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ABSTRACT

In this thesis, wireless localization is investigated based on multiple noisy estimates of

the time-difference of arrival (TDOA) at each pair of the n ≥4 sensors with different but

known locations using WiFi opportunistic signals.

Our work is comprehensive and includes channel estimation, symbol detection, TDOA

estimation, and location estimation. To mitigate the multipath issue induced by wideband

signals, such as WiFi, frequency-division is employed to decompose the wideband RF signal

into multiple non-overlapping narrowband signals. To minimize the adverse effects of the

clock drift, time-division is proposed to divide the signal into multiple non-overlapping signals

in the time domain. In addition, Kalman filtering is proposed, assuming the wide-sense

stationary and uncorrelated scattering (WSSUS) channel and the first order auto-regressive

(AR) model are used. Because of the multiple TDOA estimates at each pair of the WiFi

receiver sensors, an efficient algorithm is developed to estimate the target location. The

localization technique developed in this thesis can also be extended to other radio frequency

(RF) signals, as shown in our simulation study for out-door localization.

The simulation results in our thesis show the effectiveness of the wireless localization,

although further work is needed to resolve the nonlinear estimation problem involved in

localization based on TDOA estimates.

v



CHAPTER 1
INTRODUCTION

This chapter introduces the wireless localization problem and the related works in this

problem area. Our thesis work will be briefly discussed and followed by a summary of each

chapter.

1.1 Overview and Related Work

Passive source localization has been an important research topic in the signal processing

society and received the renewed interest due to the attention to localization based on wireless

networks. See for instance [15] and the references therein. Even though the success of the

global positioning system (GPS) diminished the importance of wireless localization, there

are needs for developing indoor and urban area location systems, because the weak GPS

signal cannot penetrate big buildings. Several papers [1], [7], [9], [16], [19] consider source

localization based on time-difference of arrival (TDOA) estimates obtained from the radio

frequency (RF) signals.

We are motivated to consider wideband RF signals for localization. The study in this

thesis can be easily adapted to the case of the WiFi signals [2], [5] that are indeed wideband.

However, our localization algorithm is based on the TDOA estimates obtained at the n

sensors with different but known locations. Due to the wideband of the RF signals, the

multipath phenomena are inevitable. Furthermore, the sensor clocks are mostly based on

quartz oscillators, and thus the clock drifting can also be a serious issue for accurate TDOA

estimation, which requires a long duration for the observation time of the wideband RF

signals. A divide and conquer approach is adopted leading to decomposition of the wideband

RF signal into a sum of multiple narrowband signals that are resilient to multipath, and to

time division of the received signal over multiple non-overlapping time subintervals in each

of which the clock drifting is negligible. Hence we may have L >> 1 crude TDOA estimates

at each of the n wireless sensors. An assumption for the TDOA estimation errors at the kth
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node is the i.i.d. Gauss distribution with mean zero and variance σ2
k determined mainly by

its signal-to-noise ratio (SNR).

Despite the i.i.d. Gaussian assumption, such a source localization problem is nonlinear in

nature and the exact MLE solution is difficult to compute. For this reason, the problem was

initially investigated for the case when the sensors are arranged in a linear fashion [1], [3],

[9], where different optimum processing techniques are proposed under various assumptions.

When the sensors are distributed irregularly, the optimum solutions are much harder to

obtain. A linearization approach based on the Taylor series is proposed in [6], [19] to compute

the optimum solution iteratively. Because of the existence of local minima, the Taylor

series method requires an initial solution close to the global minimum. A more appealing

approach is the quasi-linear method employed in [7], [16], [18] that converts the nonlinear

measurement equations into quasi-linear measurement equations by treating the nonlinear

term as a parameter. Two different procedures are developed independently in [7], [17], which

turn out to be mathematically equivalent. Our research results presented in this thesis can

also be found in [8], [12], [13] as quarterly reports.

1.2 Thesis Contribution

In this thesis, we take into account the same localization problem using the same quasi-

linear measurement equations. Different from the existing solution methods, the nonlinear

term in the quasi-linear measurement equations is treated as a constraint that is in fact a

quadratic constraint. A numerical procedure based on simultaneous diagonalization [10] is

developed to compute the WLS solution under the quadratic constraint. This new procedure

is shown to be an approximate MLE solution under a mild assumption that is satisfied so long

as the distances from the sensors to the target are not all too small compared to the TDOA

estimation errors measured in distance. This thesis also proposes an efficient TDOA estimate

method, which uses subband division. The efficient computation to reduce complexity and

storage is proposed as well.

2



1.3 Thesis Organization

This thesis consists of 6 chapters. Chapter 1 is the introduction of our study. Chapter

2 describes OFDM and WiFi, which will be used as a signal for localization purposes. In

Chapter 3, the channel estimate and symbol detection procedures using OFDM data trans-

mission are presented. Chapter 4 summarizes the TDOA estimation procedure that will

be applied for localization. In Chapter 5, localization based on TDOA is illustrated. Each

chapter from Chapters 3 to 5 include the simulation results with specific examples. Lastly,

the conclusion is in Chapter 6.
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CHAPTER 2
OFDM AND WIFI

In this chapter, we provide an overview and study of orthogonal frequency-division mul-

tiplexing (OFDM), adopted in WiFi, which is the local area wireless computer networking

technology. Our wireless localization method will be based on WiFi signals.

2.1 OFDM

OFDM has been widely used in wireless communications due to its many advantages.

A major advantage is that it can transmit digital messages without intercarrier interference

(ICI) and intersymbol interference (ISI) in the multipath environment. Because of multi-

path propagation, transmitted signals are often distorted at the receiver site. Adding the

corrupting noises makes it very difficult to recover the original transmitted symbols. The

OFDM is a clever scheme by introducing the cyclic-prefix in the time domain and by taking

digital data in the frequency domain. It works very effectively and can efficiently deal with

both ISI and ICI, commonly seen in multi-path propagation situations and in broadband

radio channels. At the same time, the OFDM transmission technique needs much less com-

putational complexity in the equalization process in each receiver [14]. For these reasons,

OFDM is adopted widely as the standard, for instance, in the local area network (LAN) and

personal area network (PAN).

2.1.1 Discrete Fourier Transform and Circular Convolution

A major contribution of the OFDM is the introduction of discrete Fourier transform

(DFT) for baseband modulation and demodulation. If the discrete-time signal {si}N−1
i=0 is

periodic, then DFT can be used to analyze its frequency content:

Sk =
1√
N

N−1∑
i=0

siW
ik
N , WN = e−j2π/N ,
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where 0 ≤ k ≤ N − 1. There exists a fast algorithm for computing DFT called FFT with

complexity O(N log2(N)). For the two discrete-time periodic signals {fi}N−1
i=0 and {gi}N−1

i=0 ,

we can define circular convolution as

si = fi �∗ gi =
N−1∑
k=0

fkgi−k, i = 0, 1, · · · , N − 1.

Let {Fk}N−1
k=0 and {Gk}N−1

k=0 be the DFT of {fi}N−1
i=0 and {gi}N−1

i=0 , respectively. It follows from

the properties of the DFT that is

Sk = FkGk, k = 0, 1, · · · , N − 1. (2.1)

We cannot compute circular convolutions that requires N2 multiplications. However, it can

be implemented by FFTs for {fi}N−1
i=0 and {gi}N−1

i=0 , then (2.1) plus inverse FFT. So, we need

only N + 3
2
N log2(N) multiplications. The use of FFT greatly reduces the computational

complexity in the case of large N. Moreover FFT is numerically reliable and efficient.

2.1.2 Use of FFT for Linear Convolution

If we have two non-periodic sequences {fi}n−1
i=0 and {gi}m−1

i=0 , its linear convolution is

(assuming that n ≤ m):

si = fi ∗ gi =
n−1∑
k=0

fkgi−k, i = 0, 1, · · · , n+m− 2. (2.2)

Direct computation requires Nn multiplications with N = n+m−1. But the FFT approach

needs only N + 3
2
N log2(N) multiplications. We can use zero-padding to form {fi}N−1

i=0 and

{gi}N−1
i=0 and extend the sequences into the periodic ones. Then in the fundamental period,

the results coincide with those in (2.2). For n = m = 128, the direct method requires

2 × 1282 = 32, 768, while the FFT method requires 3, 328. So, the reduction is roughly

a factor of 10 (no reduction if n = N/10 = 12.8). The DFT matrix is unitary, which is
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numerically stable for its multiplication with vectors:



S0

S1

...

SN−1


= TDFT



s0

s1

...

sN−1


, TDFT :=

1√
N



1 1 1 · · · 1

1 W 1
N W 2

N · · · WN−1
N

...
...

... · · · ...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)2

N


.

2.1.3 From Multipath to AWGN Channels

For a wireless multipath channel, its output is given by

y(n) = h(n) ∗ s(n) =
∑̀
i=0

h(i)s(n− i)

= h(0)s(n) + h(1)s(n− 1) + · · ·+ h(`)s(n− `)

which is a linear convolution. The detection of s(n) needs to overcome the ISI. The idea is

to replace the linear convolution by circular convolution using zero-padding (which will be

replaced by the cyclic prefix). We transmit the data in the block of the fixed size L >> `,

and insert at least ` zeros at the beginning of the block, which is now {s(n)}N−1
n=0 , and has

size N ≥ L + `. Suppose that {Sk}N−1
k=0 is the N -point DFT of {s(n)}N−1

n=0 , and {Hk}N−1
k=0 is

the N -point DFT of {s(n)}N−1
n=0 . Then FFT of the output {y(n)}N−1

n=0 gives

Yk = HkSk +Nk, k = 0, 1, · · · , N − 1.

So we have the so called AWGN channel for each k, in which the ISI is completely eliminated.

The data rate suffers by a factor of `/N , which is insignificant, if N >> `.

2.1.4 Cyclic Prefix

The introduction of the cyclic prefix (CP) solves the orthogonality problem. Our data are

{xk}N−1
k=0 = {Sk}N−1

k=0 , which are actually in the frequency domain. So, we first apply inverse

DFT to obtain {s(i)}N−1
i=0 in the time domain. This is also called an IDFT modulation.

6



Then we augment the sequence into {s(i)}N+`
i=0 by adding the last ` data to the beginning,

as illustrated here:

s(N − `), · · · , s(N − 1), s(0), s(1), · · · , s(N − `), · · · , s(N − 1).

The received signal is (we have removed the CP):

y(`+ n) =
`−1∑
k=0

h(k)s(n+ `− k), n = 0, 1, · · · , N − 1,

=⇒


y(`)

...

y(N + `− 1)

 = TC


s(0)

...

s(N − 1)

 (2.3)

where TC is a Toeplitz matrix, given by

TC =



h(0) 0 · · · 0 h(`) · · · h(1)

h(1)
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . h(`)

h(`)
. . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . 0

0
. . . 0 h(`) · · · h(1) h(0)



(2.4)

2.1.5 Circulant Matrix

The Toeplitz matrix TC is the size N × N and is called circulant because each row is a

circular rotation (to the right) of the previous row. Such a matrix can be diagonalized by

the DFT matrix:

diag(H0, H1, · · · , HN−1) = WFTCW
−1
F = WFTCW

∗
F ,
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where WF is the DFT matrix on page 3. Hence multiplying (2.3) from the left by WF on

both sides, yields

WF


y(`)

...

y(N + `− 1)

 = (WFTCW
∗
F )WF


s(0)

...

s(N − 1)

 .

So, we obtain (after taking the noise into account):


Y0

...

YN−1

 =


H0

. . .

HN−1




S0

...

SN−1

+


V0

...

VN−1

 .

We again have the AWGN channel: Yk = HkSk + Vk for 0 ≤ k < N .

2.1.6 Discrete-Time Model

Figure 2.1 shows a block diagram of a discrete-time model.

Figure 2.1 Discrete-time model

For the above discrete-time model, we have

~Y = WF

(
~h�∗W∗

F (~S) + ~v
)

= WF

(
~h�∗ ~s

)
+ ~V = ~H � ~S + ~V ,
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where � is the element-wise multiplication of two vectors. The noise vector is Gaussian,

white, and uncorrelated.

2.2 WiFi

WiFi is a wireless computer network communication that was invented in order to remedy

the disadvantage of a wired LAN. It is widely used for many reasons, such as reducing

the work for wired network installation, saving maintenance costs and solving the range

limitation of the network.

2.2.1 IEEE 802.11

IEEE 802.11 is a standard for wireless local area network (WLAN) by the LAN/MAN

Standards Committee in IEEE. The first version, 802.11-1997, was released in 1997. It

provides a maximum data transmission speed of 2 Mbps at the 2.4 GHz band. It was not

widely used due to its low speed and there were no strict standards for producing WLAN

devices, making them incompatible. In 1999, 802.11a and 802.11b were released. 802.11a

uses OFDM for data transmission with a maximum of 54 Mbps at the 5 Ghz band. The

advantages are that there is less interference with other devices, such as wireless phones and

Bluetooth devices, and has a higher data transmission rate than that of the 2.4 Ghz band.

However, its signal strength is reduced easily by its surrounding, such as a wall or other

solid objects. On the other hand, 802.11b uses the 2.4 Ghz band and has a maximum data

transmission speed of 11 Mbps. It is more practical compared to the previous standards,

leading to its wide spread use as a substitute for wired networks at home and companies. In

June 2003, 802.11g was released. It uses OFDM and has the same data transmission rate

as 802.11a, but it operates at the 2.4 Ghz band. Also, it is compatible with 802.11b. Thus

it is very widely used today. For this reason, we focused on the 802.11g standard that uses

the 2.4 GHz band and OFDM.

9



2.2.2 TDOA Estimation Based on WiFi Signals

The 2.4 GHz band is divided into 14 channels spaced 5 MHz apart, beginning with

channel 1, which is centered on 2.412 GHz. Figure 2.2 shows WiFi channels in the 2.4 GHz

band graphically [20].

Figure 2.2 WiFi channels in the 2.4 GHz band

The WiFi signals are wideband, and have a bandwidth of 20 MHz. Hence the sampling

period is 0.05 microseconds. We use the 64 QAM modulation scheme in this study. So, each

OFDM symbol consists of 64 QAM subcarriers in the frequency domain and 3.2 microseconds

in the time domain. We divide these 64 QAM subcarriers into 8 subband signals with each

occupying 2.5 MHz that make the bandwidth narrower to minimize the adverse effect of

multipath. To cope with the clock drift issue, we will divide all the WiFi symbols into

different sections with each section consisting of 256 subcarriers corresponding to 4 OFDM

symbols. Assume that the neighboring OFDM symbols are separated by 0.5 microseconds.

Then the 4 OFDM symbols occupy a total of time interval no more than 15 microseconds,

where we assume that the clock drift is negligible. We will assume that TDOA is estimated

every 17.5 microseconds. The extra 2.5 microseconds over which no TDOA estimation is

made will be used to synchronize the clock in order to initiate a new TDOA estimation.

10



CHAPTER 3
CHANNEL ESTIMATE AND SYMBOL DETECTION

This chapter summarizes our simulation study for channel estimation and symbol detec-

tion using OFDM. The simulation work is one of the components in the simulation studies

for localization based on WiFi signals, consisting of not only OFDM, but also estimation

of the TDOA and localization based on TDOA estimates. Our simulation is focused on

channel estimation and symbol detection in order to recover the transmitted input data in

the receiver site with an acceptable error rate.

3.1 Signal and Channel Models

Let {Sk}N−1
k=0 be the subcarriers in the frequency domain to be transmitted. They can

be regarded as discrete Fourier transform (DFT) of a sequence {si}N−1
i=0 in the time domain.

There holds the DFT relation:

Sk =
1√
N

N−1∑
i=0

siW
ik
N , WN = e−j2π/N , (3.1)

for 0 ≤ k ≤ N − 1. Both {si}N−1
i=0 and {Sk}N−1

k=0 can be extended to periodic sequences with

period N . Given {Sk}N−1
k=0 , its inverse DFT (IDFT) is defined by

si =
1√
N

N−1∑
k=0

SkW
−ik
N , 0 ≤ i ≤ N − 1. (3.2)

If {si}N−1
i=0 are transmitted over a specified channel, then the received signal is given by

y(n) =
l−1∑
i=0

his(n− i) + v(n) (3.3)

where {hi}l−1
i=0 is the channel impulse response (CIR) for the discretized channel of length l,

and v(t) is the corruption noise, resulting in ISI. In order to remove the ISI, the cyclic-prefix

is employed by adding the last l subcarriers to the beginning of the sequence. Hence, the

11



sequence of {si}N−1
i=0 are replaced by

s(N − l), · · · , s(N − 1), s(0), s(1), · · · , s(N − l), · · · , s(N − 1).

The above leads to a signal and channel model, described by the matrix-vector form:


y(0)

...

y(N − 1)

 = TC


s(0)

...

s(N − 1)

+


v(0)

...

v(N − 1)

 (3.4)

where TC is both a circulant and Toeplitz matrix, shown in (2.4). Recall that a circulant

matrix is determined by its first row, with every other row obtained by a circular right

rotation of the previous row. Let {Hk}N−1
k=0 be the N -point channel frequency response

obtained by N -point DFT of the CIR {hi}N−1
i=0 , padded with hi = 0 for i ≥ l. Then

Hk = H(W−k
N ) where

H(z) =
l−1∑
i=0

hiz
−i = h0 + h1z

−1 + · · ·+ hl−1z
−(l−1)

is the channel transfer function. It is a fact that the eigenvalue decomposition (EVD) of TC

is given by

TC = T ∗DFTdiag(H0, H1, · · · , HN−1)TDFT. (3.5)

The DFT matrix is an unitary matrix satisfying TDFTTDFT
∗ = I. Hence, multiplying (3.4)

from the left by TDFT on both sides yields


Y (0)

...

Y (N − 1)

 = TDFT


y(0)

...

y(N − 1)

 = TDFTTC


s(0)

...

s(N − 1)

+ TDFT


v(0)

...

v(N − 1)
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=


H0

. . .

HN−1




S0

...

SN−1

+


V0

...

VN−1

 =⇒ Yk = HsSk + Vk

for 0 ≤ k ≤ N − 1. The noise {Vk}N−1
k=0 is the N -point DFT of {v(i)}N−1

i=0 . Additive white

Gaussian noise (AWGN) is a basic channel model widely used in wireless communications

to model the random nature of the receiving signal. Under the AWGN assumption, v(i) has

a mean of zero and variance of σ2
v/2 for both of its real and imaginary parts. In this case we

have the so-called Rayleigh fading channel.

Suppose that there are l pilot tones, denoted by {Skm}l−1
k=0, that are designed and known

to us, where m = N/l is an integer. We can obtain the following relation:



Y0

Ym
...

Y(l−1)m


=



H(W−0
N )S0

H(W−m
N )Sm
...

H(W
−(l−1)m
N )S(l−1)m


+



V0

Vm
...

V(l−1)m


.

As a result the maximum likelihood estimate (MLE) for Hmm = H(W−mm
N ) is given by

Ĥkm =
Ykm
Skm

, k = 0, 1, · · · , l − 1. (3.6)

The CIR estimates {ĥi}l−1
i=0 can be obtained by the l-point IDFT of {Ĥim}l−1

i=0:

ĥi =
1

l

l−1∑
k=0

ĤkmW
−ik
l , 0 ≤ i < l.

Once {ĥi}l−1
i=0 are obtained, the channel frequency response can be estimated as N -point DFT

13



of the channel estimate ĥi as follows:

Ĥk =
1

N

N−1∑
k=0

ĥiW
ik
N , 0 ≤ k < N.

The received data can be first estimated via

Ŝk =
Yk

Ĥk

, k = 0, 1, · · · , N − 1,

for those with index k not being a multiple of m and then detected by some quantization

scheme dependent on the prior probability of the subcarriers.

It needs to be commented that in calculating M -point DFT or IDFT using Matlab

command “fft” or “ifft”, respectively, we need to multiply 1/
√
M for M -point DFT, and

√
M for M -point IDFT, in order to be consistent with the DFT matrix and IDFT matrix

used in OFDM.

3.2 Simulation Studies

In our simulation studies, the number of subcarriers N is 64, the length of cyclic-prefix

l is 4, and the number of ensembles M is 20,000. We assume wide-sense stationary and

uncorrelated scattering (WSSUS) channels, i.e., {hi(k)}l−1
i=0 are uncorrelated and are WSS

process. However hi(k) changes slowly for each i, and hence, can be regarded as a time-

invariant in each OFDM block.

To set up a Rayleigh fading channel for multipath propagation, we define a channel decay

rate through defining σ2
hi

, the mean power of {|hi|} as

σhi+1
=

1

2
σhi , 0 ≤ i < l − 1,

with a normalization of σ2
h0

+ σ2
h1

+ · · ·+ σ2
hl−1

= 1. It should be clear that the exponential

decay of the mean power does not necessarily mean |hi| > |hi+1| for each i.

14



The N tones are assumed to have 4-QAM for their constellation. That is, each transmit-

ted subcarrier has one value among {1,−1, j,−j} in the frequency domain. In the receiver

site, we need to detect each estimated data based on the constellation diagram via some

quantization scheme. Assume that Sk ∈ {1,−1, j,−j} has equal probability. Then the

optimal detection yields the estimate Ŝk given by

S̆k =



1, if |∠Ŝk| < π
4

−1, if |∠Ŝk| > 3π
4

j, if π
4
< ∠Ŝk < 3π

4

−j, if − 3π
4
< ∠Ŝk < −π

4

where ∠θ has a range of [−π, π] using the Matlab command “angle.” Basically, the complex

plane is divided into four sector regions with equal angle spans.

An efficient way is developed to carry out the detection algorithm in our simulation

program, which is not described here. Let the number of ensembles be M >> N . The

detection error rate is computed by counting the number of
∣∣∣Sk − S̆k∣∣∣ > 1, divided by M .

The channel estimation error is assessed by computing root mean squared error (RMSE)

given by

RMSE :=

√√√√ 1

LN

LN∑
k=1

l−1∑
i=0

∣∣∣h(k)
i − ĥ

(k)
i

∣∣∣2.
To study the performance of the channel estimation and symbol detection, we used various

values of signal-to-noise ratio (SNR) that are 10, 15, 20, 25, 30, 35, 40, 45, and 50 in our

simulation study. The SNR is defined by

SNR = 10 log
σ2
s

σ2
v

= 10 log
1

σ2
v

,

if the subcarrier mean power is normalized to 1. Table 3.1 below shows the simulation result

with their numerical values. Both the symbol detection error rate and channel estimate error
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Table 3.1 The symbol detection error rate and the channel estimate error

SNR 10 15 20 25 30 35 40 45 50

Symbol error rate 0.0796 0.0232 0.0069 0.0021 0.0006 0.0002 7.1e-05 2.1e-05 4.6e-06

Channel error (RMSE) 0.3146 0.1782 0.1001 0.0563 0.0316 0.0178 0.0100 0.0056 0.0032
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decrease as SNR increases. Note that channel coding is not employed and thus both errors

are relatively larger than the practical WiFi results.

Figures 3.1 and 3.2 show the graphical results of the symbol detection error rate and

RMSE of the channel estimation error, respectively. The symbol detection error rate shows

from 0.0796 to 4.6e-06 according to SNR changes 10 to 50, respectively, with 20,000 ensem-

bles. Under the same condition, RMSE of the channel estimation error ranges from 0.3146

to 0.0032.

Figure 3.1 Symbol detection error rate

Figure 3.2 Channel estimation error
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The result of this simulation shows acceptable error rates in both the symbol detection

and channel estimation. So, it is expected that this can be applied to the TDOA estimate

and localization purpose in the latter chapters.

3.3 Channel Estimation using the Kalman Filter

3.3.1 WSSUS Channel

The WSSUS channel is described as

hi(k + 1) = αihi(k) + βiwi(k)

for 0 ≤ i < L, where wi(k) is AWGN, satisfying E[wi(k)] = 0,E[wi(k)2] = 1 and |αi|2+|βi|2 =

1. Let h and w be column vectors consisting of hi and wi at its (i+ 1)th entry, respectively.

Then h(k + 1) can be described by

h(k + 1) = diag(α0, · · · , αL−1)h(k) + diag(β0, · · · , βL−1)w(k).

In Matlab language, the initial value of h(k) is taken to be

h(0) = (randn(L, 1). ∗ ah) + j(randn(L, 1). ∗ ah)

with ah = [ 5; 2.5; 1.25; 0.625 ] for the case L = 4. In addition, αi = 0.99 and βi =
√

1− α2
i

are set.

3.3.2 Channel Estimate at the First Block (k = 0)

Assuming that the entire block of OFDM symbol is used to estimate the channel at time

k = 0. Then an optimal estimate of hi(0) based on the first block of N = 64 symbols can be

taken as an MLE. Recall that Yi = HiSi + Vi = SiHi + Vi. Packing together for 0 ≤ i < N
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yields

Y :=


Y0

...

YN−1

 =


S0

. . .

SN−1




H0

...

HN−1

+


V0

...

VN−1

 = C0h+ V

Once C0 is available, we can obtain the initial channel estimate via the MLE solution.

C0 =


S0

. . .

SN−1


√
NFN,L, WN = e−j2π/N ,

FN,L =
1√
N



1 1 1 · · · 1

1 W 1
N W 2

N · · · WL−1
N

...
...

... · · · ...

1 WN−1
N W

2(N−1)
N · · · W

(L−1)(N−1)
N


The aforementioned assumption leads to

ĥ0|0 := θMLE = (C ′0Σv
−1C0)−1C ′0Σv

−1Y = C ′0Y/N (∵ (C ′0C0)−1 = 1/N),

Σ0|0 = cov[ĥ0|0] = (C ′0Σv
−1C0)−1

where the covariance Σv = diag(σ2
v0
, · · · , σ2

vN−1
). In Matlab language, Y = fft(y)/

√
N .

3.3.3 Channel Estimate from Later Blocks (k ≥ 1)

We use Kalman filter to estimate {hi(k)}L−1
i=0 for k = 1, 2, · · · , based on the initial estimate

and pilot tones at each block of the OFDM symbol. Let

A = diag(α0, · · · , αL−1), B = diag(β0, · · · , βL−1).

19



By taking x(k) = h(k), we have the following state space model:

x(k + 1) = Ax(k) +Bw(k), y(k) = Ckx(k) + v(k).

The measurement equation is more tricky, because only L pilot symbols can be used in the

measurement equation for y(k) that can be written as

y(k) =



Y0(k)

Ym(k)

...

Y(L−1)m(k)


=



S0(k)

Sm(k)

. . .

S(L−1)m(k)


√
LFL


h0(k)

...

hL−1(k)

+



V0(k)

Vm(k)

...

V(L−1)m(k)


,

by taking m = N/L, is assumed to be an integer. Recall the expression of the DFT matrix

FN,L in the previous page. So FL = FL,L is the same as FN,L except that N is replaced by

L. It follows

Ck =



S0(k)

Sm(k)

. . .

S(L−1)m(k)


√
LFL, FL = 1√

L



1 1 1 · · · 1

1 WL WL
L · · · WL−1

L

...
...

... · · · ...

1 WL−1
L W

2(L−1)
L · · · W

(L−1)2

L


.

The Kalman filter can be used to estimate h(k) = x(k) in accordance with

x̂k|k = (I + LkCk)x̂k|k−1 − Lky(k)

initialized by x̂1|0 = Aĥ0|0 with an error covariance of Σ1|0 = AΣ0|0A
∗ + BB∗, where Lk =

−ΣkC
∗
k(Rk + CkΣkC

∗
k)−1,

Rk = E[v(k)v(k)∗] = diag(σ2
v0
, · · · , σ2

v(L−1)m
)
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is diagonal of dimension L× L, and the error covariance for x̂k|k is given by

Σk|k = cov[x̂k|k] = Σk − ΣkC
∗
k(Rk + CkΣkC

∗
k)−1CkΣk.

The predicted channel is

x̂k+1|k = Ax̂k|k

with the prediction error covariance

Σk+1|k = AΣkA
∗ +BB∗ − AΣkC

∗
k(Rk + CkΣkC

∗
k)−1CkΣkA

∗ = AΣk|kA
∗ +BB∗

3.3.4 Simulation Results

Table 3.2 shows the simulation results with their numerical values when the Kalman

filter is used. Both the symbol detection error rate and channel estimation error decrease

as the SNR increases, as in the previous algorithm. The symbol detection error rates are

from 3.35% to 4.7e-06% according to the SNR changes 10 to 50, respectively, with 20,000

ensembles. The RMSE of the channel estimation error ranges from 0.2404 to 0.0032. Figures

3.3 and 3.4 show the graphical results when the Kalman filter is used.

Figure 3.3 Symbol detection error rate using the Kalman filter
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Table 3.2 The symbol detection error rate and channel estimate error using the Kalman filter

SNR 10 15 20 25 30 35 40 45 50

Symbol error rate (%) 3.35 1.23 0.38 0.15 0.0419 0.0148 4.5e-03 1.7e-03 4.7e-06

Channel error (RMSE) 0.2404 0.1559 0.0947 0.0552 0.0314 0.0178 0.0100 0.0056 0.0032
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Figure 3.4 Channel estimation error using the Kalman filter

Table 3.3 shows the performance improvement rate when we use the Kalman filter for

the symbol detection and channel estimation compared to the first one that we used in this

chapter. That is, it shows how much the symbol error rate and the channel estimation error

have decreased. For example, when the SNR is 10, the symbol error rate and the channel

estimation error decreased by 4.61% and 0.0742, respectively. As the results show, when the

Kalman filter is applied, the performance improved more in the lower SNR and there was

not much of a difference in the performance as the SNR increased.
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Table 3.3 Performance improvement rate using the Kalman filter

SNR 10 15 20 25 30 35 40 45 50

Symbol error rate (%) 4.61 1.09 0.31 0.06 0.02 0.01 2.6e-05 4e-06 4.55e-06

Channel error (RMSE) 0.0742 0.0223 0.0054 0.0011 0.0002 0 0 0 0
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CHAPTER 4
TDOA ESTIMATION

This chapter summarizes the TDOA estimation procedure and simulation results.

4.1 TDOA Estimation Procedure

TDOA is defined as the difference between the time from the mobile target to the first

sensor and the target to the second sensor, if we assume there are two sensors as it is shown

in Figure 4.1.

Figure 4.1 Schematic illustration of TDOA

In order to estimate TDOA for localization purposes, we used the procedure in Figure

4.2.

Figure 4.2 Block diagram of the TDOA estimation procedure

As discussed in Chapter 3, we divide each OFDM symbol into 8 subbands. The sensors

receive the OFDM symbols in the frequency domain. Figure 4.3 shows how to do sub-band

division.
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Figure 4.3 Sub-band division

Let { ˆsubi}Li=1 be the sub-bands of each sensor in the frequency domain, where L is the

number of the sub-band. In Figure 4.3, each box represents 8 QAM sub-carriers and every

8 boxes represent one OFDM symbol. In every OFDM symbol, the first 8 QAM subcarriers

from the original received data are placed in ˆsub1. The rest of the OFDM symbol has zero

padding. We can obtain ˆsub2 to ˆsub8 in a similar way, except that they are each placed 8

QAM sub-carriers later. Then we use inverse DFT to convert these eight sub-bands into the

time domain. In the time domain, each sub-band signal is denoted by {subi}Li=1 as follows:

ˆsub1

ˆsub2

...

ˆsub8

IDFT

=⇒

sub1

sub2

...

sub8

.

Then, we do upsampling to increase the sampling frequency so that we can compute the

TDOA more accurately. Figure 4.4 shows the received sub-band signals from two different

sensors in the time domain. Recall TDOA is induced by the difference in distance. In

Figure 4.4, sensor 1 is closer to the target than sensor 2, and TDOA is proportional to the

distance difference. In the simulation studies, TDOA needs to be added in accordance with

the difference in distance.
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Figure 4.4 Received sub-band signals showing TDOA

Let k be an integer-valued time index, and {s1i(k)} and {s2i(k)} be sampled signals of

the same continuous-time signal received at the ith sub-band of sensor 1 and ith sub-band

of sensor 2, respectively. Then {S1i(Ω)} and {S2i(Ω)} are the DFT of {s1i(k)} and {s2i(k)}.

There holds S2i(Ω) = ejΩ∆tS1i(Ω) where ∆t is the TDOA. Thus we can compute the TDOA

by the phase slope, that is, ∠S1i(e
jwk)∗S2i(e

jwk) where wk = (k−1)2π
NT

, k = 1, 2, · · · , NT . In

general, note that NT 6= N .

In order to find the phase slope, we used the least square method. Let awk + b be the

slope. Then the least square is written as follows:

N−1∑
k=0

|∠S1i(e
jwk)∗S2i(e

jwk)− (awk + b)|2, wk =
(k − 1)2π

NT

, k = 1, 2, · · · , NT . (4.1)

Let Yl(wk) be S1(ejwk)∗Sl(e
jwk). Then 4.1 is re-written as:

NT−1∑
k=0

|Yl(wk)− (awk + b)|2 =

NT−1∑
k=0

∣∣∣∣∣∣∣Yl(wk)− [wk 1]

 a

b


∣∣∣∣∣∣∣
2

(4.2)

=
N−1∑
k=0

∣∣∣∣∣∣∣∣∣∣


Y (w1)

...

Y (wNT
)

−


w1 1

...

wNT
1


 a

b


∣∣∣∣∣∣∣∣∣∣

2

(4.3)
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Let A = [wk 1], X =

 a

b

. Then the equation to minimize 4.2 is given by

||Y − AX||2.

Then we can find the optimal value of X by using the least square method as shown below:

Xopt = (A′A)−1A′Y =

 aopt

bopt

 .
The estimated TDOA of ith sub-band is

ˆTDOAi = aoptTs

where Ts is the sampling period. Finally, the mean value of { ˆTDOAi}Li=1 would be the

optimal estimate TDOA as follows:

ˆTDOA =
1

L

L∑
i=1

ˆTDOAi.

4.2 Simulation Studies

In these simulation studies, we used 7 sensors. The target is located at (110, 45,1) on

the x-y-z plane. The sensors’ locations can be seen in Figure 4.5. We assumed that the SNR

is 20 dB. According to the symbol detection simulation in Chapter 3, we used the symbol

error rate of 0.0069. Figure 4.6 shows an example of the phase slope plot. In this example,

the phase was computed by sensor 1 and sensor 3. Each sub-band shows a slightly different

slope due to probably the data detection error and channel estimation error. Recall that a

SNR of 20 dB involves a significant detection error rate. Hence, we use the average as the

final estimated TDOA value.

28



Figure 4.5 Location of the target and sensors

Figure 4.6 An example of the phase slope plot

When we set the first sensor as the origin, 6 pairs of sensors are formed. That is, <sensor

1 and sensor 2>,<sensor 1 and sensor 3>, · · · , <sensor 1 and sensor 7>. The received

sub-band signal in the time domain at each sensor is upsampled by a factor of 25 and a

total of 200 ensembles are simulated. Table 4.1 shows the true TDOA values at each paired

sensor, mean of estimated TDOA, and the standard deviation. The numbers in the first row

indicate the sensor pairs <sensor 1 and sensor 2>, · · · , <sensor 1 and sensor 7>.
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Table 4.1 TDOA estimation results with a SNR of 20 dB

1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 1 & 7

True TDOA (ns) 23.23 59.85 2.51 57.66 37.19 63.36

Mean of TDOA estimate (ns) 18.45 58.77 2.29 54.15 32.71 60.84

SD (ns) 44.06 40.42 46.28 41.84 56.76 41.43

Table 4.2 shows the TDOA estimation results with a SNR of 50 dB. It was simulated

with 2000 ensembles in order to get more accurate results because it has a very small data

detection error. As seen in the results, the mean of the TDOA estimate is closer to the true

TDOAs and they have smaller standard deviations.

Table 4.2 TDOA estimation results with a SNR of 50 dB

1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 1 & 7

Mean of TDOA estimate (ns) 22.00 58.00 2.00 55.91 35.98 62.00

SD (ns) 21.89 4.69 0.79 20.67 15.84 4.02

Overall, the estimated TDOA is very close to the true TDOA. The standard deviation is

also small and thus this TDOA estimation algorithm performs quite well.
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CHAPTER 5
LOCALIZATION

5.1 Problem Formulation and Preliminary Analysis

Denote (xk, yk, zk) as the position of the kth sensor and (xT , yT , zT ) as the position of the

stationary target. Our goal is to estimate the position (xT , yT , zT ) based on the L TDOA

estimates collected by each of the n sensors located at {(xk, yk, zk)}nk=1. Let

Rk,T =
√

(xT − xk)2 + (yT − yk)2 + (zT − zk)2

be the distance between the target and the kth sensor. By an abuse of notation, RT = R1,T .

Basically, the position of the first sensor is treated as the origin of the Cartesian coordinate

system. Then the TDOA between the kth and first sensor for receiving the RF signal from

the target is defined as

∆tk := [Rk,T −RT ]/c (5.1)

for k =2, 3, · · · , n with c as the speed of light. The target location is embedded in TDOAs

or ∆tk = ∆tk(xT , yT , zT ). As in the literature we assume that the estimates of the TDOAs

are given by

∆t̂k;i = ∆tk(xT , yT , zT ) + δtk;i (5.2)

for i=1, 2, · · · , L where {δtk;i}nk=2 are uncorrelated Gaussian random variables with mean

zero and variance σ2
k. That is, the measurement noises have the joint probability density

function (PDF) of

p∆(δt|xT , yT , zT ) =
1√

(2π)L(n−1)σ
L(n−1)
k

exp

{
−

L∑
i=1

n∑
k=2

[∆t̂k;i −∆tk(xT , yT , zT )]
2

2σ2
k

}
. (5.3)
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It follows that source localization based on TDOAs is a nonlinear estimation problem. Denote

ρk =
√
x2
k + y2

k + z2
k for 1≤ k ≤ n, and rewrite (5.1) equivalently as

(xT − xk)2 + (yT − yk)2 + (zT − zk)2 = (

√
(xT − xk)2 + (yT − yk)2 + (zT − zk)2 + c∆tk)

2.

The above can be written equivalently in the following equation:

ρ2
k − ρ2

1 = 2[(xk − x1)xT + (yk − y1)yT + (zk − z1)zT ] + c2∆t2k + 2cRT∆tk

for 2≤ k ≤ n. The TDOA data in (5.2) can be substituted in to obtain a quasi-linear model

[4], [7], [16], [17]. Indeed denote

ak;i = ρ2
k − ρ2

1 − c2(∆t̂2k;i + µσ2
k), ηk;i = −2c(RT + c∆t̂k;i)δtk;i + c2(δt2k;i − µσ2

k) (5.4)

for 2≤ k ≤ n and 1≤ i ≤ L where µ ≥ 0. Let θ = [ xT yT zT RT ]′ be the location

parameter vector to be estimated. The quasi-linear model a = Hθ + η holds. That is,



a2

a3

...

an


= 2



x2,11L y2,11L z2,11L c∆t̂2

x3,11L y3,11L z3,11L c∆t̂3
...

...
...

...

xn,11L yn,11L zn,11L c∆t̂n





xT

yT

zT

RT


+



η
2

η
3

...

η
n


(5.5)

where 1L is an L-dimensional vector of 1s and

ak =


ak;1

...

ak;L

 , ∆t̂k =


∆t̂k;1

...

∆t̂k;L

 , η
k

=


ηk;1

...

ηk;L

 ,

xk,1

yk,1

zk,1

 =


xk − x1

yk − y1

zk − z1


for 2≤ k ≤ n. Equation (5.5) is the same as the quasi-linear model in the literature except a

multiple of TDOA estimates at each sensor with {ak;i} pseudo-measurements and {ηk;i} the
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corresponding noises. However, it imposes a constraint to the parameter vector θ as

(θ − θ0)′Q(θ − θ0) = 0, Q = diag(1, 1, 1,−1) (5.6)

where θ0 = [ x1 y1 z1 0 ]′, that is a zero vector, if the sensor node 1 is treated as the origin.

Denote E{·} and E{·|·} as the expectation and conditional expectation. When µ=1,

E{ηk;i|∆t̂k;i} = 0, E{η2
k;i|∆t̂k;i} = 4c2(RT + c∆t̂k;i)

2σ2
k + 2c4σ4

k (5.7)

where E{δt3k;i}=0 and E{δt4k;i} = 3σ4
k are used. The equation is under condition {ηk;i}, which

are Gauss distributed, assuming that {δtk;i} are Gauss distributed with zero mean. The next

lemma is useful.

Lemma 1. Let V be Gauss distributed with mean zero and variance σ2. If the ratio of γ > 0

to σ is suitably large, e.g., greater than 10, then Ξ = −2γV + V 2 is a good approximation

to the Gauss random variable of mean 0 and variance 4γ2σ2.

It can be easily seen that Ξ = ηk;i has the same form as in Lemma 1 by taking µ = 0, σ =

cσk, and by (5.1),

γ = γk;i := RT + c∆t̂k;i ≈ Rx,T (5.8)

for each k. Hence, the assumption on the large ratio of γ to σ holds approximately, if

γ

σ
=
RT + c∆t̂k;i

cσk
≈ Rk,T

cσk
>> 1 ∀ k, (5.9)

which holds generically. The reason lies in the fact that cσk represents the resolution of

the TDOA estimates in terms of the distance while Rk,T is the distance between the kth

sensor and the target. For this reason (5.9) holds true unless in some very special situations

(that cab ne removed by deleting the sensor too close to that target). As such, {ηk;i} are

approximately Gauss distributed with mean zero and variance {γ2
i,kσ

2
k} in the case of µ=0.
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The joint PDF in (5.3) can be replaced by the following PDF

pΞ(η;xT , yT , zT ) ≈ 1√
(2π)L(n−1)det(Σ)

exp
[
− 1

2
(a−Hθ)′Σ−1(a−Hθ)

]
. (5.10)

Since the TDOA estimation errors are uncorrelated, the noise covariance matrix Σ is given

by

Σ = 4c2diag(γ2
2;1σ

2
2, · · · , γ2

2;Lσ
2
2, · · · , γ2

n;1σ
2
n, · · · , γ2

n;Lσ
2
n). (5.11)

Recall the constraint (5.6) for the parameter vector. Hence, an approximate MLE for the

location parameter vector θ is the one that minimizes

J =
1

2
(a−Hθ)′Σ−1(a−Hθ), (5.12)

which is subject to the constraint (5.6) under the condition (5.9). A solution will be pro-

vided in the next section to such constrained WLS problems. We provide an approximate

expression for the Fisher information matrix (FIM) associated with the quasi-linear model

(5.5).

Lemma 2. If the noise vector in the quasi-linear model (5.5) admits an approximate joint

PDF in (5.10), then the associated FIM with respect to the location parameter (xT , yT , zT )

is approximately given by

FIM ≈ (H1 + bv′α,β)′Σ−1(H1 + bv′α,β), (5.13)

where zT − z1 = RT cosα, yT − y1 = RT sinα cos β, xT − x1 = RT sinα sin β, and

vα,β =


sinα sin β

sinα cos β

cosα

 , H1 =



x2,11L y2,11L z2,11L

x3,11L y3,11L z3,11L
...

...
...

xn,11L yn,11L zn,11L


, b =



c∆t̂2

c∆t̂3
...

c∆t̂n


.
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That is, β is the bearing parameter on the x− y plane, α is the angle between the positive

z-axis and x− y plane, and H = [ H1 b ].

5.2 Solution to the Constrained WLS Problem

Minimization of J in (5.12) subject to the constraint (5.6) has been tackled in [7], [17],

[18] and in [4], [11]. Several solution procedures have been developed, but they all bypass

the difficulty in solving the constrained WLS problem directly. In this section, we provide a

general solution to

min
θ′Qθ=0

1

2
(a−Hθ)′Σ−1(a−Hθ). (5.14)

The solution to the above constrained WLS is applicable to the case when the constraint is

given by (θ− θ0)′Q(θ− θ0) = 0 with θ0 6= 0. In (5.14), the matrix Q is an indefinite nonzero

matrix with size l × l and matrix H has rank l, which is its number of columns. For its

application to our localization problem, l=4.

We employ the method of the Lagrange multiplier to solve (5.14). Let λ be real and

consider

J =
1

2
[(Hθ − a)′Σ−1(Hθ − a) + λθ′Qθ]. (5.15)

Then the necessary condition for optimality yields the condition

H ′Σ−1(Hθ − a) + λQθ = 0 ⇐⇒ θ = (H ′Σ−1H + λQ)−1H ′Σ−1a. (5.16)

An optimal solution needs to satisfy the constraint θ′Qθ=0 leading to

a′Σ−1H(H ′Σ−1H + λQ)−1Q(H ′Σ−1H + λQ)−1H ′Σ−1a = 0. (5.17)

The solution algorithm is hinged on the computation of the real root λ from the above

equation and there can be more than one such real root. The result of simultaneous diago-

nalization in [10] can be employed for this purpose. Because Σ = Σ′ > 0 and Q = Q′, there
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exists an nonsingular matrix S, such that H ′Σ−1H = SDΣS
′ and Q = SDQS

′, where DΣ

and DQ are both diagonal. It is noted that DΣ and DQ have the same inertia as Σ and Q,

respectively. It follows that (5.17) is equivalent to

(S−1H ′Σ−1a)′(λI +DΣD
−1
Q )−1D−1

Q (λI +DΣD
−1
Q )−1(S−1H ′Σ−1a) = 0. (5.18)

Let D−1
Q = diag(q1, q2, · · · , ql). Then it has the same number of negative and positive

elements as D = DΣD
−1
Q = diag(d1, d2, · · · , dl) by the positivity of Σ and DΣ. In fact, qidi >

0. The matrices S and D can be obtained by eigenvalue decomposition of H ′Σ−1HQ−1 =

SDS−1. Let vi be the ith element of S−1H ′Σ−1a. Then (5.18) is equivalently converted into

the following:

(S−1H ′Σ−1a)′(λI +D−1
Q DΣ)−1D−1

Q (λI +DΣD
−1
Q )−1(S−1H ′Σ−1a) =

l∑
i=1

qiv
2
i

(λ+ di)2
= 0.

(5.19)

Because Q is indefinite, there is at least one strictly positive and one strictly negative element

from {qi}li = 1. Hence, the above equation has at least one real root. However, there are only

finitely many real λ values satisfying (5.19). In fact, all the roots of the nonlinear equation

in (5.19) are roots of the following polynomial with degree 2(l − 1):

l∑
i=1

qiv
2
i

∏
k 6=i

(λ+ dk)
2 = 0. (5.20)

For source localization based on TDOAs, the constraint is given by (5.6) in which case l=4

implying that the computational complexity due to the roots computation is rather modest.

Denote {λk}rk=1 as the r real roots of (5.20). Now by (5.16),

Hθ − a = [H(H ′Σ−1H + λkQ)−1H ′Σ−1 − I]a

= [HQ−1(λkI +H ′Σ−1HQ−1)−1H ′Σ−1 − I]a

= [(λkI +HQ−1H ′Σ−1)−1HQ−1H ′Σ−1 − I]a
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= −λk(λkI +HQ−1H ′Σ−1)−1a

= −λkΣ(λkΣ +HQ−1H ′)−1a.

Substituting the above into the performance index leads to

J =
1

2
λ2
ka
′(λkΣ +HQ−1H ′)−1Σ(λkΣ +HQ−1H ′)−1a. (5.21)

Let λopt be one of the r real roots that minimizes J over {λk}rk=1. Then in light of (5.16),

the optimal θ is obtained as θ = θopt given by

θopt = [H ′Σ−1H + λoptQ]−1H ′Σ−1a. (5.22)

The above solution procedure is summarized into the following result.

Theorem 1. Consider the constrained WLS manifested as in (5.14). Let H ′Σ−1HQ−1 =

SDS−1 be the eigenvalue decomposition with {di} eigenvalues. Then there hold

H ′Σ−1H = SDΣS
′, Q = SDQS

′, (5.23)

with DΣ and DQ diagonal and D = DΣD
−1
Q . Denote v = S−1H ′Σ−1a and {λk} as real roots

of (5.20). If λopt minimizes J in (5.21) over {λk}, then the solution to the constrained WLS

is given by (5.22).

Remark 1. If the quadratic constraint is δθ′Qδθ = (θ−θ0)′Q(θ−θ0), which involves θ0 6= 0,

then by Hθ = Hθ0 +Hδθ, we may consider solving it alternatively as

min
δθ′Qδθ=0

1

2
[(a−Hθ0)−Hδθ]′Σ−1[(a−Hθ0)−Hδθ].

The above is identical to the constrained WLS in (5.14) with δθ as unknown, to which the

solution procedure developed prior to Theorem 1 is applicable. After the optimal δθopt is

available, θopt = δθopt + θ0 can also be obtained.

37



It is noted that in applying the solution procedure in Theorem 1 to source localiza-

tion based on TDOAs, the noise covariance matrix Σ that depends on the target location

(xT , yT , zT ) is unavailable. As in the literature, we may set Σ = I to compute an initial

location solution (x̂
(0)
T , ŷ

(0)
T , ẑ

(0)
T ) via the constrained WLS procedure, which can then be sub-

stituted into Σ to compute the solution θopt to the corresponding constrained WLS. Although

further iterations can be emplyed to obtain a more accurate solution, simulation results show

that they are unnecessary. In fact, by Lemma 2, the component of FIM due to Σ, as in the

Bang’s formula, is insignificant compared to the first component, as in the Slepian formula,

implying that the minimum achievable error variance by unbiased estimators is insensitive

to the location parameter (xT , yT , zT ) embedded in Σ. Therefore, it is adequate to compute

the solution to the constrained WLS twice.

5.3 Efficient Computation

An observation to the quasi-linear model (5.5) raises the question of model size reduction

due to the 1L vector in the H matrix. Unfortunately,

H̃ =


x̃2,1 ỹ2,1 z̃2,1 ∆̃t̃2

... · · · · · · ...

x̃n,1 ỹn,1 z̃n,1 ∆̃t̃n

 , ã =


ã2

...

ãn


does not exist, such that the constrained WLS in Theorem 1 with a,H,Σ, and η in (5.5) is

equivalent to the constrained minimization of

J̃ =
1

2
(ã− H̃θ)′Σ̃−1(ã− H̃θ).

However, memory complexity reduction can be achieved by computing and storing

H ′Σ−1H, H ′Σ−1a, a′Σ−1a, (5.24)
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which have much smaller dimensions than L, because the constrained WLS depends only on

these three quantities. Indeed once the above three are available, the eigenvalue decomposi-

tion for H ′Σ−1HQ−1, the polynomial in (5.20), the solution θ (dependent on Lagrange mul-

tiplies) in (5.16) , and the performance index in (5.15) can all be computed. So the judicious

combination of the TDOA estimates in computing the near optimal localization estimate lies

in these three quantities as well. Specifically, denote W = Σ−1 = diag(w2, · · · , wn), where

wk = diag(wk;1, · · · , wk;L), wk = [ wk;1 · · · wk;L ]′. (5.25)

In light of the expression of Σ in (5.11), wk;i is approximately independent of i by (5.8),

given

wk;i = (2Rk,T cσk)
−2 ∀ i, 2 ≤ k ≤ n. (5.26)

The expression in (5.26) is valuable. Introduce the inner products as

(1L, wk) =
L∑
i=1

wk;i =
L

(2Rk,T cσk)2
,

(c∆t̂k, wk) =
L∑
i=1

wk;ic∆t̂k;i =
Lc∆t̂k

(2Rk,T cσk)2
,

(wkc∆t̂k, c∆t̂k) =
L∑
i=1

wk;i(c∆t̂k;i)
2 =

L(c∆t̂k)2

(2Rk,T cσk)2
,

(wk, ak) =
L∑
i=1

wk;iak;i =
Lak

(2Rk,T cσk)2
,

where c∆t̂k and ak are simple averages of {c∆t̂k;i}Li=1 and {ak;i}Li=1, respectively, and (c∆t̂k)2

is the squared average of the scaled TDOAs by c2 given by

c∆t̂k =
1

L

L∑
i=1

c∆t̂k;i, ak =
1

L

L∑
i=1

ak;i, (c∆t̂k)2 =
1

L

L∑
i=1

(c∆t̂k;i)
2, (5.27)
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respectively. Then it can be verified via a straightforward calculation

H ′WH =
n∑
k=2



x2
k,1(1L, wk) xk,1yk,1(1L, wk) xk,1zk,1(1L, wk) xk,1(c∆t̂k, wk)

yk,1xk,1(1L, wk) y2
k,1(1L, wk) yk,1zk,1(1L, wk) yk,1(c∆t̂k, wk)

zk,1xk,1(1L, wk) zk,1yk,1(1L, wk) z2
k,1(1L, wk) zk,1(c∆t̂k, wk)

xk,1(c∆t̂k, wk) yk,1(c∆t̂k, wk) zk,1(c∆t̂k, wk) (wkc∆t̂k, c∆t̂k)


,

=
n∑
k=2

L

(2Rk,T cσk)2



x2
k,1 xk,1yk,1 xk,1zk,1 xk,1c∆t̂k

yk,1xk,1 y2
k,1 yk,1zk,1 yk,1c∆t̂k

zk,1xk,1 zk,1yk,1 z2
k,1 zk,1c∆t̂k

xk,1c∆t̂k yk,1c∆t̂k zk,1c∆t̂k (c∆t̂k)2


,

H ′Wa =
n∑
k=2



xk,1(wk, ak)

yk,1(wk, ak)

zk,1(wk, ak)

(wkc∆t̂k, ak)


=

n∑
k=2

L

(2Rk,T cσk)2



xk,1ak

yk,1ak

zk,1ak

akc∆t̂k


,

a′Wa =
n∑
k=2

L∑
i=1

a2
k;iwk;i =

n∑
k=2

La2
k

(2Rk,T cσk)2
,

where a2
k = 1

L

∑L
i=1 a

2
k;i and akc∆t̂k = 1

L

∑L
i=1 a

2
k;ic∆t̂k;i.

Remark 2. The efficient computation of the target location is hinged on the computation

of the five averages {c∆t̂k, (c∆t̂k)2, ak, a2
k, akc∆t̂k}. Once these five averages are available,

H ′WH,H ′Wa, and a′Wa are also available, as long as the sensor locations are known. Note

that TDOAs and {σk} are always scaled by the speed of light c to avoid a numerical problem

in the case of finite digits because TDOAs and {σk} are very small while c is very large.

Hence, efficient computation and reduction of storage complexity can both be achieved. Since

Rk,T is unknown, the weighting matrix W can be set to I in the first use of the localization

algorithm. After an initial estimate of the target location is available, approximate Rk,T for

2≤ k ≤ n can be computed and used for the weighting W . Our algorithm requires at least

twice the use of the same localization algorithm.
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It is noted that the constrained WLS solution is an approximate MLE solution to the

source localization problem based on TDOAs by treating measured TDOAs {∆t̂k;i} as deter-

ministic quantities. That is, it is an approximate MLE solution conditioned on the measured

TDOAs. However it is also important to observe that even if we treat ∆t̂k;i as random, the

constrained WLS solution is still an approximate MLE solution, due to the fact that the

constrained WLS solution is optimal for all TDOA estimates under the Gauss assumption.

5.4 Simulation Studies

Example 1 Consider the indoor localization inside a building. The seven different WiFi

receivers available acted like sensors in the locations specified by their Cartesian coordinates

tabulated as seen in Table 5.1.

Table 5.1 The location coordinates of the WiFi receivers

Coordinates k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

x 100 125 87.5 112.5 137.5 100 125

y 50 50 37.5 37.5 37.5 25 25

z 2 10 18 10 2 2 18

It is noted that the x-coordinates range from 100 to 137.5 meters, the y-coordinates

range from 25 to 50 meters, and the z-coordinates range from 2 to 18 meters. The target is

assumed to have the location coordinates (xT , yT , zT ) = (110, 45, 1). The TDOA estimates

are given as

c∆̂tk,1 = Rk,T −RT + cηk, 1 < k ≤ n = 7,

with c the speed of light, Rk,T being the distance from the kth sensor to the target, RT =

R1,T , and ηk as the estimation error. In this simulation study, we assume that ηk is Gauss

distributed with

E{cηk} = 0, E{cη2
k} = c2σ2

k,
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and cσk is proportional to the product of the distances Rk,T and RT because the TDOA

estimates are obtained from correlation, involving product of the two received signals. The

following is the product of Rk,T and RT for 2 ≤ k ≤ n = 7:

204.2205, 327.5500, 134.4656, 320.1578, 251.2489, 339.3582.

So, we set cσk = µRk,TRT , where 0.1 ≤ µ ≤ 1 with unit meter. Since 10 nano-seconds

correspond to approximately 3 meters, the standard deviations for 0.1 ≤ µ ≤ 1 represent

close to 0.1 ∼ 1 microsecond estimation errors for TDOA. Considering that the channel

bandwith for WiFi 802.11 is 20 MHz, the standard deviation of 0.1 ∼ 1 microsecond as the

TDOA estimation error is reasonable. We generated N = 1000 ensembles of the TDOA

estimation errors in Gauss distribution in each trial with µ ∈ [0.1, 1] fixed. The root-mean

squared error (RMSE) of the localization errors is plotted in Figure 5.1 for 0.1 ≤ µ ≤ 1.

Figure 5.1 RMSE of the target location error versus µ using all TDOA estimates

The RMSE of the location error is computed according to

RMSE =

√√√√ 1

N

N∑
i=1

[(x̂Ti − xT )2 + (ŷTi − yT )2 + (ẑTi − tT )2]
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with (x̂Ti , ŷTi , ẑTi) as the ith estimate for the target location. It is noted that we assume 100

different TDOA estimates, ∆̂tk,1, are available at each of the (n− 1) sensor locations. So, in

effect, we have 600 TDOA estimates for target localization. The reason for using 100 TDOA

estimates lies in the time-division and frequency division approach. With 10 different non-

overlapping time subintervals and 10 different frequency subbands (each having a bandwidth

of 2 MHz), we have 100 TDOA estimates at each of the (n− 1) sensor locations.

We also tested the localization error using the mean of the TDOAs at each of the (n− 1)

sensors and then use the localization algorithm to find the target location. Surprisingly, this

simple method gives us much better performance for the location error as shown in the next

figure, even though this simple method is not close to optimal.

The location performance is often measured by the outage curve [2]. So, we examined

the case when µ = 0.3, at which the location errors in Figure 5.1 and Figure 5.2 are very

close to each other. The outage curve is shown in Figure 5.3.

Figure 5.2 RMSE of the target location error versus µ with simple average for TDOA
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Figure 5.3 Outage curve with near optimal algorithm (left) and with simple average (right)

The outage curves show again that the algorithm based on a simple average of TDOA es-

timates prior to applying the near optimal location algorithm performs better. For instance,

90% of the target estimates are within 15 meter location errors for the figure on the right

but are within 35 meter location errors for the figure on the left.

Example 2 The second example considers the outdoor localization, assuming the RF

sensor locations given in Table 5.2:

Table 5.2 The location coordinates of the RF receivers

Coordinates k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

x 0 1750 1750 -1750 -1750 0 0

y 0 1000 -1000 1000 -1000 2000 -2000

z 28 54 12 32 14 8 10

The target is assumed at (xT , yT , zT ) = (537,−785, 1.7). The standard deviation for

c∆̂tk,1 is computed in the same way as earlier, assumed to be proportional to the product of

the two distances. We scale these values to some appropriate values shown below:

41.0801, 23.4431, 55.2096, 43.7125, 53.9729, 25.2786. (5.28)

The above values are smaller than the previous indoor example because the multipath is

much less severe for the outdoors. We again use µ ∈ [0.1, 1] to scale the above standard
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deviations and assume 100 TDOA estimates are each of the (n − 1) sensors. Figure 5.4

shows the localization error in the RMSE value for the near optimal algorithm with a blue

dot-dashed line and for the algorithm based on simple average a solid red line.

Figure 5.4 RMSE of the location error versus µ for outdoor target

Again the localization algorithm based on the simple average of the TDOAs performs

better than the more complicated near optimal algorithm in terms of the average localization

error although they differ little from each other at low noise intensity.

Similar to the previous example, we also examine the outage performance for outdoor

localization using half of the same standard deviation as in the results in (5.28). The results

are summarized in Figure 5.5. The outage curves again show that the algorithm based on

the simple average of the TDOA estimates performs better than the near optimal algorithm.

Figure 5.5 Outage curve with near optimal algorithm (left) and with simple average (right)
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5.5 Application of Estimated TDOA

This section summarizes the localization simulation using the estimated TDOAs as stud-

ied in Chapter 4. In the previous section, we used randomly generated TDOA estimation

values for our simulation study.

We use the same location for the target and sensors as in Example 1 in Chapter 5.4,

considering indoor localization (inside a building). Figure 5.6 shows the simulation results.

The figure on the left is the simple average algorithm in the previous section where L=100

and 200 ensembles. The figure on the right is the averaged estimated TDOA of 8 sub-bands

at each sensor pairs as shown in Table 4.1 with 200 ensembles.

Figure 5.6 Outage curve with randomly generated TDOAs (left) and with estimated

TDOAs (right)

The performance is very similar when error is smaller than 10 meters but becomes worse

when the error increases. The possibility of the difference between them is that the left one

has much more TDOA estimates at each pair of sensors. In addition, the randomly generated

TDOAs are Gauss distributed, but the estimated TDOAs based on WiFi signals may not

have so nice a distribution as Gauss.

Figure 5.7 shows the outage curve simulation results with estimated TDOAs from Table

4.2. The estimated TDOAs in SNR 50 dB are very close to the true TDOAs and have a ve-
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Figure 5.7 Outage curve with estimated TDOAs

ry small detection error and standard deviation. So, almost 100% of the target estimates

are within the 1.5 meter location errors.
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CHAPTER 6
CONCLUSION

In this thesis, we presented our work on wireless localization in the absence of GPS. This

research has been focused on localization using the WiFi signal because it has been widely

used inside buildings in which the GPS signal is not available or too weak to obtain an

accurate location.

According to the IEEE 802.11 technology, OFDM is a digital multicarrier modulation

method used in WiFi. We use OFDM symbols as an opportunistic RF signal for wireless

localization. Both WiFi and OFDM are introduced in Chapter 2. Our preliminary study

for the use of the WiFi signal to localize mobile targets is carried out in Chapter 3, focusing

on symbol detection and channel estimation. The simulation results show that the symbol

detection error and channel estimate error are functions of the SNR. As the SNR increases,

both errors decrease, which is well-known. Kalman filtering is also employed for channel

estimation by assuming the AR WSSUS channel model, and it achieves better performance

especially in the case of a low SNR.

A first step for localization based on transmitted WiFi signals from the target is to

estimate the TDOA from at least four receivers. WiFi signals are wide-band in nature

and induce multipath phenomena that hinder the TDOA estimation. Hence, in Chapter 4, a

subband division method is proposed to divide the WiFi signal into multiple non-overlapping

subband signals for which the multipath effect is greatly reduced. In addition, a time division

method is proposed to divide the WiFi signals into multiple non-overlapping sub-signals in

the time domain to mitigate the clock drift. The simulation results show that the frequency

and time division methods provide quite accurate TDOA estimation results.

Wireless localization based on TDOA estimates at n ≥ 4 sensors was investigated in

Chapter 5. This is a nonlinear estimation problem. It is shown in this thesis that the

nonlinear term treated as a constraint is thus converted into a quasi-linear form that is in

fact a quadratic constraint. A numerical procedure based on simultaneous diagonalization is
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developed to compute the WLS solution under the quadratic constraint. This new procedure

is shown to be an approximate MLE solution under the hypothesis (5.9), which holds true

approximately in practice. We also studied how to combine the multiple TDOA estimates at

each pair of the n sensors judiciously in computing the optimal target location estimate. As

concluding remarks, we comment that the assumption on uncorrelated TDOA measurement

noises can be removed. Such an assumption is in fact not used in deriving the constrained

WLS solution. That is, the solution procedure summarized in Theorem 1 is applicable to the

case when it is an arbitrary symmetric positive definite matrix. See also the results in [4] for

the derivation of the various covariance matrices when the TDOA measurement noises are

correlated. We also comment that the moving source localization studied in [11] involves two

quadratic constraints to which a similar constrained WLS solution can be derived. However,

it involves roots computation for two 2-variate polynomials, which have a high complexity,

and is susceptible to noise corruption. The efficient computation is also investigated in

Section 5.3. Our simulation results show that the use of the averaged TDOA estimates has

better performance for both indoor and outdoor localization. Possible reasons may lie in the

numerical issue and the non-Gauss distributed errors in the pseudo-linear model.

While this thesis work summarizes our work on wireless localization, further research is

needed in order for our proposed algorithms to work well in practice. We list two important

future research problems below:

1. The performance limitation: The fundamental limit for localization based on TDOA

estimates remains unknown. Even though Cramér-Rao lower bounds can be derived

and analyzed, they are based on Gauss assumption that do not hold in practice.

2. The computation complexity: While numerical efficient algorithms are studies in this

thesis, wireless localization based on TDOAs is inherently complex. Indeed both TDOA

estimates and location estimates are difficult to compute.

It is believed that both of the above problems are attributed to nonlinearities of the
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TDOAs as functions of the location. How to combat the nonlinearities and improve the lo-

cation performance belongs to the category of nonlinear estimation that is extremely difficult

to tackle. We hope that this thesis sheds some light on this difficult problem.
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