
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2017

A New Computational Framework for Efficient
Parallelization and Optimization of Large Scale
Graph Matching
Sahar Marefat Navaz
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Marefat Navaz, Sahar, "A New Computational Framework for Efficient Parallelization and Optimization of Large Scale Graph
Matching" (2017). LSU Doctoral Dissertations. 4204.
https://digitalcommons.lsu.edu/gradschool_dissertations/4204

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/4204?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4204&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

A NEW COMPUTATIONAL FRAMEWORK FOR EFFICIENT PARALLELIZATION
AND OPTIMIZATION OF LARGE SCALE GRAPH MATCHING

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The School of Electrical Engineering and Computer Science

by
Sahar Marefat Navaz

M.Sc., Newcastle University, 2008
BEng., Northumbria University, 2006

May 2017

Dedicated to my parents.

ii

ACKNOWLEDGMENT

I would like to thank the following people whose continued support and guidance through

all these years inspired me to complete my PhD program.

I would like to gratefully thank my adviser Prof. Ram for his support, patience, and most

importantly giving me the opportunity and freedom to pursue my interests and helping

me to obtain new perspectives to new challenges. His positive attitude mitigated many

difficulties I faced during my time at LSU. Also, I would like to thank my co-advisor Dr.

Xin Li for all his guidance and support in my research. Our weekly discussions have shaped

the work presented in this dissertation. Additionally, I would like to thank Dr. Geralds

and Dr. Lopoto for serving on my graduate committee.

A special thanks must go to my best friend Rod Tohid without whom this work would not

be possible. I would never be able to thank him enough for his unending support, advice,

and encouragement throughout this program. He is the only one who knows how hard these

years have been to me and tried his best to comfort me, make me happy and gave me the

strength to continue my study. I am grateful for all the time and energy he has given up to

support me. Many thanks have to be given to my best friend Hanny Seo for her constant

encouragement, support, understanding, patience, and continued effort to keep me happy

throughout this trying time. For her heartfelt cares and concerns. And also, thanks to

Henry and Ray for all their encouragement and support.With a special mention to James

Breedlove for his tremendous efforts and helps. Also Paul for all the lovely lunches and

talks we all had.I am appreciative of my friends at school and CCT through all these years

mainly Ali and Vahid. Also, my colleagues Sameer, Ye and Zahra.Also, I wish to express

my appreciation to all ECE staff particularly Beth Cochran for her constant support.

Finally, I should thank my parents, Shokoufeh and Hadi, for their endless support, uncon-

ditional love, patience, and sacrifices. Without their encouragements, I would have never

iii

given myself the chance to continue my study. I appreciate the opportunity they have given

me to pursue my education even though having their daughter studying abroad meant con-

stant worry and distress to them. Also, I thank my brothers, Arash and Ashkan, whom I

love dearly, for their continuous love, support, and concern. To my sister-in-law, Emily for

her cheering and having faith in me, and to my precious niece and nephews. Thanks also

to my relatives and close friends who have supported me along the way.

Thanks for all your encouragement!

iv

Contents
ACKNOWLEDGMENT . iv

ABSTRACT . x

CHAPTERS

1 INTRODUCTION . 1

1.1 Fundamental Concepts behind Feature Detection and Description 3

1.1.1 Feature Detector Properties . 4

1.1.2 Feature Detectors Fundamental Concepts . 5

1.2 Feature Extraction Methods . 6

1.3 Feature based Matching . 8

1.4 Graph based Matching . 9

1.4.1 Creating Graphs from Images . 10

1.4.2 Graph Matching related work in Computer Vision 11

1.4.3 Outline and Contributions . 13

2 BACKGROUND . 15

2.1 Notations and graph construction . 15

2.2 Spectral correspondence by pairwise feature geometry 17

2.2.1 Different weighting functions . 18

2.2.2 Eigen Decomposition for Finding Correspondences 20

2.2.3 Spectral Approximation for Integer Quadratic

Programming Problem . 20

2.2.4 Spectral Graph Matching . 23

2.2.5 Eigenvector Computation . 25

2.3 Accelerated libraries . 26

2.3.1 MKL. 27

v

2.3.2 cuBLAS . 27

2.3.3 cuSparse . 27

2.3.4 Thrust . 28

3 PAIRWISE MATCHING OPTIMIZATION AND PARAL-

LELIZATION USING ACCELERATED LIBRARIES FOR

DIFFERENT ALGORITHMS . 29

3.1 Pairwise Matching . 29

3.1.1 Approximated Affinity Matrix Construction 30

3.1.2 Candidate Assignments of Different Approaches 32

3.2 Graph Matching using Different Algorithm . 32

3.2.1 Bijectivity Constraint . 39

3.2.2 Computing Eigenvector . 39

3.3 Result - Implementation . 40

3.3.1 Accuracy . 42

3.3.2 Execution Time . 44

4 MULTI IMAGE MATCHING OPTIMIZATION AND PARALLELIZATION 52

4.1 Introduction . 52

4.2 Multi-graph Matching . 53

4.2.1 Affinity Matrix using Different Approaches 55

4.2.2 Bijectivity Constraint . 56

4.2.3 Eigenvector Computation . 56

4.3 Result . 57

5 FUTURE WORK AND CONCLUSION . 62

5.1 Conclusion . 62

5.2 Future Work . 64

BIBLIOGRAPHY . 69

vi

VITA . 73

vii

List of Figures
1.1 The the types of recognition. 2

1.2 Different images of same object. 2

1.3 Global and local image features representation . 3

1.4 Three basic steps of image matching . 8

2.1 Weighted matrix M. 16

2.2 Indicator vector. 17

2.3 Weighting functions . 19

2.4 Ideal matrix with rank = 1 . 23

3.1 Overall pipeline of our algorithm using spectral technique . 29

3.2 Extracted features of the mugs using SIFT algorithm. 35

3.3 Locally matched features, initial matches, using KNN method. 35

3.4 Graph representation using all the extracted features. 35

3.5 Graph construction of the two mugs images. 36

3.6 CGM Affinity matrix . 37

3.7 Affinity matrix using the approximate pairwise distances. 37

3.8 PFGM Affinity matrix . 38

3.9 Affinity matrix constructed using pruned assignments.. 39

viii

3.10 Recall and Precision accuracy estimation. 43

3.11 Final correspondences . 44

3.12 Recall and Precision accuracy estimation. 45

3.13 Final correspondences . 46

3.14 Recall and Precision accuracy estimation. 47

3.15 Final correspondences . 48

3.16 Recall and Precision accuracy estimation. 48

3.17 Final correspondences . 49

3.18 Execution time using different algorithms and libraries with

size: 3 .93 ∗ 108. 49

3.19 Execution time using different algorithms and libraries with

size: 86 .5 ∗ 109 . 50

3.20 Execution time using different algorithms and libraries with

size: 3 .98 ∗ 1012 . 51

4.1 Initial correspondences between three images using KNN method. 54

4.2 Execution time using different accelerated libraries. - Total

size:6 .89 ∗ 107 . 58

4.3 Execution time using different accelerated libraries. - Total

size: 6 .89 ∗ 107 . 59

ix

4.4 Execution time using different accelerated libraries. - Total

size: 8 .37 ∗ 10 8 . 60

4.5 Execution time using different accelerated libraries. - Total

size: 1 .2 ∗ 10 12 . 61

x

ABSTRACT

There are so many applications in data fusion, comparison, and recognition that require a

robust and efficient algorithm to match features of multiple images. To improve accuracy

and get a more stable result is important to take into consideration both local appearance

and the pairwise relationship of features. Graphs are a powerful and flexible data structure,

allowing for the description of complex relationships between data elements, whose nodes

correspond to salient features and edges correspond to relational aspects between features.

Therefore, the problem of graph matching is to find a mapping between the two sets of nodes

that preserves the relationships between them as much as possible. This graph-matching

problem is mathematically formulated as an IQP problem which solving it is NP-hard, and

obtaining exact Optima only plausible for very small data. Therefore, handling large-scale

scientific visual data is quite limited, necessitating both efficient serial algorithms, as well

as scalable parallel formulations.

In this thesis, we first focused on exploring techniques to reduce the computation cost as

well as memory usage of Pairwise graph matching by adopting a heuristic pruning strategy

together with a redundancy pattern suppression scheme. We also modified the structure

of the affinity matrix for minimizing memory requirement and parallelizing our algorithm

by employing CPU’s and GPU’s accelerated libraries. Any pair of features with similar

distance from first image results in same sub-matrices, therefore instead of constructing

the whole affinity matrix, we only built the sub-blocked affinity for those distinct feature

distances. By employing this scheme not only saved large memory and reduced computa-

tion time tremendously but also, the matrix-vector multiplication of gradient computation

performed in parallel, where each block-vector calculation computed independently with-

out synchronization. The accelerated libraries such as MKL, cuSparse, cuBlas and thrust

applied to solving the GM problem, following the scheme of the spectral matching al-

xi

gorithm. We also extended our work for Multi-graph imaging, since many tasks require

finding correspondences across multiple images. Also, considering more graph improves

the matching accuracy. Most algorithms obtain approximate solutions for solving the GM

NP-hard problem, result in a weak optimal solution. Therefore, we proposed a new solver,

which iteratively modified the affinity matrix and binarized the solution by optimizing the

original problem with its integer constraints.

xii

Chapter 1
INTRODUCTION

A great number of interesting and important applications in computer vision coming from

real world relies on algorithms which require finding consistent correspondences between

sets of features efficiently. Such as 2D and 3D registration, object/scene matching or

recognition. Object category recognition is a challenging problem and defined as locating

and recognizing objects of interest in a scene image taken in the real world using models of

the known object. The two categories of recognition are the specific case and the generic

category case which are shown in Figure 1.1. Being able to identify instances of a particular

object, place, or person can be classified as the specific case. Recognizing to which class,

different instances of a generic category belongs, for example, buildings, coffee mugs, or cars

take place at the category level. In computer vision, the specific object recognition relies on

a matching and geometric verification paradigm Logothetis and Sheinberg (1996). However,

for generic object categorization, it often includes a statistical model of appearance or shape

learned from examples. Categorizing an object requires gathering training images of the

given category, and then extracting or learning a model that can make new predictions for

object presence or localization in different images. There are many challenges for matching

visual objects: variables such as illumination conditions, object pose, camera viewpoint,

partial occlusions, and irrelevant background clutter can generate different images of same

object which can be seen in Figure 1.2. In this thesis, we focus more on the specific case.

Affine invariant feature detectors have shown to be very useful in object recognition and

categorization. These detection algorithms extract visual features from images that are

1

Figure 1.1: The the types of recognition.

Figure 1.2: Different images of same object.

2

stable to illumination change, rotation, scale and slight viewpoint change. Local image

features can include points, line segments, or curve segments. There are many feature

detector methods exist to find a set of distinctive keypoints that are reliably localized in

the presence of noise and under varying imaging conditions, viewpoint changes, translation,

and rotation. Such as Harris detector, Hessian detector, MSER, SIFT, SURF.

1.1 Fundamental Concepts behind Feature Detection and Description

In image processing and computer vision, an image represented by features extracted from

it. Although human eye can obtain all information from a raw image effortlessly and in-

stantaneously, is not the same with computer algorithms. Images can be represented in two

ways, namely, global features and local features. In the global representation, the image

expressed by one multidimensional feature vector, which describes various characters of

the image such as texture, color, or shape in the whole picture. On the other hand, local

feature representation distinctively describes the image based on some salient regions while

remaining invariant to illumination changes and viewpoint. Tuytelaars et al. (2008) define

a local feature as “it is an image pattern which differs from its immediate neighborhood”.

Therefore, local invariant features are used to match local structures between images effi-

ciently. The interest regions or keypoints of the image are a set of local feature descriptors

extracted to present the local structures of the image. as illustrated in Figure 1.3.

Figure 1.3: Global and local image features representation

3

Deciding on what type image to use significantly depend on the applications. For instance,

in an application where a rough segmentation of the object of interest is available or in

the web-scale image indexing application for handling quite big datasets, global features

would be more suitable. However, for large-scale image search utilizing local features have

much higher performance than global features provide Jegou et al. (2012). Therefore, it is

important to employ an appropriate feature detector and extractor with certain properties

that are suitable for the particular application. In computer vision, the following properties

are necessary for a feature detector to haveTuytelaars et al. (2008).

1.1.1 Feature Detector Properties
• Robustness: same feature locations independent of scaling, rotation, shifting, photo-

metric deformations, compression artifacts, and noise must be detected.

• Repeatability: same features of the same scene or object must repeatedly be recognized
under varieties of viewing conditions.

• Accuracy: accurately localize the image features (same pixel locations), especially
for image matching tasks, where precise correspondences are needed to estimate the
epipolar geometry.

• Generality: detect features that can be used in different applications.

• Efficiency: detect features in new images quickly to support real-time applications.

• Quantity: detect all or most of the features in the picture. Where, the number of
identified features should indicate the information content of the image for providing
a compact image representation.

The feature detectors may classify into three categories, single-scale detectors, multi-scale

detectors, and affine invariant detectors. Single scale means that there is only one repre-

sentation of the features using detector’s parameters. These detectors are stable to image

transformations such as translation, changes in illuminations, rotation, and an addition of

noise. However, they are incapable of dealing with the scaling problem. Therefore it is

vital for having multi-scale detectors capable of extracting distinctive features under scale

changes. So, same interest points from two images of the same scene that are related to

a scale change can be detected. Therefore, for discriminative matching and also to be

4

insensitive to local image deformations, a set of interest points needs to be detected from

a picture at a location p(x , y), scale s , and orientation θ. And, their content or image

structure in a neighborhood of p needs to encoded in a suitable descriptor. The descriptor

should be aligned with θ and proportional to the scale s .

1.1.2 Feature Detectors Fundamental Concepts

Some of the general notion behind feature detection methods, which mentioned bellow, are

from linear algebra’s domain, where the local region of pixels used as a matrix Krig (2014),

such as:

Gradient Magnitude: It’s first derivative of the pixels in the local interest region:

(∂f (x , y)/∂x)2 + (∂f (x , y)/∂y)2 .

Gradient Direction: This is the angle or direction of the largest gradient angle from pixels

in the local region in the range−π to π.

tan−1 (∂f (x , y)/∂x)/(∂f (x , y)/∂y).

Laplacian: This is the second derivative ,which can be computed using any of three terms:

∂2 f (x , y)/∂x 2 , ∂2 f (x , y)/∂y2 ,∂2 f (x , y)/∂x∂y .

However, the Laplacian operator ignores the third term and computes a signed value of

average orientation. (∂f (x , y)/∂x)2 + (∂f (x , y)/∂y)2 .

Hessian Matrix or Hessian: A square matrix containing second-order partial derivatives

describing surface curvature. The Hessian has several interesting properties useful for

interest point detection methods This is based on the second derivative, as is the Laplacian,

but the Hessian uses all three terms of the second derivative to compute the direction along

which the second derivative is maximum as a signed value.

Hessian Orientation: This is the orientation of the largest second derivative in the range

−π to π which is a signed value, and it corresponds to an orientation without direction.

The smallest orientation can be computed by adding or subtracting π/2 from the largest

value.

5

Determinant of Hessian, Trace of Hessian, Laplacian of Gaussian: All three names are used

to describe the trace characteristic of a matrix, which can reveal geometric scale information

by the absolute value, and orientation by the sign of the value. The eigenvalues of a matrix

can be found using determinants.

Eigenvalues, Eigenvectors, Eigenspaces : Eigen properties are important to understanding

vector direction in local pixel region matrices. When a matrix acts on a vector, and the

vector orientation is preserved, and when the sign or direction is simply reversed, the vector

is considered to be an eigenvector, and the matrix factor is considered to be the eigenvalue.

An Eigenspace is therefore all eigenvectors within the space with the same eigenvalue. Eigen

properties are valuable for interest point detection, orientation, and feature detection.

1.2 Feature Extraction Methods

As it mentioned before there are many feature detection and descriptors, some of the most

common detectors, and descriptors are:

The Harris or Harris-Stephens corner detector Harris and Stephens (1988): The goal of the

Harris method is to find the direction of fastest and lowest change for feature orientation,

using a covariance matrix of local directional derivatives. The directional derivative values

are compared with a scoring factor to identify corners, edges, and which are likely noise.

Many Harris family algorithms can be implemented in a compute-efficient manner. Note

that corners have an ill-defined gradient, since two edges converge at the corner, but near

the corner the gradient can be detected with two different values with respect to x and

y—this is a basic idea behind the Harris corner detector.

The Hessian (Hessian-Affine) corner detector Beaudet (1978) is designed to be affine in-

variant, and it uses the basic Harris corner detection method but combines interest points

from several scales in a pyramid, with some iterative selection criteria and a Hessian matrix.

The Scale Invariant Feature Transform (SIFT) Lowe (2004) is the most well-known method

for finding interest points and feature descriptors, providing invariance to scale, rotation,

6

illumination, affine distortion, perspective and similarity transforms, and noise. SIFT is a

complete algorithm and processing pipeline, including both an interest point and a feature

descriptor method. Overall compute complexity for SIFT is high.

The Speeded-up Robust Features Method (SURF) Bay et al. (2008) operates in a scale space

and uses a fast Hessian detector based on the determinant maxima points of the Hessian

matrix. To find feature orientation, a set of HAAR-like feature responses are computed in

the local region surrounding each interest point within a circular radius, computed at the

matching pyramid scale for the interest point. The SURF and SIFT pipeline methods are

generally comparable in implementation steps and final accuracy, but SURF is one order

of magnitude faster to compute than SIFT.

The Maximally Stable Extremal Regions (MSER) method Extremal et al. (2002) is a con-

nected component of an appropriately thresholded image. The word ‘extremal’ refers to

the property that all pixels inside the MSER have either higher (bright extremal regions)

or lower (dark extremal regions) intensity than all the pixels on its outer boundary. The

‘maximally stable’ in MSER describes the property optimized in the threshold selection

process. To compute a MSER, pixels are sorted in a binary intensity thresholding loop,

which sweeps the intensity value from min to max. First, the binary threshold is set to

a low value such as zero on a single image channel— luminance, for example. Pixels <

the threshold value are black, pixels >= the threshold value are white. At each threshold

level, a list of connected components or pixels is kept. The intensity threshold value is

incremented from 0 to the max pixel value. Regions that do not grow or shrink or change

as the intensity varies are considered maximally stable, and the MSER descriptor records

the position of the maximal regions and the corresponding thresholds.

7

1.3 Feature based Matching

Typically the feature-based image matching process consist of three basic steps as it can

be seen in Figure 1.4: feature detection, feature description, and feature matching. The

purpose of using feature extractors is to select features that allow matching local struc-

tures between images efficiently. Therefore, it is vital for the extraction process to select

distinctive features, and be precise and repeatable, as explained before. After a set of

interest points extracted from an image, the next step is to encode in a descriptor that is

suitable for discriminative matching. A vector with information to characterize the local

visual appearance of that feature is then created. And these descriptors of a given images

compared with each other to find the correct correspondences of the pictures.

Good structure of database and efficient searching algorithm is essential for finding the

right matching candidates. One of a straightforward and fast method that is applied

for matching is called the nearest neighbor. It basically involves computing the distance

between all possible pairs of detected features and selecting those points whose distances

are closer than some threshold. Although it is very simple to apply, it is not quite accurate,

since using only a single threshold value of the Euclidean distance for determining how a

feature matches against all the remaining points is not suitable.

Figure 1.4: Three basic steps of image matching

8

1.4 Graph based Matching

Using only local appearance of each feature will not be descriptive enough for reliable

matching between two consecutive frames. Therefore, the higher-order geometry and ap-

pearance of groups of features also needed to be considered. Graphs are used as a structure

for matching since allows checking not only a single invariant point consistency but also

a set of points that somehow have a relationship with each other. Any complex scenes in

visual data can be represented as a graph in terms of relations between vertices. Differ-

ent objects/regions are formulated as attributed graphs whose nodes correspond to salient

features and edges correspond to relational aspects between features. In particular, graph

matching used in many tasks of computer vision, diverse as object tracking Xiao et al.

(2010), object recognition Duchenne et al. (2011b), shape matching, and image labeling

among others, which require finding visual correspondences. Which is different from reg-

istration methods such as RANSAC Fischler and Bolles (1981), the point based matching

Iterative Closet Point (ICP) Zhang (1994), as GM incorporates both the unary node-to-

node and the second-order edge-to-edge structural similarity Yan et al. (2015).

A powerful way of describing links between features are pairwise relations, the similarity

of the features or their spatial proximity. This naturally leads to the representation of

the image as an attributed graph Zager and Verghese (2008). Then comparing features

and relations obtained from two images can be reduced to comparing two corresponding

graphs which is known as inexact graph matching, i.e., finding the correspondence between

the nodes of the graphs that maximizes both nodes similarity as well as edge consistency.

Image matching then transforms to finding points among attributed graphs, which opti-

mally assigns nodes to their corresponding ones on the other images, by maximizing both

nodes similarity (local appearance of features) and edge consistency (higher-order geometry

and appearance of groups of features, such as distances or angles). This graph matching

problem is mathematically formulated as an integer quadratic assignment problem that

incorporates both the node-to-node (or unary, first-order) as well as the edge-to-edge (or

9

pairwise, second- order) agreements of two graphs. The are various way of graph matching

which can be classified toConte et al. (2004):

1. Exact graph matching : requires every node from one graph to be matched to one
node from the other (bijective mapping), such that the edge structure is preserved
exactly. This is also called graph isomorphism and the graphs matched are called
isomorphic.

2. Inexact graph matching : inexact matching consists of finding the mapping that best
preserves the edge structure.

3. Sub-graph matching : if the two graphs have different number of nodes, than the
matching is between a sub-graph of one graph to the other (or a sub-graph of the
other).

4. Weighted graph matching : if each edge from each graph has some associated weight,
and the matching consists of finding the mapping that preserves the edge weights as
well as possible, in terms of some distance function.

1.4.1 Creating Graphs from Images

In order to create effective image graphs, these techniques need to clearly define what graph

nodes and edges represent. This choice affects not only the reliability of the graph topology,

but also the ability to create unary node features and binary edge features to describe the

image content with.

• Points: may be composed of various types of corner, edge, and maxima shapes. A
point needs to be chosen in a way that can be located quickly and computed ideally
fast. Therefore, the point is the qualifier or keypoint around which a feature may be
described. Given the diverse computer vision literature regarding keypoints Bay et al.
(2008); Alahi et al. (2012); Bunke and Bühler (1993) and point set matching Chui
and Rangarajan (2003); Caetano et al. (2004); Caetano and Caelli (2006), points are
one of the more common choices for graph nodes Krig (2014). Points have an added
advantage in that there are many existing keypoint descriptors, which can be used
as powerful unary features, depending on the type of images used.

• Line segments: contain additional unary information, in the form of a length and
angle. As with points, there are methods which use image data to determine edges
and those which use Delaunay triangulation. Unlike points, each pair of line segments
contains rotation, translation, and scale (RTS) invariant binary features. Thus, some

10

works have simply created a fully connected graph of line segmentsLu et al. (2004);
van Wyk and van Wyk (2003). The cost here, of course, is that the graph topology
cannot be utilized, either as part of the description or simply to speed up the matching
process.

• Regions: Regions are another common choice for graph nodes, as they can be easily
computed using a variety of computer vision algorithms. Myers et al. Myers et al.
(2000) created graph edges using the Delaunay triangulation of the region centroids.
However more commonly, the parts are connected by a region adjacency graph. A
region adjacency graph connects each region to every other region for which it has
adjacent pixels.

• Polylines, Polygons, and Other Shapes: Few works explore the possibility of using
polylines, polygons, or other shapes, as graph nodes. The reason behind that is due
to the lack of tried and tested edge generation methods for these types of shape.
Additionally, the reduction of these forms to a single point, as would be required for
Delaunay triangulation, is unlikely to give good results.

1.4.2 Graph Matching related work in Computer Vision

Graph matching methods are in general more robust for solving the correspondence prob-

lems since the geometrical information encoded in the representation and matching process.

Researchers have been significantly working on graph matching in computer vision since

the early 70’s. Even though its numerous effectiveness has been demonstrated in many

computer vision and pattern recognition tasks, solving it is NP-hard, and obtaining ex-

act optima is not possible for moderate to large graphs. This limits its applicability in

handling large-scale scientific visual data. Therefore, existing GM methods involve either

finding approximate solutions or finding the global optima in polynomial time for a few

types of graphs, including the planar graph Luks (1982)and tree structure Aho et al. (1989).

Consequently, the main body of research in QAP has focused on producing more accurate

and faster algorithms to solve it approximately Zhou and De la Torre (2012). Although

extensive research has been done for decades, graph matching is still a challenging problem

mainly due to two reasons: 1. In general, the objective function is nonconvex and prone

to local minima; 2. The constraints that the solution has to satisfy are combinatorial.

In computer vision, GM has diversified and grown along three aspects Leordeanu (2010).

11

1. defining different objective functions for matching; 2. developing efficient optimization

algorithms for obtaining approximate solutions to the matching problem; 3. enhancing

the object model represented by the graph, by producing different unary and higher order

relationships between nodes and edges/hyper-edges.

1.4.2.1 Different Optimization Algorithms for Graph Matching

Many approximation solutions have been proposed for solving the NP-hard IQP prob-

lem.Gold and Rangarajan (1996) presented one of the first of second-order matching meth-

ods resolve the IQP problem by the spectral relaxation with power iteration, in which

Sinkhorn bistochastic normalization Sinkhorn (1964) is applied to satisfy two-way assign-

ment constraints for a one-to-one mapping. Maciel and Costeira (2003) proposed a global

optimization solution for an IQP problem by maximizing all possible correlation computed

with unary information, in which a concave objective function is created, and the discrete

domain is relaxed into its convex hull. Leordeanu and Hebert (2005) approximated the IQP

problem and solved it based on the assumption that correct corresponding feature pairs are

mutually coherent while incorrect pairs are not. Cour et al. (2007) presented similar spec-

tral matching algorithm to Leordeanu and Hebert (2005), and imposed affine constraints

on the relaxed solution. Torresani et al. (2008) add a spatial coherence term, supporting

spatial aggregation of matched features, which reduces the number of faulty correspon-

dences. Cho et al. (2010) proposed a random walk view for graph matching, in which they

incorporated one-to-one mapping constraints by a reweighting jump scheme to overcome

local minima in graph matching better. Zass and Shashua (2008) studied the hyper-graph

matching algorithm, in which they form the affinity tensor to a one-dimensional vector and

refines the vector by projecting it onto the space of soft assignment vectors. Duchenne

et al. (2011a) extended the spectral matching method Leordeanu and Hebert (2005) to

higher-order connections by using a multi-dimensional power method for tensors, in which

the cost function formulated by a tensor encoding the similarity between feature tuples.

Lee et al. (2011) generalized their second-order method Cho et al. (2010) using the ran-

12

dom walk approach to higher-order graph. Leng et al. (2015) addeda perturbation to the

eigenvector of the Laplacian matrix and utilize the characteristic that small eigenvalues are

sensitive to disturbances, while large eigenvalues are relatively stable, also producing more

reliable global solutions to graph matching for noisy scenes and structural corruption. All

of these papers solve the IQP problem with an affinity matrix or an affinity tensor as an

input, and the time complexity of matching algorithms and the storage size of each simi-

larity matrix depend on the number of feature points. Therefore, a complete computation

of the affinity matrix is impracticable when the feature sets are large. Kang et al. (2013)

proposed a technique to solve this problem by use of bases and index matrices as well as

the bases power method.

1.4.3 Outline and Contributions

We briefly enumerate here the main contributions of this thesis:

1. In Chapter 2 theory of feature matching and graph matching are discussed in more de-

tails. The spectral algorithms are introduced. The constructing the affinity (weight-

ing) matrix using different methods, and discrete approximation methods are ex-

plained.

2. In Chapter 3 using techniques to reduce the computation complexity, as well as mem-

ory consumption is proposed. The reason behind benefit of using heuristic pruning

strategy together with a redundancy pattern suppression scheme in increasing the

accuracy is also explained. Scheme that used to modify the algorithm in order bene-

fit from parallelization using optimized CPU’s and GPU’s library is suggested. Our

proposed technique made solving the graph matching for big datas.

3. In chapter 4 multi image matching is explained, and our methods is extended for

solving the multi graph matching. The use of multi imaging is essential in many ap-

plications, and being able to solve it is not practical in term of complexity, specially

13

for big datas. Therefore, employing our approaches and parallelization reduced the

computation time significantly, thus, made it possible to find the correct correspon-

dences between three large images.

4. In Chapter 5 more efficient and effective numerical solver is proposed, and the reason

behind it is discussed. Potential future works are addressed. Finally conclusion and

summary of the research work presented in this thesis discussed.

14

Chapter 2
BACKGROUND

There are numerous tasks in computer vision which demand efficient algorithms for obtain-

ing consistent correspondences between two sets of features, such as shape matching, object

recognition, 2-D and 3-D image registration, and wide baseline stereo vision. The problem

of correspondence refers to the finding of a mapping between one set of data and another

set of data. When the internal structure of these datasets takes into account, they are often

considered not simply as datasets, but as two separate graphs. Thus, the correspondence

problem generally perceive as graph matching. In this setting, graph vertices represent

features extracted from each instance (e.g. a scene image and a model image). Image

matching then transforms to finding correspondences among attributed graphs, which op-

timally assigns nodes to their corresponding ones on the other picture, maximizing both

nodes similarity (local appearance of features) and edge consistency (higher-order geometry

and appearance of groups of features).

2.1 Notations and graph construction

Having two sets of features P and Q extracted from two images each having nP and nQ

features respectively, the objective is finding a correct correspondence feature in the second

image for features in image one. In graph matching algorithm an undirected spatial graph

can be presented as two attributed graphs GP = (V P , EP , AP) and GQ = (V Q ,EQ ,AQ)

with vertex set V and edge set E . For each node i ∈ V P and i′ ∈ V Q there is an

associated feature vector APi ∈ AP and AQi′ ∈ AQ respectively. These features commonly

describes the local appearance at node i, and i′. Moreover, for each edge (i, j) ∈ EP and

15

Figure 2.1: Weighted matrix M.

(i′, j′) ∈ EQ there is an associate vector APij ∈ AP and AQi′j′ ∈ AQ which describes the

pairwise geometric relationship between nodes i and j, and nodes i′ and j′ respectively.

Instead of using a binary value, 1 or 0 indicating whether or not there is a connecting

edge between a pair of nodes, an affinity(weighted) matrix can be built, where the entries

of the matrix are weights that reflect the strength of a pairwise adjacency relationship.

To match these two graphs, one need to find a mapping between V P and V Q that best

conserves the attributes between edges Aij ∈ EP and Ai ′j ′ ∈ EQ . There are various ways

to construct the weighted matrix M , which is presented in the following section. Figure

2.1, shows the affinity matrix that is created using the candidate assignments of the graph.

For each node APi and AQi′ the unary score function can be defined as Mii′,ii′ = S(APi , A
Q
i′),

representing how well the local appearance between the candidate matches agrees, which

are stored on the diagonal of matrix M. For each pair of edges (i, j) ∈ EP and (i′, j′) ∈ EQ

there is a score function Mii′,jj′ = S(APi , A
P
ij, A

Q
i′ , A

Q
i′j′), stored in the off-diagonal of matrix

M , measures the second-order relationships (defined by APij and AQi′j′) between the pair

of candidate correspondences (i, i′) and (j, j′), contain information regarding how well the

pair-wise geometric information between candidate assignments is preserved.

Furthermore, for finding the optimal solution to feature matching problem, most of the

methods use the graph matching formulation based on integer quadratic problem (IQP).

16

Figure 2.2: Indicator vector.

Since, it incorporates both the node-to-node (unary, first-order) as well as the edge-to-edge

(pairwise, second-order) agreements, for finding the indicator vector x∗ that respects certain

mapping constraints (such as one-to-one or many-to-one) and maximizes the quadratic score

function:

x∗ = argmax(xTMx) s.t. Ax = 1, x ∈ {0, 1}n
PnQ

, (2.1)

x is an indicator vector, Figure 2.2, such that xii′ = 1 if feature i from one node image

is matched to feature i’ from the other image and zero otherwise, given the constraints

Ax = 1, and x ∈ {0, 1}n
PnQ

. The one-to-one constraints imposed on x such that one

feature from one image matched to only one feature from the other image. Graph matching

problem formulated as a constrained quadratic assignment problem that focused mainly

on finding the mapping between the nodes of two graphs such that the pair-wise similarity

preserved as well as possible.

2.2 Spectral correspondence by pairwise feature geometry

The geometric relationship between feature points has been enforced into correspondence

problemDuchenne et al. (2011a); Cour et al. (2007), where feature geometric relationship

17

formulated as a spatial graph. To characterize the global structural properties of graphs

using the eigenvalues and eigenvectors of either the adjacency matrix or the closely related

Laplacian matrix spectral graph theory employed as an approximate solution for graph

matching Chung (1997). The main purpose of spectral graph theory is to utilize the

distribution of eigenvalues to provide a complete knowledge of graph structure Carcassoni

and Hancock (2003).

2.2.1 Different weighting functions

The purpose of constructing the wighting matrix is to calculate the probability of adjacency

relations between vertices in the graph. Many ways have been suggested in the literature to

construct the affinity matrix, which can be classified according to a broad-based taxonomy

from their derivative Carcassoni and Hancock (2003). If the derivative is monotonically

increasing, then the weighting function is increasing. If the derivative is asymptotically

constant, then the weighting function is sigmoidal. Finally, if the derivative asymptotically

approaches zero, then the weighting function is re-descending. Given two points i and

j with position yi and yj, the corresponding element in the affinity matrix for these two

vertices in a graph representation is given by different weighting functions as follows Figure

2.3. σ controls the width of weighting kernel.

• Gaussian Wighting:

mij = exp

[
− 1

2σ2
‖yi − yj‖

]
(2.2)

This weighting function is re-descending.

• Sigmoidal weighting:

mij =
2

π ‖yi − yj‖
log cosh

[π
σ
‖yi − yj‖

]
(2.3)

18

Figure 2.3: Weighting functions

19

• Increasing weighting:

mij =

[
1 +

1

σ
‖yi − yj‖

]−1
(2.4)

• Euclidean weighting function:

mij = K(‖yi − yj‖), whereK(η) =

1 if k ≺ σ1

1− 1
σ1−σ2 [η − σ1] if σ1 ≺ k ≺ σ2

0 otherwise

(2.5)

Here σ1 is the half-width of the ceiling of the function and σ2 is the half-width of the base.

2.2.2 Eigen Decomposition for Finding Correspondences

The correspondences between the two data sets of the affinity matrix can be found by

solving the eigenvalue and computing the associated eigenvectors. The eigenvectors are

ordered according to the values of their associated eigenvalues and are used to construct a

pattern matrix. The eigenvectors of the affinity matrices can be observed as the base vectors

of an orthogonal transformation on the original data identities. The matrix structure for a

data set is attained by solving the eigenvalue equation

|M − λI| = 0 (2.6)

where λi, i = 1, . . . , n is the i th eigenvalue of matrix M , and its associated eigenvector vi

is computed using the equation

Mvi = λivi (2.7)

eigenvectors are arranged according to the values of their associated eigenvalues.

2.2.3 Spectral Approximation for Integer Quadratic Programming Problem

Spectral matching made it quite successful for solving computer vision tasks by influencing

a few improvements over previous methods. It has broad applicability because it does not

impose any constraints on the unary and pairwise scores. The overall requirements are for

20

the scores to be non-negative and increase with the quality of the agreement, but that can be

easily provided by all graph matching applications. It reduces the complexity of the problem

from NP-hard to a low-order polynomial complexity by dropping the integer constraints

on the solution and solve the problem by computing the leading eigenvector of the affinity

matrix. It is quite intuitive, easy to understand and implement. Its solution is based

on an intuitive insight into the structure of the similarity matrix, based on the expected

geometric alignments between correct assignments against the accidental associations of

incorrect ones. This idea inspires the appropriate design of meaningful first and second-

order scores. These properties contribute to the popularity of spectral matching, as the

preferred choice for many computer vision applications Leordeanu (2010).

Having the affinity matrix M , the correspondence problem summarize to finding the best

cluster C = {i , i ′} of assignments, so as to maximize the graph matching score defined as:

Max
∑

ii′∈C, jj′∈C

S
(
APij, A

Q
i′j′

)
(2.8)

The function S (., .) measures the similarity between edge attributes S (AP
ii ,A

Q
i ′i ′) is simply

the score associated with the match i , i ′.

The affinity matrix M is a
(
nPxnQ

)
x
(
nPxnQ

)
matrix that each entry indicates relation-

ships between two pairs of the candidate correspondences, i.e. mij = S (AP
ij ,A

Q
i ′j ′). There-

fore, pairwise geometric relationships are combined to form the affinity matrix. To utilize

pairwise information equation 2.8 can be reformulated as an integer quadratic programming

equation 2.1. The quadratic programming, takes into account both unary and second-order

terms. This reflects the similarities in local appearance (candidate correspondences), as well

as in the pairwise geometric relationships (pairwise agreements) between the matched fea-

tures. The difficulty of quadratic programming problem depends on the structure of the

matrix M , but in most cases it is NP-hard, and there is no efficient algorithm that can

guarantee optimality bounds. Therefore, so much effort has been made in finding good

21

approximate solutions by relaxing the integer one-to-one constraints to obtain an optimal

solutions to the new problem efficiently. Spectral approximation of this problem, referred

to as spectral matching, takes advantage of the particular properties of geometric matching.

It is expected that the optimum solution of the relaxed problem to be close to that of the

original problem with integer constraints.

Spectral Matching (SM) in Leordeanu and Hebert (2005) drops the constraints entirely and

only incorporates it during the discretization step. They also fixed the norm of x to 1 ,

since the relative values between the elements of x matter. The resulting objective function

is:

x∗ = argmax(xTMx)s.t.
∥∥x∥∥ = 1 (2.9)

In this method the only constraint is that the unary and pair-wise scores should be non-

negative and they should decrease with the deformation errors between the candidate corre-

spondences (increase with the quality of the match). Based on the assumption that correct

corresponding feature pairs are mutually coherent and form a strongly connected cluster,

while incorrect pairs are not, a graph matching algorithm extracts the correct assignments

of the weighted affinity matrix, by computing the leading eigenvector of matrix M. And, the

elements of the eigenvector can be interpreted as confidences that each candidate assign-

ment is correct. From the Rayleigh’s ratio theorem, x that will maximize the dot-product

xTMx is the principal eigenvector of M . Since M has non-negative elements, by Perron-

Frobenius theorem, the elements of x will be in the interval [0 , 1]. Then the continuous

solution of x is binarized by maximizing the dot-product with the leading eigenvector of M .

The assumption is that the affinity matrix is a slightly perturbed version of an ideal matrix,

with the rank =1, for which maximizing this dot product will give the global optimum of

2.9. Ideal matrix with a rank = 1 is shown in Figure 2.4, where correct correspondences

are strongly connected to form the main cluster in M.

22

Figure 2.4: Ideal matrix with rank = 1

Spectral Graph Matching with Affine Constraints (SMAC) was developed later in Cour

et al. (2007), which determines the optimal solution of a modified score function, with

a tighter relaxation that imposes the affine constraints Ax ∈ b (general form of mapping

constraint) during optimization and dropping the binary constraints on x .

x∗ = argmax
xTMx

xTx
s.t.Ax = b (2.10)

Their proposed solution is given by the leading eigenpair of PAMPAx = λx , where x is

scaled so that Ax = b; PA =In − A
T

eq

(
AeqA

T

eq

)−1
Aeq, Aeq = [Ik , 0] (A− (1/bk) bAk); Ak

and bk denotes the last row of A, b, respectively; and k is the number of constraints. An

important aspect is that PA is in general, a full matrix even when M is sparse. The discrete

solution is obtained to binarize the continuous x .

2.2.4 Spectral Graph Matching

Having two candidate assignments a = (vi, vi′) and b = (vi, vi′), for simplicity a = (i, i′)

and b = (j, j′), the pairwise score of M(a, b) can be calculated by:

M(a, b) =

4.5− (di,j−di′,j′)2

2σ2
d

, if
∣∣di,j − di′,j′∣∣ ≺ 3σd;

0 otherwise
(2.11)

23

where di,j and di′,j′ are the distances between the points i and j, and between their can-

didate matches i′ and j′ respectively. sigmad is a parameter to control the sensitivity of

the matching: larger sigmad allows more deformations of the data, and more pairwise re-

lationships to have positive scores in the matrix M . As it can be seen in Figure 3.5 M

is a symmetric matrix, and all of its elements are positive placed in the range of 0 to 4.5.

Intuitively, the value of M(a, b) is big if the two pairs a = (i, i′) and b = (j, j′) are spatial

consistent, meaning the value of |vi − vj | and|vi ′ − vj ′ |be close as much as possible.

Given the matrix M , the correspondence problem reduces to finding the best cluster C of

assignments i, i′ that maximize the matching score S, such that the mapping constraint

are met.

S =
∑

a,b∈C
M(a, b) = xTMx, (2.12)

where x is an indicator vector with an binary value for each assignment, such that x(a) = 1,

a = (i, i′), if feature i of image 1 feature set (P) is matched with feature i′ of image 2 feature

set (Q), and 0 otherwise.

Given the mapping constraints, the optimal solution is the binary vector x∗ that maximizes

S.

x∗ = argmax(xTMx) (2.13)

The matching score S is mainly depends on number of links adjacent to each correspondence

pair, and the weights on those links. In order to solve the Equation 2.13, the Integer

Quadratic Problem, Leordeanu and Hebert (2005), dropped both the mapping and integral

constraints on x, such that the value of its elements be real and in [0, 1]. Then the value of

x∗(a) interpreted as the association of a with the best cluster, requiring the norm of x to

be 1. Then, by the Raleigh’s quotient theorem Lange (2010), the solution of Equation 2.13

is given by the largest eigenvalue of matrix M . And, by Perron-Frobenius theorem Horn

24

Algorithm 1 Spectral Matching Algorithm

1. Build the symmetric non-negative matrix M using 2.11 formulation.

2. Initialize the solution vector x with zeros. Find the the principal eigenvector of M,
x∗.

3. Find the maximum value of x∗, and set that assignment in x to 1.

a∗ = argmaxa∈C(x
∗(a)), where C is the set of all the candidate assignments.

4. If x∗(a∗) = 0, stop the binarization. Otherwise set x∗(a∗) = 1 and remove that
assignment from C.

5. Remove from C all the potential assignments which conflict with a∗ = (i, i′), that
have the form of (i, ∗) and (∗, i′).

6. If C is empty return the solution x, otherwise return to step 3.

and Johnson (2012) the elements of x∗ will be in the interval [0, 1], since values of elements

M are positive. Since, the mapping constraint is dropped at the optimization step, the

binarization of x∗ is needed to obtain a robust solution.

The overall steps of spectral technique including the binarization are as follows:

The spectral matching algorithm has been used successfully for small data. However, there

is a scalability issue in computing the eigenvector of M. The size of M is nPnQx nPnQ,

where P and Q are the nodes of graph1 and graph2 respectively, and the number of nonzero

elements in the matrixM can grow in proportion to number of nodes. Therefor constructing

M explicitly in memory is prohibitive. Kang et al. Kang et al. (2013), proposed a solution

to this problem by constructing an approximated affinity matrix M̂ which is explained in

the next chapter.

2.2.5 Eigenvector Computation

For computing the principle eigenvector of a matrix a very simple algorithm called the power

method can be used. This algorithm converges geometrically to the largest eigenvalue of

the input matrix Golub and Van Loan (2012). In this algorithm the matrix M multiplied

25

Algorithm 2 Power Method
Input: matrix M
Output: Principle eigenvector v of M

1 : initialize v ← random vector with ||v|| = 1;

2 : repeat

3 : v ← Mv;

4 : v ← v/||v||;

5 : until convergence

by a randomly initialized vector until the normalize vector converges, which is the principle

eigenvector. The following algorithm describes this computation.

2.3 Accelerated libraries

Libraries such as MKL (Intel Math Kernel Library) and GPU accelerated libraries pro-

vide highly optimized algorithms and functions that increase application performance and

reduce execution time tremendously. Using libraries enables GPU acceleration without in-

depth knowledge of GPU programming. Many GPU-accelerated libraries follow standard

APIs, thus enabling acceleration with minimal code changes. Libraries offer high-quality

implementations of functions encountered in a broad range of applications.

The reason for employing these accelerated libraries are for optimized matrix vectors mul-

tiplication and also sparse matrix vector operation. Since most of our sub-matrices are

sparse using GPU library cuSparse, and CPU MKL sparse library are quite suitable for

improving the performance.

26

2.3.1 MKL

Intel Math Kernel Library (MKL) accelerates math processing and neural network routines

that increase application performance and reduce development time. MKL includes highly

vectorized and threaded Linear Algebra, Fast Fourier Transforms (FFT), Neural Network,

Vector Math and Statistics functions. The easiest way to take advantage of all of that

processing power is to use a carefully optimized math library. Even the best compiler can’t

compete with the level of performance possible from a hand-optimized library. If your

application already relies on the BLAS or LAPACK functionality, simply re-link with Intel

MKL to get better performance on Intel and compatible architectures.

Using Intel MKL can save development, debug and maintenance time in the long run

because today’s code will run optimally on future generations of Intel processors with

minimal effort. Intel has engineered this ready-to-use, royalty-free library, to allow you to

focus on and deliver features your customers have requested.

2.3.2 cuBLAS

cuBLAS, or the CUDA Basic Linear Algebra Subroutines (cuBLAS) library, is a GPU-

optimized set of Linear Algebra functions. Just as Thrust is a CUDA analogue to the

C++ STL, cuBLAS is based on Intel’s MKL BLAS. cuBLAS boasts support for all stan-

dard BLAS routines, as well as tremendous speedup. cuBLAS was used in the tests to

perform matrix multiplication, specifically using the cublas Sgemm() function. This is use-

ful because this function performs the matrix multiplications and allows us to transpose

the matrices all in one function call. 5.1.1.2

2.3.3 cuSparse

The NVIDIA CUDA Sparse Matrix library (cuSPARSE) provides a collection of basic linear

algebra subroutines used for sparse matrices that delivers up to 8x faster performance than

the latest MKL. The cuSPARSE library is designed to be called from C or C++, and the

latest release includes a sparse triangular solver.

27

2.3.4 Thrust

Templated Parallel Algorithms & Data Structures. One of the most prevalent API sets

available is Thrust. Thrust is a library that closely emulates the C++ Standard Template

Library. One useful element of Thrust is the provision of data structures, such as vectors,

that can be created in CPU or GPU-space. The Thrust library was specifically used in the

GPU integer SAXPY algorithm in order to create and populate vectors on the CPU and

GPU, and performing vector transformations.

In the next chapter the impact of local and global relationship of features for finding

the correct correspondences between two images are discussed. The approximated affinity

construction is applied to our work, and modification to the framework of spectral matching

algorithm for reducing the overall computation, and parallelization are all explained with

our results in more details in the next chapter.

28

Chapter 3
PAIRWISE MATCHING
OPTIMIZATION AND
PARALLELIZATION USING
ACCELERATED LIBRARIES FOR
DIFFERENT ALGORITHMS

3.1 Pairwise Matching

The overall graph matching pipeline of our algorithm for two images using spectral matching

is shown in Figure 3.1.

Given a pair of images, we first extracted invariant features nP , nQ from them respectively

using one of the detection method; in this thesis, we used SIFT and MSER. Then graph

GP = (V P ,EP), andGQ = (V Q, EQ) constructed, where, vertices represent the extracted

features, and edges between them represent the euclidean distance between those features.

Next graph constructed, where, vertices represent the extracted features, and edges be-

tween them interpret the relationship between those features. The objective is finding a

Figure 3.1: Overall pipeline of our algorithm using spectral technique

29

correspondence mapping to optimize a given similarity-based cost function.

After the graph constructed for the two given images, the affinity matrix created for the

list of candidate assignments L. Where the affinities for every assignment a ∈ L and every

pair of assignments (a, b) ∈ L stored. For each candidate assignments a = (i, i′) the

associated score or affinity M (a, a) that measures how well feature i ∈ P matches i ′ ∈ Q

can be computed using their descriptors, as equation 3.1. For each pair of assignments

(a, b), a = (i , i ′) and b = (j , j ′), the score of M (a, b) that indicate how compatible the

data features (i , j) are with the model features (i ′, j ′) can be estimated using equation

2.11. The unary and the pairwise scores of assignments stored on the diagonal and off-

diagonal of the affinity matrixM respectively.

d(Hi, Hi′) = 1− ‖Hi −Hi′‖ = 1−

√
128∑
s=1

(Hs
i −Hs

i′)
2

128
(3.1)

3.1.1 Approximated Affinity Matrix Construction

The affinity matrix constructed by equation 2.11 is composed of several sub-matrices with

size of nQ by nQ as shown below, where the subscripts of M indicating to which pair of

nodes from graph1 it corresponds to. Such as, the sub-matrix M12 constructed using nodes

1 and 2 of graph1 and all the graph2 vertices. This can be illustrated more easily on

Figure 3.6. As it can be seen the red bounding rectangles sub-matrix constructed using the

vertices 1 and 2 of graph1 and all the vertices of graph2 in Figure 3.5, which contribute

to high redundancy in the affinity matrix.

M =

0 M12 M13 . . . M1nP

M21 0 M23 . . . M2nP

...
...

...

MnP 1 MnP 2 MnP 3 . . . 0

30

Also, it can be seen from Figure 3.5, that the distance between the points 3 and 4 is almost

the same as the points 5 and 6 which resulted in the sub-matrices with the red bounding

rectangles. Also. the the points 3 and 5 is almost the same as the points 4 and 6 values

are almost the same therefore the sub-matrices with the green bounding rectangles contain

similar entries. Therefore, we can say that if the value of distances between pairs of point

in a first graph is the same, then their corresponding sub-matrices values would be same.

In order to have the same sub-matrices, Kang et al. (2013) proposed the idea to approximate

the pairwise distances by using 3.2.

d̂ij = w(bdij
w
c+ 1

2
), (3.2)

where, w is the width of a bin, it is used to approximated the distances placed in the same

bin be approximated to the center distance of that bin.

Furthermore, for two pints i, j of P the i′, j′element of sub-matrix M̂ij(i
′, j′) can be deter-

mined by the following equation,

M̂ij(i
′, j′) =

4.5− (d̂ij−di′,j′)2

2σ2
d

, if
∣∣d̂ij − di′,j′∣∣ ≺ 3σd;

0 otherwise
(3.3)

Having z distinct approximated pairwise distances d̂ij, z = dmax

w
, which dmax is the max-

imum distance of the points in P , Equation 3.3 creates z distinct nQ x nQ sub-matrices

of M̂ . Thus, the amount of memory required for storing the values of affinity matrix is

reduced form nP x nP by nQ x nQ to z by nQ x nQ . By exploiting this technique the

computation time dropped since requiring much less memory can benefit from the cache

functionality.

31

3.1.2 Candidate Assignments of Different Approaches

The size of the affinity matrix depends on the number of candidate assignments L, a larger

the number of candidates list, the bigger would be the size of the similarity matrix M . In

this thesis the candidate assignments are selected in four different approaches which are as

follows and illustrated in more details later in this section.

1. Completed graph matching (CGM): all the extracted features from the two given
images considered to construct the graphs. Therefore, nPxnQ would be the number
of candidatesL, and consequently nPxnQxnPxnQ would be the size of affinity matrix.

2. Approximated graph matching (AGM): in this method similar to previous method
graphs constructed using all the extracted features. Moreover, the number of candi-
dates L stay same as the previous method, nPxnQ , but the size of the affinity matrix
shrinks to z number of distinct nQ by nQ sub-matrices. Where z is the unique value
of the approximated distances di,j.

3. Preprocessed filtered out graph matching (PFGM): in this technique KNN method
used to find the locally matched features. Resulting in knP number of candidates
L. Where k is the number of the closest neighboring corresponding features for each
point. Consequently, knPx knP for the size of affinity matrix.

4. Pruned blocked graph matching (PBGM): this is our proposed method for selecting
the assignment candidates. By pruning the less probable correct assignments the
affinity constructed with the size of nP ′xnQ ′xnP ′xnQ ′ , and the number of candidate
assignment would be z ′ by nP”xnQ”. Where nP”xnQ” represent a number of fea-
tured selected after our pruning system, and z ′ represent the number of distinguished
blocked sub-affinity matrices.

We compared the result of these four approaches in term of accuracy and computation

time, and it proved that our method, the PBGM, outperforms the other methods and

subsequently required much smaller memory.

3.2 Graph Matching using Different Algorithm

As described before, explicitly constructing the weighted matrix M and iteratively comput-

ing the first eigenvector of the matrix demands a huge storage, and it is computationally

expensive. The majority of graph matching techniques such as Cho et al. (2010); Duchenne

32

et al. (2011b); Lee et al. (2011); Aho et al. (1989) applied algorithms like K-Nearest Neigh-

bor (KNN) method for finding the matches between sets of feature points as the candidate

assignments. As a result, the number of candidate assignments reduces from nPxnQ to

knP resulting in smaller affinity matrix and reducing the dimension of the problem search

space. The local appearance provides an efficient filter for selecting promising matching.

Therefore, using methods such as KNN for finding the initial matches might be beneficial

for finding the global optima. On the other hand, there have been many researchers that

applied all the feature points as their assignment candidates to improve the accuracy score.

Using more candidate assignment reduce the ambiguity for finding the correct correspon-

dences. Since, correct assignments establish agreement links between them, by using more

candidates, more link to the actual correspondences occurs, which, increases the association

score. However, that increased the dimension of the problem space.

To get the benefit from the approximated technique, and also use the preprocessed initial

matches we decided to combine these two for making our candidate assignments. So, in our

algorithm we first matched the feature points locally, to pruned the assignments with lower

probability of being correct, then added additional candidates in order to accommodate

for constructing the approximated affinity method. So, instead of using all of the feature

points as our assignment candidates, we constructed new candidate assignments, which we

call it Pruned Blocked Graph Matching(PBGM). Our candidate assignment decreased from

nPxnQ to nP”xnQ”, and also instead of constructing the whole affinity matrix we only

construct the z ′ blocks. Therefore, the affinity matrix size shrink to z ′ blocks ofnQ”xnQ”.

The benefits of constructing these blocks is that they can constructed separately and their

eigenvector can computed individually, thus they can constructed and computed in parallel.

33

Algorithm 3 PBGM

1. Detect and extract feature points from the given two images, P , and Q .

2. Find locally matched features, using nearest neighbor method P ′, and Q’ .

3. Pruned unwanted features that are not included in the list from step2 P”, and Q” .

4. Calculate the approximate distances between pair of all the features from feature set
P”, d̃ij .

5. For each distinct d̃ij locate ∀i , j which corresponds to that same value.

6. ∀i , j find their corresponding matching points in the initial matching list, and combine
those points and add them to candidate assignment list, in order to have a same block
for each distinct d̃ij .

7. For each distinct d̃ij , build the sub-matrix blocked, B ′ =
{
B

′
0 ,B

′
1 , . . . ,B

′

z ′

}
.

8. For each block B ′ save the indices that corresponds to the distinct d̃ij .

9. Calculate the eigenvector by multiplying each sub-matrix blocked affinity B′ with
v(y − 1) ∗ nQ” + 1 : y ∗ nQ” and add the result to v(x − 1) ∗ nQ” + 1 : x ∗ nQ”.
Where x , and y are the nodes indices belonging to the sub-blocked affinity.

The overall pipeline of our work is in Algorithm 3. To demonstrate the overall steps of

our work more clearly two images of different mug being used as in 3.2. In the first step

the salient features detected and extracted using SIFT method. From image1 6 points are

extracted {1, 2, 3, 4, 5, 6}, and from image2, 5 points {A, B, C, D, E}. Then the nearest

neighbor method applied to match those feature points locally, the initial matching points

are shown in the right side of the Figure 3.3. As it can be seen Figure 3.3 the matching

points are {1A, 1D, 3C, 4A, 4D, 5E, 6E}. After the features are extracted and matched

locally the next step is constructing the graphs of the images 3.4 and finding their pairwise

distances 3.5.

We can see that the distances between nodes v3 , v4 and nodes v5 , v6 are quite similar

d34 ' d56 , the same thing applies between vertices v3 , v5 and nodes v4 , v6 , d35 ' d46 ,

34

Figure 3.2: Extracted features of the mugs using SIFT algorithm.

Figure 3.3: Locally matched features, initial matches, using KNN method.

Figure 3.4: Graph representation using all the extracted features.

35

Figure 3.5: Graph construction of the two mugs images.

Constructing the affinity matrix using CGM method as it shown in Figure 3.6, we can see

that the sub-matrices M34 and M56 values and also the sub-matrices M35 and M46 entries

are quite similar. The CGM affinity matrix constructed using equation 2.11, resulted in

total size of 900, using 6 features from image1 and 5 features from image2, 6x5x6x5. To

construct the affinity matrix for AGM method the Equation 3.3 is employed, the pairwise

distances of image1 first approximated using equation 3.2 by assigning the value of w = 10,

and σ = 5 in this example. Since the distances of graph1 approximated, causing the

the sub-matrices M34 = M56and the sub-matrices M35 = M46, therefore only one of the

sub-matrices need to be constructed and stored. As it shown in Figure 3.7 using the

approximated distances, the values of sub-matrices in red boarders are same, and also the

values of the sub-matrices with green boarders. Therefore the total size of the AGM affinity

would be 13 * 5 * 5 = 325, where 13 is the number of unique sub-matrices, and 5 number

of nodes in graph2.

Figure 3.8 display the affinity build by PFGM approach using only the initial matches

points, resulting in matrix size of 7 * 7 = 49, where 7 is number of initial matches. In

our method, PBGM we first pruned the candidates by keeping those that are in initial

matching list, therefore, our candidate assignments are {1, 3, 4, 5, 6} from graph1, then

their approximated distances calculated and the sub-blocked matrices constructed for the

36

Figure 3.6: CGM Affinity matrix

Figure 3.7: Affinity matrix using the approximate pairwise distances.

37

Figure 3.8: PFGM Affinity matrix

unique distances. The whole affinity matrix using the pruned assignments is shown in

Figure 3.9, and sub-blocked matrices with same values are displayed with red and green

boarders. Since, we only want to construct and store one representation of the similar sub-

matrices, their values need to be same. Therefore, for building sum-matrices using nodes

3 and 4 not only their matching correspondences in the initial list needed to be found, but

also nodes 5 and 6 matching assignments needed to be found in order to make the same

sub-matrices. Thus, the matched points of nodes 3, 4, 5, 6 in the initial matching list

selected which are {C, A, D, E, E} and their sub-blocked matrices constructed using those

points. In our experiments we noticed that since their are many nodes with same pairwise

distances the corresponding correspondences that are selected from initial matches would

be same. Resulting in employing all the nodes that are presented in the initial matches.

Therefore, all the blocks have a same size and their affinities needed to be calculated in

order to have similar sub-blocked matrices. In this example using the PBGM method the

total affinities would be 6 * 4 * 4 = 96, where 6 is the non zero unique valued sub-blocked,

and 4 is the number of the pruned nodes of graph2. We can see in this example that the

size of memory to construct the affinities reduced from 900 using the first method to 96 in

our method. Our experiments also presented that the accuracy we got from our method

compared to PFGM increased.

38

Figure 3.9: Affinity matrix constructed using pruned assignments.

3.2.1 Bijectivity Constraint

The one to one bijectivity constraint need to be enforced to the solution for getting the

correct correspondences. This two-way constraint is a sparse matrix consist of 0s and 1s. It

can be formulated as a linear constraint Ax ≤ b, where A is the constraint matrix. On each

row of A, the non-zero elements give the indices of the assignments that are associated with

a same keypoint in one frame. Therefore, this matrix indicate the assignments that have

mutual conflicts. No more than one among them should be selected in the final solution,

as indicated by the vector b = (1 , 1 , ..., 1)T . For instance, the assignments(i , j), (i ′, j),

and (i , j ′) are in conflict with each other therefore only one of them can be selected in the

final solution. In our work the constraint matrix applied to the affinity matrix before the

eigenvector computation to remove the assignments that are in conflict in order to improve

the final solution. And, the greedy algorithm is used at the binarization step to enforce

the bijectivity constraint as it explained in Algorithm 1.

3.2.2 Computing Eigenvector

After the affinity matrices constructed using different approaches, and the conflicted nodes

been removed, the spectral matching algorithm is applied as explained in the previous chap-

ter. The x ∗d solved by multiplying the matrix with a randomly initialized vector repeatedly

39

until the normalized vector converged. The principal eigenvalue and its corresponding

eigenvector first computed, denoted as x ∗, then elements in x ∗ sorted, the greatest element,

g , and set x ∗d (g) = 1 . Then, iteratively, following the descending order, all elements in x ∗

that do not have conflict with existing marked elements selected, and assigned to 1 , while

marking the indicator of each conflict element to 0 . The converged vector is the principal

eigenvector of the matrix. In our method since each affinity can be constructed separately

they can also multiplied by the eigenvector separately, which are the great candidate for

parallelization. Thrust is used to construct each of the blocks in parallel. And, the CPU’s

and GPU’s accelerated libraries MKL, cuBlas, cuSpars for matrix vector multiplication.

3.3 Result - Implementation

The implementation of our work is as follows: we first extracted feature points from images

using MSER, we also used SIFT in some of our example to get more discriminative points.

For find the locally matching points KNN used to find k nearest neighbor for each feature

in the first image. If the distances between the feature points and the neighbor points

bigger than some threshold then those features would not be included in our candidate list.

K determined the maximum number of matches each feature can have. The value of K set

to 3 for PBGM method and 10 for the other algorithms, CGM, AGM, and PFGM. Using

the distance of 128-dim SIFT descriptor, all the possible candidate matches selected if the

feature pair has a closer distance in SIFT feature space than a threshold of δ = 0.8, allowing

multiple correspondences for each feature. The Maximum number of initial matches set

to 3000.After the initial matches points were determined, distances between every points

for each graph calculated. The approximated distances calculated in our example using

10 some example 5 for w depends on the range of the distances, if the difference of the

maximum and minimum distances values were larger then we set w to 10, otherwise used

5. We implemented the matrix and vector class and the CSR and COO sparse version of

40

the matrix also constructed. Thrust library enabled us to provide a unified interface for

both CPU and GPU. Depends on type of images and the size of them different approaches

can be selected to get the best performance. For noisy type of images the PBGM works

better, and for images that features description is good PFGM can be used. As it displayed

in result the CGM algorithm could not be used in most of the examples, because of the

amount of memory needed to construct the full affinity matrix. But, if the size of images

be very small and have a good description, but the ambiguity be high then user can be

benefited by using CGM method. Therefore, by having a unified interface best methods

can be selected depending on the input images. The following result compared the four

approaches in term of accuracy, memory and speed time. Result also compared to the

original approach without using any optimization.

The ground truths (GT) manually specified for all candidate correspondences of each im-

age pair, and the accuracy using both Recall and Precision Equation 3.4 computed for all

the different methods and compared with each other. In the images where the homog-

raphy transformation were available the accuracy also estimated using reprojection error.

Having set of points P , the pointspiprojected on the second image using it’s homography.

Then the euclidean distance between the reprojected points p ′
iand the second image points

qj calculated, if the distance of those two points are smaller than some threshold then those

correspondence are considered as correct
∥∥p′

i − qj
∥∥ ≺ ε.

Precision = correct one (TP)/all theGT

Recall = correct one (TP)/all the chosen one (TP + FP) (3.4)

Thrust library used in the overall implementation of all the four methods, CGM, AGM,

PFGM, and PBGM to provide a unified interface for both CPU and GPU. Each blocked

affinity sub-matrices constructed in parallel using Thrsut library. The MKL, cuBlas and

41

cuSparse library applied for the matrix-vector multiplication for computing the principal

eigenvector. As shown in the examples, the experiment and the dataset are designed for

producing the challenging feature matching problems where unary local features are very

ambiguous. Our PBGM clearly outperforms other methods both in accuracy and execution

time.

3.3.1 Accuracy

The accuracy of each algorithm estimated using recall and precision methods. As it can

seen from the result our methods works better when there are ambiguity and they are

noisy. The final correspondences also displayed using the PBGM method. In each example

the bar plot shows the accuracy of different algorithms, and real images display the final

correspondences. True matches are represented by pink lines, and false matches by black

lines. The accuracy result of the different method for each pair of images using Recall and

Percentage, also summarized in the table of Figure 3.10.

Figure 3.10 shows that using PBGM increase the accuracy by 66.66% compare to PFGM,

and 50% and 26.99% compare to CGM and AGM respectively. The images that used in this

example are depth data taken with Kinect v2. Since, the images are not discriminative our

method PBGM resulted in a better performance than the other methods. We got 66.66%

accuracy using recall and 23.5% using precision.

It can be seen from Figure 3.12 that using PBGM increase the accuracy value by 29.97%

compare to PFGM, and 12.27%compare to CGM and AGM. The images that used in this

example have homography transformation between them. Input data contain repeated

pattern that cause the PFGM score to be lower than the other algorithm. As, it is shown

in the table 3.12 the accuracy obtained from using our method is 95.74%.

Figure 3.14 shows that using PBGM increase the accuracy by 50.99% compare to PFGM,

42

Figure 3.10: Recall and Precision accuracy estimation

43

Figure 3.11: Final correspondences

and 24.25% and 27.75% compare to CGM and AGM respectively. Gaussian noise added

to input images in this example. Since, the images are noisy the features extracted are not

discriminative, therefore, our method PBGM resulted in a better performance than the

PFGM. The CGM, and AGM algorithms score is higher because more candidates used and

their geometric relationship help to increase the accuracy. The table shows the accuracy

score obtained from all the methods using Recall and Precision.

Figure 3.17 display images taken with affine transformation between them. Result from

Figure 3.16 show the accuracy estimated for all the different algorithms. Since, input

images contain no noise and ambiguity the result obtained from PFGM is higher than

other methods, but not much from our method PBGM. Our result is quite comparable to

PFGM, using Recall, Precision and Reprojection error.

3.3.2 Execution Time

Performances of the four algorithms (CGM, AGM, PFGM, PBGM) using CPU and GPU-

accelerated libraries (MKL, cuBlas, cuSparse) displayed in the following figures. Three

different examples are used to visualize the execution time of all the methods, start from

44

Figure 3.12: Recall and Precision accuracy estimation

45

Figure 3.13: Final correspondences

smallest data size. As it can be seen in Figure 3.19and Figure ??, the execution time are

not reported using the CGM method as the affinity matrix did not fit in the memory for

the larger input data.

In the first example the total size for constructing the whole affinity matrix is 3 .93 ∗ 108.

Using our method PBGM by feature pruning and redundancy pattern suppression technique

the memory requirement significantly reduced by 99.58. Comparing to the original method

without any optimization our method showed the massive 93.43% speed up. Using GPU

libray, cuBlas the speed up we got compared to MKL is only 20.45% since transferring data

to GPU added overhead, and therefore increased the execution time. Also, sparsifying the

matrix, using Compressed Sparse Row (CSR) caused a massive slowdown.

In this example Figure 3.19 the total size for constructing the whole affinity matrix is

86 .5 ∗109. As it mentioned earlier since the data got bigger constructing the whole affinity

matrix using CGM was not possible because of huge memory footprint of constructing

the affinity . Therefore only the result of other method presented here. Using PBGM

46

Figure 3.14: Recall and Precision accuracy estimation

47

Figure 3.15: Final correspondences

Figure 3.16: Recall and Precision accuracy estimation

48

Figure 3.17: Final correspondences

Figure 3.18: Execution time using different algorithms and libraries with size: 3 .93 ∗ 108.

49

Figure 3.19: Execution time using different algorithms and libraries with size: 86 .5 ∗ 109

method the amount of memory required to store the blocked affinity sub_matrices reduced

by 99.98. Also, as the data size grew and the amount of computation increased, we got

51.89% of speed up using cuBlas comparing to MKL.

In the third example Figure ?? the total size for constructing the whole affinity matrix is

3 .98∗1012. As it mentioned earlier since the data got bigger constructing the whole affinity

matrix using CGM was not possible because of huge memory footprint of constructing the

affinity . Therefore only the result of other method presented here. The memory space

needed to store the blocked affinity sub_matrices reduced by 99.99. As the input size gets

larger the sparsed version, using cuSparse, the computation run faster with speed up of

51 .59% comparing to MKL, and the result from cuBlas showed the speed up of 39.89%.

50

Figure 3.20: Execution time using different algorithms and libraries with size: 3 .98 ∗ 1012

51

Chapter 4
MULTI IMAGE MATCHING
OPTIMIZATION AND
PARALLELIZATION

4.1 Introduction

Finding feature correspondences between two images is a fundamental problem in com-

puter vision with various applications such as structure image registration, shape analysis,

motion. While previous efforts focused mostly on matching a pair of pictures, many tasks

require finding correspondences across multiple images. Such as matching and stitching

partially overlapped point clouds sequentially scanned from a 3D scene, and reconstruct

the entire scene which is a fundamental problem in computer graphics, and robotics. Simul-

taneous Localization And Mapping (SLAM) is one the application where a robot equipped

with a range scanning sensor can navigate around an unknown environment to reconstruct

the surrounding and locate its own position. Due to the advance of modern imaging and

scanning technologies, multi-graph matching is applied to infusing multi-source sensor data,

multi-view assembly, and multi-source topic alignment. It is also related to graph cluster-

ing, classification, and indexing. In many applications, visual objects do not appear in

isolation or in pair, but more frequently in collections or families. Also, considering more

graph instead of two improves the matching accuracy, since it is required to find global

consistent correspondence by using the information of pairwise affinity of all graph. Such

an improvement is accomplished through avoiding trapping to local optima, due to the

large deformation, appearing in the pairwise case since only affinity between two local

graphs is explored Yan et al. (2013). Therefore, it is appealing to design effective and

efficient multi-graph matching algorithms beyond conventional pairwise matching solvers

52

Yan et al. (2014). One way of matching the multi-graph could be solving it in a sequential

manner Pevzner (1992), where each step executes a pairwise matching of two sequential

graphs. And, it could be designed by different orders to cover all graphs in a path, e.g.,

G1 → G2 → · · · → GN . However, no matter in what order the graph placed, a single

error in the corresponding sequence would could create a large number of wrong pairwise

matches. Having graphs G1, G3, G3 another strategy could be using pair matching solver to

find the mapping between G1 G2, G2 G3, and G3 G1, however using this method it would

be likely to get inconsistent or redundant mapping compared with the mapping induced

by G1 G2, G2 G3, especially given large number of nodes or significant corruption. And,

not considering the mapping between G3 G1, might result in incorrect mapping since the

mapping between those two graphs might be more accurate if G2 be heavily corrupted.

4.2 Multi-graph Matching

Having three images, I1 , I2 and I3 with three extracted feature sets F1 , F2 , F3a graph

G = (V ,E) can be constructed, where each node a = (i , i ′, i ′′) ∈ V is an three corre-

spondence tuple, such that i ∈ F1 , i
′ ∈ F2 , i

′′ ∈ F3 . An edge eij = (vi , vj) ∈ E is con-

structed if the correspondence tuples a = (i , i ′, i ′′) and b = (j , j ′, j ”) are spatially consis-

tent to each other. And a weight function M (eij) on edge eij measures the spatial con-

sistency between vertices vi and vj . If there is a rigid transformations between images,

then the spatial consistency means the distance between corresponding points should be

preserved |vi − vj | = |vi ′ − vj ′ | = |vi ′′ − vj ′′ |. We used the same technique as for pair-wise

graph matching to select the assignment candidates. We first used the KNN method to

find the initial matches between every two consecutive images, and filtered out any match

that was not consistent on a three image circle. Given three images, first find the initial

matches between I1 and I2 , I2 and I3 , I3 and I1 using nearest neighbor matching and kept

the ones those matches that be consistent in all of them, such as (f1 ,m , f2 ,n , f3 ,k), where

(f1 ,m , f2 ,n) ∈ L1,2, (f2 ,n , f3 ,k) ∈ L2,3 and (f3 ,k , f1 ,m) ∈ L3,1. L is the candidate list between

53

every two images, and m, n and k are the feature elements. Figure 4.1demonstrates more

clearly how the locally matched candidates can be selected using a three-way matching

loop. As it can be seen from Figure 4.1 points 1 matches point a, and points a matches

point A, also since feature A and feature 1 are matched then candidate 1aA can be chosen

as an initial matching candidate. The rest of the candidates are selected using the same

technique.

Figure 4.1: Initial correspondences between three images using KNN method.

As it shown in the previous chapter in most of our experiments the CGM algorithm could

not be run because of it’s large memory footprint, thus in the multi-imaging as the number

of images increases, and the number of features grows, using the CGM algorithm would not

be plausible. Therefore, our method PBGM would be the best option since the memory size

needed is much less, and it can constructed and computed in parallel. The Pruned Blocked

Graph Matching (PBGM) technique constructed as explained in previous chapter. First

using the initial matches candidates unwanted features get pruned. Then the approximate

distances between candidates of image1 computed, and for each distinct d̃ij , the sub-matrix

blocked affinity constructed. In our multi-image matching problem to find the spatial

consistency between two correspond tuples vi and vj the Zheng et al. (2016) measurement

54

is employed. Since, we are interested in images with rigid transformation, Scale Jacobian

Metric technique is used to find the three distances. And their spacial consistency would be

maximum if ‖fi fj‖ = ‖fi fj‖ = ‖fi fj‖. let (x1 , y1) = (0, 0), (x2 , y2) = (di′j′ , 0), and (x3 , y3) =(
d2ij+d

2
i′j′−d

2
i”j”

2dij
,

√
d2i”j” −

d2ij+d
2
ij−d2ij

4d2ij

)
. Then, the function is defined as follows. If distance

satisfy the triangle inequality dij−di′j′ ≺ di”j” ≺ dij+di′j′ then:

S(a, b) =
C ∗

√
3 ∗ (dij−di′j′ + di”j”)(dij+di′j′ − di”j”)(−dij+di′j′ + di”j”)(dij+di′j′ + di”j”)

d2ij + d2i′j′ + d2i”j”
(4.1)

The point to point similarities estimated using features descriptors, for SIFT descriptors

with 128-dimensional vector calculated using equation 4.2.The same idea or technique can

be extended to more images. After the affinity for each unique blocked sub-matrix con-

structed the values of the correspondence that are in conflict with each other set the zero

as explained in the previous chapter. We set C value 4.5 as Leordeanu and Hebert (2005).

D(Hi, Hi′ , Hi”) =
1

N
(d(Hi, Hi′) + d(Hi′ , Hi”) + d(Hi”, Hi)) (4.2)

4.2.1 Affinity Matrix using Different Approaches

The four different type of affinity constructed using the four different algorithm ,CGM,

AGM, PFGM, PBGM, as discussed in Chapter 3. The node to node and pairwise affinities

computed using Equation 4.1, and 4.2 respectively. Having three feature sets of P,Q,R

with nP , nQ , nRnumbers, the CGM affinity matrix constructed using all the features with

size of nPxnQxnRxnPxnQxnR. As it shown in the previous chapter in most of our examples

the CGM method could not be used because of the memory, therefore in the multi-imaging

as the number of images increases, and the number of features grows, using the CGM

algorithm is not feasible. Therefore, our method PBGM would be the best option since the

memory size needed is much less, and it can constructed and computed in parallel. The

55

affinity matrix using PFGM approach constructed by finding the locally matched features

between every two consecutive frame using KNN method as explained earlier. Therefore,

the size of the affinity matrix would be the common matches of the locally pair-wised

matched images. Using the PBGM algorithm for each unique pairwise distances of image1

features, the blocked sub-matrices constructed using the pruned assignments containing

image2 and image3 features. The candidates pruned as explained earlier by using the

initial matching points. Therefore the memory space required for employing the PBGM

method would be z′′ by nQ ′′x nR′′x nQ ′′x nR′′ , where nQ ′′ , and nR′′are the pruned points.

4.2.2 Bijectivity Constraint

The bijectivity constraints for multi-images would be same idea as the pairwise-matching.

If node (i , i ′, i ′′) selected together then it is prohibited to select nodes (j , i ′, j ′′), (j , j ′, i ′′),

(i , j ′, j ′′). Therefore, the bijectivity constraint can be formulated as a linear constraint

Ax ≤ b. A is a sparse matrix consists of 0 and 1 elements. On each row of A, the non-zero

elements give the indices of tuples that are associated with a same keypoint in one frame.

Therefore, these tuples have mutual conflicts. No more than one among these tuples should

be selected in the final solution, as indicated by the vector b = (1 , 1 , ..., 1)T .

4.2.3 Eigenvector Computation

The spectral matching algorithm as explained before used to solve the x ∗d . By first com-

puting the principal eigenvalue and its corresponding eigenvector, denoted as x ∗ , then sort

elements in x ∗ , and find the greatest element g and set x ∗d (g) = 1 . Then, iteratively, fol-

lowing the descending order, find all elements in x ∗ that do not have conflict with existing

marked elements and set those elements to 1 , while marking the indicator of each conflict

element to 0 . In our method since each affinity constructed in parallel and multiplied by

the eigenvector separately. Thrust is used to construct each of the blocks in parallel. And,

the CPU’s and GPU’s accelerated libraries MKL, cuBlas, cuSpars for matrix vector multi-

plication. All the four methods constructed using aforementioned accelerated libraries to

56

find their eigenvalues.
4.3 Result

The result of our method PBGM is compared using Thrust and the optimized libraries in

terms of execution speed. Result also compared to the original approach without using

any optimization. By using cuBlas library the performance increases tremendously since

it is done in parallel. By increasing number of features, there would be more computation

therefore, the overhead for sending the data to GPU compensated.It can be seen from

images since the affinity values are non zero values, using sparse representation reduce the

memory space requirement, also reduce the computation time. But in a smaller inputs did

not pay off for the smaller examples since manipulating sparse matrixes are computationally

expensive compared to the original representation. This caused a slowdown Figure 4.3 and

Figure 4.4. Nevertheless, for larger number of features, Figure 4.5, we clearly see that

sparsifying the matrix clearly improves the run time.

In the first example the computation time using no optimization is displayed as it can be

seen in Figure 4.2. The total size for constructing the whole affinity matrix is 6 .89 ∗107. As

the input data in this example is small the affinity matrix could be constructed. Comparing

to the the whole computation without any acceleration the speed up we got using MKL,

MKL-CSR, cuBlas and cuSparse is 80 .24%, 48 .05%, 90 .88%, 86 .42% respectively. The

amount of memory reduced by 99 .89%.

Figure 4.3 display the same example as Figure 4.2, but without the no acceleration bar.

Comparing the four different algorithm the experiment showed that the execution time

dropped by 53 .84%. using cuBlas compared to MKL. But since sparsifying the blocked

sub-matrices slow down the performance we got only 31 .25% reduction compared to MKL.

In this example Figure 4.4 the total size for constructing the whole affinity matrix is

8 .37 ∗ 10 8 . Using PBGM method the amount of memory required to store the blocked

affinity sub_matrices reduced by 99 .93%. Also, as the data size grew and the amount

57

Figure 4.2: Execution time using different accelerated libraries. - Total size:6 .89 ∗ 107

58

Figure 4.3: Execution time using different accelerated libraries. - Total size: 6 .89 ∗ 107

59

Figure 4.4: Execution time using different accelerated libraries. - Total size: 8 .37 ∗ 10 8

of computation increased, we got 81.54% of speed up using cuBlas, and 73 .51% using

cuSparse comparing to MKL.

Figure 4.5 is the result of a experiment with total size of 1 .2 ∗ 10 12 . The result showed that

using our method PBGM required up to 99 .99% less memory than using CGM method.

Also, as the input size got bigger the sparsed version, using cuSparse, the computation run

faster with speed up of 95 .35% comparing to MKL, and 91 .99% using cuBlas.

60

Figure 4.5: Execution time using different accelerated libraries. - Total size: 1 .2 ∗ 10 12

61

Chapter 5
FUTURE WORK AND CONCLUSION

5.1 Conclusion

Matching features of two images or different parts of a single image is a well-known problem

in the area of computer vision. Stabilizing consistent correspondences between two sets

of features is a computationally expensive operation. For good matching performance,

it is important to take into consideration not only the local appearance of features (a

linear term) but also the higher-order geometry and appearance of groups of features (a

quadratic term). In many computer vision problems, and complex scenes graphs utilized as

an abstract representation. Where the vertices of graphs represent the local characteristics

of features extracted from given images, the edges relate to relational aspects between those

features. Given two images, each represented as an attributed graph the objective is finding

the correct correspondences between those two graphs such that both terms, a linear and

quadratic term, be preserved. Typically, the problem of graph matching mathematically

formulated as a quadratic assignment problem. Solving this problem is NP-hard, and an

exact optimal algorithm can only work for very small graphs. Therefore, extensive research

has been done on developing more accurate and faster algorithms to solve the problem

approximately.

Explicitly constructing the affinity matrix M using all the feature points of both images,

and computing the first eigenvector of M are hopeless due to the heavy storage requirement

of M. Hence, many researchers employ using only the initial matching points to reduce

the dimension of the problem search space, but it results to not accurate solution. Since,

only using the locally matched points as the candidate assignments to find the correct

correspondences on noisy images, not discriminative images, or images with lots of ambi-

62

guity would not give correct correspondences. Therefore, our algorithm, PBGM, would be

the best option in this circumstances, as it not only reduce the memory requirement and

overall calculation, computation but also delivers great performance on not discriminative,

noisy images. We reduced the memory usage and the computation cost of Pairwise graph

matching by adopting a heuristic pruning strategy together with a redundancy pattern

suppression scheme. Most of the graph matching techniques are sequential since there is

dependency involve for constructing and computing the affinity matrix. Moreover, all of

the implementations are matrix-vector multiplication, which is a very well-known problem

in computer science area, and numerous techniques have been integrated into compilers

and libraries to speed up such computation. Blocking the affinity matrix provides an ad-

ditional level of parallelism. Since each block can be constructed and used independently

of other blocks, we have all the computations can be done totally in parallel without any

synchronization (embarrassingly parallel). We parallelized our algorithm, PBGM and used

CPU’s GPU’s accelerated libraries to reduce the execution time. We also improve the per-

formance of the other three methods, CGM, AGM, and PFGM by employing MKL cuBlas,

cuSparse. Using Thrust library has enabled us to provide a unified interface for both CPU

and GPU, where allows us to heuristically chose the best combination of algorithm and

architecture based on the input images. The experimental result proved that our proposed

algorithm PBGM require up to 99.97% less memory than the original method CGM. And,

93.43% faster than the CGM without any accelerations. Also, comparing to PFGM, the

accuracy improved about 60%. We showed that by using our method graph matching for

big data was feasible.

Current graph matching methods mostly focused on two-graph matching directing on es-

tablishing one-to-one correspondences between a pair of feature points. However, in many

applications, similar objects do not appear in a pair but more in collections. Also, consid-

ering more graph instead of two improves the accuracy, since it is required to find global

consistency through all the given data. As it mentioned, solving GM is memory wise and

63

computationally expensive. Using our heuristic pruning strategy and redundancy pattern

along with parallelizing the algorithm enabled us to address this problem in a more efficient

way.

We also extended our work for Multi-graph imaging using our proposed PBGM method

for reducing the memory footprint by 99.91% comparing to CGM method and increasing

the speed up. We also modified the structure of the affinity matrix for minimizing memory

requirement and parallelizing our algorithm by employing CPU’s and GPU’s accelerated

libraries. The matrix-vector multiplication of gradient computation performed in parallel,

where each block-vector calculation computed independently. The Scale Jacobian metric

technique employed to measure the similarities between the candidates. And, Thrust library

used to unified interface for both CPU and GPU. To improve the overall accuracy for all

the four methods we proposed the new algorithm for a more robust solver, but more work

needs to be done which is in our future work.

5.2 Future Work

Spectral matching algorithms are sensitive to contaminations which could create false edges

in the graphical model, causing the solution deviate from the actual global optimum. That

is why the performances of spectral matching algorithms decline dramatically with increas-

ing noise. Therefore, a robust to noise and an efficient matching algorithm is of great inter-

est to us. As it mentioned before none of the previous spectral methods such as Leordeanu

and Hebert (2005), considered the original integer constraints during optimization. Based

on the assumption that the continuous optimum is close to the discrete global optimum

little computational time applied to binarize the solution. Integer Projected Fixed Point

(IPFP) algorithm Leordeanu et al. (2009) presented in their paper that by considering the

binarization step during the post-processing, can improve the result significantly. Based

on these investigations, they used an iterative algorithm to improve any continuous or dis-

64

Algorithm 4 IPFP

1. x ∗ = x , S∗ = xTMx, k = 0, xi ≥ 0 ;

2. let bk+1 = Pd(M xk), where Pd is the projection form continuous to discrete domain,
and bk+1 is the discrete vector.

C = xTkM(bk+1 − xk), D = (bk+1 − xk)TM(bk+1 − xk) ;

3. ifD ≥ 0 , set xk+1 = bk+1, else let r = min {−C/D, 1}

4. if bTk+1Mbk+1 ≥ S∗, then setS∗ = bTk+1Mbk+1, andx∗ = bk+1

5. if xk+1 = xk , stop and return the solution x ∗

6. set k = k + 1and go back to step2.

crete solution quickly. Each iteration consists of two stages. The first one optimizes in

the discrete domain, a linear approximation of the quadratic function around the current

solution. It gives a direction along which the second stage maximizes the original quadratic

score in the continuous domain. The stage two can be viewed as a projection on the dis-

crete domain and this algorithm is called Integer Projected Fixed Point (IPFP) algorithm

Leordeanu et al. (2009). It aims to optimize the following continuous problem, in which

the integer constraint from Equation 2.9 is removed:

x∗ = argmax(xTMx)s.t. Ax = 1, (xi ∈ x) � 0 (5.1)

Algorithm 4 shows the steps of IPFP algorithm. In step 1, the quadratic score xT
K Mxk is first

approximated by the first-order Taylor expansion around the current solution xk : xTMx ≈

xTKMxk + 2xTKM
(
x− xTk

)
. In step 2, the two stages are introduced. Stage one: the

continuous approximation is maximized within the discrete domain by the projection Pd

under the one-to-one discrete constraints. Since all possible discrete solutions have the same

norm, Pd boils down to finding the discrete vector bk+1 = argmax bTMxk . Stage two: the

same discrete bk+1 maximizes the dot product in the continuous domain, Ax = 1 , x � 1.

65

Step 3 and Step 4 are the updating rules. Finally, Step 5 is the termination criteria. IPFP

algorithm is, in fact, a relaxation problem of the original one by removing the integer

constraints. It is equivalent to the original problem if the proximity matrix M is convex.

The algorithm is a sequence of linear assignment (or independent labeling) problems, in

which the next solution is found based on the previous one. Step 3 ensures that the

quadratic score increases with each iteration, and Step 4 guarantees that the the initial

solution is not better than the returned binary solution. The role of bk+1 is to provide

a direction of largest possible increase in the first-order approximation, within both the

continuous domain and the discrete domain simultaneously. The original quadratic score

can be also further maximized in the continuous domain (as long as bk+1 6= xk). In their

paper, they claimed the algorithm converges in about 5 to 10 steps, which makes it very

efficient. Theoretical properties of IPFP have been analyzed. It is shown that IPFP has

strong convergence and climbing guarantees, which is stated in Leordeanu et al. (2009) as

follows:

1. The quadratic score xT
K Mxk increases at every step k and the sequence of xk converges.

2. The algorithm converges to a maximum of the relaxed problem.

3. If M is positive semi-definite with positive elements, then the algorithm converges in

a finite number of iterations to a discrete solution, which is a maximum of the relaxed

problem.

4. if M has non-negative elements and rank=1, then the algorithm will converge and return

the global optimum of the original problem after the first iteration.

We proposed the new algorithm for the pairwise matching, Algorithm 5 as a more reliable

and robust solver for finding the global optima. Our iterative algorithm works by modifying

the affinity matrix and optimizing the original problem with its integer constraints. To bi-

narize the solution during the optimization stage we applied the IPFP algorithm Leordeanu

et al. (2009)as discussed earlier. We added the node to node affinity score using Hager et al.

(2000) approach to increase the matching score of the correct correspondences. In the first

66

stage, we constructed the affinity matrix by finding the pairwise spatial score between ev-

ery nodes of the two graphs. The unary score computed by selecting the maximum of

the pairwise score between each of the features of the first image to all the second image

features. Step 10 ensures that the quadratic score increases with each iteration, and Step

11 guarantees that the the initial solution is not better than the returned binary solution.

The role of bl+1 is to provide a direction of largest possible increase in the first-order ap-

proximation, within both the continuous domain and the discrete domain simultaneously.

The original quadratic score can be further maximized in the continuous domain (as long

as bl+1 6= xl).

Algorithm 5 New solver

Input: Two sets of features P and Q, each having |P| and |Q| features respectively.
Output: x a binary integer variable indicating correct correspondences in the final solution.

1. repeat;

2. construct the affinity matrix M, using pairwise geometry similarity;

3. construct the diagonal matrix D,

whered(ii ′ ,ii′) = max
{
m(ii

′
, jj

′
) : 1 ≤ jj

′ ≤ nPnQ
}
;

4. initialize x uniformly or randomly with ||x|| = 1;

5. x ← Mx +D −Dx;

6. x ∗ = x , S∗ = xTMx, l = 0, xi ≥ 0 ;

7. let bl+1 = Pd(M xl), where Pd is the projection form continuous to discrete domain,
and bl+1 is the discrete vector.

C = xTl M(bl+1 − xl), B = (bl+1 − xk)TM(bl+1 − xl) ;

8. ifB ≥ 0 , set xl+1 = bl+1, else let r = min {−C/B, 1}

9. if bTl+1Mbl+1 ≥ S∗, then setS∗ = bTl+1Mbl+1, andx∗ = bl+1

10. if xl+1 = xl , stop and return the solution. Else, set l = l + 1and go back to step1.

67

Our hope is by using this algorithm and some further modification improve our solution.
We plan to extend our new solver to use for multi imaging. Also, accelerate our problem
furthermore by employing distributed system using MPI.

68

Bibliography
Alfred V Aho, Mahadevan Ganapathi, and Steven WK Tjiang. Code generation using tree
matching and dynamic programming. ACM Transactions on Programming Languages
and Systems (TOPLAS), 11(4):491–516, 1989.

Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina keypoint.
In Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, pages
510–517. Ieee, 2012.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust fea-
tures (surf). Computer vision and image understanding, 110(3):346–359, 2008.

Paul R Beaudet. Rotationally invariant image operators. In International Joint Conference
on Pattern Recognition, volume 579, page 583, 1978.

Horst Bunke and Urs Bühler. Applications of approximate string matching to 2d shape
recognition. Pattern recognition, 26(12):1797–1812, 1993.

Tibério S Caetano and Terry Caelli. Approximating the problem, not the solution: An
alternative view of point set matching. Pattern recognition, 39(4):552–561, 2006.

Tibério S Caetano, Terry Caelli, and Dante AC Barone. An optimal probabilistic graphical
model for point set matching. In Joint IAPR International Workshops on Statistical Tech-
niques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR), pages 162–170. Springer, 2004.

Marco Carcassoni and Edwin R Hancock. Spectral correspondence for point pattern match-
ing. Pattern Recognition, 36(1):193–204, 2003.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for graph
matching. In Computer Vision–ECCV 2010, pages 492–505. Springer, 2010.

Haili Chui and Anand Rangarajan. A new point matching algorithm for non-rigid regis-
tration. Computer Vision and Image Understanding, 89(2):114–141, 2003.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International journal of pattern recognition and artificial
intelligence, 18(03):265–298, 2004.

Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Balanced graph matching. Advances
in Neural Information Processing Systems, 19:313, 2007.

Olivier Duchenne, Francis Bach, In-So Kweon, and Jean Ponce. A tensor-based algorithm
for high-order graph matching. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 33(12):2383–2395, 2011a.

69

Olivier Duchenne, Armand Joulin, and Jean Ponce. A graph-matching kernel for object
categorization. In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 1792–1799. IEEE, 2011b.

Maximally Stable Extremal, J Matas, O Chum, M Urban, and T Pajdla. Robust wide
baseline stereo from. In In British Machine Vision Conference. Citeseer, 2002.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.

Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph match-
ing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 18(4):377–388,
1996.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

William W Hager, Soon Chul Park, and Timothy A Davis. Block exchange in graph
partitioning. In Approximation and Complexity in Numerical Optimization, pages 298–
307. Springer, 2000.

Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, pages 10–5244. Citeseer, 1988.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Herve Jegou, Florent Perronnin, Matthijs Douze, Jorge Sánchez, Patrick Perez, and
Cordelia Schmid. Aggregating local image descriptors into compact codes. IEEE trans-
actions on pattern analysis and machine intelligence, 34(9):1704–1716, 2012.

U Kang, Martial Hebert, and Soonyong Park. Fast and scalable approximate spectral graph
matching for correspondence problems. Information Sciences, 220:306–318, 2013.

Scott Krig. Interest point detector and feature descriptor survey. In Computer Vision
Metrics, pages 217–282. Springer, 2014.

Kenneth Lange. Numerical analysis for statisticians. Springer Science & Business Media,
2010.

Jungmin Lee, Minsu Cho, and Kyoung Mu Lee. Hyper-graph matching via reweighted
random walks. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Con-
ference on, pages 1633–1640. IEEE, 2011.

Chengcai Leng, Wei Xu, Irene Cheng, and Anup Basu. Graph matching based on stochastic
perturbation. IEEE Transactions on Image Processing, 24(12):4862–4875, 2015.

Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems
using pairwise constraints. In Computer Vision, 2005. ICCV 2005. Tenth IEEE Inter-
national Conference on, volume 2, pages 1482–1489. IEEE, 2005.

70

Marius Leordeanu, Martial Hebert, and Rahul Sukthankar. An integer projected fixed
point method for graph matching and map inference. In Advances in neural information
processing systems, pages 1114–1122, 2009.

Marius Dan Leordeanu. Spectral graph matching, learning, and inference for computer
vision. Carnegie Mellon University, 2010.

Nikos K Logothetis and David L Sheinberg. Visual object recognition. Annual review of
neuroscience, 19(1):577–621, 1996.

David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

Jianfeng Lu, Terry Caelli, and Jingyu Yang. A comparison of least squares and spectral
methods for attributed graph matching. In Joint IAPR International Workshops on
Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR), pages 325–333. Springer, 2004.

Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of computer and system sciences, 25(1):42–65, 1982.

João Maciel and João P Costeira. A global solution to sparse correspondence problems.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(2):187–199, 2003.

Richard Myers, RC Wison, and Edwin R Hancock. Bayesian graph edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(6):628–635, 2000.

Pavel A Pevzner. Multiple alignment, communication cost, and graph matching. SIAM
Journal on Applied Mathematics, 52(6):1763–1779, 1992.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic
matrices. The annals of mathematical statistics, pages 876–879, 1964.

Lorenzo Torresani, Vladimir Kolmogorov, and Carsten Rother. Feature correspondence
via graph matching: Models and global optimization. In Computer Vision–ECCV 2008,
pages 596–609. Springer, 2008.

Tinne Tuytelaars, Krystian Mikolajczyk, et al. Local invariant feature detectors: a survey.
Foundations and trends® in computer graphics and vision, 3(3):177–280, 2008.

Barend J van Wyk and Michaël A van Wyk. Kronecker product graph matching. Pattern
Recognition, 36(9):2019–2030, 2003.

Jiangjian Xiao, Hui Cheng, Harpreet Sawhney, and Feng Han. Vehicle detection and
tracking in wide field-of-view aerial video. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 679–684. IEEE, 2010.

Junchi Yan, Yu Tian, Hongyuan Zha, Xiaokang Yang, Ya Zhang, and Stephen M Chu.
Joint optimization for consistent multiple graph matching. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 1649–1656. IEEE, 2013.

71

Junchi Yan, Yin Li, Wei Liu, Hongyuan Zha, Xiaokang Yang, and Stephen Mingyu Chu.
Graduated consistency-regularized optimization for multi-graph matching. In Computer
Vision–ECCV 2014, pages 407–422. Springer, 2014.

Junchi Yan, Jun Wang, Hongyuan Zha, Xiaokang Yang, and Stephen Chu. Consistency-
driven alternating optimization for multigraph matching: A unified approach. IEEE
Transactions on Image Processing, 24(3):994–1009, 2015.

Laura A Zager and George C Verghese. Graph similarity scoring and matching. Applied
mathematics letters, 21(1):86–94, 2008.

Ron Zass and Amnon Shashua. Probabilistic graph and hypergraph matching. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE, 2008.

Zhengyou Zhang. Iterative point matching for registration of free-form curves and surfaces.
International journal of computer vision, 13(2):119–152, 1994.

Shuai Zheng, Jun Hong, Kang Zhang, Baotong Li, and Xin Li. A multi-frame graph
matching algorithm for low-bandwidth rgb-d slam. Computer-Aided Design, 78:107–117,
2016.

Feng Zhou and Fernando De la Torre. Factorized graph matching. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 127–134. IEEE, 2012.

72

VITA

Sahar Marefat Navaz was born in Tehran, Iran. She graduated from University of Northum-

bria, Newcastle, UK in 2006, with bachelor’s degree in Electrical and Communication

Engineering. In 2008, she received her master’s degree in Communication and Signal Pro-

cessing from University of Newcastle, Newcastle, UK. She is currently a PhD student at

the school of Electrical Engineering and Computer Science at Louisiana State University,

Baton Rouge.

73

