
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2016

Increasing Off-Chip Bandwidth and Mitigating
Dark Silicon via Switchable Pins
Shaoming Chen
Louisiana State University and Agricultural and Mechanical College, schen26@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Chen, Shaoming, "Increasing Off-Chip Bandwidth and Mitigating Dark Silicon via Switchable Pins" (2016). LSU Doctoral
Dissertations. 3337.
https://digitalcommons.lsu.edu/gradschool_dissertations/3337

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/3337?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INCREASING OFF-CHIP BANDWIDTH AND MITIGATING DARK

SILICON VIA SWITCHABLE PINS

A Dissertation

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

School of Electrical Engineering and Computer Science

by

Shaoming Chen

B.E., Huazhong University of Science and Technology, Wuhan, China 2008

M.E., Huazhong University of Science and Technology, Wuhan, China 2011

August 2016

ii

ACKNOWLEDGEMENTS

I would like to dedicate the dissertation to my parents and my friends for their

continuous support and encouragement throughout my entire life.

This dissertation is completed with the valuable help and support from a lot of

people including my advisor, Dr. Lu Peng. He thoughtfully guided me to pick up the

emerging topic and offered valuable advises for my study. Dr. Ashok Srivastava gave

appreciated help of circuit design and encouraged me to response bitter feedbacks from

reviewers. Dr. Bin Li from Department of Experimental Statistics provided insightful

statistical methods to help me to analyze experimental data. Dr. David Koppelman and

Dr. Rudy Hirschheim as my committee members take their valuable time to supervise my

dissertation and attend my defense. I sincerely appreciate the professors’ supports as the

foundation of the work. I also would like to thanks my co-workers in my lab. Dr. Zhang

provided insight thoughts that helped me to develop the dissertation. Yue devoted

enormous effort on circuit design especially on power delivery network. Zhou elaborated

the circuit design and helped me to improve the circuit design. Sam proofread the work

and gave me wonderful feedbacks.

I am thankful to the Department of Electrical and Computer Engineering for

providing assistantship throughout my study.

Finally, I would like thank all the friends I met at LSU for making my life here

wonderful and memorable.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES .. v

LIST OF FIGURES ... vi

ABSTRACT .. x

 INTRODUCTION ... 1

1.1. MOTIVATIONS .. 1

1.2. DISSERTATION ORGANIZATION .. 6

 INCREASING OFF-CHIP BANDWIDTH IN MULTI-CORE

PROCESSORS WITH SWITCHABLE PINS ... 9

2.1. DESIGN OVERVIEW ... 9

 Pin Switch ... 9

 Off-Chip Bus Connection ... 12

 Memory Controller ... 14

 Area Overhead .. 15

 Address Mapping .. 16

 Signal Integrity ... 16

 Power Delivery Simulation .. 18

 Runtime Switch Conditions .. 21

 Switching Overhead ... 24

2.2. EXPERIMENTAL SETUP .. 25

 Performance and Energy Efficiency Metrics .. 25

 Workloads ... 26

2.3. RESULTS... 27

 Memory-Intensive Workloads .. 28

 Wide-bus mode ... 33

 Mixed Workloads ... 35

 Compute-Intensive Workloads ... 36

2.4. RELATED WORK .. 38

 MITIGATING DARK SILICON VIA SWITCHABLE PINS 40

3.1. BACKGROUND .. 40

3.2. OVERVIEW DESIGN ... 41

 Pin Allocation ... 43

 Power Delivery Network .. 44

 Power Switch .. 46

 Signal Transmission ... 48

 Thermal Issues .. 50

 Dynamic Pin Switching based on Program Phases .. 50

 Prediction Model .. 51

iv

3.3. EXPERIMENTAL SETUP .. 53

3.4. RESULT ANALYSIS .. 56

 Rules Explanation ... 56

 Dim Silicon Result.. 57

3.5. RELATED WORK .. 60

 BOOSTING OFF-CHIP BANDWIDTH WITH PCM VIA

SWITCHABLE PINS ... 62

4.1. BACKGROUND .. 62

4.2. EXPERIMENTAL SETUP .. 63

4.3. RESULTS... 64

 Memory-Intensive Multi-threaded Workloads ... 64

 Memory-Intensive Multi-programmed Workloads using PCM 65

 Memory-Intensive Multi-threaded Workloads using PCM 66

 Mixed Multi-program Workloads on the memory subsystem using PCM 67

4.4. CONCLUSION .. 68

 INCREASING INTER-SOCKET BANDWIDTH VIA SWITCHABLE

PINS ... 70

5.1. RELATED WORK .. 70

5.2. DESIGN OVERVIEW ... 72

 Off-chip connection .. 73

 Memory controllers .. 75

 QPI stack... 77

 Switch agents .. 78

 Switch condition ... 80

 Area Overhead & Propagation Delay ... 80

 Runtime overhead ... 81

 Signal integrity ... 82

5.3. EXPERIMENTAL SETUP .. 83

5.4. RESULT ... 86

 Performance of the static switching .. 86

 Performance of the dynamical switching ... 87

 Energy efficiency .. 89

 Enhancement from a stride prefetcher .. 90

 The bandwidth of the DRAM cache ... 92

 The size of DRAM cache ... 93

 The frequency of QPI buses ... 95

5.5. CONCLUSION .. 96

5.6. SUMMARY ... 98

REFERENCES ... 100

VITA ... 107

v

LIST OF TABLES

Table 2-1. Pin allocation of an Intel Processor i5-4670.. 13

Table 2-2. Power network model parameters ... 19

Table 2-3. Processor power and frequency parameters for different number of buses 21

Table 2-4. The Configuration of the simulated system... 25

Table 2-4. The selected memory-intensive and compute-intensive workloads 27

Table 3-1. Pin allocation of the Intel Xeon Processor E5-2450L 44

Table 3-2. Processor configurations under different cooling techniques 46

Table 3-3. Parameters of the performance and power models.. 54

Table 3-4. Simulated multi-program workloads ... 55

Table 4-1. Benchmark memory statistics.. 63

Table 5-1. The configuration of the simulated system ... 85

Table 5-2. The selected workloads ... 86

Table 5-3. The intervals in the multi-link mode and in the single-link mode as well as the

times of switching to the multi-link mode and the single-link mode 89

file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223934
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223935
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223936
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223937
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223938
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223939
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223940
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223941
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223942
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223943
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223944
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223945
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223946
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456223946

vi

LIST OF FIGURES

Figure 1-1. Normalized weighted speedup and off-chip bandwidth of 4 lbm co-running

on a processor with 1,2,3,4 memory channels .. 2

Figure 1-2. Power and memory bandwidth (8 copies of DEALII from SPEC2006) 3

Figure 1-3. The latency breakdown of un-core requests in the simulated system with two

sockets ... 5

Figure 2-1. The circuit of pin switch .. 10

Figure 2-2. The overview of the hardware design of off-chip bus connection for switching

between the Multi-bus mode and the Single-bus mode .. 13

Figure 2-3. The Overview of the hardware design of memory controller for switching

between the Multi-bus mode and the Single-bus mode .. 15

Figure 2-4. Spice models for signal integrity simulation .. 17

Figure 2-5. The eye diagrams ... 18

Figure 2-6. RLC power delivery model .. 20

Figure 2-7. The normalized off-chip latencies and on-chip latencies of workloads against

the total execution time ... 28

Figure 2-8. The normalized weighted speedup of memory-intensive workloads with 2, 3,

and 4 buses against the each baseline ... 28

Figure 2-9. The average normalized weighted speedup of memory workloads in

geometric mean with multi-bus mode. Each normalize to the same configuration with

single bus mode... 30

Figure 2-10. The normalized weighted speedup of memory intensive workloads boosted

by Static Switching and Dynamic Switching with 3 buses against the baseline 30

Figure 2-11. The increased bandwidth due to pin switching. The normalized bandwidth of

baseline, static pin switching, and dynamic pin switching ... 31

Figure 2-12. The improved throughput of Dynamic Switching boosted by a stride

prefetchers (degree = 1, 2, 4) for memory-Intensive workloads....................................... 31

Figure 2-13. The off-chip bandwidth of Dynamic Switching improved by a stride

prefetcher (degree = 1, 2, 4) for memory-Intensive workloads .. 32

Figure 2-14. The performance of memory intensive workloads for the baseline (core

frequency of 4GHz and a memory bus of 64 bits) and two configurations of wide bus

file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221874
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221874
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221875
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221876
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221876
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221877
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221878
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221878
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221879
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221879
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221880
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221881
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221882
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221883
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221883
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221884
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221884
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221885
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221885
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221885
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221886
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221886
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221887
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221887
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221888
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221888
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221889
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221889
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221890
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221890

vii

mode (core frequency of 3.6GHz and a memory bus of 128 bits; core frequency of

2.8GHz and a memory bus of 256 bits). ... 34

Figure 2-15. The off-chip bandwidth of memory intensive workloads for the baseline

(core frequency of 4GHz and a memory bus of 64 bits) and two configurations of wide

bus mode (core frequency of 3.6GHz and a memory bus of 128 bits, core frequency of

2.8GHz and a memory bus of 256 bits). ... 35

Figure 2-16. The normalized EPI of Dynamic Switching for memory intensive workloads

with 3 buses, and the EPI from DVFS (running on 2.4GHz with the single bus) 36

Figure 2-17. The normalized weighted speedup of mixed workloads boosted by Static

Switching and Dynamic Switching ... 37

Figure 2-18. The improved throughput of Dynamic Switching boosted by a stride

prefetchers (degree = 1, 2, 4) for mixed workloads .. 37

Figure 2-19. The normalized weighted speedup of Compute-Intensive workloads with

Static Switching and Dynamic Switching... 38

Figure 3-1. Structure of a packaged chip (8 copies of DEALII from SPEC2006) 40

Figure 3-2. Design overview on the proposed scheme ... 41

Figure 3-3. Dynamic simulation ... 45

Figure 3-4. Layout of wrapped around large transistor .. 47

Figure 3-5. Impedance plots ... 47

Figure 3-6. Circuits when a switchable pin is used for signal transmission 48

Figure 3-7. Received eye diagram .. 49

Figure 3-8. Workflow of dynamic switching .. 52

Figure 3-9. Floorplan of the chip multiprocessor ... 55

Figure 3-10. Performance speedup when the processor is in dim silicon mode 58

Figure 3-11. Number of L2 cache misses per 1K instructions on a processor configured to

8×2.0GHz (liquid coiling) ... 60

Figure 3-12. Prediction accuracy on a processor in dim silicon mode 60

Figure 4-1. Performance evaluation of multi-threaded workloads with Dynamic

Switching and prefetching (degree = 1, 4). ... 64

file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221890
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221890
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221891
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221891
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221891
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221891
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221892
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221892
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221893
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221893
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221894
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221894
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221895
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221895
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221896
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221897
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221898
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221899
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221900
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221901
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221902
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221903
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221904
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221905
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221906
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221906
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221907
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221908
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221908

viii

Figure 4-2. Normalized consumption of off-chip bandwidth of multi-threaded workloads

using Dynamic Switching and prefetching (degree = 1, 4) .. 65

Figure 4-3. Improved throughput of Dynamic Switching boosted by stride prefetchers

(degree = 1, 2, 4) for memory-Intensive workloads using PCM 66

Figure 4-4. Normalized off-chip bandwidth of Dynamic Switching boosted by stride

prefetchers (degree = 1, 2, 4) for memory-Intensive workloads using PCM 67

Figure 4-5. Performance evaluation of multi-threaded workloads using Dynamic

Switching and prefetching (degree=1, 4) on the PCM subsystem 67

Figure 4-6. Normalized consumed off-chip bandwidth of multi-threaded workloads using

Dynamic Switching and prefetching (degree =1, 4) on the PCM subsystem 68

Figure 4-7. The improved throughput of Dynamic Switching boosted by stride

prefetchers (degree = 1, 4) for mixed workloads with PCM .. 68

Figure 5-1. The simulated system running in the single-link mode and the multi-link

mode .. 72

Figure 5-2. The off-chip bus connection in the single-link mode and the multi-link mode

... 75

Figure 5-3. The memory controller running in the single-link mode and the multi-link

mode .. 76

Figure 5-4. The physical layers of QPI running in the single-link mode and the multi-link

mode .. 77

Figure 5-5. The Spice models for QPI buses and memory buses in single-link mode and

the multi-link mode ... 83

Figure 5-6. Eye diagrams .. 84

Figure 5-7. The normalized speedup of the static switching and the dynamic switching

compared with the baseline ... 87

Figure 5-8. The latency of un-core requests for the static switching normalized against

that of the baseline .. 88

Figure 5-9. The normalized speedup of the static switching and the dynamic switching

compared with baseline for the workloads with moderate or low inter-socket traffic 90

Figure 5-10. The energy consumption in the static switching normalized against the

baseline ... 90

Figure 5-11. The normalized speedup of the static switching with a prefetcher (degree 1,

2, 4) compared with baseline and the prefetcher .. 91

file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221909
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221909
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221910
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221910
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221911
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221911
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221912
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221912
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221913
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221913
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221914
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221914
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221915
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221915
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221916
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221916
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221917
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221917
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221918
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221918
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221919
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221919
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221920
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221921
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221921
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221922
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221922
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221923
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221923
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221924
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221924
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221925
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221925

ix

Figure 5-12. The ratio between the un-core latencies of QPI and the total un-core

latencies with the baseline and a prefetcher (degree 1, 2, 4) .. 92

Figure 5-13. The normalized speedup of the static switching with the different

bandwidths of DRAM cache ... 93

Figure 5-14. The normalized speedup of the static switching with the different sizes of

DRAM cache .. 94

Figure 5-15. The normalized latencies of un-core requests in the static switching with the

different sizes of DRAM cache... 94

Figure 5-16. The normalized speedup of the static switching with the different

frequencies of QPI .. 95

Figure 5-17. The ratio between the un-core latencies of QPI and the total un-core

latencies with the baseline and the different frequencies of QPI buses 96

file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221926
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221926
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221927
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221927
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221928
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221928
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221929
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221929
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221930
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221930
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221931
file:///C:/Users/shaoming/Desktop/chen_diss.docx%23_Toc456221931

x

ABSTRACT

Off-chip memory bandwidth has been considered as one of the major limiting

factors to processor performance, especially for multi-cores and many-cores.

Conventional processor design allocates a large portion of off-chip pins to deliver power,

leaving a small number of pins for processor signal communication. We observed that the

processor requires much less power than that can be supplied during memory intensive

stages in some cases. In this work, we propose a dynamic pin switch technique to

alleviate the bandwidth limitation issue. The technique is introduced to dynamically

exploit the surplus pins for power delivery in the memory intensive phases and uses them

to provide extra bandwidth for the program executions, thus significantly boosting the

performance. We also explore its performance benefit in the era of Phase-change memory

(PCM) and prove that the technique can be applied beyond DRAM-based memory

systems.

On the other hand, the end of Dennard Scaling has led to a large amount of

inactive or significantly under-clocked transistors on modern chip multi-processors in

order to comply with the power budget and prevent the processors from overheating. This

so-called “dark silicon” is one of the most critical constraints that will hinder the scaling

with Moore’s Law in the future. While advanced cooling techniques, such as liquid

cooling, can effectively decrease the chip temperature and alleviate the power constraints;

the peak performance, determined by the maximum number of transistors which are

allowed to switch simultaneously, is still confined by the amount of power pins on the

chip package. In this paper, we propose a novel mechanism to power up the dark silicon

by dynamically switching a portion of I/O pins to power pins when off-chip

xi

communications are less frequent. By enabling extra cores or increasing processor

frequency, the proposed strategy can significantly boost performance compared with

traditional designs.

Using the switchable pins can increase inter-socket bandwidth as one of performance

bottlenecks. Multi-socket computer systems are popular in workstations and servers.

However, they suffer from the relatively low bandwidth of inter-socket communication

especially for massive parallel workloads that generates many inter-socket requests for

synchronizations and remote memory accesses. The inter-socket traffic poses a huge

pressure on the underlying networks fully connecting all processors with the limited

bandwidth that is confined by pin resources. Given the constraint, we propose to

dynamically increase the inter-socket bandwidth, trading off with lower off-chip memory

bandwidth when the systems have heavy inter-socket communication but few off-chip

memory accesses. The design increases the physical bandwidth of inter-socket

communication via switching the function of pins from off-chip memory accesses to

inter-socket communication.

1

 INTRODUCTION

1.1. MOTIVATIONS

As memory-intensive applications such as web servers, database software, and

tools for data analysis prevail, the focus of computer architects shifts from Instruction

Level Parallelism (ILP) to Memory Level Parallelism (MLP). The term “Memory Wall”

was coined to describe the disparity between the rate of core performance improvement

and the relatively stagnant rate of off-chip memory bandwidth increase. Additional cores,

when integrated on the same die, and supplemental applications serve to widen this gap,

since each individual core may generate substantial memory requests that need to be

queued and served by the memory subsystem. Obviously, the capability of the off-chip

memory system largely determines the per-core or even the overall performance of the

entire system. In scenarios where the off-chip memory is insufficiently fast to handle all

memory transactions in a timely manner, the system performance is highly likely to be

bottlenecked by the slow memory accesses. An intuitive solution to this problem is to

increase the off-chip memory bandwidth by enabling more memory channels. Figure 1-1

illustrates the variation of normalized throughput with the number of memory channels

increased from 1 to 4 when 4 lbm programs are running on an X86 platform. As can be

seen from the figure, enabling more memory channels significantly increases the off-chip

bandwidth, which in turn translates to an impressive boost of the system performance.

Furthermore, compared to compute-intensive stages, processors consume much less

power during memory-intensive phases when cores wait for data to be fetched from main

memory.

2

Motivated by this observation, we propose an innovative technique to mitigate the

shortage of off-chip bandwidth during the memory-intensive phases of program

executions, in order to enhance the overall performance. Our scheme is built on top of a

novel switchable pin design and accurate identifications of memory-intensive phases.

Pins can be dynamically altered for power delivery or signal transmission via accessory

circuits. These circuits enable pins to deliver quality power or signal with relatively low

area overhead. On the other hand, we identify the memory-intensive phases by observing

the key performance metrics at runtime. Extra off-chip bandwidth is demanding in phases

with high memory intensity. Therefore, by switching the pins and providing additional

bandwidth for off-chip memory transactions, the performance of memory-intensive

stages can be boosted, thus impressively accelerating the overall execution.

On the other hand, “dark silicon” can be mitigated via the switchable pins. In the

current industry, there are two commonly accepted reasons for power constraints that

cause dark silicon: thermal constraints and power delivery [41]. The slow improvement

of per-transistor switch energy along with the fast growing transistor density has led to a

considerable rise in the power consumption per unit area (i.e., power density). Provided

that inexpensive cooling techniques such as air cooling are still the mainstream solution

Figure 1-1. Normalized weighted speedup and off-chip bandwidth of 4 lbm co-running

on a processor with 1,2,3,4 memory channels

2

4

6

8

0

1

2

3

1 2 3 4 B
a

n
d

w
id

th
 (

G
B

/s
)

N
o

rm
a

li
ze

d

W
ei

g
h

te
d

 S
p

ee
d

u
p

Channels

Thoughput Off-chip Bandwidth

3

Figure 1-2. Power and memory bandwidth (8 copies of DEALII from SPEC2006)

0

5

10

15

20

30

40

50

60

70

1 21 41 61 81 101 121 141

M
e

m
o

ry
 b

an
d

w
id

th
(G

B
/s

)

P
o

w
e

r(
W

)

Time(milliseconds)

Power Memory bandwidth

to heat dissipation for desktop and mobile platforms, such increasing of the power density

tends to generate substantial heat that outstrips the chip’s heat spreading capability. In

this situation, the maximum power consumption of the chip cannot go beyond a threshold

in order to maintain a safe working temperature for the entire processor. This power limit

is usually referred to as the thermal design power (TDP). Some high-end processors with

a higher TDP use backplate liquid cooling [33] to avoid thermal issues.

The underlying power delivery system, on the other hand, constrains the amount

or the frequency of simultaneously active transistors as it determines the maximum power

that is able to be provided to the chip irrespective of the thermal concern. To alleviate this

constraint, we consider increasing the power envelope with minimum circuit change to

the existing computer systems, in order to enable more transistors or raise the operating

frequency in the power-hungry phases during program execution. Figure 1-2 plots a

snapshot of the execution of 8 copies of DEALII from SPEC2006 on an 8-core processor,

visualizing a representative scenario that motivates our work. The off-chip memory

traffic and processor power consumption both vary in different execution phases. More

interestingly, the two traces generally show an opposite trend during the execution; when

the memory traffic is relatively light, the total power consumption is quite considerable

4

(e.g., time interval 106 – 151ms). On the other hand, a duration of memory-intensive

execution will correspond to a low-power period. The underlying reason for this

phenomenon is that frequent misses in the last-level cache and the resultant off-chip

memory accesses will largely slow down the overall execution rate, leading to a decrease

in the processor’s power consumption.

This intuitive observation implies an important opportunity for performance

improvement and dark silicon mitigation by appropriately balancing the power delivery

and off-chip traffic. To exploit this potential benefit, we propose a novel mechanism to

dynamically switch a portion of I/O pins for extra power delivery when off-chip memory

accesses are infrequent, thus powering up the dark silicon for performance boost. During

a phase when off-chip activities are relatively high, we switch back the pins for signal

transmission.

Pin Switching provides a great opportunity for increasing the off-chip bandwidth

of CPUs using Phase-change memory (PCM). As DRAM is experiencing difficulties with

memory technology scaling, architects are intensively studying potential alternative

memory technologies such as PCM. Although PCM exhibits different features from

DRAM, Pin Switching is expected to also improve the performance of PCM subsystems.

This work investigates the potential benefit of Pin Switching in the era of PCM.

Pin Switching also provides an opportunity for increasing the inter-socket

bandwidth as one of performance bottlenecks. Multi-socket systems are widely used to

boost the throughput of massive parallel workloads that generate intensive local traffic,

between processors and off-chip memory devices such as DRAM, and remote traffic for

inter-socket communication. The limited local bandwidth of main memory bounds the

5

performance of parallel workloads, since it serializes the parallel memory requests and

offsets the benefit of memory level parallelism, especially considering the ever-

increasing data size of workloads and number of cores per die. This problem is addressed

by many architects by boosting the system throughput via advanced algorithms for off-

chip memory requests [11], increasing the physical memory bandwidth at the cost of

lower core frequency [6], or reducing traffic via using a stacked DRAM, which has

higher bandwidth than off-chip memory devices and a larger size than a SRAM-based

cache [18]. These solutions relieve the performance bottleneck, while remote inter-socket

bandwidth emerges as a new performance bottleneck for workloads with intensive inter-

socket communication.

 Remote bandwidth bounds the performance of workloads that frequently fetch

data from the cache of other processors or remotely from main memory. Inadequate

remote bandwidth serializes memory requests and limits the benefits of memory level

parallelism. The bottleneck of inter-socket communications such as QuickPath

Interconnect (QPI) [20] was hidden, as remote main memory access is constrained by off-

chip bandwidth, but is now revealed by the volume of requests directly to the DRAM

Figure 1-3. The latency breakdown of un-core requests in the simulated

system with two sockets

0

0.2

0.4

0.6

0.8

1

1.2

La
te

n
cy

Workloads

other

QPI

dram_cache

dram

6

cache that do not use off chip bandwidth. The QPI bandwidth becomes a greater concern

than off chip bandwidth when data is more likely to be fetched from stacked DRAM,

which has superior bandwidth compared to the remote bandwidth. This bottleneck is

shown in Figure 1-3 that breaks down the latencies of un-core requests.

qSwitch, which dynamically allocates off-chip bandwidth between local and

remote accesses, is proposed to relieve the bottleneck constraining remote accesses. The

total number of pins bound the bandwidth as a scarce resource [24] that power delivery

networks and I/O compete for. Additionally, increasing the total number of signal pins is

prohibitive since routing traces beneath processors is becoming very difficult. qSwitch

dynamically shifts a portion of local off-chip bandwidth for accessing main memory into

remote inter-socket communication bandwidth when low local access activities are

observed without increasing the total number of signal pins. qSwitch improves the

performance of workloads suffering from limited inter-socket bandwidth, based on a

vertical design from the circuit to architecture level.

1.2. DISSERTATION ORGANIZATION

The dissertation first presents a pin switch technique to increase off-chip

bandwidth based on switchable pins. It demonstrates applying the switchable pins to

mitigate dark silicon by boosting core frequency. Additionally, it explores the benefit of

the pin switch technique in the era of PCM with multi-threaded workloads. Based on the

underlying idea of the pin switch technique, it proposes another pin switch technique to

increase inter-socket bandwidth. In general, the main contributions of this work are

summarized as follows:

7

 We propose a switchable pin design which can convert a power pin to a signal

pin or the other way around for increasing off-chip bandwidth. Detailed

examinations at both the circuit and architectural level are conducted to

validate the feasibility of the proposed design. We examine the performance

improvement of the design in various memory configurations. A sensitivity

study is conducted to compare the benefit of our design with a different

number of channels, buses, banks and ranks. We design Dynamic Switching

to alleviate the negative side-effects of pin switching by actively identifying

memory-intensive phases and only switching when the condition is satisfied.

Without prior knowledge of program characteristics, this policy switches the

system to prioritize memory bandwidth or core performance according to the

identified phase. Our experiments show that significant performance

improvement can be achieved for memory-intensive workloads while

maintaining the same performance for compute-intensive workloads as the

system without Pin Switching.

 We give a circuit implementation for mitigating dark silicon, using minor

changes to existing processor and motherboard circuitry. We further design a

rigorous statistical model that correlates the historical execution behaviors and

off-chip access intensities in upcoming intervals. The established model can

be employed by the operating system or equivalent supervisor to guide pin

switching at runtime. We conduct a series of simulations to evaluate the

performance, energy efficiency, and thermal impact of the proposed design on

a chip multi-processor (CMP) in the dim silicon [81].

8

 We integrate a PCM model into our simulations to evaluate the benefits of Pin

Switching in the era of PCM. Pin Switching significantly improves the

performance of the PCM memory subsystem in our evaluation. We also show

that multi-threaded workloads can benefit from Pin switching as long as they

share the performance bottleneck of off-chip bandwidth.

 We identify that the latency of inter-socket communication as the major

bottleneck for massive parallel workloads that intensively share data across

sockets. We propose qSwitch for improving the performance of the workloads

on a multi-socket system in which switching agents turn on/off memory

channels, QPI buses, and off-chip bus connections. We evaluate the

performance of qSwitch with the selected multi-thread workloads. We also

investigate the runtime overhead and signal integrity for qSwitch.

The remainder of the dissertation is organized as follows. We present the design

which increase off-chip bandwidth via switchable pins in chapter 2, and the design which

mitigate dark silicon in chapter 3. We propose boosting off-chip bandwidth with PCM

and improve the performance of multi-threaded programs in chapter 4. Finally, we

propose increasing inter-socket bandwidth via switchable pins in chapter 5.

9

 INCREASING OFF-CHIP BANDWIDTH IN

MULTI-CORE PROCESSORS WITH SWITCHABLE PINS

2.1. DESIGN OVERVIEW

Our design aims to boost computer system performance especially for memory-

intensive programs. In conventional designs, the performances of these workloads are

degraded by a shortage of memory buses which limits off-chip bandwidth. We provide

increased memory bandwidth, thereby reducing the average latency of off-chip memory

access, at the expense of a lower core frequency. Rather than retaining a fixed number of

buses connected to the DRAM (typically one bus per channel), our design dynamically

switches buses between signal and power pins (VDD or GND) to reduce the latency for

these workloads. This is referred to as multi-bus mode henceforth, as opposed to single-

bus mode similar to conventional processor operation. Switchable pins facilitate changing

between these two modes as discussed below. This paper focuses on how to fully exploit

the benefits of substituting power pins for I/O pins during memory-intensive programs

without interfering with compute-intensive programs.

 Pin Switch

Figure 2-1 depicts the schematic of two switches and a signal buffer which serve

as the basic units for exchanging power pins for signal pins. The signal-to-power switch

shown in

Figure 2-1 (a) is key to alternate a regular pin between the two modes. As

illustrated in this figure, we utilize a dedicated power switch [59] which sits on the power

delivery path to minimize the corresponding IR drop and power consumption with its

10

ultra-low switch-on resistance, measuring as low as 1.8mΩ. While in the single-bus mode,

the power switch is turned on while two 5 stage tri-state buffers on the signal line are off.

Otherwise, the power switch is turned off to block noisy interference from the power line,

and the tri-state buffers are turned on in one direction according to whether data is read

from the memory or written by the memory controller. To compensate for the parasitic

capacitances of the power switch, we place the 5 stage tri-state buffers in signal lines to

Common
terminal

Power

Signal

Power switch

Five Stage Tri-state Buffer

Ctrl_P

Ctrl w

Ctrl R

Ctrl

Five Stage Tri-state Buffer
1 2 5

(a) The circuit of a signal-to-power switch

Common terminal

Five Stage Tri-state Buffer

Ctrl W_2

Ctrl_R_2

Signal 2

Five Stage Tri-state Buffer

Ctrl W_1

Ctrl R_1

Signal 1

(b) The circuit of a signal switch

Five Stage Tri-state Buffer

Ctrl W

Ctrl R

Signal Signal

Signal buffer

(c) The circuit of a signal buffer

Figure 2-1. The circuit of pin switch

11

amplify I/O signals. Between each stage, the buffer size is increased by four times to

amplify the signal with small delay. In total, the 5 stage tri-state buffer incurs a 0.9ns

delay. On the other hand, the die area of the aforementioned power switch is

commensurate to that of 3,000 traditional transistors [59]. The number of signal pins for a

DRAM bus could slightly vary depending on different processors (e.g. with or without

ECC). We pick up 125 power switches per bus which consists of 64 data pins and 61

address and command pins from the pin allocation of an i5-4670 Intel Processor [7]. The

total die area consumes 375,000 (3,000 * 125) traditional transistors. Considering a

billion-transistor chip, the area overhead for the 3 buses which will be used in our work is

less than 0.12% of the total chip area.

The signal switch shown in Figure 2-1 (b) is employed to guarantee that data in

the DRAM can be accessed in two modes. The signal switch uses two pairs of 5 stage tri-

state buffers to enable memory devices that can be accessed via two buses. The buffers

identical to that in the signal-to-power switch can resist noise from a channel when the

other channel is selected. On the other hand, the signal buffers shown in Figure 2-1 (c)

also have strong peak-drive current and sink capabilities. They are utilized to amplify the

signal in order to offset the effect of the parasitic capacitance.

Processors possess specific pin allocations depending on the package, power

consumption, and hardware interface (the number of memory channels). For our

experiment, we use the pin allocation of an i5-4670 Intel Processor [7] shown in Table

2-1. While this processor includes 4 cores and 2 memory channels, 54.6% of the pins are

used for power delivery. Out of the 628 power pins, 125 of these can be replaced with

switchable pins for a single bus. To maintain the same ratio of VDD to GND pins, we

12

allocate 30 of the 125 switchable pins as VDD pins and the remaining 95 as GND pins. In

our experiment we will allocate at most three additional buses via pin switching because

adding more leads to a considerable drop in performance.

 Off-Chip Bus Connection

Designing a memory interface which could take the advantage of the switchable

pins to dynamically increase off-chip bandwidth is non-trivial. In this section, we propose

an off-chip bus connection and instructions to configure the switchable pins for power

delivery or for signal transmission.

The two modes of the off-chip bus connection could be described as the multi-bus

mode and the single-bus mode, as shown in Figure 2-2. In multi-bus mode, several buses

(assuming N) are connected to private DRAM interfaces via the individual buses. On the

other hand, single-bus mode can only access DRAM by a single bus. Two signal-to-

power switches and a signal switch for each signal wire of N-1 buses are needed. These

signal-to-power switches configure the switchable pins for signal transmission where the

signal switches connect the bus to DRAM devices in the multi-bus mode, otherwise the

switchable pin is configured for power delivery where the DRAM devices are connected

to the shared bus.

 In order to implement the mechanism, we control the signal-to-power switch

detailed in Figure 2-1 (a) and the signal switch detailed in Figure 2-1 (b) to route signal

and power in the two modes. The signal to the DRAM interface could be divided into two

groups: command signals and data signals. The command signals running in one

direction could be routed via the two switches which only need one direction buffer

13

instead of a pair. On the other hand, the data signals (DQ) are bi-directional and the

switches shown in Figure 2-2 could receive and send signals in both directions.

For the placements of the switches on the printed circuit board (PCB), one signal-

to-power switch for each signal line should be placed close to the processor package in

Figure 2-2. The overview of the hardware design of off-chip bus connection for switching

between the Multi-bus mode and the Single-bus mode

Table 2-1. Pin allocation of an Intel Processor i5-4670

VDD GND DDR3 Others Total

153 475 250 272 1150

14

order to shorten the signal wire which has to bear high current for power delivery. To

avoid signal reflections caused by an impedance mismatch, we keep the width of the

signal wires and conduct an experiment to test the feasibility of high current via these

signal wires. Based on a specification from the PCB manufacturer [9] and the DDR3

PCB layout guidelines [8], our simulation with COMSOL shows the MTTF of the 6mil

signal wire could be more than 2.5 x 105 hours with a 1A current. On the other hand, the

signal switch should be placed near the corresponding DRAM device to reduce signal

reflections.

 Memory Controller

The data availability of the memory controller is our primary concern. All the

available memory buses in the multi-bus mode must be fully utilized to achieve

maximum bandwidth while still allowing all the data in single-bus mode to be accessed.

Due to the complicated synchronization of memory requests between memory controllers,

the switch between the two bus modes is only implemented inside the memory controller.

Within a memory controller, a memory interface is designed for each bus to fully exploit

the benefit of the multi-bus mode without the interference of traffic from other buses

compared to the design of multiple buses sharing a single memory interface.

The memory controller in our design includes dedicated request queues which

buffer the incoming requests to the buses shown in Figure 2-3. Queues individually

receive the requests from the front arbiter which employs its address mapping policy

when dispatching requests. Once the requests are residing in the queues, they are fetched

by the back arbiter. While in multi-bus mode, the requests are fed into their

corresponding buses via the corresponding DRAM interfaces. Because memory

15

interfaces can operate independently and in parallel, the memory bandwidth can be

amplified by a factor of the number of memory buses. In the single-bus mode, the

memory controller works similar to a conventional processor and communicates with the

attached DIMMs as appended ranks.

 Area Overhead

The circuit overhead of our design consists of the front arbiter, the end arbiter,

and extra DRAM interfaces. As a result of both arbiters, the cost of dispatching requests

without buffering them should be negligible. Furthermore, the cost of the additional

DRAM interface is inexpensive. The estimated net area of a typical DRAM interface

from Opencore [1] is 5,134 µm2 in 45 nm technology. This estimation is conducted by

the Encounter RTL Compiler [5] with the NanGate Open Cell Library [6]. No more than

LLC

BUS

Memory Controller

Request

Queue #1

DRAM Interface DIMMs

Request

Queue #N

End

Arbiter

LLC

BUS

Memory Controller

Request

Queue #1

Request

Queue #N

End

Arbiter

Multi-bus mode

Single-bus mode

Front

Arbiter

Front

Arbiter

DRAM Interface DIMMs

DRAM Interface

DRAM Interface

DIMMs

DIMMs

Figure 2-3. The Overview of the hardware design of memory controller for switching

between the Multi-bus mode and the Single-bus mode

16

three additional buses in total are used in our experiment thus creating a maximum

hardware overhead less than 0.00015 cm2 which is significantly less than the typical 1

cm2 die area.

 Address Mapping

Data accesses interleave at the page level via different buses exploiting the benefit

of memory-level parallelism while maintaining a high row buffer hit ratio. Interleaving at

the block level considerably decreases the row buffer hit ratio resulting in longer off-chip

latency per request and extended queue delay. To reduce row-buffer conflicts, we employ

XOR banking indexing which could effectively reduce bank conflicts resulting from

resource-contention-induced traffic and write-backs. This permutation distributes the

blocks stored in the last level cache into different banks as opposed to possibly including

tags of physical addresses containing the same bank index.

 Signal Integrity

Signal integrity is analyzed to demonstrate feasibility in the single-bus and the

multi-bus modes. We simulate SPICE models of our accessory circuit as well as PCB

transmission lines, bond wire inductance, and driver capacitance associated with the

device package in the AMS packages of Mentor Graphic as shown in Figure 2-4. The

parameters are derived from previous works [58][62]. Signal integrity challenges are

alleviated since the DDR3 command signal is unidirectional and its speed is no more than

that of the data signals [58]. In this study, we only analyze the effect of our accessory

circuit on the data signals which could be viewed as the worst case for all the signals.

17

In Figure 2-5 (a-d), the eye patterns of writing data (controller to device) and

reading data (device to controller) in the two modes are derived from the corresponding

SPICE models in Figure 2-4 (a-d) respectively. They have clear eyes since the signal-to-

power switch alleviates the effect of the parasitic capacitance of the power switches.

Furthermore, the signal switches as well as signal buffers alleviate the signal reflections

caused by discontinuities. Thus, the results indicate our accessory circuit could maintain

the signal quality in the two modes.

Baud =

800

MBPS

50ΩSignal switchPower-to-signal switchPower-to-signal switch

vout Z0=50Ω

Transmission Line

PRBS

Baud =

800 MBPS

Signal switchPower-to-signal switch

Z0=50Ω

Transmission Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

vout
Power-to-signal switch

Baud =

800

MBPS

50Ω

vout

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

Signal buffer #1

Z0=50Ω

Transmission Line

Z0=50Ω

Transmission Line

Signal Switch

PRBS

Baud =

800

MBPS

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF
voutSignal buffer #1

Z0=50Ω
Transmission Line

Signal Switch

Z0=50Ω
Transmission Line

Signal Switch

Z0=50Ω
Transmission Line

Signal Switch

(a). Device to controller in multi-bus mode

(b). Controller to device in multi-bus mode

(d). Controller to device in single-bus mode

(c). Device to controller in single-bus mode

Z0=50Ω

Transmission Line

Signal Switch

Z0=50Ω

Transmission Line

Signal Switch

Z0=50Ω

Transmission Line

Signal Switch

Z0=50Ω
Transmission Line

Signal Switch

Z0=50Ω

Transmission Line

Figure 2-4. Spice models for signal integrity simulation

18

 Power Delivery Simulation

In this section, we assess the repercussions experienced by the power delivery

network (PDN) when the switchable pins are shifted from single-bus mode to multi-bus

mode. The PDN is depicted in Figure 2-6 (a). The power delivery path is modeled with

RL components (i.e. resistors and inductors) connected in series across the PCB, the

 (a) DQ Read in multi-bus mode (Device to Controller)

(b) DQ Write in multi-bus mode (Controller to Device)

(c) DQ Read in single-bus mode (Device to Controller)

(d) DQ write in single bus mode (Controller to Device)

Figure 2-5. The eye diagrams

19

package, and the silicon die. Decoupling capacitors are introduced between each

individual PDN to control any voltage fluctuations. The on-chip power grids and

processor circuits on the silicon die are modeled separately as RL components with an

ideal current source.

Figure 2-6 (b) illustrates the RL model of the Controlled Collapse Chip

Connection (C4) pads [31] in which the resistance of the on-state power switches is taken

into consideration. Table 2-2 lists the parameter values obtained from prior work [45].

PDN simulations are performed in PSPICE to evaluate the impact of Pin

Switching. Due to resistance along the power delivery path, an IR drop exists between the

supply voltage and load voltage as current flows through the PDN. We assume a

normalized IR drop should be upper-bounded by 5% as prior work dictates [52][56]. This

implies that the maximum currents are 125A, 104A, 80A, and 56A for the baseline and

then for Pin Switching mechanisms with one, two, and four borrowed buses respectively.

In other words, the three Pin Switching diagrams switch 125, 250, and 375 power pins to

signal pins providing 16.8%, 36.0%, and 55.2% less current with 19.9%, 39.8% and 59.7%

less power pins respectively. The percentage of current decrease is less than that of

Table 2-2. Power network model parameters

Resistance Value Inductance Value

RPCB 0.015 mΩ LPCB 0.1 nH

RPKG, C 0.2 mΩ LPKG,C 1 pH

RLOAD,C 0.4 mΩ LLOAD,C 1 fH

RGRID 0.01 mΩ LGRID 0.8 fH

RC4, SINGLE 40 mΩ LC4, SINGLE 72 pH

RSWITCH,ON 1.8 mΩ

Capacitance

CPKG,C 250 µF CLOAD,C 500 nF

20

proportional power pin quantity decrease because the IR drop depends on the resistance

in the PCB and power grids.

We assume the processor employs a dynamic voltage and frequency scaling

(DVFS) mechanism supporting 4 voltage and frequency operating points. The frequency

can be scaled down from 4.0GHz to 1.2GHz. Correspondingly, the voltage will be

decreased from 1.0V to 0.64V. According to McPAT [56], the baseline design can work

at a frequency of 4.0GHz given the power delivery information. However, the processor

frequency must be decreased individually to 3.2GHz, 2.4GHz, and 1.2GHz when the

power pins for one, two, and three sets of memory channel pins are borrowed as I/O pins

respectively. The results shown in Table 2-3 are used in the following evaluation.

LPCB LC4, P, LUMP LGRID

Printed circuit board MicroprocessorPackage (C4 pads)

RPCB

RPCB
LPCB

CPKG, C

RPKG, C

CLOAD, C

RLOAD, C

ILOAD

RC4, G, LUMP

LC4, G, LUMP

VDD

RC4, P, LUMP
RGRID

LGRIDRGRID

LPKG, C LLOAD, C

(a) Power delivery network

RSWITCH,ON

LC4, SINGLE
RC4, SINGLE

RL model of a single C4 pad

RL model of a C4 pad that connects with a power switch

(b) RL model of a C4 pad

Figure 2-6. RLC power delivery model

21

 Runtime Switch Conditions

Designing a predictor to choose the most beneficial mode for the next interval is

non-trivial for multi-program workloads. Simply switching based on the amount of

consumed off-chip bandwidth is not sophisticated enough to improve the overall

performance of a system in which only some of the programs that suffer from long off-

chip access latency are likely to benefit from multi-bus mode. To identify intervals that

will benefit from Pin Switching it is necessary to estimate both the performance change

of each program and the overall benefit of switching for the following interval based on

the current performance before a switching occurs. We introduce a metric called the

switching benefit Bij(Tc) to help identify the most beneficial mode for each 1 millisecond

interval, where Bij(Tc) represents the estimated reward for running the interval following

time Tc in mode j instead of mode i. Based on the history of the switching benefit, we

predict B̃ij(Tc) as the switching benefit for the following interval using B̃ij(Tc) =

 ∑ Bij(Tc − k ∗ Tinterval)
N
k=1 , where Bij(Tc − k ∗ Tinterval) represents the switching

benefits detailed in equation (1) and can be measured from the N intervals ago and N is

the length of the history to consider which were carefully chosen to be 2 for our

experiment. If the predicted switching benefit is negative, the system will stay in mode i,

otherwise, it will switch to mode j.

Table 2-3. Processor power and frequency parameters for different number of buses

BUS 1 2 3 4

Current (A) 125 104 80 56

Voltage (V) 1 0.88 0.76 0.64

Power (W) 125 92 61 36

Frequency (GHz) 4 3.2 2.4 1.2

22

The switching benefit is calculated using the following equation:

Bij(Tc) = ∑ (WSj,k(Tc)
p
k=1 − WSi,k(Tc)) 2-1

Where WSi,k(Tc) and WSj,k(Tc) stand for the estimated weighted speedups for program k

at time Tc in mode i and mode j respectively, while p represents the number of

simultaneously executing programs which is equal to 4 in our experiment. The weighted

speedup of each program in mode i during the interval can be estimated based on the

information derived from hardware counters and off-line profiling, since the system is

running in mode i during the current interval. The weighted speedup is calculated as

follows:

 WSi,k(Tc) = Talone,i,k(Tc)/Tshared,i,k(Tc) 2-2

 Talone,i,k(Tc) = Committed Instalone,k(Tc)/(average IPSalone,k) 2-3

where Talone,i,k(Tc) stands for the execution time of the same instructions running without

interference from co-runners and Tshared,i,k(Tc) denotes the execution time of a fraction

of program k running with others during the current interval which is equal to the length

of an interval (1 millisecond). Furthermore, Committed Instalone,i,k(Tc) stands for the

number of committed instructions during the interval following Tc of program k, directly

derived from a hardware counter since it should be identical to the number when program

k shares the main memory system with others. Average IPS obtained from off-line

profiling denotes the average number of executed Instructions Per Second (IPS) when

program k running alone. These values are used to approximate Talone,i,k(Tc) based on

the assumption that the IPS of each program is relatively steady when it runs alone, since

an accurate estimation of Talone,i,k(Tc) is challenging [65].

23

The estimation of the weighted speedup of each program in currently unused

mode j is more difficult compared to that in current mode i, since we can only estimate

the performance of mode j according to the information collected in mode i. The

weighted speedup is calculated as follows:

WSj,k(Tc) = Talone,j,k(Tc)/Tshared,j,k(Tc) 2-4

Tshared,j,k(Tc) = Ton−core,j,k(Tc) + Toff−core,j,k(Tc) 2-5

Where Talone,j,k(Tc) is identical to Talone,i,k(Tc) and Tshared,j,k(Tc) represents the

execution time of program k running with others in mode j. It can be divided into two

parts based on whether the execution times vary with core frequency: Ton−core,j,k(Tc)

denotes the portion of the execution time spent inside the core which is inversely

proportional to core frequency, while Toff−core,j,k(Tc) expresses the portion of execution

time incurred by activity outside the core. We estimate Ton−core,j,k(Tc) based on the

corresponding time Ton−core,i,k(Tc) in mode i using:

Ton−core,j,k(Tc) = Ton−core,i,k(Tc) ∗
freqi,k

freqj,k
⁄ 2-6

Where freqi,k and freqj,k are the frequencies in mode i and mode j respectively. We

estimate Ton−core,i,k(Tc) with the same breakdown using

Ton−core,i,k(Tc) = Tinterval − Toff−core,i,k(Tc) 2-7

Toff−core,i,k(Tc) = TLLC,i,k(Tc) + TDRAM,i,k(Tc) 2-8

where TLLC,i,k(Tc) is the execution time incurred in the shared last level cache (LLC) in

mode i, which is estimated using the number of the accesses to LLC, and TDRAM,i,k(Tc)

denotes the execution time incurred by activity in the DRAM controller in mode i.

TDRAM,i,k(Tc) is the cumulative time spent when there is at least one in-flight read

24

requests in the DRAM controller, since it can avoid the overestimation due to the overlap

of multiple in-flight read requests for single thread [68].

On the other hand, Toff−core,j,k(Tc) is mainly affected by the number of buses

between different modes since the queue delay inside the DRAM controller is typically

decreased as more off-chip buses are added. We calculate the time using:

Toff−core,j,k(Tc) = Toff−core,i,k(Tc) + Tqueue delay,j,k(Tc) − Tqueue delay,i,k(Tc) 2-9

Tqueue delay,j,k(Tc) = Tqueue delay,i,k(Tc) ∗
Nrequest,j,k(Tc)

Nrequest,i,k(Tc)⁄ 2-10

where Tqueue delay,i,k(Tc) and Tqueue delay,j,k(Tc) denote the execution time incurred

inside the queue of the DRAM controller in modes i and j respectively, while

Nrequest,i,k(Tc)and Nrequest,j,k(Tc) stand for the average number of waiting requests per

incoming read requests which have to wait until they have been completed in modes i and

j. Tqueue delay,i,k(Tc) can be estimated by the time when there is at least one read request

in the queue of DRAM controller. Tqueue delay,j,k(Tc) can be estimated by sampling the

number of waiting requests in different modes

 Switching Overhead

Any runtime overhead incurred by switching comes from the DVFS and IR drop

fluctuations caused by the pin switch. The overhead for DVFS is 20µs [57] and the time

for the IR drop to re-stabilize is also bounded by 20µs according to our power delivery

simulation. Because both of these delays overlap each other, the estimated total overhead

is 20µs and is taken into consideration. Therefore, the penalty is 40µs when a phase is

incorrectly identified. However, the overall switching overhead is still negligible since

25

the average length of the identified phases shown is much longer than the overhead in our

workloads. Since most programs only switch a few times during execution, nearly all the

program phase transitions have been identified by the predictor.

2.2. EXPERIMENTAL SETUP

To evaluate the benefit of our design, we simulate the x86 system documented in

Table 2-4 using the Gem5 simulator [24]. We modify the DRAM model integrated in

Gem5 to accurately simulate the proposed method. Throughout the experiments, multi-

bus mode will utilize all available buses with the corresponding core frequency shown in

Table 2-3. The buses are partially unutilized with a high core frequency between multi-

bus and single-bus modes. We employ off-chip DVFS to maintain the same frequency on

all 4 cores at any given time.

 Performance and Energy Efficiency Metrics

 We use weighted speedup [79] lists as follows to represent the throughput of our

system shown in the following equation.

Table 2-4. The Configuration of the simulated system

Processor 4 X86 OoO cores with issue width 4

L1 I cache Private 32KB, 8 way, 64B cache line, 2 cycles

L1 D cache Private 32KB, 8 way, 64B cache line, 2 cycles

L2 Cache Shared 8MB, 8 way, 64B cache line, 20 cycles

Memory controller FR-FCFS scheduling, open row policy

Channel 1

Bus per channel 2 /3/4 (additional buses 1/2/3)

Rank per bus 2

Bank per rank 8

Bank 8*8 DDR3-1600 chips from Micron datasheet[62]

26

Weighted Speedup = ∑

1
Ti

Shared⁄

1
Ti

Alone⁄

N−1
i= 0 2-11

where Ti
Shared and Ti

Alone denote the execution time of a single program running alone

and the execution time running with other programs respectively. Because the IPC is

distorted by the frequency change from the employed DVFS, the execution time is used

in place of it. We utilize Energy per Instruction (EPI) for the evaluation of energy

efficiency. This metric can be obtained from dividing consumed energy by the number

total number of instructions committed.

 Workloads

Various multi-program workloads consisting of SPEC 2006 benchmarks [76] are

used for our evaluation. As listed in Table 2-5, the benchmarks are categorized into two

separate groups based on their relative memory intensities: memory-intensive programs

and compute-intensive programs. Each workload consists of four programs from one of

these groups to represent a memory-intensive workload or compute-intensive workload

accordingly. Memory-intensive workloads are used to demonstrate the benefit of multi-

bus mode while the compute-intensive workloads demonstrate that there are negligible

side-effects.

We select a simulated region of 200 million instructions for each benchmark

based on their memory characteristics collected from Pin [10]. The simulation for a

mixed workload does not end until the slowest program finishes its 200 million

instructions. Faster programs continue running after committing the first 200 million

instructions. Execution time of each program is collected after the program finishes its

instructions.

27

2.3. RESULTS

The execution latency of a program is composed of the on-chip and off-chip

latency. The percentage of latency in the total execution time reveals which factor tends

to be more influential to the overall performance of a workload. In Figure 2-7 we

demonstrate the off- chip latency for memory-intensive workloads and on-chip latency

for the compute-intensive workloads, since they are the main contributors to the

execution latency of the two categories of workloads, respectively. Specifically, more

than 80% of the latency of memory-intensive workloads comes from off-chip latency,

Table 2-5. The selected memory-intensive and compute-intensive workloads

workload

Memory-intensive programs

M1 lbm milc soplex libquantum

M2 lbm milc leslie3d libquantum

M3 lbm milc soplex leslie3d

M4 lbm soplex libquantum leslie3d

M5 milc soplex libquantum leslie3d

M6 mcf mcf mcf mcf

M7 mcf mcf astar astar

M8 astar astar astar astar

Mixed programs

MIX1 lbm milc bzip2 bzip2

MIX2 lbm milc omnetpp omnetpp

MIX3 lbm soplex omnetpp omnetpp

MIX4 milc soplex omnetpp omnetpp

MIX5 lbm milc omnetpp bzip2

MIX6 milc soplex omnetpp bzip2

Compute-intensive programs

C1 bzip2 bzip2 bzip2 bzip2

C2 hmmer hmmer hmmer hmmer

C3 gromacs bzip2 omnetpp h264ref

C4 gromacs bzip2 sjeng h264ref

C5 gromacs omnetpp sjeng h264ref

C6 bzip2 omnetpp sjeng h264ref

28

while more than 60% of the latency of compute-intensive workloads is from on-chip

latency. This implies that the memory-intensive workloads could be sped up by our Pin

Switching, while the others are unlikely.

 Memory-Intensive Workloads

Figure 2-8 shows the performance improvements of memory-intensive workloads

enhanced by 2, 3, and 4 buses. The weighted speedup of each case is normalized against

its own baseline. The baseline is the simulated system fixed in the single-bus mode with

Figure 2-8. The normalized weighted speedup of memory-intensive workloads with 2,

3, and 4 buses against the each baseline

1

1.1

1.2

1.3

1.4

1.5

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d

S
p

ee
d

u
p

Workloads

2 buses 3 buses 4 buses

Figure 2-7. The normalized off-chip latencies and on-chip latencies of workloads against

the total execution time

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

T
im

e

Workloads

On-chip Off-chip

29

the corresponding number of buses and DRAM devices when the processor runs at

4.0GHz. Remarkably, the improvements experienced with 3 buses consistently surpass 2

and 4 buses in all workloads. These results stem from the balance between core

performance and off-chip bandwidth that the 3 buses experience to maximize the

throughput of the simulated system. Based on our specific hardware configuration and

selected workloads, the multi-bus mode with 3 buses is the optimal choice and therefore

referred to as the default configuration for the discussion of Static and Dynamic

Switching that will be presented in later sections. Figure 2-9 illustrates the performance

improvement for multi-bus mode tested using various DRAM configurations. The

weighted speedup for each configuration is normalized against the same configuration in

single-bus mode. As can be seen from the figure, all banks and ranks have weighted

speedups greater than 32%. As the number of ranks per channel or the number of banks

per rank increases, improvement is slightly diminished due to the resulting lower row

buffer hit ratio causing shorter bank access latency.

Figure 2-10 presents the benefits of Static Switching and Dynamic Switching with

3 buses versus the baseline of a simulated system that does not use the pin switch

mechanism on memory-intensive workloads. Both schemes are able to speed up the

execution of all workloads by more than 1.3 times, while an approximately 42%

performance improvement is observed for M2. The geometric means of Static Switching

and Dynamic Switching are respectively 1.34 and 1.33 due to more than 99% of the

running time being identified as typical memory-intensive phases by Dynamic Switching.

The benefit of the multi-bus mode is mainly attributed to the increase of

consumed bandwidth as shown in Figure 2-11. The increase is similar to this of the

30

weighted speedup in Figure 2-9. For example, M2 and M7 gain 47% and 39% off-chip

bandwidth when switching from the single-bus mode to the multi-bus mode for static

switching, while their performances are improved by 44% and 36% respectively. This

similarity results from the fact that their execution latencies are largely dominated by off-

chip latency. On the other hand, Dynamic Switching achieves a slightly smaller increase

in bandwidth, which results in its performance being close to that of Static switching.

The throughput improvement of Dynamic Switching could be strengthened by

using prefetchers which can utilize extra bandwidth brought by additional buses in our

design. In our experiment, we use a stride prefetcher in the last level cache to

demonstrate the benefit. More sophisticated prefetchers could be employed to further

Figure 2-9. The average normalized weighted speedup of memory workloads in

geometric mean with multi-bus mode. Each normalize to the same configuration with

single bus mode

1.3

1.32

1.34

1.36

1.38

1 2 4 8 16 32

N
o

rm
a

li
ze

d

W
ei

g
h

te
d

 S
p

ee
d

u
p

Ranks per channel Banks per rank

Figure 2-10. The normalized weighted speedup of memory intensive workloads boosted

by Static Switching and Dynamic Switching with 3 buses against the baseline

0.9

1

1.1

1.2

1.3

1.4

1.5

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d

S
p

ee
d

u
p

Workloads

Baseline

Static

Dynamic

31

improve the system performance. The stride prefetcher used here has a prefetching

degree of 1, 2, or 4, which denotes the number of prefetches issued on every memory

reference. As illustrated in Figure 2-12, the geometric mean of the performance

improvements of Dynamic Switching for all memory-intensive workloads with a

prefetching degree of 1, 2, and 4 are 1.51, 1.64, and 1.79 respectively, compared with

those of the baseline which are 1.10, 1.17, and 1.27. The gap of the improvements

between Dynamic Switching and the baseline increases as the prefetch degree increases,

which imply an aggressive stride prefetch could benefit more from Dynamic Switching.

Figure 2-11. The increased bandwidth due to pin switching. The normalized

bandwidth of baseline, static pin switching, and dynamic pin switching

0.9

1

1.1

1.2

1.3

1.4

1.5

M1 M2 M3 M4 M5 M6 M7 M8

N
o

rm
a

li
ze

d
 B

a
n

d
w

id
th

Workloads

Baseline

Static

Dynamic

Figure 2-12. The improved throughput of Dynamic Switching boosted by a stride

prefetchers (degree = 1, 2, 4) for memory-Intensive workloads

0.8

1

1.2

1.4

1.6

1.8

2

2.2

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d

S
p

ee
d

u
p

Workloads

Baseline+prefetch (degree 1)

Baseline+prefetch (degree 2)

Baseline+prefetch (degree 4)

Dynamic+prefetch (degree 1)

Dynamic+prefetch (degree 2)

Dynamic+prefetch (degree 4)

32

This observation could be demonstrated in all workloads except M6 which only gains a

slight performance improvement from increasing the prefetch degree, since the stride

prefetcher has a low coverage on mcf [42]. This performance improvement could be

verified by the higher consumed off-chip bandwidth of Dynamic Switching shown in

Figure 2-13. It implies that Dynamic Switching could boost the performance of the

prefetch by providing more off-chip bandwidth.

The energy efficiency of the system could be also improved by Dynamic

Switching. Figure 2-16 details the energy efficiency improvement of the simulated

system. In theory, the energy savings come from two sources: (1) low voltage and

frequency scaling; and (2) the execution reduction time stemming from multiple buses

brought by pin switching. We quantify the first part by setting the core frequency of the

simulated system to 2.4 GHz (relating to the frequency of our multi-bus mode scheme)

with the corresponding voltage for single bus. The results depicted as gray bars in Figure

2-16 demonstrate 40% improvement in the geometric mean of the EPI for all the

workloads over the baseline. Note that the overall execution time of this setting is only

Figure 2-13. The off-chip bandwidth of Dynamic Switching improved by a stride

prefetcher (degree = 1, 2, 4) for memory-Intensive workloads

0

2

4

6

8

10

12

14

M1 M2 M3 M4 M5 M6 M7 M8

O
ff

-c
h

ip
 B

a
n

d
w

id
th

(G
B

/s
)

Workloads

Baseline+prefetch (degree 1)

Baseline+prefetch (degree 2)

Baseline+prefetch (degree 4)

Dynamic+prefetch (degree 1)

Dynamic+prefetch (degree 2)

Dynamic+prefetch (degree 4)

33

slightly longer than that of the baseline system because all workloads are memory-

intensive. Furthermore, the multi-bus mode offers an average of 66% improvement in the

geometric mean of the EPI for all the workloads over the baseline resulting from

execution time reduction.

 Wide-bus mode

We also introduce wide-bus mode as another approach to increase off-chip

bandwidth by using switchable pins compared to the multi-bus mode. Wide-bus mode

uses switchable pins to widen the data bus to increase off-chip bandwidth. In wide-bus

mode, DIMMs share the command and address bus but have dedicated data buses. Wide-

bus mode only needs to alter the states of the signal-to-power switches and signal

switches on the data buses. Thus, it increases the off-chip bandwidth at a low cost of

switchable pins, since it can double the off-chip bandwidth of a 64 bit memory bus by

using 64 switchable pins instead of 125 ones for a whole memory bus. Additionally, it

incurs less overhead in the memory controller since it only needs a modified DRAM

interface for moving data over the wider bus instead of extra DRAM interfaces. The

challenge of implementing the wide-bus mode comes from keeping equal delays between

all DIMMs and processor pins. It is solvable although it requires considerable efforts to

route the traces connecting the DIMMs and the pins of processor.

Wide bus mode uses pins to widen the data path of memory buses instead of

increasing the number of buses. Wide bus mode has two configurations: (1) the width of

every memory bus is 128 bits and all cores are running at 3.6GHz; (2) the width of

34

memory buses is 256 bits and all cores are running at 2.8 GHz. These configurations are

calculated using the same method used for multi-bus mode.

Wide-bus mode is also tested in the simulated system with a memory bus and the

three bus width configurations (64 bits, 128 bits, 256 bits). The three corresponding core

frequencies for the bus widths are 4GHz, 3.6GHz, 2.8GHz derived based on the pin

configuration. The baseline uses a bus width of 64 bits and a core frequency of 4GHz.

Figure 2-14 shows the performance improvement of wide-bus mode in two

separate configurations: 128bit_3.6GHz in which the processor runs at 3.6GHz with a

128-bit memory bus; and 256bit_2.8GHz in which the processor runs at 2.8GHz with a

256-bit memory bus. 128bit_3.6GHz and 256bit_2.8GHz have a normalized weighted

speedup in geometric mean of 1.1 and 1.15 respectively for memory intensive workloads.

These moderate performance benefits are less than that of multi-bus mode especially for

the M6 workload which consists of four instances of mcf. The M6 workload suffers from

a high row buffer miss ratio and the resultant longer bank access latencies compared to

Figure 2-14. The performance of memory intensive workloads for the baseline (core

frequency of 4GHz and a memory bus of 64 bits) and two configurations of wide bus

mode (core frequency of 3.6GHz and a memory bus of 128 bits; core frequency of 2.8GHz

and a memory bus of 256 bits).

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d

Sp
e

e
d

u
p

Workloads

64bit_4GHz

128bit_3.6GHz

256bit_2.8GHz

35

the latencies of moving the data over the bus. Since wide-bus mode only reduces bus

latencies and cannot hide bank latencies, it delivers less performances benefits for this

kind of applications. The increasing off-chip bandwidth in wide-bus mode presents a

similar trend for the memory intensive workloads shown in Figure 2-15. In conclusion,

wide-bus mode delivers less performance benefits compared to multi-bus mode. It only

shortens the time of transferring data over the bus for a memory request while multi-bus

mode hides the latencies of accessing banks and moving data over the bus by allowing

multiple in flight memory requests. Thus, we prefer multi-bus mode over wide-bus mode

for increasing off-chip bandwidth of processors in the following experiments.

 Mixed Workloads

Figure 2-17 shows the system performance improvement of mixed compute-

intensive and memory-intensive workloads using Pin Switching. The highest benefit is

achieved using the 2 buses and per-core DVFS [83], which is the configuration used in

Figure 2-15. The off-chip bandwidth of memory intensive workloads for the baseline

(core frequency of 4GHz and a memory bus of 64 bits) and two configurations of wide

bus mode (core frequency of 3.6GHz and a memory bus of 128 bits, core frequency of

2.8GHz and a memory bus of 256 bits).

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

M1 M2 M3 M4 M5 M6 M7 M8

N
o

rm
al

iz
e

d
 B

an
d

w
id

th

Workloads

64bit_4GHz

128bit_3.6GHz

256bit_2.8GHz

36

this experiment after we explored the configuration space for these workloads. . The

geometric means of the normalized weighted speedup from using Static Switching and

Dynamic Switching are 1.10 and 1.09 respectively, implying that Dynamic Switching

captures the most benefit of Pin Switching for these mixed workloads. Figure 2-18 shows

the co-improvement of Pin Switching and stride prefetching with varying degrees (1, 2, 4)

compared with the improvement of the prefetching alone. The geometric means of the

normalized weighted speedup of Dynamic Switching with prefetching degree (1, 2, 4) are

1.15, 1.16, 1,15 respectively, while the means with prefetching alone are all 1.04. The co-

optimization for all workloads saturates, or even slightly drops as the degree increases,

which implies aggressive prefetching wastes off-chip bandwidth rather than exploiting

the benefit of MLP for workloads. This can be confirmed by observing the performance

of the baseline using prefetching alone as the degree increases.

 Compute-Intensive Workloads

 Figure 2-19 depicts the Dynamic Switching efficiency of compute-intensive

workloads in comparison to Static Switching at the cost of lower core frequency and the

base-line. The geometric mean of performance degradation for compute-intensive

Figure 2-16. The normalized EPI of Dynamic Switching for memory intensive

workloads with 3 buses, and the EPI from DVFS (running on 2.4GHz with the single

bus)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

rm
a

li
ze

d
 E

n
er

g
y

p
er

 I
n

st
ru

ct
io

n

Workloads

DVFS Dynamic

37

workloads introduced by the Static Switching scheme is 29%. The worst case results in a

35% slowdown of C5. In contrast, Dynamic Switching retains the same performance as

the baseline during compute-intensive workloads because our metric successfully

identifies non-memory-intensive phases when the rewards of the multi-bus mode are

limited. Furthermore, Dynamic Switching surpasses the baseline for the C1 workload by

identifying compute-intensive and memory-intensive phases. Overall, Dynamic

Switching exhibits no performance penalty on compute-intensive workloads, in contrast

to Static Switching.

The energy consumption of the Dynamic Switching mechanism is almost the

same as the baseline since the processor runs at single-bus mode most of the time for

Figure 2-17. The normalized weighted speedup of mixed workloads boosted by Static

Switching and Dynamic Switching

0.9

0.95

1

1.05

1.1

1.15

MIX 1 MIX 2 MIX 3 MIX 4 MIX 5 MIX 6 GM

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d

S
p

ee
d

u
p

Workloads

Baseline

Static

Dynamic

Figure 2-18. The improved throughput of Dynamic Switching boosted by a stride

prefetchers (degree = 1, 2, 4) for mixed workloads

0.9

1

1.1

1.2

1.3

MIX 1 MIX 2 MIX 3 MIX 4 MIX 5 MIX 6 GMN
o

rm
a

li
ze

d
 W

ei
g

h
te

d

S
p

ee
d

u
p

Workloads

Baseline + Prefetch (Degree 1)

Baseline + prefetch (Degree 2)

Baseline + prefetch (Degree 4)

Dynamic + prefetch (Degree 1)

Dynamic + prefetch (Degree 2)

Dynamic + prefetch (Degree 4)

38

compute- intensive programs. Therefore, we do not illustrate the EPI comparison figure

here.

2.4. RELATED WORK

DRAM-Based Memory System: Several papers propose to physically alter the

main memory in a DRAM-based memory system to improve the performance and energy

efficiency. Zhang et al. propose setting the bus frequency higher than the DRAM module

to improve channel bandwidth where the induced bandwidth mismatch is resolved by a

synchronization buffer inside the DIMM for data and command [93]. Papers also explore

using low power DDR2 (LPDDR2) memory, in place of conventional DDR3, due to its

higher energy efficiency [58][88].

To reduce the delay of bank access, thereby increasing memory bandwidth,

architects optimize the memory system at the rank and bank level. Zhang et al. subdivides

conventional ranks into mini-ranks with a shorter data width. These mini-ranks can be

operated individually via a small chip on each DIMM for higher DRAM energy

efficiency [94]. Rank sub-setting is also proposed to improve the reliability and

performance of a memory system [19].

Figure 2-19. The normalized weighted speedup of Compute-Intensive workloads with

Static Switching and Dynamic Switching

0.6

0.7

0.8

0.9

1

1.1

C1 C2 C3 C4 C5 C6 GM

N
o

rm
a

li
ze

d

W
ei

g
h

te
d

S
p

ee
d

u
p

Workloads

Baseline

Static

Dynamic

39

Inside a DRAM bank, increasing the row buffer hit ratio is key to improving

energy efficiency and performance. Kim et al. partition a row buffer into multiple sub-

arrays inside a bank to reduce the row buffer miss rate [47]. An asymmetric DRAM bank

organization can be used to reduce the bank access latency and improve the system

performance [85]. Unlike preceding work, we focus on increasing off-chip bandwidth to

boost the performance of the memory system since it is the major bottleneck of memory

systems in the multi-core era.

Off-Chip Bandwidth: Rogers et al. have already stressed the significance of off-

chip bandwidth [73]. To increase the overall energy efficiency of a memory system,

Udipi et al. split a 64 bit data bus into eight 8 bit data buses reducing the queue delay at

the expense of data transfer delay [86]. Ipek designs a memory scheduler using principles

of reinforcement learning to understand program behaviors and boost performance [43].

Mutlu et al. focus on boosting multi-threaded performance by providing fair DRAM

access for each thread in their memory scheduler [65][66]. Our method of adding

additional buses to multiply the off-chip bandwidth is orthogonal to the aforementioned

methods, which focus on the memory scheduler and bus control.

Tradeoff between core performance and off-chip bandwidth: Architects

employ several sophisticated methods to balance core and memory performance

[23][29][32]. However, few of them are able to increase the off-chip bandwidth beyond

the constraint of static pin allocation

40

Printed circuit board (PCB)

Substrate

C4 pads

Pins

Silicon die

Packaged chip

Vdd

Circuit

layer

Wiring

layerPackage

routings

Figure 3-1. Structure of a packaged chip (8 copies of DEALII from SPEC2006)

 MITIGATING DARK SILICON VIA

SWITCHABLE PINS

3.1. BACKGROUND

Integrated circuit (IC) packaging is the final process of the IC fabrication in which

the silicon die (i.e., the core of the device) is encased in a support and connected to the

chip package for power delivery and off-chip communication. There are two main

technologies for connecting the silicon die with the chip package: wire bonding and flip

chip. Wire bonding uses bonding wires to connect the pads located on the perimeter of

the silicon die to the package. The flip chip technology, also called Controlled Collapse

Chip Connection (C4) technology, is shown in Figure 3-1. The silicon die faces

downwards, and is connected to the substrate directly with C4 pads. C4 technology

greatly increases pad density, compared with wire bonding, by allowing C4 pads to be

placed over the entire chip area. This eases wiring requirements by allowing shorter wire

lengths and fewer global wires, and provides better power distribution as circuits in the

middle of the die can access VDD/GND directly. The size of a silicon die is smaller than

41

In
te

g
ra

te
d

 m
e
m

o
ry

c
o

n
tr

o
ll

e
r

...

64-bit

data path

VDD pins (connects to motherboard VDD)

...

...

...
GND pins (connects to motherboard GND)

I/
O

 p
in

s

Switchable pins

...

...

GND power grid

VDD power grid

Motherboard VDD

Motherboard GND

...

...

...

Microprocessor SDRAM

I/O pins
...

...
Silicon die

SHIFT REGISTERS are bi-

directional and can be integrated into

an independent IC.

Power
Signal

Power
Signal

A two-way switch
Control voltage

0/64

1/64

2/64

3/64

60/64

61/64

62/64

63/64

A switchable pin

4-bit

SDRAM

Chip

4-bit

SDRAM

Chip

S
H

IF
T

R
E

G
IS

T
E

R
S

S
H

IF
T

R
E

G
IS

T
E

R
S

S
H

IF
T

R
E

G
IS

T
E

R
S

S
H

IF
T

R
E

G
IS

T
E

R
SDELAY

DELAY DELAY

DELAY

Figure 3-2. Design overview on the proposed scheme

that of the chip package. This means the cross-sectional area of a C4 pad is smaller than

that of a pin as shown in Figure 3-1. According to a recent study [90], it is concluded that

I/O pad shortage will limit power delivery in future sub-16nm technology. In addition,

increasing the number of C4 pads will linearly increase chip packaging costs, which have

already started to exceed the silicon fabrication costs [44].

3.2. OVERVIEW DESIGN

We now discuss how the computer system functions while utilizing switchable

pins to deliver power. Figure 3-2 shows an overview of the dynamic pin switching design

illustrating the layout of the microprocessor and SDRAM on the motherboard. The 64-bit

data path of the integrated memory controller in the microprocessor connects to the

SDRAM via 64 pins, specifically 16 conventional pins and 48 switchable pins. The 16

conventional pins are always used as I/O pins, while the switchable pins can switch

between power pins and I/O pins dynamically. Our COMSOL-based [14] simulation

42

which models the electromigration phenomenon on the traces/interconnects shows that

using wires connecting to I/O pins to deliver the current studied in this work will not

result in reliability issues. When the control voltage is low, the computer system works in

the default I/O mode since the switchable pins are used as I/O pins. In this mode, signals

circumvent the shift register components on the microprocessor and motherboard, which

causes the 64-bit data path of the integrated memory controller in the microprocessor to

connect to the SDRAM via 64 I/O pins directly. On the other hand, when the control

voltage is pulled up the switchable pins are used as power pins; thus the computer system

works in the power mode. In this mode, all shift register components are enabled to

implement the signal transmission via the limited 16 I/O pins. The shift registers are bi-

directional, one is parallel-in serial-out while the other is serial-in parallel-out, and have a

negligible area overhead [2][3]. When switchable pins are used for signal transmission,

shift registers steer the signal from input to output without buffering them. Otherwise,

they are used to send signals over a single line instead of 4 lines. The shift registers can

be integrated into the microprocessor and motherboard and synchronized by the clock

signal of SDRAM interface. We also add a delay circuit to balance the delay between

lines with and without signal buffers.

The shift registers work at the same frequency as the SDRAM and integrated

memory controller. Therefore, in power mode it takes four times as many cycles to

transfer data over the bus via 16 I/O pins as it does via 64 I/O pins. The equivalent bus

frequency is decreased to 25% of its default value when the switchable pins are used for

power delivery although only data I/O pins are influenced (i.e., the number of effective

I/O pins is decreased from 64 to 16), which can reduce the bus power [30]. Although the

43

design increases the time required for transferring data over the bus, it will not affect

bank access time or the queuing delay.

To minimize the change to the computer system, we only consider one-way pin

switching, i.e., dynamically allocating a portion of I/O pins to power pins. In fact, it is

feasible to switch from power pins to I/O pins by designing extra I/O units (e.g. memory

controllers) and related control logics. Switching from power pins to signal pins will

increase the off-chip communication bandwidth, which boosts the performance of

memory intensive workloads significantly. This work focuses on switching from signal

pins to power pins since the major purpose is to find an approach to power up dark

silicon.

 Pin Allocation

To see how many switchable pins can be designed in a processor, we study the

pin allocations of an Intel Xeon Processor E5-2450L [17] as listed in Table 3-1. We

assume an equal number of C4 pads are designed on the chip with a pad density of 1356

pads/cm2 approximates to about 1200 pads/cm2 in the typical pad design [90]. Although

it is feasible to design denser pads, the current that each pad can deliver will be smaller.

The Xeon is an 8-core processor with a 20MB last-level cache and three memory

channels. As can be seen, most pins are used for power delivery and off-chip

communication. Among the off-chip communication pins, three 64-bit DDR3 memory

channels occupy 483 C4 pins. Out of the pins on a 64-bit data path, 48 pins can be

designed as switchable pins. Correspondingly, three memory channels have 144

switchable pins which can increase the number of power pins by 28.6% (i.e.,

44

144/(151+353)). On the other hand, among power delivery pins the number of the GND

pins is more than that of the VDD pins. This helps lower the ground voltage in the silicon

die, increasing circuit reliability, since the ground voltage is also used as a reference

voltage for signal transmission. Conservatively following the same VDD/GND ratio, we

allocate 144 switchable pins to 45 VDD pins and 99 GND pins in the pin switching mode.

More switchable pins can be designed from other pins in DDR3 and pins in PCIE, QPI,

DMI2 and etc. As an initial study, we only consider the 144 switchable pins from a

portion of the data I/O pins in the three memory channels (DDR3).

 Power Delivery Network

Here we study the impact on the power delivery network when the switchable

pins switch from I/O mode to power mode. In the power delivery network (PDN) shown

in

Figure 2-6 we assume the voltage regulator module is a fixed voltage source since

its feedback control mechanism can maintain a steady output voltage regardless of

current magnitude. The power delivery path across the printed circuit board (PCB), the

package, and the silicon die are modeled as the RL (i.e., resistor and inductor)

components connected in series. Decoupling capacitances are introduced between each

sub power network to reduce the voltage bounce. Power grids and processor circuits of

Table 3-1. Pin allocation of the Intel Xeon Processor E5-2450L

VDD GND DDR3 PCIE QPI DMI2 Others Total

151 353 483 102 45 16 206 1356

45

Figure 3-3. Dynamic simulation

0%

2%

4%

6%

8%

0 4 8 12 16 20 24 28 32 36 40

Time(µs)

0.2µs 2µs 20µs

the silicon die are modeled separately as RL components and an ideal current source.

Table 2-2 gives the parameter values obtained from prior works [45][50].

We perform static PDN simulations using SPICE [62]. There is an IR drop

between the supply voltage and the load voltage as current flows through the PDN. As

the total current increases, the IR drop increases due to the resistance on the power

delivery path. We assume the normalized IR drop should be limited to be less than 5% as

a design convention used by previous work [52][90] to ensure signal integrity and energy

efficient power delivery. Thus, the maximum allowable currents are respectively 116A

and 144A for the baseline and the pin switching design. In other words, the pin switching

design can supply an extra 24.1% (i.e., (144-116)/116) current with 28.6% more power

pins. The pin switching design can supply a larger current since it provides more power

pins that reduce the package resistance. The percentage of current increase is less than

that of power pin increase because the IR drop also depends on the resistance on the PCB

and power grids. In addition, our processor power model shows that the extra current can

boost the frequency of an 8-core processor from 2.0GHz to 3.0GHz in dim silicon mode.

As listed in Table 3-2, the delivered power increases from 75.4W (0.65V×116A) to

111.6W (0.775V×144A) by 48.0% (i.e., (111.6-75.4)/75.4)). Note the supply voltage is

46

different for different processor frequency as shown in Table 3-2. Figure 3-3 presents the

dynamic IR drop while switching from I/O mode to power mode within 0.2µs, 2µs and

20µs. The IR drop fluctuation exceeds 5% for switching time 0.2µs and 2µs, while it is

within 5% for 20µs case. Therefore, we use 20µs as the overhead for each pin switching

operation. Figure 3-4 plots the impedance for the default I/O mode and the pin switching

mode. The impedance does not change much when switchable pins are used for power

delivery.

 Power Switch

In our design, we use a large power transistor switch with ultra-low on-resistance

and low parasitic capacitance. The switch is of comparably large size (like multiple

NMOS or PMOS transistors connected in parallel). Figure 3-5 shows a layout design of

such a large PMOS transistor switch of W/L=80 based on 16nm technology [67]. Since

the estimated resistance of the single switch is nearly 0.47Ω, we connected 262 switches

in parallel to achieve the desired 1.8mΩ on-resistance [63] with a 0.232pf parasitic

capacitance using 2601µm² of area overhead. Similar calculations for the large NMOS

power switch show lower on-resistance and the same parasitic capacitance. The large

Table 3-2. Processor configurations under different cooling techniques

Configuration Dim silicon mode

Frequency

(GHz)
Limitation

Air cooling 8×1.6 Temperature < 85 ºC

Liquid cooling 8×2.0 Power<75.4W(0.65V×116A)

Liquid cooling & Static pin

switching
8×3.0 Power<111.6W(0.775V×144A)

Liquid cooling & Dynamic pin

switching

8×2.0 or

8×3.0
Power < 75.4W or 111.6W

47

(a)Default I/O mode

(b) Pin switching mode

Figure 3-4. Impedance plots

Poly(on the active region)

Active

LACTIVE=60nm

SOURCE

DRAIN

GATE

Figure 3-5. Layout of wrapped around large transistor

power switches incur the main processor die area overhead of our design. For 144

switchable pins, they consume 0.00374544cm² of area on the processor die, incurring less

than a 0.4% area overhead if the total die area is 1 cm².

48

PRBS

Baud = 800

MBPS

Transmission

Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

SgWriteIn

SgWriteOut

VCtrWrite VCtrWrite

Power

rail

Pad

Use MOS Power

Transistor as a

switch

Tri-state buffer

Z0=50Ω

Power

rail

Five Stage Tri-state Buffer
1 2 5

100Ω

100Ω

Memory_VDD

(a)Writing to memory (VCtrWrite=1, the tri-state buffers are enabled while the power

switches are off)

Z0=50Ω

Transmission Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF PRBS

Baud =

800 MBPS

50Ω

SgReadOut

SgReadIn

VCtrRead VCtrRead

Pad

Tri-state buffer

Power rail Power rail

Use MOS Power Transistor

as a switch

(b)Reading from memory (VCtrRead=1. The tri-state buffers are enabled while the

power switches are off)

Figure 3-6. Circuits when a switchable pin is used for signal transmission

 Signal Transmission

Figure 3-6 shows the circuits of switchable pin design. The switchable pin can

either be used for power delivery or the signal transmission. To compensate the parasitic

capacitance of the power switches, we add four tri-state buffers for a switchable pin since

it can increase signal drive capability. We investigate the impact of adding power

switches on the signal transmission path by observing the received eyes for memory

49

(a) Write to memory

(b) Read from memory

Figure 3-7. Received eye diagram

writing and reading. We place both switches and buffers close to the processor, which

can minimize the trace shared by power and signal lines. Since buffers on the signal line

may cause an impedance mismatch, we have added 50Ω termination impedances on the

side of memory devices to match the 50Ω transmission line; these minimize the signal

reflections due to impedance mismatching. As shown in Figure 3-7, both eye diagrams

show open eyes.

The pin switching design will cause delay on the signal transmission path since

extra circuits are introduced as shown in Figure 3-6. For each I/O pin, the extra circuits

includes two tri-state buffers and the two shift registers’ components.

50

 Thermal Issues

The switchable pins deliver more power in the dim silicon mode as listed in Table

3-2. Our simulation shows air cooling is an unfeasible solution since the worst case

processor temperature will be more than 100 ºC in both the dim silicon which will result

in serious reliability and lifetime issues. Therefore, we use traditional backplate liquid

cooling [33] to increase heat dissipation while delivering more power via dynamic pin

switching mechanism.

 Dynamic Pin Switching based on Program Phases

Programs tend to show phase behaviors, which can be classified as memory-

intensive or computation-intensive. In our design, we will use the switchable pins for off-

chip communication to achieve higher communication bandwidth during memory

intensive phases. On the other hand, during computation intensive phases where the

memory access frequency is low, the switchable pins can be utilized to deliver extra

power to mitigate dark silicon. This extra power can either be used to activate dark cores

or to increase the frequency of the running processors. Figure 3-8 illustrates the workflow

of the pin switching mechanism which favors both the memory intensive and the

computation intensive phases dynamically. A predictor, using the program’s history (i.e.,

patterns of performance counters), is employed to predict the memory usage in the next

time interval. When a memory-intensive phase is predicted, the switchable pins will be

used for off-chip communication; otherwise, the switchable pins will be utilized to

deliver power. Predictions are made in real-time, meaning incorrect predictions can be

corrected in the next time interval.

51

 Prediction Model

 In this section, we describe the prediction model training procedure employed by

the dynamic pin switching scheme. In general, the goal of the predictor is to determine

whether the bandwidth requirement of the upcoming intervals is high (or low) enough to

require a pin switching for optimal performance. The prediction model is trained as

follows.

First, we run workloads on the processor and collect common performance

metrics including branch mispredictions and cache misses from all cores and shared

components at a preset frequency. By doing this, we obtain the following tuple from each

time interval: < X1
1, X1

2, . . X1
p

, X2
1 … X2

p
… Xq

p
, XS

1, . . XS
r , MB > where each variable Xa

b

represents a performance metric of a specific component. The subscript is the component

identity (e.g., core ID) and the superscript b corresponds to the index of the metric. For

example, X1
2 denotes the second performance metric observed on the first core. We

assume that the number of cores on chip is q and we monitor p performance metrics for

each of them. This results in a total of p×q metrics from the integrated cores. The r

variables with the subscript S (i.e., XS
1 through XS

r) indicate the performance metrics from

shared components such as the last-level cache. In this work, we collect 180 counters

from each core and 20 counters from the shared components for each time interval. The

notation MB represents the average memory bandwidth of this interval.

Second, we reorganize the collected data and train a statistical model to correlate

the historical execution behaviors and the memory bandwidth in future intervals. To form

a training instance, we combine input variables (i.e., all Xa
b) from M consecutive intervals

52

Switchable pins are

used for power

delivery

Prediction: high memory

usage in the next time

interval?

Switchable pins are

used for off-chip

communication

YesNo

Figure 3-8. Workflow of dynamic switching

and use all of them as the input for this sample. The response value (i.e., output) of this

training instance is a Boolean flag which is defined as follows. We calculate the average

bandwidth of intervals M+1 to M+N; if the average value is greater than a preset

threshold, we set the flag to 1, indicating the following N intervals require high memory

bandwidth. In contrast, if the average bandwidth is less than the threshold, the flag will be

set to 0. By doing this, we are essentially building a rigorous relationship between past

execution behaviors (i.e., interval 1 to M) and the future bandwidth requirement (interval

M+1 to M+N). After obtaining these training instances, we employ a regression tree

model [35] to select 10 input factors that most significantly impact the output value (i.e.,

the Boolean flag). We then feed the chosen 10 variables, along with their corresponding

responses, to a model implementing a bump-hunting algorithm [37] in order to generate a

set of rules to guide the pin switching. The rules are interpreted in a group of “IF-ELSE”

conditions and are able to identify the regions with the maximum output values. We keep

53

comparing the collected performance metrics to the generated rules at runtime. When the

conditions are satisfied, a pin switching will be triggered to deliver more power or

bandwidth to the processor to improve performance. Note that we randomly sample 80%

of all the instances for training and use the remaining 20% for validation as the

conventional statistical model training does.

3.3. EXPERIMENTAL SETUP

We simulate an 8-core chip multiprocessor (CMP) and set the maximum

allowable temperature to be 85 ºC. Power constraints lead to numerous execution modes

in terms of different core frequencies and the number of active cores. For example,

decreasing the frequency is effective for reducing per-core power consumption, thus

enabling more cores to run simultaneously without exceeding the power limits. For

simplicity, we conduct two groups of studies to make our observations and conclusions

more comprehensive. The first category of the study is mainly concentrated on the dim

silicon mode. We use the term “dim silicon” to refer to the scenarios where all 8 cores are

kept active but running at a lower frequency to comply with the power constraints. We

explore 13 frequency levels from 1.6GHz to 4.0GHz with a step frequency of 200MHz

on the target CMP. Thermal and power constraints cause the core frequency and number

of active cores to be different depending on the execution mode. The specific

configurations of each execution mode are listed in Table 3-3.

We use use McPAT [56] for processor power modeling with the corresponding

parameters listed in Table 3-3. We modify HotSpot [13] to simulate the floorplan shown

in Figure 3-9 using air cooling and backplate liquid cooling. SPEC2006 [76] multi-

54

Table 3-3. Parameters of the performance and power models

Parameters Values
Technology 16 nm

Die area 10mm × 10mm
Voltage(V) 0.6, 0.625, …, 0.875, 0.9

Frequency (GHz) 1.6, 1.8, …, 3.8, 4.0
Fetch / Issue/ Commit Width 4/ 4/ 5

INT/ FP Window Size 96/ 64
LoadStore/ INT/ FP Units 2/ 2/ 3
Load/ Store Queue Size 80/ 80

Latency of INT ALU/ Mult/ Div 1/ 4/ 12 cycles
Latency of FP ALU/ Mult/ Div 1/ 2/ 10 cycles
L1 Instruction/ Data Cache Size 64/ 64 KB
L1 ICache/DCache Associativity 8/ 8
L1 Instruction/ Data Block Size 64/ 64 B

L2 Cache Size 16 MB
L2 Cache Associativity 16
L2 Cache Block Size 64 B

Memory parameters

Number of channels 3
Frequency 800MHz

Data bus width 64

Peak memory bandwidth in I/O mode: 38.4GB/s

Peak memory bandwidth in power mode: 9.6GB/s

program benchmarks are used in the evaluation of dim silicon mode. We use SimPoint

3.2 [39] to choose a representative block of 200 million consecutive instructions for each

SPEC2006 program. Eight copies of the representative instructions are used to create a

multi-program workload. The multi-program workloads can be categorized into two

types: the first mixes eight copies of the identical SPEC2006 programs, while the second

type mixes eight copies of different SPEC2006 programs shown in Table 3-4.

As for the prediction model and online pin switching, we use the execution

behaviors in the previous three time intervals to predict the bandwidth in the next interval,

with each interval lasting for one millisecond. In this case, the 20µs overhead is 2% of a

time interval. Another important parameter is the memory bandwidth threshold, which is

55

Table 3-4. Simulated multi-program workloads

Name Combinations
BZIP2

8×BZIP2

 MCF

8×MCF

 GOBMK

8×GOBMK

 DEALII

8×DEALII

 HMMER

8×HMMER

 SJENG

8×SJENG

LIBQUANT

UM

8× LIBQUANTUM

H264REF

8× H264REF

LBM

8× LBM

P8MIX1 4×NAMD + 4×MCF
P8MIX2 4×NAMD + 4×BZIP2
P8MIX3 4×BZIP2 + 4×SJENG

P8MIX4
2×BZIP2 + 2×DEALII + 1×HMMER + 1×GOBMK +

1×H264REF + 1×SJENG

Overall floorplan Floorplan of a single core

Dcache Icache

DTLB Bpred

IntExec

IReg

ITLB

LdStQ

IntQ
Int

Map

FPQ
FPAdd

FPReg

FPMul

FPMap

L2 cache and memory

controller

Core 4 Core 5 Core 6 Core 7

Core 0 Core 1 Core 2 Core 3

Figure 3-9. Floorplan of the chip multiprocessor

used to evaluate if a pin switching is needed. The threshold should be less than 9.6GB/s,

which is the peak memory bandwidth in power mode as listed in Table 3-3. We set the

bandwidth threshold to 1.6GB/s in this work to achieve optimal overall performance.

Note that these empirically selected parameters do not impact the effectiveness of our

proposed scheme and can be changed to other values in a practical system.

56

3.4. RESULT ANALYSIS

In this section, we demonstrate the effectiveness of the pin switching mechanism

by comparing the performance between traditional designs and our proposed scheme.

 Rules Explanation

We start by analyzing the generated rule-set used to guide pin switching at

runtime. In the dim silicon execution mode, all 8 cores are kept busy and the processor

frequency can switch between 2.0GHz and 3.0GHz. Since the frequency is changing, two

individual prediction models are necessary to guide the power-to-I/O (i.e., 3.0GHz to

2.0GHz) and the I/O-to-power (i.e., 2.0GHz to 3.0GHz) pin switching. Recall that our pin

switching technique is, in essence, a one-way conversion. Therefore, the switch from

power to I/O mode means the procedure of returning to the default I/O pin configuration.

Assuming that the switchable pins are currently on the power path and the processor is

running at 3.0GHz, the following rules indicate that the upcoming interval is very likely

to be memory-intensive where off-chip memory access is frequent, and therefore the

switchable pins should be switched to the I/O path:

Int3_L2_readmiss > 20250 && Int2_L2_readmiss > 1072

&& Int1_L2_readmiss > 2293 && Int3_L2_linefill > 20255

&& Int3_L2_access > 39942 3-1

The conditions are expressed in a format of IntID_component_metric > X,

meaning that the performance counter metric of component in interval IntID (one of the

M intervals used as input) should be larger than a certain value X. Given this notion, the

first condition in the rule-set listed above indicates that the read misses in the L2 cache in

57

the immediately preceding interval should be larger than 20,250; recall that we use 3

intervals to predict the ensuing interval. Similarly, the second and third conditions set the

lower bound for the L2 read misses in the second (Int2_L2_readmiss) and the first

previous intervals (Int1_L2_readmiss) respectively. The forth and the fifth conditions set

the lower bound for the number of L2 cache line filling and access respectively. It might

be followed by memory-intensive execution periods after the intervals with more L2

cache misses, line filling and accesses, so it is reasonable to set the switchable pins for

power delivery.

When the swistchable pins have been set for signal transmission and the processor

is running at lower frequency, we also need a rule-set to govern when to switch to the

power path. The corresponding rules are listed as follows.

Int3_L2_readmiss < 20631 && Int3_L2_access < 12032 3-2

The rules can be explained similarly and we thereby omit the analysis.

 Dim Silicon Result

Recall that in the dim silicon mode all 8 cores are enabled while running at a low

frequency determined by the power delivery and cooling configurations listed in Table

3-2. Figure 3-10 shows the normalized performance for multi-program under four

evaluated configurations. In the air cooling mode, the 8 cores are running at 1.6GHz

because the TDP, restricted by thermal constraints, is relatively small. Using liquid

cooling, we are able to raise the frequency to 2.0GHz. The remaining two configurations

both implement the pin switching mechanism using liquid cooling; therefore there is

extra power allowing the core frequency to go up to 3.0GHz. These two final

58

Figure 3-10. Performance speedup when the processor is in dim silicon mode

0.2

0.6

1

1.4

1.8

2.2

P
e

rf
o

ra
m

ce
 S

p
e

e
d

u
p

Workloads

Air cooling: 8x1.6GHz

Liquid cooling: 8x2.0GHz

Liquid cooling + Static pin
switching : 8x3.0GHz

Liquid cooling + Dynamic pin
switching : 8x3.0GHz or
8x2.0 GHz

configurations use different pin switching schemes. The first uses a static scheme in

which the switchable pins are always set to the power delivery path throughout the entire

execution. The second configuration uses a dynamic pin switching scheme guided by the

prediction model. Note that all results are normalized against the baseline configuration

which uses air cooling.

 As shown in Figure 3-10, the scaling trends for most benchmarks are reasonable

because higher frequencies lead to faster execution. However, the relative performance

among the four configurations is different for different benchmarks. For example, while

running 8 copies of MCF and DEALII, the static switch scheme (3.0GHz) has longer

execution time compared to the runs with a lower frequency (2.0GHz). Similar trends can

also be observed from the execution of P8MIX1, which includes the memory-intensive

program MCF. The main reason for the longer execution time here is the substantial

penalty from lower memory bandwidth in 3.0GHz compared with 2.0GHz case. More

details will be given shortly to expound upon this observation. On the other hand, for

applications that are intrinsically computation-intensive, executions using the pin

59

switching technique will significantly outperform those with traditional configurations.

For these benchmarks, even the static pin switching leads to an impressive speedup

because memory-bound intervals are fairly rare during the execution. Therefore,

maintaining a higher core frequency is more beneficial.

Furthermore, in benchmark DEALII when the pin switching is guided by the

prediction model, we notice further performance enhancement compared with the static

switching. This is because with the dynamic approach, the predictor will estimate how

much off-chip traffic will be generated during upcoming execution period, thus

determining the most appropriate path for the switchable pins. Compared with the static

scheme which blindly sets the switchable pins to the power delivery path, the dynamic

switching strategy can more effectively balance the requirement of power delivery and

off-chip bandwidth. In general, the geometric mean of the performance speedup delivered

by our optimal scheme (liquid cooling + dynamic pin switching) is 1.39X compared with

the baseline (air cooling).

To further understand the scaling trend of each workload, we plot the number of

L2 cache misses per 1K instructions in Figure 3-11. The figure shows whether a

workload is computation-intensive or memory-intensive. In addition, a high-accuracy

predictor stands as one of the most important factors in determining the effectiveness of

dynamic switching; therefore it is necessary to evaluate the accuracy of our prediction

model. Recall that, in our model, the response of each training instance is set as a

Boolean flag. Consequently, by counting the occurrences of true positive (TP), true

negative (TN), false positive (FP), and false negative (FN), we calculate the prediction

accuracy as follows:

60

Figure 3-11. Number of L2 cache misses per 1K instructions on a processor configured to

8×2.0GHz (liquid coiling)

Figure 3-12. Prediction accuracy on a processor in dim silicon mode

0
20
40
60
80

L2
 c

ac
h

e
 m

is
se

s
p

e
r

1
K

 in
st

ru
ct

io
n

s

Workloads

80%
85%
90%
95%

100%
105%

P
re

id
ct

io
n

 a
cc

u
ra

cy

Workloads

Accuracy =
TN+TP

TN+TP+FN+FP
 3-3

As shown in Figure 3-12, the prediction accuracy is fairly high for most

benchmarks. For applications where the accuracies are slightly lower, the predictor still

results in impressive performance improvements over the static switching scheme.

3.5. RELATED WORK

Dark silicon: Dark silicon has emerged as an increasingly important issue that

will menace the scaling of Moore’s Law in the deep submicron era and beyond.

Esmaeilzadeh et al. [36] use an analytical model to predict processor scaling for the next

few generations. They demonstrate that dark silicon will be heavily exacerbated by the

continued shrinking of manufactured technology. Researchers [36][38][40][41]

commonly attribute the cause of dark silicon to physical power and off-chip bandwidth

61

constraints. Kim et al. [49] proposes to integrate memory with processors as a 3D chip.

This integration can mitigate off-chip bandwidth constraints but it brings more challenges

for power delivery and cooling since extra power will be consumed by the integrated

memory. Hardavellas et al. [41] investigate this problem and believe even if an advanced

liquid cooling technique was applied the power delivery would still result in dark silicon.

Shortage of C4 pads: The ITRS [15] predicts that C4 pad density will increase

7.7% annually, and fail to ever meet demand, which is increasing at 15.7% annually.

Zhang et al. [90] evaluate the usage of C4 pads in a multicore processor and conclude

that we will see a C4 pad shortage starting from 16nm technology node. The shortage

comes from an increasing demand in power delivery and off-chip bandwidth but a slow

improvement in C4 pad technology. Previous works [40][73] observe that the required

number of C4 pads increases exponentially with the number of processor cores.

Therefore, an exponentially larger number of C4 pads are needed to increase off-chip

communication. Moreover, more power pads are needed for current delivery as each new

technology increases the power density. Researchers [21] from IBM also observe the C4

pad shortage and propose to utilize the heat sink to deliver power. A recent work

demonstrates the impact of the pad shortage on power delivery quality [91]. In another

recent work, Chen et. al [28] propose to use switchable pins to increase memory

bandwidth. Instead, we propose to increase power delivery using pin switching.

On-chip voltage regulator (VR): Theoretically, an on-chip VR can be used to

deliver more power by supplying a chip with a relatively high voltage and convert the

voltage to a normal value inside the chip. However, on-chip VR has large area [51]. Our

proposal presents another alternative approach to the power delivery problem.

62

 BOOSTING OFF-CHIP BANDWIDTH WITH PCM

VIA SWITCHABLE PINS

4.1. BACKGROUND

The scaling of memory technology has improved memory subsystems with

increasing density, growing capacity and decreasing cost over the past decade. However,

this scaling faces challenges since the shrinking size of cell leads to a smaller capacity for

storing charges. This trend increases leakage power and refresh-rate frequency, and thus

reduces energy efficiency and bandwidth of memory devices. Given these challenges,

scaling DRAM beyond 40 nanometers will be increasingly difficult [75]. Phase-change

memory (PCM) is a promising candidate to replace conventional memory technology to

enable the continuous scaling of memory technology [60].

There are several memory subsystems proposed by architect to replace

conventional memory devices using PCM devices [54][64][89]. We evaluate the benefits

of switchable pins based on the performance of a PCM subsystem [60]. Though PCM has

recently seen continuously decreasing access latency, it is still several times larger than

that of DRAM. Pin Switching increases off-chip bandwidth, and also reduces this

memory subsystem access latency. Thus, it may alleviate the drawbacks of PCM by

reducing the queuing delay of memory requests. Furthermore, PCM has relatively longer

write latency and thus reduces the utilization of off-chip bandwidth since a write will

hold the entire bus until it is completed. Pin Switching mitigates this problem by allowing

more simultaneous in-flight memory requests. In the section, we also include the

performance of multi-thread workloads for switchable pins.

63

4.2. EXPERIMENTAL SETUP

To evaluate the benefit of our design, we use the identical configuration for

simulated system shown in Table 2-4 and selected workloads shown in Table 2-5.

Additionally, we employ a timing model of PCM based on [60] and four multi-threaded

workloads including art [78], lbm [60], srad [27] and backprop [27] to evaluate the

performance of Dynamic Switching shown in Table 4-1. We manually select memory-

intensive regions from the workloads and run 100 million instructions per thread in each

workload. The regions are independently executed to gather instructions per cycle (IPC),

last-level-cache misses per 1,000 instructions (LLC MPKI), row buffer hit ratio, and the

bandwidth displayed in Table 4-1. The bandwidth and LLC MPKI numerically portray

the memory access intensity, making them indicators of our design’s potential benefit.

Row buffer hit ratio reveals the memory access locality and latency. Programs with low

Table 4-1. Benchmark memory statistics

Benchmark IPC LLC

MPKI

Row buffer

hit ratio

Bandwidth(MByte/s)

libquantum 0.30 58.14 96% 4441.57

milc 0.16 41.86 81% 3641.48

leslie3d 0.62 20.72 85% 3311.84

soplex 0.31 31.34 80% 2501.53

lbm 0.36 23.12 87% 2151.90

mcf 0.15 57.54 19% 2138.81

astar 0.25 29.12 51% 1871.53

omnetpp 1.38 0.49 83% 172.09

gromacs 1.34 0.38 82% 129.60

h264 1.13 0.13 32% 38.03

bzip2 1.13 0.12 94% 35.54

hmmer 1.95 0.00 38% 0.28

art (OMP) 1.4 17.56 88% 6390.85

lbm (OMP) 2.72 8.24 57% 4862.41

srad (OMP) 2.16 12.04 62% 6838.84

backprop (OMP) 0.4 69.61 94% 7203.58

64

row buffer hit ratios suffer from longer bank access latency due to the row buffer miss

penalty. Longer memory accesses increase the queue delay which impedes the fol-lowing

incoming requests in the buffer.

4.3. RESULTS

 Memory-Intensive Multi-threaded Workloads

Figure 4-1 and Figure 4-2 show that Dynamic Switching with classic stride

prefetching improves performance and increases consumed off-chip bandwidth of multi-

threaded programs. All results are normalized against the baseline. Dynamic Switching

and the stride prefetching with the degree 4 improve performance by an extra 102% in

geometric mean providing the best performance compared to the baseline. Prefetching

can exploit the benefits of multi-bus mode for multi-threaded programs, increasing the

consumed off-chip bandwidth shown in Figure 4-2. For instance, Dynamic Switching and

the prefetching with degree 4 yields an extra 29% performance improvements compared

to the baseline with the same prefetching degree for the art workload, while Dynamic

Figure 4-1. Performance evaluation of multi-threaded workloads with Dynamic

Switching and prefetching (degree = 1, 4).

0

0.5

1

1.5

2

2.5

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d

Sp
e

e
d

u
p

Workloads

Baseline

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 4)

Dynamic

Dynamic+ prefetch (degree 1)

Dynamic + prefetch (degree 4)

65

Switching delivers a mere 5% performance improvement compared to the baseline

without prefetching. We conclude that this benchmark cannot generate am adequate

number of memory requests to saturate the off-chip bandwidth, and thus benefits from the

prefetching which can increase memory level parallelism.

 Memory-Intensive Multi-programmed Workloads using PCM

Figure 4-3 shows the performance improvement of Dynamic Switching combined

with a stride prefetcher (degree = 1,2,4) for memory-intensive workloads running on the

PCM subsystem. The results are normalized against the weighted speedup of Dynamic

Switching without a prefetcher. Dynamic Switching consistently delivers performance

benefits for all workloads and achieves an average weighted speedup of 1.97 in geometric

mean without prefetching. Dynamic Switching and the stride prefetcher (degree 4)

achieve the largest performance improvement with an average weighted speedup of 2.27.

The prefetcher yields an extra 0.54 weighted speedup compared to Dynamic Switching

and the baseline using a stride prefetcher (degree=4). The performance improvement

stems from increasing off-chip bandwidth as shown in Figure 4-4. Dynamic switching

without a prefetcher increases the off-chip bandwidth by 58% compared to the baseline,

Figure 4-2. Normalized consumption of off-chip bandwidth of multi-threaded workloads

using Dynamic Switching and prefetching (degree = 1, 4)

0.9
1.1
1.3
1.5
1.7
1.9
2.1

art lbm srad backprop

N
o

rm
al

iz
e

d
 B

an
d

w
d

it
h

Workloads

Baseline

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 4)

Dynamic

Dynamic+ prefetch (degree 1)

Dynamic + prefetch (degree 4)

66

while the prefetcher (degree 4) increases off-chip bandwidth by 22% in comparison to

Dynamic Switching and the baseline. Dynamic Switching and the prefetcher exhibit

remarkable performance improvements and increase off-chip bandwidth for all

workloads except M6. Dynamic Switching still deliveries considerable performance

benefits for M6 though the prefetcher delivers little benefit as M6 suffers from the low

latency of row buffer misses and has irregular access patterns which are hardly captured

by the stride prefetcher.

 Memory-Intensive Multi-threaded Workloads using PCM

Figure 4-5 and Figure 4-6 show that Dynamic Switching with classic stride

prefetching improves performance and increases consumed off-chip bandwidth of multi-

threaded workloads on a PCM subsystem. All results are normalized against the baseline.

Dynamic Switching and the stride prefetching with degree 4 improve performance by an

extra 130% in geometric mean providing the best performance compared to the baseline.

Prefetching can exploit the benefits of Pin Switching, increasing the consumed off-chip

bandwidth as shown in Figure 4-6. Additionally, Dynamic Switching can mitigate the

performance loss caused by the longer latency of row buffer misses in PCM. For instance,

Figure 4-3. Improved throughput of Dynamic Switching boosted by stride prefetchers

(degree = 1, 2, 4) for memory-Intensive workloads using PCM

0.9

1.9

2.9

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d

Sp
e

e
d

u
p

Workloads

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 2)

Baseline + prefetch (degree 4)

Dynamic

Dynamic + prefetch (degree 1)

Dynamic + prefetch (degree 2)

Dynamic + prefetch (degree 4)

67

it achieves the highest performance improvement in the lbm workload which has the

lowest row buffer hit rate of 57%.

 Mixed Multi-program Workloads on the memory subsystem using PCM

Figure 4-7 shows the performance improvement of Dynamic Switching combined

with a stride prefetcher (degree = 1, 4) for mixed workloads running on the PCM

subsystem. The results are normalized against the baseline. Dynamic Switching with

prefetching yields considerable performance benefits for all the mixed workloads and

achieves an average weighted speedup of 1.26 in geometric mean. The combination of

Dynamic Switching and the prefetching with a degree of 4 yields slightly more

Figure 4-4. Normalized off-chip bandwidth of Dynamic Switching boosted by stride

prefetchers (degree = 1, 2, 4) for memory-Intensive workloads using PCM

0.9

1.4

1.9

2.4

2.9

M1 M2 M3 M4 M5 M6 M7 M8 GM

N
o

rm
al

iz
e

d
 O

ff
-c

h
ip

B

an
d

w
id

th

Workloads

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 2)

Baseline + prefetch (degree 4)

Dynamic

Dynamic + prefetch (degree 1)

Dynamic + prefetch (degree 2)

Dynamic + prefetch (degree 4)

`

Figure 4-5. Performance evaluation of multi-threaded workloads using Dynamic

Switching and prefetching (degree=1, 4) on the PCM subsystem

0

1

2

3

4

art lbm srad backprop GM

N
o

rm
al

iz
e

d

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Workloads

Baseline

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 4)

Dynamic

Dynamic+ prefetch (degree 1)

Dynamic + prefetch (degree 4)

68

performance improvements than Dynamic Switching without prefetching, and delivers an

average weighted speedup of 1.29, while the baseline using the same prefetching

decreases the average performance by 4%. Prefetcher might increase the latencies of off-

chip memory requests from the cores by generating additional requests which compete

for the already insufficient off-chip bandwidth.

4.4. CONCLUSION

Limited off-chip memory bandwidth has been widely acknowledged as a major

constraint preventing us from obtaining commensurate performance benefits from the

faster processor cores. This is especially challenging in the current multi-core era due to a

Figure 4-7. The improved throughput of Dynamic Switching boosted by stride

prefetchers (degree = 1, 4) for mixed workloads with PCM

0.8

1.3

1.8

MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 GM

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d

Sp
e

e
d

u
p

Workloads

Baseline

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 4)

Dynamic

Dynamic + prefetch (degree 1)

Dynamic + prefetch (degree 4)

Figure 4-6. Normalized consumed off-chip bandwidth of multi-threaded workloads using

Dynamic Switching and prefetching (degree =1, 4) on the PCM subsystem

0

1

2

3

4

art lbm srad backpropN
o

rm
al

iz
e

d
 O

ff
-c

h
ip

B

an
d

w
id

th

Workloads

Baseline

Baseline + prefetch (degree 1)

Baseline + prefetch (degree 4)

Dynamic

Dynamic+ prefetch (degree 1)

Dynamic + prefetch (degree 4)

69

high volume of memory requests coming from an increasing number of processor cores.

To alleviate the shortage of off-chip bandwidth, we propose an innovative pin switching

technique which dynamically allocates pins for power delivery or signal transmission

with minimal changes to the circuit. By accurately identifying memory-intensive phases

at runtime, the proposed strategy converts a portion of the pins used for power delivery to

signal transmission mode, providing additional off-chip bandwidth and improving the

overall performance. As shown by the evaluation results, along with other techniques

including Dynamic Switching and stride prefetching, our scheme is capable of

significantly accelerating the program execution for both multi-programmed and multi-

threaded workloads. Our evaluation also shows that Dynamic Switching can improve the

performance of PCM subsystems.

70

 INCREASING INTER-SOCKET BANDWIDTH VIA

SWITCHABLE PINS

5.1. RELATED WORK

Many works are proposed such as increasing the throughput of main memory and

the bandwidth of inter-socket communication, since the long latencies of off-chip

accesses has been identified as one of the bottlenecks for massive parallel workloads.

Researchers try to boost the throughput of main memory by modifying memory

devices, the memory channels, and processors. For DRAM devices, row buffer misses

reduce the utilization of the bandwidth since the program will incur a considerable

overhead for turning on/off a row. The row buffer is proposed to break the inside of a

bank into multiple sub-arrays and thereby reduce the row buffer miss rate, and have a

lower overhead for switching the sub-array instead of a whole row [47]. An asymmetric

DRAM bank organization is proposed to improve the system performance via using

larger rows for system throughput and smaller rows for lower overheads for turning

on/off a row [80].

Several works improve the performance of main memory at the rank level. A

conventional rank is broke down into mini-ranks that have a shorter data width, and can

be operated individually for higher memory system throughput [92]. Increasing the bus

frequency is proposed to improve the performance of memory channels via buffering data

and commands in the DIMMs [1]. Splitting the data bus into several small buses is also

proposed to boost the throughput of memory channels since each small data bus can work

independently [86]. Dynamically increasing the bandwidth of the main memory is

71

proposed but it has considerable parasitic capacity from power switches [28]. Our design

only switches signal pins and does not have this issue.

From the processor side, works are proposed to improve the performance via

scheduling off-chip requests and using DRAM cache. A memory scheduler is proposed to

boost system performance based on reinforcement learning that can understand program

behaviors [43]. Another memory scheduler is designed to boost multi-threaded

performance by providing fair off-chip access of off chip for each thread [65][66].

DRAM cache is proposed to reduce the number of off-chip accesses since it has superior

bandwidth than main memory and larger size than SRAM-based cache [70]. Lowering

the off-chip traffic and reducing the tag lookup latency further improve the performance

of DRAM cache [46]. The works reduce the off-chip traffic between processors and main

memory but do not affect the inter-socket traffic.

The bandwidth of inter-socket communication: Silicon photonics have been

studied for a long time as a promising technology to replace the electrical off-chip buses

and provide superior bandwidth with very low energy consumption [70]. It can boost the

bandwidth of main memory while requires re-architecting DRAM memory systems, and

increase the bandwidth of interconnect [53]. The photonics interconnect has been

developed [82], but is not widely used due to the two factors: the manufacture cost and

the reliability issue [77]. The electrical chip-to-chip cost is 0.25$/Gbit, while the current

parallel optic transceiver manufacturers state that perhaps $4/Gbit is achievable today.

The reliability of silicon photonics interconnects is unclear since the integration of

photonic emitters and receivers into the IC may cause some reliability issues. Our design

72

is a cost-effective and reliable solution for inter-socket traffic since it is based on

conventional electrical interconnects.

5.2. DESIGN OVERVIEW

We introduce two modes for a multi-socket system: the single-link mode in which

the system has default bandwidth of off-chip memory and bandwidth of inter-socket

communication, and the multi-link mode in which the system has multiplied bandwidth

of inter-socket communication at the cost of lower off-chip memory bandwidth. The two

modes are shown in Figure 5-1 as an example in which the system has two processors

connected via a QPI bus with 20 lanes and the each processor has four memory channels.

This example represents the typical case used in the following discussion easily extended

for different system configurations. In the example, the multi-link mode multiplies the

bandwidth of QPI by a factor of 3 and loses two memory channels since the number of

pins for a memory channels is more than the number of pins for a QPI bus. This

QPI

DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3

QPI

DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3

multi-link mode

20

20

20

20

20

20

20

20

Single-link mode

Memory

Controllers

QPI

interface

Switching

agent

processor

Memory

Controllers

QPI

interface

Switching

agent

processor

Memory

Controllers

QPI

interface

Switching

agent

processor

Memory

Controllers

QPI

interface

Switching

agent

processor

Figure 5-1. The simulated system running in the single-link mode and the multi-link

mode

73

calculation is based on the fact that a memory channel requires 125 pins from a processor

to access memory devices [1], while a QPI bus demands 84 pins from processors [17].

The design needs a hardware unit to orchestrate the switch to quickly capture the

phase of intensive inter-socket communication since intensive phases could be abrupt and

short. The design introduces a switching agent for each socket to coordinate increasing

the inter-socket communication and decreasing the off-chip memory bandwidth. The

agent switches the function of switchable pins from accessing off-chip memory to

communicating between sockets via signal switches siting on the die and the motherboard.

It also controls the DRAM controllers to adapt the less off-chip bandwidth and the Quick

Path Interconnect (QPI) to utilize the extra bandwidth of inter-socket communication.

The switching agents from all the processors have to reach an agreement that the system

can increase its throughput via a switch rather than a subset of processors. With a bottom-

up approach, we discuss the mechanism of switching off-chip bus connection as well as

auxiliary circuits in the chapter 5.2.1, the modification of DRAM controller and QPI

physical layer is address in the chapter 5.2.2 and the chapter 5.2.3, and switching agents

and the switching conditions in the chapter 5.2.4 and the chapter 5.2.5.

 Off-chip connection

The modified off-chip connection in the two modes is shown in Figure 5-2 with

an auxiliary circuit named as signal switch. We only show the related off-chip bus

connection for a processor with a pair of QPI data lane, since the simulated system is

homogenous and the off-chip memory buses per socket are identical to each other. The

auxiliary circuits add more QPI buses on the motherboard from memory buses, while the

74

processors still can read data or write from the memory devices attached to the memory

buses in the multi-link mode. The memory devices are attached to another memory buses

as an extra rank in the multi-link mode, while are accessed via a dedicated buses in the

single-link mode. It maintains the accessibility of data stored in the memory devices

though it incurs the extra auxiliary circuits on the motherboards.

A signal switch is employed to switch the function of a pin between accessing off-

chip memory devices and inter-socket communication, or to attach two memory channels

to one another for increased data accessibility. The signal switch is a classic switch

consisting of an n-type metal-oxide semiconductor (NMOS) and a p-type metal-oxide

semiconductor (PMOS) each having a relatively low parasitic capacitance and

propagation delay. This switch is ideal for high-speed signals that are sensitive to

parasitic capacitance and signal delay.

With the signal switches, we can increase the bandwidth of inter-socket

communication via switching the system from the single-link mode to the multi-link

mode. In the single-link mode, pairs of signal switches (1) on the die connect pins to the

memory controllers, and to a dedicated memory channel via pairs of signal switches (2)

on the motherboard. The signal switches (3) dis-attach the memory channel from another

one and the system has four memory channels. The processor can writes/read data to/off

memory devices via the memory channels by turning on the signal switches in the

corresponding direction. In the multi-link mode, the signal switches (1) (2) connect the

pins to the QPI buses instead of the memory channels, while the signal switches (3)

attach the memory channel to another one and the system has two memory channels. The

processor can access the memory devices via the two memory channels by turning on the

75

signal switches (3) in the corresponding direction. The location of switches (2) and

switches (3) on the motherboards are also vital to the signal integrity. The switches (2)

should be placed close to the processors to reduce the signal reflection between the

switches (1) (2), while the switches (3) should be placed close to the DRAM devices for

the same reason.

 Memory controllers

We modified the memory controllers to dynamical change the number of memory

channels when the system switches between the single-link mode and the multi-link

mode shown in the Figure 5-3. We turn off/on two memory controllers when the system

switches from multi-link mode to single-link mode or vice versa. The other two memory

controllers handle all memory requests in single-link mode. Given a fixed address

mapping policy, this incurs a negligible area overhead to dispatch memory requests to the

Processor

DRAM Signal
QPI

DRAM Signal

QPI

DRAM Signal

DRAM Signal

Die

QPI

DDR3

Processor

DRAM Signal
QPI

DRAM Signal

QPI

DRAM Signal

DRAM Signal

Die

DDR3Single-link mode Multi-link mode DDR3DDR3

Signal switch

QPI signal

DRAM signal
or

DRAM signal

DRAM signal

1 2

3

1 2

3

DRAM Signal
QPI

DRAM Signal

QPI

DRAM Signal

DRAM Signal

1 2

DDR3 DDR3

3

DRAM Signal
QPI

DRAM Signal

QPI

DRAM Signal

DRAM Signal

QPI

DDR3

1 2

3
DDR3

Figure 5-2. The off-chip bus connection in the single-link mode and the multi-link

mode

76

corresponding memory channels, and few extra pins to select the memory channel in

single-link mode. The main challenge is that all memory requests have to be committed

in memory controllers to switch the system between modes instead of migrating requests

cross memory controllers. This overhead is discussed in the runtime overhead section.

The length of write and read request queues is halved when the system switches

into multi-bus mode. This can potentially reduce the off-chip bandwidth for main

memory. The slowdown is minimal due to low main memory access traffic in multi-bus

mode. Additionally, we do consider the slowdown in our simulation.

Consolidating many memory channels could lead a channel to have too many

ranks that exceed the standard, which may hurt the scalability of the design. The high

speed of memory buses limits the maximal number of ranks in a memory channel. This

constraint can be relaxed by lowering the frequency of the memory bus in multi-bus

mode. This overhead could be negligible because traffic between the processors and main

memory is low in multi-bus mode.

Memory

Controller

Memory

Controller

Memory

Controller

Memory

Controller

DRAM

devices

DRAM

devices

DRAM

devices

DRAM

devices

Memory

Controller

Memory

Controller

DRAM

devices

DRAM

devices

DRAM

devices

DRAM

devices

Memory

Controller

Memory

Controller

Multi-link mode Single-link mode

Bus Bus

Last Level

Cache

Last Level

Cache

Figure 5-3. The memory controller running in the single-link mode and the multi-link

mode

77

 QPI stack

QPI is a point-point processor interconnects with five layers, physical layer, link

layer, routing layer, transport layer, and protocol layer [20]. Each layers works

independently with other layers and we only discuss the physical layer and link layers

that are related to our modification. We add the extra physical layers (PHY) that are fully

connected with virtual networks in link layers to support more than one QPI bus shown in

Figure 5-4. The PHYs are powered off in the single-link mode, while they in the multi-

link mode can receive packages from other processors or send packages waiting in the

buffers of virtual networks. The PHYs are bufferless and thereby can be quickly turned

on /off since the link layers control the traffic via credit/debit flow control. We employ

switching agents to guarantee that there is no dropping package during the transitions

between the multi-link mode and the single-link mode. The switching agents enforce the

PHYs can only send packages after the PHYs in the receiver side can accept the packages,

when the system switches to the multi-link mode. The switching agents also enforce the

senders of the PHYs are turned off before the corresponding receivers of PHY are

disabled, when the system switch to the single-link mode.

VN0 VN1 VNA

PHY

VN: virtual Network

VNA: adaptive

virtual Network VN0 VN1 VNA

PHY

Single-link mode
Multi-link mode

Figure 5-4. The physical layers of QPI running in the single-link mode and the multi-

link mode

78

 Switch agents

To switch between the single-link mode and the multi-link mode, we employ a

switching agent inside each processor to coordinate the transitions in the two processors.

The switching agents analyze the traffic of local off-chip memory access and that of

inter-socket communication via collecting hardware counters from the local memory

controllers and the QPI controller, which consists of a sender and receiver. Based on this

information, the switching agents take the following steps for a transition once they

detect a phase in which the performance can be improved by switching the system to

multi-link mode:

1. A switching agent called the launcher detects the current phase and sends

switching inquiries to other switching agents called assistants via the QPI buses.

An assistant denies the switching inquiry by sending a disapproving response to

the launcher if it does not detect this phase locally. Otherwise, the assistant

accepts the inquiry by sending back an acknowledging response.

2. If the launcher receives a disapproving response, it immediately aborts this

transition. Otherwise after it receives all acknowledging response, it turns off the

two memory controllers, switches the off-chip connections, and turns on all the

extra QPI receivers, while it initializes a transition by sending switching requests

to all the assistants that also do the same thing locally once they receive the

request.

3. After the switching is done, each switching agent sends responses to its

neighboring switching agents.

79

4. After receiving a response from a neighbor, the switching agent turns on the QPI

sender connecting to the neighbor. After all the extra QPI buses are connected,

the transition is done.

For switching the system to single-link mode, the switching agents take similar

steps for the transition:

1. The launcher detects the phase and sends switching inquiries to other switching

assistants via the QPI buses. The launcher will abort the transition if any

switching assistants send back a disapproving response to the launcher.

2. After receiving acknowledging responses from all assistants, the launcher

disables the extra QPI senders of all neighbors, while it sends switching requests

to all assistants that take the same action. Each switching agent sends responses

to its neighbors after the action is completed.

3. Once having received the response, a switching agent disables the corresponding

QPI receivers. After it has received the responses from all neighbors, it switches

the off-chip bus connection and then turns on the two memory controllers.

4. After every switching agent has taken this action, the transition is done.

The launcher in the process can be pre-selected based on the processor ID. We

ignore the overhead for leader election, since it is only needed once when all processors

are powered on. Note that it is possible to switch a subset of processors into multi-link

mode while keeping others in single-link mode. A hybrid approach is not considered in

this work for to two reasons: 1. most threads in workloads show similar phases and

thereby most processors are likely to benefit from the same mode thus the benefit of a

80

partial transition is minimal compared to that of a full transition. 2. Partial transitions

require more complicated synchronizations to find the optimal configuration. Therefore,

we do not include the discussion of switching a subset of processors.

 Switch condition

Concerning the runtime overhead, we take 0.1ms as the minimum interval for a

switching. The launcher will collect the number of un-core requests hitting locally and

the number of un-core request hitting remotely. At the end of an interval, the launcher

will initialize a switch from single-link mode to multi-link mode if it observes that remote

traffic is heavier than local traffic; or a switch from multi to single-link mode if it

observes that local traffic is more intensive than remote traffic. To evaluate the

performance of this dynamic switching, we introduce the baseline in which the system

remains is “unswitched” in single-link mode; static switching in which the system is

permanently “switched” via multi-link mode; and dynamic switching in which the system

can dynamically switch between single-link and multi-link mode.

 Area Overhead & Propagation Delay

The area overheads of the design comes from the signal switches on the die, the

modifications of QPI and the switching agent. The area of signal switches, consisting of a

pair of large NMOS and PMOS, is negligible since the area of a signal switches is less

than the area of 4000 transistors based on 45nm technology. The extra QPI physical

layers are buffer-less and incur trivial area overhead. The switch agent for each processor

also incurs a negligible area overhead since it uses a straightforward rule and only a few

81

steps to coordinate the switches cross-processors, which are easy to implement in

hardware.

The propagation delay caused by signal switches depends on the resistance and

capacity of the load. We measure the propagation delays of five cases in Figure 5-5. The

Spice models for QPI buses and memory buses in single-link mode and the multi-link

mode by comparing the propagation delays with signal switches to the delays without

them based on 45nm technology using mentor graphic tools [11]. The longest

propagation delays of the QPI bus and memory bus are 0.13ns and 0.12ns respectively.

The delay can be further reduced with a better technology.

 Runtime overhead

We break down the runtime overhead of the transitions between the two modes

into two parts: the runtime overhead of turning on/off memory buses and the runtime

overhead of turning on/off QPI buses. The former mainly comes from re-stabilizing the

signals on the memory buses and turning on/off the memory controllers. During the

transitions, the memory devices are inaccessible and processors are halted. We estimate

this overhead mainly based on the runtime overhead of scaling DRAM frequency that is

512 memory cycles and 28 ns [7]. The overhead is estimated to be 0.67 us given the

800MHz memory frequency.

Additionally, we commit all the memory requests in the queue before turning

off/on a memory channel. Given the read and write request queues in a memory channel

have 32 total entries and each request takes 40ns, the runtime overhead of turning on/off

82

a memory channel can be estimated to be 1.28us which is still affordable. The total

overhead of turning off/on memory buses is 1.95us.

The latter comes from re-stabilizing the signals on the QPI buses and turning

on/off the QPI PHYs. Note that the processors are not halted but cannot use the extra

bandwidth of from QPI buses during the transitions when the systems are switching to

multi-link mode. We conservatively estimate that switching QPI buses takes the same

amount of time as switching memory buses. So the total runtime overhead is estimated to

be 3.13 us.

 Signal integrity

We setup up Spice models in the two modes shown in Figure 5-5, and test the

signal integrity with mentor graphic tools [11] to prove that our design maintains signal

integrity for the data path signals on memory buses and the data lane signals on the QPI

bus. Memory bus signals are bi-directional with an 800 MHz frequency while the data

lane on the QPI bus runs at a 2.4GHz frequency.

 For multi-link mode, we show the eye diagram for the signal of a data lane on a

QPI bus in Figure 5-6 (a). The eye diagram shows an open eye though it has some noise

due to signal reflections. We also show the eye diagrams for a signal on the memory bus

in Figure 5-6 (b) and (c). They also have open eyes though the signal in Figure 5-6 (b)

suffers from signal reflections and the signal in Figure 5-6 (c) suffers from the loads of

large capacity from memory devices. Additionally, we show the eye diagrams for single-

link mode in Figure 5-6 (d) and (e) when data is read from memory devices or written

into memory devices each having clearer eyes compared to Figure 5-6 (b) and (c) due to

83

less signal switches on the paths. These figures indicate that acceptable signal quality is

retained in both scenarios.

5.3. EXPERIMENTAL SETUP

We setup up our stimulated system with sniper 6.1 [26] using the system

configuration shown in Table 5-1. The system has two processors with the configuration

Differential

Signal

Baud = 2.4

GBPS

Via

Transmission Line

Via

Transmission Line

Vout

PRBS

Baud =

800 MBPS

Via

Transmission Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

vout

Via

Transmission Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

vout

PRBS

Baud =

800 MBPS

PRBS

Baud =

800 MBPS

Via

Transmission Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

vout

Via

Transmission Line

2nH

2pF

2nH

2pF

2nH

2pF

2nH

2pF

vout

PRBS

Baud =

800 MBPS

Signal Switch

QPI in multi-link mode

Controller to devices in multi-link mode

Devices to controller in multi-link mode

Controller to devices in single-link mode

Devices to controller in Single-link mode

Multi-link mode

Single-link mode

Figure 5-5. The Spice models for QPI buses and memory buses in single-link mode

and the multi-link mode

84

based on the Intel Xeon X5550. Each processor has 4 memory channels and 1 QPI bus

while in single-link mode, and then has 2 memory channels and 3 QPI buses while in

multi-link mode. The energy consumption is estimated via the McPAT tool [56]. We also

list the selected multi-thread workloads shown in Table 5-2 as well as the number of un-

core requests per instruction, and the percentage of QPI latencies per the total un-core

latencies. The workloads are selected from NPB benchmark [69], Splash2 benchmark

 (a). The eye diagram of a QPI bus in the multi-link mode

 (b). The eye diagram of memory bus when reading data from devices in

the multi-link mode

 (c). The eye diagram of memory bus when writing data to devices in

the multi-link mode

(d). The eye diagram of memory bus when reading data from devices in

the single-link mode

(e). The eye diagram of memory bus when writing data to devices in the

single-link mode

Figure 5-6. Eye diagrams

85

[87], and Decapo benchmark [25]. Since the lusearch workload involves a considerable

number of system calls, we run it in jikes RVM (Research Virtual Machine) [18] on the

sniper simulator. We separate the workloads into those workloads exhibiting intensive

inter-socket communication and those workloads showing moderate or low inter-socket

communication.

Most experiments are conducted using the communication intensive workloads

which reveal the benefits of multi-link mode, while we use the non-intensive workloads

to compare the performances of static and dynamic switching. We fast forward

workloads into selected regions that show intensive inter-socket traffic, and then warm up

the cache for 1 billion instructions. We run total 800 million instructions for each

Table 5-1. The configuration of the simulated system

Component Parameters

system two processors

Processor 4 cores

Core

2.66 GHz, 4-way issue, 128-entry ROB

hybrid local/global predictor

Cache Line Size 64B, LRU replacement

L1-I 32KB, 4 way, 4 cycle access time

L1-D 32KB, 8 way, 4 cycle access time

L2 cache 256 KB per core, 8 way, 8 cycle

L3 cache shared 8 MB, 16 way, 30 cycle

Coherence protocol MSI

DRAM line-interleaved mapping, 34.1GB/s

DRAM cache 128 MB, 16 way, 512GB/s

QPI bus 20 link width, 3.2GHz, 25.6 GB

86

workload since some threads, e.g. the garbage collector, run much fewer instructions than

others in the workload lusearch. We also run each workload five times and show the 95%

confidence intervals for performance comparisons.

5.4. RESULT

 Performance of the static switching

We evaluate the performances of the baseline, in which the system runs in single-

link mode; static switching; and dynamic switching. Figure 5-7 shows the results of static

switching and dynamic switching, which are normalized against the results of the

Table 5-2. The selected workloads

workloads

benchmark

suit

Un-core request per

1K inst.

The percentage of QPI

latencies

Workloads with intensive inter-socket traffic

bt NPB 3.70 77%

cg NPB 20.44 62%

is NPB 20.54 30%

lu NPB 3.51 72%

sp NPB 10.52 86%

ua NPB 4.15 74%

ocean Splash2 13.87 99%

lusearch Decapo 8.92 95%

Workloads with moderate and low inter-socket traffic

ft NPB 6.89 61%

mg NPB 15.36 30%

fmm Splash2 0.15 27%

radiosity Splash2 0.53 35%

raytrace Splash2 0.95 25%

87

baseline for each workload. Static switching and dynamic switching gain a performance

improvement of 28% and 29% respectively compared to the baseline. We also show the

reduced latencies of un-core requests in static switching normalized against that in the

baseline shown in Figure 5-8. Note the latencies only account for the latencies incurred

outside the cores. The workloads cg and ocean achieve speedups of 1.54 and 1.55

respectively, which are much more than other workloads, since they have intensive un-

core traffic and their un-core latencies are significantly reduced by multi-link mode. The

other workloads gain moderate performance improvements. For example, is also has

intensive un-core traffic but sees a smaller reduction of the latencies, while lusearch has a

significant reduction of the latencies but moderate un-core traffic.

 Performance of the dynamical switching

Dynamic switching can gain a similar performance improvement for the

workloads in Figure 5-7 since it can detect phases of intensive inter-socket

Figure 5-7. The normalized speedup of the static switching and the dynamic

switching compared with the baseline

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o

rm
al

iz
e

d
 s

p
e

e
e

d
u

p

Workloads

Baseline

Static switching

Dynamic switching

88

communication. For example, dynamic switching improves the performance of the cg

workload from 1.57 to 1.64, since it finds a period of low inter-socket traffic and guides

the system switches back to the multi-link mode. Dynamic switching provides

approximately the same performance improvements as static switching for workloads that

have only a few intervals of low inter- socket traffic. We also list the number of the

intervals that the system is in multi-link mode or in single-link mode in Table 5-3, as well

as the number of times that the system switches to multi-link mode or single-link mode.

The extra benefits of dynamic switching for the cg workload come from the system being

guided back to single-link mode when it catches a consecutive series of 12 intervals in

which the system exhibits low inter-socket communication but moderate local traffic

shown in Figure 5-8.

We also test the performance of dynamic switching compared with static

switching for workloads exhibiting moderate or low inter-socket traffic shown in Figure

5-9. The results are normalized against the performance of the baseline for each workload

respectively. The dynamic switching gains are a normalized speed up of 1.18, 1.04

respectively for the ft, mg workloads, while static switching only achieves a normalized

Figure 5-8. The latency of un-core requests for the static switching normalized

against that of the baseline

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 la

te
n

cy

Workloads

89

speedup of 0.84, 0.87. Dynamic switching captures several stable periods in which

performance can be improved via switching the system back to single-link mode.

Dynamic switching suffers from spikes of intensive local traffic that are hardly captured

and thus only achieves a speedup of 0.91 for radiosity, which is close to the performance

of static switching. Even though, the proposed dynamic qSwitch can still achieve a

geometric mean of 1.02 for the five benchmarks with moderate or low inter-socket traffic.

 Energy efficiency

We investigate the energy consumption of static switching which is normalized

against that of the baseline for each workload respectively shown in Figure 5-10. Static

switching reduces the average energy consumption by 12% in geometric mean since it

Table 5-3. The intervals in the multi-link mode and in the single-link mode as well

as the times of switching to the multi-link mode and the single-link mode

 The

multi-link

mode

The

single-link

mode

The switching to

the multi-link

mode

The switching to

the single-link

mode

Workloads of intensive inter-socket traffic

bt 235 32 2 1

cg 539 12 2 1

is 451 1 1 0

lu 335 7 2 1

sp 403 2 2 1

ua 354 9 4 3

ocean 465 2 2 1

lusearch 463 4 4 3

Workloads of moderate and low inter-socket traffic

ft 209 83 3 2

mg 570 185 7 6

fmm 135 1 1 0

radiosity 524 27 18 17

raytrace 1577 19 18 17

90

improves the system performance with minimal energy overhead. The more performance

improvement that multi-link mode has gained, the more energy consumption is reduced.

For example, the workloads cg and ocean save 25% and 22% more energy than the others,

while they also achieve more performance benefits compared to others.

 Enhancement from a stride prefetcher

We investigate the performances of static switching and the baseline combined

with a stride prefetcher shown in Figure 5-11. The results are normalized against the

baseline without a prefetcher and we show the performances with prefetchers that have a

prefetch degree of 1, 2, and 4, which denotes the number of prefetches issued on every

memory reference. The performances of the baseline with the prefetchers are 1.0, 1.1,

Figure 5-9. The normalized speedup of the static switching and the dynamic

switching compared with baseline for the workloads with moderate or low

inter-socket traffic

0.8

0.9

1

1.1

1.2

1.3

ft mg fmm radiosity raytrace geomeanN
o

rm
al

iz
e

d
 S

p
e

e
d

u
p

Workloads

Baseline

Static switching

Dynamic
switching

Figure 5-10. The energy consumption in the static switching normalized

against the baseline

0.7

0.8

0.9

1

1.1

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Workloads

Baseline

Static
switching

91

1.11 respectively in the geometric mean, while the performances of static switching with

the prefetcher are 1.28, 1.53, and 1.55 respectively. Static switching with a prefetching

degree of 2 shows a considerable performance improvement compared to that with a

prefetching degree of 1. The aggressive prefetchers shift the performance bottlenecks

toward the QPI especially for the is workload, which can be verified in Figure 5-12 which

reveals the percentage of the total un-core latencies made up by QPI latencies for the

baseline with prefetchers. This percentage of latency for the is workload is increased

significantly when the prefetching degree is increased from 1 to 2, since the prefetcher

now exploits the high bandwidth of the DRAM cache via increasing the memory level

parallelism and thus reduces DRAM cache latencies but suffers from a limited QPI

bandwidth which offset the benefit of memory level parallelism. Prefetchers boost the

percentage of QPI latencies for the workload since its un-core latencies in the DRAM

cache are considerable even running on the baseline without a prefetcher compared with

other workloads.

Figure 5-11. The normalized speedup of the static switching with a prefetcher (degree

1, 2, 4) compared with baseline and the prefetcher

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
al

iz
e

d
 S

p
e

e
d

u
p

Workloads

baseline

baseline & prefetching (degree 1)

baseline & prefetching (degree 2)

baseline & prefetching (degree 4)

static-switching & prefetching
(degree 1)
static-switching & prefetching
(degree 2)
static-switching & prefetching
(degree 4)

92

We also evaluate the performance of static switching using different

configurations of the DRAM cache. This work heavily relies on the DRAM cache’s

superior bandwidth compared to off-chip main memory devices and the QPI and thus we

want to verify the substantial benefit of the static switching in the broad design space of

the DRAM cache.

 The bandwidth of the DRAM cache

 We investigate the performance improvement of static switching with different

bandwidths of DRAM caches shown in Figure 5-13. We vary the bandwidths from

128GB/s to 1024GB/s and compare the performances of static switching and the baseline

with the same DRAM cache bandwidth. Figure 5-13 shows the performance of static

switching normalized against the performance of the baseline accordingly. The

performance improvements are 1.27, 1.28 ,1.28 , and 1.29 in the geometric mean for the

DRAM cache bandwidths of 128GB/s, 256GB/s, 512GB/s, and 1024GB/s respectively.

The relatively stable improvements indicate that the benefit of static switching is

Figure 5-12. The ratio between the un-core latencies of QPI and the total un-

core latencies with the baseline and a prefetcher (degree 1, 2, 4)

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge

Workloads

baseline

baseline &
prefetching (degree
1)

baseline &
prefetching (degree
2)

baseline &
prefetching (degree
4)

93

consistent as long as the bandwidth of cache DRAM is larger than that of the main

memory.

 The size of DRAM cache

We also evaluate the performance improvement of static switching with different

sizes of DRAM cache (32MBytes, 64MBytes, and 128MBytes). When the size is

increased, more un-core requests hit the DRAM cache that has much more bandwidth

compared to off-chip memory devices. On the other hand, the smaller DRAM cache size

will decrease its performance impact on the performance. Static switching achieves an

average of 20%, 21% and 28% performance improvements in geometric mean, which are

normalized against the performance in the baseline with the same DRAM cache size

respectively shown in Figure 5-14. The performance improvements for most workloads

increase slightly as the size of DRAM cache is increased, while the performance

Figure 5-13. The normalized speedup of the static switching with the different

bandwidths of DRAM cache

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o

rm
al

iz
e

d
 S

p
e

e
d

u
p

Workloads

bandwidth 128 GB/s

bandwidth 256 GB/s

bandwidth 512 GB/s

bandwidth
1024GB/s

94

improvement of the workload ocean increases quickly from -6% to 56% due to more

remote requests hitting DRAM caches, which can be verified by the reduced latencies of

un-core requests for ocean in Figure 5-15. It also shows the latencies of un-core requests

in the multi-link mode normalized against the latencies in the single-link mode. The

figure shows most workloads slightly reduce the latency of un-core requests as the

DRAM cache size is increased, while the latencies for ocean are reduced from 1.58 to

0.136. Decreasing the size of the DRAM cache from 128MBytes to 32 MBytes causes the

percentage of the latencies of the QPI in the total un-core latencies to drop from 98% to

Figure 5-14. The normalized speedup of the static switching with the different

sizes of DRAM cache

0.8

1

1.2

1.4

1.6

1.8

N
o

rm
al

iz
e

d
 S

p
e

e
d

u
p

Workloads

32 MB

64 MB

128 MB

Figure 5-15. The normalized latencies of un-core requests in the static switching

with the different sizes of DRAM cache

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

N
o

rm
al

iz
e

d
 L

at
e

n
cy

Workloads

128 MB

64 MB

32 MB

95

14% for the baseline running the ocean workload, while the percentage of the latencies of

the off-chip main memory in the total un-core latencies increase from 0.002% to 86% for

the baseline running with the same workload.

 The frequency of QPI buses

We investigate the performance improvement of static switching with different

QPI bus frequencies (2.4GHz, 3.2GHz, and 4.8GHz). 2.4GHz is the lowest frequency of

the QPI buses, while 4.8GHz is first introduced on Hashwell-E/EP platform. Boosting the

frequency of QPI buses can gain more bandwidth but incurs higher power consumption

and poses more difficulties for routing QPI traces on the motherboard. Figure 5-16 shows

the performance improvement of static switching normalized against the performance of

the baseline with different QPI bus frequencies. Static switching with QPI frequencies

2.4GHz, 3.2GHz and 4.8GHz achieve the average speedups of 1.44, 1.28, and 1.15 in

geometric mean respectively. Our design can still gain a moderate performance

improvement with the high frequency of 4.8GHz and can significantly increase the

performance improvement with the low 2.4GHz frequency. Figure 5-17 shows the ratio

between the un-core latencies in QPI and the total un-core latencies with the baseline

Figure 5-16. The normalized speedup of the static switching with the

different frequencies of QPI

0.8

1.3

1.8

2.3

N
o

rm
al

iz
e

d
 s

p
e

e
d

u
p

Workloads

2.4GHz

3.2GHz

4.8GHz

96

with the different QPI bus frequencies. The ratio of QPI decreases as the frequency of

QPI buses increases, which shortens the time of transferring data over the QPI buses and

the waiting time of packets in the QPI. The ratio for the cg workload drops from 79% to

43% as the frequency of the QPI buses increase from 2.4GHz to 4.8GHz, while the

performance benefit of the static switching decreases from 1.96 to 1.25. The 4.8GHz

frequency of the QPI buses increases the percentage of the latencies from the DRAM

cache with respect to the total un-core latency. For example, the frequency increases the

percentage from 17% to 48% for the cg workload when the frequency of the QPI buses

increases from 2.4GHz to 4.8GHz.

5.5. CONCLUSION

Multi-socket systems are widely used for massive parallel workloads to improve

throughput. The performance of multi-socket system suffers from limited off-chip

bandwidth confined by the scarce resource of processor pins. This problem can be

Figure 5-17. The ratio between the un-core latencies of QPI and the total un-core

latencies with the baseline and the different frequencies of QPI buses

0%

20%

40%

60%

80%

100%

bt cg is lu sp ua ocean lusearch

P
er

ce
n

ta
ge

workloads

2.4GHz

3.2GHz

4.8GHz

97

relieved by the DRAM cache that is introduced to reduce the long latency of off-chip

access via providing a large space to hold data and superior bandwidth to reduce queuing

delay. The DRAM cache reduces the latencies of accessing main memory as the main

contributor of the un-core latencies, while the latencies of inter-socket communication

emerge as a considerable bottleneck for workloads that frequently fetch data from remote

memory.

qSwitch is proposed to reduce the inter-socket latencies at the cost of local

memory bandwidth, since the DRAM cache significantly reduces the number of off-chip

local requests and thereby the local memory bandwidth becomes over-sufficient in some

cases. We design qSwitch from the off-chip bus connection to the switching agents in

order to smoothly switch the system between the two modes. We investigate the signal

integrity and discuss the design overhead to verify its feasibility. We also evaluation the

performance benefits of qSwitch using different configurations of the DRAM cache and

QPI to show the benefits exist in a broad design space.

This work identifies the latency of inter-socket communication as one of the

performance bottlenecks in the era of DRAM cache for massive parallel workloads. It

implies that the performance of the workloads can be improved via the optimization of

inter-socket communication such as wisely scheduling remote requests or reducing

unnecessary remote requests. Furthermore, the limited bandwidth of inter-socket

communication could become increasingly painful as the number of cores on a die

increases and more cores share bandwidth. Scaling the inter-socket bandwidth with the

number of cores is likely to be a challenge in the near future.

98

5.6. SUMMARY

In this study, we majorly descript the two works based on the switchable pins for

the off-chip bandwidth and mitigating dark silicon. The limited off-chip memory

bandwidth has been widely acknowledged as a major constraint to prevent us from

obtaining commensurate performance benefit from the faster processor cores. This is

especially challenging in the current multi-core era due to a high volume of memory

requests coming from an increasing number of processor cores. To alleviate the shortage

of off-chip bandwidth, we propose an innovative pin switching technique which

dynamically allocates pins for power delivery or signal transmission with minimal

changes to the circuit. By accurately identifying memory-intensive phases at runtime, the

proposed strategy converts a portion of the pins used for power delivery to signal

transmission mode, providing additional off-chip bandwidth and improving the overall

performance. As shown by the evaluation results, along with other techniques including

Dynamic Switching and stride prefetching, our scheme is capable of significantly

accelerating the program execution.

Dark silicon is gradually becoming a daunting conundrum that threatens the

scaling of Moore’s Law in the future, with the stall of Dennard scaling. While thermal

constraint are widely believed to be the main cause of this phenomenon, the limited

number of pins on the chip package also confines the maximum number of

simultaneously active transistors, thus preventing us from obtaining a sufficient

performance improvement by increasing transistor density. To mitigate this limitation, we

propose a novel mechanism to dynamically switch a portion of I/O pins to power pins in

order to light up dark silicon by delivering extra power. We also employ an advanced

99

statistical model to train a prediction model that can be employed by the OS to govern the

pin switching. Our evaluation results demonstrate that the proposed pin switching

mechanism can remarkably enhance the overall performance compared with conventional

designs.

We also present two challenging and meaningful yet research topic based on the

underlying idea of switchable pins: boosting off-chip bandwidth with PCM and

increasing inter-socket bandwidth via switchable pins. The topics are expected to lead us

to explore the benefits of the switchable pins on the two areas.

100

REFERENCES

[1] 4thgeneration core family desktop

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-

core-family-desktop-vol-1-datasheet.pdf

[2] 4-bit parallel-to-serial converter http://www.micrel.com/_PDF/HBW/sy10-100e446.pdf

[3] 4-bit serial-to-parallel converter http://www.micrel.com/_PDF/HBW/sy10-100e445.pdf.

[4] http://opencores.org

[5] http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx

[6] https://www.si2.org/openeda.si2.org/projects/nangatelib

[7] http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-

family-desktop-vol-1-datasheet.pdf

[8] http://www.freescale.com/files/32bit/doc/app_note/AN3940.pdf

[9] http://www.protoexpress.com/content/stcapability.jsp

[10] http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[11] http://www.mentor.com/products/ic_nanometer_design/analog-mixed-signal-

verification/eldo/.

[12] http://www.itrs.net/Links/2012ITRS/2012Tables/AssemblyPkg_2012Tables.xlsx.

[13] HotSpot. http://lava.cs.virginia.edu/HotSpot/

[14] COMSOL Multiphysics. http://www.comsol.com/

[15] International Technology Roadmap for Semiconductors, ITRS 2006 Update; see

http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm

[16] Intel Technology Roadmap for Semiconductors: Process Integration, Devices, and

Structures, Semiconductor Industry Assoc. 2007;

http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_PIDS.pdf.

[17] Intel Xeon Processor E5-2450L. http://ark.intel.com/products/64610/Intel-Xeon-Processor-

E5-2450L-20M-Cache-1_80-GHz-8_00-GTs-Intel-QPI.

[18] Jikes RVM. http://www.jikesrvm.org

[19] Jung Ho Ahn, Norman P. Jouppi, Christos Kozyrakis, Jacob Leverich, and Robert S.

Schreiber. 2009. Future scaling of processor-memory interfaces. In Proceedings of the

http://www.micrel.com/_PDF/HBW/sy10-100e446.pdf
http://www.micrel.com/_PDF/HBW/sy10-100e445.pdf
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
https://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.freescale.com/files/32bit/doc/app_note/AN3940.pdf
http://www.protoexpress.com/content/stcapability.jsp
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.mentor.com/products/ic_nanometer_design/analog-mixed-signal-verification/eldo/
http://www.mentor.com/products/ic_nanometer_design/analog-mixed-signal-verification/eldo/
http://www.itrs.net/Links/2012ITRS/2012Tables/AssemblyPkg_2012Tables.xlsx
http://lava.cs.virginia.edu/HotSpot/
http://www.comsol.com/

101

Conference on High Performance Computing Networking, Storage and Analysis (SC

'09).

[20] An Introduction to the Intel® QuickPath Interconnect, Intel, 2009.

[21] H. Barowski, T. Brunschwiler, H. Harrer, A. Huber, B. Michel, T. Nigemeier, S. Paredes,

and J. Supper. Heat sink integrated power delivery and distribution for integrated

circuits. Patent Application Publication. Publication number: US 2012/0106074 A1.

[22] S. Beamer, C. Sun, Y. Kwon, A. Joshi, C. Batten,V. Stojanovic, K. Asanovic, Re-

Architecting DRAM Memory Systems with Monolithically Integrated Silicon

Photonics, In Proceeding of ISCA, 2010.

[23] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of multiple interacting

resources in chip multiprocessors: A machine learning approach. In MICRO, 2008.

[24] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,

Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and

David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2

(August 2011), 1-7.

[25] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A.

Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H.

Lee, , J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, , D. von Dincklage,

B. Wiedermann, The DaCapo Benchmarks: Java Benchmarking Development and

Analysis, In Proceeding of OOPSLA 2006.

[26] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Ex- ploring the level of abstraction

for scalable and accurate parallel multi-core simulations. In Proceedings of SC, 2011.

[27] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. 2009.

Rodinia: A Benchmark Suite for Heterogeneous Computing. In Proceedings of the

IEEE International Symposium on Workload Charac-terization (IISWC), pp. 44-54,

Oct. 2009.

[28] S. Chen, Y. Hu, Y. Zhang, L. Peng, J. Ardonne, S. Irving, and A. Srivastava, “Increasing

Off-Chip Bandwidth in Multi-Core Processors with Switchable Pins,” In Proceedings

of The ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),

Minneapolis, MN, Jun. 2014.

[29] M. Chen, X. Wang, and X. Li. Coordinating Processor and Main Memory for Efficient

Server Power Control. In ICS, 2011.

[30] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory power

management via dynamic voltage/frequency scaling. In Proceedings of the 8th ACM

international conference on Autonomic computing (ICAC '11).

102

[31] K. DeHaven, J. Dietz "Controlled collapse chip connection (C4)-an enabling technology,"

Electronic Components and Technology Conference, 1994. Proceedings, 44th, vol.,

no., pp.1,6, 1-4 May 1994.

[32] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F. Wenisch, and

Ricardo Bianchini. 2012. CoScale: Coordinating CPU and Memory System DVFS in

Server Systems. In MICRO '12.

[33] Y. Deng and J. Liu. Optimization and Evaluation of a High-Performance Liquid Metal

CPU Cooling Product. In IEEE Transaction on Components, Packaging and

Manufacturing Technology, 2013.

[34] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, R. Bianchini, MemScale: active low-

power modes for main memory, in Proceeding of ASPLOS, 2011.

[35] L. Duan, B. Li, and L. Peng, Versatile prediction and fast estimation of architectural

vulnerability factor from processor performance metrics, in HPCA 2009.

[36] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon

and the end of multicore scaling. In ISCA 2011.

[37] J. Friedman and N. Fisher. Bump hunting in high-dimensional data. In Statistics and

Computing, 9, 1999.

[38] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P. Huang, M. Arora,

S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. B. Taylor. The greendroid mobile

application processor: an architecture for silicon’s dark future. IEEE Micro, 31(2):86-

95, Mar-Apr 2011.

[39] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster and More Flexible

Program Analysis. In Workshop on Modeling, Benchmarking and Simulation, June

2005.

[40] N. Hardavellas, M. Ferdman, A. Ailamaki, and B. Falsafi. Power scaling: the ultimate

obstacle to 1K-core chips. Technical report NWU-EECS-10-05, Northwestern

University, 2010.

[41] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in servers.

IEEE Micro, 31(4):6-15, Jul-Aug 2011.

[42] Sorin Iacobovici, Lawrence Spracklen, Sudarshan Kadambi, Yuan Chou, and Santosh G.

Abraham. 2004. Effective stream-based and execution-based data prefetching. In

Proceedings of ICS '04.

[43] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-Optimizing Memory Controllers: A

Reinforcement Learning Approach. In Proceedings of ISCA, 2008.

[44] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems-Cache, DRAM, Disk. Elsevier,

2008.

103

[45] R. Jakushokas, M. Popovich, A.V. Mezhiba, S. Kose, and E.G. Friedman. Power

Distribution Networks with On-Chip Decoupling Capacitors. 2011.

[46] D. Jevdjic, S. Volos, B. Falsafi, Die-Stacked DRAM Caches for Servers. In Proceedings of

ISCA, 2013.

[47] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. 2012. A case

for exploiting subarray-level parallelism (SALP) in DRAM. SIGARCH Comput.

Archit. News 40, 3 (June 2012).

[48] Y. Kim, D. Han, O. Mutlu, M. H.Balter, ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers. In Proceedings of HPCA,

2010.

[49] D. H. Kim, K. Athikulwongse, M. Healy, M. Hossain, M. Jung, I. Khorosh, G. Kumar, Y.

Lee, D. Lewis, T. Lin, C. Liu, S. Panth, M. Pathak, M. Ren, G. Shen, T. Song, D. H.

Woo, X. Zhao, J. Kim, H. Choi, G. Loh, H. Le, and S. K. Lim. 3D-MAPS: 3D

Massively Parallel Processor with Stacked Memory. In ISSCC 2012.

[50] J. Kim, J. Shim, J. S. Pak, and J. Kim. Modeling of Chip-Package-PCB Hierarchical Power

Distribution Network based on Segmentation Method. Advanced Packaging and

Systems Symposium, 2008

[51] W. Kim, D. Brooks, and G. Wei. “A Fully-Integrated 3-Level DC/DC Converter for

Nanosecond-Scale DVS with Fast Shunt Regulation,” IEEE International Solid-State

Circuits Conference (ISSCC-11), Feb. 2011.

[52] K. L. Kishore and V.S.V. Prabhakar. VLSI Design, I K International Publishing House,

2009.

[53] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I.

Shubin, J. E. Cunningham, Computer Systems Based on Silicon Photonic

Interconnects, in Proceedings of the IEEE, vol.97, no.7, pp.1337-1361, July 2009.

[54] E. Kultursay, M. Kandemir, A. Sivasubramaniam, O. Mutlu. 2013. Evaluating STT-RAM

as an energy-efficient main memory alternative. In Performance Analysis of Systems

and Software (ISPASS), 2013 IEEE International Symposium on , vol., no.,

pp.256,267, 21-23 April 2013.

[55] BC, Lee; P, Zhou; J, Yang; Y, Zhang; B, Zhao; E, Ipek; O, Mutlu,; D, Burger, Phase-

change technology and the future of main memory, IEEE Micro, vol 30 no. 1 (2010),

pp. 131-141.

[56] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P. Jouppi. McPAT:

an integrated power, area, and timing modeling framework for multicore and

manycore architectures. In MICRO, Dec. 2009.

[57] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. 2011. Scalable power control for many-

core architectures running multi-threaded applications. In Proceedings of ISCA 2011.

104

[58] Krishna T. Malladi, Benjamin C. Lee, Frank A. Nothaft, Christos Kozyrakis, Karthika

Periyathambi, and Mark Horowitz. 2012. Towards energy-proportional datacenter

memory with mobile DRAM. In Proceedings of ISCA '12.

[59] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis. Power

Management of Datacenter Workloads Using Per-Core Power Gating. In Computer

Architecture Letter 2009.

[60] B. C. Lee, E. Ipek, D. Burger, and O. Mutlu, 2009. Architecting Phase Change Memory as

a Scalable DRAM Alternative. In ISCA, 2009.

[61] Mentor Graphics SPICE Simulator ELDO.

[62] Micron Corp. Micron 2 Gb x 4, x8,x16, DDR3 SDRAM: MT41J512M4, MT41J256M4,

and MT41J128M16, 2011.

[63] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu. Booster: Reactive Core

Acceleration for Mitigating the Effects of Process Variation and Application

Imbalance in Low-Voltage Chips. In HPCA 2012.

[64] O, Mutlu. 2013. Memory scaling: A systems architecture perspective. In Memory

Workshop (IMW), 2013 5th IEEE International, May 2013.

[65] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors. In Proceedings of MICRO, 2007.

[66] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing Both

Performance and Fairness of Shared DRAM Systems. In Proceedings of ISCA, 2008.

[67] Model for a 16nm, 0.9V process: http://ptm.asu.edu/modelcard/LP/16nm_LP.pm.

[68] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt. 2006. A Case for

MLP-Aware Cache Replacement. In ISCA '06.

[69] NAS Parallel Benchmarks, https://www.nas.nasa.gov/publications/npb.html.

[70] M. K. Qureshi, G. H. Loh. Fundamental Latency Trade-offs in Architecting DRAM

Caches. In Proceeding of MICRO, 2012.

[71] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch, and

M. M. K. Martin. Computational Sprinting. In HPCA 2012.

[72] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K. Strauss, S. Sarangi, P.

Sack, and P. Montesinos. SESC Simulator, January 2005.

[73] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin. Scaling the

Bandwidth Wall: Challenges in and Avenues for CMP Scaling. In ISCA 2009.

[74] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate Memory

System Simulator. In IEEE Computer Architecture Letters 2010.

http://ptm.asu.edu/modelcard/LP/16nm_LP.pm

105

[75] Semiconductor Industry Assoc. 2007. "Int’l Technology Roadmap for Semiconductors:

Process Integration, Devices, and Structures." Semiconductor Industry Assoc., Web.

Dec. 2007.

[76] Standard Performance Evaluation Corporation. SPEC CPU 2006.

[77] Silicon Photonics: Challenges and Future, An OIDA Forum Report, OIDA, 2007.

[78] Standard Performance Evaluation Corporation 2001. " SPEC OMP 2001." Standard

Performance Evaluation Corporation. Web. Jan. 2013.

[79] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous multithreading

processor. In ASPLOS-9, 2000.

[80] Y. H. Son, O. Seongil, Y. Ro, Jae W. Lee, J. H. Ahn. Reducing memory access latency

with asymmetric DRAM bank organizations. In Proceedings of ISCA 2013.

[81] M. B. Taylor, Is dark silicon useful? In DAC, Jun. 2012.

[82] The 50G Silicon Photonics Link, intel Labs, 2010.

[83] Jose Tierno, Alexander Rylyakov, Daniel Friedman, Ann Chen, Anthony Ciesla, Timothy

Diemoz, George English, David Hui, Keith Jenkins, Paul Muench, Gaurav Rao,

George Smith III, Michael Sperling, Kevin Stawiasz. A DPLL-based per core variable

frequency clock generator for an eight-core POWER7 x2122 microprocessor. In

VLSIC. 2010.

[84] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maximizing

On-Chip Parallelism. In ISCA 1995.

[85] Young Hoon Son, O. Seongil, Yuhwan Ro, Jae W. Lee, and Jung Ho Ahn. 2013. Reducing

memory access latency with asymmetric DRAM bank organizations. In Proceedings

of ISCA '13.

[86] Aniruddha N. Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev

Balasubramonian, Al Davis, and Norman P. Jouppi. 2010. Rethinking DRAM design

and organization for energy-constrained multi-cores. In Proceedings of ISCA '10.

[87] S. C. Woo, M. Ohar, E. Torrie, J. P. Singh, A. Gupta, The SPLASH-2 Programs:

Characterization and Methodological Considerations. In Proceeding of ISCA, 1995.

[88] Doe Hyun Yoon, Jichuan Chang, Naveen Muralimanohar, and Parthasarathy Ranganathan.

2012. BOOM: enabling mobile memory based low-power server DIMMs. SIGARCH

Comput. Archit. News 40, 3 (June 2012).

[89] W. Zhang and T. Li. 2009. Exploring Phase Change Memory and 3D Die-Stacking for

Power/Thermal Friendly, Fast and Durable Memory Architectures. In Proceedings of

the 2009 18th International Conference on Parallel Architectures and Compilation

Techniques (PACT '09).

106

[90] R. Zhang, B.H.Meyer, W. Huang, K. Skadron, and M.R. Stan. Some limits of power

delivery in the multicore era. In Proceedings of the Workshop in Energy Efficient

Design (WEED), in conjunction with ISCA 2012.

[91] R. Zhang, K. Wang, B. H. Meyer, M. Stan, and K. Skadron, “Architecture Implications of

Pads as a Scarce Resource,” In Proceedings of the ACM/IEEE International

Symposium on Computer Architecture (ISCA), Jun. 2014.

[92] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. 2008. Mini-rank: Adaptive

DRAM architecture for improving memory power efficiency. In Proceedings of

MICRO 2008.

[93] Hongzhong Zheng, Jiang Lin, Zhao Zhang, and Zhichun Zhu. 2009. Decoupled DIMM:

building high-bandwidth memory system using low-speed DRAM devices. In

Proceedings of ISCA '09.

[94] Hongzhong Zheng, Jiang Lin, Zhao Zhang, Eugene Gorbatov, Howard David, and Zhichun

Zhu. 2008. Mini-rank: Adaptive DRAM architecture for improving memory power

efficiency. In MICRO 41.

107

VITA

Shaoming Chen was born in 1985, in Wuhan, Hubei, China. He received his

Bachelor of Engineering and Master of Engineering degrees in Electronics and

Information Engineering from Huazhong University of Science and Technology, Wuhan,

China, respectively in June 2008 and May 2012. Since then, he has been enrolled in the

Department of Electrical and Computer Engineering at Louisiana State University, Baton

Rouge, Louisiana, to pursue his doctorate degree. During this period, he passed his

qualify exam in Fall 2012 and general exam in March 2015, respectively.

	Louisiana State University
	LSU Digital Commons
	2016

	Increasing Off-Chip Bandwidth and Mitigating Dark Silicon via Switchable Pins
	Shaoming Chen
	Recommended Citation

	tmp.1483830367.pdf.Hh4ak

