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Abstract

In this thesis we propose a distributed algorithm, based on diffusion, to balance loads

on an electrical power grid, while maintaining stable operation (system’s ability to

maintain bus voltages within preset bounds). This algorithm, called the Diffusion-

driven Distributed Load Balancing (DDLB) algorithm, is implemented on the OM-

NET++ Discrete Event Simulator and the response of the physical grid is simulated on

a load flow program, which together simulate a deployment of the DDLB algorithm

on the grid.

The electrical grid is represented as a graph whose nodes are buses and whose edges

are power lines connecting buses. Each node (except the slack bus) has a load (positive

if power consumed, negative if power generated) associated with it. The slack bus is a

special bus that covers any power surplus or deficit due to a load assignment. A given

load assignment, when applied to the grid affects bus voltages and system stability.

The problem we address is as follows. Given a preferred load for each node and a

load cost (a measure of deviation from this preferred load), the ideal solution is a load

assignment with lowest cost that results in a stable system.

We measure the performance of our algorithm (DDLB) against the "one-shot" algo-

rithm, a naive distributed solution in which each node uses its preferred load directly

for a load assignment, without any regard for system stability. Through extensive sim-

ulations with 1.6 million test cases, we show that the DDLB algorithm vastly outper-

forms one-shot. Specifically, the one-shot algorithm causes instability in over 57% of

the cases tested albeit with zero load cost. For the same cases when applied to the

DDLB algorithm only 0.65% were unstable; the average load cost was less than 2%.
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Our simulations included a study of several scenarios that a grid could be subjected

to, including balanced load, overloaded, underloaded grids, local generator failures,

and a sparser communication network for the DDLB algorithm; in this context one

could view the one-shot algorithm as a distributed algorithm with no communication

network. In all these scenarios studied the DDLB algorithm outperforms the one-shot

algorithm.
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Introduction

The power grid has evolved since its inception and is ever changing [15, 31]. In earlier

times, the power grid was manually controlled from a central location [33], with hu-

man coordination responsible for maintaining a stable working system. With the ad-

vent of new power generation and storage technologies, even consumers at the "home"

level, have started to play a somewhat different role in the overall power system in

their capacity to act as generators. Having a central control is not enough to manage

all the new entities spread out over the power grid. Households can own gas powered

generators, solar panels [10], etc., that connect to the grid and could act as generators.

Even more broadly, the power grid has diverse, and sometimes unpredictable, sources

(such a wind farms, solar panels and, more futuristically, wave power) and load pro-

files (such as those with different patterns of use in an "intelligent home").

In order to make optimum use of these power sources and to obtain a solution that

scales with the increased number of entities in the system, a distributed control (as

opposed to centralized control) is required. This could be implemented using an un-

derlying distributed computing network over which information about the electrical

grid’s load and stability could be exchanged and acted on. This control will make sure

that as sources and loads are added and removed, the network will dynamically ad-

just and balance loads without any centralized control. A centralized control is not

practical for such environments, since the communication and computational over-

head would be massive if a central location was to be connected to every node in the

network.
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In this thesis we develop a distributed algorithm for load balancing on the electri-

cal grid. A distributed algorithm is one without centralized control, in which individual

computing nodes communicate with their neighbors, acting only on local informa-

tion, to paint a global picture. We use a synchronous distributed algorithm, in which all

computing nodes proceed lock step in rounds. Each round consists of a send-receive

(communicate) and compute step. During the send-receive step, computing elements

exchange information with their neighbors. In the compute step, a computation is per-

formed based only on locally available information. In a synchronous environment,

each node proceeds to the next communicate-compute step only after the current

communicate-compute step has be completed at all nodes. Examples of distributed

systems include the Internet, cloud based systems, sensor based networks and even

networks on a chip (NoCs) [5, 20].

The distributed algorithm we use in this thesis is inspired by diffusion algorithms

that are an example of synchronous distributed algorithms. In a diffusion algorithm,

each node i starts with a local value vi. The goal is to change this value to be the

average
1
n ∑

i
vi of all values in the network, where n is the network size. This is done

on a synchronous distributed system by slowly moving (diffusing) values from higher

valued nodes through their neighbors to those with lower than average values in the

network. More precisely if a node i and its neighbors have values vi and vj, then i

sends a value proportional to vi − vj to j. There are two factors that play a significant

role in diffusion, convergence and stability. If the diffusion rate (the amount of the

distributed "value" transacted in each round) is too slow then convergence will be

very slow as well, whereas if the diffusion rate is too fast, then there could be stability

issues, in which a node oscillates between high and low values.

Our algorithm is similar to diffusion because it also runs in rounds (or synchronous

iterations), locally exchanges information and adjusts "values" in the search of a glob-

ally stable point. But there are major differences between diffusion and our algorithm.

The values used in our case are not necessarily "zero-sum" quantities as in diffusion.
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In diffusion, the reduction in the value at a node corresponds to the increase of the

value among a subset of its neighbors; this is not necessarily the case for us. More

importantly, in a diffusion algorithm a node acts independently and has no difficulty

sending/receiving the value(s) prescribed by the algorithm. For example if i decides to

send α = c(vi − vj) to j then is does so and the values vi and vj are adjusted to become

vi − α and vj + α, respectively, as intended by the algorithm. In our case, the value

prescribed may not be controllable by a single node. For example, a node wanting to

increase its value by a certain amount may not be able to do so unilaterally, as the

underlying physical system behavior depends on all the nodes. That is, node i asking

to increase its voltage by α may not result in the value actually increasing by α. Often

the broad direction in which a part of the power grid may behave can be reasonably

predicted. For example, an increase in voltage cost (cost used to express the voltage

deviation from the nominal voltage) can generally be lowered by increasing the reac-

tive power. However, the degree to which the system leans in the given direction is

much more difficult to predict. Our algorithm is based on a simple use of these levers

to adjust two cost metrics: the load cost and the voltage cost, that we explain later.

Our approach captures the interaction between two, somewhat separate, systems

the physical power grid, and an overlaid distributed computing system. The (power)

grid plane is a graph Gp(V, E), where V is a set of buses, and E is a set of power

lines connecting the buses. The compute plane is another graph Gc(V, E′), where V

is the same set of nodes (but here they represent computational nodes rather than

buses), and E′ is a set of communication links between the computing nodes. Before

we proceed, a few informal definitions are needed.

Let the network have n nodes numbered 1, 2, . . . , n. A load vector~̀ = 〈`i : 1 ≤ i ≤ n〉

is a vector of (active) powers at each node i. That is, `i is the power flowing through

node i. Each load vector~̀ corresponds to a voltage vector~v = 〈v : 1 ≤ i ≤ n〉 ; when the

load in ` is presented to the given power grid, then node i has a voltage vi. Informally

the pair 〈~̀ ,~v〉, where ~̀ and ~v correspond to each other is called a state of the system. A
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load profile λi = 〈λi,−1, λi,0, λi,+1〉, where λi,−1 ≤ λi,0 ≤ λi,+1 for a node i defines the

acceptable load range of the node. The load λi,0 is the preferred load of node i. However

the node shows load flexibility in that it finds any load `i such that λi,−1 ≤ `i ≤ λi,+1

acceptable. The voltage profile Vi = 〈Vi,−1,Vi,0,Vi,+1〉 of node i and its voltage flexibility

are defined similarly.

A system state 〈~̀ ,~v〉 is stable (with respect to a given voltage profile) V iff for all

1 ≤ i ≤ n, Vi,−1 ≤ vi ≤ Vi,+1, where ~v = 〈vi : 1 ≤ i ≤ n〉. The cost of state 〈~̀ ,~v〉 with

respect to a load profile ~λ is denoted by c(~̀ ,~v). This quantity expresses a measure of

the deviation of `i from λi,0, particularly outside the range [λi,−1, λi,+1]; here ~̀ = 〈~̀ i :

1 ≤ i ≤ n〉.

Given a stable state 〈~̀0, ~v0〉 and load and voltage profiles ~λ,~V , the problem is to

find a stable state 〈~̀ , ~v`〉 such that c(~̀ ,~λ) is small. This is a difficult (often impossible)

problem, particularly when~λ represents an "unbalanced system."

For a given profile ~λ = 〈λi : 1 ≤ i ≤ n〉, where λi = 〈λi,−1, λi,0, λi,+1〉, let λ0 =

〈λi,0 : 1 ≤ i ≤ n〉 be the preferred load vector. One solution to the problem described

above to start at state 〈~̀0, ~v0〉 and simply ask the system to go to state 〈~λ0, ~vλ0〉. We

call this the one-shot method. While this results in c(~λ0,~λ) = 0 cost, it often results

in an unstable state. In contrast, our distributed solution, which accounts for system

stability, performs much better as discussed in the next section.

The algorithm we propose is called the Diffusion-driven Distributed Load Balancing

(DDLB) algorithm.

We use the OMNET++ discrete event simulator to model the compute plane, and

a load flow analysis program to simulate the grid plane. Inputs are generated for

different scenarios, such as "balanced", "overloaded", "underloaded", "subgraph", and

"radial damage"; details appear later. Each of these scenarios is also tested with zero

load-flexibility ( where λi,−1 = λi,0 = λi,+1 = 0 ) and zero voltage-flexibility ( here

Vi,−1 = Vi,0 = Vi,+1 ). Each input in a scenario represents a new state that the power

grid would like to move to from a (current) stable state. If the new state is directly ap-
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plied to the power grid (one-shot algorithm), stability may not be achieved. We apply

the DDLB algorithm, which applies new loads in small increments in iterations to the

power grid, trying to keep it stable at each step. In each iteration, the new loads are

calculated based on costs that are computed from the information exchanged between

neighboring nodes.

1.1 Key Findings

We have previously argued the benefits of a distributed solution over the centralized

approach in solving load balancing on the grid. The main contribution of this thesis is

to demonstrate that the proposed DDLB algorithm has significant advantages over the

one-shot algorithm. Specifically we show the following based on around 1.6 million

simulated cases.

1. On a average (over a range of grid scenarios) the DDLB algorithm finds a stable

solution in over 99% of the cases simulated (at the expense of an average increase

of less than 2% in the load cost). For the same input instances, the one-shot algo-

rithm finds a stable solution in only about 43% of the cases.

2. Even in overloaded situations (where the power supplied by the grid falls short

of the load demand), the DDLB algorithm fails to attain a stable state in less than

2% of the cases (as opposed to over 58% for the one shot algorithm). Moreover

for these cases, the load error of the DDLB algorithm can be held to around 15%,

a small price to pay for the large gains in stability.

3. In an underloaded case (where the supply exceeds the demand), the DDLB al-

gorithm results in an unstable system in less than 0.3% of the time (in contrast

to over 58% for one-shot). Moreover, the load error is around 0.4%. For this case,

the DDLB algorithm seems to be superior to the one-shot algorithm in almost all

respects.

4. For the balanced case, when power supply and loads are about the same, the

DDLB algorithm has 0.12% of the cases being unstable. Surprisingly, for this case,
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the one-shot algorithm reaches a stable state for less than 55% of the tested in-

puts. The load error for the DDLB algorithm is almost 0.

5. One advantage of the DDLB algorithm over the one-shot algorithm is that the

former includes internode communication as it navigates the solution space,

whereas the latter makes an (unguided) beeline for the required loads. We re-

moved about a third of the edges in the communication topology used for the

DDLB algorithm (based on edge length or internode distance). The results were

not significantly different from the full topology. The DDLB algorithm failed (

reaching an unstable state) for only about 0.56% of the the total cases while the

one-shot algorithm failed in about 48% of the cases. Thus, the DDLB algorithm

appears to be quite robust with respect to its dependence on the communication

network.

6. We studied cases where the topology suffers localized damage to its sources

(which are incapable of supplying power after the damage). Here too the DDLB

algorithm outperforms the one-shot algorithm, reaching stability in over 99% of

the cases while the one shot algorithm reaches stability in only about 45% of the

cases. The load error of the DDLB algorithm is less than 2%.

7. In general, the one shot algorithm is better than the DDLB algorithm for the load

cost, which is 0 for the one-shot algorithm. However, this comes at the price of

substantially lower stability. The slack bus usage (to mitigate power imbalances)

is somewhat mixed. The one-shot algorithm is slightly better than the DDLB

algorithm (with respect to the slack bus use) for all but the balanced case, where

the DDLB algorithm is slightly better.

On the whole the DDLB algorithm shows much promise.

1.2 Literature Review

Many centralized, distributed and hybrid control schemes have been proposed to

reduce the impact of load distribution on the transmission system voltages and to

improve stability.
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The centralized approach of Kazari et al. [18] uses genetic algorithms to control the

reactive power output, substation capacitors and tap settings of transmission trans-

formers. The centralized coordination needs an infrastructure including remote sen-

sors and actuators, along with communication links to the central node. Kiani and An-

naswamy [19] propose a semi-centralized approach using a hierarchical model where

the dynamics of the grid are controlled at the primary, secondary, and tertiary levels.

Other approaches perform intentional islanding to increase the system reliability [32]

or use one central control per microgrid [29]. Other centralized approaches exist [6, 27].

All these approaches involve heavy communication overheads as the information has

to be sent to a central location one way or the other. Such centralized approaches there-

fore do not scale to very large systems.

Some of the distributed load management methods that have been proposed include

autonomous demand side management through the deployment of energy consump-

tion scheduling (ECS) devices in smart meters within a neighborhood [22]. Others,

based on the capacity of users to manage their own demand in order to minimize a cost

function that is based on price of other users actions [16]. User load profiles are used

for dynamic pricing schemes that are used to incentivize consumers to contribute to an

aggregate load profile suitable for utilities [8]. Distributed algorithms requiring only

some limited message exchanges between users have been proposed where each user

tries to maximize its own benefits in a game-theoretic setting [23]. Other approaches

also appear in the literature [7, 24, 21, 25].

Some studies propose a hybrid demand-response policy (straddling both the cen-

tralized and distributed policies) in which most of the decisions are taken on local

smart meter devices, and some of the requests are passed on to the central location

unit for centralized control [2]. However these are, although to a smaller extent, also

subject to scaling difficulties. Another direction is a scheduling and load balancing al-

gorithm for an N-resource node grid that not only takes into account the heterogeneity

in the nodes and network , but also considers the overhead involved in coordinating
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among the nodes [3]. In other approaches, loads are classified into soft loads (shiftable

in time) and hard loads (non shiftable), and the power consumption of a community

is adjusted by shifting the soft loads to off-peak hours in a probabilistic way that re-

sults in a relatively constant overall power consumption profile [28]. This is somewhat

similar to the flexible loads we consider in this thesis, in which a node requests a load

λi,0 but is willing to accept a value between a lowerbound λi,−1 and upperbound λi,+1,

where λi,−1 ≤ λi,0 ≤ λi,+1.

Conventional control methodologies do not focus on the communication between

nodes, rather they involve robust predictive current control to enhance the system ro-

bustness and reduce the current distortion due to the control delay and inductance

deviation [12]. Automatic generation control (AGC) is the most widely used control

strategy and its primary purpose is to balance the total system generation against sys-

tem load and losses so that the desired frequency and power interchange with neigh-

boring systems are maintained [26].

The DDLB algorithm discussed in this thesis is inspired by diffusion algorithms [1,

4, 11, 17]. Our algorithm has a diffusion type of structure in which each node compares

cost metrics (voltage cost, load cost) with its neighbors and takes action to diffuse the

cost within the neighborhood. More details on our approach appear in Chapters 3 and

4.

1.3 Organization of this thesis

Chapter 2 describes some power system terminology, and introduces the OMNET++

and load flow analysis programs we used to carry out the simulations. Chapter 3 gives

a brief overview of the structure of our algorithm and its interaction with the simulated

power system. Chapter 4 discusses the DDLB algorithm, which is the focus of this the-

sis, and its implementation. Chapter 5 details the simulation framework including the

generation of inputs for the various scenarios studied. Chapter 6 presents the results

obtained for the different scenarios. Chapter 7 gives the conclusions from this thesis

and recommendations for further work.
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2

Preliminaries

In this chapter we discuss some preliminary ideas about power systems and outline

two software packages employed in our work (a load flow analysis program and the

OMNET++ Discrete Event Simulator [30]).

2.1 Power System Terminology

The terminology described here is used in the load flow program (explained in Sec-

tion 2.2) and in the proposed distributed algorithm detailed in Chapter 4.

A power grid is a system of interconnected buses (loads and generators). The grid

topology is a graph that models these interconnections between buses. Consider the

example grid topology shown in Figure 2.1. This topology will be used as a running

example to explain all the terminology introduced in this chapter. The network of Fig-

ure 2.1 has 8 nodes. A node (or bus) is either a load or a generator, capable of acting as

a power sink or source, respectively; the terms "node" and "bus" are used interchange-

ably in the context of the "(power) grid graph" throughout this thesis. A line represents

a power line connecting two or more buses. There are three kinds of buses in a typical

power system - load bus, generator bus and slack bus. A load bus, as the name sug-

gests, is a power sink; that is, it consumes power. A generator bus, on the other hand,

feeds power into the system. Another way of defining load and generator buses is as

follows. A bus without any generators connected to it is called a load bus, a bus with

at least one generator connected to it is called a generator bus. The slack bus is a spe-

cial bus that can act as both a load or generator as the situation demands. It absorbs

or provides for the excess or deficiency of power in the network. It either generates

excess power if needed or consumes excess power by acting as a load. In the example

9



1

2
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8

FIGURE 2.1: An example of an electrical grid topology. The shaded buses are generators
and bus 7 in bold is the slack bus, other buses are loads

of Figure 2.1, we will let nodes 2 and 8 represent generator buses. Let node 7 be the

slack bus and let the remaining buses be load buses. The term load (or power) is used

to indicate the power consumed at a node. A negative load is the power generated at

the node.

TABLE 2.1: Example of bus information

node i Vi bus type Pi Qi

1 1.000 3 0.012 0.002
2 1.033 2 -0.400 -0.080
3 1.000 3 0.124 0.024
4 1.000 3 0.076 0.003
5 1.000 3 0.2 0.040
6 1.000 3 0.2 0.040
7 1.040 1 0 0
8 1.010 2 -0.400 -0.080

For a given grid topology the bus information constitutes for each node i, its nominal

voltage Vi (this is the same as Vi,0), bus type (slack (1), generator (2) or load (3)), and

load (active power Pi, reactive power Qi). The power is negative for generators and

positive for loads. Table 2.1 shows an example of bus information. The power system

uses additional parameters, including line resistance (R), reactance (X) and suscep-

tance (B). These together form the line information (shown in Table 2.2 for the nodes in

the example of Figure 2.1). The load flow program uses additional quantities in its bus

and line information. These include voltage angle in the bus information, and tap ratio
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(a transformer parameter) and phase angle in the line information (the tap changes the

transformation voltage ratio. It can be used to slightly modify the voltage by increas-

ing it when voltage is low. We did not use the tap ratio in this work, as the aim is to

affect load balance through local changes). The bus information and line information

form the inputs to the load flow analysis program that is discussed in Section 2.2.

Comparing Figure 2.1 and Table 2.1 we can see that node 7 (the slack bus) is assigned

0 for its loads. Due to the potential for voltage drops, generator and slack bus voltages

are generally kept slightly higher than the loads. Also in Table 2.2 it is seen that the first

column, edge (a, b) (see also Figure 2.1), represents the edge in the grid graph. The line

information elements R(a, b) (resistance), X(a, b) (reactance) and B(a, b) (susceptance)

are also shown.

TABLE 2.2: Example of line information

edge (a, b) R(a, b) X(a, b) B(a, b)

(1 , 2) 0.0192 0.0575 0.0264
(1 , 3) 0.0452 0.1852 0.0204
(2 , 3) 0.0132 0.0379 0.0042
(1 , 7) 0.0472 0.1983 0.0209
(3 , 5) 0.0581 0.1763 0.0187
(5 , 7) 0.0119 0.0414 0.0045
(4 , 8) 0.0460 0.1160 0.0102
(4 , 7) 0.0267 0.0820 0.0085
(6 , 8) 0.0120 0.0420 0.0045

A per-unit (pu) system is one in which each system parameter is expressed normalized

with respect to a standardized/normal value for that parameter. For example, the nor-

mal voltage of a bus in Table 2.1 is assumed to be 1. The nominal voltage could be 110

V. If the actual voltage is 100V then the normalized voltage would be 100/110 = 0.909.

A system tolerance of ±5% allows the normalized voltage to vary between 0.95 and

1.05. In the same way, load is also expressed normalized. Here 1 pu of load equals 100

MW.
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2.2 The Load Flow Analysis Program

A key program used to simulate a physical power grid is the load flow analysis

program. It is implemented in C and is used to determine node voltages of the power

system, given its topology, bus information and line information (discussed in Sec-

tion 2.1). It also produces other quantities such as the line flow matrix, but we do not

use these quantities.

The program is based on the power flow solution, which is an approach to solve the

power flow equations for an interconnected system (see Equations (2.2.1) and (2.2.2)).

The number of nodes in the network is n. For a node i, Pi and Qi represent its active

power and reactive power, respectively. The line admittance (of the edge) between

node i and node k is Yi,k. The node voltage of node i is Vi and its voltage phase angle

is δi. Then

Pi =
n

∑
k=1
|Yi,kViVk| cos (θi,k + δk − δi) (2.2.1)

Qi = −
n

∑
k=1
|Yi,kViVk| sin (θi,k + δk − δi) (2.2.2)

Here angle θi,k is the admittance angle between nodes i and k, derived from Equation

(2.2.3) below for the line admittance.

Yi,k = |Yi,k| θi,k = |Yi,k| cos θi,k + j |Yi,k| sin θi,k = Gi,k + jBi,k (2.2.3)

where j =
√
−1

Equations (2.2.1) and (2.2.2) use node i and its neighbor k. However Equation (2.2.3)

holds for any pair of nodes i and k (that are not necessarily neighbors on the grid).

The principal information obtained from the power-flow solution is the magnitude

and phase angle of the voltage at each bus (node), and the active and reactive power

flow in each line (edge). Figure 2.2 shows the block diagram of the load flow program,

which takes the desired active power ~P0 = 〈P0,i : 1 ≤ i ≤ n〉 and reactive power

~Q0 = 〈Q0,i : 1 ≤ i ≤ n〉 and the grid topology Gp, and produces the node voltages

~V = 〈Vi : 1 ≤ i ≤ n〉 and achieved loads ~P = 〈Pi : 1 ≤ i ≤ n〉 and ~Q = 〈Qi : 1 ≤ i ≤

12



n〉. The desired loads (~P0, ~Q0) differ from the achieved loads (~P, ~Q) only for the slack

bus. Note also that the entire input can be represented as the line and bus information.

Load Flow
Program

~P0

~Q0

Gp

active loads

reactive loads

grid topology

node voltages
~V

node active loads
~P

node reactive loads ~Q

FIGURE 2.2: A schematic view of the load flow program

There are several different methods of solving the nonlinear system of equations

that characterize the system (Equations (2.2.1) and (2.2.2)). These include the Gauss-

Seidel, Newton-Raphson, fast-decoupled loadflow, holomorphic embedding load flow

methods. The Newton Raphson method is the most popular among these and is the

one used for the load flow program used in this thesis.

The load flow program runs in iterations and the stability of the system is deter-

mined based on its convergence to a solution. If there is no convergence for the state

of the system presented as input, then the load flow program returns a normalized

voltage of 0 or 2 (indicating the direction of the divergence). Moreover, the active and

reactive loads are indicated as "nan" or "not a number".

The load flow program is used as a replacement for the physical system in our

study; that is, as a simulation of the power grid, returning its response to various

load changes at the nodes. The load flow program plays an important role in the dis-

tributed load balancing simulation. For the given desired active and reactive loads,

the program returns the voltage feedback. This feedback is based on the loads and

interconnections of various nodes. A slight change in topology or the loads can give

a completely different voltage output when run through the load flow solution. This

feedback information is used by the proposed DDLB algorithm to make corrections

and changes to its load prescription for the next iteration. The DDLB algorithm works

in iterations too, where the load flow program is called after each iteration to test the
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stability of the new state of the power system (Chapter 3 discusses the relationship

between our algorithm and the load flow analysis program).

A load flow study provides insight and recommendations for the system opera-

tion and optimization of control settings that helps to obtain maximum capacity while

minimizing the operating costs. Voltage is the determining factor in the stability of a

system, and it needs to be within a narrow range (for example ±5% of the nominal

value). The feedback obtained from the load flow program helps the DDLB algorithm

take the necessary action.

The DDLB algorithm uses the reaction of the physical system to the desired loads

in an iteration to determine the action to be taken in the next iteration. In an actual

deployment the true local values of parameters such as voltages and loads would be

available to a node (Chapter 4). In our study the load flow analysis program is a stand-

in for the physical network. While it is fairly accurate, it is not a full representation of

the physical system.

There is a more powerful simulator of the power grid called ETAP [14]. It is a com-

mercially available software, used for simulation, design and optimization etc. of the

power grid. It could be used in future work to further test the effectiveness of our

algorithm.

2.3 The OMNET++ Discrete Event Simulator

As noted earlier, the electrical grid is represented by a graph Gp of buses and links.

This graph is called the grid plane. Also present is a graph Gc (whose nodes are comput-

ing elements) called the compute plane. While the grid plane is simulated by the load

flow program, the distributed computational system (compute plane) is simulated by

the OMNET++ discrete event simulator. The distributed load balancing simulation is

run on this framework. The external load flow solution code (written in C) is inte-

grated to work with the OMNET++ code so that at each iteration of the OMNET++

code (load balancing algorithm), the load flow program is called.
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OMNET++ is a modular C++ simulation library and framework, primarily for build-

ing network simulators. It provides libraries to define networks (in our case the com-

pute plane) and to write the functionality for each computing node in the network.

It handles the message passing between the nodes; in our case, nodes operate syn-

chronously in time. This results in a computation at the nodes being done in parallel

(in the simulated time), although the code is run sequentially (in real time) on the

simulating machine.

The OMNET++ framework requires the network to be first defined, which, in our

case, is obtained from the line information (see Table 2.2). In Table 2.2 the edge (a, b)

column is used to define the network. The distributed algorithm consists of a (com-

mon) code for each node; this is written in C++. The OMNET++ library provides

modules for initialization of the network and message passing between the nodes.

The main part of our algorithm involves message passing between computing ele-

ments containing information about the power grid nodes themselves (voltage, load,

cost metrics); these are discussed in Chapters 3 and 4.

OMNET++ provides a message handling module called activity(i), where i is

the index of the node. Calling activity(i) in the OMNET++ framework causes

every enabled node i to perform (simultaneously in simulated time) the activity (pro-

gram segment) given in the module. This is explained in Figure 2.3.

Recall that we described a synchronous system as one in which each round involves

a write-read︸ ︷︷ ︸
communicate

-compute sequence. Notice that by performing a synchronizing step after

each write, a round may be viewed as a "read-compute-write" step.

The activity(i) module for each node i runs asynchronously in simulated time,

performing a read-compute-write sequence in each round. Modules synchronize after

they send their information and receive the results from the load flow program. Each

compute node corresponds to an activity block (see Figure 2.3). The nodes execute the

block independently and then synchronize at the end of each block. Consequently, in a

round r they first receive (what was sent in the previous round r− 1), compute based
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start of round

synchronize

activity(i) read from nbrs compute locally send to nbrs wait

activity(j) read from nbrs compute locally send to nbrs

FIGURE 2.3: The timing of the activity module during one round

on local state and then send out a new set of information to their neighbors before the

next receive (of round r + 1) is executed, nodes are synchronized so that all sends of

round r have been completed.

The OMNET++ program is coded such that it requires only two input files to operate

(bus information and line information, similar to Tables 2.1 and 2.2). The details of the

input file creation and their structure is discussed in Chapter 5. For different scenarios,

these input files are changed accordingly and fed into the simulation. The details of the

algorithm behind this OMNET++ program is described in Chapter 4.
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3

System Overview and Structure

In this chapter we describe how the proposed algorithm (DDLB), is implemented on

the OMNET++ Discrete Event Simulator, and detail how it works with the load flow

program algorithm to emulate the deployment of the DDLB algorithm on the compute

plane of the physical grid. We also describe different grid scenarios studied in this

thesis.

The usual representation of the power grid is as shown in Figure 3.1 (a) for a small

example of four nodes. Here buses 1 and 3 are generator buses (indicated by the circles)

and buses 2 and 4 are load buses. Figure 3.1 (b) shows a graph representation of this

grid.

The physical infrastructure has the grid of buses and power lines, overlaid with

the computing hardware and communication links between them. Different load de-

mands (positive for load and negative for supply or generator) can be physically made

on the power grid; the low level equipment needed for regulating the load and power

supply are not shown in the figure. A corresponding compute plane has the same

topology as the grid plane for most of this thesis; here nodes represent computing ele-

ments and edges represent communication links. In order to understand the feedback

1 2

3 4

(a)

1 2

3

4

(b)

FIGURE 3.1: An example physical power grid (a) and its graph representation (b)
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mechanism and the interaction between the simulation and the load flow program in

our approach, we need to further discuss the ideas of the compute plane and the grid

plane (that were briefly introduced in Section 2.3). The grid plane represents the ac-

tual physical network of connected buses, whereas the compute plane represents the

communication topology connecting computational nodes. It is not necessary for these

two planes to be identical, but let us assume that they are for this discussion. The two

planes can be visualized as shown in Figure 3.2.

Each grid plane node (bus) has a computational node associated with it. This node

calculates the local load and conveys it to the physical load regulating hardware. Each

computational node also has a program running on it and it exchanges information

with the neighboring computational nodes through the compute plane. It also receives

information in the form of the response of the physical system; in our case this is the

voltage. This is represented as the lower circle in the middle of Figure 3.2. The compute

nodes collectively form a distributed computing system whose external inputs and

outputs are from the physical power grid.

The same program (discussed in Chapter 4) is run on all compute nodes. After a

round of computation is complete, each node provides a recommendation for grid

action, and receives a feedback (containing the voltages, active and reactive powers)

from the grid. This relationship is illustrated in the right "simulation" side of Figure 3.2.

This work assumes the grid to be small enough to respond quickly. More precisely,

we assume the grid response to be comparable to a round of the computational plane.

We elaborate on this further later in this chapter. Alternate approaches are suggested

in Section 7.1. Our algorithm (in the compute plane) proceeds in rounds, and there

is synchronization with the load flow analysis program (grid plane) after each round

(see Section 2.3 and Figure 2.3). For each node i, a round includes reading the state

of the neighborhood (that is, receiving the data from its neighbors), computing the

costs based on local load and voltage and data received from neighbors, and giving a

prescription to the grid plane node on what load to assume next. The load regulators
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FIGURE 3.2: Relationship between deployment of a distributed load control and its
simulation

in the grid plane handle the actuation of this prescription. After the prescription is

actuated, the physical power grid responds, by taking into account all the node load

actions across the network. This response may or may not match the compute node’s

expectation of voltage. This is because it is making a local decision (based on its neigh-

borhood and its own value. However, the power flow in the physical grid results in a

global effect in the physical grid. Each node i changes its load slowly in each round,

using the grid response to compute the next prescription. This is different from the

one shot algorithm, whose progress can be described as observing from a distance and

moving towards the destination with "eyes closed", not fully understanding that the

system causes a gap between theory and practice; this could lead to an off-target phys-

ical state where voltage stability is not satisfied. Using the same analogy, our approach

is like moving with open eyes and after each small step making minor changes to the

load on the way to the destination. The challenge with distributed load balancing in

the power system is that we cannot see the global state from the local node and yet we

must manage to achieve a desired global stable state.
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The system aims to get a target state S f = 〈S f
i : 1 ≤ i ≤ n〉, where S f

i = 〈V f
i , λ

f
i , Q f

i 〉;

here V f
i , λ

f
i , Q f

i are the target voltage, active power and reactive power at node i. The

voltage must satisfy the constraint Vi,−1 ≤ V
f

i ≤ Vi,+1. For our study the target load

voltages are 1 (that is, V f
i = 1 for loads) and they allow a 5% flexibility. Therefore

Vi,−1 = 0.95 and Vi,+1 = 1.05. For sources, there is no flexibility in voltage. Here

Vi,−1 = V f
i = Vi,+1 > 1. Similarly, λ

f
i,−1 ≤ λ

f
i ≤ λ

f
i,+1 represents the active power

flexibility. The reactive power is typically unconstrained.

Let the power grid have n nodes π1, π2, . . . πn. Let node πi correspond to compute

node γi (where 1 ≤ i ≤ n). Let the state of πi at the start of round t (or end of round

t− 1) be Si,t = 〈Vi,t, Pi,t, Qi,t〉 where Vi,t, Pi,t, Qi,t represents for node i and round t, the

voltage, active power and reactive power, respectively, flowing through node πi. The

state of γi at the start of round t is Ŝi,t = 〈V̂i,t, P̂i,t, Q̂i,t〉, where V̂i,t, P̂i,t and Q̂i,t repre-

sents for node i and round t, the voltage, active power and reactive power, respectively,

that is recommended by the compute node γi. State Ŝi,t represents the recommenda-

tion provided by the compute node to the physical grid and Si,t is the grid’s response

to this recommendation. Ideally Si,t = Ŝi,t.

The compute node γi first obtains Si,t from its πi. Then keeping S f
i in mind it ex-

changes information about S f
i and Si,t with its neighbors γj (that provide information

about S f
j , Sj,t). Using this information (collectively called S̃j,t+1) node γi computes a

new prescription Ŝi,t+1 that it sends to πi and awaits its response Si,t+1 in the next

round. This is illustrated in Figure 3.3.

Whenever the load of a node is changed in the power grid, there will be changes in

voltages across the network, affecting not only that particular node but also its neigh-

bors and other nodes in the network, depending on several factors like location and

degree of the node. The new voltages of the grid due to the change in load take some

time to settle down and this delay in feedback affects how we model the distributed

algorithm. In our study, we assume this delay to be very small. Since our algorithm

makes small changes at a time, a quick response is not unreasonable. Our algorithm
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receive Si,t

Compute

Ŝi,t+1 = f̂ (Si,t, Ŝi.t+1, S f
i,t)

Send
Ŝi,t+1

Physical Grid generates

Si,t+1 = f (Ŝi,t+1)

Compute node

S̃j,t+1 (from nbrs)

Ŝi,t+1(to nbrs)

Si,t+1

FIGURE 3.3: Compute plane and power plane interaction for a node

runs in iterations in which a feedback is needed from the physical system after each

iteration. This is illustrated in Figure 3.4. The feedback is used to calculate the new

load prescription for each node in a distributed manner.

The details of the costs and the calculation of the new prescription is described in

Chapter 4. However we briefly describe the meaning of costs here. As mentioned ear-

lier, along with the expected loads and voltages, the load and voltage flexibilities are

given as input to the simulation. The load flexibility defines the region around the de-

sired load value within which the load is acceptable. For example, if the asked load for
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Compute
Plane

Grid
Plane

iter 1 iter 3iter 2

assign 1 assign 2

FIGURE 3.4: Time constraint assumption

a particular node is 2.5, and the load flexibility is 2.3 to 2.7, all the values between 2.3

and 2.7 are acceptable although it is preferred to have 2.5 as the load. Therefore, the

load cost for this node is 0 at 2.5 and small if the load is within the range [2.3, 2.7]. It

increases much more rapidly outside this range. Similarly, using the voltage flexibility,

voltage cost is calculated.

3.1 Grid State Scenarios

To capture various situations the power grid may be subjected to, we study several

scenarios that we now introduce. More details appear in Section 5.3. Recall that posi-

tive and negative powers represent loads and sources respectively, and the slack bus

is a special bus that can act as both a load or generator as the situation demands. For

the following let bus n be the slack bus.

1. Balanced : Here the loads and sources balance each other, and there is little load

to be expected on the slack bus.
n−1
∑

i=1
Pi = 0, where, Pi is the active power of node

i. Typically losses in the power grid will cause it to be little different from 0.

2. Overloaded : Here there is excess load in the system, and the slack bus takes the

burden of generating the excess power; here
n−1
∑

i=1
pi > 0.

3. Underloaded : Here the grid has excess generation of power and the slack ab-

sorbs the excess load; here
n−1
∑

i=1
pi < 0.

4. Subgraph : Here the compute plane topology is a subset of the grid topology. The

subset is created based on "distances" between nodes.

5. Radial failure : This models failure of generators within radius (graph distance

of 1 and 2) of a randomly selected node. It represents a local mishap.

These scenarios are simulated in our study of the DDLB algorithm.
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4

The Diffusion-Driven Load Balancing Algorithm

In this chapter the details of the distributed diffusion-driven load balancing (DDLB)

algorithm are discussed. The algorithm is, as the name indicates, inspired by diffusion

algorithms. The input to a diffusion algorithm is a weight wi for each node i, which

is the same in the case of our algorithm as well, where the weights correspond to the

active and reactive powers ascribed to each node. Our setting also includes the node

voltage which is used as a measure of system stability. As explained below the voltage

also plays a role in our setting that is similar to the weight in diffusion algorithms. In

diffusion, nodes communicate to exchange weights so that the final weight is equal

(well balanced) across the nodes. In our case the information about the load and volt-

ages (expressed as load and voltage costs) are exchanged instead of the weight. The

load and voltage costs are similar to the weight deviation
(|wi−waverage|)

wi
that measures

how far a node is from its stable state in diffusion. In our algorithm we are trying to

minimize the loads and voltage costs for all the nodes, instead of the weight devi-

ation. A diffusion algorithm works synchronously in rounds. In each round a node

sends some of its weight to (or receives some weight from) each of its neighbors. Our

algorithm works synchronously too, as explained in Chapter 3. Each compute node

synchronously sends its new load prescription to the load flow program, which in

turn, produces system voltages corresponding to the loads. This is used to check for

system stability.

In diffusion, neighbors transact weights based on the difference of their weights,

that is, if nodes i and j currently have weights wi and wj then the amount of weight

transacted between node i and j is proportional to wi − wj. The direction of this trans-
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action depends on the sign of wi − wj. In our algorithm, the local and neighborhood

loads and voltages are distilled into two local quantities, the load cost LCi and the volt-

age cost VCi and the doublet (LCi, VCi) is used to guide "diffusion." More specifically

if Nbr(i) is the set of neighbors of i, then node i computes the quantity,

Xi = g (〈LCi, VCi〉 ∪ {〈LC− j, VC− j〉 : j ∈ Nbr(i)}) ,

where g is a function of the neighborhood costs.

Unlike diffusion that individually transacts weight xi,j between i and j, here node

i produces a single aggregate quantity Xi that accounts for all transactions between i

and its neighbors. This is because the physical grid adjusts power flow according to

the power flow equation (see Section 2.2) irrespective of what we prescribe. That is,

each node’s load, when satisfied, produces a load on the slack bus and a voltage on

each node.

Thus one could say that a diffusion algorithm precisely performs the actions pre-

scribed by the nodes in an iteration. In contrast, our algorithm only precisely com-

putes the loads prescribed for each node. The interaction among all nodes defines the

voltages. Thus the load cost prescription is somewhat followed, but possibly at the

detriment of the voltage cost.

The interaction of the OMNET++ code with the load flow program is synchronous;

i.e., all the nodes are synchronized after each iteration. Each node in the system has a

unique ID. The communication topology and the network topology are assumed same

for all of this thesis (except the "subgraph" scenario). The flowchart in Figure 4.1 shows

the algorithm structure. We detail the steps below.

As described in Section 2.3 the OMNET++ environment interacts with the load flow

program to simulate the grid with the DDLB algorithm deployed across it. Here we

elaborate on that. Additional concepts are introduced as needed.

Initialization : The system starts from a stable state ~S0 = 〈S0
i : 1 ≤ i ≤ n〉. The

initialization step initializes node i to S0
i = 〈V0

i , P0
i , Q0

i 〉 where V0
i is the voltage,
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Initialization

Compute costs

Compute new load

Call the load flow
program

Receive feedback
from load flow prog.

Load Flow

Start next iteration

Receive data
from nbrs

Send data
to nbrs

FIGURE 4.1: Algorithm Structure

P0
i is the active power and Q0

i is the reactive power for node i in the stable state.

Next it uses S0
i to compute an initial local load cost LCi,0 and local voltage cost

VCi,0 as detailed below.

Node profile : As part of the input to the algorithm, each node has a load and

voltage profile. The load profile of node i is λi = 〈λi,−1, λi,0, λi,+1〉, where, λi,0 is

the preferred load of the node. Recall that λi,0 > 0 for power consumed and

λi,0 < 0 for power supplied. The nodes show some flexibility regarding λi,0. The

rangeλi,−1 ≤ λi,0 ≤ λi,+1 captures this flexibility below and above λi,0.

Similarly the voltage profile for a node i is Vi = 〈Vi,−1,Vi,0,Vi,+1〉 indicates the

flexibility of the voltage about the preferred point Vi,0 .
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Load profiles can vary depending on the type of node and probably market in-

centives provided for flexibility. For example, the local company could provide

reduced rates for customers willing to cycle the air conditioning system off for a

few minutes during high load periods [13].

Voltage profiles for load nodes generally have Vi,0 = 1 (under the per unit sys-

tem) and Vi,−1 = 0.9, Vi,+1 = 1.05 for a maximum 5% voltage variation. Source

nodes generally have Vi,0 > 1 (around 1.03) and Vi,−1 = Vi,0 = Vi,+1 (no flexibil-

ity).

Local Cost : The node profile is used to determine a local cost given the local load

voltage and load. We first describe this local cost in its most general form for the

load profile.

Let node i have local load profile λi = 〈λi,−1, λi,0, λi,+1〉. Let its current load be `i.

The local load cost LCi is a piecewise linear function illustrated in Figure 4.2. The

cost function has five line segments. The central segment s1 is between points

a and c where a = b − 0.9(b − a1) = 0.1b + 0.9a1 and c = b + 0.9(c1 − b) =

0.9c1 + 0.1b. The values 0.9 and 0.1 = (1− 0.9) have been chosen so that range

[a, c] represents 90% of the flexibility range [a1, c1]. A different number could be

used.

Coming back to segment s1, it passes through the point (λi,0, 0) indicating that

the cost for the desired load λi,0 is 0. Since the slope σ1 of s1, is quite small, the

cost of the load in the range [a, b] is also close too.

In the same spirit the cost shown by segments s3 and s5 is high. That is, their

slopes σ3, σ5 are large. In between the slopes σ2, σ4 of the segments s2, s4 are more

than σ1 but less than σ3, σ5 to indicate that the system should be more "vigilant"

as we approach the limits of the flexibility of the node.

As noted earlier, the DDLB algorithm proceeds in iterations. Initially it is to be

expected that the nodes have large costs and the algorithm aims to gently nudge
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the system toward a lower cost. Accordingly, σ3 and σ5 are somewhat small. As

the algorithm proceeds, they become more aggressive as the algorithm is run-

ning out of time to take corrective action.

We set slopes σ3 = σ5 = 2σ2 = 2σ4. Slope σ1 is set independently. Each of these

slopes is a function of time t (iteration no.).

In general, if we wish to increase the slope from α1 at iteration 1 to α2 at iteration

600 (last iteration), then we set the slope at iteration t to be

σ(t) =
(

α2 − α1

600− 1

)
t + α1

for σ1 we have α1 = 0.05 and α2 = 0.2, and for σ2, α1 = 0.2 and α2 = 0.6. Thus

we have,

σ1(t) = 0.00025t + 0.05

σ3(t) = σ5(t) = 2σ2(t) = 2σ4(t) = 0.00066t + 0.2

Thus for a piecewise continuous load cost we have,

LCi,t(`) =



σ1(t)(`− b), for a ≤ ` ≤ c

σ2(t)(`− a) + LCi,t(a), for a1 ≤ ` < a

2σ2(t)(`− a1) + LCi,t(a1), for ` < a1

σ4(t)(`− c) + LCi,t(c), for c < ` ≤ c1

2σ4(t)(`− c1) + LCi,t(c1), for ` > c1

where, ` = Pi,t−1.

The local voltage cost VCi,t(v) is also computed similarly, with points a1, a, b, c,

c1 of loads corresponding to 0.95, 0.955, 1, 1.045, 1.05. For a generator a1 = a =

b = c = c1 = Vi,0. For the local voltage cost VCi,t we have, for σ1, α1 = 0.5 and

α2 = 1.2, and for σ2, α1 = 0.25 and α2 = 0.6. Thus,

σ1(t) = 0.00116t + 0.5

σ3(t) = σ5(t) = 2σ2(t) = 2σ4(t) = 0.00058t + 0.25
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and for the piecewise continuous voltage cost we have,

VCi,t(v) =



σ1(t)(v− b), for a ≤ v ≤ c

σ2(t)(v− a) + LCi,t(a), for a1 ≤ v < a

2σ2(t)(v− a1) + LCi,t(a1), for v < a1

σ4(t)(v− c) + LCi,t(c), for c < v ≤ c1

2σ4(t)(v− c1) + LCi,t(c1), for v > c1

We consider four cases of the local cost corresponding to whether the load and

voltage flexibility are actively used. When the load flexibility is used the cost

graph has the form shown in Figure 4.2. If slopes σ1 − σ5 are all the same this

flexibility is ignored and the graph has the form as shown in Figure 4.3.

value

Cost

b c c1aa1

s1ya
s2

ya1

s3

yc
s4

yc1

s5

FIGURE 4.2: Local load cost, here a1=λi,−1, b=λi,0 and c1 = λi,+1

The four cases correspond to load and voltage flexibility used (indicated by

boolean variables LF = VF = 1), neither flexibility used (LF = VF = 0), and only

one of the flexibilities used (LF = 1, VF = 0 or LF = 0, VF = 1). Chapter 6 details

these further.

Coming back to the algorithm, at this point each node has a local load and volt-

age cost. This local cost is sent to all neighbors as part of the initialization. Beyond

this point we assume that we are starting an iteration and are in round t of the

DDLB algorithm.

28



value

Cost

b c c1aa1

FIGURE 4.3: Local load cost, here a1=λi,−1, b=λi,0 and c1 = λi,+1, having same slopes
σ1 . . . σ5.

Receive data from neighbors : The local costs LCj,t and VCj,t sent from neighbors j of i

are received by i which holds its own local costs LCi,t and VCj,t. These quantities

will be used subsequently.

Compute cost : The local "neighborhood" costs are used here to compute a "total"

cost at each node. The total load cost Li,t is computed as follows.

Let node i have degree di (that is, it has di neighbors). Define a function δ(di),

δ(di) = 1 +
a

bdi
(4.0.1)

where a = 27
2 and b = 3

2 (these were values selected for our program, but they

could be different provided a > b > 1). Figure 4.4 shows the behavior of this

function δ. For small di, δ(di) is large and for large di δ(di) is close to 1. Coming

back to the total load cost, Li,t we let

Li,t =

δ(di)LCi,t +
di
∑

j=0
LCj,t

di + δ(di)
(4.0.2)

Thus Li,t is a weighted average of the local loads within the neighborhood of

i. If i has very few neighbors, di is small and δ(di) is large. Therefore Li,t has a

larger say in defining Li,t. On the other hand, if di is large, then δ(di) ∼= 1 and Li,t

has not much more weight than its neighbor’s local load cost. This reflects the
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FIGURE 4.4: Behavior of the δ(di) function

observation that a node in an isolated situation must aggressively seek to lower

its cost than one in a well-connected neighborhood. Similarly, the total voltage

cost Vi,t is as in Equation (4.0.3)

Vi,t =

δ(di)VCi,t +
di
∑

j=0
VCj,t

di + δ(di)
(4.0.3)

The total load cost and voltage cost are used to determine the new prescribed

load for node i in iteration t + 1. This prescription consists of a new active load

Pi,t+1 and reactive load Qi,t+1.

Compute new load : The total load cost plays a role in determining the new active

load, whereas the total voltage cost is used for the reactive load. Both the costs

are scaled using constants c`, cv explained later. The new prescribed active load

P̂i,t+1 is calculated as,

P̂i,t+1 = Pi,t + ∆Pi,t (4.0.4)

where, Pi,t is the present active load and ∆Pi,t is the change in active load calcu-

lated as follows

∆Pi,t = −c` |Pi,t| · Li,t (4.0.5)
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where 0 < c` < 1 is a load cost scaling constant. If Li,t is positive, then the load

is higher than it should be. This requires ∆Pi,t to be negative. Equation (4.0.5)

ensures that it is. Similarly if Li,t < 0, then ∆Pi,t ≥ 0 and again Equation (4.0.5)

ensures that. The constant c` makes sure that there is not too drastic a change

in load (we used c` = 1
50 ). In the per unit scale |Pi,t| is generally small ranging

between −3 and 3. The value c` was experimentally determined.

The reactive load is calculated in a similar way but by using the voltage cost.

Here Q̂t+1 is the new reactive power, Qt is the present reactive power and ∆Q is

the change in reactive power and cv is the voltage cost scaling constant.

Q̂i,t+1 = Qi,t + ∆Qi,t (4.0.6)

∆Qi,t = cv |Qi,t| ·Vi,t (4.0.7)

Load flow program : After determining the new prescription 〈P̂i,t+1, Q̂i,t+1〉 at each

node i, these are fed into the load flow program which simulates the action of the

physical grid and returns the new system state St+1 = 〈Vt+1, Pt+1, Qt+1〉 where,

Vt+1 = 〈Vi,t+1 : 1 ≤ i ≤ n〉, Pt+1 = 〈Pi,t+1 : 1 ≤ i ≤ n〉 and Qt+1 = 〈Qi,t+1 : 1 ≤

i ≤ n〉

The load flow program ensures that Pi,t+1 = P̂i,t+1, except if i is the slack bus.

Now Vi,t+1 is the new voltage at node i.

Send data : In the final step of the iteration each node computes local voltage and load

costs Li,t+1 and vi,t+1 and sends them to all its neighbors as in the initialization.

The Appendix includes the OMNET++ code for the DDLB algorithm. From the dis-

cussion so far, we can see that the DDLB algorithm accepts as input, the following

quantity - the n-node topology, which is specified as follows.

1. Bus information (see Section 5.1) : The number of buses and their load/voltage

profiles are part of this description.
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2. Line information (see Section 5.2) : The connections between the buses and their

line parameters are part of this description.
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5

Simulation

This chapter describes the simulation environment developed for use with this study.

This environment is shown in Figure 5.1. The two key parts, OMNET++ simulator

code for the DDLB algorithm and the load flow analysis program (collectively called

the core code) have been detailed before (see Section 2.2 and Chapter 4). In this chapter

we primarily describe the steps involved in generating the inputs, and the scripts used

to run the algorithm and aggregate the data automatically.

Line Info.

Bus Info.

Instance
Generator

OMNET++
Code

Load Flow
Code

o/p
database Analysis

Tools

Table
Data

Graphs

Master Script

Core Code
C++

C

bash

bash

txt

txt

txt csv

eps

C++

FIGURE 5.1: Simulation environment
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Overall Operation: As discussed in Section 2.1 and Chapter 4, the core code requires

the bus and line information to operate. The simulation environment systematically

generates inputs that range across the input space and cover the scenarios of interest

(balanced, overloaded, underloaded, etc.). This is done by the instance generator (a

C++ script) that is explained in Section 5.3. The simulation provides a good coverage

of the large input space and gives pointers to the algorithm’s advantages and areas

with room for improvement.

Once an input instance has been worked on by the core code, it produces a set of

output files (output database) that record the data generated at each node and each

iteration for that instance. This data is stored in appropriately named files as detailed

in Section 5.1 and 5.2.

The Analysis tool (a bash script) can be used to access and select information for the

output database and generate graphs (in eps format) and table data (in txt format).

A master script orchestrates the working of all these parts to automatically generate

inputs, save output and extract data. We have used this setup for extensive simulations

(ranging over many input instances such as balanced, overloaded, underloaded cases).

We now describe the components of this script architecture.

5.1 Bus information

The screenshot shown in Figure 5.2 shows the bus information matrix for a 30 node

network. The columns shown in the screenshot are : node ID, nominal voltage V0,

maximum voltage V+1, minimum voltage V−1, desired active power λ0, maximum

active power λ+1, minimum active power λ−1, bus type, and stable start power and

voltage. Each column entry is now discussed. Node ID is a unique ID given to each

node to identify it. Voltage is the desired voltage, as seen in the above example, all the

buses prefer a voltage V0 = 1, whereas generators and the slack have higher voltages.

The maximum and minimum voltages V+1, V−1 together define the voltage flexibility

of the node. Column 5 is the desired active power. This value, represents a load if it is

positive or a source if it is negative. Column 6 and 7 are the maximum and minimum
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FIGURE 5.2: Screenshot of the bus information input to the simulation

active power, which define the flexibility for the desired power. Column 8 is the bus

type, which represents the different kinds of buses (nodes), slack (1), generators (2) and

loads (3). Columns 9 and 10 are the stable start power and voltage respectively. This

represents the state of the system at which the simulation/iteration starts. Although

the last column (stable voltage) is shown, it is not part of the input. The start load and

voltage represent a stable point since we want to test the stability of the system as we

approach the desired value which might be either stable or unstable.

5.2 Line information

The screenshot shown in Figure 5.3 shows the line information matrix. The columns

shown in the screenshot are : first two columns together form the edge (node1 , node2),

for example the first line represents edge (1, 2) while the last one is for (6, 28). Columns

3-6 represent the resistance, reactance, susceptance, tap ratio and phase angle for the

edge. There are 40 rows in the line information matrix, with each row representing an

edge connecting two buses. Thus, this is a 30 node, 40 edge graph. Each edge is bidi-

rectional, and resistance, reactance etc, are the parameters controlling the load flow

through this edge. For our study we use only one topology with a fixed line informa-
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FIGURE 5.3: Screenshot of the line information input to the simulation

tion. However, in principle this could be altered as required. The topology used was

the IEEE 30-bus network [9].

5.3 Instance Generation

To understand how the input instances to the core code are generated, we have

to first introduce the idea of input state which is simply an instance of the line and

bus information. This means that the entire network’s parameters at a given time are

represented through this state. Thus the network state can be viewed as either an input

to the core program or its output. Further, since we do not change the information, we

seek to look at variations only in the bus information.

There can be different types of states. One way to classify them is as either stable or

unstable. A stable state of the network is one in which voltages for all nodes are within

the acceptable range. Even if a single node has voltage outside the acceptable range

36



[V−1,V+1], then the network state is unstable. A state is convergent if the load flow

program converges for that state and produces a "non-NaN" value for each load.

A network state is balanced iff
n−1
∑

i=1
`i = 0, where `i is the load of node i; we have

assumed node n to be the slack bus for this discussion. In a balanced state the power

generated is equal to the power consumed.

A base state is a stable, balanced state. Base states are used in our simulation to

generate several comparable, yet distinct scenarios, and as the stable starting point for

these scenarios.

Starting from a primary base state ~Sp we will generate secondary base states ~Sp,s.

From each of these secondary base states ~Sp,s we will generate a set of states (input in-

stances for the core program). Each input state will be applied to graph G, the 30-node

40-link IEEE standard system and to Ĝ a subgraph of G with only 27(66%) of the edges

of G. Edges of G are deleted on the basis of their line impedences (large impedences

indicating longer edges). Specifically the longest 33% of edges (13 in our case) are re-

moved to generate Ĝ. We will explain the instance generation through pseudo-codes

given below.

Procedure Generate_P_Base() shown in Figure 5.5 is used to generate a primary base

state ~S, given a primary base state ~S. (Initially a primary base state is generated

manually to start the procedure off). This procedure is called to generate 10000

primary base states.

The input primary base state ~S = 〈~P, ~Q, ~V〉 (active load, reactive load, voltage

vectors across the nodes) is first permuted to generate ~S′; That is, the node id’s

of ~S are permuted. Specifically, let V = {1, 2, . . . , n} be the set of nodes and let

f : V → V be a bijection. The effect of permuting the node id’s is best illustrated

by the example in Figure 5.4. For this example V = {1, 2, . . . , 8}. Let f (i) = i + 1

for 1 ≤ i < 8 and let f (8) = 1.

Figure 5.4 (b) shows the permuted topology. Note that the bus information for

node i is the same. That is, for example, node 7 is still the slack bus, but is now
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FIGURE 5.4: An example physical power grid (a) and its graph representation (b)

topologically in a different part of the graph. The line information for original

line (i, j) now is the information for line ( f (i), f (j)).

Thus the effect of the permutation is to shuffle the positions of nodes in the topol-

ogy. While the two topologies are isomorphic the node properties render the un-

derlying grids very different. For example, in the first case the generators 2 and

8 are not adjacent, as they are in the permuted case. This can affect the behav-

ior of the grid. The loads in the permuted state ~S′ are next changed as shown

in Figure 5.5. If the state ~S′ has Pi > 0, then −2Pi ≤ Ri ≤ 2Pi. The new value

of Pi is Pi(new) = Pi + Ri which satisfies −Pi ≤ Pi(new) ≤ 3Pi. Thus if Pi > 0

then Pi(new) is more likely to be positive. Similarly for negative Pi, we have

−3Pi ≤ Pi(new) ≤ Pi. In either case, Pi tends to keep the same characteristics as

that of Pi from the permutation. But the loads are different now.

The new state with new loads is denoted by ~S”. We now normalize these loads

to get a balanced state, by setting the sum of the loads of all the states to 0. The

slack bus already has as 0 load (for the input) and does not affect the average.

The resulting state is ~Sp. This is an acceptable (balanced) primary state if it is

stable.
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Generate_P_Base (~S=〈~P, ~Q, ~V〉)
/*Generate Primary base state ~Sp*/
repeat
~S′=〈~P′, ~Q′, ~V′〉 with nodes of ~S randomly permuted
/* permuted state ~S” */
for each node i of ~S′ with active load P′i do

ri ← rand[1, 2] /* 1 ≤ ri ≤ 2 is a random number */
Tempi ← P′i ∗ rand[−ri, ri]
~S”=〈 ~P”, ~Q”, ~V”〉 is ~S′ with P′i replaced by Tempi

end /* loads permuted for ~S” */

a← 1
n

n
∑

i=1
Pi” average active load of ~S”

for each node i of ~S” with active load Pi” do
Tempi ← Pi”− a
~Sp = 〈~Pp, ~Qp, ~Vp〉 is ~S” with Pi” replaced by Tempi

end until ~Sp is stable

return resulting ~Sp
end

FIGURE 5.5: Algorithm for primary base state

Procedure Generate_S_Base() shown in Figure 5.6 takes a primary base state ~Sp ob-

tained from the Generate_P_Base() and generates a secondary base state ~Sp,s,

where 1 ≤ v ≤ 10. As is clear from the procedure, each secondary base ~Sp,s is a

stable permutation of the primary base ~Sp

Generate_S_Base(~Sp=〈~P, ~Q, ~V〉)
/*Generate secondary base state ~Sp,s*/
repeat
~Sp,s = 〈~P′, ~Q′, ~V′〉 with nodes of ~Sp randomly permuted

until ~Sp,s is stable

return ~Sp,s
end

FIGURE 5.6: Algorithm for secondary base state

Procedure Generate_Balanced() (see Figure 5.7) takes a secondary base state ~Su,v ob-

tained from the Generate_S_Base and randomly generates a balanced state. The

main action of the procedure is to randomly change loads while keeping the

state balanced. The last two lines indicate that the state is to be run once on

graph G and once on Ĝ (the same grid with reduced communication edges). Sim-
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Generate_Balanced(~Sp,s=〈~P, ~Q, ~V〉)
/* Generate a balanced state ~Sp,s,b */
repeat

r ← rand[0.96, 1.44]
~Sp,s,b=〈~P′, ~Q′, ~V′〉 with P′i ← Pi ∗ r

until ~Sp,s,b is convergent

save instance 〈~Sp,s,b,G〉
save instance 〈~Sp,s,b, Ĝ〉

end

FIGURE 5.7: Algorithm for generation of a balanced state

ilarly Generate_Overloaded() and Generate_Underloaded() (see Figure 5.8 and

5.9) each generate one overloaded and one underloaded state respectively. Both

these scenarios are created either by increasing loads (loads), decreasing gener-

ation (gens), or both (both). Amount of load increased is regulated by r1, r2. All

these states (balanced, overloaded, underloaded) are generated from the same

secondary base state.

Edges of G are deleted on the basis of their line impedences (large impedences

indicating longer edges). Specifically the longest 33% of edges (13 in our case)

are removed to generate Ĝ.

FIGURE 5.10: Screenshot of the the full network topology
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Generate_Overload(~Sp,s=〈~P, ~Q, ~V〉)
/* Generate overloaded state ~Sp,s,o */
repeat

r1 ← rand{0.1, 0.2, 0.3}
/* randomly pick one value from set {0.1, 0.2, 0.3} */
r2 ← rand{loads, gens, both}
/* perturb loads, generators or both */
r3 ← rand[0.84, 1.5]

Abs←
n
∑

i=1
|Pi|

G ← no. of generators in ~Sp,s

L← (n− 1)− G /* no. of non-slack loads in ~Sp,s */
Case (r2)
loads : for each load i do P′i ← Pi + r1 ∗ Abs/L
gens : for each gen i do P′i ← Pi + r1 ∗ Abs/G
both : for all nodes i do P′i ← Pi + r1 ∗ Abs/(L + G)

end
for each node i do P′i ← r3 ∗ P′i
~Sp,s,o ← 〈~P′, ~Q, ~V〉

until ~Sp,s,o is convergent

save instance 〈~Sp,s,o,G〉
save instance 〈~Sp,s,o, Ĝ〉

end

FIGURE 5.8: Algorithm for generation of an overloaded state

Figure 5.10 shows the original IEEE 30-bus topology with 40-edges and Figure

5.11 shows the subgraph with 27 edges. As observed before, the subgraph will

be used to see the effect of restricted communication on the DDLB algorithm. We

use only the 27-edge of Figure 5.11 for our study.

Procedure Generate_Radial() (see Figure 5.12) uses a balanced state ~Sp,s,b to produce

potentially overloaded states reflective of local generator damage. Figure 5.12

shows our approach. The procedure uses a parameter d, representing the "ra-

dius" of the damage. The basic idea is to pick a random node i and set the loads

of all generator nodes at distance ≤ d from i to 0.

Procedure Generate_Input_Instances (see Figure 5.13) is the systematic approach used

to generate the various instances using the procedures described earlier. In total

1.6 million input instances are generated as explained below. The algorithm gen-
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Generate_Underload(~Sp,s=〈~P, ~Q, ~V〉)
/* Generate underloaded case ~Sp,s,u */
repeat

r1 ← rand{−0.1,−0.2,−0.3}
/* randomly pick one value from set {−0.1,−0.2,−0.3} */

r2 ← rand{loads, gens, both}
/* perturb loads, generators or both */
r3 ← rand[0.84, 1.5]

Abs←
n
∑

i=1
|Pi|

G ← no. of generators in ~Sp,s

L← (n− 1)− G /* no. of non-slack loads in ~Sp,s */
Case (r2)
loads : for each load i do P′i ← Pi + r1 ∗ Abs/L
gens : for each gen i do P′i ← Pi + r1 ∗ Abs/G
both : for all nodes i do P′i ← Pi + r1 ∗ Abs/(L + G)

end
for each node i do P′i ← r3 ∗ P′i
~Sp,s,u ← 〈~P′, ~Q, ~V〉

until ~Sp,s,u is

save instance 〈~Sp,s,u,G〉
save instance 〈~Sp,s,u, Ĝ〉

end

FIGURE 5.9: Algorithm for generation of an underloaded state

erates 10000 primary base states. For each of these there are 10 secondary base

states. Each secondary base state produces one each of balanced, overloaded, and

underloaded states and 5 each of radial 1 and radial 2 states. Each of these bal-

anced, overloaded, and underloaded states is also run on the subgraph Ĝ. Table

5.1 shows the number of inputs tested for the various scenarios.

TABLE 5.1: No. of inputs for each scenario

Scenario No. of inputs generated

Balanced 100,000
Overloaded 100,000
Underloaded 100,000
Radial 1 500,000
Radial 2 500,000
Subgraph 300,000
Overall 1,600,000

42



FIGURE 5.11: Screenshot of the subgraph scenario topology

Generate_Radial(~Sp,s,b,d) /*d ← {1,2}*/
for r ← 1 to 5 do
repeat
pick random node i of ~Sp,s,b
for each source j within distance d of i
set Pj ← 0
~Sd,r

p,s,b is ~Sp,s,b with above Pj’s set to 0 end

until ~Sd,r
p,s,b is stable

save ~Sd,r
p,s,b in List

end
return List

end

FIGURE 5.12: Algorithm for radial failure states

5.4 Additional Tools

Referring back to Figure 5.1 we see that we are yet to discuss the following blocks

- output database, analysis tool, table data, graphs, and the master script. Each run

of our algorithm produces data, which needs to be properly organized, so that we

can compare and analyze results. This is done by properly naming each output file

and placing them into organized folders, which collectively forms the output database.

The Analysis tool is a set of bash shell scripts written for conveniently converting the

raw data from the output database into meaningful tables and graphs. The Master

Script is the backbone of the entire simulation, which is also a bash script written to
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Generate_Input_Instances
Manually generate primary base ~S
for p← 1 to 10000 do
~Sp ← Generate_P_Base(~S)
for s← 1 to 10 do
~Sp,s ← Generate_S_Base(~Sp)
~Sp,s,b ← Generate_Balanced(~Sp,s)
~Sp,s,o ← Generate_overload (~Sp,s)
~Sp,s,u ← Generate_underload (~Sp,s)

R1
p,s,b[1..5]← Generate_radial(~Sp,s,b,1)

R2
p,s,b[1..5]← Generate_radial(~Sp,s,b,2)

end
~S← ~Sp

end
end

FIGURE 5.13: Algorithm for systematically generating all input instances

easily automate the entire process of input instance creation, simulation run, storing

of output files, conversion into tables and graphs.
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6

Simulation Results

In Chapter 5 we described how inputs for different grid scenarios are generated. We

also detailed the number of inputs generated per scenario, and discussed how these

inputs cover a wide range of instances over the problem space. In this chapter the

results of our simulation are discussed.

For each input, the DDLB algorithm iteratively runs for 600 iterations. After sev-

eral trials, we decided on 600 iterations, as it seemed large enough for most cases to

coverage to a stable output.

As detailed in Chapter 2, the one-shot algorithm applies desired loads to the grid

(here the load flow program) directly without any concern for the voltage stability.

It is the simplest (brute-force) distributed load balancing algorithm. We compare the

performance of the DDLB algorithm to the one-shot algorithm. The above ideas of

input convergence, voltage, load and slack bus costs (described in Sections 6.1– 6.6)

all apply to the one-shot algorithm as well as the DDLB algorithm. The reader should

also recall the 6 scenarios described in Chapter 5 : balanced, overloaded, underloaded,

radial 1, radial 2 and subgraph.

In each of the following sections, we first describe the main considerations that we

discuss through our results. These include input and output convergence, voltage,

load and slack bus errors, and algorithm types (one-shot and flexibility variations).

6.1 Input Convergence

Recall that the DDLB algorithm calls the load flow program at each iteration. The

load flow program, in turn, iteratively solves the power flow equations (see Equations

(2.2.1) and (2.2.2)). If the load flow program is unable to converge for the given input,
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then it does not produce a valid output. As a result, the DDLB algorithm also does not

produce a valid output for its given input. Thus we will say that an input (to the DDLB

algorithm) converges iff for each of its 600 iterations, the call to the load flow program

converges. As shown in Table 6.1 most inputs to the DDLB and one-shot algorithms

converge. Table 6.1 shows the input convergence for different scenarios. It is clear that

only a small fraction of the 1.6 million inputs tested were rendered unusable.

TABLE 6.1: Input Convergence failure (%)

Scenario
No. of

simulated
inputs

Only DDLB (%) Only
One-Shot(%)

Both DDLB and
One-Shot(%)

Balanced 100000 0.00 0.64 0.02
Overloaded 100000 1.56 2.97 5.11
Underloaded 100000 0.03 0.14 0.01
Radial 1 500000 1.45 2.41 4.52
Radial 2 500000 1.72 3.62 5.37
Subgraph 300000 0.59 0.74 0.31
Overall 1600000 1.25 2.56 4.21

6.2 Output Convergence

For DDLB inputs that converge, the algorithm slowly nudges the grid towards a

stable output. For any iteration 1 ≤ t ≤ 600, let Xt represent the output of the DDLB

algorithm after iteration t. Here output X may be, for example, the average voltage

across all nodes, or the load error (defined later) etc. We say that output X converges

in iteration to iff for any to ≤ t ≤ 600,

|Xt − X600|
Max(ε, X600)

≤ 5% (6.2.1)

For quantities that have X600 → 0, we use a minimum value ε for X600 to allow for

output convergence to be measured without divide-by-0 error.

Table 6.2 shows the load convergence1 of the DDLB algorithm for the various sce-

narios. It is clear that balanced instances (including for subgraphs) require the fewest

iterations to converge. Localized problems (radial damage) cause the most disruption

to the output convergence. Figure 6.1 shows the histogram of load convergence for

1where Xt is the average active load at the end of iteration t across all 29 buses(excluding the slack bus) of the grid
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TABLE 6.2: No. of iterations for load convergence

Scenario Load Convergence (iteration no.)

Balanced 42
Overloaded 213
Underloaded 223
Radial 1 309
Radial 2 489
Subgraph (Balanced) 40
Subgraph (Overloaded) 200
Subgraph (Underloaded) 205
Overall 219

balanced, underloaded and overloaded scenarios, each of which has 100,000 simula-

tion inputs. The histogram indicated that the averages of Table 6.2 are given indicative

of the convergence behaviors that we do not have a large spread of the convergence

iterations. For example, the balance case with an average convergence of 42 iterations,

virtually has no instances after 100 iterations. The overloaded and underloaded cases

show similar properties. The few stray cases in iterations 550–600 had very small num-

bers for which a small value of ε in Equation 6.2.1 may have worked better.

FIGURE 6.1: Histogram of load convergence for balanced, underloaded and overloaded
scenarios
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6.3 Voltage Error

We use two interpretations of where a poor performance of the algorithm expresses

itself through voltage. Recall that each node i has a voltage profile Vi = 〈Vi,−1,Vi,0,Vi,+1〉

where Vi,0 is the desired voltage and [Vi,−1,Vi,+1] is the range of acceptable voltages.

Let Vi be the actual voltage of node i at the iteration when the voltage error is being

measured. The first voltage error (VE1), a binary quantity, is defined as follows.

VE1 = 1, iff ∀ 1 ≤ i ≤ n,Vi,−1 ≤ Vi ≤ Vi,+1 (6.3.1)

This error measures whether the overall system is stable (VE1 = 1) or not (VE1 = 0).

The second voltage error (VE2) measures the deviation of the voltage from the desired

value Vi,0.

VE2 =
|Vi − Vi,0|
Vi,0

(6.3.2)

Here Vi,0 ≥ 1 so a divide-by-0 error is not possible. Table 6.3 shows VE1 and VE2 for

various scenarios. It is clear that the DDLB algorithm gives better results for voltage

error than the one-shot algorithm. Even in the extreme cases like overloaded and radial

2, only 1.46% and 0.99% of the cases fail respectively (VE1). Compare this to the 57%

failure rate of the one-shot algorithm across all the cases.

The DDLB algorithm has VE2 < 1.19% for all cases which is extremely low com-

pared to the lowest VE2 of 6.77% of the one-shot algorithm in the case of underloaded

scenario. Figures 6.2 shows how VE2 changes across the 600 iterations of the DDLB

algorithm. For clarity, the last 100 iterations are shown in Figure 6.3.

6.4 Load Error

As in the case of voltage, we have two load errors. Recall that the load profile of node

i is λi = 〈λi,−1, λi,0, λi,+1〉 where λi,0 is the preferred load and [λi,−1, λi,+1] expresses

its flexibility. Let Pi be the active load of node i at the point the error is being measured.
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TABLE 6.3: Voltage error [%]

Scenario Average VE1 Average VE2
DDLB One-Shot DDLB One-Shot

Balanced 0.12 45.95 0.47 7.89
Overloaded 1.46 57.90 0.55 14.66
Underloaded 0.27 58.43 0.47 6.77
Radial 1 0.42 56.44 0.75 15.95
Radial 2 0.99 59.36 1.19 22.14
Subgraph (Balanced) 0.11 45.95 0.43 7.89
Subgraph (Overloaded) 1.12 57.90 0.49 14.66
Subgraph (Underloaded) 0.24 58.43 0.44 6.77
Overall 0.63 57.12 0.52 14.45

The first load error (LE1) is defined as follows,

LE1 =



Pi − λi,+1

λi,0
, if Pi > λi,+1

λi,−1 − Pi

λi,0
, if Pi < λi,−1

0, if λi,+1 ≤ Pi ≤ λi,+1

This accounts for the fact that the node shows some flexibility; ε accounts for divide-

by-zero errors. The second load error (LE2) is defined as follows,

LE2 =
Pi − λi,0

Max(ε, λi,0)
(6.4.1)

This measures the deviation from the desired load λi,0. The Table 6.4 shows LE1 and

LE2 for various scenarios.

TABLE 6.4: Load error [%]

Scenario Average LE1 Average LE2
DDLB One-Shot DDLB One-Shot

Balanced 0.00 0 0.02 0
Overloaded 15.08 0 21.59 0
Underloaded 0.41 0 0.42 0
Radial 1 0.70 0 0.89 0
Radial 2 1.71 0 2.14 0
Subgraph (Balanced) 0.00 0 0.04 0
Subgraph (Overloaded) 13.30 0 17.32 0
Subgraph (Underloaded) 0.39 0 0.40 0
Overall 1.23 0 1.52 0
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FIGURE 6.2: Average VE2 for various scenarios of the DDLB algorithm execution

From Table 6.4 we observe that the maximum load error LE1 is for the overloaded

case 15%, while the balanced scenario has almost zero error. These results indicate

that with a small load flexibility, the voltage error can be brought down significantly

(compare the values for VE2 in Table 6.3, overloaded VE2 is only 0.55% for DDLB,

compared to 14.66% for one-shot). Figures 6.4, 6.5, 6.6 and 6.7 show LE1 for various

scenarios of running the DDLB algorithm.

6.5 Slack Bus Error

The role of the slack bus is to cover for any imbalance between the source and load

powers (and losses in the grid). Recall that the active power consumed by node i at

the time this error is being measured is Pi. Let Ps be the power at the slack bus. Let

N = {1, 2, . . . , n} − {Slack bus}. Let L ⊆ N be the set of nodes (buses) with Pi ≥ 0;

that is they consume power. Let S = N − L be the set of sources. Ideally the slack

power Ps = ∑
i

Pi (no counting power losses). The slack error is defined as

SE =

Ps − ∑
i∈N

Pi

2Max
(

∑
i∈L

Pi, ∑
i∈S

Pi

) (6.5.1)
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FIGURE 6.3: Average VE2 for various scenarios of the DDLB algorithm execution for
iteration 500-600

FIGURE 6.4: Average LE1 for various scenarios of the DDLB algorithm execution

Table 6.5 shows slack error for various scenarios. It is clear from the observations in

Table 6.5 that the slack error is not significantly different for the DDLB and one-shot

algorithms. For most cases the DDLB algorithm has a larger slack error. However, this
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TABLE 6.5: Slack error [%]

Scenario DDLB One-Shot

Balanced 93 94
Overloaded 80 69
Underloaded 77 77
Radial 1 90 90
Radial 2 85 80
Subgraph (Balanced) 92 94
Subgraph (Overloaded) 79 69
Subgraph (Underloaded) 75 77
Overall 84 83

error is a small price to pay for the vastly improved voltage stability due to the DDLB

algorithm.

6.6 Flexibility Variations

As detailed in Chapter 4 the DDLB algorithm uses a piecewise linear function to

capture the cost of loads and voltages, consistent with the flexibilities of their pro-

files. The algorithm uses these local costs to progress towards the solution. By setting

λi,−1 = λi,0 = λi,+1 or Vi,−1 = Vi,0 = Vi,+1, the flexibility can be eliminated (or ig-

nored) in the corresponding local cost function. We consider the four combinations

FIGURE 6.5: Average LE1 for various scenarios of the DDLB algorithm execution for
iteration 510–600
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FIGURE 6.6: Average LE1 for subgraph scenario of the DDLB algorithm execution

by considering load flexibility (LF = 1) or not (LF = 0) and considering the voltage

flexibility (VF = 1) or not (VF = 0).

FIGURE 6.7: Average LE1 for subgraph scenario of the DDLB algorithm execution for
iteration 510–600
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TABLE 6.6: Flexibility variations for balanced inputs

Average
of
measure
(%)

(LF,VF)=(0,0) (LF,VF)=(0,1) (LF,VF)=(1,0) (LF,VF)=(1,1) One-Shot

VE1 0.00 0.09 0.00 0.12 45.95
VE2 0.39 0.46 0.40 0.47 7.89
LE1 0.00 0.00 0.02 0.02 0.00
LE2 14.83 15.00 24.77 22.08 0.00
SE 185.88 186.64 185.88 186.64 193.27

TABLE 6.7: Flexibility variations for overloaded inputs

Average
of
measure
(%)

(LF,VF)=(0,0) (LF,VF)=(0,1) (LF,VF)=(1,0) (LF,VF)=(1,1) One-Shot

VE1 1.43 1.72 1.09 1.47 58.44
VE2 0.50 0.55 0.48 0.55 14.42
LE1 7.83 8.00 17.77 15.08 0.00
LE2 14.76 15.21 24.27 21.59 0.00
SE 161.37 161.95 161.25 161.83 138.86

For the balanced case (Table 6.6), there is really no significant difference between the

flexibility variation, except for LE2. The measure LE2 does not reward load flexibility,

so a larger LE2 for LF = 1 is understandable. Similarly in the underloaded case Table

6.8 the differences are insignificant. In the overloaded case, however, there are more

differences in LE1 and VE1 across flexibility variations.

Further study may be needed to see if the DDLB algorithm can automatically tran-

sition from one scenario to another, accounting for flexibility variations across these

transitions.

Figures 6.8 through 6.19 show the different flexibility variation based convergence

comparison graphs applied to balanced, overloaded and underloaded scenarios. Note

that "SUB" on the legend of each graph points to Subgraph. SUB=0 indicates subgraph

not used, SUB=1 indicates Subgraph used.
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TABLE 6.8: Flexibility variations for underloaded inputs

Average
of
measure
(%)

(LF,VF)=(0,0) (LF,VF)=(0,1) (LF,VF)=(1,0) (LF,VF)=(1,1) One-Shot

VE1 0.00 0.19 0.03 0.27 58.43
VE2 0.39 0.46 0.40 0.47 6.77
LE1 0.00 0.00 0.36 0.41 0.00
LE2 0.00 0.00 0.38 0.42 0.00
SE 156.43 156.04 156.34 155.95 154.87

FIGURE 6.8: VE2 for balanced inputs for iteration 0–150

FIGURE 6.9: VE2 for balanced inputs for iteration 100–600
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FIGURE 6.10: LE1 for balanced inputs for iteration 0–150

FIGURE 6.11: LE1 for balanced inputs for iteration 100–600

FIGURE 6.12: VE2 for overloaded inputs for iteration 0–150
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FIGURE 6.13: VE2 for overloaded inputs for iteration 100–600

FIGURE 6.14: LE1 for overloaded inputs for iteration 0–510

FIGURE 6.15: LE1 for overloaded inputs for iteration 510–600
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FIGURE 6.16: VE2 for underloaded inputs for iteration 0–150

FIGURE 6.17: VE2 for underloaded inputs for iteration 100–600

FIGURE 6.18: LE1 for underloaded inputs for iteration 0–300
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FIGURE 6.19: LE1 for underloaded inputs for iteration 250–600
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7

Conclusions

In this thesis we proposed a distributed algorithm based on diffusion to balance loads

on an electrical power grid, while maintaining stable operation. This algorithm is

called the Diffusion-driven Distributed Load Balancing (DDLB) algorithm. We im-

plemented the DDLB algorithm on the OMNET++ Discrete Event Simulator. The re-

sponse of the physical grid was simulated on a load flow program. Together, the OM-

NET++ and load flow programs simulated a deployment of the DDLB algorithm on

the grid.

Through extensive simulations of around 1.6 million input instances we showed the

superiority of the DDLB algorithm over a "one-shot" algorithm that balances loads

without regard for the system stability. We show that the DDLB algorithm was stable

for over 99% of the inputs tested. For the same set of inputs, the one-shot algorithm

produced a stable solution less than 43% of the time.

Our simulations included a study of several scenarios that a grid could be subjected

to. These include balanced, overloaded, underloaded, radially damaged and commu-

nication subgraphs. The last two scenarios represent cases where power sources were

disabled around a point, and one in which the communication network was substan-

tially compromised. In all these scenarios the DDLB algorithm outperformed the one-

shot algorithm.
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7.1 Future work

Several directions for future work arise from our study.

The first and foremost is tuning the DDLB algorithm for better performance. In par-

ticular, the flexibility variations of Section 6.6 should be integrated into a single algo-

rithm that automatically adjusts to the scenario at hand.

We have assumed the grid (load flow program) to respond fast (in time comparable

to one iteration of the DDLB algorithm). Thus the interaction between the compute

and grid planes is as shown in Figure 3.4 (see page 22). This is somewhat optimistic.

In reality, there will be a delay between the application of the the prescription from

the DDLB algorithm to the power grid (in our case the load flow program) and the

feedback received, and a reconciliation is needed to correct the error due to the de-

layed feedback. This is illustrated in Figure 7.1. At time t, the compute plane will

determine loads to be applied at time t + 1. The feedback of the application at time t

is not received until all the iterations are completed for time t + 1. Once the feedback

is received, the load values calculated are adjusted (reconciled), and then the (t + 1)th

values are applied.

Compute

Grid

compute all iterations of t+1

apply t

compute all iterations of t+2

apply t+1

Reconciliation

FIGURE 7.1: Actual time simulation

In a more interesting extension of the work, could the DDLB algorithm be con-

verted to a node-level neural network through deep-learning? Could its performance

be bounded by diffusion algorithms, for which analytical predictions on convergence

is possible?
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Appendix

The code for the DDLB load balancing algorithm is provided in this Appendix.

filename : distAlg.cc

#include "distAlg.h"

Define_Module(DistAlg)

void DistAlg::activity()
{

if(exec_once){ //run only once for entire network
doDiffCommunication = int(par("dodiffCommunication"));
zeroloadslack =int(par("zeroloadslack"));
zerovoltslack =int(par("zerovoltslack"));

if(getLinevals(par("line_filename"))){
callFinish();
endSimulation();

}

if(getBusvals(par("bus_filename"))){
callFinish();
endSimulation();

}

for(int i =0;i < NUM;++i){
loadCost[i]=0;

}

string c = par("bus_filename");
statsStream << basename((char*)c.c_str()) << ",";

singleRunLoadFlow(); // run once
exec_once = false;

}

_ID = getIndex();
_heardFromNeighbors=0;
_localLoadCost=0;
_vCost=0;
_lCost=0;
_degree = gateSize("gate$o");
powers[_ID]= stable_powers[_ID];
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uint flag=1;
bool init=true,

comm_active=true;

double sumLocalLoadcosts = 0,
sumLocalVoltcosts = 0;

//initialization
while(init){

++initcalls;
//doDiffCommunication = par("DIFF_COMM");
doDiffCommunication = int(par("dodiffCommunication"));

rpowers[_ID]=powers[_ID]*0.2; // 20% of active power set as
reactive power initially

calculateLocalLoadcost(_lCost,asked_power[_ID],powers[_ID]);

if(initcalls==NUM){
callMatlab();
++rounds;

}

for(uint k=_degree;k--;)
send(DistAlg::genMsg(powers[_ID]), "gate$o", k);

init=false;
}

while(comm_active){
msg = check_and_cast<valmsg *>(receive());

powers[_ID] = mat_powers_c[_ID];
calculateLocalLoadcost(_lCost,asked_power[_ID],powers[_ID]);

if(flag==0){
flag=1;
for(uint k=_degree;k--;)

send(genMsg(powers[_ID]), "gate$o", k);
}

if( flag ) { //hear from neighbours

if(doDiffCommunication){
if(rounds==1){ //coin toss for diff comm topology edge

drops
if(rand()%9 < 5){ //33% drop rate

sumLocalVoltcosts += Vscale(msg->getSrcVolt());
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sumLocalLoadcosts += (msg->getSrc()==slack_bus_ID)
? 0 : msg->getSrcLCost();

}else{
nbrToBeDroppedList.push_back(msg->getSrc());

}
}else{

if( find (nbrToBeDroppedList.begin(),
nbrToBeDroppedList.end(),

msg->getSrc())
!= nbrToBeDroppedList.end())

{}else{
sumLocalVoltcosts += Vscale(msg->getSrcVolt());
sumLocalLoadcosts += (msg->getSrc()==slack_bus_ID)

? 0 : msg->getSrcLCost();
}

}
}else{

sumLocalVoltcosts += Vscale(msg->getSrcVolt());
sumLocalLoadcosts += (msg->getSrc()==slack_bus_ID)

? 0 : msg->getSrcLCost();
}
++_heardFromNeighbors;

if(_heardFromNeighbors == _degree) {// heard from all nbrs
_heardFromNeighbors=0;

calculateLoadcost(loadCost[_ID],sumLocalLoadcosts
,_lCost);

calculateVoltagecost(_vCost,sumLocalVoltcosts);

calculateNewLoad(powers[_ID],rpowers[_ID],loadCost[_ID]
,_vCost);

resets(flag,sumLocalLoadcosts,sumLocalVoltcosts);

++nodesDone;
}

if(nodesDone == NUM) { // all nodes compute done
callMatlab();
++ rounds ;

if(rounds == RNDS) {
writetoFileandFinish();

}
flag=1;
calculateLocalLoadcost(_lCost,asked_power[_ID],

powers[_ID]);

for(uint k=_degree;k--;) //send to neighbours
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send(genMsg(mat_powers_c[_ID]), "gate$o", k);

nodesDone = 0;
}

}
delete msg;

}
}

valmsg* DistAlg::genMsg(double &Srcval){

valmsg *msg = new valmsg("");
msg->setSrc(_ID);
msg->setSrcValue(Srcval);
msg->setSrcVolt(real_volts[_ID]);
msg->setSrcLCost(_lCost);
return msg;

}

void DistAlg::calculateNewLoad(double &load, double &rpower,
const double &loadCost, const double

&voltCost){

double _loadScale,_voltScale,_closeToZero,
_maxLoadChangeFactor;

_loadScale = 50;
_voltScale = 30;
_maxLoadChangeFactor = 0.1;
_closeToZero = 0.0000001 ;

if(loadCost < 0) {
if(load>= -_closeToZero && load <=_closeToZero)

load = _closeToZero*10;
load += ( fabs(load) *

min(_maxLoadChangeFactor,(fabs(loadCost)/_loadScale))) ;
}

if(loadCost >= 0) {
if(load>= -_closeToZero && load <=_closeToZero)

load = -_closeToZero*10;
load -= (fabs(load) *

min(_maxLoadChangeFactor,(fabs(loadCost)/_loadScale)) );
}

if(voltCost > 0){
if(rpower>= -_closeToZero && rpower <=_closeToZero)

rpower = _closeToZero*10;
rpower += fabs(rpower)*(fabs(voltCost)/_voltScale) ;

}
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if(voltCost <= 0){
if(rpower>= -_closeToZero && rpower <=_closeToZero)

rpower = -_closeToZero*10;
rpower -= fabs(rpower)*(fabs(voltCost)/_voltScale) ;

}

}

void DistAlg::calculateLocalLoadcost(double &l_cost, const double
&tval, const double &load){

l_cost = Lscale(load,tval) ;
}

void DistAlg::calculateVoltagecost(double &v_cost, const double
&sum_local_voltcosts){

if(std::find(gens.begin(), gens.end(), _ID ) != gens.end())
v_cost = 0;

else
v_cost = degreeBasedAveraging(sum_local_voltcosts,

Vscale(real_volts[_ID]));
}

void DistAlg::calculateLoadcost(double &loadCost, const double
&sum_local_loadcosts, const double &l_lcost){

loadCost = degreeBasedAveraging(sum_local_loadcosts,l_lcost);
}

void DistAlg::endlOpenWriteCloseFile(string fileName,
std::stringstream& Stream){
Stream << endl;
ofstream myfile(fileName, ios::out | ios::app);
myfile << Stream.rdbuf();
myfile.close();

}

void DistAlg::writetoFileandFinish(){

//write to file
endlOpenWriteCloseFile("Stats_collection.csv",statsStream);
endlOpenWriteCloseFile("maxVoltError.csv",maxVoltStream);
endlOpenWriteCloseFile("avgVoltError.csv",avgVoltStream);
endlOpenWriteCloseFile("maxPerfLoadError.csv",maxPerfLoadStream);
endlOpenWriteCloseFile("avgPerfLoadError.csv",avgPerfLoadStream);
endlOpenWriteCloseFile("maxLoadVoltError.csv",maxLoadVoltStream);

callFinish();
endSimulation();

}
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double DistAlg::degreeBasedAveraging(const double &sumOfOthers,
const double &ownValue){
double a = 27/2,

b = 3/2,
f_degree = 1 + a/pow(b,_degree);

return (sumOfOthers + ( f_degree*ownValue ))
/(_degree + f_degree);

}

double DistAlg::Vscale(const double &val){ // local voltage cost
actually

double a,b,c,Delta,Delta1,C,del,del1,del2,del3,del4;
C=2; //scaling from slope 2 to 3
del=0.01;
del1 = del2 = del3 = del4 =del;
c=max_volt[_ID];
a=min_volt[_ID];
b=bus[NUM + _ID]; //ideal voltages

Delta = dynamicDelta(0.5,1.2);
Delta1 = dynamicDelta(0.25,0.6);

return
GenericScale(a,b,c,Delta,Delta1,C,del1,del2,del3,del4,val);

}

double DistAlg::Lscale(const double&val,const double&tval){ //
local LOAD cost
double a,b,c,Delta,Delta1,C,alpha,del1,del2,del3,del4;
C=2;
alpha = 0.10;
c=max_power[_ID];
a=min_power[_ID];

if(a==0)
del1 = del2 = fabs(c-a)/10;

else
del1 = del2 = fabs(alpha*a);

if(c==0)
del3 = del4 = fabs(c-a)/10;

else
del3 = del4 = fabs(alpha*c);

b=tval; //ideal voltages

Delta = dynamicDelta(0.05,0.2);
Delta1 = dynamicDelta(0.2,0.6);
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return
GenericScale(a,b,c,Delta,Delta1,C,del1,del2,del3,del4,val);

}

double DistAlg::GenericScale(const double& a,const double&b,const
double&c,

const double&Delta,const double&Delta1,
const double&C,
double &del1,double &del2,double &del3,double

&del4,
const double&val
) {

double
out,a1,c1,s1,ya,yc,s2,gammab,gammac,gammad,gammae,s3,s4,s5;

a1=a - del2;
c1=c + del3;

if(c==b && b==a)
s1 =0;

else
s1=fabs(Delta/max(fabs(c-b),fabs(b-a))); //line b

ya=s1*(b-a);
yc=s1*(c-b);

if(del1 == 0)
del1 = 0.1;

s2 = (Delta1 / del1); //line a
gammab = -ya;

s3 = (C*s2) ; //line c
gammac = -ya - Delta1;

if(del3 == 0)
del3 = 0.1;

s4 = (Delta1 / del3);
gammad = yc ;

s5 = (C*s4);
gammae = yc + Delta1 ;

if(val < a1)
out=s3*((val)-a1) + (gammac);

else if(val >= a1 && val < a)
out=s2*((val)-a) + (gammab);

else if(val >= a && val < c)
out =s1*((val)-b);

else if(val >= c && val < c1)
out=s4*((val)-c) + (gammad);

else // > c1
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out=s5*((val)-c1) + (gammae);

return out;
}
void DistAlg::resets(uint&flag, double&sum_local_loadcosts,

double&sumvoltcosts){

flag=0;
sum_local_loadcosts = 0;
sumvoltcosts = 0 ;

}

double DistAlg::dynamicDelta(double first, double last){
return (last-first)*(matlabCallCount+1)/RNDS + first;

}

void DistAlg::callMatlab() {
loadFlowSolution();

}

filename : distAlg.h

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <omnetpp.h>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <fstream>
#include "valmsg_m.h"
#include <vector>
#include <tuple>
#include <algorithm>
#include <map>
#include <libgen.h>
#include <helperfunctions.h>

extern "C" {
#include <matlabrun.h>

}

#define STACKSIZE 262144

typedef std::vector<int> vectorInt;
const int NUM = 30;
const int lineNUM = 40;
const int SETWIDTH = 14;
const int RNDS = 600;
const vectorInt printRounds = {1,150,300,450,600};
using namespace std;
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class DistAlg : public cSimpleModule
{
private:
enum BusType {slack=1,gen,load};

valmsg *msg;
vectorInt nbrToBeDroppedList;
bool doDiffCommunication ,

zeroloadslack,
zerovoltslack;

uint _ID,
_heardFromNeighbors,
_degree;

double _localLoadCost,
_vCost,
_lCost;

public:
DistAlg() : cSimpleModule(STACKSIZE) {}
~DistAlg();
virtual void activity();
virtual valmsg* genMsg(double &Srcval);
void calculateNewLoad(double &load,double &rpower,const double

&loadCost,const double &voltCost);
void calculateLocalLoadcost(double &l_cost,const double

&tval,const double &load);
void calculateVoltagecost(double &v_cost,const double &sumvolts);
void calculateLoadcost(double &loadCost,const double

&sum_local_loadcosts,const double &l_lcost);
void writetoFileandFinish();
void

resets(uint&flag,double&sum_local_loadcosts,double&sumvolts);
double degreeBasedAveraging(const double &sumOfOthers, const

double &ownValue);
double Vscale(const double&val);
double Lscale(const double&val, const double&tval);
double GenericScale(const double& a,const double&b,const

double&c,const double&Delta,
const double&Delta1,const double&C,double &del1,
double &del2,double &del3,double &del4,const

double&val
);

void endlOpenWriteCloseFile(string fileName, std::stringstream
&Stream);

double dynamicDelta(double first, double last);
void callMatlab();
int findnoofGensAndSlack(int len, BusType type);
int getBusvals(const std::string &input);
int getLinevals(const std::string &input);
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void initializeBusParameters(double *bus, double *powers, double

*rpowers,
uint slack_bus_ID, double &genSum, double

&loadSum);
void maxAndAvg(double &max, double value, double &avg);
void loadFlowSolution();
void singleRunLoadFlow();

};

DistAlg::~DistAlg()
{}

double single_run_slack;
bool exec_once = true;
double bus[NUM*10];
double max_volt[NUM],min_volt[NUM],

max_volt_meas[NUM],min_volt_meas[NUM],
max_power_meas[NUM],max_power[NUM],
min_power_meas[NUM],min_power[NUM],
asked_power[NUM],stable_powers[NUM],
linefull[lineNUM*7];

double M,L,Slack_error,Slack_error_percentage;
double Va,Vm,V1,V2;
std::vector<int> gens;
std::vector<int>::iterator it;
uint no_Of_Gens=0; //includes slack bus
uint no_Of_slack=0;
int slack_bus_ID;
uint iter=0;

double maxPerfLoadError_Buffer[RNDS];
double loadAt600Iter =0 ,

loadAtPresent=0;

double bus_sol[NUM*10];
bool _getBusValsDone=false;
bool _getLineValsDone=false;
uint matlabCallCount = 0,

nodesDone = 0,
rounds = 0,
initcalls = 0;

string st[]={"Voltage |","Voltage Cost
|","localloadCost|","loadCost |",

"React_Powers |","Powers |"," %PowerError"," |
%Perf_PowerError"};

double powers[NUM], rpowers[NUM],
mat_powers_c[NUM],real_volts[NUM],loadCost[NUM];
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std::stringstream avgVoltStream;
std::stringstream maxVoltStream;
std::stringstream maxPerfLoadStream;
std::stringstream avgPerfLoadStream;
std::stringstream maxLoadVoltStream;
std::stringstream statsStream;

int DistAlg::findnoofGensAndSlack(int len, BusType type){
for (int i = 0; i < len; ++i){

if (bus[NUM*9 + i] == type) {
if(type == 1){
++no_Of_slack;
gens.push_back(i);
return i;
}else{

++no_Of_Gens;
gens.push_back(i);
}

}
}
return 0;

}

int DistAlg::getBusvals(const std::string& input){
if(!_getBusValsDone){
std::ifstream ifs(input);
if(!ifs.good()){

cout << " ################ error opening bus_values_file
###############" << endl;

return 1;
}
for(uint i=0;i<NUM;++i){
bus[NUM*2 + i]= bus[NUM*3 + i]= bus[NUM*4 + i]= bus[NUM*7 +

i]= bus[NUM*8 + i]= 0 ;
}
std::string line;
int num=0;
// double dummy;
while(std::getline(ifs, line)){ // read one line from ifs

std::istringstream iavgVoltStream(line); // access line as
a stream

iavgVoltStream >> bus[num] >> bus[NUM + num] >>
max_volt[num]

>> min_volt[num] >> asked_power[num]
>> max_power[num] >> min_power[num] >> bus[NUM*9 +

num] >> stable_powers[num];
max_power_meas[num]=max_power[num];
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min_power_meas[num]=min_power[num];
max_volt_meas[num]=max_volt[num];
min_volt_meas[num]=min_volt[num];

if(!zeroloadslack){
max_power[num] = asked_power[num];
min_power[num] = asked_power[num];

}

if(!zerovoltslack){
max_volt[num] = bus[NUM + num];
min_volt[num] = bus[NUM + num];

}

++num;
}
slack_bus_ID = findnoofGensAndSlack(NUM,slack); //find slack

ID
findnoofGensAndSlack(NUM,gen); //find gen ID’s
_getBusValsDone = true;

}
return 0;

}

int DistAlg::getLinevals(const std::string& input){
if(!_getLineValsDone){
std::ifstream ifs(input);
if(!ifs.good()){

cout << " ################ error opening
line_values_file ###############" << endl;

return 1;
}
std::string l1;
int num=0;
while(std::getline(ifs, l1)){ // read one line from ifs

std::istringstream iavgVoltStream(l1); // acceavgVoltStream
line as a stream

iavgVoltStream >> linefull[num] >> linefull[lineNUM + num] >>
linefull[lineNUM*2 + num]
>> linefull[lineNUM*3 + num] >> linefull[lineNUM*4 + num]
>> linefull[lineNUM*5 + num] >> linefull[lineNUM*6 + num] ;

++num;
}
_getLineValsDone = true;

}
return 0;

}

void DistAlg::initializeBusParameters(double *bus,double

*powers,double *rpowers,
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uint slack_bus_ID,double &genSum,double
&loadSum){

genSum = 0;
loadSum = 0;

for(uint i=0;i<NUM;i++){
if (bus[NUM*9 + i] == 3.0){

bus[NUM*5 + i] =powers[i];
bus[NUM*6 + i] =rpowers[i];
bus[NUM*3 + i] = bus[NUM*4+i] =0;

}else{
bus[NUM*3 + i] =-powers[i];
bus[NUM*4 + i] =-rpowers[i];
bus[NUM*5 + i] = bus[NUM*6+i] =0;

}

if(bus[NUM*5+i]-bus[NUM*3+i] < 0)
loadSum+=bus[NUM*5+i]-bus[NUM*3+i];

else{
if(i != slack_bus_ID)

genSum +=bus[NUM*5+i]-bus[NUM*3+i];
}

}
}

void DistAlg::maxAndAvg(double &max,double value,double& avg){
if(fabs(max) < fabs(value))

max = value;
avg += fabs(value);

}

void DistAlg::loadFlowSolution()
{

initializeBusParameters(bus,powers,rpowers,slack_bus_ID,M,L);

matlabrun(bus,linefull,no_Of_Gens,NUM,slack_bus_ID+1,
lineNUM,no_Of_slack,bus_sol);

++matlabCallCount;

double maxVoltError=0,
avgVoltError=0,
myVoltError =0 ,
loadError=0,
perfLoadError=0,
maxLoadError=0,
avgLoadError=0,
maxPerfLoadError=0,
avgPerfLoadError=0,
maxLoadVoltError=0,
loadVoltError=0,
avgLoadVoltError=0,
maxVolt=0,
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avgVolt=0,
voltCorr=0,
reactMax=0,
reactAvg=0,
rpower=0,
pass;

for(int i=0;i<NUM;i++){
mat_powers_c[i] = bus_sol[NUM*5 + i] - bus_sol[NUM*3 + i];
// rpower = bus_sol[NUM*6 + i] - bus_sol[NUM*4 + i];
real_volts[i] = bus_sol[NUM + i];
myVoltError = (real_volts[i]>max_volt_meas[i])?(real_volts[i]

- max_volt_meas[i]) : (
(real_volts[i]<min_volt_meas[i]) ?

(real_volts[i] - min_volt_meas[i]) : 0 );
if(i==slack_bus_ID){

perfLoadError=0;
loadError=0;

}else{
if(asked_power[i] == 0)

loadError= (mat_powers_c[i]-asked_power[i]) ;
else

loadError= (mat_powers_c[i]-asked_power[i]) /
(asked_power[i])*100 ;

if((max_power_meas[i] * min_power_meas[i]) ==0){
perfLoadError=(mat_powers_c[i]>max_power_meas[i])

?((mat_powers_c[i] - max_power_meas[i] )): (
(mat_powers_c[i]<min_power_meas[i])

? (( mat_powers_c[i] - min_power_meas[i]
)) : 0 );

}else{
perfLoadError=(mat_powers_c[i]>max_power_meas[i])

?((mat_powers_c[i] - max_power_meas[i]
)/max_power_meas[i]*100 ): (

(mat_powers_c[i]<min_power_meas[i])
? (( mat_powers_c[i] - min_power_meas[i]

)/min_power_meas[i]*100) : 0 );
}

}

loadVoltError = myVoltError*perfLoadError;
voltCorr = real_volts[i] - 1;
maxAndAvg(maxVolt,voltCorr,avgVolt);
maxAndAvg(maxLoadVoltError,loadVoltError,avgLoadVoltError);
maxAndAvg(maxVoltError,myVoltError,avgVoltError);
maxAndAvg(maxLoadError,loadError,avgLoadError);
maxAndAvg(maxPerfLoadError,perfLoadError,avgPerfLoadError);
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}

reactAvg /= NUM;
avgVolt /= NUM;
avgVoltError /= NUM;
avgLoadError /= NUM;
avgPerfLoadError/= NUM;

Va = avgVoltError;
Vm = maxVoltError;

Slack_error= fabs(mat_powers_c[slack_bus_ID]) - fabs(M-L);
Slack_error_percentage = (Slack_error)*100/max(fabs(M),fabs(L));

maxPerfLoadError_Buffer[matlabCallCount - 1] = maxPerfLoadError;

maxVoltStream << maxVoltError << ","; //save to maxvoltStream
avgVoltStream << avgVoltError << ","; //save to avgvoltStream

maxPerfLoadStream << maxPerfLoadError << ",";
avgPerfLoadStream << avgPerfLoadError << ",";

maxLoadVoltStream << maxLoadVoltError << ","; //load*volt error

if(find (printRounds.begin(), printRounds.end(),
matlabCallCount) != printRounds.end()){
statsStream.precision(5);
statsStream << std::fixed

//<< std::cout << std::setprecision(5)
<< Slack_error_percentage << ","
<< (mat_powers_c[slack_bus_ID]) << ","
<< maxVoltError << ","
<< avgVoltError << ","
<< (Vm/V1) << ","
<< (Va/V2) << ","
<< maxVolt << ","
<< avgVolt << ","
<< maxLoadVoltError << ","
<< maxLoadError << ","
<< avgLoadError << ","
<< maxPerfLoadError << ","
<< avgPerfLoadError << ","

;
}

if(matlabCallCount == RNDS)
{

double reactAvg =0 ;
for(int i=0;i<NUM;i++)
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{
//mat_powers_c[i] = bus_sol[NUM*5 + i] - bus_sol[NUM*3

+ i];
rpower = bus_sol[NUM*6 + i] - bus_sol[NUM*4 + i];
if(bus_sol[9+i] != 1)

reactAvg += fabs(rpower);
}
reactAvg /= NUM;

for(int j=(RNDS-1);j>=0;j--){
if((fabs(maxPerfLoadError_Buffer[j])) //5% error in value

> (0.95 * (fabs(maxPerfLoadError)) ) ){
statsStream << j << ",";
statsStream << reactAvg << ",";
break;

}
}

}
}

void DistAlg::singleRunLoadFlow()
{

uint _percentage;
double overallMinimumMaxVolt=20;
double maxVolt,optimumRpowerPercentage=20;
double avgVolt=0;
uint _count=0;
_percentage = 0;
double voltCorr;

double avgLoad=0;
double load=0;
double maxVoltError=0, avgVoltError=0, voltError=0;

do{
maxVolt = 0 ;
avgVolt = 0;
for(uint i=0;i<NUM;i++){

rpowers[i] = asked_power[i]*_percentage/100;
}
initializeBusParameters(bus,asked_power,rpowers,

slack_bus_ID,M,L);
matlabrun(bus,linefull,no_Of_Gens,NUM,slack_bus_ID+1,

lineNUM,no_Of_slack,bus_sol);

avgLoad = 0;
for(uint i=0;i<NUM;++i){

load = bus_sol[NUM*5 + i] - bus_sol[NUM*3 + i];
avgLoad += load;
voltCorr = bus_sol[NUM + i] - 1;
maxAndAvg(maxVolt,voltCorr,avgVolt);
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}

avgLoad/=NUM;

if(is_valid(maxVolt) && is_valid(avgLoad) &&
(fabs(overallMinimumMaxVolt) > fabs(maxVolt) ) ){
overallMinimumMaxVolt = maxVolt;
optimumRpowerPercentage = _percentage;

}

_percentage+=10;

}while(++_count < 6);

_percentage = optimumRpowerPercentage ;

for(uint i=0;i<NUM;i++){
rpowers[i] = asked_power[i]*_percentage/100;

}

initializeBusParameters(bus,asked_power,rpowers,
slack_bus_ID,M,L);

iter = matlabrun(bus,linefull,no_Of_Gens,NUM,slack_bus_ID+1,
lineNUM,no_Of_slack,bus_sol);

single_run_slack = bus_sol[NUM*5+slack_bus_ID] -
bus_sol[NUM*3+slack_bus_ID];

Slack_error= fabs(single_run_slack) - fabs(M-L);
Slack_error_percentage = (Slack_error)*100/max(fabs(M),fabs(L));

maxVoltError=0, avgVoltError=0, voltError=0;
avgVolt=0;
maxVolt=0;

for(uint i=0;i<NUM;++i){
voltError = bus_sol[NUM + i] - bus[NUM + i];
maxAndAvg(maxVoltError,voltError,avgVoltError);
voltCorr = bus_sol[NUM + i] - 1;
maxAndAvg(maxVolt,voltCorr,avgVolt);

}
avgVolt/=NUM;
avgVoltError /= NUM;
V2 = avgVoltError ;
V1 = maxVoltError ;

statsStream
<< Slack_error_percentage << ","
<< single_run_slack << ","
<< optimumRpowerPercentage << ","
<< V1 << ","
<< V2 << ","
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<< maxVolt << ","
<< avgVolt << ","
<< M << ","
<< L << ","

;

maxVoltStream << V1 << ",";
avgVoltStream << V2 << ",";

}
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