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ABSTRACT

iFKO (iterative Floating point Kernel Optimizer) is an open-source iterative empirical com-

pilation framework which can be used to tune high performance computing (HPC) kernels.

The goal of our research is to advance iterative empirical compilation to the degree that

the performance it can achieve is comparable to that delivered by painstaking hand tuning

in assembly. This will allow many HPC researchers to spend precious development time on

higher level aspects of tuning such as parallelization, as well as enabling computational sci-

entists to develop new algorithms that demand new high performance kernels. At present,

algorithms that cannot use hand-tuned performance libraries tend to lose to even inferior

algorithms that can.

We discuss our new autovectorization technique (speculative vectorization) which can

autovectorize loops past dependent branches by speculating along frequently taken paths,

even when other paths cannot be effectively vectorized. We implemented this technique in

iFKO and demonstrated significant speedup for kernels that prior vectorization techniques

could not optimize.

We have developed an optimization for two dimensional array indexing that is critical for

allowing us to heavily unroll and jam loops without restriction from integer register pressure.

We then extended the state of the art single basic block vectorization method, SLP, to vec-

torize nested loops. We have also introduced optimized reductions that can retain full SIMD

parallelization for the entire reduction, as well as doing loop specialization and unswitching

as needed to address vector alignment issues and paths inside the loops which inhibit au-

tovectorization. We have also implemented a critical transformation for optimal vectorization

of mixed-type data. Combining all these techniques we can now fully vectorize the loopnests

for our most complicated kernels, allowing us to achieve performance very close to that of

hand-tuned assembly.

ix



CHAPTER 1

INTRODUCTION

1.1 Terminology and Outline of Research

iFKO (iterative Floating point Kernel Optimizer) [62] is an iterative empirical compilation

framework where the decision of what transformation set will yield the best performance is

made using context sensitive timing [63] on the specific kernels and architectures being tuned

for, as opposed to basing such decisions on static heuristics. The iFKO framework consists

of a low level compiler and search drivers to iteratively determine the best the compiler

transformations for a kernel needed to achieve high performance on a system. An overview of

iFKO and its tuning framework is discussed in the Chapter 2. Our research aim is to advance

this iterative and empirical compilation framework so that it is a feasible replacement for the

extensive hand-tuning (often at the assembly level) common in the HPC (High Performance

Computing) community. To show that compilers can achieve efficiency adequate for the

HPC community, it is necessary to compare against actual HPC library routines1 which are

currently supported and tuned by the HPC community.

This research uses the BLAS (Basic Linear Algebra Subprograms) as our HPC library for

validating our performance results. The BLAS is one of the most widely used high perfor-

mance computing libraries in the world. It is split into three levels based roughly on kernel

complexity and performance. The Level 1 BLAS [27, 33] (L1BLAS) do vector-vector opera-

tions like dot product or vector norms, and typically require only a single loop to implement.

Most L1BLAS therefore do O(N) computations on O(N) data.

The Level 2 BLAS [17, 18] (L2BLAS) do matrix-vector operations such as matrix-vector

multiply or rank-1 update, and are therefore usually implemented with at least two nested

1As opposed to synthetic benchmarks originally based on such libraries, which tend to
overpredict compiler performance strongly due to unrealistic use-cases like statically declared
operands and the possibility for whole-program analysis.

1



loops (one for each dimension of the matrix). They can therefore be characterized as per-

forming O(N2) computations on O(N2) data.

The Level 3 BLAS[16] (L3BLAS) involve matrix-matrix operations such as matrix multiply

or triangular (forward- and back-) solve, and are typically implemented using at least three

nested loops. They perform O(N3) operations on O(N2) data.

The L1 and L2BLAS have the same order computations as data, which means that unless

their operands are preloaded to the cache, they run at the speed of memory, which is orders

of magnitude slower than the speed at which a modern computer can do computations. On

the other hand the L3BLAS have such rich opportunities for data reuse within the memory

hierarchy that they can often achieve more than 90% of the theoretical peak computational

speed of the hardware.

Prior work [62] demonstrated that iFKO could be used to get hand-tuned levels of per-

formance for all but two of the L1BLAS routines. The L1BLAS were targeted first because

they are the simplest for a compiler to analyze and optimize. Note that an HPC compiler

must perform each optimization almost perfectly or HPC-levels of performance cannot be

achieved, and so even when there are known compiler techniques, off-the-shelf solutions are

usually inadequate. The only routines that this initial research failed to adequately optimize

were IAMAX (find the index of the maximum absolute value within a vector) and NRM2 (safely

compute the 2-norm of the vector without unnecessary floating point overflow), which iFKO

could not autovectorize due to branch dependencies.

Our first major research accomplishment was to develop a novel auto-vectorization tech-

nique called speculative vectorization [61], which allowed us to autovectorize NRM2 based on

the SSQ (sum of squares) approach. Prior to our developing and publishing speculative vec-

torization, there was no known method in the literature or in commercial compilers that

could achieve speedup on some types of path-based dependent loops, with SSQ being a

prime example. Speculative vectorization was also able to vectorize the most frequent path
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for IAMAX. Not only were we able to show substantial speedup using this technique, we also

showed that the overhead was so low that it could plausibly be used in cases less well-suited

for accurate branch prediction than SSQ or IAMAX. This novel transformation is discussed in

detail in Chapter 5.

Our next area of research was to find a way to autovectorize all paths in IAMAX. We devel-

oped a technique called shadow vectorization to handle the mixed-type vectorization required

by IAMAX, and this work is discussed in Section 4.2.1.1. Our method was a formalization for

safe compilation of a hand-tuned optimization technique used in our ATLAS [64, 65, 66, 69]

library. As far as we know, the first publication for this hand-tuned technique was by an

Intel researcher in [8], and this appears to have been the basis for a similar transform in-

troduced into Intel’s C compiler, icc. At the time we developed it, our technique provided

much better performance for IDAMAX than icc, but more recent icc versions get roughly the

same performance as our implementation.

With these two fundamental extensions to the prior work, we could achieve hand-tuned

levels of performance for the entire L1BLAS, and so we next studied the tuning of the

L2BLAS, which feature nested loops which must be unroll-and-jammed [4] for decent perfor-

mance. For 32-bit x86 assembly, however, we found that integer register pressure inside the

innermost loop could prevent iFKO from getting good performance for the best hand-tuned

unroll-and-jam factor. To fix this, we developed an optimization for 2-D array indexing that

exploits the x86’s powerful addressing mode, as discussed in Chapter 7. This dissertation is

the first time we have published the details of this transformation, and we have so far not

found any substantially similar techniques in the compilation literature.

With 2-D array addressing optimized, our main barrier to high performance for the L2

and L3BLAS was then found to be outer-loop vectorization. iFKO’s existing no-hazard

vectorization could successfully vectorize the innermost loop, but could not vectorize the

entire loop nest, which slightly hurt L2BLAS performance, and made our autovectorized
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L3BLAS uncompetitive with hand tuned codes. The state-of-the-art for general block-level

autovectorization is called SLP [31] (Superword Level Parallelism). Currently, many compiler

groups are exploring how best to extend SLP through arbitrary loops nests [39, 26, 58], but

no standard technique has so far emerged. Widely used compilers such as Intel’s icc, GNU’s

gcc, and the Apple-supported open source LLVM all had some form of outer-loop SLP support,

but none of them could do an adequate job for our autotuned L3BLAS kernels. We therefore

developed a more flexible extension of SLP for outer loops, as detailed in Chapter 6.

1.2 Organization of the Paper

Chapter 2 introduces the tuning framework that we used to empirically tune HPC kernels

and the modification we propose in the framework to make it even better. It also describes

the interface we added to integrate our empirical compilation framework with ATLAS. Chap-

ter 3 overviews the analysis reports on kernels which our specialized compiler produces as the

communication interface between the compiler and the tuning infrastructure. Chapter 4 pro-

vides a brief discussion of the transformations that we have added in our compiler to achieve

higher percentage of peak performance on HPC kernels as part of this research. Chapter 5

describes our new approach, speculative vectorization, to autovectorize loops with dependent

branches. Chapter 6 shows how we have extended the existing SLP vectorization technique

to vectorize loopnests for ATLAS’s gemmµ kernels and achieve impressive performance for

such loopnests. Chapter 7 illustrates how our compiler represents two dimensional arrays

and facilitates the unroll-and-jammed transformation by exploiting the powerful addressing

mode of x86. Finally, Chapter 8 summarizes our contribution as well as discussing areas of

future work.
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CHAPTER 2

TUNING FRAMEWORK

Our ultimate goal is to provide optimized compute kernels for the HPC community that run

at near-peak efficiency on increasingly powerful hardware. The traditional way to achieve high

performance in HPC involves producing high performance libraries. The time critical sections

of codes are first isolated. The HPC community agree on those critical sections and define the

application programming interface - APIs (e.g., BLAS [27, 33, 17, 18, 16] , LAPACK [3]) for

reusable performance kernels. Once those APIs are standardized, experts from different fields

get together and performance tune the kernel underlying the standardized APIs. Handtuning

has been used to leverage the powerful but complex hardware since traditional compilers do

not achieve the required high percentage of peak. However, handtuning a kernel is very time

consuming, requiring experts with knowledge of the target architecture, operation being

optimized and the software layers. Moreover, handtuned codes usually are not portable from

one architecture to another. These problems led to the empirically tuned library generators

such as PHiPAC [9], FFTW [51, 25, 24], and ATLAS [68, 64, 65, 66, 69, 67]. The key idea

behind these packages is to probe the system using empirical criteria (e.g., timing results)

to evaluate the effect of each transformation and retain only those that provide measurable

performance improvement on that specific system for that specific kernel. These packages

have succeeded in achieving high levels of performance on a wide variety of machines, but they

are limited to specific libraries. To overcome this limitation, iFKO [62, 70] (iterative Floating

point Kernel Optimizer) has been designed so that these empirical tuning techniques may

be applied in a compilation framework. iFKO has a backend compiler targeted to work with

source generator (e.g., ATLAS’s generator). It can also be used with source to source compiler

(e.g., ROSE compiler [53, 46, 44], POET [73, 45], etc) and high level loop transformer (e.g.,

PLUTO [52, 10, 13, 5, 6, 12, 11]). In this research, we integrated iFKO in ATLAS as a case
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study. In the following sections, we discuss how the iFKO and ATLAS frameworks work and

how they can be interfaced together.

2.1 iFKO Framework

Figure 2.11 shows the overall structure of the iFKO [70, 62] compilation framework. iFKO is

composed of two components: a specialized compiler (FKO), and search drivers. FKO is the

specialized backend optimizing compiler for iterative and empirical use. It analyzes kernels

not only to determine the legality of the transformation but also to bound the search space

as an iterative compiler, performs all required transformations and generates optimized as-

sembly codes. Two things must be supplied to iFKO by the user: the routine to be compiled

(expressed in our input high level intermediate language, HIL) and a context sensitive AEOS

(Automated Empirical Optimization of Software) quality timer [63] for the kernel being com-

piled. The HIL, similar to restricted C, is kept intentionally very simple and limited, as the

initial target audience is mainly source to source generators and sophisticated hand tuners.

It has extensive markup support which can be used to specify critical loops to optimize,

alignment of pointers and even the safety of transformations. Note that the framework de-

pends on externally supplied timers which are kernel-specific. In our experiments, we use

ATLAS’s tester and timer for this purpose.

Input
Routine

HIL
Markups

✲
✲

Search
Drivers✲

✲
problem
params ✲

HIL
flags

✲
FKO

analysis results✛

optimized
assembly

✲
Timers/
Testers

performance/test results✛

iFKO

Figure 2.1: Overview of iFKO framework

1This figure is a modified version of a figure from the PhD dissertation [62] of iFKO by
the committee chair of this research.
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2.1.1 FKOC - FKO with Preprocessor

We have added a preprocessing layer to FKO which takes the lines beginning with ‘@’ as

directives from the input file with .B extension. FKO becomes FKOC with this layer. FKOC

actually uses ATLAS’s extract program internally to preprocess the input code and in order

to generate an output file with .b extension, which FKO recognizes as a input language.

FKOC can emulate many capabilities of C’s preprocessor (e.g., macro substitution). Since

FKOC internally uses extract, it has some scripting abilities (e.g., looping structures, integer

arithmetic, etc) which are not present in C preprocessor. ATLAS extensively uses CPP

macros in its generated codes. We adapted ATLAS’s current L3BLAS generators to produce

.B files for use with FKOC, so that we can directly compare FKO and other compilers for

performance tuning. FKOC then calls FKO to compile the codes.

2.2 ATLAS Framework

Figure 2.2 outlines the search of matmul kernels in ATLAS and Figure 2.3 shows how iFKO

can be interfaced with ATLAS to tune the same L3BLAS kernels2. ATLAS uses multiple

layer of searches to tune L3BLAS kernels. The master search probes the machine for system

specific information (e.g., L1 cache size, FPU unit, pipeline, etc). The master search then calls

the source-generator search which uses heuristics to probe the optimization space allowed

by the source generator and returns the parameter settings (e.g., blocking and unrolling

factors, etc) of the best cases. The master search then calls the multiple implementation

search which times all the hand written implementations and returns the best one. The best

performing kernel (found using the empirical results provided by the AEOS-quality timer)

among the results of the generator and multiple implementation searches is then taken as a

system specific kernel (see [62] for more details).

2Figure 2.2 is collected and Figure 2.3 is modified from the PhD dissertation [62] of iFKO
by the committee chair of this research.
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Figure 2.2: ATLAS’s empirical search for the Level 3 BLAS
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Figure 2.3: ATLAS+iFKO empirical search for the Level 3 BLAS
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As shown in Figure 2.2, ATLAS defaults to using an ANSI C compiler to compile all kernels

and non-kernel codes (e.g., timer, tester, etc). The user can configure separate compilers to

compile different type of kernels (e.g., matmul, non-matmul, etc). ATLAS uses similar tuning

process (less complex than the tuning of L3BLAS) to tune other level of BLAS kernels.

2.3 Interfacing ATLAS and iFKO

The components of iFKO (compiler and search) are independent. Therefore, the framework

of iFKO can be used as a whole (FKO+search) or as standalone compiler (FKO or FKOC),

where the iteration is left to the ATLAS tuning framework. Figure 2.3 outlines the different

interfaces of iFKO with ATLAS. As shown in the figure, iFKO can be used with ATLAS’s

pre-existing multiple implementation support. ATLAS then treats iFKO as another kernel

compiler taking as input the kernel expressed in FKO’s HIL. The empirical tuning of iFKO

is independent and therefore potentially complementary to ATLAS’s empirical search. For

example, ATLAS can tune the block factor, outer loop unroll and jam of a matmul kernel by

the source generator search while iFKO does the tuning of innermost loop unrolling, scalar

expansion and/or prefetching in this setup.

However, FKO (FKOC) can also be used as a standalone kernel compiler and leave the

empirical tuning to completely to ATLAS’s searches. We have added a HIL generator in

ATLAS as shown in the Figure 2.3. This HIL generator is similar to the ATLAS’s source

generator but it generates scalar kernels in FKO’s HIL, including exploiting its extensive

markup capabilities. We use FKOC (FKO) to perform all the transformations and optimiza-

tions for the generated kernels which we have implemented as part of this research (discussed

in the Chapter 3 to 7). We can use similar interfaces with other source to source generator

and/or empirical tuning framework. In future work, we will investigate such integrations.
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CHAPTER 3

ANALYSIS IN FKO TO AID IN SEARCH

FKO performs various analysis on kernels not only to determine the legality of transforms

but also as an interface between the compiler and the empirical tuning search, which can use

these analysis to bound the search space. We keep these analysis reports human readable and

independent from the iFKO’s native search so that FKO can easily serve as a backend com-

piler for other source-to-source automated tuning frameworks, various custom search drivers,

and hand tuners interested in extracting maximal performance without writing directly in

assembly. In this chapter, we will overview some of the more important of FKO’s current

analysis reports.

3.1 Architecture Analysis

FKO provides report on architecture when −iarch flag is used. This report includes pipeline,

register, cache, SIMD vector and instruction specific information about the system. This

information can be used to bound the search in tuning. For example, we can limit the search

to find the best unroll and jam factor for L2BLAS kernels (e.g., DGEMVT) by the number

of registers since we need to avoid the spilling registers inside the innermost loop to get

competitive performance. Figure 3.1 shows an example of FKO’s architecture report on one

of our machines. Line 1 of the Figure 3.1 shows the pipeline information. Here the value zero

means that information about the pipeline is unknown to FKO. This system has six types

1 PIPELINES=0
2 REGTYPES=6
3 NUMREGS: i=15 f=16 d=16 v i=16 vf=16 vd=16
4 ALIASGROUPS=1
5 ALIASED: f d v i v f vd
6 NCACHES=3
7 LINESIZES : 64 64 64
8 VECTYPES=3
9 VECLEN: i=8 f=8 d=4

10 EXTENDEDINST=3
11 MAXINST: f d v i v f vd
12 MININST: f d v i v f vd
13 CONDMOV: i f d v i v f vd

Figure 3.1: Example of the report on architecture
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of registers as shown in line 2. Line 3 shows the count for each of these six register types

with 15 integer (the dedicated stack pointer not included in this count), 16 single precision

floats, 16 double precision floats, and 16 of each vector registers. Note that all the vector

register types and floating point registers are aliased (line 4 to 5). This system has three

layers of caches and the cache line of each layer of caches is 64 bytes (line 7). It supports

three types for vector instructions (line 8) and the length of vector for each type is specified

in line 9. Line 10 shows it has three extended instructions, line 11 to 13 show the supported

types for each of these extended instructions. FKO has a configuration file where all of these

information are specified. As of now, most of these values are filled in when we port FKO to

a machine, but in the future many of them will be empirically discovered automatically.

3.2 Optloop Analysis

Optloop analysis is one of the most important reports FKO provides to search. The optloop

is loop specified by the user as the main source of performance; the optloop is defined by

a special syntax in the input language of FKO. The compiler generates optloop informa-

tion when the −i flag is passed. This report consists of information of paths, vectorization

methods, moving pointers and scalars. Figure 3.2 shows an example of such report on the

optloop for AMAX kernel. Line 1 specifies whether there is any optloop in the kernel. If

there is none, there will only be one line in the report and the value of the OPTLOOP will

be zero. Line 2 shows the number of paths inside the optloop. Here it is two. Line 3 shows

the vectorizability of each paths. One of the paths is vectorizable in this kernel. Line 4 shows

the methods to remove all the non-loop branches and hence, to reduce all paths into a single

path. We can use two methods to remove the branches for this kernel: max reduction and if

conversion with redundant computation (discussed in Chapter 4). We then have information

about the if-statement (if-then and if-then-else constructs) as shown in line 5 to line 8. This

kernel has only one if-statement and this if-statement can be removed using the same two

methods we mentioned before. Line 9 shows the applicable vectorization methods for this
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1 OPTLOOP=1
2 NUMPATHS=2
3 VECTORIZABLE: 1 0
4 El iminatedAl lBranches : MaxMin RedComp
5 NUMIFS=1
6 MaxEliminatedIfs=1
7 MinEl iminatedI f s=0
8 RedCompEliminatedIfs=1
9 VECTORIZATION: LoopLvl SpecVec

10 Moving 1D Po inte r s : 1
11 ’X ’ : type=d uses=2 s e t s=1 ld s=1 s t s=0 p r e f e t ch=1
12 Sca l a r s Used in Loop : 2
13 ’amax ’ : type=d uses=1 s e t s=1 ReduceExpandable=1
14 ’ x ’ : type=d uses=3 s e t s=2 ReduceExpandable=0

Figure 3.2: Example of the report of loop information for double precision AMAX kernel
shown in Figure 4.1(a) using -i compiler flag

kernel. We can apply loop vectorization (after reducing all the paths into one) and specu-

lative vectorization for this kernel. This report also provides information about the moving

pointers (which are incremented by constant inside loop) in line 10 to 11 and scalars inside

optloop in line 12 to 14). This simple kernel has one moving pointer inside the loop. Line 11

provides information about the type of the pointer along with the number of static use/def

and memory loads/stores (using this pointer) inside optloop. The memory access using this

pointer is also prefetchable, meaning it is a candidate to use software prefetch instruction

tuned by the search. Line 12 to Line 14 provides information about the scalar variables.

This kernel has two double precision floating point scalars. It provides use/def information

inside the optloop for them as well. One of the scalar variables (amax) is scalar expandable,

meaning we can apply the scalar expansion optimization (for unrolling or vectorizing the

kernel) to this variable. The search driver can find the best combination of loop unroll factor

and scalar expansion of this variable for this kernel during the tuning step.

3.3 Vectorization Analysis

FKO supports three different auto-vectorization methods for the optloop: no-hazard loop vec-

torization (NHV), speculative vectorization (SV) and superword level vectorization (SLP).

A complete list of compiler flags in FKO related to vectorization is shown in Table 3.1. We

can apply any vectorization on the optloop directly by throwing the flags. The vectorization

is automatically extended towards the outer loops by SLP vectorization if the loop-nests
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Table 3.1: Vectorization related flags of FKO

Flag Description

-LNZV Apply no-hazard loop vectorization on optloop, may ap-
ply SLP on rest of the loopnest if possible

-SV (ipath) (nvlens) Apply speculative vectorization on path i of optloop,
speculated iteration = nvlens

-SLP, -SLP (id) Apply SLP on optloop, apply special sequence for init
pack of SLP

-ivec, -ivec2 provide report of different vectorization methods
-vec apply best vectorization method estimated by the anal-

ysis (SV not considered due to path dependence)
-ibvec print the id of the estimated best vectorization method
-vecapproach (id) apply a specific vectorization method

satisfy a special pattern1 (see Chapter 6 for details). To apply no-hazard vectorization, we

can use −LNZV flag. Note that if the analysis of the validity of the vectorization fails, FKO

throws an error (with explanatory message). The −SV flag is used to apply speculative

vectorization. Note the additional arguments of the flag. The ipath is the path number (pro-

vided by the optloop analysis) which SV should speculatively vectorize. The path number

zero means the default fall through path. The nvlens is the argument for the larger bet

unrolling (see Chapter 5 for details), where 1 means the count of the speculated iteration is

equal to the vector-length elements (vlen) and 2 means the speculative iteration is 2× vlen

and so on. To apply SLP on the optloop, we use −SLP flag. It has an optional argument to

specify the ordering of the seed packs of the SLP (see Chapter 6 for details). The value of id

can be found by applying the −ivec2 flag. The −ivec2 flag is used to get the vectorization

report in details while −ivec provides the summery of the report (first two lines of the full

report). Figure 3.3 shows the format of the vectorization report and the Figure 3.4 shows

an example of the vectorization report on AMAX kernel given by −ivec2 flag. This kernel

can be vectorized by speculative vectorization and the first path is vectorizable as shown in

line 1 in Figure 3.4. We can vectorize the kernel by two other ways (other than speculation)

1Extending vectorization beyond optloop from speculative vectorization is not supported
yet.
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1 SPECVECBYPATH : < l i s t 0/1 for each path>, <0> not app l i c ab l e
2 VECTORIZATION : <nways>; < l i s t o f id o f vecmethods so r t ed by best to worst>
3 OPTLOOP : [ LoopLvl=10/11 ,12 Slp =1001 ,1002 ,1002]
4 VecRankLvls : <v lv l>
5 l v l 1 : l i s t o f vec id
6 l v l 1 2 : l i s t o f vec id
7 . . .

Figure 3.3: Format of the output of FKO’s vector analyzer using -ivec2 flag

1 SPECVECBYPATH: 1 0
2 VECTORIZATION: 2 ; 12 , 13 ,
3 OPTLOOP: LoopLvl=12 ,13 , SLP=0,
4 LoopLvl : MaxMin=12 RedComp=13
5 VecRankLvls : 1
6 1 : 12 , 13 ,

Figure 3.4: Example of the output of FKO’s vector analyzer using -ivec2 flag for AMAX
kernel

and the id number of them are 12 and 13 (line 2). The next two lines show the meaning

of those ids. Both of them eventually indicate no hazard vectorization but after applying

different path reduction methods. No-hazard vectorization is applied after using max/min

reduction transformation in case of id = 12 and if conversion with redundant computation

for id = 13. SLP vectorization is not applicable (SLP = 0) for this kernel. The vectorization

report also provides information about the rank (estimated) of the methods. This rank is

calculated based on the level of nested loops the method can vectorize. The innermost loop

is the most important, then the outer loop of the innermost loop and so on. Since AMAX

has one loop, the rank of both the methods are same. Within the same rank, it is sorted

by the priority of the methods. For example, max/min reduction is generally superior to

if conversion after redundant computation and therefore, id = 12 is estimated as the best

method to vectorize the kernel. Using −vec flag, we can automatically apply this estimated

best method of vectorization. The id of the estimated best method is the first entry in rank

1 (12 in line 6). We can print the id of the estimated best vectorization method (excepting

speculation vectorization2) by using −ibvec flag as well. We can even apply vectorization by

2We skip the speculative vectorization in our ranking system since the profitability of this
method strongly depends on the paths taken at runtime.
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1 RSPILLS=2 /∗ number o f scopes to show ∗/
2 OPTLOOP: i=2 vd=2 /∗ s p i l l i n g in op t l oop ∗/
3 GLOBAL: i=13 d=2 vd=9 /∗ s p i l l i n g in g l o b a l scope , meaning the whole rou t ine ∗/

Figure 3.5: Register spilling report for DGEMVT with unroll and jam factor = 14

using the any of the vectorization id when we use −vecapproach flag. Therefore, we have

great flexibility for the user/search to try different methods of vectorization by FKO.

3.4 Register Spilling Analysis

FKO provides the register spill information of the output assembly for any kernel when the

flag −ilrs is used. The proper assignment of registers in the innermost loop is very crucial

to achieve high performance for any kernel. Some transformations may increase register

pressure inside the loop (e.g., unroll and jam, scheduling of instructions, etc). The tuning

framework (search) can also use this information to safely bound an optimization search.

Figure 3.5 shows an example of the live-range spilling for the DGEMVT kernel with unroll

and jam factor 14. Note the first line of the report. It specifies the number of scopes. We are

supporting two scopes in our current implementation: the optloop and the routine (global).

Line 2 and 3 provide the spill count for the optloop and the entire routine.
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CHAPTER 4

TRANSFORMATIONS ADDED IN FKO TO OPTIMIZE BLAS
KERNELS

FKO is specially designed to optimize HPC kernels under an empirical tuning framework.

Unlike in general purpose compilation, it is better to be able to fully tune a narrow range

of kernels than to partially tune any kernel: a only moderately tuned kernel is not useful for

HPC. In order to best use our R&D time, we only add a transformation (and its attendant

analysis), when we have a real-world kernel that requires it for HPC-competitive performance.

In the below list, we overview the motivation and transformations that we have undertaken

as part of this thesis work:

• We have added path based transformations to optimize kernels with conditional branches

inside loops. The original FKO [62] failed to achieve good performance on IAMAX and

NRM2 (SSQ variant) of the L1BLAS kernels because branches inside the loop pre-

vented autovectorization. This was a significant example of the fact that branches not

only affect performance adversely when misprediction occurs, but also inhibit other

compiler optimizations which may provide critical speedups. Therefore, to overcome

the adverse effect of branches, we implemented several path based transformations in

FKO, as discussed in Section 4.1.

• Autovectorization is one of the most important compiler optimizations since SIMD

units are ubiquitous in modern microprocessors. We have not only updated the tradi-

tional loop vectorization in FKO to support our shadow VRC vectorization (discussed

in Section 4.2.1.1), but also implemented two additional autovectorization techniques.

One of the methods, Speculative Vectorization (SV) [61], is a novel way to autovec-

torize loops with conditional branches (discussed in Section 4.2.2 and Chapter 5); the

other is an extension of well known Superword Level Parallelization (SLP) vectoriza-

tion (discussed in Section 4.2.3 and Chapter 6). SV autovectorization enables FKO
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to achieve excellent performance for NRM2 (not effectively vectorizable by any other

known method) and IAMAX kernels when tuned with the search driver. SLP, on the

other hand, helps FKO to achieve high efficiency for kernels with nested loops (e.g.,

ATLAS’s gemmµ).

• We have added additional x86-specific optimizations in FKO as well. We exploit the

powerful addressing modes of the x86 to optimize the memory addressing of two di-

mensional arrays in FKO. Our representation of 2D arrays minimizes the register usage

and computations to manage the memory addressing for such arrays. This special rep-

resentation and optimization of the 2D array (discussed in Section 4.4 and Chapter 7)

helps FKO to obtain good performance for L2BLAS kernels on this architecture.

4.1 Path Based Optimization

We have implemented several path based transformations in FKO. Those transformations

help FKO to achieve competitive performance to hand-tuned code for those kernels which

have loop-carried dependent branches inside loops. Some path based transformations provide

significant performance boost (e.g., path reduction transformations), while some of them

facilitate other transformations (e.g., frequent path coalescing is used before speculative

vectorization). FKO by default explores and analyzes all paths inside innermost loop in

its path based optimization. The user can also provide a threshold to limit its search if

exploring all paths is too costly. Figure 4.1 shows two kernels with two paths inside the

loop. The AMAX kernel in Figure 4.1(a) is a synthetic kernel which finds the absolute value

maximum from an array and IAMAX in Figure 4.1(b) is one of the L1BLAS kernels which is

used to find out the index of the absolute value maximum from the array. We will use these

examples to describe our path based optimizations1. In following sections, we will describe

some of those path based transformations in brief.

1FKO’s optloop is essentially a do-while loop. However, since for-loop is more common in
C codes, we use the syntax of the for-loop in most our pseudocodes examples where it does
not impede understanding.
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1 amax = 0 . 0 ;
2

3 for ( i =0; i < N; i++)
4 {
5 ax = X[ i ] ;
6 ax = fabs ( ax ) ;
7 i f ( ax > amax)
8 {
9 amax = ax ;

10 }
11

12 }

(a)

1 amax = 0 . 0 ;
2 imax = 0 ;
3 for ( i =0; i < N; i++)
4 {
5 ax = X[ i ] ;
6 ax = fabs ( ax ) ;
7 i f ( ax > amax)
8 {
9 amax = ax ;

10 imax = i ;
11 }
12 }

(b)

Figure 4.1: Kernels with multiple paths in loop: (a) Synthetic AMAX kernel (b) IAMAX
kernel of level-1 BLAS
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Figure 4.2: Code layout inside loop of IAMAX kernel: (a) CFG of paths inside loop of
IAMAX (b) path-1 as fall through in code layout (c) path-2 as fall through in code layout

4.1.1 Frequent Path Coalescing

FKO uses one explicit branch target in its intermediate language (LIL). In general, a taken

branch must be correctly predicted to avoid large performance penalties. Therefore, choosing

the frequent path in the loop as the fall through often yields better performance, since the

fall-through frequent path would not cause a pipeline flush even in the complete absence

of branch prediction. The loop analyzer of FKO enumerates all paths inside loop. FKO

can make a specified path fall through in the code by (possibly) rearranging its CFG and

inverting the conditions of branches. Figure 4.2 shows paths of the IAMAX kernel inside the

loop and the code layout when each of the paths is made fall through. The branch inside the

loop creates two paths for this kernel (as shown in Figure 4.2(a)). In Figure 4.2(b), path1
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is by default fall through and therefore the instructions in path1 are contiguous in memory

(increasing spatial locality for frequent path). In Figure 4.2(c), path2 is made fall through.

We implement this transformation by swapping the conditional and unconditional successor

in the CFG after inverting the condition of the branch. The tuning framework of FKO can

empirically tune the code by making the most important path (as guided by the timing) as

fall through using this transformation.

4.1.2 Path Reduction

Branches with loop carried dependences create multiple paths inside loop. Multiple paths

may inhibit many compiler optimizations including vectorization. Therefore, reducing mul-

tiple paths into one by eliminating branches not only simplifies the complexity of the CFG

of code, but also facilitates other code optimizations. In FKO, we have several methods

to remove the branches from the loop. We will discuss our path reduction techniques in

Sections 4.1.2.1 and 4.1.2.2.

4.1.2.1 Max-Min Reduction

We found several kernels in ATLAS (e.g., IAMAX, IRKxAMAX) where a variable is used in

a loop to find the maximum value in an array. These kernels perform different computations

but they have common code patterns where the max value is computed. We implemented an

analyzer which can recognize the pattern of such max/min variable by analyzing the variable,

the conditionals and the loop. We have also implemented a transformation which can push

the max/min variable out of the if-statement using MAX/MIN instruction (if architecture

supports such instructions). Figure 4.3(a) shows how we can use this transformation in

AMAX from Figure 4.1(a) and Figure 4.3(b) shows transformed code from the IAMAX in

Figure 4.1(b). In Figures 4.3(a) and (b), MAX represents the max instruction provided by

the hardware. In case of the AMAX kernel, we can remove the if-statement by using max

instruction as shown in Figure 4.3(a). After this transformation, the IAMAX kernel still has

a branch as shown in Figure 4.1(b). However, we can also use if-conversion with redundant
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1 amax = 0 . 0 ;
2

3 for ( i =0; i < N; i++)
4 {
5

6 ax = X[ i ] ;
7 ax = fabs ( ax ) ;
8 amax = MAX(ax , amax ) ;
9

10 }

(a)

1 amax = 0 . 0 ;
2 imax = 0 ;
3 for ( i =0; i < N; i++)
4 {
5 ax = X[ i ] ;
6 ax = fabs ( ax ) ;
7 i f ( ax > amax)
8 imax = i ;
9 amax = MAX(ax , amax ) ;

10 }

(b)

Figure 4.3: Max-Min reduction: (a) pseudocode of if-statement reduction with MAX in-
struction for AMAX (b) pseudocode of max variable movement with MAX instruction for
IAMAX kernel

computation (which we describe next, in Section 4.1.2.2) to reduce the paths and remove

the branch of IAMAX using select (blend) operation.

4.1.2.2 If Conversion with Redundant Computation (RC)

The main idea of if conversion [2] is to convert control dependencies into data dependencies

and thus eliminate conditional branches. This can be almost always succeed if the hardware

supports predicating arbitrary instruction. However only a few architectures support predi-

cating all instructions. On the x86, we have only a small number of instructions which can

be used as effective predication. For example, there are special SIMD compare instructions

(e.g., vcmpxx) which can store the result of a conditional evaluation in mask register. The

results of two different former computational paths can then be selected into their final des-

tination register from their temporary computation registers using the results stored in the

mask register by using the select (AKA: blend) instruction. We utilize these compare and

blend instructions to remove branches. To delete a branch, we save the result of compare

statement, redundantly compute both the paths, and select the correct value from those re-

dundant computations using the blend (select) operation (as in [7, 57, 49]). We perform the

following two steps in order to eliminate the innermost if-then and if-then-else constructs:

1. Find if-then and if-then-else constructs in the CFG: As a first step, we need to

find the if-then and if-then-else constructs in the CFG: our technique is similar to [49],

20



���������	�


�����	�



������	�


�����	�


���������	�


�����	�


�����	�



������	�


������

���������	�


�����	�



������	�


���������	�


�����	�



������	�


������

���

���

���

�	�

Figure 4.4: if conversion for single if-else sequence: (a) CFG of if-then construct (b) conver-
sion of if-then into single block (c) CFG of if-then-else construct (d) conversion of if-then-else
into single block

as implemented in the SUIF [54, 72, 71] compiler. Figure 4.4(a) shows the CFG of a

single if-then construct. Note that the splitter block of the if-then construct has two

successors: the then block (the body of if-statement) and the merger block (where the

two paths meet). The two successors of if-then-else construct (shown in Figure 4.4(c))

however are then block and else block. The successor of both of these blocks is the

merger block. We use these observations to recognize the innermost if-then and if-

then-else constructs. Note that these successor-predecessor relationships may only be

true for the innermost construct in the nested if-else statements. However, we can

recognize the immediate outer construct (in nested case) of the innermost one using

the same observations but after converting the innermost construct into a single block.

We describe how we convert those constructs into single blocks in next step.
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2. Convert if-then and if-then-else construct into a single block by eliminating

the branch and using the select operation: This step converts the if-then and if-

then-else constructs in the CFG into a single block by placing the statements of splitter,

then and else (if exists) blocks consecutively and adding the select statements before

the merger block as shown in Figure 4.4(b) and Figure 4.4(d). Before converting the

CFG, we need to eliminate the branch in the splitter block and rename the variables

(which are defined) in the then and else blocks. To eliminate the branch, we first

convert the compare instruction which effects condition code (EFLAGS in x86) with

the compare instruction which saves the result in a register based on the conditional

jump in FKO’s intermediate representation (LIL). For example, compare instruction

FCMP followed by the conditional jump JEQ are replaced by single compare instruction

FCMPWEQ which saves the result in a register (fmask) in FKO’s IR (LIL) as shown here:

FCMPWEQ fmask, freg0, freg1















FCMP fcc0, freg0, freg1

JEQ pcreg, fcc0, label

We then rename those variables which are set/defined in the then and else blocks.

We rename their successive usages inside the blocks as well. We then use select(blend)

instruction to select the correct value from those two versions of (renamed) variables

using the previously generated mask.

Iterative algorithm to eliminate all if-else constructs in loop : Our iterative algo-

rithm to eliminate all branches in loop (except the loop-branch) works as follows. We first

delete the back edge in CFG for loop and find the innermost if-then/if-then-else construct.

We then apply our RC transformation (discussed in the Step 2) to reduce the construct

into a single block. After reconstructing the CFG, we repeat the process until there are no

if-then/if-then-else constructs left to transform.

Figure 4.5 shows an example of how we reduce the paths to single path inside the ssq loop

using our if-conversion algorithm. Figure 4.5(a) shows the if-then-else construction inside the
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Figure 4.5: Pseudocode of if conversion for ssq loop of nrm2 before copy propagation: (a)
CFG of paths inside ssq loop (d) if conversion with RC for ssq

loop. We first convert the compare statement by saving the result of the compare in mask1

and removed the branch in splitter block. In then block, we rename the variables: t0 and

ssq whereas in else block, we rename the variables: t0, t1, ssq and scal. We place these

modified statements of the splitter, then and else blocks consecutively in a single block. We

then add select(blend) statements to choose the correct value from the pair of the renamed

variables based on the mask1 as shown in Figure 4.5(b). Note that we need to add the select

statement only for ssq and scal since they are live-in to the merge block whereas we do

not need select statements for other variables since they are local/private. Note the select

statement for scal: since we do not have any new definition of scal in the then block, we

used scal (original) and scal 2 (defined in else block) in the select statement.

Figure 4.6 shows the pseudocode after if-conversion with RC for AMAX and IAMAX

kernels originally shown in Figure 4.1. Figure 4.6(a) shows the if-conversion of the AMAX

kernel. Note that we use select (blend) instruction here whereas in Figure 4.3(a) we use max

instruction. Both of these approaches are valid for AMAX, but only if-conversion with RC

can remove all non-loop branches completely for IAMAX. Figure 4.6(b) shows how we can

remove all non-loop branches by using the select operations (more details in Section 4.1.2.3).
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1 amax = 0 . 0 ;
2

3 for ( i =0; i < N; i++)
4 {
5

6 ax = X[ i ] ;
7 ax = fabs ( ax ) ;
8 mask1 = ( ax > amax ) ;
9 amax1 = ax ;

10 amax = s e l e c t (mask1 , amax1 , amax ) ;
11

12 }

(a)

1 amax = 0 . 0 ;
2 imax = 0 ;
3 for ( i =0; i < N; i++)
4 {
5 ax = X[ i ] ;
6 ax = fabs ( ax ) ;
7 mask1 = ( ax > amax ) ;
8 amax1 = ax ;
9 imax1 = i ;

10 amax = s e l e c t (mask1 , amax1 , amax ) ;
11 imax = s e l e c t (mask1 , imax1 , imax ) ;
12 }

(b)

Figure 4.6: Pseudocode of if conversion for AMAX and iAMAX before copy propagation:
(a) if conversion with RC for AMAX (d) if conversion with RC for IAMAX

In our current implementation, we allow only floating point compare to trigger if-conversion

with redundant computation. Moreover, redundant computation may not always be valid.

Consider an if-then-else construct where one path accesses a valid memory address whereas

other path accesses an invalid address and in normal execution, only the path with valid

memory address would execute. However, the redundant computation will try to execute

both paths and thus generate exceptions. Finding all the exceptional cases is impossible for

an HPC library, since it involves whole program pointer analysis [28, 59, 47]. We depend

on the user of FKO to utilize this transformation only when redundant computation is safe.

We have markup which specifies that redundant computation is not safe for a given loop, in

which case FKO will not consider it for that loop body.

4.1.2.3 Redundant Computation for Mixed-type Data Using Derived Masks

FKO is targeted towards floating point kernels, and so presently we only support applying the

path reducing transformations (redundant computation, max/min conversion) for ifs whose

comparisons are floating point (adding support for path reductions with integral comparisons

would be straightforward, and will be done if an important kernel requiring it is brought to

our attention).

However, it is quite possible for a floating point comparison if to contain computations of

types that differ from the parent comparison. If such variables are live when leaving the if or

24



1 amax = 0 . 0 ;
2 imax = 0 ;
3 i =0;
4 do

5 {
6 ax = X[ i ] ;
7 ax = fabs ( ax ) ;
8 i f ( ax > amax)
9 {

10 amax = ax ;
11 imax = i ;
12 }
13 i++;
14 }while ( i < N) ;

(a)

1 amax = 0 . 0 ;
2 imax = 0 ;
3 i =0;
4 do

5 {
6 ax = X[ i ] ;
7 ax = fabs ( ax ) ;
8 fmsk = ( ax > amax ) ;
9 imsk = FP2INTBITS( fmsk ) ;

10 amax = s e l e c t ( fmsk , ax , amax ) ;
11 imax1 = i ;
12 imax = s e l e c t ( imsk , imax1 , imax ) ;
13 i++;
14 }while ( i < N) ;

(b)
Figure 4.7: Pseudocode of IAMAX: (a) with if statement (b) if-conversion with redundant
computation

else block, they must be selected based on the original differing-type comparison. On many

architectures, selections with types different from the comparison can require additional

work.

Presently, FKO only supports the mixed type live-out redundant computation that our

kernels have required. The only case presently supported is mixing a particular floating point

precision with non-pointer integral operations (other mixed type computations are supported

if they are not live out of the if/else block(s), and thus do not need to be selected).

To simplify prior discussions, we have so far elided the fact that the IAMAX kernel first

introduced in Figure 4.1(b) is an example of mixed type data, and cannot be handled quite

as simply as previously shown.

To see the problem, examine Figure 4.7(a) (which presents the same kernel as Figure 4.1(b),

but in do-while loop format). Line 8 shows an if with a floating point comparison, which

means the comparison supports path reduction via redundant computation. However, on

line 11 this floating point comparison causes the update of imax, which is a 32-bit integer

that is the return value of the function (which means this set will be live past the if body).

Line 10’s amax is of the same type as the comparison (the precision could be a 32-bit float

or 64-bit double depending on declaration, but in IAMAX all floating point variables have

the same precision).
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The complication comes on line 12 of Figure 4.7(b) where we would like to select either

the the value of i or pre-existing imax value using select(). For the x86, FKO does all

floating point computations (even scalar operations) using the vector unit(s), while almost

all integer operations utilize the ALU. The ALU cannot directly read the vector registers,

and since line 9’s fmsk is assigned to vector register, we must therefore convert the floating

point comparison result into something accessible by the ALU.

Pseudocode for this is shown in line 9; using the synthetic operation FP2ICC, which moves

the bits stored in fmsk to the ALU-accessible register imsk, which can then be used as the

predicate for the integer select operation on line 12. In practice, line 9 is done using an

instruction like MOVMASKPD or MOVMASKPS, while line 12 requires using BT (bit test) to set the

integer condition codes, with the actual selection done by conditional move (which reads the

integer condition codes set by by BT).

Note that FKO can be trivially extended to support other mixed types by converting

between masks as necessary, but this has a cost as we have seen here. As explained above,

in addition to doing the redundant computation, we would add an additional 2 instructions

to convert the floating point predicate mask to an integer. It is sometimes possible to avoid

predicate type conversion costs, and one technique that can sometimes be used to avoid these

costs is called shadowing.

The idea of shadowing can be applied anytime the comparison type is at least as big as

the type being used in a dependent select, and the functional units handling each type can

directly access the same register sets. In this case, we can store the bits making up the

select computations within a region where the comparison type would normally be (i.e. in

the “shadow” cast by the comparison type), as long as we select the correct bits to read, and

make sure they are not type converted. We can then use a floating point select to select an

integer value, for instance, avoiding the extra costs required to convert the predicate mask
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between types. FKO presently applies comparison shadowing only when autovectorizing

mixed integral and floating point operations, as discussed in Section 4.2.1.1.

4.2 SIMD Vectorization

SIMD vector units are ubiquitous in modern microprocessors. Therefore, their effective uti-

lization is critical to attaining high performance for the HPC kernels. The original FKO [62]

supported no-hazard loop autovectorization to vectorize the innermost loop. We have not

only extended this vectorization to vectorize our path-reduced codes, but also implemented

two new autovectorization methods. Therefore, FKO supports three different methods for

the autovectorization of the innermost loop: no-hazard loop vectorization (NHV), speculative

vectorization (SV) and superword level vectorization (SLP). We have also implemented a

special method to autovectorize the nested loops. If the innermost loop of the nested loops is

vectorized by NHV or SLP, we can then extend the vectorization to the outer loops by using

our SLP vectorization. We will discuss each of the autovectorization methods in following

sections.

4.2.1 No-Hazard Loop Vectorization

No hazard loop vectorization(NHV) is the extended version of the SIMD vectorization sup-

ported by the original FKO [62]. It is basically a loop level vectorization which vectorizes

the innermost loop when there are no non-loop conditional branches. It performs an analysis

to recognize the patterns of the scalars and to ensure the validity of the transformation.

We have extended this vectorization to recognize the special statements (e.g., select, max)

added by our path reduction transformations. In addition to this, we have added support

to recognize and vectorize induction variables. Moreover, we have added the “shadowing”

technique (described in Section 4.1.2.3) to efficiently vectorize if-converted codes with some

mixed-type data (e.g., IAMAX). We will describe this technique in following section.
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4.2.1.1 Shadow Vectorization After Redundant Computation

If conversion with redundant computation (RC) introduces special compare and select state-

ments which our no-hazard vectorization converts into vector-compare and vector-select.

The vector-compare statement compares two vectors and saves the results in a vector-mask.

This vector-mask contains the boolean results computed by the logical comparisons between

each elements of the two vectors. Consider a SIMD vector of single precision floating point

in AVX22. The AVX2 SIMD unit operates on 256 bits at once, and so operates on eight

32-bit single precision floating point values at a time. We therefore have eight results in a

vector-mask after using vector-compare for this type. Consider now the vectorization of sin-

gle precision IAMAX kernel after shadowing (a similar technique is shown in [8] for SSE unit

using assembly code). We start with a transformed kernel after applying the path reduction

by RC as shown in Figure 4.7(b). The API of IAMAX uses 32-bit integers. On the x8664,

FKO normally promotes 32-bit integers into 64 bits during the function prologue so that

they may be freely used in addressing (x8664 expects all components of an addressing mode

to be 64 bits). Recognizing that the API only calls for 32-bit values however, this promotion

will not be done on the vectorized integers derived from the index, so that our integer and

float have the same length. Note that if the API dictated 64-bit integers, we would need two

SIMD integral vectors to hold the same number of vector elements as the eight 32-bit floats,

and so we would have to apply mask conversion as in Figure 4.7(b), rather than shadowing

with the same mask, as we can do using 32-bit integers.

In Figure 4.7(b), we save the result of the compare statement (ax > amax) in the fmsk

(line 10). The fmsk is converted to imsk to select correct value from the two integers (imax1

and imax in line 12). Let us consider 32 bit integer for this example. Both the single precision

float and the integer vector have eight elements since x86 uses same SIMD unit for all the

2Our current implementation works only for AVX2 and in x8664. We will extend to other
SIMD vectorization schemes in future work.
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types. We therefore can use the same vector mask (produce by the vector compare) to choose

correct integer (32 bit) elements using the vector select statement (unlike the select() using

imsk in scalar code). Vectorizing the select statement for amax is trivial, but imax requires

further analysis and special handling in the vector loop, vector-prologue and vector-epilogue.

This section will discuss this process in detail. Figure 4.8 shows the pseudocode after applying

the shadow vectorization for the single precision IAMAX kernel. The vimax1 vector simulates

the index i of the vector loop, which is implicitly unrolled by 8. Note the initialization of the

vimax1 and vvl on lines 9 and 10, respectively. In each vector iteration, vimax1 keeps track

of the eight values of i that the scalar would traverse when unrolled by the vector length

of 8. Therefore, each elements of vimax1 is incremented by vector-length (veclen = 8) using

vvl in line 19 in each vector iteration. We then use the mask vmask1 produced by the vector

compare in line 18 to update vamax so that each of its eight floats will contain the maximum

of its original value and the values held in vamax (see line 20).

Since this is IAMAX, we need to compute the maximum index the max value came from,

and since a 32-bit integer and 32-float are of the same size, and the AVX2 vector unit uses

the same registers for floats and integers, we can store the index containing the mask in the

shadow of the max value that it results from. We can therefore use shadow vectorization

on the index computation as well, and utilize the exact same vmask1 to compute the index

corresponding to the max value, as seen on line 21 of Figure 4.8.

After executing all iterations of the vectorized loop, vamax contains 8 different maximum

values found at strided locations, while vimax contains the indices corresponding to those

partial maxes. The problem is that the maximum value is not necessarily unique. In this case,

note that IAMAX requires us to return the minimum index of the non-unique (tying/equal)

maximum values found (as dictated by the condition on line 8 and loop condition on line 14

of Figure 4.7(b)).
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1 #define maxInt 0xEFFFFFFF
2 amax = 0 . 0 ;
3 imax = 0 ;
4 i = 0 ;
5

6 // vec to r pro logue
7 vamax = [ amax , amax , amax , amax , amax , amax , amax , amax ] ;
8 vimax = [ imax , imax , imax , imax , imax , imax , imax , imax ] ;
9 vimax1 = [ i −8, i −7, i −6, i −5, i −4, i −3, i −2, i −1] ;

10 vvl = [ 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 ] ;
11

12 // vec to r loop
13 do

14 {
15 // loop body
16 vax = X[ i : i +7] ;
17 vax = vfabs ( vax ) ;
18 vmask1 = ( vax > vamax ) ;
19 vimax1 = vimax1 + vvl ;
20 vamax = v s e l e c t ( vmask1 , vax , vamax ) ;
21 vimax = v s e l e c t ( vmask1 , vimax1 , vimax ) ;
22 // loop update
23 i += 8 ;
24 } while ( i < N) ;
25

26 // vec to r ep i l o gue
27

28 // s tep1 : Reduce amax from vamax : amax = HMAX(vamax)
29 vamax0 = vamax ; /∗ save 8 p a r t i a l max be f o r e reduc t ion ∗/
30 Va = VSHUF(vamax , 0x7654FEDC ) ; /∗ upper h a l f to lower h a l f ∗/
31 vamax = VMAX(Va , vamax ) ;
32 Va = VSHUF(vamax , 0x765432BA ) ; /∗ 3rd and 4 th to 1 s t and 2nd po s i t i on ∗/
33 vamax = VMAX(Va , vamax ) ;
34 Va = VSHUF(vamax , 0x76543219 ) ; /∗ 2nd to 1 s t p o s i t i on ∗/
35 vamax = VMAX(Va , vamax ) ;
36 amax = VHSEL(vamax , 0 ) ; /∗ s e t amax with the 1 s t element in vec to r ∗/
37

38 // s tep2 : generate vmask2
39 Vb = [ amax , amax , amax , amax , amax , amax , amax , amax ] ;
40 vmask2 = (vamax0 == Vb) ; /∗ mask t rue i f g iven e l t t i e s f o r amaxval ∗/
41

42 // s t ep 3 : s e l e c t appropr ia t e e lements o f vimax us ing vmask2
43 vmaxInt = [ maxInt , maxInt , maxInt , maxInt , maxInt , maxInt , maxInt , maxInt ] ;
44 vimax = v s e l e c t ( vmask2 , vimax , vmaxInt ) ;
45

46 // s tep4 : Reduce imax from vimax : imax = HMIN( vimax )
47 Vi = VSHUF(vimax , 0x7654FEDC ) ; /∗ upper h a l f to lower h a l f ∗/
48 vimax = VMIN(Vi , vimax ) ;
49 Vi = VSHUF(vimax , 0x765432BA ) ; /∗ 3rd and 4 th to 1 s t and 2nd po s i t i on ∗/
50 vimax = VMIN(Vi , vimax ) ;
51 Vi = VSHUF(vimax , 0x76543219 ) ; /∗ 2nd to 1 s t p o s i t i on ∗/
52 vimax = VMIN(Vi , vimax ) ;
53 imax = VHSEL(vimax , 0 ) ; /∗ s e t imax with the 1 s t element in vec to r ∗/

Figure 4.8: Pseudocode of the shadow VRC vectorized SIAMAX
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Two reductions for which FKO had pre-existing support are horizontal maximum and

minimum, meaning finding the max/min value stored amongst the vector length elements of

a vector register. We use this stock reduction to compute the (possibly non-unique) maximum

value from the eight partial max values in lines 30-36 of Figure 4.8. This reduction involves

recursive halving: its first vector max (line 30) only produces useful values in half the vector,

and half the remaining parallelism is lost at each of the (log2(veclen)−1) vector maximums,

until we have the scalar result we wanted in the low element of the vamax vector register,

and we can then move that value into a scalar register, as shown in line 36. Note that this

reduction is done outside the loop, and so is a lower order cost than the loop vectorization

it enables.

We have now computed the scalar maximum absolute value from its vector representation

inside the loop, and now we must do the same for its corresponding index, presently stored in

vimax. If every single element of vamax had the (equal) maximum value, we could just reduce

viamax using the horizontal (integer) vector minimum in like fashion, but of course this is

extremely unlikely. Instead, each element of viamax will contain a integer i, 0 ≤ i ≤ maxInt,

where maxInt is the maximum storable positive integer.

What we are now going to do is replace every index within vimax that does not contain the

maximum found absolute value with maxInt. If this is done, we can compute the correct index

to return by doing a horizontal minimum. The proof for this is quite straightforward: if any

maximum value was found at a number less than maxInt, then the maxInt replacement values

will be discarded during the horizontal minimum, and we will return the minimum tying value

as required. If the maximum value is uniquely found at maxInt, then the horizontal minimum

will be maxInt, which again is the correct scalar return value as defined by IAMAX.

On line 39 we load the recently computed (possibly non-unique) scalar maximum to all

elements of the vector Vb. We now compare this all-max vector with the copy of the original

partial max vector vamax0 (save of loop’s vamax on line 29, with comparison with broadcast
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maximum on line 40). Line 43 produces the vector vmaxInt with the broadcast value maxInt,

which we then use to replace any non-maxval entries using vector select. We now find the

return value to IAMAX using our standard log2(veclen) horizontal vector minimum, as seen

on lines 47-52, with line 53 setting the integer return value from the reduced vector of

indices3.

Figure 4.9 shows pseudocode for our vectorized double precision IAMAX kernel. Since

doubles are 64 bit in size, we keep FKO’s standard promotion of the API’s 32-bit integer

to internal 64 bit, so that our integers and doubles fit in the same space. The AVX2 SIMD

vector unit now operates on four double precision floating point values or four 64 bit integer

values at a time. We therefore can use the same mask for the shadowing again. So, this

case looks a lot like the last, except the halved vector loop trip count: Line 7 shows the

initialization of the absolute value maximum vector (vamax) with the 4 double elements.

Line 8 shows the initialization of the index vector vimax. Finally, vv1, used to increment the

vector index count, has all values set to 4 (line 10) to indicate we process four doubles at

once with one vector loop iteration. The loop (lines 13-24) works exactly same as before. The

reduction steps in vector epilogue are also similar. The process of the reduction of vamax into

amax is same but requires one less step (line 30 to 34) than before since the veclen = 4. We

update the non-maxval indices of vimax with maxInt as before. However, the reduction of

vimax to imax is different (line 45 to 51) from the single precision IAMAX (see line 29 to 36

in Figure 4.8 ). Since AVX2 does not support MAX/MIN vector operation for 64 bit integer

values, we use select operations with the mask (vmask3) generated from the comparison Vi

> vimax in each of log2(veclen) steps (line 47 and 50). Therefore, each VMIN instruction for

integer vector is converted into a vector comparison followed by a select operation (line 46

to 47 and 49 to 50) and we get the final result which is set to imax in line 51.

3FKO internally sign-extends this 32 bit value into 64 bit to store it back into the x8664’s
64-bit general purpose register.
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1 #define maxInt 0xEFFFFFFFFFFFFFFF
2 amax = 0 . 0 ;
3 imax = 0 ;
4 i = 0 ;
5

6 // vec to r pro logue
7 vamax = [ amax , amax , amax , amax ] ;
8 vimax = [ imax , imax , imax , imax ] ;
9 vimax1 = [ i −4, i −3, i −2, i −1] ;

10 vvl = [ 4 , 4 , 4 , 4 ] ;
11

12 // vec to r loop
13 do

14 {
15 // loop body
16 vax = X[ i : i +3] ;
17 vax = vfabs ( vax ) ;
18 vmask1 = ( vax > vamax ) ;
19 vimax1 = vimax1 + vvl ;
20 vamax = v s e l e c t ( vmask1 , vax , vamax ) ;
21 vimax = v s e l e c t ( vmask1 , vimax1 , vimax ) ;
22 // loop update
23 i += 4 ;
24 } while ( i < N) ;
25

26 // vec to r ep i l o gue
27

28 // s tep1 : Reduce amax from vamax : amax = HMAX(vamax)
29 vamax0 = vamax ;
30 Va = VSHUF(vamax , 0x3276 ) ; /∗ upper h a l f to lower h a l f ∗/
31 vamax = VMAX(Va , vamax ) ;
32 Va = VSHUF(vamax , 0x3215 ) ; /∗ 2nd to 1 s t p o s i t i on ∗/
33 vamax = VMAX(Va , vamax ) ;
34 amax = VHSEL(vamax , 0 ) ; /∗ 1 s t element ∗/
35

36 // s tep2 : generate vmask2
37 Vb = [ amax , amax , amax , amax ] ;
38 vmask2 = (vamax0 == Vb) ;
39

40 // s t ep 3 : s e l e c t appropr ia t e e lements o f vimax us ing vmask2
41 vmaxInt = [ maxInt , maxInt , maxInt , maxInt ] ;
42 vimax = v s e l e c t ( vmask2 , vimax , vmaxInt ) ;
43

44 // s tep4 : Reduce imax from vimax : imax = HMIN( vimax ) implemented us ing s e l e c t
45 Vi = VSHUF(vimax , 0x3276 ) ; /∗ upper h a l f to lower h a l f ∗/
46 vmask3 = (Vi > vimax ) ;
47 vimax = v s e l e c t ( vmask3 , Vi , vimax ) ;
48 Vi = VSHUF(vimax , 0x3215 ) ; /∗ 2nd to 1 s t p o s i t i on ∗/
49 vmask3 = (Vi > vimax ) ;
50 vimax = v s e l e c t ( vmask3 , Vi , vimax ) ;
51 imax = VHSEL(vimax , 0 ) ; /∗ 1 s t element ∗/

Figure 4.9: Pseudocode of the shadow VRC vectorized DIAMAX
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4.2.2 Speculative Vectorization

We implement a new approach, speculative vectorization [61], which speculates past depen-

dent branches to aggressively vectorize computational paths that are expected to be taken

frequently at runtime, while simply restarting the calculation using scalar instructions when

speculation fails. We have integrated our technique in iFKO’s tuning framework to employ

empirical tuning to select paths for speculation. iFKO has achieved up to 6.8X speedup for

single precision and 3.4X for double precision kernels using AVX in our studied kernels, while

increasing performance for some operations (e.g., ssq loop of nrm2) that could not be sped

up by any prior vectorization technique. Chapter 5 describes this technique in detail.

4.2.3 Superword Level parallelization (SLP) Vectorization

Superword Level Parallelism (SLP)[31] is the state of the art method for auto-vectorizing the

straight line code in any basic block. The main idea of SLP is to exploit ILP by scheduling

isomorphic statements (statements which contain the same operations in the same order) to

pack them together into vector operations. We have extended this single basic block SLP

vectorization to vectorize nesting loops. We have applied this method on ATLAS’s gemmµ

microkernels and achieved significant speedup over the autovectorizations of other industry

compilers. We will describe this technique in Chapter 6.

4.2.4 Vector Intrinsic/Language Support

We have added vector types in the input language (HIL) of FKO. We have also added

some preliminary vector operations to provide the programmer a way to express vectorized

code directly using the high level intermediate language (HIL). Table 4.1 shows the vector

operations FKO supported so far. It is still in its elementary phase. We will expand this

support as needed in future.

4.3 SIMD Alignment Issues

The original FKO always assumed to be 128-bit aligned to vector loads and stores which

only supported SSE (128 bit) unit. ATLAS’s framework was exploited to guarantee this
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alignment for the studied kernels. We extended vectorizations for AVX (256 bit) unit and

implemented several methods to handle alignment for both the units. We will discuss how

we handle alignment in loop vectorizations (e.g., NHV and SV) in Section 4.3.1 and in SLP

vectorization in Section 4.3.2.

4.3.1 Alignment in Loop Vectorization

In our extension of FKO, we added support to handle arbitrary alignment of memory address

in the vector loop in x86. However, we do not want to add any extra overhead for any kernel

which is known to be aligned to the size of the SIMD vector. Therefore, we introduced

a special markup (annotation), ALIGNED, for the innermost loop to specify the known

alignment of any address at the starting of the loop iterations. Figure 4.10 shows how we

can utilize this markup to specify the alignment of a pointer inside a loop. Consider the

AVX SIMD unit for this example. We specify the X pointer as 32 byte aligned in line 11.

Table 4.1: Vector operations supported in FKO

Operation Example Description

Declaration VDOUBLE (VLEN) :: Vx, Vy; VLEN is integer constant
which represents the element
count in vector

Memory Load Vx = X[0]; load VLEN elements specified
in declaration

Memory Broadcast Vx = VBROADCAST(X[0]); loads single element of X, but
broadcast it to vetcor

Memory Store X[0] = Vx; stores the vector on stating ad-
dress of X

Arithmetic Ops

Vx = Vy + Vz;
Vx = Vy - Vz;
Vx = Vy * Vz;
Vx = Vy / Vz;
Vx += Vy * Vz;

all the operands must be vector

Vector Initialization
Vx = {x,x,x,x};
Vx={0,0,0.0,0.0,x};

Vector Reduction

x = VHADD(Vx);
x = VHSUB ;
x = VHMAX(Vx);
x = VHMIN(Vx);
x = VHSEL(Vx,const pos);

for scalar element select
(HSEL), const pos is a int
constant from 0 to (vlen-1).

35



1 ROUTINE ATL USCAL
2 PARAMS : : N, alpha , X, incX ;
3 INT : : N, incX ;
4 DOUBLE : : alpha ;
5 DOUBLE PTR : : X;
6 ROUT LOCALS
7 INT : : i ;
8 DOUBLE : : ax ;
9 ROUT BEGIN

10 LOOP i = 0 , N
11 ALIGNED(32) : : X; // X i s known to be 32 by te a l i gned
12 LOOPBODY
13 ax = X[ 0 ] ;
14 ax = ax ∗ alpha ;
15 X[ 0 ] = ax ;
16 X += 1 ;
17 LOOP END
18 ROUTEND

Figure 4.10: Example of dscal kernel with aligned markup in HIL

Note that it is a loop markup that means the memory address X points to is at least 32

byte aligned on the first iteration of the loop. We can safely use aligned vector-load to load

data from X after vectorization (in AVX). However, if the alignment of X in this kernel

is not known (e.g., no markup), we peel the loop to force X to be aligned before entering

the vector loop. In the vector loop, we can then use aligned loads and stores of X. We will

describe how we generate codes with loop peeling in following section and we will discuss a

more general case with more than one array in Section 4.3.1.2.

4.3.1.1 Loop Peeling to Handle Alignment

In peeling for alignment, the iterations of the loop are peeled by appropriate number of scalar

iterations until the relevant pointer is aligned to the required alignment before entering the

vector loop. With the inclusion of the peel loop4, we now have three separate loops in our

vectorized code: peel loop, vector loop and cleanup loop. Since both peel loop and cleanup

are scalar loops, we can implement them with a single scalar loop. However, in order to keep

the implementation simple, we keep a separate loop for the peeling. Figure 4.11 shows a flow

chart of the generated code after introducing the peel loop in vectorization. Consider the

4loop peeling can be implemented and optimized without any scalar loop (e.g., we do
not need any loop at all when the vector length is 2), but to handle the general case we
implement loop peeling with a scalar loop, which we call the “peel loop”.
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Figure 4.11: Code generation after adding code for the peeling loop (dotted box) in vectorized
code
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example of Figure 4.10 but without markup. The loop iteration count in this example is N .

We first test the alignment of X. If it is already aligned, we can execute our vectorized loop

without peeling. However, if it is not aligned, we jump to our new generated code segment as

shown inside the dotted box in Figure 4.11. We then compute the scalar loop iteration needed,

Np, to make X aligned. If Np is greater than the original N , we don’t need the peeling; the

program will eventually execute the cleanup loop since we do not have enough iterations to

execute the vector loop. We will execute the peeling loop to make X aligned otherwise. We

then jump to the aligned section of the code with remaining iteration count N as N −Np.

We now can execute the previous aligned vector loop. If all the pointers are mutually aligned

in case of multiple pointers, we can still apply this loop peeling to make all of them aligned

to the required bytes. FKO supports a loop markup (MUTUALLY ALIGNED) to specify

the mutual alignment of the pointers in FKO.

4.3.1.2 Loop Specialization

If two or more pointers are mutually misaligned, we cannot make all of them aligned with a

peel loop. The general solution to this problem is to force the alignment of one of the pointers

via loop peeling as we described before and generate the vector-loop with the assumption

that the given pointer is aligned and the rest of the pointers are not aligned. We analyze the

loop body to find the most accessed pointer (read and write) in loop as the candidate of this

forced aligning. However, when we do not have any knowledge of the mutual alignment of

pointers, we generate a duplicated vector loop (as a special loop) where we assume all of them

are aligned (the best case scenario). Figure 4.12 shows an example of the loop specialization

to handle such alignment. In this example, we show loop specialization for AXPY kernel to

handle the alignment. Since Y is the most accessed pointer inside the loop, we make it our

candidate pointer for the loop peeling. We introduce a markup (FORCE ALIGN) in FKO

so that user can suggest the candidate pointer as well. After executing the peeling loop, we

check whether the X has also become aligned. If it is true, we will then execute the vector
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Figure 4.12: Example of vectorization of AXPY with loop specialization and loop peeling
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loop with all aligned loads and stores (our best case). Otherwise, we will execute the vector

loop assuming only Y aligned and X unaligned.

Table 4.2 lists all the markups and examples of their usage to handle the alignment in

FKO. If all pointers are aligned, we do not need any special code to handle alignment. If all

pointers are mutually aligned, we only need the peeling loop to make them aligned. If we

do not have any markup for the alignment and the FORCE ALIGN is used to suggest the

candidate pointer, we make that pointer aligned by the loop peeling and then apply loop

specialization. If there is no markup in loop, we find the candidate pointer by analyzing the

code in loop and then apply the loop specialization. Multiple markups can be also used at

the same time to precisely specify a scenario.

4.3.2 Alignment in SLP

SLP vectorization is normally applied on straight line code of a single block. In FKO, SLP

can also be applied to vectorize nested loops. We do not consider the markup of innermost

loop for the outer loops. Therefore, by default FKO assumes all pointers in outer loops are

unaligned. We introduced routine markup to specify the alignment of the pointers at the

routine level so that we can consider them aligned in the outer loops. A thorough analysis

to detect the alignment of the pointers based on the given hint and/or innerloop alignment

will be considered in future.

Table 4.2: Examples of the usage of loop markups to handle alignment in FKO. Consider a
loop with X, Y, Z arrays and the length of SIMD vector vl bytes

Cases Description Loop
Peeling

Loop
Special-
ization

ALIGNED(vl)::X,Y,Z; all aligned, X%vl = Y%vl =
Z%vl = 0

no need no need

MUTUALLY ALIGNED(vl)::
X,Y,Z;

all mutually aligned, X%vl =
Y%vl = Z%vl

Yes, X no need

FORCE ALIGN::X Make X aligned Yes, X Yes
No Markup No knowledge of alignment Yes,

most
accessed

Yes
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4.4 Architecture Specific Optimization

We have implemented x86 specific optimizations on our compiler. Optimization on the two

dimensional array is worth mentioning here. FKO supports two dimensional column major

arrays where the elements within a column are consecutive and the elements within a row are

strided. FKO can exploit the rich addressing modes of the x86 and minimize the registers

required to hold column pointers and update operations inside the unrolled and jammed

loop. This optimization is key for unrolled and jammed level-2 and block-major level-3 BLAS

kernels. We will describe this optimization in Chapter 7.

4.5 Summary and Conclusions

This chapter presents the transformations we have added to the backend compiler FKO of

the open source empirical compilation framework iFKO. Besides adding various path based

transformations, we have implemented two new vectorization techniques. We will describe

them with results in separate chapters later. Thanks to these techniques, all the BLAS kernels

in ATLAS can be effectively autovectorized with the performance close to the handtuned

codes. We have implemented several strategies to handle SIMD alignment proposed in the

original dissertation of iFKO [62]. In addition to this, we have also implemented architecture

specific optimizations. Considering all these optimizations, iFKO can competitively be used

in ATLAS (in place of ATLAS’s intrinsic generator).
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CHAPTER 5

SPECULATIVE VECTORIZATION

This chapter is previously published at PACT 2013 [61]1. With SIMD vector units becom-

ing ubiquitous in modern microprocessors (e.g., x86 SSE/AVX, ARM NEON, POWERPC

AltiVec/VMX, among others), their effective utilization is critical to attaining a high level

of performance for scientific applications. Most compilers, e.g., GNU gcc and Intel icc, can

automatically vectorize instruction sequences when safe [55, 23, 38]. However, when instruc-

tions are embedded inside conditional branches, their vectorization is often inhibited due to

the presence of unknown control flow. Existing research has exploited predicated execution

of vectorized instructions [57, 56] to support SIMD vectorization of such instructions. How-

ever, without special hardware support, these techniques need to evaluate all the branches

of a control flow before using special instructions to combine results from different branches,

resulting in a significant amount of replicated computation whose results are never used.

Figure 5.1 illustrates this problem with a loop nest that includes partially vectorizable state-

ments inside control flow branches. In particular, the statement s1 can be fully vectorized, s2

can be vectorized with predicated execution, and s3 cannot be vectorized due to loop-carried

dependences. Figure 5.2 shows the control flow graph of these statements, where both s1 and

s2 can be safely vectorized if Path-1 is taken at every vectorized iteration of the surrounding

loop. Figure 5.3 shows the result of vectorization using the predicated execution approach

of Shin et al. [57]. Here s1, p1, and s2 are all vectorized, with the result of the vectorized

p1 (vpT ) serving as a mask in selecting the valid results of s2. Then, the predicate vector

vpT is unpacked and used to selectively evaluate the four unrolled instances of s3. Note

that s2, now translated into two vectorized instructions, is always evaluated irrespective of

1This chapter previously appeared as [Majedul Haque Sujon, R. Clint Whaley, and Qing
Yi. Vectorization past dependent branches through speculation, published by The Institute
of Electrical and Electronics Engineers (IEEE)]. See the letter in Appendix C.
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1 for ( i =1; i <=1024; i++)
2 {
3 s1 : a = A[ i ] ∗ s c a l ; /∗ v e c t o r i z a b l e ∗/
4 p1 : i f ( a <= MaxVal )
5 s2 : B[ i ] = A[ i ] ; /∗ v e c t o r i z a b l e ∗/
6 else

7 s3 : B[ i ] = B[ i −1] ; /∗ not v e c t o r i z a b l e ∗/
8 }

Figure 5.1: Example: vectorization in the presence of unknown control flow

(a) (b) (c) 
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Figure 5.2: Control flow graph of Figure 5.1: (a) CFG of the loop (b) Path-1 which is
vectorization (c) Path-2 which is not vectorization
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1 for ( i =1; i <=1024; i+=4)
2 {
3 s1 : Va [ 0 : 3 ] = A[ i : i +3] ∗ [ s ca l , s ca l , s ca l , s c a l ] ;
4 p1 : vcomp = Va [ 0 : 3 ] <= [MaxVal ,MaxVal ,MaxVal ,MaxVal ] ;
5 s2 : vpT , vpF = vpset (vcomp ) ;
6 B[ i : i +3] = s e l e c t (B[ i : i +3] ,A[ i : i +3] ,vpT ) ;
7 s3 : /∗ s c a l a r par t ∗/
8 [ PF1 ,PF2 ,PF3 ,PF4 ] = UNPACK(vpF ) ;
9 i f (PF1) B[ i ] = B[ i −1] ;

10 i f (PF2) B[ i +1] = B[ i ] ;
11 i f (PF3) B[ i +2] = B[ i +1] ;
12 i f (PF4) B[ i +3] = B[ i +2] ;
13 }

Figure 5.3: SIMD vectorization using predicated execution [57]

the output of the predicates. Further, the unpacking of the predicate vector vpT could result

in extra pipeline stall cycles within the CPU. In this paper, we present a new approach,

which speculates past dependent branches to enable aggressive vectorization of paths that

are evaluated frequently at runtime. As illustrated in Figure 5.4, where the path composed of

statements s1 and s2 is selected and speculatively parallelized, our approach checks the cor-

rectness of the speculation at a very early stage, and if the speculation fails, the alternative

scalar iterations (s3 in Figure 5.4) are evaluated instead. In addition to allowing the vector-

ization of routines that cannot be vectorized by existing techniques, our experimental results

show that this speculative vectorization approach can outperform existing techniques when

the control flow branches are strongly directional; that is, the vectorized path is frequently

taken at runtime (e.g., kernels such as MAX/MIN). However, in situations where control

flow paths are unpredictable (i.e., a random branch could be taken at any iteration), overly

high misspeculation rate could result in our approach performing worse than the original

code or code vectorized via predication. To ameliorate this limitation, we use an iterative

compilation framework [62] to experiment with different path speculations so that the tech-

nique is applied only when beneficial for representative inputs. We have implemented our

speculative vectorization technique within iFKO [62], an iterative optimizing compiler that

focuses on backend optimizations for computation-intensive floating point kernels which uses

empirical tuning to automatically select the best performing transformations, and have used
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1 for ( i =1; i <=1024; i+=4)
2 {
3 s1 :Va [ 0 : 3 ] = A[ i : i +3] ∗ [ s ca l , s ca l , s ca l , s c a l ] ;
4 p1 : i f (Va [ 0 : 3 ] <= [MaxVal ,MaxVal ,MaxVal ,MaxVal ] )
5 s2 : B[ i : i +3] = A[ i : i +3] ;
6 else /∗ Sca lar Res tar t ∗/
7 {
8 s3 : for ( j =0; j <4; j++)
9 {

10 a = A[ i+j ] ∗ s c a l ;
11 i f ( a <= MaxVal )
12 B[ i+j ] = A[ i+j ] ;
13 else

14 B[ i+j ] = B[ i−1+j ] ;
15 }
16 }
17 }

Figure 5.4: Proposed approach: Speculative Vectorization

iFKO to perform SIMD vectorization for 9 floating point benchmarks with single and double

precision variants. Our results show that up to 6.8X speedup for single precision and up to

3.4X speedup for double precision can be attained for these benchmarks in AVX through

our speculative vectorization optimization. Our contributions include the following:

• We present a new approach for speculatively vectorizing loops past dependent branches

and a path-based vectorization analysis algorithm for automatically identifying oppor-

tunities for applying speculative vectorization.

• We have integrated our technique within an iterative compiler and used empirical

tuning techniques to automatically select the most profitable path to vectorize.

• We demonstrate the effectiveness of our techniques using a large number of floating

point kernels, including some inherently scalar code, e.g., the sum of square computa-

tion for nrm2 in the BLAS library [29], which could not be vectorized efficiently using

existing techniques.

The remainder of the chapter is organized as follows. Section 5.1 describes our algorithm

for speculative vectorization. Section 5.2 summarizes our integration of the algorithm within

the iFKO iterative optimizing compiler framework. Section 5.3 describes our experimental
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methodology and the results obtained using speculative vectorization. Section 5.4 presents

related work, and Section 5.5 presents our conclusions.

5.1 Description of Speculative Vectorization

Our research aims to support aggressive SIMD vectorization of important loops even when

their bodies contain complex control-flow and when the entire computation cannot be fully

parallelized. Our solution effectively combines two classes of existing techniques, SIMD vec-

torization and path-based speculation, that have been highly successful in modern compilers.

To speculatively vectorize a loop, we first find all possible paths through the loop body.

Analysis is then performed to determine which of these paths can be safely vectorized, and

the set of safely vectorizable paths are returned to the search engine of iFKO, an iterative

compilation framework for backend optimization. The search driver of iFKO invokes its

optimizing compiler to experimentally vectorize iterations of statements along each path,

measures the performance of the differently vectorized code, and finally selects the most

profitable path to be vectorized for the original application. The following subsections present

both the analysis and transformation steps in detail. The overall iFKO iterative compilation

framework is then outlined in Section 5.2.1.

5.1.1 Safety Analysis

Algorithm 5.1 outlines the main steps of our safety analysis algorithm, which takes a single

input loop and returns a set of paths that are safe targets for speculative vectorization.

In more detail the three steps of Algorithm 5.1 are:

1. is loop form vectorizable: In step 1, we determine whether the input loop is in a form

suitable for vectorization. In particular, we require that the loop must be regular (i.e.,

can be easily translated to a Fortran Do-style loop) and countable [36], where the

number of iterations of the loop is known before entering the loop body, and all loop

iterations can be counted using an integer index variable. If the input loop fails to

satisfy this condition, it is considered unsafe to vectorize.
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Algorithm 5.1: speculative vectorization analysis

funct is loop vectorizable(loop)
(1)if (!is loop form vectorizable(loop))

then return(empty); fi

(2)paths = select paths to speculate(loop);
(3)foreach p ∈ paths

do

if (!is path vectorizable(p, loop))
then paths = remove(p,paths); fi

od

return(vectorizable paths)
end

2. select paths to speculate: In step 2, we determine which paths are candidates for spec-

ulative vectorization. Since the cost of finding all paths through a loop body could

grow exponentially as the number of branches increases, our compiler takes an op-

tional command-line argument that sets the maximum number of paths to consider

for vectorization, and any remaining paths will not be considered once the threshold

is exceeded. This threshold is implemented to ensure our optimization is never over-

whelmed by overly complex control flow, which is not expected to happen often in

practice. In particular, iFKO, the compiler infrastructure where we implemented our

optimization, targets floating point kernels, which typically have fairly modest control

flow complexity, and having too many paths to analyze almost never becomes a con-

cern. Our compiler analyzed all paths for speculative vectorization for the benchmarks

studied in our experimental evaluation.

3. is path vectorizable: In step 3, we determine the safety of vectorizing each path selected

by step 2 using existing data flow and dependence analysis techniques [36, 38, 23, 55,

40], to categorize the vectorizability of variables and statements along the path. Any

path that cannot be vectorized is removed from the existing collection of paths to be

considered for speculation before the final result is returned.
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In step 3, is path vectorizable classifies all variables inside a path into the following cate-

gories:

• Invariant: Variables that are used inside the speculated path but never modified

within the path. During vectorization, these scalar invariants can simply be replicated

inside vectors so that the same value is used across all vectorized iterations of the

selected path.

• Local or private: Variables that are re-initialized at each iteration of the selected path

before being used along the path. During vectorization, a vector needs to be allocated

for each private variable to hold the value of the variable for each vectorized iteration.

• Recurrent: Variables that are modified along the path after being used in the cur-

rent or previous iterations of the path. Special forms of recurrent variables, e.g., loop

induction and reduction variables, can be vectorized in spite of their loop-carried cross

iteration dependences. However, the existence of other more general forms of recurrent

variables along the speculated path would prevent the path from being vectorized.

The above categorization is made using a data flow analysis approach similar to that

taken in [40], except that only the speculated path is analyzed. For instance, a variable that

is modified or recurrent within a loop can be invariant or private along a speculated path,

thus allowing the path to be vectorized provided that proper recovery mechanisms are in

place when the speculation fails. If a path contains a recurrence that is not induced by a

loop induction or reduction variable, the path is deemed unsafe to vectorize and removed

from the set of paths to be considered for speculation.

To ensure each speculated path can be correctly vectorized by a later transformation step,

our analysis additionally identifies all variables that belong to the following groups:

• Live-out: Variables that have been modified inside the vectorized path and are ex-

pected to be used after the loop terminates. For these variables, their values at the last
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iteration of the loop need to be copied or reduced back to scalar variables to ensure

correct references to their values after the loop is complete.

• Live-In: Variables that are used along the vectorizable path before they are modified

within the loop. These are live-in at the entry of the loop path. For these variables,

their vector representations need to be initialized with correct values before entering

the vectorized path. If the variable is a reduction variable, the first element of its vector

representation is initialized with its scalar value before entering the vectorized path, and

the rest of the elements are initialized with zero or one (e.g., 0 is used if the reduction

operation is addition, and 1 is used for multiplication reductions). Otherwise, since the

safety analysis considers this path to be vectorizable, the variable is not recurrent, and

all entries of its vector can simply be initialized with the scalar value before entering

the vectorized path.

Figure 5.5(a) shows an implementation of the SSQ kernel from the BLAS library in

ATLAS[69]. The if-else conditional inside this loop has generated two alternative paths to

consider, as shown in Figure 5.5(b). Finally, Figure 5.5(c) illustrates our variable classifica-

tion analysis for both paths: Path-1, which includes the if-branch, modifies only one non-local

variable, ssq, through reduction, and as a result is vectorizable. On the other hand, Path-2

modifies both ssq and scal in a complex recurrent fashion and thus cannot be vectorized.

By selecting Path-1 to vectorize, our speculative algorithm can partially vectorize the given

input loop even though Path-2 is not at all vectorizable. To the best of our knowledge, the

loop in Figure 5.5(a) is currently classified as not vectorizable by existing SIMD vectorization

techniques.

5.1.2 Structure of Generated Code

Figure 5.6 shows the typical structure of the code generated by our vectorization transfor-

mation. Here all the statements in the original code are rearranged along two paths: the

path taken when the speculative vectorization succeeds (i.e., the vectorized path), and the
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Figure 5.5: Example: analyzing the Sum of Squares (SSQ) kernel: (a) Scalar code (b) CFG
of loop (c) Analysis

path(s) taken when the speculation fails (i.e., the scalar restart code). The vectorized path

contains:

• Vector prologue, which contains instructions to ensure proper initialization of the vector

variables for live-in and loop invariant variables;

• Vector backup, which contains instructions that save the values of variables that will

be modified along the vectorized path so that their values can be restored in case the

speculation fails;

• Vector loop body, which contains SIMD instructions generated from vectorizing state-

ments and conditional jumps along the selected path;

• Vector loop update, which checks termination status of the vectorized loop and jumps

back to the start of the vector backup section when needed;

• Vector epilogue, which contains instructions to properly terminate the vectorized loop

by transferring the values of live-out variables back to scalar variables.
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Figure 5.6: Structure of vectorized code

Although the vector loop body section may include many conditional exits from the speculated

path, we generate only a single scalar restart code, which is entered whenever a speculation

check fails. The restart code contains:

• Vector restore, which restores all variables that may have been mistakenly modified

long the vectorized path, using backup variables saved during the vector-backup stage;

• Vector-to-scalar reduction, which copies the most current values from the correctly

modified vector variables;

• Constant-iteration scalar loop, which re-evaluates the mistakenly speculated iteration

of the vector loop body using scalar instructions;

• Scalar-to-vector update, which contains instructions that transfer the results of the

scalar restart back to their respective vector variables so that future iterations can be

speculatively vectorized.
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1 VECTORPROLOGUE:
2 VABS = [ABS, ABS, ABS, ABS ] ;
3 Vscal = [ s ca l , s ca l , s ca l , s c a l ]
4 Vssq = [ ssq , 0 . 0 , 0 . 0 , 0 . 0 ]
5

6 VECTORLOOP:
7 for ( i =0; i < N4 ; i+=4)
8 {
9 // Backup

10 // Vector Body
11 Vax = X[ i : i +3] ;
12 Vax = VABS & Vax ;
13 i f (VEC ANY(Vax > Vscal )
14 GOTO SCALAR RESTART;
15 Vt0 = Vax/Vscal ;
16 Vssq += Vt0 ∗ Vt0 ;
17 continue ;
18

19 /∗ Sca lar Res tar t Code ∗/
20

21 SCALAR RESTART:
22 // Restore
23 // Vector to Sca lar
24 s sq = sum(Vssq [ 0 : 3 ] ) ;
25

26 // Sca lar Loop
27 for ( j =0; j < 4 ; j++)
28 {
29 ax = X[ i+j ] ;
30 ax = ABS & ax ;
31 i f ( ax > s c a l )
32 {
33 t0 = s c a l /ax ;
34 t0 = t0 ∗ t0 ;
35 t1 = ssq ∗ t0 ;
36 s sq = 1 .0 + t1 ;
37 s c a l = ax ;
38 }
39 else

40 {
41 t0 = ax/ s c a l ;
42 s sq += t0 ∗ t0 ;
43 }
44 }
45

46 // Sca lar to Vector Update
47 Vssq = [ ssq , 0 . 0 , 0 . 0 , 0 . 0 ] ;
48 Vscal =[ s ca l , s ca l , s ca l , s c a l ] ;
49 }
50

51 VECTOR EPILOGUE:
52 s sq = sum(Vssq [ 0 : 3 ] ) ;
53 s c a l = Vscal [ 0 ] ;

Figure 5.7: Pseudo-code for Speculatively Vectorized SSQ Loop (our compiler generates
assembly)
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5.1.3 Applying the Transformation

Figure 5.7 shows an example of the speculatively vectorized loop from the original code in

Figure 5.5(a). The analysis of the two paths through this loop are shown in Figure 5.5(c),

where Path-1 has been selected for speculative vectorization. Figure 5.8(a) shows the initial

control-flow graph for this loop, and (b)-(d) illustrate the intermediate results of our vector-

ization transformation. In our implementation, the speculative vectorization transformation

is applied through the following five steps:

1. Speculated path formation: This step modifies the control flow of the loop body

so that each conditional branch inside the speculated path (spath) is a potential exit from

the spath to the unvectorized code, and all blocks that are not in the chosen path are

relocated to a separate region (which will be converted to scalar restart code in step 3). This

code reorganization leaves the chosen spath contiguous in instruction memory with the loop,

increasing its spatial locality and decreasing the probability of branch mispredicts within

the path. In order to make the spath instructions contiguous, it is necessary to reverse the

branch conditionals2 whose fall-through and goto targets are swapped by this transformation,

resulting in the modified CFG shown in Figure 5.8(b). Note that blocks B2 and B3 have

changed position from Figure 5.8(a).

2. Vectorization alignment and cleanup: In this step, we perform possible loop peeling

in order to align vector memory access [36, 32], as well as creating a cleanup loop to handle

loop iterations that are not a multiple of the vector length [4, 7, 62]. This step is not

particular to speculative vectorization, and for simplicity this cleanup/alignment code is

generally omitted from our figures.

3. Scalar Restart Generation: This step uses the current scalar loop to generate the

scalar restart code. As shown in Figure 5.6, the scalar restart restores any possibly modified

2Reversing conditionals can complicate NaN handling; in our framework, like many com-
pilers, this transformation is allowed.
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recurrent variables, reduces the vector values to scalar values, and then recomputes all spec-

ulated iterations using a scalar loop, before doing scalar-to-vector initialization, and then

branching back to the loop update block. At this point, the scalar restart code is complete,

but the spath does not yet have the branch target information to reach it, which is handled

in the next step, and the spath is not yet vectorized, which is done as the final step. In

Figure 5.7, the scalar restart code is shown at lines 19-48; Here a single reduction variable,

ssq, needs to have its scalar value restored from vectorized evaluations (line 24). Its scalar

evaluation result is then later transferred back to its vector variable at line 47. A variable

scal is modified along the scalar path at line 37 and used in the speculatively vectorized path

at line 15. Therefore, its value is transferred to a vector variable at line 48 before executing

the vector loop update.

4. Branch target repair and non-spath block removal: This step updates all con-

ditional branch targets out of the spath with the label of the scalar restart code generated

in the previous step. Since they are now handled by our scalar restart code, the original

non-speculated path(s) from the loop are no longer referenced anywhere in the code and are

therefore removed. In our example, this results in the deletion of block B3, giving rise to

the CFG shown in Figure 5.8(c). At this point the control flow of the transformed code is

correct, but the instructions along spath have not yet been vectorized, which is done by the

final step.

5. spath Vectorization: Finally, this last step vectorizes all statements along the selected

spath and then adds the necessary vector-prologue, vector-backup, and vector-epilogue, as

outlined in Figure 5.6. In particular, all recurrent variables that may be modified before

the last scalar restart exit3 are backed up before any vectorized evaluation. In order for

our speculation to be true, each conditional branch along spath must take the fall-through

direction for all speculated iterations. Therefore, we replace each original branch comparison

3Speculation is proven correct after the last conditional exit from the spath.

54



with a vector comparison/test that exits to the scalar restart code if any component of the

comparison failed to match our speculated result. The final CFG, including the loop cleanup,

is shown in Figure 5.8(d). Figure 5.7 shows a simplified pseudo-code for the vectorized loop

of our SSQ example (excludes loop peeling and loop cleanup).

5.1.4 Correctness and Generality

The main novelty of our speculative vectorization algorithm lies in the insight that when

branches within a loop are strongly directional, that is, when consecutive iterations of the

loop are expected to take a speculated control-flow path most of the time, SIMD vectorization

can be applied to aggressively parallelize the path, with the other paths given lower priority. A

similar path-based formulation has been used in trace scheduling [14], the de facto instruction

scheduling algorithm widely adopted by modern compilers. However, such formulation has

yet to be extended to other backend compiler optimizations beyond instruction scheduling.

As far as we know, our work is the first that formulated SIMD vectorization using path-based

optimization strategies.

Since our work essentially extends existing SIMD vectorization algorithms [36, 38, 23] to

support control-flow path speculation and recovery, the algorithm is correct as long as the

control-flow transformations are correctly performed, all the variables mistakenly modified by

the speculated path can be correctly recovered, and the spath code branches correctly to the

scalar restart code when misspeculation is detected. Our current implementation supports

only speculative vectorization of a single path within a given loop, and the vectorization is

disabled when the path contains memory references or variables that cannot be precisely

modeled.

5.2 Integration Within iFKO

We have implemented our speculative vectorization optimization, together with several other

transformations to help evaluate its effectiveness, within iFKO [62], an iterative backend

compiler with an emphasis on optimizing the performance of floating-point intensive compu-
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tational kernels. Section 5.2.1 and 5.2.2 provide an overview of the iFKO tuning framework

and the new capabilities that we have added. Section 5.2.3 discusses empirical tuning strate-

gies we have adopted within iFKO to automatically find the fastest available vectorization

method for each input kernel.

5.2.1 Overview of iFKO

iFKO [70, 62] (iterative Floating Point Kernel Optimizer) compilation framework is com-

posed of two components, a set of search drivers that search the optimization space, and a

specialized compiler called FKO that performs analysis (to determine legality of transforms

as usual, but in an iterative compiler, also to bound the search space), and makes all required

transformations (as discussed in the Chapter 2).

In iFKO, optimizations are split into two classes. Fundamental transformations are opti-

mizations that are empirically tuned during the timing process, while repeatable transforma-

tions are optimizations that are repeatedly applied in series to a scope of code while they are

successfully improving the code. Fundamental transforms usually have a parameter that is

searched during the tuning phase. In the simplest case, the search is whether or not to apply

an optimization, since it only sometimes leads to faster code. But often an optimization

itself is parameterized, as in loop unrolling, where the search will find the best-performing

unrolling factor in a large range. Examples of parameterized fundamental transformations

include loop unrolling, prefetch distance, and accumulator expansion (see [70] for the origi-

nal list of 7 fundamental transforms). Most of the repeatable transformations in iFKO are

centered around optimizing register usage, see [62] for full details.

5.2.2 Extending iFKO Fundamental Transformations

In the original iFKO, SIMD vectorization was a fundamental operation with only a yes/no

parameterization, as vectorization can produce a slowdown for some operations and ma-

chines. The compiler supported simple loop-based vectorization, which is enabled when the

dependence distance (control & data) is greater than the vector length of the underlying
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architecture. We will refer to this original vectorization method as NHV, for No Hazard

Vectorization.

The inability of the original iFKO to apply NHV in the face of control hazards prevented it

from vectorizing all of the Level 1 BLAS [70]. For this work, we added five new fundamental

transformations to support vectorization past branches (some of these new optimizations

help even in scalar code, as described below). These transformations are all searched by

iFKO, so the best performing optimizations will be automatically selected for the user. In

order to compare them in this paper, we have overridden the search using flags to require

certain transformations be applied instead of searched.

We have added two new fundamental transformations that do not themselves perform

vectorization, but rather transform the scalar code so that control hazards are removed,

with the result that the loop can then be vectorized by NHV:

1. MMR (Max/Min Reduction): Automatically detects simple if-conditionals that serve

only to compute a max or min over a sequence of values. Once found, it replaces the

entire branch with the assembly MAX/MIN instruction. When MMR alone is sufficient

to allow vectorization using NHV, we refer to this series of transformations leading to

vectorization as VMMR.

2. RC (Redundant Computation): Seeks to eliminate conditional branches by replicating

computations along different branches and then selecting the proper values in a fashion

similar to [57]. When RC alone is sufficient to allow vectorization using NHV, we refer

to this series of transformations leading to vectorization as VRC.

Note that in this paper we never need to apply both MMR and RC in order to vectorize, so

this case is not discussed.

Our speculative vectorization implementation is supported by the following additional

fundamental transformations:
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3. FPC (Frequent Path Coalescing): Rearranges the control flow within a loop so a given

path becomes a straight-line sequence of code intermixed with conditional exit jumps

out of the path.

4. SV (Speculative Vectorization): If the loop targeted for vectorization has non-loop

branches, examine all possible paths through the loop, and discover which are vec-

torizable. Our present algorithm will vectorize only one path through the loop (this

simplifies our analysis & scalar restart code, but it should be possible to vectorize

all legal paths with improved compilation phases). Use FPC to make the target path

fall-through, and then vectorize it. All other paths are handled by scalar code.

iFKO already has a fundamental optimization called UR, which does straightforward loop

unrolling. In this type of unrolling, the loop body is simply replicated as many times as

requested, while avoiding moving pointers and changing loop control between unrolled iter-

ations. We have implemented a second version of unrolling that can be used in conjunction

with the existing one, so that the best performing unrolling optimization can be selected

based on timing results of the optimized code.

5. OSUR (Over-Speculation loop UnRolling): in this type of unrolling, we speculate

the path to a non-unit multiple of the vector length and inline multiple vectors of

computation. This will usually pay off only for branches with very strong directional

preferences, but its advantage over normal unrolling is that the overhead of speculation

checking is more completely amortized by the increased speculation length. During the

search, we will time OSUR & UR alone, as well as combinations of the two whenever

we are tuning an SV-vectorized loop.

5.2.3 Optimization Tuning

FKO returns to the search driver a list of all possible paths through the loop. This information

is then used in the following process to find the best optimized code:
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• If the number of paths is one, and it is vectorizable, time both scalar code and code

vectorized by NHV, and choose the best.

• If there are multiple paths through the code, choose the best performing code among:

– Scalar code

– VMMR (if applicable)

– VRC (if applicable)

– SV: For each path that is vectorizable, apply SV and time it, and return the best-

performing code. Note that the user’s timer (and its associated training data) can

have a profound impact, as highlighted in Section 5.3.2.

5.3 Experiments

To validate the effectiveness of our speculative vectorization technique and the performance

benefit of integrating it within an iterative optimizing compiler, we have applied the tech-

niques to optimize 9 benchmarks, summarized in Table 5.1, with both single precision and

double precision versions for each benchmark, on two machines using Intel and AMD pro-

cessors respectively. The specification of the machines are listed in table 5.2. All timings

utilize data chosen to fit the operands in the L2-cache, while overflowing the L1-cache; sin

and all irkamax kernels utilize an 8,000 vector length input; all other kernels use a 16,000-

element input to satisfy the same cache constraints. For all kernels except sin and cos, the

input values use random numbers in the range [-0.5, 0.5]. For sin & cos, however, this would

give our technique a strong advantage and is probably not realistic (see S 5.3.2 for further

details). For these two kernels, we instead generate the input by passing the random values

between [0, 2π] to the wrapper functions from glib that call these kernels; This essentially

guarantees that all paths in the kernels are executed, and thus represents the worst case for

our technique.
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(a)

(b)

Figure 5.9: Speedup of tuned Speculative Vectorization over tuned unvectorized code for
single precision (solid blue) and double precision (hatched red) : (a) Intel Corei2 (b) AMD
Dozer

61



5.3.1 Effectiveness of Speculative Vectorization

Figure 5.9 shows the speedup speculative vectorization achieves for each benchmark over the

scalar (non-vectorized) code on the Intel and the AMD machine. Both machines are using

AVX, with a vector length of 8 (4) in single (double) precision. Note that both the scalar

and vector versions have been empirically tuned by iFKO, so our scalar code represents the

best possible case without vectorization (i.e., it is not a naive unoptimized baseline).

The first point to notice from the results is that the performance benefit of applying our

vectorization technique on the Intel machine is almost twice of that on the AMD; getting peak

AVX performance from the AMD Dozer is complicated by the fact that on the backend the

Table 5.1: Benchmarks used for experiments

Benchmark Description and Library Input Data and Size

AMAX Absolute max value search rand[-0.5,0.5], in-L2
IAMAX index of absolute max, blas rand[-0.5,0.5], in-L2
SSQ ssq for nrm2, blas rand[-0.5,0.5], in-L2
ASUM Absolute sum, blas rand[-0.5,0.5], in-L2
IRK1AMAX Panel factorization of LU, AT-

LAS
rand[-0.5,0.5], in-L2

IRK2AMAX Panel factorization of LU, AT-
LAS

rand[-0.5,0.5], in-L2

IRK3AMAX Panel factorization of LU, AT-
LAS

rand[-0.5,0.5], in-L2

KERNEL SIN Kernel for sine of glibc (ver-
sion:2.4,2.15)

rand[0, 2π] x on sin(); use re-
alistic input of kernel sin using
kernel rem pio2(), in-L2

KERNEL COS kernel for cosine of glibc (ver-
sion:2.4,2.15)

rand[0, 2π] x on cos() and use
realistic input of kernel cos using
kernel rem pio2(), in-L2

Table 5.2: Machine specification

Intel Corei2 AMD Dozer

Processor Intel Xeon CPU E5-2620 AMD FX(tm)-8120
Core Speed 2.00 GHz 3.2 GHz
Total Cache Size 15360 KB 2048 KB
FPU Support AVX(without FMA) AVX (With FMA4)
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256-bit AVX operations are split into two separate 128-bit operations, unlike on the Intel

which has true 256-bits FPUs. AMD’s more complex AVX handling tends to complicate

scheduling on a machine that is already weak in that area, and it is also sometimes required

to mix SSE and AVX instructions to maximize performance.

We expect good performance from SV only when the vectorized path is preferred. This is

certainly the case for benchmarks based on max or min, which tend to change less and less

frequently as the iteration count increases. These benchmarks include amax, iamax, nrm2,

irk1amax, irk2amax, and ir3amax ; all benefited significantly from speculative vectorization.

For asum, SV actually causes a slowdown. Remember that for our speculation to be correct,

we must correctly predict the direction of veclen branches, or 8 (4) branches for single

(double) precision. Since the branch is on sign, and our input sign is randomly distributed,

the chance of our speculation being correct is roughly (0.5)veclen. Our speculation is almost

always incorrect, and thus we continuously execute the scalar restart code. The few times

our speculation is correct cannot overcome the cost of branching to the cleanup code, and

we get a slowdown. Note that since our compiler can automatically select the best optimized

code, SV would not be selected to optimize asum by our compiler.

Similar observations can be made for cos and sin, where multiple paths are selected based

on the input data range. Single precision cos experiences a slight slowdown on the Intel

machine, and other cos and sin results show very modest speedup. Since our speculation

is almost always wrong on these kernels, the fact that we achieve any speedup at all is

a measure of how low the overhead of our scalar restart code is. Of course, when iFKO is

allowed to fully auto-tune codes such as this, the tuning framework will choose an alternative

vectorization strategy (eg., redundant computation) or not vectorize the code at all.

5.3.2 Comparing with other Vectorization Techniques

The main strength of speculative vectorization is that it can be used in cases where the

known techniques cannot be applied. In particular, if there are multiple paths through the
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loop, only some of which can be successfully vectorized, SV is the only technique capable of

realizing vector speeds. The NRM2 performance shown in Figure 5.9 is an example where

SV allowed us to get impressive speedups when no other vectorization can be applied.

However, many kernels can be vectorized in different ways, and a compiler can always select

the most promising approach based on characteristics of the input application. A reasonable

heuristic can be constructed using the following line of reasoning: (1) If branches are used only

for max or min, then replacing them with machine native MAX/MIN instructions (VMMR).

(2) If all paths are vectorizable, and the cost of computing all sides of the branches is low, then

replicate all branches to enable vectorization (VRC). (3) If a vectorizable path is strongly

directional then consider speculative vectorization (SV).

Figure 5.10 shows the performance of all three vectorization methods on amax for the

Intel Corei2. This computation is inexpensive and strongly directional, therefore a good

case for both SV and VRC. We see they are both fairly competitive with VMMR, with

SV performing slightly better than VRC on this machine (this essentially means that our

scalar restart overhead is lower than the overhead of doing the vector compare and select).

In general, we would expect that VMMR should win whenever it can be used, while the

VRC and SV performance ratio will vary depending on how predictable the path is, and how

much work must be performed redundantly.

Figure 5.11 compares the different vectorization methods using a sin, and shows how

path selection can have large effects on speculative vectorization. For this benchmark in

Figure 5.9 we specifically chose data in the range of [0, 2π] which exercises all the paths in

the sin kernel; this prevents SV from producing much speedup on the AMD system. Here

we instead tune and time the code using our usual range of random inputs between [-.5,

.5]. VRC is unaffected, since it is always executing code from all paths. However, this has

a profound affect on SV, since it results in a particular path dominating the kernel calls

made by the full sin function. As a result it goes from showing almost no speedup, to greater
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Figure 5.10: Comparison of speedups for absolute value maximum using vectorized Max/Min
Reduction (VMMR, solid blue), Speculative Vectorization (SV, diagonal hashed green) and
Vectorized Redundant Computation (VRC, square-hashed orange) on Intel Corei2 for both
single and double precision

Figure 5.11: Comparison of single precision speedups on AMD Dozer for sin (speedups over
scalar code tuned and timed for data in range [0, 2π]) using scalar code tuned and timed for
data in range [-0.5, 0.5] (scal.5), Speculative Vectorization tuned and timed in range [0, 2π]
(SV2pi), and range [-0.5, 0.5] (SV.5), and Vectorized Redundant Computation timed and
tuned in range [0, 2π] (VRC2pi) and range [-0.5, 0.5] (VRC.5)
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speedup than any other method, as SV does not perform any redundant computation and

only occasionally needs to do scalar restart. Note that these speedups are inflated because

we are using the speed achieved in the range of [0, 2π] as our denominator. Frequent path

coalescing and related optimizations improve even the scalar code by almost a factor of 2

when we specifically tune for the [-0.5, 0.5] data range. This input sensitivity of SV is both

a hazard and a meaningful opportunity for application-specific tuning for applications with

known typical ranges on their data.

5.4 Related Work

The ubiquitous support of short vector operations in modern architectures has made SIMD

vectorization one of the most important backend optimizations in modern compilers [34,

60, 7, 31, 57, 21, 37]. Bik et al. used bit masking to combine different values generated from

different branches of if-else branches [7]. Shin, Hall, and Chame [57] managed dynamic control

flow inside vectorized code through predicated execution of vectorized instructions and have

implemented their schemes using mask and select vector operations. The technique was later

improved to bypass some of the redundant vector computations for complex nested control

flows [56]. Karrenberg et al. [30] presented a similar approach but introduced the mask and

select operations in the SSA form to handle arbitrary control flow graphs. Our work also aims

to enhance the effectiveness of automatic vectorization in the presence of complex control

flow. Our techniques, however, focus on speculatively vectorizing strongly biased control-flow

paths that are expected to be taken frequently at runtime. Our vectorization algorithm is

based on existing loop-based vectorization techniques [7, 60, 21], but the path speculation

strategy can be used to enhance superword-level vectorization frameworks [?] in a similar

fashion.

Speculation is an approach commonly used in compilers when facing unknown control or

data flow that prevent effective optimization [20, 35], e.g., instruction scheduling [20, 22]

and thread-level parallelization [48, 15, 19]. Pajuelo et al. [41] proposed micro architecture
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extension to apply vectorization speculatively. To the best of our knowledge, our work is

the first that uses path-based speculation to enhance the effectiveness of SIMD vectorization

within compilers.

5.5 Conclusions and Future Work

This chapter presents a new technique, speculative vectorization, which extends existing

SIMD vectorization techniques to aggressively parallelize statements embedded inside com-

plex control flow by speculating past dependent branches and selectively vectorizing paths

that are expected to be taken frequently at runtime. We have implemented our technique

inside the iterative backend optimizing compiler, iFKO, and have applied the path-based

speculative vectorization approach to optimize 9 floating point kernel benchmarks. Our re-

sults show that up to 6.8X speedup for single precision and up to 3.4X speedup for double

precision can be attained for these benchmarks in AVX through our speculative vectorization

optimization. Our formulation allows partial vectorization of computations in the presence of

complex control flow beyond what has been supported by existing known SIMD vectorization

techniques.

Our speculation approach is complimentary and can be applied to enhance the effectiveness

of most existing SIMD vectorization techniques. In future work, we will investigate applying

path speculation in conjunction with known techniques. For instance, in kernels with multiple

branches inside the loop, it may make sense to eliminate some branches with redundant

computation, while speculating past others, and this may lead to much greater speedups

than either technique can achieve when applied in isolation. A related idea is to speculate

more than one path for kernels possessing more than one vectorizable path.

As vector lengths continue to grow, it may become increasingly unlikely that a branch

will go in the same direction for the entire vector length for many kernels (branches such

as underflow/overflow guards should be unaffected by increasing length). For kernels where

increasing vector lengths are problematic, we will need to investigate underspeculation, where
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we speculate to only some fraction of the vector length. This is a classic trade off where

increased speculation accuracy reduces peak SIMD performance; by using empirical tuning

we can find the most effective trade off, whether that is full, under-, or over-speculation.

Another technique that should be complementary with speculative vectorization is an

adaptation of loop specialization, where we maintain the original scalar loop in the code

along with the speculatively vectorized loop, and, if at runtime we detect too many jumps

to the scalar cleanup code, we switch to the unvectorized code for the rest of the computa-

tion. The only thing that we would need to add to our framework to support this is scalar

restart counting and some generalization of our loop specialization code, which should be

straightforward.
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CHAPTER 6

SLP VECTORIZATION IN FKO

ATLAS does not directly tune the full matrix multiply BLAS API, GEMM (GEneral rect-

angular Matrix Multiply), instead it tunes simpler microkernel (gemmµ) that operates on

matrices that have been copied to a format optimized for high performance access. The

framework is capable of auto-tuning a suite of gemmµ with individual kernels optimized

for particular problem dimensions. To vectorize the kernel suite, ATLAS’s generator cur-

rently uses the SIMD vector intrinsics supported by various compilers. Given this, why are

we interested in autovectorize scalar code in addition to use intrinsics? The reasons are as

follows:

• Even though we currently target sophisticated users, we eventually want to evolve

FKO until it can deliver excellent performance for non-computational experts. We

therefore want to use the ATLAS kernel set as a starting point for this evolution.

FKO can already auto-vectorize simple loop-carried vectorization using no-hazard loop-

vectorization as implemented in [62]. We have since extended auto-vectorization in

FKO so that it can optimize in face of branches using speculative vectorization (SV) [61]

along with no-hazard after applying if conversion with redundant computation. Now

we need some way to find vectorization for computations that cannot even be expressed

as rolled loops, as in ATLAS’s access-major gemmµ kernels.

• As an extensible method to find arbitrary SIMD parallelism, the best state of the art

method we found was the superword level parallelization (SLP) [31]. SLP is done at

block level for generality, but a state of the art way of extending SLP to arbitrary

loop nests has yet to emerge. Block level parallelism is insufficient when one targets

hand-tuned levels of performance. For HPC usage even low order terms (outer loops)

cannot be ignored. Therefore, the state of the art SLP is insufficient for our usage.
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Further, existing compliers (e.g., ICC, GCC, LLVM) all failed to get good performance

on our access-major formats unless we provide intrinsic code (see the Section 6.2). This

motivated our SLP extension as outlined in the following sections.

• In order to achieve maximum performance, intrinsics must be tied to architecture

specifics. Generalizations of intrinsics tend to lose performance on some architecture

while code using outdated intrinsics may prove inflexible even if the compiler supports

additional SIMD architectural features. Therefore, once the compiler knows of new

architectural features, auto-vectorized code can exploit it whereas an intrinsic imple-

mentation may not be able to be improved by the compiler.

ATLAS’s gemmµ kernels come in two variants: MVEC (vectorized along the rows of the

output matrix C) and KVEC (vectorized along K, the dimension common to both input

matrices A and B). Both of these variants have three levels of loop nesting and the loop order

is MNK. Both are unrolled and jammed. um, un and uk represent the unroll factor of M-, N-,

and K-loops, respectively. Appendix A and B show the full listings of the gemmµ kernels in

FKO’s input language (HIL) and in C that we will later use in our results section. Figure 6.1

shows the loop-nests of both gemmµ kernel types. In Figure 6.1(a), we have loop-nests of

MVEC kernel with unroll factor, um = 4, un = 4 and uk = 1 and in (b), we show loop-nests

of KVEC kernel with unroll factor um = 4, un = 1, uk = 4.

6.1 Description of SLP in FKO

Superword Level Parallelism (SLP)[31] is the state of the art method for auto-vectorizing the

straight line code in any basic block. The main idea of SLP is to exploit ILP by scheduling

isomorphic statements (statements which contain the same operations in the same order) to

pack them together into vector operations. SLP vectorization can also be used to vectorize

the inner-most loop. Later work [39] has extended SLP to vectorize loops after unrolling.

However, auto-vectorization of multiple loop-nests with SLP is harder. We have implemented

a special strategy for SLP in FKO to support nested loops for the ATLAS kernels. In the
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Figure 6.1: Loopnests of access major martix-matrix multiplication(AMM) kernels: (a)
MVEC AMM kernel with um = 4, un = 4, uk = 1 (b) KVEC AMM kernel with um = 4,
un = 1 and uk = 4
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following sections we will describe how our SLP vectorization works for the gemmµ loop-

nests. We will first describe our SLP vectorization for a single basic block, then illustrate how

we extend it to vectorize the innermost loop and eventually, vectorize whole loop-nests from

this starting point. We have also implemented a hybrid SLP technique where we can use

different vectorization techniques for the innermost loop and extend vectorization towards

outer loops (discussed in Section 6.1.5).

6.1.1 Basic Block Vectorization

Our SLP implementation for single basic block works mostly like the original SLP [31].

Therefore our single basic block SLP performs following three steps:

1. Create initial/seed packs: In FKO, we have created initial packs of statements

usually either by grouping of vector length’s numbers of adjacent memory loads or stores.

However, unlike the original SLP, initial packs can also be formed by the vectors created in

predecessor (successor) basic blocks if they are live-in (live-out) to this block.

2. Extend packs from initial packs using def-use and use-def chain: Once the

initial packs of statements have been created, FKO can extend the packs with independent

isomorphic instructions by following the def-use and use-def chains [1]. The idea here is to

find new candidates that can either (a) produce needed source operands in existing packs by

using use-def chain or (b) use the operands defined in existing packs as the source operands

by using def-use chain. The order of the packs in the initial set is important as well.

3. Schedule packs and emit vector instructions: Now that we have all the candidate

packs created, we need to schedule the statements of the basic block to map the statements

of candidate packs. FKO performs dependence analysis before scheduling statements to map

the packs to ensure that statements in packs can be executed safely in parallel. FKO starts

scheduling statements based on the order of the statements in the block. While scheduling a

statement in the block, FKO tries to schedule all statements of the pack which that statement

belongs as long as all the statements on which it is dependent on have been scheduled. If
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the scheduling is successful for the whole block, vector statements can be emitted for each

group of such statement in pack1.

Figure 6.2 shows how FKO creates and extends packs (step 1 and step 2) for the basic

block of the innermost loop (kloop) of the MVEC4x4x1 kernel shown in Figure 6.1(a).

Figure 6.3(a) shows the output after scheduling (step 3) the code and Figure 6.3(b) shows

the final vectorized code. In the kloop block of Figure 6.2(a), we rearranged some of the

computational statements to aid in our description of SLP scheduling. As a first step, FKO

creates initial/seed packs from the adjacent memory loads of pA (see Figure 6.2(b)) and

that of pB (see Figure 6.2(d)). Note that we assume four as the length of SIMD vectors

in this example giving us four statements per pack. Let us first assume that the seed pack

P0 in Figure 6.2(b) (based on loads of pA) is selected. In this case, the tuple of variables

(rA0, rA1, rA2, rA3) is set/defined in this pack, and FKO finds four additional packs (p1

to p4 in Figure 6.2(c)) by exploring the def-use chain where this tuple of variables is used.

But if FKO uses the seed of Figure 6.2(d) (based on loads of pB), it would explore the

packs shown in Figure 6.2(e) where we have tuple of (rB0, rB1, rB2, B3) variables. So, based

on the order of exploration of the initial packs, SLP can result different vectorized codes.

In FKO, we evaluate all those different valid vector codes and estimate the best one by the

effectiveness of the vectorization in terms of the entire loop-nests. The deeper the loopnest is,

the higher the weight it has. Note that once the seed pack of Figure 6.2(b) is selected and used

to explore the packs, FKO cannot use the pack of Figure 6.2(d) since the sequence of tuple

(rB0,..,rB3) violates the required sequence of tuple (e.g., (rB0, rB0, rB0, rB0)) in selected P1

to P4 packs (see Figure 6.2(c)). FKO then schedules the statements of the basic block of the

kloop (shown in Figure 6.3(a)) considering the packs in Figure 6.2(b) and 6.2(c). Note that

the schedule of statements that the packs dictate may not be legal due to the dependence

1In FKO, scheduling and vectorization are done simultaneously but on copied basic blocks.
If scheduling is not successful, all those copies are deleted without changing the original code.

73



���
���������������	��
������
������
�	
���������������	
���������������	

���
�����
�����
���	��
�����

����
�
�	
�����
�����
���	
�����
�����
���	

����

����

����

����	
	������

�
��

��������������������
�	
������
��������
����
�	
��������������������
�	
��������������������
�	

���
�������
������������

	
������

�������
����

	��
�������
������������

	
�������
������������

	

���
��������������������
�	
������
��������
����
�	
��������������������
�	
��������������������
�	

���
��������������������
�	
������
��������
����
�	
��������������������
�	
��������������������
�	

���
���

���
���

���
���

���
���

��������������������
�	
�������
������������

	
��������������������
�	
��������������������
�	

���
������
��������
����
�	
������

�������
����

	��
������
��������
����
�	
������
��������
����
�	

���
��������������������
�	
�������
������������

	
��������������������
�	
��������������������
�	

���
��������������������
�	
�������
������������

	
��������������������
�	
��������������������
�	

���
���

���
���

���
���

���
���

����

�����	
	������

��

��

��

��

�� ��

��

��

��

��

�
�
��������������	
�������
������
�	
����������������	����
�����������������	
��

�������
�����
���	
���������������������
�	
��������
�������
����
�	
���������������������
�	
�
������������������
�	
�



�
����

����
�
�	
�
������
�����������

	
�
�����

������
����

	
�
������
�����������

	
�
������
�����������

	
�
�

�
����
�����
���	
�
������������������
�	
�������
�������
����
�	
��
�����������������
�	
��������������������
�	
���

������
�����
���	��
���������������������
�	
�������
�������
����
�
��������������������
�	
��������������������
�	
������
������������	
��
���
�����	

Figure 6.2: Pack creation in SLP: (a) possible innermost loop (kloop) of MVEC4x4x1 kernel,
(b) initial packs based on loads of pA (c) pack extension based on pA init pack (d) initial
pack based on loads of pB, (e) pack extension based on pB init pack
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Figure 6.3: SLP vectorization of kloop for MVEC4x4x1: (a) After scheduling the code based
on packs (b) After emitting vector codes

among the statements in the block. FKO therefore performs dependence analysis at the

beginning of this step. The statement in line 1 of Figure 6.2(a) is part of the seed pack in

Figure 6.2(b). Therefore, all the four statements of that pack have been scheduled together

(see Figure 6.4(a)). They are already in order and therefore do not violate the dependence.

Figure 6.3(b) shows how VrA vector is created and the loads of pA are converted into a vector

load of pA from this pack when the vector code is emitted. The memory load of pB in line 6
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of Figure 6.2(a) has been initially scheduled as standalone scalar instruction since we are not

using pack P0 of Figure 6.2(d). The statement in line 7 of Figure 6.2(a) is part of pack P1 in

Figure 6.2(c), we therefore want to schedule all the statements in P1 (located from line 7 to

line 10) consecutively. They are in order and do not create any dependence issue. However,

to emit vector statement, we need to create vectors for all the source and destination tuples

of variables guided by the pack. Note that VrA (rA0, rA1, rA2, rA3) is already created.

VrC0 is created with the tuple (rC00, rC10, rC20, rC30) and marked as live-in since all

the scalars in the tuple are live-in at the entry of the block. When VrB0 is created with

the tuple (rB0, rB0, rB0, rB0), the load statement of pB in line 6 is converted into vector

broadcast (see Figure 6.3(b)) when the architecture supports such instruction (otherwise,

shuffle instructions are used to initialize VrB0 from rB0). FKO similarly schedules and emits

vector instructions for the rest of the statements in this block.

6.1.2 Innermost Loop Vectorization

SLP can be used to vectorize the innermost loop after unrolling the loop by vector length

iterations, as a more general approach to unrolling for vectorization discussed in [39] as

loop-aware SLP. The idea here is to unroll the loop by certain iterations and then pack

the statements similar to the above process. In addition to loop unrolling, FKO applies

scalar renaming and scalar expansion to resolve the dependences. Figure 6.1(b) shows a

KVEC kernel with um = 4 un = 1 and uk = 4. This kernel is already unrolled by four

iterations in order to expose KVEC access major storage. FKO recognizes the pattern of

reduction variables (rC00, rC10, rC20 and rC30) of this kernel. It then applies accumulator

expansion to create four accumulators for each of rCx0, and then it renames all the local

variables. The output of such transformations of loop is shown in Figure 6.4(a). Note that

due to accumulator expansion, each instance of rCx0 is replaced by one of the four expanded

variables (e.g., rC00 0,rC00 1, etc.). They are initialized before the loop and accumulated

back in the original variables after the loop. After performing these optimizations, our single
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basic block SLP vectorizer can efficiently vectorize the entire loop block. The vectorized

pseudo-code for the innermost loop of KVEC4x1x4 kernel shown in Figure 6.1(b) is given

in Figure. 6.4(b). Note that we would need vector-initialization at the end of the preheader

of the innermost loop to create vectors from scalar variables which are live-in at the entry

of the loop and vector-reduction in the posttail to reduce the vector into a scalar for those

who are live-out at the end of the loop. However, we can optimize the reduction of vectors

further using a special sequence of vector codes, as discussed in the next section.

6.1.2.1 Optimizing Vector Reductions With the VVRSUM Computation

It is common to apply scalar expansion before vectorization to increase the dependence dis-

tance of reduction variables both in no-hazard and SLP loop vectorization. Therefore, we

may end up with reduction codes after the loop which are used to reduce scalar expanded

variables into the original reduction variables. These reduction codes are inherently non-

vectorizable since they require operations within a given vector (which we call horizontal

operation). When we perform horizontal operation, the parallelism of the vector computa-

tion is logarithmically reduced. However, we can maintain full parallelism throughout the

operation if we always do reductions in batches of the vector length (i.e., we produce a vector

of reduced accumulators by reducing veclen accumulators at once).

For accumulator reduction, we have a specialized series of instructions called VVRSUM

to perform veclen reductions in a fully parallel fashion. For each architecture, the details of

VVRSUM can be different depending on the supported operations. We illustrate it here for

x86, where we can implement this technique using the horizontal add instruction of SSE and

AVX. Figure 6.5 shows how this VVRSUM can be implemented in SSE. As the input we

have four vectors whose horizontal sum we need. The output of VVRSUM is another vector

which consists of the reduced-sum of each input vectors. The sequence of the elements of the

output vector depends on the sequence of input vectors. The implementation of VVRSUM

in SSE uses only three HADD instructions for four vectors with four elements. However, it is
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Figure 6.4: SLP vectorization for kloop of KVEC4x1x4 : (a) kloop after renaming and
accumulator expanding (c) kloop after vectorization (showing elements of vector inside box)

78



��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �	� �	� �	� �	�

�� �� �� �	

� � � � � � � �

� � � �

���� ���� ���� ���� ���� ���� �	�� �	��

��
��
���
���������������������������

������������ 
��
����
���������	��
����
 ������������
�����
���������	��
����
 ������������
�����
���������	��
����
 ������������
�����
�

�� �� �� �	

�	��

�	

Figure 6.5: SSE implementation of VVRSUM using veclen = 4 and four accumulator ex-
panded accumulators

more tricky in AVX since the HADD operation works differently. Figure 6.6 shows how we can

implement VVRSUM in AVX machine. As shown in the figure, we need extra two shuffle

instructions to fix the order of the elements after performing two horizontal operations. Then

we need to perform a vertical operation to sum them up.

6.1.3 Loop-nests Vectorization

Vectorizing loops is most challenging and is also an essential optimization for our studied

gemmµ kernels. To simplify the problem with loop-nests, we define simple loop-nests body

in Definition 1.

Definition 1 (Simple Loop Nests Body). LOOPi = LOOPi-1 + Preheader + Posttail;

LOOP0 = Single Loop block;

Definition 1 is a recursive definition of the body of such simple loop-nests which FKO

applies SLP on. At the depth-most level, the innermost loop consists of a single basic block.

The immediate upper-level loop of the innermost loop consists of the innermost loop and its
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Figure 6.6: AVX implementation of VVRSUM
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preheader and posttail only. The preheader is the block which itself is outside of the loop and

has only the header as successor, and so all paths to the header from outside the loop reach

the header through preheader [1]. Post-tail, on the other hand, is the successor of the tail of

the loop. The posttail is outside the loop and has no non-tail predecessor. In our definition

of the body of simple loop-nests, we have exactly one preheader and posttail for any loop.

In other word, our loop-nest does not have any branches other than the back edge of the

loop. If any loop-nest has any branch depending on the condition of loop-invariant variables,

we first apply loop unswitching to pull the branches out of the loop-nests. We then apply

our SLP vectorization method for the loop-nests. Figure 6.7(a) shows the CFG of a loopnest

matching the Definition 1. We use the SLP vectorization of single block as a building block to

vectorize the whole loop nest. Unlike SLP in other compilers (e.g., SLP in LLVM), we start

vectorizing our loop-nests from the innermost loop (provided that this loop has adjacent

memory accesses). We don’t limit our SLP to a start pack only with memory stores. We can

start initializing our SLP packs from adjacent memory loads, stores or predefined vectors

passed as an argument (especially important when vectorizing the preheader and posttail

of a loop). In the case of innermost loop, we use memory loads and/or stores to initialize

the packs similar to our previous discussion in Section 6.1.1. However, for the preheader and

posttail blocks of a loop, we first try to initialize the packs based on the live-in and live-out

vectors of the loop. If we don’t have live-in/live-out packs or can’t form packs from them,

we then try to form packs from memory loads/stores as outlined in Section 6.1.1.

For example, in Figure 6.7(c) we first try to initialize pack for B1 using the live-in vectors

of B0 and for B2 using the live-out vectors of B0. Eventually, for B5 block, we try to form

initial packs from the live-in vectors of B3 and for B6, we use live-out vectors of B4. the

rest of the SLP steps are the same as the steps of SLP for single block basic. However,

in the posttail block, reduction codes often must be added due to the scalar expansion in

innermost loop and they can be efficiently parallelized using VVRSUM (as discussed in
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Figure 6.7: Steps in loop nests vectorization
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Figure 6.8: SLP vectorization for posttail of kloop of KVEC4x1x4 : (a) posttail after ac-
cumulator expansion (b) posttail after deleting reduction code (c) posttail after vectorizing
remaining codes (d) posttail after adding vvrsum codes at the top

Section 6.1.2.1). Hence, to vectorize the posttail of the loop, we delete the reduction codes

from the block, and vectorize the rest of the statements of the block using our single block

SLP vectorization. Based on the packs of SLP, we use a special sequence of live-in vectors as

the input vectors to VVRSUM to generate appropriate output which matches the vectors of

the posttail. Figure 6.8 shows how FKO vectorizes the posttail of the loop using VVRSUM

code sequences (shown as a function). FKO deletes the reduction codes (see Figure 6.8(b))

at the beginning of the posttail block in Figure 6.8(a) to replace them with VVRSUM codes

later. FKO then applies single block SLP to rest of the code (see Figure 6.8(c)). Based on the

adjacent memory store pattern, it creates pack with memory store statements and vectorizes
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the codes. FKO then adds VVRSUM codes with appropriate input vector sequences to match

the output vector with the existing vectors in the code (see Figure 6.8(d)). Note that the

sequence of the scalars rC00, rC10, rC20 and rC30 inside the vector in Figure 6.8(c) dictates

the order of four input vectors of VVRSUM in Figure 6.8(d).

In Algorithm 6.1, we show how FKO vectorizes single basic block in our SLP extension.

We skip the implementation details for each steps of our algorithm here, since we have

already discussed them in Section 6.1.1. Moreover, the implementations of FindAdjRef(),

ExtendPacklist() and Schedule() routines are similar to [31]. We have three types of

basic blocks in our simple loopnests: loop block, preheader and posttail. For the loop block,

both the initial pack list and the input vector list are empty. We create seed packs based

on the adjacent memory access in line 8 (as we already discussed in Section 6.1.1). In the

case of the posttail, we delete the reduction codes (if they exist) (lines 10-12). If the input

vector list is non-empty (in case of the preheader and the posttail), we attempt to create

packs based on the input vectors from the basic block (line 14). If no packs can be formed

in this way, we use adjacent memory to form seed packs (line 16). We then sort the seed

packs (line 20) based on the sorting criteria passed in as an argument. In line 22, we extend

the packs from the sorted seed packs (as we discussed in Section 6.1.1). The scheduling of

statements and the actual vectorization are done in line 24. We add VVRSUM code as the

last step (if needed).

In Algorithm 6.2, we show briefly how our recursive SLP for loop-nests works. We recur

down to the innermost loop and apply our single basic block SLP vectorization on the loop-

block (line 5) which returns the created vector list Vo. We then apply single basic block

SLP on duplicated preheader (PreBlk) and posttail (PostBlk) block of the innermost loop

(line 17 and 18). If the vectorizations are consistent throughout the loop, we update the

original preheader and posttail with the vectorized codes (line 24 and 31). If they are not

consistent, we gather all live-in (at the entry of the loop) vectors at the end of preheader and
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Algorithm 6.1: SLP Vectroization for Single Basic Block

(1) /*INPUT: Basic Block B, Vector-list Vi, sorting criteria for packs*/
(2) /*OUTPUT: SIMD vector-list Vo if B successfully vectorized*/
(3) funct DoSingleBlockSLP (B, V i, sorting criteria)
(4) /*init packset with empty set*/
(5) P := ∅;
(6) /*step1: create seed packs*/
(7) if (Vi = ∅)
(8) then P := FindAdjRef(B,P, vlen);
(9) else

(10) if (isPosttail(B) ∧ isVvrsumNeeded(B, Vi))
(11) B := DelReductCode(B, Vi);
(12) isvvrsum := true;
(13) fi

(14) P := FindPackFromVlist(Vi);
(15) if (P := ∅)
(16) P := FindAdjRef(B,P, vlen);
(17) fi

(18) fi

(19) /*sort seed packs based on criteria provided*/
(20) P := SortPacks(P, sorting criteria);
(21) /*Step2: extend packs from seed packs*/
(22) P := ExtendPacklist(B,P );
(23) /*Step3: schedule statements and emit vector statements*/
(24) [B, Vo] := Schedule(B,P );
(25) /*add vvrsum code if applicable*/
(26) if (isvvrsum = ture)
(27) B := AddVVRSUM(Vi, Vo, B);
(28) fi

(29) return(Vo);
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Figure 6.9: Inconsistent vectorization: (a) variable Si is used as scalar in successor block (b)
variable Si is element of different vector in successor block

scatter live-out (at the exit of the loop) vectors to scalars at the beginning of the posttail

(line 26 and 33). Vectorization are inconsistent when we have a mismatch in vectors between

two adjacent blocks. Figure 6.9 shows two cases where the vectorization of a block B1 can be

inconsistent with its predecessor B0. In Figure 6.9(a), V i is liveout from the block B0 and

the scalar variable Si is element of the vector. However, Si in block B1 is not part of any

vector. Therefore, without scattering the vector V i to Si at the beginning of the block B1,

the vectorization is not consistent. In Figure 6.9(b), Si is used to form the vector V j but it is

not consistent with the V i at its predecessor block B0. Therefore, the vectorization of B1 is

inconsistent. This inconsistency can be resolved by shuffling the elements of the vector, but

this operation is expensive on some architectures. We therefore avoid this shuffling of vector

elements in our implementation and we discard vector codes of preheader and posttail if

that ever happens. However, it is very unlikely to happen in well written HPC kernels. Note

that even if we suspend vectorization on this block for inconsistency, it may be possible to

vectorize other blocks of outer loops in our method. Note that vectorization can be consistent

even if SLP fails on either the preheader or the posttail. If the vectorization is successful for

this loop, we add all the vectors generated during the vectorization process to the output

list and return it to upper level of loop. This process repeats until we we have vectorized all

nested loops within this loop nest.
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Algorithm 6.2: Loopnests SLP Vectorization

(1) funct DoLoopNestsVec(LOOP, sorting criteria)
(2) /*exit condition: reach innermost loop*/
(3) if (LOOPi = LOOP0)
(4) then

(5) Vo := DoSingleBlkSLP(LOOP0.blk,NULL, sorting criteria);
(6) returnVo;
(7) fi

(8) /*recursion on next deep level loop*/
(9) Vo1 := DoLoopNestsVec(LOOPi−1, sorting criteria);

(10) /*copy scalar prehead and posttail to apply SLP on*/
(11) PreBlk := Clone(LOOPi−1.P rehead);
(12) PostBlk := Clone(LOOPi−1.Posttail);
(13) /*find live-in,live-out vectors*/
(14) Vin := FindLiveInVector(Vo1, LOOPi−1);
(15) Vout := FindLiveOutVector(Vo1, LOOPi−1);
(16) /*attempt SLP on scratched preheader and posttail*/
(17) Vo2 := DoSingleBlkSLP(PreBlk, Vin, sorting criteria);
(18) Vo3 := DoSingleBlkSLP(PostBlk, Vout, sorting criteria);
(19) /*check vector consistency of loop, prehead and posttail*/
(20) if (isConsistent(LOOPi, P reBlk, PostBlk))
(21) then

(22) /*if SLP is successful in PreBlk, update preheader with vec code*/
(23) if (Vo2 6= ∅)
(24) then LOOPi−1.P rehead := PreBlk;
(25) else

(26) LOOPi−1.P rehead := AddVectorGather(LOOPi−1.P rehead, Vin);
(27) fi

(28) /*if SLP is successful in PostBlk, update posttail with vec code; */
(29) if (Vo3 6= ∅)
(30) then

(31) LOOPi−1.Posttail := PostBlk;
(32) else

(33) LOOPi−1.Posttail := AddVectorScatter(LOOPi−1.Posttail, V out);
(34) fi

(35) Vo := Combine(Vo1, Vo2, Vo3);
(36) return(Vo);
(37) /*inconsistent, discard vector code, add scatter/gather code*/
(38) else

(39) LOOPi−1.P rehead := AddVectorGather(LOOPi−1.P rehead, Vin);
(40) LOOPi−1.Posttail := AddVectorScatter(LOOPi−1.Posttail, Vout);
(41) return(NULL);
(42) fi
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6.1.4 Restriction and Correctness

The original SLP vectorization [31] is supposed to vectorize a single basic block. So, vector-

gather operations are used at the beginning to create vectors which consist of the scalars

that are live-in at the start of the block. We do not want to keep scatter/gather code inside

the loop, so we hoist the gather code up to preheader and push the scatter code down to

the posttail and out of the loop. Not only do we hoist and push them out, but also try to

initiate SLP with the vectors to vectorize preheaders and posttails so that we can continue

to hoist and push them towards outer loops and even eliminate them (if we reach to their

definitions and vectorization is successful). We therefore push the vectorization both ways

(up and down) from innermost loop (unlike bottom-up approach from memory-store found in

LLVM). This is key to our success in achieving very high performance in our studied gemmµ

kernels. To make the process simpler, we need a single point of entry and exit to and from

the loop. Pre-header and posttail serve this purpose. Note that the idea of a single entry to

loop (preheader) is already well-known for natural loop (compiler may create preheader to

achieve that)[1]. To expand our vectorization from innermost loop to outer-loop, we assume

single exit of loop (this is true for all countable loops) as well. We therefore maintain a

strict loop structure which we call simple loop-nests, defined in Definition 1 where we don’t

allow any branch other than the branch needed for the back-edge of the loop. Our SLP

vectorization inside a single block is similar to the paper [31]. FKO performs dependence

analysis to validate the scheduling of the scalar statements to emit vector code. Therefore,

as long as the scheduling of statements does not violate the dependence of original program,

the vectorization will not produce any wrong code. Since in our loop structure, there is only

one entry to and exit from the loop, hoisting and pushing the live-in and live-out vectors out

of the loop also produces valid code. We test the consistency of vectorization among blocks

along all potential edges (preheader to header, tail to posttail and posttail to preheader). By

consistency we mean: no scalar which is an element of live-out vectors is used as a scalar in
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a successor block. If this scalar is used as an element of any vector in successor block, both

vectors in predecessor and successor must be same. If our consistency test fails, we avoid

vectorization in preheader and posttail and added vector-gather at the end of preheader and

vector-scatter code at the beginning of posttail. However, the outer level of loops (beyond

this preheader and posttail) may still be vectorized if the vectorization is proved valid for

them.

6.1.5 Hybrid Approach: Innermost by Loop Vectorization and Outer by SLP

In our loop-nest vectorization, other vectorization methods can be used to vectorize the

innermost loop. For example, we can apply FKO’s no hazard loop vectorization in the in-

nermost loop but extend vectorization by SLP outwards from preheader and posttail of the

innermost loop. We can vectorize the loopnests of the L2BLAS (e.g., GEMVT) kernels with

this hybrid approach. Speculative vectorization can also be used to vectorize the innermost

loop in this approach. However, we have not added speculative vectorization in our current

implementation of this hybrid approach.

6.2 Experiments and Results

To validate the effectiveness of our auto-vectorization technique, we have performed three dif-

ferent experiments. In the first two experiments (described in Section 6.2.1 and Section 6.2.2),

we compare the effectiveness of the autovectorization methods of different compilers on

gemmµ kernels. The third experiment, which is described in Section 6.2.3, compares the

results of our autovectorization technique with ATLAS’s existing generated SIMD intrinsic

kernels and hand tuned kernels on four different machines.

6.2.1 Tuning gemmµ on ATLAS with Autovectorization of Different
Compilers

To fairly test auto-vectorization capabilities, we produced a code generator that could gener-

ate scalar code (ATLAS’s original code generator is manually vectorized using intrinsics). We

then ran the full tuning search for each compiler to find the highest performing autovectorized

gemmµ each compiler is capable of producing. Table 6.1 summarizes the tuning parameters
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Figure 6.10: Best-case autovectorization performance of various compilers as a percentage
of the performance FKO achieves for an Intel Haswel machine

found by the search for each compiler on Intel Core i5-4670 machine. Figure 6.10 then shows

the performance these best-case kernels achieved as a percentage of FKO’s. As evident from

Figure 6.10, LLVM and ICC can manage only around 60% of FKO’s performance on this

machine, while GCC achieves less than 20%.

6.2.2 Comparing Autovectorization of Different Compilers for Specific gemmµ
Kernels

To investigate the failures of autovectorization of the industry standard compilers from our

previous experiment, we selected three kernels, timed them and then analyzed the output

assembly produced by each compiler (see Appendix B for example gemmµ listings). Fig-

ure 6.11 shows the performance of different compilers’ autovectorization in terms of percent-

age of FKO’s performance for these selected kernels. FKO vectorized all the basic blocks of

their loopnests, while other compilers failed to vectorize them effectively. The summary of

Table 6.1: ATLAS’s tuning results for gemmµ using autovectorization of different compilers

Compiler Kernel selected Block Factor

FKO dmvec12x4x1 168x168x179
ICC dmvec4x4x1 304x304x304
GCC dmvec12x1x1 252x252x261
LLVM dmvec12x4x1 168x168x179
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Figure 6.11: Autovectorizaton performance of LLVM (solid blue), ICC (right upward diag-
onal hashed red) and GCC (right downward diagonal hashed green) as a percentage of the
performance FKO achieves for three specific gemmµ kernels on Intel Haswel machine.

our findings are as follows:

1. dmv12x4x1: This MVEC kernel with um = 12, un = 4 and uk = 1 was selected as

the best kernel on the machine when FKO and LLVM were used (a similar MVEC

kernel was selected for hand tuned and the intrinsic generator). LLVM vectorized all

operations of the whole loopnests of this kernel. However, it generated vector-shuffle in-

structions and spilled registers inside the innermost loop which caused its performance

loss. ICC on the other hand only vectorized the innermost loop, treating the memory

access as strided and therefore generated a large number of shuffle instructions inside

the innermost loop, which results in substantial performance loss compared to FKO or

LLVM. GCC only vectorized the posttail and failed to vectorize any other basic blocks

in the loopnests.

2. dmv12x4x1 sp: Analysis of the prior (best case) kernel indicated that part of ICC’s

problem with it was due to live-in scalar variables. To aid the compiler, we modified

the kernel by jamming all the loads of pA and minimizing the live-in variables at

the entry of the innermost loop. ICC could now vectorize the preheader along with
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Table 6.2: Machine specification

Machine Processor Speed FPU support

Corei34 (skylake) Intel Corei 7-6700K CPU 4.0GHz AVX2
corei324 (haswell) Intel Xeon E5-2670 2.3 GHZ AVX2
corei212 (ivy bridge) Intel Xeon E5-2620 2.1 GHz AVX
Opt32 (Opteron) AMD Opteron 6128 2.0 GHz SSE4.1

the innermost loop, but generated extra reduction codes on posttail (due to failing

to apply SLP). The icc-improving modification strongly reduced LLVM’s performance

by removing its ability to vectorize the inner-loop predecessor blocks. As before, GCC

failed to vectorize any block other than posttail as well.

3. dkv12x1x4: This KVEC kernel with um = 12, un = 1 and uk = 4 was the best KVEC

kernels selected when FKO was used (the same tuning parameters were used in the

intrinsic generator when tuning KVEC kernels). FKO not only vectorized all the blocks

in loop-nests, but also applied VVRSUM codes to parallelize the reduction codes. All

other compilers only managed to vectorize the innermost loop.

6.2.3 Comparing Autovectorization of FKO with SIMD Intrinsic and
Handtuned Kernels in ATLAS

As our final experiment, we compared FKO’s autovectorization with ATLAS’s generated

SIMD intrinsic and hand tuned kernels on different machines. Hand tuned kernels performed

the best since they are written in assembly exploiting architecture-specific optimizations.

Figure 6.12 shows the peak performance of FKO’s autovectorization (using modified genera-

tor) and SIMD intrinsic (using ATLAS’s intrinsic generator) as a percentage of performance

achieved by hand tuned kernels after running the full search. Figure 6.12 shows best-case

performance between FKO’s autovectorization and SIMD intrinsic as the percentage of the

performance of hand tuned codes on different machines. Table 6.2 summarizes the machine

specifications used in this experiment.

The performance of FKO’s autovectorization is comparable with the ATLAS’s SIMD in-

trinsic generator. FKO even performed better on corei34 where GCC spilled registers inside
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Figure 6.12: Best-case performance between FKO’s autovectorization (solid blue) and GCC
SIMD-intrinsic (hashed red) as the percentage of performance hand tuned codes achieve in
ATLAS on different machines

innermost loop when compiling the intrinsic code. Hence the best kernel for that machine

was not chosen in this case. The fact that our autovectorization is always competitive shows

that our modification of SLP is extremely effective.

6.3 Related Work

Larsen and Amarasinghe [31] were the first to present super-word level parallelism (SLP) vec-

torization which dealt with straight line of code in basic block. Their algorithm is simple but

effective in vectorizing basic blocks. This technique has been adapted by most of the industry

compilers (e.g., GCC, ICC, LLVM) [50, 38, 39]. Shin, Hall and Chame [57] extends SLP to

vectorize blocks with dynamic control flow. Rosen, Nuzman and Zaks [39] showed how SLP

can be used to vectorize innermost loop after using loop unrolling in their “Loop-ware” SLP

vectorization method. To minimize the difficulties to find isomorphic statements in packs,

Porpodas, Magni and Jones [43] proposed “PSLP” which padded redundant instructions to

transform non-isomorphic sequence into isomorphic ones. Gao et al. [26] proposed “Insuffi-

cient Vectorization” where they vectorized code with partial use of vector register when the
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inherent parallelization of the code is poor. Porpodas and Jones [42] showed how limiting

SLP vectorization by pruning the dependence graph can increase the overall performance

since it may reduce the penalty of vector shuffle instructions for the scatter/gather operation

SLP introduced. None of these methods solve the specific problem of the whole loopnests

vectorization for our HPC kernels.

6.4 Conclusions and Future Work

This chapter presents a new approach to apply autovectorization on loopnests which extends

the existing SLP vectorization beyond a single basic block and the innermost loop by ini-

tializing the packs of outer loops with the live-in and live-out vectors created in inner loops

and combining the parallelization of reduction codes with a special sequence codes (VVR-

SUM). We have implemented this technique in our compilation framework and interfaced

it with ATLAS. Our technique can effectively vectorize the complete loopnests of all the

gemmµ kernels in ATLAS and can achieve up to 98% performance of ATLAS’s hand tuned

kernels. It significantly outperforms the autovectorizations of industry compilers for those

kernels. However, our extended SLP vectorization works well on simple loopnest defined in

this chapter where the loopnests do not have any branch other than the loop-branch and

this restriction suits well for our studied HPC kernels. Note that our technique can still

vectorize the innermost loop (and partial loopnests which follow the definition) even if the

whole nested-loop is not a simple loopnest. Moreover, we have combined this technique with

other innermost vectorization technique (e.g., traditional loop vectorization) to vectorize the

L2BLAS kernels. We believe it can also be combined with our speculative vectorization which

works in presence of conditional branches in loops. We have not found any HPC kernels re-

quiring this combinations yet. When we do, we will explore how we can combine speculative

vectorization and SLP to vectorize more complex loopnests.
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CHAPTER 7

REPRESENTATION OF TWO DIMENSIONAL ARRAY IN
FKO

FKO supports two dimensional column major arrays. In column major, the elements of a

column are consecutive and the elements of a row are strided. We refer to the stride between

elements in a row as the “leading dimension of the array” (lda). In Figure 7.1, we consider

a matrix with number of rows M = 5, number of columns N = 3 and the leading dimension

lda=6 and it shows both the (a) logical storage and (b) physical memory for that matrix in

column major format of array storage. Note that lda >= M (i.e., the number of rows M in

matrix can be different than the actual leading dimension of the array). Also note that the

elements of the first column (e.g., (0,0), (1,0), (2,0), etc) in Figure 7.1(a) are actually stored

in physical memory consecutively in Figure 7.1(b) and the elements of the first row (e.g.,

(0,0), (0,1), (0,2)) of the array in Figure 7.1(a) are stored lda (six elements) apart (not M)

in actual physical memory in Figure 7.1(b).
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Figure 7.1: Column-major storage of a two-dimensional array with M=5, N=3 and lda=6
: (a) Logical storage (b) Physical memory
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1 ( a ) DECLARATION
2 −−−−−−−−−−−−−−−
3 TYPE [ s t r i d e−between−rows ] [ ∗ ] : : array−name ;
4 UNROLLARRAY : : array−name( row−unro l l−f a c to r , column−unro l l−f a c t o r ) ;
5

6 (b) EXAMPLE
7 −−−−−−−−−−−
8 DOUBLEARRAY [ lda ] [ ∗ ] : : A;
9 UNROLLARRAY : : A( ∗ , 6 ) ;

Figure 7.2: Declaration and example of pointer to two dimensional array in FKO

7.1 Declaration of Pointer to Two Dimensional Array in FKO

In FKO, a pointer can be declared as a pointer to a two dimensional array. This declaration

has two parts: dimension information, and unroll information. As dimension information, we

need to specify the stride between rows (mandatory run- or compile-time constant LDA) and

number of rows (optional) in the array. Unroll information is used to provide FKO a heads-

up about the maximum index of column used inside the whole routine to access any element

of the array, so that FKO can pre-compute all the addresses of column without analyzing

the code. Note that we can provide unroll factor for rows but it is optional and LDA can

be a constant or a variable but the max unroll factor must be a constant. Figure 7.2 shows

the basic structure and an example of a pointer to two dimensional array. In the example of

Figure 7.2(b), we have declared a double array, A, which has lda stride between the elements

in a row and a column unroll factor of six (lda would typically be an integer parameter to the

routine). Max unroll 6 implies a column index between 0 and 5. Figure 7.3 shows an example

of a routine using a two dimensional array in FKO’s input language. This is a L2BLAS kernel

(GEMVT) where the unroll and jam[4] optimization has been applied. The unroll factor of

the outer loop-unrolling is six. Inside the inner loop, we are accessing six columns in a single

iteration. The array A is declared with the row stride of lda. So, the address of any element

of array, A[i][j], can arithmetically be computed by

A + lda*j + i

To avoid costly arithmetic (multiplications) inside the innermost loop, FKO pre-computes

the address of each column and stores all (or, some) of them in internal variables.
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1 ROUTINE ATLUGEMV;
2 PARAMS : : M, N, A, lda , X, Y;
3 INT : : M, N, lda ;
4 DOUBLE PTR : : X, Y;
5 DOUBLEARRAY [ lda ] [ ∗ ] : : A;
6 UNROLLARRAY : : A( ∗ , 6 ) ;
7 ROUT LOCALS
8 INT : : i , j , ldam ;
9 DOUBLE : : y0 , y1 , y2 , y3 , y4 , y5 , a0 , a1 , a2 , a3 , a4 , a5 , a6 , x0 ;

10 ROUT BEGIN
11 ldam = lda ∗ 6 ;
12 ldam = ldam − M;
13 j = N;
14 NLOOP:
15 y0 = Y[ 0 ] ;
16 y1 = Y[ 1 ] ;
17 y2 = Y[ 2 ] ;
18 y3 = Y[ 3 ] ;
19 y4 = Y[ 4 ] ;
20 y5 = Y[ 5 ] ;
21

22 LOOP i = 0 , M
23 MUTUALLYALIGNED(32) : : ∗ ;
24 LOOPBODY
25 x0 = X[ 0 ] ;
26 a0 = A [ 0 ] [ 0 ] ;
27 y0 += a0 ∗ x0 ;
28 a1 = A [ 0 ] [ 1 ] ;
29 y1 += a1 ∗ x0 ;
30 a2 = A [ 0 ] [ 2 ] ;
31 y2 += a2 ∗ x0 ;
32 a3 = A [ 0 ] [ 3 ] ;
33 y3 += a3 ∗ x0 ;
34 a4 = A [ 0 ] [ 4 ] ;
35 y4 += a4 ∗ x0 ;
36 a5 = A [ 0 ] [ 5 ] ;
37 y5 += a5 ∗ x0 ;
38 A += 1 ;
39 X += 1 ;
40 LOOP END
41 Y[ 0 ] = y0 ;
42 Y[ 1 ] = y1 ;
43 Y[ 2 ] = y2 ;
44 Y[ 3 ] = y3 ;
45 Y[ 4 ] = y4 ;
46 Y[ 5 ] = y5 ;
47 A += ldam ;
48 Y += 6 ;
49 X = X−M;
50 j = j − 6 ;
51 IF ( j > 0) GOTO NLOOP;
52 ROUTEND

Figure 7.3: Example of two dimensional array in HIL code for DGEMVT kernel with max
unroll-factor six
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In the following two sections, we will first discuss how FKO translates the memory address

of a two dimensional array in general for all architectures and then, after discussing the

powerful addressing mode of the x86, we will discuss how FKO exploits that to optimize the

performance of memory addressing for such array.

7.1.1 Default 2D Array Addressing

When no architecture specific optimization is applied, FKO converts a pointer to a two

dimensional array into multiple pointers to the one dimensional columns of the array using

the lda and the unroll factor specified in the declaration. The lda can either be a variable

or a constant. Since FKO treats all two dimensional arrays as column major, it creates

pointers to point at each unrolled column of the array simply, with the next column pointer

initialized by adding lda to the prior column’s pointer. For a column unroll factor of six,

FKO would therefore use six 1D pointers. In lines 12-17 of Figure 7.4, we see how FKO

initializes its internal column pointers (e.g., A0, A1, . . ., A5 ) to point at each column

of the array. The access of the first element in the first column, A[0][0], is converted

into A0[0], the first element in the second column, A[0][1], into A1[0] and so on (see

lines 33, 35, 37, 39, 41 and 43 of Figure 7.4). The increment of the pointer to the 2D array,

A, is therefore converted into increments to six column-pointers (see lines 45-50 and 59 of

Figure 7.4). Note that although this approach saves integral arithmetic operations when

addressing the array within the loop, and therefore shortens dependence chains, it increases

the register pressure inside the loop. We now need five extra registers to hold all the column

addresses. At the end of the loop, we also need six addition operations to update the pointers.

We will now discuss how we can minimize the register pressure on the x86 using its powerful

addressing mode next.

7.1.2 Exploiting x86 Addressing Modes for 2D Arrays

The x86 architecture has a very flexible addressing mode to calculate the effective address:

Effective Address = Base Address + (Index * Multiplier) + Constant offset
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1 ROUTINE ATLUGEMV;
2 PARAMS : : M, N, A, lda , X, Y;
3 INT : : M, N, lda ;
4 DOUBLE PTR : : X, Y;
5 DOUBLEARRAY [ lda ] [ ∗ ] : : A;
6 UNROLLARRAY : : A( ∗ , 6 ) ;
7 ROUT LOCALS
8 INT : : i , j , ldam ;
9 DOUBLE : : y0 , y1 , y2 , y3 , y4 , y5 , a0 , a1 , a2 , a3 , a4 , a5 , a6 , x0 ;

10 ROUT BEGIN
11 // compi ler ’ s i n t e r na l p t r a r i t h
12 A0 = A;
13 A1 = A0 + lda ;
14 A2 = A1 + lda ;
15 A3 = A2 + lda ;
16 A4 = A3 + lda ;
17 A5 = A4 + lda ;
18 // end o f compi ler ’ s i n t e r na l p t r a r i t h
19 ldam = lda ∗ 6 ;
20 ldam = ldam − M;
21 j = N;
22 NLOOP:
23 y0 = Y[ 0 ] ;
24 y1 = Y[ 1 ] ;
25 y2 = Y[ 2 ] ;
26 y3 = Y[ 3 ] ;
27 y4 = Y[ 4 ] ;
28 y5 = Y[ 5 ] ;
29 LOOP i = 0 , M
30 MUTUALLYALIGNED(32) : : ∗ ;
31 LOOPBODY
32 x0 = X[ 0 ] ;
33 a0 = A0 [ 0 ] ;
34 y0 += a0 ∗ x0 ;
35 a1 = A1 [ 0 ] ;
36 y1 += a1 ∗ x0 ;
37 a2 = A2 [ 0 ] ;
38 y2 += a2 ∗ x0 ;
39 a3 = A3 [ 0 ] ;
40 y3 += a3 ∗ x0 ;
41 a4 = A4 [ 0 ] ;
42 y4 += a4 ∗ x0 ;
43 a5 = A5 [ 0 ] ;
44 y5 += a5 ∗ x0 ;
45 A0 += 1 ;
46 A1 += 1 ;
47 A2 += 1 ;
48 A3 += 1 ;
49 A4 += 1 ;
50 A5 += 1 ;
51 X += 1 ;
52 LOOP END
53 Y[ 0 ] = y0 ;
54 Y[ 1 ] = y1 ;
55 Y[ 2 ] = y2 ;
56 Y[ 3 ] = y3 ;
57 Y[ 4 ] = y4 ;
58 Y[ 5 ] = y5 ;
59 A0 += ldam ; A1 += ldam ; A2 += ldam ; A3 += ldam ; A4 += ldam ; A5 += ldam ;
60 Y += 6 ;
61 X = X−M;
62 j = j − 6 ;
63 IF ( j > 0) GOTO NLOOP;
64 ROUTEND

Figure 7.4: Pseudocode for the address-translation in general approach done by FKO for
DGEMVT kernel shown in Figure 7.3
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This addressing mode can use two registers (base and index), one multiplier of value 1, 2, 4,

or 8 and a constant offset or displacement. In 2-D array indexing, the base register holds

the pointer, while the index register holds multiples of lda. We can then calculate column

addresses with fewer registers and pointer updates. We assume that the row indices are

constant, so they can be encoded in to the constant part of the addressing mode. Figure 7.5

illustrates how FKO minimizes the number of column pointers and arithmetic operations

by exploiting this addressing mode. Note that this figure shows pseudocode: Since FKO

generates assembly, it calculates addresses in bytes, not elements of array as shown here, but

the idea is the same. More generally, Table 7.1 shows the addressing mode arithmetic required

to compute all column addresses up to a max unroll of 16. Each element of the row with

MUR (max unroll) of 6 shows the calculation used to find the start of the given column index

shown along the top row. Suppose we want to compute the address for A[1][4] assuming

unroll factor six. In our default mode, this would be A4[1], but as shown in Table 7.1, we

will use A2+lda*2+1, which in assembly form looks like 4(A2, lda,2) (assuming A2 and lda

were actually registers, and A is of type float). Figure 7.5 shows this optimization applied

in FKO’s input language (HIL) using a max unroll factor of six. Based on the sixth of row

of the Table 7.1, we need one column pointer (A2) and three additional variables/registers

to save lda, (-1*lda) and (3*lda). In lines 12-14 of Figure 7.5, FKO pre-computes those

values into the internal variables (e.g., A2, lda n and lda 3). Note that A2 stores the

address of the third column. To compute the column addresses of indices 0-5, FKO uses the

following calculations to compute each column address:

Column1 : A2 + (−lda) ∗ 2

Column2 : A2 + (−lda) ∗ 1

Column3 : A2

Column4 : A3 = A2 + lda ∗ 1

Column5 : A4 = A2 + lda ∗ 2
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1 ROUTINE ATLUGEMV;
2 PARAMS : : M, N, A, lda , X, Y;
3 INT : : M, N, lda ;
4 DOUBLE PTR : : X, Y;
5 DOUBLEARRAY [ lda ] [ ∗ ] : : A;
6 UNROLLARRAY : : A( ∗ , 6 ) ;
7 ROUT LOCALS
8 INT : : i , j , ldam ;
9 DOUBLE : : y0 , y1 , y2 , y3 , y4 , y5 , a0 , a1 , a2 , a3 , a4 , a5 , a6 , x0 ;

10 ROUT BEGIN
11 // compi ler ’ s i n t e r na l p t r ar i t hmat i c
12 A2 = A + 2∗ lda ;
13 l d a n = − lda ;
14 l d a 3 = 3 ∗ lda ;
15 // end o f compi ler ’ s i n t e r na l p t r ar i t hmat i c
16 ldam = lda ∗ 6 ;
17 ldam = ldam − M;
18 j = N;
19 NLOOP:
20 y0 = Y[ 0 ] ;
21 y1 = Y[ 1 ] ;
22 y2 = Y[ 2 ] ;
23 y3 = Y[ 3 ] ;
24 y4 = Y[ 4 ] ;
25 y5 = Y[ 5 ] ;
26

27 LOOP i = 0 , M
28 MUTUALLYALIGNED(32) : : ∗ ;
29 LOOPBODY
30 x0 = X[ 0 ] ;
31 a0 = ( A2 , lda n , 2 ) [ 0 ] ; // A0 = A2 − 2∗ l da
32 y0 += a0 ∗ x0 ;
33 a1 = ( A2 , l da n ) [ 0 ] ; // A1 = A2 − l da
34 y1 += a1 ∗ x0 ;
35 a2 = A2 [ 0 ] ; // A2
36 y2 += a2 ∗ x0 ;
37 a3 = ( A2 , lda ) [ 0 ] ; // A3 = A2 + lda
38 y3 += a3 ∗ x0 ;
39 a4 = ( A2 , lda , 2 ) [ 0 ] ; // A4 = A2 + 2∗ l da
40 y4 += a4 ∗ x0 ;
41 a5 = ( A2 , l d a 3 ) [ 0 ] ; // A5 = A2 + 3∗ l da
42 y5 += a5 ∗ x0 ;
43 A2 += 1 ;
44 X += 1 ;
45 LOOP END
46 Y[ 0 ] = y0 ;
47 Y[ 1 ] = y1 ;
48 Y[ 2 ] = y2 ;
49 Y[ 3 ] = y3 ;
50 Y[ 4 ] = y4 ;
51 Y[ 5 ] = y5 ;
52 A2 += ldam ;
53 Y += 6 ;
54 X = X−M;
55 j = j − 6 ;
56 IF ( j > 0) GOTO NLOOP;
57 ROUTEND

Figure 7.5: Pseudocode for the optimized address-translation done by FKO for DGEMVT
kernel shown in Figure 7.3
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Column6 : A5 = A2 + (3 ∗ lda) ∗ 1

Figure 7.5 uses such calculation in lines 31, 33, 35, 37, 39 and 41). In this way, FKO can

access those six columns with only four registers. Another advantage of this technique is that

we need only one addition operation to update the pointer( A2) at the end of the loop (see

line 43 of Figure 7.5). In contrast, the general approach (discussed in previous section) uses

six registers and needs six addition operations to update each column pointer.

Table 7.2 summarizes the register usage and arithmetic operations needed for pointer

updates for each max unroll factor. It also provides information on how much we can save

in register usage and pointer updates over the general approach we discussed before. For

example, this technique does not use any less registers until we get to an unroll factor

of 4. Note, however, that it starts saving updates at a max unroll of only 2: this type of

discrepancy is because this optimization replaces loop-variable pointers with loop-invariant

indices, enabling FKO to limit updates even when the register pressure is not reduced. As

the max unroll is increased, we see that both the register and update savings increase as

well.

7.2 Experiments and Results

We have performed an experiment to validate the effectiveness of our 2D array addressing

optimization. The kernels we chose for this experiment were the double precision level-2

GEMVT kernels with different unroll and jam factors. We timed these kernels using ATLAS’s

timing framework on Intel Haswell machine (Intel Core i5-4670 processor). We used in-cache

data for the timing. We enabled FKO’s no-hazard loop vectorization and didn’t perform

any other tuning for those kernels. Table 7.2 shows the benefit of using optimized 2D array

addressing over the general approach for these kernels. The greater unroll factor we use, the

more benefit we get in terms of the savings of registers and arithmetic operations needed for

updating the pointers. However, these kernels are floating point computation heavy and the

register pressure for floating points increases with the larger unroll factor. We therefore did
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Table 7.1: Rows of the table show the maximum unroll factor used in the loop, while the
columns show the column index of the 2-D array (which start from zero). The cells then
show the indexing computation required to go to that column, with indices beyond the max
unroll set to n/a. All multiplications and additions are done using the x86 addressing modes,
while subtractions require additional registers to hold the negative values, as does L3, which
holds 3*L. Note that for max unroll ≥ 9 you must consult both subtables to get all valid
indices, which have been split to fit the page.

IDX/ 0 1 2 3 4 5 6 7
MUR

1 A0 n/a n/a n/a n/a n/a n/a n/a

2 A0 A0+L n/a n/a n/a n/a n/a n/a

3 A2-L*2 A2-L A2 n/a n/a n/a n/a n/a

4 A2-L*2 A2-L A2 A2+L n/a n/a n/a n/a

5 A2-L*2 A2-L A2 A2+L A2+L*2 n/a n/a n/a

6 A2-L*2 A2-L A2 A2+L A2+L*2 A2+L3 n/a n/a

7 A2-L*2 A2-L A2 A2+L A2+L*2 A2+L3 A2+L*4 n/a

8 A2-L*2 A2-L A2 A2+L A2+L*2 A7-L*2 A7-L A7

9 A2-L*2 A2-L A2 A2+L A2+L*2 A7-L*2 A7-L A7

10 A2-L*2 A2-L A2 A2+L A2+L*2 A7-L*2 A7-L A7

11 A2-L*2 A2-L A2 A2+L A2+L*2 A7-L*2 A7-L A7

12 A2-L*2 A2-L A2 A2+L A2+L*2 A7-L*2 A7-L A7

13 A2-L*2 A2-L A2 A2+L A2+L*2 A9-L*4 A2+L*4 A9-L*2

14 A2-L*2 A2-L A2 A2+L A2+L*2 A9-L*4 A2+L*4 A9-L*2

15 A2-L*2 A2-L A2 A2+L A2+L*2 A7-L*2 A7-L A7

16 A2-L*2 A2-L A2 A2+L A2+L*2 A7-L*2 A7-L A7

IDX/ 8 9 10 11 12 13 14 15
MUR

9 A7+L n/a n/a n/a n/a n/a n/a n/a

10 A7+L A2+L*2 n/a n/a n/a n/a n/a n/a

11 A7+L A2+L*2 A2+L*8 n/a n/a n/a n/a n/a

12 A7+L A7+L*2 A2+L*8 A7+L*4 n/a n/a n/a n/a

13 A9-L*2 A9-L A9 A9+L A9+L*2 A9+L3 n/a n/a

14 A9-L*2 A9-L A9 A9+L A9+L*2 A9+L3 A9+L*4 n/a

15 A7+L A7+L*2 A2+L*8 A7+L*4 A12 A12+L A12+L*2 n/a

16 A7+L A7+L*2 A2+L*8 A7+L*4 A12 A12+L A12+L*2 A7+L*8

103



not realize the benefit of our optimization in terms of speedup for the larger unroll factors. We

got peak performance for this kernel at the unroll-factor=5 and we still managed to achieve

2% speedup using this optimization at this unroll-factor. However, the main advantage of

the optimization is that it prevents integer register pressure from inhibiting optimizations

that can lead to the best kernel, depending on architecture.

Table 7.2: Registers and updates needed in optimized two dimensional array of DGEMVT
code shown in Figure 7.5 and benefit of this translation over general approach shown in
Figure 7.4

Unroll
Factor

Register needed in optimized addressing Benefit of optmized addressing
over general approach

Pointers Index Total Register
Saved

Update
Saved

Speedup

1 P0 1 0 0 0.99
2 P0 lda 2 0 1 1.01
3 P1 lda, -lda 3 0 2 1.02
4 P1 lda, -lda 3 1 3 1.02
5 P2 lda, -lda 3 2 4 1.02
6 P2 lda, -lda, 3*lda 4 2 5 1.01
7 P2 lda, -lda, 3*lda 4 3 6 1.03
8 P2, P7 lda, -lda 4 4 6 1.02
9 P2, P7 lda, -lda 4 5 7 1.04
10 P2, P7 lda, -lda 4 6 8 1.04
11 P2, P7 lda, -lda 4 7 9 1.04
12 P2, P7 lda, -lda 4 8 10 1.02
13 P2, P9 lda, -lda, 3*lda 5 8 11 1.05
14 P2, P9 lda, -lda, 3*lda 5 9 12 1.06
15 P2, P7, P12 lda, -lda 5 10 12 1.05
16 P2, P7, P12 lda, -lda 5 11 13 1.03

7.3 Conclusions and Future Work

This chapter presents a method to optimize the memory addressing of two dimensional arrays

in unrolled and jammed code for the x86 architecture. This addressing optimization is used

in handtuned assembly codes inside ATLAS, but we have formalized this technique and

implemented it in our compilation framework so that any kernel addressing 2D arrays can

reap this benefit without writing in assembly. This optimization minimizes the addressing
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computations in the loop, but much more importantly it can significantly reduce integer

register pressure for unroll and jammed kernels. This can result in speedup even for the

floating point computation heavy kernels (e.g., gemvt) as shown in the Table 7.2. Future

work includes extending this technique for arrays beyond two dimensions (our present kernel

set contains only 1-D or 2-D arrays).
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CHAPTER 8

SUMMARY AND CONCLUSIONS

We have picked up the research of the iterative and empirical compilation from where the

original iFKO [62] left off. This early effort showed impressive results for all L1BLAS kernels

except the two kernels which have conditional branches inside loops. Branches inside loops

not only affect performance adversely when misprediction occurs, but also inhibit other

compiler optimizations such as SIMD vectorization.

Since SIMD vector units are ubiquitous in modern microprocessors, their effective uti-

lization is critical to attaining high performance. To solve this problem, we have not only

implemented the state of the art method to reduce paths for a limited predicate-supported

architecture to facilitate vectorization, but also developed a new loop autovectorization tech-

nique, speculative vectorization, in our compiler framework. Speculative vectorization is the

only known technique that can effectively vectorize and achieve speedup for some important

HPC kernels, including one of the two L1BLAS routines (NRM2) that FKO failed to vec-

torize in [62]. For the other routine that the original work failed to vectorize (IAMAX), we

formalized a pre-existing hand-tuning optimization to enable FKO to vectorize it via either

speculative vectorization or path reduction.

Further, we have formalized and implemented in FKO special 2-D array indexing support

exploiting the x86’s rich addressing modes. As far as we are aware we are the first to do so

automatically in a compiler. This addressing mode optimization is critical to allowing us to

heavily unroll and jam loops without restriction from integer register pressure. Coupled with

our vectorization efforts, this allows FKO to tune the L2BLAS to HPC standards.

As for L3BLAS, ATLAS tunes a suite of gemmµ kernels. Traditional compilers are unable

to effectively autovectorize those microkernels. We therefore have developed an extension

of SLP, the state of the art vectorization method for single basic block, to vectorize the

complete loopnests of those kernels. Our extended SLP vectorization works well on simple
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loopnests (defined in Chapter 6) and can be combined with other innermost loop vectoriza-

tion technique to extend the vectorization beyond innermost loops, which is critical if the

L3BLAS kernels are to be made competitive.

For a few of our surveyed machines, FKO is already within 1-2% of the best hand-tuned

gemmµ, which is complete success. However, on two other machines our autovectorized

gemmµ was around 4-5% slower than the best hand-tuned case. That gap is too large for HPC

use, so we need some extra autotuning. Initial investigation indicates the main difference is

that the hand-tuned code has carefully scheduled prefetch, both within the current block and

external to the block. The external-block prefetch is probably best handled at the ATLAS

generator level (since it has knowledge of what block will be used next not available to the

compiler), but the intra-block prefetch should ideally be tune by a limited iFKO iteration

as requested by the GEMM search. This is the first area we will investigate to close the

gap between our auto-vectorized kernel and the hand-tuned cases. At that point, a compiler

will for the first time be able to tune every kernel used in the ATLAS framework to levels

competitive with hand-tuned assembly.
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APPENDIX A

ATLAS GEMM MICROKERNELS IN HIL

This appendix provides the HIL implementations (with preprocessor directives) of gemmµ
kernels discussed in Chapter 6. We show double precision version of MVEC kernel with
um = 12, un = 4 and uk = 1 in Section A.1 and KVEC kernel with um = 12, un = 1
and uk = 4 in Section A.2. Note the conditional branch inside the loopnests of MVEC
kernel. Loop unswitching [4] optimization pulls that off the loopnests creating two separate
loopnests.

A.1 Double Precision MVEC With um = 12 un = 4 uk = 1

@ifdef ! ATL_MM_KB

@define MMKB @0@

@endifdef

@ifdef ATL_MM_KB

@define MMKB @1@

@endifdef

@iif MMKB = 0

@ifdef KB

@iif KB > 0

@define ATL_KBCONST @1@

@define ATL_MM_KB @K@

@endiif

@iif KB { 0

@define ATL_KBCONST @0@

@define ATL_MM_KB @K@

@endiif

@endifdef

@ifdef ! KB

@define ATL_KBCONST @0@

@define ATL_MM_KB @K@

@endifdef

@endiif

@iif MMKB = 1

@iif ATL_MM_KB > 0

@define ATL_KBCONST @1@

@endiif

@iif ATL_MM_KB { 0

@undef ATL_MM_KB

@define ATL_MM_KB @K@

@define ATL_KBCONST @0@

@endiif

@endiif

@ifdef ! BETA1

@ifdef ! BETA0

@define ibet @-1@

@endifdef

@endifdef

@ifdef BETA1

@define ibet @1@

@endifdef

@ifdef BETA0

@define ibet @0@

@endifdef

ROUTINE ATL_USERMM;

PARAMS :: nmus, nnus, K, pA, pB, pC, pAn, pBn, pCn;

INT :: nmus, nnus, K;

DOUBLE_PTR :: pA, pB, pC, pAn, pBn, pCn;

//

// Performs a GEMM with M,N,K unrolling (& jam)

// of (12,4,1).

// Vectorization of VLEN=1 along M dim, vec

// unroll=(12,4,1).

// You may set compile-time constant K dim by

// defining ATL_MM_KB.

//

ROUT_LOCALS

DOUBLE :: rB0, rC0_0, rC1_0, rC2_0, rC3_0,rC4_0,

rC5_0, rC6_0, rC7_0, rC8_0, rC9_0,

rC10_0, rC11_0, rC0_1, rC1_1, rC2_1,

rC3_1, rC4_1, rC5_1, rC6_1, rC7_1,

rC8_1, rC9_1, rC10_1, rC11_1, rC0_2,

rC1_2, rC2_2, rC3_2, rC4_2, rC5_2,

rC6_2, rC7_2, rC8_2, rC9_2, rC10_2,

rC11_2, rC0_3, rC1_3, rC2_3, rC3_3,

rC4_3, rC5_3, rC6_3, rC7_3, rC8_3,

rC9_3, rC10_3, rC11_3, rA0, rA1, rA2,

rA3, rA4, rA5, rA6, rA7, rA8, rA9,

rA10, rA11;

DOUBLE_PTR :: pA0, pB0;

INT :: i, j, k;

INT :: incAm, incBn;

@iif ibet ! 0

@declare " DOUBLE :: " y n ";"

@iexp j 0 0 +

@iwhile j < 4

@iexp i 0 0 +

@iwhile i < 12

rC@(i)_@(j)m

@iexp i @(i) 1 +

@endiwhile

@iexp j @(j) 1 +

@endiwhile

@enddeclare

@endiif

ROUT_MARKUP

ALIGNED(32) :: *;

ROUT_BEGIN

pB0=pB;

pA0=pA;

@iif ATL_KBCONST = 0

incAm = K*12;

incBn = K*4;

@endiif

@iif ATL_KBCONST ! 0

incAm = @(ATL_MM_KB)*12;

incBn = @(ATL_MM_KB)*4;

@endiif

i = nmus;

MLOOP:

j = nnus;
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NLOOP:

// Peel K=0 iteration to avoid

// zero of rCxx and extra add

rA0 = pA[0];

rA1 = pA[1];

rA2 = pA[2];

rA3 = pA[3];

rA4 = pA[4];

rA5 = pA[5];

rA6 = pA[6];

rA7 = pA[7];

rA8 = pA[8];

rA9 = pA[9];

rA10 = pA[10];

rA11 = pA[11];

pA += 12;

rB0 = pB[0];

rC0_0 = rA0 * rB0;

rC1_0 = rA1 * rB0;

rC2_0 = rA2 * rB0;

rC3_0 = rA3 * rB0;

rC4_0 = rA4 * rB0;

rC5_0 = rA5 * rB0;

rC6_0 = rA6 * rB0;

rC7_0 = rA7 * rB0;

rC8_0 = rA8 * rB0;

rC9_0 = rA9 * rB0;

rC10_0 = rA10 * rB0;

rC11_0 = rA11 * rB0;

rB0 = pB[1];

rC0_1 = rA0 * rB0;

rC1_1 = rA1 * rB0;

rC2_1 = rA2 * rB0;

rC3_1 = rA3 * rB0;

rC4_1 = rA4 * rB0;

rC5_1 = rA5 * rB0;

rC6_1 = rA6 * rB0;

rC7_1 = rA7 * rB0;

rC8_1 = rA8 * rB0;

rC9_1 = rA9 * rB0;

rC10_1 = rA10 * rB0;

rC11_1 = rA11 * rB0;

rB0 = pB[2];

rC0_2 = rA0 * rB0;

rC1_2 = rA1 * rB0;

rC2_2 = rA2 * rB0;

rC3_2 = rA3 * rB0;

rC4_2 = rA4 * rB0;

rC5_2 = rA5 * rB0;

rC6_2 = rA6 * rB0;

rC7_2 = rA7 * rB0;

rC8_2 = rA8 * rB0;

rC9_2 = rA9 * rB0;

rC10_2 = rA10 * rB0;

rC11_2 = rA11 * rB0;

rB0 = pB[3];

pB += 4;

rC0_3 = rA0 * rB0;

rA0 = pA[0];

rC1_3 = rA1 * rB0;

rA1 = pA[1];

rC2_3 = rA2 * rB0;

rA2 = pA[2];

rC3_3 = rA3 * rB0;

rA3 = pA[3];

rC4_3 = rA4 * rB0;

rA4 = pA[4];

rC5_3 = rA5 * rB0;

rA5 = pA[5];

rC6_3 = rA6 * rB0;

rA6 = pA[6];

rC7_3 = rA7 * rB0;

rA7 = pA[7];

rC8_3 = rA8 * rB0;

rA8 = pA[8];

rC9_3 = rA9 * rB0;

rA9 = pA[9];

rC10_3 = rA10 * rB0;

rA10 = pA[10];

rC11_3 = rA11 * rB0;

rA11 = pA[11];

pA += 12;

IF (K == 1) GOTO KDONE;

LOOP k = 1, @(ATL_MM_KB), 1

LOOP_BODY

rB0 = pB[0];

rC0_0 += rA0 * rB0;

rC1_0 += rA1 * rB0;

rC2_0 += rA2 * rB0;

rC3_0 += rA3 * rB0;

rC4_0 += rA4 * rB0;

rC5_0 += rA5 * rB0;

rC6_0 += rA6 * rB0;

rC7_0 += rA7 * rB0;

rC8_0 += rA8 * rB0;

rC9_0 += rA9 * rB0;

rC10_0 += rA10 * rB0;

rC11_0 += rA11 * rB0;

rB0 = pB[1];

rC0_1 += rA0 * rB0;

rC1_1 += rA1 * rB0;

rC2_1 += rA2 * rB0;

rC3_1 += rA3 * rB0;

rC4_1 += rA4 * rB0;

rC5_1 += rA5 * rB0;

rC6_1 += rA6 * rB0;

rC7_1 += rA7 * rB0;

rC8_1 += rA8 * rB0;

rC9_1 += rA9 * rB0;

rC10_1 += rA10 * rB0;

rC11_1 += rA11 * rB0;

rB0 = pB[2];

rC0_2 += rA0 * rB0;

rC1_2 += rA1 * rB0;

rC2_2 += rA2 * rB0;

rC3_2 += rA3 * rB0;

rC4_2 += rA4 * rB0;

rC5_2 += rA5 * rB0;

rC6_2 += rA6 * rB0;

rC7_2 += rA7 * rB0;

rC8_2 += rA8 * rB0;

rC9_2 += rA9 * rB0;

rC10_2 += rA10 * rB0;

rC11_2 += rA11 * rB0;

rB0 = pB[3];

pB += 4;

rC0_3 += rA0 * rB0;

rA0 = pA[0];

rC1_3 += rA1 * rB0;

rA1 = pA[1];

rC2_3 += rA2 * rB0;

rA2 = pA[2];

rC3_3 += rA3 * rB0;

rA3 = pA[3];

rC4_3 += rA4 * rB0;

rA4 = pA[4];
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rC5_3 += rA5 * rB0;

rA5 = pA[5];

rC6_3 += rA6 * rB0;

rA6 = pA[6];

rC7_3 += rA7 * rB0;

rA7 = pA[7];

rC8_3 += rA8 * rB0;

rA8 = pA[8];

rC9_3 += rA9 * rB0;

rA9 = pA[9];

rC10_3 += rA10 * rB0;

rA10 = pA[10];

rC11_3 += rA11 * rB0;

rA11 = pA[11];

pA += 12;

LOOP_END

KDONE:

@iif ibet ! 0

rC0_0m = pC[0];

@iif ibet = 1

rC0_0 = rC0_0 + rC0_0m;

@endiif

@iif ibet = -1

rC0_0 = rC0_0 - rC0_0m;

@endiif

@endiif

pC[0] = rC0_0;

@iif ibet ! 0

rC1_0m = pC[1];

@iif ibet = 1

rC1_0 = rC1_0 + rC1_0m;

@endiif

@iif ibet = -1

rC1_0 = rC1_0 - rC1_0m;

@endiif

@endiif

pC[1] = rC1_0;

@iif ibet ! 0

rC2_0m = pC[2];

@iif ibet = 1

rC2_0 = rC2_0 + rC2_0m;

@endiif

@iif ibet = -1

rC2_0 = rC2_0 - rC2_0m;

@endiif

@endiif

pC[2] = rC2_0;

@iif ibet ! 0

rC3_0m = pC[3];

@iif ibet = 1

rC3_0 = rC3_0 + rC3_0m;

@endiif

@iif ibet = -1

rC3_0 = rC3_0 - rC3_0m;

@endiif

@endiif

pC[3] = rC3_0;

@iif ibet ! 0

rC4_0m = pC[4];

@iif ibet = 1

rC4_0 = rC4_0 + rC4_0m;

@endiif

@iif ibet = -1

rC4_0 = rC4_0 - rC4_0m;

@endiif

@endiif

pC[4] = rC4_0;

@iif ibet ! 0

rC5_0m = pC[5];

@iif ibet = 1

rC5_0 = rC5_0 + rC5_0m;

@endiif

@iif ibet = -1

rC5_0 = rC5_0 - rC5_0m;

@endiif

@endiif

pC[5] = rC5_0;

@iif ibet ! 0

rC6_0m = pC[6];

@iif ibet = 1

rC6_0 = rC6_0 + rC6_0m;

@endiif

@iif ibet = -1

rC6_0 = rC6_0 - rC6_0m;

@endiif

@endiif

pC[6] = rC6_0;

@iif ibet ! 0

rC7_0m = pC[7];

@iif ibet = 1

rC7_0 = rC7_0 + rC7_0m;

@endiif

@iif ibet = -1

rC7_0 = rC7_0 - rC7_0m;

@endiif

@endiif

pC[7] = rC7_0;

@iif ibet ! 0

rC8_0m = pC[8];

@iif ibet = 1

rC8_0 = rC8_0 + rC8_0m;

@endiif

@iif ibet = -1

rC8_0 = rC8_0 - rC8_0m;

@endiif

@endiif

pC[8] = rC8_0;

@iif ibet ! 0

rC9_0m = pC[9];

@iif ibet = 1

rC9_0 = rC9_0 + rC9_0m;

@endiif

@iif ibet = -1

rC9_0 = rC9_0 - rC9_0m;

@endiif

@endiif

pC[9] = rC9_0;

@iif ibet ! 0

rC10_0m = pC[10];

@iif ibet = 1

rC10_0 = rC10_0 + rC10_0m;

@endiif

@iif ibet = -1

rC10_0 = rC10_0 - rC10_0m;

@endiif

@endiif

pC[10] = rC10_0;

@iif ibet ! 0

rC11_0m = pC[11];

@iif ibet = 1

rC11_0 = rC11_0 + rC11_0m;

@endiif

@iif ibet = -1

rC11_0 = rC11_0 - rC11_0m;

@endiif
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@endiif

pC[11] = rC11_0;

@iif ibet ! 0

rC0_1m = pC[12];

@iif ibet = 1

rC0_1 = rC0_1 + rC0_1m;

@endiif

@iif ibet = -1

rC0_1 = rC0_1 - rC0_1m;

@endiif

@endiif

pC[12] = rC0_1;

@iif ibet ! 0

rC1_1m = pC[13];

@iif ibet = 1

rC1_1 = rC1_1 + rC1_1m;

@endiif

@iif ibet = -1

rC1_1 = rC1_1 - rC1_1m;

@endiif

@endiif

pC[13] = rC1_1;

@iif ibet ! 0

rC2_1m = pC[14];

@iif ibet = 1

rC2_1 = rC2_1 + rC2_1m;

@endiif

@iif ibet = -1

rC2_1 = rC2_1 - rC2_1m;

@endiif

@endiif

pC[14] = rC2_1;

@iif ibet ! 0

rC3_1m = pC[15];

@iif ibet = 1

rC3_1 = rC3_1 + rC3_1m;

@endiif

@iif ibet = -1

rC3_1 = rC3_1 - rC3_1m;

@endiif

@endiif

pC[15] = rC3_1;

@iif ibet ! 0

rC4_1m = pC[16];

@iif ibet = 1

rC4_1 = rC4_1 + rC4_1m;

@endiif

@iif ibet = -1

rC4_1 = rC4_1 - rC4_1m;

@endiif

@endiif

pC[16] = rC4_1;

@iif ibet ! 0

rC5_1m = pC[17];

@iif ibet = 1

rC5_1 = rC5_1 + rC5_1m;

@endiif

@iif ibet = -1

rC5_1 = rC5_1 - rC5_1m;

@endiif

@endiif

pC[17] = rC5_1;

@iif ibet ! 0

rC6_1m = pC[18];

@iif ibet = 1

rC6_1 = rC6_1 + rC6_1m;

@endiif

@iif ibet = -1

rC6_1 = rC6_1 - rC6_1m;

@endiif

@endiif

pC[18] = rC6_1;

@iif ibet ! 0

rC7_1m = pC[19];

@iif ibet = 1

rC7_1 = rC7_1 + rC7_1m;

@endiif

@iif ibet = -1

rC7_1 = rC7_1 - rC7_1m;

@endiif

@endiif

pC[19] = rC7_1;

@iif ibet ! 0

rC8_1m = pC[20];

@iif ibet = 1

rC8_1 = rC8_1 + rC8_1m;

@endiif

@iif ibet = -1

rC8_1 = rC8_1 - rC8_1m;

@endiif

@endiif

pC[20] = rC8_1;

@iif ibet ! 0

rC9_1m = pC[21];

@iif ibet = 1

rC9_1 = rC9_1 + rC9_1m;

@endiif

@iif ibet = -1

rC9_1 = rC9_1 - rC9_1m;

@endiif

@endiif

pC[21] = rC9_1;

@iif ibet ! 0

rC10_1m = pC[22];

@iif ibet = 1

rC10_1 = rC10_1 + rC10_1m;

@endiif

@iif ibet = -1

rC10_1 = rC10_1 - rC10_1m;

@endiif

@endiif

pC[22] = rC10_1;

@iif ibet ! 0

rC11_1m = pC[23];

@iif ibet = 1

rC11_1 = rC11_1 + rC11_1m;

@endiif

@iif ibet = -1

rC11_1 = rC11_1 - rC11_1m;

@endiif

@endiif

pC[23] = rC11_1;

@iif ibet ! 0

rC0_2m = pC[24];

@iif ibet = 1

rC0_2 = rC0_2 + rC0_2m;

@endiif

@iif ibet = -1

rC0_2 = rC0_2 - rC0_2m;

@endiif

@endiif

pC[24] = rC0_2;

@iif ibet ! 0

rC1_2m = pC[25];

@iif ibet = 1

rC1_2 = rC1_2 + rC1_2m;
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@endiif

@iif ibet = -1

rC1_2 = rC1_2 - rC1_2m;

@endiif

@endiif

pC[25] = rC1_2;

@iif ibet ! 0

rC2_2m = pC[26];

@iif ibet = 1

rC2_2 = rC2_2 + rC2_2m;

@endiif

@iif ibet = -1

rC2_2 = rC2_2 - rC2_2m;

@endiif

@endiif

pC[26] = rC2_2;

@iif ibet ! 0

rC3_2m = pC[27];

@iif ibet = 1

rC3_2 = rC3_2 + rC3_2m;

@endiif

@iif ibet = -1

rC3_2 = rC3_2 - rC3_2m;

@endiif

@endiif

pC[27] = rC3_2;

@iif ibet ! 0

rC4_2m = pC[28];

@iif ibet = 1

rC4_2 = rC4_2 + rC4_2m;

@endiif

@iif ibet = -1

rC4_2 = rC4_2 - rC4_2m;

@endiif

@endiif

pC[28] = rC4_2;

@iif ibet ! 0

rC5_2m = pC[29];

@iif ibet = 1

rC5_2 = rC5_2 + rC5_2m;

@endiif

@iif ibet = -1

rC5_2 = rC5_2 - rC5_2m;

@endiif

@endiif

pC[29] = rC5_2;

@iif ibet ! 0

rC6_2m = pC[30];

@iif ibet = 1

rC6_2 = rC6_2 + rC6_2m;

@endiif

@iif ibet = -1

rC6_2 = rC6_2 - rC6_2m;

@endiif

@endiif

pC[30] = rC6_2;

@iif ibet ! 0

rC7_2m = pC[31];

@iif ibet = 1

rC7_2 = rC7_2 + rC7_2m;

@endiif

@iif ibet = -1

rC7_2 = rC7_2 - rC7_2m;

@endiif

@endiif

pC[31] = rC7_2;

@iif ibet ! 0

rC8_2m = pC[32];

@iif ibet = 1

rC8_2 = rC8_2 + rC8_2m;

@endiif

@iif ibet = -1

rC8_2 = rC8_2 - rC8_2m;

@endiif

@endiif

pC[32] = rC8_2;

@iif ibet ! 0

rC9_2m = pC[33];

@iif ibet = 1

rC9_2 = rC9_2 + rC9_2m;

@endiif

@iif ibet = -1

rC9_2 = rC9_2 - rC9_2m;

@endiif

@endiif

pC[33] = rC9_2;

@iif ibet ! 0

rC10_2m = pC[34];

@iif ibet = 1

rC10_2 = rC10_2 + rC10_2m;

@endiif

@iif ibet = -1

rC10_2 = rC10_2 - rC10_2m;

@endiif

@endiif

pC[34] = rC10_2;

@iif ibet ! 0

rC11_2m = pC[35];

@iif ibet = 1

rC11_2 = rC11_2 + rC11_2m;

@endiif

@iif ibet = -1

rC11_2 = rC11_2 - rC11_2m;

@endiif

@endiif

pC[35] = rC11_2;

@iif ibet ! 0

rC0_3m = pC[36];

@iif ibet = 1

rC0_3 = rC0_3 + rC0_3m;

@endiif

@iif ibet = -1

rC0_3 = rC0_3 - rC0_3m;

@endiif

@endiif

pC[36] = rC0_3;

@iif ibet ! 0

rC1_3m = pC[37];

@iif ibet = 1

rC1_3 = rC1_3 + rC1_3m;

@endiif

@iif ibet = -1

rC1_3 = rC1_3 - rC1_3m;

@endiif

@endiif

pC[37] = rC1_3;

@iif ibet ! 0

rC2_3m = pC[38];

@iif ibet = 1

rC2_3 = rC2_3 + rC2_3m;

@endiif

@iif ibet = -1

rC2_3 = rC2_3 - rC2_3m;

@endiif

@endiif

pC[38] = rC2_3;
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@iif ibet ! 0

rC3_3m = pC[39];

@iif ibet = 1

rC3_3 = rC3_3 + rC3_3m;

@endiif

@iif ibet = -1

rC3_3 = rC3_3 - rC3_3m;

@endiif

@endiif

pC[39] = rC3_3;

@iif ibet ! 0

rC4_3m = pC[40];

@iif ibet = 1

rC4_3 = rC4_3 + rC4_3m;

@endiif

@iif ibet = -1

rC4_3 = rC4_3 - rC4_3m;

@endiif

@endiif

pC[40] = rC4_3;

@iif ibet ! 0

rC5_3m = pC[41];

@iif ibet = 1

rC5_3 = rC5_3 + rC5_3m;

@endiif

@iif ibet = -1

rC5_3 = rC5_3 - rC5_3m;

@endiif

@endiif

pC[41] = rC5_3;

@iif ibet ! 0

rC6_3m = pC[42];

@iif ibet = 1

rC6_3 = rC6_3 + rC6_3m;

@endiif

@iif ibet = -1

rC6_3 = rC6_3 - rC6_3m;

@endiif

@endiif

pC[42] = rC6_3;

@iif ibet ! 0

rC7_3m = pC[43];

@iif ibet = 1

rC7_3 = rC7_3 + rC7_3m;

@endiif

@iif ibet = -1

rC7_3 = rC7_3 - rC7_3m;

@endiif

@endiif

pC[43] = rC7_3;

@iif ibet ! 0

rC8_3m = pC[44];

@iif ibet = 1

rC8_3 = rC8_3 + rC8_3m;

@endiif

@iif ibet = -1

rC8_3 = rC8_3 - rC8_3m;

@endiif

@endiif

pC[44] = rC8_3;

@iif ibet ! 0

rC9_3m = pC[45];

@iif ibet = 1

rC9_3 = rC9_3 + rC9_3m;

@endiif

@iif ibet = -1

rC9_3 = rC9_3 - rC9_3m;

@endiif

@endiif

pC[45] = rC9_3;

@iif ibet ! 0

rC10_3m = pC[46];

@iif ibet = 1

rC10_3 = rC10_3 + rC10_3m;

@endiif

@iif ibet = -1

rC10_3 = rC10_3 - rC10_3m;

@endiif

@endiif

pC[46] = rC10_3;

@iif ibet ! 0

rC11_3m = pC[47];

@iif ibet = 1

rC11_3 = rC11_3 + rC11_3m;

@endiif

@iif ibet = -1

rC11_3 = rC11_3 - rC11_3m;

@endiif

@endiif

pC[47] = rC11_3;

pC += 48;

pA = pA0;

j = j - 1;

IF (j > 0) GOTO NLOOP;

pB = pB0;

pA0 += incAm;

pA = pA0;

i = i - 1;

IF (i > 0) GOTO MLOOP;

ROUT_END

A.2 Double Precision KVEC With um = 12 un = 1 uk = 4

@ifdef ! ATL_MM_KB

@define MMKB @0@

@endifdef

@ifdef ATL_MM_KB

@define MMKB @1@

@endifdef

@iif MMKB = 0

@ifdef KB

@iif KB > 0

@define ATL_KBCONST @1@

@define ATL_MM_KB @K@

@endiif

@iif KB { 0

@define ATL_KBCONST @0@

@define ATL_MM_KB @K@

@endiif

@endifdef

@ifdef ! KB

@define ATL_KBCONST @0@

@define ATL_MM_KB @K@

@endifdef

@endiif

@iif MMKB = 1

@iif ATL_MM_KB > 0

@define ATL_KBCONST @1@

@endiif
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@iif ATL_MM_KB { 0

@undef ATL_MM_KB

@define ATL_MM_KB @K@

@define ATL_KBCONST @0@

@endiif

@endiif

@ifdef ! BETA1

@ifdef ! BETA0

@define ibet @-1@

@endifdef

@endifdef

@ifdef BETA1

@define ibet @1@

@endifdef

@ifdef BETA0

@define ibet @0@

@endifdef

ROUTINE ATL_USERMM;

PARAMS :: nmus, nnus, K, pA, pB, pC, pAn, pBn, pCn;

INT :: nmus, nnus, K;

DOUBLE_PTR :: pA, pB, pC, pAn, pBn, pCn;

//

// Performs a GEMM with M,N,K unrolling (& jam)

// of (12,1,4).

// Vectorization of VLEN=4 along K dim, vec

// unroll=(12,1,1).

// You may set compile-time constant K dim

// by defining ATL_MM_KB.

//

ROUT_LOCALS

DOUBLE :: rC0_0, rC1_0, rC2_0, rC3_0, rC4_0, rC5_0,

rC6_0, rC7_0, rC8_0, rC9_0, rC10_0, rC11_0,

rA0, rB0;

DOUBLE_PTR :: pA0, pB0;

INT :: i, j, k;

INT :: incAm, incBn;

@iif ibet ! 0

@declare " DOUBLE :: " y n ";"

@iexp j 0 0 +

@iwhile j < 1

@iexp i 0 0 +

@iwhile i < 12

rC@(i)_@(j)m

@iexp i @(i) 1 +

@endiwhile

@iexp j @(j) 1 +

@endiwhile

@enddeclare

@endiif

ROUT_MARKUP

ALIGNED(32) :: *;

ROUT_BEGIN

pB0=pB;

pA0=pA;

@iif ATL_KBCONST = 0

incAm = K*12;

incBn = K*1;

@endiif

@iif ATL_KBCONST ! 0

incAm = @(ATL_MM_KB)*12;

incBn = @(ATL_MM_KB)*1;

@endiif

i = nmus;

MLOOP:

j = nnus;

NLOOP:

rC0_0 = 0.0;

rC1_0 = 0.0;

rC2_0 = 0.0;

rC3_0 = 0.0;

rC4_0 = 0.0;

rC5_0 = 0.0;

rC6_0 = 0.0;

rC7_0 = 0.0;

rC8_0 = 0.0;

rC9_0 = 0.0;

rC10_0 = 0.0;

rC11_0 = 0.0;

LOOP k=0, @(ATL_MM_KB), 4

LOOP_BODY

rB0 = pB[0];

rA0 = pA[0];

rC0_0 += rA0 * rB0;

rA0 = pA[4];

rC1_0 += rA0 * rB0;

rA0 = pA[8];

rC2_0 += rA0 * rB0;

rA0 = pA[12];

rC3_0 += rA0 * rB0;

rA0 = pA[16];

rC4_0 += rA0 * rB0;

rA0 = pA[20];

rC5_0 += rA0 * rB0;

rA0 = pA[24];

rC6_0 += rA0 * rB0;

rA0 = pA[28];

rC7_0 += rA0 * rB0;

rA0 = pA[32];

rC8_0 += rA0 * rB0;

rA0 = pA[36];

rC9_0 += rA0 * rB0;

rA0 = pA[40];

rC10_0 += rA0 * rB0;

rA0 = pA[44];

rC11_0 += rA0 * rB0;

rB0 = pB[1];

rA0 = pA[1];

rC0_0 += rA0 * rB0;

rA0 = pA[5];

rC1_0 += rA0 * rB0;

rA0 = pA[9];

rC2_0 += rA0 * rB0;

rA0 = pA[13];

rC3_0 += rA0 * rB0;

rA0 = pA[17];

rC4_0 += rA0 * rB0;

rA0 = pA[21];

rC5_0 += rA0 * rB0;

rA0 = pA[25];

rC6_0 += rA0 * rB0;

rA0 = pA[29];

rC7_0 += rA0 * rB0;

rA0 = pA[33];

rC8_0 += rA0 * rB0;

rA0 = pA[37];

rC9_0 += rA0 * rB0;

rA0 = pA[41];

rC10_0 += rA0 * rB0;

rA0 = pA[45];

rC11_0 += rA0 * rB0;

rB0 = pB[2];

rA0 = pA[2];

rC0_0 += rA0 * rB0;

rA0 = pA[6];
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rC1_0 += rA0 * rB0;

rA0 = pA[10];

rC2_0 += rA0 * rB0;

rA0 = pA[14];

rC3_0 += rA0 * rB0;

rA0 = pA[18];

rC4_0 += rA0 * rB0;

rA0 = pA[22];

rC5_0 += rA0 * rB0;

rA0 = pA[26];

rC6_0 += rA0 * rB0;

rA0 = pA[30];

rC7_0 += rA0 * rB0;

rA0 = pA[34];

rC8_0 += rA0 * rB0;

rA0 = pA[38];

rC9_0 += rA0 * rB0;

rA0 = pA[42];

rC10_0 += rA0 * rB0;

rA0 = pA[46];

rC11_0 += rA0 * rB0;

rB0 = pB[3];

rA0 = pA[3];

rC0_0 += rA0 * rB0;

rA0 = pA[7];

rC1_0 += rA0 * rB0;

rA0 = pA[11];

rC2_0 += rA0 * rB0;

rA0 = pA[15];

rC3_0 += rA0 * rB0;

rA0 = pA[19];

rC4_0 += rA0 * rB0;

rA0 = pA[23];

rC5_0 += rA0 * rB0;

rA0 = pA[27];

rC6_0 += rA0 * rB0;

rA0 = pA[31];

rC7_0 += rA0 * rB0;

rA0 = pA[35];

rC8_0 += rA0 * rB0;

rA0 = pA[39];

rC9_0 += rA0 * rB0;

rA0 = pA[43];

rC10_0 += rA0 * rB0

rA0 = pA[47];

rC11_0 += rA0 * rB0;

pA += 48;

pB += 4;

LOOP_END

@iif ibet ! 0

rC0_0m = pC[0];

@iif ibet = 1

rC0_0 = rC0_0 + rC0_0m;

@endiif

@iif ibet = -1

rC0_0 = rC0_0 - rC0_0m;

@endiif

@endiif

pC[0] = rC0_0;

@iif ibet ! 0

rC1_0m = pC[1];

@iif ibet = 1

rC1_0 = rC1_0 + rC1_0m;

@endiif

@iif ibet = -1

rC1_0 = rC1_0 - rC1_0m;

@endiif

@endiif

pC[1] = rC1_0;

@iif ibet ! 0

rC2_0m = pC[2];

@iif ibet = 1

rC2_0 = rC2_0 + rC2_0m;

@endiif

@iif ibet = -1

rC2_0 = rC2_0 - rC2_0m;

@endiif

@endiif

pC[2] = rC2_0;

@iif ibet ! 0

rC3_0m = pC[3];

@iif ibet = 1

rC3_0 = rC3_0 + rC3_0m;

@endiif

@iif ibet = -1

rC3_0 = rC3_0 - rC3_0m;

@endiif

@endiif

pC[3] = rC3_0;

@iif ibet ! 0

rC4_0m = pC[4];

@iif ibet = 1

rC4_0 = rC4_0 + rC4_0m;

@endiif

@iif ibet = -1

rC4_0 = rC4_0 - rC4_0m;

@endiif

@endiif

pC[4] = rC4_0;

@iif ibet ! 0

rC5_0m = pC[5];

@iif ibet = 1

rC5_0 = rC5_0 + rC5_0m;

@endiif

@iif ibet = -1

rC5_0 = rC5_0 - rC5_0m;

@endiif

@endiif

pC[5] = rC5_0;

@iif ibet ! 0

rC6_0m = pC[6];

@iif ibet = 1

rC6_0 = rC6_0 + rC6_0m;

@endiif

@iif ibet = -1

rC6_0 = rC6_0 - rC6_0m;

@endiif

@endiif

pC[6] = rC6_0;

@iif ibet ! 0

rC7_0m = pC[7];

@iif ibet = 1

rC7_0 = rC7_0 + rC7_0m;

@endiif

@iif ibet = -1

rC7_0 = rC7_0 - rC7_0m;

@endiif

@endiif

pC[7] = rC7_0;

@iif ibet ! 0

rC8_0m = pC[8];

@iif ibet = 1

rC8_0 = rC8_0 + rC8_0m;

@endiif

@iif ibet = -1

rC8_0 = rC8_0 - rC8_0m;
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@endiif

@endiif

pC[8] = rC8_0;

@iif ibet ! 0

rC9_0m = pC[9];

@iif ibet = 1

rC9_0 = rC9_0 + rC9_0m;

@endiif

@iif ibet = -1

rC9_0 = rC9_0 - rC9_0m;

@endiif

@endiif

pC[9] = rC9_0;

@iif ibet ! 0

rC10_0m = pC[10];

@iif ibet = 1

rC10_0 = rC10_0 + rC10_0m;

@endiif

@iif ibet = -1

rC10_0 = rC10_0 - rC10_0m;

@endiif

@endiif

pC[10] = rC10_0;

@iif ibet ! 0

rC11_0m = pC[11];

@iif ibet = 1

rC11_0 = rC11_0 + rC11_0m;

@endiif

@iif ibet = -1

rC11_0 = rC11_0 - rC11_0m;

@endiif

@endiif

pC[11] = rC11_0;

pC += 12;

pA = pA0;

j = j - 1;

IF (j > 0) GOTO NLOOP;

pB = pB0;

pA0 += incAm;

pA = pA0;

i = i - 1;

IF (i > 0) GOTO MLOOP;

ROUT_END
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APPENDIX B

ATLAS GEMM MICROKERNELS IN C

This appendix provides the C implementation of the gemmµ scalar kernels given as input to
the industrial compilers in Chapter 6:

• Section B.1 shows a scalar double precision gemmµ with um = 12, un = 4 and uk = 1
that can be vectorized along the M dimension.

• Section B.2 provides a scalar double precision gemmµ implementation with um = 12,
un = 1 and uk = 4 that can be vectorized along the K dimension.

Finally, Section B.4 provides compiler versions, flags and pragmas used in the experiments
described in Chapter 6.

B.1 Double Precision MVEC With um = 12, un = 4, uk = 1

#ifndef ATL_MM_KB

#ifdef KB

#if KB > 0

#define ATL_KBCONST 1

#define ATL_MM_KB KB

#else

#define ATL_KBCONST 0

#define ATL_MM_KB K

#endif

#else

#define ATL_KBCONST 0

#define ATL_MM_KB K

#endif

#else

#if ATL_MM_KB > 0

#define ATL_KBCONST 1

#else

#undef ATL_MM_KB

#define ATL_MM_KB K

#define ATL_KBCONST 0

#endif

#endif

#ifdef BETA1

#define ATL_vbeta(p_, idx, d_) \

{ \

rA0 = p_[idx]; \

d_ = d_ + rA0; \

p_[idx] = d_; \

}

#elif defined(BETA0)

#define ATL_vbeta(p_, idx, d_) p_[idx] = d_;

#else

#define ATL_vbeta(p_, idx, d_) \

{ \

rA0 = p_[idx]; \

d_ = d_ - rA0; \

p_[idx] = d_; \

}

#endif

#ifndef ATL_CSZT

#include <stddef.h>

#define ATL_CSZT const size_t

#endif

void ATL_USERMM

(

ATL_CSZT nmus,

ATL_CSZT nnus,

ATL_CSZT K,

#if defined(__clang__)

const double *pA __attribute__((align_value(32))),

const double *pB __attribute__((align_value(32))),

double *restrict pC __attribute__((align_value(32))),

#else

const double *pA,

const double *pB,

double *restrict pC,

#endif

const double *pAn, /* next block of A */

const double *pBn, /* next block of B */

const double *pCn /* next block of C */

)

//

// Performs a GEMM with M,N,K unrolling (& jam)

// of (12,4,1).

// Vectorization of VLEN=1 along M dim,

// vec unroll=(12,4,1).

// You may set compile-time constant K dim by

// defining ATL_MM_KB.

//

{

double rB0, rC0_0, rC1_0, rC2_0, rC3_0, rC4_0,rC5_0,

rC6_0, rC7_0, rC8_0, rC9_0, rC10_0, rC11_0,

rC0_1, rC1_1, rC2_1, rC3_1, rC4_1, rC5_1,

rC6_1, rC7_1, rC8_1, rC9_1, rC10_1, rC11_1,

rC0_2, rC1_2, rC2_2, rC3_2, rC4_2, rC5_2,

rC6_2, rC7_2, rC8_2, rC9_2, rC10_2, rC11_2,

rC0_3, rC1_3, rC2_3, rC3_3, rC4_3, rC5_3,

rC6_3, rC7_3, rC8_3, rC9_3, rC10_3, rC11_3,

rA0, rA1, rA2, rA3, rA4, rA5, rA6, rA7,rA8,

rA9, rA10, rA11;

const double *pA0, *pB0;

int i, j, k;

int incAm, incBn;

#if defined(__ICC) || defined(__INTEL_COMPILER)

__assume_aligned(pA, 32);

__assume_aligned(pB, 32);
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__assume_aligned(pC, 32);

#endif

pB0=pB;

pA0=pA;

#if ATL_KBCONST == 0

incAm = K*12;

incBn = K*4;

#else

incAm = (12*ATL_MM_KB);

incBn = (4*ATL_MM_KB);

#endif

#if defined(__ICC) || defined(__INTEL_COMPILER)

#pragma vector always

#endif

for (i=0; i < nmus; i++)

{

for (j=0; j < nnus; j++)

{

// Peel K=0 iteration to avoid zero

// of rCxx and extra add

rA0 = pA[0];

rA1 = pA[1];

rA2 = pA[2];

rA3 = pA[3];

rA4 = pA[4];

rA5 = pA[5];

rA6 = pA[6];

rA7 = pA[7];

rA8 = pA[8];

rA9 = pA[9];

rA10 = pA[10];

rA11 = pA[11];

pA += 12;

rB0 = pB[0];

rC0_0 = rA0 * rB0;

rC1_0 = rA1 * rB0;

rC2_0 = rA2 * rB0;

rC3_0 = rA3 * rB0;

rC4_0 = rA4 * rB0;

rC5_0 = rA5 * rB0;

rC6_0 = rA6 * rB0;

rC7_0 = rA7 * rB0;

rC8_0 = rA8 * rB0;

rC9_0 = rA9 * rB0;

rC10_0 = rA10 * rB0;

rC11_0 = rA11 * rB0;

rB0 = pB[1];

rC0_1 = rA0 * rB0;

rC1_1 = rA1 * rB0;

rC2_1 = rA2 * rB0;

rC3_1 = rA3 * rB0;

rC4_1 = rA4 * rB0;

rC5_1 = rA5 * rB0;

rC6_1 = rA6 * rB0;

rC7_1 = rA7 * rB0;

rC8_1 = rA8 * rB0;

rC9_1 = rA9 * rB0;

rC10_1 = rA10 * rB0;

rC11_1 = rA11 * rB0;

rB0 = pB[2];

rC0_2 = rA0 * rB0;

rC1_2 = rA1 * rB0;

rC2_2 = rA2 * rB0;

rC3_2 = rA3 * rB0;

rC4_2 = rA4 * rB0;

rC5_2 = rA5 * rB0;

rC6_2 = rA6 * rB0;

rC7_2 = rA7 * rB0;

rC8_2 = rA8 * rB0;

rC9_2 = rA9 * rB0;

rC10_2 = rA10 * rB0;

rC11_2 = rA11 * rB0;

rB0 = pB[3];

pB += 4;

rC0_3 = rA0 * rB0;

rA0 = pA[0];

rC1_3 = rA1 * rB0;

rA1 = pA[1];

rC2_3 = rA2 * rB0;

rA2 = pA[2];

rC3_3 = rA3 * rB0;

rA3 = pA[3];

rC4_3 = rA4 * rB0;

rA4 = pA[4];

rC5_3 = rA5 * rB0;

rA5 = pA[5];

rC6_3 = rA6 * rB0;

rA6 = pA[6];

rC7_3 = rA7 * rB0;

rA7 = pA[7];

rC8_3 = rA8 * rB0;

rA8 = pA[8];

rC9_3 = rA9 * rB0;

rA9 = pA[9];

rC10_3 = rA10 * rB0;

rA10 = pA[10];

rC11_3 = rA11 * rB0;

rA11 = pA[11];

pA += 12;

for (k=1; k < ATL_MM_KB; k += 1)

{

rB0 = pB[0];

rC0_0 += rA0 * rB0;

rC1_0 += rA1 * rB0;

rC2_0 += rA2 * rB0;

rC3_0 += rA3 * rB0;

rC4_0 += rA4 * rB0;

rC5_0 += rA5 * rB0;

rC6_0 += rA6 * rB0;

rC7_0 += rA7 * rB0;

rC8_0 += rA8 * rB0;

rC9_0 += rA9 * rB0;

rC10_0 += rA10 * rB0;

rC11_0 += rA11 * rB0;

rB0 = pB[1];

rC0_1 += rA0 * rB0;

rC1_1 += rA1 * rB0;

rC2_1 += rA2 * rB0;

rC3_1 += rA3 * rB0;

rC4_1 += rA4 * rB0;

rC5_1 += rA5 * rB0;

rC6_1 += rA6 * rB0;

rC7_1 += rA7 * rB0;

rC8_1 += rA8 * rB0;

rC9_1 += rA9 * rB0;

rC10_1 += rA10 * rB0;

rC11_1 += rA11 * rB0;

rB0 = pB[2];

rC0_2 += rA0 * rB0;

rC1_2 += rA1 * rB0;

rC2_2 += rA2 * rB0;

rC3_2 += rA3 * rB0;

rC4_2 += rA4 * rB0;

rC5_2 += rA5 * rB0;

rC6_2 += rA6 * rB0;

rC7_2 += rA7 * rB0;
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rC8_2 += rA8 * rB0;

rC9_2 += rA9 * rB0;

rC10_2 += rA10 * rB0;

rC11_2 += rA11 * rB0;

rB0 = pB[3];

pB += 4;

rC0_3 += rA0 * rB0;

rA0 = pA[0];

rC1_3 += rA1 * rB0;

rA1 = pA[1];

rC2_3 += rA2 * rB0;

rA2 = pA[2];

rC3_3 += rA3 * rB0;

rA3 = pA[3];

rC4_3 += rA4 * rB0;

rA4 = pA[4];

rC5_3 += rA5 * rB0;

rA5 = pA[5];

rC6_3 += rA6 * rB0;

rA6 = pA[6];

rC7_3 += rA7 * rB0;

rA7 = pA[7];

rC8_3 += rA8 * rB0;

rA8 = pA[8];

rC9_3 += rA9 * rB0;

rA9 = pA[9];

rC10_3 += rA10 * rB0;

rA10 = pA[10];

rC11_3 += rA11 * rB0;

rA11 = pA[11];

pA += 12;

}

ATL_vbeta(pC, 0, rC0_0);

ATL_vbeta(pC, 1, rC1_0);

ATL_vbeta(pC, 2, rC2_0);

ATL_vbeta(pC, 3, rC3_0);

ATL_vbeta(pC, 4, rC4_0);

ATL_vbeta(pC, 5, rC5_0);

ATL_vbeta(pC, 6, rC6_0);

ATL_vbeta(pC, 7, rC7_0);

ATL_vbeta(pC, 8, rC8_0);

ATL_vbeta(pC, 9, rC9_0);

ATL_vbeta(pC, 10, rC10_0);

ATL_vbeta(pC, 11, rC11_0);

ATL_vbeta(pC, 12, rC0_1);

ATL_vbeta(pC, 13, rC1_1);

ATL_vbeta(pC, 14, rC2_1);

ATL_vbeta(pC, 15, rC3_1);

ATL_vbeta(pC, 16, rC4_1);

ATL_vbeta(pC, 17, rC5_1);

ATL_vbeta(pC, 18, rC6_1);

ATL_vbeta(pC, 19, rC7_1);

ATL_vbeta(pC, 20, rC8_1);

ATL_vbeta(pC, 21, rC9_1);

ATL_vbeta(pC, 22, rC10_1);

ATL_vbeta(pC, 23, rC11_1);

ATL_vbeta(pC, 24, rC0_2);

ATL_vbeta(pC, 25, rC1_2);

ATL_vbeta(pC, 26, rC2_2);

ATL_vbeta(pC, 27, rC3_2);

ATL_vbeta(pC, 28, rC4_2);

ATL_vbeta(pC, 29, rC5_2);

ATL_vbeta(pC, 30, rC6_2);

ATL_vbeta(pC, 31, rC7_2);

ATL_vbeta(pC, 32, rC8_2);

ATL_vbeta(pC, 33, rC9_2);

ATL_vbeta(pC, 34, rC10_2);

ATL_vbeta(pC, 35, rC11_2);

ATL_vbeta(pC, 36, rC0_3);

ATL_vbeta(pC, 37, rC1_3);

ATL_vbeta(pC, 38, rC2_3);

ATL_vbeta(pC, 39, rC3_3);

ATL_vbeta(pC, 40, rC4_3);

ATL_vbeta(pC, 41, rC5_3);

ATL_vbeta(pC, 42, rC6_3);

ATL_vbeta(pC, 43, rC7_3);

ATL_vbeta(pC, 44, rC8_3);

ATL_vbeta(pC, 45, rC9_3);

ATL_vbeta(pC, 46, rC10_3);

ATL_vbeta(pC, 47, rC11_3);

pC += 48;

pA = pA0;

} /* end of loop over N */

pB = pB0;

pA0 += incAm;

pA = pA0;

} /* end of loop over M */

}

B.2 Double Precision MVEC With um = 12, un = 4, uk = 1 Without Hoisting
Loads of pA

#ifndef ATL_MM_KB

#ifdef KB

#if KB > 0

#define ATL_KBCONST 1

#define ATL_MM_KB KB

#else

#define ATL_KBCONST 0

#define ATL_MM_KB K

#endif

#else

#define ATL_KBCONST 0

#define ATL_MM_KB K

#endif

#else

#if ATL_MM_KB > 0

#define ATL_KBCONST 1

#else

#undef ATL_MM_KB

#define ATL_MM_KB K

#define ATL_KBCONST 0

#endif

#endif

#ifdef BETA1

#define ATL_vbeta(p_, idx, d_) \

{ \

rA0 = p_[idx]; \

d_ = d_ + rA0; \

p_[idx] = d_; \

}

#elif defined(BETA0)

#define ATL_vbeta(p_, idx, d_) p_[idx] = d_;

#else

#define ATL_vbeta(p_, idx, d_) \

{ \

rA0 = p_[idx]; \

d_ = d_ - rA0; \

p_[idx] = d_; \

}
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#endif

#ifndef ATL_CSZT

#include <stddef.h>

#define ATL_CSZT const size_t

#endif

void ATL_USERMM

(

ATL_CSZT nmus,

ATL_CSZT nnus,

ATL_CSZT K,

#if defined(__clang__)

const double *pA __attribute__((align_value(32))),

const double *pB __attribute__((align_value(32))),

double *restrict pC __attribute__((align_value(32))),

#else

const double *pA,

const double *pB,

double *restrict pC,

#endif

const double *pAn, /* next block of A */

const double *pBn, /* next block of B */

const double *pCn /* next block of C */

)

//

// Performs a GEMM with M,N,K unrolling

// (& jam) of (12,4,1).

// Vectorization of VLEN=1 along M dim,

// vec unroll=(12,4,1).

// You may set compile-time constant K dim

// by defining ATL_MM_KB.

//

{

double rB0, rC0_0, rC1_0, rC2_0, rC3_0, rC4_0,

rC5_0, rC6_0, rC7_0, rC8_0,rC9_0, rC10_0,

rC11_0, rC0_1, rC1_1, rC2_1, rC3_1,rC4_1,

rC5_1,rC6_1, rC7_1, rC8_1, rC9_1, rC10_1,

rC11_1, rC0_2, rC1_2, rC2_2,rC3_2, rC4_2,

rC5_2, rC6_2, rC7_2, rC8_2, rC9_2, rC10_2,

rC11_2,rC0_3, rC1_3, rC2_3, rC3_3, rC4_3,

rC5_3, rC6_3, rC7_3, rC8_3, rC9_3, rC10_3,

rC11_3, rA0, rA1, rA2, rA3, rA4, rA5, rA6,

rA7, rA8, rA9, rA10, rA11;

const double *pA0, *pB0;

int i, j, k;

int incAm, incBn;

#if defined(__ICC) || defined(__INTEL_COMPILER)

__assume_aligned(pA, 32);

__assume_aligned(pB, 32);

__assume_aligned(pC, 32);

#endif

pB0=pB;

pA0=pA;

#if ATL_KBCONST == 0

incAm = K*12;

incBn = K*4;

#else

incAm = (12*ATL_MM_KB);

incBn = (4*ATL_MM_KB);

#endif

#if defined(__ICC) || defined(__INTEL_COMPILER)

#pragma vector always

#endif

for (i=0; i < nmus; i++)

{

for (j=0; j < nnus; j++)

{

// Peel K=0 iteration to avoid zero of

// rCxx and extra add

rA0 = pA[0];

rA1 = pA[1];

rA2 = pA[2];

rA3 = pA[3];

rA4 = pA[4];

rA5 = pA[5];

rA6 = pA[6];

rA7 = pA[7];

rA8 = pA[8];

rA9 = pA[9];

rA10 = pA[10];

rA11 = pA[11];

pA += 12;

rB0 = pB[0];

rC0_0 = rA0 * rB0;

rC1_0 = rA1 * rB0;

rC2_0 = rA2 * rB0;

rC3_0 = rA3 * rB0;

rC4_0 = rA4 * rB0;

rC5_0 = rA5 * rB0;

rC6_0 = rA6 * rB0;

rC7_0 = rA7 * rB0;

rC8_0 = rA8 * rB0;

rC9_0 = rA9 * rB0;

rC10_0 = rA10 * rB0;

rC11_0 = rA11 * rB0;

rB0 = pB[1];

rC0_1 = rA0 * rB0;

rC1_1 = rA1 * rB0;

rC2_1 = rA2 * rB0;

rC3_1 = rA3 * rB0;

rC4_1 = rA4 * rB0;

rC5_1 = rA5 * rB0;

rC6_1 = rA6 * rB0;

rC7_1 = rA7 * rB0;

rC8_1 = rA8 * rB0;

rC9_1 = rA9 * rB0;

rC10_1 = rA10 * rB0;

rC11_1 = rA11 * rB0;

rB0 = pB[2];

rC0_2 = rA0 * rB0;

rC1_2 = rA1 * rB0;

rC2_2 = rA2 * rB0;

rC3_2 = rA3 * rB0;

rC4_2 = rA4 * rB0;

rC5_2 = rA5 * rB0;

rC6_2 = rA6 * rB0;

rC7_2 = rA7 * rB0;

rC8_2 = rA8 * rB0;

rC9_2 = rA9 * rB0;

rC10_2 = rA10 * rB0;

rC11_2 = rA11 * rB0;

rB0 = pB[3];

pB += 4;

rC0_3 = rA0 * rB0;

rC1_3 = rA1 * rB0;

rC2_3 = rA2 * rB0;

rC3_3 = rA3 * rB0;

rC4_3 = rA4 * rB0;

rC5_3 = rA5 * rB0;

rC6_3 = rA6 * rB0;

rC7_3 = rA7 * rB0;

rC8_3 = rA8 * rB0;

rC9_3 = rA9 * rB0;
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rC10_3 = rA10 * rB0;

rC11_3 = rA11 * rB0;

for (k=1; k < ATL_MM_KB; k += 1)

{

rA0 = pA[0];

rA1 = pA[1];

rA2 = pA[2];

rA3 = pA[3];

rA4 = pA[4];

rA5 = pA[5];

rA6 = pA[6];

rA7 = pA[7];

rA8 = pA[8];

rA9 = pA[9];

rA10 = pA[10];

rA11 = pA[11];

pA += 12;

rB0 = pB[0];

rC0_0 += rA0 * rB0;

rC1_0 += rA1 * rB0;

rC2_0 += rA2 * rB0;

rC3_0 += rA3 * rB0;

rC4_0 += rA4 * rB0;

rC5_0 += rA5 * rB0;

rC6_0 += rA6 * rB0;

rC7_0 += rA7 * rB0;

rC8_0 += rA8 * rB0;

rC9_0 += rA9 * rB0;

rC10_0 += rA10 * rB0;

rC11_0 += rA11 * rB0;

rB0 = pB[1];

rC0_1 += rA0 * rB0;

rC1_1 += rA1 * rB0;

rC2_1 += rA2 * rB0;

rC3_1 += rA3 * rB0;

rC4_1 += rA4 * rB0;

rC5_1 += rA5 * rB0;

rC6_1 += rA6 * rB0;

rC7_1 += rA7 * rB0;

rC8_1 += rA8 * rB0;

rC9_1 += rA9 * rB0;

rC10_1 += rA10 * rB0;

rC11_1 += rA11 * rB0;

rB0 = pB[2];

rC0_2 += rA0 * rB0;

rC1_2 += rA1 * rB0;

rC2_2 += rA2 * rB0;

rC3_2 += rA3 * rB0;

rC4_2 += rA4 * rB0;

rC5_2 += rA5 * rB0;

rC6_2 += rA6 * rB0;

rC7_2 += rA7 * rB0;

rC8_2 += rA8 * rB0;

rC9_2 += rA9 * rB0;

rC10_2 += rA10 * rB0;

rC11_2 += rA11 * rB0;

rB0 = pB[3];

pB += 4;

rC0_3 += rA0 * rB0;

rC1_3 += rA1 * rB0;

rC2_3 += rA2 * rB0;

rC3_3 += rA3 * rB0;

rC4_3 += rA4 * rB0;

rC5_3 += rA5 * rB0;

rC6_3 += rA6 * rB0;

rC7_3 += rA7 * rB0;

rC8_3 += rA8 * rB0;

rC9_3 += rA9 * rB0;

rC10_3 += rA10 * rB0;

rC11_3 += rA11 * rB0;

}

ATL_vbeta(pC, 0, rC0_0);

ATL_vbeta(pC, 1, rC1_0);

ATL_vbeta(pC, 2, rC2_0);

ATL_vbeta(pC, 3, rC3_0);

ATL_vbeta(pC, 4, rC4_0);

ATL_vbeta(pC, 5, rC5_0);

ATL_vbeta(pC, 6, rC6_0);

ATL_vbeta(pC, 7, rC7_0);

ATL_vbeta(pC, 8, rC8_0);

ATL_vbeta(pC, 9, rC9_0);

ATL_vbeta(pC, 10, rC10_0);

ATL_vbeta(pC, 11, rC11_0);

ATL_vbeta(pC, 12, rC0_1);

ATL_vbeta(pC, 13, rC1_1);

ATL_vbeta(pC, 14, rC2_1);

ATL_vbeta(pC, 15, rC3_1);

ATL_vbeta(pC, 16, rC4_1);

ATL_vbeta(pC, 17, rC5_1);

ATL_vbeta(pC, 18, rC6_1);

ATL_vbeta(pC, 19, rC7_1);

ATL_vbeta(pC, 20, rC8_1);

ATL_vbeta(pC, 21, rC9_1);

ATL_vbeta(pC, 22, rC10_1);

ATL_vbeta(pC, 23, rC11_1);

ATL_vbeta(pC, 24, rC0_2);

ATL_vbeta(pC, 25, rC1_2);

ATL_vbeta(pC, 26, rC2_2);

ATL_vbeta(pC, 27, rC3_2);

ATL_vbeta(pC, 28, rC4_2);

ATL_vbeta(pC, 29, rC5_2);

ATL_vbeta(pC, 30, rC6_2);

ATL_vbeta(pC, 31, rC7_2);

ATL_vbeta(pC, 32, rC8_2);

ATL_vbeta(pC, 33, rC9_2);

ATL_vbeta(pC, 34, rC10_2);

ATL_vbeta(pC, 35, rC11_2);

ATL_vbeta(pC, 36, rC0_3);

ATL_vbeta(pC, 37, rC1_3);

ATL_vbeta(pC, 38, rC2_3);

ATL_vbeta(pC, 39, rC3_3);

ATL_vbeta(pC, 40, rC4_3);

ATL_vbeta(pC, 41, rC5_3);

ATL_vbeta(pC, 42, rC6_3);

ATL_vbeta(pC, 43, rC7_3);

ATL_vbeta(pC, 44, rC8_3);

ATL_vbeta(pC, 45, rC9_3);

ATL_vbeta(pC, 46, rC10_3);

ATL_vbeta(pC, 47, rC11_3);

pC += 48;

pA = pA0;

} /* end of loop over N */

pB = pB0;

pA0 += incAm;

pA = pA0;

} /* end of loop over M */

}
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B.3 Double Precision KVEC Kernel With um = 12, un = 1 and uk = 4

#ifndef ATL_MM_KB

#ifdef KB

#if KB > 0

#define ATL_KBCONST 1

#define ATL_MM_KB KB

#else

#define ATL_KBCONST 0

#define ATL_MM_KB K

#endif

#else

#define ATL_KBCONST 0

#define ATL_MM_KB K

#endif

#else

#if ATL_MM_KB > 0

#define ATL_KBCONST 1

#else

#undef ATL_MM_KB

#define ATL_MM_KB K

#define ATL_KBCONST 0

#endif

#endif

#ifdef BETA1

#define ATL_vbeta(p_, idx, d_) \

{ \

rA0 = p_[idx]; \

d_ = d_ + rA0; \

p_[idx] = d_; \

}

#elif defined(BETA0)

#define ATL_vbeta(p_, idx, d_) p_[idx] = d_;

#else

#define ATL_vbeta(p_, idx, d_) \

{ \

rA0 = p_[idx]; \

d_ = d_ - rA0; \

p_[idx] = d_; \

}

#endif

#ifndef ATL_CSZT

#include <stddef.h>

#define ATL_CSZT const size_t

#endif

void ATL_USERMM

(

ATL_CSZT nmus,

ATL_CSZT nnus,

ATL_CSZT K,

#if defined(__clang__)

const double *pA __attribute__((align_value(32))),

const double *pB __attribute__((align_value(32))),

double *restrict pC __attribute__((align_value(32))),

#else

const double *pA,

const double *pB,

double * restrict pC,

#endif

const double *pAn, /* next block of A */

const double *pBn, /* next block of B */

const double *pCn /* next block of C */

)

//

// Performs a GEMM with M,N,K unrolling (& jam)

// of (12,1,4).

// Vectorization of VLEN=4 along K dim,

// vec unroll=(12,1,1).

// You may set compile-time constant K dim

// by defining ATL_MM_KB.

//

{

double rC0_0, rC1_0, rC2_0, rC3_0, rC4_0, rC5_0,

rC6_0, rC7_0, rC8_0, rC9_0, rC10_0, rC11_0,

rA0, rB0;

const double *pA0, *pB0;

int i, j, k;

int incAm, incBn;

#if defined(__ICC) || defined(__INTEL_COMPILER)

__assume_aligned(pA, 32);

__assume_aligned(pB, 32);

__assume_aligned(pC, 32);

#endif

pB0=pB;

pA0=pA;

#if ATL_KBCONST == 0

incAm = K*12;

incBn = K*1;

#else

incAm = (12*ATL_MM_KB);

incBn = (1*ATL_MM_KB);

#endif

#if defined(__ICC) || defined(__INTEL_COMPILER)

#pragma vector always

#endif

for (i=0; i < nmus; i++)

{

for (j=0; j < nnus; j++)

{

rC0_0 = 0.0;

rC1_0 = 0.0;

rC2_0 = 0.0;

rC3_0 = 0.0;

rC4_0 = 0.0;

rC5_0 = 0.0;

rC6_0 = 0.0;

rC7_0 = 0.0;

rC8_0 = 0.0;

rC9_0 = 0.0;

rC10_0 = 0.0;

rC11_0 = 0.0;

for (k=0; k < ATL_MM_KB; k += 4)

{

rB0 = pB[0];

rA0 = pA[0];

rC0_0 += rA0 * rB0;

rA0 = pA[4];

rC1_0 += rA0 * rB0;

rA0 = pA[8];

rC2_0 += rA0 * rB0;

rA0 = pA[12];

rC3_0 += rA0 * rB0;

rA0 = pA[16];

rC4_0 += rA0 * rB0;

rA0 = pA[20];

rC5_0 += rA0 * rB0;

rA0 = pA[24];

rC6_0 += rA0 * rB0;

rA0 = pA[28];

rC7_0 += rA0 * rB0;
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rA0 = pA[32];

rC8_0 += rA0 * rB0;

rA0 = pA[36];

rC9_0 += rA0 * rB0;

rA0 = pA[40];

rC10_0 += rA0 * rB0;

rA0 = pA[44];

rC11_0 += rA0 * rB0;

rB0 = pB[1];

rA0 = pA[1];

rC0_0 += rA0 * rB0;

rA0 = pA[5];

rC1_0 += rA0 * rB0;

rA0 = pA[9];

rC2_0 += rA0 * rB0;

rA0 = pA[13];

rC3_0 += rA0 * rB0;

rA0 = pA[17];

rC4_0 += rA0 * rB0;

rA0 = pA[21];

rC5_0 += rA0 * rB0;

rA0 = pA[25];

rC6_0 += rA0 * rB0;

rA0 = pA[29];

rC7_0 += rA0 * rB0;

rA0 = pA[33];

rC8_0 += rA0 * rB0;

rA0 = pA[37];

rC9_0 += rA0 * rB0;

rA0 = pA[41];

rC10_0 += rA0 * rB0

rA0 = pA[45];

rC11_0 += rA0 * rB0

rB0 = pB[2];

rA0 = pA[2];

rC0_0 += rA0 * rB0;

rA0 = pA[6];

rC1_0 += rA0 * rB0;

rA0 = pA[10];

rC2_0 += rA0 * rB0;

rA0 = pA[14];

rC3_0 += rA0 * rB0;

rA0 = pA[18];

rC4_0 += rA0 * rB0;

rA0 = pA[22];

rC5_0 += rA0 * rB0;

rA0 = pA[26];

rC6_0 += rA0 * rB0;

rA0 = pA[30];

rC7_0 += rA0 * rB0;

rA0 = pA[34];

rC8_0 += rA0 * rB0;

rA0 = pA[38];

rC9_0 += rA0 * rB0;

rA0 = pA[42];

rC10_0 += rA0 * rB0;

rA0 = pA[46];

rC11_0 += rA0 * rB0;

rB0 = pB[3];

rA0 = pA[3];

rC0_0 += rA0 * rB0;

rA0 = pA[7];

rC1_0 += rA0 * rB0;

rA0 = pA[11];

rC2_0 += rA0 * rB0;

rA0 = pA[15];

rC3_0 += rA0 * rB0;

rA0 = pA[19];

rC4_0 += rA0 * rB0;

rA0 = pA[23];

rC5_0 += rA0 * rB0;

rA0 = pA[27];

rC6_0 += rA0 * rB0;

rA0 = pA[31];

rC7_0 += rA0 * rB0;

rA0 = pA[35];

rC8_0 += rA0 * rB0;

rA0 = pA[39];

rC9_0 += rA0 * rB0;

rA0 = pA[43];

rC10_0 += rA0 * rB0;

rA0 = pA[47];

rC11_0 += rA0 * rB0;

pA += 48;

pB += 4;

}

ATL_vbeta(pC, 0, rC0_0);

ATL_vbeta(pC, 1, rC1_0);

ATL_vbeta(pC, 2, rC2_0);

ATL_vbeta(pC, 3, rC3_0);

ATL_vbeta(pC, 4, rC4_0);

ATL_vbeta(pC, 5, rC5_0);

ATL_vbeta(pC, 6, rC6_0);

ATL_vbeta(pC, 7, rC7_0);

ATL_vbeta(pC, 8, rC8_0);

ATL_vbeta(pC, 9, rC9_0);

ATL_vbeta(pC, 10, rC10_0);

ATL_vbeta(pC, 11, rC11_0);

pC += 12;

pA = pA0;

} /* end of loop over N */

pB = pB0;

pA0 += incAm;

pA = pA0;

} /* end of loop over M */

}

B.4 Flags and Pragmas Used to Autovectorize Kernels

We tried several combinations of compiler flags to find best possible vectorized code produced
by the autovectorizations of different compilers (shown in Table B.1). In additional to the
flags, we used pragma to guide compilers to vectorize loop and attribute to specify the
alignment of the addresses (where possible). Table B.2 shows all the flags, pramga and
attribute we used (combination) of our experiments.
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Table B.1: Industry compilers and their versions we used in our experiment on Intel Haswell
machine

Compiler version

ICC 17.0.2
GCC 5.4.0
CLANG+LLVM 4.0.0

Table B.2: Flags used to produce vectorize and scalar code

Compiler-Code Type Flags Used pragma special

FKO-Scalar no-flag
FKO-Vectorize -vec markup:

ALIGNED(32)
ICC-Scalar -O3/O2 -no-vec -march=core-

avx2 -fomit-frame-pointer -
m64

ICC-Vectorize -O3/O2 -vec -march=core-
avx2 -fomit-frame-pointer
-m64 -qopt-report=5

#pragma
vector
always

assume aligned
(Ptr,32)

GCC-Scalar -O3/O2 -fno-tree-vectorize -
mavx2 -fomit-frame-pointer

GCC-Vectorize -O3/O2 -ftree-vectorize/-ftree-
slp-vectorize -mfpmath=sse -
mavx2 -mfma -ffast-math -
fomit-frame-pointer -fopt-info-
vec-all

LLVM-Scalar -O3/O2 -fno-vectorize -ffast-
math -fomit-frame-pointer -
mavx2 -mfma -m64

LLVM-Vectorize -O3/O2 -fslp-vectorize/-fslp-
vectprize-aggressive -ffast-
math -fomit-frame-pointer
-mfpmath=sse -mavx2 -mfma
-m64 -Rpass-analysis=loop-
vectorize

#pragma
clang loop
vector-
ize(enable)

attribute ((
aligne value(32)))
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