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ABSTRACT 

The electricity cost of cloud computing data centers dominated by server power 

and cooling power is growing rapidly. To tackle this problem, inlet air with moderate 

temperature and server consolidation are widely adopted. However, the benefit of these 

two methods is limited due to conventional air cooling systems ineffectiveness caused by 

re-circulation and low heat capacity. To address this problem, hybrid air and liquid cool-

ing, as a practical and inexpensive approach, has been introduced. In this work, we quan-

titatively analyze the impact of server consolidation and temperature of cooling water on 

the total electricity and server maintenance costs in hybrid cooling data centers. To min-

imize the total costs, we proposed to maintain sweet temperature and ASTT (available 

sleeping time threshold) by which a joint cost optimization can be satisfied. By using real 

world traces, the potential savings of sweet temperature and ASTT are estimated to be 

average 18% of the total cost while 99% requests are satisfied compared to a strategy 

which only reduces electricity cost. The co-optimization is extended to increase the bene-

fit of the renewable energy and its profit grows as the more wind power is supplied. 
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CHAPTER 1. INTRODUCTION 

The total cost of ownership (TCO) in cloud computing data centers consists of 

onetime capital costs incurring only at the beginning or upgrade stage of data centers and 

monthly recurring operational costs including electricity cost, maintenance cost and sala-

ries [3]. According to a recent report [2], the TCO is dominated by the operational costs, 

among which salaries are largely not a technical but an economic factor. Therefore, we 

focus on optimization of electricity and maintenance costs in this work. 

The growth of the cost of electricity consisting of server power and cooling power 

outpaces expectations. In 2011, U.S. data centers spent about $7.4 billion in electric pow-

er among which server power and cooling power contribute significantly to the total [32]. 

Several studies try to throttle this increase, though few of them consider the cost of server 

maintenance. 

Prior works employ two methods to reduce energy cost: increasing server consol-

idation and increasing inlet air temperature. Server consolidation has been widely adopt-

ed to gain high energy efficiency of server, keeping active servers in high utilization by 

turning off overprovisioned servers [34]. Dynamic Voltage and Frequency Scaling 

(DVFS) is also used to save server power [14]. However, the benefits of DVFS are 

shrinking because the leakage power is increasing and the voltage of processors is getting 

very close to its limit [26]. In addition, DVFS only reduces CPU power which merely 

amounts to 30% of server power [32]. Server consolidation remains as an effective and 

practical method to save server power. 

Increasing inlet air temperature is a common method to reduce cooling power. In-

creasing inlet air temperature by just one degree can reduce cooling energy consumption 

by 2 to 5 percent [7]. However, the room of inlet air temperature can be raised is very 

limited due to the constraint of server temperature below the critical temperature. To keep 

the constraint with a low cost, there are several prior works advocating thermal-aware 

workloads placement which distributes workloads according to the thermal map of data 
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centers [28]. Unfortunately, these methods hardly maintain energy efficiency of tradition-

al air cooling when data centers are in high utilization [34]. Therefore, a novel cooling 

system is demanded. 

The hybrid cooling system is proposed as a practical and inexpensive solution of 

liquid cooling [18]. It combines air and liquid cooling has been proposed and deployed in 

data centers such as Aquasar, the first hot water cooled supercomputer prototype [44]. 

The hybrid cooling system uses water to cool down high power density components such 

as processors and memory devices which dominate total heat dissipated in servers, while 

it uses air to cool down other auxiliary components which show low power density. In 

this way, the hybrid cooling system can remove a mass of heat from data center with less 

power than conventional air cooling. 

In addition to the energy cost, the hardware maintenance cost is also considerable. 

According to a typical new multi-megawatt data center in the United States, the cost of 

server repair and maintenance is approximately 50% of the costs of server power and 

cooling power [3]. Disks are the most frequently replaced components based on the em-

pirical data of a HPC data center. The cost of disk maintenance can be increased by serv-

er consolidation due to the limited start-stop cycles of disks [10], since server consolida-

tion frequently turns off servers or switch servers between the active state and the sleep-

ing state. Additionally, higher inlet water temperature increases the cost of CPU and 

memory maintenance, since every 10°C increase over 21°C decreases the lifetime relia-

bility of electronics by 50% [31]. Therefore, we can balance the saving of the electricity 

costs and the increase of the costs of hardware maintenance by manipulating inlet water 

temperature and server consolidation. 

On the other hand, the sustainability of data centers is becoming one of top con-

cerns of their owners, as three years electricity bills of modern data centers grow over the 

server equipment cost [6]. The power sources are shifted toward renewable energies such 

as wind, solar, and tidal power, driven by soaring conventional energy price and the 
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global warming. Wind power or tide power is integrated into our proposed optimization 

of electricity and server maintenance costs since wind energy is cheaper and widely used 

to power large-scale facilities [30]. 

The discussion of electricity and hardware maintenance costs drives us to propose 

our comprehensive framework covering these two costs. Integrating the models of elec-

tricity costs and hardware maintenance costs are non-trivial due to being studied separate-

ly by using different metrics. For example, the works focusing on electricity costs are 

likely to report their benefit in terms of power, while the works on hardware maintenance 

focus on expected lifetimes of hardware components. Although the two kinds of work are 

also studied in different scenarios, they interact with each other via inlet water tempera-

ture and server consolidation. Thus how to fuse the models reasonably in a framework is 

our most challenging task This framework distinguishes our work by optimizing these 

two costs together while other prior works[35][39]exclusively focus on electricity or 

hardware maintenance costs for data centers. Focusing on these two costs rather than one 

of them avoids categorizing our optimization as a sub-optimal solution for the total cost. 

The contributions of our work are shown in the following. 

• We set up analytical models for server power, cooling power and hardware 

maintenance in a hybrid cooling data center for quantitative evaluation. We build a com-

prehensive framework which covers evaluations of these costs. To our knowledge, none 

of the existing methods have addressed this issue.  This framework provides foundations 

to optimize the total cost in hybrid cooling data centers. 

• We propose a tradeoff between electricity and maintenance costs. In this work, 

we show that the typical optimizations (high inlet water temperature and aggressive serv-

er consolidation) reduce the electricity costs but increase the maintenance costs. 

• To minimize the costs, we develop a joint optimization scheme based on server 

consolidation and dynamic optimal inlet water temperature. Our simulation results show 

that the method can gain considerable cost benefits. 
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• We extend our cost optimization to exploit the benefits of two kinds of renewa-

ble energies: wind power and tide power. Based on our experiments, it increases the cost 

saving of the renewable energies and this benefit grows as the more renewable energies 

are supplied. 

The rest of our work is organized as follows: we propose the optimization of op-

erational costs in data centers with hybrid cooling in chapter 2. In chapter 3, we extend 

the optimization in data centers with renewable energies. Finally, we conclude the work 

in chapter 4. 
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CHAPTER 2. OPTIMIZATION OF OPERATIONAL COSTS WITH 

HYBRID COOLING 

2.1 Hybrid Cooling 

Figure 2.1 shows the structure of hybrid cooling in modern data centers. The 

closed liquid loop between the chiller and the racks is designed to remove heat dissipa-

tion from the racks. The cool water in the loop absorbs heat dissipation from the racks, 

and returns back to the chiller with heat. In the closed liquid loop of a rack, the water is 

pumped into servers and cooled in the intermediate Heat Exchanger (HTX). The coolant 

water in a server flows through a liquid cooled plate and takes away power dissipated by 

processors and memory devices. Other auxiliary components such as disks, power supply, 

and chipsets on motherboard are still cooled by the air condition as traditional data cen-

ters since these components dissipate less power and, more importantly, exhibit lower 

power density compared to processors and DRAMs. 

 

Chiller

HTX

HTX:Intermediate Heat Exchanger

Rack

Hot Water

Cool Water

HTX

Hot Water

Cool Water

Rack

Server

Server

Air 

condition

Hot Water

Cool Air

Cool Air Processors and 

DRAMs

Other 

Electronic 

Components
Cool Water

Liquid Cooled Plate
Hot Air

Hot Water
Server

pump

HTX

Rack

pump

Cool Water

 

Figure 2-1. The structure of hybrid cooling 
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2.2 Cost Models 

To optimize the electricity costs and the hardware maintenance costs, we setup 

the cost models which quantitatively estimate the impact of server consolidation and inlet 

water temperature on the costs when hybrid cooling is used. 

2.2.1 Electricity Costs 

The power of a typical data center includes server power, cooling power and 

power distribution loss. Power distribution loss is denoted by PPDL which equals to 10% 

of load power in our experiment [41]. In the following context, we address the models 

related to the server power and cooling power. 

Server Power Model: Pservers consists of the aggregate power of active servers 

and the aggregate power of sleeping servers. The total power for servers is written as: 

Here, NAS and NIS denotes the number of active servers and sleeping servers 

which are in the deep sleep state and consume 6 Watts power per server [2]. For an active 

server, the total power consists of the power of processors, the power of memory and the 

power of other components. The equation is listed as follows: 

 𝑃𝑆𝑒𝑟𝑣𝑒𝑟 = ∑ 𝑃𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝑁𝑆

𝑖=1

(𝑖) + ∑ 𝑃𝑀𝑒𝑚𝑜𝑟𝑦(𝑗) +

𝑁𝑀

𝑗 =1

 𝑃𝑂𝑡ℎ𝑒𝑟 (2)  

where NS and NM are denoted as the number of sockets and the number of DIMMs in a 

server. To simplify the equation, we assume that all servers in data centers have the same 

number of sockets and the number of DIMMs. 

For the power model of components in a server (PProcessor, PMemory and POther), 

we adopt the linear power model shown as follows: 

 𝑃 =  (𝑃𝑇𝐷𝑃 − 𝑃𝑖𝑑𝑙𝑒) ∗ 𝑈 + 𝑃𝑖𝑑𝑙𝑒 (3)  

 𝑃𝑠𝑒𝑟𝑣𝑒𝑟𝑠 = ∑ 𝑃𝑆𝑒𝑟𝑣𝑒𝑟(𝑖) + ∑ 𝑃𝑠𝑙𝑒𝑒𝑝

𝑁𝐼𝑆

𝑗=1

(𝑗)

𝑁𝐴𝑆

𝑖=1

 (1)  
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where PTDP and Pidleindicate the maximum power and idle power of components while U 

denotes server utilization. 

The configuration of power model in a server is shown in Table 2-1. For proces-

sors, its idle power amounts to 10% of the TDP [11], while 4 HDD hard disks are as-

sumed to be installed in the server to fit memory intensive applications. The specification 

is derived from a typical server [11]. 

Table 2-1. Configurations of simulated server 

Server Configurations 

Part # TDP(w) Idle power(w) 

Processor 2 150W 15W 

Memory 8 10W 5W 

Others - 124W 73.6W 

Hybrid Cooling Configurations 

Parameter Value 

Tinlet_water (°C) 25 

Tinlet_air (°C) 25 

Vw (GPM) 1 

ηpump 70% 

ΔPw(psi) 4.2 

Thermal Reliability Configurations 

𝜃𝐶𝑃 (ºC/W) 0.3 

𝜃𝑀𝑃 (ºC/W) 4.75 

𝜃𝑝   (ºC/W) 0.03 
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Maintenance Cost Configurations 

Start-stop cycles for disks 40000 

CPU maintenance price ($) 300 

Disk maintenance price ($) 200 

Memory maintenance price ($) 150 

 

Cooling Power Model: According to the structure of the hybrid cooling, the cool-

ing power can be divided into two parts: the liquid power and air cooling power: 

 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =  𝑃𝑙𝑖𝑞𝑢𝑖𝑑_𝑐𝑜𝑜𝑙𝑖𝑛𝑔 +  𝑃𝑎𝑖𝑟_𝑐𝑜𝑜𝑙𝑖𝑛𝑔 (4)  

To estimate cooling power, E =  
Q

COP
 is employed where 𝐸 denotes the energy to 

remove the heat dissipation 𝑄 from data centers and COP (Coefficient of Performance) 

which is defined as a metric to evaluate the efficiency of cooling system [28]. According 

to prior studies [2], 𝐶𝑂𝑃𝑎𝑖𝑟 (coefficient of performance) can be derived in the following 

equation: COPair = (0.0068 × T^2 + 0.0008 × T + 0.458) where T is the inlet air tem-

perature. 

The power of liquid cooling consists of the chiller power and the pump power 

[19]. The chiller efficiency for a typical chilled water system is written as: COPliquid =

 E/Q  [4]. COPcooled  is written in terms of inlet water temperature: COPliquid =  T ∗

0.18 − 0.4836 based on the specification of water-cooled screw compressor chiller [8]. 

The water pump power is calculated by this equation [19]:  

 𝑃𝑝𝑢𝑚𝑝 = 𝑁 ×
𝑉𝑤 ×  𝛥𝑃𝑤

𝜂𝑝𝑢𝑚𝑝
 

(5)  

where N is the number of servers and Vw is the water volume flow rate. ΔPw denotes the 

water side pressure drop based on the flow resistance. Finally, ηpump indicates the pump 

efficiency. Overall, the cooling power of the data center is calculated as follows:  

(Table 2.1 continued) 
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 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =  
𝑄𝑙𝑖𝑞𝑢𝑖𝑑 𝑐𝑜𝑜𝑙𝑒𝑑

𝐶𝑂𝑃𝑙𝑖𝑞𝑢𝑖𝑑(𝑇𝑖𝑛𝑙𝑒𝑡_𝑤𝑎𝑡𝑒𝑟) ∗ 𝑡
+

𝑄𝑎𝑖𝑟 𝑐𝑜𝑜𝑙𝑒𝑑

𝐶𝑂𝑃𝑎𝑖𝑟(𝑇𝑖𝑛𝑙𝑒𝑡_𝑎𝑖𝑟) ∗ 𝑡
+ 𝑃𝑝𝑢𝑚𝑝 

(6)  

where t is a time interval during which server components dissipate the heat Qliquid cooled 

and Qair cooled. The heat Qliquid cooled is removed by the liquid cooling, while the heat 

Qair cooled is generated from other components in servers. Shown in the Table 2-1 is the 

configuration of hybrid cooling derived from [19]. The pump power of a server is 0.6 

watt and is negligible compared to the chilling power. 

Overall, the electricity cost of the data center is written as: 

 𝐸𝐶 = 𝐾$ 
(𝑃𝑠𝑒𝑟𝑣𝑒𝑟𝑠 + 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 + 𝑃𝑃𝐷𝐿) (7)  

Here, K$ 
 respectively commercial KWH Billing Rate which comes to 9 

cents/KWH as the default value. 

2.2.2 The Costs of Hardware Maintenance 

We focus on the maintenance costs of DRAM and CPU due to the high power 

density. In addition, we take the cost of disks maintenance into account, since their lim-

ited number of lifetime start-stop cycles is heavily impacted by frequent server consolida-

tions, though hard disks have a low power density. 

Thermal model: We have setup up thermal models to investigate the costs of pro-

cessor and memory maintenance. The CPU temperature TC is calculated as follows from 

[20]: 

 𝑇𝐶 = 𝑇𝑖𝑛𝑙𝑒𝑡 + (𝜃𝐶𝑃 +  𝜃𝑝) ∗ 𝑄𝐶 (8)  

Here, Tinlet is the inlet water temperature and QC is the power dissipated by the 

CPU. Thermal resistance of the processor package and TIM (Thermal Interface Material) 

layer is denoted by θCP with a value derived from [19]. The thermal resistance of cold 

plate which varies with water flow is denoted by θp, according to the specification of 

Lytron CP20 cold plates [19]. Regarding the reliability issue of CPU, there is a threshold 
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temperature for processor chips as 90°C [19]. The temperature TM for DRAM is given as 

follows: 

 TM = Tinlet + (θMP + θP) ∗  QMP (9)  

where QMP is the power dissipated by memory. The thermal resistance of the chip pack-

age of DRAM is denoted by θMP derived from [12]. There is a threshold temperature for 

DRAM as 85°C [23]. The characteristics of thermal package of DRAM, CPU and cold 

plates are listed in the Table 2-1. 

Thermal reliability model of electronic devices: We can predict the lifetimes of 

electronic devices based on the thermal reliability models of electronic devices. Chip 

temperature and power are the main factors to determine the lifetimes of electronic de  

vices [15]. For memory, the lifetime prediction model is adopted [22]. MTTF (mean time 

to failure) is widely used to represents the predicted lifetime of electronic components for 

processors: MTTF =  1 λ⁄  . For the prediction of the lifetime of processor and memory, λ  

is the number of failures per million hours, and calculated according to Military Hand-

book MIL-HDBK-217F [37]. 

 𝜆 = (𝐶1𝜋𝑇 + 𝐶2𝜋𝐸)𝜋𝑄𝜋𝐿 (10)  

 𝜋𝑇 = 0.1exp (
−𝐸𝑎

8.617 × 10−5
(

1

𝑇𝑝 + 273
−

1

298
)) 

(11)  

Here, Ea is the effective activation energy (Ev) and TP is the temperature of elec-

tronic devices. The parameters (C1 , C2 , πE , πL , πQ ) are derived from [37]. We have 

scaled the lifetime of CPU and memory according to recent studies [22]. The lifetime of 

CPU is expected to be 7 years when chip temperature is 70 ºC [41], while the expected 

lifetime of 2GB DRAM is 5 years when its temperature is 65 ºC [22]. 

Maintenance Cost Models of Processor and DRAM: We evaluate the costs of 

processors and DRAM maintenance based on their thermal reliability is given as 

lows:RC =  𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑠 /MTTF . 
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For a time interval, MTTF is calculated based on their thermal reliability model 

with current chip temperature. The cost of a CPU, a disk and a memory maintenance are 

$300, $200 and $150 respectively as shown in Table 2-1, according to the maintenance 

ranging from $300 to $150 [3]. Based on the thermal reliability model, the cost of CPU 

and memory maintenance in an active server is specified as follows: 

 𝑅𝐶𝑆𝑒𝑟𝑣𝑒𝑟 = ∑ 𝑅𝐶𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟(𝑖)

𝑁𝑆

𝑖=1

+ ∑ 𝑅𝐶𝑀𝑒𝑚𝑜𝑟𝑦

𝐷𝑀

𝑗=1

(𝑗) (12)  

Here, the costs of DRAM and CPU maintenance are increased by higher inlet wa-

ter temperature. The auxiliary components are excluded from this model since they are 

still cooled down by air cooling. Their little heat dissipation, much lower power density 

and fixed inlet air temperature result in their little cooling power and their stable mainte-

nance cost. 

Maintenance Cost Model of Hard Disk: The lifetime of hard disks is heavily im-

pacted by server consolidations due to the limited number of lifetime start-stop cycles 

[13], while the impact of utilization and temperature is still unclear [33]. On the other 

hand, switching on/off servers incurs relatively little maintenance cost of other compo-

nents such as processors and memory compared with that of hard disks. The cost of disk 

maintenance is computed by the following equation: 

 𝑅𝐶𝐷𝑖𝑠𝑘 =  
𝑃𝑟𝑖𝑐𝑒 

𝑠𝑡𝑎𝑟𝑡 − 𝑠𝑡𝑜𝑝 𝑐𝑦𝑐𝑙𝑒𝑠
 

(13)  

As we know, the number of lifetime start-stop cycles for hard disks is 40000 [10]. 

Overall, the cost of hardware maintenance of data center is listed as follows: 

 𝑅𝐶 =  ∑ 𝑅𝐶𝐷𝑖𝑠𝑘

𝑁𝐷

𝑛=1

[𝑁𝐴𝑆(𝑡 − 1) − 𝑁𝐴𝑆(𝑡)]+ + ∑ 𝑅𝑆𝑒𝑟𝑣𝑒𝑟(𝑘)

𝑁𝐴𝑆

𝑘=1

 (14)  

 [𝐴]+ = 𝐴 𝑖𝑓 𝐴 > 0 𝑜𝑟 [𝐴]+ = 0 𝑖𝑓 𝐴 ≤ 0  
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where ND and NAS(t) respectively denotes the number of disks in a server and the num-

ber of active servers in the data center at the time t. [NAS(t) − NAS(t − 1)]+ represents 

the number of servers which have been turned off. 

Consequently, we have set up models for electricity cost and the cost of hardware 

maintenance to evaluate our approach which optimizes the total cost. The models have 

been validated with the costs of our campus data centers. We have listed all key notations 

for readers in Table 2-2. 

Table 2-2. Key notation 

Notation Definition  

𝑃𝑠𝑒𝑟𝑣𝑒𝑟𝑠 The power consumption of all servers 

𝑃𝑃𝐷𝐿 The power distribution loss 

𝑃𝑆𝑒𝑟𝑣𝑒𝑟(𝑖) The power consumption of an active server at time i 

𝑃𝑠𝑙𝑒𝑒𝑝(𝑖) The power consumption of a sleeping server at time i 

𝑃𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟(𝑖) The power consumption of a processor at time i 

𝑃𝑀𝑒𝑚𝑜𝑟𝑦(𝑖) The power consumption of a memory module at time i 

𝑃𝑂𝑡ℎ𝑒𝑟 
The power consumption of auxiliary components in  a server memory 

module at time i 

NAS The number of active servers 

NIS The number of sleeping servers 

NS The number of sockets in a server 

NM The number of DIMMs in a server 

MINS The minimal demanded number of active servers 

K$ Commercial KWH Billing Rate 

TC The total costs 

Pcooling The cooling power 

Pliquid_cooling The liquid cooling power 

Pair_cooling The air cooling power 

𝑅𝐶𝑆𝑒𝑟𝑣𝑒𝑟 The maintenance cost for a server related to processors and memory 

𝑅𝐶𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟(𝑖) The maintenance cost for a processor 
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Notation Definition  

𝑅𝐶𝑀𝑒𝑚𝑜𝑟𝑦(𝑖) The maintenance cost for a memory 

𝑅𝐶𝐷𝑖𝑠𝑘 The maintenance cost for a disk 

ND The number of disks in a server 

TC The working temperature of a processor 

TM The working temperature of a memory 

𝑇𝑖𝑛𝑙𝑒𝑡_𝑤𝑎𝑡𝑒𝑟 The temperature of inlet water to cool down processors and memory 

 

2.3 Cost Optimization in Data Centers 

We formulate the total cost in equation (15) based on the equations (7) (14) with 

the constraints. Focusing on the operational cost of data centers, we pick up a typical 

specification for our heuristic data center shown in Table 2-1.There are two important 

decision variables Tinlet_waterand NAS, while other variables are determined by available 

servers, server performance and characteristics of traces, which are also treated as param-

eters. For example, NS denotes the total number of servers, while MINS denotes the min-

imal required number of active servers which is determined by traces. Our objective is to 

minimize the total cost with the constraints: 

It is subjected to TC ≤ 90 °C and TM ≤ 85 °C MINS ≤ NAS ≤ NS .The space of feasible 

solutions of this discrete optimization is too large, resulting in that exhaustively searching 

the global optimal solution is impossible. To optimize the total cost of electricity and 

hardware maintenance, we proposed to trace local optimal solution by dynamically ma-

nipulating Tinlet_water and NAS corresponding to the fluctuation of workloads. 

Our Cost Optimization dynamically tracks the optimal Tinlet_water and NAS indi  

vidually. The optimal Tinlet_water is tracked to minimize the sum of the cooling cost and 

the maintenance costs given the utilization of servers. On the other hand, NAS is deter-

 min  {TC = ∑ 𝑅𝐶𝐷𝑖𝑠𝑘

𝑁𝐷

𝑛=1

∗ [NAS(t − 1) − NAS(t)]+ + ∑ RCServer(i

NAS

i=1

) + 𝐸𝐶} (15)  

(Table 2.2 continued) 
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mined based on the minimal number of servers bounded by QoS in up-coming intervals, 

which balances the cost of server power and the hardware maintenance cost. Without the 

maintenance cost of hard disks, the optimization would increase the utilization to the up-

per bound as the optimal utilization within the constraints, consolidating jobs into few 

servers to save the electricity cost which surpasses the maintenance costs for CPU and 

DRAM based on the default electricity price. Including the maintenance  cost of hard 

disks, the optimization adjusts the number of servers to swing it between tracking the op-

timal utilization and becoming constant under the constraint of QoS. It reduces the sum 

of the electricity cost of server power and the maintenance cost of hard disks. The opti-

mal utilization can declines if the electricity price falls, which may happen when the en-

ergy resource becomes cheaper.  

2.3.1 The Overview of Cost Optimization System 

For the manipulation of Tinletand NAS, we proposed a structure shown in Figure 

2-2. In this structure, there are four modules: Workload Prediction, Server Monitor, Serv-

er Manager and Temperature Manger, working together to reduce the total cost. The 

workload prediction collects request history and predicts future request trend, and the fu-

ture minimal required number of active servers. The server monitor collects the tempera-

ture and utilization information of servers and estimates the cost of hardware mainte-

nance. Acquiring the average server utilization from the server monitor, the temperature 

manager adjusts inlet water temperature. The Server manager dynamic allocates servers 

according to the predicted future minimal required number of active servers. 

2.3.2 Optimal Inlet Water Temperature 

To investigate the impact of the inlet water temperature on the total cost, we di-

vide the total cost into two parts: the cost of cooling power and CPU and memory 

maintenance which are affected by the inlet water temperature, and the other costs which 

are unaffected denoted by C. 
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 𝑇𝐶 = 𝐾$ ∗ 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 +  ∑ 𝑅𝐶𝑆𝑒𝑟𝑣𝑒𝑟(𝑖)

𝑁𝐴𝑆

𝑖=1

+ 𝐶 (16)  

As the inlet water temperature increases, Pcooling decreases based on the function 

of COP, while RCServer increases at the same time according to equations (8)-(12). There 

should be an optimal temperature to balance the cost of cooling power and the costs of 

CPU and memory maintenance given the utilization. The optimal temperature (or sweet 

temperature) is adjusted according to workloads since the two costs also vary with the 

change of workloads. 

 

Workload 

Prediction 

Request

History

Server Monitor

Server Temperature 

& Server Utilization

Server Manager

Future minimal 

required number of 

active servers

Estimated the  Cost of 

Hardware Maintenance

 Thermal Manager

The Cost of 

cooling power

Inlet water 

temperatureTurn off or on servers 

 

Figure 2-2. The overview of costs optimization system 

2.3.3 The Impact of Server Consolidation 

The other substantial variable NAS is facilitated by server consolidation which 

lively migrate jobs cross servers, with the upper bound of available servers and the low 
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bound of service level agreement. Under these constraints, its cost and benefit are inves-

tigated in the following. 

The cost of Server Consolidation: It is well known that server consolidation could 

save the electricity cost. Unfortunately, it increases the cost of disk maintenance, accord-

ing to equation (14). Furthermore, servers waste energy during the transition between the 

active state and the sleeping state. We formulate the cost for server consolidation denoted 

by Ccs. The cost Ccs per a server is calculated as follows: 

 𝐶𝑐𝑠 =  ∑ 𝑅𝐶𝐷𝑖𝑠𝑘

𝑁𝐷

𝑗=1

+ 𝑃𝑚𝑎𝑥 ∗ 𝑇𝑇 ∗ 𝐾$ (17)  

where TT is the time of the two transitions (switching from active to sleep and back) in-

cluding two job migrations (20 seconds for one [10]) and two transitions between the ac-

tive state and sleeping state (5 seconds for ACPI S3 state [25]). Therefore, TT is estimated 

to be 50 seconds which is relatively small compared with the 5 minutes which it takes to 

change the state of a server in our experiment. Pmax and K$ 
respectively represent the 

maximum power for a server and denotes commercial KWH Billing Rate. Note the server 

consolidation implicitly increases the maintenance costs of CPU and DRAM, by increas-

ing the utilization and the temperature of active servers. They are excluded from Ccs since 

they are far less than the benefit of server consolidation. 

The benefit of Server Consolidation: The reward of server consolidation depends 

on the length of server sleeping time for once turning off. In other word, the benefit is 

determined by the length of the period of turning off servers without violation of user 

level agreement. The length of this period is referred as available sleeping time (AST) 

which indicates the maximal server sleeping time. Thus, the benefit of turning off N serv-

ers is denoted by Bsleeping × AST × N. Here, Bsleeping denotes the benefit of turning off a 

server for a minute. 
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To optimize server consolidation, we define available sleeping time threshold 

(ASTT) as follow: 

 𝐴𝑆𝑇𝑇 =  
𝐶𝑐𝑠

Bsleeping
  (18)  

When the available sleep time of servers is longer than ASTT, the servers should 

be turned off. Otherwise, the server should keep running. We design an algorithm shown  

in Figure 2-3 based on the concept. Generally, the algorithm conservatively turns off 

servers to mitigate the cost of server consolidation. 

In this algorithm, the decision of turning off servers requires the knowledge of Fu-

ture Minimal Required Number of Active Servers (FMRNAS) which is bound by the 

constraint of service level agreement (SLA).The performance of this algorithm depends 

on how accurately FMRNAS is predicted. Therefore, we will introduce two different pre-

dictions combined with the algorithm in the following sections. 

 

 

Figure 2-3. The algorithm based on ASTT 

//NAS : the Current Number of Active Servers  

if NAS < FMRNAS [T] 

NAS = FMRNAS [T] 

Else 

 // Turn off servers 

 If  NAS > Max(FMRNAS [T,T+ ASTT]) 

 // Turn off(NAS - Max(FMRNAS [T,T+ ASTT])) servers  

  NAS = Max(FMRNAS [T,T+ ASTT]) 

 Else  

  pass 
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ASTT-P Available sleeping time threshold based on a perfect prediction: Firstly, 

we assume that we have a perfect predictor which indicates FMRNAS accurately. Given 

this knowledge, ASTT-P is designed to minimize the total cost by selecting an available 

sleeping threshold without the impact of inaccurate predictions. The exact value of opti-

mal available sleeping threshold is impossibly obtained by solving equation (18) since 

Bsleeping is slightly affected by other factors such as inlet water temperature. 

ASTT-AR: Available Sleeping time threshold based on the autoregressive model 

(AR model). The adopted prediction based on the autoregressive model [42] which is 

widely used for pattern prediction is listed in the following equation to estimate FMR-

NAS: 

 𝑆�̇�(𝑇) = (𝐾 + 1)(𝐶 + ∑  𝐴𝑖 ∗ 𝑆𝑁(𝑇 − 𝑖))

𝑎

𝑖=1

 𝑖 = 1 ⋯ 𝑎    (19) 

where SṄ(T) denotes predicted FMRNAS at time T while SN(T − i) denotes PMRNAS 

at time (T − i). C and Ai are tuned to reduce overprovision servers and guarantee the re-

sponse time in offline. K is updated according to the percentage of requests whose re-

sponse time is satisfied. When the percentage is below the requirement, K increases to 

reserve more servers to handle spike requests. Otherwise, K is decreased. The goal in this 

work is to satisfy more than 99% requests. In our work, we focus on the benefit of ASTT 

by utilizing the mature pattern prediction, though it might be replaced by advanced tools. 

We show the percentage of satisfied requests to prove this algorithm can guarantee the 

QoS, even if the performance of the prediction is poor. The algorithm can keep more 

servers online by increasing K when the prediction is inaccurate, but increases the costs 

slightly. It explains the performance lose between ASTT-P and ASTT-AR. 

In the following section, the model of a data center is built up to quantitatively 

evaluate the benefit of sweet temperature and ASTT. 
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2.4 Experiment Setup 

2.4.1 Data Center 

Recalling the models related to the costs of electricity and hardware maintenance, 

we combined them with server performance model and real traces to simulate our proto-

type data center which consists of 1024 servers cooled by hybrid cooling. 

Server performance model & response time analysis: We assume a server in our 

data center provides 2.6 Gbytes/sec service rate and the mean of response time should be 

bound by 6 ms for SLA [10]. To calculate the FMRNAS at a time interval, we use 

GI/G/m model [5] to determine how many servers can satisfy a demand based on the fol-

lowing equation: 

 �̃� =
1

𝜇 
+

𝑃𝑚

𝜇(1 − 𝜌)
∗ (

𝐶𝐴
2 + 𝐶𝐵

2

2𝑚
) (20) 

 

Pm =  ρ
m+1

2
 if ρ ≤ 0.7     

Pm =  
ρm + ρ

2
 if ρ > 0.7 

 

where W̃ is the mean response time. 1 μ⁄  is the mean service time of a server. ρ =
λφ

mf
 is 

the average utilization of servers. λ, φ,. CAand CB are derived from trace characteristics 

[2]. We use this performance server and response time model to acquire the minimal re-

quired number of active servers at every time slot. For a time interval, we choose 5 

minutes as the minus unit [2]. 

2.4.2 Traces 

We use five traces downloaded from the Internet traffic Archive [43]: Clarknet-

HTTP, NASA-HTTP, Saskatchewan-HTTP, UC Berkeley IP and WorldCup. The lengths 

of them range from 14 days to 30 days and all of trace files cover several peak requests. 

We have scaled the traces to meet our data center performance. 
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2.5 Results 

In the section, we compare our optimization with other sub-optimal solutions to 

reflect our potential benefit in the experiments. For example, the aggressive server con-

solidation (ASTT = 5 minutes) could be considered as a typical case which prior works 

use to reduce electricity cost. Additionally, warmer cooling water might be a good exam-

ple to demonstrate that prior works reduce cooling cost without the awareness  of hard-

ware maintenance cost. 

2.5.1 The Optimization Based On Sweet Temperature 

As illustrated in equation (16), when the server power is fixed, the total cost is on  

ly related to cooling and hardware maintenance. Figure 2-4 illustrates the impact of the 

inlet water temperature changing from 15°C to 35°C on the cooling cost and the cost of 

hardware maintenance of our data center with 30% utilization. These costs are normal-

ized against the total costs when inlet water temperature is 15°C. Increasing inlet water 

temperature reduces cooling power especially when the temperature is below 25°C. 

However, high inlet water temperature increases the cost of hardware maintenance of 

CPU and memory. Observed from Figure 2-4, we can find an optimal inlet water temper-

ature (25 °C in this case) which minimizes the total cost when utilization is fixed at 30%. 

In the following context, we will refer the sweet temperature to the optimal inlet water 

temperature. This observation justifies that high inlet water temperature is reasonable in 

data centers when the current average server utilization is low (below 30%). Otherwise, 

high inlet water temperature could hurt the cost of hardware maintenance during the high 

utilization. 

Figure 2-5 shows the cooling and hardware maintenance costs of our data center 

when its utilization varies from 0% to 100%. The right vertical axis of the figure illus-

trates sweet temperatures for different utilizations. In the figure, the total costs for all uti-

lizations are the lowest for the data center cooled by water at corresponding sweet tem-

peratures. When the utilization of the data center is low, warm inlet water temperature 
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offers more benefit since the cost of cooling power is larger than the cost of hardware 

maintenance (e.g. in our simulation result, the cost of cooling power is 1.65 times of the 

cost of hardware maintenance when the utilization is 10%). On the other hand, as the dat 

acenter utilization increases, we must keep a cold chilling water to cool down the heating 

hardware and slow the growth of hardware maintenance especially when their tempera-

tures are close to the critical temperatures. Consequently, to minimize the total costs, inlet 

water temperature should be dynamically adjusted according to the data center utilization. 

 

 

Figure 2-4. The impact of inlet water temperature on the costs of cooling power and 

hardware maintenance 

 

 

Figure 2-5. The variation of sweet temperature and these costs corresponding to the utili-

zation of the data center 
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2.5.2 The Impact Of The Optimization Based On ASTT 

The total cost by employing ASTT-P with different ASTT (ASTT from 5 to 80 

minutes) is shown in Figure 2-6. The total costs of five traces with different ASTT are 

normalized against the total cost of five traces when ASTT is 5 minutes. Observed from 

this figure, the total cost of five traces can be reduced considerably when we select an 

optimal ASTT for them, though the best ASTT for five traces are not the same (around 

30 minutes to 50 minutes) due to the small variation of the benefit of server consolida-

tion(Bsleeping). In the following, we select 40 as the optimal ASTT for ASTT-P in the 

five traces. For ASTT-AR, we also obtained similar curves for five traces, though the op-

timal ASTT (around 60 minutes) of ASTT-AR for five trace is longer than that of ASTT-

P due to the inaccurate prediction and the relatively slow growth of total cost. 60 minutes 

ASTT is selected as the optimal ASTT for ASTT-AR in the five traces for the following 

analysis. 

 

 

Figure 2-6. The normalized total cost reduced by ASTT-P when varying ASTT from 5 to 

80 minutes in five traces 

Figure 2-7 shows the comparison of the benefits of ASTT-P (ASTT = 40 minutes) 

and ASTT-AR (ASTT = 60 minutes) for five traces. All the total costs are normalized 

against the total cost of ASTT-P (ASTT = 5 minutes) in five traces respectively. ASTT-P 

offers the most benefit compared with ASTT-AR but requires an unreachable perfect 
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prediction. As a practical algorithm, ASTT-AR still saves considerable cost while it guar-

antees the response time of 99% requests in the data center. To prove that the ASTT-AR 

can guarantee the QoS, Figure 2-8 shows the request success ratio which stands for the 

percentages of requests serviced under the constraint of the QoS. All the ratios are above 

99% which satisfies our goal. To this purpose, ASTT-AR keeps more servers online than 

ASTT-P for the requests which are not caught by the prediction, losing slight perfor-

mance benefit compared to ASTT-P. 

 

 

Figure 2-7. The total cost of ASTT-P with ASST (5 minutes), ASTT-AR with ASST (60 

minutes), and ASTT-P with ASST-P with ASST (40 minutes) in five traces 

 

 

Figure 2-8. The request success ratio of ASTT-AR with ASST (60 minutes) 
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2.5.3 Joint Optimization Based On Sweet Temperature And ASTT-AR  

Figure 2-9 shows the benefit when we combine dynamic optimal inlet water tem-

perature (i.e. sweet temperature) and ASTT-AR for the five traces. The total costs of five 

traces are normalized against the total costs in five traces with ASTT-P (ASTT = 5 

minutes and inlet water temperature fixed at 25 °C) as the baseline which represents a 

typical scheme. Overall, the total costs of sweet temperature and ASTT-AR offers 18% 

savings of total cost of five traces compared with the baseline in arithmetic mean based 

on our simulation results. Individually, ASTT-AR with inlet water temperature fixed at 

25 °C yields 15% savings against the baseline, while ASTT-AR with sweet temperature 

yields extra 3% savings. The benefit of sweet temperature is relatively small compared to 

that of ASTT, since the hardware maintenance costs of CPU and DRAM is far less than 

the electricity cost of server power. 

 

  

Figure 2-9. The total cost of ASTT-P with ASST (60 minutes) & fixed inlet water tem-

perature (25 °c), ASTT-AR with ASST (60 minutes) & fixed inlet water temperature 

(25 °c), and  ASTT-AR with ASST (60 minutes) & sweet temperature in five traces. 
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CHAPTER 3. OPTIMIZATION OF OPERATIONAL COSTS WITH 

RENEWABLE ENERGY 

3.1 Renewable Energy 

We integrate renewable energies into our model such as wind power and tidal   

power as a supplementary energy source of data centers. The integration leads to a com-

parison of cost savings between wind power and tidal power. Wind power exhibits mod-

erate variability but high unpredictability, while tide power is relatively easily predicted 

but varies in wider range. Based on our evaluation, wind power  is more profitable than 

tidal power due to its relatively low variability, since its less fluctuation provides more 

available power to the data center with larger overlaps between the wind power and the 

power consumption. This comparison can help operators of data centers to select a kind 

of renewable energy for their data centers. 

3.1.1 Wind Power  

Wind power is captured by wind turbines which converts kinetic energy into me-

chanical energy used to produce electricity. Figure 3-1 shows the output power of a typi-

cal wind turbine with respect to the wind speed [30]. The power is determined by three 

important wind speeds: cut-in wind speed, rated wind speed, and cut-off speed which are 

specific to a wind turbine. When the wind speed exceeds cut-in wind speed, the wind tur-

bine starts to generate electricity. Its power grows as the wind speed increases, until it 

reaches the rated wind speed. The relation between the power and the wind speed could 

be shown in the equation: P = 0.5Cp ∅Av3, whereCp denotes the power efficiency, ∅ is 

the air density, A is the rotor swept area , and v is the wind speed. When the wind speed 

is between the cut-off wind speed and rated wind speed, the output power meets its max-

imum capacity. The power sharply drops to zero for protecting its blade assembly when 

the wind power exceeds the cut-off wind speed. 
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For most wind farm sites, the wind speed at most time is observed between the 

cut-in wind speed and the rated wind speed [30]. As a result, the output power is greatly 

sensitive to the wind speed due to their cubic relation. The resultant fluctuation of the 

power is shown in Figure 3-2 of the wind power trace used in our experiment. Although 

the average power demand derived from Saskatchewan-HTTP trace is approximate to the 

total wind power in the example, a considerable mismatch is expected due to their unre-

lated factors for their fluctuation: diary human activities and local weather condition. 

This mismatch leads to low wind power usage or requires a huge capacity of energy stor-

age to reshape the wind power. However, the energy storage incurs additional capital 

costs and wastes wind energy, since required batteries are considerably expensive and 

waste energy due to energy conversions. When wind power is used as a supplementary 

energy resource for the data center, a conventional power grid also powers the data center 

unless its demand is less than wind power. 

 

 

Figure 3-1. The relationship between wind speed and power 

 

 

Figure 3-2. The mismatch between wind power and power consumption of data center 
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3.1.2 Tidal Power 

Similar to wind power generated from the kinetic energy of air flow, tidal power 

is produced from a tidal stream of sea water which is relatively predictable due to a 

known tide table. This advantage potentially increases the usage of tidal power for data 

centers, since data centers have to reserve considerable energy for unpredictable wind 

power. It also lowers the capacity of energy storage in data centers which incurs noticea-

ble capital cost, which further reduces the total cost for data centers. On the other hand, 

employing tidal power for data center is hindered by its considerable variance and pattern 

which is unrelated with human activities shown in Figure 3-3. They pose a serious chal-

lenge on boosting the usage of tidal power, since unbearable amount of energy storage is 

required to sync tidal power and demanded power from data centers. Alternatively, the 

usage of tidal power can be increased in the design: when tidal power surpasses demand-

ed power, the exceeded power can be used to reduce hardware maintenance cost by main-

taining lower temperature of cooling water and decreasing the number of server consoli-

dation. Otherwise, the usage of tidal power is saturated since it is fully used by data cen-

ters. 

 

 

Figure 3-3. The mismatch between tide power and power consumption of data center 
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The power availability of a tidal stream with a tidal velocity V is estimated by us-

ing the equation: Ptide =  
1

2
pAV3 , where p and A stand for water density and the area 

swept by rotor blades respectively [17]. The power generated from a tidal stream genera-

tor can be estimated by using the equation: Pm =  CpPtide,where Cp represents the effi-

ciency of conversion from kinetic energy into electrical energy [21].  

3.2 Cost Optimization In Data Centers 

3.2.1 Co-Optimization With Wind Power Or Tidal Power 

For the unreliable renewable energies such as wind and tidal power, the proposed 

optimization is designed to increase its benefit. Rather than merely targeting at electricity 

costs, the optimization reduces the server maintenance costs at the expense of increased 

power consumption. The cost of such overhead could be avoided when the renewable 

power is larger than the electrical demand of data centers. It could be explained by the 

modified objective:  

 
min  {TC = ∑ 𝑅𝐶𝐷𝑖𝑠𝑘

𝑁𝐷

𝑛=1

∗ [NAS(t − 1) − NAS(t)]+ + ∑ RCServer(i

NAS

i=1

)

+ K$ ∗ (Pservers + Pcooling + PPDL − PRenewable)} 

(21) 

where PRenewable denote the renewable power at time t which can be wind power or tide 

power. There are two scenarios regarding to the comparison between the renewable pow-

er and the power demand of data centers: 

 PRenewable ≥ (Pservers + Pcooling + PPDL): Power Over Sufficient Period (POS 

period). With over sufficient renewable power, the only concern of this optimi-

zation is to reduce the cost of server maintenance costs by lowering the inlet 

water temperature and stopping turning off active servers. The power con-

sumption of data centers could be increased as long as it is less than the renew-

able power. 
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 PRenewable  < (Pservers + Pcooling + PPDL): Power Insufficient Period (PI peri-

od). When the renewable power partially compensates the power consumption 

of data centers, ASST-AR can reduce the electricity costs and server mainte-

nance costs together by adjusting the inlet water temperature and the number of 

active servers. Since the derivative of the total cost in the factor of them is not 

affected by the renewable power, our method still reach the optimal point to 

minimize the total costs at each interval. 

Disk replacement cost: Predicting the comparison between the renewable power 

and the power demand in the following intervals is substantial to reduce disk replacement 

costs by exploiting the benefit of the renewable power. The disk replacement cost is 

amortized over the saving of the electricity costs in the server sleeping time. The saving 

could be reduced if the sleeping time includes some POS periods. Consequently, the 

longer available sleeping time is demanded to compensate the disk replacement cost, 

since electricity saving can only be gained in the PI periods. The portion of POS periods 

in the following time become key to reduce disk replacement cost with the renewable 

power. To further reduce disk replacement cost, we design a POS predictor which is simi-

lar to the classical CPU branch predictor. 

Wind Power ASST-AR: ASST-AR as well as sweet temperature is extended to 

fully exploit the benefit of the wind power based on the above discussion. The optimiza-

tion of sweet temperature is intuitive; the inlet water temperature tracks the optimal value 

to balance the CPU and memory replacement costs in PI periods, otherwise, it is fixed at 

the lowest temperature to minimize the server maintenance cost. The modified ASST-AR 

also shows distinct policies in different periods to minimize the electricity cost and the 

replacement costs of disks shown in Figure 3-4. During POS periods, turning off active 

servers is prohibited to avoid incurred replacement cost; otherwise, the original ASST-

AR still works. For capturing the immediately following POS period, we design a predic-

tor based on the recent history, which is widely used in CPU branch prediction in Figure 
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3-4.The M is chosen to be 8, since we discovered that it is the optimal value for our five 

traces. This modified co-optimization is referred as Wind Power ASST-AR (WP-ASST-

AR) which reduces electricity and server maintenance costs by utilizing the wind power. 

 

 

Figure 3-4. The algorithm of renewable power ASST-AR 

Tidal Power ASST-AR: Sharing the same underlying idea, the co-optimization 

with tidal power known as TP-ASST-AR exploits the benefit of tidal power during POS 

periods. The benefit of the exploitation relies on how to accurately predict the length of a 

POS period in the following intervals, which can guide the algorithm to reduce unneces-

//Predictor 

If Renewable Power > power Consumption & Predictor <M 

Predictor = Predictor + 1 

If Renewable Power < power Consumption & Predictor >0 

Predictor = Predictor – 1 

//NAS : the Current Number of Active Servers  

if NAS < FMRNAS [T] 

NAS = FMRNAS [T] 

Else 

 // Turn off servers 

 If  NAS > Max(FMRNAS [T,T+ ASTT])&& (Predictor<M/2) 

 // Turn off(NAS - Max(FMRNAS [T,T+ ASTT])) servers  

  NAS = Max(FMRNAS [T,T+ ASTT]) 

 Else  

  pass 



31 

 

sary server consolidations and thus the total cost. In contrast with wind power, the predic-

tion of tidal power is more accurate since it exhibits a relatively predictable pattern which 

is forecasted based on the predicted sea level in our experiment. On the other hand, de-

manded power is still unforeseeable and predicted based on its history as WP-ASST-AR. 

3.3 Experiment Setup 

We integrated the wind power model and the tidal power model into our simula-

tions. We also calculated the wind power based on the relation between the wind speed 

and the output power of wind turbines [30], with the specific parameters such as power 

efficiency from [1]. The fourteen day wind speed trace is derived from [9]. We  scale the 

average wind power to match the average power consumption for data centers for each 

trace. To scrutinize the benefit of our optimization, the average wind power is scaled to 

50%, 75%, 100%, 125%, and 150% of the average power demand in each trace, which 

are referred as 50%, 75%, 100%, 125%, 150% Wind Power(WP). On the other  hand, we 

derive a fourteen trace of tide power from [29]. Similarly, the average tidal power is 

scaled to the same portions of the average power, which are presented as 50%, 75%, 

100%, 125%, 150% Tidal Power(TP). The extra power for data centers comes from the 

conventional power grid when the renewable power is less than the power demand. 

3.4 Results 

3.4.1 WP-ASST-AR 

The benefit of WP-ASST-AR is revealed by the comparison between Figure 3-5 

and Figure 3-6. Figure 3-5 shows the normalized costs in five traces of the simulated data 

center powered by 50%WP, 75%WP, and 100%WP, and 125%WP, and 150%WP with 

the baseline which merely targets electricity costs. The total costs are normalized against 

those of the baseline without the wind power. The shrinking marginal profit of increasing 

the wind power could be observed from that the total costs of 50%WP, 75%WP, 

100%WP, 125%WP, and 150%WP are 0.77, 0.7, 0.66, 0.63, and 0.61 in geometric mean 
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respectively. This trend is confirmed by the results of five traces. Figure 3-6 also shows 

this normalized costs but with WP-ASST-AR. The similar decrease of the marginal profit 

could be observed from that the total costs of 50%WP, 75%WP, 100%WP, 125%WP, 

and 150%WP are 0.67, 0.57, 0.51, 0.47, and 0.44 in geometric mean respectively. How-

ever, the benefit of WP-ASST-AR grows as the wind power increases based on the facts 

that with 50%WP, 75%WP, 100%WP, 125%WP, and 150%WP are 0.1, 0.13, 0.15, 0.16, 

and 0.17 compared with Figure 3-5. 

 

 

Figure 3-5. The normalized costs in five traces of the simulated data center powered by 

50%WP, 75% WP, 100% WP, 125% WP, 150% WP 

 

 

Figure 3-6. The normalized costs in five traces of the simulated data center powered by 

50%WP, 75% WP, 100% WP, 125% WP, 150% WP, and optimized by WP-ASST-AR 

Contributing the benefit of WP-ASST-AR, its higher cost savings of the wind 

power could be discovered by the comparison between Figure 3-7 and Figure 3-8. Figure 

3-7 shows the total cost savings of the baseline yielded by 50%WP, 75%WP, and 

100%WP, and 125%WP, and 150%WP. The increase of the savings shrinks as the wind 
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power grows, and this trend is also perceived in Figure 3-8 showing the cost savings with 

WP-ASST-AR. More importantly, this cost saving is increased by WP-ASST-AR, which 

is consistent to the results of the total costs. The cost saving of the wind power increases 

from 22%, 29%, 31%, 35%, and 37% to 27%, 37%, 45%, 50% and 54% in geometric 

mean respectively. It implies that the more wind power are supplied, the more its cost 

saving could be obtained by WP-ASST-AR. 

 

 

Figure 3-7. The total cost saving in five traces contributed by 50%WP, 75% WP, 100% 

WP, 125% WP, 150% WP 

 

 

 

Figure 3-8. The total cost saving in five traces contributed by 50%WP, 75% WP, 100% 

WP, 125% WP, 150% WP with WP-ASST-AR 
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power. For example, the total cost of Sasktachewan-HTTP is only reduced by 25% total 

cost even if the average tidal power is 1.5 times the demanded power. It is caused by the 

larger variance of tidal energy shaped by the orbit of the Earth-Moon system. The low 

usage can be moderately mitigated by the TP-ASST-AR which aims at boosting the us-

age of tidal power shown in Figure 3-10. It yields a moderate benefit for all traces except 

Clarknet-HTTP which exhibits relatively large variance and leads to low accuracy of pre-

dicting subsequent power demand. Additionally, tidal power hardly provides long POS 

periods compared to wind power, since its frequent limited availability results from its 

noticeable variance. This drawback of tidal energy limits the benefit of TP-ASST-AR 

compared with WP-ASST-AR. 

 

 

Figure 3-9. Reduced total cost normalized against the cost without TP-ASST-AR con-

tributed by 50%TP, 75% TP, 100% TP, 125% TP, 150% TP 

 

 

Figure 3-10. Total cost normalized against the cost without tidal energy contributed by 

50%TP, 75% TP, 100% TP, 125% TP, 150% TP 
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CHAPTER 4. SUMMARY 

The quick growth of electricity bill drives owners of data centers to employ server 

consolidation and the high temperature of data center However, the traditional air cooling 

system offers limited benefit of these two approaches due to its low energy efficiency of 

cooling power especially. We build a comprehensive framework which covers the costs 

of server power, cooling power, and hardware maintenance. Based on the models, we in-

troduce a joint optimization of the costs of electricity and server maintenance. The ap-

proach gains 18% savings of the total cost and guarantees the response time of more than 

99% requests. In the future, our framework will incorporate elaborated reliability models 

for state of the art servers and power managements which are also important for minimiz-

ing costs of data center owners. 
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