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Abstract

In many problems we are dealing with characterizing a behavior of a complex stochastic system or

its response to a set of particular inputs. Such problems span over several topics such as machine

learning, complex networks, e.g., social or communication networks; biology, etc. Probabilistic

graphical models (PGMs) are powerful tools that offer a compact modeling of complex systems.

They are designed to capture the random behavior, i.e., the joint distribution of the system to

the best possible accuracy. Our goal is to study certain algebraic and topological properties of a

special class of graphical models, known as Gaussian graphs.

First, we show that how Gaussian trees can be used to determine a particular complex system’s

random behavior, i.e., determining a security robustness of a public communication channel char-

acterized by a Gaussian tree. We show that in such public channels the secrecy capacity of the

legitimate users Alice and Bob, in the presence of a passive adversary Eve, is strongly dependent

on the underlying structure of the channel. This is done by defining a relevant privacy metric to

capture the secrecy capacity of a communication and studying topological and algebraic features

of a given Gaussian tree to quantify its security robustness. Next, we examine on how one can

effectively produce random samples from such Gaussian tree. The primary concern in synthesis

problems is about efficiency in terms of the amount of random bits required for synthesis, as well

as the modeling complexity of the given stochastic system through which the Gaussian vector is

synthesized. This is done through an optimization problem to propose an efficient algorithm by

which we can effectively generate such random vectors. We further generalize the optimization

formulation from Gaussian trees to Gaussian vectors with arbitrary structures. This is done by

introducing a new latent factor model obtained by solving a constrained minimum determinant

factor analysis (CMDFA) problem. We discuss the benefits of factor models in machine learn-

ing applications and in particular 3D image reconstruction problems, where our newly proposed

CMDFA problem may be beneficial.
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Chapter 1

Introduction

1.1 Motivation

In many problems we are dealing with characterizing a behavior of a complex uncertain (non-

deterministic) system or its response to a set of particular inputs. Such problems span over several

topics such as almost all machine learning related problems; complex networks, e.g., social or

communication networks; biology, etc. Because almost all the time we have only partial informa-

tion about such complex systems, we can always assume that such systems have some latent and

random factors. Since there are many of such complex systems, so defining a different framework

for each of such complex systems is impractical. Therefore, one needs to define a common frame-

work that can span through many of such problems and model such systems, to within certain

accuracy.

Probabilistic graphical models (PGMs) are powerful tools that offer a compact and abstract

modeling of complex uncertain systems [1]. They are designed to capture the random behavior,

i.e., the joint distribution of the system to the best possible accuracy. In particular, PGMs are

graph-based models of complex systems, and like graphs they consist of vertices and edges. The

vertices in PGMs represent the random variables in a system. Such random variables capture

different features and aspects of a system. The edges determine the inter-dependency between

such random variables, and they can be either directed or undirected.

There are several reasons that make PGMs an effective tool in modeling complex systems.

First, as we will see, by representing the joint distribution as a particular PGM, we exploit the

dependency and more importantly conditional independence relations in a system. This way, in

studying the system response one can easily ignore many unrelated features (random variables)

and decrease the search space significantly. This is known as factorizing the joint distribution,
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by considering the underlying sparsity structure of PGM, which makes the computations very

efficient in high-dimensional problems where there are many features, and the PGM consists

thousands of vertices and millions of edges. Second, when studying complex systems many times

there are not enough informative features that can be extracted from the system. In such cases, we

are dealing with latent models, in which many features are hidden to the observer and the goal

is to infer the latent features only using observed and extracted features. Exploiting such sparsity

in joint distribution is useful in understanding the semantic meanings of some of these hidden

features. Finally, PGMs allow us to implement effective inference algorithms for estimating the

objective functions in a system. Usually, such estimations are in a form of computing the posterior

probability of a set of unknown features, given other known and observed features.

1.1.1 Gaussian Trees

As it can be seen PGMs can cover many fields and broad set of problems. Hence, in many situa-

tions we need to narrow down the system representation to a particular distribution and/or follow-

ing certain sparsity patterns. Hence, in our research we focus on a special class of PGMs known

as Gaussian trees [2]. The underlying structure of Gaussian trees is captured by tree graphs, i.e.,

connected undirected graphs with no cycles; and the joint distribution of the variables follows a

Gaussian joint distribution. In particular, suppose X = {X1, X2, ..., Xn} defines the set of ran-

dom variables in a model. Then, we assume X follows a joint Gaussian density with mean µ

and a covariance matrix Σx, and write X ∼ N(µ,Σx). We found the Gaussian density to be a

well-known and widely studied distribution, while at the same time it can model many complex

systems accurately.

As we will see in both Chapters 2 and 3 the Gaussian assumption leads to a convenient tractable

results, due to extracted information from the covariance matrix Σx. And the zero elements in the

precision matrix (i.e., the inverse of a non-singular covariance matirx) correspond to conditionally

independent features, i.e., those with no edges between them (non-adjacent variables).

2



1.2 Information Theory

Information Theory is a classical field of study in Communications that deals with topics such

as data compression, coding, signal processing, etc. The most commonly used definitions in this

topic are the notions of entropy, mutual information, and Kullback-Leibler (KL) divergence that

each deal with characterizing the amount of information in a given data or determining the in-

formation theoretic distance between two models. While learning theory deals with algorithms to

recover the underlying models and graphical structures, in information theory the goal is to deter-

mine fundamental limits and bounds (based on aforementioned metrics) under which the models

can be estimated accurately. This is an important problem to address, since in many complex sys-

tems, we can only hope for proposing heuristics to address the problems, and information theory

would be beneficial in characterizing the performance of such heuristics compared to ultimate

achievable bounds.

Recently, there are several works that connect and adopt information theory metrics to learning

problems, and in particular graphical models. The works in [3–5] introduce a new generalized KL

distance metric to propose a recovery threshold for community detection problems. Such problem

is addressed by relying on channel coding theorems in information theory. In particular, by look-

ing at graphical models as a codebook consisting of particular graph parameters as codewords,

we can translate a graphical model detection and estimation problems to a well-defined channel

coding problem, where the fundamental limits to recover a transmitted codeword is completely

characterized. The survey slides [6, 7] present several interesting information theoretic tools ben-

eficial in community detection problems. Information theory can be helpful in graphical model

selection and estimation problems, as the works [8, 9] propose information theoretic thresholds

to lower bound the graphical model estimation error in certain settings.

Likewise, in our work we show (1) metrics such as mutual information are well-suited to ad-

dress a well-defined security and privacy problem in graphical models; and (2) by optimizing

the model’s randomness which can be characterized by entropy metric, we can achieve efficient

3



encoding schemes and using an information theoretic distance similar to KL distance, we show

the accuracy of the propose encoding method.

1.3 Summary of Research Work

We divide our study into two parts as follows:

1. Ordering Gaussian Trees based on Their Security Robustness Against Information Leakage.

2. Random Sampling from Latent Gaussian Trees.

We briefly discuss both these parts of our study in the subsequent sub-sections.

1.3.1 Ordering Gaussian Trees based on Their Security Robustness Against Information
Leakage

In this section we show that how Gaussian trees can be used to determine a particular complex sys-

tem’s random behavior, i.e., determining a security robustness of a public communication channel

characterized by a Gaussian tree. We show that in such public channels the secrecy capacity of the

legitimate users Alice and Bob, in the presence of a passive adversary Eve, is strongly dependent

to the underlying structure of the channel.

In particular, we rely on topological features and take the following steps to accomplish our

goal:

1. Define a relevant privacy metric to capture the secrecy capacity of a communication

2. Define two game theoretic scenarios, i.e., min-max and max-min problems

3. Propose a new operation to transform one tree to another, with higher security robustness

4. Construct posets of Gaussian trees to order them based security performance

First, we define the conditional mutual information (CMI) I(A;B|C), to capture the amount of

leaked information from the Alice and Bob’s channel exposed to Eve. In particular, CMI is shown

to capture the number of secret key bits through public discussions between legitimate parties

4



Alice and Bob in the presence of a passive adversary eavesdropper Eve [10–12]. We assume all

three agents have access to a set of n random variables whose joint probability density function

(PDF) is featured in a graphical model, from which Alice and Bob choose two of the n variables,

Xa and Xb, and Eve for another Xz, respectively. Then, we introduce the max-min and min-

max scenarios, where either legitimate users or Eve get to choose first, respectively. We show

that, given a particular Gaussian tree and depending on the scenario, which locations will be

chosen by Alice, Bob, and Eve, to reach a compromise between information leakage and common

information extractable.

Based on obtained conclusions we propose the pruning and grafting (PG) operation, by which

one Gaussian tree can be transformed into a new structure with higher secrecy performance. We

show that although the PG operation is local, however, it can impact both min-max and max-min

values that are global metrics of a Gaussian tree.

Finally, based on PG operation we construct partially order sets (posets) of Gaussian trees that

rank each tree based on its security performance. Each poset has a unique root known as poset

leader which has the best secrecy performance among all the Gaussian trees in a poset.

We also study the algebraic properties of Gaussian trees and their role in determining the

security robustness of such structures:

1. We assign a Tutte-Like polynomials to each Gaussian tree structure

2. We propose an algorithm based on restricted integer partition (RIP) method to enumerate

the most secure structures

First, by studying a special class of polynomials, known as Tutte-like polynomials [13] we

characterize each Gaussian tree with a particular polynomial. We prove that certain coefficients

in such polynomials can characterize the security robustness of a tree relative to other structures

in a poset.

5



Poset leaders are of great importance, since they are the most secure trees in each of their

posets. We show that such structures have certain structural features, hence, we propose an effi-

cient approach based on RIP methods to enumerate all such structures.

1.3.2 Random Sampling from Latent Gaussian Trees

In the problem that we have considered in Chapter 2 we assumed that the information of Gaussian

tree, i.e., the source of randomness is explicitly and perfectly provided for all the users Alice, Bob,

and Eve. Such assumption is no longer feasible in many situations where we deal with hidden

(latent) variables. The hidden variables can be due to incomplete knowledge about the structure.

Also, in Chapter 2 we assumed that the underlying structure follows Gaussian tree distribution.

However, there are many situations where such constraint will be violated.

In Chapter 3 we relax both of the conditions by assuming that there are some hidden variables

{Y1, Y2, ..., Yk} in the system that can influence the observed random vector X. Also, the only

information at hand are the samples from the random vector X, i.e., the information of µx and Σx

is not given explicitly. Although we know that the underlying structure is still a tree, however, as

we will see LGTs are general tree structures that contain Gaussian trees as a special case. We show

that to obtain such hidden information we should rely on posterior Gaussian distributions of the

form pY|X, i.e., given the observed variables what can we say about the hidden variables? More

importantly, we propose an algorithm by which we can effectively generate such sample vectors

X. Then, the users based on the obtained samples can estimate the necessary statistics. Hence,

the problem boils down to efficient synthesis of a random Gaussian vector with distribution pX.

The primary concern in synthesis problems is about efficiency in terms of the amount of random

bits required at the input, as well as the modeling complexity of the given stochastic system

(i.e. channel) through which the Gaussian vector is synthesized. This is because random number

generators (RNGs) are randomness resources, and algorithms should be designed in such a way

to minimize the needed number of random bits for their corresponding tasks.

6



In several works [14–16] it is shown that the minimum amount of common randomness needed

to approximate the joint density between a pair of random variables X and Y to be C(X, Y ) =

min PW
X−W−Y

I(X, Y ;W ), where C(X, Y ) is widely known as Wyner’s common information. Such

quantity defines the necessary number of common random bits to generate correlated outputs X

and Y . Similar to the above works, we also used the input code-rate to define the complexity of

our encoding systems, since minimizing such rates results in reducing the number of common

random bits needed to generate the output statistics. In particular, we propose a new successive

encoding scheme that uses minimum number of random bits to generate a Gaussian random vector

with joint prescribed joint distribution. We argue that such scheme uses the latent structure itself

to generate samples that in fact makes the algorithm compact in terms of modeling complexity.

Moreover, the accuracy of such method is shown by defining the total variation [16] distance

between the synthesized density and the desired one.

We characterize the achievable rate region for the rate tuples of multi-layer latent Gaussian

tree, through which the number of bits needed to simulate such Gaussian joint density are de-

termined. The random sources used in our algorithm are the latent variables at the top layer of

tree along with Bernoulli sign inputs, which capture the correlation signs between the variables.

Given the derived achievable rate region for synthesis of latent Gaussian trees, we also quantify

the amount of information loss due to unrecoverable sign information. It is shown that maximiz-

ing the achievable rate-region is equivalent to finding the worst case density for Bernoulli sign

inputs where maximum amount of sign information is lost.

1.3.3 Common Information and Factor Models

In Chapter 3, we provide an operational approach to synthesize Gaussian vectors with underlying

latent tree structure. However, in several cases we are dealing with complex systems that cannot

be modeled accurately using Gaussian trees. Hence, in Chapter 4 we aim to generalize the opti-

mization problem defined previously to any general Gaussian vector with arbitrary joint Gaussian

distribution pX.

7



In particular, we formulate Wyner’s common information for random vectors x ∈ Rn with

joint Gaussian density. We show that finding the common information of Gaussian vectors is

equivalent to maximizing a log-determinant of the additive Gaussian noise covariance matrix. We

coin such optimization problem as a constrained minimum determinant factor analysis (CMDFA)

problem. We show the convexity of such problem, and then attempt on finding the necessary and

sufficient conditions on CMDFA solution. We study the algebraic properties of CMDFA solution

space. This is done through studying two extreme cases Gaussian graphical models, namely, latent

Gaussian stars, and explicit Gaussian chains. Interestingly, we show that depending on pairwise

covariance values in a Gaussian graphical structure, one may not always end up with the same

parameters and structure for CMDFA solution as those found via graphical learning algorithms.

In Chapter 5 we show the benefits of such factor models in a specific class of learning prob-

lems, known as image restoration and reconstruction. We show the benefits of statistical methods

developed in Chapter 4 and using Gaussian trees in accurate synthesis of 3D distorted images.

Moreover, we will study the relation of our introduced optimization problems, which is founded

on information theoretic metrics with several well-known optimization problems in learning field.

Since we are dealing with high-dimensional data, such quantitative comparisons relies heavily on

matrix operations borrowed from linear algebra.

8



Chapter 2

Extractable Common Randomness from Gaussian Trees:
Topological and Algebraic Perspectives

In this chapter, we study both topological and algebraic properties of unrooted Gaussian trees

in order to characterize their security performance. Such performance is measured by the corre-

sponding potential in extracting common randomness from a given tree, which is further deter-

mined by max-min and min-max conditional mutual information values, subject to the order of

selecting variables from the tree by legitimate nodes Alice and Bob, and an eavesdropper Eve,

respectively. A new operation is proposed to transform a Gaussian tree into another, and also to

order different Gaussian trees. Through such operation we construct several equivalent classes of

Gaussian trees. Each class includes multiple Gaussian trees that can be partially ordered based

on the associated max-min or min-max conditional mutual information (CMI) metric, and thus

we can find the most secure and the least secure trees in each partially ordered set (poset). The

union of all posets generates all possible non-isomorphic trees of the given number of variables.

Then, we assign a particular polynomial to each Gaussian tree, and show that such polynomial

can determine the relative security performance of the Gaussian tree with respect to other trees

within the same class. In the end, based on a generalized integer partition method, we propose a

novel approach to efficiently enumerate the most secure structures of all posets.

This study has resulted in three research papers, [17–19].

2.1 Introduction

Consider a problem of maximizing the number of established secret key bits through public dis-

cussions between two legitimate parties Alice and Bob in the presence of a passive adversary

eavesdropper Eve [10–12]. In particular, assume three agents all have access to a set of n ran-

dom variables whose joint probability density function (PDF) is featured in a graphical model,

from which Alice and Bob choose two of the n variables, Xa and Xb, and Eve for another Xz,

9



respectively. It has been shown in [10–12] that the conditional mutual information (CMI) is the

achievable secrecy rate through public discussion. It quantifies the number of secret key bits per

channel use established between Alice and Bob, in the presence of passive Eve, who not only

overhears all publicly exchanged messages, but also has a full access to Xz. Under this frame-

work, the primary problem we are tackling in this paper is twofold: (1) Given a graphical model

for the joint PDF of n variables, what variables should Alice and Bob select to maximize the

amount of achievable secret information under Eve’s attack? (2) How should we compare the

potential secrecy level of different graphical models under properly defined metrics? Does there

exist a consistent ordering of graphical models under which we could select the most favorable or

least favorable models in terms of some properly defined metrics?

Such problems can find applications where secrecy shall be established between legitimate

parties who need to decide what correlated random variables are to be chosen among a set of de-

pendent candidates. For example, in a sensor network with n sensor-nodes whose measurements

on physical parameters, say, temperature or humidity, are to be taken as sources of common ran-

domness. Alice and Bob thus need to determine which two variables should be taken considering

the leakage to a third party who can only compromise one of the remaining nodes. In addition, if

there are options as to the set of sensor deployments in multiple set-ups, which result in multiple

joint distributions of random variables, which topology of the underlying graphical model is more

favorable? Even more interesting is what if we could transform the joint distribution under certain

constraints by some local changes of sensor deployment, what guidance we could provide to such

changes to attain a more favorable topology and joint distribution in terms of a larger amount of

extractable secret key bits? Our goal is to provide insights and answers to these interesting and

security related questions on graphical models.

As a first step, we have adopted a game theoretic framework to study the proposed problems:

(1) max-min perspective: Alice and Bob first pick two random variables out of n variables, based

on the pessimistic assumption that Eve will later choose the best variable from the remaining n−2
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variables, i.e. to find the solution to the max-min conditional mutual information I(Xa;Xb|Xz);

(2) min-max perspective: Eve selects its favorite random variable first, while Alice and Bob

choose from n − 1 remaining random variables in the second place to find the solution to the

min-max of the conditional mutual information. It should be noted that such a modeling has been

coined as the security game in several contexts [20]. In fact, [20] define the secrecy capacity

metric similar to the max-min value of conditional mutual information, which quantifies the max-

imum rate of reliable information transmitted from source to destination, in the presence of an

eavesdropper. Due to the vast parameter space of graphical models, we restrict our attention to

the cases where the joint PDF of n variables can be featured in unrooted Gaussian trees to address

the aforementioned problems. Since in Gaussian trees there is a single path connecting any two

variables, we found studying such models not only mathematically convenient, but also conducive

to several fundamental insights. To solve the proposed problems, we have explored several results

obtained in [21] regarding the conditional independence relationships in Gaussian trees.

As a constraint and also for the purpose of fair comparisons between Gaussian trees using either

the max-min or min-max conditional mutual information, we require all weighted trees to share

the same joint entropy, i.e., the same total amount of randomness. Consequently, we consider the

secrecy levels of n random variables measured by either max-min or min-max CMI for cases

where their joint distributions can be featured in un-rooted and weighted Gaussian trees under a

constraint of a given total joint randomness, namely, the joint entropy.

The contributions can be categorized into two groups of topological and algebraic analysis:

• First, we show that in each scenario Alice, Bob, and Eve choose a triplet of nodes, where

each node is in a special topological correspondence with others. As a result, our search

space to find the max-min or min-max values will reduce significantly. Then, we formally

define a pruning and grafting (PG) operation to transform one Gaussian tree into another.

In particular, we introduce a special form of PG operation, namely, pruning and grafting

of leaf with neighbor of degree 2 (PGLN-2). This operation has an important impact on
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Gaussian trees: the max-min (min-max) value of the resulting Gaussian tree is always less

than or equal to the max-min (min-max) value of the original Gaussian tree, hence making

the resulting tree less secure than the original one. As a result, we form partially ordered

sets (posets) of Gaussian trees and analyze the structural properties of these posets, by

introducing an equivalent graph for each of these sets.

• Second, we introduce some algebraic tools to study the Gaussian trees and our introduced

operations. We use the notion of Tutte-like polynomials [13] to represent each Gaussian

tree with a specific polynomial. We show the impact of PGLN-2 operation on the corre-

sponding polynomial, and also show that although non-isomorphic trees may have identical

polynomials, however, for each of the posets and in the most cases this problem does not

happen. We also show that some useful information can be extracted from this polynomial:

the relative security of each Gaussian tree in a poset can be determined by its corresponding

polynomial. Finally, we show that in each poset there exist the most secure Gaussian tree,

as the poset leader, and introduce a systematic approach based on integer partitions [22] to

effectively and directly enumerate all such structures.

2.1.1 Related Work

Other than our preliminary results in [23, 24] where partial findings were reported, to the best of

our knowledge, there are no other previous works that fully capture the current problem.

The fundamental problem of secret key sharing between two users in the presence of an eaves-

dropper in a public discussion channel is considered in [10–12]. Manshaei et al. in [20] provide a

game theoretic framework to introduce the secrecy capacity.

In [21, 25–27], some fundamental properties of Gaussian graphical models have been tackled

using algebraic methods.

In [28], Patra and Lal propose an operation called grafting to order trees based on their alge-

braic connectivity, which is the second smallest eigenvalue (λ2) of the Laplacian matrix. More-
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over, in [29] the concept of generalized tree shift (GTS) is introduced to obtain certain posets for

unlabeled and unweighted trees. It is further shown in [29] that the corresponding posets are also

ordered based on the value of their algebraic connectivity.

In [23], we only considered the current problem for certain Gaussian trees with n = {4, 5}

nodes in the max-min scenario, where each random variable in a Gaussian tree has a unit variance.

In [24], we extended the results of [23], to Gaussian trees with larger size. In this study, however,

we generalize the scope into considering any Gaussian tree, with its random variables having

arbitrary variance values. Also, we consider studying the min-max problem, as well as max-min

scenario.

2.1.2 Organization

Section 2.2 presents the system model. We define the notion of Gaussian trees, and introduce the

squared partial correlation coefficient to be used in the max-min and min-max scenarios. We study

topological properties of Gaussian trees in Section 2.3. For both scenarios, we introduce the PG

and PGLN-2 operations to order Gaussian trees. Furthermore, we formally define the equivalent

classes of Gaussian trees, which are obtained by these operations. In Section 2.4 certain types of

polynomials are introduced to characterize the security performance of each Gaussian tree. Also,

we propose an effective method to enumerate certain Gaussian structures with robust security

performances. Section 2.5 gives the concluding remarks.

2.2 System Model

Here, for the simplicity of denotations, instead ofXa,Xb, andXz we use a, b, and z as the random

variables that represent the choice of Alice, Bob, and Eve, respectively. The capital letters A, B,

and Z denote the corresponding subsets of random variables chosen by each group.

In this study, we consider the Gaussian joint distribution to capture the density of n variables,

i.e., Px(x1, x2, ..., xn) ∼ N(µ,Σ), where µ is the mean vector that without loss of generality we as-

sume µ = 0, and Σ is a symmetric positive-definite covariance matrix of n random variables with

σij ∈ Σ be the covariance between the random variables xi and xj . Furthermore, we assume that
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the joint density can be characterized by a weighted and unrooted tree T = (V,E,W ), where V is

the set of nodes representing the random variables, E is the set of edges showing the dependency

relations between variables [25–27], and W is the set of edge weights with elements wij = σij

whenever there is an edge between the nodes xi and xj . For a fair comparison between any two

Gaussian trees, we assume that the users in all models have the same total amount of randomness,

i.e., the same entropy. In this case, it is well known that the entropy of x = (x1, x2, ..., xn) can

be obtained by H = 1/2 ln((2πe)n|Σ|) [30]. Hence, in order to obtain a fixed entropy we have to

fix the determinant of the covariance matrix, i.e., |Σ| = CE , where CE ∈ R is a finite and non-

zero constant. Suppose xi, xj , xk are three variables drawn from the Gaussian graphical model,

where xi ⊥ xj|xk, i.e., xi is conditionally independent of xj , given xk. Then, one can show that

σij = σikσjk/σkk [21], where σkk is the variance for the node xk. Now, suppose there is a path

pij = ei,i1ei1,i2 ...eim−1,j between i and j consisting of m edges. Since in Gaussian trees there is

only one path between any two vertices, we can write

σij = σi,i1σi1,i2 ...σim−1,j/

im−1∏
l=i1

σll (2.1)

Note that equation (2.1) is only valid for Gaussian tree models, hence makes studying these

structures more convenient.

Next, we give a proper definition for the max-min problem, under the explained scenario.

Definition 1. Under the Gaussian tree model, legitimate entities Alice and Bob pick two nodes

a and b on the tree under the attack by an eavesdropper Eve who selects the third and dis-

tinct node/variable z on the same tree. The objective of Alice and Bob is to select the pair

(a, b) to maximize the minimum conditional mutual information I(a; b|z). In particular, we adopt

max{a,b}minz I(a; b|z, T ) as the first metric to measure the privacy level of a given weighted

Gaussian tree T = (V,E,W ).
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Similarly, we can define the min-max problem under the same circumstances. In this case

we adopt minz max{a,b} I(a; b|z, T ) as another metric to measure the privacy level of a given

weighted Gaussian tree T = (V,E,W ).

For Gaussian random variables the conditional mutual information I(a; b|z) can be directly

related to the squared partial correlation coefficient, which is defined as below [21],

ρ2
ab|z =

(σab − σazσ−1
zz σbz)

2

(σaa − σazσ−1
zz σaz)(σbb − σbzσ−1

zz σbz)

= 1− e−2I(a;b|z) (2.2)

where σab = E[(a − µa)(b − µb)], the (a, b)-th element of Σ, is the covariance value between

variables a and b (with both of them having zero mean). From (2.2), we can see that the con-

ditional mutual information is a monotone increasing function of the squared partial correlation

coefficient. Hence, in the following, we use partial correlation coefficient instead of the condi-

tional mutual information as the security and privacy metric. Hence, the corresponding max-min

and min-max values for a given Gaussian tree T = (V,E,W ) can be restated as:

SM(T,W ) = max
{a,b}

min
z
ρ2

(ab|z,T,W )

Sm(T,W ) = min
z

max
{a,b}

ρ2
(ab|z,T,W ) (2.3)

which will be used to compare and order different trees.

2.3 Topological Properties of Gaussian Trees

2.3.1 Structural Properties of the Triplet (a, b, z) in Both Max-Min and Min-Max
Problems

Generally, to determine the security performance of a given Gaussian graphical model, we should

solve both min-max and max-min cases, over all possible triplets (a, b, z). For Gaussian trees,

however, we show in Lemma 1 that this large search space shrinks to a very small space, in which

the triplet (a, b, z) should have certain structural relationships.

Lemma 1. For any Gaussian tree T = (V,E,W ),
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1. The max-min value SM(T,W ) is chosen from those set of triplets in which a and b are

adjacent, and z is adjacent to either a or b [23].

2. The min-max value Sm(T,W ) is chosen from those set of triplets in which the node z is

any internal (non-leaf) node, while a and b pick two adjacent nodes from the remaining

vertices.

Proof. See Appendix 2.6.1.

As expected, using Lemma 1 we can narrow down the large number of possible choices for

both max-min and min-max cases to small subsets. Using Lemma 1 we can further simplify (2.2)

and deduce the following formula for the squared partial correlation coefficient,

ρ2
ab|z =

σ2
abσ

2
bz − σ2

abσbbσzz
σ2
abσ

2
bz − σaaσ2

bbσzz
(2.4)

Note that in (2.4) we implicitly assumed b is on the path from a to z, hence if in any case a lies in

between b and z, then a and b should be switched in (2.4).

2.3.2 Pruning and Grafting Edges in Gaussian Trees

One simple way to produce all trees of given order is to begin with any arbitrary structure and

move one of its leaf edges to somewhere else, in order to obtain new structures. Note that this

method may result in many isomorphic (redundant) tree structures, which should be eliminated

from the list. In particular, consider the trees shown in Figure 2.1. Tree T2 is obtained from T1 by

moving the edge e; we call this particular operation as pruning and grafting (PG) operation. In

other words, we prune the edge e from the node n1 and graft it to the node v′, to obtain T2. For

Gaussian trees, we formally define the PG operation as follows:

Definition 2. Consider a Gaussian tree T1 = (V,E1,W1) shown in Figure 2.1. The pruning and

grafting (PG) operation refers to cutting the leaf edge e from n1 and attaching it to some other

node, namely, v′, to obtain the Gaussian tree T2 = (V,E2,W2). Note that W1 is any arbitrary set

of edge-weights, and W2 is obtained from W1 by changing the covariance values associated with
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the altered edge. In particular, in PG operation we assume all the covariance values (including all

the variances) in the covariance matrix remain unchanged, except those values that are related to

the altered node, namely, n2.

Note that since in PG operation we essentially only move the edge e to some other place, all

other structures shown in Figure 2.1 (including everything in the clouds) remain unchanged. As a

result, it is reasonable to assume that all the variances (including σn2n2) remain the same; also all

the covariance elements except those values that are related to the altered edge remain unchanged.

In particular, let us define σvin2 and σ′vin2
as the covariance values between any node vi ∈ V \n2

in T1 and T2, respectively. Then in general σvin2 6= σ′vin2
, for all vi ∈ V \n2. The other elements

in both covariance matrices corresponding to the Gaussian trees T1 and T2 are equal. In Lemma 2

we show how to compute these altered covariances for a new tree.

FIGURE 2.1: Pruning and grafting operation performed on edge e in tree T1

Lemma 2. Consider any Gaussian tree T = (V,E,W ), with order |V | = n. We denote |ΣT | as

the determinant of covariance matrix corresponding to T . Considering the PG operation shown

in Figure 2.1, which transforms the Gaussian tree T1 into T2, with |ΣT1 | = |ΣT2|. Let us denote

σn1n2 and σ′v′n2
as the covariance values between the pairs (n1, n2) and (v′, n2) in trees T1 and T2,

respectively; then we have σ2
n1n2

/σn1n1 = σ′2v′n2
/σvv.

Proof. See Appendix 2.6.2.

In the next sections, we discuss the importance of such results in determining the security

performance of different Gaussian trees.
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2.3.3 Pruning and Grafting Certain Leaf Edges in Gaussian Trees

In [28], Patra and Lal propose an operation called grafting to order trees based on their algebraic

connectivity, which is the second smallest eigenvalue (λ2) of the Laplacian matrix. Here, we

introduce a new operation on Gaussian trees to obtain the ordering among different structures.

We specify this operation as pruning and grafting of leaf with neighbor of degree 2 (PGLN-2).

We show that by PGLN-2 one can change the security performance of Gaussian trees.

Definition 3. Consider a Gaussian tree T1 = (V,E1,W1) shown in Figure 2.2. The PGLN-2

operation refers to cutting the edge e and attaching it to the other end of its parent edge, i.e., e′,

to obtain the Gaussian tree T2 = (V,E2,W2). In fact, we can interpret PGLN-2, as a particular

operation φ(.) acting on edge e in T1, to produce the tree T2, i.e., φ(T1, e) = T2. Note that all the

constraints regarding covariance values given in Definition 2 also hold in this case.

FIGURE 2.2: T2 is obtained from T1 by PGLN-2 operation

Note that φ(.) is not an injective mapping, since there might be two distinct edges (with their

neighbors having degree of 2), say e, e′ ∈ E1 that φ(T1, e) is isomorphic to φ(T1, e
′). Also, by

Lemma 2 we can conclude that σ2
n1n2

/σn1n1 = σ′2vn2
/σvv. We have the following Lemma, whose

proof can be found in Appendix 2.6.3.

Lemma 3. Consider the Gaussian trees shown in Figure 2.2, where T2 = φ(T1, e). Note that

W1 is any arbitrary set of edge-weights, and W2 is obtained from W1 (by changing the co-

variance values associated with the altered edge). Suppose the max-min values for T1, and T2

are SM(T1,W1) and SM(T2,W2), respectively. Also, Sm(T1,W1) and Sm(T2,W2) are the corre-
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sponding min-max values for T1 and T2, respectively. We have SM(T1,W1) ≥ SM(T2,W2) and

Sm(T1,W1) ≥ Sm(T2,W2).

Intuitively, for the max-min case using PGLN-2 operation on the edge e we are essentially

adding another neighbor to the node n2, hence giving more options to the eavesdropper to choose

the best location to attack, resulting in smaller max-min values. On the other hand, although in

the min-max case z cannot choose n1 anymore (since it became a leaf), it can choose the node

v (which has a higher degree now), thereby decreasing the number of possible choices for the

pair (a, b). As we can see from Lemma 3, for any given Gaussian tree structure, the PGLN-2

operation always decreases both max-min and min-max values of the resulting Gaussian tree.

As a result, this specific operation generates a certain ordering of Gaussian trees, in which the

corresponding structures are ordered with regard to their respective max-min and min-max values.

In the following, we formally define the tree ordering using the results obtained in Lemma 3,

Definition 4. Consider the trees T1 = (V,E1,W1) and T2 = (V,E2,W2), where T2 = φ(T1, e),

for some leaf edge e ∈ E1 that has a neighbor with degree two. We know from Lemma 3 that

SM(T1,W1) ≥ SM(T2,W2) and Sm(T1,W1) ≥ Sm(T2,W2). In this setting, we write T1 � T2,

where the binary relation “ � ” shows the ordering of these trees, i.e., T1 is more secure than T2.

As we will see shortly, the ordering defined in Definition 4 leads to an interesting concept: we

can define several classes for all Gaussian trees, and each class is a particular poset of distinct

Gaussian trees.

While from Lemma 3 one may anticipate that any general PG operation results in less secure

Gaussian trees, in the following proposition whose proof can be found in [31], we show that this

is not the case.

Proposition 1. Consider the trees shown in Figure 2.1. Given a Gaussian tree T1 = (V,E1,W1),

if we perform PG operation on the edge e to obtain the Gaussian tree T2 = (V,E2,W2), where

v′ 6= v. Then, in general T1 � T2, i.e., T1 is not always more favorable than T2.
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From Proposition 1 we can see that if two trees are not related through one or more PGLN-

2 operations, then in general they cannot be ordered using our defined binary relation. In fact,

without assigning a specific covariance matrix to each Gaussian tree, these structures cannot be

consistently compared. This motivates us to search for certain structures that cannot be compared

with each other, and at the same time they cannot be improved further, using PGLN-2 operation.

In particular, we form sets of Gaussian tree structures, where each set contains a unique leader

that is the most favorable topology among all topologies in the same set. Other topologies in a

poset might be comparable/incomparable with each other. By classifying the trees into certain

sets we can further study both their topological and algebraic properties.

2.3.4 Forming the Posets of Gaussian Trees

Based on the obtained results in Proposition 1 and Lemma 3 we can form posets [32] of Gaussian

trees. Each poset is formed from its most favorable (MF) structure, TM = (V,EM ,WM). In other

words, TM is the poset leader acting as the ancestor to all other Gaussian trees in the same poset,

i.e., all other Gaussian trees can be obtained from TM using one or more PGLN-2 operations

(composition of several φ(.) functions). Also, in each poset given two trees T and T ′, they are

adjacent if T ′ = φ(T, e), for the leaf edge e ∈ E(T ) that is connected to the a node having

degree of two. Note that by Definitions 2 and 3, via the PGLN-2 operation only the covariance

values regarding to the altered node will be changed, while the determinant of the covariance

matrix corresponding to the trees remain the same. Hence, all trees in the same poset have a fixed

determinant for their corresponding covariance matrices. Moreover, in Lemma 4, whose proof

can be found in [31] we show the uniqueness of LF structures in each poset.

Lemma 4. In any poset with a given TM = (V,EM ,WM) acting as a poset leader, we can find a

unique least favorable (LF) structure, TL = (V,EL,WL), which acts as a descendant to all other

trees.
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Hence, we observe that our defined posets are certain classes of posets, which have a unique

MF and LF structures. Also, from the results in Lemma 3 we know that TM has the most secure

structure, while TL has the least secure structure in each poset. As an example, Figure 2.3 shows all

six posets of Gaussian trees on 8 nodes. The posets consist of several unlabeled trees. Each poset

consists of several Gaussian trees, and while such trees are weighted and consequently labeled, we

consider them as being unlabeled. This is because by considering labeled trees, we are producing

Gaussian trees (with isomorphic unlabeled structures) capturing different joint densities but with

exactly the same security performance, making the obtained trees redundant. In Figure 2.3, the

MF and LF structures are placed at the top and bottom of each poset, respectively. Note that in

this figure, posets 1, 2, 3 and 6 are the special cases where posets are basically formed as fully

ordered sets, hence any tree structure in each of these posets can be compared to other trees in the

same poset, through one or more PGLN-2 operations. On the other hand, in each of the posets 4

and 5 there are some structures that cannot be compared using the rules given in Lemma 3. Note

that beginning from any tree and performing several PGLN-2 (or performing reverse PGLN-

2) we can obtain all other trees in the same poset. However, if we begin from MF structure,

then by performing only PGLN-2 (and not its reverse) we can produce all other structures in the

poset. In other words, the MF structures, acting as the poset leaders, can fully describe the poset

structure. On the other hand, we also know that the MF topologies are the most secure trees in

each poset. Hence, finding such structures is of huge importance, and there should be a method

to systematically obtain these topologies. Thus, in section 2.4, we propose an efficient algebraic

approach to enumerate all these structures systematically.

2.3.5 Directed Super-Graph Corresponding to Each Poset

From now on, for the simplicity of notations we call the leaf edges that are connected to a node

with degree two as special leaf edges. Figure 2.3 gives us an intuition in order to construct a

directed super-graph containing Gaussian trees. In particular, each poset can be converted into a

directed super-graph G = (Vs, Es), where Vs is the set of trees in a poset acting as vertices, and
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FIGURE 2.3: All the possible posets for Gaussian trees with n = 8 nodes

Es is the set of directed edges between the two nodes that can be related using PGLN-2. Using

this super-graph, we can easily identify the comparable tree structures: If there is a directed path

between two structures, then they are comparable. Hence, we can conclude that both MF and LF

structures can be compared with any other tree in a poset. For example, in Figure 2.3, in posets

1, 2, 3, and 6 there is a directed path between any tree structure so all the trees are comparable

with each other, making each poset a fully ordered set. On the other hand, in posets 4 and 5
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there are certain trees with no directed path between them, making such structures incomparable

with each other under Lemma 3 conditions. In each poset, the MF structure has the maximum

number of special leaf edges, while the LF structure has none of such edges. Also, observe that

the poset leader fully characterizes the structure of its super-graph. In particular, the number of

those special leaf edges in MF structure specifies the length (number of consecutive grafting

operations plus 1) of the super-graph. Moreover, the structure of those special leaf edges specifies

the width of the super-graph. For example, in Figure 2.3 we can see that the poset 2 has two special

leaf edges, hence the super-graph has length 3. Also, since these special leaf edges are fully

symmetric with respect to each other (performing PGLN-2 operation on either of those edges,

results in an isomorphic tree structure), the poset 2 becomes fully ordered. On the other hand, in

poset 5 because of the two asymmetric special leaf edges we obtain two different topologies in

the next level. Roughly speaking, if those special edges become more symmetric, the poset tends

to become fully ordered.

Although converting each poset to its corresponding super-graph simplifies the comparison be-

tween tree topologies in a set, as it can be observed, for larger trees identifying these special

branches and ordering trees by grafting operation becomes more challenging. Hence, in the fol-

lowing, we aim to study the tree structures and their associated posets in a more abstract and

general way.

2.4 Algebraic properties of Gaussian Trees

2.4.1 Tutte-Like Polynomials for Gaussian Trees in Posets

In this section, in order to model the Gaussian trees and the corresponding posets more systemat-

ically, we study the algebraic properties of these models. As we may see in the following, these

properties will further help us characterize the special leaf edges, and thus allow us to evaluate the

security robustness of any tree structure within a poset. To achieve this goal, for each tree, we asso-

ciate a two-variable Tutte-like polynomial defined in [13], where Chaudhary and Gordon modify

the definition of the Tutte polynomial to obtain a new invariant for both rooted and unrooted trees.

23



Also, they proved that this polynomial uniquely determines rooted trees. For unrooted trees how-

ever, it is shown in [33] that certain classes of caterpillars have the same polynomials assigned to

them. However, interestingly, we prove that in each poset, in many cases the trees have unique

polynomials.

Let R(T ) denote the collection of all subtrees of T , and LE(S) denote the leaf edges in the

subtree S, i.e., the edges that are connected to leaf nodes, then we have [13],

fE(T ; t, z) =
∑

S⊆R(T )

t|E(S)|(z + 1)|E(S)|−|LE(S)| (2.5)

where |E(S)| is the total number of edges in the subtree S. Note that z used in (2.5), is completely

irrelevant to the random variable z used in the previous sections. Basically, this polynomial is a

generating function that encodes the number of subtrees with a given internal and leaf edges [33].

We next show that such polynomials can help us systematically generate trees in a poset from the

poset leader. The proof can be found in [31].

Lemma 5. Suppose there is a directed path from the tree Tn to Tn−m in a poset, i.e., Tn−m can

be obtained from Tn through m PGLN-2 operations. Then, their associated polynomials have the

following recursive relationship,

f(Tn;t, z) =

f(Tn−m; t, z) + t(1− tz)[m−
m∑
k=1

gn−k(t, z)] (2.6)

where, gn−k(t, z) is the polynomial associated with the rooted tree obtained from the tree Tn−k,

after deleting the special leaf edge e and its neighbor edge e′ (e.g., see e and e′ shown in Figure

2.2 for the tree T1), in a given step k, and putting their common node as a root (e.g., the node v in

Figure 2.2). Note that in (2.6), Tn−(n−1) = T1 becomes the LF topology.

Using the recursive equation derived in (2.6), we then have the following corollary, whose proof

is in Appendix 2.6.4.
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Corollary 1. In a poset, if one of the following cases happens then two polynomials correspond-

ing to the trees are distinct: (1) If there exists a directed path between two trees; (2) If both trees

have the same parent tree; (3) If the two structures lie at different levels (stages) in the super-graph.

Hence, by Corollary 1, we see that although Tutte-like polynomial is not graph invariant in

general, in many cases the polynomials associated with trees in a same poset are distinct. As

an example, consider the poset 5 shown in Figure 2.3. Since all trees satisfy at least one of the

conditions in Corollary 1, all of their associated polynomials are thus distinct. Following (2.5),

we have

f(TM ; t, y) = t7y4 + t6(y4 + 2y3) + t5(3y3 + 2y2)

+ t4(4y2 + 2y) + t3(6y + 1) + 7t2 + 7t+ 1

f(Tl; t, y) = t7y3 + t6(3y3 + y2) + t5(2y3 + 4y2)

+ t4(5y2 + 3y) + t3(6y + 2) + 8t2 + 7t+ 1

f(Tr; t, y) = t7y3 + t6(3y3 + y2) + t5(3y3 + 3y2 + y)

+ t4(4y2 + 3y + 1) + t3(5y + 4) + 9t2 + 7t+ 1

f(TL; t, y) = t7y2 + 5t6y2 + t5(8y2 + y)

+ t4(6y2 + 4y + 1) + t3(5y + 5) + 10t2 + 7t+ 1

(2.7)

where TM and TL are the MF and LF structures in poset 5, respectively. Also, Tl and Tr are the

left and right structures, respectively that located in the middle of poset 5. For the simplicity of

polynomials we replaced z+ 1 with y. As we expected, all the computed polynomials in (2.7) are

distinct.

The Tutte-like polynomial can be used to evaluate certain topological properties of trees. In

the following lemma, whose proof is in [31], we propose an interesting result: the Tutte-like

polynomial can enable us to obtain the exact number of special leaf edges in the corresponding
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tree. Hence, using this result we estimate the security robustness of a tree structure by computing

its distance from LF structure.

Lemma 6. Given the polynomial f(T ; t, z) associated with a tree T having |I| internal edges,

the second highest degree term has the form t|E|−1(α(1 + z)|I|−1 + β(1 + z)|I|). The coefficient α

shows the number of leaf edges, which are connected to a node with degree two.

Corollary 2. The coefficient α defined in Lemma 6 shows the distance between the tree T and

LF structure. Also, if α = 0 then T is the LF structure.

Example 1. Consider the tree topologies in poset 5 of Figure 2.3, and their associated polynomials

that are computed in (2.7). The MF tree TM has two special leaf edges, hence in its corresponding

polynomial, the second highest degree term has the form t6(y4 + 2y3). Hence, α = 2. The two

middle trees in the same poset, each have one special leaf edge, and in this case we have t6(3y3 +

y2) for both second highest degree terms, in which α = 1. On the other hand, the LF tree TL has

no such leaf edges. From (2.7) we can see the second highest degree term for f(TL; t, y) is 5t6y2,

hence α = 0.

The results obtained in Lemma 6 and Corollary 2 show a strong correlation between the Tutte-

like polynomial and security robustness of a Gaussian tree. In particular, being closer to LF struc-

ture, hence having smaller values for α (comparing to others in the same poset), makes the Gaus-

sian tree less favorable comparing to other structures in the same poset.

2.4.2 Enumerating Poset Leaders: Restricted Integer Partition Approach

In the previous sections, we studied certain properties of tree topologies in the same poset. In this

section, we find a systematic method to generate different poset leaders, which is further related

to restricted integer partition problems. The following example will demonstrate new ways to

quickly enumerate these MF structures. First consider the following example:

Example 2. Consider the MF structure in poset 5 shown in Figure 2.3. For a moment, picture

the node r5 as a junction to three branches. In particular, these branches are chain structures each
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having 1, 2, and 4 nodes (excluding r5), hence we assign the string (1 + 2 + 4) to this topology.

Note that, each summand in a partition is also called a part, e.g., here the parts are 1, 2, and 4.

Here, we name r5 as the anchor node to this MF structure. Similarly, in poset 3 and 4 having

anchor nodes r3 and r4, respectively; we can assign the strings (1 + 3 + 3) and (2 + 2 + 3) to these

structures. The MF structure in the poset 6 has four branches that come out of the anchor node r6.

Therefore, we can assign (1+2+2+2) to this structure. Next, consider the MF topology in poset

1. This is a special case (i.e., an integer partition having two parts), where any internal node can

be an anchor node. Here, we arbitrarily choose r1 as the anchor node, hence obtaining (3 + 4) for

this structure. However, one can choose other internal nodes to obtain equivalent partitions such

as (2 + 5) or (1 + 6). Note that in all MF structures above we have only one anchor node, hence

all the parts in each string sums up to |V | − 1 = 8 − 1 = 7. Lastly, consider the MF structure in

poset 2. Here, there are two anchor nodes r2 and r′2, each having two branches with lengths 1 and

2. Therefore, the integer partition is separated into two sections, i.e., (1+2)+(1+2), where each

section corresponds to one anchor node. In this case since we have two anchor nodes, the parts

sum up to |V | − 2 = 6.

Based on this example, we propose an effective algorithm to enumerate all poset leaders of

a given order. As we anticipate, integer partition methods [22] can be very helpful in order to

quickly reach this goal. However, this method should be systematically implemented. In partic-

ular, we use restricted integer partitions to find all poset leaders. Each integer partition should

satisfy the following constraints: (1) Each section should have at most a single 1; (2) The parts

in the leftmost (first) and rightmost (last) sections should each sum up to values larger than or

equal to 3. Essentially, the first constraint is to ignore the non-poset leader cases, while the sec-

ond constraint is to ignore the cases where two or more sections can be merged and form already

produced sections, hence, making this method more effective. In this case, the partitions that

satisfy the above constraints are defined to be acceptable integer partitions (AIP). Algorithm 1,

effectively finds the list of all AIPs corresponding to poset leaders of given order n:

27



Input: n, as the order of Gaussian trees
Output: P , as the list of all poset leaders
P ← ∅ ;
for A := 1 to Amax do

Given n− A, find the subset of all AIPs PA = {p1, p2, ..., pmA
} each having A parts ;

for i := 1 to mA do
Find those parts in pi that can be further partitioned to obtain new and AIPs and add
them to PA ;

end
Check for any permutation of parts that gives a new AIP and add them to PA ;
Check for redundant AIPs in PA and eliminate them from the list ;
P ← P ∪ PA ;

end
ALGORITHM 1. Enumerating Poset Leaders

Here A shows the number of anchor nodes; and Amax can be determined by combining the

two aforementioned constraints. In particular, given |V | = n as the order of trees, then Amax =

n− (3 + 3) = n− 6. For example, each of the MF structures shown in Figure 2.3 have only one

anchor node, except the MF structure in poset 2 that has two anchor nodes, and we know in this

case Amax = 2. Also, note that unlike normal integer partitions the position of parts matters, so

we should count some of permutations of different parts. In particular, two non-isomorphic poset

leader topologies may have identical integer partitions, but with different ordering of parts.

FIGURE 2.4: Two different structures of poset leaders on n = 12 nodes

Figure 2.4 shows two different permutations of integer partitions for n = 12. As we can see

from the figure, these two structures are non-isomorphic, but they have the same parts and sec-
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tions. Also, observe that both integer partitions sum up to (1 + 2) + (0) + (1) + (1 + 3) =

(1 + 2) + (1) + (0) + (1 + 3) = 8, since based on the algorithm we do not count the anchor nodes

(here there are 4 of them) in the partitions.

2.5 Conclusion

In this paper, we studied the problem of comparing security performance of Gaussian trees in both

max-min and min-max scenarios. First, we introduced the PGLN-2 operation to obtain an order-

ing among such trees. The poset of Gaussian trees is defined as equivalence classes containing

certain Gaussian trees that can be transformed into each other using one or more PGLN-2 opera-

tions. Also, each poset consists of unique MF and LF structures with the best and worst security

performances, respectively. Second, we assigned a polynomial to each Gaussian tree, and showed

that using such polynomials one can estimate the relative security performance of a Gaussian tree

with respect to other structures within the same poset. We also obtained an effective approach,

based on restricted integer partitions, to enumerate the MF structures.

2.6 Proof of Theorems
2.6.1 Proof of Lemma 1

First, consider the max-min case, in which Alice and Bob choose a pair of nodes, under the pes-

simistic assumption that Eve chooses the best possible node to minimize the conditional mutual

information I(a; b|z). Figure 2.5 shows all the possible cases that a particular eavesdropper can

take, in a fixed path between the nodes a and b. In other words, Eve may pick any node z1, z′1, z2,

z′2, z3, z′3 or z4. Note that there might be several edges on a path between any pair of nodes.

We use the results provided in Theorem 1 and Theorem 2, which are proposed in [21, pp. 348-

349]. Essentially, Theorem 1 is a conditional version of the well-known information inequality

and holds in general for mutual information of any distribution [30]. Intuitively, for the Gaussian

trees the condition in Theorem 1 is satisfied when b lies on the path between a and b′, where b′ is

the alternative choice for Bob. In other words, the longer path implies weaker dependence. On the

other hand, Theorem 2 holds in general for the Gaussian joint density. The first part of Theorem
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2 shows that if a, b, and z are pairwise separated given x, then conditioning always reduces the

mutual information between a and b. In Gaussian trees, the second part of the Theorem 2 shows

that for the fixed correlates a and b, the eavesdropper z wants to be closer to the path between

them.

From Figure 2.5 we can see that there are totally four possible choices for Eve: When z is

connected to the path pab through one of the nodes a or b; when z is connected to pab through the

node x; and when z lies on the path between a and b.

FIGURE 2.5: All the possible locations for the eavesdropper given the fixed correlates

Recall that the objective is to find the value for z that minimizes the mutual information between

a and b: minz I(a; b|z).

Cases 1 and 2. When z is along the path pab, i.e., the case z1 or z2: First, consider the case

z1, the analysis for z2 is exactly the same. From Theorem 1 we know that because a ⊥ z′1|z1 we

have: I(b; z1) ≥ I(b; z′1). Now we want to compare two values for the mutual information. First,

observe that b ⊥ z1|a. So we can conclude that I(b; a, z1) = I(b; a). The same condition holds

for z′1: I(b; a, z′1) = I(b; a).

I(b; z1) > I(b; z′1)→

I(b; a)− I(b; z1) < I(b; a)− I(b; z′1)→

I(b; a, z1)− I(b; z1) < I(b; a, z′1)− I(b; z′1)→

I(b; a|z1) < I(b; a|z′1) (2.8)

Eq. (2.8) shows that I(a; b|z1) ≤ I(a; b|z′1). In other words, the eavesdropper wants to be as close

as possible to the path pab.
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Case 3. Now consider the case when z is a branch node, i.e., it is connected to pab through the

node x: It is obvious that by replacing z3 with z and z′3 with z′ in the Theorem 2’s conditions, we

can satisfy all the constraints in this theorem. Hence, we can conclude that I(a; b|z3) ≤ I(a; b|z′3).

Again, we conclude that z wants to be closer to the path pab.

Case 4. When z lies on the path pab: In this case it is obvious that a ⊥ b|z4. As a result we have

I(a; b|z4) = 0, which is not desirable choice for a and b.

Next, we find possible cases that maximize the mutual information between a and b, given the

fixed node for z. We show that to maximize the conditional mutual information, a and b should

be close to each other. Consider the case where Bob has two choices b or b′, where b is on the

path between b′ and Alice’s choice a. Then for any given subset of choices Z for Eve, by data

processing inequality [30] we have I(a; b|Z) ≥ I(a; b′|Z) Hence, we can immediately see that

Alice and Bob pick the pair of nodes that are adjacent. Also, it can be argued that if a and b are

not adjacent, then the eavesdropper wants to pick the best node: z picks any node on the path pab.

As a result I(a; b|z) becomes zero. This validates the first result in Lemma 1.

Next, consider the min-max case, in which Eve chooses a particular node, assuming that Alice

and Bob choose the best pair of nodes to maximize the conditional mutual information I(a; b|z).

Similar to the max-min case, observe that regardless of Eve’s choice, Alice and Bob choose ad-

jacent nodes, since otherwise based on Theorem 1, I(a; b|z) becomes either zero, or it can be

improved further. Furthermore, let us assume that Eve picks a leaf node, say z, which is adjacent

to z′. Now, the min-max value for this particular case is computed by ρ2
ab|z = max(a,b)∈E\(z′,z). On

the other hand, if the eavesdropper picks z′, the min-max value becomes ρ′2ab|z′ = max(a,b)∈E\(z′,adj(z′)),

where adj(z′) is the set of adjacent nodes to z′, which contains z as well as some other nodes.

Hence, using Theorem 2 clearly ρ′2ab|z′ ≤ ρ2
ab|z and since Eve chooses the minimum between all

possible cases, so it rules out all the leaf nodes. This completes the proof.

2.6.2 Proof of Lemma 2

We first prove the following:
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For any vi ∈ V , let us define di as its degree. Then, we have,

|ΣT | =

∏
(vi,vj)∈E

[σviviσvjvj − σ2
vivj

]∏
vi∈V

σdi−1
vivi

(2.9)

The proof follows by induction. First, assume that the Gaussian tree T has only one edge with

two vertices v1 and v2, then we can immediately form ΣT , and deduce |ΣT | = σv1v1σv2v2 −

σ2
v1v2

, which follows the general formula in (2.9). Next, let us assume that (2.9) is valid up to

T ′ = (V ′, E ′,W ′), where |V ′| = n − 1. Hence, we need to prove the validity of this equation

for T = (V,E,W ) with |V | = n, where the tree T can be obtained from T ′ by adding one

vertex, namely vn. Without loss of generality, we assume that vn is connected to vn−1. Since

vn ⊥ vi|vn−1, for all vi ∈ V \{vn, vn−1}, using the arguments given in Section 2.2, we have

σvivn = σvivn−1σvn−1vn/σvn−1vn−1 . If we factorize σvn−1vn/σvn−1vn−1 from the last column, then

subtract the n − 1-th column from the n-th column, and replace the result with the n-th column,

we obtain,

|ΣT | =
σvn−1vn

σvn−1vn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σv1v1 · · · 0

σv2v1 · · · 0

... . . . ...

σvn−1v1 · · · 0

σvnv1 · · · x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where x = (σvnvnσvn−1vn−1 − σ2

vnvn−1
)/σvnvn−1 . Using the last column, we can compute |ΣT | as

follows,

|ΣT | =
σvn−1vn

σvn−1vn−1

x|Σ\n\n|

=
σvnvnσvn−1vn−1 − σ2

vnvn−1

σvn−1vn−1

|Σ\n\n| (2.10)

where |Σ\n\n| is the determinant of submatrix of ΣT resulting after removing the n-th column and

row. Note that since removing the last row and column of ΣT is the same as removing vn from T ,
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hence we conclude that Σ\n\n = ΣT ′ . Therefore, (2.10) becomes

|ΣT | =
σvnvnσvn−1vn−1 − σ2

vnvn−1

σvn−1vn−1

|ΣT ′ | (2.11)

Observe that since the degree of vn−1 is 2, the fraction in (2.11) has the same form as in (2.9).

Also, we know that |ΣT ′ | follows the general formula as well. This completes the inductive proof

for the first part.

To prove the result in Lemma 2, note that the Gaussian trees T1 and T2 differ in only one edge,

namely e. Hence, we can write,

|ΣT1| = |Σ\n2\n2|
σn1n1σn2n2 − σ2

n1n2

σn1n1

|ΣT2| = |Σ\n2\n2|
σv′v′σn2n2 − σ2

v′n2

σv′v′

Since we assume that |ΣT1| = |ΣT2|, the result follows.

2.6.3 Proof of Lemma 3

First, note that since PGLN-2 changes the local structure, most of the parts in both trees T1 and T2

shown in Figure 2.2 remains the same. This in turn results in both max-min values to be equal in

many cases. Let us denote the squared partial correlation coefficients for trees T1 and T2 as ρ2
ab|z

and ρ′2a′b′|z′ , respectively, then we have the following cases for the max-min scenario:

1. Suppose in tree T1, Alice and Bob choose a pair (a, b) ∈ EC(T1), where EC(T1) is the set

of all edges inside the cloud other than v. Then, according to Lemma 1, Eve chooses z from

appropriate nodes in VC(T1), i.e., the set of nodes inside the cloud (including v). Now, if (a′, b′) ∈

EC(T2) then since EC(T2) = EC(T1) and VC(T2) = VC(T1), so the max-min values for this case

are equal.

2. Suppose in tree T1, Alice and Bob choose the pair (a, b) = (xi, v), where xi ∈ adj(v)

is adjacent to v. Then z ∈ {adj(xi), n1}. Now, if in T2 the pair (a′, b′) ∈ (xi, v), then z′ ∈

{adj(xi), n1, n2}. In T2, Eve has one more option (i.e., n2) to choose from, comparing to its

choices in T1, hence we can immediately conclude that for this case ρ2
ab|z ≥ ρ′2a′b′|z′ .
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3. Suppose in T1, Alice and Bob choose the pair (a, b) = (v, n1). In this case z ∈ {adj(v), n2}.

Now, if in T2 the pair (a′, b′) = (v, n1), then z′ ∈ {adj(v), n2}. Now we know σ2
n1n2

/σn1n1 =

σ′2vn2
/σvv, then if we replace σ′2vn2

with σ2
n1n2

σvv/σn1n1 in the equation regarding to ρ′2vn1|n2
we can

conclude that ρ2
vn1|n2

= ρ′2vn1|n2
. As a result, the max-min values for both trees in this case are

equal.

4. Suppose in T1, Alice and Bob choose the pair (a, b) = (n1, n2). Then Eve has only one

option, which is choosing v. Now, if in T2, (a′, b′) = (v, n2), then z′ ∈ adj(v), where adj(v)

consists of the set of vertices inside the cloud, as well as n1. Now, using similar arguments as in

case 3, and by σ2
n1n2

/σn1n1 = σ′2vn2
/σvv, we can show that ρ2

n1n2|v = ρ′2vn2|n1
. Since, in T2, Eve can

choose any z′ other than n2, hence in this case ρ2
ab|z ≥ ρ′2a′b′|z′ .

Following discussed cases, showing that T1 � T2 is straightforward: for example, suppose

SM(T1,W ) is chosen from case 1, then if SM(T2,W ) is chosen from the same case, we know

SM(T1,W ) = SM(T2,W ). Otherwise, if SM(T2,W ) is chosen from any other case (let’s name

this value as S ′M(T2,W )), then since Eve chooses the minimum among the four cases, so S ′M(T2,W ) ≤

SM(T2,W ) = SM(T1,W ). As another example, suppose SM(T1,W ) is chosen from case 2, then

if SM(T2,W ) is chosen from the same case, we know SM(T1,W ) ≥ SM(T2,W ). Otherwise,

if the max-min value, say S ′M(T2,W ) is chosen from any other case, using the same arguments

S ′M(T2,W ) ≤ SM(T2,W ) ≤ SM(T1,W ). Similar arguments can be used for the remaining cases.

Next, similar to the max-min problem, we can conclude the following cases for the min-max

problem:

1. Suppose in T1, the eavesdropper picks a (non-leaf) node vc from inside the cloud, where vc ∈

VC(T1). Then, the possible choices for the pair Alice and Bob are (a, b) ∈ {EC(T1), (v, n1), (n1, n2)}.

If we also assume z′ = vc, then (a′, b′) ∈ {EC(T2), (v, n1), (v, n2)}. We know since EC(T1) =

EC(T2), hence the only difference is the pair (n1, n2) ∈ E(T1) versus (v, n2) ∈ E(T2). Using the

fact that σ2
n1n2

/σn1n1 = σ′2vn2
/σvv and using (2.4) it is not hard to show that ρ2

n1n2|vc ≥ ρ′2vn2|vc for

all vc ∈ VC(T1). As a result, for this case we have ρ2
ab|z ≥ ρ′2a′b′|z′ .
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2. Suppose in T1, the eavesdropper picks the node v. Then, for the pair of legitimate nodes we

have (a, b) ∈ {EC(T1), (n1, n2)}. If we also assume that z′ = v, then (a′, b′) ∈ EC(T2). Now, we

know the Alice and Bob want to maximize their security; since in T1 they have one more option

(i.e., (n1, n2)) to choose from, therefore for this case again we have ρ2
ab|z ≥ ρ′2a′b′|z′ .

3. Suppose in T1, Eve picks the node n1. Then, (a, b) ∈ EC(T1). Note that in the tree T2 the

node z′ 6= n1, since it is a leaf. Hence, again suppose z′ = v. So, similar to case 2 we know

(a′, b′) ∈ EC(T2). Note that the node z′ lies on the path from the pairs (a′, b′) (inside the cloud in

T2) to n1. Therefore, using Theorem 2 in [21, p. 349] we conclude that ρ2
ab|z=n1

≥ ρ′2a′b′|z′=v.

Now, we show T1 � T2: for example, suppose SM(T1,W ) is chosen from case 1, then if

SM(T2,W ) is chosen from the same case, we know SM(T1,W ) ≥ SM(T2,W ). Otherwise, if the

max-min value, say S ′M(T2,W ) is chosen from the other case (i.e., case 2), since (a, b) in T1 have

chosen the case with maximum value SM(T1,W ) ≥ ρ2
ab|z=n1

, where ρ2
ab|z=n1

corresponds to case

3 in T1. But we know from above that ρ2
ab|z=n1

≥ ρ′2a′b′|z′=v = S ′M(T2,W ), hence SM(T1,W ) ≥

S ′M(T2,W ). We can use similar arguments for the other cases as well. This completes the proof.

2.6.4 Proof of Corollary 1

First, suppose f(Tn; t, z) = f(Tn−m; t, z) then using (2.6) we should have t(1 − tz) [m −∑m
k=1 gn−k(t, z)] = 0, or

∑m
k=1 gn−k(t, z) = m. Recall that all gn−k(t, z) are polynomials as-

sociated with rooted trees, so the only possibility is gn−k(t, z) = 1, for all 1 ≤ k ≤ m, a

contradiction.

Second, consider two trees Tn−m and Tn−l, at different levels having nearest common ancestor

Tn. Then using (2.6) we have the following:

f(Tn;t, z) =


fL(Tn−m; t, z) + t(1− tz)[m−

∑m
k=1 g

L
n−k]

fR(Tn−l; t, z) + t(1− tz)[l −
∑l

k=1 g
R
n−k]

suppose, fL(Tn−m; t, z) = fR(Tn−l; t, z) then we obtain,
m∑
k=1

gLn−k −
l∑

k=1

gRn−k = m− l (2.12)
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Ifm = l = 1, i.e., both trees Tn−m and Tn−l are obtained from Tn by a single grafting operation.

But, since they have two different structures, the corresponding polynomials for the rooted trees

gLn−1 and gRn−1 are distinct, because in [13] it is shown that Tutte-like polynomial for rooted trees

is graph invariant. Hence, fL(Tn−1; t, z) and fR(Tn−1; t, z) are distinct. So, the trees at the same

level that are obtained from their parent through one grafting operation are distinct.

Finally, suppose we have m 6= l. Let’s define yi = gi − 1 for all polynomials gi(t, z). Now,

using (2.12) we have,

m∑
k=1

yLn−k −
l∑

k=1

yRn−k = 0 (2.13)

The highest degree term corresponds to the rooted trees resulted by eliminating the edges e and

e′ and putting the common node between these two edges as a root. Also, the highest degree terms

are resulted from the subtrees associated to yLi and yRi and no other proper subsets of these trees.

Hence, from (2.13) and assuming that original tree Tn has the size |E|, then we can conclude,

t|E|−2

m∑
k=1

(1 + z)Ln−k = t|E|−2

l∑
k=1

(1 + z)Rn−k (2.14)

where Ln−k and Rn−k are non-negative integer powers, which show the largest number of

internal edges for each tree associated to polynomials yLn−k and yRn−k.

Equation (2.14) should hold for all values of t and z. Let’s set t = 1 and z = 0, we obtain

m = l, a contradiction.
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Chapter 3

Layered Synthesis of Latent Gaussian Trees

In this chapter, a new synthesis scheme is proposed to generate a random vector with prescribed

joint density that induces a (latent) Gaussian tree structure. The quality of synthesis is shown

by vanishing total variation distance between the synthesized and desired statistics. The pro-

posed layered and successive synthesis scheme relies on the learned structure of tree to use suf-

ficient number of common random variables to synthesize the desired density. We characterize

the achievable rate region for the rate tuples of multi-layer latent Gaussian tree, through which

the number of bits needed to synthesize such Gaussian joint density are determined. The random

sources used in our algorithm are the latent variables at the top layer of tree, the additive inde-

pendent Gaussian noises, and the Bernoulli sign inputs that capture the ambiguity of correlation

signs between the variables. We have shown that such ambiguity can further help in reducing the

synthesis rates for the underlying Gaussian trees.

This study has resulted in three research papers, [34–36].

3.1 Introduction

Consider the problem of simulating a random vector with prescribed joint density. Such generative

modeling can be implemented by generating an appropriate number of random input bits (by

relying on a random source) to a stochastic channel whose output vector has its empirical statistics

meeting the desired one measured by a given metric. Generative models have many applications

ranging from probabilistic programs [37] to economics [38], physics [39] and computer vision

[40].

We aim to address such synthesis problem for a case where the prescribed output statistics in-

duces a (latent) Gaussian tree structure, i.e., the underlying structure is a tree and the joint density

of the variables is captured by a Gaussian density. The Gaussian graphical models are widely
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studied in the literature, because of a direct correspondence between conditional independence

relations occurring in the model with zeros in the inverse of covariance matrix, known as the

concentration matrix. They have diverse applications in social networks, biology, and economics

[41, 42], to name a few. Gaussian trees in particular have attracted much attention [42] due to

their sparse structures, as well as existing computationally efficient algorithms in learning the

underlying topologies [2, 43].

In a latent Gaussian tree, we are dealing with two sets of variables. Let X = {X1, X2, ..., Xn}

be the n observed variables in a Gaussian tree, i.e., the covariance matrix Σx is given. The set

of variables Y = {Y1, Y2, ..., Yk} are hidden to us and should be estimated. Note that for Σx

to induce a latent Gaussian tree, it needs to satisfy certain conditions shown in [43]. In fact, for

any triplet xi, xj, xk ∈ X and writing ρxixj to show the pairwise correlation we need to have

|ρxixj | ≥ |ρxixkρxjxk | and ρxixjρxixkρxjxk > 0. Such constraints on the correlation space shown to

be necessary and sufficient for a joint Gaussian distribution to characterize a latent Gaussian tree

[43].

There are several works such as [2, 44] that have proposed efficient algorithms to infer the

latent Gaussian tree parameters. In fact, Choi et al., proposed a new recursive grouping (RG)

algorithm along with its improved version, i.e., Chow-Liu RG (CLRG) algorithm to recover a

latent Gaussian tree that is both structural and risk consistent [2], hence it recovers the correct

value for the latent parameters. They introduced a tree metric as the negative log of the absolute

value of pairwise correlations to perform the algorithm.

In this chapter we assume that the parameters and structure information of the latent Gaussian

tree is provided using one of aforementioned algorithms.

Our primary concern in such synthesis problem is about efficiency in terms of the amount

of random bits required at the input, as well as the modeling complexity of given stochastic

system through which the Gaussian vector is synthesized. Such efficiency is characterized through

defining proper random sequences, and random bins containing those sequences, which we define
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as random codewords and codeboooks. We use the input code-rate to define the complexity of

our synthesis systems, since minimizing such rates results in reducing the number of common

random bits needed to generate the output statistics. In particular, through showing the intrinsic

sign singularity in latent Gaussian trees, we have demonstrated that such ambiguity can further

help us to reduce the synthesis rates for such Gaussian trees. To clarify, we consider the following

case study.

3.1.1 Motivating Case Study

Consider a Gaussian tree shown in Figure 3.1. It consists of four observed variables X1, X2,

X3, and X4 that are connected to each other through two hidden nodes Y (1)
1 and Y (1)

2 . Define

ρx1y1 = E[X1Y
(1)

1 ] as the true correlation value (edge-weight) between the input Y (1)
1 and the

output X1. We can similarly define other correlation values ρx2y1 , ρx3y2 , and ρx4y2 . Define B(1)
j ∈

{−1, 1}, j ∈ [1, 2] as a binary variable corresponding to the j−th input that as we will see reflects

the sign information of pairwise correlations. For the tree shown in Figure 3.1, one may assume

that B(1)
j = 1 to show the case with ρ′xiyj = ρxiyj , while B(1)

j = −1 captures ρ′′xiyj = −ρxiyj ,

where ρ′xiyj and ρ′′xiyj , i ∈ [1, 2] or i ∈ [3, 4] are the (alternative) recovered correlation values

using certain inference algorithm such as RG [2]. Also, define B12 = B
(1)
1 B

(1)
2 . It is easy to

see that both recovered correlation values induce the same covariance matrix Σx, showing the

sign singularity issue in such a latent Gaussian tree. In particular, for each pairwise correlation

ρxkxl , k < l ∈ [1, 2, 3, 4], and if xk and xl have the same parent, we have ρxkxl = ρxkyjρxlyj =

(B
(1)
j )2ρxkyjρxlyj , where the second equality is due to the fact that regardless of the sign value, the

term (B
(1)
j )2 is equal to 1. Now, depending on whether we replace B(1)

j with {1,−1}, we obtain

ρxkxl = ρ′xkyjρ
′
xlyj

= ρ′′xkyjρ
′′
xkyj

. And there is no way to distinguish these two groups using only

the given information on observables joint distribution. Similarly, if xk and xl are connected to

different input nodes, we can write ρxkxl = ρxky1ρxly2 = B
(1)
1 B

(1)
2 B12ρxkyjρxlyj , where the second

equality is due to B12 = B
(1)
1 B

(1)
2 . Again, one cannot recover the sign information from only the

output correlation values.

39



FIGURE 3.1: A simple Gaussian tree with a hidden node Y (1)

Such sign singularity patterns become more complex as the tree size grows. In section 3.3 we

characterize certain properties of sign information.

It turns out that such sign singularity can be seen as another noisy source of randomness, which

can further help us to reduce the code-rate corresponding to latent inputs to synthesize the latent

Gaussian tree. In fact, we may think of the Gaussian tree shown in Figure 3.1 as a communica-

tion channel, where information flows from the source Y(1) = [Y
(1)

1 , Y
(2)

2 ] through four channels

p
Xi|Y

(1)
j

with independent additive Gaussian noise variables Zi ∼ N(0, σ2
zi

), i ∈ {1, 2, 3, 4} to

generate (dependent) outputs with X ∼ N(0,Σx). We introduce B(1) = [B
(1)
1 , B

(2)
2 ] ∈ {−1, 1} as

binary Bernoulli random variables with parameters πB(1) and πB(2) , which reflect the sign infor-

mation of pairwise correlations. In fact, we may define the following affine transformation from

inputs to outputs, 

X1

X2

X3

X4


=



α11B
(1)
1 0

α21B
(1)
1 0

0 α32B
(1)
2

0 α42B
(1)
2


Y (1)

1

Y
(1)

2

+



Z1

Z2

Z3

Z4


(3.1)

where αij are given values that characterize the correlations up to sign, i.e., |ρxiyj |.

Our goal is to characterize the achievable rate region and through a synthesis scheme to gen-

erate Gaussian trees with density qXY(1) using only the hidden inputs and through a channel with

additive Gaussian noises, where the synthesized joint density qXY(1) is indistinguishable from the

true Gaussian tree density pXY(1) as measured by total variation metric [16]. To achieve this,
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we first generate many sampled sequences (codewords) (Y(1))N and (B(1))N to form the cor-

responding bins (codebooks) containing those codewords. The size of the codebooks are char-

acterized by 2NRY(1) and 2NRB(1) , where RY(1) and RB(1) are the codebook rates, regarding

to sign and hidden nodes codewords. Each time to generate output sequences, we first ran-

domly pick sign and latent node codewords and then we use the synthesis channel in (3.1) to

achieve a particular output sequence XN . We aim to characterize the lower bound on the code-

book rates, through which the generated sequence’s statistics, i.e., qXY(1) is asymptotically (as

N → ∞) indistinguishable from the desired statistics. In particular, we characterize the quantity

infp
Ỹ(1)

I(X; Ỹ(1)), where I(X; Ỹ(1)) is the mutual information between the output X and the

input vector Ỹ(1) = {Y(1),B}. This corresponds to finding the minimum achievable rate under

Gaussian tree assumption. Equivalently, we are seeking for optimal values of πB(1) and πB(2) to

maximize the achievable rate region characterized by RY(1) and RB(1) .

Remark 1. Suppose for a moment, instead of using the tree structure, we simply used six indepen-

dent normalized Gaussian variables and by passing them through a filter, i.e., linear combination

of these independent variables, we produce the desired Gaussian tree (with two hidden nodes and

fours observables). While this approach seems appealing, note that as it is observed in [45] as well,

such synthesis scheme needs infinite bits of precision to produce the desired statistics, which is

practically infeasible. This is due to the noiseless nature of the channel (see channel resolvability

[15]), i.e., the linear filter, which is noise-free that makes the input code rates maximized (since

the input-output mutual information will be maximized), hence, we need infinite bits of precision

to synthesize the desired Gaussian density. In contrast, our framework exploits the tree structure

to further reduce the rates needed for synthesis. Moreover, to characterize the channel shown in

Figure 3.1, one may need to introduce only four parameters αij , one for each edge, while the

aforementioned naive approach needs nine parameters (basically each input is connected to all

the outputs) to capture the dependency structure of output variables. This modeling efficiency

will become more evident in more general and larger Gaussian trees, since in that case the naive
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approach faces with O(n2) parameters while our approach only needs O(n + k) parameters (in

the order of edge-set cardinality of the tree), where n and k are the number of outputs, and latent

inputs, respectively. Such efficiency is captured by sparsity structure of connection matrix AB

between the input and output, which will be completely characterized in subsequent sections.

3.1.2 Related Works

Wyner’s Common information characterizes the minimum amount of common randomness needed

to approximate the joint density between a pair of random variablesX1 andX2 to beC(X1, X2) =

min PY
X1−Y−X2

I(X1, X2;Y ), where C(X1, X2) is widely known as Wyner’s common information.

This is done through a common source of randomness, i.e., Y , and two independent random

sources to generate X1 and X2 with desired joint statistics. Han and Verdu, in [15] along the same

problem, define the notion of resolvability of a given channel, which is defined as the minimal

required randomness to generate output statistics in terms of a vanishing total variation distance

between the synthesized and prescribed joint densities. Resolvability of a channel is found to be a

very intuitive description of common randomness in our settings, since it can be related to chan-

nel quality in terms of its noise power, and the noisier the channel the less number of common

random bits needed to simulate the output [15]. Along the same line, Cuff in [16] completely

characterized the achievable rate regions needed to synthesize a memoryless channel, where he

also used the total variation distance metric to show the quality of the proposed scheme.

There are several works that extend the classical bi-variate synthesis problem in Wyner’s study

to more general scenarios. In [46–48], the authors aim to define the common information of n

dependent random variables, to further address the same question in this setting. A lower bound

on such generalized common information is obtained in [49]. Also, the common information for a

special case with n Gaussian variables with homogeneous pairwise correlations is obtained. They

resort to the same scenario as Wyner [14] did, i.e., considering one random variable to define

such common randomness. Veld and Gastpar [50] characterize such quantity for a more general

set of Gaussian vectors with circulant covariance matrices. Also, in [51] the authors completely
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characterize the common information between two jointly Gaussian vectors, as a function of

certain singular values that are related to both joint and marginal covariance matrices of two

Gaussian random vectors. However, they still divide the random vector into two groups, which

makes it similar to Wyner’s scenario.

In this chapter, we are not concerned with solving the common information problem for Gaus-

sian trees. Instead, we want to motivate the notion multi-variable synthesis, that is instead of

introducing a single variable Y , we define a random vector Y with certain dependency structure

to capture the common randomness and produce common random bits. We provide a layered

synthesis algorithm, along with the corresponding achievability regions to synthesize those dis-

tributions inducing a Gaussian tree. In [52] such general case is appropriately defined using a

constrained convex optimization problem. The benefits of such general assumption is shown in

[45]. In fact, Steeg et. al. implement a new method based on multi-layer common variables for a

particular blind source separation problem and showed that their proposed model outperforms all

previous learning algorithms.

Similar to [45, 52] we also consider multi-variable cases, but unlike those works, we are inter-

ested in characterizing the achievable rates to synthesize a special class of Gaussian distributions,

namely Gaussian trees. We adopt a specific (but natural) structure to our synthesis scheme to de-

crease the number parameters to model the synthesis scheme. It is worthy to point that the achiev-

ability results are under the assumed structured synthesis framework. Hence, although through

defining an optimization problems, we show that the proposed method is efficient in terms of both

modeling and codebook rates, the converse proof, which shows the optimality of such scheme

and rate regions is never claimed.

3.1.3 Contributions

Our main contributions can be summarized as follows:

• We propose a novel generative modeling scheme, by which we synthesize any Gaussian

vector that lies in a subspace of latent Gaussian trees. The proposed scheme is modeling-wise
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efficient, since by relying on the inferred latent tree structure it reduces the number of parameters

needed at each step for output synthesis. We also characterize the achievable rate regions for all

the channels at each layer.

•We prove that under the latent Gaussian tree assumption, the mutual information between the

output vector and both latent inputs and sign variables is only a function of output’s covariance

matrix ΣX. We provide a general formula for such mutual information in a case of leaf outputs.

We also show that given the sign information, the mutual information between each adjacent layer

vectors is fixed as well. We show that the achievable rates are lower bounded by input-output

mutual information values at each layer.

• We show that the lower bounds on latent variable rates are a function of Bernoulli sign

variables. Such sign ambiguity can be seen as another source of randomness to further help us

achieve lower codebook rates for synthesis. We prove that such lower bounds can be minimized

(hence maximizing the achievable rate region) in a case of homogeneous Bernoulli distributed

sign information.

• In our previous work [53], we only characterized the achievable rate regions for output synthe-

sis of the latent Gaussian trees with leaf observables, and with each hidden node only connected

to the upper layer inputs. However, here not only we provide a constructive proof for those sub-

class of Gaussian trees, but also we completely characterize the synthesis scheme to generate the

entire statistics of any latent Gaussian tree structure.

3.2 Problem Formulation

3.2.1 The Signal Model of a Multi-Layer Latent Gaussian Tree

Here, we suppose a latent graphical model, with Y = [Y1, Y2, ..., Yk]
′ as the set of inputs (hidden

variables), B = [B1, ..., Bm], with each Bi ∈ {−1, 1} being a binary Bernoulli random variable

with parameter πi = p(Bi = 1) to introduce sign variables, and X = [X1, X2, ..., Xn]′ as the

set of Gaussian outputs (observed variables) with pX(x). We also assume that the underlying

network structure is a latent Gaussian tree, therefore, making the joint probability (under each sign
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realization) pXY|B be a Gaussian joint density N(µ,Σxy|b), where the covariance matrix Σxy|b

induces tree structure GT (V,E,W ), where V is the set of nodes consisting of both vectors X and

Y; E is the set of edges; and W is the set of edge-weights determining the pairwise covariances

between any adjacent nodes. We consider normalized variances for all variables Xi ∈ X, i ∈

{1, 2, ..., n} and Yj ∈ Y, j ∈ {1, 2, ..., k}. Such constraints do not affect the tree structure, and

hence the independence relations captured by Σxy|b. Without loss of generality, we also assume

µ = 0, this constraint does not change the amount of information carried by the observed vector.

In [53] we showed that the vectors X and B are independent, and the intrinsic sign singularity

in Gaussian trees is due to the fact that the pairwise correlations ρxixj ∈ Σx can be written as∏
(l,k)∈E ρxlxk , i.e., the product of correlations on the path from xi to xj . Hence, roughly speaking,

one can carefully change the sign of several correlations of the path, and still maintain the same

value for ρxixj . Although this results in no variation on the correlation values ρxnxm , n,m ∈ V ,

we showed that if the cardinality of the input vector Y is k, then 2k minimal Gaussian trees (that

only differ in sign of pairwise correlations) may induce the same joint Gaussian density pX [53].

In order to propose the successive synthesis scheme, we need to characterize the definition of

layers in a latent Gaussian tree. We define latent vector Y(l), to be at layer l, if the shortest path

between each latent input Y (l)
i ∈ Y(l) and the observed layer (consisting the output vector X)

is through l edges. In other words, beginning from a given latent Gaussian tree, we assume the

output to be at layer l = 0, then we find its immediate latent inputs and define Y(1) to include all

of them. We iterate such procedure till we include all the latent nodes up to layer L, i.e., the top

layer. In such setting, the sign input vector B(l) with Bernoulli sign random variables B(l)
i ∈ B(l)

is assigned to the latent inputs Y(l).

We adopt a synthesis channel to feature the relationship between each pair of successive layers.

Assume Y(l+1) and B(l+1) as the input vectors, Y(l) as the output vector, and the noisy channel to

be characterized by the conditional probability distribution PY(l)|Y(l+1),B(l+1)(y(l)|y(l+1),b(l+1)),
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the signal model for such a channel can be written as follows,

Y(l) = AB
(l,l+1)Y(l+1) + Z(l+1), l ∈ [0, L− 1] (3.2)

where Z(l+1) ∼ N(0,Σz(l+1)) is the additive Gaussian noise vector with independent elements,

each corresponding to a different edge from the input layer l + 1 to the output layer l. Also,

AB
(l,l+1) is the |Y(l)| × |Y(l+1)| sparse connection matrix that also carries the sign information

vectors B(l+1) and B(l+1). The sparsity of the transition matrix AB
(l,l+1) = [αij] is due to assumed

underlying tree structure, and it follows the following form

αij =


γijb

(l)
i b

(l+1)
j eij ∈ E

0 eij /∈ E
(3.3)

where eij denotes the edge between Y (l)
i and Y (l+1)

j . The existence of such edge can be verified

from the setE, which is obtained during the learning process. Also, γij is the edge-weight showing

the correlation value ρij up to a sign. Note that, the case for l = 0 is a special case, where AB
(0,1)

only depends on B(1) since there is no sign singularity at the observable layer.

The outputs Y(l) at each layer l, are generated using the inputs Y(l+1) at the upper layer. As

we will see next, such modeling will be the basis for our successive synthesis scheme. In fact, by

starting from the top layer inputs L, at each step we generate the outputs at the lower layer, this

will be done till we reach the observed layer to synthesize the Gaussian vector X. Finally, note

that in order to take all possible latent tree structures, we need to revise the ordering of layers

in certain situations, which will be taken care of in the following subsections. For now, the basic

definition for layers will be satisfactory.

3.2.2 Synthesis Approach Formulation

Here, we provide mathematical formulations to address the following fundamental problem: us-

ing channel inputs Y(l+1) and B(l+1), what are the rate conditions under which we can synthesize

the Gaussian channel output Y(l) with a given pY(l)|B(l) . The synthesis channel at each layer is
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characterized by (3.2), where the random sequences at any lower layer are affine transformations

of their corresponding random upper layer sequences. Note that, at first we are only given pX, but

using certain tree learning algorithms we can find those jointly Gaussian latent variables pY(l)|B(l)

at every level l ∈ [1, L]. In fact, to account for sign ambiguity we have to deal with mixture Gaus-

sian vectors pY(l) at each layer l. We propose a successive synthesis scheme on multiple layers

that together induce a latent Gaussian tree, as well as the corresponding bounds on achievable

rate tuples. The synthesis scheme is efficient because it utilizes the latent Gaussian tree structure

to synthesize the output at each layer. In particular, without resorting to such learned structure we

need to characterize O(kn) parameters (one for each link between a latent and output node) in

total, while by considering the sparsity reflected in a tree and each of transition matrices AB
(l,l+1)

we only need to consider O(k + n− 1) parameters (the edges of a tree).

Suppose we transmit input messages through N channel uses, in which t ∈ {1, 2, ..., N} de-

notes the time index. Transmitting a random sequence at each layer is equivalent to compute its

mapping (the output sequence) through a synthesis channel defined in (3.2). We define ~Y (l)
t [i] to

be the t-th symbol of the i-th codeword, with i ∈ CY(l) = {1, 2, ...,MY (l)}whereMY (l) = 2NRY (l)

is the codebook cardinality, transmitted from the existing kl sources at layer l. We assume there

are kl sources Y (l)
j present at the l-th layer, and the channel has L layers. We can similarly define

~B
(l)
t [k] to be the t-th symbol of the k-th codeword, with k ∈ CB(l) = {1, 2, ...,MB(l)} where

MB(l) = 2NRB(l) is the codebook cardinality, regarding the sign variables at layer l. We will fur-

ther explain that although we define codewords for the Bernoulli sign vectors as well, they are not

in fact transmitted through the channel, and rather act as noisy sources to select a particular sign

setting for latent vector distributions. For sufficiently large rates RY = [RY (1) , RY (2) , ..., RY (L) ]

and RB = [RB(1) , RB(2) , ..., RB(L) ] and as N grows the synthesized density of latent Gaussian

tree converges to pWN (wN ), i.e., N i.i.d realization of the given output density pW(w), where

W = {X,Y,B} is a compound random variable consisting the output, latent, and sign variables.

In other words, the average total variation between the two joint densities vanishes as N grows
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[16],

lim
N→∞

E||q(w1, ...,wN)−
N∏
t=1

pwt(wt)||TV → 0 (3.4)

where q(w1, ...,wN) is the synthesized density of latent Gaussian tree, andE||.||TV , represents the

average total variation. In this situation, we say that the rates (RY, RB) are achievable [16]. Our

achievability proofs heavily relies on soft covering lemma shown in [16]. Loosely speaking, the

soft covering lemma states that one can synthesize the desired statistics with arbitrary accuracy,

if the codebook sizes (or equivalently, the rates (RY, RB)) are sufficient and the channel through

which these codewords are sent is noisy enough. This way, one can cover the desired statistics up

to arbitrary accuracy. The main objective is to maximize such rate region, and develop a proper

synthesis scheme to achieve the desired statistics.

For simplicity of notation, we drop the symbol index and use Y (l)
t and B(l)

t instead of ~Y (l)
t [i]

and ~B
(l)
t [k], respectively, since they can be understood from the context.

3.3 Mutual Information of Layered Synthesis Channels with Correlation Sign Singularity

3.3.1 Properties of Sign Information Vector B

In Theorem 1, whose proof can be found in Appendix 3.6.1, we characterize the size and depen-

dency relations of sign vectors for any general minimal latent Gaussian tree.

Theorem 1. (1) The correlation values ρyxi in regard to the outputs Xi that are connected to

a single input, say Y , share an equivalent sign class, i.e., they either all belong to B = b or

B = −b.

(2) Given the cardinality of input vector Y = {Y1, Y2, ..., Yk} is k, then there are totally 2k min-

imal Gaussian trees with isomorphic structures, but with different correlation signs that induce

the same joint density of the outputs, i.e., equal pX(x).

For example, in a Gaussian tree shown in Figure 3.1, there is only one hidden node Y (1), and

we already know by previous discussions that there are two latent Gaussian trees with different

sign values for B(1), which induce the same output joint density pX(x). In more general cases
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the problem of assigning correlation sign variables is more subtle, where we clarify the approach

using two examples, next.

(a)

(b)

FIGURE 3.2: Two possible cases to demonstrate the dependency relations of sign variables: (a)
with two hidden inputs, and (b) with 4 hidden inputs at two layers

In a Gaussian tree shown in Figure 3.2(a) there are two hidden nodes Y1 and Y2. By Theorem 1,

we know that there are 4 Gaussian trees with sign ambiguity. Also, from the first part in Theorem 1

we may introduceB(1)
1 to capture the correlation signs ρx1y1 and ρx2y1 , andB(1)

2 for the correlation

signs ρx3y2 and ρx4y2 . We can think of B12 as the sign of ρy1y2 . Note that the link between the

variables Y1 and Y2 are in both groups with common correlation sign, so we anticipate that B12

should be dependent on both B
(1)
1 and B

(1)
2 . Since we need to maintain the correlation signs

regarding ρxixj , i ∈ {1, 2}, j ∈ {3, 4}, hence the product B(1)
1 B

(1)
2 B12 should maintain its

sign. Thus, we have B12 = B
(1)
1 B

(1)
2 , so B12 is completely determined given B(1)

1 and B(1)
2 . In

other words, we may write the pairwise correlation as E[Y
(1)

1 Y
(1)

2 ] = γ12B
(1)
1 B

(1)
2 , which further

justifies the Gaussian mixture assumption for latent variables Y (1)
1 and Y (2)

1 . Next, consider the

Gaussian tree shown in Figure 3.2(b), in which there are six hidden inputs. Similar to the previous

case, we introduce four sign variables to capture the first layer sign information. In this case, we
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further need to introduce B(2)
1 and B(2)

2 corresponding to second layer latent inputs. Similar to

the previous cases, the pairwise correlation sign of latent inputs depends on the corresponding

sign variables at the same layer. For example, E[Y
(1)

1 Y
(1)

4 ] = γ14B
(1)
1 B

(1)
4 or E[Y

(2)
1 Y

(2)
2 ] =

γ12B
(2)
1 B

(2)
2 .

One may note the pattern on such definition: The pairwise correlation signs of latent inputs

only depends on the corresponding sign variables at the same layer, and it is independent of sign

variables at other layers. As we will see shortly, such property is essential in our layered synthesis

scheme to make sure the conditional independence of different layers from each other, given the

information of neighboring layers.

3.3.2 Single Layer case: Mutual Information between Observables and Latent Variables

It is best to start the achievability discussion by a simple scenario we considered in [53]. In [53]

we were only concerned about the synthesis of output vector statistics with given pX. Let us define

Ỹ = {Y,B}, then the formalized problem has the following form:

infpỸ(ỹ)I(X; Ỹ), s.t.,

pX,Ỹ(x, ỹ) induces a minimal Gaussian tree

Xi ⊥ Xj|Ỹ

Σỹ∈Ỹp(x, ỹ) = pX(x) (3.5)

Remark 2. Due to Markov property, we know that given Ỹ (1), the output layer X is conditionally

independent of all vectors Ỹ (l), l ∈ [2, L] at upper layers. Hence, we have the equality I(X; Ỹ) =

I(X; Ỹ(1)), i.e., to synthesize the output vector statistics, all we need are the common latent inputs

Ỹ (1) (and of course the independent additive Gaussian noises and Bernoulli sign variables). As

we will see shortly, this is a special case to our layered synthesis strategy, where we only deal

with a single layer, and want to synthesize the output statistics.

Remark 3. Note that such optimization problem is defined for those output vectors X, whose

covariance matrix ΣX is in the subspace of positive definite matrices that induce a latent Gaussian
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tree. As discussed earlier, such subspace can be completely characterized by a systems certain

inequalities (or equalities in certain cases) between pairwise covariance elements in ΣX [43].

Hence, all of the mutual information values should be evaluated under a given Gaussian tree

GT (V,E,W ). For simplicity we drop this notation in their expressions. Hence, such problem is

not the same as the general Wyner’s common information setting, since in Wyner’s scenario, no

structural constraint is imposed on latent variables.

The minimality assumption on the Gaussian tree structure, indicates that in our case |X| ≥ 3,

i.e., the number of observed variables should be at least three. In a minimal Gaussian tree we

assume all the hidden variables have at least three neighbors [2], which results in ignoring all

those singular cases where there can be arbitrarily redundant hidden variables added to the model

without changing the observed joint density pX(x). In this setting, by Theorem 2, whose proof can

be found in Appendix 3.6.2, we show that regardless of the underlying Gaussian tree structure,

there is no room to minimize I(X; Ỹ).

Theorem 2. Given pX(x) ∼ N(0,Σx) and the settings in (4.2), the mutual information I(X; Ỹ)

is only a function of Σx and if the observable nodes are only leaf nodes, the mutual information

is given by,

I(X; Ỹ) =
1

2
log

|Σx|∏n
i=1(1−

ρxixjiρxixki
ρxjixki

)
(3.6)

where for each Xi, we choose two other nodes Xji , Xki , where all three of them are connected to

each other through YXi
(i.e., one of their common ancestors), which is one of the hidden variables

adjacent to Xi.

Intuitively, given Σx and any three outputs that have a common latent variable as their input, the

correlation values between each output and the input is fixed, since varying one correlation results

in varying the other correlations in the same direction, hence making the pairwise correlation

between the other outputs change, which is impossible.
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Remark 4. Theorem 2 indicates a special behavior of the mutual information under latent Gaus-

sian tree assumption. In particular, given Xi and its latent parent YXi
we may end up with several

options for Xji and Xki . However, it can be shown that in a subspace of correlations correspond-

ing to latent Gaussian trees [43], all those distinct options result in a same value for the term

ρxixjiρxixki/ρxjixki . In fact, we show that such terms are all equal to ρ2
xiyxi

∈ (0, 1), for Xi ∈ X

and YXi
∈ Y(1). In other words, they characterize the correlation between each of the outputs Xi

with its corresponding parent YXi
at the first layer.

Remark 5. Due to equality I(X; Y,B) = I(X; Y(1),B(1)) we can show that to compute the

mutual information value in Theorem 2, we only need the correlation values of them form ρ2
xiypai

that are between the observables and their immediate parents. As we will see shortly, this argu-

ment can be easily generalized to a multi-layer case, in which to compute the mutual information

between the outputs of each layer and the higher layer variables, we only need those inputs that

are the parents of output variables, i.e., the variables in a single layer above the outputs.

Note that from (3.6) we can see that the mutual information I(X; Y,B) does not depend on

sign information, which further justifies our point on intrinsic sign ambiguity in latent Gaussian

trees. One may easily deduce the following,

I(X; Ỹ) = I(X; Y,B) = I(X; Y) + I(X; B|Y) (3.7)

The results in Theorem 2 combined with (3.7), suggests that by minimizing I(X; Y), one may

eventually maximize I(X; B|Y) , i.e., quantifying the maximum amount of information loss on

the sign input B. In other words, to reach lower synthesis rates and maximizing the achievable

rate region, we need to maximize the information loss on sign information. In Theorem 3, whose

proof can be found in Appendix 3.6.3 we show that in order to minimize the mutual information

I(X; Y) the sign inputs should be uniformly distributed.
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Theorem 3. Given the Gaussian vector X with Σx inducing a latent Gaussian tree, with latent

parameters Y and sign vector B the optimal solution for π∗ = argminπ∈[0,1]k I(X; Y) happens

for uniform sign vector.

In other words, for all Bernoulli variables Bi ∈ B for the optimal solution we should have

πi = 1/2. Proving this result, relies upon showing the convexity of mutual information I(X; Y)

with respect to certain injective functions of πi. Then, we show that the minimum happens for the

case where all such functions are equal, and by converting these values back to π-space we have

the desired results.

3.3.3 Multi-layer case: Mutual Information between Outputs and Inputs

Again, considering the successive synthesis perspective, we are interested in generating the output

vector Y(l), using its upper layer inputs Y(l+1) with minimum amount of necessary random bits.

However, note that as shown in previous examples, in general Y(l) follows a mixture Gaussian

model, since its covariance matrix is dependent to the sign vector B(l). Hence, in order to follow

the same principles as in (4.2) the adopted objective function is infp
Y(l+1)

I(Ỹ(l+1); Y(l)|B(l)),

where conditioning on each realization of B(l) results in a Gaussian density for the output vec-

tor Y(l). This is further discussed in detail, when we explain our successive synthesis method

in the next subsection. One may wonder whether the conditional independence and minimality

constraints in (4.2) also hold in this case. The way we defined each input-output relation in (3.2),

we can use similar arguments as before to show the independence of each output vector Y(l)|B(l)

with the sign input vector B(l+1), since regardless of the sign input values the conditional out-

put vectors remain jointly Gaussian. Also, by the results of Theorem 2 we know that the overall

mutual information I(X; Ỹ) is only a function of observed covariance matrix Σx. So we may

conclude that all the pairwise correlations in between any two consecutive layer are fixed, given

Σx. Intuitively, such correlations are deduced from a latent tree, whose edge-weights are already

determined via Σx (up to sign). Hence, given pX(x) ∼ N(0,Σx) and assuming pXỸ induces

53



a minimal latent Gaussian tree, the input-output mutual information at layers l + 1 and l, i.e.,

I(Ỹ(l+1); Y(l)|B(l)) for l ∈ [0, L− 1] is already determined by Σx.

3.4 Achievable Rate Regions for Successive Synthesis of Latent Gaussian Tree

In what follows we provide the achievable rate regions to synthesize the Gaussian tree statistics

pXY for three distinct cases that together cover all possible varieties that may happen in latent

Gaussian tree structures. As we see, such intuitive classification of Gaussian trees results in better

understanding the synthesis scheme for each category.

3.4.1 A Basic Case Study

In this case, we assume that the nodes at each layer are only connected to the nodes at upper/lower

layers. In other words, there is no edge between the nodes at the same layer, and they are connected

to each other through one or several nodes at the upper layers. Moreover, by deleting all the

nodes at the lower layer, all the nodes at current layer should become leaves. To better clarify our

approach, it is best to begin the synthesis discussion by several illustrative examples.

Example 3. Consider a latent star topology with Gaussian source Y (1) and sign input B(1), with

corresponding output vector X = [X1, X2, ..., Xn]. This can be modeled as

X1,t

X2,t

...

Xn,t


=



α1

α2

...

αn


B

(1)
t Y

(1)
t +



Z1,t

Z2,t

...

Zn,t


, t ∈ {1, 2, ..., N} (3.8)

A special case for such broadcast channel is shown in Figure 3.1, where the channel has only

three outputs X1, X2, and X3. In the following Corollary we provide the achievable rate region

for the broadcast channel As we will show later, this is a special case in Theorem 4, which is due

to soft covering lemma and the results in [16].
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Corollary 3. For the latent star topology characterized by (3.8), the following rates are achiev-

able,

RY (1) +RB(1) ≥ I(X;Y (1), B(1))

RY (1) ≥ I(X;Y (1)) (3.9)

Note that the sum of the rates RY (1) + RB(1) is lower bounded by I(X;Y (1), B(1)), which by

Theorem 2 is fixed. However, the minimum rate forRY (1) is achieved byminp
Y (1)

I(X;Y (1)). Also

due to Theorem 3 we know that the optimal solution occurs when B(1) is uniformly distributed,

i.e., π1 = 1/2.

In the synthesis scheme we first need to generate the proper codebook that satisfies the rate

conditions in Corollary 3. We generate 2NRB(1) codewords to form the codebookCB(1) with proper

size for sign variables. Similarly, we generate 2NRY (1) Gaussian codewords to form the codebook

CB(1) . Note that in general the latent variables have mixture Gaussian distributions, hence, such

star tree is a very special case with only one Gaussian latent variable. Now, to obtain a Gaussian

output sequence, each time we randomly pick codewords (y(1))N and (b(1))N from CY (1) and

CB(1) , respectively. Based on the observed sign instances b(1)
t , t ∈ [1, ..., N ] at each time slot, we

decide which channel P
Xt|y(1)t b

(1)
t

is used to send each y(1)
t to generate the output XN

i . Figure 3.3

shows the synthesis scheme for this case.

FIGURE 3.3: The synthesis scheme for a latent Gaussian star tree
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We may compute the synthesized output as follows,

q(x1, ...,xN) =

1

MB(1)

1

MY(1)

M
Y(1)∑
i=1

M
B(1)∑
k=1

N∏
t=1

pX|Y,B(xt|y(1)
t [i]b

(1)
t [k]) (3.10)

where the distribution pX|Y,B(xt|y(1)
t [i]b

(1)
t [k]) represents each channel use t for corresponding

input messages, and can be computed via signal model in (3.2).

To synthesize the overall joint distribution, we need to consider the corresponding input code-

words (y(1))N and (b(1))N . In particular, each synthesized output vector XN has its own associated

input codeword, and we need to pair both of these codewords to achieve the synthesized statis-

tics. Note that such pairing strategy is essential, since otherwise the synthesized statistics will

not be arbitrarily close to the desired distribution. This will be further discussed in the following

examples, where the correspondence between the codewords at each layer should be maintained.

Example 4. Consider the channel shown in Figure 3.2(a). In this case, we are given two hidden

inputs Y (1)
1 and Y (1)

2 , and by previous arguments we know B(1) = {B(1)
1 , B

(1)
2 , B12} with B12 =

B
(1)
1 B

(1)
2 , completely determined by independent sign variables B(1)

1 and B(1)
2 . We may write,

X1,t

X2,t

X3,t

X4,t


=



α11B
(1)
1,t 0

α21B
(1)
1,t 0

0 α32B
(1)
2,t

0 α42B
(1)
2,t


Y (1)

1,t

Y
(1)

2,t

+



Z1,t

Z2,t

Z3,t

Z4,t


(3.11)

where t ∈ {1, 2, ..., N} denotes each channel use. Here, two inputs Y (1)
1 and Y (1)

2 are dependent

and their pairwise correlation can be computed via E[Y
(1)

1 Y
(1)

2 ] = γ12B12 = γ12B
(1)
1 B

(1)
2 , in

which γ12 determines the degree of correlation and is learned by certain inference algorithms,

e.g., RG or CLRG [2]. Note that the dependency relation of symbols Y (1)
1,t and Y

(1)
2,t follows a

Gaussian mixture model, since their covariance is a function of binary inputs B(1)
1,t and B(1)

2,t . But,

note that in a given codebook consisting of MY(1) codewords, for each realization of b
(1)
1,tb

(1)
2,t
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the joint density of Y
(1)
t is Gaussian. Hence, one may divide the codebook C into two parts

Si, i ∈ {1, 2}, in which each part follows a specific Gaussian density with covariance values

E[Y
(1)

1,t Y
(1)

2,t ] = γ12b
(1)
1,t b

(1)
2,t . In particular, to generate a codeword we first generate the codebooks

CB(1) and CY(1) . Note that the generated codewords (Y(1))N ∈ CY(1) are mixture Gaussians even

at each time slot t. To be precise, at each time slot t, we generate two random Gaussian sample

vectors, one with E[Y
(1)

1,t Y
(1)

2,t ] = γ12 and the other with E[Y
(1)

1,t Y
(1)

2,t ] = −γ12. Then, similar to the

previous example, at synthesis step and based on the picked sign codeword, we decide which of

the two sample vectors should be chosen. The achievable region can be obtained from (3.9), and

by replacing Y (1) with {Y (1)
1 , Y

(1)
2 } and B(1) with {B(1)

1 , B
(1)
2 }. Similarly, by Theorem 3 we may

conclude that the optimal solution (π∗1, π
∗
2) to argminπ1,π2 I(X; Y) is at (1/2, 1/2).

Let us address more general cases, where we are having a multi-layered latent Gaussian tree

with no edge between the variables at the same layer. In other words, the variables at each layer

are conditionally independent of each other given the variables at their upper layer. Moreover, by

deleting all the nodes at the lower layer, all the nodes at current layer should become leaves. This,

in turn forms a hyper-chain structure for latent Gaussian tree, where the hyper-nodes consist of

every variable at the same layer, and hyper-edges are the collection of links connecting each the

nodes at each adjacent layer. Figure 3.4 shows the general synthesis scheme. At each layer i, we

define Ỹ(i) = {Y(i),B(i)} to be the combination of input vectors. This situation is a little more

subtle than the previous single-layered cases, since we need to be more cautious on specifying the

rate regions as well as the synthesis scheme.

FIGURE 3.4: Multi-layered output synthesis
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Example 5. To clarify, consider the case shown in Figure 3.2(b), in which the Gaussian tree

has two layers of inputs. Similar as previous cases we can compute the pairwise covariance be-

tween inputs at the first layer as E[Y
(1)
k,t Y

(1)
l,t ] = γklB

(1)
k,tB

(1)
l,t , in which k 6= l ∈ {1, 2, 3, 4}.

By the previous example, we know that the input vector Y
(1)
t is Gaussian for each realization

of B
(1)
t = {b(1)

1,t ,b
(1)
2,t ,b

(1)
3,t ,b

(1)
4,t}. Hence, one may divide the codebook C into 2k1 = 16 parts

Si, i ∈ {1, 2, ..., 16}, in which each part follows a specific Gaussian density with covariance val-

ues E[Y
(1)
k,t Y

(1)
l,t ] = γklb

(1)
k,tb

(1)
l,t , k 6= l ∈ {1, 2, 3, 4}. Now, for each subset, at the second layer we

are dealing with the case shown in Figure 3.2(a), which has been resolved. Thus, the lower bound

on the achievable rates in the second layer are as follows,

RY(2) ≥ I(Y(1); Y(2)|B(1))

RY(2) +RB(2) ≥ I(Y(1); Y(2),B(2)|B(1)) (3.12)

This is due to the fact that we compute subsets of codebook for each realization of B(1). Let us

elaborate the successive codebook generation scheme in this case.

First, we need to generate the codebooks at each layer, beginning from the top layer all the

way to the first layer. The sign codebooks CB(2) and CB(1) are generated beforehand, and simply

regarding the Bernoulli distributed sign vectors B(2), and B(1). Hence, each sign codeword is

a sequence of vectors consisting elements chosen from {−1, 1}. We may also generate the top

layer codebook CY(2) using mixture Gaussian codewords, where each codeword at each time slot

consists of all possible sign realizations of B
(2)
t . Each of these settings characterize a particular

Gaussian distribution for the top layer latent variables Y(2). The necessary number of codewords

needed is MY(2) = 2NRY(2) , where the rate in the exponent is lower bounded and characterized

using (3.12). To form the second codebook CY(1) , we know that we should use the codewords

in CY(2) . We randomly pick codewords from CY(2) and CB(2) . Now, based on the chosen sign

codeword, we form the sequence (y(2)|b(2))N to be sent through the channels. The sign vector

B(1) consists of k1 = 4 sign variables, hence, resulting in 2k1−1 = 8 different channel realizations.

58



Hence, we pass the chosen sequence through 8 different channels pY(1)|Ỹ(2)b(1) . This way, we send

the chosen codeword through the 8 noisy channels to produce a particular codeword in CY(1) .

It is important to note that we showed in subsection 3.3.3 that although each of these channel

correspond to different sign realizations of B(1) vector, however, due to underlying latent Gaussian

tree assumption they maintain the same rate. Note that, such produced codeword is in fact a

collection of Gaussian vectors, each corresponding to a particular sign realization b(l) ∈ B(1).

We iterate this procedure MY(1) times to produce enough codewords that are needed for synthesis

requirements of the next layer. The necessary size of MY(1) is lower bounded by Corollary 3.

Figure 3.5, shows the described synthesis procedure. In order to produce an output sequence,

all we need to do is to randomly pick codewords from CY(1) and CB(1) . Then, depending on each

time slot sign realization b
(1)
t we use the corresponding channel p

X|Y(1)b
(1)
t

to generate a particular

output sequence XN .

FIGURE 3.5: The proposed codebook generation scheme used for a Gaussian tree shown in 3.2(b).
The codebook size |CY(2)| at the top layer with shown corresponding distribution is determined
by the input-output mutual information in the channel pY(1)|Y(2)B(2),b(1) . To obtain CY(1) , we ran-
domly pick codewords from CY(2) and CB(2) to construct (Y(2)|B(2))N . Then, we send it through
the eight channels pY(1)|Y(2)B(2),b(1) to obtain a particular codeword (Y(1))N .
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In general, the output at the l-th layer Y(l) is synthesized by Y(l+1) and B(l+1), which are at

layer l+1, and through different channel realizations through B(l). Algorithm 2 shows the general

codebook generation procedure for a Gaussian tree with L layers.

Input: The needed codebook sizes MY(l) and MB(l) for l ∈ [1, L]
Output: The generated codebooks for each layer l
for l := L to 1 do

for i := 1 to MB(l) do
Randomly generate sign codewords (b(l))N to form CB(l);

end
end
for i := 1 to MY(L) do

for b(L) ∈ B(L) do
Randomly generate sign codewords (y(L))N |b(L);

end
The codewords (y(L))N = ∪b(L)(y(L))N |b(L) form CY(L) ;

end
for l := L− 1 to 1 do

for i := 1 to MY(l) do
Randomly pick a codeword (y(l+1))N from CY(l+1);
Randomly pick a codeword (b(l+1))N from CB(l+1);
Form the combined codeword (y(l+1)|b(l+1))N ;
for b(l) ∈ B(l) do

Send the codeword (y(l+1)|b(l+1))N through the channel PY(l)|Y(l+1),B(l+1),b(l) to
obtain (y(l))N |b(l);

end
The codewords (y(l))N = ∪b(l)(y(l))N |b(l) form CY(l)

end
end
ALGORITHM 2. Codebook Generation for each layer of latent Gaussian tree with L layers

Therefore, to synthesize the Gaussian tree statistics that is close enough to the true Gaussian

tree distribution, we first need to generate the top layer codebook CY(l) , and the sign codebooks

CB(l) , l ∈ [1, L]. Note that the independent Gaussian noises are needed in our synthesis scheme

as given source of randomness. In Theorem 4, whose proof can be found in Appendix 3.6.4 we

obtain the achievable rate region for multi-layered latent Gaussian tree, while taking care of sign
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information as well, i.e., at each layer dividing a codebook into appropriate sub-blocks capturing

each realization of sign inputs.

Theorem 4. For a latent Gaussian tree having L layers, and forming a hyper-chain structure, the

achievable rate region is characterized by the following inequalities for each layer l,

RB(l+1) +RY(l+1) ≥ I[Y(l+1),B(l+1); Y(l)|B(l)]

RY(l+1) ≥ I[Y(l+1); Y(l)|B(l)], l ∈ [0, L− 1] (3.13)

where l = 0 shows the observable layer, in which there is no conditioning needed, since the

output vector X is already assumed to be Gaussian. Notice that using Theorem 2, we can partially

characterize the first lower bound on the sum of rates, since this is a fixed quantity, given the

observables covariance matrix; however, analytically characterizing the lower bound on each of

the rates RY(l+1) due to presence of mixture Gaussian inputs Y(l+1) is a hard problem to solve.

We refer the reader to [54] for further results on mixture Gaussian variables.

Let us assume using the top-down approach shown in Algorithm 2 we generate the appropriate

codebooks at each layer. To pick appropriate sample codeword, each time we need to keep track

of input-output codewords relationship. Considering each particular layer outputs, we keep track

of the corresponding input codeword that generated such output. For instance, consider the same

Gaussian tree shown in Figure 3.6. To generate an output sequence xN , we randomly pick two

codewords (y(1))N and (b(1))N from the corresponding codebooks. The sign codeword decides

which channel to be used in order to obtain the outputs. Hence, there is a correspondence between

such input codewords and the generated outputs. Similarly, the codeword (y(1))N is an output of

the top layer inputs, generated by randomly chosen codewords (y(2))N and (b(2))N . Figure 3.6

shows the synthesis scheme that is proposed for the two-layered latent Gaussian tree shown in

Figure 3.2b.

In Figure 3.6, different colors in codebooks correspond to different sign realizations. For ex-

ample, as we know the top layer sign inputs B(2) can have 2k2−1 = 2 different sign realizations,
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FIGURE 3.6: Synthesis approach for the Gaussian tree in Figure 3.2b

hence 2 different colors are shown in the corresponding codebook. Also, note that each cell in

codebooks may contain a vector of samples, due to the fact that each layer usually contains more

than one variable. For example, each cell in the top codebook contains two Gaussian samples,

corresponding to y
(2)
t |b

(2)
t where y(2) = [y

(2)
1 , y

(2)
2 ]. The bottom-up synthesis approach first ran-

domly picks the sequences (y(1))N and (b(1))N from CY(1) and CB(1) , respectively, and forms

(y(1)|b(1))N , then finds the corresponding input codeword (y(2)|b(2))N that generated such code-

word at the first layer. Then, the chosen codeword (y(1)|b(1))N is used to generate the output

vector xN through the given Gaussian channel. The sequence of samples in this case (as shown in

Figure 3.6) is [xN , (y(1)|b(1))N2 , (y
(2)|b(2))NM

Y (2)
]. Remember that each layer’s codeword carries

its corresponding sign information characterized in codebook generation step.

In general, this procedure should always hold from the bottom to top of latent Gaussian tree, in

order to keep a valid joint dependency among the variables at every layer. Algorithm 3 shows this

procedure for any general Gaussian tree.
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Input: Generated codebooks from Algorithm 2
Output: A valid sequence (xN , (y|b)N) from the synthesized Gaussian distribution
Randomly pick the codewords (y(1))N and (b(1))N from CY(1) and CB(1) , respectively, and
form (y(1)|b(1))N ;

for l := 1 to L− 1 do
For each codeword (y(l)|b(l))N , pick the corresponding codeword (y(l+1)|b(l+1))N ,
which has been employed generating it ;

end
For (y(L−1)|b(L−1))N , pick the corresponding codeword (y(L)|b(L))N at layer L
Send the chosen codeword (y(1)|b(1))N through the channel pX|Y(1)B(1) to obtain xN

Output the overall sequence of codewords [xN , (y(1)|b(1))N , ..., (y(L)|b(L))N ] ;
ALGORITHM 3. Synthesis approach for a latent Gaussian tree with L layers

3.4.2 The Case with Observables Adjacent with More Than One Latent Variable

Here, we consider more general cases, which may allow nodes at each layer to have more than one

neighbor from upper layer. This way, by deleting the nodes at the lower layer, we may end up with

several internal (non-leaf) nodes at the current layer. We need to propose a revised achievability

proof to characterize the achievable rate region. To clarify our approach, consider the following

example shown in Figure 3.7.

Example 6. This is a double layer latent Gaussian tree, with X6 as an internal node. As it can be

seen, after the first step by summing out X6, we created a clique at the next layer. This is not a

latent Gaussian tree structure anymore. In fact, this can be seen as a junction tree structure. The

problem with such structure is that, given the nodes at upper layer, i.e, Y (2)
1 , the nodes at the lower

layer, i.e, Y (1)
i , i ∈ [2, 4] are not conditionally independent anymore. This, violates some of the

constraints in the acheivability results in Theorem 4.

FIGURE 3.7: (a) The original two layered Gaussian tree (b) Obtained grpah after the first iteration
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To address such problem, we introduce another latent pseudo-node, Y (2)
2 and connect it to all

the nodes forming the clique, as it is shown in Figure 3.8.

FIGURE 3.8: The intermediate step needed to address the internal node issue: By adding a pseudo
node Y (2)

2 we break the clique and trun it into a tree structure again

Note that we certainly can represent the formed clique via a latent Gaussian tree (star tree),

since from the first iteration we already know that the hidden nodes at the first layer are connected

to each other through X6. So, now after adding the pseudo-node Y (2)
2 , we know that the following

equality holds for the new correlations ρ
y
(2)
2 y

(1)
i

= ρ
x6y

(1)
i
, i ∈ [2, 4]. Hence, we may see Y (2)

2 as

the mirror node to X6, which is added to the nodes in the second layer. Finally, we only need to

update the set of nodes at the second layer to Y (2) = {Y (2)
1 , Y

(2)
2 }.

Remark 6. In general, the synthesis scheme will remain the same as the basic case, with one

tweak: at each layer l + 1 we may need to perform an intermediate step, in which we transform

cliques into latent trees (star structure), by adding enough pseudo-nodes to the set of upper layer

latent nodes. The sufficient number of pseudo nodes to be added should be the same as the number

of internal nodes at layer l. Through such procedure, due to the addition of new nodes (the pseudo

nodes) both the corresponding rates RY(l+1) and RB(l+1) , and consequently the achievable rate

regions will be changed to the following.

RB′(l+1) +RY′(l+1) ≥ I[Y′
(l+1)

,B′
(l+1)

; Y(l)|B(l)]

RY′(l+1) ≥ I[Y′
(l+1)

; Y(l)|B(l)] (3.14)

where Y′(l+1) = Y(l+1)∪Y
(l)
p and B′(l+1) = B(l+1)∪B

(l)
p are the new input vectors at layer l+ 1,

with Y
(l)
p and B

(l)
p , being the newly added psuedo latent and sign inputs.
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3.4.3 The Case with Observables at Different Layers

Consider a case where an edge is allowed between the variables at the same layer. In this situation

we violate a conditional independence constraint used in achievability proof of the basic case,

since due to presence of such intra-layer links, given the upper layer inputs, the conditional in-

dependence of lower layer outputs is no longer guaranteed. However, again by revising the proof

procedure we may show the achievability results in this case as well. To address this issue we

need to reform the latent Gaussian tree structure by choosing an appropriate root such that the

variables in the newly introduced layers mimic the basic scenario, i.e., having no edges between

the variables at the same layer. In particular, we begin with the top layer nodes, and as we move

to lower layers we seek each layer for the adjacent nodes at the same layer, and move them to

a newly added layer in between the upper and lower layers. In this way, we introduce new lay-

ers consisting of those special nodes, but this time we are dealing with a basic case. Note that

such procedure might place the output variables at different layers, i.e., all the output variables

are not generated using inputs at a single layer. We only need to show that using such procedure

and previously define achievable rates, one can still simulate output statistics with vanishing total

variation distance. To clarify, consider the following example in Figure 3.9.

FIGURE 3.9: Latent Gaussian tree with adjacent nodes at layer 1

Example 7. As it can be seen, there are two adjacent nodes in the first layer, i.e., Y (1)
3 and Y (1)

4

are connected. Using the explained procedure, we may move Y (1)
4 to another newly introduced

layer, then we relabel the nodes again to capture the layer orderings. The reformed Gaussian tree

is shown in Figure 3.10. In the new ordering, the output variables X6 and X7 will be synthesized
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one step after other inputs. The input Y (3)
1 is used to synthesize the outputs vector Y(2), which

such vector used to generate the first layer outputs, i.e., X1 to X5 and Y (1)
1 . At the last step, the

input Y (1)
1 will be used to simulate the output pair X6 and X7. By Theorem 4 we know that both

simulated densities regarding to qXN
1 ,X

N
2 ,X

N
3 ,X

N
4 ,X

N
5

and qXN
6 ,X

N
7

approach to their corresponding

densities as N grows. We need to show that the overall simulated density qXN also approaches to∏N
t=1 pX(xt) as well.

We need to be particularly cautious in keeping the joint dependency among the generated out-

puts at different layers: For each pair of outputs (XN
6 , X

N
7 ), there exists an input codeword (Y 1

1 )N ,

which corresponds to the set of generated codewords (XN
1 , X

N
2 , X

N
3 , X

N
4 , X

N
5 ), where together

with (Y 1
1 )N they are generated using the second layer inputs. Hence, in order to maintain the

overall joint dependency of the outputs, we always need to match the correct set of outputs XN
1

to XN
5 to each of the output pairs (XN

6 , X
N
7 ), where this is done via (Y 1

1 )N .

FIGURE 3.10: Another layer introduced to address the issue

In general, we need to keep track of the indices of generated output vectors at each layer and

match them with corresponding output vector indices at other layers. This is shown in Lemma 7,

whose proof can be found in Appendix 3.6.5,

Lemma 7. For a latent Gaussian tree having L layers, and not containing an internal node at

any iteration, by rearranging each layer so that there is no intra-layer edges, the achievable rate

region at each layer l is characterized by the same inequalities as in (3.13).
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By Lemma 7 we may easily extend our results and show that, interestingly, to generate a latent

Gaussian tree, we only need its top layer nodes acting as common random sources (and indepen-

dent Gaussian and Bernoulli noises) to synthesize the entire Gaussian tree structure. Algorithms

2 and 3 are used for the reformed structure for codebook generation and synthesis steps, respec-

tively.

Corollary 4. Given any latent Gaussian tree consisting of L hidden layers along with an output

vector X, by combining the aforementioned procedures described in the last three subsections

and using the top layer inputs, i.e., the inputs at the L-th layer, the independent Gaussian noises,

and the independent Bernoulli variables, the entire set of nodes in a latent Gaussian tree can be

synthesized if the rates at each layer satisfy the constraints captured in (3.13).

Note that, the top layer nodes, without considering any other node in a tree, will certainly form

a chain (or a single node in a special case) structure.

3.5 Conclusion

In this chapter, we formulated a synthesis problem through layered forwarding channels to syn-

thesize those statistics that characterize the latent Gaussian tree structures. Then we deduced an

interesting conclusion under which maximizing the achievable rate region also resulted in quan-

tifying the maximum amount of lost information on pairwise correlation signs. Through three

different cases we found the achievable rate regions to correctly synthesize the Gaussian out-

puts, satisfying specific set of constraints. Our layered synthesis approach is shown to be efficient

and accurate in terms of reduced required number of parameters needed to synthesize the output

statistics, and its closeness to the desired statistics in terms of their total variation distance.

3.6 Proof of Theorems
3.6.1 Proof of Theorem 1

First, let’s prove the first part. Consider the case in Figure 3.11. The hidden node y, has k observ-

able neighbors {x1, ..., xk}, while it is connected through two or more edges to other observable
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nodes {xk+1, ..., xn}. Given only observable covariance matrix Σx, we can compute the empirical

pairwise covariance values, hence all ρxixj are fixed.

FIGURE 3.11: Neighborhood of hidden variable y

Without loss of generality, suppose we flip the sign of ρx1y. To maintain the same covariance

matrix Σx, the sign of all ρxjy, j ∈ {2, ..., k} should be flipped. Since, we know ρx1xj = ρx1yρxjy,

for all j ∈ {2, ..., k} is fixed. Also, the sign of all pairwise covariance values between y and

xi, for all i ∈ {k + 1, ..., n} should be flipped. The same argument as the previous case can be

used. However, in this case, all we know is that odd number of sign-flips for the edge-weights

between each y and xi should happen. Using the above arguments, we can see that all ρxjy, for

j ∈ {1, ..., k} maintain their signs, or otherwise all of their signs should be flipped.

For the second part, We inductively show that given a minimal latent tree, with n observable

x1, ..., xn and with k hidden nodes y1, ..., yk, we can find 2k latent trees with different edge-signs

that induce the same Σx. This is already shown for the star tree shown in Figure 3.1. Suppose

such claim holds for all Gaussian trees with k′ < k latent nodes. Consider an arbitrary latent tree

with k hidden nodes and n observable. Some of these hidden nodes certainly have leaf observable

neighbors, which we group them together. Now, note that the problem of finding equivalent sign

permutations in this tree can be translated into a problem with smaller tree: Delete all of those

leaf observable groups, and treat their hidden parent yi as their representative. Suppose there are

m hidden nodes {y1, ..., ym}, which can represent each of these groups. This case is illustrated

in Figure 3.12. Note, as depicted by this Figure, the internal observables as well as those leaf
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observables directly connected to them remain intact. By replacing all of these groups with a

single node yi, i ∈ {1, 2, ...,m}, we obtain a smaller tree. Now, we can simply assume that all

y1, ..., ym are observable and their pairwise covariance values are determined. Hence, this tree

only has k −m remaining hidden nodes, so due to inductive step it has 2k−m possible equivalent

trees with different edge-signs.

FIGURE 3.12: Figure illustrating the inductive proof

It remains to show that by adding back those m groups of observable, we obtain the claimed

result. Add back two groups corresponding to y1 and y2. Now, y1 and y2 can be regarded as

hidden nodes, so now there are k −m+ 2 hidden nodes, which due to inductive step has 2k−m+2

equivalent representations of edge-weights. This can be shown up tom−1-th step by adding back

the groups for y1, ..., ym−1 nodes, and having a size of k − 1 nodes, and again due to induction

having 2k−1 equivalent sign combinations. By adding back the m-th group, we can obtain two

equivalent classes: b(m) or −b(m), where b(m) shows the sign value of the m-th group. This is

shown in Figure 3.13 Hence, we obtain 2× 2k−1 = 2k edge-signs.

FIGURE 3.13: Obtaining m-th step from m− 1-th step
Ãś

This completes the proof.
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3.6.2 Proof of Theorem 2

Let’s first show that the mutual information I(X, Ỹ) given Σx is only a function of pairwise

correlations ρxixj , for all xi, xj ∈ X. In a latent Gaussian tree, three cases may happen: The edges

can be between two observable, an observable and a latent node, or between two latent nodes.

(1) xi and xj are either adjacent or they are connected only through several observables. In this

case, since all the pairwise correlations along the path are determined given Σx, so the correlation

values are fixed.

(2) xi and xj are not adjacent and there is at least one hidden node, e.g., y1 connecting them.

First, suppose y1 and xi are adjacent. Since, we assume the tree is minimal, so there should be at

least another observable xk that is connected (but not necessarily adjacent) to y1. Hence, y1 acts as

a common ancestor to xi, xj , and xk. By changing ρxiy1 to another value ρ′xiy1 , by equation ρxixj =

ρxiy1ρxjy1 we have to change ρxjy1 to ρ′xjy1 =
ρxiy1
ρ′xiy1

ρxjy1 . Similarly, by equality ρxixk = ρxiy1ρxky1 ,

we know ρ′xky1 =
ρxiy1
ρ′xiy1

ρxky1 . However, by another equality ρxjxk = ρxjy1ρxky1 , we deduce ρ′xky1 =

ρxjy1
ρ′xjy1

ρxky1 . The obtained correlation ρ′xky1 should have the same value in both equations, hence,

we deduce the equality
ρxiy1
ρ′xiy1

=
ρxjy1
ρ′xjy1

. On the other hand, from ρxixj = ρxiy1ρxjy1 , we have

ρxiy1
ρ′xiy1

=
ρ′xjy1
ρxjy1

. By these two equations we may conclude ρxiy1 = ρ′xiy1 , a contradiction. Hence, in

this case, given Σx we cannot further vary the edge-weights. Second, consider the case, where xi

is connected to y1 through several observables. Then, instead of xi, we can simply consider the

observable that is adjacent to y1, say, x′i and follows the previous steps to obtain the result. Hence,

in general if three nodes are connected to each other through separate paths and have a common

ancestor y1, then the pairwise correlations between the hidden nodes and each of the observables

remain fixed.

(3) Consider two adjacent latent nodes y1 and y2. By minimality assumption and having a

tree structure, it can be seen that there are at least two observable for each of the latent nodes

that share a common latent parent. Let’s assign xi and xj to a common ancestor y1 while xk

70



and xk are descendant to y2. Considering xi, xj , and xk, who share a common parent y1 (xk is

connected to y1 through y2), using arguments on case (2), we conclude that ρxiy1 and ρxjy1 should

be fixed. Similarly, we can consider xi, xk, and xl to show that ρxky1 and ρxly1 are fixed. Now, by

considering any observable pair that go through both y1 and y2 the result follows. For example,

considering ρxixk = ρxiy1ρy1y2ρxky1 , we can see that since given ρxixk , both ρxiy1 and ρxky1 are

determined, so ρy1y2 should be determined as well. This completes the first part of the proof.

Second, note that one may easily show that I(X, Ỹ) = 1/2 log
|Σx||Σỹ|
|Σxỹ|

. Now, since pX,Ỹ

induces a latent Gaussian tree and pỸ is its marginalized density after summing out the random

vector X. By [31], we know that |ΣX,Ỹ| =
∏

(i,j)∈E(1 − ρ2
i,j), where ρi,j are the pairwise cor-

relations, between two adjacent variables (hidden or observable) in a latent Gaussian tree. Now,

since the observables are only leaves, by summing them out we end with another Gaussian tree

consisting of only latent variables. Thus, again by [31] we know |ΣỸ| =
∏

(i,j)∈Ey
(1 − ρ2

i,j),

where E ′ is the set of edges in the new Gaussian tree. Observe that all the common terms of the

form (1 − ρ2
yiyj

), for some (yi, yj) ∈ E will be canceled out with the terms in |ΣỸ|. Hence, the

mutual information has the following form I(X, Ỹ) = 1/2 log
|Σ|X∏

(xi,yj)∈E(1−ρ2xiyj )

. Now, to find

each correlation value ρxiyj , for some Xi and Yj , first consider the star model, with one hidden

node, and three leaves, e.g., Figure 3.1. We can write: ρ2
x1y

=
ρx1x2ρx1x3
ρx2x3

, ρ2
x2y

=
ρx1x2ρx2x3
ρx1x3

, and

ρ2
x3y

=
ρx1x3ρx2x3
ρx1x2

. For a general structure, if we replace 1 ← i, 2 ← ji, and 3 ← ki, we con-

clude that ρ2
xiyj

=
ρxixjiρxixki
ρxjixki

, for any three distinct i, ji and ki. As it may seem, there are many

equations for computing ρ2
xiyj

, which all of these expressions should be equal, i.e., the covariance

matrix Σx should be representable by a given latent tree model.

3.6.3 Proof of Theorem 3

Suppose the latent Gaussian tree has k latent variables,i.e., Y = [Y1, Y2, ..., Yk]. By adding back

the sign variables the joint density pXY becomes a Gaussian mixture model. One may model such
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mixture as the summation of densities that are conditionally Gaussian, given sign vector.

pXY(x,y) =
2k−1∑
i=0

ηBi
fi(x,y) (3.15)

where each ηBi
captures the overall probability of the binary vector Bi = [b1i, b2i, ..., bki], with

bji ∈ {0, 1}. Here, bji = 0 is equivalent to having bji = −1. The terms fi(x,y) are conditional

densities of the form p(x,y|Bi)

In order to characterize I(X,Y), we need to find pY(y) in terms of ηBi
and conditional Gaus-

sian densities as well. First, let’s show that for any two hidden nodes yi and yj in a latent Gaussian

tree, we have E[yiyj] = ρyiyjbibj . The proof goes by induction: We may consider the structure

shown in Figure 3.2(a) as a base, where we proved that B12 = B
(1)
1 B

(1)
2 . Then, assuming such

result holds for any Gaussian tree with k−1 hidden nodes, we prove it also holds for any Gaussian

tree with k hidden nodes. Let’s name the newly added hidden node as yk that is connected to sev-

eral hidden and/or observable such that the total structure forms a tree. Now, for each newly added

edge we assign bkbnk
, where nk ∈ Nk is one of the neighbors of yk. Note that this assignment

maintains the pairwise sign values between all previous nodes, since to find their pairwise corre-

lations we go through yk at most once, where upon entering/exiting yk we multiply the correlation

value by bk, hence producing bk.bk = 1, so overall the pairwise correlation sign does not change.

Note that the other pairwise correlation signs that do not pass through Ck remain unaltered. One

may easily check that by assigning bkbnk
to the sign value of each newly added edge we make

yk to follow the general rule, as well. Hence, overall we showed that E[yiyj] = ρyiyjbibj for any

yi, yj ∈ Y. This way we may write Σy = BΣ′yB, where ρyiyj ∈ Σ′y and bi ∈ B is k × k diagonal

matrix. One may easily see that both B and its negation matrix −B induce the same covariance

matrix Σy. As a result, if we define ηB̄i
as a compliment of ηBi

, we can write the mixture density

pY(y) as follows,

pY(y) =
2k−1−1∑
i=0

(ηBi
+ ηB̄i

)gi(y) (3.16)
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where the conditional densities can be characterized as gi(y) = p(y|Bi) = p(y|B̄i). We know

that gi(y) =
∫
fj(x,y)dx, where j may correspond to either Bi or B̄i.

First, we need to show that the mutual information I(X,Y) is a convex function of ηBi
for all

i ∈ [0, 2k − 1]. By equality I(X,Y) = h(X)− h(X|Y), and knowing that given Σx the entropy

h(X) = 1/2 log(2πe)n|Σx| is fixed, we only need to show that the conditional entropy h(X|Y)

is a concave function of ηBi
. Using definition of entropy and by replacing for pXY and pY using

equations (3.15) and (3.16), respectively, we may characterize the conditional entropy. By taking

second order derivative, we deduce the following,

∂2h(X|Y)

∂2ηiηj
=−

∫ ∫
fi(x,y)fj(x,y)

pXY

dxdy

+

∫
g̃i(y)g̃j(y)

pY
dy (3.17)

where for simplicity of notations we write ηi instead of ηBi
. Also, g̃i(y) = g̃ī(y) = gi(y) for

i ∈ [0, 2k−1 − 1]. Note the following relation,∫ ∫
g̃i(y)fj(x,y)pX|Y

pXY

dxdy =

∫ ∫
g̃i(y)fj(x,y)

pY
dxdy

=

∫
g̃i(y)

pY
(fj(x,y)dx)dy

=

∫
g̃i(y)g̃j(y)

pY
dy (3.18)

The same procedure can be used to show,∫ ∫
g̃j(y)fi(x,y)pX|Y

pXY

dxdy =

∫
g̃i(y)g̃j(y)

pY
dy (3.19)

By equalities shown in (3.18) and (3.19), it is straightforward that (3.17) can be turn into the

following,

hij =
∂2h(X|Y)

∂2ηiηj
= −

∫ ∫
1

pXY

[fi(x,y)− g̃i(y)pX|Y]×

[fj(x,y)− g̃j(y)pX|Y]dxdy (3.20)
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The matrixH = [hij], i, j ∈ [0, 2k−1] characterizes the Hessian matrix the conditional entropy

h(X|Y). To prove the concavity, we need to show H is non-positive definite. Define a non-zero

real row vector c ∈ R2k , then we need to form cHcT as follows and show that it is non-positive.

cHcT = −
∫ ∫

1

pXY

2k−1∑
i=0

2k−1∑
j=0

cicj[fi(x,y)− g̃i(y)pX|Y]

[fj(x,y)− g̃j(y)pX|Y]dxdy

= −
∫ ∫

1

pXY

[
2k−1∑
i=0

ci(fi(x,y)− g̃i(y)pX|Y)]2dxdy

≤ 0 (3.21)

Now that we showed the concavity of the conditional entropy with respect to ηi, we only need to

find the optimal solution. The formulation is defined in (3.22), where λ is the Lagrange multiplier.

L = h(X|Y)− λ
2k−1∑
i=0

ηi (3.22)

by taking derivative with respect to ηi, we may deduce the following,

∂L

∂ηi
=−

∫ ∫
fi(x,y) log pXYdxdy

+

∫
g̃i(y) log pYdy − λ

= −
∫ ∫

fi(x,y) log pX|Ydxdy − λ (3.23)

where the last equality is due to g̃i(y) =
∫
fi(x,y)dx. One may find the optimal solution by

solving ∂L/∂ηi = 0 for all i ∈ [0, 2k − 1], which results in showing that −
∫ ∫

[fi(x,y) −

fj(x,y)] log pX|Ydxdy = 0, for all i, j ∈ [0, 2k − 1]. In order to find the joint Gaussian density

fi(x,y), observe that we should compute the exponent [xy]Σ−1
xy [xy]′. Since, we are dealing with

a latent Gaussian tree, the structure of U = Σ−1
xy can be summarized into four blocks as follows

[55]. Ux that has diagonal and off-diagonal entries uxi and uxixj , respectively, and not depending

on the edge-signs; Uxy, with nonzero elements uxiyj showing the edges between xi and particular

yj and depending on correlation signs; [Uxy]T ; Uy, with nonzero off diagonal elements uyiyj that
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are a function of edge-sign values, while the diagonal elements uyi are independent of edge-sign

values. One may show,

[xy]Σ−1
xy [xy]′ = [

n∑
i=1

x2
iuxi +

k∑
i=1

y2
i uyi ]

+ 2[
∑
nx
y1

xiy1uxiy1 + ...+
∑
nx
yk

xiykuxiyk ]

+ 2
∑

(i,j)∈EX

xixjuxixj + 2
∑

(i,j)∈EY

yiyjuyiyj

= t+ 2
k∑
i=1

pi + 2s+ 2
∑

(i,j)∈EY

yiyjuyiyj (3.24)

where nxyi are the observed neighbors of yi, and EY is the edge set corresponding only to hidden

nodes, i.e., those hidden nodes that are adjacent to each other. EX can be defined similarly, with

s =
∑

(i,j)∈EX
xixjuxixj . Also pj =

∑
nx
yj
xiyjuxiyj . Suppose fi(x,y) and fj(x,y) are different

at l sign values {i1, ..., il} ∈ L. Let’s write,

∑
(i,j)∈EY

yiyjuyiyj =
∑

(i,j)∈EY

i,j∈L or i,j /∈L

yiyjuyiyj

+
∑

(i,j)∈EY
i or j∈L

yiyjuyiyj

= q + q′ (3.25)

Hence, we divide the summation
∑

(i,j)∈EY
yiyjuyiyj into two parts q and q′. Suppose ηi = 1/2k

for all i ∈ [0, 2k − 1]. We may form fi(x,y)− fj(x,y) as follows,

fi(x,y)− fj(x,y) ∝e−t/2+s+q+
∑

i/∈L pi

× [eq
′+

∑
i∈L pi − e−q′−

∑
i∈L pi ]

By negating all yi1 , ..., yil into−yi1 , ...,−yil , it is apparent that t,
∑

i/∈L pi, and s do not change.

Also, the terms in q either remain intact or doubly negated, hence, overall q remains intact also.

However, by definition, pi, i ∈ L will be negated, hence overall the sum
∑

i∈L pi will be negated.
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The same thing holds true for q′, since exactly one variable yi or yj in the summation, will change

its sign, so q′ also will be negated. Overall, we can see that by negating yi1 , ..., yil , we will negate

fi− fj . It remains to show that such negation does not impact pX|Y. Note that since pXY includes

all 2k sign combinations and all of fi(x,y) are equi-probable since we assumed ηi = 1/2k so pXY

is symmetric with respect to ηi, and such transformation on yi1 , ..., yil does not impact the value

of pXY, since by such negation we simply switch the position of certain Gaussian terms fi(x,y)

with each other.

For py, we should first compute the term yΣ−1
y y′. We know Σy = BΣ′yB, so Σ−1

Y = B−1Σ′−1
y B−1 =

BΣ′−1
y B (note, Σy does not necessarily induce a tree structure). We have,

yΣ−1
y y′ =

k∑
i=1

wiiy
2
i + 2

∑
i,j&i<j

wijyiyjbibj

From this equation, we may interpret the negation of yi1 , ..., yil , simply as negation of bi1 , ..., bil .

Hence, since py includes all sign combinations, hence, such transformation only permute the

terms g̃i(y), so py remains fixed. Hence, overall pX|Y remains unaltered. As a result, we show that

for any given point in the integral
∫ ∫

(fi(x,y)−fj(x,y)) log pX|Ydxdy we can find its negation,

hence making the integrand an odd function, and the corresponding integral zero. Hence, making

the solution ηi = 1/2k, for all i ∈ [0, 2k − 1] an optimal solution.

The only thing remaining is to show that from ηi = 1/2k we may conclude that πj = 1/2 for

all j ∈ [1, k]. By definition, we may write,

ηi =
k∏
j=1

π
bji
j (1− πj)1−bji

where bji ∈ Bi. Assume all ηi = 1/2k. Consider η1 and find ηi∗ such that the two are different in

only one expression, say at the l-th place. Since, all ηi are equal, one may deduce 1− πl = πl so

πl = 1/2. Note that such ηi∗ can always be found since ηi’s are covering all possible combinations

of k-bit vector. Now, find another ηj∗ , which is different from η1 at some other spot, say l′, again

using similar arguments, we may show πl′ = 1/2. This can be done k times to show that, if all

ηi = 1/2k, then π1 = ... = πk = 1/2. This completes the proof.
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3.6.4 Proof of Theorem 4

The signal model can be directly written as follows,

Y(l) = AB(l,l+1)Y(l+1) + Z(l) (3.26)

Here, we show the codebook generation scheme to generate Y(l) from Y(l+1). Note that Y(l)

is a vector consisting of the variables Y (l)
i . Also, Y(l+1) is a vector consisting of variables Y (l+1)

i .

The proof relies on the procedure taken in [16]. Note that our scheme should satisfy the following

constraints,

1)(Y
(l)
i )N ⊥ (Y

(l)
j )N |Ỹ(l+1) (i 6= j)

2)(Y(l))N ⊥ B(l+1)

3)P(Y(l))N =
∏N

t=1 PY(l)(y
(l)
t )

4)|Y(l+1)| = 2NRY(l+1)

5)|B(l+1)| = 2NRB(l+1)

6)||q(Y(l))N −
∏N

t=1 PY(l)(y
(l)
t )||TV < ε

where the first constraint is due to the conditional independence assumption characterized in the

signal model (3.26). The second one is to capture the intrinsic ambiguity of the latent Gaus-

sian tree to capture the sign information. Condition 3) is due to independence of joint densities

PYl(Yl
t) at each time slot t. Conditions 4) and 5) are due to corresponding rates for each of the

inputs Y(l+1) and B(l+1). And finally, condition 6) is the synthesis requirement to be satisfied.

First, we generate a codebook C of ỹN sequences, with indices y ∈ CY = {1, 2, ..., 2NRY(l+1)}

and b ∈ CB = {1, 2, ..., 2NRB(l+1)} according to the explained procedure in Algorithm 2. The

codebook C consists of all combinations of the sign and latent variables codewords, i.e., |C| =

|CY | × |CB|. We construct the joint density γ(Y(l))N ,Y(l+1),B(l+1) as depicted by Figure 3.14,

The indices y and b are chosen independently and uniformly from the codebook C. As can be

seen from Figure 3.14, for each B
(l)
t = b

(l)
t the channel PY l|Ỹ is in fact consists of n independent
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FIGURE 3.14: Construction of the joint density γ(Y(l))N ,Y(l+1),B(l+1)

channels PY l
i |Ỹ
, i ∈ {1, 2, ..., n}. The joint density is as follows,

γ(Y(l))N ,Y(l+1),B(l+1) =
1

|CY ||CB|
[
N∏
t=1

PYl(Yl
t|ỹt(y, b))]

Note that γ(Y(l))N ,Y(l+1),B(l+1) already satisfies the constraints 1), 4), and 5) by construction.

Next, we need to show that it satisfies the constraint 6). The marginal density γ(Y(l))N can be

deduced by the following,

γ(Y(l))N =
1

|CY ||CB|
∑
y∈CY

∑
b∈CB

[
N∏
t=1

PY(l)(Y
(l)
t |ỹt(y, b))]

We know if RB(l+1) +RY(l+1) ≥ I[Y(l+1),B(l+1); Y(l)|B(l)], then by soft covering lemma [16] we

have,

lim
n→∞

E||γ(Y(l))N −
∏

PY(l) ||TV = 0 (3.27)

which shows that γ(Y(l))N satisfies constraint 6). For simplicity of notations we use
∏
PY(l) instead

of
∏N

t=1 PY(l)(Y
(l)
t ), since it can be understood from the context. Next, let’s show that γ(Y(l))N ,

nearly satisfies constraints 2) and satisfies 3). We need to show that as N grows the synthesized

density γ(Y(l))N ,B(l+1) approaches
1

|CB|
∏
PY(l) , in which the latter satisfies both 2) and 3). In

particular, we need to show that the total variation E||γ(Y(l))N ,Bl+1 −
1

|CB|
∏
PY(l)|| vanishes as
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N grows. After taking several algebraic steps similar to the ones in [16], we should equivalently

show that the following term vanishes, as N →∞,

1

|CB|
∑
b∈CB

E||γ(Y(l))N ,Bl+1=b −
∏

PY(l)||TV (3.28)

Note that given any fixed b ∈ CB the number of Gaussian codewords is |CY | = 2NRY(l+1) . Also,

one can check by the signal model defined in (3.26) that the statistical properties of the output

vector Y(l) given any fixed sign value b ∈ CB does not change. Hence, for sufficiently large rates,

i.e., RY(l+1) ≥ I[Y(l+1); Y(l)|B(l)], and by soft covering lemma, the term in the summation in

(3.28) vanishes as N grows. So overall the term shown in (3.28) vanishes. This shows that in fact

γ(Y(l))N nearly satisfies the constraints 2) and 3). Hence, let’s construct another distribution using

γ(Y(l))N ,Y(l+1),B(l+1) . Define,

q(Y(l))N ,Y(l+1),B(l+1) =
1

|CB|
(
∏

PY(l))γY(l+1)|(Y(l))N ,B(l+1)

It is not hard to see that such density satisfies 1)− 5). We only need to show that it satisfies 6)

as well. We have,

||q(Y(l))N −
∏

PY(l)||TV

≤ ||q(Y(l))N − γ(Y(l))N ||TV + ||γ(Y(l))N −
∏

PY(l)||TV

≤ ||q(Y(l))N ,Y(l+1),B(l+1) − γ(Y(l))N ,Y(l+1),B(l+1)||TV + εN (3.29)

= ||q(Y(l))N ,B(l+1) − γ(Y(l))N ,B(l+1)||TV + εN (3.30)

= || 1

|CB|
(
∏

PY(l))− γ(Y(l))N ,B(l+1)||TV + εN (3.31)

where εN = ||γ(Y(l))N −
∏
PY(l)||TV . Both terms in (3.31) vanish as N grows, due to (3.28)

and (3.27), respectively. Note that, (3.29) is due to [16, Lemma V.I]. Also, (3.30) is due to [16,

Lemma V.II], by considering the terms q(Y(l))N ,Y(l+1),B(l+1) and γ(Y(l))N ,Y(l+1),B(l+1) as the outputs

of a unique channel specified by γY(l+1)|(Y(l))N ,B(l+1) , with inputs p(Y(l))N ,B(l+1) and γ(Y(l))N ,B(l+1) ,

respectively.
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Finally, note that we synthesize each Y(l) for a given B(l) = b. Hence, to obtain the overall

statistics we have qY(l) =
∑

b qY(l)|B(l)p(B(l) = b), where the summation is over all possible sign

combinations for layer Y(l), which equals to 2kl . Certainly, this number becomes exponentially

large if kl is large. However, note that as N →∞ each synthesized output (for each given B(l) =

b) become arbitrarily close to zero. Hence, overall qY(l) becomes arbitrarily close to the desired

statistics. This is also the case for the overall latent Gaussian tree, i.e., for L capturing the total

number of layers, at each layer we can generate an output with vanishing total variation distance

from the desired statistics, hence overall the final output statistics becomes arbitrarily close to the

desired output statistics.

This completes the achievability proof.

3.6.5 Proof of Lemma 7

First, we need to change the latent tree structure in a way similar to Figure 3.10. We start from

the standard latent structure, and at each layer we seek for those latent nodes that are at the same

layer and they are neighbors. For each pair of adjacent nodes, we move the one that is further

away from the top layer to a new added layer below the current one. Hence, make a new layer

of latent nodes. We iterate this step until we reach the bottom layer. This way, we face different

groups of observables being synthesized at different layers.

Define X(l), Y(l) and B(l) as the set of observables, latent nodes and sign variables at layer l,

respectively. In this new setting layer l = 0 defines the observable layer, which only consists of

remaining output variables, with no latent nodes. If the rates at each layer satisfy the inequalities

in (3.13), then by Theorem 4 we know that as N increases, the simulated density q(X(l))N ,(Y(l))N

approaches to the desired density
∏
p(X(l)),(Y(l)). Suppose the first set of outputs are generated

at layer L′, then we know X =
⋃L′

l=0 X(l). Each observable node X(l)
i , for l < L′ has a latent

ancestor at each layer l < l′ ≤ L′. We define Y′ as the union of latent nodes containing all

those latent ancestors. Basically, the vector Y′ includes all the latent nodes Y (l)
j for 1 ≤ l ≤ L′.

We define B′, similarly, i.e., those sign inputs related to the nodes in the set Y′. With slightly
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abuse of notation, define Ỹ = {Y′,B′}, and Ỹ(l) = {Y(l),B(l)}, for all possible layers l. The

scheme looks exactly as discussed previously, except that this time we need to keep track of

corresponding generated outputs at each layer and match them together. In particular, consider

the generated outputs (X(0))N , which lie at the bottom layer. Each output is generated using

a particular input vector (Y(1))N , which in turn along with other possible outputs (X(1))N are

generated by a unique input codeword (Y(2))N that lie at the second layer. This procedure moves

from the bottom to the top layer, in order to match each generated output at the bottom layer with

the correct output vectors at other layers. Note that the sign information will be automatically

taken care of, since similar to the previous cases, at each layer l + 1 and given each realization

of the sign vector B(l) = b(l), the input vector Y(l+1) will become Gaussian. We only need to

show that the synthesize density regarding to such formed joint vectors approaches to the desired

output density, as N grows.

By the underlying structure of latent tree, one may factorize the joint density qXN ,ỸN =

q(X(L′))N ,(Ỹ(L′))N
∏L′−1

l=0 q(X(l))N |(Ỹ(l+1))N . Note that the desired joint density pX,Ỹ also induces the

same latent Gaussian tree, hence, we may write, pXN ,ỸN = p(X(L′))N ,(Ỹ(L′))N
∏L′−1

l=0 p(X(l))N |(Ỹ(l+1))N .

However, by our synthesis scheme shown in Figure 3.14, one may argue that
∏L′−1

l=0 q(X(l))N |(Ỹ(l+1))N =∏L′−1
l=0 p(X(l))N |(Ỹ(l+1))N =

∏L′−1
l=0

∏
p
X

(l)
t |Ỹ

(l+1)
t

. By summing out (B(L′))N from both densities

pXN ,ỸN and qXN ,ỸN , we may replace p(X(L′))N ,(Ỹ(L′))N with p(X(L′))N ,(Y(L′))N and q(X(L′))N ,(Ỹ(L′))N

with q(X(L′))N ,(Y(L′))N , since only these terms in the equations depend on the sign vector at layer

L′, i.e., (B(L′))N . Now, by previous arguments for the synthesized and desired density at layer L′,

we know that the total variation distance ||q(X(L′))N ,(Y(L′))N −
∏
p
X

(L′)
t ,Y

(L′)
t

||TV goes to zero as N

grows. Hence, one may simply deduce that ||qXN ,ỸN/(B(L′))N−
∏
p
Xt,Ỹt/B

(L′)
t

||TV = ||(q(X(L′))N ,(Y(L′))N−∏
p
X

(L′)
t ,Y

(L′)
t

)
∏L′−1

l=0

∏
p
X

(l)
t |Ỹ

(l+1)
t
||TV goes to zero as N grows. Due to [16, Lemma V.I], we

know ||qXN −
∏
pXt ||TV ≤ ||qXN ,ỸN/(B(L′))N −

∏
p
Xt,Ỹt/B

(L′)
t

||TV < ε, and as N grows. This

completes the proof.
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Chapter 4

Algebraic Properties of Solutions to Common Information of
Gaussian Graphical Models

We formulate Wyner’s common information for random vectors x ∈ Rn with joint Gaussian den-

sity. We show that finding the common information of Gaussian vectors is equivalent to maximiz-

ing a log-determinant of the additive Gaussian noise covariance matrix. We coin such optimization

problem as a constrained minimum determinant factor analysis (CMDFA) problem. The convex-

ity of such problem with necessary and sufficient conditions on CMDFA solution is shown. We

study the algebraic properties of CMDFA solution space, through which we study two extreme

Gaussian graphical models, namely, latent Gaussian stars, and explicit Gaussian chains. Interest-

ingly, we show that depending on pairwise covariance values in a Gaussian graphical structure,

one may not always end up with the same parameters and structure for CMDFA solution as those

found via graphical learning algorithms.

This study has resulted in one research paper, [56].

4.1 Introduction

Wyner’s Common information C(X1, X2) characterizes the minimum amount of common ran-

domness needed to approximate the joint density between a pair of random variables X1 and X2

to be C(X1, X2) = min PY
X1−Y−X2

I(X1, X2;Y ), where X1 − Y −X2 represents conditional inde-

pendence between X1 and X2, given Y , where the joint density function is sought to esnure such

conditional independence, as well as the given joint density of X1 and X2. In other words, one

may see Wyner’s common information as the optimal way of generating random outputs, through

which the number of common random bits to produce the desired output is minimized. Han and

Verdu, in [15] along the same problem, define the notion of resolvability of a given channel, which

is defined as the minimal required randomness to generate output statistics in terms of a vanishing

total variation distance between the synthesized and prescribed joint densities. Resolvability of a
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channel is found to be a very intuitive description of common randomness in our settings, since it

can be related to channel quality in terms of its noise power, and the noisier the channel the less

number of common random bits needed to simulate the output [15]. Also, Cuff in [16] completely

characterized the achievable rate regions needed to synthesize a memoryless channel, where he

also used the total variation distance metric to show the quality of the proposed scheme.

There are several works that extend the classical bi-variate synthesis problem in Wyner’s study

to more general scenarios. A lower bound on the generalized Wyner’s common information is

obtained in [49]. In [46–48], the authors aim to define the common information of n dependent

random variables, to further address the same question in this setting. In fact, the authors charac-

terize the closed form solution for common information of Gaussian vectors with homogeneous

(i.e., equal) pairwise correlation values. They resort to the same scenario as Wyner [14] did, i.e.,

considering one random variable Y to define such common randomness. Also, in [51] the au-

thors completely characterize the common information between two jointly Gaussian vectors, as

a function of certain singular values that are related to both joint and marginal covariance matrices

of two Gaussian random vectors. However, they still divide the random vector into two groups,

which makes it similar to Wyner’s scenario.

In many cases, introducing one latent variable is not enough to capture the entire common in-

formation. Here, we motivate the multi-variate common information problem. Consider the fol-

lowing motivating example, showing that we need at least two latent random variables to capture

common information.

Example 8. Suppose we are given a zero mean Gaussian random vector {X1, X2, X3, X4} form-

ing a Markov chain X1 −X2 −X3 −X4 with corresponding correlation matrix (normalized co-

variance matrix) Σ = [ρij], where ρij, (i, j) ∈ [1, 4] is a pairwise correlation between Xi and Xj .

Also, to ignore infeasible or trivial cases, we need to have ρij ∈ (−1, 1) and non-zero. The corre-

lation space of Gaussian trees is fully characterized in [43]. It is also shown that in order to have a

chain the pairwise correlations ρij are the product of correlation values for those variables along
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the path from Xi to Xj [31]. Our objective is to show if it is possible to form a latent star-shape

Gaussian graph by adding a single random variable Y given which all four Xi are conditionally

independent. We only need to consider jointly Gaussian vector (X, Y ), as it is shown in [48] that

jointly Gaussian vector (X, Y ) maximizes the conditional entropy h(X|Y ) hence minimizing the

mutual information I(X;Y ). Assuming Y is a zero mean Gaussian random variable with vari-

ance σ2
y , we may write the signal model [X1, X2, X3, X4]′ = [a1, a2, a3, a4]′Y + [Z1, Z2, Z3, Z4]′,

where the vector A = [a1, a2, a3, a4]′ is to be determined by given constraints in the problem and

{Z1, Z2, Z3, Z4} are independent zero mean Gaussian noises with variance σ2
zi

. From such signal

model we may easily see that Σ = AA′σ2
y + Σz, where AA′σ2

y is a rank one positive semi-definite

matrix and Σz is diagonal, with diagonal elements σ2
zi

. We may move Σz to the other part of

equation to show the matrix Σ − Σz is a rank one positive semi-definite matrix. Such Hermitian

matrix has the following form,

Σ− Σz =



t1 ρ12 ρ12ρ23 ρ12ρ23ρ34

ρ12 t2 ρ23 ρ23ρ34

ρ12ρ23 ρ23 t3 ρ34

ρ12ρ23ρ34 ρ23ρ34 ρ34 t4


(4.1)

where due to the fact that Σ − Σz is positive semi-definite and σ2
zi

’s are non-negative, each ti =

1 − σ2
zi
, i ∈ [1, 4] is between 0 and 1. Since the matrix in (4.1) is rank one, hence we may pick

one of the rows as a basis for the row space of this matrix. One may see that by choosing either

the first or second row as a basis, we end up setting ρ23 = ±1, which we know is an infeasible

value. Due to symmetry of chain structure, similar answers will be deduced by setting the third or

fourth row as a basis. Hence, overall we reached to a contradictory conclusion: the matrix Σ−Σz

cannot be a rank one matrix.

This simple case study shows that depending on the covariance matrix structure, we may need a

Gaussian random vector (instead of a single random variable) to capture the common information

among variables with certain structures.
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Recently, Veld and Gastpar [50] characterized common information problem for this general

setting, and formulated the problem as a specific instance of maximum determinant (maxdet) [57]

problems. They also analytically computed the common information value for a specific set of

Gaussian joint densities with circulant covariance matrices. Steeg et. al, in [45] defined informa-

tion sieve, which is closely related to common information metric to represent deep latent Gaus-

sian structures. They showed that in many applications, such as Blind Source Separation (BSS),

the intrinsic latent structure consists of more than a single variable, and that a multi-variate notion

of common information is necessary to discover all the latent Gaussian sources. In our previous

works, [34, 35] we addressed such multi-variate latent structure in a special case of Gaussian

trees. We proved that for such cases, the common information restricted to the underlying tree

structure is equal to the mutual information between observed variables and the latent variables.

Similar to these works, we in this chapter first show that in a Gaussian case the common in-

formation problem is equivalent to minimizing the negative of log-determinant function of the

additive Gaussian noise covariance matrix, under certain constraints. We show the relation of

such problem to the classical constrained minimum trace factor analysis (CMTFA) problem [58–

60], where the objective is to minimize the trace of an additive Gaussian noise covariance matrix.

Therefore, we name the common information problem as constrained minimum determinant fac-

tor analysis (CMDFA). Rather than proposing a numerical algorithm for solving such convex

programming problem (which as we discuss, there are certain algorithms for numerically solving

maxdet problem), we focus on studying the algebraic features of the solution space of CMDFA

problem in general, and specifically for several case studies, where Σ follows certain latent (or

explicit) graphical structure.

This chapter is organized as follows. In section 4.2 we give a proper formulation of CMDFA

problem. In section 4.3 we show the solution space of CMDFA problem, and study couple of

special cases for n = 3. Finally, we conclude the chapter in section 4.4.
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4.2 Problem Formulation

We may straightforwardly generalize Wyner’s common information into multi-variable setting as

follows,

C(X) = min
pY(y),p(X|Y)

I(X; Y)

s.t. p(X|Y) =
n∏
i=1

p(Xi|Y) (4.2)

where X ∈ Rn is a Gaussian vector with covariance matrix Σx (without loss of generality we

can set µx to a zero vector), and Y ∈ Rk (k ≤ n) is the auxiliary (latent) random vector (a

single random variable, in a special case) capturing common randomness in X. Also, I(X; Y)

captures the mutual information between these two vectors. The only constraint is the conditional

independence of all Xi ∈ X given the latent vector Y.

We know I(X; Y) = h(X) − h(X|Y), with h(.) being the differential entropy, since given

Σx, the first term is fixed. The common information problem is equivalent to maximizing the

conditional entropy h(X|Y) with conditional independence constraint. It is shown in [48] that

a jointly Gaussian latent vector Y can maximize such quantity, hence, we can limit the search

space of problem to Gaussian pY’s. Let us define an affine model X = AY + Z, where A is

n× k transition matrix and Z ∈ Rn is a zero mean additive Gaussian noise vector, with diagonal

covariance matrix D (hence, all zi ∈ Z are independent), where the diagonal elements di are the

corresponding variances for each zi. The noise elements are independent of the latent vector Y.

We assume that the generative (affine) model’s parameters, i.e., the transition matrix AG and the

diagonal covariance matrixDG are known to us, either a priori or through a specific learning algo-

rithm [2, 44]. Using such affine mapping we also satisfy the conditional independence constraint.

As a result, one may show that I(X; Y) =
1

2
log
|Σx|
|D|

. We may re-write the common information
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problem in (4.2) as follows,

min
D
− log |D|, s.t.


D � 0 and diagonal

Σx −D � 0

(4.3)

We coin the optimization problem in (4.3) as CMDFA. The matrix D has to be positive defi-

nite, i.e., all diagonal entries di should be positive. Otherwise, if for some i, di is zero, then we

know − log |D| = − log
∏n

i=1 di → +∞, which maximizes the objective function. The second

constraint is due to affine modeling: Σx = AA′ + D, where A′ is the transpose of A. Therefore,

Σx − D = AA′ � 0. In particular, the rank of AA′ is at most k ≤ n. It can be easily shown

that CMDFA is an instance of general class of optimization problems known as max-det prob-

lems [57]. Hence, several iterative algorithms proposed in [57] can be used to numerically find

the solution for such optimization problem. In fact, a Matlab-based modeling system for convex

optimization, known as CVX [61, 62] can be used to solve such problem. Rather, our goal is

to study the algebraic properties of CMDFA solution space in general, and for certain Gaussian

graphical structures.

From now on, for simplicity and without loss of generality, we assume Σx to be a correlation

matrix, i.e., all σij ∈ Σx are normalized to ρij = σij/
√
σiiσjj . As a result, due to the constraint

Σx − D � 0, for all di ∈ D we have di < 1. This would be fine, since it is shown [57][p. 3]

that such problem is invariant under congruence transformations. Hence, once the solution D1 for

the correlation matrix is found, one may propose D2 = Λ1/2D1Λ′1/2 (Λ is a diagonal matrix with

λi = σii) as a solution to the un-normalized CMDFA problem.

4.3 Main Results

In this section, we first give the necessary and sufficient conditions under which D∗ can be the

solution to CMDFA problem. The proof procedure is very similar to CMTFA proof proposed in

[58, 59]. Then, we aim to characterize the solution in certain cases, where the Gaussian density

pX follows either a latent or explicit Gaussian tree structure.
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In Theorem 5 whose proof can be found in Appendix 4.5.1 we characterize the conditions under

which D∗ is the solution to CMDFA.

Theorem 5. The diagonal positive definite matrix D∗ is a solution to CMDFA problem if and

only if |Σ −D∗| = 0 and there exists a Gramian matrix T = [tij] � 0, whose entries satisfy the

following condition,

1

d∗
=

n−k∑
i=1

n−k∑
j=1

tijeie
∗
j (4.4)

where 1/d∗ = [1/d1, ..., 1/dn]′ and ei ∈ N(Σ − D∗) is a basis vector in null space of Σ − D∗.

The notation eie
∗
j = [ei1ej1, ..., einejn]′ is used for the Hadamard product of two basis vectors.

Remark 7. The rank deficiency constraint in Theorem 5, suggests the solutionD∗ to be always on

the boundary |Σ−D∗| = 0. This is a necessary condition for CMDFA solution. Otherwise, assume

D∗ is such that Σ −D∗ is a full rank. As a result, all n principal minors of this matrix should be

positive. However, we know that each of these principal minors are polynomial functions of d∗i ’s.

We may propose another matrix D̃ = diag(d∗1 + ε1, ..., d
∗
n + εn), where ε ≥ 0 for all i. Due to

smoothness of such polynomial functions, we can always find at least one εi (although very small)

such that still all principal minors of Σ − D̃ remain positive, hence, keeping the matrix positive

definite. However, now D∗ cannot be CMDFA solution, since apparently − log |D̃| < − log |D∗|,

a contradiction. Therefore, the rank of Σ−D∗ should be k ≤ n− 1.

Remark 8. Then, one may question the existence of CMDFA solution, i.e., whether all postive

definite matrices Σ can be decomposed into sum ofAA′+D, whereAA′ � 0 is rank deficient and

D∗ � 0 is diagonal. To show the existence of solution, define λmin > 0 as the smallest eigenvalue

of Σ. Then, considering the matrix D = λminI � 0, where I is n × n identity matrix, we know

Σ−D is both positive semi-definite and rank deficient (its minimum eigenvalue is zero). Hence,

for any given matrix Σ the search space of CMDFA problem is nonempty.
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In Theorem 6, whose proof can be found in Appendix 4.5.2 we take the same steps as in

[59][Theorem 4] to show the uniqueness of CMDFA solution.

Theorem 6. The CMDFA problem has a unique solution.

In the remainder of the chapter we go through several cases to study their solution space re-

garding the CMDFA problem.

4.3.1 Star Structure

Suppose in the underlying affine model, the latent vector is a singleton Y , i.e., star structure. This

can be modeled as 

X1

X2

...

Xn


=



a1

a2

...

an


Y +



Z1

Z2

...

Zn


(4.5)

where 0 ≤ ai < 1, i ∈ [1, n]. A special case for such model, with n = 3 is shown in Figure 4.1.

FIGURE 4.1: Star structure with n = 3 outputs

Using Theorem 5 we may be able to characterize the solution space of CMDFA problem as

follows. Note that the pairwise correlations have the form ρij = aiaj, i 6= j ∈ [1, n]. Basically,

each ai can be seen as an edge weight between a latent factor Y and the corresponding variable

Xi.

For all di ∈ D define ti = 1− di, where for CMDFA problem we know 0 ≤ ti < 1.

In our previous studies [34–36], we showed that the value of each ti is given and it is equal to a2
i .

Now, one can easily check that rank(Σ−D) = 1, also, Trace(Σ−D) =
∑n

i=1 a
2
i =

∑
λi > 0,

where λi is an eigenvalue of Σ−D, but since rank(Σ−D) = 1, hence, λ2 = ... = λn = 0, hence,
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λ1 =
∑n

i=1 a
2
i > 0, so Σ −D is positive-semidefinite in this case. Also, since di = 1 − a2

i > 0,

hence D � 0. Therefore, such case lies on the feasible solution of CMDFA.

To check if this is indeed the solution of CMDFA, we first need to find the null space of Σ−D,

which has rank n − 1. By solving the system of equations (Σ − D).V = 0, we deduce that the

null space has the form N(Σ − D) = {V|
∑n

i=1 aivi = 0}. In other words, the vectors in null

space have the form V = (v1, v2, ...,−
1

an

∑n−1
i=1 aivi).

One intuitive suggestion for the basis would be choosing the set of linearly independent vectors

e1 = (1, 0, 0, ..., 0,−a1

an
), ..., en = (0, 0, ..., 0, 1,−an−1

an
). To find a Gramian matrix T = [tij]

satisfying(4.4), we obtain the following system of equalities
tii =

1

1− a2
i

, i ∈ [1, n− 1]

2
∑

i<j tijaiaj =
a2
n

1− a2
n

−
∑n−1

i=1

a2
i

1− a2
i

, i, j ∈ [1, n− 1]

(4.6)

Remark 9. Suppose, all ai = a are equal. This is the case considered in [46–48]. Then, using

(4.6) we obtain tii =
1

1− a2
, i ∈ [1, n− 1] and

∑
i<j tij = − n− 2

2(1− a2)
, i, j ∈ [1, n− 1]. Simply

putting all tij’s to be equal, gives tij = − n− 2

n(n− 1)(1− a2)
, i 6= j. In this case T = [tij] is a

strictly digonally dominant matrix, since |tkk| >
∑

i 6=k |tki| =
(n− 2)2

n(n− 1)(1− a2)
. And since all

of its diagonal entries are positive, hence T is in fact positive semi-definite. As it can be seen this

is a special case that satisfies the system of equalities and shows that CMDFA solution for a such

affine model with single hidden variable (i.e., a star), is a star!

One may wonder if the above system of linear equations always holds regardless of given values

for ai’s. In other words, does always exist a Gramian matrix T satisfying the following system of

equalities? So that the CDMFA solution of a given Gaussian vector, which was generated using

a star-generative and latent Gaussian graph, also ends up with a star? Through the following case

study we show that this is not the case, even for the smallest star tree with n = 3 output variables.
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4.3.2 CMDFA Solution Space for n = 3

Here, we consider a special case, where the set of output variables is a three dimensional vector

X = {X1, X2, X3}. As we will, although this seems a small number of variables to begin with,

but finding CMDFA solution proves to be a non-trivial task.

4.3.3 Star: Rank One Matrix

Suppose, Σ − D is a rank one matrix, i.e., the latent vector is a singleton Y . Here, we draw an

interesting conclusion, that the solution to CMDFA for such affine model, is not necessarily a star.

This is shown in Theorem 7, whose proof can be found in Appendix 4.5.3.

Theorem 7. For n = 3, and a rank one Σ − D following the affine model in (4.5), the CMDFA

solution is also a star with the same parameters if and only if the following inequality holds,

S1 = {s1, s2, s3|(s1 − s2)2 + (s1 − s3)2 + (s2 − s3)2

≤ s2
1 + s2

2 + s2
3} (4.7)

where si =
a2
i

1− a2
i

, i ∈ [1, 3].

Hence, in some cases, despite the fact that a latent tree induces a star structure, but the CMDFA

solution is not necessarily a star.

Remark 10. si’s can be seen as Signal to Noise Ratio (SNR) of the three Gaussian channels in the

affine model. And the feasible region can be re-written as (
√
s1 −

√
s2)2 ≤ s3 ≤ (

√
s1 +

√
s2)2.

The following figures show the feasible region in both different SNR and (Positive) Edge weights

domains.

It is noteworthy to mention that the general case considered for example in [46] is a special

case for this region, i.e., the diagonal line inside the region where s1 = s2 = s3 or equivalently

|a1| = |a2| = |a3|.

Using previous remarks, since we know the CMDFA solution is rank-deficient, hence, we have

the following corollary.
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FIGURE 4.2: The feasible region for SNR values si which can vary from zero to infinity

FIGURE 4.3: The feasible region for positive edge weight values a1, a2, and a3 which can vary
from zero to one
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Corollary 5. For n = 3, and a rank one Σ −D following the affine model in (4.5), the CMDFA

solution Σ−D∗ is rank two if and only if all si’s lie on Sc1, i.e., the complement of S1.

Remark 11. In [63] the lower bound on the rank of Σ − D is shown to be the total number of

eigenvalues λi ∈ Σ that are greater than 1. Supposing the 2 × 2 principal submatrix of Σ, its

eigenvalues are λ′1 = 1 − |ρ12| and λ′2 = 1 + |ρ12|, where such eigenvalues interlace [64] the

eigenvalues λi, i ∈ {1, 2, 3} of Σ and we have the ordering λ1 ≤ λ′1 ≤ λ2 ≤ λ′2 ≤ λ3. The

lower bound on λ2 can be made tighter by considering the intrinsic symmetry in Σ structure,

hence having a lower bound max 1− |ρij|, i 6= j, i.e., 1 − min |ρ12|, |ρ13|, |ρ23| ≤ λ2. Now,

considering the set S1, we may see that if one of the SNR values si dominates the other two,

then (by ignoring the other two SNR values) we may not satisfy the inequality in (4.7). This may

happen for example when a single edge-weight ai is large, i.e., when there is one small correlation

value ρij , which also will dominate the lower bound on λ2. As such correlation value decreases,

the lower bound becomes closer to 1. Roughly speaking, in this case the search space of rank one

matrices Σ − D for CMDFA either shrinks or disappears. This might be one reason on having

rank two solution on Sc1 in this case.

4.3.4 Non-Star: Rank Two Matrix

Suppose this time that in the affine model the matrix Σ − D is a rank two matrix, i.e., Y =

{Y1, Y2}. Hence, the row space of such matrix is two dimensional.

In the following Theorem, whose proof can be found in Appendix 4.5.4, we characterize the

solution space of such matrices for rank two CMDFA solutions.
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Theorem 8. For n = 3, and a rank two Σ − D following the affine model in (4.5), the CMDFA

solution is also a rank two matrix if and only if the following system of non-linear equations holds,

d3 = 1 +
(d2 − 1)ρ2

13 + 2ρ12ρ13ρ23 + (d1 − 1)ρ2
23

(1− d1)(1− d2)− ρ2
12

d3

d1

= α2

d3

d2

= β2

(4.8)

where the parameters α, β are functions of (d1, d2) as follows,

α =
ρ12ρ23 − ρ13(1− d2)

(1− d1)(1− d2)− ρ2
12

β =
ρ12ρ13 − ρ23(1− d1)

(1− d1)(1− d2)− ρ2
12

(4.9)

Similarly, we have the following Corollary,

Corollary 6. For n = 3, and a rank two Σ −D following the affine model in (4.5), the CMDFA

solution Σ −D is rank one if and only if all di’s lie on Sc2, where S2 is the solution set obtained

from Theorem 8.

Remark 12. The results in Corollaries 5 and 6 interestingly show the difference between the affine

models and CMDFA solutions. We may see that regardless of the rank of generative model, i.e.,

dimension of latent Y vector, the CMDFA solution can have either lower or higher dimensions.

This shows that, in many situations and depending on the values of the transition matrix A, the

generative affine model might not be the optimal one (in terms of achieving minimum number of

common randomness) to use in order to generate the Gaussian output vector X. Such generative

models are usually learned by a specific learning algorithm. For example, for Gaussian latent trees

there are efficient algorithms such as Chow-Liu Recursive Grouping (CLRG) [2] and Neighbor

Joining [44] algorithm that can consistently learn both the tree structure and parameters.

Remark 13. While CMDFA problem is similar to CMTFA problem with different cost functions

(and accepting zero solutions for di’s), note that their solution sets are different and for the special
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case of n = 3, they are exclusive. To show this, suppose for CMTFA solution all d∗i ’s are non-

zero, then all we need to do is to replace the left hand side of (4.4) with [1, 1, 1]′. Essentially, this

is because in CMTFA the objective function to be minimized is negative of Trace(Σ − D) =∑3
i=1(1− di). Hence, its gradient with respect to d becomes [−1,−1,−1]′. Now, in CMDFA this

means replacing the left hand side of (4.4) to 1/d∗ = [1, 1, 1]′, i.e., d∗1 = d∗2 = d∗3 = 1. But then

Σ−D∗ obtains the following form:

Σ−D∗ =


0 ρ12 ρ13

ρ12 0 ρ23

ρ13 ρ23 0

 (4.10)

In other words Tr(Σ − D∗) = 0, now if the eigenvalues of Σ − D∗ are non-zero, then they

should have different signs, hence, making Σ − D∗ non-positive definite, and not Gramian. If

they are all zero, then this matrix has a rank zero, and again it violates the Gramian assumption.

Note that we assume in CMDFA, the solutions d∗ are non-zero, but this cannot be the answer to

CMTFA (since then for equivalence of the solutions, we should set all d∗i = 1). Hence, in this

case we conclude that the answers for CMTFA and CMDFA are exclusive.

4.3.5 Markov Chain

In [34–36] we showed an operational approach under which any latent Gaussian tree can be

efficiently synthesized. We showed that the sources of common randomness can be shrinked into

a set of latent variables X = {X1, ..., Xk} forming a Markov chain structure X1−X2− ...−Xk.

Here, we want to show that such chain structure can be efficiently synthesized by a smaller set of

variables through an affine Gaussian model. In Theorem 9, whose proof can be found in Appendix

4.5.5 we show these results.

Theorem 9. Supposing a Gaussian vector X ∈ Rn, with Σ following a Markov chain structure

X1 −X2 − ...−Xn, the CMDFA solution Σ−D∗ has rank either n− 1 or n− 2.
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In other words, we can always reduce the number of common random bits required to synthe-

size chain structure through a latent common variables {Y1, ..., Yk}, where k ∈ {n−2, n−1}. This

also shows that comparing to affine models inducing star structures, such Markov chain structures

cannot be significantly made simpler through sum of lower rank and diagonal matrices.

4.4 Conclusion

In this chapter, we studied the problem of characterizing Wyner’s common information for Gaus-

sian vectors following special structures, such as star or a Markov chain. We showed that how

such problem can be turned into a specific convex programming problem, which we coined as

CMDFA. For a general star Gaussian tree, we obtained the linear system of equations that can

be efficiently solved to find the CMDFA solution. For n = 3 and star Gaussian tree, we showed

that interestingly the CMDFA solution can be a rank two matrix. This resulted in computing the

general solution space for such case, in which it consists previous solutions as a special case. Fi-

nally, for a Gaussian Markov chain we showed that unlike star affine models, these vectors cannot

be made as compact such that the lower rank matrix Σ − D can be made at most having rank

n − 2, which suggests that there is not much degree of freedom left to further reduce the model

complexity for a Gaussian chain structure.

4.5 Proof of Theorems
4.5.1 Proof of Theorem 5

First, we show the convexity of CMDFA problem. We know that the negative log-determinant

function is convex. Moreover, the constraint D � 0 can be written as n linear constraints of the

form di > 0, i ∈ [1, n], where di’s are non-zero diagonal entries of D. The constraint Σ−D � 0

is equivalent to having its non-negative minimum eigenvalue λ(d), or equivalently, −λ(d) ≤ 0.

It is proven in [59, Lemma 1] that in fact finding the negative of minimum eigenvalue corre-

sponds to maximizing a set of linear functions, hence making −λmin(d) a convex (piecewise

linear)function. So, overall CMDFA is a convex optimization problem.
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By relying on [59, Theorem 2] (KKT necessary and sufficient conditions) we obtain that d∗ is

a solution to the CMDFA problem defined in (4.3), if and only if λ(d∗) = 0, di > 0, i ∈ [1, n]

and we have the following (with α ≥ 0)

0 ∈ ∇(− log |D|)|D=D∗ + α∂(−λ(d))|d=d∗ (4.11)

Since all di’s are non-zero (positive), the gradient ∇(− log |D|)|D=D∗ can be easily replaced

as
1

d∗
= [1/d1, ..., 1/dn]′. Note that the minimum eigenvalue function is piecewise linear, hence,

non-smooth. Since such function is maximum over linear functions, it is shown in [59, Lemma 1]

that the subdifferential term can be written as ∂(−λ(d)) = ¯conv{x2}, where ¯conv{S} denotes the

convex hull of set S and the vectors x are unit eigenvectors of Σ−D corresponding to λ(d). The

term x2 is the Hadamard product of the vector x with itself. However, note that as the solution

is on the boundary λ(d∗) = 0, hence, such eigenvectors in fact correspond to the null space,

N(Σ−D). Therefore, we rewrite (4.11) as,

0 = − 1

d∗
+ Σm

i=1x
2
i (4.12)

where xi ∈ N(Σ−D). Note that m can be arbitrary with m(m+ 1)/2 < n [58].

Due to [58, Lemma 3.1] one can replace the summation Σm
i=1x

2
i in (4.12) with weighted sum of

basis vectors ei ∈ N(Σ − D), i ∈ [1, k], with the form Σk
i=1Σk

j=1tijeie
∗
j . This is due to the fact

that any vector x ∈ N(Σ−D) can be also written as a linear combination of the basis vectors ei ∈

N(Σ−D), i.e., there exists (n− k)×m matrix C such that [x1,x2, ...,xm] = [e1, e2, ..., en−k]C.

Then, the summation in (4.12) can be replaced with Σk
i=1Σk

j=1tijeie
∗
j , where T = [tij] = CC ′ and

hence it has to be Gramian. Hence, we have the desired results in Theorem 5.

4.5.2 Proof of Theorem 6

Similar to [59, Theorem 4], we may assume that the CMDFA solution d1 is not unique. Hence,

there is another solution d2, where both of them lie on the boundary λ(d1) = λ(d1) = 0. From

the convexity of the problem, which is shown in Appendix 4.5.1, the vector d3 = (d1 + d2)/2
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should also be the solution. By [59, Corollary 1] there should be x ∈ N(Σ −D3) with non-zero

coordinates. We know N(Σ − D3)x = 0. Hence, replacing d3 = (d1 + d2)/2, then we obtain

x′(Σ−D1)x+x′(Σ−D2)x = 0. Both terms in this summation are non-negative, since the matrices

Σ−Di, i ∈ [1, 2] are Gramian. Therefore, we conclude that x′(Σ−D1)x = x′(Σ−D2)x = 0,

and we can obtain (Σ − D1)x = (Σ − D2)x = 0. In particular D1x = D2x = 0, and since D1

and D2 are diagonal we may have the system of equations di1xi = di2xi, i ∈ [1, n]. Since all the

vector x has non-zero entries, hence the uniqueness condition for CMDFA solutions D1 = D2

holds.

4.5.3 Proof of Theorem 7

Let us find the conditions under which the CMDFA solution is a star. In this case, we have

di = 1 − a2
i as the CMDFA solutions. By the results in Section 4.3.1, the null-space basis

are e1 = (1, 0,−a3/a1) and e2 = (0, 1,−a3/a2). From (4.4), for this case we obtain the sys-

tem of equations, (1/d1, 1/d2, 1/d3) = t11e
2
1 + t22e

2
2 + t12e1e2 that needs to be satisfied for

some T = [tij] � 0. solving such system of equations gives us tii =
a2
i

1− a2
i

, i ∈ [1, 2],

and t12 = 1/2(s3 − s1 − s2), where si =
a2
i

1− a2
i

. We need to show T = [tij] � 0. Obvi-

ously Trace(T ) ≥ 0. For determinant to be non-negative, we need to have t11t22 ≥ t212, or

A2 +B2 +C2 − 2AB − 2AC − 2BC ≤ 0. Note that this is not always true, based on the values

of si, which are the functions of a2
i . For example, put s1 = s2 = 1 and s3 = 5, which corresponds

to a2
1 = a2

2 = 1/2 and a2
3 = 5/6 (hence, a positive definite matrix Σ), where one may check that

the inequality is not satisfied.

4.5.4 Proof of Theorem 8

Since the row space of Σ − D is two-dimensional, we can find non-zero variables α and β such

that αr1 + βr2 + r3 = [0, 0, 0]′, where ri is the i-th row of Σ−D. This, of course is a necessary

condition for a rank two matrix, and for sufficiency we need to make sure no ri and rj are linearly

dependent, since otherwise Σ−D becomes a rank one matrix.
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By replacing ri’s with their respective vectors, we obtain the following system of equations:

α(1− d1) + βρ12 + ρ13 = 0

αρ12 + β(1− d2) + ρ23 = 0

αρ13 + βρ23 + (1− d3) = 0 (4.13)

Solving for α, β and d3, gives us:

α =
ρ12ρ23 − ρ13(1− d2)

(1− d1)(1− d2)− ρ2
12

β =
ρ12ρ13 − ρ23(1− d1)

(1− d1)(1− d2)− ρ2
12

d3 = 1 +
(d2 − 1)ρ2

13 + 2ρ12ρ13ρ23 + (d1 − 1)ρ2
23

(1− d1)(1− d2)− ρ2
12

(4.14)

Hence, d3 can be completely determined, via d1 and d2.

We know that the null space N(Σ − D) is rank one. And a basis vector can be obtained by

solving (Σ − D)x = 0. After solving, one deduce that the null space has the following form

N(Σ −D) = {(α, β, 1)Tx3 : ∀x3}, where it turns out that p = α and q = β. Hence, the basis is

v = (p, q, 1), and the normal basis is e1 =
v

||v||
Now, using Theorem 5 we need to satisfy the following equality te2

1 = (1/d11/d21/d3)T for

t ≥ 0. Which gives us the system of equations [1/d1, 1/d2, 1/d3]′ =
1

||v||2
[tα2, tβ2, t]′

Replacing the last equality in the first two, gives us
d3

d1

= α2 and
d3

d2

= β2.

4.5.5 Proof of Theorem 9

First, note that since CMDFA solution is rank-deficient so the rank of solution is at most n − 1.

Hence we only need to prove that the rank cannot be less than n−2. The proof goes by induction.

For the bases case, we may consider the case described in Example 8, where we showed the rank

of Σ−D cannot be less than two.

We show the matrix Σ′n = Σn−D, with Σn corresponding to a Markov chain X1−X2− ....−

Xn−1 − Xn, has rank at least n − 2; assuming for all Σ′n−1 = Σn−1 − D, with Σn−1 regarding
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to smaller Markov chains Xi1 −Xi2 − ... −Xin−1 for i1 6= ... 6= in−1 ∈ [1, n − 1] have ranks at

least n − 3. In other words, if we sum out (drop) a variable Xi ∈ [1, n] from the Markov chain,

we obtain a length n− 1 Markov chain with Σn−1, with rank of Σ′n−1 at least least n− 3.

Without loss of generality, we may assume the Gramian matrix Σ′n has the following generic

form,

Σ′n =



ρ1,n

ρ2,n

Σ′n−1 ...

ρn−1,n

ρ1,n ρ2,n . . . ρn−1,n tn


(4.15)

Obviously if rank of Σ′n−1 is at least n− 2, then we are done, since the first n− 1 rows, at least

span a n − 2 dimensional space (adding a new dimension, i.e., the last column, does not reduce

the row space dimension). Therefore, we assume Σ′n−1 has rank n− 3.

Consider the first n− 3 (linearly independent) rows r1, ..., rn−3, and form a linear combination

of these rows with row rn: α1r1 + ... + αn−3rn−3 + αnrn. We are interested to see whether rn

can be written as linear combination of the first n− 3 rows, and note that αn 6= 0 (since then we

have a contradictory conclusion of linear dependence of first n− 3 rows). Hence, we may ignore

αn and write α1r1 + ... + αn−3rn−3 = rn. Extracting the summation elements for the last three

columns gives us the following equations,

n−3∑
i=1

αiρi,n−2 = ρn−2,n

n−3∑
i=1

αiρi,n−1 = ρn−1,n

n−3∑
i=1

αiρi,n = tn (4.16)

Due to Markov chain property, we know ρi,j =
∏

(k,l)∈path(i,j) ρk,l, i.e., the pairwise correlation

ρi,j can be computed as the product of all ρk,l, where (xk, xl) pairs are the edges on the path
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between xi and xj . Now, we may multiply the first and second equations by ρn−2.n and ρn−1,n and

re-write the equations as follows,

n−3∑
i=1

αiρi,n = ρ2
n−2,n

n−3∑
i=1

αiρi,n = ρ2
n−1,n

n−3∑
i=1

αiρi,n = tn (4.17)

The left hand side on all equations is equal, hence we have ρ2
n−2,n = ρ2

n−1,n, which reduces

to ρ2
n−2,n−1 = 1, i.e., a rank-deficient Markov chain with rank n − 1, a contradiction (since we

started with a rank n Markov chain).

This shows the linear independence of rn with first n−3 rows, i.e., the set of vectors (r1, ..., rn−3, rn)

spans an n− 2 dimensional space, i.e., the rank of Σ′n is at least n− 2.
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Chapter 5

3D Image Reconstruction Using Factor Models

3D Image reconstruction and hole filling is a classical and fundamentally challenging geometric

modeling problem. Such problem happens due to inherent scanning occlusions, hardware noise,

and calibration errors during digitization of physical objects, such as 3D scanning of human body.

In this research, we aim to reconstruct and synthesize the missing parts by relying on Gaus-

sian graphical models. We believe that such statistical approach outperforms the deterministic

methods.

5.1 Introduction

In this chapter, we consider addressing the hole filling problem for a dataset of 3D scanned human

arms. The arm database consists of 1517 sample vectors, each of which consisting 758 3D data

point samples, hence making each vector having 758×3 = 2274 dimension. This problem suffers

from curse of dimensionality since the number of training samples is much lower than the number

of features. Hence, applying factor models to such problem could be helpful.

There are many deterministic approaches on image reconstruction aiming to address the image

synthesis problem. They can be divided into two categories; context-insensitive methods, and

context-based methods.

• In context-insensitive methods without regarding the underlying template, the missing parts of

the image are reconstructed. These methods can be divided into two groups: In the surface-based

methods [65–67], a cost function is optimized to maximize (minimize) the smoothness (curvature

variance) near the missing regions. Essentially, such methods fill the holes by perturbing the input

only slightly, but they often cannot handle those special cases, with large curvature variances. In

volume-based methods [68–70], the object is considered as a solid model, and the missing regions
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should be filled. However, similar to the surface-methods they cannot handle complex holes and

due to global reconstruction, they lose subtle details in the reconstructed parts.

• Context-based methods usually outperform the context-insensitive methods, since they ex-

ploit extra information about the model that can be either a symmetry, given template, or statistical

dependency structure of the data points on the image. In symmetry-guided methods [71, 72], the

inherent symmetry of the object is used to fill the missing parts. However, this only works when

the object is symmetric and the missing region’s symmetric counterpart is available. In template-

guided methods [73, 74], the missing regions are obtained and replaced from the set of available

templates. However, there might be several occasions when a similar template is unavailable. In

statistical shape models (SSM) methods, the statistical dependency of the data points in the object

is obtained, to further help the image reconstruction problem. Perhaps the best well-known work

in SSM field is done by Cootes, et al. [75], where a set of principal component analysis (PCA)

is extracted from the image data points to capture the few statistical variations in the object. Al-

though, this work does not exactly address the hole filling problem, but it is one of the inspiring

works in this field.

Factor analysis (FA) is widely recognized as one of the efficient tools to deal with high di-

mensional problems. In FA, one aims to find the set of latent features that best describes the

high dimensional data. The factor models become effective whenever the number of latent vari-

ables (features) is much less than the overall number of observed variables. The criterion to find

such variables is to optimize a particular cost function. One of the widely used factor mod-

els, is maximum-likelihood factor analysis (MLFA) model, where the objective is to maximize

the (log) likelihood L(θ,D), where θ is an unknown vector of parameters to be estimated and

D = {x1, ...,xn} is the provided training dataset.

There are other factor models with distinct cost functions. For example the set of works by

Shapiro et al. [58–60] defines the trace of a particular covariance matrix as a cost function, which

needs to be minimized. They properly characterize the constrained minimum trace factor analysis

103



(CMTFA), and propose an iterative method to solve such convex programming problem. Usually,

there is no closed form solution for factor models, and one must rely on different optimization

techniques to approximate the answer.

5.2 Maximum Likelihood Factor Analysis (MLFA)

We can interpret any 3D object as a random vector with desired joint statistics, where its elements

can be anything desirable, such as pixel intensities, or data points locations. Then the hole filling

problem can be seen as proposing a synthesis algorithm that generates a random vector whose

statistics are very close to the desired object’s statistics. In previous sections, we introduced the

inherent complexity in high dimensional problems, and how factor models would be helpful in

addressing such problems. Although in this chapter, the complexity is more due to high dimen-

sionality of data, hence, the applied factor model aims at reducing such complexity by introducing

smaller number of latent factors that accurately describe data.

Similar to CMDFA, as discussed in Chapter 4, in MLFA we use an affine model to describe the

data. As before, we adopt a joint Gaussian distribution to capture the joint density of data points.

We may write a generative model xj = Ayj + µ + ej , where yj ∼ N(0, I) and ej ∼ N(0, D),

with D being diagonal. Hence having the factorization to lower rank and diagonal matrices, Σ =

AA′ + D. As discussed, the objective function in MLFA is the log-likelihood function, where it

can be written as follows,

l(µ,A,D|D) = −n
2

(ln|Σ|+ tr(Σ−1S) + (x̄− µ)′Σ−1(x̄− µ)) (5.1)

where S is the empirical covariance matrix, i.e., S = 1/n
∑n

j=1(xj − x̄)′(xj − x̄). Obviously,

the Maximum Likelihood (ML) estimator for µ is x̄. Hence, we can rewrite the above equation as

follows,

l(A,D|D) = −n
2

(log |Σ|+ tr(Σ−1S)) (5.2)
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Taking derivative of l(A,D|D) with respect to both A and D and simplifying the equations

gives us the following system of equations,

A = SΣ−1A

D = diag(S − AA′) (5.3)

Solving such equations simultaneously is a difficult problem. The Expectation-Maximization

(EM) algorithm [76, 77] is the proposed algorithm to iteratively solve such ML estimation prob-

lem. Roughly speaking, EM starts with an initial guess for unknown parameters, computes the

likelihood bases on random initial parameters and then maximizes the complete log-likelihood to

compute the next set of parameters to use for the next iteration.

5.2.1 Expectation Maximization Algorithm

The following steps are taken from [78]. Suppose we are having an initial estimation (A0, D0, µ0)

of unknown parameters. We first need to form the following conditional distribution,

yj|xj ∼ N(A0Σ−1(xj − µ0), (I + A′0D
−1
0 A0)−1) (5.4)

In particular, the first and second moments of yj (under the above conditional distribution) can

be computed as follows,

E[yj|A0, D0, µ0] = A′0Σ−1(xj − µ0)

E[yjy
′
j|A0, D0, µ0] = (I + A′0D

−1
0 A0)−1 + A′0Σ−1(xj − µ0)(xj − µ0)′Σ−1A0 (5.5)

Now, we may form the complete data log-likelihood over all vectors in the dataset D as follows,

l(A,D, µ) =
n∑
j=1

log p(xj,yj) =
n∑
j=1

log p(yj) + log p(xj|yj)

= −n
2
ln|D| − 1

2

n∑
j=1

(y′jyj + (xj − Ayj − µ)′D−1(xj − Ayj − µ)) (5.6)

Now, we need to compute the expected likelihood l(A,D, µ) with respect to the conditional

distribution p(yj|xj) defined above,

E[l(A,D, µ)|A0, D0, µ0] = Q(A,D|A0, D0) +R (5.7)
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where,

Q(A,D|A0, D0) = −n
2
ln|D|

− n

2
tr[D−1S − 2D−1A0A

′
0Σ−1

0 S + (I + A′D−1A)((I + A′0D
−1
0 A0)−1 + A′0Σ−1

0 SΣ−1
0 A0)]

(5.8)

and,

− 2R/n = (x̄− µ0)′Σ−1
0 A0(I + A′D−1A)A′0Σ−1

0 (x̄− µ0)

+ (x̄− µ)′D−1(x̄− µ)− 2(x̄− µ)′D−1AA′0Σ−1
0 (x̄− µ0) (5.9)

Note that if we set µ0 = x̄, then R is maximized at µ = x̄. Hence, at all iterations we use such

ML estimator, i.e., µt = x̄. Next, we can take the derivative of Q(A,D|A0, D0) and show that it

is maximized for,

A = SD−1
0 A0[I + A′0Σ−1

0 SD−1
0 A0]−1

D = diag(S − SΣ−1
0 A0A

′) (5.10)

Hence, at each step of EM algorithm we have,

At+1 = SD−1
t At[I + A′tΣ

−1
t SD−1

t At]
−1

Dt+1 = diag(S − SΣ−1
t AtA

′
t+1) (5.11)

Note that Σt = AtA
′
t +Dt.

5.3 Statistical Analysis on Arm Dataset

5.3.1 Eigenvalue Spectrum Analysis

Let’s begin by observing the eigenvalue spectrum of the empirical covariance matrix, S These are

shown in Figure 5.1.

The maximum eigenvalue is λ1 ≈ 850, while the smallest one is λn ≈ 0. As it may seem from

the figure, huge number of eigenvalues are around zero. This shows that the determinant is almost
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FIGURE 5.1: Eigenvalues spectrum of S: Left: All eigenvalues; Middle: first 50 eigenvalues; Right:
first 20 eigenvalues

zero, since S can be computed as a product of all 2274 eigenvalues. One possible explanation

is that to describe an arm pose, one do not need 2274 features. Hence, by introducing 2274 fea-

tures, we are simply many redundant variables, i.e., those that are linearly dependent to the other

variables, hence, they (almost) will be determined once we observe the value of other variables.

5.4 Comparing Different Methods

We compare MLFA with several other statistical learning methods. Except the Naive approaches

that we will discuss next, all other approaches adopt the conditional mean of missing variables,

given the observed variables and underlying conditions and structures, as a predicted value for

the missing variables. Hence, as it will be shown, their underlying conditions (seen as hyper-

parameters for these models) have a significant impact on their prediction performance.

5.4.1 Naive Approaches

We show the performance for two naive approaches. The prediction error is defined to be the

expected L2 norm between the predicted vector x̂ and the original vector x. First, we simply use

the mean vector µML obtained from training set to do the deterministic prediction. Then, we use

the empirical distribution N(ΣML, µML) to generate several independent arm samples (without

conditioning on any observation).
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As we will see, using only mean vector gives us better performance, while the random sampling

is more prone to producing very large errors.

5.4.2 Chow-Liu (CL) Tree

We also use Chow-Liu (CL) tree [79] to approximate the joint density of all 2274 random vari-

ables. The optimization criterion in finding such tree is to minimize the KL distance between

the empirical and CL distributions. This is shown to be equivalent to finding a maximum weight

spanning tree, where weights are defined to be the pairwise mutual information values between

variables [79]. We first need to estimate the edge-weights in Chow-Liu tree, then we may use the

learned structure to predict the missing data points. Hence, this way we are actually using the

observed data to predict the hidden variables. For example, Figure 5.2 shows the estimated CL

tree structure for each of the coordinates of 3D data points in the dataset. Although it is hard to

recognize, but all of such graphical models are trees with Gaussian joint density. The CL trees we

used for estimation purposes consists of all the coordinates (variables) in the dataset.

FIGURE 5.2: Estimated CL trees for each coordinate x, y, z of the 3D data points
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In predicting the missing data points we use a synchronous Gibbs sampling technique. This

iterative approach begins by initializing all the missing values, by randomly drawing a sample

from an empirical joint distribution. Then, at each iteration we update all the missing values, by

drawing a sample from a conditional distribution. Figure 5.3 shows three steps of this algorithm.

FIGURE 5.3: Synchronous Gibbs Sampling: First, we initialize the missing data points D3 and
D4 by randomly sampling from their joint empirical distribution. At the next step, we update the
conditional distributions of each missing variable by considering all of their observed neighbors
along with hidden neighbors’ samples from previous slots.

5.4.3 MLFA with Gibbs Sampling

In previous sections, we showed how to use EM algorithm to estimate both A ∈ Rn×k and

D ∈ Rn×n in an affine factor model. Now, supposing that we learned both A and D parame-

ters we are ready to use such a model as our predictor. Based on the observed data and similar

to discussions for CL tree we implement a synchronous Gibbs sampling method to produce rea-

sonable samples for hidden variables. Roughly speaking, we first initialize all missing variables

using their joint prior, i.e., joint Gaussian density. Then, we use all such values Xo ∪Xm (i.e., the

set of observed and missing variables, respectively) to update the conditional density of all latent

factors {Y1, Y2, ..., Yk}. We randomly sample from the obtained conditional density and use them

to update the conditional density of missing variables Xm, and to update the missing variables by

sampling from those updated conditional densities. This goes back and forth, until we meet some

predefined threshold.
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Note that the joint covariance matrix of all the nodes Y∪X in this case has the following form:

ΣY,X =

I A′

A AA′ +D

 (5.12)

Hence, the latent variables are updated using the conditional distributions, as follows:

ΣY|X = I − AT (AAT +D)−1A

µ
(i)
Y|X = µY + AT (AAT +D)−1(xi − µML) (5.13)

Finally, the missing values in Xm can be updated as follows:

ΣX|Y = (AAT +D)− AIAT = D

µ
(i+1)
X|Y = µX + A(yi − µY) (5.14)

Note that in (5.14) we do not apply all the obtained values to the vector X. We only update the

missing values Xm ⊂ X.

5.4.4 Maximum Likelihood MLFA

Due to specific closed form solutions obtained from Gaussian assumption, here, even without

using Gibbs sampling, one can rely on FA parameters to estimate the missing data points. Note

that this one step method should reach the same performance as Gibbs sampler, since essentially

both estimators aim at maximizing the likelihood function, given the observed variables under the

same model. This is done by observing that now, we modeled Σ as the sum AA′ + D. Hence,

given the observed and missing variables, we can break Σ into four blocks: the missing variables

covariance matrix Σm, the observed-missing variables covariance matrix Σom and Σmo; and the

observed variables covariance matrix Σo. Now, we can perform the Maximum-Likelihood esti-

mation for missing variables, based on observed data, which would be the same as finding the

conditional mean vector regarding to missing variables:

µm|o = µm + ΣmoΣ
−1
oo (xo − µo) (5.15)
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Note that such approach results in only one particular output, and is not well-suited for gener-

ative modeling applications, where we need to synthesize set of distinct, but reasonable outputs.

5.4.5 Maximum Likelihood PPCA

Probabilistic Principal Component Analysis (PPCA) [80] is performed under the same conditions

as in MLFA, with a difference that in PPCA we restrict the noise elements to be homogeneous,

i.e., having an identical variance values. Hence, from the model Σ = AA′ + D, the diagonal

matrix D should be replaced by σ2I , where σ2 is a variable to be optimized and In×n is the

identity matrix.

5.4.6 Graphical Lasso

Another way of constraining the estimated model is to explicitly add a regularization term in order

to penalize dense learned structures. Roughly speaking, we force the optimization to find more

sparse solutions rather than dense overfitted models. To this end, the least absolute shrinkage

and selection operator (LASSO) model introduced by Tibshirani in [81]. Such method is further

extended to graphical models, and a Graphical Lasso (GLasso) is defined in [82]. The overall

format of the problem can be formulated as follows:

Θ̂ = argmax
Θ�0
{log|Θ| − trace(SΘ)− λ||Θ||1} (5.16)

where Θ = Σ−1 is the precision matrix, and ||.||1 is the L1 norm operator on a given matrix. Here,

using different values of λ we penalize each element θij in the precision matrix.

The equation (5.16) should be represented in a more simple way in order to become analytically

solvable. The authors in [83] used a Black Coordinate Descent algorithm by defining the dual

problem in order to iteratively solve (5.16). We would expect by introducing such constraint

we capture the sparsity in data and by avoiding the overfitting, we may increase the prediction

accuracy.
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5.5 Experimental Setup

5.5.1 Choosing the Cardinality of Latent Factors

Finding necessary number of latent factors, i.e., k is a design issue. Here, we consider enough

number of factors to capture more than 99% of all 2274 variance of variables. Hence, we begin

with the first latent factor Y1 and its corresponding eigenvalue λ1 (the largest eigenvalue), then

we check whether the fraction
λ1∑2274
i∈1 σ2

i

satisfies the threshold, otherwise, we keep adding the

eigenvalues, and recall that sum of all eigenvalues is basically equal to the sum of all variances

till we reach the threshold. For this dataset the threshold is satisfied after including the first 50

eigenvalues, hence 50 latent factors are needed.

5.5.2 L2 Performance Comparison

In comparing the L2 errors of each model, we applied them to two different scenarios: Randomly

missing variables and missing chunk of variables. In particular, we first randomly choose between

500 and 1000 variables out of 2274 variables and hide their values from the test dataset. In the

second case, we search for the highest variance (with most uncertainty) chunk of data with size

500 and 1000 and drop the regarding variables from the test dataset. These variables form the set

Xm while the remaining ones form the observed set Xo. The results are shown in Table 5.1.

TABLE 5.1: Normalized L2 : E[

√∑M
i=1(Ei)2

M
] (in cm), error comparison, with M as number of

missing variables and E[.] taken over all test-arm images (≈ 517)

Random Chunk
500 1000 500 1000

Method

Mean 2.42e-2 1.71e-2 2.96e-2 1.85e-2
Random 2.50e-2 1.78e-2 3.07e-2 1.91e-2

ML-PPCA 4.12e-3 3.06e-3 7.46e-3 9.07e-3
GLASSO (λ = .05) 3.18e-3 2.64e-3 1.04e-2 1.41e-2

ML-CL 2.97e-3 2.51e-3 1.56e-2 1.94e-2
ML-MLFA 2.56e-3 1.84e-3 5.1e-3 4.74e-3

Gibbs-MLFA 2.59e-3 1.86e-3 5.09e-3 6.57e-3
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As it can be seen that through all cases the MLFA model outperforms all other estimators.

In particular, the performance of Gibbs-MLFA and ML-MLFA is similar, and it is expected to

become identical as we increase the number of iterations in Gibbs sampling. Although ML-CL

has competitive performance for random missing variables case with MLFA, but its performance

drops significantly in high variance chunks of missing variables. This might be due to the fact that

CL tree uses neighborhood observed points to recover the missing point. But since a chunk of

missing points leads to very few observed neighbors around the boundary of missing chunk, the

performance in such case drops significantly. This may also be the reason on decreased accuracy

of GLasso method when chunks of variables are missing, since similar to CL, in GLasso we are

seeking for locally sparse structures. Finally, as we expected, the performance of ML-PPCA is

worse than ML-MLFA, due to the fact that PPCA model has homogeneity condition on additive

noise variances that results in a more restricted optimization problem compared to MLFA.

5.6 Conclusion

In this section, we studied the application of factor models in model selection and estimation

problems, and in particular 3D image reconstruction problem. We showed that for 3D arm dataset,

a particular factor model, i.e., MLFA can outperform all other statistical estimators bya significant

margin. We showed that due to robust nature of MLFA, i.e., considering a handful of latent factors

to describe the overall joint density of data, we’ve been able to provide high accuracy even for

extreme cases when many missing values have high variance and uncertainty.
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Chapter 6

Summary and Future Works

The goal of this research is to study the topological and algebraic properties f Gaussian graphical

models. These models are proved to be beneficial in modeling stochastic complex systems. Our

research consisted of several parts that started with privacy and security applications in Chapter 2,

efficient synthesis of such graphical models in Chapters 3 and 4, and finally to show applications

of such models in image reconstruction applications in Chapter 5. Below, we give a summary of

our contributions and provide several interesting future research ideas for each study.

6.1 Extractable Common Randomness from Gaussian Trees: Topological and Algebraic
Perspectives

In Chapter 2, we study both topological and algebraic properties of unrooted Gaussian trees and

characterized their security performance. Such performance is measured by the corresponding

potential in extracting common randomness from a given tree, which is further determined by

max-min and min-max conditional mutual information values, subject to the order of selecting

variables from the tree by legitimate nodes Alice and Bob, and an eavesdropper Eve, respectively.

A new operation is proposed to transform a Gaussian tree into another, and also to order different

Gaussian trees. Through such operation we construct several equivalent classes of Gaussian trees.

Each class includes multiple Gaussian trees that can be partially ordered based on the associated

max-min or min-max conditional mutual information (CMI) metric, and thus we can find the

most secure and the least secure trees in each partially ordered set (poset). The union of all posets

generates all possible non-isomorphic trees of the given number of variables. Then, we assign a

particular polynomial to each Gaussian tree, and show that such polynomial can determine the

relative security performance of the Gaussian tree with respect to other trees within the same

class. In the end, based on a generalized integer partition method, we propose a novel approach
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to efficiently enumerate the most secure structures of all posets. One may consider the following

directions for future studies:

•One direction is to generalize such idea not only to Gaussian trees but to any general Gaussian

graphical model structure. This results in more complex correlation situations, where the degree

of association is not only a function of a unique route between two variables.

• Another interesting direction is to consider random vectors instead of random variables. In

particular, what if Alice, Bob, and Eve can choose several variables to increase/decrease their

communication secrecy. A new metric should be define to define such secrecy, and both max-min

and min-max problems become more complex in a sense that not only their inter-relations would

impact the secrecy but their intra-relations inside each user would affect such metric as well.

6.2 Layered Synthesis of Latent Gaussian Trees

In Chapter 3, a new synthesis scheme is proposed to generate a random vector with prescribed

joint density that induces a (latent) Gaussian tree structure. The quality of synthesis is shown

by vanishing total variation distance between the synthesized and desired statistics. The pro-

posed layered and successive synthesis scheme relies on the learned structure of tree to use suf-

ficient number of common random variables to synthesize the desired density. We characterize

the achievable rate region for the rate tuples of multi-layer latent Gaussian tree, through which

the number of bits needed to synthesize such Gaussian joint density are determined. The random

sources used in our algorithm are the latent variables at the top layer of tree, the additive inde-

pendent Gaussian noises, and the Bernoulli sign inputs that capture the ambiguity of correlation

signs between the variables. We have shown that such ambiguity can further help in reducing the

synthesis rates for the underlying Gaussian trees. Some interesting future ideas are as follows,

• Providing efficient synthesis approach for any Gaussian graphical mode structure. Although

such approach heavily relies on finding the optimal rate through solving CMDFA problem intro-

duced in Chapter 4.
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6.3 Algebraic Properties of Solutions to Common Information of Gaussian Graphical
Models

In Chapter 4, we formulate Wyner’s common information for random vectors x ∈ Rn with joint

Gaussian density. We show that finding the common information of Gaussian vectors is equivalent

to maximizing a log-determinant of the additive Gaussian noise covariance matrix. We coin such

optimization problem as a constrained minimum determinant factor analysis (CMDFA) problem.

The convexity of such problem with necessary and sufficient conditions on CMDFA solution is

shown. We study the algebraic properties of CMDFA solution space, through which we study two

extreme Gaussian graphical models, namely, latent Gaussian stars, and explicit Gaussian chains.

Interestingly, we show that depending on pairwise covariance values in a Gaussian graphical

structure, one may not always end up with the same parameters and structure for CMDFA solution

as those found via graphical learning algorithms. Several further studies can be taken as follows,

• We only studied the solution space for CMDFA problem for star Gaussian trees with three

nodes. It would be interesting to generalize such idea to star Gaussian trees with more than three

nodes, and study the changes in solution space. In other words, whether as number of variables

increases the solution space of CMDFA for star Gaussian trees vanishes.

• We provided a necessary and sufficient conditions under which a matrix D∗ is a solution to

CMDFA. The effect of Null space in a more practical and intuitive way remains an open problem

for future researches. In particular, it would be interesting to see how the change in null space,

either the dimension or the basis vectors affects the CMDFA solution.

6.4 3D Image Reconstruction Using Factor Models

In Chapter 5, we studied a particular 3D image reconstruction problem. 3D Image reconstruc-

tion and hole filling is a classical and fundamentally challenging geometric modeling problem.

Such problem happens due to inherent scanning occlusions, hardware noise, and calibration errors

during digitization of physical objects, such as 3D scanning of human body.
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In Chapter 5, we showed how to reconstruct and synthesize the missing parts by relying on

Gaussian graphical models. And through experimental results showed that such statistical ap-

proach outperforms the deterministic methods. Several future directions for such study can be

taken,

•Despite their popularity, the latent features in factor models do not convey any intuitive mean-

ing and they are simply mathematical functions derived from observed features. It would be in-

teresting to see how each factor is related to a physical feature of image. There are some recent

works [84] that aim to interpret the meaning of such latent factors by assigning new observed

features similar to them that can helpful for such studies.

• We can interpret any 3D object as a random vector with desired joint statistics, where its

elements can be anything desirable, such as pixel intensities, or data points locations. Then the

hole filling problem can be seen as proposing a synthesis algorithm that generates a random

vector whose statistics are very close to the desired object’s statistics. In Chapter 4, we found

that there is fundamental similarities between common information and CMTFA problem from

factor analysis. In fact, we showed that in common information problem, we are dealing with

constrained minimum determinant factor analysis (CMDFA). Hence, similar tools from factor

analysis would be beneficial in solving CMDFA as well. Similar steps may be taken to show the

relations of MLFA with CMDFA, and how each approach would be beneficial in certain settings.

Such study explains the possible relations between the models chosen by common information

and factor analysis, where as of now, each of them can be seen as pure optimization problems.

Addressing such questions will be helpful to come up with possibly a hybrid image synthesis

algorithm which inherits the efficiency from both fields.
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