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Abstract

Wireless communications has been evolved significantly over the last decade. During

this period, higher quality of service (QoS) requirements have been proposed to support

various services. In addition, due to the increasing number of wireless devices and trans-

mission, the energy consumption of the wireless networks becomes a burden. Therefore,

the energy efficiency is considered as important as spectrum efficiency for future wireless

communications networks, and spectrum and energy efficiency have become essential re-

search topics in wireless communications. Moreover, due to the exploding of number mobile

devices, the limited radio resources have become more and more scarce. With large num-

bers of users and various QoS requirements, a lot of wireless communications networks and

techniques have emerged and how to effectively manage the limited radio resources become

much more important.

In this dissertation, we focus our research on spectrum- and energy-efficient resource

allocation schemes in wireless communication networks. Recently, heterogeneous networks

(HetNets) have been proposed and studied to improve the spectrum efficiency. In a two-tier

heterogeneous network, small base stations reuse the same spectrum with macro base sta-

tions in order to support more transmission over the limited frequency bands. We design

a cascaded precoding scheme considering both interference cancellation and power alloca-

tion for the two-tier heterogeneous network. Besides heterogeneous networks, as the fast

development of intelligent transportation, we study the spectrum- and energy-efficient re-

source allocation in vehicular communication networks. The intelligent transportation and

vehicular communications both have drawn much attention and are faced special wireless

environment, which includes Doppler effects and severe uncertainties in channel estimation.

A novel designed spectrum efficiency scheme is studied and verified.With consideration of

energy efficiency, the device-to-device (D2D) enabled wireless network is an effective net-

work structure to increase the usage of spectrum. From a device’s perspective, we de-

sign an energy-efficient resource allocation scheme in D2D communication networks. To

viii



improve the energy efficiency of wireless communication networks, energy harvesting tech-

nique is a powerful way. Recently, the simultaneous wireless information and power transfer

(SWIPT) has been proposed as a promising energy harvesting method for wireless commu-

nication networks, based on which we derive an energy-efficient resource allocation scheme

for SWIPT cooperative networks, which considers both the power and relay allocation.

In addition to the schemes derivation for spectrum- and energy-efficient resource allo-

cation, simulation results and the proofs of the proposed propositions are provided for the

completeness of this dissertation.
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Chapter 1. Introduction

In the last decade, the explosive demands on wireless transmission have led to the

significant evolution of wireless communications. To provide high quality of service (QoS)

for various wireless services, the most direct way is to exploit and utilize more resources.

However, the resources for wireless communications, especially the spectrum resource, are

limited and in fact become more and more scarce. In addition to resource scarcity, the

energy consumption of wireless communications grows exponentially. The energy efficiency

of wireless communications has drawn much attention recently. In such a scenario, improv-

ing radio resource allocation efficiency turns out to be an important way to satisfy higher

requirements. In this prospectus, we focus on the radio resource allocation in wireless

communication networks. We emphasize the spectrum and energy efficiency in wireless

communications and derive novel resource allocation algorithms and schemes to improve

the performance.

One of important metrics for wireless communications is spectrum efficiency. Improv-

ing spectrum efficiency allows higher throughput or supports more transmission links over

limited bandwidth. To achiever better spectrum efficiency, the deployment of small base

stations (SBSs) such as femtocells has emerged recently as a promising technology to ex-

tend service coverage, increase network throughput, and improve energy efficiency [1–3].

However, SBSs are usually deployed to overlay with macro base stations (MBSs). As a re-

sult, cross-tier interference is introduced to limit the performance of two-tier networks. In

two-tier heterogeneous networks (HetNets), both small cells and macro cells face the cross-

tier interference and co-tier interference from the network elements belonging to different

and the same tiers, respectively. When SBSs are randomly deployed with high density,

the cross-tier interference and co-tier interference dramatically limit the performance of

the heterogeneous network [4]. Power allocation is adopted to mitigate both cross-tier and

co-tier interference, which allows user coexistence in the same bandwidth [5–8]. In such a

way, the spectrum efficiency can be improved.
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Energy consumption in wireless networks has experienced a dramatic increase in the

last decade. As a result, information and communication technologies have become a

major contributor to global greenhouse gas emissions, with a share of more than 2% [9].

Only mobile communication networks by themselves cost 0.5% of the global energy supply,

in which the radio access network consumes over 80% of the energy [10, 11]. Driven by

environmental concerns, green wireless communications with high energy efficiency has

attracted a lot of attention [12–14]. Due to the development of smart devices, the portion

of transmission between devices in wireless communications rises up intensively and the

improvement of the energy efficiency in device-to-device (D2D) communications needs to

be explored. Therefore, in addition to the spectrum-efficient resource allocation for D2D

communications, the energy-efficient resource allocation is worthy to be studied.

To alleviate energy consumption concerns, there is a new trend that the radio frequency

(RF) signal is used for transferring power and transmitting information simultaneously

[15], which is a more reliable and predictable way to harvest energy. The concept of

simultaneous wireless information and power transfer (SWIPT) has been proposed in [16].

A SWIPT system transfers the power from the signals to support its own operations and is

less dependent on external power supplies. For passive receivers, they can simultaneously

receive information and transfer power from the signals to support information processing,

which prolongs the usage times of receivers. Although SWIPT can transfer energy from

transmitted signals, the transmit power and spectrum allocation still need to be studied to

achieve better energy efficiency. Therefore, we will focus on the energy efficient resource

allocation in SWIPT networks.

With the fast development of the intelligent transportation and smart vehicles, ve-

hicular communication networks has attracted extensive attention. Obviously, the high-

mobility nature of vehicular networks renders more channel estimation errors for vehicle

users (VUs). With more channel uncertainties in the fast changing vehicular communica-

tion environment, it is necessary to consider the imperfect channel state information (CSI)

2



in resource allocation, especially for the reliability of vehicular communications. In [17],

resource allocation based on slow fading parameters and fast fading statistical informa-

tion has been studied. A model of the channel estimation errors caused by delayed CSI

feedback rather than the statistical information of the channel has been adopted in [18].

In this dissertation, the reliable and efficient resource allocation for vehicular communica-

tions is studied. With the increasing size of vehicular communication networks, vehicles

can provide more powerful computations and larger coverage for wireless communications.

Therefore, the resource allocation for vehicular communications would improve the spec-

trum and energy efficiency and satisfy diverse requirements.

The rest of dissertation is organized as follows. The cascaded precoding and power

allocation scheme in heterogeneous networks for spectrum efficiency maximization is dis-

cussed in Chapter 2. In Chapter 3, resource allocation design in vehicular communications

is discussed. An energy-efficient resource allocation scheme in D2D networks is proposed

in Chapter 4. In Chapter 5, the resource allocation scheme to improve the energy efficiency

of SWIPT networks is developed. Finally, in Chapter 6, conclusions are drawn.
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Chapter 2. Cascaded Precoding and Power Allocation in HetNet

To improve the spectrum efficiency in wireless networks, HetNets has been designed

recently, which allows different users share the same frequency. However, the coexistence of

multi-users in the same channel can cause inevitable interference and limit the performance

of users, which reduces the spectrum reuse benefit. With channel state information at the

transmitter, precoding and power allocation can be utilized to mitigate the interference

and thus improve the spectrum efficiency in HetNets.

In this chapter, with the consideration of both precoding and power allocation, the

cascaded precoders in orthogonal frequency-division multiplexing systems are investigated

to protect MUEs from the cross-tier interference caused by co-located small cells and at the

same time to satisfy the QoS requirement of small-cell user equipments (SUEs). An outer

precoder ensures that the signals intended for the SUEs are orthogonal to the MUEs thus

avoids the cross-tier interference from the second tier. Moreover, optimal power allocation

through an inner precoder at each SBS yields better performance of the SUEs and guaran-

tees their QoS requirements. With consideration of the dense deployment of SBSs, an SBS

selection algorithm is studied to further reduce the computational complexity. Numerical

results demonstrate that the cascaded precoders are effective in mitigating the interference

and enhancing the capacity of small cells.

2.1 System Model and Problem Formulation

As shown in Fig. 2.1, the coexistence of one MBS and K SBSs in a downlink HetNet is

considered. The MBS serves M single-antenna MUEs and each SBS serves one single-

antenna SUE. The MBS adopts orthogonal frequency-division multiple (OFDM) based

transmission with N subcarriers and a cyclic prefix (CP) of length L to avoid the inter-

symbol interference. Since the MBS usually covers a large area, the first tier is regarded as

primary user and oblivious of the existence of the second tier. The cross-tier interference

mitigation strategy is only implemented in the second tier. No cooperation is considered

between different tiers or among different SBSs in the same tier. Therefore, the precoders

4



Figure 2.1. A two-tier HetNet.

are designed in a distributed manner. All transmissions are assumed to be synchronized

and no radio frequency impairments at the receiver are considered. The knowledge of

perfect channel state information (CSI) for all links is assumed.

Subscript s denotes the SBSs and m denotes the MBS. x
(i)
s ∈ C(N+L)×1 denotes the

precoded signal vector in time domain at the i-th SBS. Then

xs =[x(1)T
s ,x(2)T

s , . . . ,x(K)T
s ]T ∈ CK(N+L)×1 (2.1)

is the equivalent aggregate signal vector of the SBSs. H
(i,j)
sm denotes the channel matrix

from the i-th SBS to the j-th MUE. Then

H(j)
sm = [H(1,j)

sm ,H(2,j)
sm , . . . ,H(K,j)

sm ] ∈ CN×K(N+L) (2.2)
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is the aggregate channel matrix from the SBSs to the j-th MUE and expressed as

H(i,j)
sm =



h
(i,j)
sm (L) · · · h

(i,j)
sm (0) 0 · · · 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · 0 h
(i,j)
sm (L) · · · h

(i,j)
sm (0)


, (2.3)

where h
(i,j)
sm (L), h

(i,j)
sm (L− 1), . . . , and h

(i,j)
sm (0) represent the channel taps from the i-th SBS

to the j-th MUE.

The received signal vectors of length N in frequency domain at the j-th MUE and i-th

SUE are expressed as

y(j)
m = F(H(j)

mmAF−1s(j)
m + H(j)

smxs + n(j)
m ) (2.4)

and

y(i)
s = F(H(i,i)

ss x(i)
s +

K∑
u=1
u6=i

H(u,i)
ss x(u)

s + H(1,i)
ms AF−1s(j)

m + n(i)
s ), (2.5)

respectively, where s
(j)
m ∈ C(N+L)×1 is the input signal vector in time domain at the MBS

for the j-th MUE, n
(j)
m and n

(i)
s are the corresponding equivalent noise vectors for the

MUEs and SUEs, respectively, F is an N × N unitary discrete Fourier transform matrix

with the entry in the (k + 1)-th row and (l + 1)-th column [F](k+1),(l+1) = 1√
N
e−i2π

kl
N for

k, l = {0, . . . , N − 1}, A is an (N + L)×N CP insertion matrix given by

A =

0L,N−L, IL

IN

 , (2.6)

where 0N,L and IN denote an N×L zero matrix and an N×N identity matrix, respectively,
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H
(j)
mm ∈ CN×(N+L) is the channel matrix from the MBS to the j-th MUE, which is

H(1,j)
mm =



h
(1,j)
mm (L) · · · h

(1,j)
mm (0) 0 · · · 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · 0 h
(1,j)
mm (L) · · · h

(1,j)
mm (0)


, (2.7)

where h
(1,j)
mm (L), h

(1,j)
mm (L− 1), . . . , and h

(1,j)
mm (0) are the channel taps between the MBS and

the j-th MUE, H
(u,i)
ss and H

(1,i)
ms are the channel matrices from the u-th SBS and the MBS

to the i-th SUE, respectively, and constructed as

H(u,i)
ss =



h
(u,i)
ss (L) · · · h

(u,i)
ss (0) 0 · · · 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · 0 h
(u,i)
ss (L) · · · h

(u,i)
ss (0)


, (2.8)

and

H(1,i)
ms =



h
(1,i)
ms (L) · · · h

(1,i)
ms (0) 0 · · · 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · 0 h
(1,i)
ms (L) · · · h

(1,i)
ms (0)


, (2.9)

where h
(1,i)
ms (L), h

(1,i)
ms (L − 1), . . . , h

(1,i)
ms (0) and h

(u,i)
ss (L), h

(u,i)
ss (L − 1), . . . , and h

(u,i)
ss (0)

represent the L channel paths from the MBS to the i-th SUE and from the u-th SBS to

the i-th SUE, respectively.

2.2 Proposed Precoding and Power Allocation Scheme

In this section, cascaded precoders are studied. Specifically, the outer precoder and

inner precoder are designed and analyzed.

The structure of cascaded precoders is illustrated in Fig. 2.2. The precoded signal

7



Figure 2.2. Proposed cascaded precoder structure.

vector is obtained from the direct input symbol vector. Specifically,

x(i)
s = W(i)s(i), (2.10)

where s(i) ∈ CL×1 is an independent identical distributed (i.i.d.) zero-mean unit-variance

direct input symbol vector from the i-th SBS and W(i) is the overall precoding matrix for

the i-th SBS, which is constructed from two cascaded precoders,

W(i) = E(i)G(i), (2.11)

where E(i) is the outer precoder to cancel the cross-tier interference from the SBSs to the

MUEs and G(i) is the inner precoder to mitigate the co-tier interference through power

allocation in the second tier.

Outer Precoder Design

The outer precoder is designed to prevent the first tier from the cross-tier interference.

To protect the existing MUEs, it is preferred to eliminate the cross-tier interference from

the second tier, i.e.,

H(j)
smxs = 0, ∀j ∈ 1, 2, . . . ,M. (2.12)
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The transmitted signal x
(i)
s from the i-th SBS is designed as

x(i)
s = E(i)u(i), (2.13)

where u(i) ∈ CL×1 is the symbol vector at the i-th SBS and E(i) ∈ C(N+L)×L is a linear

precoder for the i-th SBS to render

H(i,j)
sm E(i) = 0. (2.14)

Since H
(i,j)
sm is an (N + L) by N matrix with independent elements, the rank of H

(i,j)
sm

is N and thus the dimension of the null space of H
(i,j)
sm is (N + L) − N = L. Therefore,

the LQ decomposition method [19] can be used to construct an (N + L) × L precoder

E(i) to transmit L symbols aligned with the null space of H
(i,j)
sm . The equivalent channel

matrix H
(i,j)
sm , representing the interfering link between the i-th SBS and the j-th MUE, is

decomposed as

H(i,j)
sm = L(i,j)

sm Q(i,j)
sm , (2.15)

where L
(i,j)
sm ∈ CN×(N+L) is a lower triangular matrix and Q

(i,j)
sm ∈ C(N+L)×(N+L) is a unitary

matrix given by

Q(i,j)
sm , [q1,q2, · · · ,qN+L]. (2.16)

Then the outer precoder E(i) is constructed as

E(i) , [qN+1,qN+2, · · · ,qN+L] (2.17)

and therefore the equivalent signal model in the first tier is rewritten as

y(j)
m = F(H(j)

mmAF−1s(j)
m + n(j)

m ), (2.18)

which is free of the cross-tier interference from the second tier.
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Inner Precoder Design

To reduce the influence of the co-tier interference and achieve higher throughput, an

inner precoder is designed to render optimal power allocation.

The inner precoder structure

The inner precoding matrix G(i) ∈ CL×L is used to generate the SBS symbol vector,

i.e.,

u(i) = G(i)s(i). (2.19)

The received signal vector at the i-th SUE is

y(i)
s = F(H(i,i)

ss E(i)G(i)s(i) +
K∑
u=1
u6=i

H(u,i)
ss E(u)G(u)s(u) + v(i)

s ), (2.20)

where v
(i)
s = H

(1,i)
ms AF−1s

(j)
m + n

(i)
s .

Define matrix F̃ such that

F̃ = FÃ, (2.21)

where Ã denotes the CP removal matrix, which is

Ã =

[
0N,L, IN

]
. (2.22)

Then the precoded symbol of the i-th SBS in frequency domain, X
(i)
s , can be expressed

as

X(i)
s = F̃E(i)G(i)s(i). (2.23)

The average transmit power of the i-th SBS over the j-th subcarrier, P (i,j), is given by

P (i,j) = E{[X(i)
s ]2(j,1)}, (2.24)

where E{·} denotes the expectation operation. Because s(i) is i.i.d. with zero-mean and
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unit-variance,

P (i,j) = [F̃E(i)G(i)G(i)TE(i)T F̃T ](j,j). (2.25)

Let B(i) = F̃E(i)G(i) and the entry in the m-th row and n-th column be b
(i)
(m,n). The

following N equations are obtained

b
(i)2
(1,1) + b

(i)2
(1,2) + · · ·+ b

(i)2
(1,L) = P (i,1),

b
(i)2
(2,1) + b

(i)2
(2,2) + · · ·+ b

(i)2
(2,L) = P (i,2),

...

b
(i)2
(N,1) + b

(i)2
(N,2) + · · ·+ b

(i)2
(N,L) = P (i,N).

(2.26)

Define matrix Cn as

Cn =


√
P ∗(i,nL+1) · · · 0

...
. . .

...

0 · · ·
√
P ∗(i,nL+L)

 . (2.27)

To achieve the desired power P ∗(i,j) for j = 1, 2, · · · , N , B(i) should be designed as

B(i) =



C1

C2

...

Cz

C′z+1


, (2.28)

where z is the largest integer that is smaller than N
L

and C′z+1 is constructed with the first

(N − zL) rows of Cz+1. Then the full rank inner precoding matrix G(i) can be obtained
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through

G(i) = ((F̃E(i))HF̃E(i))−1(F̃E(i))HB(i), (2.29)

where superscript H denotes the Hermitian transpose operation.

The Optimal Power Allocation

Power allocation at each SBS is optimized through the designed inner precoder. Since

the power allocation of the MBS is not affected by the second tier, the interference from the

first tier is always fixed during the power allocation of the SBSs. Therefore, the interference

from the MBS is treated as noise with fixed power during the SBS power optimization and

absorbed in the noise expression, σ2
(i,j), for simplicity.

Through the precoding matrix G(i), the transmit power P (i,j) is allocated to maxi-

mize the achievable rate R(i) of the i-th SUE. Thus the following optimization problem is

formulated

maxR(i) =
N∑
j=1

log2 (1 +
|g(j)
i,i |P (i,j)∑

u∈S[i] |g
(j)
u,i |P (u,j) + σ2

(i,j)

),

subject to
N∑
j=1

P (i,j) ≤ P (i)
max, (2.30)

where P
(i)
max is the maximum transmit power of the i-th SBS, S [i] denotes the set of SBSs

excluding the i-th SBS, σ2
(i,j) is the noise power for the i-th SUE over the j-th subcarrier, and

|g(j)
u,i | denotes the channel gain from the u-th SBS to the i-th SUE over the j-th subcarrier,

which can be obtained from H
(u,i)
ss as

|g(j)
u,i | = |[FH(u,i)

ss F′H(F̃F̃H)−1](j,j)|2. (2.31)
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Algorithm 1 QoS guarantee algorithm

1: Initialize: The total transmit power of the i-th SBS P (i) = P
(i)
max, P (i,j) = 0, i =

1,2,. . .,K, j = 1,2,. . .,N .
2: loop
3: loop
4: Solve (2.30) for all i = 1, 2, . . ., K and j = 1, 2, . . ., N . Set P (i,j) and transmit

power P (i).
5: Set R(i) according to (2.30).
6: end loop
7: for i = 1 to K,
8: if R(i) > Rre + ε, set P (i) = P (i) − ξ.
9: if R(i) < Rre, set P (i) = P (i) + ξ.

10: if P (i,j) > P
(i)
max, P (i,j) = P

(i)
max.

11: end for
12: until R(i) > Rre for all i = 1, 2, . . . , K. Then set P (i,j) = P ∗(i,j).
13: end loop

The Lagrangian function for (2.30) is

L(P (i,j), αi)

= −
N∑
j=1

log2 (1 +
|g(j)
i,i |P (i,j)∑

u∈S[i] |g
(j)
u,i |P (u,j) + σ2

(i,j)

)

+ αi(
N∑
j=1

P (i,j) − P (i)
max), (2.32)

where αi is a Lagrangian multiplier.

By setting the differentiation of (2.32) with respect to P (i,j) to be 0, the power allocated

over the j-th subcarrier of the i-th SBS is

P (i,j) = [
1

αi ln 2
− 1

β
]+, (2.33)

where 1
αi ln 2

is a constant that ensures the power constraint (2.30) to be satisfied and

β =
|g(j)
i,i |∑

u∈S[i] |g
(j)
u,i|P (u,j)+σ2

(i,j)

. Here, [x]+ = max(x, 0). Equation (2.33) is a standard form of

water-filling power allocation. Given the coupled power allocation in (2.30) for different

i’s, the iterative water-filling in [20] is effective to optimize the power allocation P (i,j).
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To guarantee the QoS of SUEs, Algorithm 1 is adopted to ensure that the achievable

rate satisfies the rate requirement Rre for each SUE by adjusting the power allocation. Here

the parameters ε and ξ are used to reach the desired accuracy. With the optimal power

P ∗(i,j) for the i-th SBS over the j-th subcarrier, the precoding matrix G(i) can be designed

according to (2.27) - (2.29).

2.3 Discussion

Algorithm to Reduce Computational Complexity

Given channel fading and path loss, an SBS may not introduce interference to the

other SUEs even with the maximum transmit power. Thus Algorithm 2 is considered to

exclude the SBSs from set S [i] that do not interfere with the i-th SBS, which reduces the

computational complexity of the algorithm.

Algorithm 2 SBS selection algorithm

1: Initialize: Set P
(u)
cons for u = 1, 2, . . . , K. Set S [i] = ∅, for i = 1, 2, . . . , K.

2: for i = 1 to K,
3: for u = 1 to K, u 6= i,
4: Calculate P

(u,i)
arrive according to (2.34).

5: if P
(u,i)
arrive ≥ εp, set S [i] = S [i] + {u}.

6: if P
(u,i)
arrive < εp, set S [i] = S [i].

7: end for
8: end for

Let P
(u,i)
I be the interference power from the u-th SBS at the i-th SUE. If P

(u,i)
I does

not exceed the threshold εp when the u-th SBS uses the maximum power allowed, P
(u)
max,

the u-th SBS will not be considered as an interferer to the i-th SUE.

Given channel fading and path loss, P
(u,i)
I can be expressed as

P
(u,i)
I(dBm) = γu,i(dB) + P

(u)
max(dBm) − P

(u,i)
L(dB), (2.34)

where γu,i is the channel fading coefficient from the u-th SBS to the i-th SUE and P
(u,i)
L

denotes the path loss from the u-th SBS to the i-th SUE.

For a system with K SBSs and N subcarriers, the complexity of the power allocation

optimization and inner precoding matrix design increases with the number of SBSs, K.
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Through the SBS selection algorithm, the number of SBSs involved in the computation

decreases and thus the complexity of optimization reduces.

Imperfect Channel Estimation

In Section 2.2, perfect CSI is assumed to obtain the proposed precoder. However, in

practice, it is difficult to obtain perfect CSI. Therefore, the performance of the proposed

cascaded precoding scheme under channel estimation is analyzed in this subsection. There

has been some discussion regarding the cross-tier interference elimination outer precoder

under estimated channel in [21]. As in [22], the estimated channel matrix from the i-th

SBS to the j-th SUE Ĥ
(i,j)
ss can be written as

Ĥ(i,j)
ss = H(i,j)

ss − Êr, (2.35)

where Êr denotes the channel estimation error that is a zero-mean circularly symmetric

complex Gaussian matrix, i.e., Êr ∼ (0, σ2
Êr

I), with variance σ2
Êr

= E(|H(i,j)
ss |2) - E(|Ĥ(i,j)

ss |2).

With the estimated channel matrix, the received signal at the i-th SUE is given by

y(i)
s =F(Ĥ(i,i)

ss E(i)Ĝ(i)s(i) +
∑
u∈S[i]

Ĥ(u,i)
ss E(u)Ĝ(u)s(u) + v(i)

s )

=F(H(i,i)
ss E(i)Ĝ(i)s(i) +

∑
u∈S[i]

H(u,i)
ss E(u)Ĝ(u)s(u) + v(i)

s

− Êr
(i,i)

E(i)Ĝ(i)s(i) −
∑
u∈S[i]

Êr
(u,i)

E(u)Ĝ(u)s(u)

︸ ︷︷ ︸
channel estimation error part

), (2.36)

where Ĝ(i) is the inner precoding matrix of the i-th SBS considering channel estimation

error. To design the elements of Ĝ(i), the power allocation under channel estimation, P̂ (i,j),

is obtained by replacing channel power gain g
(j)
u,i with ĝ

(j)
u,i in the optimization problem

(2.30).

The data rates with perfect and imperfect CSI, respectively, have a gap introduced by

the channel estimation error part, which will be discussed with simulation results.
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Figure 2.3. SUE data rate versus number of iterations.

2.4 Numerical Results

In this section, simulation results are presented to illustrate the performance with the

cascaded precoders. In the simulation, K = 12 SBSs are randomly deployed in a circle

with radius R = 50m and each SBS serves one SUE. The maximum transmit power is 100

mW for each SBS and 10 W for the MBS. The number of subcarriers and the length of CP

are N = 64 and L = 16, respectively. A path loss model 37 + 32log10(d) in decibels for all

links is adopted, where d is the distance between a base station and a user.

The average data rates of all the SUEs with perfect CSI and under channel estimation

are compared in Fig. 2.4. As shown in the figure, there is a gap between the network

performance with perfect CSI and that under channel estimation. It is obvious that the

performance is becoming worse when the error variance increases. However, the average

data rate under channel estimation is comparable with the perfect case when the error

variance is 1, which is large enough in channel estimation according to [22]. Therefore, the

cascaded precoders achieve acceptable performance with imperfect CSI.
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Figure 2.4. Average data rate versus noise power under channel estimation.
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In Fig. 2.5, the performance of the second tier with and without SBS selection algo-

rithm is illustrated. Because of the random deployment and varying channel conditions,

some SBSs do not cause co-tier interference to others even in dense deployment with the

maximum power. With the SBS selection algorithm, the SBSs not affecting the i-th SBS

will be eliminated from set S [i]. Then each SBS could serve its SUE with a higher power to

achieve a better data rate and reduce the computational complexity with a smaller number

of SBSs included in the optimization.

In Fig. 2.3, the evolution of SUE data rates is illustrated with the iterations in Algo-

rithm 1. The data rate requirement is Rre = 5 bps/Hz and the data rates of 3 selected

SUEs are shown in Fig. 2.3. The data rate requirement is satisfied for all the SUEs. And

the data rates of the SUEs converge fast in a few iterations while the QoS requirements of

all the SUEs are met.
The performance of equal power allocation without inner precoder and with cascaded

precoders is shown in Fig. 2.6. The cascaded precoders that suppress the co-tier interference
render obviously higher data rate than the equal power allocation. Since the fixed co-tier
interference in (2.30) dominates in the equal power allocation scheme, the performance gap
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increases when the noise power decreases.
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Chapter 3. Robust Resource Allocation in NOMA-based
Heterogeneous Vehicular Networks

In previous chapters, we discussed the spectrum- and energy-efficient resource alloca-

tion in low-mobility wireless networks. With the fast development of intelligent transporta-

tion and smart vehicles, high-mobility vehicular communications will play an important role

in wireless communications.

With the explosion of information and computer technology, the 5G of wireless com-

munications introduces new technologies and applications, such as small cell communica-

tions, vehicular communications, and millimeter wave communications, which comprises an

unprecedented ultra-dense and heterogeneous communication environment [23,24]. Mean-

while, in the fast development of autonomous driving technologies and intelligent vehicles,

the reliability and safety of vehicles have gained much attention. Vehicular communications

also plays a pivotal role in ensuring the reliability of vehicles through transmission of safety

messages among vehicles and between the infrastructures and vehicles. The communication

organizations and standardization parties have put efforts in standards and projects of ve-

hicular communications such as IEEE 802.11p and the European Union Mobile and wireless

communications Enablers for Twenty-twenty Information Society (METIS) project [25].

However, involving massive vehicular communication links into ultra-dense and het-

erogeneous 5G networks is a challenge. The spectrum resource becomes more scarce in

prevailing orthogonal multiple access (OMA) networks. To improve spectrum efficiency,

non-orthogonal multiple access (NOMA) in vehicular communications has been studied re-

cently [26, 27]. Allowing multiple users to share the same channel, NOMA alleviates the

spectrum scarcity problem. Furthermore, current vehicles are not only serving as trans-

portation tools but also evolving to infotainment platforms [24]. Therefore, both reliable

transmission of safety information and high-speed data rates are required for future vehic-

ular communications.

Obviously, the high mobility of vehicle users (VUs) renders different channel models in

vehicular communications. The fast changing vehicular communications environment faces
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Figure 3.1. A heterogeneous vehicular network.

more channel estimation errors and uncertainties. Therefore, it is necessary in the resource

allocation of the vehicular communications to consider the imperfect CSI, especially for the

reliability.

Motivated by the above, in this chapter, we will focus on designing robust spectrum-

and energy-efficient resource allocation scheme for vehicular communications in 5G het-

erogeneous vehicular networks to satisfy both V2V and V2I QoS requirements. We will

incorporate the chance constraints into the problem formulation to guarantee the strict

reliability requirements in vehicular communications and limit the influence of cross-tier

interference in heterogeneous networks. Moreover, to improve the spectrum efficiency,

NOMA in our formulation will be considered and the optimal power allocation will be

derived. In addition, numerical results will be built to demonstrate the desired throughput

performance and reliability.

3.1 System Model and Problem Formulation

System Model

A heterogeneous vehicular network is considered and depicted in Fig. 3.1. A macro base

station (MBS) is used to provide high-speed data stream service for N VUs. Femto stations

(FSs) coexist with the MBS and serve M femto users (FUs) to offload data traffic from

the MBS. There are L available channels that are enough for the orthogonal transmission
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of the VUs or FUs, i.e., max {N,M} ≤ L. Each VU adopts NOMA to simultaneously

communicate with the MBS for high-speed data service and the corresponding vehicle

receivers for safety message exchange. Note that more than two links sharing the same

channel is not preferable in NOMA due to the hardware complexity and processing delay

[28,29]. Therefore, we assume that each VU transmitter only has one V2V link to its closest

VU receiver for safety information transmission. For the other VUs, the information can

be obtained from their V2I links. In this case, only one V2V link coexists with the V2I link

of each VU transmitter over one channel through NOMA. Furthermore, each channel is

reused by one FU to improve spectrum efficiency in the heterogeneous network. Therefore,

one VU and one FU share the same channel and form a VU-FU coexisting pair. The

entire heterogeneous network may consist of multiple coexisting pairs and different pairs

use OMA to avoid interference.

In this chapter, the channel model includes small-scale fast fading, shadowing, and

large-scale pathloss. Due to the long distance between the VU transmitter and MBS, the

relative position and channel environment changes between the VU transmitter and MBS

are limited. Therefore, the channel estimation between the VU transmitters and MBS is

assumed error-free. In such a case, the channel power gain between the i-th VU transmitter

and MBS over the j-th channel, gvi,j, is

gvi,j = |hvi,j|2ξiCd
−β
i , |hvi,j|2αi, (3.1)

where | · | is the norm operator, hvi,j is the fast fading component of the link between

the i-th VU transmitter and MBS over the j-th channel, which follows complex Gaussian

distribution with zero mean and unit variance, i.e, hvi,j ∼ CN (0, 1), ξi is the log-normal

shadowing random variable with standard deviation ζ for the link between the i-th VU

transmitter and MBS, C is the pathloss constant, di is the distance between the i-th VU

transmitter and MBS, and β is the pathloss exponent. Since each VU transmitter and
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its corresponding receiver have similar speeds and no obstacles in between, we can regard

the V2V link channel estimation error-free. Additionally, the FUs are assumed with low

mobility, and thus the FU to FS (F2FS) link can also be estimated precisely.

However, due to the fast changing environment between the FUs, FSs, and VUs, the fast

fading components of cross-tier interference links suffer channel estimation errors. Denote

hvi,m,j and hfm,i′,j as the fast fading components of the interference links from the i-th VU

transmitter to the m-th FU’s corresponding FS over the j-th channel and from the m-th

FU to the i-th corresponding VU receiver, indexed by i′, over the j-th channel, respectively.

We have

hvi,m,j = ĥvi,m,j + ε (3.2)

and

hfm,i′,j = ĥfm,i′,j + ε, (3.3)

where ĥvi,m,j ∼ CN (0, 1) and ĥfm,i′,j ∼ CN (0, 1) are the estimated fast fading components

of the link from the i-th VU transmitter to the m-th FU’s corresponding FS over the j-th

channel and that from the m-th FU to the i-th corresponding VU receiver over the j-th

channel, respectively, and ε is the channel estimation error, i.e., ε ∼ CN (0, σ2
ε ) [30]. Given

the limited transmit powers of FUs, we assume that the interference from the FUs to the

MBS is negligible.

The channel power gains between the i-th VU transmitter and its corresponding receiver

over the j-th channel, gvi,i′,j, and between the m-th FU and its corresponding FS over the j-

th channel, gfm,j, and the interference link channel power gains from the i-th VU transmitter

to the m-th FU’s corresponding FS over the j-th channel, gvi,m,j, and from the m-th FU to

the i-th corresponding VU receiver over the j-th channel, gfm,i′,j, can be similarly defined

as in (3.1).

23



Problem Formulation

In NOMA, the MBS and VU receivers share the same channel with different link

qualities. Due to the short distance between the i-th VU transmitter and its corresponding

receiver, gvi,i′,j is larger than gvi,j and therefore the transmitted messages from the i-th VU

transmitter to the MBS can be decoded and subtracted at the i-th corresponding VU

receiver via successive interference cancellation (SIC). To successfully perform SIC at the

VU receiver, a power difference condition needs to be satisfied [31], i.e.,

∑L
j=1 ai,j(P

v
i − P v

i,i′)g
v
i,i′,j

σ2
≥ δ, (3.4)

where ai,j is the channel assignment indicator such that ai,j = 1 when the i-th VU trans-

mitter and its corresponding receiver occupy the j-th channel and ai,j = 0 otherwise, P v
i

and P v
i,i′ are the transmit powers of the i-th VU transmitter for the V2I and V2V links,

respectively, σ2 is the noise power, and δ is the minimum power difference ratio.

With (3.4) satisfied, the signal to interference noise ratio (SINR) of the received signal

at the MBS from the i-th VU transmitter can be expressed as

γvi =

∑L
j=1 ai,jP

v
i g

v
i,j∑L

j=1 ai,jP
v
i,i′g

v
i,j + σ2

. (3.5)

Due to the limited transmit powers of FUs, the interference from FUs to the MBS is

neglected.

Similarly, the SINR of the received signal at the i-th VU receiver from the i-th VU

transmitter is

γvi,i′ =

∑L
j=1 ai,jP

v
i,i′g

v
i,i′,j∑M

m=1 bm,jP
f
mg

f
m,i′,j + σ2

, (3.6)

and the SINR of the received signal at the FS from the m-th FU is

γfm =

∑M
m=1 bm,jP

f
mg

f
m,j∑L

j=1 ai,j(P
v
i + P v

i,i′)g
v
i,m,j + σ2

. (3.7)

24



To satisfy various QoS requirements for different types of links, we maximize the overall

throughput of V2I links while guaranteeing the reliability of V2V and F2FS links. The

power allocation problem is formulated as

max
ai,j ,bm,j ,

P vi ,P
v
i,i′ ,P

f
m

N∑
i=1

log2(1 + γvi ) (3.8)

s.t. : 0 6 P v
i , 0 6 P v

i,i′ , 0 6 P v
i + P v

i,i′ 6 P v
max, ∀i, (3.8a)∑L

j=1 ai,j(P
v
i − P v

i,i′)g
v
i,i′,j

σ2
≥ δ, ∀i, (3.8b)

0 6 P f
m 6 P f

max, ∀m, (3.8c)

Pr(γvi,i′ > γvth) > 1− pv, ∀i, (3.8d)

Pr(γfm > γfth) > 1− pf , ∀m, (3.8e)

ai,j, bm,j ∈ {0, 1}, ∀i, j,m, (3.8f)

N∑
i=1

ai,j 6 1, ∀j,
L∑
j=1

ai,j 6 1, ∀i, (3.8g)

M∑
m=1

bm,j 6 1, ∀j,
L∑
j=1

bm,j 6 1, ∀m, (3.8h)

where P v
max and P f

max are the maximum transmit powers of the VU transmitters and FUs,

respectively, pv is the maximum outage probability of the V2V links, pf is the maximum

outage probability of the F2FS links, γvth and γfth are the SINR thresholds for the V2V and

F2FS links, respectively, and bm,j is the channel assignment indicator for each FU such

that bm,j = 1 if the m-th FU transmits over the j-th channel and bm,j = 0 otherwise. (3.8a)

ensures that the transmit powers of each VU transmitter for both V2I and V2V links are

non-negative and the total transmit power of each VU transmitter is positive and within

the maximum VU transmit power. (3.8b) is the aforementioned power difference condition.

(3.8c) ensures that the transmit power of each FU is non-negative and within the maximum

FU transmit power. (3.8d) and (3.8e) represent the reliability requirements for V2V and
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Figure 3.2. Cascaded channel assignment.

F2FS links, respectively. (3.8f) reveals the binary properties of both VU and FU channel

assignment indicators. (3.8g) guarantees that each channel can only be assigned by one

VU transmitter and each VU transmitter can only occupy one channel. Similarly, (3.8h)

ensures that each channel can only be assigned by one FU and each FU can only occupy

one channel. Note that, for each channel, one VU transmitter and one FU can coexist.

Obviously, (3.8) is a mixed-integer, non-convex, and chance-constrained problem, which

cannot be effectively solved via existing methods. Moreover, the optimal solution requires

exhaustive search (ES) over combinatorial space of binary variables ai,j and bm,j, which

results in prohibitive computational complexity in practice. To obtain satisfactory results

with low complexity, we will decouple (3.8) into the proposed cascaded channel assignment,

through which VUs and FUs are paired, and the power allocation for each VU-FU pair.

3.2 Cascaded Channel Assignment

To relax the binary and combinatorial constraints in (3.8), we propose in this section a

cascaded channel assignment algorithm based on the Hungarian algorithm with polynomial

complexity [32].

The channel assignment in (3.8) involves two goals. The first one is to assign channels

to VUs for the throughput maximization of V2I links while guaranteeing the reliability of
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V2V links. The second goal is to share channels with FUs, limit the introduced interference

to VUs, and maintain their own reliability. Instead of ES, the Hungarian algorithm is an

effective combinatorial optimization algorithm for assignment problems. With the Hungar-

ian algorithm, optimality can be achieved by either maximizing the overall throughput of

V2I links or minimizing the total introduced interference to VUs. However, since the chan-

nel assignments of VUs and FUs affect each other in our scenario, applying the Hungarian

algorithm to the channel assignments of VUs and FUs individually cannot guarantee the

two goals to be satisfied at the same time. Therefore, a cascaded channel assignment algo-

rithm is proposed to simultaneously meet the two requirements. The logic of the proposed

cascaded channel assignment is illustrated in Fig 3.2.

Cascaded Channel Assignment Algorithm

Given that the reliability of V2V links is more important than that of F2FS links

from the safety perspective, we assume that VUs have priorities to access channels. Be-

fore the channel assignment is determined, the optimal powers cannot be allocated and

the throughput of V2I links and interference from FUs to VUs cannot be calculated at

this stage. Therefore, the proposed cascaded channel assignment consists of two phases.

Firstly, channels are assigned to VUs according to the Hungarian algorithm to maximize

the overall throughput of V2I links based on the channel to noise ratios (CNRs). With the

channel assignment of VUs, the CNR of the interference link from FUs over each channel

is determined through the calculation of the CNR of the interference link from FUs to the

VU who occupies that channel. Secondly, the Hungarian algorithm is adopted to assign

channels to FUs to minimize the total CNR of the interference links from FUs to VUs and

thus to minimize the co-channel interference. Let φvi,j denote the V2I link CNR for the i-th

VU over the j-th channel and φfm,j the interference link CNR for the m-th FU over the j-th

channel. The proposed cascaded channel assignment algorithm is detailed in Algorithm 3.

Note that the channel assignment is originally a 3-dimensional assignment problem

involving VUs, FUs, and channels. In Algorithm 3, the cascaded channel assignment based
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on the outcome of Phase I reduces to 1-dimensional for FU channel assignment, which

simplifies the problem. Through the proposed cascaded channel assignment, the binary

and combinatorial constraints in (3.8) are relaxed.

Algorithm 3 Cascaded Channel Assignment

1: Initialization: Initialize VU channel assignment matrix ANxL with entry ai,j =
0, ∀i, j, and FU channel assignment channel matrix BMxL with entry bm,j = 0,∀m, j.

2: Phase I: VU channel assignment
3: for i = 1 : N do
4: for j = 1 : L do

5: Calculate φvi,j =
gvi,j
σ2 .

6: end for
7: end for
8: Use the Hungarian algorithm to find the channel assignment A∗ based on {φvi,j}.
9: Phase II: FU channel assignment

10: for m = 1 : M do
11: for j = 1 : L do
12: if

∑N
i=1 ai,j = 1

13: Find i∗ such that ai∗,j = 1 according to A∗.

14: Calculate φfm,j =
gf
m,i′,j
σ2 .

15: else
16: Set φfm,j = 0.
17: end for
18: end for
19: Use the Hungarian algorithm to find the channel assignment B∗ based on {φvm,i′∗j}.
20: Return VU and FU channel assignment matrices A∗ and B∗.

Hungarian Algorithm Strategies

As stated in Algorithm 3, the ultimate goal of the Hungarian algorithm is to maximize

the throughput of V2I links. Since NOMA is adopted at the VUs, there are three possible

strategies for the Hungarian algorithm to assign channels.

• Based on the V2I link CNRs : The Hungarian algorithm based on the V2I link CNRs

(HBV2I) is the most straightforward method to maximize the total CNR of V2I links.

The HBV2I scheme directly increases the throughput of V2I links.

• Based on the V2V link CNRs : The Hungarian algorithm based on the V2V link CNRs

(HBV2V) can indirectly improve the throughput of V2I links. Since less transmit
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power for the V2V links is needed to satisfy the reliability constraints with better

V2V link CNRs, more transmit power becomes available for the V2I links under the

total transmit power constraint. Therefore, the overall throughput of V2I links can

be increased.

• Based on the difference between the V2I link CNRs and V2V link CNRs : In power-

domain NOMA, the users with more distinctive channel conditions achieve better

throughput performance [33]. Therefore, the Hungarian algorithm based on the differ-

ence of V2I link CNRs and V2V link CNRs (HBD) can be beneficial to the throughput

performance of V2I links.

Since our model mainly focuses on the throughput maximization of V2I links while

guaranteeing the reliability of V2V links, the HBV2I is adopted in our paper and obtains

the best performance improvement due to the direct relationship between the total CNR

and the throughput of V2I links although both the HBV2V and HVD can increase the

throughput of V2I links. The comparison of the three schemes is provided in the simulation.

3.3 Power Allocation

Through the proposed cascaded channel assignment algorithm, the VU and FU who

share the same channel form a VU-FU pair. Since different VU-FU pairs adopt orthogonal

channels, the power allocation in (3.8) can be carried out at each single VU-FU pair. To

derive the power allocation for each single VU-FU pair, we first transform the probabilistic

constraints into deterministic forms in this section through approximation. Then we derive

the feasible power allocation region and the optimal solution to the transformed problem.

After the channel assignment is determined, a channel can be shared within an arbi-

trary VU-FU pair, e.g., the i-th VU shares the j-th channel with the m-th FU. (3.8) is

transformed to
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max
P vi ,P

v
i,i′ ,P

f
m

log2(1 + γvi ) (3.9)

s.t. : 0 6 P v
i , 0 6 P v

i,i′ , 0 6 P v
i + P v

i,i′ 6 P v
max, ∀i, (3.9a)

(P v
i − P v

i,i′)g
v
i,i′,j

σ2
≥ δ, (3.9b)

0 6 P f
m 6 P f

max, (3.9c)

Pr(γvi,i′ > γvth) > 1− pv, (3.9d)

Pr(γfm > γfth) > 1− pf . (3.9e)

Since channel estimation errors exist in the interference links, we substitute (3.1), (3.2),

and (3.3) into (3.9d) and (3.9e) to evaluate the reliability requirements and have

Pr
( P v

i,i′g
v
i,i′,j

P f
mα

f
m,i′,j|ĥ

f
m,i′,j + ε|2 + σ2

> γvth
)
> 1− pv (3.10)

and

Pr
( P f

mg
f
m,j

P vαvi,m,j|ĥvi,m,j + ε|2 + σ2
> γfth

)
> 1− pf , (3.11)

where P v is the total VU transmit power, i.e., P v = P v
i + P v

i,i′ .

Given the estimated fast fading components ĥfm,i′,j and ĥvi,m,j,
|ĥf
m,i′,j+ε|

2

σ2
ε

and
|ĥvi,m,j+ε|2

σ2
ε

are

2-degree non-central Chi-square distributed with non-centrality parameters λf =
2|ĥf

m,i′,j |
2

σ2
ε

and λv =
2|ĥvi,m,j |2

σ2
ε

, respectively [34]. Define the corresponding 2-degree non-central Chi-

square random variables as X 2
2,nc and Y2

2,nc. Then (3.10) and (3.11) can be rearranged

as

Pr
(P v

i,i′g
v
i,i′,j − σ2γvth

σ2
ε

2
P f
mα

f
m,i′,jγ

v
th

> X 2
2,nc

)
> 1− pv (3.12)

and

Pr
(P f

mg
f
m,j − σ2γfth

σ2
ε

2
Pvαvi,m,jγ

f
th

> Y2
2,nc

)
> 1− pf , (3.13)

30



with probability density functions (PDFs)

fX 2
2,nc

(x)

=
1

σ2
ε

exp(−
|ĥfm,i′,j|2 + x

σ2
ε

)I0(
√
x|ĥfm,i′,j|2

2

σ2
ε

) (3.14)

and

fY2
2,nc

(y)

=
1

σ2
ε

exp(−
|ĥvi,m,j|2 + y

σ2
ε

)I0(
√
y|ĥvi,m,j|2

2

σ2
ε

), (3.15)

where I0 is the zero-order modified Bessel function of the first kind.

Even with (3.14) and (3.15), it is still difficult to obtain closed-form expressions of

reliability requirements (3.12) and (3.13). Therefore, we adopt an approximation of non-

central Chi-square distribution to simplify (3.12) and (3.13) [35]. With some manipulation

of the rest constraints, the feasible power region of (3.8) is given in 3.3.1 and depicted in

Fig. 3.3.

Proposition 3.3.1. The feasible power allocation region of (3.8) is derived in two cases

as

Case I: B2

A2
> B1

A1
and B2

A2
P̄ f
max + C2

A2
6 P v

max

{(P v
i , P

v
i,i′ , P

f
m) :

0 6 P f
m 6 P̄ f

max, P
v
i,i′ >

B1

A1

P f
m +

C1

A1

,

P v
i + P v

i,i′ 6
B2

A2

P f
m +

C2

A2

, P v
i,i′ 6

P v
max − δσ2

gv
i,i′,j

2
}; (3.16)
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Case II: B2

A2
> B1

A1
and B2

A2
P̄ f
max + C2

A2
> P v

max

{(P v
i , P

v
i,i′ , P

f
m) :

0 6 P f
m 6 P̄ f

max, P
v
i,i′ >

B1

A1

P f
m +

C1

A1

,

P v
i + P v

i,i′ 6
B2

A2

P f
m +

C2

A2

, P v
i,i′ 6

P v
max − δσ2

gv
i,i′,j

2
,

P v
i + P v

i,i′ 6 P v
max}, (3.17)

where A1 =
gv
i,i′,j
γvth

, B1 = σ2
ε

2
(1 +

λf
2

)αfm,i′,j ln 1
p2
v
, C1 = σ2, A2 = σ2

ε

2
(1 + λv

2
)αvi,m,j ln 1

p2
f
,

B2 =
gfm,j

γfth
, C2 = −σ2, and P̄ f

max = min{
A1(P vmax− δσ2

gv
i,i′,j

)−2C1

2B1
, P f

max}.

Proof. See Appendix A.1.

Based on 3.3.1, the optimal power allocation solution to (3.9) is provided in 3.3.2.

Proposition 3.3.2. The optimal power allocation solution to (3.9) is

P f∗
m =


P̄ f
max, Case I,

A2

B2
P v
max − C2

B2
, Case II,

(3.18)

P v∗
i

=


(B2

A2
− B1

A1
)P̄ f

max + (C2

A2
− C1

A1
), Case I,

P v
max − B1

A1
(A2

B2
P v
max − C2

B2
)− C1

A1
, Case II,

(3.19)

and

P v∗
i,i′ =


B1

A1
P̄ f
max + C1

A1
, Case I,

B1

A1
(A2

B2
P v
max − C2

B2
) + C1

A1
, Case II.

(3.20)
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Proof. See Appendix A.2.

3.3.2 gives the optimal power allocation to the transformed throughput optimization

problem of V2I links while guaranteeing the reliability of V2V and F2FS links for each

VU-FU pair.

For the proposed resource allocation scheme, the cascaded channel assignment requires

O(NL+ML) to calculate link CNRs and O(L3+L3) for the Hungarian algorithm. And the

optimal power allocation has a computational complexity of O(max{N,M}). Therefore,

the computational complexity of the proposed resource allocation scheme is O((M+N)L+

L3 + max{N,M}). In comparison, the computational complexity of the optimal search

and power allocation is O(( (L!)2

(L−M)!(L−N)!
) ·max{N,M}). Therefore, the proposed resource

allocation scheme significantly reduces the computational complexity.

3.4 Numerical Results

In this section, we present simulation results to illustrate the performance of the pro-

posed resource allocation scheme in a heterogeneous vehicular network. We simulate a

two-way urban roadway scenario. The vehicles are covered by a single macrocell and sev-

eral non-overlapping coexisting femtocells as illustrated in Fig. 3.1. The VUs are dropped

according to a spatial Poisson point process with density determined by the vehicle speed.

The FUs are generated by a spatial Poisson point process with density 8 per femtocell.

Each VU sets up a V2V link to the nearest VU behind and the coexisting FU is ran-

domly selected from the generated FUs. The numbers of selected VUs and FUs, N and

M, are both 4. The total number of channels, L, is 4. The major simulation parameters

are listed in Table 3.1 [17, 18, 36]. In our simulation, the V2I, V2FS, and F2FS links are

modeled as non-line-of-sight (NLOS) while the V2V and F2V links are modeled as line-of-

sight (LOS). The NLOS and LOS pathloss models are 128.1 + 37.6 log10 d and WINNER

+ B1 [37], respectively.

In Fig. 3.4, the overall throughput of the V2I links with different schemes and channel

estimation errors is shown. In Fig. 3.4(a), the proposed NOMA resource allocation scheme
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Table 3.1. Simulation Parameters.

Parameter Value
Carrier frequency 2 GHz
Macrocell radius 500 m
Femtocell radius 50 m
Vehicle speed s 60 km/h

Vehicle density
2.5s, s in
m/s

FU density 8/2500 /m2

SINR threshold for V2V link γthv 5 dB
SINR threshold for F2FS link γthf 5 dB

Reliability for V2V link pv 10−3

Reliability for F2FS link pf 10−3

Maximum VU transmit power
Pmax
v

23 dBm

Maximum FU transmit power
Pmax
f

10 dBm

Noise power σ2 -114 dBm
Required power difference ratio δ 10 dB

is compared with the OMA resource allocation scheme and NOMA power allocation with

ES under different channel estimation errors. Although the ES renders the best perfor-

mance, the complexity is prohibited in practice. Our proposed NOMA resource allocation

scheme achieves comparable performance with the ES and outperforms the OMA resource

allocation. However, due to the interference from the V2V links to the V2I links, the

proposed NOMA resource allocation scheme results in less than double throughput perfor-

mance of the OMA resource allocation. It can be noticed that larger channel estimation

errors degrade the performance with NOMA power allocation, but has little influence on

that of OMA power allocation when different links use orthogonal channels. In Fig. 3.4(b),

the performance of different Hungarian channel assignment schemes are illustrated. With-

out consideration of computational complexity, the ES provides the best performance. It is

obvious that HBV2I achieves better performance than HBV2V and HBD due to the direct

relationship between the V2I link CNRs and throughput. Since HBV2V only considers the

V2V link CNRs, the overall throughput of the V2I links with HBV2V is the lowest.
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In Fig. 3.5, the SINRs of the V2V links with different schemes and σ2
e = 0.01 are

illustrated. Fig. 3.5(a) shows the SINRs of the V2V links for all 4 VUs in NOMA and OMA.

It is obvious that both NOMA and OMA can satisfy the minimum SINR requirement, i.e.,

5 dB. Since the channel estimation error in NOMA from the V2I link to the V2V link is

considered in (3.8d), there are some margins for SINRs in NOMA to guarantee the outage

probability constraint. In contrast, no interference exists in OMA and thus no protection

margins are needed. Therefore, the power allocation in OMA assigns the V2V transmit

power to maintain the minimum SINR requirement. In Fig. 3.5(b), VU1’s V2V link SINRs

with different channel allocation schemes are illustrated. The ES for channel allocation has

the minimum SINR margin to guarantee the outage probability constraint. The HBV2I

outperforms the HBV2V and HBD schemes with less V2V link SINR margin, which can

allocate more transmit power to V2I links while satisfying the reliability requirements.

In Fig. 3.6, the SINRs of the F2FS links with different schemes and σ2
e = 0.01 are

shown. The required SINR for F2FS links is also 5 dB. As shown in Fig. 3.6(a), the SINRs

of the F2FS links with our proposed NOMA scheme still have larger SINR margins than

those with OMA scheme to guarantee the reliability constraint in our formulated problem,

which is the same for the V2V links. However, the SINRs of the F2FS links with OMA

scheme also have SINR margins due to the fact that in OMA scheme, FUs still coexist with

VUs and have to consider the interference and channel estimation errors. In Fig. 3.6(b),

different channel assignment schemes render similar SINRs of F2FS links. This is because

in NOMA, the F2FS links share the channel with both the V2I and V2V links, no matter

how different VU transmit powers are allocated to V2I and V2V links. The interference

from the VU to FU depends on the total VU transmit power, which equals the maximum

VU transmit power in order to maximize the throughput of V2I links as long as the outage

probability constraint of F2FS links can be satisfied.

Fig. 3.7 shows the cumulative distribution functions (CDFs) of the V2V and F2FS links

with respect to the SINR for VU1 and its co-existing FU. It can be seen that the V2V link
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achieves the reliability requirement with our proposed resource allocation scheme. However,

since P v
i exists in (3.7), the approximation error of non-central Chi-square distribution is

amplified in the F2FS link, which renders the SINR of F2FS link slightly larger than the

desired threshold, i.e., 5 dB, at the target outage probability. Moreover, due to P f
m in

the numerator of γfm and P v
i in the denominator, a larger P f

m allows a larger P v
i , which

increases the throughput of V2I link. Meanwhile, a larger P f
m may result in a larger SINR

of F2FS link, which is reflected in Fig. 3.7 with a larger probability of higher SINR of

F2FS link than that of V2V link. Because the V2V link competes for resource with the

V2I link, a large percentage of V2V link SINRs stick around the desired threshold, i.e., 5

dB, to maximize the transmit power for the V2I link.
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Chapter 4. Energy-Efficient Resource Allocation in D2D
Communications

Aside from spectrum efficiency, energy efficiency becomes more important for wireless

communications. Due to the explosive number of devices in wireless communications,

D2D communications has been included in 5G standard. Unfortunately, millions of devices

consume huge amount of energy for data collection and transmission. To this point, energy-

efficient D2D communications design becomes one of the most important pieces in 5G

blueprint.

In this chapter, the energy efficiency in a cellular network with D2D communications

is studied from user fairness perspective. A mixed-integer max-min resource allocation

problem is formulated, in which both mode selection and resource allocation are considered.

Since the optimal solution requires an exhaustive search, which is NP-hard, two sub-optimal

methods are derived. First, a Lagrangian decomposition based (LDB) method is proposed to

jointly solve subcarrier assignment and power allocation with integer constraint relaxation

under different modes. To further reduce the computational complexity, a low-complexity

decomposition (LCD) method is derived. A novel mode selection scheme, a subcarrier

assignment scheme, a power allocation scheme, and a mode switching scheme are introduced

and analyzed. The LCD method is scalable and suitable for a large number of devices and

subcarriers. Numerical results demonstrate that our proposed sub-optimal methods achieve

satisfactory energy efficiency performance and promote the fairness among individual users.

4.1 System Model and Problem Formulation

We consider a cellular network with one base station, K users, and N orthogonal

subcarriers. As shown in Fig. 4.1, we classify K users into Kc cellular users and Kd D2D

users. A cellular user connects to the core network via the base station, so cellular users

cannot be in D2D mode. Therefore, we focus on the mode selection of D2D users that can

be in either D2D or cellular mode. However, the cellular users compete for subcarriers with

the D2D users. As a result, we consider the resource allocation among cellular and D2D

users.
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Figure 4.1. A D2D enabled cellular network.

Note that we can view a cellular user as a special D2D user in D2D mode, where the

other user of the pair is the base station. Denote K as the user set with a size of K. Let

K1 be the set of the D2D users in D2D mode and the cellular users. Denote K2 as the

set of the D2D users in cellular mode. Each user can only be in one set, so K1

⋂
K2 = ∅

and K1

⋃
K2 = K. Assume that the total bandwidth is B and thus the bandwidth of

each subcarrier, B0, is B/N . Rayleigh fading is assumed in this paper. To avoid excess

interference, one subcarrier cannot be occupied by more than one user pair.

The data rate of the kth user pair in K1, R
(1)
k , can be expressed as

R
(1)
k =

N∑
n=1

ak,nB0 log2(1 +
Pk,ngk,n
σ2

), (4.1)

where Pk,n is the transmit power of the transmitter of the kth user pair over subcarrier n,

gk,n is the channel power gain of subcarrier n from the transmitter to the receiver of the

kth user pair, σ2 is the noise power, and ak,n is the subcarrier indicator that ak,n = 1 if the

kth user pair occupies subcarrier n and ak,n = 0 otherwise. Note that the transmitter and

receiver of the kth user pair can be the base station for cellular users in K1 in the downlink

and uplink, respectively.
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Since the base station works as a relay for D2D users in cellular mode, the average

data rate of the kth user pair in K2, R
(2)
k , is [38]

R
(2)
k =

1

2

N∑
n=1

ak,nB0 log2

(
1 + min{Pk,nĝk,n

σ2
,
P0,nǧk,n
σ2

}
)
, (4.2)

where ĝk,n and ǧk,n are the channel power gains over subcarrier n from the transmitter of

user pair k to the base station and from the base station to the receiver of user pair k,

respectively, P0,n is the transmit power of the base station over subcarrier n. Note that

R
(2)
k depends on the smaller term of

Pk,nĝk,n
σ2 and

P0,nǧk,n
σ2 . Given that the base station can

usually provide a wider range of power than devices, we assume that the base station can

always adjust P0,n to ensure that
Pk,nĝk,n

σ2 =
P0,nǧk,n

σ2 [39–42], which can be guaranteed by

admission control strategy [43]. Then R
(2)
k can be rewritten as

R
(2)
k =

1

2

N∑
n=1

ak,nB0 log2(1 +
Pk,nĝk,n
σ2

). (4.3)

For the kth user pair in K1, its power consumption is given by

P
(1)
con,k =

N∑
n=1

ak,nPk,n + Pcir,k, (4.4)

where Pcir,k is the static circuit power of the kth user pair. The average power consumption

for the kth user pair in K2 is

P
(2)
con,k =

1

2
(
N∑
n=1

ak,nPk,n +
N∑
n=1

ak,nP0,n) + Pcir,0 + Pcir,k, (4.5)

where Pcir,0 is the base station static circuit power and P0,n = Pk,n
ĝk,n
ǧk,n

.

Because users may dynamically select D2D or cellular mode to improve their perfor-

mance, we define mk as the mode indicator that mk = 0 if user pair k belongs to set K1

and mk = 1 if user pair k belongs to set K2. Since each user pair can only belong to one
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set at one time, the data rate and power consumption for user pair k are given by

Rk(ak,Pk,mk) = (1−mk)R
(1)
k +mkR

(2)
k (4.6)

and

Pcon,k(ak,Pk,mk) = (1−mk)P
(1)
con,k +mkP

(2)
con,k, (4.7)

respectively, where ak is the subcarrier indicator vector of user pair k that ak = [ak,1, . . . , ak,N ]

and Pk is the transmit power vector of user pair k that Pk = [Pk,1, . . . , Pk,N ].

Unlike the base station that can adjust the transmit power for each cellular user in

the downlink of cellular networks, the D2D user pairs communicate with their own energy

sources that cannot be compensated by the others in the network. Moreover, the battery-

limited D2D networks emphasis more on energy efficiency for each user pair. To improve

the energy efficiency performance of individual user pairs rather than the entire network

in D2D communications, we adopt max-min fairness criterion and formulate a max-min

problem. The problem maximizes the energy efficiency of the worst-case user in the network

and improves the fairness among individual user pairs. Specifically, we have

max
ak,Pk,mk

min
k∈K1,K2

Rk(ak,Pk,mk)

Pcon,k(ak,Pk,mk)
(4.8)

s.t.: C1: ak,n = {0, 1},∀n,∀k, (4.8a)

C2:
K∑
k=1

ak,n ≤ 1, ∀n, (4.8b)

C3: mk = {0, 1},∀k, (4.8c)

C4:
N∑
n=1

ak,nPk,n ≤ Pk,max,∀k, (4.8d)

C5: ak,nPk,n ≥ 0,∀n,∀k, (4.8e)

C6: Rk(ak,Pk,mk) ≥ Rk,req,∀k, (4.8f)
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where Pk,max and Rk,req are the maximum transmit power and the minimum data rate

requirement for user pair k, respectively. (4.8a) and (4.8b) indicate that each subcarrier

can be used by at most one user pair. (4.8c) indicates that each user can only work in a

certain mode at a time. In different time slots, the users can switch modes. (4.8d) and

(4.8e) guarantee that the transmit power is within the maximum power constraint and

always non-negative. (4.8f) is the data rate requirement constraint to guarantee the QoS.

Since the subcarrier and mode indicators are binary variables, (4.8) is a mixed-integer

non-linear programming (MINLP) problem and the optimal solution can be achieved with

an exhaustive search, whose complexity is O(2Kd · N !
(N−K)!

), which approaches O(2Kd ·NK)

when N becomes larger and is exponentially complicated. In the following, we propose two

sub-optimal methods that can achieve satisfactory performance with low computational

complexity.

4.2 Proposed Resource Allocation

LDB Method

In the inner loop, the mode indicator for user pair k, mk, is treated as constant, the

optimization problem (4.8) can be viewed as a generalized fractional programming with a

max-min function in terms of ak and Pk. Based on the max-min function and Proposition

2.1 regarding fractional optimization in [44], we give the following proposition.

Proposition 4.2.1. Given mk, the optimal solution, {ak
∗,Pk

∗}, and the optimal energy

efficiency, ε∗, of problem (4.8) are achieved if and only if

min
k
{Rk(a

∗
k,P

∗
k)− ε∗Pcon,k(a∗k,P∗k)} = 0. (4.9)

Proof. See Appendix B.1.

According to Proposition 4.2.1, (4.8) is equivalent to (4.9). The algorithm in [44, 45]

can be adopted to obtain the solution to (4.9), based on which we derive Algorithm 4. The

convergence of Algorithm 4 has also been proved in [44].
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Algorithm 4 Dinkelbach’s Method

1: Initialization: Set Pk,max and Rk,req for ∀k. Set the maximum number of iterations
I and tolerance ε. Initialize index i = 0 and energy efficiency of user pair k in the ith
iteration εik = 0.

2: For k = 1 : K
3: While i < I
4: Solve the problem

max
ak,Pk∈S

[Rk(ak,Pk)− εikPcon,k(ak,Pk)] (4.10)

s.t.: (4.8a)-(4.8b), (4.8d)-(4.8f)

5: to obtain the solution {ai
k,P

i
k}.

6: If |Rk(a
i
k,P

i
k)− εikPcon,k(ai

k,P
i
k)| < ε

7: {ak
∗,Pk

∗} = {ai
k,P

i
k} and ε∗k = Rk(a

i
k,P

i
k)/Pcon,k(a

i
k,P

i
k).

8: Break.
9: Else

10: εi+1
k = Rk(a

i
k,P

i
k)/Pcon,k(a

i
k,P

i
k) and i = i+ 1.

11: End while
12: End for
13: ε∗ = min

1≤k≤K
ε∗k.

In Algorithm 4, the most important step is to solve the max-min problem (4.10) with a

given εik. To tackle the max-min problem, we introduce an auxiliary variable ξ and rewrite

(4.10) as

max
ak,Pt,k,ξ

ξ (4.11)

s.t.: (4.8a)-(4.8b), (4.8d)-(4.8f),

C7: Rk(ak,Pt,k)− εikPcon,k(ak,Pt,k) ≥ ξ, ∀k.

Problem (4.11) involves both binary and continuous variables with non-linear constraint

(4.8f) and is still an MINLP problem. The optimal solution requires to search over all KN

possible cases, which is impractical. To reduce the complexity and make the problem more

trackable, we relax the binary variables ak,n into continuous variables [46–48]. As indicated

in [47], as long as the number of subcarriers N is large enough, the relaxation is acceptable.

We also introduce a new variable uk,n = ak,nPk,n and vector uk = [uk,1, . . . , uk,N ]. Then
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the problem becomes

max
ak,uk,ξ

ξ (4.12)

s.t.: C1: 0 ≤ ak,n ≤ 1,∀n,∀k, (4.12a)

C2:
K∑
k=1

ak,n ≤ 1, ∀n, (4.12b)

C3:
N∑
n=1

uk,n ≤ Pk,max,∀k, (4.12c)

C4: uk,n ≥ 0,∀n,∀k, (4.12d)

C5: Rk(ak,uk) ≥ Rk,req,∀k, (4.12e)

C6: Rk(ak,uk)− εikPcon,k(uk) ≥ ξ, ∀k. (4.12f)

In reality, ak,n = 0 means channel n is not used by user k, we set ak,nB0 log2(1 +
uk,ngk,n
ak,nσ2 )

and ak,nB0 log2(1 +
uk,nĝk,n
ak,nσ2 ) to be 0 when ak,n = 0. To further explore the problem (4.12),

we give the following proposition.

Proposition 4.2.2. The optimization problem (4.12) given mk is convex with respect to

ak,uk, and ξ.

Proof. See Appendix B.2.

With Proposition 4.2.2, the Lagrangian decomposition can be adopted and we have

48



L(ak,uk, ξ,λ,β,γ,ν)

=ξ +
N∑
n=1

λn(1−
K∑
k=1

ak,n) +
K∑
k=1

βk(Pk,max −
N∑
n=1

uk,n)

+
K∑
k=1

γk
[
Rk(ak,uk)−Rk,req

]
+

K∑
k=1

νk

{
Rk(ak,uk)

−εikPcon,k(uk)− ξ
}
, (4.13)

where λ, β, γ, ν are the Lagrange multiplier vectors that λ = [λ1, . . . , λN ], β =

[β1, . . . , βK ], γ = [γ1, . . . , γK ], and ν = [ν1, . . . , νK ] associated with constraints (4.12b),

(4.12c), (4.12e), and (4.12f). The Lagrangian dual problem of (4.12) is accordingly

min
{λ,β,γ,ν}

max
{ak,uk,ξ}

L(ak,uk, ξ,λ,β,γ,ν) (4.14)

s.t.: (4.12a), (4.12d),

C8: λ,β,γ,ν � 0.

For the Lagrangian dual problem (4.14), we first solve primal resource allocation prob-

lem given fixed Lagrangian multipliers and then adopt the sub-gradient method to update

Lagrangian multipliers.

Given the fixed Lagrangian multipliers, the concavity of (4.13) on {ak,uk}, constraint

(4.12d), and Karush-Kuhn-Tucker (KKT) conditions, we differentiate (4.13) with respect

to uk,n and obtain

∂L(ak,uk, ξ,λ,β,γ,ν)

∂uk,n


≤ 0, if u∗k,n = 0,∀k, n,

= 0, if u∗k,n > 0,∀k, n,
(4.15)
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where u∗k,n is the optimal value of uk,n. By solving (4.15), we obtain the optimal power

allocation, P ∗k,n, as

P ∗k,n =
u∗k,n
ak,n

=


[ B0(γk+νk)

ln 2(βk+νkε
i
k)
− σ2

gk,n

]+
, if mk = 0,[ B0(γk+νk)

2 ln 2(βk+ 1
2
νkε

i
k+ 1

2
νkε

i
k

ĝk,n
ǧk,n

)
− σ2

ĝk,n

]+
, if mk = 1,

(4.16)

where [x]+ = max {0, x}. Similarly, considering the concavity of (4.13), constraint (4.12a),

and KKT conditions, we have

∂L(ak,uk, ξ,λ,β,γ,ν)

∂ak,n


< 0, if a∗k,n = 0,∀k, n,

= 0, if 0 < a∗k,n < 1,∀k, n,

> 0, if a∗k,n = 1,∀k, n,

(4.17)

where a∗k,n is the optimal value of ak,n.

By solving (4.17), we obtain a∗k,n as

a∗k,n =


0, if Ak,n < λn,∀k, n,

1, if Ak,n > λn,∀k, n,
(4.18)
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where

Ak,n =

B0(γk + νk) log2 (1 +
P ∗k,ngk,n

σ2 )

−(βk + νkε
i
k)P

∗
k,n, if mk = 0,

B0(γk+νk)
2

log2 (1 +
P ∗k,nĝk,n

σ2 )

−
[
βkP

∗
k,n +

νkε
i
k

2
(P ∗k,n + P0,n)

]
, if mk = 1.

According to (4.19), as long as Ak,n is larger than the Lagrangian multiplier λn for

user pair k over subcarrier n, subcarrier n will be assigned to user pair k. Therefore, it is

necessary to carefully choose a suitable value of λn to make sure that at most one user can

access subcarrier n. However, since λn is predefined and Ak,n varies in every update, it is

difficult to set λn to be always smaller than only the largest Ak,n. Observing that λn is not

related to the power allocation and mode selection, we assign positive constant values to

λ and allocate subcarrier n to user pair k∗ such that k∗ = arg max
k∈{K1,K2}

Ak,n to guarantee

that one subcarrier will not be occupied by multiple user pairs.

Given (4.13), a∗k, and u∗k, we have

max
(
1−

K∑
k=1

νk
)
ξ (4.19)

s.t.: 0 ≤ξ ≤ Rk(a
∗
k,u

∗
k)− εikPcon,k(u∗k),∀k.

The optimal ξ∗ is

ξ∗ =


0, if

∑K
k=1 νk > 1,

mink{Rk(a
∗
k,u

∗
k)− εikPcon,k(u∗k)}, if

∑K
k=1 νk ≤ 1.

Once we have the solution with fixed Lagrangian multipliers, we can use sub-gradient
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method to iteratively update the Lagrangian multipliers.

According to [49], the sub-gradients of β,γ,ν are

∇βk = Pk,max −
N∑
n=1

u∗k,n, (4.20)

∇γk = Rk(a
∗
k,u

∗
k,mk)−Rk,req, (4.21)

∇νk =
(
Rk(a

∗
k,u

∗
k)− εikPcon,k(u∗k)

)
− ξ. (4.22)

With the sub-gradients in (4.20), (4.21), and (4.22), we can update the Lagrangian multi-

pliers by

βk(i+ 1) = [βk(i)−4β(i)∇βk(i)]+, (4.23)

γk(i+ 1) = [γk(i)−4γ(i)∇γk(i)]+, (4.24)

νk(i+ 1) = [νk(i)−4ν(i)∇νk(i)]+, (4.25)

where i is the iteration index and 4β(i),4γ(i),4ν(i) are small steps for the update.

Mode Selection for LDB Method

In the outer loop, the mode is determined for each individual user pair. The most

straightforward way to find out the optimal modes is that we directly search over all

possible cases. In Algorithm 5, we set a mode selection pattern, Ψ, which determines all

the values of mk at the controller. For example, we first initialize Ψ(0) that mk = 0, ∀k.

Then we switch to another mode selection pattern, i.e., Ψ(1) that mk = 1 for a certain D2D

user and mk = 0 for the rest Kd − 1 users. Note that, for Kc cellular users, mk is always

0. By searching over 2Kd patterns, we can obtain the final solution to problem (4.10). The

entire procedure of the LDB method is summarized in Algorithm 5.

In the proposed LDB method, it is necessary to search over all 2Kd cases to obtain the

solution to the max-min problem. The computational complexity increases exponentially

with the number of the user pairs in D2D mode. Besides, the subcarrier allocation requires
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Algorithm 5 LDB Method

1: Initialization: Set initial values for {λ,β,γ,ν}, maximum number of iterations imax,
4β, 4γ, 4ν, and tolerance ε′. Set i = 0.

2: For all Ψ
3: While(i < imax)
4: Solve for optimal power, P∗k, for each user according to (4.16).
5: Calculate Ak,n according to (4.19) for each subcarrier and each user. Assign sub-

carrier n to user k∗ that k∗ = arg max
k∈{K1,K2}

Ak,n,∀n and record corresponding optimal

allocation a∗k.
6: Update β, γ, and ν from (4.23), (4.24), and (4.25), respectively.
7: i = i+ 1.
8: If ‖β(i)− β(i− 1)‖2 < ε′, ‖γ(i)− γ(i− 1)‖2 < ε′, and ‖ν(i)− ν(i− 1)‖2 < ε′

9: Break.
10: End while
11: Record kΨ = arg min

k
{Rk(a

∗
k,P

∗
k,m

∗
k)− εikPcon,k(a∗k,P∗k,m∗k)} and {a∗kΨ

,P∗kΨ
,m∗kΨ

}.
12: End for
13: Choose the best mode selection pattern Ψ∗ that Ψ∗ = arg max

Ψ
{RkΨ

(a∗kΨ
,P∗kΨ

,m∗kΨ
)−

εikΨ
Pcon,kΨ

(a∗kΨ
,P∗kΨ

,m∗kΨ
)} and a∗kΨ∗

,P∗kΨ∗
,m∗kΨ∗

.
14: End

that the base station, as a central controller, knows each user pair’s channel state infor-

mation over all subcarriers. Since the user pairs in D2D mode have no direct links to the

base station, the channel state information between the user pairs in D2D mode has to be

frequently reported to the base station, which can cause delays and overhead. Therefore,

for large-scale networks and practical implementation, the computational complexity and

the overhead for information exchange need to be reduced.

LCD Method

Mode Selection for LCD Method

Since the D2D mode provides the reuse gain, hop gain, and proximity gain [50], every

D2D user pair chooses the D2D mode to communicate if possible in mode selection. Dif-

ferent from the distance-based criterion [42], we derive a criterion based on the channel to

noise ratio (CNR).

Because mode selection occurs before subcarrier assignment, we adopt the average

CNR, which describes the overall channel quality. Specifically, τk =
∑N
n=1 gk,n
Nσ2 is the average

CNR of D2D user pair k. The user pair selects D2D mode if τk ≥ τth and cellular mode
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otherwise, where τth is the minimum average CNR required for D2D mode.

Subcarrier Assignment for LCD Method

In the proposed subcarrier assignment scheme, the base station, as a controller, assigns

subcarriers to user pairs according to their selected modes. Equal power allocation to every

subcarrier is assumed.

Define R̄k,n and P̄k,n as

R̄k,n = B0 log2(1 +
ĝk,nPk,max
Nσ2

) (4.26)

and

P̄k,n = (1 +
ĝk,n
ǧk,n

)
Pk,max
N

. (4.27)

The energy efficiency achieved by equal power allocation over subcarrier n for user pair k

is ε̄k,n =
R̄k,n
P̄k,n

.

Since the user pairs in D2D mode have shorter distance between their transmitters and

receivers than the user pairs in cellular mode, the user pairs in D2D mode are very likely

to suffer less path loss. Denote ddm as the distance between the transmitter and receiver

of a user pair in D2D mode and dcm as the distance between the transmitter and receiver

of a user pair in cellular mode. Let α be the path loss exponent. We have the following

proposition.

Proposition 4.2.3. The probability of the channel gain of a user pair in D2D mode being

larger than the channel gain of a user pair in cellular mode is greater than q when dcm >

( q
1−q )

1
αddm.

Proof. See Appendix B.3.

Assuming a practical parameter α = 4, we have the channel gain of the user pair in

D2D mode larger than that of the user pair in cellular mode with a probability 98.8% when

dcm > 3dm. In practice, dcm is usually a few hundred meters while ddm is less than 100
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meters. The ratio between dcm and ddm is larger than 3 and thus the probability is larger

than 98.8%. Therefore, priority is given to the user pairs in cellular mode in the proposed

subcarrier assignment to achieve a probabilistic fairness.

Algorithm 6 Subcarrier Assignment

1: Initialization: N = {1,2,. . . ,N}, Nreq = ∅, Nk = ∅, Nu = N , K1, K2, Rreq,k, and
Pmax
k .

2: Repeat (QoS-guarantee subcarrier assignment)
3: Find k∗ = arg min

k∈K2

R∗k.

4: If R∗k ≥ Rreq,k∗

5: Break.
6: Else
7: Find n∗k∗ = arg max

n∈Nu
ǧk,n. Nk∗ = Nk∗

⋃
{n∗k∗}, Nreq = Nreq

⋃
{n∗k∗}, and Nu =

Nu \ {n∗k∗}.
8: Until |Nu| = |K1|
9: Repeat (Energy-efficient subcarrier assignment)

10: Find k̂ = arg min
k∈K2

Rk/Pcon,k.

11: Find n∗
k̂

= arg max
n∈Nu

R̄k̂,n/P̄k̂,n.

12: If (Rk̂ + 1
2
R̄k̂,n∗

k̂

)/(Pcon,k̂ + 1
2
P̄k̂,n∗

k̂

) > Rk̂/Pcon,k̂.

13: Nu = Nu \ {n∗k̂},Nk̂ = Nk̂
⋃
{n∗

k̂
}.

14: Else
15: Break.
16: Until |Nu| = |K1|
17: Randomly divide Nu into |K1| sets and assign to each user in K1.
18: End

The subcarriers are firstly assigned to the user pairs in cellular mode to satisfy the

QoS requirements. To ensure that each user pair in D2D mode is assigned one or more

subcarriers, the minimum number of unassigned subcarriers is equal to the number of the

user pairs in D2D mode. After QoS-guarantee subcarrier assignment, the subcarriers are

assigned to achieve better energy efficiency. Different from the algorithm in [49] that assigns

the subcarrier to the worst-case user pair with the best channel gain, ĝk,n, our algorithm

then assigns the subcarrier that has the largest energy efficiency, ε̄k,n, to the worst-case user

pair in cellular mode. This is because for user pair k in cellular mode, not only ĝk,n but

also the ratio between ĝk,n and ǧk,n affects the energy efficiency. Finally, the base station

assigns the rest of the subcarriers to the user pairs in D2D mode in a random manner.
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Since there is no links set up for data transmission between the base station and user pairs

in D2D mode, the random manner can avoid huge information exchange between the base

station and user pairs in D2D mode for D2D direct links.

Denote N ,Nreq,Nk, and Nu as the entire subcarrier set, the set of subcarriers assigned

to satisfy the QoS requirement of the user pairs in cellular mode, the subcarrier set of

the k-th user, and the unassigned subcarrier set, respectively. The subcarrier assignment

procedure is described in Algorithm 6.

Power Allocation with QoS Constraint for LCD Method

Once mode selection and subcarrier assignment are determined, problem (4.8) can be

simplified as

max
Pk

∑
n∈Nk B0 log2(1 +

Pk,ngk,n
σ2 )∑

n∈Nk Pk,n + Pcir,k
(4.28)

s.t.: Ĉ1: Pk,n ≥ 0,∀n ∈ Nk, (4.28a)

Ĉ2:
∑
n∈Nk

Pk,n ≤ Pk,max, (4.28b)

Ĉ3:
∑
n∈Nk

B0 log2(1 +
Pk,ngk,n
σ2

) ≥ Rk,req (4.28c)

for k ∈ K1, and

max
Pk

1
2

∑
n∈Nk B0 log2(1 +

Pk,nĝk,n
σ2 )

1
2

∑
n∈Nk(1 +

ĝk,n
ǧk,n

)Pk,n + Pcir,0 + Pcir,k
(4.29)

s.t.: (4.28a), (4.28b),

Ĉ4:
1

2

∑
n∈Nk

B0 log2(1 +
Pk,nĝk,n
σ2

) ≥ Rk,req

for k ∈ K2. Since (4.29) can be solved by the same methodology as (4.28), we only discuss

our proposed power allocation scheme for (4.28).

Denote Pk,tot as the total transmit power of user pair k, i.e., Pk,tot =
∑

n∈Nk Pk,n.
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Given Pk,tot in (4.28), the denominator of the objective function in problem (4.28) is fixed.

Moreover, max
Pk

∑
n∈Nk B0 log2(1 +

Pk,ngk,n
σ2 ) in (4.28) can be uniquely maximized by the

waterfilling algorithm with given Pk,tot. Therefore, problem (4.28) is equivalent to an energy

efficiency problem with respect to Pk,tot, which is

εk(Pk,tot) = max
Pk,tot

R̂k(Pk,tot)

Pk,tot + Pcir,k
(4.30)

s.t.: Pk,tot ≤ Pk,max, (4.30a)

R̂k(Pk,tot) ≥ Rk,req, (4.30b)

where R̂k(Pk,tot) is the maximum data rate with respect to Pk,tot, which is

R̂k(Pk,tot) = max
Pk

B0 log2(1 +
gk,nPk,n
σ2

) (4.31)

s.t.: Pk,n ≥ 0,∀n,∑
n∈Nk

Pk,n = Pk,tot.

Denote P ∗k,tot as the optimal total transmit power of user pair k for the objective function

of problem (4.30), which can be obtained with Dinkelbach’s method. We have the following

proposition regarding εk(Pk,tot) and Pk,tot.

Proposition 4.2.4. When Pk,tot < P ∗k,tot, εk(Pk,tot) is increasing as Pk,tot increases. When

Pk,tot > P ∗k,tot, εk(Pk,tot) is decreasing as Pk,tot increases.

Proof. See Appendix B.4.

According to Proposition 4.2.4, we can classify the optimal solution to (4.30) into 4

cases that are illustrated in Fig. 4.2.

With different channel gains, P ∗k,tot for optimal energy efficiency could be within Pk,max

and out of Pk,max represented by energy efficiency scenario 1 and scenario 2, respectively.

When P ∗k,tot < Pk,max, the data rate at P ∗k,tot could satisfy QoS requirement or not, which are
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Figure 4.2. Illustration of throughput and energy efficiency versus user total transmit
power.

represented by data rate scenario 1 and scenario 2. Note that the data rate at P ∗k,tot must

satisfy the QoS requirement when P ∗k,tot ≥ Pk,max; otherwise there is no feasible solution.

According to different combinations of energy efficiency and data rate scenarios, we have

4 different cases. The solutions are analyzed as follows.

We assume that with the maximum transmit power, Pk,max, the QoS requirement can

be satisfied. Otherwise, there is no feasible solution. The solutions are analyzed as follows.

• Case I:

When P ∗k,tot < Pk,max and R̂k(P
∗
k,tot) < Rk,req, which considers data rate scenario 2 and

energy efficiency scenario 1 in Fig. 4.2, the data rate does not satisfy the QoS requirement

when the optimal energy efficiency is achieved. To satisfy the QoS requirement, we need to

increase Pk,tot. According to Proposition 4.2.4, with Pk,tot increasing, the energy efficiency

will decrease. Therefore, Pk,tot should decrease as little as possible. Then the problem can
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be simplified as

min
Pk

∑
n∈Nk

Pk,n (4.32)

s.t.:
∑
n∈Nk

B0 log2(1 +
Pk,ngk,n
σ2

) = Rk,req.

• Case II:

When P ∗k,tot < Pk,max and R̂k(P
∗
k,tot) ≥ Rk,req, which considers data rate scenario 1 and

energy efficiency scenario 1 in Fig. 4.2, both power and QoS constraints are satisfied with

P∗k. Therefore, P∗k is the solution.

• Case III:

When P ∗k,tot > Pk,max and R̂k(P
∗
k,tot) ≥ Rk,req, which considers data rate scenario 2 and

energy efficiency scenario 2 in Fig. 4.2, the optimal energy efficiency cannot be reached.

Note that data rate scenario 1 and 2 are equivalent in this case since both have R̂k(P
∗
k,tot) ≥

Rk,req. To limit total transmit power within Pk,max and consider Proposition 4.2.4, we can

simplify the problem as

max
Pk

∑
n∈Nk

B0 log2(1 +
Pk,ngk,n
σ2

) (4.33)

s.t.:
∑
n∈Nk

Pk,n = Pk,max.

• Case IV:

When P ∗k,tot > Pk,max and R̂k(P
∗
k,tot) < Rk,req, there is no feasible solution since neither

constraints can be guaranteed.

Therefore, the power allocation problem is transformed into three simple subproblems

(4.30)-(4.33) that can be solved via standard convex optimization method.

59



Mode Switching for LCD Method

In mode selection, each user pair selects D2D mode if possible. Then resource alloca-

tion is calculated based on the result of mode selection. However, depending on channel

conditions, cellular mode may benefit D2D user pairs more. Therefore, we consider a mode

switching procedure.

In mode switching, we only consider the worst-case user pair because our objective is

to maximize the minimum energy efficiency among all user pairs to guarantee the max-

min fairness. Only when the worst-case user pair pre-selects D2D mode, mode switching

will be executed. Otherwise, no mode switching is needed as the minimum average CNR

required for D2D mode is not met. Therefore, in mode switching, the base station calculates

the subcarrier and power allocation assuming that the worst-case user pair is in cellular

mode. If the minimum energy efficiency increases, the user pair switches to cellular mode.

Otherwise, it remains in D2D mode.

To avoid unnecessary recalculation of subcarrier and power allocation of the entire

system, we derive a mode switching condition so that only the user pairs who satisfy the

condition are allowed to switch mode. Denote Pk,tot to be the total transmit power of

user pair k. For user pair k with equal power allocation to every subcarrier, we have the

following proposition.

Proposition 4.2.5. A necessary condition for cellular mode to outperform D2D mode is

N∏
n=1

(1 +
Pk,tot
Nσ2

ĝk,n) >
N∏
n=1

(1 +
Pk,tot
Nσ2

gk,n). (4.34)

Proof. See Appendix B.5.

Note that the mode switching condition is based on equal power allocation and the

average ratio between the channel gains, because both the subcarrier assignment and power

allocation in the other mode is unknown when calculating the mode switching condition.

The entire mode selection procedure is summarized in Algorithm 7.
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Algorithm 7 Mode Switching

1: Initialization: Set K1 and K2 according to mode selection and %th.
2: Repeat

3: Find k∗ = arg min
k∈K

Rk

Pcon,k
and record εmin = Rk∗

Pcon,k∗
.

4: If k∗ ∈ K1

5: Calculate
∏N

n=1(1 +
Pk∗,tot
Nσ2 ĝk∗,n),

∏N
n=1(1 +

Pk∗,tot
Nσ2 gk∗,n), and %k∗ .

6: If (4.34) is satisfied
7: Consider k∗ ∈ K2.
8: Do subcarrier assignment and power allocation.

9: Find k̂ = arg min
k∈K

Rk

Pcon,k
.

10: If
Rk̂

Pcon,k̂
≥ εmin

11: K1 = K1 \ {k∗},K2 = K2

⋃
{k∗}.

12: End if
13: End if
14: End if
15: Until no user switches mode

4.3 Numerical Results

In this section, we provide simulation results to evaluate the performance of our pro-

posed methods. In our simulation, MATLAB is used to simulate the performance of our

proposed methods. In our simulation setup, the locations of cellular users and D2D users’

transmitters follow a Poisson point process, with a density of 16 users per cell [51]. Among

the generated users, we randomly select Kc cellular users and Kd D2D users.

For each D2D user’s transmitter, its corresponding receiver is randomly located with

a probability of 50% within the direct D2D communications range and a probability of

50% out of the direct D2D communications range but within the AP coverage. The direct

D2D communications range is 70 m and the radius of the AP coverage is 150 m [52]. The

one-shot system topology for Kc = 2, Kd = 6 is shown in Fig. 4.3.

The total bandwidth is 1 MHz, the QoS data rate requirement for each user pair is 1

bit/s/Hz, the noise power density is -139 dBm/Hz, the path loss exponent of each D2D

direct link is 4, and the path loss exponent of each link between a device and the AP

is 3.76 [42]. The user static power consumption is 50 mW. We set the tolerance with
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Figure 4.3. The one-shot system topology.

Table 4.1. Minimum User Energy Efficiency (bits/Hz/Joule) of Exhaustive Search and
Proposed Sub-optimal Methods.

Scenario ES LDB LCD
Kd = 2, Kc = 2, N = 4 12.2531 10.4423 8.9564
Kd = 1, Kc = 1, N = 4 23.8811 21.5656 19.2995

Dinkelbach’s and Lagrangian methods to be 10−3 and 10−2, respectively, and the step sizes

4β(i),4γ(i), and 4ν(i) to be 1
i
.

In Table 4.1, we illustrate the gaps of the minimum user energy efficiency between

exhaustive search (ES) and two proposed sub-optimal methods. Since the complexity of

exhaustive search increases exponentially with K and N , we set Kd = 2, Kc = 2, N = 4

and Kd = 1, Kc = 1, N = 4. The minimum user energy efficiency gap between the LDB

method and exhaustive search is 1.8108 bits/Hz/Joule for Kd = 2, Kc = 2 and 2.3155

bits/Hz/Joule for Kd = 1, Kc = 1. The gap between exhaustive search and our LCD

method is 3.2967 bits/Hz/Joule for Kd = 2, Kc = 2 and 4.5816 bits/Hz/Joule for Kd =

1, Kc = 1. However, the computational complexity reduces with the degradation of the

energy efficiency performance.

In Fig. 4.4, we take two user pairs as examples to show the convergence of the proposed

LDB method. It is obvious that all multipliers converge within 20 iterations. The fast
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Figure 4.4. Convergence of the proposed LDB method for two different users when Pcir,0 =
0.5 W and Pk,max = 0.2 W.

convergence illustrates the significant computational efficiency of the LDB in terms of

subcarrier assignment in comparison with exhaustive search.

In Fig. 4.5, we consider two D2D pairs and two cellular users to illustrate the per-

formance of different mode selection schemes. Without mode selection, no D2D mode is

considered and D2D pairs use the AP as the relay in cellular mode. In this case, the energy

efficiency is low due to the power consumption at the AP. In the distance-based mode

selection scheme [42], a D2D pair selects D2D mode as long as the distance between the

transmitter and receiver is within the discovery range. However, it is possible that the

direct D2D links suffer blocking and shadowing and thus mode selection in our proposed

LCD method improves the performance as shown in Fig. 4.5. If the user pair with the

minimum energy efficiency selects D2D mode, the mode switching provides a chance for

the user pair to switch to cellular mode with priority to improve its performance. Once the

mode switching succeeds, the minimum user energy efficiency improves. When the number

of subcarriers increases, more subcarriers are available for the user pairs with priority to

choose, which improves the chance that the mode switching procedure succeeds. Note that

the modes of user pairs are fixed once they are determined in the distance-based mode se-

lection. Therefore, the more subcarriers, the better performance the proposed LCD method
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Figure 4.5. Comparison of the minimum user energy efficiency with different mode selection
schemes when Pcir,0 = 0.5 W, Pk,max = 0.2 W, and K = 4.

achieves in comparison with the distance-based mode selection.

In Fig. 4.6, we compare the performance of different subcarrier assignment algorithms.

The proposed subcarrier assignment outperforms the max channel gain subcarrier assign-

ment [49]. When the number of subcarriers increases, the minimum user energy efficiency

increases for both algorithms. When the number of user pairs increases, the subcarriers for

each user pair becomes scarce and thus the minimum user energy efficiency decreases.

In Fig. 4.7, the energy efficiency of the worst-case user, the best-case user, and the

network is illustrated under four different methods. Among these methods, the max-min

energy efficiency (MME) method [49] only considers the subcarrier and power allocation,

the iterative subcarrier and power allocation (ISP) method [53] adopts an iterative way

to allocate subcarriers and powers to guarantee the fairness, the ascending ordered mode

selection (AOMS) method [52] sorts D2D users according to CSI in ascending order and

provides higher priorities to the D2D users with worse channel conditions in selecting better

modes to achieve fairness. Although all these methods focus on improving the fairness in

energy efficiency, the proposed LCD method has the best worst-case user performance.

This is mainly because the proposed LCD method jointly considers the mode selection,

subcarrier assignment, and power allocation, while no mode selection is considered in MME
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Figure 4.8. Comparison of energy efficiency performance under different metrics when
Pcir,0 = 0.5 W and Pk,max = 0.2 W.

and ISP methods and no subcarrier assignment is adopted in AOMS method.
In Fig. 4.8, the energy efficiency of the worst-case user, the best-case user, and the net-

work is illustrated under three different optimization metrics, max-min fairness-awareness
energy efficiency (MMFAEE), max network energy efficiency (MNEE) [54, 55], and max
network data rate (MNDR). The MNEE method focuses on maximizing the energy effi-
ciency of the entire system rather than that of each individual user. It can be seen that the
proposed LCD method achieves the highest worst-case user energy efficiency for fairness.
The MNEE method renders the best network energy efficiency performance by sacrificing
the worst-case user energy efficiency. Since the MNDR method does not focus on improv-
ing energy efficiency, the user and network energy efficiency performance is sacrificed for
higher data rates.
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Chapter 5. Energy-Efficient Resource Allocation in SWIPT
Cooperative Networks

Cooperative networks is an another effective way to improve the system performance in

terms of energy efficiency and system reliability. However, the performance of cooperative

networks is usually constrained by the limitations of conventional relay power supplies

such as their locations. Recently, an emerging technique, SWIPT, enables receivers recycle

parts of transmission power for their operations. SWIPT cooperative networks conquers

the constraints for typical cooperative networks and developing an energy efficient resource

allocation scheme in SWIPT networks can further improve energy efficiency.

In this chapter, energy-efficient resource allocation in SWIPT cooperative networks is

studied. Two typical relay structures, decode-and-forward (DF) and amplify-and-forward

(AF), are exploited for optimal relay selection and power allocation in cooperative networks

with a power splitting SWIPT architecture. Non-convex energy efficiency optimization

problems are formulated for both DF and AF relays. A decomposed relay selection and

power allocation scheme is proposed without loss of optimality. Based on the signal-to-noise

ratios (SNRs) at the destination, closed-form expressions of the optimal power splitting

ratios are provided for DF and AF relays, respectively. With the optimal power splitting

ratio and selected relay, a novel power allocation scheme is then proposed and illustrated

based on the property of the simplified optimization problem with power and quality of

service constraints. Numerical results demonstrate that the proposed resource allocation

scheme achieves the maximum energy efficiency with low computational complexity, in

which our relay selection outperforms typical relay selection schemes in terms of energy

efficiency.

5.1 System Model and Problem Formulation

In this section, we present the adopted cooperative wireless network and power split-

ting SWIPT architecture, based on which we formulate the energy efficiency optimization

problems for both the DF and AF relay types.

As shown in Figure 5.1, a cooperative wireless network with one source node, one
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source node

relaysignal

destination node

Figure 5.1. System model.

destination node, and M SWIPT relays is considered. All nodes and relays are each

equipped with one antenna. We assume that no batteries are equipped to accumulate

the transferred power, which provides more flexibility for the deployment of relays [56].

The super-capacitor is used for temporary power holding. We assume that the direct link

between the source and destination nodes is blocked. The CSI of each link can be estimated

through training symbols without error. For the links from the source node to the relays,

called the first links, the energy transfer unit is activated when the training signals are

transmitted from the source and the transferred power is used to process them, after which

the obtained CSI is sent back to the source node. For the links from the relays to the

destination node, the relays forward the training signals to the destination node, collect

the CSIs from the destination node, and then report them back to the source node.

As illustrated in Figure 5.2, the SWIPT architecture adopts a power splitting structure,

which provides a better tradeoff between the information rate and the amount of transferred

power [57, 58]. With the power splitting structure, the i-th relay splits the received signal

into two streams with a power splitting ratio ρi. Specifically, ρi of the received signal
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power is used for power transfer and (1 − ρi) of the received signal power is used for

information processing. An efficiency of η, 0 ≤ η ≤ 1, for ρi of the transferred power is

considered, which is determined by the SWIPT circuit. At the SWIPT relay, due to the

power amplifier inefficiency, α of the effectively transferred power is used to forward the

signal. Since SWIPT relays only work when signals are received and transferred, no static

circuit power consumption at SWIPT relays is considered. At the source node, the power

amplifier efficiency factor is ξ. Because the source node is always processing and exchanging

data with the core network, a static power consumption Pc is taken into account.

We assume that the nodes and relays operate in a half-duplex manner, in which the

source node transmits its signal in the first half slot and the selected SWIPT relay forwards

the signal in the second half slot. We consider a strict delay constraint, under which the

SWIPT relay has to receive and forward the signal to the destination node in the same slot.

The duration of a slot is T . We assume that the transmission only occupies one frequency

band during each time slot, which can avoid interference effectively. Subscripts s, ri, and

d denote the source node, the i-th relay, and the destination node, respectively.

Antenna noise

Signal processing noise

Energy transfer  

unit

Signal 

processing unit

(1 –   ) –   ) 

Figure 5.2. SWIPT relay architecture.

Let Ps and Pri be the transmit powers of the source node and the i-th relay, respectively.

Denote lsri and lrid as the distances between the source node to the i-th relay and between

the i-th relay to the destination node, respectively. Let gs,ri be the channel coefficient from

the source node to the i-th relay and gri,d be the channel coefficient from the i-th relay

to the destination node, both of which are assumed Rayleigh fading. Antenna and signal
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processing noises are modeled as additive white Gaussian noise (AWGN) with zero mean.

Signal Model and Problem Formulation for DF Relay

We first consider the DF relay type where the selected relay decodes the received signal

then forwards the signal to the destination node. The received signal at the i-th DF relay,

yDFri , is given by

yDFri =
√

(1− ρi)Psḡsrixs +
√

1− ρin[a]
ri

+ n[s]
ri
, (5.1)

where xs is the transmitted signal from the source node, n
[a]
ri and n

[s]
ri are the antenna and

signal processing noises at the i-th DF relay, respectively, and ḡsri =
gsri√
lβsri

denotes the

equivalent channel coefficient from the source node to the i-th relay, where β is the path

loss coefficient. Similarly, the received signal at the destination node in the DF relay case

with the i-th relay, yDFdi , is given by

yDFdi =
√
Pri ḡridxs + n

[a]
d + n

[s]
d , (5.2)

where ḡrid =
grid√
lβrid

denotes the equivalent channel coefficient from the i-th DF relay to the

destination node, n
[a]
d is the antenna noise at the destination node, and n

[s]
d is the signal

processing noise at the destination node.

Since the antenna noise power is negligible in comparison with the signal processing

noise power in practice [59, 60], we set both the signal processing noise powers at the i-th

relay and destination node to be σ2 and the antenna noise powers to be 0. Therefore, the

SNR at the i-th relay, γDFri , can be expressed as

γDFri =
(1− ρi)Ps|ḡsri |2

σ2
, (5.3)

where | · | is the absolute value operator, and the SNR at the destination node with the

i-th relay, γDFdi , is

γDFdi =
Pri |ḡrid|2

σ2
. (5.4)
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During the first half slot, the effectively transferred energy at the i-th relay, Eri , is

Eri = ηρi|ḡsri |2Ps ·
T

2
. (5.5)

Because only α of the effectively transferred energy is used to transmit the signal in the

second half slot, the transmit power of the i-th relay is

Pri =
αEri
T/2

= αηρi|ḡsri |2Ps. (5.6)

After we substitute (5.6) into (5.4), the SNR at the destination node is expressed in terms

of Ps as

γDFdi =
αηρi|ḡsri |2Ps|ḡrid|2

σ2
. (5.7)

In DF relay networks, the achievable transmit rate with the i-th relay, RDF
i , is [61]

RDF
i =

1

2
log2 (1 + min {γDFri , γDFdi }). (5.8)

Accordingly, the energy efficiency for DF relay networks with the i-th relay, εDFi , is given

by

εDFi =
RDF
i

1
ξ
Ps + Pc

, (5.9)

where 1
ξ
Ps is the power consumption for signal transmission and Pc is the power consump-

tion for the static circuit at the source node. Note that all the power consumption at the

relay for cooperative transmission is compensated from the transferred power.

The energy efficiency optimization problem for DF relay networks can be formulated
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as

max
i,Ps,ρi

εDFi (5.10)

s.t. : min {γDFri , γDFdi } ≥ γth,∀i, (5.10a)

0 ≤ Ps ≤ Pmax, (5.10b)

0 ≤ ρi ≤ 1,∀i, (5.10c)

where γth is the minimum SNR requirement to guarantee the quality of service (QoS) and

Pmax is the maximum transmit power of the source node.

Signal Model and Problem Formulation for AF Relay

In the AF relay case, the selected relay directly amplifies the received signal then

forwards the signal to the destination node. The received signal at the i-th AF relay, yAFri ,

is given by

yAFri =
√

(1− ρi)Psḡsrixs +
√

1− ρin[a]
ri

+ n[s]
ri
, (5.11)

which is the same as in the DF relay case. The received signal at the destination node

through the i-th relay, yAFdi , is given by

yAFdi =
√
Pri ḡrid

yAFri√
(1− ρi)Ps|ḡsri |2 + σ2

+ n
[a]
d + n

[s]
d , (5.12)

where
√

(1− ρi)Ps|ḡsri |2 + σ2 is the normalizing factor to guarantee that the relay trans-

mit power satisfies the power constraint. With the antenna noise neglected and some

mathematical manipulation, yAFdi can be expressed as

yAFdi =

√
(1− ρi)PsPri ḡsri ḡridxs√
(1− ρi)Ps|ḡsri |2 + σ2

+

√
Pri ḡridn

[s]
ri√

(1− ρi)Ps|ḡsri |2 + σ2
+ n

[s]
d . (5.13)
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The first term in (5.13) is the desired signal and the rest two are noises. With (5.6), the

SNR at the destination node in the AF relay case with the i-th relay, γAFdi , is

γAFdi =

(1−ρi)PsPri |ḡsri |
2|ḡrid|

2

(1−ρi)Ps|ḡsri |2+σ2

Pri |ḡrid|
2σ2

(1−ρi)Ps|ḡsri |2+σ2 + σ2

=
αηρi(1− ρi)|ḡsri |4|ḡrid|2P 2

s

αηρi|ḡsri |2|ḡrid|2Psσ2 + (1− ρi)|ḡsri |2Psσ2 + σ4
. (5.14)

In AF relay networks, the achievable transmit rate with the i-th relay, RAF
i , is

RAF
i =

1

2
log2 (1 + γAFdi ). (5.15)

The energy efficiency for AF relay networks with the i-th relay, εAFi , is expressed as

εAFi =
RAF
i

1
ξ
Ps + Pc

(5.16)

and the energy efficiency optimization problem for AF relay networks is formulated as

max
i,Ps,ρi

εAFi (5.17)

s.t. : γAFdi ≥ γth,∀i, (5.17a)

0 ≤ Ps ≤ Pmax, (5.17b)

0 ≤ ρi ≤ 1,∀i. (5.17c)

It is obvious that the energy efficiency optimization problems (5.10) and (5.17) are

multi-variable and non-convex. Although the optimal solutions can be obtained through the

computation of energy-efficient power allocation at each relay, the complexity is prohibitive

in practice. Therefore, we analyze the problems and propose individual relay selection

schemes and power allocation to simplify the problems. We first derive the optimal power

splitting ratios. With different levels of CSI knowledge, we propose different relay selection
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schemes for the DF and AF cases. Moreover, we efficiently solve the power allocation

problems without iterative algorithms.

5.2 Proposed Resource Allocation

Resource Allocation for DF Relay

In this section, the energy efficiency optimization problem is simplified into relay se-

lection and energy-efficient power allocation in the DF relay case. The corresponding relay

selection scheme and power allocation method are derived and discussed.

To simplify the joint relay selection and power allocation problems, we have the fol-

lowing theorem in DF relay case.

Proposition 5.2.1. or the joint SWIPT DF relay selection and power allocation problem

(5.10), the relay selection can be decoupled from the power allocation without loss of opti-

mality. The maximum energy efficiency, εDF∗, can be obtained at the i-th DF relay with

the highest equivalent channel-to-noise ratio (CNR), ζi = min { (1−ρi)|ḡsri |
2

σ2 ,
αηρi|ḡsri |

2|ḡrid|
2

σ2 }.

Proof. See Appendix C.1.

With Proposition 5.2.1, the DF relay selection can be carried out without consideration

of the power allocation, which simplifies the original problem (5.10). Designing the relay

selection scheme based on the CNR is called the best CNR principle in this paper.

DF Relay Selection

In DF relay networks, according to (5.8) and the best equivalent CNR principle, the

index of the selected relay is

i∗ = arg max
i
{ζi} = arg max

i
{min {ζDFri , ζDFd }}, (5.18)

where ζDFri =
(1−ρi)|ḡsri |

2

σ2 is the CNR at the i-th DF relay and ζDFdi =
αηρi|ḡsri |

2|ḡrid|
2

σ2 is the

CNR at the destination through the i-th DF relay. Since the splitting ratio ρi influences

the values of ζDFri and ζDFdi , the optimal splitting ratio ρ∗i is determined according to the

following proposition.
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Proposition 5.2.2. The optimal splitting ratio ρ∗i for DF relay selection is obtained when

ζDFri = ζDFdi , which is ρ∗i = 1
1+αη|ḡrid|

2 .

Proof. See Appendix C.2.

According to Proposition 5.2.2, the CNR at the i-th relay can be rewritten as

ζDFri =
αη

σ2

|ḡsri|2|ḡrid|2

1 + αη|ḡrid|2
(5.19)

and the index of the selected DF relay is

i∗ = arg max
i
{ |ḡsri |

2|ḡrid|2

1 + αη|ḡrid|2
}. (5.20)

With full knowledge of CSI, the selected DF relay based on (5.20) is optimal, which is

called full CSI relay selection (FRS).

Relay Selection with First Link CSI

Note that obtaining full knowledge of CSI involves huge overhead for periodic reporting,

especially for the CSI of the second link. Therefore, we consider the DF relay selection with

partial knowledge of CSI in the following to reduce overhead. Since there are direct links

between the source node and relays, the first link CSI is easy to be collected at the source

node. In such a case, only the first link CSI, i.e., |gsri |2, ∀i, with distance information is

assumed to be known.

In practice, relays are commonly deployed and selected between the source and des-

tination nodes. The distance lsri and lrid are usually negatively correlated, which results

in the negative correlation between |gsri |2 and |grid|2. According to (5.19), the CNR, ζDFri ,

increases with the increasing |gsri |2 and |grid|2. Therefore, when only |gsri |2,∀i is known,

larger |gsri |2 or smaller |gsri |2 may both improve ζDFri . In such a case, how to select the best

relay with only the information of |gsri|2,∀i needs to be analyzed.

Considering the distributions of |gsri |2, we analyze the expectation of CNR, based on

which we derive the relay selection scheme for the case with partial knowledge of CSI.
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In the Rayleigh fading channel model, when distance information is known, |ḡrid|2

follows the exponential distribution with rate parameter λ1 = lβsri . With the known |ḡsri|2,

we have the following proposition.

Proposition 5.2.3. The expectation of the CNR at the i-th relay approximates

E[ζDFri ] =
λ1|ḡsri |2

(λ1 + αη)2
+
α2η2|ḡsri |2

(λ1 + αη)3
. (5.21)

Proof. See Appendix C.3.

In (5.21), E[·] is the expectation operator. Since E[ζDFri ] is an increasing function of

|ḡsri |2. The maximum |ḡsri |2 renders the best performance. Therefore, when |ḡsri |2 is known,

the index of the selected DF relay is

i∗ = arg max
i
{|ḡsri |2}, (5.22)

which is called the first link relay selection (FLRS).

Energy-efficient Power Allocation for DF Relay

With the selected DF relay i and corresponding optimal power splitting ratio, ρ∗i , the

energy efficiency optimization problem (5.10) is simplified as

max
Ps

εDFi =
1
2

log2(1 + ζDFri Ps)

Ps + Pc
(5.23)

s.t. : ζDFri Ps ≥ γth, (5.23a)

0 ≤ Ps ≤ Pmax. (5.23b)

From (5.23), it is obvious that the problem is a fractional non-convex optimization

problem. Even though the Dinkelbach’s method [45] can be used to transform the fractional

problem into a linear form, the number of iterations in the Dinkelbach’s method can be

large. Therefore, we derive a more straightforward One-step Power Allocation (OPA)

method by analyzing the property of the problem.
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Figure 5.3. Energy efficiency versus transmit power within feasible regions I, II, and III.

We define Pmin as the minimum transmit power to guarantee the QoS constraint in

(5.23a), which is Pmin = γth
ζDFri

in the DF relay case. Then we have the following proposition

regarding the optimal solution to (5.23).

Proposition 5.2.4. The objective function, εDFi , with respect to (w.r.t.) the transmit

power PDF
s , is a unimodal function and there exists a unique global maximizer P̂s

DF
, which

is the solution to the following equation

ζDFri (Pc + P̂s
DF

)

1 + ζDFri P̂s
DF

= ln (1 + ζDFri P̂s
DF

). (5.24)

Proof. See Appendix C.4.

Since Pmin and Pmax are the minimum and maximum allocated powers to satisfy the

QoS requirement and transmit power constraint, respectively, the optimal transmit power

in the feasible region [Pmin, Pmax] is

P ∗s = max {Pmin,min {Pmax, P̂s
DF
}}. (5.25)
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All possible cases are illustrated in Figure 4.4, in which P̂s
DF

is the solution to (5.24).

If Pmax ≤ P̂s
DF

, the feasible transmit power falls in Region I, in which εDFi is strictly

increasing and P ∗s = Pmax renders the maximum εDF∗i . If Pmin < P̂s
DF

< Pmax, the

feasible transmit power falls in Region II and the optimal transmit power P ∗s is equal to

P̂s
DF

that renders the maximum εDF∗i . If P̂s
DF
≤ Pmin < Pmax, the feasible transmit power

falls in Region III, in which εDFi is strictly decreasing and P ∗s = Pmin renders the maximum

εDF∗i . Therefore, through OPA method, the optimal transmit power is obtained by (5.25).

Resource Allocation for AF Relay

In this section, the AF relay energy-efficient resource allocation problem is decomposed

into relay selection and energy-efficient power allocation. The relay selection scheme and

energy-efficient OPA method are derived and discussed.

According to Proposition 5.2.1, we similarly have Lemma 5.2.1 for the AF relay case

as follows.

Lemma 5.2.1. For the joint SWIPT AF relay selection and power allocation problem

(5.17), the relay selection can be decoupled from the power allocation without loss of opti-

mality. The maximum energy efficiency, εAF∗, can be obtained at the AF relay with the

highest CNR.

With Lemma 5.2.1, the AF relay selection can be carried out without consideration of

the power allocation, which decomposes the original problem (5.17).

AF Relay Selection

Similar to the DF relay case, the AF relay selection scheme is also based on the best

CNR principle. With no signal decoding process at the AF relay, the AF relay selection

scheme is only based on the CNR at the destination, i.e.,

i∗ = arg max
i
{ζAFdi }, (5.26)
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where ζAFdi is the CNR at the destination through the i-th AF relay, which is

ζAFdi =
αηρi(1− ρi)|ḡsri |4|ḡrid|2Ps

αηρi|ḡsri |2|ḡrid|2Psσ2 + (1− ρi)|ḡsri |2Psσ2 + σ4
. (5.27)

Given that σ2 � Ps in practice, (5.27) can be rewritten as

ζAFdi =
αηρi(1− ρi)|ḡsri |2|ḡrid|2

αηρi|ḡrid|2σ2 + (1− ρi)σ2
. (5.28)

For (5.28), we have the following proposition.

Proposition 5.2.5. The optimal splitting ratio ρ∗i for AF relay selection is

ρ∗i =
1

1 +
√
αη|ḡrid|

. (5.29)

Proof. See Appendix C.5.

Substituting (5.29) into (5.28), we obtain the index of the selected AF relay as

i∗ = arg max
i
{ |ḡsri |2|ḡrid|2

(1 +
√
αη|ḡrid|)2

}. (5.30)

With full knowledge of CSI, the FRS of the AF relay case is optimal based on (5.30).

With partial knowledge of CSI, similar to the DF relay case, the FLRS of the AF relay

case is

i∗ = arg max
i
{|ḡsri |2} (5.31)

when only |ḡsri |2 is known.

Energy-efficient Power Allocation for AF Relay

With the selected AF relay i and corresponding optimal power splitting ratio ρ∗i , the

energy efficiency optimization problem for the AF relay case, similar to that of the DF
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relay case, can be simplified as

max
Ps

εAFi =
1
2

log2(1 + ζAFdi Ps)

Ps + Pc
(5.32)

s.t. : ζAFdi Ps ≥ γth, ∀i, (5.23a)

0 ≤ Ps ≤ Pmax. (5.23b)

Therefore, the same methodology can be adopted to obtain the optimal transmit power,

P ∗s , that is

P ∗s = max {Pmin,min {Pmax, P̂s
AF
}}. (5.33)

where Pmin = γth
ζAFdi

is the minimum transmit power in the AF relay case and P̂s
AF

is the

solution to
ζAFdi (Pc + P̂s

AF
)

1 + ζAFdi P̂s
AF

= ln (1 + ζAFdi P̂s
AF

). (5.34)

With the proposed AF relay selection scheme and energy-efficient OPA method, the

optimal relay and transmit power for the best energy efficiency in AF relay networks can

be obtained with low computational complexity.

5.3 Performance Analysis

In this section, we analyze and compare the performance of the SWIPT cooperative

wireless networks with DF and AF relays. Besides, we extend the SWIPT cooperative

wireless networks with DF or AF relays to a hybrid SWIPT cooperative wireless network

with both DF and AF relays.

Performance Comparison

According to the derived closed-form expressions of the optimal power splitting ratios in

Theorems 2 and 4 for DF and AF relays, respectively, the corresponding CNR expressions

for DF and AF relays are

ζDFdi =
αη

σ2

|ḡsri|2|ḡrid|2

1 + αη|ḡrid|2
(5.35)
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and

ζAFdi =
αη

σ2

|ḡsri |2|ḡrid|2

(1 +
√
αη|ḡrid|)2

, (5.36)

respectively.

From (5.35) and (5.36), it is obvious that the denominator of (5.36) is larger than that

of (5.35), which is introduced by the amplified noise from the source node to the AF relay.

Therefore, with the same power allocation, the AF relay renders lower energy efficiency

performance than the DF relay. Besides, since only the transferred power is used for

cooperative transmission at the selected relay in the proposed SWIPT cooperative wireless

networks, the transferred power to forward the information is limited, which implies that

the amplification of noise is also limited. Therefore, the performance difference between DF

and AF relays is small. In comparison with DF relays, AF relays are preferred in SWIPT

wireless networks because the performance difference of AF and DF relays is small but the

structure of AF relays are much simpler than DF relays from practical perspective.

Hybrid SWIPT Cooperative Wireless Network Extension

In a hybrid SWIPT cooperative wireless network, both DF and AF relays exist. The

relay selection between DF and AF relays cannot be determined through directly comparing

their CNRs. To avoid calculating and comparing the energy efficiency with each relay, we

can separate the SWIPT relays into DF and AF relay groups. In each group, we use the

proposed resource allocation schemes to determine the best energy efficiency. Then, the

resource allocation resulting in a better energy efficiency among the two is chosen as the

optimal solution.

5.4 Numerical Results

In this section, we present simulation results to demonstrate the performance of the

proposed schemes in a SWIPT cooperative network. The distance between the source and

destination is 60 m. The SWIPT relays are randomly deployed following a homogeneous

Poison point process [14] with intensity λ = 0.0005/m2, which implies the average number

of relays is 6 with a cell radius of 60 m. Rayleigh fading is used in the simulation. The
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Table 5.1. Simulation Parameters.

Parameter Value
Channel bandwitdth 10 kHz
Cell radius 60 m
Average number of
relays

6 /cell

Portion coefficient α 0.9
Efficiency coefficient η 1
SINR threshold 0 dB
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Figure 5.4. Energy efficiency vs. power splitting ratio ρi with DF relay case.

path loss model is 38.46 + 20 log l dB [62]. The main simulation parameters are listed in

Table 5.1.

In Fig. 5.4 and Fig. 5.5, the energy efficiency performance is illustrated with different

power splitting ratios in both the DF and AF relay cases. Similarly to [56], to reveal

the relationship between the energy efficiency and power splitting ratio clearly, parameters

are normalized in this simulation and only the selected relay i is considered. Only in

this simulation, the transmit power Ps is 1 W, the static circuit power Pc is 0.01 W, the

distances lsri and lrid are normalized to 1 m, and the noise power is scaled to be 0.01 W [56].
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Figure 5.5. Energy efficiency vs. power splitting ratio ρi with AF relay case.

In Fig. 5.4, the energy efficiency performance in the DF relay case is determined by the

minimum performance of the first link that is from the source node to the relay and the

second link that is from the relay to the destination node, which is consistent with (5.8).

From Fig. 5.5, it is obvious that the energy efficiency with the approximation of SNR in

the proposed relay selection is nearly the same as that with the exact SNR in the AF relay

case. Furthermore, since the means of channel fading gain of the first and the second links

over 100 runs are 1.1032 and 0.9824, respectively, the optimal splitting ratios of DF and

AF relays are 0.5044 and 0.5022, respectively, according to Theorems 2 and 4, which are

verified in the figures.

In Fig. 5.6, the relationship between the energy efficiency and the distance between

the source node and the selected relay i, lsri , is shown. Since no direct link between the

source node and the destination node is assumed, the relay is deployed with 15 m ≤ lsri ≤

45 m in this simulation. As shown in Fig. 4.6, the network achieves the minimum energy

efficiency when the selected relay is in the middle of the source node and the destination

node. When the selected relay approaches towards the source node or the destination node,
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Figure 5.6. Energy efficiency vs. distance between the source node and the relay in both
DF and AF relay cases, where Pc = 10 dBm, Pmax = 46 dBm, and σ2 = -125 dBm.

the energy efficiency of the network increases gradually. This is because when the selected

relay is close to the source node, |ḡsri | is larger than |ḡrid| and thus the CNR of the first

link is larger than that of the second link. In this case, the power splitting ratio is adjusted

towards 1 to transfer more power for the transmission of the second link. When the selected

relay is close to the destination node, |ḡsri | and the CNR of the first link are small. The

power splitting ratio is adjusted towards 0 to increase the rate of the first link for the DF

relay and reduce the power of the amplified noise for the AF relay. This phenomenon is

similar to the throughput performance of the time splitting SWIPT relay networks in [63].

In Fig. 4.6, the energy efficiency in the DF relay case is slightly larger than that in the AF

relay case, which is consistent with our analysis.

In Figure 5.7, the energy efficiency performance of different relay selection schemes is

illustrated in both the DF and AF relay cases. It is obvious that the FRS is better than

the FLRS and SLRS schemes in both cases. Before Pmax reaches 9 dBm with full and

partial knowledge of CSI, the energy efficiency remains 0, since the requirement on SNR
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Figure 5.7. The energy efficiency performance of different relay selection schemes with full and
partial knowledge of CSI, where Pc = 10 dBm and σ2 = -125 dBm.

cannot be satisfied within the given Pmax. After that, the energy efficiency increases with

the increase of Pmax. When Pmax is larger than 27.6 dBm, the increase of Pmax no longer

provides energy efficiency benefit. As shown in Figure 5.7, the DF relay achieves better

performance than the AF relay.

In Fig. 5.8, the energy efficiency of the proposed OPA method is compared with that of

the data rate maximization (DRM) method that allocates powers to maximize the data rate

and the Dinkelbach’s method in the DF and AF relay cases with different relay selection

schemes. The tolerance of the Dinkelbach’s method is 10−3. In Fig. 5.8, all the methods

are shown to achieve the same energy efficiency, data rate, and power consumption when

Pmax is smaller than 15 dBm. In this case, the available power region for the proposed

OPA method is Region I illustrated in Fig. 5.3, which results in Pmax as the optimal power.

Meanwhile, the DRM method also assigns Pmax to achieve the maximum data rate. The

Dinkelbach’s method obtains the same performance through iterative calculations. When

Pmax keeps increasing, our proposed OPA method and the Dinkelbach’s method still achieve

the best energy efficiency but the energy efficiency of the DRM method decreases. This
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Figure 5.8. Energy efficiency versus maximum transmit power with different power allocation
methods and relay selections, where Pc = 10 dBm and σ2 = -125 dBm.
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Figure 5.10. Comparison of OES and OPA with FRS, where σ2 = -125 dBm.

is because that the proposed OPA method and the Dinkelbach’s method keep the optimal

power but the DRM power allocation method still adopts Pmax that results in increasing

data rate but decreasing energy efficiency, as shown in Fig. 5.8 and 5.9. Therefore, the

DRM method deteriorates the energy efficiency of the network. As shown in Fig. 5.8, our

proposed OPA method renders the same performance as the Dinkelbach’s method without

iterative calculations and outperforms DRM method.

In Fig. 5.10, the energy efficiency of the optimal exhaustive search (OES) and that

of our proposed decomposed OPA with FRS scheme are compared. The OES scheme

exhaustively calculates the energy efficiency with each SWIPT relay and choose the best

result, which is the optimal solution to the formulated relay selection and power allocation

problem. As shown in Fig. 5.10, when the full CSI is available, our proposed decomposed

OPA with FRS scheme achieves the same performance as the optimal solution, which

verifies the optimality of our scheme. With the different total static power consumptions

of the source and destination nodes, the energy efficiency performance degrades with the

increasing static power consumption, but the optimality of our proposed scheme still holds.
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Figure 5.11. Energy efficiency with different relay selection schemes with partial knowledge
of CSI, where Pc = 10 dBm and Pmax = 46 dBm.

In Fig. 5.11, different relay selection schemes with partial knowledge of CSI are com-
pared in the DF and AF relay cases. As shown in Fig. 5.11, the FLRS scheme renders
better energy efficiency than the distance based relay selection (DBRS) that selects the
relay with the shortest source to relay distance, and the random relay selection (RRS) that
randomly selects the relay without any further information. The FLRS achieves the best
energy efficiency performance and the RRS renders the lowest energy efficiency. Since only
distance is considered, DBRS renders worse performance than the proposed FLRS scheme.
As the noise power increases, all the relay selection schemes in both the DF and AF relay
cases experience degraded energy efficiency performance.
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Chapter 6. Conclusions

In this dissertation, we have focused on designing the spectrum- and energy-efficient

resource allocation schemes in various modern wireless communication networks.

In Chapter 2, cascaded precoders combining precoding and power allocation are dis-

cussed to enhance the throughput of the two-tier heterogeneous networks. With the de-

signed outer precoder, the cross-tier interference from SBSs to MUEs is eliminated. Mean-

while, an inner precoder is derived to improve the performance of the second tier, which

allocates the powers of SBSs optimally. Moreover, an SBS selection algorithm is presented

to reduce the computational complexity of the proposed scheme. The system performance

under channel estimation is also discussed. Simulation results illustrate the effectiveness of

the cascaded precoders.

In Chapter 3, mode selection, subcarrier assignment, and power allocation are jointly

optimized to improve the individual energy efficiency in a D2D enabled network. Compared

with the AP that centrally adjusts transmit powers among different users in traditional

cellular networks, D2D pairs are more independent because each user can only use its

own battery. Therefore, the individual energy efficiency with D2D communications is

emphasized in our paper. For a limited number of users, an LDB method is proposed. To

further reduce the computational complexity with a large number of users, an LCD method

is derived. Simulation results illustrate the performance of the proposed methods in terms

of energy efficiency from user perspective.

In Chapter 4, energy-efficient relay selection and power allocation are studied in SWIPT

cooperative wireless networks with DF and AF relays. Non-convex energy efficiency opti-

mization problems are formulated for both DF and AF relay cases. A decomposed relay

selection and power allocation scheme is derived without loss of optimality. Given the

CNRs at the destination node, the closed-form expressions of the optimal power splitting

ratios are derived. With the optimal power splitting ratios, relay selection schemes with

full and partial knowledge of CSI are developed, respectively. Based on the property of the
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simplified optimization problem, a simple closed-form power allocation scheme is adopted

in both DF and AF relay networks. Furthermore, the performance difference between

DF and AF relays is discussed. In addition, simulation results verify our analyses and

demonstrate the optimality of our proposed resource allocation scheme in terms of the

energy efficiency in SWIPT cooperative wireless networks. The proposed scheme achieves

better energy efficiency in comparison with typical relay selection schemes and renders the

same energy efficiency performance as the optimal exhaustive search scheme but with lower

computational complexity.

In Chapter 5, we investigate the robust resource allocation problem for heterogeneous

vehicular communications with imperfect channel estimation. NOMA is adopted in the

network to increase spectral efficiency. Considering the imperfect channel estimation, we

formulate a chance-constrained optimization problem to maximize the throughput of V2I

links and retain the reliability requirements of V2V and F2FS links at the same time. To

simplify and decouple the joint power and channel assignment problem, we derive a cas-

caded Hungarian channel assignment algorithm. With the assigned channels, we transform

the chance constraints into deterministic ones through the approximation of non-central

Chi-square distribution and derive the corresponding feasible region and optimal power al-

location. In our simulation, we illustrate the effectiveness and superiority of the proposed

resource allocation scheme.

This dissertation is a scientific work to find and design highly efficient resource allo-

cation for wireless communications. The future research would be extended to the more

advanced allocation schemes design and wireless networks applications.
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Appendix A. Proofs for Chapter 3

A.1 Proof of Proposition 3.3.1

Rearranging (3.9a) and (3.9b), we obtain

P v
i,i′ 6

P v
max − δσ2

gv
i,i′,j

2
, (A.1)

which limits P v
i,i′ to guarantee successful SIC at the VU receiver. According to [35], the

CDF of 2-degree Chi-square distribution, X 2
2 , can be used to approximate the CDF of

2-degree non-central Chi-square distribution with non-centrality parameter λ, that is

Pr(X 2
2,nc 6 x)

≈Pr(X 2
2 6

x

1 + λ2/2
)

=1− e(−
x

1+λ2/2
2

). (A.2)

With the substitution of (A.2) into (3.12) and (3.13) and some mathematical manipulations,

the power allocation should satisfy

P v
i,i′ >

B1

A1

P f
m +

C1

A1

(A.3)

and

P v
i + P v

i,i′ 6
B2

A2

P f
m +

C2

A2

. (A.4)

Because C1 > 0, C2 < 0, and P v
i + P v

i,i′ > P v
i,i′ ,

B2

A2
> B1

A1
is necessary to ensure a

feasible region. With B1

A1
> 0, (A.1), and (A.3), P f

m cannot go beyond
A1(P vmax− δσ2

gv
i,i′,j

)−2C1

2B1
.

Define P̄ f
max as min{

A1(P vmax− δσ2

gv
i,i′,j

)−2C1

2B1
, P f

max}, we have P f
m 6 P̄ f

max. According to (A.4),

P v
i + P v

i,i′ 6
B2

A2
P̄ f
max + C2

A2
needs to be satisfied.

In consideration of (3.8a), if B2

A2
P̄ f
max + C2

A2
6 P v

max, we have the feasible power region

in Case I; if B2

A2
P̄ f
max + C2

A2
> P v

max, P
v
i + P v

i,i′ 6 P v
max should be considered and we have the
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feasible power region in Case II, which completes the proof.

A.2 Proof of Proposition 3.3.2

Observing (3.9), we clearly note that the objective function of (3.9) monotonically

increases with increasing P v
i and decreases with increasing P v

i,i;. Therefore, given P f
m and

(A.3), P v
i,i′ should reside on the lower boundary for a smaller P v

i,i′ . Similarly, P v
i +P v

i,i′ must

reside on the upper boundary for a larger P v
i given P v

i,i′ .

Therefore, we have in Case I

P v
i,i′ =

B1

A1

P f
m +

C1

A1

(A.5)

and

P v
i + P v

i,i′ =
B2

A2

P f
m +

C2

A2

. (A.6)

The objective function of (3.9) can be expressed as

Rv
i = log2 (1 +

[(B2

A2
− B1

A1
)P f

m + C2

A2
− C1

A1
]gvi,j

(B1
A1
P f
m + C1

A1
)gvi,j + σ2

). (A.7)

Because the derivative of Rv
i with respect to P f

m is greater than 0 in the feasible region, Rv
i

increases with increasing P f
m in the feasible region. Therefore, the optimal P f

m for Case I is

P f∗
m = P̄ f

max. Substituting P f∗
m into (A.5) and (A.6), we can obtain P v∗

i,i′ and P v∗
i for Case I

as

P v∗
i,i′ =

B1

A1

P̄max
f +

C1

A1

and

P v∗
i = (

B2

A2

− B1

A1

)P̄ f
max + (

C2

A2

− C1

A1

),

respectively.

In Case II, when B2

A2
P f
m + C2

A2
< P v

max, the objective function of (3.9) is the same as

(A.7) and increases with increasing P f
m. When B2

A2
P f
m + C2

A2
> P v

max, the objective function
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of (3.9) can be rewritten as

R
′v
i = log2 (1 +

(P v
max − B1

A1
P f
m − C1

A1
)gvi,j

(B1
A1
P f
m + C1

A1
)gvi,j + σ2

), (A.8)

which decreases with increasing P f
m. Therefore, the maximum of (3.9) is reached when

B2

A2
P f∗
m + C2

A2
= P v

max is satisfied for Case II. Specifically, P f∗
m = A2

B2
P v
max − C2

B2
. Similar to

Case I, P v∗
i,i′ and P v∗

i for Case II are

P v∗
i,i′ =

B1

A1

(
A2

B2

P v
max −

C2

B2

) +
C1

A1

and

P v∗
i = P v

max −
B1

A1

(
A2

B2

P v
max −

C2

B2

)− C1

A1

,

respectively.

Combining the two cases, we complete the proof.
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Appendix B. Proofs for Chapter 4

B.1 Proof of Proposition 4.2.1

To solve a max-min problem, we would like to find out the optimal allocation for the

worst-case user k. Therefore, the optimization problem (4.8) can be rewritten as

ε∗ = max
ak,Pk,mk∈S

min
k

Rk(ak,Pk,mk)

Pcon,k(ak,Pk,mk)

= min
k

Rk(ak
∗,Pk

∗,m∗k)

Pcon,k(ak
∗,Pk

∗,m∗k)
, (B.1)

where S denotes the feasible region of (4.8a)-(4.8f), {ak
∗,Pk

∗,m∗k}, and ε∗ are the optimal

solution and energy efficiency of problem (4.8), respectively. According to Proposition

2.1 [44], the fractional programming problem

ε∗ = min
k

Rk(ak
∗,Pk

∗,m∗k)

Pcon,k(ak
∗,Pk

∗,m∗k)

achieves the optimal solution if and only if

min
k
{Rk(a

∗
k,P

∗
k,m

∗
k)− ε∗Pcon,k(a∗k,P∗k,m∗k)} = 0. (B.2)

Given (B.1), the optimal solution to the original problem (4.8) are achieved if and only if

(B.2) holds, which completes the proof.

B.2 Proof of Proposition 4.2.2

In (4.12), the convexity of (4.12) with respect to ak,uk, and ξ can be analyzed with

mk = 1 and mk = 0 separately. When mk = 1, D2D user pair k is in D2D mode. Therefore,

the data rate and power consumption are simplified to Rk =
∑N

n=1 ak,nB0 log2(1 +
uk,ngk,n
ak,nσ2 )

and Pcon,k =
∑N

n=1 uk,n +Pcir,k, respectively. According to [64], if function f(u) is concave,

af(u/a) is concave in (u, a). Since B0 log2(1 +
uk,ngk,n

σ2 ) is concave, ak,nB0 log2(1 +
uk,ngk,n
ak,nσ2 )

is concave in (uk,n, ak,n). The summation
∑N

n=1 ak,nB0 log2(1 +
uk,ngk,n
ak,nσ2 ) is still concave.

The power consumption, Pcon,k =
∑N

n=1 uk,n + Pcir,k, is affine with respect to uk,n and
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the function −εik(
∑N

n=1 uk,n + Pcir,k) remains affine, and is convex and concave. Therefore,∑N
n=1 ak,nB0 log2(1 +

uk,ngk,n
ak,nσ2 )−εik(

∑N
n=1 uk,n+Pcir,k) is concave. Because the superlevel set

of a concave function is convex [64], constraints (4.12e) and (4.12f) are convex for m = 1.

Similarly, constraints (4.12e) and (4.12f) are also convex, when m = 0. Therefore, we

conclude that (4.12e), and (4.12f) result in convex set constrains.

Additionally, it is obvious that the objective function is an affine function and con-

straints (4.12a), (4.12b), (4.12c), and (4.12d) are all linear constraints. The optimization

problem (4.12) is therefore a convex problem, which complete the proof.

B.3 Proof of Proposition 4.2.3

Define Rayleigh fading coefficients of the user pair in D2D mode and in cellular mode

as hdm and hcm, respectively. Then the channel gains of the user pair in D2D mode and

cellular mode are X = d−αdm|hdm|2 and Y = d−αcm |hcm|2, respectively, where | · |2 is the norm

operator. Since hdm and hcm follow Rayleigh distribution, X and Y follow exponential

distribution with parameters ω = dαdm and υ = dαcm. Let Z = Y − X. The probability

P(Z < 0) is

P(Z < 0) = P(Y < X)

=

∫ ∞
0

P(Y < x)P(X = x)dx

=

∫ ∞
0

(1− e−υx)ωe−ωxdx

=
υ

ω + υ
.

Therefore, P(Z < 0) > q when

dcm > (
q

1− q

1
α
)ddm,

which completes the proof.
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B.4 Proof of Proposition 4.2.4

Define ∆P as a small positive amount of power. We divide the proof into two parts.

(a) Pk,tot > P ∗k,tot

To prove that energy efficiency, εk, is decreasing when Pk,tot > P ∗k,tot, we show εk(P
∗
k,tot+

2∆P ) < εk(P
∗
k,tot + ∆P ).

Denote ∆R(∆P ) = R̂k(P
∗
k,tot + ∆P ) − R̂k(P

∗
k,tot) and ∆R̂(∆P ) = R̂k(P

∗
k,tot + 2∆P ) −

R̂k(P
∗
k,tot + ∆P ). Define gn =

gk,n
σ2 and assume gn is ordered, i.e., log2(1 + g1(P ∗k,1 + ∆P ))−

log2(1 + g1P
∗
k,1) ≤ . . . ≤ log2(1 + gN(P ∗k,N + ∆P )) − log2(1 + gNP

∗
k,N). With ∆P power

increase, ∆P should be allocated to subcarrier N to maximize the data rate. In this case,

R̂k(P
∗
k,tot) and R̂k(P

∗
k,tot + ∆P ) are

R̂k(P
∗
k,tot) =

N∑
i=1

B0 log2(1 + giP
∗
k,i)

and

R̂k(P
∗
k,tot + ∆P )

=
N−1∑
i=1

B0 log2(1 + giP
∗
k,i) +B0 log2(1 + gN(P ∗k,N + ∆P )),

respectively. So, we have ∆R(∆P ) = B0 log2(1 + gN(P ∗k,N + ∆P ))−B0 log2(1 + gNP
∗
k,N).

With 2∆P of power increase, 2∆P can be allocated over one subcarrier or two different

subcarriers. Therefore, ∆R̂(∆P ) can be represented as

∆R̂(∆P ) = B0 log2(1 + gN(P ∗k,N + 2∆P ))

−B0 log2(1 + gN(P ∗k,N + ∆P )) (B.3)
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or

∆R̂(∆P )

=B0 log2(1 + gN(P ∗k,N + ∆P )) +B0 log2(1 + gN−1(P ∗k,N−1 + ∆P ))

−B0 log2(1 + gN(P ∗k,N + ∆P ))−B0 log2(1 + gN−1P
∗
k,N−1). (B.4)

With (B.3), because f(x) = log2(1 + gNx) is a concave function, we have

∆R̂(∆P )−∆R(∆P )

=B0 log2(1 + gN(P ∗k,N + 2∆P )) +B0 log2(1 + gNP
∗
k,N)

−2B0 log2(1 + gN(P ∗k,N + ∆P )) < 0. (B.5)

With (B.4), we have ∆R̂(∆P ) = B0 log2(1+gN−1(P ∗k,N−1+∆P ))−B0 log2(1+gN−1P
∗
k,N−1).

Note that B0 log2(1+gN−1(P ∗k,N−1+∆P ))−B0 log2(1+gN−1P
∗
k,N−1) ≤ B0 log2(1+gN(P ∗k,N+

∆P ))−B0 log2(1+gNP
∗
k,N), i.e., ∆R̂(∆P ) ≤ ∆R(∆P ). Therefore, we always have ∆R̂(∆P ) ≤

∆R(∆P ).

Since P ∗k,tot is the optimal solution for ε∗k, we have

R̂(P ∗k,tot)/P
∗
k,tot > R̂(P ∗k,tot + ∆P )/(P ∗k,tot + ∆P ). (B.6)

Substituting R̂(P ∗k,tot + ∆P ) = R̂(P ∗k,tot) + ∆R(∆P ) into (B.6) with mathematical manip-

ulations, we obtain R̂k(P
∗
k,tot + ∆P )/(P ∗k,tot + ∆P ) > ∆R(∆P )/∆P. Because ∆R̂(∆P ) ≤

∆R(∆P ), we have R̂k(P
∗
k,tot + ∆P )/(P ∗k,tot + ∆P ) > ∆R̂(∆P )/∆P.

Since a
b
> c

d
results in a

b
> a+c

b+d
, for a, b, c, d ≥ 0, and R̂k(P

∗
k,tot + 2∆P ) = R̂k(P

∗
k,tot +

∆P )+∆R̂(∆P ), we obtain R̂k(P
∗
k,tot+∆P )/(P ∗k,tot+∆P ) > R̂k(P

∗
k,tot+2∆P )/(P ∗k,tot+2∆P ).

Therefore, εk is decreasing when Pk,tot > P ∗k,tot.

(b) Pk,tot < P ∗k,tot

Denote ∆R(−∆P ) = R̂k(P
∗
k,tot)− R̂k(P

∗
k,tot−∆P ) and ∆R̂(−∆P ) = R̂k(P

∗
k,tot−∆P )−
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R̂k(P
∗
k,tot − 2∆P ). We know that

R̂(P ∗k,tot)P
∗
k,tot

>(R̂(P ∗k,tot)−∆R(−∆P ))/(P ∗k,tot −∆P ). (B.7)

Because a
b
> a−c

b−d leads to a
b
< c

d
, for a, b, c, d ≥ 0, and

R̂(P ∗k,tot)

P ∗k,tot
>

R̂k(P ∗k,tot)−∆R(−∆P )

P ∗k,tot−∆P
, we have

R̂(P ∗k,tot −∆P )/(P ∗k,tot −∆P ) < ∆R(−∆P )/∆P.

The same procedure can be conducted as in (a) to show ∆R(−∆P ) ≤ ∆R̂(−∆P ).

With mathematical manipulations, we can obtain R̂(P ∗k,tot−∆P )/(P ∗k,tot−∆P ) > R̂(P ∗k,tot−

2∆P )/(P ∗k,tot − 2∆P ). Therefore, εk is increasing when Pk,tot < P ∗k,tot.

Combining (a) and (b), we complete the proof.

B.5 Proof of Proposition 4.2.5

The energy efficiency of user k in D2D mode and cellular mode can be expressed as

ε
(1)
k =

R
(1)
k

P
(1)
c,k

and ε
(2)
k =

R
(2)
k

P
(2)
c,k

, respectively. It is obvious that 2P
(2)
con,k is strictly larger than

P
(1)
con,k. Therefore, it is necessary to have 2R

(2)
k > R

(1)
k for ε

(2)
k > ε

(1)
k . In this case, when user

k uses all N subcarriers and adopts equal power allocation to every subcarrier, we have

B0

N∑
n=1

log2(1 +
Pk,tot
Nσ2

ĝk,n) > B0

N∑
n=1

log2(1 +
Pk,tot
Nσ2

gk,n),

i.e.,
N∏
n=1

(1 +
Pk,tot
Nσ2

ĝk,n) >
N∏
n=1

(1 +
Pk,tot
Nσ2

gk,n),

which completes the proof.
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Appendix C. Proofs for Chapter 5

C.1 Proof of Proposition 5.2.1

According to (5.4)-(5.9), the energy efficiency with the i-th relay is equivalent to

εDFi =
1
2

log2(1 + ζiPs)

Ps + Pc
,

where ζi is the equivalent CNR with the i-th relay, which is

ζi = min {(1− ρi)|ḡsri |2

σ2
,
αηρi|ḡsri |2|ḡrid|2

σ2
}.

Note that different relays have the same transmit power source Ps due to the SWIPT

capability.

Considering the i-th relay with equivalent CNR ζi and j-th relay with equivalent CNR

ζj, where ζi > ζj, we denote εDF∗i and εDF∗j as the best energy efficiency with the i-th and

j-th relays, respectively. Additionally, the corresponding optimal transmit powers of the

i-th and j-th relays are P ∗s,i and P ∗s,j, respectively. Accordingly, we have

εDF∗i = εDFi (P ∗s,i) =
1
2

log2(1 + ζiP
∗
s,i)

P ∗s,i + Pc

and

εDF∗j = εDFj (P ∗s,j) =
1
2

log2(1 + ζjP
∗
s,j)

P ∗s,j + Pc
.

Since P ∗s,i is the optimal power for the i-th relay, we have

εDFi (P ∗s,i) > εDFi (P ∗s,j). (C.1)

With ζi > ζj, we have

εDFi (P ∗s,j) > εDFj (P ∗s,j). (C.2)

104



According to (C.1) and (C.2), we have

εDFi (P ∗s,i) > εDFj (P ∗s,j) when ζi > ζj.

That is, the DF relay with higher equivalent CNR always achieves higher energy efficiency.

Therefore, the relay selection can be decoupled from the power allocation without loss of

optimality and the DF relay with the highest equivalent CNR will render the maximum

energy efficiency, which completes the proof.

C.2 Proof of Proposition 5.2.2

Since the DF relay selection scheme is decided by min {ζDFri , ζDFdi }, there are two cases:

ζDFri ≥ ζDFdi and ζDFri < ζDFdi .

ζDFri ≥ ζDFdi

To achieve the best CRN, ζDFdi =
αηρi|ḡsri |

2|ḡrid|
2

σ2 should be maximized. It is obvious that

ζDFdi increases as ρi increases and ζDFri increases as ρi decreases. Therefore, in this case, we

increase ρi until

ζDFdi = ζDFri ,

i.e.,

αηρ∗i |ḡsri|2|ḡrid|2

σ2
=

(1− ρ∗i )|ḡsri |2

σ2
,

which results in the optimal splitting ratio ρ∗i = 1
1+αη|ḡrid|

2 .

ζDFri < ζDFdi

In this case, ζDFri =
(1−ρi)|ḡsri |

2

σ2 should be maximized. Since ζDFri increases as ρi decreases

and ζDFdi increases as ρi increase, we decrease ρi until ζDFdi = ζDFri and obtain the same

optimal splitting ratio ρ∗i = 1
1+αη|ḡrid|

2 .

Combining both cases, we complete the proof.
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C.3 Proof of Proposition 5.2.3

According to Taylor expansion, we have the following approximation

E[
X

Y
] ≈

E[X]

E[Y ]
− cov[X, Y ]

E[Y ]2
+

E[X]

E[Y ]3
var[Y ], (C.3)

where X and Y are two random variables, var[·] is the variance operator, and cov[·] is

the covariance operator. Let X = |ḡsri |2|ḡrid|2 and Y = 1 + αη|ḡrid|2, E[
|ḡsri |

2|ḡrid|
2

1+αη|ḡrid|
2 ] is

approximately expressed as

E[
|ḡsri |2|ḡrid|2

1 + αη|ḡrid|2
] =

λ1|ḡsri |2

(λ1 + αη)2
+
α2η2|ḡsri |2

(λ1 + αη)3
, (C.4)

which completes the proof.

C.4 Proof of Proposition 5.2.4

The function of εDF w.r.t. Ps is

εDF =
B
2

log2 (1 + ζDFri Ps)

Ps + Pc
. (C.5)

It is obvious that εDF ≥ 0 when Ps ≥ 0. And εDF = 0 only when Ps = 0. Let Ps →∞,

we have

lim
Ps→∞

εDF = lim
Ps→∞

B
2

log2(1 + ζDFri Ps)

Ps + Pc
= 0 (C.6)

according to L′Hôpital′s rule.

Then εDF (0) = 0, εDF (∞) = 0, and εDF > 0 for 0 < Ps < ∞. Meanwhile, when

0 < Ps <∞, εDF is continuous and derivable. Hence, there exists a global maximizer P̂DF
s ,

which must be one of the critical points of εDF .
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To determine the critical points, let ∂εDF

∂Ps
= 0 and we obtain

ζDFri (Ps + Pc)

1 + ζDFri Ps
= ln(1 + ζDFri Ps). (C.7)

Define

f(Ps) =
ζDFri (Ps + Pc)

1 + ζDFri Ps
(C.8)

and

g(Ps) = ln(1 + ζDFri Ps). (C.9)

Obviously, g(Ps) is monotonically increasing. The value of g(Ps) increases from 0 to

+∞ when Ps ≥ 0. For f(Ps), we have

∂f(Ps)

∂Ps
=
ζDFri (1− ζDFri Pc)

(ζDFri Ps + 1)2
. (C.10)

If ζDFri Pc < 1, f(Ps) is monotonically increasing. The value of f(Ps) increases from ζDFri Pc

to 1. If ζDFri Pc > 1, f(Ps) is monotonically decreasing. The value of f(Ps) decreases from

ζDFri Pc to 1. If ζDFri Pc = 1, f(Ps) is equal to 1. In any case, there exists one and only

one intersection point for f(Ps) and g(Ps), which is the only critical point satisfying (C.7).

Therefore, εDF is a unimodal function and P̂s
DF

is the unique global maximizer that can

be solved by

ζDFri (Pc + P̂s
DF

)

1 + ζDFri P̂s
DF

= ln(1 + ζDFri P̂s
DF

), (C.11)

which completes the proof.
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C.5 Proof of Proposition 5.2.5

Rewrite the CNR at the destination node in AF relay sensor networks, ζAFdi , as a

function of power splitting ratio ρi as

y(ρi) =ζAFdi =
αηρi(1− ρi)|ḡsri |2|ḡrid|2

αηρi|ḡrid|2σ2 + (1− ρi)σ2

=
aρi(1− ρi)

bρi + c(1− ρi)
, (C.12)

where

a =αη|ḡsri |2|ḡrid|2,

b =αη|ḡrid|2σ2,

c =σ2.

Taking the derivative of (C.12) w.r.t. ρi, we have

∂y

∂ρi
=
−a(b− c)ρ2

i − 2acρi + ac

[(b− c)ρi + c]2
. (C.13)

Define a function Θ(ρi) representing the numerator of (C.13), i.e., Θ(ρi) , −a(b− c)ρ2
i −

2acρi + ac. Since [(b − c)ρi + c]2 > 0, the sign of (C.13) only depends on Θ(ρi). It is

clear that Θ(0) = ac > 0, Θ(1) = −ab < 0, and Θ(ρi) is a quadratic function. Therefore,

there exists an optimal ρ∗i satisfying Θ(ρ∗i ) = 0, which maximizes y(ρi). According to the

property of the quadratic function, there are two possible cases: b > c and b < c.

(a) b > c

In this case, the greater root should be chosen. Therefore, the optimal splitting ratio
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is

ρ∗i =
2ac−

√
4a2c2 + 4a(b− c)ac
−2a(b− c)

=
1

1 +
√
αη|ḡrid|

.

(b) b < c

In this case, the smaller root should be chosen. Since −(b − c) > 0, the smaller root

actually is the same as the greater root in case a. Therefore, the expression for the optimal

splitting ratio is the same.

Combining (a) and (b), we complete the proof.
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