficiency Metrics 

 We use weighted speedup [79] lists as follows to represent the throughput of our 

system shown in the following equation.  

Table 2-4. The Configuration of the simulated system 

Processor 4 X86 OoO cores with issue width 4 

L1 I cache Private 32KB, 8 way, 64B cache line, 2 cycles 

L1 D cache Private 32KB, 8 way, 64B cache line, 2 cycles 

L2 Cache Shared 8MB, 8 way, 64B cache line, 20 cycles 

Memory controller FR-FCFS scheduling, open row policy 

Channel 1 

Bus per channel 2 /3/4 (additional buses 1/2/3) 

Rank per bus 2 

Bank per rank 8 

Bank 8*8 DDR3-1600 chips from Micron datasheet[62] 
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Weighted Speedup = ∑

1
Ti

Shared⁄

1
Ti

Alone⁄

N−1
i= 0        2-11 

where Ti
Shared and Ti

Alone denote the execution time of a single program running alone 

and the execution time running with other programs respectively. Because the IPC is 

distorted by the frequency change from the employed DVFS, the execution time is used 

in place of it. We utilize Energy per Instruction (EPI) for the evaluation of energy 

efficiency. This metric can be obtained from dividing consumed energy by the number 

total number of instructions committed.  

 Workloads 

Various multi-program workloads consisting of SPEC 2006 benchmarks [76] are 

used for our evaluation. As listed in Table 2-5, the benchmarks are categorized into two 

separate groups based on their relative memory intensities: memory-intensive programs 

and compute-intensive programs. Each workload consists of four programs from one of 

these groups to represent a memory-intensive workload or compute-intensive workload 

accordingly. Memory-intensive workloads are used to demonstrate the benefit of multi-

bus mode while the compute-intensive workloads demonstrate that there are negligible 

side-effects.  

We select a simulated region of 200 million instructions for each benchmark 

based on their memory characteristics collected from Pin [10]. The simulation for a 

mixed workload does not end until the slowest program finishes its 200 million 

instructions. Faster programs continue running after committing the first 200 million 

instructions. Execution time of each program is collected after the program finishes its 

instructions.  
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2.3. RESULTS 

The execution latency of a program is composed of the on-chip and off-chip 

latency. The percentage of latency in the total execution time reveals which factor tends 

to be more influential to the overall performance of a workload. In Figure 2-7 we 

demonstrate the off- chip latency for memory-intensive workloads and on-chip latency 

for the compute-intensive workloads, since they are the main contributors to the 

execution latency of the two categories of workloads, respectively. Specifically, more 

than 80% of the latency of memory-intensive workloads comes from off-chip latency, 

Table 2-5. The selected memory-intensive and compute-intensive workloads 

workload  

Memory-intensive programs 

M1 lbm milc soplex libquantum 

M2 lbm milc leslie3d libquantum 

M3 lbm milc soplex leslie3d 

M4 lbm soplex libquantum leslie3d 

M5 milc soplex libquantum leslie3d 

M6 mcf mcf mcf mcf 

M7 mcf mcf astar astar 

M8 astar astar astar astar 

Mixed programs 

MIX1 lbm milc bzip2 bzip2 

MIX2 lbm milc omnetpp omnetpp 

MIX3 lbm  soplex omnetpp omnetpp 

MIX4 milc soplex omnetpp omnetpp 

MIX5 lbm milc omnetpp bzip2 

MIX6 milc soplex omnetpp bzip2 

Compute-intensive programs 

C1 bzip2 bzip2 bzip2 bzip2 

C2 hmmer hmmer hmmer hmmer 

C3 gromacs bzip2 omnetpp h264ref 

C4 gromacs bzip2 sjeng h264ref 

C5 gromacs omnetpp sjeng h264ref 

C6 bzip2 omnetpp sjeng h264ref 
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while more than 60% of the latency of compute-intensive workloads is from on-chip 

latency. This implies that the memory-intensive workloads could be sped up by our Pin 

Switching, while the others are unlikely. 

 Memory-Intensive Workloads  

Figure 2-8 shows the performance improvements of memory-intensive workloads 

enhanced by 2, 3, and 4 buses. The weighted speedup of each case is normalized against 

its own baseline. The baseline is the simulated system fixed in the single-bus mode with 

 

 

Figure 2-8. The normalized weighted speedup of memory-intensive workloads with 2, 

3, and 4 buses against the each baseline 
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Figure 2-7. The normalized off-chip latencies and on-chip latencies of workloads against 

the total execution time 
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the corresponding number of buses and DRAM devices when the processor runs at 

4.0GHz. Remarkably, the improvements experienced with 3 buses consistently surpass 2 

and 4 buses in all workloads. These results stem from the balance between core 

performance and off-chip bandwidth that the 3 buses experience to maximize the 

throughput of the simulated system. Based on our specific hardware configuration and 

selected workloads, the multi-bus mode with 3 buses is the optimal choice and therefore 

referred to as the default configuration for the discussion of Static and Dynamic 

Switching that will be presented in later sections. Figure 2-9 illustrates the performance 

improvement for multi-bus mode tested using various DRAM configurations. The 

weighted speedup for each configuration is normalized against the same configuration in 

single-bus mode. As can be seen from the figure, all banks and ranks have weighted 

speedups greater than 32%. As the number of ranks per channel or the number of banks 

per rank increases, improvement is slightly diminished due to the resulting lower row 

buffer hit ratio causing shorter bank access latency. 

Figure 2-10 presents the benefits of Static Switching and Dynamic Switching with 

3 buses versus the baseline of a simulated system that does not use the pin switch 

mechanism on memory-intensive workloads. Both schemes are able to speed up the 

execution of all workloads by more than 1.3 times, while an approximately 42% 

performance improvement is observed for M2. The geometric means of Static Switching 

and Dynamic Switching are respectively 1.34 and 1.33 due to more than 99% of the 

running time being identified as typical memory-intensive phases by Dynamic Switching. 

The benefit of the multi-bus mode is mainly attributed to the increase of 

consumed bandwidth as shown in Figure 2-11. The increase is similar to this of the 
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weighted speedup in Figure 2-9. For example, M2 and M7 gain 47% and 39% off-chip 

bandwidth when switching from the single-bus mode to the multi-bus mode for static 

switching, while their performances are improved by 44% and 36% respectively. This 

similarity results from the fact that their execution latencies are largely dominated by off-

chip latency. On the other hand, Dynamic Switching achieves a slightly smaller increase 

in bandwidth, which results in its performance being close to that of Static switching. 

The throughput improvement of Dynamic Switching could be strengthened by 

using prefetchers which can utilize extra bandwidth brought by additional buses in our 

design. In our experiment, we use a stride prefetcher in the last level cache to 

demonstrate the benefit. More sophisticated prefetchers could be employed to further 

 

 

Figure 2-9. The average normalized weighted speedup of memory workloads in 

geometric mean with multi-bus mode. Each normalize to the same configuration with 

single bus mode 
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Figure 2-10. The normalized weighted speedup of memory intensive workloads boosted 

by Static Switching and Dynamic Switching with 3 buses against the baseline 
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improve the system performance. The stride prefetcher used here has a prefetching 

degree of 1, 2, or 4, which denotes the number of prefetches issued on every memory 

reference. As illustrated  in Figure 2-12, the geometric mean of the performance 

improvements of Dynamic Switching for all memory-intensive workloads with a 

prefetching degree of 1, 2, and 4 are 1.51, 1.64, and 1.79 respectively, compared with 

those of the baseline which are 1.10, 1.17, and 1.27. The gap of the improvements 

between Dynamic Switching and the baseline increases as the prefetch degree increases, 

which imply an aggressive stride prefetch could benefit more from Dynamic Switching. 

 

Figure 2-11. The increased bandwidth due to pin switching. The normalized 

bandwidth of baseline, static pin switching, and dynamic pin switching 
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Figure 2-12. The improved throughput of Dynamic Switching boosted by a stride 

prefetchers (degree = 1, 2, 4) for memory-Intensive workloads 
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This observation could be demonstrated in all workloads except M6 which only gains a 

slight performance improvement from increasing the prefetch degree, since the stride 

prefetcher has a low coverage on mcf [42]. This performance improvement could be 

verified by the higher consumed off-chip bandwidth of Dynamic Switching shown in 

Figure 2-13. It implies that Dynamic Switching could  boost the performance of the 

prefetch by providing more off-chip bandwidth. 

The energy efficiency of the system could be also improved by Dynamic 

Switching. Figure 2-16 details the energy efficiency improvement of the simulated 

system. In theory, the energy savings come from two sources: (1) low voltage and 

frequency scaling; and (2) the execution reduction time stemming from multiple buses 

brought by pin switching. We quantify the first part by setting the core frequency of the 

simulated system to 2.4 GHz (relating to the frequency of our multi-bus mode scheme) 

with the corresponding voltage for single bus. The results depicted as gray bars in Figure 

2-16 demonstrate 40% improvement in the geometric mean of the EPI for all the 

workloads over the baseline. Note that the overall execution time of this setting is only 

 

 

Figure 2-13. The off-chip bandwidth of Dynamic Switching improved by a stride 

prefetcher (degree = 1, 2, 4) for memory-Intensive workloads 
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slightly longer than that of the baseline system because all workloads are memory-

intensive. Furthermore, the multi-bus mode offers an average of 66% improvement in the 

geometric mean of the EPI for all the workloads over the baseline resulting from 

execution time reduction. 

 Wide-bus mode 

We also introduce wide-bus mode as another approach to increase off-chip 

bandwidth by using switchable pins compared to the multi-bus mode. Wide-bus mode 

uses switchable pins to widen the data bus to increase off-chip bandwidth. In wide-bus 

mode, DIMMs share the command and address bus but have dedicated data buses. Wide-

bus mode only needs to alter the states of the signal-to-power switches and signal 

switches on the data buses. Thus, it increases the off-chip bandwidth at a low cost of 

switchable pins, since it can double the off-chip bandwidth of a 64 bit memory bus by 

using 64 switchable pins instead of 125 ones for a whole memory bus. Additionally, it 

incurs less overhead in the memory controller since it only needs a modified DRAM 

interface for moving data over the wider bus instead of extra DRAM interfaces. The 

challenge of implementing the wide-bus mode comes from keeping equal delays between 

all DIMMs and processor pins. It is solvable although it requires considerable efforts to 

route the traces connecting the DIMMs and the pins of processor. 

Wide bus mode uses pins to widen the data path of memory buses instead of 

increasing the number of buses. Wide bus mode has two configurations: (1) the width of 

every memory bus is 128 bits and all cores are running at 3.6GHz; (2) the width of 
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memory buses is 256 bits and all cores are running at 2.8 GHz. These configurations are 

calculated using the same method used for multi-bus mode. 

Wide-bus mode is also tested in the simulated system with a memory bus and the 

three bus width configurations (64 bits, 128 bits, 256 bits). The three corresponding core 

frequencies for the bus widths are 4GHz, 3.6GHz, 2.8GHz derived based on the pin 

configuration. The baseline uses a bus width of 64 bits and a core frequency of 4GHz.  

Figure 2-14 shows the performance improvement of wide-bus mode in two 

separate configurations: 128bit_3.6GHz in which the processor runs at 3.6GHz with a 

128-bit memory bus; and 256bit_2.8GHz in which the processor runs at 2.8GHz with a 

256-bit memory bus. 128bit_3.6GHz and 256bit_2.8GHz have a normalized weighted 

speedup in geometric mean of 1.1 and 1.15 respectively for memory intensive workloads. 

These moderate performance benefits are less than that of multi-bus mode especially for 

the M6 workload which consists of four instances of mcf. The M6 workload suffers from 

a high row buffer miss ratio and the resultant longer bank access latencies compared to 

 

Figure 2-14. The performance of memory intensive workloads for the baseline (core 

frequency of 4GHz and a memory bus of 64 bits) and two configurations of wide bus 

mode (core frequency of 3.6GHz and a memory bus of 128 bits; core frequency of 2.8GHz 

and a memory bus of 256 bits).  
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the latencies of moving the data over the bus. Since wide-bus mode only reduces bus 

latencies and cannot hide bank latencies, it delivers less performances benefits for this 

kind of applications. The increasing off-chip bandwidth in wide-bus mode presents a 

similar trend for the memory intensive workloads shown in Figure 2-15. In conclusion, 

wide-bus mode delivers less performance benefits compared to multi-bus mode. It only 

shortens the time of transferring data over the bus for a memory request while multi-bus 

mode hides the latencies of accessing banks and moving data over the bus by allowing 

multiple in flight memory requests. Thus, we prefer multi-bus mode over wide-bus mode 

for increasing off-chip bandwidth of processors in the following experiments. 

 Mixed Workloads 

Figure 2-17 shows the system performance improvement of mixed compute- 

intensive and memory-intensive workloads using Pin Switching. The highest benefit is 

achieved using the 2 buses and per-core DVFS [83], which is the configuration used in 

 

Figure 2-15. The off-chip bandwidth of memory intensive workloads for the baseline 

(core frequency of 4GHz and a memory bus of 64 bits) and two configurations of wide 

bus mode (core frequency of 3.6GHz and a memory bus of 128 bits, core frequency of 

2.8GHz and a memory bus of 256 bits).  
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this experiment after we explored the configuration space for these workloads. . The 

geometric means of the normalized weighted speedup from using Static Switching and 

Dynamic Switching are 1.10 and 1.09 respectively, implying that Dynamic Switching 

captures the most benefit of Pin Switching for these mixed workloads. Figure 2-18 shows 

the co-improvement of Pin Switching and stride prefetching with varying degrees (1, 2, 4) 

compared with the improvement of the prefetching alone. The geometric means of the 

normalized weighted speedup of Dynamic Switching with prefetching degree (1, 2, 4) are 

1.15, 1.16, 1,15 respectively, while the means with prefetching alone are all 1.04. The co-

optimization for all workloads saturates, or even slightly drops as the degree increases, 

which implies aggressive prefetching wastes off-chip bandwidth rather than exploiting 

the benefit of MLP for workloads. This can be confirmed by observing the performance 

of the baseline using prefetching alone as the degree increases. 

 Compute-Intensive Workloads 

 Figure 2-19 depicts the Dynamic Switching efficiency of compute-intensive 

workloads in comparison to Static Switching at the cost of lower core frequency and the 

base-line. The geometric mean of performance degradation for compute-intensive 

 

 

Figure 2-16. The normalized EPI of Dynamic Switching for memory intensive 

workloads with 3 buses, and the EPI from DVFS (running on 2.4GHz with the single 

bus) 
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workloads introduced by the Static Switching scheme is 29%. The worst case results in a 

35% slowdown of C5. In contrast, Dynamic Switching retains the same performance as 

the baseline during compute-intensive workloads because our metric successfully 

identifies non-memory-intensive phases when the rewards of the multi-bus mode are 

limited. Furthermore, Dynamic Switching surpasses the baseline for the C1 workload by 

identifying compute-intensive and memory-intensive phases. Overall, Dynamic 

Switching exhibits no performance penalty on compute-intensive workloads, in contrast 

to Static Switching.  

The energy consumption of the Dynamic Switching mechanism is almost the 

same as the baseline since the processor runs at single-bus mode most of the time for 

 
 

Figure 2-17. The normalized weighted speedup of mixed workloads boosted by Static 

Switching and Dynamic Switching 
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Figure 2-18. The improved throughput of Dynamic Switching boosted by a stride 

prefetchers (degree = 1, 2, 4) for mixed workloads 
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compute- intensive programs. Therefore, we do not illustrate the EPI comparison figure 

here. 

2.4. RELATED WORK 

DRAM-Based Memory System: Several papers propose to physically alter the 

main memory in a DRAM-based memory system to improve the performance and energy 

efficiency. Zhang et al. propose setting the bus frequency higher than the DRAM module 

to improve channel bandwidth where the induced bandwidth mismatch is resolved by a 

synchronization buffer inside the DIMM for data and command [93]. Papers also explore 

using low power DDR2 (LPDDR2) memory, in place of conventional DDR3, due to its 

higher energy efficiency [58][88].  

To reduce the delay of bank access, thereby increasing memory bandwidth, 

architects optimize the memory system at the rank and bank level. Zhang et al. subdivides 

conventional ranks into mini-ranks with a shorter data width. These mini-ranks can be 

operated individually via a small chip on each DIMM for higher DRAM energy 

efficiency [94]. Rank sub-setting is also proposed to improve the reliability and 

performance of a memory system [19]. 

 

 

Figure 2-19. The normalized weighted speedup of Compute-Intensive workloads with 

Static Switching and Dynamic Switching 
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Inside a DRAM bank, increasing the row buffer hit ratio is key to improving 

energy efficiency and performance. Kim et al. partition a row buffer into multiple sub-

arrays inside a bank to reduce the row buffer miss rate [47]. An asymmetric DRAM bank 

organization can be used to reduce the bank access latency and improve the system 

performance [85]. Unlike preceding work, we focus on increasing off-chip bandwidth to 

boost the performance of the memory system since it is the major bottleneck of memory 

systems in the multi-core era. 

Off-Chip Bandwidth: Rogers et al. have already stressed the significance of off-

chip bandwidth [73]. To increase the overall energy efficiency of a memory system, 

Udipi et al. split a 64 bit data bus into eight 8 bit data buses reducing the queue delay at 

the expense of data transfer delay [86]. Ipek designs a memory scheduler using principles 

of reinforcement learning to understand program behaviors and boost performance [43]. 

Mutlu et al. focus on boosting multi-threaded performance by providing fair DRAM 

access for each thread in their memory scheduler [65][66]. Our method of adding 

additional buses to multiply the off-chip bandwidth is orthogonal to the aforementioned 

methods, which focus on the memory scheduler and bus control. 

Tradeoff between core performance and off-chip bandwidth: Architects 

employ several sophisticated methods to balance core and memory performance 

[23][29][32]. However, few of them are able to increase the off-chip bandwidth beyond 

the constraint of static pin allocation 
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Figure 3-1. Structure of a packaged chip (8 copies of DEALII from SPEC2006) 

 MITIGATING DARK SILICON VIA 

SWITCHABLE PINS 

3.1. BACKGROUND 

Integrated circuit (IC) packaging is the final process of the IC fabrication in which 

the silicon die (i.e., the core of the device) is encased in a support and connected to the 

chip package for power delivery and off-chip communication. There are two main 

technologies for connecting the silicon die with the chip package: wire bonding and flip 

chip. Wire bonding uses bonding wires to connect the pads located on the perimeter of 

the silicon die to the package. The flip chip technology, also called Controlled Collapse 

Chip Connection (C4) technology, is shown in Figure 3-1. The silicon die faces 

downwards, and is connected to the substrate directly with C4 pads. C4 technology 

greatly increases pad density, compared with wire bonding, by allowing C4 pads to be 

placed over the entire chip area. This eases wiring requirements by allowing shorter wire 

lengths and fewer global wires, and provides better power distribution as circuits in the 

middle of the die can access VDD/GND directly. The size of a silicon die is smaller than 
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Figure 3-2. Design overview on the proposed scheme 

that of the chip package. This means the cross-sectional area of a C4 pad is smaller than 

that of a pin as shown in Figure 3-1. According to a recent study [90], it is concluded that 

I/O pad shortage will limit power delivery in future sub-16nm technology. In addition, 

increasing the number of C4 pads will linearly increase chip packaging costs, which have 

already started to exceed the silicon fabrication costs [44]. 

3.2. OVERVIEW DESIGN 

We now discuss how the computer system functions while utilizing switchable 

pins to deliver power. Figure 3-2 shows an overview of the dynamic pin switching design 

illustrating the layout of the microprocessor and SDRAM on the motherboard. The 64-bit 

data path of the integrated memory controller in the microprocessor connects to the 

SDRAM via 64 pins, specifically 16 conventional pins and 48 switchable pins. The 16 

conventional pins are always used as I/O pins, while the switchable pins can switch 

between power pins and I/O pins dynamically. Our COMSOL-based [14] simulation 
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which models the electromigration phenomenon on the traces/interconnects shows that 

using wires connecting to I/O pins to deliver the current studied in this work will not 

result in reliability issues. When the control voltage is low, the computer system works in 

the default I/O mode since the switchable pins are used as I/O pins. In this mode, signals 

circumvent the shift register components on the microprocessor and motherboard, which 

causes the 64-bit data path of the integrated memory controller in the microprocessor to 

connect to the SDRAM via 64 I/O pins directly. On the other hand, when the control 

voltage is pulled up the switchable pins are used as power pins; thus the computer system 

works in the power mode. In this mode, all shift register components are enabled to 

implement the signal transmission via the limited 16 I/O pins. The shift registers are bi-

directional, one is parallel-in serial-out while the other is serial-in parallel-out, and have a 

negligible area overhead [2][3]. When switchable pins are used for signal transmission, 

shift registers steer the signal from input to output without buffering them. Otherwise, 

they are used to send signals over a single line instead of 4 lines. The shift registers can 

be integrated into the microprocessor and motherboard and synchronized by the clock 

signal of SDRAM interface. We also add a delay circuit to balance the delay between 

lines with and without signal buffers.  

The shift registers work at the same frequency as the SDRAM and integrated 

memory controller. Therefore, in power mode it takes four times as many cycles to 

transfer data over the bus via 16 I/O pins as it does via 64 I/O pins. The equivalent bus 

frequency is decreased to 25% of its default value when the switchable pins are used for 

power delivery although only data I/O pins are influenced (i.e., the number of effective 

I/O pins is decreased from 64 to 16), which can reduce the bus power [30]. Although the 



43 
  

design increases the time required for transferring data over the bus, it will not affect 

bank access time or the queuing delay.  

To minimize the change to the computer system, we only consider one-way pin 

switching, i.e., dynamically allocating a portion of I/O pins to power pins. In fact, it is 

feasible to switch from power pins to I/O pins by designing extra I/O units (e.g. memory 

controllers) and related control logics. Switching from power pins to signal pins will 

increase the off-chip communication bandwidth, which boosts the performance of 

memory intensive workloads significantly. This work focuses on switching from signal 

pins to power pins since the major purpose is to find an approach to power up dark 

silicon. 

 Pin Allocation 

To see how many switchable pins can be designed in a processor, we study the 

pin allocations of an Intel Xeon Processor E5-2450L [17] as listed in Table 3-1. We 

assume an equal number of C4 pads are designed on the chip with a pad density of 1356 

pads/cm2 approximates to about 1200 pads/cm2 in the typical pad design [90]. Although 

it is feasible to design denser pads, the current that each pad can deliver will be smaller. 

The Xeon is an 8-core processor with a 20MB last-level cache and three memory 

channels. As can be seen, most pins are used for power delivery and off-chip 

communication. Among the off-chip communication pins, three 64-bit DDR3 memory 

channels occupy 483 C4 pins. Out of the pins on a 64-bit data path, 48 pins can be 

designed as switchable pins. Correspondingly, three memory channels have 144 

switchable pins which can increase the number of power pins by 28.6% (i.e., 
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144/(151+353) ). On the other hand, among power delivery pins the number of the GND 

pins is more than that of the VDD pins. This helps lower the ground voltage in the silicon 

die, increasing circuit reliability, since the ground voltage is also used as a reference 

voltage for signal transmission. Conservatively following the same VDD/GND ratio, we 

allocate 144 switchable pins to 45 VDD pins and 99 GND pins in the pin switching mode. 

More switchable pins can be designed from other pins in DDR3 and pins in PCIE, QPI, 

DMI2 and etc. As an initial study, we only consider the 144 switchable pins from a 

portion of the data I/O pins in the three memory channels (DDR3).  

 Power Delivery Network 

Here we study the impact on the power delivery network when the switchable 

pins switch from I/O mode to power mode. In the power delivery network (PDN) shown 

in  

Figure 2-6 we assume the voltage regulator module is a fixed voltage source since 

its feedback control mechanism can maintain a steady output voltage regardless of 

current magnitude. The power delivery path across the printed circuit board (PCB), the 

package, and the silicon die are modeled as the RL (i.e., resistor and inductor) 

components connected in series. Decoupling capacitances are introduced between each 

sub power network to reduce the voltage bounce. Power grids and processor circuits of 

Table 3-1. Pin allocation of the Intel Xeon Processor E5-2450L 

VDD GND DDR3 PCIE QPI DMI2 Others Total 

151 353 483 102 45 16 206 1356 
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Figure 3-3. Dynamic simulation 
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the silicon die are modeled separately as RL components and an ideal current source. 

Table 2-2 gives the parameter values obtained from prior works [45][50].  

We perform static PDN simulations using SPICE [62]. There is an IR drop 

between the supply voltage and the load voltage as current flows through the PDN. As 

the total current increases, the IR drop increases due to the resistance on the power 

delivery path. We assume the normalized IR drop should be limited to be less than 5% as 

a design convention used by previous work [52][90] to ensure signal integrity and energy 

efficient power delivery. Thus, the maximum allowable currents are respectively 116A 

and 144A for the baseline and the pin switching design. In other words, the pin switching 

design can supply an extra 24.1% (i.e., (144-116)/116) current with 28.6% more power 

pins. The pin switching design can supply a larger current since it provides more power 

pins that reduce the package resistance. The percentage of current increase is less than 

that of power pin increase because the IR drop also depends on the resistance on the PCB 

and power grids. In addition, our processor power model shows that the extra current can 

boost the frequency of an 8-core processor from 2.0GHz to 3.0GHz in dim silicon mode. 

As listed in Table 3-2, the delivered power increases from 75.4W (0.65V×116A) to 

111.6W (0.775V×144A) by 48.0% (i.e., (111.6-75.4)/75.4)). Note the supply voltage is 
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different for different processor frequency as shown in Table 3-2. Figure 3-3 presents the 

dynamic IR drop while switching from I/O mode to power mode within 0.2µs, 2µs and 

20µs. The IR drop fluctuation exceeds 5% for switching time 0.2µs and 2µs, while it is 

within 5% for 20µs case. Therefore, we use 20µs as the overhead for each pin switching 

operation. Figure 3-4 plots the impedance for the default I/O mode and the pin switching 

mode. The impedance does not change much when switchable pins are used for power 

delivery. 

 Power Switch 

In our design, we use a large power transistor switch with ultra-low on-resistance 

and low parasitic capacitance. The switch is of comparably large size (like multiple 

NMOS or PMOS transistors connected in parallel). Figure 3-5 shows a layout design of 

such a large PMOS transistor switch of W/L=80 based on 16nm technology [67]. Since 

the estimated resistance of the single switch is nearly 0.47Ω, we connected 262 switches 

in parallel to achieve the desired 1.8mΩ on-resistance [63] with a 0.232pf parasitic 

capacitance using 2601µm² of area overhead. Similar calculations for the large NMOS 

power switch show lower on-resistance and the same parasitic capacitance. The large 

Table 3-2. Processor configurations under different cooling techniques 

Configuration Dim silicon mode 

 
Frequency 

(GHz) 
Limitation 

Air cooling 8×1.6 Temperature < 85 ºC 

Liquid cooling 8×2.0 Power<75.4W(0.65V×116A) 

Liquid cooling & Static pin 

switching 
8×3.0 Power<111.6W(0.775V×144A) 

Liquid cooling & Dynamic pin 

switching 

8×2.0 or 

8×3.0 
Power < 75.4W or 111.6W 
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(a)Default I/O mode 

 

(b) Pin switching mode 

Figure 3-4. Impedance plots 
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Figure 3-5. Layout of wrapped around large transistor 

power switches incur the main processor die area overhead of our design. For 144 

switchable pins, they consume 0.00374544cm² of area on the processor die, incurring less 

than a 0.4% area overhead if the total die area is 1 cm². 
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(a)Writing to memory (VCtrWrite=1, the tri-state buffers are enabled while the power 
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(b)Reading from memory (VCtrRead=1. The tri-state buffers are enabled while the 

power switches are off)  

Figure 3-6. Circuits when a switchable pin is used for signal transmission 

 Signal Transmission 

Figure 3-6 shows the circuits of switchable pin design. The switchable pin can 

either be used for power delivery or the signal transmission. To compensate the parasitic 

capacitance of the power switches, we add four tri-state buffers for a switchable pin since 

it can increase signal drive capability. We investigate the impact of adding power 

switches on the signal transmission path by observing the received eyes for memory 
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(a) Write to memory 

 

(b) Read from memory 

Figure 3-7. Received eye diagram 

  
writing and reading. We place both switches and buffers close to the processor, which 

can minimize the trace shared by power and signal lines. Since buffers on the signal line 

may cause an impedance mismatch, we have added 50Ω termination impedances on the 

side of memory devices to match the 50Ω transmission line; these minimize the signal 

reflections due to impedance mismatching. As shown in Figure 3-7, both eye diagrams 

show open eyes.  

The pin switching design will cause delay on the signal transmission path since 

extra circuits are introduced as shown in Figure 3-6. For each I/O pin, the extra circuits 

includes two tri-state buffers and the two shift registers’ components. 
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 Thermal Issues 

The switchable pins deliver more power in the dim silicon mode as listed in Table 

3-2. Our simulation shows air cooling is an unfeasible solution since the worst case 

processor temperature will be more than 100 ºC in both the dim silicon which will result 

in serious reliability and lifetime issues. Therefore, we use traditional backplate liquid 

cooling [33] to increase heat dissipation while delivering more power via dynamic pin 

switching mechanism. 

 Dynamic Pin Switching based on Program Phases 

Programs tend to show phase behaviors, which can be classified as memory-

intensive or computation-intensive. In our design, we will use the switchable pins for off-

chip communication to achieve higher communication bandwidth during memory 

intensive phases. On the other hand, during computation intensive phases where the 

memory access frequency is low, the switchable pins can be utilized to deliver extra 

power to mitigate dark silicon. This extra power can either be used to activate dark cores 

or to increase the frequency of the running processors. Figure 3-8 illustrates the workflow 

of the pin switching mechanism which favors both the memory intensive and the 

computation intensive phases dynamically. A predictor, using the program’s history (i.e., 

patterns of performance counters), is employed to predict the memory usage in the next 

time interval. When a memory-intensive phase is predicted, the switchable pins will be 

used for off-chip communication; otherwise, the switchable pins will be utilized to 

deliver power. Predictions are made in real-time, meaning incorrect predictions can be 

corrected in the next time interval. 
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 Prediction Model 

 In this section, we describe the prediction model training procedure employed by 

the dynamic pin switching scheme. In general, the goal of the predictor is to determine 

whether the bandwidth requirement of the upcoming intervals is high (or low) enough to 

require a pin switching for optimal performance. The prediction model is trained as 

follows. 

First, we run workloads on the processor and collect common performance 

metrics including branch mispredictions and cache misses from all cores and shared 

components at a preset frequency. By doing this, we obtain the following tuple from each 

time interval: < X1
1, X1

2, . . X1
p

, X2
1 … X2

p
… Xq

p
, XS

1, . . XS
r , MB > where each variable Xa

b 

represents a performance metric of a specific component. The subscript is the component 

identity (e.g., core ID) and the superscript b corresponds to the index of the metric. For 

example, X1
2  denotes the second performance metric observed on the first core. We 

assume that the number of cores on chip is q and we monitor p performance metrics for 

each of them. This results in a total of p×q metrics from the integrated cores. The r 

variables with the subscript S (i.e., XS
1 through XS

r) indicate the performance metrics from 

shared components such as the last-level cache. In this work, we collect 180 counters 

from each core and 20 counters from the shared components for each time interval. The 

notation MB represents the average memory bandwidth of this interval. 

Second, we reorganize the collected data and train a statistical model to correlate 

the historical execution behaviors and the memory bandwidth in future intervals. To form 

a training instance, we combine input variables (i.e., all Xa
b) from M consecutive intervals 
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Figure 3-8. Workflow of dynamic switching 

and use all of them as the input for this sample. The response value (i.e., output) of this 

training instance is a Boolean flag which is defined as follows. We calculate the average 

bandwidth of intervals M+1 to M+N; if the average value is greater than a preset 

threshold, we set the flag to 1, indicating the following N intervals require high memory 

bandwidth. In contrast, if the average bandwidth is less than the threshold, the flag will be 

set to 0. By doing this, we are essentially building a rigorous relationship between past 

execution behaviors (i.e., interval 1 to M) and the future bandwidth requirement (interval 

M+1 to M+N). After obtaining these training instances, we employ a regression tree 

model [35] to select 10 input factors that most significantly impact the output value (i.e., 

the Boolean flag). We then feed the chosen 10 variables, along with their corresponding 

responses, to a model implementing a bump-hunting algorithm [37] in order to generate a 

set of rules to guide the pin switching. The rules are interpreted in a group of “IF-ELSE” 

conditions and are able to identify the regions with the maximum output values. We keep 
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comparing the collected performance metrics to the generated rules at runtime. When the 

conditions are satisfied, a pin switching will be triggered to deliver more power or 

bandwidth to the processor to improve performance. Note that we randomly sample 80% 

of all the instances for training and use the remaining 20% for validation as the 

conventional statistical model training does. 

3.3. EXPERIMENTAL SETUP 

We simulate an 8-core chip multiprocessor (CMP) and set the maximum 

allowable temperature to be 85 ºC. Power constraints lead to numerous execution modes 

in terms of different core frequencies and the number of active cores. For example, 

decreasing the frequency is effective for reducing per-core power consumption, thus 

enabling more cores to run simultaneously without exceeding the power limits. For 

simplicity, we conduct two groups of studies to make our observations and conclusions 

more comprehensive. The first category of the study is mainly concentrated on the dim 

silicon mode. We use the term “dim silicon” to refer to the scenarios where all 8 cores are 

kept active but running at a lower frequency to comply with the power constraints. We 

explore 13 frequency levels from 1.6GHz to 4.0GHz with a step frequency of 200MHz 

on the target CMP. Thermal and power constraints cause the core frequency and number 

of active cores to be different depending on the execution mode. The specific 

configurations of each execution mode are listed in Table 3-3.  

We use use McPAT [56] for processor power modeling with the corresponding 

parameters listed in Table 3-3. We modify HotSpot [13] to simulate the floorplan shown 

in Figure 3-9 using air cooling and backplate liquid cooling. SPEC2006 [76] multi-
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Table 3-3. Parameters of the performance and power models 

Parameters Values 
Technology 16 nm 

Die area 10mm × 10mm 
Voltage(V) 0.6, 0.625, …, 0.875, 0.9 

Frequency (GHz) 1.6, 1.8, …, 3.8, 4.0 
Fetch / Issue/ Commit Width 4/ 4/ 5 

INT/ FP Window Size 96/ 64 
LoadStore/ INT/ FP Units 2/ 2/ 3 
Load/ Store Queue Size 80/ 80 

Latency of INT ALU/ Mult/ Div 1/ 4/ 12 cycles 
Latency of FP ALU/ Mult/ Div 1/ 2/ 10 cycles 
L1 Instruction/ Data Cache Size 64/ 64 KB 
L1 ICache/DCache Associativity 8/ 8 
L1 Instruction/ Data Block Size 64/ 64 B 

L2 Cache Size 16 MB 
L2 Cache Associativity 16 
L2 Cache Block Size 64 B 

Memory parameters 

 

 

Number of channels 3 
Frequency 800MHz 

Data bus width 64 

Peak memory bandwidth in I/O mode: 38.4GB/s 

Peak memory bandwidth in power mode: 9.6GB/s 

 
program benchmarks are used in the evaluation of dim silicon mode. We use SimPoint 

3.2 [39] to choose a representative block of 200 million consecutive instructions for each 

SPEC2006 program. Eight copies of the representative instructions are used to create a 

multi-program workload. The multi-program workloads can be categorized into two 

types: the first mixes eight copies of the identical SPEC2006 programs, while the second 

type mixes eight copies of different SPEC2006 programs shown in Table 3-4.  

As for the prediction model and online pin switching, we use the execution 

behaviors in the previous three time intervals to predict the bandwidth in the next interval, 

with each interval lasting for one millisecond. In this case, the 20µs overhead is 2% of a 

time interval. Another important parameter is the memory bandwidth threshold, which is 
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Table 3-4. Simulated multi-program workloads 

Name Combinations 
BZIP2 

 
8×BZIP2  

 MCF 

 
8×MCF 

 GOBMK 

 
8×GOBMK 

 DEALII 

 
8×DEALII 

 HMMER 

 
8×HMMER 

 SJENG 

 
8×SJENG 

 

 

LIBQUANT

UM 

 

8× LIBQUANTUM 

 

 

H264REF 

 
8× H264REF 

 

 

LBM 

 
8× LBM 

 

 

P8MIX1 4×NAMD + 4×MCF 
P8MIX2 4×NAMD + 4×BZIP2 
P8MIX3 4×BZIP2 + 4×SJENG 

P8MIX4 
2×BZIP2 + 2×DEALII + 1×HMMER + 1×GOBMK + 

1×H264REF + 1×SJENG 
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Figure 3-9. Floorplan of the chip multiprocessor 

used to evaluate if a pin switching is needed. The threshold should be less than 9.6GB/s, 

which is the peak memory bandwidth in power mode as listed in Table 3-3. We set the 

bandwidth threshold to 1.6GB/s in this work to achieve optimal overall performance. 

Note that these empirically selected parameters do not impact the effectiveness of our 

proposed scheme and can be changed to other values in a practical system. 
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3.4. RESULT ANALYSIS 

In this section, we demonstrate the effectiveness of the pin switching mechanism 

by comparing the performance between traditional designs and our proposed scheme. 

 Rules Explanation 

We start by analyzing the generated rule-set used to guide pin switching at 

runtime. In the dim silicon execution mode, all 8 cores are kept busy and the processor 

frequency can switch between 2.0GHz and 3.0GHz. Since the frequency is changing, two 

individual prediction models are necessary to guide the power-to-I/O (i.e., 3.0GHz to 

2.0GHz) and the I/O-to-power (i.e., 2.0GHz to 3.0GHz) pin switching. Recall that our pin 

switching technique is, in essence, a one-way conversion. Therefore, the switch from 

power to I/O mode means the procedure of returning to the default I/O pin configuration. 

Assuming that the switchable pins are currently on the power path and the processor is 

running at 3.0GHz, the following rules indicate that the upcoming interval is very likely 

to be memory-intensive where off-chip memory access is frequent, and therefore the 

switchable pins should be switched to the I/O path: 

Int3_L2_readmiss > 20250 && Int2_L2_readmiss > 1072  

&& Int1_L2_readmiss > 2293 && Int3_L2_linefill > 20255  

&& Int3_L2_access > 39942        3-1 

The conditions are expressed in a format of IntID_component_metric > X, 

meaning that the performance counter metric of component in interval IntID (one of the 

M intervals used as input) should be larger than a certain value X. Given this notion, the 

first condition in the rule-set listed above indicates that the read misses in the L2 cache in 
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the immediately preceding interval should be larger than 20,250; recall that we use 3 

intervals to predict the ensuing interval. Similarly, the second and third conditions set the 

lower bound for the L2 read misses in the second (Int2_L2_readmiss) and the first 

previous intervals (Int1_L2_readmiss) respectively. The forth and the fifth conditions set 

the lower bound for the number of L2 cache line filling and access respectively. It might 

be followed by memory-intensive execution periods after the intervals with more L2 

cache misses, line filling and accesses, so it is reasonable to set the switchable pins for 

power delivery.  

When the swistchable pins have been set for signal transmission and the processor 

is running at lower frequency, we also need a rule-set to govern when to switch to the 

power path. The corresponding rules are listed as follows.  

Int3_L2_readmiss < 20631 && Int3_L2_access < 12032    3-2 

The rules can be explained similarly and we thereby omit the analysis. 

 Dim Silicon Result 

Recall that in the dim silicon mode all 8 cores are enabled while running at a low 

frequency determined by the power delivery and cooling configurations listed in Table 

3-2. Figure 3-10 shows the normalized performance for multi-program under four 

evaluated configurations. In the air cooling mode, the 8 cores are running at 1.6GHz 

because the TDP, restricted by thermal constraints, is relatively small. Using liquid 

cooling, we are able to raise the frequency to 2.0GHz. The remaining two configurations 

both implement the pin switching mechanism using liquid cooling; therefore there is 

extra power allowing the core frequency to go up to 3.0GHz. These two final 
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Figure 3-10. Performance speedup when the processor is in dim silicon mode 
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configurations use different pin switching schemes. The first uses a static scheme in 

which the switchable pins are always set to the power delivery path throughout the entire 

execution. The second configuration uses a dynamic pin switching scheme guided by the 

prediction model. Note that all results are normalized against the baseline configuration 

which uses air cooling. 

 As shown in Figure 3-10, the scaling trends for most benchmarks are reasonable 

because higher frequencies lead to faster execution. However, the relative performance 

among the four configurations is different for different benchmarks. For example, while 

running 8 copies of MCF and DEALII, the static switch scheme (3.0GHz) has longer 

execution time compared to the runs with a lower frequency (2.0GHz). Similar trends can 

also be observed from the execution of P8MIX1, which includes the memory-intensive 

program MCF. The main reason for the longer execution time here is the substantial 

penalty from lower memory bandwidth in 3.0GHz compared with 2.0GHz case. More 

details will be given shortly to expound upon this observation. On the other hand, for 

applications that are intrinsically computation-intensive, executions using the pin 
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switching technique will significantly outperform those with traditional configurations. 

For these benchmarks, even the static pin switching leads to an impressive speedup 

because memory-bound intervals are fairly rare during the execution. Therefore, 

maintaining a higher core frequency is more beneficial. 

Furthermore, in benchmark DEALII when the pin switching is guided by the 

prediction model, we notice further performance enhancement compared with the static 

switching. This is because with the dynamic approach, the predictor will estimate how 

much off-chip traffic will be generated during upcoming execution period, thus 

determining the most appropriate path for the switchable pins. Compared with the static 

scheme which blindly sets the switchable pins to the power delivery path, the dynamic 

switching strategy can more effectively balance the requirement of power delivery and 

off-chip bandwidth. In general, the geometric mean of the performance speedup delivered 

by our optimal scheme (liquid cooling + dynamic pin switching) is 1.39X compared with 

the baseline (air cooling). 

To further understand the scaling trend of each workload, we plot the number of 

L2 cache misses per 1K instructions in Figure 3-11. The figure shows whether a 

workload is computation-intensive or memory-intensive. In addition, a high-accuracy 

predictor stands as one of the most important factors in determining the effectiveness of 

dynamic switching; therefore it is necessary to evaluate the accuracy of our prediction 

model. Recall that, in our model, the response of each training instance is set as a 

Boolean flag. Consequently, by counting the occurrences of true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN), we calculate the prediction 

accuracy as follows: 
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Figure 3-11. Number of L2 cache misses per 1K instructions on a processor configured to 

8×2.0GHz (liquid coiling) 

 

Figure 3-12. Prediction accuracy on a processor in dim silicon mode 
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As shown in Figure 3-12, the prediction accuracy is fairly high for most 

benchmarks. For applications where the accuracies are slightly lower, the predictor still 

results in impressive performance improvements over the static switching scheme. 

3.5. RELATED WORK 

Dark silicon: Dark silicon has emerged as an increasingly important issue that 

will menace the scaling of Moore’s Law in the deep submicron era and beyond. 

Esmaeilzadeh et al. [36] use an analytical model to predict processor scaling for the next 

few generations. They demonstrate that dark silicon will be heavily exacerbated by the 

continued shrinking of manufactured technology. Researchers [36][38][40][41] 

commonly attribute the cause of dark silicon to physical power and off-chip bandwidth 
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constraints. Kim et al. [49] proposes to integrate memory with processors as a 3D chip. 

This integration can mitigate off-chip bandwidth constraints but it brings more challenges 

for power delivery and cooling since extra power will be consumed by the integrated 

memory. Hardavellas et al. [41] investigate this problem and believe even if an advanced 

liquid cooling technique was applied the power delivery would still result in dark silicon.  

Shortage of C4 pads: The ITRS [15] predicts that C4 pad density will increase 

7.7% annually, and fail to ever meet demand, which is increasing at 15.7% annually. 

Zhang et al. [90] evaluate the usage of C4 pads in a multicore processor and conclude 

that we will see a C4 pad shortage starting from 16nm technology node. The shortage 

comes from an increasing demand in power delivery and off-chip bandwidth but a slow 

improvement in C4 pad technology. Previous works [40][73] observe that the required 

number of C4 pads increases exponentially with the number of processor cores. 

Therefore, an exponentially larger number of C4 pads are needed to increase off-chip 

communication. Moreover, more power pads are needed for current delivery as each new 

technology increases the power density. Researchers [21] from IBM also observe the C4 

pad shortage and propose to utilize the heat sink to deliver power. A recent work 

demonstrates the impact of the pad shortage on power delivery quality [91]. In another 

recent work, Chen et. al [28] propose to use switchable pins to increase memory 

bandwidth. Instead, we propose to increase power delivery using pin switching.  

On-chip voltage regulator (VR): Theoretically, an on-chip VR can be used to 

deliver more power by supplying a chip with a relatively high voltage and convert the 

voltage to a normal value inside the chip. However, on-chip VR has large area [51]. Our 

proposal presents another alternative approach to the power delivery problem.   
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 BOOSTING OFF-CHIP BANDWIDTH WITH PCM 

VIA SWITCHABLE PINS  

4.1. BACKGROUND 

The scaling of memory technology has improved memory subsystems with 

increasing density, growing capacity and decreasing cost over the past decade. However, 

this scaling faces challenges since the shrinking size of cell leads to a smaller capacity for 

storing charges. This trend increases leakage power and refresh-rate frequency, and thus 

reduces energy efficiency and bandwidth of memory devices. Given these challenges, 

scaling DRAM beyond 40 nanometers will be increasingly difficult [75]. Phase-change 

memory (PCM) is a promising candidate to replace conventional memory technology to 

enable the continuous scaling of memory technology [60]. 

There are several memory subsystems proposed by architect to replace 

conventional memory devices using PCM devices [54][64][89]. We evaluate the benefits 

of switchable pins based on the performance of a PCM subsystem [60]. Though PCM has 

recently seen continuously decreasing access latency, it is still several times larger than 

that of DRAM. Pin Switching increases off-chip bandwidth, and also reduces this 

memory subsystem access latency. Thus, it may alleviate the drawbacks of PCM by 

reducing the queuing delay of memory requests. Furthermore, PCM has relatively longer 

write latency and thus reduces the utilization of off-chip bandwidth since a write will 

hold the entire bus until it is completed. Pin Switching mitigates this problem by allowing 

more simultaneous in-flight memory requests. In the section, we also include the 

performance of multi-thread workloads for switchable pins. 
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4.2. EXPERIMENTAL SETUP  

To evaluate the benefit of our design, we use the identical configuration for 

simulated system shown in Table 2-4 and selected workloads shown in Table 2-5. 

Additionally, we employ a timing model of PCM based on [60] and four multi-threaded 

workloads including art [78], lbm [60], srad [27] and backprop [27] to evaluate the 

performance of Dynamic Switching shown in Table 4-1. We manually select memory-

intensive regions from the workloads and run 100 million instructions per thread in each 

workload. The regions are independently executed to gather instructions per cycle (IPC), 

last-level-cache misses per 1,000 instructions (LLC MPKI), row buffer hit ratio, and the 

bandwidth displayed in Table 4-1. The bandwidth and LLC MPKI numerically portray 

the memory access intensity, making them indicators of our design’s potential benefit. 

Row buffer hit ratio reveals the memory access locality and latency. Programs with low 

Table 4-1. Benchmark memory statistics 

Benchmark IPC LLC 

MPKI 

Row buffer 

hit ratio 

Bandwidth(MByte/s) 

libquantum 0.30 58.14 96% 4441.57 

milc 0.16 41.86 81% 3641.48 

leslie3d 0.62 20.72 85% 3311.84 

soplex 0.31 31.34 80% 2501.53 

lbm 0.36 23.12 87% 2151.90 

mcf 0.15 57.54 19% 2138.81 

astar 0.25 29.12 51% 1871.53 

omnetpp 1.38 0.49 83% 172.09 

gromacs 1.34 0.38 82% 129.60 

h264 1.13 0.13 32% 38.03 

bzip2 1.13 0.12 94% 35.54 

hmmer 1.95 0.00 38% 0.28 

art (OMP) 1.4 17.56 88% 6390.85 

lbm (OMP) 2.72 8.24 57% 4862.41 

srad (OMP) 2.16 12.04 62% 6838.84 

backprop (OMP) 0.4 69.61 94% 7203.58 
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row buffer hit ratios suffer from longer bank access latency due to the row buffer miss 

penalty. Longer memory accesses increase the queue delay which impedes the fol-lowing 

incoming requests in the buffer. 

4.3. RESULTS 

 Memory-Intensive Multi-threaded Workloads  

Figure 4-1 and Figure 4-2 show that Dynamic Switching with classic stride 

prefetching improves performance and increases consumed off-chip bandwidth of multi- 

threaded programs. All results are normalized against the baseline. Dynamic Switching 

and the stride prefetching with the degree 4 improve performance by an extra 102% in 

geometric mean providing the best performance compared to the baseline. Prefetching 

can exploit the benefits of multi-bus mode for multi-threaded programs, increasing the 

consumed off-chip bandwidth shown in Figure 4-2. For instance, Dynamic Switching and 

the prefetching with degree 4 yields an extra 29% performance improvements compared 

to the baseline with the same prefetching degree for the art workload, while Dynamic 

 

Figure 4-1. Performance evaluation of multi-threaded workloads with Dynamic 

Switching and prefetching (degree = 1, 4). 
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Switching delivers a mere 5% performance improvement compared to the baseline 

without prefetching. We conclude that this benchmark cannot generate am adequate 

number of memory requests to saturate the off-chip bandwidth, and thus benefits from the 

prefetching which can increase memory level parallelism. 

 Memory-Intensive Multi-programmed Workloads using PCM 

Figure 4-3 shows the performance improvement of Dynamic Switching combined 

with a stride prefetcher (degree = 1,2,4) for memory-intensive workloads running on the 

PCM subsystem. The results are normalized against the weighted speedup of Dynamic 

Switching without a prefetcher. Dynamic Switching consistently delivers performance 

benefits for all workloads and achieves an average weighted speedup of 1.97 in geometric 

mean without prefetching. Dynamic Switching and the stride prefetcher (degree 4) 

achieve the largest performance improvement with an average weighted speedup of 2.27. 

The prefetcher yields an extra 0.54 weighted speedup compared to Dynamic Switching 

and the baseline using a stride prefetcher (degree=4). The performance improvement 

stems from increasing off-chip bandwidth as shown in Figure 4-4. Dynamic switching 

without a prefetcher increases the off-chip bandwidth by 58% compared to the baseline, 

 

Figure 4-2. Normalized consumption of off-chip bandwidth of multi-threaded workloads 

using Dynamic Switching and prefetching (degree = 1, 4) 
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while the prefetcher (degree 4) increases off-chip bandwidth by 22% in comparison to 

Dynamic Switching and the baseline. Dynamic Switching and the prefetcher exhibit 

remarkable performance improvements and increase off-chip bandwidth for all 

workloads except M6. Dynamic Switching still deliveries considerable performance 

benefits for M6 though the prefetcher delivers little benefit as M6 suffers from the low 

latency of row buffer misses and has irregular access patterns which are hardly captured 

by the stride prefetcher.  

 Memory-Intensive Multi-threaded Workloads using PCM 

Figure 4-5 and Figure 4-6 show that Dynamic Switching with classic stride 

prefetching improves performance and increases consumed off-chip bandwidth of multi- 

threaded workloads on a PCM subsystem. All results are normalized against the baseline. 

Dynamic Switching and the stride prefetching with degree 4 improve performance by an 

extra 130% in geometric mean providing the best performance compared to the baseline. 

Prefetching can exploit the benefits of Pin Switching, increasing the consumed off-chip 

bandwidth as shown in Figure 4-6. Additionally, Dynamic Switching can mitigate the 

performance loss caused by the longer latency of row buffer misses in PCM. For instance, 

 

 

Figure 4-3. Improved throughput of Dynamic Switching boosted by stride prefetchers 

(degree = 1, 2, 4) for memory-Intensive workloads using PCM 
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it achieves the highest performance improvement in the lbm workload which has the 

lowest row buffer hit rate of 57%.  

 Mixed Multi-program Workloads on the memory subsystem using PCM 

Figure 4-7 shows the performance improvement of Dynamic Switching combined 

with a stride prefetcher (degree = 1, 4) for mixed workloads running on the PCM 

subsystem. The results are normalized against the baseline. Dynamic Switching with 

prefetching yields considerable performance benefits for all the mixed workloads and 

achieves an average weighted speedup of 1.26 in geometric mean. The combination of 

Dynamic Switching and the prefetching with a degree of 4 yields slightly more 

 

 

Figure 4-4. Normalized off-chip bandwidth of Dynamic Switching boosted by stride 

prefetchers (degree = 1, 2, 4) for memory-Intensive workloads using PCM 
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Figure 4-5. Performance evaluation of multi-threaded workloads using Dynamic 

Switching and prefetching (degree=1, 4) on the PCM subsystem 
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performance improvements than Dynamic Switching without prefetching, and delivers an 

average weighted speedup of 1.29, while the baseline using the same prefetching 

decreases the average performance by 4%. Prefetcher might increase the latencies of off-

chip memory requests from the cores by generating additional requests which compete 

for the already insufficient off-chip bandwidth. 

4.4. CONCLUSION 

Limited off-chip memory bandwidth has been widely acknowledged as a major 

constraint preventing us from obtaining commensurate performance benefits from the 

faster processor cores. This is especially challenging in the current multi-core era due to a 

 

Figure 4-7. The improved throughput of Dynamic Switching boosted by stride 

prefetchers (degree = 1, 4) for mixed workloads with PCM 
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Figure 4-6. Normalized consumed off-chip bandwidth of multi-threaded workloads using 

Dynamic Switching and prefetching (degree =1, 4) on the PCM subsystem 

0

1

2

3

4

art lbm srad backpropN
o

rm
al

iz
e

d
 O

ff
-c

h
ip

 
B

an
d

w
id

th

Workloads

Baseline

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 4)

Dynamic

Dynamic+ prefetch (degree 1)

Dynamic + prefetch (degree 4)



69 
  

high volume of memory requests coming from an increasing number of processor cores. 

To alleviate the shortage of off-chip bandwidth, we propose an innovative pin switching 

technique which dynamically allocates pins for power delivery or signal transmission 

with minimal changes to the circuit. By accurately identifying memory-intensive phases 

at runtime, the proposed strategy converts a portion of the pins used for power delivery to 

signal transmission mode, providing additional off-chip bandwidth and improving the 

overall performance. As shown by the evaluation results, along with other techniques 

including Dynamic Switching and stride prefetching, our scheme is capable of 

significantly accelerating the program execution for both multi-programmed and multi-

threaded workloads. Our evaluation also shows that Dynamic Switching can improve the 

performance of PCM subsystems. 
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 INCREASING INTER-SOCKET BANDWIDTH VIA 

SWITCHABLE PINS 

5.1. RELATED WORK 

Many works are proposed such as increasing the throughput of main memory and 

the bandwidth of inter-socket communication, since the long latencies of off-chip 

accesses has been identified as one of the bottlenecks for massive parallel workloads. 

Researchers try to boost the throughput of main memory by modifying memory 

devices, the memory channels, and processors. For DRAM devices, row buffer misses 

reduce the utilization of the bandwidth since the program will incur a considerable 

overhead for turning on/off a row. The row buffer is proposed to break the inside of a 

bank into multiple sub-arrays and thereby reduce the row buffer miss rate, and have a 

lower overhead for switching the sub-array instead of a whole row [47]. An asymmetric 

DRAM bank organization is proposed to improve the system performance via using 

larger rows for system throughput and smaller rows for lower overheads for turning 

on/off a row [80].  

Several works improve the performance of main memory at the rank level. A 

conventional rank is broke down into mini-ranks that have a shorter data width, and can 

be operated individually for higher memory system throughput [92]. Increasing the bus 

frequency is proposed to improve the performance of memory channels via buffering data 

and commands in the DIMMs [1]. Splitting the data bus into several small buses is also 

proposed to boost the throughput of memory channels since each small data bus can work 

independently [86]. Dynamically increasing the bandwidth of the main memory is 
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proposed but it has considerable parasitic capacity from power switches [28]. Our design 

only switches signal pins and does not have this issue.  

From the processor side, works are proposed to improve the performance via 

scheduling off-chip requests and using DRAM cache. A memory scheduler is proposed to 

boost system performance based on reinforcement learning that can understand program 

behaviors [43]. Another memory scheduler is designed to boost multi-threaded 

performance by providing fair off-chip access of off chip for each thread [65][66]. 

DRAM cache is proposed to reduce the number of off-chip accesses since it has superior 

bandwidth than main memory and larger size than SRAM-based cache [70]. Lowering 

the off-chip traffic and reducing the tag lookup latency further improve the performance 

of DRAM cache [46]. The works reduce the off-chip traffic between processors and main 

memory but do not affect the inter-socket traffic.  

The bandwidth of inter-socket communication: Silicon photonics have been 

studied for a long time as a promising technology to replace the electrical off-chip buses 

and provide superior bandwidth with very low energy consumption [70]. It can boost the 

bandwidth of main memory while requires re-architecting DRAM memory systems, and 

increase the bandwidth of interconnect [53]. The photonics interconnect has been 

developed [82], but is not widely used due to the two factors: the manufacture cost and 

the reliability issue [77]. The electrical chip-to-chip cost is 0.25$/Gbit, while the current 

parallel optic transceiver manufacturers state that perhaps $4/Gbit is achievable today. 

The reliability of silicon photonics interconnects is unclear since the integration of 

photonic emitters and receivers into the IC may cause some reliability issues. Our design 
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is a cost-effective and reliable solution for inter-socket traffic since it is based on 

conventional electrical interconnects. 

5.2. DESIGN OVERVIEW  

We introduce two modes for a multi-socket system: the single-link mode in which 

the system has default bandwidth of off-chip memory and bandwidth of inter-socket 

communication, and the multi-link mode in which the system has multiplied bandwidth 

of inter-socket communication at the cost of lower off-chip memory bandwidth. The two 

modes are shown in Figure 5-1 as an example in which the system has two processors 

connected via a QPI bus with 20 lanes and the each processor has four memory channels. 

This example represents the typical case used in the following discussion easily extended 

for different system configurations. In the example, the multi-link mode multiplies the 

bandwidth of QPI by a factor of 3 and loses two memory channels since the number of 

pins for a memory channels is more than the number of pins for a QPI bus. This 
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Figure 5-1. The simulated system running in the single-link mode and the multi-link 

mode 
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calculation is based on the fact that a memory channel requires 125 pins from a processor 

to access memory devices [1], while a QPI bus demands 84 pins from processors [17]. 

The design needs a hardware unit to orchestrate the switch to quickly capture the 

phase of intensive inter-socket communication since intensive phases could be abrupt and 

short. The design introduces a switching agent for each socket to coordinate increasing 

the inter-socket communication and decreasing the off-chip memory bandwidth. The 

agent switches the function of switchable pins from accessing off-chip memory to 

communicating between sockets via signal switches siting on the die and the motherboard. 

It also controls the DRAM controllers to adapt the less off-chip bandwidth and the Quick 

Path Interconnect (QPI) to utilize the extra bandwidth of inter-socket communication. 

The switching agents from all the processors have to reach an agreement that the system 

can increase its throughput via a switch rather than a subset of processors. With a bottom-

up approach, we discuss the mechanism of switching off-chip bus connection as well as 

auxiliary circuits in the chapter 5.2.1, the modification of DRAM controller and QPI 

physical layer is address in the chapter 5.2.2 and the chapter 5.2.3, and switching agents 

and the switching conditions in the chapter 5.2.4 and the chapter 5.2.5. 

 Off-chip connection 

The modified off-chip connection in the two modes is shown in Figure 5-2 with 

an auxiliary circuit named as signal switch. We only show the related off-chip bus 

connection for a processor with a pair of QPI data lane, since the simulated system is 

homogenous and the off-chip memory buses per socket are identical to each other. The 

auxiliary circuits add more QPI buses on the motherboard from memory buses, while the 
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processors still can read data or write from the memory devices attached to the memory 

buses in the multi-link mode. The memory devices are attached to another memory buses 

as an extra rank in the multi-link mode, while are accessed via a dedicated buses in the 

single-link mode. It maintains the accessibility of data stored in the memory devices 

though it incurs the extra auxiliary circuits on the motherboards.  

A signal switch is employed to switch the function of a pin between accessing off-

chip memory devices and inter-socket communication, or to attach two memory channels 

to one another for increased data accessibility. The signal switch is a classic switch 

consisting of an n-type metal-oxide semiconductor (NMOS) and a p-type metal-oxide 

semiconductor (PMOS) each having a relatively low parasitic capacitance and 

propagation delay. This switch is ideal for high-speed signals that are sensitive to 

parasitic capacitance and signal delay.  

With the signal switches, we can increase the bandwidth of inter-socket 

communication via switching the system from the single-link mode to the multi-link 

mode. In the single-link mode, pairs of signal switches (1) on the die connect pins to the 

memory controllers, and to a dedicated memory channel via pairs of signal switches (2) 

on the motherboard. The signal switches (3) dis-attach the memory channel from another 

one and the system has four memory channels. The processor can writes/read data to/off 

memory devices via the memory channels by turning on the signal switches in the 

corresponding direction. In the multi-link mode, the signal switches (1) (2) connect the 

pins to the QPI buses instead of the memory channels, while the signal switches (3) 

attach the memory channel to another one and the system has two memory channels. The 

processor can access the memory devices via the two memory channels by turning on the 
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signal switches (3) in the corresponding direction. The location of switches (2) and 

switches (3) on the motherboards are also vital to the signal integrity. The switches (2) 

should be placed close to the processors to reduce the signal reflection between the 

switches (1) (2), while the switches (3) should be placed close to the DRAM devices for 

the same reason. 

 Memory controllers 

We modified the memory controllers to dynamical change the number of memory 

channels when the system switches between the single-link mode and the multi-link 

mode shown in the Figure 5-3. We turn off/on two memory controllers when the system 

switches from multi-link mode to single-link mode or vice versa. The other two memory 

controllers handle all memory requests in single-link mode. Given a fixed address 

mapping policy, this incurs a negligible area overhead to dispatch memory requests to the 
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Figure 5-2. The off-chip bus connection in the single-link mode and the multi-link 
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corresponding memory channels, and few extra pins to select the memory channel in 

single-link mode. The main challenge is that all memory requests have to be committed 

in memory controllers to switch the system between modes instead of migrating requests 

cross memory controllers. This overhead is discussed in the runtime overhead section.  

The length of write and read request queues is halved when the system switches 

into multi-bus mode. This can potentially reduce the off-chip bandwidth for main 

memory. The slowdown is minimal due to low main memory access traffic in multi-bus 

mode. Additionally, we do consider the slowdown in our simulation.  

Consolidating many memory channels could lead a channel to have too many 

ranks that exceed the standard, which may hurt the scalability of the design. The high 

speed of memory buses limits the maximal number of ranks in a memory channel. This 

constraint can be relaxed by lowering the frequency of the memory bus in multi-bus 

mode. This overhead could be negligible because traffic between the processors and main 

memory is low in multi-bus mode.  

Memory 

Controller

Memory 

Controller

Memory 

Controller

Memory 

Controller

DRAM 

devices

DRAM 

devices

DRAM 

devices

DRAM 

devices

Memory 

Controller

Memory 

Controller

DRAM 

devices

DRAM 

devices

DRAM 

devices

DRAM 

devices

Memory 

Controller

Memory 

Controller

Multi-link mode Single-link mode

Bus Bus

Last Level 

Cache

Last Level 

Cache

 

Figure 5-3. The memory controller running in the single-link mode and the multi-link 

mode 
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 QPI stack 

QPI is a point-point processor interconnects with five layers, physical layer, link 

layer, routing layer, transport layer, and protocol layer [20]. Each layers works 

independently with other layers and we only discuss the physical layer and link layers 

that are related to our modification. We add the extra physical layers (PHY) that are fully 

connected with virtual networks in link layers to support more than one QPI bus shown in 

Figure 5-4. The PHYs are powered off in the single-link mode, while they in the multi-

link mode can receive packages from other processors or send packages waiting in the 

buffers of virtual networks. The PHYs are bufferless and thereby can be quickly turned 

on /off since the link layers control the traffic via credit/debit flow control. We employ 

switching agents to guarantee that there is no dropping package during the transitions 

between the multi-link mode and the single-link mode. The switching agents enforce the 

PHYs can only send packages after the PHYs in the receiver side can accept the packages, 

when the system switches to the multi-link mode. The switching agents also enforce the 

senders of the PHYs are turned off before the corresponding receivers of PHY are 

disabled, when the system switch to the single-link mode. 

VN0 VN1 VNA

PHY

VN: virtual Network

VNA: adaptive 

virtual Network VN0 VN1 VNA

PHY

Single-link mode
Multi-link mode

 

Figure 5-4. The physical layers of QPI running in the single-link mode and the multi-

link mode 
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 Switch agents 

To switch between the single-link mode and the multi-link mode, we employ a 

switching agent inside each processor to coordinate the transitions in the two processors. 

The switching agents analyze the traffic of local off-chip memory access and that of 

inter-socket communication via collecting hardware counters from the local memory 

controllers and the QPI controller, which consists of a sender and receiver. Based on this 

information, the switching agents take the following steps for a transition once they 

detect a phase in which the performance can be improved by switching the system to 

multi-link mode: 

1. A switching agent called the launcher detects the current phase and sends 

switching inquiries to other switching agents called assistants via the QPI buses. 

An assistant denies the switching inquiry by sending a disapproving response to 

the launcher if it does not detect this phase locally. Otherwise, the assistant 

accepts the inquiry by sending back an acknowledging response. 

2. If the launcher receives a disapproving response, it immediately aborts this 

transition. Otherwise after it receives all acknowledging response, it turns off the 

two memory controllers, switches the off-chip connections, and turns on all the 

extra QPI receivers, while it initializes a transition by sending switching requests 

to all the assistants that also do the same thing locally once they receive the 

request.  

3. After the switching is done, each switching agent sends responses to its 

neighboring switching agents.  
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4. After receiving a response from a neighbor, the switching agent turns on the QPI 

sender connecting to the neighbor. After all the extra QPI buses are connected, 

the transition is done. 

For switching the system to single-link mode, the switching agents take similar 

steps for the transition: 

1. The launcher detects the phase and sends switching inquiries to other switching 

assistants via the QPI buses. The launcher will abort the transition if any 

switching assistants send back a disapproving response to the launcher. 

2. After receiving acknowledging responses from all assistants, the launcher 

disables the extra QPI senders of all neighbors, while it sends switching requests 

to all assistants that take the same action. Each switching agent sends responses 

to its neighbors after the action is completed.  

3. Once having received the response, a switching agent disables the corresponding 

QPI receivers. After it has received the responses from all neighbors, it switches 

the off-chip bus connection and then turns on the two memory controllers. 

4. After every switching agent has taken this action, the transition is done. 

The launcher in the process can be pre-selected based on the processor ID. We 

ignore the overhead for leader election, since it is only needed once when all processors 

are powered on. Note that it is possible to switch a subset of processors into multi-link 

mode while keeping others in single-link mode. A hybrid approach is not considered in 

this work for to two reasons: 1. most threads in workloads show similar phases and 

thereby most processors are likely to benefit from the same mode thus the benefit of a 
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partial transition is minimal compared to that of a full transition. 2. Partial transitions 

require more complicated synchronizations to find the optimal configuration. Therefore, 

we do not include the discussion of switching a subset of processors.  

  Switch condition 

Concerning the runtime overhead, we take 0.1ms as the minimum interval for a 

switching. The launcher will collect the number of un-core requests hitting locally and 

the number of un-core request hitting remotely. At the end of an interval, the launcher 

will initialize a switch from single-link mode to multi-link mode if it observes that remote 

traffic is heavier than local traffic; or a switch from multi to single-link mode if it 

observes that local traffic is more intensive than remote traffic. To evaluate the 

performance of this dynamic switching, we introduce the baseline in which the system 

remains is “unswitched” in single-link mode; static switching in which the system is 

permanently “switched” via multi-link mode; and dynamic switching in which the system 

can dynamically switch between single-link and multi-link mode.  

 Area Overhead & Propagation Delay  

The area overheads of the design comes from the signal switches on the die, the 

modifications of QPI and the switching agent. The area of signal switches, consisting of a 

pair of large NMOS and PMOS, is negligible since the area of a signal switches is less 

than the area of 4000 transistors based on 45nm technology. The extra QPI physical 

layers are buffer-less and incur trivial area overhead. The switch agent for each processor 

also incurs a negligible area overhead since it uses a straightforward rule and only a few 
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steps to coordinate the switches cross-processors, which are easy to implement in 

hardware. 

The propagation delay caused by signal switches depends on the resistance and 

capacity of the load. We measure the propagation delays of five cases in Figure 5-5. The 

Spice models for QPI buses and memory buses in single-link mode and the multi-link 

mode by comparing the propagation delays with signal switches to the delays without 

them based on 45nm technology using mentor graphic tools [11]. The longest 

propagation delays of the QPI bus and memory bus are 0.13ns and 0.12ns respectively. 

The delay can be further reduced with a better technology.  

 Runtime overhead 

We break down the runtime overhead of the transitions between the two modes 

into two parts: the runtime overhead of turning on/off memory buses and the runtime 

overhead of turning on/off QPI buses. The former mainly comes from re-stabilizing the 

signals on the memory buses and turning on/off the memory controllers. During the 

transitions, the memory devices are inaccessible and processors are halted. We estimate 

this overhead mainly based on the runtime overhead of scaling DRAM frequency that is 

512 memory cycles and 28 ns [7]. The overhead is estimated to be 0.67 us given the 

800MHz memory frequency.  

Additionally, we commit all the memory requests in the queue before turning 

off/on a memory channel. Given the read and write request queues in a memory channel 

have 32 total entries and each request takes 40ns, the runtime overhead of turning on/off 
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a memory channel can be estimated to be 1.28us which is still affordable. The total 

overhead of turning off/on memory buses is 1.95us. 

The latter comes from re-stabilizing the signals on the QPI buses and turning 

on/off the QPI PHYs. Note that the processors are not halted but cannot use the extra 

bandwidth of from QPI buses during the transitions when the systems are switching to 

multi-link mode. We conservatively estimate that switching QPI buses takes the same 

amount of time as switching memory buses. So the total runtime overhead is estimated to 

be 3.13 us. 

 Signal integrity 

We setup up Spice models in the two modes shown in Figure 5-5, and test the 

signal integrity with mentor graphic tools [11] to prove that our design maintains signal 

integrity for the data path signals on memory buses and the data lane signals on the QPI 

bus. Memory bus signals are bi-directional with an 800 MHz frequency while the data 

lane on the QPI bus runs at a 2.4GHz frequency. 

 For multi-link mode, we show the eye diagram for the signal of a data lane on a 

QPI bus in Figure 5-6 (a). The eye diagram shows an open eye though it has some noise 

due to signal reflections. We also show the eye diagrams for a signal on the memory bus 

in Figure 5-6 (b) and (c). They also have open eyes though the signal in Figure 5-6 (b) 

suffers from signal reflections and the signal in Figure 5-6 (c) suffers from the loads of 

large capacity from memory devices. Additionally, we show the eye diagrams for single-

link mode in Figure 5-6 (d) and (e) when data is read from memory devices or written 

into memory devices each having clearer eyes compared to Figure 5-6 (b) and (c) due to 
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less signal switches on the paths. These figures indicate that acceptable signal quality is 

retained in both scenarios. 

5.3. EXPERIMENTAL SETUP 

We setup up our stimulated system with sniper 6.1 [26] using the system 

configuration shown in Table 5-1. The system has two processors with the configuration 
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based on the Intel Xeon X5550. Each processor has 4 memory channels and 1 QPI bus 

while in single-link mode, and then has 2 memory channels and 3 QPI buses while in 

multi-link mode. The energy consumption is estimated via the McPAT tool [56]. We also 

list the selected multi-thread workloads shown in Table 5-2 as well as the number of un-

core requests per instruction, and the percentage of QPI latencies per the total un-core 

latencies. The workloads are selected from NPB benchmark [69], Splash2 benchmark 

 

 (a). The eye diagram of a QPI bus in the multi-link mode 

 

 (b). The eye diagram of memory bus when reading data from devices in 

the multi-link mode 

 

 (c). The eye diagram of memory bus when writing data to devices in 
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[87], and Decapo benchmark [25]. Since the lusearch workload involves a considerable 

number of system calls, we run it in jikes RVM (Research Virtual Machine) [18] on the 

sniper simulator. We separate the workloads into those workloads exhibiting intensive 

inter-socket communication and those workloads showing moderate or low inter-socket 

communication.  

Most experiments are conducted using the communication intensive workloads 

which reveal the benefits of multi-link mode, while we use the non-intensive workloads 

to compare the performances of static and dynamic switching. We fast forward 

workloads into selected regions that show intensive inter-socket traffic, and then warm up 

the cache for 1 billion instructions. We run total 800 million instructions for each 

Table 5-1. The configuration of the simulated system 

Component  Parameters  

system two processors 

Processor 4 cores 

Core 

2.66 GHz, 4-way issue, 128-entry ROB 

hybrid local/global predictor 

Cache Line Size 64B, LRU replacement 

L1-I 32KB, 4 way, 4 cycle access time 

L1-D 32KB, 8 way, 4 cycle access time 

L2 cache 256 KB per core, 8 way, 8 cycle 

L3 cache shared 8 MB, 16 way, 30 cycle 

Coherence protocol  MSI 

DRAM line-interleaved mapping, 34.1GB/s  

DRAM cache 128 MB, 16 way, 512GB/s 

QPI bus 20 link width, 3.2GHz, 25.6 GB 
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workload since some threads, e.g. the garbage collector, run much fewer instructions than 

others in the workload lusearch. We also run each workload five times and show the 95% 

confidence intervals for performance comparisons. 

5.4. RESULT 

 Performance of the static switching 

We evaluate the performances of the baseline, in which the system runs in single-

link mode; static switching; and dynamic switching. Figure 5-7 shows the results of static 

switching and dynamic switching, which are normalized against the results of the 

Table 5-2. The selected workloads 

workloads 

benchmark 

suit 

Un-core request per 

1K inst. 

The percentage of QPI 

latencies 

Workloads with intensive inter-socket traffic 

bt NPB 3.70 77% 

cg NPB 20.44 62% 

is NPB 20.54 30% 

lu NPB 3.51 72% 

sp NPB 10.52 86% 

ua NPB 4.15 74% 

ocean Splash2 13.87 99% 

lusearch Decapo 8.92 95% 

Workloads with moderate and low inter-socket traffic 

ft NPB 6.89 61% 

mg NPB 15.36 30% 

fmm Splash2 0.15 27% 

radiosity Splash2 0.53 35% 

raytrace Splash2 0.95 25% 
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baseline for each workload. Static switching and dynamic switching gain a performance 

improvement of 28% and 29% respectively compared to the baseline. We also show the 

reduced latencies of un-core requests in static switching normalized against that in the 

baseline shown in Figure 5-8. Note the latencies only account for the latencies incurred 

outside the cores. The workloads cg and ocean achieve speedups of 1.54 and 1.55 

respectively, which are much more than other workloads, since they have intensive un-

core traffic and their un-core latencies are significantly reduced by multi-link mode. The 

other workloads gain moderate performance improvements. For example, is also has 

intensive un-core traffic but sees a smaller reduction of the latencies, while lusearch has a 

significant reduction of the latencies but moderate un-core traffic.  

 Performance of the dynamical switching 

Dynamic switching can gain a similar performance improvement for the 

workloads in Figure 5-7 since it can detect phases of intensive inter-socket 

 

Figure 5-7. The normalized speedup of the static switching and the dynamic 

switching compared with the baseline 
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communication. For example, dynamic switching improves the performance of the cg 

workload from 1.57 to 1.64, since it finds a period of low inter-socket traffic and guides 

the system switches back to the multi-link mode. Dynamic switching provides 

approximately the same performance improvements as static switching for workloads that 

have only a few intervals of low inter- socket traffic. We also list the number of the 

intervals that the system is in multi-link mode or in single-link mode in Table 5-3, as well 

as the number of times that the system switches to multi-link mode or single-link mode. 

The extra benefits of dynamic switching for the cg workload come from the system being 

guided back to single-link mode when it catches a consecutive series of 12 intervals in 

which the system exhibits low inter-socket communication but moderate local traffic 

shown in Figure 5-8. 

We also test the performance of dynamic switching compared with static 

switching for workloads exhibiting moderate or low inter-socket traffic shown in Figure 

5-9. The results are normalized against the performance of the baseline for each workload 

respectively. The dynamic switching gains are a normalized speed up of 1.18, 1.04 

respectively for the ft, mg workloads, while static switching only achieves a normalized 

 

Figure 5-8. The latency of un-core requests for the static switching normalized 

against that of the baseline 
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speedup of 0.84, 0.87. Dynamic switching captures several stable periods in which 

performance can be improved via switching the system back to single-link mode. 

Dynamic switching suffers from spikes of intensive local traffic that are hardly captured 

and thus only achieves a speedup of 0.91 for radiosity, which is close to the performance 

of static switching. Even though, the proposed dynamic qSwitch can still achieve a 

geometric mean of 1.02 for the five benchmarks with moderate or low inter-socket traffic. 

 Energy efficiency 

We investigate the energy consumption of static switching which is normalized 

against that of the baseline for each workload respectively shown in Figure 5-10. Static 

switching reduces the average energy consumption by 12% in geometric mean since it 

Table 5-3. The intervals in the multi-link mode and in the single-link mode as well 

as the times of switching to the multi-link mode and the single-link mode 

 The 

multi-link 

mode 

The 

single-link 

mode 

The switching to 

the multi-link 

mode 

The switching to 

the single-link 

mode 

Workloads of intensive inter-socket traffic 

bt 235 32 2 1 

cg 539 12 2 1 

is 451 1 1 0 

lu 335 7 2 1 

sp 403 2 2 1 

ua 354 9 4 3 

ocean 465 2 2 1 

lusearch 463 4 4 3 

Workloads of moderate and low inter-socket traffic 

ft 209 83 3 2 

mg 570 185 7 6 

fmm 135 1 1 0 

radiosity 524 27 18 17 

raytrace 1577 19 18 17 
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improves the system performance with minimal energy overhead. The more performance 

improvement that multi-link mode has gained, the more energy consumption is reduced. 

For example, the workloads cg and ocean save 25% and 22% more energy than the others, 

while they also achieve more performance benefits compared to others.  

 Enhancement from a stride prefetcher  

We investigate the performances of static switching and the baseline combined 

with a stride prefetcher shown in Figure 5-11. The results are normalized against the 

baseline without a prefetcher and we show the performances with prefetchers that have a 

prefetch degree of 1, 2, and 4, which denotes the number of prefetches issued on every 

memory reference. The performances of the baseline with the prefetchers are 1.0, 1.1, 

 

Figure 5-9. The normalized speedup of the static switching and the dynamic 

switching compared with baseline for the workloads with moderate or low 

inter-socket traffic 
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Figure 5-10. The energy consumption in the static switching normalized 

against the baseline 
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1.11 respectively in the geometric mean, while the performances of static switching with 

the prefetcher are 1.28, 1.53, and 1.55 respectively. Static switching with a prefetching 

degree of 2 shows a considerable performance improvement compared to that with a 

prefetching degree of 1. The aggressive prefetchers shift the performance bottlenecks 

toward the QPI especially for the is workload, which can be verified in Figure 5-12 which 

reveals the percentage of the total un-core latencies made up by QPI latencies for the 

baseline with prefetchers. This percentage of latency for the is workload is increased 

significantly when the prefetching degree is increased from 1 to 2, since the prefetcher 

now exploits the high bandwidth of the DRAM cache via increasing the memory level 

parallelism and thus reduces DRAM cache latencies but suffers from a limited QPI 

bandwidth which offset the benefit of memory level parallelism. Prefetchers boost the 

percentage of QPI latencies for the workload since its un-core latencies in the DRAM 

cache are considerable even running on the baseline without a prefetcher compared with 

other workloads. 

 

Figure 5-11. The normalized speedup of the static switching with a prefetcher (degree 

1, 2, 4) compared with baseline and the prefetcher 
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We also evaluate the performance of static switching using different 

configurations of the DRAM cache. This work heavily relies on the DRAM cache’s 

superior bandwidth compared to off-chip main memory devices and the QPI and thus we 

want to verify the substantial benefit of the static switching in the broad design space of 

the DRAM cache.  

 The bandwidth of the DRAM cache 

 We investigate the performance improvement of static switching with different 

bandwidths of DRAM caches shown in Figure 5-13. We vary the bandwidths from 

128GB/s to 1024GB/s and compare the performances of static switching and the baseline 

with the same DRAM cache bandwidth. Figure 5-13 shows the performance of static 

switching normalized against the performance of the baseline accordingly. The 

performance improvements are 1.27, 1.28 ,1.28 , and 1.29 in the geometric mean for the 

DRAM cache bandwidths of 128GB/s, 256GB/s, 512GB/s, and 1024GB/s respectively. 

The relatively stable improvements indicate that the benefit of static switching is 

 

Figure 5-12. The ratio between the un-core latencies of QPI and the total un-

core latencies with the baseline and a prefetcher (degree 1, 2, 4) 
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consistent as long as the bandwidth of cache DRAM is larger than that of the main 

memory. 

 The size of DRAM cache 

We also evaluate the performance improvement of static switching with different 

sizes of DRAM cache (32MBytes, 64MBytes, and 128MBytes). When the size is 

increased, more un-core requests hit the DRAM cache that has much more bandwidth 

compared to off-chip memory devices. On the other hand, the smaller DRAM cache size 

will decrease its performance impact on the performance. Static switching achieves an 

average of 20%, 21% and 28% performance improvements in geometric mean, which are 

normalized against the performance in the baseline with the same DRAM cache size 

respectively shown in Figure 5-14. The performance improvements for most workloads 

increase slightly as the size of DRAM cache is increased, while the performance 

 

Figure 5-13. The normalized speedup of the static switching with the different 

bandwidths of DRAM cache 
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improvement of the workload ocean increases quickly from -6% to 56% due to more 

remote requests hitting DRAM caches, which can be verified by the reduced latencies of 

un-core requests for ocean in Figure 5-15. It also shows the latencies of un-core requests 

in the multi-link mode normalized against the latencies in the single-link mode. The 

figure shows most workloads slightly reduce the latency of un-core requests as the 

DRAM cache size is increased, while the latencies for ocean are reduced from 1.58 to 

0.136. Decreasing the size of the DRAM cache from 128MBytes to 32 MBytes causes the 

percentage of the latencies of the QPI in the total un-core latencies to drop from 98% to 

 

Figure 5-14. The normalized speedup of the static switching with the different 

sizes of DRAM cache 
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Figure 5-15. The normalized latencies of un-core requests in the static switching 

with the different sizes of DRAM cache 
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14% for the baseline running the ocean workload, while the percentage of the latencies of 

the off-chip main memory in the total un-core latencies increase from 0.002% to 86% for 

the baseline running with the same workload. 

 The frequency of QPI buses 

We investigate the performance improvement of static switching with different 

QPI bus frequencies (2.4GHz, 3.2GHz, and 4.8GHz). 2.4GHz is the lowest frequency of 

the QPI buses, while 4.8GHz is first introduced on Hashwell-E/EP platform. Boosting the 

frequency of QPI buses can gain more bandwidth but incurs higher power consumption 

and poses more difficulties for routing QPI traces on the motherboard. Figure 5-16 shows 

the performance improvement of static switching normalized against the performance of 

the baseline with different QPI bus frequencies. Static switching with QPI frequencies 

2.4GHz, 3.2GHz and 4.8GHz achieve the average speedups of 1.44, 1.28, and 1.15 in 

geometric mean respectively. Our design can still gain a moderate performance 

improvement with the high frequency of 4.8GHz and can significantly increase the 

performance improvement with the low 2.4GHz frequency. Figure 5-17 shows the ratio 

between the un-core latencies in QPI and the total un-core latencies with the baseline 

 

Figure 5-16. The normalized speedup of the static switching with the 

different frequencies of QPI 
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with the different QPI bus frequencies. The ratio of QPI decreases as the frequency of 

QPI buses increases, which shortens the time of transferring data over the QPI buses and 

the waiting time of packets in the QPI. The ratio for the cg workload drops from 79% to 

43% as the frequency of the QPI buses increase from 2.4GHz to 4.8GHz, while the 

performance benefit of the static switching decreases from 1.96 to 1.25. The 4.8GHz 

frequency of the QPI buses increases the percentage of the latencies from the DRAM 

cache with respect to the total un-core latency. For example, the frequency increases the 

percentage from 17% to 48% for the cg workload when the frequency of the QPI buses 

increases from 2.4GHz to 4.8GHz. 

5.5. CONCLUSION 

Multi-socket systems are widely used for massive parallel workloads to improve 

throughput. The performance of multi-socket system suffers from limited off-chip 

bandwidth confined by the scarce resource of processor pins. This problem can be 

 

Figure 5-17. The ratio between the un-core latencies of QPI and the total un-core 

latencies with the baseline and the different frequencies of QPI buses 
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relieved by the DRAM cache that is introduced to reduce the long latency of off-chip 

access via providing a large space to hold data and superior bandwidth to reduce queuing 

delay. The DRAM cache reduces the latencies of accessing main memory as the main 

contributor of the un-core latencies, while the latencies of inter-socket communication 

emerge as a considerable bottleneck for workloads that frequently fetch data from remote 

memory. 

qSwitch is proposed to reduce the inter-socket latencies at the cost of local 

memory bandwidth, since the DRAM cache significantly reduces the number of off-chip 

local requests and thereby the local memory bandwidth becomes over-sufficient in some 

cases. We design qSwitch from the off-chip bus connection to the switching agents in 

order to smoothly switch the system between the two modes. We investigate the signal 

integrity and discuss the design overhead to verify its feasibility. We also evaluation the 

performance benefits of qSwitch using different configurations of the DRAM cache and 

QPI to show the benefits exist in a broad design space. 

This work identifies the latency of inter-socket communication as one of the 

performance bottlenecks in the era of DRAM cache for massive parallel workloads. It 

implies that the performance of the workloads can be improved via the optimization of 

inter-socket communication such as wisely scheduling remote requests or reducing 

unnecessary remote requests. Furthermore, the limited bandwidth of inter-socket 

communication could become increasingly painful as the number of cores on a die 

increases and more cores share bandwidth. Scaling the inter-socket bandwidth with the 

number of cores is likely to be a challenge in the near future. 
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5.6. SUMMARY 

In this study, we majorly descript the two works based on the switchable pins for 

the off-chip bandwidth and mitigating dark silicon. The limited off-chip memory 

bandwidth has been widely acknowledged as a major constraint to prevent us from 

obtaining commensurate performance benefit from the faster processor cores. This is 

especially challenging in the current multi-core era due to a high volume of memory 

requests coming from an increasing number of processor cores. To alleviate the shortage 

of off-chip bandwidth, we propose an innovative pin switching technique which 

dynamically allocates pins for power delivery or signal transmission with minimal 

changes to the circuit. By accurately identifying memory-intensive phases at runtime, the 

proposed strategy converts a portion of the pins used for power delivery to signal 

transmission mode, providing additional off-chip bandwidth and improving the overall 

performance. As shown by the evaluation results, along with other techniques including 

Dynamic Switching and stride prefetching, our scheme is capable of significantly 

accelerating the program execution.  

Dark silicon is gradually becoming a daunting conundrum that threatens the 

scaling of Moore’s Law in the future, with the stall of Dennard scaling. While thermal 

constraint are widely believed to be the main cause of this phenomenon, the limited 

number of pins on the chip package also confines the maximum number of 

simultaneously active transistors, thus preventing us from obtaining a sufficient 

performance improvement by increasing transistor density. To mitigate this limitation, we 

propose a novel mechanism to dynamically switch a portion of I/O pins to power pins in 

order to light up dark silicon by delivering extra power. We also employ an advanced 
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statistical model to train a prediction model that can be employed by the OS to govern the 

pin switching. Our evaluation results demonstrate that the proposed pin switching 

mechanism can remarkably enhance the overall performance compared with conventional 

designs. 

We also present two challenging and meaningful yet research topic based on the 

underlying idea of switchable pins: boosting off-chip bandwidth with PCM and 

increasing inter-socket bandwidth via switchable pins. The topics are expected to lead us 

to explore the benefits of the switchable pins on the two areas. 
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