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ABSTRACT 

The thesis presented has four goals: to perform a comprehensive literature review on current 

neurostimulator technology; to outline the current issues with the state-of-the-art; to provide a 

neurostimulator design that solves these issues, and to characterize the design and demonstrate its 

neurostimulation features. The literature review describes the physiology of a neuron, and then 

proceeds to outline neural interfaces and neurostimulators. The neurostimulator design process is 

then outlined and current requirements in the field are described. The novel neurostimulator circuit 

that implements a solution that has wireless capability, passive control, and small size is outlined 

and characterized. The circuit is demonstrated to operate wirelessly with a resonance-coupled 

multi-channel implementation, and is shown powering LEDs. The circuit was then fabricated in a 

miniature implementation which utilized a 10 x 20 x 3 mm3 antenna, and occupied a volume 

approximating 1 cm3. This miniature circuit is used to stimulate frog sciatic nerve and 

gastrocnemius muscle in vitro. These demonstrations and characterization show the device is 

capable of neurostimulation, can operate wirelessly, is controlled passively, and can be 

implemented in a small size, thus solving the aforementioned neurostimulator requirements. 

Further work in this area is focused on developing an extensive characterization of the device and 

the wireless power delivery system, optimizing the circuit design, and performing in vivo 

experiments with restoration of motor control in injured animals. This device shows promise to 

provide a comprehensive solution to many application-specific problems in neurostimulation, and 

be a modular addition to larger neural interface systems.  
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  INTRODUCTION 

 Purpose of Thesis 

The purpose of this thesis is to discuss the current neurostimulator state-of-the-art and propose a 

solution to problems found in this technology. The circuit proposed demonstrates a suitable 

concept for a neurostimulation device that can solve several of the current issues with the 

technology. The design was characterized, and its wireless, miniaturization, and neurostimulator 

capabilities were successfully demonstrated.  

This thesis can be used as reference for a comprehensive neurostimulator design review by other 

individuals and serves to highlight the multidisciplinary aspect of neuroengineering. Further work 

is required to completely characterize the power delivery components, power requirements, and 

miniaturization design optimization. 

 Introduction and Motivation 

Neural interfaces (NIs) are devices that allow communication with the nervous system remotely. 

Communication can occur in one or both of two directions, either stimulation into the nervous 

system, or recording from it. Traditionally, this information path has been dominated by electrical 

information measurement and electrical stimulus, which allow bi-directional communication [1]. 

The interfaces vary in type, location and purpose. Neural interfaces can be classified as intraneural 

or extraneural, be located in the peripheral or central nervous system, and be utilized as stimulators 

or receptors on both motor neurons and sensory neurons [1]. Types of NI vary from external 

electrocardiograms (ECG), electroencephalograms (EEG), and transcranial magnetic stimulation; 

to implantable microelectrode arrays (MEA), longitudinal intrafascicular electrodes (LIFE), 

electrochemical stimulators, and optogenetic neurotransmitter release [2]. Neurostimulators are 

devices dedicated to delivering stimuli to the nervous system. Microfluidics has also been used to 

allow chemical stimulation which focuses on the delivery of neurotransmitters to target nerve sites 

[3]. Advances in genetics have allowed the implantation of specific genomes that program the 

nerve cell to construct photoreceptors and place them in the cell wall [2], allowing light to stimulate 

the neuron by triggering neurotransmitter release. 

The field of neural interfaces has changed dramatically over the past 30 years. Microelectrode 

arrays allowed direct recording of high-resolution information from the brain and nervous 

system[4, 5]. Neural interfaces were developed to enable the acquisition and analysis of neural 

signals. Research allowed more applications to be developed and a deeper understanding of the 

signals utilized by the nervous system to communicate with the human body and with itself. The 

importance of NIs became prevalent as systems that restored sensory and motor function to 

tetraplegic and paraplegic humans were developed, and is evidenced by the increase in 

publications and presentations related to NIs in current neuroscientific journals and conferences 

[6]. The benefits of research in this field can be seen in the ability to help people with debilitating 

sensory and motor impairments better interact with their environment, and give them a better 
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quality of life.  Benefits can also be seen as technology is developed that allows humans to move 

past their bodies and create a different connection between the world and their brains [6]. NI 

technology has changed from rudimentary signal probe devices that measured and recorded 

streams of signals into complex sensitive electrode arrays that feed large amounts of data into 

computer systems that are capable of processing it to extract valuable neuronal information from 

the host. A practical example of this technology are closed-loop systems that enable humans with 

amputated arms to control a wearable robotic arm that allows them to feed themselves and interact 

with their environment [7]. Closed-loop NIs are comprised of a feed-back and feed-forward 

mechanism typically consisting of implantable electrodes that connect to a processing unit through 

wires which receives electrical signals from and delivers electrical stimulation to the nerve through 

the same pathway. 

There are many neural interface devices such as the electroencephalogram (EEG) and 

electrocardiogram (ECG) that have been refined substantially since their conception and serve a 

variety of purposes. The technical issues of these devices have been extensively reviewed and 

resolved in many different ways. These devices also reside outside of the body. Modern neural 

interfaces are able to contact with the nerves themselves.  

The rest of the well-known NIs are currently limited by issues which include: proper selection of 

peripheral nerve fibers to restore control and communication, specificity and understanding of 

neural information that is used for control and feedback, stability of the device itself, injury 

induced by the implant and undesired consequences [1], and longevity and power supply of chronic 

devices [8]. Typical NIs utilize the sensing electrode to record and stimulate at the same time, 

however, valuable improvements can be achieved by using a modular design for separate sensing 

and stimulation devices. It was found that an innovative solution was necessary due to these 

drawbacks in current neurostimulator technology. Further developments in neural interfaces and 

neurostimulators require a different approach that focuses on solving the current problems faced 

in the field.   

Taking into account current neurostimulator limitations, a novel circuit is presented which solves 

problems of wireless capability, size, and passive operation and control in current neurostimulator 

state-of-the-art. The circuit operation was characterized in this work, and its wireless capability is 

verified. Preliminary in vitro experiments were performed on this circuit to verify its operation as 

a neurostimulator, and will be presented in this work. 

 Outline of Thesis 

The objective of this thesis project is to design and implement a neurostimulator which could be 

small enough to be implanted in a distributed manner in various locations in the body.  

The thesis is separated into five chapters. Each chapter discusses and summarizes what was 

presented. The first chapter outlines the motivation and purpose of the thesis. 
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Chapter 2 is a comprehensive literature review that begins with a physiological description of the 

neuron, proceeds to describe neural interfaces, and further describes current neurostimulators. 

Chapter 3 presents and discusses current neurostimulator issues. A novel neurostimulator design 

is presented and characterized. The wireless capability of the device is also demonstrated with a 

multi-channel implementation that drives light emitting diodes (LEDs). 

Chapter 4 shows work that was performed in order to miniaturize the design. This miniature 

implementation is then shown with a wireless power delivery system capable of eliciting 

compound action potentials in frog sciatic nerve, and causing muscle contractions in frog 

gastrocnemius muscle. 

Chapter 5 concludes the thesis by summarizing the work that has been achieved and putting it in 

context with future work. Suggestions on how to improve the design and further work that is 

required is also discussed.  
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  LITERATURE REVIEW 

 The Neuron 

The nervous system can be divided into the central nervous system (CNS) and the peripheral 

nervous system (PNS). The CNS is composed of the brain, brain stem, and spinal cord. The PNS 

is comprised mostly of branches of nerves that emanate from the spinal cord and traverse the body. 

These nerves are composed primarily of the axons of neurons.  Neurons are the basic cell within 

the nervous system. They control the transmission of information within the nervous system. 

Neurons compose the brain which harbors memories, consciousness, thoughts, and thought 

processes. Neurons are also capable of transmitting primarily sensory and motor information to 

and from the brain. Current human understanding is incapable of fully elucidating the complex 

processes that occur constantly inside the brain, however, technology has enabled human beings 

to record and analyze signals traversing the nervous system. This technology is referred to as neural 

interface systems. Neural interfaces are a good prospect to shed light on the complex processes 

within the brain [9]. The main focus of the technology is to communicate with the brain.  

The signals that originate from the brain and traverse through the nervous system to the peripheral 

muscles and the signals that originate from the sensory cells and traverse to the brain are a focus 

of neural interface studies. These are the simplest signals within the nervous system as they have 

a defined purpose easily understood from their target tissue or location, be it sensory or motor. The 

transmission mechanism that drives these communication pathways is separated into two types of 

signals, namely electrical signals for long pathways through neurons and chemical signals through 

short pathways between neurons [10]. The electrical signals are termed action potentials. Neural 

interfaces tap into these pathways and record signals, or stimulate these pathways to generate a 

signal to propagate through them. The fact that the action potentials within neurons propagate as 

electric current, and chemical signals are regulated through neurotransmitters allow researchers 

and scientists to develop mechanisms to emulate these signals and artificially initiate signal 

transmission within a neuron or nerve. The shape and biology of neurons are well-adapted to 

generating, processing, and propagating these signals. 

The neuron is composed mainly of the cell body, dendrites, and axon (Figure 2.1). Dendrites are 

numerous extensions that receive signals from the axons of surrounding neurons, and relay 

information directly into the cell body of the neuron. The axon of a neuron is typically much longer 

than the cell body, and is involved in the transmission of an action potential from the cell body to 

a surrounding neurons through several branches that extend at the end of the axon. The length of 

the axon is covered with myelin sheaths which increase the speed at which the action potentials 

propagate. Action potentials propagate along unmyelinated axons, whereas they jump through 

myelin sheaths. This process is known as saltatory conduction. Myelin sheaths are separated by a 

space close to 1 µm wide known as the Nodes of Ranvier, and are electrically equivalent to an 

insulator with high resistance and low capacitance. The Node of Ranvier is rich in voltage-gated 

ion channels that propagate the action potential from one sheath to the next. The small space 
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between the branches of an axon and the dendrites of the next neuron is known as the synapse. 

The neuron receiving the signal is called the postsynaptic cell, and the neuron that transmits a 

signal is referred to as presynaptic. Chemical signaling is the mechanism that facilitates 

communication through the synapse. Neurotransmitter channels are activated when an action 

potential traverses the axon and reaches the outer branches. These channels release 

neurotransmitters into the synapse which activate surface proteins in the postsynaptic neuron. 

Signals in these pathways can be detected utilizing sensing equipment suited for electrical and 

chemical detection. It is also possible to stimulate these pathways through the introduction of 

electrical signals at the axon and neurotransmitters at the synapse to induce action potentials. The 

electrical characteristics of action potentials are interesting since they provide a close to “all or 

nothing” (or binary) mechanism for neurons to communicate. While this view has been held for 

quite some time now, there has been evidence showing that the waveform of action potentials 

varies, which allows for complex signals to be propagated [11]. In this document, we view action 

potentials as a binary event for simplicity.  

The resting membrane potential for neurons in mammals is close to -60 mV. When the cell body 

is excited through excitatory post-synaptic potentials which raise the membrane potential to the 

threshold potential, typically about -10 mV, an action potential will be induced. The action 

potential event changes the membrane potential by about 70 mV with duration of 2-3 ms [11]. The 

stimulation that drives action potentials is termed the excitatory post-synaptic potential (EPSP) 

(Figure 2.2). EPSPs raise the membrane potential chemically through the flow of ions through 

ligand-gated ion channels triggered by excitatory neurotransmitters. EPSP is opposite to the 

inhibitory post-synaptic potential (IPSP) that is induced when inhibitory neurotransmitters 

stimulate the dendrites of a neuron.  When sufficient EPSP events occur close together in time, the 

membrane potential rises over the threshold voltage and an action potential is induced. The signal 

then propagates through the axon and eventually reaches the axon branches where the chemical 

signaling mechanism is activated and the signal propagates through the synapse into surrounding 

dendrites through neurotransmitters, thus inducing an inhibitory or excitatory post-synaptic 

potential.  

Closed-loop neural interface systems aim to record action potentials that traverse these pathways 

and relay that information to a processing unit which in turn delivers the appropriate stimulus to 

the target. Signals can be recorded in several locations in the body, including the brain, sensory 

neurons, motor neurons, the heart, and others. The processing unit can be anything from a reflex 

path, to the brain, to a computer chip. The stimulus can be delivered in several places as well, the 

most common being motor neurons or muscles. Depending on the application, neural interface 

systems can be broadly separated into two categories: intraneural and extraneural [7]. 
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Figure 2.1. Neuron cell structure. The source is figure 48.4 from [10]. 

Figure 2.2. Typical EPSP, IPSP, and action potential waveforms [1]. 

  



7 

 

 Neural Interfaces 

 Overview of Neural Interfaces 

Research focused on neural interfaces leads to the possibility of developing technology that will 

help people with damage to the nervous system. Treatments to the PNS sensory or motor neurons 

restores the interaction with their environment again [6]. Research has demonstrated the 

development of closed-loop prostheses that can be controlled and provide a mechanism to relay 

information back to their controller [12]. This type of research paves the way for developing a 

more clear understanding of the brain at the neuronal level. These advances in prosthetics and 

research have clear applications in clinical studies and important implications in the study of the 

brain in general. Neural interfaces that target the PNS are the focus of this section.   

Neural interfaces are being developed to treat diseases or injury that has damaged the connection 

between the brain and body. Conditions such as stroke, tetraplegia, Lou Gehrig’s disease, cerebral 

palsy, muscular dystrophy, limb amputations, and others can lead to the decrease in the ability for 

the brain to communicate with muscles properly while retaining the capabilities of generating the 

signals that would have enabled muscle control [6]. While the condition of the nervous system is 

different for nerve degeneration and damage and require different paradigms to develop a solution, 

neural interfaces provide a mechanism to relay the remaining brain messages to the appropriate 

muscular targets in order to restore function that was lost due to these conditions [13]. Brain signals 

are recorded and analyzed to provide control for technology that assists the individual in everyday 

tasks such as eating and dressing [12, 14]. They can also be used to drive functional electrical 

stimulation to control muscles no longer reachable through the neural pathway. Studies of 

monkeys with intact brains and humans with damage show that brain activity when muscle control 

is performed or imagined is similar [6]. The capability of the brain to create control signals even 

when there is nothing to control or the pathway has been damaged sheds light unto the importance 

of studying these signals and deriving useful information from them.    

Neural interfaces have allowed specific action potential patterns from different places in the body 

to be extracted and analyzed [15]. This type of information has led to the development of several 

areas of neurological study such as: models for the encoding of action potentials, multiplexing of 

movement signals in distributed neural nets, comparison between action potentials and the 

summation of these signals, learning models and brain plasticity, the relationship between the brain 

and voluntary muscle movements along with brain control of machines separate from the body, 

and the recording of information from people with chronic diseases [6]. All of the mentioned fields 

have advanced extensively due to developments in NIs. Development in NIs does suffer from 

several technical difficulties that require specialized design and research, and implantable devices 

can fail over 40% of the time even when proper care has been taken during the implantation 

procedure [15].  
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The core difficulties of NI development reside in the fact that the body-machine gap has to be 

bridged. The obvious problems related to action potential coding and interpretation are stifled not 

by modern computational capacity, as was before, but by the inherent problems developed by 

installing a recording and stimulation system within a biological host. These issues arise from the 

biological response to foreign materials or tissue injury response. For the goal of reaching signals 

at the source, a surgical procedure must be performed. During any such procedure, tissue is 

damaged, and the body reacts depending on the type of damage and implant by initiating the wound 

healing process [16]. During the wound healing process, the implant or device are encapsulated in 

glial cells which have insulating properties. The cells impair the sensitivity of electric devices. The 

case is problematic at best for percutaneous systems that have wires running from the implanted 

device to the outside of the skin and into a processing unit. Percutaneous NIs also suffer from the 

possibility of infection and damage from movement [15]. For this reason, considerable effort is 

devoted into developing wireless, low-power, and high-bandwidth NIs [6]. Current technology 

helps alleviate the problem related to the body response through various coatings and drugs that 

inhibit the healing process. Another promising consideration when discussing the body’s response 

is the mechanical properties of the implant. A recent study showed that when implants match the 

mechanical properties of the host, then the injury response is greatly reduced [17]. If a suitable 

solution to the biological response problem can be found, the main limitation to NIs resides in the 

location placement of the NI itself, and the communication with the user interface.  

Neural interface technology is classified into two categories depending on where the sensing 

devices are placed with respect to nerve bundles. If the sensing device is placed on the surface of 

a nerve, it is extraneural. If sensing devices are placed within a nerve, they are considered 

intraneural [7]. Both types have their respective practical applications and will be discussed further 

in the following sections. In this thesis, devices that record or stimulate neurons will be collectively 

referred to as neural interfaces, regardless of whether the technology is utilized in a closed-loop 

fashion or not. 

 Extraneural Interfaces 

Extraneural interfaces are mainly characterized by the fact that they do not penetrate the nerve 

when they are used to interface with the nervous system. Since the electrode itself is placed around 

a nerve which has few to many neurons within it, extraneural interfaces suffer from being unable 

to target single neurons [7]. Typical extraneural interfaces include the electrocardiogram (ECG) 

and electroencephalogram (EEG). In the ECG, the electrodes measure the summation of the action 

potentials that emanate from the heart. The EEG measures the voltages resulting from the action 

potentials of the brain detectable on the surface of the skull. These technologies have well-known 

clinical applications and have served to understand the underlying processes related to the natural 

heart pacemaker and brain signals [18, 19]. These systems, however, rely on electrodes being 

placed on the outside of the body, away from where action potentials are generated. In order to be 

able to record and stimulate specific nervous system pathways, it is necessary to place electrodes 

as close as possible to nerve fibers. They contrast with the electromyogram, which records 
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electrical signals from muscles. EEG, ECG and electromyograms are different from other neural 

interfaces that are located under the skin such as nerve cuff electrodes.  

Nerve cuff electrodes manage to get close to the neurons by enveloping a nerve with electrodes 

and connecting these electrodes through wires to an external processing circuit. Thus, neural 

specificity is limited to the capability of placing the cuff electrodes at desired locations [1].  Typical 

nerve cuff designs are cylindrical, with electrodes and stimulation sites branching out 

perpendicular to the length of the cylinder with a central line that runs along the length of the 

cylinder [20]. Modern applications can utilize a flattened nerve cuff design with a rectangular 

cross-section which allows better contact between the individual neurons and electrodes. Nerve 

cuff electrodes currently still lack good specificity and thus are not prevalent components of NIs 

used for control of prostheses [7]. Nerve cuff electrodes do not damage or injure the nerve during 

implantation in any way when properly installed. 

 Intraneural Interfaces 

Intraneural interfaces are ones in which the device penetrates the nerve and comes in contact with 

the neurons within. This characteristic makes intraneural interfaces capable of targeting a single 

neuron or a small group of neurons, which allows greater specificity of the signals recorded and a 

smaller stimulation signal to generate the desired effect [7]. Intraneural interfaces include 

microelectrode arrays (MEAs) [21], longitudinal intrafascicular electrodes (LIFEs) [22], sieve 

electrodes [23], microfluidic functional chemical stimulation and drug delivery [24], and 

optogenetic neurotransmitter release mechanisms [2].  

MEAs consist of an array of electrodes placed on a semiconductor substrate. One well-known 

design is the Utah MEA[7]. MEAs have been evaluated in various systems with differing ports 

and implanting methods [25]. MEAs are suitable for sensing a collection of neurons at the same 

time since they cover an area of the nerve instead of a specific point. MEAs are suitable for 

recording and stimulation. Drawbacks of using MEAs is that currently their wired connections 

place unwanted stress on the device which may then move and injure the nerve that is targeted [7]. 

MEAs are still currently used with a wired connection to a separate processing unit [25].  

LIFEs are characterized for being much longer than MEAs and consist of biocompatible devices 

which can be easily removed without further surgical procedures. Preliminary studies have shown 

promise in the prosthesis control field [7]. Technology arising from the combination of concepts 

from MEAs and LIFEs has been developed with advanced applications in NI systems [15]  

Sieve electrodes consist of a sensor array being placed between two guidance channels in which 

the two severed ends of a nerve or neuron are placed. The field is then treated to promote neural 

growth, with the hope that the neuron will grow around the sensor array in the middle of the device 

[26]. Animal studies showed limited growth through the sensors, and applicability is further stifled 

by constant loss of nerve integrity and thus loss of nerve function [7]. LIFEs and sieve electrodes 

also suffer from the same drawbacks and limitations as MEAs related to unwanted stress being 
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applied to the nerve with possible damage incurred. All of the previous interfaces are typically 

connected to external processing circuits through wires that can induce unwanted stress on the 

nerves and pose risk of infection and unwanted tissue response.  

Studies have attempted to develop electrodes accompanied by microchannels that are used to 

deliver drugs to treat neural damage and tissue response to the implanted devices with good 

characterization of the drug delivery mechanism [24]. Other microfluidic interfaces are designed 

to tap into the chemical signaling mechanism at the synapses. These interfaces have the advantage 

that they are not limited to the stimulation of nerves, but can also be adapted to be used to treat 

diseases that require local drug delivery and used to treat areas against tissue response which could 

inhibit the effectiveness of NI systems [3]. This project aims at providing a compact solution that 

will reduce the biological response from the wound healing process (by limiting device size) and 

allow wireless control to enable stimulation. The device should receive signals from an external 

processor and is designed to be used in a modular fashion as part of a larger neural interface system. 

 Neural Stimulator State-of-the-Art 

Neurostimulators are devices dedicated to eliciting action potentials in targeted neurons. Recent 

advances in fields such as microelectromechanical systems (MEMS), bio-microelectromechanical 

systems (BioMEMS), optogenetics, biocompatibility, and wireless power transmission have paved 

the way for advanced neural interfaces to be developed. Current technology allows fully 

implantable designs to be feasible. The primary objective of a neural stimulator is to allow selective 

stimulation of specific nerve bundles for therapeutic or performance-enhancing purposes. There 

are three stimulation methods currently: electrical, chemical, and optogenetic.  

Technology that enables neurostimulator ranges from transcutaneous electrical stimulation that 

targets large nerves (LIFE citation), microfluidics for the delivery of neurotransmitters to specific 

neural sites [17], to optogenetics which allows absolute targeting of individual neurons via 

excitation of photoreceptors produced by cells [27, 28]. Applications for neurostimulators include 

deep brain stimulation (DBS), vagus nerve stimulation (VNS), cochlear implants, cardiac 

pacemakers, chronic pain management, prostheses control, and computerized muscle control. 

Electric prescriptions are also an emerging field where bioelectronics devices are used to regulate 

the behavior of organs and organ systems in order to treat conditions. Current neurostimulators 

include the BION microstimulator [29], an ultrasound powered stimulator [30],  a CMOS circuit-

based stimulator [31], an integrated circuit stimulator [32], and capacitor-based stimulation 

systems [33, 34]. Table 2.1 summarizes the stimulation signal characteristics of all the discussed 

neurostimulators. 

 BION Microstimulator 

The BION microstimulator has been in development for over 10 years now. It is a neural stimulator 

designed to be compact and easily implantable [29]. The general shape of it is cylindrical, having 

2-3 mm diameter and about 20 mm length. This form factor was chosen specifically to make the  
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Table 2.1. Comparison of neurostimulator technology with respect to the proposed neurostimulation circuit. 

Wvfm = waveform, M = monophasic, B = biphasic, A = asymmetric, S = symmetric, C = charge balanced, I = charge imbalanced, DC 

= direct current, MC = multichannel capability, EM = electromagnetic, W = wireless demonstration in cited document, DBS = deep 

brain stimulation, * Devices demonstrated with bi-directional technology. 

 

Device Wvfm. Power Src. Power 

Freq. 

Power 

Req’d 

Stim. 

Delivered 

Stim. 

BW 

MC 

 

Processing 

On-Chip 

Neural 

Interface 

Tissue Target 

[29]* M Battery, W n/a n/a 30 mA 1000  Y Y Electrode Peripheral 

[30] DC Ultrasound, 

W 

1 MHz 10-150 

mW/cm2 

1 mA n/a N N Electrode Retinal 

[31]* B,A,C Battery n/a 224 µW ± 80 µA 200-

10 k 

Y Y Electrode Retinal 

[32] B,A/S,C

/I 

Battery n/a n/a n/a n/a Y Y Electrode Retinal 

[33] M Inductive, 

W 

394 

MHz 

125 mW 0-150 mA 100  N Y Electrode Peripheral 

[34] B,S,C Battery n/a n/a ± 5 mA n/a Y Y Electrode DBS 

[35] M EM, W .69-2.2 

GHz 

20.4 µW 80 mA 1  Y N LED Optogenetic 

[36]* M Inductive, 

W  

n/a n/a 1.4 

mW/mm2 

10  Y N LED Optogenetic 

[37] M Battery, W n/a n/a 32 mW 1-20  Y Y LED Optogenetic 

This thesis B,A,C/I Resonant,

W 

>100 

kHz 

100 µW 40 nC 4 k Y N Electrode Peripheral,DBS, 
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device easier to implant though a syringe injection. It has gone through multiple design iterations. 

Originally, the BION circuitry was designed to operate in a completely wireless fashion with on-

demand stimulation delivered through an external controller. Eventually, the design shifted 

towards utilizing a small battery that could power the device from anything between a few hours 

to a week of use, depending on how much it was utilized. The battery is designed to require 1-2 

hours to charge fully. 

The device is designed to allow several BION stimulators to be implanted in proximity. They have 

individually addressable circuitry that allows an external controller to select and program 

individual stimulators with different stimulation patterns. Latest BION devices also implement 

dedicated ASIC (application specific integrated circuits) chips with sensors that allow the device 

to record and transmit sensor information back to a controller. This feature enables bi-directional 

capabilities in the BION microstimulator [29]. 

Several clinical trials have been performed with the BION, including implanting in post-stroke 

patients for shoulder subluxation, muscle rehabilitation in patients with severe knee osteoarthritis, 

treatment of post-stroke hand contracture, treatment of foot drop, prevention of pressure ulcers, 

overactive bladder, refractory headaches, and gastroesophageal reflux disease [29].  

 An Ultrasound-Powered Neurostimulator 

This device utilizes ultrasound transcutaneous energy transfer as its power source [30]. The 

operating principle of his power source is to deliver mechanical energy to piezoelectric materials 

to generate electricity. The design of this stimulator is simple, consisting of only 3 components: a 

diode, a capacitor, and a piezoelectric receiver. The device size was 1.3 mm in diameter, with 8 

mm in length. The devices utilized a nerve cuff electrode as its means to interface with neural 

tissue, and this nerve cuff was specifically designed for rat nerves.  

The device was shown to successfully stimulate rat nervous tissue, and elicit muscle contractions 

in vivo. The device managed to saturate the amount of energy delivered to the tissue until muscle 

contraction force could not be raised. Utilizing ultrasound as a means to deliver energy to low-

power requirement devices is an area that has not been extensively explored. This specific type of 

power delivery is susceptible to beam direction and orientation of the receiver.   

 CMOS-Circuit Neurostimulator 

The CMOS circuit presented in this paper was designed to be utilized as the implanted module (or 

device) in an external-internal system [31]. This architecture is based on two modules: one external 

control and data acquisition module, and one implanted module. The implanted device is typically 

powered by a battery. The implanted device presented in this case is an integrated circuit (IC) 

which has amplifier optimizations that reduce the IC size and increase its efficiency, two key 

parameters when designing neural interface chips. The IC includes a neural recording path, and a 

neurostimulation path. These two systems can be connected to the same electrodes and isolated 
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from each other, allowing the device to operate bi-directionally according to commands from the 

controller. The stimulation signal was designed as a square wave, but has capacitive latency 

associated with it. This issue prevents symmetric waveform generation. The device architecture is 

presented, and extensive simulations are shown, but no constructed device is shown. The 

simulations are promising, and further iterations and optimizations in different areas may lead to 

future low-power ICs with complete bi-directional capabilities.  

 16-Channel Neural Stimulator IC 

A 16-channel neural stimulator is presented with applications in artificial retinal prostheses [32]. 

Like the previous described CMOS-circui, this device relies on an external control module. This 

system implements a digital to analog converter (DAC) at the external control module instead of 

implementing a DAC on-board every chip. This architecture manages to reduce device size by up 

to 51.8%. The 16 channels are utilized to drive “pixels,” which are electrodes in an MEA which 

interface with the optic nerve to be able to cause 2D stimulation and generate artificial images.  

A key design feature of this IC is that it allows great flexibility in terms of stimulation waveform 

generation. The circuit allows square wave, exponential cathodic, biphasic pulse trains, fast 

cathodic, sine, and fast anodic waveforms. Simulations have shown that different stimulation 

waveforms have different stimulation efficiencies [38]. This devices was successful at showing 

that neural stimulators can be successfully simplified by moving specific circuitry and applications 

to the control module.  

 Capacitor-Based Neurostimulators 

Capacitor-based neurostimulation has particular advantages when compared with direct current 

and voltage controlled stimulation [34]. Stimulation is inherently safer due to the limited current 

available for discharge within a capacitor. Capacitor-based stimulation is also easier to control 

since charging the capacitor automatically imposes a limit to the charge stored without needing to 

implement a feedback loop. Capacitive-based stimulation does have a lower efficiency, but this is 

efficiency has been achieved at 77%, with 65% and 92% efficiency achieved in current controlled 

stimulation and voltage controlled stimulation systems [34].  

In [34], a switched-capacitor stimulation (SCS) system is proposed. In this system, a power source 

charges a bank of capacitors which are selectively discharged to different electrodes through the 

use of multiplexers and demultiplexers. The system uses an integrated microcontroller and other 

control and safety circuitry. The microcontroller allowed for several stimulation parameters to be 

controlled, including stimulation voltage, current limit, stimulation pulse width, stimulation 

frequency, and electrode selection. The system was simulated and it has been implemented in other 

publications [36]. 

The proposed device in [33] assumes a simpler approach to SCS stimulation. In this device an 

ASIC is utilized to house a stimulation capacitor which stores the charge that will be delivered to 
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the target tissue. The capacitor limits the amount of charge that can be delivered to the tissue, thus 

providing a limit on the amount of energy delivered. In this manner, a microcontroller is not 

required. The device was implemented using a MEMS process and surface-mountable device 

(SMD) components.  

 Effect of Transmission Frequency on Tissue Absorption 

Understanding the effect of the human body on the transmission of wireless energy is primordial 

when designing implantable wireless electronics. Energy loss in tissue affects transmitter and 

receiver antenna design. Receiver antennas are mostly affected since smaller devices 

approximating the wavelength of the transmitting frequency yield higher energy efficiency[39]. 

Choice of transmission frequency also affects the power amplification technology of the source, 

and component selection.  

Modeling and simulations research have shown that there is substantial energy loss within the body 

at high frequencies [35, 39-41]. This is due to propagating fields showing a high energy absorption 

in tissue. Tissue interfaces such as air-skin, skin-fat, fat-muscle, and bone are sites where there is 

increased energy absorption[40]. Apparently, high frequency power transmission seems unfeasible 

inside the body however, [35] showed efficient power delivery at high frequencies between 690 

MHz and 2.2 GHz. This increase in efficiency was due to the receiving antennas being smaller 

than the wavelength, and this allows power transfer to occur in the propagating fields region 

instead of near-field. Another paper by the same group estimated the optimal frequency at which 

wireless power delivery may be achieved for devices implanted in different body tissues[39]. 

Transmission frequency is a design parameter that falls outside the scope of this work, however it 

is an area that may be addressed in future work.   

 Summary 

Chapter 2 begins with an overview of the neuron was presented to understand the biological target 

for neural interfaces. Neural interface technology was then presented with a distinction being made 

according to the interfacing location, be that inside or outside a nerve with electrodes, using 

microfluidics for neurotransmitter delivery, or using optogenetics to cause neurons to be 

susceptible to light. This distinction allows classifying neural interfaces into extraneural and 

intraneural. Neurostimulators are neural interfaces dedicated to stimulating nerves and the nervous 

system. A review on the state-of-the-art for neurostimulators was then presented. The advantages 

and disadvantages of nine devices are detailed and discussed. Capacitor-based neurostimulators 

were shown to be promising due to their safety features and easy control. Transmission frequency 

and how it affects energy absorption according to the tissue medium is mentioned as a factor 

affecting implantable devices however, it will not be addressed in this work.   
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 NEUROSTIMULATOR CIRCUIT DESIGN AND WIRELESS 

DEMONSTRATION 

 Introduction 

Wireless neurostimulators are required in order to develop completely implantable, standalone 

neural interface technology. This technology is important due to the drawbacks faced by 

transcutaneous and battery powered neural interfaces. Transcutaneous applications suffer from 

complications such as infection, device translocation, and connections losing fidelity. Battery 

powered devices must be constantly recharged, or worse the battery must be replaced over time. 

This chapter focuses on discussing these problems and proposing a solution. The problems 

discussed focus on power consumption, size, and wireless capability in state-of-the-art 

neurostimulators. A novel neurostimulator design is proposed to solve these problems. The design 

is then characterized using benchtop components to verify it operates as designed. The 

characterization is focused on the output signal waveform. One of the advantages of the device is 

that it can operate utilizing AC power delivered wirelessly. A demonstration using resonance-

coupled wireless power delivery is then shown to verify this feature. The circuit is demonstrated 

driving an LED, which is considered to require enough power so as to mimic successful nerve 

stimulation. In this chapter the neurostimulator design parameters are outlined, the requirements 

for a novel neurostimulator are described, the novel neurostimulator design is discussed and 

characterized, and a wireless demonstration is shown. The results are then summarized and 

discussed, along with suggestions to improve the experimental results. 

 Neurostimulator Design  

 Overview of Neurostimulator Design Parameters 

In engineering terms, a neurostimulator is a pulse generator with various application-specific 

characteristics. There are several parameters that must be determined in order to design a 

neurostimulator. Parameters that have to be chosen for an implantable neurostimulator are 

according to [42]: 

 Signal or pulse: 

o Waveform, 

o Amplitude, 

o Width or duration, 

o Stimulation frequency or pulse frequency, 

 Load or tissue impedance,  

 Power supply, 

 Interface mechanism, 

o Electric, 

o Chemical, 

o Optogenetic, 
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 Packaging,  

o Encapsulation materials and coatings,  

o Dimensions,  

o Fabrication method.  

Depending on the interface mechanism, the signal will have different requirements. In the case of 

microfluidic neurotransmitter delivery (chemical stimulation), a different set of specifications are 

required. Electrical and optogenetic stimulation share many characteristics, since optogenetics 

typically uses LEDs to stimulate photoreceptors in target neurons, and these are driven through 

electrical signals.  

The tissue impedance is an important parameter in design since the output signal is largely affected 

by this impedance. There is variation in the reported resistance values of different nervous tissues 

and a study reported 100 Ω impedance in the vagus nerve of a rat[42]. Retinal tissue has reported 

values close to 10 kΩ [43]. 1 kΩ is chosen as a logarithmic middle ground between these values. 

Packaging technology has advanced in recent years. The primordial goal has been to reduce the 

body’s tissue injury response (TIR). This mechanism causes swelling and immune cells to rush to 

an injury site when tissue is disrupted. Injury occurs during implantation and surgery. Long-term 

TIR also involves the formation of giant cells which surround the foreign material and effectively 

isolate it from the rest of the body. These cells are particularly effective at isolating electricity, 

which is the reason for which many implants fail several weeks after implantation. Many advances 

have been made in order to reduce the tissue injury response by coating the implanted device in 

chemically biocompatible materials. A report has also been made that emphasizes that 

biocompatible materials are not related only to chemical properties, but rather the surface and 

mechanical properties of materials must also match the properties of the tissue surrounding the 

material. The report demonstrated breakthrough results with implant performance in rats which 

had neural interfaces implanted in their spinal cord[17]. The implants showed no rejection, and 

there was no deformation on the implant site beyond the damage caused by the implantation 

procedure. Further implantable devices must be biocompatible in these two areas for long-term 

stability to be guaranteed. 

The output signal is the area of focus in this work. A proper design allows the capability to vary 

the signal duration, stimulation frequency, and charge delivered from device to device. The 

stimulation waveform has been shown to vary the efficiency of the stimulation, with symmetric 

triangular waves having the highest efficiency along with Gaussian waves [38]. Signal waveforms 

can be mono- or bi-phasic, and if bi-phasic they can be symmetric or asymmetric, and charge-

balanced or imbalanced. Waveform phase determines whether the stimulation signal has a single 

polarity, or if the waveforms becomes both positive and negative during one stimulation cycle. If 

the waveform is also symmetric, this means that the cathode and anode phases are identical – akin 

to a full period of a sine wave. Charge-balancing requires that the charge delivered from the 

cathode and anode be identical. Charge balancing is also important to reduce probable injury 

caused to the target tissue [44]. The signal amplitude, in volts or amperes, is determined by the 

charge delivered to surpass the threshold voltage and cause an action potential in the target nerve. 
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n order to determine charge delivered during a stimulation cycle we need the current delivered 

during the stimulation: 

∫ 𝐼(𝑡)𝑑𝑡
𝑡

0
 (1) 

where t is the stimulation signal duration and I(t) is the stimulation current. Once a waveform is 

selected, the signal or pulse must be designed to deliver a required amount of charge for electrical 

interfaces and light intensity for optogenetic interfaces. Charge delivered determines the chance 

that an action potential will be elicited at the target nerve tissue [45, 46]. The amount of charge 

required is 25 ± 17 nC for some nerve tissue types [46]. However, a correlation has been found 

between the amount of charge delivered to target tissue and tissue injury. The safe charge delivery 

limit for nerves have been found to be 1.38 µC [38]. Light intensity delivered for optogenetic 

interfaces varies according to the properties of the light source and area of tissue being illuminated.  

The focus of the work in this thesis is to develop and characterize a neurostimulator circuit. The 

area of focus in this work is the signal or pulse generator circuit. This focus is due to the fact that 

the actual operating component of a neurostimulator is the signal generator. The rest of the device 

is subject to the constraints established by the neurostimulator, such as size and packaging, power 

delivery, and interface mechanism. The load impedance is determined by the target tissue, and is 

application-specific. The requirements of the neurostimulator and their rationale are discussed in 

the next section. Then, the design of the novel neurostimulator presented in this thesis is discussed.   

 Design and Characterization of Neurostimulator  

 Neurostimulator Requirements Overview 

The review of state-of-the-art neurostimulators allows the outline of several problems that affect 

current neurostimulator development. The advantages of the separate designs can also be 

appreciated, and are now discussed. The BION microstimulator showed the advantage of using 

micro-sized components. This form-factor gives easy implantation methods through the use of a 

syringe. However, this design suffered from the lack of proper wireless power delivery methods, 

which is why later iterations implemented an on-board battery. This battery proves to be a 

substantial portion of the entire device size, and hampered the advantage of using micro-sized 

components. As with other neurostimulators, the BION microstimulator had to be programmed by 

a specialist once it was implanted, and the programming could not be easily changed by the user 

[29].  

The ultrasound powered neurostimulator suffered from wireless directionality, since the device 

would not operate properly if it was misaligned from the ultrasound source [30]. The CMOS-

circuit proposed as a front-end for retinal prostheses requires a battery which limits its 

implantability, and requires a data transfer scheme between the external and implanted modules 

[31]. The 16-channel IC showed similar features as the CMOS front-end, and it exemplified the 

advantages of having multichannel capabilities. This technology did not analyze the power 
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requirements, and it requires the use of a battery [32]. The capacitor-based neurostimulators have 

similar issues as presented.  

Current neurostimulator applications such as DBS, VNS, pacemakers, chronic pain management, 

and electric prescriptions would benefit from a comprehensive solution that tackled the problems 

mentioned in current state-of-the-art. The following neurostimulator requirements are found for a 

neurostimulator in order to provide a comprehensive solution: 

 Passive device: The device must not have an internal power supply, or contain any form of 

instruction or control processing. 

 Small size: The device must have components that allow integrated circuit fabrication with 

few outside components. An ideal device will be capable of fitting in an area smaller than 

1 square cm. 

 Wireless Utilization: The device must be able to be utilized in a wireless manner. 

A neurostimulator circuit is proposed and its operation and features are now discussed. 

 Neurostimulator Circuit 

A novel neurostimulator circuit is shown in Figure 3.1[47]. It is divided into 3 distinct sections 

with different functionality. These sections are the stimulation circuit, a rectification and isolation 

circuit to provide power to the stimulation circuit, and a power delivery circuit which feeds into 

the rectification circuit. The stimulation circuit is designed as a modification of current capacitor-

based stimulation circuits. The entire circuit is realized with a minimum of 7 passive components 

if the power delivery is a battery, and with 9 components if power delivery is wireless. The design 

components of the circuit are in the stimulation circuitry and the power delivery circuit.  

The power delivery circuitry can vary according to the application of the neurostimulator. An LC 

resonance-coupled power delivery circuit is shown in Figure 3.1 for demonstration purposes. The 

rectification and isolation circuitry shown in green will provide appropriate power to the 

stimulation circuitry, regardless of whether AC or DC power is utilized. This is due to the 

rectification and isolation circuit which rectifies AC and passes DC with minimal distortion.  This 

flexibility feature allows the device to work properly with various forms of power delivery circuits, 

including wireless power delivery system. The two transistors are required to properly isolate the 

two components of the stimulation circuitry. The stimulation circuitry shown in red is designed to 

have a specific on-off control scheme. The two RC circuits are chosen to have different time 

constants. When the device is initially powered, a signal will be delivered to the load as the two 

RC circuits are charged and settle to a low-power state. This low-power state is reached when both 

RC circuits are charged however, as the circuits charge there will be potential difference causing 

the aforementioned signal. Then, once the delivered power is cut-off, there will be another 

stimulation signal delivered as the two RC circuits discharge at different rates, leading to a 

potential difference across the load. This operating scheme is achieved utilizing only on-board 

passive devices, and gives a unique control mechanism that is dependent solely on the timing of 
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the input power. A graphical overview of the operation scheme is shown in Figure 3.2. The small 

number of passive components leads to the possibility of the device being implemented in a 

miniature scale. Simulations were performed on this circuit to verify the operational scheme.  

Figure 3.1. A proposed neurostimulation circuit. The blue section is the power delivery mechanism 

(shown as a resonance-coupled system here), the green is signal rectification, and the red is the 

stimulation delivery circuitry. 

Figure 3.2. Overview of operational scheme for stimulation circuit.  
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 Simulations 

Simulations for the circuit (Figure 3.3) helped investigate the behavior of the device at several 

frequency ranges, capacitor values. Simulations were carried out in OrCAD 16.6 Lite version 

utilizing components built-in the standard OrCAD libraries. The resonant coupling system was not 

simulated since proper behavior of the triggering and stimulation systems must first be established. 

Simulations showed stimulation is about 10 ms per stimulus with the circuit in Figure 3.3 (Figure 

3.4). Long-term simulations showed periodic fluctuations in the capacitors while they were 

charged (Figure 3.5). These fluctuations do not pose a problem to the circuit since they are minimal  

Figure 3.3. Circuit utilized in neurostimulator circuit simulations. 

Figure 3.4. Stimulation results for the circuit in Figure 3.3. Green is the voltage at Cstim1, red is 

the voltage at Cstim2, and purple is the voltage difference between these two ports. 
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and the capacitors still have a stable charge. The circuit is passive since it does not process anything 

or contain memory, can be controlled by turning on and off the input AC signal, has components 

that can be built into an integrated circuit (IC), and the component count is small. The device meets 

all the requirements presented to improve neurostimulators. 

 

Figure 3.5. Long-term stability simulation while circuit is powered. Green is the voltage at Cstim1, 

red is the voltage at Cstim2, and purple is the voltage difference between these two ports. 

 Benchtop Characterization 

The device was characterized in order to study the effect of varying the capacitance on the output 

signal. The circuit was assembled using standard axial and through-hole components to allow 

quick characterization. Characterization of the device was performed by fixing one of the 

capacitors, namely Cstim1 at values ranging from 9 nF to 145 nF, and varying Cstim2 between 9 nF 

and 990 nF for each iteration of Cstim1. The input power for this experiment was kept constant by 

utilizing a 20 kHz, 10 Vpp signal. A Keithley DMM 2110 was utilized for data collection. Rstim1 

and Rstim2 were kept constant at 30 kΩ. The peak voltage and stimulation signal duration were 

recorded. Results are summarized in Figure 3.6. The time duration was largely governed by linear 

trends, and the stimulation signal amplitude varied with logarithmic trends. The lines of best fit 

equations for each case where Cstim1 was fixed are displayed in Table 3.1. 

The linear trend of the time duration is expected since the time constant is given by: 

𝜏 = 𝑅𝐶 (2) 
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Figure 3.6. Variance of peak voltage and stimulation signal duration according to the variation of 

Cstim2 between 9 – 990 nF when Cstim1 is varied from 9 - 145 nF. The time duration showed a linear 

trend, and the stimulation voltage amplitude showed a logarithmic trend. 

Table 3.1. Output signal duration and output voltage amplitude best-fit equations. 

 

 

 

 

 

Since the stimulation signal time duration is determined by the charge and discharge rate of two 

RC circuits according to (2), it follows that it should be proportional to C. The stimulation signal 

amplitude has a similar reasoning, given that the voltage at a capacitor is given by: 

𝑉𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝑉𝑖𝑛𝑝𝑢𝑡(1 − 𝑒−
𝑡

𝑅𝐶) (3) 

for a charging capacitor, and: 

𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝑉𝑖𝑛𝑝𝑢𝑡𝑒−
𝑡

𝑅𝐶 (4) 

for a discharging capacitor. Given these equations Voutput can be shown to be for a discharging 

case: 

𝑉𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑉𝑖𝑛𝑝𝑢𝑡𝑒
−

𝑡

𝑅𝑠𝑡𝑖𝑚1𝐶𝑠𝑡𝑖𝑚1 −  𝑉𝑖𝑛𝑝𝑢𝑡𝑒
−

𝑡

𝑅𝑠𝑡𝑖𝑚2𝐶𝑠𝑡𝑖𝑚2  (5) 

As can be seen, as Cstim2 is increased, τ increases for one of the RC circuits, causing it to discharge 

more slowly. The other RC circuit continues to discharge at the same rate. As Cstim2 continues to 

be increased, the peak absolute potential difference across the output keeps increasing because the 

RC circuit that is not changed discharges at a much faster rate than the other circuit until the 

Cstim1 (nF) Signal Duration trend line Amplitude trend line 

9 0.0929x + 2.4911 364.53ln(x) - 118.63 

21 0.0962x + 3.8671 425.67ln(x) - 625.41 

33 0.0955x + 5.7456  435.25ln(x) - 817.43 

47  0.09x + 7.7983  426.83ln(x) - 912.37 

50 0.089x + 8.3954 421.15ln(x) - 905.38 

95 0.1195x + 9.6193  379.16ln(x) - 946.36 

145 0.1098x + 20.673 350.52ln(x) - 936.26 
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dominant factor becomes the RC circuit that discharges more slowly. This trend is verified because 

the signal amplitude has an asymptote, which is an expression of: 

𝑉𝑖𝑛𝑝𝑢𝑡 =  𝑉𝑝𝑜𝑤𝑒𝑟 − (𝑉𝑓,𝑑𝑖𝑜𝑑𝑒 + 𝑉𝑔𝑠,𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟) (6) 

Once the circuit was characterized and the trend equations described according to increasing 

capacitor values, the circuit was implemented with wireless power. This demonstration has the 

goal of validating the capability of the circuit to operate with wireless power.  

 Resonance-Coupled Multi-Channel Wireless Power Demonstration 

The goal of this demonstration was to show the feasibility of operating the device using wireless 

power. For this case, the circuit was implemented using axial components. An LED was chosen 

as the load since it is easy to demonstrate successful operation by the LEDs turning on. A multi-

channel implementation is possible by using different tuning capacitors for each LC circuit. 3 

separate LEDs were lit using the same transmission antenna by changing the transmission 

frequency. 

The power delivery methodology for the circuit is important since it determines the form factors 

in which the circuit can be utilized. Smaller, more efficient power delivery mechanisms will yield 

better overall systems, since they will be able to deliver stimulation in smaller spaces. Inductively 

coupled wireless require a strong coupling coefficient in the antennas, and require close proximity 

to work properly. Ultrasound power delivery seems promising, but it is largely an unexplored area, 

and there are several issues like implantation depth, effect on tissue on energy absorption, and 

tissue blocking which were not discussed in the aforementioned paper. Additionally, equipment is 

expensive.  

Magnetic resonance-coupled power delivery has been a field of interest in recent years due to its 

easy implementation and adequate results. The only difference between inductive coupling and 

resonant coupling is that there is a capacitor placed in parallel with the receiving antenna. This 

forms an LC circuit that resonates at a given frequency. When this circuit is exposed to a varying 

magnetic field, it rings and efficiently absorbs energy at that frequency, while effectively 

attenuating energy emitted at different frequencies. Furthermore, inductive coupling can still 

provide power to the system. There are several factors that come into play when designing efficient 

resonant power delivery systems. The number of coils and the way they are coupled directly affects 

efficiency. In general, there are 2-coil magnetic resonant coupled power delivery mechanisms, 

which can be improved using 4-coils [48]. 2-coil magnetic resonant power delivery mechanisms 

involve a source, a driving LC circuit, a receiving LC circuit, and a load.  

A 2-coil system was used to characterize the wireless capabilities of the novel neurostimulator. 
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 Antenna Construction 

The antennas fabricated for this experiment were designed to have good coupling coefficient, k, 

and intermediate size between 5 and 10 cm. The design was chosen at  

 20 turns using 28 American Wire Gauge (AWG) wire,  

 2-3 mm bundle thickness, 

 Diameter of 6.5 cm. 

The diameter was chosen due to the ease of using construction materials present in the lab. Four 

antennas were built with these parameters. The inductance of the antennas was tested to be 27 + 

0.3 uH. Transmitting and receiving antennas were identical for this experiment to maximize power 

delivery. The 2-3 mm bundle thickness was chosen since this was the chosent thickness of 

miniaturized receiving antennas for our device in later iterations. Three different receiving 

antennas were tested with the same transmitting antennas, separately. Three different resonant  

 Figure 3.7. Resonant coupled power delivery circuit verification: (a) resonant coupled power 

antenna layout, (b) experimental setup with blue LED lit (top right). 

a

b
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capacitors were used, 490 pF, 9.9 nF, and 0.47 µF. These three circuits yield resonant frequencies 

of 680 kHz, 210 kHz, and 30 kHz, respectively. They were demonstrated driving three LEDs, blue, 

red, and green, respectively (Figure 3.7). The receiving antennas were located 3 cm away from the 

transmitting antenna axially, and then two of the receiving antennas were displaced 3 cm from the 

axis of the central receiving antenna. From the circuit design, it was determined that driving an 

LED had similar power requirements as the circuit. Thus, demonstrating a resonance-coupled 

antenna system driving an LED was considered a demonstration of sufficient power delivery to 

the stimulation circuitry. 

 Stimulation Circuit Driving LEDs 

6.5 cm antennas were utilized. Resonant capacitors chosen were: 1.0 nF, 5.6 nF, and 10.1 nF. The 

resonant frequencies were then 621 kHz, 281 kHz, and 199 kHz, respectively. Blue LEDs with a 

Vth of 1.4 V were chosen for their high efficiency and brightness when fully turned on. The 

stimulation circuits were assembled using axial components with the following parameters: 

 1 Schottky Diode, Vth = 0.2 V (one circuit had a diode with Vth = 0.4 V), D1, 

 2 2N7000 MOSFETs, Vth = 1 V, Q1, 

 2 27 kΩ Rstim, 

 1 10 nF Cstim1, 

 1 220 µF Cstim2, 

 1 68 Ω resistor. 

The MOSFETs, diode, and Rstim are typical circuit components. The stimulation capacitors were 

chosen specifically to have a long stimulation signal time, allowing the LEDs to turn on for a long 

enough time to visualize them. The transmitting and receiving antennas were fixed to a block of 

packaging foam to maintain the transmission distance constant during the demonstration. The 

stimulation circuit was shown driving 3 LEDs independently of each other (Figure 3.8). A GW 

Instek AFG 2225 arbitrary function generator (AFG) was used to generate the transmission 

frequency signals. This AFG supplies 50 mA current at a maximum 10 Vpp. The central LED 

(corresponding to the central receiving antenna closest to the transmitting antenna) received more 

power than the adjacent 2 LEDs. The brightness difference between the 3 stimulation circuits 

emphasizes the power difference. The device was successfully demonstrated using wireless power, 

and shown in a multi-channel implementation with stimulator selection based on resonant 

frequency.  

 Summary and Discussion  

The need for a novel neurostimulator was presented and discussed. The requirements for this 

neurostimulator were outlined by analyzing current state-of-the-art neurostimulators. The circuit 

for a novel neurostimulator was then presented and its operation was discussed. The 

characterization of the circuit was presented using benchtop components, and the relationship 
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between the results and the circuit components was shown. The circuit was designed to solve 

current neurostimulator issues related to component count, controllability, and wireless capability. 

The device was then demonstrated with a wireless resonance-coupled power delivery system. This 

system had the added advantage that resonant circuits could be tuned to show multi-channel 

control.  

Figure 3.8. Stimulation circuit tested with resonant coupled power delivery: (a) top circuit lighting 

top LED; (b) middle circuit lighting middle LED, and (c) bottom circuit lighting bottom LED. The 

dotted circles show where the un-lit LEDs are located. Note the middle circuit shines brighter due 

to the receiving antenna being closer to the transmitting antenna. 

The study presented in this chapter can be improved by providing optimized circuit analytical 

equations. The charging case for the output voltage has a different operational equation than does 

the discharging case. This is due to the fact that the input port during the charging case is a 

transistor, which acts as a current source when it is turned on. The circuit design is also an area of 

optimization. The diode in the rectifying may be removed in an optimized design, allowing lower 

power consumption with the same performance. Further work on this analytical solution is 

necessary. Further work to characterize the amount of charge delivered according to variation in 

the stimulation circuit design is also required. Additionally, the wireless power delivery system 

has not been optimized. Further characterization of the antennas, such as the Q-factor, coupling 

coefficient, and energy transmission efficiency are important to characterize in order to improve 

the current power delivery system. Accurate power analysis is also an area that can be developed, 

since this parameter will determine the size and shape of the power delivery system. Future work 

is suggested around these areas, as they will provide a more complete picture of the qualities of 

the circuit and the necessary design decisions that must be made for specific applications.  

a

) 

b

) 

c

) 



27 

 

The demonstration of the proposed neurostimulation circuit operating with wireless power is a key 

demonstration for modern neurostimulation applications. The added multi-channel capability is 

also an important feature required in modern devices. The stimulation circuit was shown to be able 

to drive a different load than purely resistive loads, namely an LED. This result is of particular 

significance in the field of optogenetics, which is gaining increasing popularity, research, and 

applications. This section concludes the first goal of this thesis which is to present a novel solution 

for neurostimulators and characterize its operation. Further work was performed in order to verify 

the proposed circuit design operates as a neurostimulator, and can be properly assembled in a 

miniature implementation. This work is presented in the next chapter. 
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  STIMULATION OF FROG SCIATIC NERVE AND FROG 

GASTROCNEMIUS MUSCLE 

 Introduction 

The goal of this chapter is to corroborate the design presented in the last chapter actually works as 

a neurostimulator, and show that it can be miniaturized. The fabrication process for the miniature 

implementation will be described. The outline of the experiment will be presented and the 

materials used will be discussed. Results of the experiments will then be presented. A discussion 

and conclusion will summarize the chapter. Improvements will be mentioned in order to add to the 

validity of the experiment.  

Correct performance of the device to operate as a neurostimulator is fundamentally required. An 

in vitro or in vivo implementation is required to demonstrate the circuit functions properly. 

Additionally, the device cannot be large, use axial components, or use large antennas. This would 

not accurately reflect the intended application of the circuit. The goal of this experiment is thus to 

demonstrate a miniature implementation of the circuit powered wirelessly eliciting action 

potentials in vitro. 

 Wireless Device Miniaturization and Fabrication 

 Antenna Construction 

The larger 6.5 cm antennas utilized for the wireless power demonstration are out of range for a 

sufficiently small device. Smaller receiving antennas were built for miniaturization testing 

purposes. They were oval in shape with the following parameters: 

 10 turns using 28 AWG wire, 

 2-3 mm bundle thickness, 

 10 x 20 mm dimensions. 

These antennas showed good performance when coupled with a 6.5 cm antenna as the transmitting 

antenna. This antenna was constructed several times as the fabrication process was refined.  The 

miniature antenna would be coated in nail polish enamel. The enamel gave the antenna rigidity to 

allow the manipulation of the antenna and soldering of components to it. This antenna was used 

for the miniature fabrication and neurostimulator validation experiment. Since the antenna 

determines the maximum size of the device, the circuit has to be implemented in a form factor that 

will fit inside the antenna. A miniature circuit implementation is discussed next.  

 Materials Selection 

The miniaturization process begins with the selection of an adequate antenna. The miniature 

antenna constructed for this application was selected since it provided adequate space to fit a 

resonant capacitor and miniature circuit. The goal of the antenna is to harvest as much power 
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possible to deliver to the stimulation circuit. Given this fact, the antenna is then the largest 

component in a miniature implementation of the device. These antennas showed promise to deliver 

enough power to the stimulation circuitry from preliminary tests performed with 6.5 cm antennas 

as transmitters.  

The rest of the device is miniaturized by choosing all SMD components in order to assemble the 

circuit in a small form factor. While the antenna is the largest component of the miniature system, 

the assembled circuit cannot exceed the antenna thickness of 3 mm. The smallest components that 

could be manipulated by hand were 0402 inch packaging case for the capacitors and resistors. For 

the MOSFETs and diode, an SMD with pins instead of contact pads was chosen since they were 

easier to manipulate by hand with little risk of shorting connections. The MOSFET and diode must 

also have a small Vgs/Vf to improve power efficiency. The list of materials for 1 miniature device 

for this experiment is as follows: 

 1 miniature antenna, 

 1 1SS367TPH3F Schottky Diode, Vf = 0.23 V, 

 2 Sl1012CR-T1-GE3 MOSFETs, Vth = 0.4 V, 

 2 ERJ-2RKF5102X 51 kΩ resistors, 0402 package,  

 1 C1005X5R1E334KBB 0.33 µF capacitor, 0402 package, 

 1 GRM155R71E473KA88 0.047 µF capacitor, 0402 package. 

The device components before assembly can be pictured in Figure 4.1. The capacitors were chosen 

to deliver a moderate length signal 1-5 ms in duration, with approximately 280 nC of charge 

delivery with 1 V.  

 Fabrication Process 

The circuit device size was an important consideration during the fabrication process. A PCB 

implementation would incur a considerable volume increase, even with a polyimide substrate. A 

layout was designed to optimize the circuit assembly and leave easy access to the power, ground, 

and electrode connections (Figure 4.2). For this layout, small wires <1 mm in length and 

components were soldered in direct contact. A custom fabrication process was developed in order 

to manipulate micro-sized devices.  

Polymer oven-bake clay (Sculpey ORIGINAL Polyform) was utilized as a molding substrate to 

hold the SMD components in place during fabrication. This substrate is well-suited for this 

application due to the easy molding and de-molding process, and the high heat resistance. 

Additionally, the clay also works well as a heat-sink for excess heat to dissipate from components 

that are not being worked on.  
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Figure 4.1. Circuit components for custom SMD fabrication. 

Figure 4.2. Miniature SMD layout: (a) input power port, (b) output electrode sites, (c) ground port. 
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The process begins by carving out a tiny clay cube approximately 5 mm3. Then, the parts that will 

be soldered together are laid out in contact with one another on the clay substrate. Solder paste is 

then applied in the area that will be soldered. It is recommended that only one interconnection be 

formed at a time. As the final step, the clay is subjected to hot air from an SMD rework station set 

to 400 degrees F and low-medium air flow. The air flow is limited in order to prevent the air from 

moving the components while heating. The process is visualized in Figure 4.3 (make this one). 

The resulting assembled device is shown in Figure 4.4, and has dimensions 5 x 3 x 2 mm. 

Following the circuit assembly, the miniature antenna is soldered to the resonant capacitor to add 

stability. 4 wires are soldered to the input, ground, and 2 electrodes of the circuit. The ground and 

input interconnections are then soldered to the cathode and anode of the antenna capacitor. The 

resultant device is shown in Figure 4.5. This device is considered the first miniature prototype and 

has approximately 1 cm3 in volume. The tissue used in this experiment is discussed in the following 

section. 

Figure 4.3. Custom fabrication process step utilizing clay substrate for SMD soldering, (a) 

components to solder and clay carved for support of 3D structure, (b) heating components laid out 

on clay with solder paste on interconnection, (c) components after soldering with clay showing 

minor shrinking, (d) a resulting structure. 

a) b) 

c) d) 
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Figure 4.4. SMD device fabricated through process in Figure 4.3: (a) width 2.5 mm, (b) length 5 

mm, (c) and depth 2 mm.  

Figure 4.5. SMD device soldered onto LC circuit using miniature antenna.  

 Tissue Selection 

For this experiment it was important to replicate human nerves as much as possible. All vertebrates 

have similar nerve structure. Organisms with well-developed nervous systems however, have 

compound nerves which consist of bundles of different types of nerve fibers which reach threshold 

for action potentials under slightly different conditions. These nerves have characteristic 

compound action potentials. Per suggestion of Dr. Caprio at LSU, professor of neurophysiology, 

a proper tissue sample that would be suitable for this experiment would be the frog sciatic nerve. 

This tissue lends itself well for our application for several reasons:   

 There was an approved Institutional Animal Care and Use Committee (IACUC) protocol 

for the euthanasia of frogs for this specific tissue extraction, IACUC protocol #14059, 

a) b) c) 

Resonant  

Capacitor 

Miniature

Antenna  

SMD  
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 The vertebrate physiology laboratory performed this type of extractions regularly for 

educational purposes, 

 The data collection equipment to verify the compound action potentials was already in 

place at the vertebrate physiology laboratory, 

 Frogs are inexpensive to purchase and maintain alive.  

IACUC protocol approval typically requires 2-3 months of time. Thus, for the quick experimental 

turn-around and convenience, frog sciatic nerve was chosen as the in vitro tissue target for this 

experiment.  

For the gastrocnemius (calf) muscle contraction experiment, the same euthanasia protocol is 

followed. A similar tissue extraction is followed as well, however, instead of completely removing 

the nerve tissue from the frog leg, a section is left attached at the knee. The leg bones are cut, and 

the gastrocnemius muscle left attached to the knee. It is then possible to cause muscle contractions 

by stimulating the sciatic nerve. The experimental conditions are now outlined. 

 Experimental Materials and Methods 

For the experiment, the prototype was utilized as the stimulation signal generator. The AFG from 

the wireless resonance-coupled experiment was also used for this experiment. The AFG allows for 

“burst” signals to be easily generated, giving reliable power delivery to the device for specific time 

intervals. This feature allows the device to be operated at varying stimulation signal frequencies.  

The tissue sample was collected according to the IACUC protocol #14059. A PowerLab 26T 

(ADInstruments, Dunedin, New Zealand) and computer provided by the vertebrate physiology 

laboratory were used for data collection. The PowerLab 26T has a capability of 100 ksps and 

excellent noise reduction, greatly increasing the fidelity and reliability of our results. The setup for 

the gastrocnemius muscle contraction experiment is shown in Figure 4.6. For control purposes, the 

PowerLab 26T has a built-in programmable neurostimulator used to elicit action potentials in 

target tissue during educational experiments. This stimulator was used as control for our 

experiment. The device electrodes were placed at about 7 mm distance from each other on the frog 

sciatic nerve in both experiments. 

 Device Operating as a Neurostimulator  

The control and prototype elicited compound action potentials are shown in Figure 4.7 along with 

the normalized contraction force observed. The recorded compound action potentials did not show 

a significant difference in terms of amplitude when compared to the control. The threshold input 

voltage to elicit compound action potentials at 1 cm distance was 5.0 V. Increasing input voltage 

beyond this value at 1 cm distance increased the amount of fibers recruited by the stimulation, at 

5.0 V only α fibers are recruited. These fibers run along the outer edge of the nerve bundle and are 

the first to elicit action potentials when there is a suitable stimulus. β fibers were recruited when 

using 5.5 V input power at 1 cm distance. These fibers show a much reduced action potential 
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amplitude and appear in the compound action potential measurement with a small delay. The lower 

action potential amplitude due to these fibers is due to the fact that it occurs deeper inside the 

nerve. The small signal at the left of Figure 4.7b is known as a stimulation artifact, and is due to 

the dispersion of current through the surface of the tissue and into the measuring electrodes. This 

artifact is normal and expected during these experiments. Muscle contraction results showed a 

difference in amplitude of about 15% between device-generated contraction and the control. This 

difference is due primarily to the fact that the muscle tissue utilized in the experiment was slowly 

dying. The control data was collected on fresh tissue less than 20 minutes after dissection, while 

the successful muscle contraction data was collected approximately 3 hours after dissection. The 

muscle exhibited fatigue as well, showing a greater amplitude during the first 2-3 contractions, 

and then a smaller contraction force thereafter, this effect can be seen in Figure 4.8.  

Figure 4.6. Setup for muscle contraction data collection showing power delivery antenna, 

prototype connected to frog sciatic nerve and gastrocnemius muscle, and force transducer feeding 

data to PowerLab 26t. 
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 Summary and Discussion  

The goal of this chapter was to outline the miniaturization process that was performed on the 

neurostimulator design presented in Chapter 3, and show proper neurostimulator operation in vitro. 

The importance of using the antenna as the largest component is discussed. Since this device is 

meant to be implantable and use wireless power, it makes sense to design the antenna as large as 

possible in order to increase the amount of power absorbed through wireless transmission. Taking 

antenna size into account, the miniature design was centered on using the antenna as support and 

housing for the neurostimulator circuit components. This unique approach allows maximizing the 

amount of power delivered, while minimizing the device footprint. The finished miniature device 

occupied approximately 1 cm3, which is not much larger than a typical vitamin pill. The 

experiments performed on frog sciatic nerve and gastrocnemius muscle demonstrate the capability 

of the proposed circuit to operate as designed. Compound action potential were successfully 

measured at the frog sciatic nerve. Action potentials from recruited α and β fibers were shown, and 

they are identical to action potentials elicited by the control. There was successful muscle 

contraction caused by stimulation of the frog sciatic nerve. The contraction force was shown to be 

similar to the control however, it was smaller in amplitude since the experiments were performed 

on the same harvested tissue with 4 hours of difference. Harvested muscle tissue is dying over 

time, causing the contraction force to decrease as well. The “burst” feature of the AFG also 

demonstrated the capability of the device to vary the stimulation signal frequency, however, further 

experimentation must be performed to elucidate the maximum stimulation frequency limit. These 

results demonstrate the device is able to operate properly as a wireless, small-sized, 

neurostimulator.  

The results from these experiments can be improved by performing a characterization on the 

neurostimulator device performance according to distance from the transmitting antenna and 

electrode placement. Finding the optimum electrode placement is key to improving the device 

efficiency. The maximum operating distance from the transmitting antenna should also be found. 

Improving the wireless power delivery system should yield greater reliability and flexibility for 

this neurostimulator design. Further miniaturization of the device should also be approached as 

further work in this project. In vivo experiments with recovery of motor function should be the 

next experimental target. The following section concludes the thesis and proposes suggestions for 

future work. 
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Figure 4.7. Average compound action potential and contraction force data: (a) average recorded 

gastrocnemius muscle contraction force from built-in neurostimulator in PowerLab 26t (red) and 

prototype (blue) and (b) red - Compound action potential, green arrow shows α fibers response, 

and blue arrow shows β fibers response.  

α 

β 

a) 

b) 
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Figure 4.8. Fatigue in muscles shown by the periodic decrease in muscle contraction force. The 

force amplitude settled after this initial decrease with no change over 20 contractions. 
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 CONCLUSIONS AND FUTURE WORK 

This thesis work outlined the design, characterization, and demonstration of a novel 

neurostimulator circuit that is intended to solve various current issues with state-of-the-art devices. 

First an introduction and motivation for the work was presented, followed by an overview of the 

thesis. A literature review was then presented which begins by providing a physiological 

description of the neuron, which is the target tissue for neurostimulators. The review then 

proceeded to summarize neural interface technology and its applications. Current neurostimulator 

state-of-the-art was presented and discussed. A table was presented which summarizes various 

performance metrics of the discussed neurostimulators.  

The reasoning behind the design of a novel neurostimulator circuit was presented in Chapter 3. 

The design parameters involved in neurostimulator devices are described. The thesis work was 

focused on defining the output signal circuitry. The rationale behind this was that the 

neurostimulator circuitry defines the power deliver system, device size, and interface mechanisms, 

thus defining the majority of the parameters in the design. An outline of advantages and 

disadvantages of current neurostimulators was shown, and the derived solution requirements are 

discussed. The design of the neurostimulator circuit was presented and discussed. The circuit was 

designed to solve problems related to neurostimulator size, wireless capability, and control 

schemes. The stimulation circuitry was based off a modified capacitor-based stimulation scheme, 

and uses 2 RC circuits to provide the potential difference for a stimulation signal. The design was 

characterized, and the stimulation signal duration was shown to have a linear trend with respect to 

the capacitance of the RC circuits. The output signal voltage was shown to have a logarithmic 

trend, due to the fact that the output voltage was defined by the potential difference between two 

RC circuits. The chapter then shows a wireless resonance-coupled multichannel power delivery 

demonstration of the device. This demonstration shows the feasibility of the device to operate with 

wireless power. 

This section could be improved by optimizing the circuit analytical equations. The presented 

analysis holds well for when the capacitors are discharging, but a suitable analytical solution has 

not been found for the charging case. Further work that characterizes the amount of charge 

delivered by the device according to various design parameters should also be performed. The 

circuit design should also be optimized, as there are indications that removing the rectifying diode 

would reduce the power consumption of the circuit while yielding the same performance. The 

wireless power delivery system requires optimization and characterization, such as determining 

the Q-factor, coupling coefficient, and power transmission efficiency of the antennas. An accurate 

power analysis should also be performed to allow easier design of the power transmission system.  

Chapter 4 then continues to demonstrate the features of the device by describing the 

miniaturization process of the device and in vitro experiments. The device was miniaturized by 

using a small antenna with 10 x 20 x 3 mm dimensions as the housing and support structure for a 

custom-built SMD implementation of the device. The total volume occupied by the miniaturized 
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device was found to be approximately 1 cm3, comparable to a typical vitamin pill. This unique 

approach allowed minimizing the device size while maximizing the area of the antenna. Results 

were shown for experiments conducted on frog sciatic nerve and gastrocnemius muscle. The 

neurostimulator device was shown to successfully elicit compound action potentials similar to the 

action potentials elicited by the control. α and β fibers were shown to be recruited by the 

neurostimulator. The neurostimulator device was then shown to successfully cause muscle 

contractions in the frog gastrocnemius muscle through stimulation of the frog sciatic nerve. There 

was an amplitude difference of about 15% between the control and neurostimulator. This 

difference was due to the fact that the two experiments were conducted on the same tissue, but 

separated by 4 hours. Muscle tissue died during this time, reducing the maximum contraction force 

that could be measured. A reduction in maximum contraction force was also shown to be a result 

of muscle fatigue, where the peak contraction force would decay periodically during stimulation 

until settling down. The device was successfully shown to operate as a neurostimulator in a 

miniature implementation. 

The experiments in Chapter 4 can be improved by determining the maximum operating distance 

of the device with a given wireless power delivery system. Electrode placement can also be 

optimized, since this was not a parameter in the experiments conducted. Electrode placement can 

improve the efficiency of the device. The device should also be further miniaturized, with smaller 

components or an IC implementation. A more efficient antenna design should allow the device to 

be further miniaturized. In vivo experiments are the logical next step, and they should be focused 

on the restoration of motor control in injured animals such as rats.  

This thesis demonstrated a novel neurostimulator design that solves current issues in the field. The 

design was characterized and successfully demonstrated to operate in a miniature wireless fashion 

with passive control. The device was shown to operate as a neurostimulator that successfully 

elicited compound action potentials in the frog sciatic nerve, and caused muscle contractions in 

the frog gastrocnemius muscle. Future optimizations related to the wireless power delivery system, 

circuit design, and miniaturization will allow the device to be used as an important tool in neural 

interfaces systems which require application-specific neurostimulators.  
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