
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2017

Network Performance Analysis Using Cisco VIRL
Charitra Maharjan
Louisiana State University and Agricultural and Mechanical College, charitra.maharjan1@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Maharjan, Charitra, "Network Performance Analysis Using Cisco VIRL" (2017). LSU Master's Theses. 4510.
https://digitalcommons.lsu.edu/gradschool_theses/4510

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/4510?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

NETWORK PERFORMANCE ANALYSIS USING CISCO VIRL

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirement for the degree of

Master of Science

in

The Division of Electrical and Computer Engineering

by

Charitra Maharjan

B.E., Advanced College of Engineering and Management, 2013

August 2017

ii

ACKNOWLEDGEMENTS

Dr. Suresh Rai, Prof. of Electrical and Computer Engineering, has been the inspirational

and wonderful person who introduced me to the world of Computer Networks. I sincerely thank

him for the opportunity to work with him. I would also like to appreciate for his moral support and

immense guidance towards my completion of master’s program.

My sincere thanks go to Dr. Bijay Karki, Prof. and Chair of Computer Science, and Dr.

Xuebin Liang, Prof. of Electrical and Computer Engineering, for their consent to be the committee

members and for their valuable suggestions in improving this document.

Deepest gratitude to my parents Mr. Gyan Bahadur Maharjan and Mrs. Ratna Maya

Maharjan, and to my host family in USA for their love, and blessing. I sincerely thank my dear

brothers Vigyan Maharjan and Prabhat Maharjan for all the moral support and inspiration.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS…………………………………………………………………........ii

LIST OF FIGURES……………………………………………………………………………....v

LIST OF ABBREVIATIONS…………………………………………………………………....ix

ABSTRACT………………………………………………………………………………….…..x

1. INTRODUCTION.….………………………………………………………………………...1

1.1 TCP/IP Suite..………………………………………………………………………....1

1.2 Motivation and Thesis Goal.………………………………………………….............4

1.3 Thesis Layout.………………………………………………………………………...6

2 QUALITY OF SERVICE AND PERFORMANCE TOOL …………………………………7

2.1 QoS Parameters ………………………………………………………………..…....7

2.1 Resources Limitation.………………………………………………………………..9

2.2 QoS Aware Networks……………………………………………………………….12

2.3 QoS in IP………………………………………………………………..…………..14

2.4 Iperf…………………………………………………………………………………15

2.5 Objectives and Benefits……………………………………………………………..16

3 VIRTUAL INTERNET ROUTING LAB (VIRL)……………………………………….…18

3.1 VM-Maestro………………………………………………………………………...18

3.2 Management Access………………………………………………………………...19

3.2 Conclusion ……………………………………………………………………...…..23

4 IMPLEMENTATION………………………………………………………………………24

4.1 Creating a New VIRL Topology……………………………………………..………24

4.2 Packet Capture with Wireshark………...………………………………………….....29

4.3 TCP Tuning …………….………………………………….……………………..….32

4.4 UDP Tuning……………..…………………………………….………………….….35

4.5 Conclusion ………………………………………………………………………..….37

5 RESULTS AND ANALYSIS………………………………………..…………………..…..38

5.1 Local Area Network (LAN)………………………………………………….....……38

5.2 Wide Area Network (WAN)……………………………………………………..…...51

5.3 Effect of TCP on Real Time Traffic.………………………………………………,,..57

5.4 Conclusion …………………………………………………………………………...66

6 DISCUSSION AND FUTURE WORK ……………………………………………………..67

REFERENCES…………………………………………………………………………………..70

iv

APPENDIX A. IPERF GUIDE AND SAMPLE CODE FOR LIVE PACKET CAPTURE……72

APPENDIX B. TOPOLOGIES FOR LAN, WAN AND REAL TIME TRAFFICS…………....75

APPENDIX C. SUPPORTING GARPHS FOR LAN, WAN AND REAL TIME TRAFFICS...79

VITA……………………………………………………………………………………………..85

v

LIST OF FIGURES

1.1 TCP/IP protocol suite…………………………………………………………….………2

1.2 TCP header format………………………………………………….………………..…..3

1.3 UDP header format……………………………………………………..………………..4

2.1 Jitter explained…………………………………………………………………….……..8

2.2 A simple client-server model………………………………………………..…….……..16

3.1 VM-Maestro…………………………………………………………………………...…18

3.2 Private simulation network……………………………………….………….……..…….20

3.3 Private project network………………………………………………………….……….21

3.4 Shared flat network……………………………….………………………….…………..22

4.1 Typical nodes in a VIRL…………………………………………………………………24

4.2 A simple topology…………………………..……………………………………………25

4.3 External terminal application……………………………..……………………………...28

4.4 Live packet capture…………………………………………….…………..…………….32

4.5 TCP client………………………………………………………………………..………34

4.6 TCP server……………………………………………………………………………….34

4.7 UDP client……………………………………………………………………………….36

4.8 UDP server……………………………………………………………………………....36

5.1 Login client using Putty…………………………………………………………….……38

vi

5.2 Captured file……………………………………………………………….……………..41

5.3 Packet loss ratio verses parallel TCP connection…………………………………………42

5.4 Throughput vs parallel TCP connection from (a) 10KB to 85KB (b) 85KB to 200KB….43

5.5 Jitter verses datagram size………………………………………………………………..46

5.6 Jitter verses datagram size for different parallel connection at 64Kbps………………….49

5.7 Packet loss ratio verses datagram size for different parallel connection at 64kbps……….50

5.8 Packet loss ratio verses parallel TCP connection……………………………………..….52

5.9 Throughput verses parallel TCP connection for window size from 10KB to 85KB………52

5.10 Throughput verses parallel TCP connection for window size from 85KB to 200KB……53

5.11 Jitter verses datagram in UDP traffic…………………………………………………….54

5.12 Packet loss ratio verses datagram for different parallel connection at 64Kbps…………..56

5.13 Jitter verses datagram for different parallel connection at 64Kbps………………………56

5.14 Jitter verses data rate at 576B of datagram size…………………………………………..58

5.15 Packet loss ratio verses data rate at 576B of datagram size………………………………59

5.16 Jitter verses parallel TCP at 128Kbps………………………………………………..…..59

5.17 Packet loss rate verses parallel TCP at 128Kbps……………………………………..….60

5.18 Jitter verses data rate for 80B of datagram size……………………………………….….61

5.19 Packet loss ratio verses data rate for 80B of datagram size………………………………62

5.20 Jitter verses parallel TCP at 8Kbps……………………………………………………….63

vii

5.21 Packet loss ratio verses parallel TCP at 8Kbps…………………………………………...63

5.22 Throughput verses parallel TCP from 16KB to 128KB window size…………………….64

5.23 Packet loss ratio verses parallel TCP from 16KB to128KB window size……………..…65

5.24 Throughput verses parallel TCP at different latency………………………………..……66

B1.1 Topology used for TCP…………………………………………………………………..75

B1.2 Topology used for UDP…………………………………………………………………..75

B1.3 Topology used to observe the effect of TCP/UDP……………………………………….76

B2.1 A single topology used for WAN…………………………………………………………77

B3.1 Topology used for voice and video traffic……………………………………………….78

B3.2 Topology used for web browsing traffic…………………………………………………78

C1.1 Jitter and packet loss ratio with datagram at 512Kbps (LAN)……………………………79

C1.2 Jitter and packet loss ratio with datagram at 2Mbps (LAN)……………………………..79

C2.1 Jitter and packet loss ratio with datagram at 512Kbps (WAN)……………………….….80

C2.2 Jitter and packet loss ratio with datagram at 2Mbps (WAN)…………………………….80

C3.1 Jitter and packet loss ratio with datagram at 512Kbps (Video)…………………………...81

C3.2 Jitter and packet loss ratio with datagram at 2Mbps (Video)……………………………..81

C4.1 Jitter and packet loss ratio with datagram at 16Kbps (Voice)…………………………….82

C4.2 Jitter and packet loss ratio with datagram at 32Kbps (Voice)………………………..…..82

C4.3 Jitter and packet loss ratio with datagram at 64Kbps (Voice)………………………...…83

viii

C5.1 Throughput verses parallel TCP at 120ms and 100ms latency………………………..…84

C5.2 Throughput verses parallel TCP at 80ms and 60ms latency…………………………..…84

ix

LIST OF ABBREVIATIONS

API - Application Program Interface

AS - Autonomous System

BGP - Broader Gateway Protocol

CDP - Cisco Discovery Protocol

DNS - Domain Name Servers

GNS3 - Graphical Network Simulator

GUI - Graphical User Interface

HTTP - Hyper Text Transfer Protocol

IP - Internet Protocol

LAN - Local Area Network

LXC - Linux Container

MSS - Maximum Segment Size

MTU - Maximum Transmission Unit

OS - Operating System

OSI - Open System Interconnection

OSPF - Open Shortest Path First

PACP - Packet Capture

QoS - Quality of Service

SCP - Secure Copy

SMTP - Simple Mail Transfer Protocol

SSH - Secure Shell

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

VoIP - Voice Over IP

VIRL - Virtual Internet Routing Lab

WAN - Wide Area Network

x

ABSTRACT

 This thesis provides a detailed analysis of the effects of TCP and UDP traffic over a LAN

and WAN medium. In addition, it also analyses some real time applications like audio, video and

web browsing that is affected by TCP traffic while sharing a bottleneck node and/or link resources.

 As network industry is growing continuously, the network administrator should be aware

of TCP and UDP traffic that is traversing through their network. The analysis and monitoring of

the traffic is crucial as it directly affects the performance of the network. Finding a cause for the

poor performance of the network is quite important because it gives an idea to troubleshoot and

resolve the issues effectively.

 In this thesis, we have created topologies using Cisco’s Virtual Internet Routing Lab

(VIRL) [7]. They replicate an organizational infrastructure with client-server environment in LAN

and WAN. Routing protocols such as OSPF and BGP are used to mimic the real world internet. A

built-in LXC-iperf tool is used to generate the TCP and UDP traffic. During the generation of the

traffic, various parameters are changed or controlled to see their effect on the network

performance. As a learning and informative research, this thesis considers several Quality of

Service (QoS) parameters that characterize the performance of an overall network.

 In particular, this thesis obtains packet loss, throughput, and jitter as QoS parameters when

the resource has both TCP and UDP traffics simultaneously. We have examined, the effects on (i)

TCP throughput and packet loss and (ii) UPD packet loss and jitter of (a) real time audio, (b) video,

and (c) web browsing applications. These parameters examine how the traffic be manipulated to

keep minimum packet loss, minimum jitter and maximum throughput. It is needless to say that all

are competing with each other (TCP/UDP traffic) for sharing bottleneck resources. We have used

a sample time of 15 seconds for each of our experimental results presented in this thesis.

xi

 Our analysis shows that the best performance of the real time video and audio application

is obtained when we select large size packet but its size being less than MTU of the link (without

reducing the data rates). Similarly, in case of web browsing, we notice that throughput increases

by increasing the window size and decreasing the latency. Efficient outcomes with the traffic

analysis are achieved only if the experiments are carried out with adequate amount of attention.

Overall, this work has provided us a great learning opportunity in the area of network performance

using Cisco’s VIRL tool.

1

1. INTRODUCTION

 An organizational network traffic, particularly the TCP and UDP, should be reviewed and

analyzed to satisfy and improve the performance. It also helps to improve Quality of service (QoS)

of real time applications as they share a bottleneck node and/or link. This chapter deals with the

basic concept of network traffic analysis and provides a brief layout of the thesis.

1.1 TCP/IP Suite

It is a conceptual model [9]. It consists of set of protocols that are implemented on the

Internet and other similar computer networks. It defines how the data should be “packetized,

addressed, transmitted, routed and received” [9] during the communication between a source and

a destination. Internet Engineering Task Force (IETF [9]) maintains the technical standards of

Internet protocol suite and many of its constituent protocols. It is developed prior to the Open

System Interconnection (OSI) model. A typical model of the TCP/IP suite is shown in Figure 1.1.

It consists of following layers.

a. Application Layer: It allows an access to the network resources and uses transport layer

protocol to handle the data.

b. Transport Layer: This layer reliably delivers the message from process-to-process and also

helps to recover the error. In other words, it is the backbone to dataflow between two hosts.

c. Network Layer: It helps to move packets from source to destination. The movement generally

means routing of data over the network.

d. Link Layer: It is responsible for the hop-to-hop delivery of the data packet. Both NIC (Network

Interface Card) and device drivers help to manage the communication.

2

Figure 1.1: TCP/IP protocol suite [22]

1.1.1 Transmission Control Protocol (TCP)

It is a connection oriented protocol [28]. A connection is not broken until an application

program has not completed messages exchange at each end. To avoid resource hogging, TCP

carries the larger data as smaller packets and maintains the integrity of data at the destination node.

Virtual ports are used not only to create virtual end-to-end connection but also to reuse the physical

connection between two computers. Data field of Internet Protocol (IP) encapsulates TCP, which,

in turn, encapsulates the higher level protocol such as Simple Mail Transfer Protocol (SMTP –

3

Email), Domain Name Server (DNS), Hyper Text Transfer Protocol (HTTP -web), and other

protocols. A TCP header format is shown in Figure 1.2.

Figure 1.2: TCP header format [22]

1.1.2 User Datagram Protocol (UDP)

The UDP does not provide a reliable service. It also does not guarantee the delivery and

protection of packets. It does not establish an end-to-end connection between the communicating

end systems. Applications that run under the UDP send datagram at link rate of the interface. Thus,

they need to be designed effectively in the sense that they should not contribute to the congestion

by pumping data greater than the capacity of bottleneck node and/or link.

 In addition, the UDP does not provide any security over point-to-point and end-to-end

communication. The application and lower layers are responsible for the it. In a typical case, it is

4

achieved by using an additional protocol mechanism in order to protect the communication against

message forgery, tampering or eavesdropping [23]. The UDP header format is shown in Figure

1.3.

Figure 1.3: UDP header format [23]

1.2 Motivation and Thesis Goal

Many real time applications such as audio, video, web browsing etc. are available for

practical and experimental uses over the Internet. It is increasing the network activity both in terms

of the TCP/UDP traffic and the number of real time applications. Unfortunately, the mechanism

that guarantees the Quality of Service (QoS) for a real time application has not yet been developed

yet [1].

Today, all applications that we use are carried either in the form of TCP traffic or UDP

traffic. A study has shown that more than 80 percent of the Internet’s bandwidth is consumed by

the TCP based applications such as FTP, HTTP etc. [1]. Although TCP and UDP based

applications are increasing rapidly, there is no such mechanism which can guarantee the QoS of

applications. Therefore, an application need to tolerate some degradation of QoS in terms of jitter,

throughput and packet-loss for the data that are transmitted over LAN or WAN network [1].

5

UDP is a simpler transport layer protocol in comparison with TCP as it does not require a

prior connection set up, retransmission, and flow control mechanism. Thus, it can be tooled to suite

the retransmission and flow control schemes of an application. It also performs multicast

communication, which is essential for teleconferencing [1].

When the bandwidth of an Internet is shared by the UDP and TCP protocols, the presence

of one traffic affects the performance of the other. It is even more severe, when the connections

share a bottleneck link/node. Not only the UDP packet-loss and jitter but also the TCP throughput

and packet-loss are greatly affected by the presence of other TCP traffic and its flow control

mechanism. Note, under TCP flow control, packets are retransmitted whenever packets are lost

due to the congestion of network that further affect the QoS parameters.

The productivity of a company declines if the network is down even for a small period of

time. Further, the essential services from public service division will be compromised. In order to

avoid security breaches within the network, a network administrator needs to monitor the

performance and traffic movement frequently throughout the network.

This thesis is inspired by such network traffic issues and is a step in the direction of

understanding the network traffic. Essentially, a constant striving also becomes a key motivation

factor in order to maintain the smooth operation within a network.

The main goal of this thesis is to investigate possible ways in order to improve the quality

of service of the TCP and UDP traffic even in the presence of other heavy TCP traffic. In particular,

this thesis studies the effect of the presence of TCP traffic on the jitter and packet-loss in UDP. In

addition, it provides some idea on how does the TCP traffic affect the throughput and packet-loss

ratio of any other TCP traffic while all are sharing a bottleneck network resource. Finally, this

6

thesis focuses on the study of some real time TCP and UDP traffic in terms of degradation in the

quality of services like throughput, packet-loss, and jitter. In order to achieve our goal, we have

used the Cisco’s Virtual Internet Routing Lab (VIRL) platform. This provides virtual network

devices (routers, switches), operating system, traffic generators and other relevant tools like Iperf

to help experiment of our ideas. In addition, Wireshark [24] is used to capture packets which is

analyzed to determine the packet loss ratio and verify the throughput of the network.

1.3 Layout of the Thesis

The layout of the thesis is as follows: Chapter 2 reviews the concept of quality of service

(QoS) in detail. Chapter 3 deals with the Cisco’s latest network simulation platform VIRL. Chapter

4 discusses some related work on the implementation topic. Chapter 5 starts with building a

topology and provides various results that are obtained during the research. Chapter 6 presents a

discussion about the importance of our work and narrates challenges that we faced during the

experimentation. It also concludes the work with a discussion on the possible enhancements in

future.

Appendices are included to supplement the thesis work. For example, Appendix A provides

the description of tools that we have used in this thesis. It also consists of Iperf use and its short

guide. A sample code that helps capture live packets is given too. Appendix B consists of various

topologies that we have considered in our thesis work. Finally, Appendix C provides some

additional graphs in support of our results.

7

2. QUALITY OF SERVICE AND PERFORMANCE TOOL

In the client-server system an application running on a client exchanges information with

that on a server. The data submitted by the application is send to the operating system in order to

be carried out across the network traffic. For the network to handle such traffic without

compromising the service needs of certain application is called Quality of Service (QoS)

parameters [16]. The QoS must satisfy the customer network administrator and network

applications. In many cases, network applications attempt to occupy resources form the network

while the network administrator limits the resources used by the application. This chapter describes

QoS parameters that affect the network. Towards the end, benefits and objective of this study are

also explained.

2.1 QoS Parameters

The traffic coming out of applications is different. It needs to be handled differently in the

network. Note that applications generate the traffic at different rates. The first requirement needs

the network to carry out the traffic at the same rate at which it has been generated. Further, different

applications are either more or less permissive to the traffic delays in the network if it happens

within a limit. It implies certain applications can cope the loss to some degree while other

applications cannot [15].

2.1.1 Bandwidth

The link bandwidth or bit rate is the ability of a network to carry “volume of data over a

unit time” [4]. Alternatively, it is the rate at which network carries the traffic of an application. It

also measures the throughput of the network.

8

2.1.2 Latency

The latency refers to the time which is needed to deliver a packet from a source device to

the destination device [3]. It is also the delay that measures the time it takes to travel through the

network including all the intermediate nodes between a source and a destination.

2.1.3 Jitter

For a stream of packet, jitter is defined as the “mean deviation of the difference in the

packet spacing at the receiver” compared to that at the sender. For any pair of consecutive packets

[17], the jitter is defined as:

Figure 2.1: Jitter explained

 Ji = | (Ri+1 - Ri) - (Si+1 - Si) |

 = | (Ri+1 -Si+1) – (Ri - Si) |

9

Where Si is time at which a sender sends the packet and Ri is time at which the receiver receives

it. Generally, it represents or measures the variation in latency of packets. Sometimes, it is also

known as packet delay variation [4].

2.1.4 Packet Loss

 The packet loss is the percentage of packets that arrive with errors or fail to reach the

destination. The congestion of network at intermediate nodes or links that do not have sufficient

bandwidth at different points in the network may cause it.

2.2 Resources Limitations

A host uses variety of network devices like routers, switches, hubs, and network adaptor.

All are connected by the network. Each network device contains an interface which is

interconnected to other device via fibers and/or cables. A combination of software and hardware

helps to forward the traffic from one interface to another.

The QoS problem arises due to the limited resource availability. The bandwidth mismatch

when the faster network traffic joins the slower network traffic can also create the problem.

Further, the traffic passing through multiple switches and routers within the network incurs the

processing delay [4]. The packets arriving on one port are buffered in the memory and are queued

at specific outbound port of the device after analyzing the headers. When the receiver received the

packets at much faster rate than they can be processed and sent, an overflow occurs in the queue

and packets are, then, dropped. This situation is called congestion [4]. This section details the

effect of resource limitation in the network.

10

2.2.1 Effects on Congestion

Two things contribute to the congestion within a switch or router: the “bandwidth mismatch

and traffic aggregation”. A bandwidth mismatch happens when the packet is “routing from a high

speed network to a low speed network” [4]. For example, the packet arrives on a 5 Mbps link and

it needs to be routed to a 1Mbps link. Here, the bandwidth of incoming link is five times greater

than that of an outgoing link. There is insufficient capacity to hold the traffic. In this case, the

router/switch will simply put the outgoing packets in a queue but packets will eventually be

dropped when there is queue overflow.

The packet aggregation occurs when several incoming connections send their packets to a

single outbound link. For example, five separate 1 Mbps links are carrying streams of packets and

they all are sending it to a single 1 Mbps link. It causes to fill up the buffer of the router/switch

very quickly, which, in turn, results in the packet loss.

Finally, an unintended traffic on the network also causes the congestion. Such traffic could

come from a malfunction hardware, retransmission of packet, or traffic generation from some

malicious application [4].

2.2.2 Effects on Latency

During the entire flow of a packet, the latency is accumulated. The scheduling of process

causes latency at the host, which is followed by packetization of data that it generates.

Packetization refers to the computation that is necessary to create the packet and move them via

different layers of the network. This includes assigning buffers to sockets, generating header of

UPD (or TCP). Since only one packet can send at a time, there comes the delay due to serialization.

11

The packets are lined up in a buffer behind the packet which is currently being in transmission,

assuming multiple packets are ready to go out.

Whenever the packet hits a switch or router, it acquires some processing delay at the nodes

because each packet has to move from input queue to output queue. During this period, packets

are inspected in order to determine a route. Packets also encounter queuing delay at different nodes

(routers or switches) where it needs to wait until outgoing port is available as it may be in use by

other packets.

2.2.3 Effects on Jitter

On any single link, routers (switches or computers) “can send only one packet out at a

time” [4]. Because of this, packets do not arrive at a constant rate. Further, packets have to be

queued in the buffer if multiple packets need to be sent. Sometimes packets of applications suffer

short delay or long delay. Short delay means the packet will be in first of queue and long delay

means packets end up last in queue. If other packets result in different delay, then there is variation

in the latency, which is defined as a jitter (see section 2.1.3). This process is repeated on each

router and switch.

Layer 3 protocol (or IP layer) dynamically reroutes the stream of packets. It means one

packet takes different path as another. Since two routers cannot give same amount of end-to-end

delay, the jitter takes place. Moreover, the transport layer protocol (TCP/IP) contributes to the jitter

in two ways. First, an out of turn arriving packet is a hold-back packet, which creates an end-to-

end latency and increases the jitter [4]. Next, the sender retransmits a packet if the initial packet

gets lost or corrupted, especially in the case of TCP (to ensure in-order and reliable packet

delivery). Note, TCP uses retransmission timer to detect missing acknowledgement from the

12

receiver. This introduces additional delay, which is far greater than any delay and, in turn, increases

the variance in the delivery time of a packet.

2.2.4 Effects on Packet Loss

The queue overflow (buffer overrun) is one of the main reasons for the packet loss. It occurs

in switches and routers. New packets end up being discarded when there is no memory and the

queue is full. In addition, poor transmission medium is also a factor for the packet loss. Factors

like signal interference, degradation, faulty hardware cause packet loss. In case of Wireless

Networks, the collision and interference are main factors for the packet loss.

2.3 QoS Aware Networks

In QoS aware networks, applications can specify the requirements for their quality like

delay, bandwidth, loss, and jitter. In order to meet the demands, the network reserves enough

capacity at all switching components between a source-destination pair. An application gets

permission to send the data from the network only if it has demanded resources. This is called the

admission control. Following three modes are generally used to handle it [4].

(a) No QoS

It is the default behavior of any IP router. It is also called best-effort network policy [4].

Here routers do their best to handle the packets. No preferential treatment is given to any packet.

Moreover, the host does not fix the QoS needs of an application. Thus, desired QoS is achieved

only by ensuring that the network has sufficient bandwidth and buffer resources.

13

(b) Soft QoS

It is also called differentiated QoS [4]. Here, the network does not perform admission

control. The quality control data stream does not have to be setup explicitly. However, there exists

a preferential treatment among the packets on the basis of the flow of related packets. Each packet

consists of embedded QoS information and the router prioritizes one type of packet over another

on the basis of rules that are configured in routers.

(c) Hard QoS

It guarantees a specified QoS requirement of any application. It requires admission control

policy so that each component from a source to the destination will have enough resources reserved

to move the traffic for each flow. In both UDP/IP and TCP/IP, a flow is a set of packets that travels

from one address and port to another address and port with same protocol (eg. UDP or TCP) [4].

The problem is not having unlimited resources rather inefficiency or inability to allocate

network resources appropriately to deliver a specified QoS. The network resources can be

allocated using the following two approaches [4].

(i) Router-based Approach: Using this approach, each router will decide how to prioritize its

traffic from a source to the destination.

(ii) Host-based Approach: Using this approach, each host will adjust its behavior appropriately

like slowing down the packet transmission rate on the basis of prevailing conditions in the

network.

 Similarly, the data communication between source and destination is also achieved using

following concepts [4].

14

(i) Reservation-based Approach: It enforces the admission control policy. Thus, each host will

request particular grade of service like bandwidth, jitter, packet loss, and delay. The request of

the host is, then, forwarded to all components from the source to destination. If any one of

component is unable to grant specified services, the reservation is denied. In that particular

case, a host will either give up or try again, or it may request network for lesser grade of service

than previous.

(ii) Feedback-based Approach: Here, data is sent without any prior reservation of resources in the

network. However, if network is congested, router will send feedback or the host will detect

increased packet loss. In that case, it will implicitly adjust its packet transmission rate.

2.4 QoS in IP

Even though, the underlying network offers QoS control, Internet Protocol (IP) cannot take

its benefit. Note that IP is initially designed to work with any packet switched network rather than

with QoS control. There are four core issues, which affect the QoS in IP networks [4].

(i) Bandwidth mismatch and aggregation: The packet congestion will occur whenever there is a

traffic flow from higher bandwidth link to lower bandwidth link or if there is a traffic

aggregation from multiple links.

(ii) Inefficient packet transmission: In order to send 1 byte of packet (single character), 58

additional bytes need to be transmitted in the form of overheads of different layers (20 bytes

of TCP header, 20 bytes of IP header, 18 bytes of MAC header) [4]. Even though it is not QoS

issue, it affects the (a) bandwidth of network, (b) serialization of packet at host, (c) scheduling

and (d) packet queuing on routers. Thus, bigger packets offer efficiency in comparison with

smaller ones while transmitting.

15

(iii) Unreliable delivery: IP is intrinsically an unreliable datagram delivery system. It cannot

guarantee packet will reach its specific destination. The TCP was created to give software

based reliability to the packet [4]. If the sender does not receive acknowledgment from the

receiver within a specified time, the packet is considered to be lost. Such packets are then

retransmitted. Therefore, the TCP gives reliability, however, it increases jitter.

(iv) Unpredictable packet delivery: Internet Protocol has no control over bandwidth, jitter, and

delay. In addition, when packets are sent to their destination, it may take different routes, which

results in change of service levels.

2.5 Iperf

The performance measurement of the network in terms of bandwidth and speed is norm in

both non-productive and productive environments. In order to deploy the network dependent

application servers, a detail analysis report of bandwidth and speed is very important. Sometimes,

throughput of the network should be double checked while troubleshooting. For this, we need a

very reliable network performance tool and one such tool is “Iperf” [10].

Iperf is an open source tool which is used to test the performance of the network [10]. The

test result provided by iperf is more reliable compared to that from other online tools. It is even

more reliable when we measure the performance between client-server located at different places.

A sample of client-server model is shown in Figure 2.2.

16

Figure 2.2: A simple client-server model

Basic Features of Iperf [10]: Iperf, generally, runs on two different computers where one

behave as client and the other behave as server. It is a “command line program” [21] and it takes

multiple options, which makes it suitable for different purposes. Some basic features of Iperf are

as follows:

 It measures packet loss, delay, jitter etc.

 It measures the bandwidth of the network.

 It reports on MTU (Maximum Transmission Unit) and MSS (Maximum Segment

Size).

 It supports for TCP window size

 It supports multithreading, which is useful for multiple simultaneous connections.

 It can generate particular UDP bandwidth streams.

2.6 Objective and Benefits

In broader perspective, the network traffic analysis helps to find (i) how different

parameters of QoS affect the overall performance of any network and (ii) how to handle those

parameters to have enough quality of service for different applications. One of the main objective

behind a successful traffic analysis includes identification of behavior of TCP and UDP traffic in

17

LAN and WAN. Another objective is to find ways to enhance the performance of real time traffic

while they are sharing the bottleneck node. Besides these objectives, benefits of the analysis

include planning for extra links so that congestion in links and nodes can be avoided. Further, a

detailed traffic report helps in shaping future network for better performance in many bottleneck

situations.

The network traffic analysis on a whole is a creative task upholding the QoS of a network.

In this thesis, we have used a network simulator (VIRL) to test TCP and UDP traffic including

many real time applications and then have observed their impact on the network. With supportive

environment and quality objectives, the network traffic analysis will surely be the highest level of

network QoS assessment.

18

3. VIRTUAL INTERNET ROUTING LAB (VIRL)

The Virtual Internet Routing Lab [7] is a powerful network simulation platform of Cisco,

which helps to develop the high fidelity models of planned or real network. It contains virtualized

version of Cisco network operating system and helps to integrate with real external or physical

networks, network servers, and other related elements. The VIRL runs virtual machines of Cisco’s

physical switches and routers. In addition, it has a powerful Graphical User Interface (GUI) to

control the simulation and to design desired network.

3.1 VM-Maestro

VM-Maestro [7] is the client side application, which helps to build the topologies, manage

simulations, and generate configuration and visualization that is executed on VIRL host or virtual

machine. It consists of topology editor plane to draw topologies using tools and objects found in

the palette pane. It also has properties pane to manipulate the various option associated with objects

in topologies or the topology itself. Finally, its project pane creates, manages, and deletes the

projects and topologies [refer to Figure 3.1].

Figure 3.1: VM-Maestro [7]

19

VM-Maestro consists of two perspectives or modes that define the layout of various panes.

They are [7]:

a. Design Perspective: It is an organization of the pane, which is optimized to design

topologies using palette and properties pane. It is a default perspective.

b. Simulation Perspective: It is also an organization of the pane, which is optimized to run

simulation including space for router console.

3.2 Management Access

VM-Maestro helps to connect console ports of VIRL nodes that are helpful to configure,

test, and troubleshoot a network. However, in order to use management platform (i) to configure,

(ii) to send troubleshoot information to log servers, (iii) to download and apply updates, and (iv)

to use controllers or network application with network Application Program Interface (API), we

need Internet Protocol (IP) connectivity to management interface of nodes [7]. VIRL provides

three mechanisms for such connectivity and they are (1) private simulation network, (2) private

project network, and (3) shared flat network.

3.2.1 Private Simulation Network

By default, it creates a single 10.255.0.0/16 subnet for each simulation. The Linux

Container (LXC) has connectivity to only those nodes, which are running within that single

simulation. Figure 3.2 shows the IP connectivity in a private simulation network.

20

Figure 3.2: Private simulation network [7]

Simulation A and Simulation B under the project “Guest” are two separate private

simulation networks. The dotted lines depict the scope of nodes that is visible to LXC. In each

private simulation network, one interface of LXC is connected to Flat network of 172.16.1.0/24

and another interface is connected to the management interface (10.255.0.0/16) of nodes. The LXC

of simulation A cannot see LXC of simulation B. Thus, LXC of simulation A cannot access nodes

which are running in simulation B even though they are running under same project “Guest”.

3.2.2 Private Project Network

Similar to the private simulation, a single 10.255.0.0/16 subnet is created for each project.

Regardless of which user owns simulation, the LXC has connectivity to all nodes which are

running within that project. Figure 3.3 illustrate the concept of private project networking.

21

Figure 3.3: Private project network [7]

Simulation A and Simulation B for the project “Guest” are under the same private project

network, whereas the Simulation B under the project “Demo” is another private project network.

The dotted lines detail the scope of nodes that are visible to LXC. similar to the private simulation

network, the one interface of LXC is connected to Flat network 172.16.1.0/24 and another interface

is connected to management interface (10.255.0.0/16) of nodes. Here, the LXC of the project

“Guest” cannot see and, thus, cannot use the nodes of the project “Demo” or the nodes that are

part of private simulation network.

3.2.3 Shared Flat Network

It is separate from the above two private networking in following ways:

a. The management interfaces nodes are directly placed on the flat network 172.16.1.0/24 by

default.

22

b. No LXC is used or needed to access management interfaces because a subnet 10.255.0.0/16

is not created.

c. Regardless of the project or user, nodes have visibility to all other nodes in the simulation

and also to all LXCs associated with other simulations.

d. On flat network, nodes have direct connectivity to all devices.

Figure 3.4 shows a sample of shared flat networking.

Figure 3.4: Shared flat network [7]

All the nodes of different simulations (A and B) under different projects (Guest and Demo)

are directly connected to the Flat network 172.16.1.0/24. The dotted line depicts the visibility of

each node. Thus, each node in simulation A of project “Guest” is visible to every other node in

other simulations (B and A) of projects “Guest” and “Demo”, respectively. So, each node is

accessible to every other node regardless of any simulations and projects.

23

3.3 Conclusion

This brief discussion of Virtual Internet Routing Lab (VIRL) provides its importance. One

of the reason for choosing VIRL is availability of its automatic configuration of nodes, which is

done by using the feature called “AutoNetKit”. In addition to that, VIRL comes with a complete

set of legal and licensed Cisco images with new OS release provided in regular basis [7].

Furthermore, it is a powerful and portable tool in comparison with other simulation platforms

available in the market (e.g., Graphical Network Simulation [30], Cisco Packet Tracer [31] etc.).

In addition, it does not require bulkier equipment and hours of cable wiring. By linking to

additional physical devices, the lab can easily be extended to study medium to large size networks.

24

4. IMPLEMENTATION

With an aim to study the real LAN and WAN network performance, we have used Cisco’s

new simulation platform called VIRL. As described in Chapter 3, the VIRL comes up with virtual

images of different networking components like routers, switches, Iperf IoS, and others. It is very

easy to build topology and generate the configuration file automatically in VIRL using a feature

called “AutoNetKit”. This Chapter answers: (i) how to create a topology, (ii) how to connect VIRL

with an external terminal, (iii) how to capture the traffic offline and online using Wireshark [24],

(iv) how to tune TCP and UDP for a desired performance, and (v) what is the importance of this

study. In short, we discuss nuts and bolts of our work.

4.1 Creating a Topology

We create a simple topology in VIRL using VM-Maestro with the following steps:

Step 1. Select desired nodes from the palette pane and drop them down onto topology pane

as shown in Figure 4.1.

Figure 4.1: Typical nodes in a VIRL [7].

25

Step 2. Connect nodes using a tool from the palette pane and change names of the

component as desired (Figure 4.2).

Figure 4.2: A simple topology.

Step 3. Go to properties pane and choose ‘shared flat network’ as given below.

Step 4. From the AutoNetKit, enable Cisco Discovery Protocol (CDP), a link layer protocol

developed by Cisco (see below).

26

Step 5. Review various IP address properties and choose default values as below. We are using

“OSPF” routing scheme.

Step 6. Select ‘Build initial Configuration’ tool from the toolbar. After this, the configuration

of routers and visualization of nodes can be viewed on clicking ‘Yes’ on the prompted nodes.

Step 7. Select ‘Launch Simulation’ tool from the toolbar.

Step 8. VM Maestro will switch to a simulation perspective. Wait and watch until all nodes become

active as illustrated below.

27

Step 9. Click on any node and select “telnet” and then from sub-menu select ‘to its console port’.

Step10. In console pane, press ‘Enter’ in order to get console prompt and enter the command ‘en’

and password ‘cisco’ to open a node in enable mode as shown below.

Using this approach, we are able to create a topology (Figure 4.2) that is analogues to real

world network. All the screenshot of topologies that are necessary to conduct this research are

displayed in Appendix B.

4.1.1 Connecting VIRL to external terminal ‘Putty’

‘Putty’ is a network file transfer application, which supports several network protocols

including Secure Shell (SSH), Telnet, Secure Copy (SCP) etc. [29]. It is very inconvenient to work

with inbuilt console pane of VIRL when we are running configuration of multiple nodes. In

addition, switching form one node to another and observing the topology at the same time makes

the work much more difficult. Thus, it will be fruitful to use an external terminal ‘Putty’ to connect

and work with nodes that is running VIRL. In order to do that the following steps are required.

Step 1. Go to ‘file’ menu in toolbar and select ‘Preferences’

28

Step 2. From the preferences, select ‘Cisco Terminal’ under section Terminal (see below).

Step 3. Use external terminal option and fill the telnet command, telnet argument, SSH command

and SSH argument as below (Figure 4.3).

Figure 4.3: External terminal application

29

Step 4. Now select any active node, go to its ‘console port’. It will switch to external terminal

‘Putty’.

Step 5. Press ‘enter’ to get console prompt and enter ‘en’ and password ‘cisco’ as before to go to

the enable mode of nodes.

Once the ‘Putty’ is connected to VIRL, each node’s terminal window can be opened

separately in a larger size compared to the inbuilt window. The topology can also be viewed in

parallel that helps to see how traffic is moving from a source to a destination. This makes easier to

generate the traffic from a client to and see its effect on a server simultaneously.

4.2 Packet Capture with Wireshark

In order to do the traffic analysis and analyze the performance of the network, it is essential

to capture the packet that is traversing from a source to a destination. We have used Wireshark

[24] for this job. It offers two modes of packet capturing.

(a) Offline Packet Capture

This option allows user to download the capture file and save it locally for the analysis.

Here, VIRL server collects the data and stores in a file. Files can be saved by using PCAP filter

and can even be left blank, which can be opened later directly by using external packet sniffer tool

‘Wireshark’ [24].

Following steps help capture the packet offline.

Step a. Right click on destination Ethernet port from link, select ‘packet capture’, and click ‘Create

New.’ It will open ‘Create Packet Capture’ prompt.

30

Step b. Select ‘Offline capture to file’ from capture mode and leave rest or default (see below).

Now, when traffic is sent form a source to a destination, Wireshark will capture and store

it in a file. The stored file can be download. Save it locally from VIRL server. The steps involved

in this process are as follows:

Step 1. Enter the IP address of VIRL server.

Step 2. Go to ‘User Workspace Management’, and enter “username” and “password”.

Step 3. Click name of topology that is running in VIRL server.

Step 4. Go to the section ‘Traffic Capture’ and click on download icon circled by red color as

indicated below.

31

(b) Live Packet Capture

This option allows the user to connect Wireshark directly to the listening port of VIRL

server. This displays flow of packets as it happens. The necessary script file for the ‘live packet

capture’ is in Appendix A. Steps involved in this case is quite similar to that of offline packet

capture. They are:

Step 1. Right click on the destination Ethernet port from link, select ‘packet capture’ and click

‘Create New.’ It will open ‘Create Packet Capture’ prompt.

Step 2. Select ‘Live capture on TCP port’ from capture mode and enter live port in between 1025

to 65535. Leave rest as default (see below).

32

Step 3. Run the executable script file ‘live_pcap_gui’. It will prompt a window in which we enter

the IP address of VIRL server and live port (eg. 5000). This will directly connect Wireshark to

VIRL server listening port (eg. 5000). Figure 4.4 illustrates the concept.

Figure 4.4: Live packet capture

Live packet capture is very useful because we can see the live flow of packets from a source

to a destination. Further, we can use pass filters to capture specific packets (TCP, UDP) according

to our needs. The captured packet is saved and analyzed for various purposes.

4.3 TCP Tuning

Iperf [14] helps to tune TCP connections over a particular path. The window size is the

most fundamental tuning element for TCP. It is the maximum amount of data a sender can send to

the other end without an acknowledgement [10]. If there is no packet loss, the size of window can

limit throughput as 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≤ 𝑅𝑤𝑖𝑛 / 𝑅𝑇𝑇 [21]. Here 𝑅𝑤𝑖𝑛 is TCP window size and 𝑅𝑇𝑇

denotes the round trip time for the path. Many hosts and Operating Systems (OSes) have their

upper limit on the size of TCP window. However, if there is a packet loss, it will further impose

limit on the throughput because when there is loss, TCP rate is limited by the congestion avoidance

algorithm. In this case the throughput becomes [2].

33

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≤ 𝑀𝑆𝑆 ∗ 𝐶 / 𝑅𝑇𝑇 √𝑃 ………………..…...…..(1)

Here 𝑀𝑆𝑆 is the maximum segment size, 𝐶 is constant, and 𝑃 (𝑃𝑖) is the packet-loss ratio,

which is the ratio of number of retransmitted packets to the total transmitted packets.

Another tuning issue for the TCP is with parallel TCP streams. For ‘𝑛’ TCP connections

and for fixed 𝐶, the equation (2) becomes,

 𝐵𝑊𝑎𝑔𝑔 ≤ 𝐶 [
𝑀𝑆𝑆1

𝑅𝑇𝑇1√𝑃1
+

𝑀𝑆𝑆2

𝑅𝑇𝑇2√𝑃2
+ ⋯ +

𝑀𝑆𝑆𝑛

𝑅𝑇𝑇𝑛√𝑃𝑛
] ………..(2)

Here 𝐵𝑊𝑎𝑔𝑔 is the aggregate throughput. Note, 𝑅𝑇𝑇 will be same across all the TCP

connections and 𝑀𝑆𝑆 remains identical and constant across all the TCP connections between hosts.

After simplifying the equation (2), we get:

𝐵𝑊𝑎𝑔𝑔 ≤ [𝐶 ∗
𝑀𝑆𝑆

𝑅𝑇𝑇
] [

1

√𝑃1
+

1

√𝑃2
+ ⋯ +

1

√𝑃𝑛
] ……………….............(3)

It is, thus, clear that 𝑀𝑆𝑆 and 𝑅𝑇𝑇 are relatively static compared to the dynamic nature of

packet-loss ratio (𝑃). When there is more parallel TCP connection, 𝑃 becomes dominant factor,

which will directly affect the throughput. Basic command for tuning the TCP client and server side

is given using “Iperf” as follows (see Figures 4.5 and 4.6).

34

$iperf –c server_ip -p server_port

Figure 4.5: TCP client

$iperf –s -p server_port

Figure 4.6: TCP server

The TCP server is run first to make it ready to accept the traffic from the TCP client. By

default, the client sends traffic for 10 seconds with a window size of 85.3KB. The various

parameters are tuned at the client to generate the different traffic data. After sending the traffic for

35

10 seconds, the client and server both showed the throughput in Mbits/sec, but we used the value

obtained in the client side only.

4.4 UDP Tuning

When we use Iperf to conduct the UDP test, it provides some more information about the

network which is very useful to find the bottleneck in the network. Not only the TCP window size

but also network jitter and packet-loss affect the quality of service of any network. The UDP test

is generally done by passing the –u argument in the command line that gives valuable information

about the jitter and packet loss [14]. By default, Iperf uses TCP if we do not specify –u argument.

Moreover, various argument can be passed along with –u argument like –l and –b, which

specify the size of datagram that can be sent over the network and speed at which datagram is sent,

respectively. It is assumed that large packets are fruitful to send compared to the small ones

because even if we need to send 1 byte of packet via UDP 46 additional bytes of different headers

need to be sent (8 bytes of UDP header, 20 bytes of IP header, and 18 bytes of Ethernet MAC

header).

Note, a smaller packet has more overhead in comparison with the larger ones. Iperf, by

default, uses 1470 byte of data when we use –l argument and 1 Mbps data rate when we use –b

option, respectively. During the test, UDP server continuously calculates jitter. In particular, it

computes the relative transit time between the client “send” time and receiver “receive” time. A

basic command for the UDP test along with its snapshot in VIRL is given below (refer to Figures

4.7 and 4.8).

36

$iperf –c server_ip -u –p server_port

Figure 4.7: UDP client

$iperf –s –u –p server_port

Figure 4.8: UDP server

Like in the TCP, the UDP server is run first. By default, the UDP client sends traffic for 10

seconds. After this time interval, the client gives jitter in milliseconds (ms) and packet loss in

percentage as shown in Figures 4.7 and 4.8, which is used for analysis later. The various parameters

are changed with different values to generate different traffic data.

37

4.5 Conclusion

The discussion on the implementation shows how we created various topologies for our

study. The external connectivity using the “Putty” gave us more visibility of the nodes and

topology. Further, the offline and/or online packet capture using the “Wireshark” helped us to

analyze the traffic in the network. The TCP and UDP tuning gave us ideas on the generation of

traffic and its analysis. Moreover, this Chapter provides following importance of traffic analysis:

(i) When application consumes more bandwidth during working hours, we can decide whether

the particular application should be allowed or not depending on the situation.

(ii) The traffic reports also give us vital information that helps to find out any anomalies in the

network. This not only saves the time but also the cost that will involve in securing the

networks, when there is a security breach.

38

5. RESULTS AND ANALYSIS

A detailed description of results obtained from testing the different network built in virtual

laboratory for various scenarios is discussed in this chapter. Various network topologies are

created by working as one of the user of VIRL server [Refer to Appendix B]. In each topology,

the configuration file is generated automatically using “AutoNetKit”. Broadly speaking, we have

considered three main scenarios i.e., LAN, WAN, and real time traffic.

5.1 Local Area Network (LAN)

The LAN topologies are created with all default configuration and settings for both TCP

and UDP. The following things need to be done before entering into traffic generator, Iperf, inside

VIRL topology from the external terminal putty. Refer to Figure 5.1.

Login as: Group-1 # username given by the VIRL admin

Password: u3EVGA # password to enter

Management login: ssh cisco@mgmt_int_ip # login into management interface using its ip

Password: cisco # default password

Figure 5.1: Login Client Using Putty

39

Before generating traffic from a client to the server (source to destination), the server needs

to start first before the client. It is ready to receive the traffic from the client with the following

command.

$iperf –s –p 6000 # running iperf as server and listening traffic on port 6000

Similarly, a command that helps to run the client for generating traffic is given below.

$iperf –c server_ip –p 6000 # send the traffic to server at port 6000

By default, it sends TCP traffic for 10 seconds with window size 85.3 KB. Further, the

server receives the traffic on its port 5000.

A. TCP Traffic

Appendix B shows the topology of five nodes (2 iperf nodes, 2 routers, and 1 switch) that

we have created to study TCP. We change two variables, namely, the window size (w) and parallel

TCP connection (P), and generate results for different combination of variables. Moreover, one

Iperf node is tuned to the server and another to the client.

At Server Side

$iperf –s -w 5K –p 6001 # here even window size 5K is given as input, it will, by default assign

double of it i.e 10K

40

At Client Side

$iperf –c 10.0.0.14 –t 15 –w 5K –p 6001 | tee W1 # running as a client and send traffic to

server using server ip 10.0.0.14 for 15 seconds having window size w 10K.

The throughput is measured directly from the Iperf client after time-out of the traffic. But

to measure the packet-loss ratio, we need to capture the traffic data in a file. The traffic reflects

client-server data for specific interval of time. The packet-loss ratio is obtained by dividing the

total TCP retransmitted packets by the total transmitted packets. Figure 5.2 illustrates a typical

captured data file.

41

Figure 5.2: Capture File

The display filter command that is necessary to enter in the Wireshark [24] while it is

opening the captured file to get total TCP transmitted packet is:

ip.src==10.0.0.10 && tcp.srcport==49376 && ip.dst==10.0.0.14 && tcp.dstport==6001

and similarly for total TCP retransmitted packet is:

ip.src==10.0.0.10 && tcp.srcport==49376 && ip.dst==10.0.0.14 && tcp.dstport==6001 &&

tcp.analysis.retransmission

Here, TCP source port is generated automatically and can be seen in the captured file.

Results are obtained from the client side by varying the window size (w) from 10KB to

200KB for different parallel TCP connections (from 1 to 10). For parallel TCP connection, variable

𝑃 along with its value needs to be entered in the command from the client side as below.

42

$iperf –c 10.0.0.14 –t 15 –w 10K –P 2 –p 6002 / tee w2

The above command helps to connect the server with two parallel TCP connections each

with the window size of 10K. The main important thing that needs to be noted during experiment

is window size, which should be matched in both client and server. The Figure 5.3 and 5.4

illustrates the plot between packet loss ratio verses parallel TCP connection, and throughput verses

parallel TCP connections for different window sizes, respectively.

Figure 5.3: Packet loss ratio verses parallel TCP connections

0.04

0.09

0.14

0.19

0.24

1 2 3 4 5 6 7 8 9 10

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connection (P)

200KB

100KB

85KB

40KB

20KB

10KB

43

Figure 5.4: Throughput vs parallel connections from (a) 10KB to 85KB and (b) 85KB to 200KB

From Figure 5.3, it is clear that increasing the parallel TCP connection increases the

probability of packet-loss ratio. This happens due to the overflow of buffer of first router. Actually,

when we are increasing the number of parallel TCP connections, it is sending more traffic to the

server. As a result, the packets are lined up in a buffer queue, and when packets coming to the

router exceeds its capacity, they are simply dropped.

In addition, increasing the size of window also increases packet loss ratio (see Figure 5.3).

Window size means the amount of data that the sender can sent at a time. By sending more traffic

that also overflow the buffer of the router and the probability of packet loss increases. Hence, both

parallel TCP connection and window size have inverse relation with the packet-loss ratio.

Figure 5.4 illustrates that by increasing parallel connections, we decrease throughput in the

network. We observed that increasing parallel TCP connections cause an increase in the packet-

loss ratio, and from equation (3) of Chapter 4, the throughput is inversely proportional to the

packet-loss ratio. So, higher the packet-loss ratio lower will be the throughput of the network.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Parallel TCP connection (P)

85KB

40KB

20KB

10KB

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
jp

u
t
(M

b
p

s)

Parallel TCP connection (P)

85KB

100KB

200KB

44

Generally, the window size and throughput has direct correlation. That means higher the

window size higher will be the throughput of the network. But, in practice, the nodes between

source to destination may not be able to handle large amount of data. Thus, there is always a critical

value of the window size at which we get maximum throughput. In our case, when increase the

window size from 10KB to 85KB, throughput increases accordingly (see Figure 5.4). However,

when the window size is increased further (from 85KB to 200KB), the throughput starts to

decrease. A critical window size happens at 85KB. It is advantageous to know the critical value of

the window size for a network to achieve the maximum throughput.

B. UDP Traffic

Similar to TCP analysis, we created a topology with five nodes for our experiment with all

default setting (see Appendix B1.2). There is one difference, the congestion control algorithm is

not included in UDP. We have used this for real-time applications like voice, video, etc. Two

variables, namely, packet transmission rate (b) and datagram size (l), are varied. Results, packet

loss and jitter, are obtained for different combinations of these variables. The following commands

show UDP traffic generation at the server and the client sides.

At Server Side

$iperf –s –u # running the iperf node as UDP server. By default, it will listen on the port 5001

45

At Client Side

$iperf –c 10.0.0.14 –t 15 –u | tee b1 # running the iperf node as UDP client, send traffic for 15

seconds, and save it in a file b1. By default, it will send datagram of 1470B at transmission rate of

1 Mbps.

Results are obtained by varying data transmission rate from 64 Kbps to 2 Mbps for three

different datagram sizes (360B, 735B, and 1470B) as most of the datagram for the real time traffic

falls in the range 360B to 1470B. The datagram size is fixed at both client and server. The sample

commands for this experiment is given below.

At Sever Side

$iperf –s –u –l 360B

At Client Side

$iperf –c 10.0.0.14 -t 15 –u –l 360B –b 64K | tee b2

We have not observed any loss up to 2 Mbps for the above three datagram sizes. However,

we noticed a significant jitter (see Figure 5.5).

46

Figure 5.5: Jitter verses datagram size

From the jitter verses datagram plot, it is clear that whenever the size of datagram increases

from 360B to 1470B, the corresponding value of the jitter decreases for any particular transmission

rate from 64 Kbps to 2 Mbps. It is because the larger packets reduce the overhead that needs to be

transmitted and that, in turn, reduces the head of line blocking in routers. As a result, it decreases

the overall congestion and jitter.

In addition, the transmission rate has inverse relation with the jitter up to 2 Mbps. It means

higher the rate, lower is the jitter. It happens because when the transmission rate increases, the rate

at which the receiver receive the packets increases causing the decrease in time interval between

the successive received packets. also increase. As a result, there is less jitter.

In our case, when the transmission rate increases greater than 2 Mbps, there is not only a

significant increase in the jitter but there is also significant a loss. It is because, when the rate

exceeds the capacity of a router to handle the packets, there is an excess congestion. So, the packets

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram Size (B)

64kbps
128Kbps
256Kbps
512Kbps
1Mbps
2Mbps

47

are dropped, which increases time interval between successive packets at the receiver resulting

into a higher jitter.

It becomes very important to know up to what speed the packets need to be sent in any

network for a better performance. Note, the size of datagram should not be greater than the MTU

of the link. Otherwise, the packets will be fragmented into smaller packets causing a negative

impact on the jitter.

C. Both TCP and UDP Traffic

To understand the effect of TCP and UDP in a LAN environment, a topology with 6 nodes

(having 3 Iperf nodes) is created with all default configuration and setting in the flat network mode

(see Appendix B1.3). Out of two Iperf nodes, one is a TCP client and the other is a UDP client).

Both clients are connected to the same bottleneck router. The third Iperf node is set to work as a

server for both TCP and UDP.

The variable, parallel TCP connections, is changed from 3 to 12 from TCP client at the

step of 3. It sends the traffic to the TCP sever for fixed a window size of 85KB. At the same time,

the UDP client also transmit the traffic to UDP server by varying the datagram size and

transmission rate. All the results are obtained from the UDP client to see the effect of TCP on

UDP. The sample commands, used to conduct this experiment, are shown below.

At Server Side

$iperf –s –u & # running as UDP server on background and listen on port 5001

$iperf –s –p 6001 # running as TCP server on front and listen on port 6001

48

At TCP Client

$iperf –c 10.0.0.10 –t 15 –p 6001 –P 2 # send traffic to TCP server with two parallel TCP

connection.

At UDP Client

$iperf –c 10.0.0.10 –t 15 –b 64K –l 360B | tee l1 # send traffic to UPD server and save it to l1

49

 Results are obtained for three different datagram sizes (360B, 735B, and 1470B) and for

three transmission rates (64 kbps, 512Kbps, and 2 Mbps) in the presence of parallel TCP

connections. Figure 5.6 and 5.7, respectively, depicts the change in the (i) jitter vs datagram size

and (ii) packet loss vs datagram size for different parallel TCP connections.

Figure 5.6: Jitter verses datagram size for different parallel connections at 64 Kbps

0.1

0.15

0.2

0.25

0.3

0.35

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram Size (B)

12P

9P

6P

3P

50

Figure 5.7: Packet loss ratio vs datagram size for different parallel connection at 64 Kbps

 Similar kind of results are plotted for date rates 512 Kbps and 2 Mbps (see Figure in the

Appendix C1.1 and C1.2). The plot of jitter verses datagram size, and packet loss ratio verses

datagram size showed that when the datagram size increases from 360B to 1470B, it lowers both

jitter and the packet loss for any particular TCP connection. It is because a larger datagram reduces

the congestion, and packet being dropped on the bottleneck router than smaller packets. As a result,

it will also reduce the time interval between successive packets at the receiver. Thus, the larger

packet sizes not only decrease the jitter but also packet loss.

 Moreover, the number of parallel TCP connections impacts on the UDP jitter and packet

loss. The traffic at the bottleneck router increases when the number of parallel connection

increases. It causes an increase in the probability of congestion and the packet being dropped.

Hence, parallel connection has direct relation with the jitter and the packet loss.

To help to reduce the jitter, it is good to increase the speed of the UDP transmission packet.

But, it does not reduce the packet loss. In fact, it increases the packet loss ratio because the increase

in the transmission rate fills up the buffer at the bottleneck router at a faster rate. Hence, the

0.045

0.095

0.145

0.195

0.245

360 560 760 960 1160 1360

P
k
t_

lo
ss

_
ra

ti
o

Datagram Size (B)

12P

9P

6P

3P

51

possible solution to reduce to effect of TCP on UDP is to increase the capacity of the bottleneck

router.

5.2 Wide Area Network (WAN)

 Our WAN topology has three Autonomous Systems (AS) connected by the Broder

Gateway Protocol (BGP). The latency from the client to server is very high in comparison to LAN,

and there are multiple links that may be chosen by traffic to reach the destination. Similar to LAN,

our experiments are conducted for three different conditions to observe the performance in each

category. They are TCP, UDP, and both TCP and UDP simultaneously. The necessary commands

to run the server and to generate the traffic from the clients are similar to LAN.

A. TCP Traffic

 The topology of 14 nodes is shown in Appendix B2.1. We have changed the two variables,

namely, the window size (w) and parallel TCP connections (P) and have generated results from

their different choices. The commands that are necessary to generate the traffic and to run the

server are similar to that given for the LAN.

 During each experiment, we have chosen a matching window size at the server and the

client. The throughput is measured directly from the TCP client whereas the packet loss ratio is

computed from the captured file by using the display filter command in Wireshark [24]. Results,

obtained by varying parallel TCP connection from 1 to 10 for different window sizes, are plotted

for the analysis. Figure 5.8 through 5.10 showed the plot of packet loss ratio verses parallel TCP

connection and throughput verses parallel TCP connection for various window sizes, respectively.

52

Figure 5.8: Packet loss ratio verses parallel TCP connection

Figure 5.9: Throughput verses parallel TCP connection for window sizes from 10KB to 85KB.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

200KB

100KB

85KB

40KB

20KB

10KB

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Parallel TCP connections (P)

85KB

40KB

20KB

10KB

53

Figure 5.10: Throughput verses parallel TCP connection for window sizes from 85KB to 200KB.

 As illustrated in Figure 5.8, the probability of packet-loss ratio increases with the increase

in parallel TCP connections for a particular window size. It is because an increase in the parallel

connections changes the amount of traffic, which, in turn, increases the congestion at the router.

This causes the packet being dropped. Moreover, the plot also shows that an increased in the

window size increases the packet loss ratio. Actually, when we have larger window size, it sends

more traffic to the server. So, the buffer at the router fills up quickly. Consequently, the probability

of packet loss ratio further increased.

Similarly, Figures 5.9 and 5.10 illustrates the throughput of the network. Note that it

increases with an increase in the window size but only up to a certain extent. In our network, the

router becomes unable to handle the traffic efficiently after 85KB. It is because the buffer fills up

more quickly forcing the incoming packets to drop. In addition, the number of parallel connections

causes an increase in the traffic, which makes the router congested causing them to drop the

throughput of the network.

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
p

u
t

(M
b

p
s)

Parallel TCP connections (P)

85KB

100KB

200KB

54

In comparison to LAN, the effects of multiple path latency are also observed. The latency

has an inverse relation with the throughput. The effect of multipath is a dominant factor over

latency. In WAN, the multiple links not only decrease the packet loss ratio but also helps to

increase the throughput.

B.UDP Traffic

 Similar to the TCP, a topology of 14 nodes is created and the same is shown in Appendix

B2.1. We have varied two variables, namely, the datagram size and transmission rate. We have

generated results from their different combinations. Commands that are necessary for each traffic

generation are similar to LAN. During each traffic generation, the size of the datagram is matched

at both client and server ends.

 The results are obtained for three different datagrams sizes (360B, 735B, and 1470B) at

various transmission rates varying from 64Kbps to 2Mbps. Unlike LAN, the packet loss is not

obtained up to 2Mbps. Figure 5.11 shows a plot of jitter verses datagram at various transmission

rates.

Figure 5.11: Jitter verses datagram in UDP traffic

0.135

0.155

0.175

0.195

0.215

0.235

0.255

0.275

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram Size (B)

64Kbps

128Kbps

256Kbps

512Kbps

1Mbps

2Mbps

55

As shown in Figure 5.11, the datagram size increases from 360B to 1470B and the

transmission rate changes from 64Kbps to 2Mbps. The jitter is inversely proportional to the data

rate. It is due to less congestion at the router. In other words, large data packets would reduce the

head of line blocking at the router. A higher transmission rate would further decrease the jitter

because the receiver would receive packets at much faster rate. However, there is a limit in the

datagram size and transmission rate up to which the increase in the performance takes place.

Similar to TCP, the multipath shows some effect on the jitter (in comparison to a LAN). In

WAN topology, the jitter is comparatively higher because the packet might take different routes

to reach same destination. Some packet would reach destination faster and some would reach

slower. So, there is no consistency in the received packet at the receiver causing the jitter to

increase. Note, the latency has no effect on UDP because whatever that time may be, the client

would send given number of packet per second.

C. Both TCP and UDP Traffic

In the topology of 14 nodes (Appendix B2.1), two clients (TCP and UDP) are connected

to the same bottleneck node as in LAN, and a single server works as both TCP and UDP sever.

The TCP and UDP traffic is simultaneously sent traffic to the server. The results are obtained for

various datagram sizes (360B, 735B, and 1470B), and different transmission rates (64Kbps to

2Mbps) while TCP client would vary its parameter (parallel connections) from 3 to 12. Commands

that perform this experiment are similar to LAN. The plot of results is shown in Figures 5.12 and

5.13, respectively.

56

Figure 5.12: Packet loss ratio verses datagram for different parallel connections at 64 Kbps

Figure 5.13: Jitter verses datagram for different parallel connections at 64 Kbps

 Similar kind of results are obtained at 512Kbps and 2Mbps, which are shown in Appendix

C2.1 and C2.2. The plot of jitter verses datagram and packet loss ratio verses datagram emphasize

that jitter and packet loss have inverse relation with the datagram size for any particular TCP

connection. The reason is when a large datagram is sent, the overhead that needs to be added

0.05

0.1

0.15

0.2

0.25

0.3

360 560 760 960 1160 1360

P
k
t_

lo
ss

_
ra

ti
o

Datagram size (B)

12P

9P

6P

3P

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram Size (B)

12P

9P

6P

3P

57

becomes less. This would reduce congestion at the router. So, the probability of packets being

dropped and time interval at which it receives the successive packets would reduce. Hence, jitter

and packet-loss would decrease.

 The number of parallel TCP connections directly impacts on both jitter and packet-loss

ratio of UDP. It is because when this number increases, the amount of traffic changes causing an

increases in the congestion on bottleneck router. As a result, packets are dropped. And the packet-

loss ratio is more. In UDP, dropped/lost packets are not retransmitted. So, the time interval between

the successive packets at the receiver would increase resulting in a higher jitter.

5.3 Effect of TCP on Real Time Traffic

Today, most of the traffic in any network is either in TCP form or in UDP form. The

analysis of QoS parameters for both TCP and UDP traffic in LAN and WAN provides us the notion

of network/traffic importance. To know the effect of TCP on real time traffic, experiments are

conducted for three traffic scenarios. They are video, voice, and web browsing. Among them, the

first two is UDP traffic (voice, and video) where the remaining one portrays a TCP traffic (web

browsing). Experiments are further extended to find ways to minimize the effect of TCP.

A. Video Traffic

The video traffic is sent in the form of UDP traffic. The transmission rates are usually from

128Kbps to 2 Mbps. They are sent in three packet sizes: 576B, 1000B, or 1470B. The experiment

is conducted for a particular case of 576B datagram size

 For this, the topology of 6 nodes with higher latency around 120ms (two way) is created.

it is shown in Appendix B3.1. Two clients (TCP and UDP) are connected to the same bottleneck

58

router at one end. They send the traffic to their individual servers at the other end. Commands

necessary to run servers and to generate the traffic from each individual client are given below.

$iperf –s –p 6001 # running as TCP server and listen on port 6001

$iperf –s –u –l 576B # running as UDP server, accepting 576B datagram and listen on 5001 by

default

$iperf –c 10.0.0.18 –t 15 –p 6001 –P 2 # sending TCP traffic with two parallel connection

$iperf –c 10.0.0.14 –u –l 576 B –b 128K –t 15 |tee l1 # sending UDP traffic

 During each traffic generation, the TCP window size at the TCP client and the server is

kept at the default (85KB) value whereas UDP datagram size at its client and the server is matched.

The TCP client changed its variable (parallel TCP connection) from 3 to 12 at the step of 3. The

UDP client also changes its parameters (transmission rate from 128Kbps to 2Mbps) to get different

results for 576B of datagram. Figure 5.14 and 5.15 illustrates a plot of jitter verses data rate and

the packet loss rate verses data rate for 576B of datagram at different parallel TCP connections.

Figure 5.14: Jitter verses data rate at 576B of datagram size

0.06

0.08

0.1

0.12

0.14

0.16

0.18

128 428 728 1028 1328 1628 1928

Ji
tt

er
 (

m
s)

Data_rate (Kbps)

12P

9P

6P

3P

59

Figure 5.15: Packet loss rate verses data rate at 576B of datagram size

From Figures 5.14 and 5.15, it is clear that with the increase in parallel TCP connections,

both the jitter and the packet loss rate of UDP decrease. Our main goal is to decrease the jitter and

packet loss rate without decreasing the transmission rate even in the presence of TCP traffic while

they are competing for the same bandwidth.

Figure 5.16: Jitter verses parallel TCP at 128Kbps

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

128 428 728 1028 1328 1628 1928

P
k
t_

lo
ss

_
ra

ti
o

Data_rate (Kbps)

12P

9P

6P

3P

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

3 4 5 6 7 8 9 10 11 12

Ji
tt

er
 (

m
s)

Parallel TCP connecitons (P)

2948B

576B

1470B

60

Figure 5.17: Packet-loss ratio verses parallel TCP at 128Kbps

Another experiment is conducted where at each transmission rate different results are

obtained by increasing the datagram size from 570B to 1470B for different parallel TCP

connections. A typical plot at 128Kbps is shown in Figure 5.16 and 5.1.7. [Rest of the plots at

512Kbps and 2Mbps is shown in Appendix C3.1 and C3.2.]

The plots show that when the packet size is increased, both the jitter and packet loss ratio

decrease. However, if we try to increase the datagram size greater than 1470B, both the jitter and

the packet loss ratio increase. It is because when the packet size is more than 1500B (MTU) of

link, packets are fragmented into smaller chunks. The smaller packet means more overhead and

more congestion. This will not only cause loss but also the packet aggregation at the receiver will

increase jitter. Decreasing the transmission rate may also decrease the packet loss rate but it will

increase the jitter. Hence, increasing the datagram size will be one of the solutions to reduce the

impact of TCP.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

3 4 5 6 7 8 9 10 11 12

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

2948B

576B

1470B

61

B. VoIP Traffic

The voice traffic (or Voice over IP) is also sent in the form of UDP traffic. Data rates

usually range from 8Kbps to 64Kbps and packet sizes from 60B to 240B. Let us consider the

datagram of size 80B to conduct this experiment. The topology, configurations, and commands

necessary to generate the traffic and to run servers are similar to video traffic shown in Appendix

B3.1. Different results are obtained for the datagram (80B) by varying the transmission rates from

8Kbps to 64Kbps at UDP client and parallel TCP connections from 3 to 12 at the step of 3 at TCP

client. Figures 5.18 and 5.19 illustrates two typical plots.

Figure 5.18: Jitter verses data rate for 80B of datagram size

0.1

0.12

0.14

0.16

0.18

0.2

8 16 24 32 40 48 56 64

Ji
tt

er
 (

m
s)

Data_rate (Kbps)

12P

9P

6P

3P

62

Figure 5.19: Packet loss ratio verses data rate for 80B of datagram size

 These figures show that when the number of parallel TCP connections increases, both the

jitter and the packet-loss ratio decrease. Our main goal is to reduce jitter and loss ratio without

decreasing the data rate even in the presence of TCP traffic. So, at each transmission rate, the

experiment is further conducted by varying the datagram from 80B to 320B for different parallel

TCP connections. Typical plots at 8Kbps are given below in Figures 5.20 and 5.21. Other plots at

16Kbbps, 32Kbps, and 64Kbps appear in Appendix C4.1, C4.2 and C4.3.

0.035

0.085

0.135

0.185

0.235

0.285

8 16 24 32 40 48 56 64

P
k
t_

lo
ss

_
ra

ti
o

Data_rate (Kbps)

12P

9P

6P

3P

63

Figure 5.20: Jitter verses parallel TCP at 8Kbps

Figure 5.21: Packet loss ratio verses parallel TCP at 8Kbps

Figures 5.20 and 5.21 show that when size of datagram is increased from 80B to 320B, the

corresponding value of both jitter and packet loss ratio is decreased. It is because a larger packet

contributes to less overhead and less congestion at the bottleneck router. As a result, it decreases

0.11

0.13

0.15

0.17

0.19

0.21

3 4 5 6 7 8 9 10 11 12

Ji
tt

er
 (

m
s)

Parallel TCP connections (P)

80B

160B

240B

320B

0

0.05

0.1

0.15

0.2

0.25

3 4 5 6 7 8 9 10 11 12

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

80B

160B

240B

320B

64

probability of packet being dropped from that node. It also reduces the time to aggregate packets

at the receiver resulting less jitter.

C. Web Traffic

 The web traffic is sent using TCP. For web browsing, both the window size, and delay are

less than 24KB and 400ms, respectively. For our experiment, we consider a size of 16KB and a

delay of 120ms. Our topology consists of 6 nodes with two TCP clients connected to the same

bottleneck node at one end and two TCP servers at the other end as shown Appendix B3.2.

One TCP client sends traffic by varying the number of parallel TCP connections at the

window size of 85KB while another client sends web traffic at window size of 16 KB. Commands

necessary to generate traffic and run servers are similar to those discussed in the previous cases.

The main goal is to increase the throughput and decrease the packet loss ratio of web browsing

traffic even in the presence of other parallel TCP traffic while they all are competing for the

bandwidth. Result obtained by varying the window size of web browsing from 16KB to 128KBare

plotted and shown below in Figures 5.22 and 5.23.

Figure 5.22 Throughput verses parallel TCP from 16KB to 128KB window size

125

325

525

725

925

1125

1325

1525

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Parallel TCP connections (P)

64KB

32KB

16KB

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Parallel TCP connections (P)

64KB

128KB

65

Figure 5.23: Packet loss ratio verses parallel TCP from 16KB to 128KB window size

Figures 5.22 and 5.23 illustrates that the throughput of web browsing increases and loss

ratio decreases when the window size is increased up to 64 KB. Beyond this, throughput is

decreased and loss ratio is increased because of the congestion at the bottleneck router is due to

the heavy traffic. The incoming packets are dropped causing higher packet loss and lesser

throughput.

In this particular condition, increasing the buffer size at the router will be an optimal

solution. However, the other factor that may affect the performance is latency. To understand its

impact, in detail, we conducted another experiment.

For this, we consider the same topology by decreasing the latency from 120ms to 60ms.

One is for zero percent loss on bottleneck link and another is for two percent loss on bottleneck to

incorporate the scenario for congested link.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

16KB

32KB

64KB

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

128KB

64KB

66

Figure 5.24: Throughput verses parallel TCP at different latency

From Figure 5.24, it is clear that the throughput of the network increases when the latency

is decreased at any particular TCP connection (at any particular congested link) Note, when the

latency decreases, the time to reach the destination is reduced which would increase the throughput

as throughput and latency have an inverse relation. The supporting plots at each latency for the

above two cases are shown in Appendix C5.1 and C5.2.

5.4 Conclusion

This chapter gave us insight view of the effect of TCP/UDP traffics on various QoS

parameters in different topologies such as LAN, WAN, and some real time applications. In this

chapter TCP, UDP, and both TCP and UDP traffics on LAN and WAN networks are studied in

detail. We also studied effect of latency on throughput for a congested link. A summary of results

obtained from our study and some future work are discussed in Chapter 6.

125

200

275

350

425

500

575

650

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Parallel TCP connections (P)

0 % loss on bottleneck link

60ms

80ms

100ms

120ms

95

170

245

320

395

470

545

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u

t(
K

b
p
s)

Parallel TCP connections (P)

2% loss on bottleneck link

60ms

80ms

100ms

120ms

67

6. DISCUSSION AND FUTURE WORK

This chapter provides appropriate contribution of our study, and the possible future works.

In short, we have studied the following:

• Effect of TCP traffic on LAN and WAN networks.

• Effect of UDP traffic on LAN and WAN networks

• Effect of TCP and UDP in LAN and WAN networks

• Effect of TCP traffic on Real Time Traffics

• Effect of Latency on Throughput.

From the analysis of TCP traffic (in LAN and WAN networks), we observed that both the

parallel TCP connections and the window size have direct relation with the packet-loss ratio.

However, the parallel TCP connections are inversely proportional to the throughput of the network.

We also observed that the window size and the throughput are correlated only up to the certain

value of window size (in our case 85KB).

Similarly, in the UDP traffic (LAN and WAN networks), we observed that both the

datagram size and the data rate have inverse relation with jitter. But, it is limited by the MTU and

the capacity of the link. We did not notice any loss up to the data rate 2Mbps. However,

experimenting beyond 2 Mbps, we found that the size of datagram and the data rate directly affect

both the jitter and the packet-loss. Knowing the critical values of data rate and TCP window size

are essential for the better performance of a network.

For simultaneous TCP and UDP traffic (LAN and WAN networks), we also observed the

direct effect of the datagram size on the packet-loss ratio for any number of parallel TCP

68

connections. It is not present in either the TCP or the UDP traffic. In addition, the number of

parallel TCP connections have direct impact on both the UDP jitter and the packet-loss ratio for a

fixed TCP window size. The main difference between LAN and WAN networks are in their latency

and presence of multiple paths. From our study, we observed that multiple path is a dominant

factor. Thus, in TCP traffic, multiple links decrease the packet-loss, which, in turn, increase the

throughput of the network. Moreover, in UDP traffic, the jitter in WAN network is comparatively

higher than that of the LAN networks.

In real time UDP applications (voice and video traffic), both the jitter and the packet-loss

ratio are decreased without reducing their transmission rate even in the presence of TCP traffic

(while they all are competing for bandwidth and/or sharing bottleneck node). This is achieved by

increasing the datagram size. Similarly, in the TCP application (Web), the throughput is increased

and packet-loss ratio is decreased even in the presence of other parallel TCP connections. This

performance is achieved by increasing the window size near its critical value. Finally, the effect

of latency on the throughput is studied for two different congested links. It shows that the latency

is inversely proportional to the throughput for any congested link. It also tells us that higher the

congestion on link lower is the throughput of the network for any latency and any number of TCP

connections.

 This thesis has emphasized on the importance of quality of service for the better

performance in any network. We have presented the various parameters that can affect the quality

of service of TCP and UDP traffic in different networks. Moreover, this thesis demonstrated the

working of data plane traffic generator tool, Iperf, in virtualized environment to test performance

in different networks. The virtual laboratory setup is analogous to the real world organizational

69

networks. These kind of contributions have really motivated us to utilize and enhance the

methodologies to unlock the more factors that can affect network’s performance.

This thesis explains the processes in detail that can be performed during the network

performance analysis on the real networks. Irrespective of the network topologies, the factors that

affect the QoS are analyzed by using the Iperf tool. In addition, for WAN network, a virtual

prototype of an organizational network is built with three different Autonomous System (AS) using

the transport layer protocol BGP. BGP is the current main internet domain protocol.

In conclusion, the network performance analysis helps the admin to mitigate the factors

that are affecting the QoS of any particular traffic. Although, the network engineers are striving to

mitigate the existing issues, there will be always new challenges emerging. A successful network

performance analysis with a proper methodology can guarantee the QoS for many traffics in

different networks.

Using this study as a base, the impact of multipath on the network’s performance will be

the most fruitful future work. However, it will also be wise to see the dominancy between the

latency and the multipath in different scenarios as the network are becoming more and more

complex. Moreover, the study of effects on the network by control plane traffics will also be good

idea because of increasing market of Software Define Networking (SDN).

70

REFERENCES

[1] Sawashima, Hidenari, Yoshiaki Hori, and Hideki Sunahara. “Characteristics of UDP Packet

Loss: Effect of TCP Traffic.” N.p., n.d. Web. 05 Feb. 2016.

[2] Hacker, Thomas J., Brian D. Athey, and Brian Noble. “The End-to-End Performance Effects

of Parallel TCP Sockets on a Lossy Wide-Area Network.” IEEE, 2002. Web. 10 Feb. 2016.

[3] “Network Latency.” N.p., n.d. Web. 13 Feb. 2016.

<http://smutz.us/techtips/NetworkLatency.html>

[4] Krzyzanowski, Paul. “Quality of Service.” N.p., 28 Jan. 2013. Web. 19 Feb 2016.

[5]. Rogier, Boris. “Network Performance: Links between Latency, Throughput and Packet Loss.”

Performancevision, 26 May 2016. Web. 05 Apr. 2017.

[6] Lakshman, T.V., and Upamanyu Madhow. “The Performance of TCP/IP for Networks with

High Bandwidth-delay Products and Random Loss.” IEEE, June 1997. Web. 11 Mar. 2016.

[7] “VIRL Learning Lab Tutorial.” N.p., n.d. Web. 15 Mar. 2016. <http://virl-

dev/innovate.cisco.com/tutrial.php>

[8] Chen, Yan, Toni Farley, and Nong Ye. “QoS Requirements of Network Applications on the

Internet.” IOS Press, 2004. Web. 19 Mar. 2016.

[9] Miller, Marshal, and Chris Chase. “TCP/IP Protocol Suite.” TCP/IP Protocol Suite. N.p., n.d.

Web. 23 Mar. 2016.

[10] Pillai, Sarath. “Iperf: How to Test Network Speed, Performance, Bandwidth.” N.p., 04 Feb.

2013. Web. 09 Apr. 2016. <http://www.slashroot.in/iperf-how-test-network-

speedperformancebandwidth>

[11] Lewis, Chris, and Steve Pickavance. “Implementing Quality of Service Over Cisco MPLS

VPNs.” Introduction to QoS. Cisco Press, 09 Feb. 2016. Web. 05 Dec. 2016.

[12] Deshpande, Sachin, and Srinivas Kandala. “Models for MPEG2 and Video Conferencing.”

IEEE, Nov. 2000. Web. 04 Nov. 2016.

[13] Monfort, Jean-Yves. “Basic Requirements to Quality of Service (IP Centric).” International

Telecommunication Union, 23-25 May 2003. Web. 14 Apr. 2016.

[14] “Iperf- The Easy Tutorial.” N.p., 10 Dec. 2010. Web. 21 Apr. 2016.

<http://www.openmaniak.com/iper.php>

[15] “Quality of Service Technical White Paper.” Microsoft Corporation, 1999. Web. 26 Apr.

2016. <www.cs.columbia.edu/~hgs/internet.qosover.pdf>

71

[16] “Network Latency and Packet Loss Effect on Performance.” N.p., n.d. Web. 03 May 2016.

<https://www.noction.com/blog/network_latency_packet_loss_effects>

[17] Amir, Elan, and Hari Balkrishnan. “An Evolution of the Metricom Ricochet Wireless

Network.” University of California at Berkeley, 07 May 1996. Web. 09 May 2016.

[18] Dugan. Jon. “Iperf Tutorial.” Esnet, 2010. Web. 19 May 2016

[19] “What is TCP (Transmission Control Protocol).” SearchNetworking. N.p., n.d. Web. 25 May

2016.

[20] “The User Datagram Protocol (UDP).” N.p., n.d. Web. 08 June 2016.

<http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html>

[21] Gueant Vivean. “iperf – The network bandwidth measurement tool.” N.p., n.d. Web. 04 June

2016. <https://iperf.fr>

[22] “TCP Header Format.” N.p., n.d. Web. 10 Dec. 2016. <https://fenix.tecnico.ulisboa.pt>

[23] “TCP/IP Illustrated.” N.p., n.d. Web. 10 Dec. 2016. <http://www.imengineering.com>

[24] Hoffman, Chris. “How to Use Wireshark to Capture, Filter and Inspect Packets.” 30 July

2016. Web. 27 Nov. 2016.

[25] “Zenmap – Official Cross-platform Nmap Security Scanner GUI.” N.p., n.d. Web. 27 Apr.

2016.

[26] Peplnjak, Ivan. “BGP Tutorial: The Routing Protocol That Makes the Internet Work.”. N.p.,

n.d. Web. 16 May. 2016.

[27] Lowe, Scott. “A Brief Introduction to Linux Containers with LXC.”. N.p., n.d. Web. 25 Sept.

2016.

[28] Partsenidis, Chris. “What Is Iperf and How Is It Used?” SearchNetworking. N.p, n.d. Web. 5

Oct. 2016.

[29] “PuTTy”. N.p, n.d Web. 25 Sept. 2016. <https://en.wikipedia.org/PuTTy>

[30] “Using the GNS3 Network Simulator.” N.p., n.d Web. 29 May 2017.

<https://www.pluralsight.com/blog/it-ops/using-gns3-network-simulator>

[31] “Packet Tracer – Cisco.” N.p., n.d. Web. 29 May 2017.

<www.cisco.com/web/learning/netcad/course_catalog/PacketTracer.html>

72

APPENDIX A: IPERF GUIDE AND SAMPLE CODE FOR LIVE PACKET CAPTURE

A1: Iperf Guide

Table A1.1: General Options [21]

General Options

Command Line Option Environment Variable Option Description

-f, --format $IPERF_FORMAT A letter specifying the format to

print bandwidth numbers in.

Supported formats are

'b' = bits/sec 'B' = Bytes/sec

'k' = Kbits/sec 'K' = KBytes/sec

'm' = Mbits/sec 'M' = MBytes/sec

'g' = Gbits/sec 'G' = GBytes/sec

-i, --interval $IPERF_INTERVAL It will set the interval time in

seconds between the periodic

bandwidth, jitter and loss reports.

By default, it is zero. That means

no periodic reports are printed

-l, --len $IPERF_LEN It shows the length of buffer to

read or write. By default, it is 8 KB

for TCP and 1470 B for UDP.

Also for UDP, it is size of

datagram.

-p, --port $IPERF_PORT This is port for the sever to listen

on and the client to connect to. It

should be same in both server and

client. By default, it is 5001

-u, --udp $IPERF_UDP It tells to use UDP rather than

TCP

-w, --window $TCP_WINDOW_SIZE It will set socket buffer to

specified value. For TCP, it will

set TCP window size but for UDP

it is just the buffer on which

datagram are received

-h, --help Print out a summary of command

and quit

-v, --version Print version information an quit

73

Table A1.2: Server Specific Options [21]

Server Specific Options

Command line option Environment variable option Description

-s, --server $IPERF_SERVER It will run Iperf in server mode

-D It will run the server as a

daemon.

-R If Iperf service is running, it

will remove it

-P $IPERF_PARALLEL The number of connections to

handle by the server before

closing. Default is 0(which

means to accept connections

forever)

Table A1.3: Client Specific Options [21]

Client Specific Options

-b, --bandwidth $IPERF_BANDWIDTH It is speed in bits/sec at which

UDP sends data. This implies

–u option. By default, it is 1

Mbit/sec

-c, --client $IPERF_CLIENT It will run the Iperf in client

mode, connection to an Iperf

server that is running on host.

-d, --dualtest $IPERF_DUALTEST It will run Iperf in dual mode.

That means, it will cause the

server to connect back to the

client.

-t, --time $IPERF_TIME It is the duration of time in

second to transmit the data. By

default, it is 10 seconds.

-P, --parallel $IPERF_PARALLEL It is number of simultaneous

connection that is connecting

to the server.

-T,--ttl $IPERF_TTL It is the time-to-live for the

outgoing multicast packets. In

other words, it is the number

of routers to go through. By

default, it is 1

74

A2: Sample Code for the Live Packet Capture

TITLE VIRL Live Packet Capture

MODE con:cols=80 lines=12

COLOR 1F

set NETCAT_PATH=%PROGRAMFILES(x86)%\Nmap\ncat.exe

set WIRESHARK_PATH=%PROGRAMFILES%\Wireshark\Wireshark.exe

echo.

set /P VIRL_HOST="VIRL Server IP: "

set /P PCAP_PORT="Live port: "

echo.

echo Reading live capture from port %PCAP_PORT%. Close this window to stop capture!

echo.

"%NETCAT_PATH%" %VIRL_HOST% %PCAP_PORT% | "%WIRESHARK_PATH%" -k -i

-

75

APPENDIX B: TOPOLOGIES FOR LAN, WAN AND REAL TIME TRAFFICS

B1: LAN Topology

Figure B1.1: Topology used for TCP

Figure B1.2: Topology used for UDP

76

Figure B1.3: Topology used to observe the effect of TCP/UDP

77

B2: WAN Topology

Figure B2.1: A single topology used for WAN

78

B3: Real Time Traffics Topology

Figure B3.1: Topology used for voice and video traffic

Figure B3.2: Topology used for web browsing traffic

79

APPENDIX C: SUPPORTING GRAPHS FOR LAN, WAN AND REAL TIME TRAFFICS

C1: Both TCP and UDP Traffic (LAN)

Figure C1.1 Jitter and packet loss ratio with datagram at 512Kbps (LAN)

Figure C1.2 Jitter and packet loss ratio with datagram at 2Mbps (LAN)

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram Size (B)

12P

9P

6P

3P

0.1

0.15

0.2

0.25

0.3

360 560 760 960 1160 1360
P

k
t_

lo
ss

_
ra

ti
o

Datagram Size (B)

12P

9P

6P

3P

0.05

0.1

0.15

0.2

0.25

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram Size (B)

12P

9P

6P

3P

0.2

0.25

0.3

0.35

0.4

360 560 760 960 1160 1360

P
k
t_

lo
ss

_
ra

ti
o

Datagram Size (B)

12P

9P

6P

3P

80

C2: Both TCP and UDP Traffic (WAN)

Figure C2.1 Jitter and packet loss ratio with datagram at 512Kbps (WAN)

Figure C2.2 Jitter and packet loss ratio with datagram at 2Mbps (WAN)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram Size (B)

12P

9P

6P

3P

0.15

0.2

0.25

0.3

0.35

360 560 760 960 1160 1360

P
k
t_

lo
ss

_
ra

ti
o

Datagram Size (B)

12P

9P

6P

3P

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

360 560 760 960 1160 1360

Ji
tt

er
 (

m
s)

Datagram (B)

12P

9P

6P

3P

0.27

0.29

0.31

0.33

0.35

0.37

0.39

360 560 760 960 1160 1360

P
k
t_

lo
ss

_
ra

ti
o

Datagram Size (B)

12P

9P

6P

3P

81

C3: Video Traffic

Figure C3.1 Jitter and packet loss ratio with parallel TCP at 512Kbps (Video)

Figure C3.2: Jitter and packet loss ratio with parallel TCP at 2Mbps (Video)

0.08

0.1

0.12

0.14

0.16

0.18

3 4 5 6 7 8 9 10 11 12

Ji
tt

er
 (

m
s)

Parallel TCP connections (P)

2948B

570B

1470B

0.04

0.09

0.14

0.19

0.24

0.29

0.34

0.39

3 4 5 6 7 8 9 10 11 12

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

2948B

570B

1470B

0.05

0.07

0.09

0.11

0.13

0.15

0.17

3 4 5 6 7 8 9 10 11 12

Ji
tt

er
 (

m
s)

Parallel TCP connections (P)

2948B

576B

1470B

0.15

0.25

0.35

0.45

0.55

0.65

3 4 5 6 7 8 9 10 11 12

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

576B

1470B

2098B

82

C4: VoIP Traffic

Figure C4.1: Jitter and packet loss ratio with parallel TCP at 16Kbps (Voice)

Figure C4.2: Jitter and packet loss ratio with parallel TCP at 32 Kbps (Voice)

0.11

0.12

0.13

0.14

0.15

0.16

0.17

3 4 5 6 7 8 9 10 11 12

Ji
tt

er
(m

s)

Parallel TCP connections (P)

80B

160B

240B

320B

0.02

0.05

0.08

0.11

0.14

0.17

0.2

3 4 5 6 7 8 9 10 11 12

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

80B

160B

240B

320B

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

3 4 5 6 7 8 9 10 11 12

ji
tt

er
(m

s)

Parallel TCP connections (P)

80B

160B

240B

320B

0.026

0.076

0.126

0.176

0.226

3 4 5 6 7 8 9 10 11 12

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

80B

160B

240B

320B

83

Figure C4.3: Jitter and packet loss ratio with parallel TCP at 64Kbps (Voice)

0.065

0.075

0.085

0.095

0.105

0.115

0.125

0.135

0.145

3 4 5 6 7 8 9 10 11 12

Ji
tt

er
 (

m
s)

Parallel TCP connections (P)

80B

160B

240B

320B

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

3 4 5 6 7 8 9 10 11 12

P
k
t_

lo
ss

_
ra

ti
o

Parallel TCP connections (P)

80B

160B

240B

320B

84

C5: Effect of Latency on Throughput (Web Browsing)

Figure C5.1: Throughput verses parallel TCP at 120ms and 100ms latency

Figure C5.2: Throughput verses parallel TCP at 80ms and 60ms latency

90

140

190

240

290

340

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
p

u
t

(K
b

p
s)

Parallel TCP connections (P)

0% loss

2% loss

115

160

205

250

295

340

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Parallel TCP connections (P)

0% loss

2% loss

130

180

230

280

330

380

430

480

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t(

K
b
p
s)

Parallel TCP connections (P)

0% loss

2% loss

160

235

310

385

460

535

610

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t

(K
b
p
s)

Parallel TCP connections (P)

2% loss

0% loss

85

VITA

Charitra Maharjan, a native of Lalitpur, Nepal, was born on 1 June 1989 to Mr. Gyan

Bahadur Maharjan and Mrs.Ratna Maya Maharjan. After finishing his schooling from Deepmala

Secondary English School in 2006, he graduated 12th from United Academy, Kumaripati Lalitpur.

He studied Electronics and Communication Engineering at Advanced College of Engineering and

Management in Lalitpur, Nepal, from 2009 through 2013 toward obtaining his Bachelor of

Engineering. After graduating, he got approved for admission at Louisiana State University, Baton

Rouge for the fall 2015. Since then, he is pursuing his Master’s Program as a graduate student in

Electrical Engineering Department. During his time at LSU, he has been working as a Research

Assistant for Computer Science Department under the Dr. Bijaya Karki in parallel molecular

dynamics simulation projects. Following receipt of his master’s degree, he plans to work in the

computer networking industry.

	Louisiana State University
	LSU Digital Commons
	2017

	Network Performance Analysis Using Cisco VIRL
	Charitra Maharjan
	Recommended Citation

	tmp.1519413940.pdf.Hg2Jb

