
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2015

CASPaR: Congestion Avoidance Shortest Path
Routing for Delay Tolerant Networks
Michael F. Stewart
Louisiana State University and Agricultural and Mechanical College, stewart@phunds.phys.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Stewart, Michael F., "CASPaR: Congestion Avoidance Shortest Path Routing for Delay Tolerant Networks" (2015). LSU Master's
Theses. 355.
https://digitalcommons.lsu.edu/gradschool_theses/355

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/355?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

CASPAR: CONGESTION AVOIDANCE SHORTEST PATH ROUTING
FOR DELAY TOLERANT NETWORKS

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in System Science

in

The Department of Computer Science

by
Michael F. Stewart

B.S. in Physics, Louisiana State University, 1999
December, 2015

Acknowledgments

First, I would like to thank Dr. Rajgopal Kannan, my advisor. I am grateful for his

guidance his patience and am proud to have been his graduate student. I would also

like to thank Dr. Amit Dvir who helped me every step of the way throughout my

research which truly would not have been possible without his help. Additionally,

I would like to thank committee members Dr. Costas Busch for his guidance and

unwavering support and Dr. Supratik Mukhopadhyay for his support and advice.

I would also like to thank Maggie Edwards who worked tirelessly to make sure

that all ducks were neatly organized and for her advice that was offered when ever

I asked. I wish to extend my deepest gratitude to Dr. Bijaya Karki for supporting

my research. In addition, I would like to thank to Dean Massé, Nick Davis and

the rest of the Louisiana State University Graduate School Staff for their help and

support.

None of this would have happened if it were not for Dr. T. Gregory Guzik for

encouraging me to go back to school and to Dr. John Wefel and Dr. Mike Cherry

for their complete support. I am extremely grateful. I would also like to thank my

friends and co-workers, Douglas Granger, Bethany Broekhoven, Amir Javaid, Nick

Cannady, Colleen Fava and Craig Jones who have all offered their support and

have talked theory with me whether they wanted to or not.

To my family, Aimeé, Jacob, Sean and Elle, I am forever grateful for your pa-

tience, encouragement and love throughout this process. I love you all dearly and

would not have endured if it weren’t for your support. You make everyday won-

derful and you brighten my world.

ii

Table of Contents

Acknowledgments . ii

List of Tables . v

List of Figures . vi

Abstract . vii

Chapter 1: Introduction . 1
1.1 DTN Background . 1
1.2 DTN Routing Protocols . 3

1.2.1 Direct Delivery . 4
1.2.2 Epidemic . 5
1.2.3 PRoPHET . 5
1.2.4 MaxProp . 6
1.2.5 Spray and Wait . 6
1.2.6 Backpressure and LaB . 7

1.3 DTN Congestion Control . 8
1.4 Applications . 9

1.4.1 Vehicular Network . 9
1.4.2 Interplanetary Network . 10
1.4.3 Mesh Networking Solutions 11

1.5 Motivation . 12
1.6 Research Goals and Requirements 12

1.6.1 Derived Requirements . 13
1.7 Research Methodology Overview . 15
1.8 Thesis Outline . 17

Chapter 2: CASPaR . 18
2.1 Principle of Operation . 18
2.2 Model . 19
2.3 Algorithm . 21
2.4 Multi-path Variant . 21
2.5 Example . 25

Chapter 3: Simulation . 27
3.1 Purpose and Methodology . 27
3.2 The ONE Simulator . 28

3.2.1 Input . 29
3.2.2 Execution . 30
3.2.3 Reporting . 32

iii

3.3 Shortest Path Routing . 35
3.4 Parameters . 35

Chapter 4: Results . 38
4.1 Delivery Probability . 38
4.2 Latency . 39
4.3 Overhead . 43
4.4 Hop Count . 44
4.5 Load Balancing . 46
4.6 Single Path vs. Multi-path . 47

4.6.1 Delivery Probability . 47
4.6.2 Latency . 48
4.6.3 Hop Count and Overhead 50

4.7 Summary . 52

Chapter 5: Conclusion . 53
5.1 Summary . 53
5.2 Future Study . 53

References . 55

Appendix A: Simulation Code . 58

Appendix B: Simulation Parameters . 66

Vita . 68

iv

List of Tables

2.1 Algorithm Definitions . 22

3.1 Example Parameter Initialization File 33

3.2 Example Message Statistics Report 34

3.3 Example Message Delivery Report 34

3.4 Simulation Parameters . 37

4.1 Latency Ratios . 43

4.2 Average Queue Deviation . 47

4.3 Multi-path Latency Ratios . 50

v

List of Figures

1.1 Classification of DTN Protocols . 3

1.2 DTN Protocol Table . 4

1.3 DTN Congestion Control Taxonomy 9

1.4 Goals and Requirements Chart . 14

2.1 Multi-path Diagram . 24

2.2 CASPaR Example Diagram . 25

3.1 ONE Graphical Interface . 31

4.1 Delivery Probability . 39

4.2 Average Latency . 40

4.3 Median Latency . 41

4.4 Latency Frequency Distribution . 42

4.5 Overhead Ratio . 44

4.6 Affect Minimum Loop Size has on Performance 45

4.7 Average Hop Count . 45

4.8 Queue Size Deviation . 46

4.9 Delivery Probability - Single vs. Multi-path 48

4.10 Average Latency - Single vs. Multi-path 48

4.11 Median Latency - Single vs. Multi-path 49

4.12 Latency Frequency Distribution - Single vs. Multi-path 49

4.13 Overhead Ratio - Single vs. Multi-path 51

4.14 Average Hop Count - Single vs. Multi-path 51

4.15 Result Summary Table . 52

vi

Abstract

Unlike traditional TCP/IP-based networks, Delay and Disruption Tolerant Net-

works (DTNs) may experience connectivity disruptions and guarantee no end-

to-end connectivity between source and destination. As the popularity of DTNs

continues to rise, so does the need for a robust and low latency routing protocol

capable of connecting not only DTNs but also densely populated, dynamic hybrid

DTN-MANET. Here we describe a novel DTN routing algorithm referred to as

Congestion Avoidance Shortest Path Routing (CASPaR), which seeks to maxi-

mize packet delivery probability while minimizing latency. CASPaR attempts this

without any direct knowledge of node connectivity outside of its own neighborhood.

Our simulation results show that CASPaR outperforms well-known protocols in

terms of packet delivery probability and latency while limiting network overhead.

vii

Chapter 1
Introduction

1.1 DTN Background

A Delay Tolerant Network (DTN) is defined to be a network where communication

between nodes is not guaranteed and a route is not always available for a packet

to travel from source to destination. Communication between nodes may go down

for any number of reasons. It may be due to node mobility and broadcast range or

possibly due to the environment in which the devices are deployed. For example,

consider a floating sensor network designed to measure wave height scattered in

some area of the Pacific. The sensors are capable of communicating amongst them-

selves but in order to upload data to servers for permanent storage, they must get

their data messages to one of only a handful of satellite transceiver relays scattered

throughout the network. In order to do so, they must route data packets over any

number of sensor relays. Unfortunately, the inherent nature of the waves makes it

almost impossible for static routes to exist since relay nodes in wave troughs can

not communicate with each other. New routes constantly have to be developed in

order for packets to reach the satellite transceiver nodes. To further complicate

communication, satellite-transceiver relay-node movement is random, in this case

controlled by ocean waves and currents. The relays may end up congregated close

together or scattered far apart from each other. Some may drift out-of-range. Re-

gardless, the goal of the DTN portrayed in this example is to collect and log as

much wave height data to the servers as possible, and do so for as long as possible,

a typical requirement of DTNs.

In many cases DTNs are made up of low-power nodes and efficient use of energy

is important to extend the life of the network. In addition, DTNs are often defined

1

by nodes that have limited storage capacity relative to nodes in a more traditional

network. The wave-height experiment is a prime example of a network where each

node must be expendable and therefore cheap to produce with a limited capacity

for memory and power. For this reason, transmission power-consumption should

be conserved either by limiting the number of broadcasts or limiting the range of

broadcasts or both. This is a fundamental design requirement for DTN routing

protocols.

DTN routing protocols must be able to deal with communication disruptions

by holding onto packets and waiting for routes to be re-established, an attempt to

facilitate communication where connected paths do not always exist (attempts to

use conventional Mobile Ad-Hoc routing (MANET) protocols such as reactive [1],

proactive [2], and hybrid [3] approaches have resulted in failure). This is because

DTN protocols must adapt a ”store and forward” approach, either as single or

multi-copy routing protocol. It must do this under the constraints of low-power

and small-memory. Also, total network capacity must be large enough and utilized

efficiently enough to account for extensive message buildup in order to not drop

packets or drop as few undeliverable (due to unconnected routes) packets as pos-

sible. This is inevitable considering nodes may be separated for long periods of

time.

These constraints, limited connectivity, low power and small memory should

not alter the overall goal of delivering messages to their destinations as quickly

as the DTN will allow. Each time a message is delivered, it is removed from the

network, power is conserved and room is made available in network buffers for new

messages. If packets can be delivered quickly without consuming unnecessarily

large amounts of network resources (power and memory), the network may be

made to look more like a Mobile Ad-hoc Network (MANET) often and like a DTN

2

only when necessary. This is an important but challenging problem [4] especially

considering that DTN devices are increasingly being integrated into our everyday

lives.

1.2 DTN Routing Protocols

Liu et al. [5] defined an DTN organizational chart that divides DTN protocols

into two major categories, forward-based and flood-based. A re-creation of that

chart is shown in Figure 1.1. The forward-based strategy keeps a single copy of

each message in the network. This type of DTN routing can be further broken

down into 3 categories: infrastructure-based, prediction-based and social-based.

An infrastructure-based approach is defined by the use of mobile agents that work

to deliver messages across disconnections in the network. Social-based schemes rely

on knowing the social behaviour of nodes in a network and to apply that knowledge

in order to predict future movement while prediction-based routing uses historical

knowledge to predict node movement.

DTN Routing

Forwarding

Social-based
Prediction-

based

Infrastructure-

based

Flooding

Hybrid-based

Social-based

Intention-

oriented

Spray-series

Coding-based

FIGURE 1.1. Classification of DTN Protocols: Shows a representation of a DTN classi-
fication system.

Flood-based strategies take the opposite approach and duplicate messages spread-

ing them across the network. This strategy can be broken into several categories:

spray-based, social-based, coding-based and intention-oriented. A separate hybrid

approach is also described. The spray-based approach applies a two-phased algo-

3

rithm, a spray phase where some number of message copies are transmitted and a

wait phase where nodes rely on a direct-delivery styled approach. The social-based

flood approach is similar to the social-based forward approach but multiple copies

are created to increase the likelihood that messages are delivered. The BUBBLE

protocol [6] is a prime example of a social-based flood algorithm. The coding-based

approach divides messages into smaller fragments, floods the network with them

and then relay nodes recombine fragments and forward them. Once all fragments

reach the destination, they are decoded and re-built into the original message.

Protocol Congestion ControlPacket Copies

Direct Delivery

Epidemic

Back

pressure

PRoPHETv2

MaxProp

Spray and Wait

Shortest Path

CASPaR

CASPaR-MP

none

unbounded

some, based on delivery

predictability

some, based on delivery

predictability

some, TTL-base deletion

< 10

none

none

none

none

none

reactive buffer availability

none

none

none

none

proactive, buffer availability

proactive, buffer availability

Forwarding

Mechanism

must meet destination

flood-based

delivery predictability

flood-based

delivery prediction cost-

based

historical connectivity cost-

based

measured binary flood-

based

Dijkstra-based semi-

omnipotent

historical route and

congestion cost-based

historical route and

congestion cost-based

Packet Priority

based on chance meeting

between Src and Dst

based on difference between

neighbors’ Qs

FIFO or LIFO or WFQ

based on delivery

predictability

n-hops, cost-based

FIFO or LIFO then those

that have copies left

shortest path, oldest

lowest cost, oldest

lowest cost (multipath),

oldest

FIGURE 1.2. DTN Protocol Table: Lists the primary attributes and differences between
the DTN protocols testing during this thesis.

1.2.1 Direct Delivery

The most basic form of the forward-based (one-copy) DTN routing strategy is

Direct Delivery [7]. Nodes forward messages to destinations only when they come in

contact (within range) with the destination. This means that messages are shared

directly between source and destination nodes. This method relies completely on

chance meetings between source and destination nodes and can be quite useful

since its delivery rate provides the probability that two nodes come in contact

if all node movement is based on a random walk algorithm. This is a one-copy

4

algorithm and therefore makes efficient use of queue buffer space however, due to

its overly simplistic routing scheme, it does not perform well unless nodes in the

network encounter each other often.

1.2.2 Epidemic

The basic form of the flood-based DTN routing protocol is Epidemic dissemina-

tion [8], a multi-copy algorithm that can offer low delivery delay, but can be pro-

hibitively expensive since it consumes a considerable amount of network resources

due to excessive message duplication. Epidemic works in the following manner:

when two nodes meet, they share buffer packet content information. Using the

shared information, the nodes determine which packets they already have, those

that they do not and those its neighbor does. The pair then exchange the necessary

packets so that they both have the same packets in their buffers once the sharing

transaction is complete. This process is repeated each time nodes come in contact

with each other. While this approach has proven to work well under comparatively

lower network loads, our results show that high network loads can render Epidemic

routing completely ineffective.

1.2.3 PRoPHET

Lindgren et al. [9] presented a probabilistic flood-based routing protocol (PRoPHET),

the operation of which is similar to Epidemic except that information about ”meet-

ings” is used to update the internal delivery predictability vector used to decide

which messages are delivered to other nodes. Each node calculates a delivery pre-

dictability and forwards messages only if the encountered node has higher delivery

predictability than itself. Naziruddin and Pushpalatha [10], improved PROoHET ’s

efficiency in terms of buffer related constraints over the network.

5

1.2.4 MaxProp

Burgess et al. [11] proposed a history-based method [4] that relies on prioritizing

packet transmission and drop scheduling, (MaxProp). Queued packets are divided

into two groups; those packets that are below some n-hop threshold and those

whose hop count is greater. New packets that haven’t traveled far are given priority

and as a result, newer packets are guaranteed a delivery opportunity. Those queued

packets above threshold n are prioritized based on estimated cost to destination

defined by the cost function:

c(i, i+ 1, ..., d) =
d−1∑
x=i

[1− (fx
x+1)] (1.1)

where c represents the cost across nodes (i, i+ 1, ..., d) and fx
x+1 represent the cost

or edge weight between neighboring nodes x and x+ 1.

However, this algorithm requires a large buffer and energy consumption, and

suffers from severe contention. Also, a potential latency problem might arise from

the preferential treatment given to low-hop-count packets. If the destination of a

new packet is unreachable, wasted effort may needlessly be applied to packets with

low hop counts.

1.2.5 Spray and Wait

The multi-copy, flood-based Spray and Wait protocol presented by Spyropoulos et

al. [12] has been shown to outperform all existing schemes with respect to both

average message delivery delay and number of transmissions per message delivered.

However, it requires a large buffer. Spray and Wait has 2 phases of operation; a

spray phase and a wait phase. Spray and Wait has a couple of different variants

based on the number of packet copies disseminated. We’ve run Spray and Wait in

binary mode which is described here. In binary mode, source node create L copies

of each message. Nodes, upon meeting a node with no copies of a specific message

6

deliver, bn/2 copies to its neighbor. This is repeated until it is left with a single

copy at which time it switches to the wait phase of delivery where it behaves like

the Direct Delivery protocol.

For the simulations performed here, the initial number of copies was set to be

6. This means that if node n created a message, it would make 6 copies of the

message. It would then deliver 3 of those to node l11, the first node it meets, 1 to

l21 the second node it meets and one copy to l31. At this point, the source is left

with a single copy and reverts to wait mode and behaves as a Direct Delivery-type

protocol. Now node l11 would deliver 1 copy to node l12 and another to l22 leaving all

6 nodes: n, l11, l21, l31, l12, and l22 with single copies and operating in direct-delivery

mode.

It is clear why this algorithm can be successful especially in a small-map, random

walk type simulation as in our results. It increases the probability of contact sig-

nificantly. By distributing 6 copies to 6 different nodes, the packet has 6 times the

likelihood of intersecting the destination node. If there is an option to stop delivery

on those packets that have already been delivered, then it can also increase its effi-

ciency. However, in a non-random node movement scheme, the binary mode Spray

and Wait scheme might not perform so well. This is because at worst case, Spray

and Wait is simply Direct Delivery with a higher probability of node-destination

encounters but it can not break out of that mold. Also, it will be come less effective

due to buffer overflow and ultimately dropped packets at higher network loads.

1.2.6 Backpressure and LaB

Backpressure routing [13] forwards packets along links with high queue differentials.

Dvir and Vasilakos [14] presented a backpressure-based routing protocol for DTNs

with link weights. Ryu et al. [15] considered nodes clustered in groups and used

mobile relay nodes to ferry messages across groups. The authors [15] proposed

7

a two-level routing scheme, one intra via backpressure routing and one intre via

source routing. However, backpressure algorithms do not take into account shortest

routes. Alresaini et al. [16] aim to avoid backpressure’s long delay in cases of low

traffic by using a hybrid approach such as the social based forwarding algorithm

presented in [6].

1.3 DTN Congestion Control

Congestion is caused by overuse of bandwidth within the network. Depending

on the topology of the network, congestion can be a localized phenomenon or

wide-spread. If congestion is localized then possibly the most effective means of

bypassing it is to go around (avoid) it. If it is more widespread then there is no

choice but to wait for it to subside; packet priorities being equal. Because DTNs do

not behave as a continually-connected network, a typical approach to congestion

control, Transmission Control Protocol (TCP) for example, does not work [17].

Congestion control must be designed into the routing protocol and avoided. The

authors of [17] put forth a DTN congestion control taxonomy to classify congestion

control techniques. Figure 1.3 shows a re-creation of the diagram that describes

the taxonomy.

The taxonomy is divided into 8 main groups. The first, congestion detection,

can be segregated into 3 categories: network congestion where the nodes try to de-

tect congestion based on current throughput versus maximum throughput, buffer

availability where nodes attempt to detect network congestion based on avail-

able space in neighboring buffers and drop rate where nodes base congestion on

packet drops. Another group is the control type and is partitioned into 2 categories:

proactive congestion control which aims to prevent congestion from occurring and

reactive congestion control which to reacts to reduce congestion once detected.

The routing group indicates whether the congestion control mechanism is routing

8

Taxonomy

Control

Type

Congestion

Detection

Open or

Closed Loop

Evaluation

Platform
RoutingContactApplication Deployability

Network

Capacity

Buffer

Avail-

ability

Drop Rate

Closed-

loop

Open-loop

Proactive

Reactive

Hybrid

Scheduled

Predicted

Opportu-

nistic

Dependent

Indepen-

dent

Low

Medium

High

FIGURE 1.3. DTN Congestion Control Taxonomy: As first proposed in [17], this figure
shows the proposed DTN congestion taxonomy which we use to help classify CASPaR’s
congestion control mechanism.

protocol dependent or independent and the contact group describes how contact

between nodes in the network come in contact: in a scheduled fashion, a predictable

fashion or completely randomly (opportunistically). The last group, deployability,

describes how realistically deployable a congestion mechanism is.

1.4 Applications

The list of potential applications for a high-bandwidth capable, efficient and reli-

able DTN routing protocol continues to grow and the networking boundaries be-

tween them is blurring. Some DTN applications where CASPaR would be effective

are described here.

1.4.1 Vehicular Network

Consider a vehicular network [18] that allows vehicles, traffic sensors, traffic control

centers, gas stations, restaurants and all else travel, traffic and automobile related

to communicate with each other on one network. How might these vastly different

entities communicate? The travel stops such as gas stations, restaurants and hotels

are all capable of TCP/IP base communication. But, the automobiles and traffic

sensors form a network in which end-to-end connectivity isn’t guaranteed, a DTN.

In the not so distant future, autonomous vehicles will have to communicate with

9

each other and with traffic sensors to efficiently and safely navigate. Cars might

also communicate with gas and service stations and negotiate fueling or servicing

options or appointments. Traffic sensors will route cars to less congested roadways,

time lights to increase traffic throughput and ultimately ease traffic congestion

and make traveling more safe. The cost effective nature of wireless communication

makes it an obvious choice for vehicular networks. An elegant, efficient and simple

networking solution is to create a mesh network from the sensors and vehicles

themselves so that each and every one is responsible for relaying packets.

1.4.2 Interplanetary Network

Whether it be human or robotic, we are launching more things into space now

than ever before. One commonality is that each of these spacecraft will have to

communicate with home. As we travel further from Earth, a far-reaching space or

interplanetary communication network (a deep-space network, DSN) will be needed

(and already exists in some form [19]) to facilitate and route packets between home

and these spacecraft potentially separated by millions of miles.

An example of the populating of our near-Earth space environment is the com-

ing CubeSat revolution. David Pierce, senior program executive for suborbital

research at NASA states that, ”CubeSats are part of a growing technology that’s

transforming space exploration” [20]. A CubeSat is a small satellite approximately

10 centimeters cubed for a 1U (unit) sized model. They can be built in 2U, 3U, or

6U sizes as well. They weigh approximately 3 pounds per unit. Many are typically

launched at once usually as axillary payloads making them launch-cost-effective.

The number of small, sometimes tiny, space satellites are on the rise. These devices

often can be designed and built for far less than their large heavy counterparts.

Maybe more importantly, they can be launched for fractions of the cost.

10

Because technology has allowed for the miniaturization and greater efficiency of

integrated circuits that perform all types of tasks, it is now feasible to build very

small, relatively low-power communication devices that can be spread across vast

regions of space building an interplanetary network to complement the existing

DSN. This network is absolutely necessary if communication in and around our

solar system is to be realized. Ultimately, localized interplanetary space travel

hinges upon reliable communication.

1.4.3 Mesh Networking Solutions

General mesh networking solutions are being in explored in novel ways. An idea

now coming to fruition is Google’s Project Loon [21]. Loon, aims to provide those

in developing regions of the world internet access by flying LTE payloads (mini-cell

towers) right above the tropopause at an altitude of 20 kilometers. Many of these

balloons will be launched over a large area and provide mesh network coverage for

anyone with an LTE enabled device in that region. Google Loon balloons currently

achieve 100 days at float and have communication ranges on the order of 400

kilometers when several balloons are meshed in a single network. Float time and

broadcast range are improving and as they do, LTE communication cost drops;

possibly to the point that it will be cost effective to deploy communication balloon

mesh networks in developed areas of the world; maybe here in the U.S. in congested

areas where cell towers aren’t cost-effective or even feasible to construct.

This is a specific example of a broader push towards wireless, mobile, mesh

communication allowing complete high-bandwidth connectivity between devices

that may or may not always be connected. Routing techniques must be able to

accommodate the potential for parts of the network to be delay and disruption

tolerant and to bridge the highly mobile, mobile and non-mobile portions.

11

1.5 Motivation

Currently, there is not a one size fits all approach to MANET and DTN networking

in general but maybe it is time to start working on it. Wireless communication

and sensor devices perform all sorts of jobs but as wireless and sensor technology

decrease in cost, their numbers will increase causing individual DTN islands to grow

in numbers. As these islands begin to overlap they will merge. This process will

repeat and as it does the DTN footprint will grow and its bandwidth requirements

will expand. The clear delineation between MANETs, DTNs and even the internet

will blur as devices once considered separate join the global network (globnet). This

growth may continue until it reaches off-planet and the inter-planetary network

one day joins the globnet. It is clear that there is a need for a common, efficient,

robust routing protocol that can link these networks and account for specific DTN

characteristics such as contact information, mobility pattern and network resources

(storage space, transmission rate, and battery life).

1.6 Research Goals and Requirements

The development of a multi-purpose, one-copy DTN protocol that addresses con-

gestion avoidance, shortest path routing and is capable of operating efficiently in

a high-load network is the motivation behind the Congestion Avoidance Short-

est Path Routing protocol (CASPaR). The algorithm is defined by the following

developmental guidelines:

1. Do not duplicate packets.

2. Route deliverable packets, move undeliverable packets ’closer’ to their desti-

nations and hold onto packets when prudent to do so.

3. Integrate congestion avoidance and bottleneck minimization into the design.

The goals of CASPaR are:

12

1. Learn direct routes to destinations when possible.

2. Avoid congestion.

3. Dynamically correct routes as the network topology changes.

4. Minimize latency and maximize delivery by moving packets over those newly

discovered routes.

To do this, CASPaR must negotiate node queue differentials between neigh-

bors similar to back-pressure algorithms and map shortest paths without explic-

itly discovering them. Here we present preliminary results showing that CASPaR

accomplishes these goals.

1.6.1 Derived Requirements

Figure 1.4 shows a flow diagram that presents the overall goal and constraints

of CASPaR. It is a tool used to help derive the requirements of CASPaR whose

overall goal is to deliver all packets as quickly as possible, for as long as possible

and as cheaply as possible under the restrictions of low memory, low power and

periodic disconnected nodes; typical restraints placed on a DTN.

Following the flow of the diagram shows, for example, that to deliver packets

quickly, CASPaR must move them closer to or directly to their destinations at each

update interval but avoid congested routes when doing so. To avoid congestion,

packets must be distributed evenly across the network topology and to accomplish

this, probable routes must be known and queues must be balanced. Probable routes

must be known in order to move packets closer to their destinations as well and to

accomplish both of these objectives, queue and route information must be shared

between nodes.

Because DTNs are defined by their disconnected paths, packets must be stored

in the network until a route becomes available. Therefore, packets must be dropped

13

Conserve

power

Less

broadcasts

Distribute

packets

evenly

Avoid

congested

routes

Store fewer

packets in

buffers

Less copies

Move packets

closer to

destination

Do not drop

packets

Minimize

visited nodes

Learn

probable

routes

Share

information

Balance node

queue sizes

Less hops to

destination

Deliver all packets as

quickly as possible, for as

long as possible and as

cheaply as possible.

Low

memory

Low

power

Disconnected

nodes

Maximize

queue usage

FIGURE 1.4. Goals and Requirements Chart: Lays out the overall goal and constraints
of CASPaR and the objectives and requirements that are derived from that overall goal.

only as a absolute last resort which dictates efficient queue usage. Again, this re-

quires an even distribution of packets across the network but also the minimization

of node visits which means that fewer packet copies should be made and fewer vis-

ited nodes enroute to a destination. This also requires that probable routes be

discovered.

DTNs often have low-power restrictions and therefore energy conservation is a

must. Power consumption is driven by the number of transmissions so by minimiz-

ing broadcasts, power will be conserved. To do this, 2 things must be constrained:

1) the number of hops a packet must make to get to its destination and 2) the

number of duplicate packet copies must be minimized. Both of these restraints

require that probable routes to destination nodes are learned .

Lastly, DTNs often have low-memory restrictions which means that few packets

can be stored in each node’s queue and forces efficient queue management. This

means that the number of nodes a packet traverses must be minimized which

requires that there are fewer hops to the destination node and fewer copies of

14

packets. But to deliver packets quickly under these constraints, probable routes to

destination nodes must be discovered.

This diagram identifies the requirements of an efficient DTN routing protocol

design. An efficient protocol must share information between neighbors, makes few

packet copies, if any, learn probable routes to destinations so that packets can be

distributed over the network to avoid congestion and minimize routing hops.

1.7 Research Methodology Overview

The research methodology of the CASPaR study, whose goal is to develop a single-

copy DTN routing protocol whose predicted routes avoid network congestion and

form direct routes to destinations, is described in this section. First, existing DTN

routing protocols were studied to better understand the DTN problem and to de-

termine which of the existing protocols should be used to compare with CASPaR

(the comparison protocols are referred to collectively as comparison protocol). Once

the DTN problem and existing solutions were better understood, a preliminary

version of the CASPaR algorithm was developed, tested (by simulation) and the

results compared with comparison protocol results (using the same simulation pa-

rameters). As problems and glaring inefficiencies with the CASPaR algorithm were

discovered, they were studied, fixed and the algorithm was modified, tested and

the results compared again. This refinement process included discussions amongst

committee members and a few times involved tweeking the basic analytical model

that the CASPaR algorithm is based upon. The entire process of testing, compar-

ing and refining was repeated over several iterations until the final version of the

CASPaR algorithm was created.

Once a final CASPaR algorithm was developed, ’official’ protocol testing began.

Testing involved a very specific network simulation where the only changes made

between runs were the routing protocol, the random number generator seed and

15

the size of node buffers. The key comparison results were chosen to be delivery

probability (messagesdelivered/messagessent), average message latency (the av-

erage amount of time it takes all packets to be delivered), and hop count (the

average number of nodes a message encounters before being delivered to its desti-

nation). Special analysis attention was paid to the latency results which required

simulation data reports accounting for all transmitted messages including their full

paths from source to destination, their start times and their latencies.

To more completely gauge the high-performance behaviour of CASPaR, an ideal

single-copy routing protocol was required for comparison. A routing protocol that

knew the single shortest path between all source and destination nodes for all

queued messages at time t, one that could minimize hop count and latency while

maximizing delivery probability was needed. The Shortest Path routing algorithm

was developed to fill this need. To gauge low-performance behaviour, a basic single-

copy routing protocol was required. The existing Direct Delivery routing protocol

fit this requirement well. Remember that Direct Delivery is the routing protocol

whose algorithm is one of self-delivery. That is, the only way a message is delivered

is if the source and destination come within broadcast range or each other. To-

gether, these two protocols provide the extreme case simulation comparison results.

The other protocols that are simulated and compared in this study are:

1. Epidemic (EPI): Due to its potentially high overhead [8].

2. Prophet with Estimation (PRO): Due to its probabilistic routing [9].

3. MaxProp (MP): Due to it documented high-performance [11].

4. Backpressure LaB (LaB): To compare with CASPaR’s backpressure-like mech-

anism [13] [14] [15].

16

5. Spray and Wait (SaW): Due to its high performance [12].

1.8 Thesis Outline

The rest of this thesis is organized as follows:

1. Chapter II describes the CASPaR algorithm by detailing the analytical model

it is based upon, providing the algorithm, describes an important variant and

provides an example.

2. Chapter III describes the simulation, the simulation methodology, the specific

simulator used including its input, execution style and report mechanisms.

3. Chapter IV provides the simulation results for delivery probability, latency,

overhead, and hop count. Some results and explanation of network load bal-

ancing is also provided as well as a more detailed investigation into message

or packet latency.

4. Chapter V has some concluding remarks and discusses some ideas into pos-

sible future study regarding CASPaR.

17

Chapter 2
CASPaR

CASPaR is a one-copy routing protocol that attempts to route packets over the

shortest, least congested paths. CASPaR consists of two interdependent mecha-

nisms: 1) direct routing and 2) congestion avoidance. The algorithm is designed

to route packets over connected paths and employs a routing-protocol-dependent,

proactive congestion-avoidance mechanism [17] that uses an open loop congestion

control scheme based on buffer availability and historical connectivity knowledge.

This allows for alternate route discovery avoiding congestion buildup. Ultimately,

congestion avoidance takes precedence over routing forcing a direct-delivery-like

mode of operation during heavy traffic. Except for their 1-hop neighbors, nodes

have no knowledge of other nodes in the network.

2.1 Principle of Operation

All nodes maintain an estimated cost (Cc
n(t)) to deliver packets to each destination

node c. This cost attempts to track the least congested and shortest paths to each

destination c based on historical knowledge of connectivity to the destination and

the waiting times of packets to c in node n’s queue. The process by which Cc
n(t)

is calculated begins with the broadcast of a Request For Costs (RFC). All nodes

participate in the RFC transaction process when one of three things occurs: 1) a

packet has just been received from a neighbor, 2) a packet has just been created

or 3) the RFC periodic timer expires. Neighboring nodes, upon receiving an RFC,

respond with their destination cost table which contains a list of all destinations

and the cost to send a packet to that destination. If node n’s estimate of delivery

costs to c is the lowest amongst its neighbors, then n holds onto these packets

18

in its buffer until it either meets a neighbor with a better (lower) estimate or is

connected to c (we use a preference factor of 0.9 to give a slight preference to

node n holding onto these packets). Priority transmission is given to those packets

whose destination are neighboring nodes. The effect of periodic updates is a more

accurate network congestion and connectivity model and since routes depend upon

a neighbor’s total transmission costs, frequent updates produce a more applicable

model (similar to distance vector routing in wired networks [1]). Nodes have no

direct knowledge of the state of the network outside of its own neighborhood. But

due to the propagation of costs, each node gains an approximate network-wide

perspective allowing for effective packet routing.

2.2 Model

Path congestion and route connectivity are modeled by minimizing the delivery

costs along some multi-hop path from source to destination and is characterized

by two convoluted parameters: The first is Proximity Measure:

Θc
n(t) =

Qc
n(t)

T c
n(t)

(2.1)

Θc
n(t) is a value between 0 and 1 where 1 indicates nodes n and c are connected

and 0 means they were never connected. T c
n,t is incremented at every time step and

Qc
n,t is set equal to T c

n,t as long as nodes c and n remain connected forcing Θc
n(t)

equal to 1. Once disconnected, Θc
n(t) begins decreasing linearly in time. Periodically

both Q and T are reset to some initial values that represent a default measure of

connectivity. The second parameter is the Net Destination Queue Waiting Time:

W c
n(t) =

N∑
i=0

(T − acn,i) (2.2)

where T is the current time and acn,i is the arrival time of packet i at node n

destined for node c. The queue waiting times of packets are used as a proxy for

19

congestion as opposed to backpressure which uses queue size differentials. Hence,

we model delivery costs as an exponentially increasing function of net waiting times

of packets with an increasing discount factor based on connectivity probability. The

estimated delivery costs to c via n are calculated as:

Cc
n(t) = W c

n(t)(̇1−Θc
n(t)) + Cc

n(t− 1) (2.3)

CASPaR’s, estimated delivery cost is calculated while explicitly setting trans-

mission costs between 1-hop neighbors to 0. This emphasizes routing along a con-

nected path between source and destination when one exists, and routing to bal-

ance congestion in the network when connected paths do not exist. Setting 1-hop

transmission costs to 0 has the following effects: 1) If a connection from source

n to destination c exists then the delivery cost will be 0 everywhere along that

path regardless of path length sinking packets directly to destination c (see line 24

from Alg. 1) and 2) If a connection from source n to destination c does not exist

then packets to c will be spread over the network based on congestion, radiating

outwards towards the destination. Eventually when one of these nodes becomes

connected, a direct path to c is created and packets quickly flow down-gradient to

their destinations.

In addition to Θc
n(t) being set to 1, the historical cost, Cc

n(t−1), is reset to 0 when

nodes n and c become connected at time t. From the definition of W earlier, the

marginal increase in net waiting times at each time step are a function of queue size

to c. Thus as can be seen from the expression above, lightly congested nodes along

short paths to the destination are favored (the more recently a node is in contact

with the destination and the smaller its queue size, the lower the transmission cost)

and therefore the net effect of the algorithm is to reinforce delivery on short, less

congested paths.

20

Proximity Measure and Net Destination Queue Waiting Time, parameterize not

only the shortest but least congested paths. The Proximity Measure attempts to

minimize the path length from source to destination while Net Destination Queue

Waiting Time pulls packets towards neighboring nodes with the smallest queues

(similar to a backpressure mechanism [16]) minimizing routing across congested

paths. This technique develops routes that chase the destination, ultimately catch-

ing and creating short paths from source to destination.

Packets are transmitted in a lowest-cost first, longest-queue-waiting-time second,

priority order. More simply put, the oldest, cheapest packets are transmitted first.

Also, a minimum node loop counter to force a Minimum Loop Size (MLS) is

integrated into the CASPaR algorithm to avoid packets repeatedly traversing the

same nodes. The MLS is defined to be the minimum number of consecutive unique

nodes that must exist in a routing path before a packet is allowed to revisit a node.

The MLS is set to 5 for all simulations presented here.

2.3 Algorithm

Request for Costs is executed both periodically and upon the receipt or creation

of a packet. The range status, measure of proximity, net destination queue waiting

time and total transmission costs are recalculated upon each call (see Alg. 1 and

Table 2.1).

2.4 Multi-path Variant

Several variations of the CASPaR protocol were designed and tested during this

DTN study. Two that emerged as notable candidates are the CASPaR and CASPaR-

MP. The ’standard’ variant, defined by single path costing is designed based on

costs to route packets to the neighbor that replies with the lowest relay cost based

on single routes to destinations. It is referred to as single-path costing or the

21

TABLE 2.1. Algorithm Definitions

Cc
n(t) The transmission cost for all packets destined for node

c that reside in node n’s queue at time t.
W c

n(t) The net destination queue waiting time is the
amount of time that all packets destined for node c
have been resident in node n’s queue at time t.

Θc
n(t) Proximity Measure that is analogous to the elapsed

time since nodes n and c were within k-hop radius
of each other such that 0 < Θc

n(t) ≤ 1. When
nodes n and c are connected, Θc

n(t) = 1. If
nodes n and j have never been connected, Θn,j(t) is
0.

Rc
n,t The range status between node n and destination c at

time t. If node c resides in the k-hop neighborhood of
node n at time t, the range status, (rcn,t), is set to true.
Otherwise it is set to false.

acn,i The arrival time of the ith packet at node n
destined for node c.

T c
n,t A tick counter which is incremented upon each bid period.

It is reset to some default measure of connectivity periodically.
Qc

n,t Counter incremented each time nodes n and c are not
neighbors. It is reset to some default measure of connectivity
periodically.

τ The current time.

CASPaR-SP variant. Since it is the standard algorithm it is always referred to as

simply CASPaR.

A slight modification of CASPaR takes steps to distribute packets more widely

over the network as an enhanced congestion avoidance technique and is referred to

as the multi-path or simply CASPaR-MP. Instead of calculating costs based on a

single route from a relay node to a destination, CASPaR-MP takes into account

all possible routes to a destination during the cost determination process.

The multi-path designation may be somewhat of a misnomer. It does not mean

that messages are split and sent across different routes towards their destination

nor does it mean that a relay node will alternate between routes when sending

messages to some set destination. It means only that route costs are calculated

22

Algorithm 1 The CASPaR Algorithm
1: function Update Range Status
2: for all destinations do
3: if destination c is within 1-hop of node n then
4: Rc

n,t = true

5: else
6: Rc

n,t = false

7: function Update Measure of Proximity
8: for all destinations do
9: T c

n(t) = T c
n(t) + 1

10: if Rc
n,t then Qc

n(t) = T c
n(t) . Periodically reset to default values

11: Θc
n(t) =

Qc
n(t)

Tc
n(t)

12: function Update Queue Waiting Time
13: for all destinations do
14: W c

n(t) =
∑N

i=0(T − acn,i)

15: function Update Delivery Cost
16: for all destinations do
17: if Rc

n,t then Cc
n(t− 1) = 0

18: Cc
n(t) = W c

n(t)(̇1−Θc
n(t)) + Cc

n(t− 1)

19: function Request for Costs
20: Update Range Status ()
21: Update Measure of Proximity ()
22: Update Queue Waiting Time ()
23: Update Delivery Cost ()

24: Cc
n(t) = 9

10
Ċc

n(t) . Calculate Self-Delivery Estimate
25: for all nodes j in 1-hop range of node n, for all destinations c do
26: Select Cc

m = min(Cc
j (t), Cc

n(t)) and relay r accordingly

27: Update Cc
n(t) = Cc

m and either relay packet to node j or do not transmit if r = n

based upon all possible routes to each destination from some relay node instead of

basing it on the single lowest cost route. It will, however, behave in such a manner

as to allow for separate back-to-back messages to very likely be transmitted over

different routes. This is demonstrated in Figure 2.1.

Take a network that consists of nodes n, j1, j2, and c and paths x, y and z for

example. Node n wishes to deliver a packet to node c and must select the node that

reports the minimum cost to be the relay. Node j1 is connected to node c through

two paths, x and y. Node j2 is connected to node c through only one path, z. Out

of all paths, x, y and z, z is the least congested and therefore the single cheapest

route. However, because node j1 can offer 2 perceived independent paths, node j1’s

presented cost may be less than node j2’s depending on the cost-combination of

the individual bids. In the case shown in Figure 2.1, x has a cost of 3, y has a cost

of 3 and z has a cost of 2. The cost presented to n by j1 to transmit a packet to

destination c would be calculated in the following manner:

23

j1

j2

n c

FIGURE 2.1. Multi-path Diagram: Shows the functionality of CASPaR-MP. Node j1

has 2 routes, x and y to destination node c both at cost 3. Node j2 has only one route
z at a cost of 2. In single-path routing, node n would choose j2 to send packets through
since it has the single lowest cost route. However, in multi-path routing, node n could
choose j1 depending on the combined cost of its two parallel routes.

Cc
n(t) = 1/

N∑
i=0

(1/pi) (2.4)

where pi is the ith path.

In the scenario presented here, the cost reported to node n by j1 is 3/2 which

is less then the cost presented by j2 which is 2 and therefore packets destined for

c would be transmitted through relay j1 at time t. Assuming this scenario, node

n would choose j1 to send packet-1 onto destination c. Lets assume that j1 sends

packet-1 through path x. Now lets say another packet, packet-2 is sent by node n

to node j1. Node j1 re-processes a RFC and it is now likely, since packet-1 may still

reside in the buffer of the node only 1-hop away from node j1 along path x, that

path y will produce the lower cost and hence packet-2 will be sent through path

y towards its destination c. From this example, it can be seen how CASPaR-MP

can easily be conformed into a routing protocol capable of splitting packets and

send them across varying routes.

24

5

3

4

00

0 2

3j3 c

T=1

j1n

j2

c
j1
j2
j3

2.7
3
4
5

(a) Time T=1

6

4

5

10

1 3

4j3 c

T=2

j1n

j2

c
j1
j2
j3

3.6
‐
‐
6

(b) Time T=2

7

5

6

21

2 4

0j3 c

T=3

j1n

j2

c
j1
j2
j3

4.5
‐
‐
‐

(c) Time T=3

8

6

7

32

0 0

1j3 c

T=4

j1n

j2

c
j1
j2
j3

5.4
‐
1
‐

(d) Time T=4

FIGURE 2.2. CASPaR Example Diagram: A CASPaR example iterating through 4 time
periods and the transactions between a group of nodes in a small network.

It is shown in the results that CASPaR-MP does provide a slight advantage

over CASPaR. However, it was not chosen as the standard because of its analytical

complexity and minimal performance gains when compared to CASPaR.

2.5 Example

In the scenario presented in Figure 2.2, the weighted graph represents a small net-

work. The vertices represent nodes: n, j1, j2, j3, and c. The weighted edges represent

the transmission cost between nodes (a weighted-edge of 0 represents neighboring

nodes). In this scenario, node n is to deliver a packet to node c. Each panel repre-

sents a time-step and depicts a single RFC transaction. There are 4 panels starting

at T = 1 and ending with the delivery of the packet at T = 4. Queue sizes aren’t

explicitly considered in the transmission cost and the measure of proximity is cal-

culated using integers for simplicity. The self-delivery costs are multiplied by 9/10

as the algorithm is defined. At the bottom left-hand corner of each panel is the

destination cost table showing all potential destination nodes and their associated

costs.

At T = 1, node n broadcasts a RFC. Nodes j1, j2 and j3 respond with their

destination cost tables and node n compares them against its self delivery cost.

These values are shown in the representative destination cost table: c = 2.7, j1 = 3,

j2 = 4 and j3 = 5. Since self delivery cost is the minimum, node n holds onto the

packet even though it is unable to deliver it to its destination at this time.

25

Node n is unaware of the state of the network beyond its own neighborhood.

After the RFC responses are received, node n learns its neighbors: j1, j2 and j3

and that they can deliver a packet to node c for 3, 4 and 5 respectively. Node n

deduces that a direct route to node c doesn’t exist since a minimum delivery cost

of 0 wasn’t received. Node n selects itself as the relay since its delivery cost is the

minimum.

At T = 2, node n again broadcasts a RFC but this time only node j3 responds.

The other nodes have moved out of range. Since the self delivery cost, incremented

to 4 from time period T = 1 to T = 2, is still the minimum, node n again holds

onto the packet.

Node n has no neighbors at T = 3 and by default its cost is the minimum and

node n continues to hold the packet. Notice, that nodes j1 and c become neighbors

at this time. Unfortunately node n can not know this since it isn’t connected to

node j1.

Finally, at T = 4, node n is a neighbor of node j2 who responds with the

minimum delivery cost of 1. Node n transmits the packet to node j2 who will

transmit the packet to node j1; provided that nodes j1 and j2 are still neighbors

once j2 is ready to re-transmit.

The network is dynamic and can change quickly. The receipt of the packet from

node n causes node j2 to initiate its own RFC transaction that might reveal a

route change. Other nodes potentially in the path might update their destination

cost tables due to received and generated packets or because the update timer

expired. A transmission cost of 0 reveals an end-to-end connection from current

source to destination and can trigger an avalanche of packet transmissions towards

the destination.

26

Chapter 3
Simulation

3.1 Purpose and Methodology

The purpose of the simulations was to compare the performance of CASPaR, its

multi-path variant and 7 additional routing protocols as a function of buffer size.

A realistic yet simple simulation was required that placed all protocols on equal

footing. A relatively high data throughput was desired to stress the nodes in the

network but the transmission rate was set to resemble typical LTE transfer rates

of about 5 Mbps as measured from an actual LTE phone on AT&T’s network in

Baton Rouge, Louisiana. Systematic effects of the simulation were considered to

ensure that A) there were no special case simulation runs for any of the tested

protocols and B) if large variations existed in simulation results for a particular

routing protocol and simulation scenario, they were known and their deviations

accounted for. Therefore, the simulation had to be run multiple times but with

different random number generator seeds to generate different results.

This called for a simple simulation scenario with few modifiable parameters

as this thesis is an introductory study of CASPaR. The only parameters that

were modified were the routing protocol, the buffer size and the random number

generator seed for the node movement engine. The results had to include delivery

performance in terms of probability, latency and overhead. The results also had to

include all routes taken for all messages delivered including latencies and number

of hops. These results were needed to perform more in-depth analysis on latencies

as a function of routing.

Two candidate network simulators, NS-2 and ONE, were reviewed. The ONE

simulator was chosen for its Java programming interface, its realtime simulation

27

GUI, because it is specifically geared towards DTNs and because it already has

many of the standard DTN routing protocols contained within the installation.

3.2 The ONE Simulator

The Opportunistic Network Environment simulator (ONE) version 1.4.1 [22] was

used for all simulations performed during this study. ONE is a graphical network

simulator specifically designed for simulating DTNs. It comes with standard rout-

ing algorithms including Direct Delivery, Epidemic, PRoPHET, Spray And Wait

and MaxProp all of which were simulated along with CASPaR. ONE provides a

java programming interface complete with all classes required to design, develop,

incorporate and simulate the behavior and performance of new routing algorithms.

It is also capable of collecting and reporting network summary data that can be

easily collated and analyzed.

With it, nodes can be created, placed within a blank or elaborate map and

translated according to many different movement models. Some of the common

ones are: random waypoint, map-based random waypoint and map-based routed

movement models. There are also movement models designed specifically for dif-

ferent vehicles like cars and buses, and for different times of the day like work

day hours and evening trends. While movement is being orchestrated, broadcast

communication is simulated between nodes within range of each other. Each node

has its own broadcasting time-slice and the selection rotation is randomized.

All simulations were run using the java runtime engine (jre) version 1.8.0 40

and all coding was written, compiled and run using the Eclipse Standard Software

Development Environment Version: Kepler Service Release 1 Build id: 20130919−

0819.

28

3.2.1 Input

Various input parameters are loaded at execution time in the form of a parameter

initialization file. The parameter initialization file used for CASPaR simulations

is provided in the appendix. These parameters define key simulation attributes.

These key attributes include definitions for: overall scenario settings, broadcast

settings, nodes and node movement, routing, event and message generation and

summary reporting. The overall scenario settings include: the overall map size,

the update interval, the number of different node groups, the random number

generator seed to use for the movement model and the length of time that the

simulation is to be run. The broadcast settings include: the radio interface used

by a group of nodes, and the transmission range and speed of that radio interface.

The node settings include: the number of nodes in a group, the movement model

used by that group of nodes as well as the group movement speed and wait time.

The routing parameters include: the type of router used by a group of nodes,

its buffer size, and type and its message or packet time-to-live (TTL). The event

and message generation settings include: the different event generation groups, the

message generation rate for each group, the message size and the range of message

source and destination addresses. The summary reporting parameters detail which

reports are generated and various specific settings that a report might require.

For example, the message location report which tracks the location of all messages

requires the reporting granularity parameter set in seconds. This indicates the

interval at which the location of messages is recorded.

The ONE simulator allows for various groups of nodes, radio interface and move-

ment models to be defined as well as various groups of event generators. These

groups can be mixed and matched to create a very versatile simulation. Many

parameters can also be defined as a range. Movement speed, for example, can be

29

defined to be between 0.5 and 1.5 meters per second. When these degrees of free-

dom are combined, it allows for quite complex simulations. The default scenario,

the Helsinki model for example, consists of various groups of nodes, some pedes-

trians, cars, and trams all traveling at appropriate speeds and moving according

to map-based movement models where pedestrians walk on sidewalks, cars drive

on roads and trams travel the same routes over and over on rail throughout the

map of Helsinki. Pedestrians and cars have a different broadcast range and rate

than do the trams. This scenario presents a more realistic scenario and much more

complicated ones can be constructed.

The simulation environment can also be quite simple as well. The simulation

model used for the CASPaR study is one such example. The movement model is

a random way point where nodes randomly pick a point to move to then move to

that point at some defined speed or range of speeds. Once they arrive, they wait

there for some randomly determined amount of time then pick a new point and

the process repeats until the simulation ends.

The parameter initialization file allows for multiple settings to be specified for

most of the parameters by simply adding to a comma-delimited list bounded by

brackets. See Table 3.1. When run in batch mode, ONE is capable of executing

multiple iterations one after another. Upon each new simulation run, parameters in

comma-delimited list format are iterated through one after the other and used as

the input parameters for that run. If only a single setting is present for a parameter,

the setting will be repeated for each execution.

3.2.2 Execution

Simulations can be run in either graphical or batch mode. A graphic mode simula-

tion can be run from within the development environment and provides a graphical

runtime view of the network grid and the movement of nodes within the grid. It

30

provides views to each node’s queue and packet routing information. It is a good

tool to learn the behavior of the routing algorithm being designed and tested.

It does slow simulations down, consuming valuable CPU cycles, so for multiple

simulations it is best to run in batch mode.

FIGURE 3.1. ONE Graphical Interface: The ONE graphical interface includes simulation
control, a node movement view and packet routing information.

Figure 3.1 shows the ONE simulation GUI. Towards the top are the simulation

control buttons: play, pause, speedup and step-through are all available. The net-

work grid can also be resized. The upper-left shows the simulation elapsed time

and the number of simulation cycles per second currently being executed. At the

bottom left is the event log and event log control. The event log displays critical

events such as message creation, delivery and drop as well as when connections

are made or lost. The types of events that are displayed is controlled using the

check boxes in the event log control. Along the right side of the GUI is the list

31

of nodes present in the simulation. The coordinate location, number of messages

in queue and routing information for all messages to and from any node can be

displayed by clicking on any one of the node numbers. This is an invaluable tool

when designing, implementing and testing a new routing algorithm.

Batch mode allows multiple simulations to be run from a single command line

execution by using the multiple simulation option -N where N is the number of

simulation runs to be performed. As previously stated, batch mode also allows

parameter settings to vary between runs but this requires proper construction of

the parameter initialization file. Notice in Table 3.1 the Group.bufferSize parameter

has 7 different buffer size settings comma-delimited within brackets. When run with

N = 7, 7 CASPaR simulations would be run, each with a different buffer size; first

0.2 MB, then 0.5 MB, then 1.0 MB and so on through 30 MB. If N was set to 8,

the settings just wrap around to the beginning of the list, and therefore the 0.2 MB

buffer size setting would be used again. All multiple parameter settings function

in this manner. For every run, the next setting in the list is used until the end of

the list is reached at which point it starts at the beginning of the list. This allows

building complex batch jobs to run many time-consuming simulations as opposed

to running them individually.

3.2.3 Reporting

The ONE simulator offers many reporting tools that are engaged by simply adding

the report name to the parameter initialization file. Detailed here are the couple

reports used to produce the results discussed in this paper.

The Message Statistics Report, as shown in Table 3.2 contains a summary re-

port of all nodes for an entire simulation. It contains the standard results used

to produce the following plots as a function of queue buffer size: Delivery Prob-

ability, Overhead Ratio, Hop Count and Packet Latency. The key statistics used

32

TABLE 3.1. Example Parameter Initialization File: An excerpt from a parameter ini-
tialization file showing specifically how to vary parameters between multiple run batch
mode execution. Anything behind a # is a comment.

Parameter = Setting(s) or Comment (behind #)

Common group movement model
Group.movementModel = RandomWaypoint
Set group router to be CASPaR
Group.router = [caspar]
Set varying queue buffer sizes
Group.bufferSize = [0.2M; 0.5M; 1M; 3M; 5M; 10M; 30M]
Output 6 standard ONE report
Report.nrofReports = 6
Standard message statistics report
Report.report1 = MessageStatsReport
List attributes regarding all messages created
Report.report2 = CreatedMessagesReport
Header, time, ID, size, hop count, delivery time, from, to
remaining TTL, response, path
Report.report3 = DeliveredMessagesReport
How long nodes were in range of each other
Report.report4 = ContactTimesReport
Graphical representation of the network
Report.report5 = AdjacencyGraphvizReport
Location (coordinates) of all messages reported at regular intervals
Report.report6 = MessageLocationReport

in this report are the number of dropped messages, the number of delivered mes-

sages, the delivery probability, the latencies, the overhead ratio and the hop count

measurements.

The Message Delivery Report details when and how long each message takes to

get from the source to destination as well as the path or route the message tra-

versed. Table 3.3 is an excerpt of one message delivery report. The report contains

a listing (in rows) for all delivered messages. In the report header, the Time is the

time that the message was sent, the MsgID is tagged message identification num-

ber, the Size denotes the size of the message, Hops indicates the number of hops

from source to destination, Lat refers to the latency, the time needed for a message

33

TABLE 3.2. Example Message Statistics Report: An example of a message statistics
report produced from the ONE simulation.

Stat Value

simtime: 3600.0260
created: 3600
started: 129442
relayed: 129441
aborted: 0
dropped: 0
removed: 129441
delivered: 3264
deliveryprob: 0.9067
responseprob: 0.0000
overheadratio: 38.6572
latencyavg: 214.9006
latencymed: 76.2370
hopcountavg: 35.2007
hopcountmed: 17
buffertimeavg: 6.3682
buffertimemed: 0.1480
rttavg: NaN
rttmed: NaN

to get from source to destination, Src and Dst are the source and destination of

the message respectively, TTL is the remaining TTL of the packet at the time of

delivery, Rsp indicates if a response was received and Path details the entire path

of the message including source and destination.

TABLE 3.3. Example Message Delivery Report: An example of a message delivery report
produced from the ONE simulation.

Time MsgID Size Hops Lat Src Dst TTL Rsp Path

1.036 M1 100000 1 0.036 p75 p6 n/a N p75 p6
18.019 M18 100000 1 0.019 p62 p67 n/a N p62 p67
45.066 M45 100000 2 0.066 p32 p45 n/a N p32 p88 p45
52.096 M52 100000 3 0.096 p2 p9 n/a N p2 p5 p86 p9

34

3.3 Shortest Path Routing

Shortest Path is an semi-omnipotent router based upon Dijkstra’s shortest path

algorithm. It was created as the standard by which all simulated protocols are

measured. For this protocol, the shortest path between every node and destination

is calculated at each update interval and messages are routed accordingly. The

shortest path is likely to change between update intervals which is why the shortest

path is re-calculated each update period. The simulation results of Shortest Path

represent the upper-bound on the delivery performance.

Shortest Path is not the optimum solution. It is limited to knowing the optimum

state of the network at time t and not the optimum solution at all times t+n where

n = [1, 2, 3, ...]. The term semi-omnipotent in this case means, knowing all shortest

paths in the network at this moment in time t.

3.4 Parameters

All thesis results were obtained using the same random way point simulation sce-

nario, referred to as the Random Scenario. Each protocol was tested using the

same set of buffer sizes and run 17 times with different random number generator

(RNG) seeds to negate systematic simulation affects. Table 3.4 lists the simulation

settings.

3, 600 messages are created during the 1 hour simulation. Source and destination

nodes are chosen randomly therefore each node is just as likely as any other to

source or sink messages. The message time-to-live (TTL) is 300 minutes, explicitly

set to be greater then the total simulation time so that TTL doesn’t play a role in

dropped messages. Messages are queued (but not necessarily transmitted) in FIFO

order and only dropped due to queue overflow or protocol-based metrics.

The network map is 1 square kilometer, the radio broadcast range for all nodes

is 100 meters, the message (packet) size is static at 100 kilobytes and there are 100

35

nodes that participate in the network simulation. The nodes can move randomly

over the map at between 0.5 and 1.5 meters per second (walking speed) and once

they’ve reached their target they will hold for anywhere between 0 and 1 second

before continuing on to their next randomly chosen destination.

The nine different routing protocols that were tested and whose results are re-

ported are:

• Direct Delivery (DD) [23]: Self-delivery.

• Epidemic (EPI) [8]: Packet flooding.

• Prophet with Estimation (PRO) [9]: Probabilistic routing.

• MaxProp (MP) [11]: Transmission and drop prioritization.

• Backpressure LaB (LaB): Combination between Backpressure and the future

position of the message in the neighbor’s queue.

• Spray and Wait (SaW) [12]: Bounded multi-copy routing.

• Shortest Path (SP): Omnipotent shortest path.

• CASPaR (CASPaR): Single-copy, single-path.

• CASPaR-MP : Single-copy, multi-path.

36

TABLE 3.4. Simulation parameters as used by the Random Scenario simulations

Parameter Description Value

World size 1km x 1km
Node count 100
Simulation Update Interval 0.037 seconds
Network packet rate 1 per second
Run time 3,600 seconds
Transmit speed 10 Mbps
Transmit range 100 meters
Buffer-sizes tested .2, .5, 1, 3, 5, 10 and 30 MB
Send queue FIFO queue
Node speed 0.5 - 1.5 meters per second
Node wait time 0.0 - 1.0 seconds
Message TTL 5 hours
Message period 1 second
Message size 100 KB
Node movement RandomWayPoint
Movement warmup period 100 seconds
Map Open map
Protocols tested Direct Delivery, Epidemic, PRoPHET,

MaxProp, Spray and Wait, LaB
Shortest Path, CASPaR and CASPaR-MP

Queue Type FIFO
Number of reports 6
Reports Message Statistics, Created Messages

Delivered Messages, Contact Times
Adjacency Graph, Message Location

Message location granularity 60
MaxProp timescale 10
PRoPHET seconds in time unit 10
Spray and Wait number of copies 6
Spray and Wait mode binary mode
CASPaR mode single path OR multi-path
CASPaR minimum loop count 5

37

Chapter 4
Results

Here we present results from Random Scenario simulations focused on the per-

formance metrics: Delivery Probability, Overhead Ratio, Hop Count and Packet

Latency. Also reported are results from two additional investigations: 1) packet la-

tency and 2) route distribution across the network. All performance metric plots,

for all protocols except MaxProp, show 1-sigma uncertainty bars representing de-

viation between the 17 simulation runs. MaxProp’s simulation times prohibited

multiple runs and therefore have no associated deviations.

4.1 Delivery Probability

Figure 4.1 relates buffer size and delivery probability. As buffer size increases so too

does the delivery rate until a bounded maxima is reached. The maximum delivery

rate for all protocols except MaxProp is reached at > 10 MB buffer allowing for

a good comparison between tested protocols. Results show four distinct protocol

behaviors: 1) referred to as the SP group includes both CASPaR and Shortest

Path routing protocols and is characterized by its steep rise in delivery probability

settling close to or above 80 percent; 2) referred to as the Direct group includes

PRoPHET, Direct Delivery and LaB. This group also has a relatively steep rise in

delivery probability but settles at a much lower rate below 50 percent; 3) Spray

and Wait is in a group by itself and can be identified by its slow rise, reaching a

maximum at > 10 MB buffer; 4) MaxProp, also in a group by itself, is unique. Its

delivery probability maintains a shallow but constant rise reaching a maximum of

90 percent at a 30 MB buffer and still increasing.

38

FIGURE 4.1. Delivery Probability: The delivery probability as a function of queue size
for Direct Delivery (DD), Epidemic (EPI), Backpressure (LaB), PRoPHET (PRO), CAS-
PaR, Shortest Path (SP), Spray and Wait (SaW) and MaxProp (MP) routing.

Shortest Path sets the upper-bound on the delivery rate at 95 percent. Direct

Delivery sets the effective lower bound at 45 percent due to its simplistic routing

scheme, hold packets until target destinations are met, even though there are several

protocols that don’t perform as well. This result reveals that any two nodes in the

network are in contact with each other 45 percent of the time. All protocols should

be capable of at least matching this delivery rate.

CASPaR delivers 55 percent or more of its packets using a buffer of only 1 MB.

This is twice the number of packets delivered by the next best algorithm revealing

that CASPaR either delivers packets more quickly or they are being more evenly

distributed across the network or both. Alternatively, Spray and Wait performs

poorly until its queue size reaches > 10 MB and then barely outperforms CASPaR

while MaxProp starts poorly but outperforms all but Shortest Path once a > 25

MB buffer is employed.

4.2 Latency

Average latency, defined by the ONE simulator as the average amount of time it

takes all delivered packets to travel from source to destination, may be the most

39

meaningful metric of all since it provides not only the rate of packet delivery,

but also an indirect performance metric for delivery probability. However, average

latency can be falsely biased since only those packets that reach their destinations

contribute to the reported average latency. It is these undelivered packets that if

delivered would raise the average latency. Notice that Figure 4.2 shows low average

latencies at small buffer sizes but poor delivery performance. Comparable latency

measurements must be obtained when the buffer size is large enough so that packet

drop is not a factor. Figure 4.2 shows this to be at < 10 MB for all protocols except

MaxProp and Epidemic. Regardless, the median latency, as shown in Figure 4.3,

must be used to gain a better approximation of true latency since the average can

also be biased by extremely large latencies.

FIGURE 4.2. Average Latency: The average end-to-end packet latency as a function of
queue size for Direct Delivery (DD), Epidemic (EPI), Backpressure (LaB), PRoPHET
(PRO), CASPaR, Shortest Path (SP), Spray and Wait (SaW) and MaxProp (MP) rout-
ing.

To illustrate, notice the median latency for CASPaR is nearly half its average

and for Shortest Path, it is nearly a third, an indication that there are low-latency

measurements skewing the average. The median and average latencies of MaxProp,

40

0

200

400

600

800

0 10 20 30

M
e

d
ia

n
 L

a
te

n
c
y

 (
se

c
o

n
d

s)

Buffer Size (MB)
DD EPI LaB PRO CASPaR SP SaW MP

FIGURE 4.3. Median Latency: The median latency as function of queue size for Di-
rect Delivery (DD), Epidemic (EPI), Backpressure (LaB), PRoPHET (PRO), CASPaR,
Shortest Path (SP), Spray and Wait (SaW) and MaxProp (MP) routing.

Spray and Wait and the protocols in the Direct group are similar in value indicating

low and high latency measurements are more balanced for these protocols.

Figure 4.3 shows that CASPaR performs quite well with a median latency of

about 250 seconds. MaxProp exhibits unique behaviour as it rises above 400 seconds

at a 5 MB buffer but then drops to below a 100 seconds at a 30 MB buffer. It is just

above CASPaR’s 10 MB buffer latency of 300 seconds. (Epidemic isn’t included

in the comparison due to its extremely low delivery probability) and high latency.

Figure 4.4 presents a more in-depth latency analysis for 10 MB protocol buffers.

The comparison includes protocols: Shortest Path, CASPaR, Spray and Wait, Di-

rect Delivery and MaxProp. The frequencies have been normalized so that a direct

comparison can be made but it should be noted that the actual total count for

MaxProp is only about 2, 300 compared with approximately 50, 000 for the others.

Also provided is evidence as to why Shortest Path performs so well comparatively.

It delivers many more packets in the < 1 second range and far fewer in the > 512

second range. CASPaR is the only other protocol which consistently performs well

at the latency extremes.

41

FIGURE 4.4. Latency Frequency Distribution: The frequency of latency distributions
for the experimental results of Direct Delivery (DD), Spray and Wait (SaW), Shortest
Path (SP), CASPaR and MaxProp (MP) protocols. All 17 runs for each is included in
the analysis. The bin size is in log base 2 format to accentuate lower latencies.

A closer look uncovers protocol and simulation behavior. For example, all pro-

tocols, with the exception of MaxProp deliver a proportionately high number of

packets in the 0.125 second bin indicating the likelihood that source and destina-

tion nodes are within a 2-hop range at the time of packet creation. The frequency

of delivered messages in the 0.125 − 1 second bins drops quickly for all protocols

except Shortest Path. This may reveal the existence of multi-hop connected paths

at the time of packet creation and provide a multi-hop latency measurement of < 1

second. The > 1 second bins are most likely a convoluted measure of the average

length of time routes remain disconnected as well as protocols ability to move pack-

ets closer to their destination across disconnected paths. If so then Shortest Path

provides a good performance indicator and comparison tool. Table 4.1 shows that

Shortest Path delivers more packets at latencies of < 128 seconds and less packets

at latencies > 256 seconds than all protocols except for CASPaR which performs

better in the 1− 8 second latency range and almost as well in the 8− 256 latency

range. This shows why Shortest Path preforms better than all other protocols and

why CASPaR performs almost as well when using a 10 MB buffer.

42

TABLE 4.1. Direct latency comparisons ratios of Spray and Wait (SaW), CASPaR, and
MaxProp (MP) vs. Shortest Path

Latency Bin SP
SaW

SP
CASPaR

SP
DD

SP
MP

0.0− 0.125 1.2 1.2 1.1 4.7
0.125− 0.25 2.3 11.2 1255.0 91.8
0.25− 0.5 131.5 12.6 1271.3 15.4
0.5− 1.0 41.8 5.3 100.3 1.9
1.0− 2.0 6.4 0.2 8.8 5.1
2.0− 4.0 6.8 0.4 7.5 1.3
4.0− 8.0 4.9 0.9 7.2 2.3
8.0− 16.0 4.5 1.3 6.6 1.8
16.0− 32.0 3.8 1.5 5.1 1.7
32.0− 64.0 2.9 1.6 4.0 1.5
64.0− 128.0 1.8 1.4 2.7 1.1
128.0− 256.0 1.0 1.1 1.7 0.8
256.0− 512.0 0.6 0.8 0.9 0.5
512.0− 1024.0 0.3 0.4 0.4 0.4
1024.0− 2048.0 0.2 0.2 0.1 0.6
2048.0− 4096.0 0.2 0.0 0.0 0.0

4.3 Overhead

The overhead ratio is proportional to a protocol’s energy expenditure and is defined

by the ONE simulator to be Or(t) = (Pr(t) − Pd(t))/Pd(t) where Pr is the total

number of packets relayed by time t and Pd is the total number of packets delivered

by time t. Overhead ratio is an important performance metric for low-power DTN

devices which typically do not have energy to spare and where the goal is to

deliver packets to their destinations in the most energy efficient means possible.

The following protocol’s overhead results are not shown in Figure 4.5: 1) MaxProp -

its overhead is > 1700, 2) Direct Delivery - its overhead is always 0, 3) PRoPHET

- its overhead is approximately 6 but has a high standard deviation of about

(+/− 12) and 4) Epidemic - its overhead is > 4500.

Since CASPaR does not replicate packets, the overhead is directly proportional

to the number of packet hops. Figure 4.5 shows that the CASPaR maintains an

43

0

10

20

30

40

50

60

0 10 20 30

O
v
e

rh
e

a
d

 R
a

ti
o

Buffer Size (MB)
LaB CASPaR SP SaW

FIGURE 4.5. Overhead Ratio: The overhead ratio required to transfer a packet from
source to destination as a function of buffer size for Backpressure (LaB), CASPaR,
Shortest Path (SP) and Spray and Wait (SaW) routing.

overhead ratio of approximately 40 while Shortest Path, LaB, and Spray and Wait

all maintain overhead ratios of about 5. Figure 4.6 shows that CASPaR’s overhead

ratio can reduced at the expense of latency and delivery probability and vice versa.

4.4 Hop Count

Hop count, defined as the number of nodes a packet traverses from source to

destination. The final transfer to the destination node isn’t considered a hop and

therefore Direct Delivery ’s hop count is always 0. Figure 4.7 shows the average

number of packet hops in the protocols tested. It isn’t surprising that the hop

count and overhead are similar for CASPaR as well as Shortest Path since they are

single-copy protocols. The overhead results of Shortest Path indicate the optimum

number of average hops, to be about 6.

It is clear from results reported here that the stated goal of minimizing latency

and maximizing delivery can not be met without compromise. For example, Direct

Delivery has 0 overhead but performs poorly in regards to latency and delivery

probability. Alternatively, MaxProp delivers a high percentage of its packets at rel-

atively low latencies but requires a much larger buffer and very high overhead to do

44

FIGURE 4.6. Affect Minimum Loop Size has on Performance: As the minimum loop size
decreases (the number of nodes required in routing path before looping back to itself)
the overhead increases but the median (as shown in this figure) and average latencies
decrease while delivery probability increases.

0

10

20

30

40

0 10 20 30

A
v
e

ra
g

e
 H

o
p

 C
o

u
n

t

Buffer Size (MB)
EPI LaB PRO CASPaR SP SaW MP

FIGURE 4.7. Average Hop Count: The average number of nodes a packet traverses from
source to destination as a function of buffer size for Epidemic (EPI), Backpressure (LaB),
PRoPHET (PRO), CASPaR, Shortest Path (SP), Spray and Wait (SaW) and MaxProp
(MP) routing. The transfer to the destination node is not considered as a hop.

45

so. CASPaR is capable of out-performing tested DTN protocols while maintaining

relatively low overhead.

4.5 Load Balancing

Presumably, given a homogeneous set of packet destinations, the more equally

packets are distributed across a network, the more efficiently it will function at

high loads. There are many factors that contribute to this such as the variation

in randomly chosen source and destination nodes. Other factors such as graph

connectivity play a role as well.

0

4

8

12

16

20

0 10 20 30 40 50 60

Q
u

e
u

e
 D

e
v

ia
ti

o
n

 (
%

)

Simulation Running Time (minutes)

SP CASPaR SnW DD MP

FIGURE 4.8. Queue Size Deviation: Queue deviation integrated over 1 minute periods
for all 60 minutes of the simulation for Shortest Path, CASPaR, Spray and Wait, Direct
Delivery and MaxProp.

Figure 4.8 shows average queue deviation for Shortest Path, CASPaR, Spray

and Wait, Direct Delivery and MaxProp. This and Table 4.2 show that CASPaR

more evenly distribute packets over the network (load balance) than compared

protocols. The variation across queues in CASPaR is half that of Direct Delivery

and Spray and Wait and a bit lower and tighter than MaxProp.

However, Shortest Path experiences the largest variation and yet by every metric,

it out-performs all protocols. This indicates that either high-performance does not

46

TABLE 4.2. Average Queue Deviation: The average deviation (as a percentage) between
queues across the network. The queue sizes are integrated over 1 minute periods and those
are averaged together to get the average deviation over the entire simulation for Shortest
Path (SP), CASPaR, Spray and Wait (SaW), Direct Delivery (DD) and MaxProp (MP)
routing.

SP CASPaR SaW DD MP

12.08 5.75 10.93 11.08 8.00

depend upon an even distribution of packets across queues or that the network load

applied during testing (1 packet per second) wasn’t heavy enough to highlight the

property.

4.6 Single Path vs. Multi-path

The results from the multi-path CASPaR variant (CASPaR-MP are reported in

this section. The same performance metrics: Delivery Probability, Overhead Ratio,

Hop Count and Packet Latency are used to compare CASPaR-MP with CASPaR

as well as Shortest Path, Spray and Wait and MaxProp. Again, all protocols includ-

ing CASPaR-MP but excluding emphMaxProp were run 17 times with different

RNG seeds to account for statistical variations in the simulations. The standard

deviations are shown as 1-sigma error bars in the primary performance metric

plots.

4.6.1 Delivery Probability

As shown in Figure 4.9, CASPaR-MP performs slightly better than CASPaR and

about as well as Spray and Wait in delivery probability when a > 10 MB buffer

is used. The delivery behavior is almost identical to that of CASPaR in that the

curves a function of buffer size follow each other almost perfectly. This is not

unexpected since the two protocol algorithms are so similar.

47

10%

30%

50%

70%

90%

0 10 20 30

D
e

li
v
e

ry
 P

ro
b

a
b

il
it

y

Buffer Size (MB)
CASPaR CASPaR-MP SP SaW MP

FIGURE 4.9. Delivery Probability - Single vs. Multi-path: The delivery probability as a
function of queue size for CASPaR, CASPaR-MP, Shortest Path (SP), Spray and Wait
(SaW) and MaxProp (MP) routing.

4.6.2 Latency

Figures 4.10 and 4.11 show that CASPaR-MP performs about 10 percent better

in both average and median latencies and almost breaks the 200 second median

latency barrier.

0

200

400

600

0 10 20 30

A
v
e

ra
g

e
 L

a
te

n
c
y

 (
se

c
o

n
d

s)

Buffer Size (MB)
CASPaR CASPaR-MP SP SaW MP

FIGURE 4.10. Average Latency - Single vs. Multi-path: The average end-to-end packet
latency as a function of queue size for CASPaR, CASPaR-MP, Shortest Path (SP), Spray
and Wait (SaW) and MaxProp (MP) routing.

48

0

200

400

600

0 10 20 30

M
e

d
ia

n
 L

a
te

n
c
y

 (
se

c
o

n
d

s)

Buffer Size (MB)
CASPaR CASPaR-MP SP SaW MP

FIGURE 4.11. Median Latency - Single vs. Multi-path: The median latency as function
of queue size for CASPaR, CASPaR-MP, Shortest Path (SP), Spray and Wait (SaW)
and MaxProp (MP) routing.

Figure 4.12 provides insight into why CASPaR-MP ’s latency is a bit better.

Notice that in the low and high latency bins CASPaR-MP slightly outperforms

CASPaR meaning CASPaR-MP, generally delivers more packets in the low latency

bins and less packets in the higher latency bins.

0

2000

4000

6000

8000

10000

12000

14000

0
.1

2
5

0
.3

0
.5 1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

F
re

q
u

e
n

cy

End-to-end Latency (seconds)

SP CASPaR CASPaR-MP

FIGURE 4.12. Latency Frequency Distribution - Single vs. Multi-path: The frequency
of latency distributions for the experimental results of Direct Delivery (DD), Spray and
Wait (SaW), Shortest Path (SP), CASPaR and MaxProp (MP) protocols. All 17 runs
for each is included in the analysis. The bin size is in log base 2 format to accentuate
lower latencies.

49

This is made even more clear in Table 4.3 where it shown that CASPaR slightly

outperforms CASPaR-MP in the 0.0 − 0.125 and 0.25 − 0.5 latency bins but

CASPaR-MP outperforms CASPaR in all others.

TABLE 4.3. Multi-path Latency Ratios: Direct latency comparisons ratios of CASPaR
vs. CASPaR-MP

Latency Bin CASPaR
CASPaR−MP

0.0− 0.125 0.97
0.125− 0.25 1.39
0.25− 0.5 0.86
0.5− 1.0 1.04
1.0− 2.0 1.04
2.0− 4.0 1.10
4.0− 8.0 1.12
8.0− 16.0 1.24
16.0− 32.0 1.11
32.0− 64.0 1.07
64.0− 128.0 1.04
128.0− 256.0 1.02
256.0− 512.0 1.00
512.0− 1024.0 0.97
1024.0− 2048.0 0.89
2048.0− 4096.0 0.71

4.6.3 Hop Count and Overhead

When comparing the single-path and multi-path variants, delivery probability and

latency is quite important but it might be more telling that CASPaR-MP has a

lower overhead and hop count. All of the results including delivery probability,

latency, overhead and hop-count, taken as a whole, indicate that the multi-path

approach is promising. Latency is decreases while hop count and overhead decreases

as well. This is precisely the stated goal of CASPaR, to minimize latency, maximize

delivery probability and avoid congestion.

50

0

10

20

30

40

50

60

0 10 20 30

O
v
e

rh
e

a
d

 R
a

ti
o

Buffer Size (MB)
CASPaR CASPaR-MP SP SaW

FIGURE 4.13. Overhead Ratio - Single vs. Multi-path: The overhead ratio required to
transfer a packet from source to destination as a function of buffer size for CASPaR,
CASPaR-MP, Shortest Path (SP) and Spray and Wait (SaW) routing.

0

10

20

30

40

0 10 20 30

A
v
e

ra
g

e
 H

o
p

 C
o

u
n

t

Buffer Size (MB)
CASPaR CASPaR-MP SP SaW MP

FIGURE 4.14. Average Hop Count - Single vs. Multi-path: The average number of nodes
a packet traverses from source to destination as a function of buffer size for CASPaR,
CASPaR-MP, Shortest Path (SP), Spray and Wait (SaW) and MaxProp (MP) routing.
The transfer to the destination node is not considered as a hop.

51

4.7 Summary

An overview of the statistical results of the simulation tests are provided in Figure

4.15 making comparison between protocol performance easy. The results as written

to the figure are approximate.

Protocol Hop Count
Median Latency

(seconds)

Direct Delivery

Epidemic

Back

pressure

PRoPHETv2

MaxProp

Spray and Wait

Shortest Path

CASPaR (MLS=5)

CASPaR-MP

700

75

700

700

300

375

75

250

220

0

15

<5

<5

5

<5

6

45

-

Overhead

0

4500

5

6

1700

5

5

45

-

Delivery Probability

(%)

45

20

40

45

65

70

95

80

82

CASPaR- (MLS=1) 120 similar to overhead18092

FIGURE 4.15. Result Summary Table: A summary of the protocol simulation results
shown for the 10 MB buffer size for delivery probability, median latency, overhead and
hop count. Also shown are the results for CASPaR with the minimum loop size (MLS)
set to 1. It should be noted that MaxProp continues to perform better as the buffer size
increases whereas all other protocols peak at 10 MB.

52

Chapter 5
Conclusion

5.1 Summary

We have developed an extensible protocol, one that doesn’t depend upon mobility

predictions or data mules. A protocol that can handle a relatively heavy network-

load using small network resources and by all measurements, one that should be

able to handle an even heavier network load than applied during these simulations.

We have shown that CASPaR improves network performance and while Spray and

Wait and MaxProp also perform well under the same experimental conditions, both

require much larger buffers and in the case of MaxProp, a much larger overhead.

5.2 Future Study

Preliminary results have proven CASPaR to be effective and further testing is

required in order to better quantify its capabilities and undoubtedly prove how

effectively it routes packets and avoids congestion. The tests performed here were

limited to the Random Scenario simulation as described previously and were not

able to explicitly show how well CASPaR routes and avoids congestion.

In order to test for routing performance, specific simulations must accentuate the

routing portion of CASPaR while minimizing the affect of the congestion avoidance

portion of its algorithm. This can be done by lowering the event (packet) rate so

that packet congestion is minimized. The simulation results should be analyzed

for individual path deviations from the shortest path truth table for each packet

hop. The number of times the wrong decision was made should be compared to the

number of times the correct decision was made accounting for degrees of freedom.

Once routing performance is understood, CASPaR’s ability to avoid congestion

must be investigated. This test should be easier to perform than its predecessor

53

and can be accomplished using the simplistic Random Scenario simulation and

incrementally dialing up the event rate until a drop in delivery performance is

observed. This inflection point will be the boundary between unhindered and con-

gested packet flow. The event rate should continue to be increased until either

some steady-state is observed or until failure (the point at which very few or no

packets are delivered). Once this occurs, the results should be thoroughly investi-

gated looking for specific signs leading to the cause of failure and specifically, the

aspect of even packet distributions.

Variations of the CASPaR protocol were developed that consider multiple routes

from a node in the transmission cost calculation as opposed to just a single one.

This variant out-performed the one presented here and should be further explored.

The same two tests (routing and congestion) can be applied to the multi-path

CASPaR variant. The results of which should be compared with the standard

variant’s. The next logical step would be to experiment with breaking packets at

the source and rebuilding them at the destination and whether or not this provides

any performance increase.

Finally, it is important that CASPaR is proven, analytically, to be throughput

optimal such that it has the ability to support the maximum throughput that is

queue-able as defined by [24], [25]. However, it should be shown to be so at high

loads proving that CASPaR is in fact a back-pressure algorithm when stressed and

an historical routing algorithm when not stressed.

54

References

[1] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing.
In IEEE Workshop on Mobile Computing Systems and Applications, pages
90–100, 1999.

[2] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vien-
not. Optimized link state routing protocol for ad hoc networks. In Proceedings
of IEEE INMIC 2001, pages 62–68, 2001.

[3] Z. J. Haas, M. R. Pearlman, and P. Samar. The zone routing protocol (zrp)
for ad hoc networks. IETF Draft, 2002.

[4] R. J. D’Souza and J. Jose. Routing Approaches in Delay Tolerant Networks:
A Survey. International Journal of Computer Applications, 1(17):8–14, Febru-
ary 2010.

[5] Mengjuan Liu, Yan Yang, and Zhiguang Qin. A survey of routing protocols
and simulations in delay-tolerant networks. In Yu Cheng, DoYoung Eun,
Zhiguang Qin, Min Song, and Kai Xing, editors, Wireless Algorithms, Systems,
and Applications, volume 6843 of Lecture Notes in Computer Science, pages
243–253. Springer Berlin Heidelberg, 2011.

[6] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap: Social-Based Forward-
ing in Delay-Tolerant Networks. IEEE Transactions on Mobile Computing,
10(11):1576–1589, Nov 2011.

[7] Thrasyvoulos Spyropoulos, K. Psounis, and C.S. Raghavendra. Single-copy
routing in intermittently connected mobile networks. In Sensor and Ad Hoc
Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on, pages 235–244, Oct 2004.

[8] A. Vahdat and D. Becker. Epidemic routing for partially-connected ad hoc
networks. Technical report, Duke Tech Report CS-2000-06, 2000.

[9] A. Lindgren, A. Doria, and O. Scheln. Probabilistic routing in intermittently
connected networks. In ACM SIGMOBILE Mobile Computing and Commu-
nications Review, pages 19–20, 2003.

[10] M. Naziruddin and M. Pushpalatha. A Dynamic Approach To History Based
DTN Routing on Delivery Predictabilities. International Journal of Applied
Engineering Research, 10(7):17275–17282, 2015.

[11] J. Burgess, B. Gallagher, and D. Jensen. Maxprop: Routing for vehicle-based
disruption-tolerant networks. In Proceedings of IEEE Infocom, April 2006,
2006.

55

[12] T. Spyropoulos, K. Psounis, and C Raghavendra. Spray and wait: an efficient
routing scheme for intermittently connected mobile networks. In Proceedings
of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pages
252–259, 2005.

[13] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali. Routing with-
out routes: the backpressure collection protocol. In IPSN, pages 279–290,
2010.

[14] A. Dvir and A V. Vasilakos. Backpressure-based routing protocol for dtns. In
SIGCOMM, pages 405–406, 2010.

[15] J. Ryu, L. Ying, and S. Shakkottai. Back-pressure routing for intermittently
connected networks. In INFOCOM, pages 1–5, 2010.

[16] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M. J. Neely. Back-
pressure with Adaptive Redundancy (BWAR). In INFOCOM, pages 2300–
2308, FL, USA, March 2012.

[17] A. P. Silva, S. Burleigh, C. M. Hirata, and K. Obraczka. A survey on con-
gestion control for delay and disruption tolerant networks. Ad Hoc Network,
25(1):480–494, Aug. 2015.

[18] Juan-Carlos Cano Sergio M. Tornell, Carlos T. Calafate and Pietro Manzoni.
Dtn protocols for vehicular networks: An application oriented overview. Com-
munications Surveys and Tutorials, 17(2):868–887, 2015.

[19] K. Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of the SIGCOMM ’03 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 27–34, 2003.

[20] Brian Dunbar. Nasa’s space cubes: Small satellites provide big payoffs, Sept
2015.

[21] Google. Loon for all, balloon-powered internet for everyone @ONLINE, Oc-
tober 2015.

[22] A. Keränen, J. Ott, and T. Kärkkäinen. The one simulator for dtn protocol
evaluation. In International Conference on Simulation Tools and Techniques,
pages 1–10, 2009.

[23] R. S. Mangrulkar and M. Atique. Performance evaluation of flooding based
delay tolerant routing protocols. International Journal of Computer Applica-
tions, pages 35–40, February 2012.

[24] Leandros Tassiulas and Anthony Ephremides. Stability properties of con-
strained queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control, 37:1936–
1948, 1992.

56

[25] K. Jagannathan, M. Markakis, E. Modiano, and J.N. Tsitsiklis. Throughput
optimal scheduling in the presence of heavy-tailed traffic. In Communication,
Control, and Computing (Allerton), 2010 48th Annual Allerton Conference
on, pages 953–960, Sept 2010.

57

Appendix A: Simulation Code

package routing;

import java. util .∗;

import core.Connection;
import core.DTNHost;
import core.Message;
import core.Settings ;
import core.SimClock;

public class SelfishRouter v7 extends ActiveRouter {

/∗∗
∗ Selfish Router Properties
∗/

/∗∗ Question :: How does the manipulation of the automatic request for bid period change the behavior of the routing
protocol? ∗/

public static final boolean TRACE UPDATE = true;
public static final boolean TRACE RX = false;
public static final boolean TRACE TX = false;
public static final boolean TRACE CREATE = false;
public static final boolean TRACE DST MAP = false;
public static final boolean TRACE RCVD BID = false;
public static final boolean TRACE UPDATE Cs = false;
public static final boolean TRACE CHEAP DST = false;

public static final int N NODES = 100;
public static final double AUTO RFB PERIOD = 1.0; // upon expiration, a ’Request For Bids’ is broadcast

public static final int MSG TTL = −1; // −1 indicates an infinite TTL setting
public static final double Cc INIT = 10.0;
public static final double Cs INIT = 0.0;
public static final double MAX BID = 10000.0;

public static final String SELFISH NS = ”SelfishRouter” // Selfish router’s setting namespace ({@value})

private int [] relayAddress = new int[N NODES];
private int [] pRelayAddress = new int[N NODES];
private double[] B = new double[N NODES];
private double[] Bs = new double[N NODES]; // this is the winning bid, the lowest bid or transmission

cost of all neighbors
private double[] Bm = new double[N NODES]; // this is the winning bid, the lowest bid or transmission

cost of all neighbors
private double[] minNeighborBid = new double[N NODES];
private double[] T = new double[N NODES]; // the transmission cost , the cost to directly transfer a packet

from this node to its destination
private double[] theta = new double[N NODES]; // some measure of the proximity of two nodes. Upon each

update(),
// the connected check count is incremented and all nodes

are checked
// whether they are in−range of other nodes. If so then the

connected count
// is set equal to the connected checks. If not then only

the connected
// check count is incremented.

private double[] Q = new double[N NODES]; // sum of the amount of time all packets destined for some
// node @ time (t) have been resident in node (n)

private int [] connectedChecks;
private int [] connectedCount;
private int [] pktCount;
private boolean[] connected;
private boolean[] inRange = new boolean[N NODES];

private double lastCcUpdateTime;
private double lastBidUpdateTime;
private int updateCount;

/∗∗ SelfishRouter’s settings name space ({@value})∗/
public static final String MULTIPATH MODE = ”multiPathMode”;
public static final String SET NODE LOOPCOUNT = ”nodeLoopCount”;
/∗∗ SelfishRouter’s settings name space ({@value})∗/
public static final String SELFISHROUTER NS = ”SelfishRouter”;
/∗∗ Message property key ∗/
public static final String MSG COUNT PROPERTY = SELFISHROUTER NS + ”.” +

”copies”;

protected boolean isMultipath;
protected boolean isFreeroute;

58

protected int nodeLoopCount;

/∗∗
∗ Constructor. Creates a new message router based on the settings in
∗ the given Settings object.
∗ @param selfishRouter vc2 5 The settings object
∗
∗/

public SelfishRouter v7(Settings s) {
super(s);

Settings snwSettings = new Settings(SELFISHROUTER NS);
isMultipath = snwSettings.getBoolean(MULTIPATH MODE);
nodeLoopCount = snwSettings.getInt(SET NODE LOOPCOUNT);

this .connectedChecks = new int[N NODES];
this .connectedCount = new int[N NODES];
this .connected = new boolean[N NODES];
this .pktCount = new int[N NODES];
this .lastCcUpdateTime = SimClock.getTime();
this .updateCount = 0;

for (int i=0; i<N NODES; i++) {
this .relayAddress[i] = −1;
this .pRelayAddress[i] = −1;
this .minNeighborBid[i] = MAX BID;
this .B[i] = MAX BID;
this .Bs[i] = MAX BID;
this .Bm[i] = MAX BID;
this .T[i] = Cc INIT;
this .theta[i] = Cs INIT;
this .inRange[i] = false ;
this .connectedChecks[i] = 0;
this .connectedCount[i] = 0;
this .connected[i] = false ;
this .pktCount[i] = 0;

}
}

/∗∗
∗ Copy constructor.
∗ @param r The router prototype where setting values are copied from
∗/

protected SelfishRouter v7(SelfishRouter v7 r) {
super(r) ;

this .isMultipath = r.isMultipath;
this .nodeLoopCount = r.nodeLoopCount;

this .connectedChecks = new int[N NODES];
this .connectedCount = new int[N NODES];
this .connected = new boolean[N NODES];
this .pktCount = new int[N NODES];
this .lastCcUpdateTime = SimClock.getTime();
this .updateCount = 0;

for (int i=0; i<N NODES; i++) {
this .relayAddress[i] = −1;
this .pRelayAddress[i] = −1;
this .minNeighborBid[i] = MAX BID;
this .B[i] = MAX BID;
this .Bs[i] = MAX BID;
this .Bm[i] = MAX BID;
this .T[i] = Cc INIT;
this .theta[i] = Cs INIT;
this .inRange[i] = false ;
this .connectedChecks[i] = 0;
this .connectedCount[i] = 0;
this .pktCount[i] = 0;

}
}

/∗∗
∗ Update is called once per simulation tick . Within the update() function we have to:
∗ −
∗/

@Override
public void update() {

super.update();

this .updateCount++;

if (this .lastBidUpdateTime + AUTO RFB PERIOD < SimClock.getTime()) {
updateDestinationBids(); // update all bids for all connected hosts to all connections they have

routes to

if (TRACE UPDATE) if (this.updateCount >= 10000) {
// printDstTable();

this .updateCount = 0;

59

}
}

if (!canStartTransfer() || isTransferring ()) {
return; // nothing to transfer or is currently transferring

}

if (exchangeDeliverableMessages() != null) { // try messages that could be delivered to final recipient
return;

}

transmitCheapestOldestMessage();
}

@Override
protected int checkReceiving(Message m) {

int recvCheck = super.checkReceiving(m);

if (recvCheck == RCV OK) {
/∗ don’t accept a message that has already traversed this node ∗/
int fromIndex = m.getHops().size() − this.nodeLoopCount;
int toIndex = m.getHops().size();

if (fromIndex < 0) fromIndex = 0;
if (fromIndex > toIndex) toIndex = fromIndex;

if (m.getHops().subList(fromIndex, toIndex).contains(getHost())) {
recvCheck = DENIED OLD;

}
}

return recvCheck;
}

/∗∗
∗ Receive message is called when another host sends this host a message. In addition to what is done in
∗ the receiveMessage() function in the ActiveRouter class and in the MessageRouter class, the SelfishRouter
∗ has to check to see if the message’s destination is already in the destination hash map already. If not
∗ it has to be put into the destination hash map and initialized.
∗/

@Override
public int receiveMessage(Message m, DTNHost from) {

int retVal = super.receiveMessage(m, from);

switch (retVal) {
case RCV OK: // the message was received fine

if (m.getTo().getAddress() != this.getHost().getAddress()) { // the message is destined for another host; not this
one

updateDestinationBids();
}

break;
case DENIED OLD: // message already received earlier

if (TRACE RX) System.out.println(”Denied Old”);
break;

case DENIED TTL: // message TTL expired
if (TRACE RX) System.out.println(”Denied TTL”);
break;

case DENIED NO SPACE: // no space available for message
if (TRACE RX) System.out.println(”Denied No Space”);
break;

case TRY LATER BUSY: // this host is busy receiving or transmitting a message already
if (TRACE RX) System.out.println(”Busy, try later”);
break;

}

return(retVal) ;
}

/∗∗
∗ Receive message is called when another host sends this host a message. In addition to the what is done in
∗/

@Override
public boolean createNewMessage(Message m) {

boolean retBool = super.createNewMessage(m);
m.setTtl(MSG TTL); // set the msg TTL to some predefined period... should be infinity
updateDestinationBids();

return(retBool) ;
}

/∗∗
∗ Method is called just before a transfer is finalized
∗ at {@link ActiveRouter#update()}.
∗ @param con The connection whose transfer was finalized
∗/

@Override

60

protected void transferDone(Connection con) {
Message m = con.getMessage();

if (m == null) {
core.Debug.p(”Null message for con ” + con);
return;

}

this .deleteMessage(m.getId(), false) ; // don’t leave a copy for the sender
}

/∗∗
∗ Updates all bids in this host’s destination table . If a destination doesn’t exist , a default destination is created.
∗
∗ This will be called in the update() function and updates the movement cost to every destination that exists and that a

bid
∗ is available .
∗
∗ @since March 29, 2014
∗ @see Dst() :: the Dst constructor
∗ @see update()
∗ @see SumHostBids()
∗/

private void updateDestinationBids() {
List <Connection> myConnections = getConnections();

updateRangeStatus();
updateProximityProbability();
updateStorageCosts();
updateTransmissionCosts();

for (int i=0; i<N NODES; i++) {
this .Bm[i] = 0.0; // Initialize the parallel bid to 0
this .minNeighborBid[i] = MAX BID;
this .Bs[i] = 0.9 ∗ this .T[i]; // preferential treatment given to the primary node being the relay

node.
this .relayAddress[i] = this.getHost().getAddress(); // set the connected host to be the relay

}

for (Connection con : myConnections) { // loop through all connections; a.k.a. neighboring hosts
DTNHost nHost = con.getOtherNode(this.getHost()); // Retrieve the connected host’s data
SelfishRouter v7 nRouter = (SelfishRouter v7) nHost.getRouter(); // Use it to retrieve the connected host’s router

information

// Retrieve a connected host’s complete destination list and the list of corresponding calculated bids for each
destination route.

// We are actually calculating bids for all neighboring hosts on the host that would normally send the request for
bids.

for (int i=0; i<N NODES; i++) { // loop through all possible destinations in the connected hosts’
tables

this .Bm[i] += 1.0 / (nRouter.B[i] + this.T[nHost.getAddress()]);

if (this .T[nHost.getAddress()] < this.minNeighborBid[i]) {
this .pRelayAddress[i] = nHost.getAddress();
this .minNeighborBid[i] = this.T[nHost.getAddress()];

}

if (nRouter.B[i] + this.T[nHost.getAddress()] < this.Bs[i]) {
this .Bs[i] = nRouter.B[i] + this.T[nHost.getAddress()];
this .relayAddress[i] = nHost.getAddress(); // set the connected host to be the relay

}

if (! this .isMultipath) this .B[i] = this.Bs[i];
}

}

if (this .isMultipath) {

for (int i=0; i<N NODES; i++) { // loop through all possible destinations in the connected hosts’
tables

this .Bm[i] = 1.0 / this .Bm[i];

if (this .Bm[i] < this.Bs[i]) {
this .B[i] = Bm[i];
this .relayAddress[i] = this.pRelayAddress[i]; // set the connected host to be the relay

}

else {
this .B[i] = this.Bs[i];

}
}

}

this .lastBidUpdateTime = SimClock.getTime(); // reset the update bid time to be now
return;

}

private Connection transmitTwoHopMessage() {

61

Message m = null;
List <Connection> myConnections = getConnections();

for (Connection con : myConnections) { // loop through all connections; a.k.a. neighboring hosts
DTNHost nHost = con.getOtherNode(this.getHost()); // Retrieve the connected host’s data
List<Connection> nConnections = nHost.getConnections();

for (Connection con2 : nConnections) { // loop through all connections; a.k.a. of the neighbors neighboring hosts
(2−hop)

DTNHost nnHost = con2.getOtherNode(nHost); // Retrieve the connected host’s data

m = this.getOldestMessageFromDst(nnHost.getAddress()); // find the oldest message to destination dChp

if (m != null) { // check to see if there is a message for this destination
Connection c = getRelayConnection(this.getHost().getAddress(), nHost.getAddress());

if (c != null) {
if (transmitMessage(m, c)) {

return c;
}

}
}

}
}

return null ;
}

/∗∗
∗ Transmit the oldest message to the cheapest destination.
∗
∗ Find the destination with the cheapest bid
∗ Find the oldest message to that destination
∗ Check that the connection is up
∗
∗
∗ @since April 5, 2014
∗/

private void transmitCheapestOldestMessage() {
int dstAddress;
Message oldMsg = null;
double[] tmpBid = this.B;

for (int i=0; i<N NODES; i++) { // for every message in the message queue do the following:
dstAddress = this.findCheapestValidDestination(tmpBid); // find the cheapest destination in the destination hash

map

if (dstAddress != −1) { // is it a valid returned destination?
oldMsg = this.getOldestMessageFromDst(dstAddress); // find the oldest message to destination dChp

if (oldMsg != null) { // check to see if there is a message for this destination
// found the cheapest destination and oldest message to that destination, now transfer it
Connection c = getRelayConnection(this.getHost().getAddress(), this.relayAddress[dstAddress]);

if (c != null) {
if (transmitMessage(oldMsg, c)) break;

}
}

}
}

}

/∗∗
∗ Retrieve the Dst (destination) element and key with the cheapest bid, a valid route and messages to be sent.
∗
∗ Note: because of the comparison ”dstVal.Cm <= minCm” and because a hash table is used to hold the destinations,
∗ there is an inherent priority or preference regarding which destinations will receive messages first if the Cm are

equal
∗
∗ @since April 5, 2014
∗/

private int findCheapestValidDestination(double[] tmpBid) {
int min i = −1;
double minCost = Double.POSITIVE INFINITY;
double now = SimClock.getTime();

for (int i=0; i<N NODES; i++) {

if ((this .relayAddress[i] != this .getHost().getAddress()) && (tmpBid[i] < minCost)) {
// and the bid cost to move the message is cheaper
minCost = tmpBid[i]; // found a new minimum movement cost
min i = i; // save the index as the current offset to the minimum cost value

if (TRACE CHEAP DST) {
System.out.printf(”Fnd Chp: Now: %−8.2f, Me: %−5d, Dst: %−5d, Rly: %−5d, Bid: %8.2f\n”,

now, this .getHost().getAddress(), i , this .relayAddress[i], tmpBid[i]) ;
}

}
}

62

if (min i != −1) { // we found a minimum value

if (TRACE CHEAP DST) {
System.out.printf(”Chp Dst: Now: %−8.2f, Me: %−5d, Dst: %−5d, Rly: %−5d, Bid: %8.2f\n”,

now, this .getHost().getAddress(), min i, this .relayAddress[min i], B[min i]) ;
}

tmpBid[min i] = Double.POSITIVE INFINITY; // remove this particular destination from contention
}

return(min i) ;
}

/∗∗
∗ Find the oldest message targeted for destination d and return it .
∗ If one isn ’t found return NULL;
∗
∗ @since April 6, 2014
∗ @since April 13, 2014
∗/

private Message getOldestMessageFromDst(int dstAddress) {
Message oldest = null;
Collection<Message> msgCollection = getMessageCollection(); // load all messages in the queue into this message

collection

for (Message m : msgCollection) { // traverse all messages in the msg collection

if (m.getTo().getAddress() == dstAddress) { // check that the message destination address is the cheapest
destination

if (isSending(m.getId())) { // check to see if this message is currently being sent
continue; // skip the message(s) that router is sending

}

if (oldest == null) { // if a message has not been loaded yet
oldest = m; // set the message as the oldest by default

}

else if (m.getReceiveTime() < oldest.getReceiveTime()) { // find oldest message
// else if (m.getReceiveTime() > oldest.getReceiveTime()) { // find newest message

oldest = m;
}

}
}

return oldest ;
}

private boolean transmitMessage(Message m, Connection c) {

int retVal = this. startTransfer(m, c) ;

if (retVal == RCV OK) { // RCV OK is returned by the receiveMessage() function called by the relay node
return true;

}

return false ;
}

/∗∗
∗ @author Michael Stewart
∗ Update the Range status of a node. All nodes within a k−hop radius of this node
∗ are said to be in range.
∗
∗/

private void updateRangeStatus() {

for (int i=0; i<N NODES; i++) { // assume that no packet has arrived in the last Tau period for any
destination

this .inRange[i] = false ;
}

this .inRange[this.getHost().getAddress()] = true; // a node is always in range with itself
List <Connection> myConnections = getConnections();

for (Connection con : myConnections) { // loop through all connections; a.k.a. neighboring hosts
DTNHost nHost = con.getOtherNode(this.getHost()); // Retrieve the connected host’s data
this .inRange[nHost.getAddress()] = true;

}
}

/∗∗
∗ Update the connection ratio table
∗ @return
∗
∗ @log

63

∗
∗ # Date Time Inits Description
∗ 1. 9.3.14 9:45p MFS It became quite tedious counting all possible paths and then dividing by the
∗ total number of checks. You would have to divide by the total number of possible
∗ times a connection could be made but then it isn’t very representative of the
∗ percentage of time 2 nodes are in contact. However, if true / false count is
∗ implemented such that two nodes are either 2−hop connected or not then it
∗ is representative of the percentage of time two nodes are connected and extending
∗ the search to 2 hops just increases the probability that 2 nodes will be in
∗ contact.
∗/

private void updateProximityProbability() {
double now = SimClock.getTime();

if (now >= lastCcUpdateTime + AUTO RFB PERIOD) {

for (int i=0; i<N NODES; i++) {

if (this .inRange[i]) {
this .connectedCount[i] = this.connectedChecks[i];

}

this .connectedChecks[i]++;
this .theta[i] = this .connectedCount[i] / (double) this .connectedChecks[i];

}

lastCcUpdateTime = now;
}

}

/∗∗
∗ Update the storage cost table. The storage cost should only be updated in 2 ways:
∗ 1. when a message is transmitted, Cs = (weight) (transmission time − arrival time) + (1 − weight) Cs
∗ 2. upon receipt of request for bids, if oldest message is older than SOME OLD MESSAGE then Cs = Cs MAX
∗
∗ NOTE: This
∗ @return
∗/

private void updateStorageCosts() {
double now = SimClock.getTime(); // get the current time

for (int i=0; i<N NODES; i++) {
Q[i] = 0.0;
pktCount[i] = 0;

}

Collection <Message> msgCollection = getMessageCollection(); // load all messages in the queue into this message
collection

for (Message m : msgCollection) { // traverse all messages in the msg collection
Q[m.getTo().getAddress()] += now − m.getReceiveTime();

}
}

/∗∗
∗ Update the transmission cost for all destinations in the destination table .
∗/

private void updateTransmissionCosts() {

for (int i=0; i<N NODES; i++) {

if (this .inRange[i]) {
this .T[i] = 0.0;

}

this .T[i] = ((1 − this.theta[i]) ∗ Q[i]) + this.T[i];
}

}

/∗∗
∗ Find the relay connection
∗
∗ @since April 26, 2014
∗/

private Connection getRelayConnection(int myAddress, int relayAddress) {
List <Connection> myConnections = getConnections();

for (Connection con : myConnections) { // loop through all connections; a.k.a. neighboring hosts
DTNHost nHost = con.getOtherNode(this.getHost()); // Retrieve the connected host’s data

if ((nHost.getAddress() == relayAddress) &&
(this .getHost().getAddress() == myAddress)) {

return con;
}

}

64

return null ;
}

/∗∗
∗
∗/

private void printDstTable() {
double now = SimClock.getTime();

for (int i=0; i<N NODES; i++) { // loop through all possible destinations in the connected hosts’ tables
System.out.printf(”%−8.2f, Me: %−5d, Rly: %−5d, Dst: %−5d, :: Bid: %−8.3f, Sngl Bid: %−8.3f, Multi Bid: %−8.3f,

C: %−8.2f, Theta: %−5.3f, Q: %−8.2f, inRange: %−5b, Cnctd Cnt: %−6d, Cnctd Chks: %−6d\n”,
now, this .getHost().getAddress(), this .relayAddress[i], i ,
this .B[i], this .Bs[i], this .Bm[i], this .T[i], this .theta[i], this .Q[i],
this .inRange[i], this .connectedCount[i], this .connectedChecks[i]);

}

return;
}

/∗∗
∗ Don’t know yet
∗/

@Override
public SelfishRouter v7 replicate () {

return new SelfishRouter v7(this) ;
}

} /∗∗ End of Selfish Router class ∗/

65

Appendix B: Simulation Parameters

##

Selfish Router comparison testing between various routers

Michael F. Stewart

January 24, 2015

#

This scenario includes (SR one-hop version 7)

It runs through the following buffer sizes (MB): .2, .5, 1, 3, 5, 10, 30

and uses seeds: (1-53).

This should be run in batch mode using the following command:

one -b N MFSthesis_buffersize_scenario.txt where N = 119

##

Scenario settings

Scenario.name = %%Group.router%%_%%Group.bufferSize%%_%%MovementModel.rngSeed%%S_%%Group.nrofHosts%%N_%%SelfishRouter.nodeLoopCount%%L

Scenario.simulateConnections = true

This is in seconds.

Scenario.updateInterval = 0.037

Scenario runtime

Scenario.endTime = 3600

"Radio" interface for all nodes

radioInterface.type = SimpleBroadcastInterface

Transmit speed: 500KBps ~= 5Mbps. Will base this off

of typical LTE transfer rates, however this isn’t so simple since

the transfer rate depends on distance between send and receive nodes

radioInterface.transmitSpeed = 10M

Transmit Range: in meters

radioInterface.transmitRange = 100

Define 1 node group

Scenario.nrofHostGroups = 1

Common settings for all groups

Group.movementModel = RandomWaypoint

###

THIS WILL CHANGE::: Routing protocol.

Range from DD, SnW,

###

Group.router = [SelfishRouter_v7]

###

###

THIS WILL CHANGE::: Buffer sizes.

This will range from 0.2M, 0.5M, 1M, 3M, 5M, 10M, 20M, 40M

###

Group.bufferSize = [0.2M; 0.5M; 1M; 3M; 5M; 10M; 30M]

###

Basically, the nodes are constantly moving

Group.waitTime = 0, 1

All nodes have the radio interface

Group.nrofInterfaces = 1

Group.interface1 = radioInterface

Walking speeds

Group.speed = 0.5, 1.5

Message TTL of 300 minutes (5 hours)

Group.msgTtl = 300

Number of nodes in the simulation

Group.nrofHosts = 100

Use a FIFO queue, required for Prophet Router

Group.sendQueue = 2

group1 (pedestrians) specific settings

Group1.groupID = p

Message creation parameters

How many event generators

Events.nrof = 1

Class of the first event generator

Events1.class = MessageEventGenerator

(following settings are specific for the MessageEventGenerator class)

Creation interval in seconds (one new message every 5 to 10 seconds)

Events1.interval = 1

Message sizes

Events1.size = 100k

range of message source/destination addresses

Events1.hosts = 0, 99

Message ID prefix

Events1.prefix = M

Movement model settings

66

seed for movement models’ pseudo random number generator (default = 0)

##

THIS WILL CHANGE::: The movement seeds

##

MovementModel.rngSeed = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;

19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;

34;35;36;37;38;39;40;41;42;43;44;45;46;47;48;

49;50;51;52;53]

##

World’s size for Movement Models without implicit size (width, height; meters)

MovementModel.worldSize = 1000, 1000

How long time to move hosts in the world before real simulation

MovementModel.warmup = 100

Reports - all report names have to be valid report classes

how many reports to load

Report.nrofReports = 6

length of the warm up period (simulated seconds)

Report.warmup = 0

default directory of reports (can be overridden per Report with output setting)

Report.reportDir = reports/

Default settings for reports

MessageLocationReport.granularity = 60

MessageLocationReport.messages = M

Report classes to load

Report.report1 = MessageStatsReport

Report.report2 = CreatedMessagesReport

Report.report3 = DeliveredMessagesReport

Report.report4 = ContactTimesReport

Report.report5 = AdjacencyGraphvizReport

Report.report6 = MessageLocationReport

Default settings for some routers settings

MaxPropRouterWithEstimation.timeScale = 10

ProphetRouterWithEstimation.timeScale = 10

ProphetRouter.secondsInTimeUnit = 10

ProphetV2Router.secondsInTimeUnit = 10

SprayAndWaitRouter.nrofCopies = 6

SprayAndWaitRouter.binaryMode = true

SelfishRouter.multiPathMode = false

SelfishRouter.nodeLoopCount = 5

Optimization settings -- these affect the speed of the simulation

see World class for details.

Optimization.cellSizeMult = 5

Optimization.randomizeUpdateOrder = true

GUI settings

GUI underlay image settings

#GUI.UnderlayImage.fileName = data/helsinki_underlay.png

Image offset in pixels (x, y)

GUI.UnderlayImage.offset = 64, 20

Scaling factor for the image

GUI.UnderlayImage.scale = 4.75

Image rotation (radians)

GUI.UnderlayImage.rotate = -0.015

how many events to show in the log panel (default = 30)

GUI.EventLogPanel.nrofEvents = 100

Regular Expression log filter (see Pattern-class from the Java API for RE-matching details)

#GUI.EventLogPanel.REfilter = .*p[1-9]<->p[1-9]$

67

Vita

Michael Stewart was born in New Orleans, Louisiana on January 27, 1973 to Fran-

cis and Judith Stewart. After graduating high school in 1991 he worked before

returning to university in earnest in 1995. He received a B.S. in Physics from

Louisiana State University in May 1999 and continued his research as a fulltime

employee with the Department of Physics and Astronomy. He expects to receive

his M.S. in Systems Science from Louisiana State University in December 2015.

68

	Louisiana State University
	LSU Digital Commons
	2015

	CASPaR: Congestion Avoidance Shortest Path Routing for Delay Tolerant Networks
	Michael F. Stewart
	Recommended Citation

	tmp.1483774927.pdf.LevmN

