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Abstract 

Malware targeting mobile devices is a pervasive problem in modern life and as such tools 

to detect and classify malware are of great value.  This paper seeks to demonstrate the 

effectiveness of Deep Learning Techniques, specifically Convolutional Neural Networks, in 

detecting and classifying malware targeting the Android operating system.  Unlike many current 

detection techniques, which require the use of relatively rigid features to aid in detection, deep 

neural networks are capable of automatically learning flexible features which may be more 

resilient to obfuscation.  We present a parsing for extracting sequences of API calls which can be 

used to describe a hypothetical execution of a given application.  We then show how to use this 

sequence of API calls to successfully classify Android malware using a Convolutional Neural 

Network. 
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Chapter 1 Introduction 

It is a given at this point that mobile devices are an essential part of most individuals’ 

everyday lives.  Furthermore, the vast majority of mobile devices today run Android with sales 

of Android devices averaging 80% of total market share over the past three years [39].  The 

continuous expansion of the Android operating system to an increasing number of devices and 

users worldwide has come with a corresponding uptick in malware targeted at Android devices.  

Since the first Android malware application was detected in 2009, there has been an alarming 

increase in the number of malware applications targeting Android devices [38].  Traditional 

methods for detecting malware rely heavily on hand-engineered features that can be used to 

detect different families of malware.  This approach has two major disadvantages: first, malware 

must be detected manually and second, features must be handcrafted to identify future variations 

of that malware family.  By necessity, the approach leaves defensive efforts a step behind 

malicious, offensive efforts to target users since it is reactive in nature.  The handcrafted features 

that are developed are typically very rigid and do not generalize well, which means that often 

simple modifications can be made to a known malicious package to avoid detection by current 

algorithms [16].  Further complicating matters, in many cases these modifications can be 

automated [17,18]. 

The goal of this thesis research is to demonstrate the effectiveness of detecting malware 

in Android applications using Deep Neural Networks (DNNs).  Deep Neural Networks have the 

potential to offer several advantages over the current approaches to malware detection.  First, 

DNNs are capable of learning features in an automated manner without the need for direct 

human intervention in the crafting of features [41].  Second, DNNs tend to exhibit a greater 

flexibility in dealing with new and novel data after they are trained when compared to systems 
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that use hand-engineered features [40].  The success of DNNs in image processing and Natural 

Language Processing (NLP) in particular provide a compelling case for their potential success in 

malware detection [42]. 

As a corollary objective, we wish to develop this approach to be as automated and 

scalable as possible.  As of June 2016 there are over 2.2 million distinct applications in the 

GooglePlay store alone [19].  Given the sheer number of applications and the ease of creating 

and publishing new applications, it is simply not possible to apply human effort to reviewing 

even a fraction of the available applications.  Additionally, we do not wish to rely on the need for 

any handcrafted features in the development of the classifier.  The more generic the developed 

detection model can be the more likely it is that the approach will continue to be relevant as new 

and previously unknown malware variants using different exploits are introduced.  This future 

adaptability will be a key factor influencing design choices whenever possible. 

We will first need to develop and demonstrate a suitable method for ingesting Android 

APK files and converting them into a format that can readily be learned by a deep neural 

network.  The critical aspect here will be determining exactly what features will allow a deep 

learning technique to succeed while also meeting the design goal of being sufficiently generic to 

address future malware techniques.  Next we will examine the different approaches to using deep 

neural networks to classify the applications based on the behaviors found within the code.  

Finally, we will evaluate the model against datasets representative of the currently available 

benign and malicious applications to determine its predictive ability.  
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Chapter 2 Structure of Paper 

The following is an overview of the structure of the remainder of the document. 

Chapter 3: Android Analysis Literature Review 

Chapter 4: Parsing APK Files to Create Feature Vectors 

Chapter 5: Using Deep Neural Networks to Classify APK Files 

Chapter 6: Future Research 

Chapter 7: Conclusion 

Chapter1: Overview of the Android Operating System 

We begin with a brief overview of the Android Operating System (OS) and Android 

applications, also known as APK files.  In particular we will focus on the portions of the Android 

OS that are most relevant to malware analysis. 

 

Chapter 2: Review of current Android malware analysis techniques 

Here we will review the current academic literature describing the state of malware 

analysis for Android applications.  We will cover static and dynamic analysis techniques, 

particularly those that focus on analysis of Android APKs by monitoring system calls.  We will 

also give a brief overview of some of the recently published works on malware obfuscation 

techniques. 

 

Chapter 3: An Android parser for creating a feature representation of APK files 

This chapter will discuss the design choices made in developing a parser to create a 

representation of Android applications that is suitable for ingestion by a neural network.  The 

proposed implementation is built on top of the Androguard decompiler and analysis tools.  It 
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seeks to represent each application as a set of strings listing all API calls of hypothetical program 

execution. 

 

Chapter 4: Review of deep learning techniques 

Here we give a brief overview of deep learning techniques, specifically focusing on the 

convolutional and recurrent neural networks.  Given the limited amount of publication of DNNs 

in the field of malware detection to date, the majority of the applications discussed are for the 

image and text processing fields where DNNs have seen a large deal of success recently. 

 

Chapter 5: Using Deep Neural Networks to classify Android Malware and Applications 

We demonstrate the use of Convolutional Neural Networks to successfully classify 

Android APKs using the vectorized representation developed in Chapter 3.  We compare the 

results of these approaches to other commonly used machine learning algorithms using the same 

dataset and find that the deep neural networks provide superior performance and flexibility. 

 

Chapter 6: Future Research 

Despite the success of the models presented, given the almost non-existent application of 

deep neural networks to malware detection in the published literature, there are a number of 

areas where the models presented could be improved.  In this section, we give a high level 

overview of possible next steps that could further enhance the detection of malware using deep 

neural networks. 
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Chapter 3 Android Analysis Literature Review 

3.1 Android Operating System 

The Android operating system was first released in 2007 as an open source OS developed 

by Google and designed for mobile devices, specifically phones.  Android is based on the Linux 

kernel, which handles connectivity to the hardware and basic OS functionality.  The Android 

operating system is currently deployed on 1.4 billion devices worldwide and as such represents 

the most widely deployed operating system in history [43].  This section will give a brief 

overview of the Android OS with a focus on the components most relevant to malware analysis. 

Each application on an Android device runs in its own sandbox and permissions must be 

explicitly granted by the user at installation.  This structure limits the potential damage that can 

be caused by a malicious application by preventing unnecessary permissions.  However, the 

combination of benign applications over-requesting permissions and malicious applications 

capable of privilege escalation can circumvent this mechanism by desensitizing users []. 

While Android applications are written in Java code, they are compiled into .dex files, 

which are Dalvik executables containing Dalvik byte code that can run on the Dalvik Virtual 

Machine (DVM) or Android Runtime Environment (ART) that runs all Android applications.  

Prior to version 5.0, Android supported execution of Dalvik code using a just-in-time compiler 

on the DVM.  However, starting with Android 5.0 all Android code is executed in ART, which 

does ahead-of-time compilation of all application code.  This change was transparent to both the 

end user and code developers.  In fact the same APK file will operate on both DVM and ART 

assuming all other system requirements are met [44].   
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3.2 Android Application Basics 

Android applications, often referred to as apps, are the primary programs that can be 

installed on devices running the Android operating system.  All of the necessary files for an 

Android application are bundled into APK files, which are then distributed.  Each APK file 

contains the following items: res, assets, classes.dex, AndroidManifest.xml, lib, and META-INF.  

The most relevant components for this research are the classes.dex, and Androidmanifest.xml.  

Native libraries can also be included inside of APK files.  The APK file also contains all other 

resources needed to run the application such as pictures, sound files, and any other external 

resources. 

 

Figure 3-1. A sample APK file layout with the associated elements. 
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The classes.dex file contains the bytecode for the application and is the main source of 

executable code for an application.  The dex file format is an open specification and can be found 

in its entirety on the Android Open Source Project website [37].  

The permissions allowed to the DVM are set in the Android Manifest file and can be a 

key indicator of what the file might do.  While all dex code is handled inside of an individual 

DVM instance, native code can be called from the DVM and run inside the normal Linux kernel.  

This can be done for either compatibility or performance reasons. 

As previously mentioned, Android allows for the inclusion of native libraries in addition 

to the dex source code.  Native libraries are stored as .so files in the APK file and present a 

serious challenge to static analysis because malware can use calls to these native libraries to 

execute the malicious payloads from static analyzers that only examine dex code.  Malware can 

also contain native libraries to obscure taint tracking because they can pass information into and 

out of .so libraries to obfuscate that information from taint analysis and static analysis [1]. 

The final portion of the APK file is the assets and resources included, such as fonts, 

pictures, sounds, databases, and any other external resources needed for the application to run.  

These assets and resources have obvious uses for benign applications, but can also serve as a 

place to hide data for a malicious application.  Applications can place code directly in these files 

or can obfuscate the code and then place them in the files.  The code would then be called using 

DexClassLoader at runtime and could also be reassembled from its obfuscated state [2]. 

Given the large differences in each of these file types, vastly different design and pre-

processing requirements would be necessary to examine each of them for malicious code.  This 

research will not focus on malware that launches exploits through native libraries or places the 
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malicious code in another asset file.  Only malicious code that is included within the classes.dex 

file will be considered specifically addressed. 

In order to obtain source code for analysis, the classes.dex file can be decompiled using 

several different tools to create .smali versions of the files or java versions (baksmali, dex2jar, 

etc).  Smali is a human readable version of the compiled dex opcode, which is often used for 

analysis.  They contain a limited instruction set, which provides a useful building block towards 

a machine learning algorithm for analyzing Android applications for malware. 

3.3 Background on Android Malware and Analysis 

Malware analysis approaches have traditionally been divided into two major fields: static 

and dynamic analysis.  In static analysis the source code is analyzed without executing the 

application to determine the effects of the application.  Typically, in static analysis a decompiler 

of some form is used in order to convert the source file into human readable code, although some 

analyzers deal directly with the source file.  Static malware analysis often focuses on dataflows 

within a program or specifically defined features to analyze applications.  In dynamic analysis 

the program in question is executed, typically on a virtual machine or emulator, and its behavior 

is logged for further analysis.  Dynamic analysis allows the investigator to provide different 

inputs to the program to see the reactions those inputs provoke in the system. 

It is commonly accepted that neither static nor dynamic approaches to malware analysis 

is inherently superior to the other.  Most malware analysts believe that the two techniques are 

complementary and use information gathered in one form of analysis to inform their 

investigation in the other. 

The following is a review of the current literature on Android malware analysis.  It is 

broken up into three major sections: static approaches, dynamic approaches, and obfuscation 
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techniques.  While certainly not an exhaustive review of all published Android malware 

detection techniques, it gives a good representation of the current techniques employed in the 

field today. 

3.3.1 Malware Analysis Approaches 

It is well accepted in the malware analysis community that both static and dynamic 

analysis techniques have their benefits and neither is inherently superior to the other.  In practice 

malware detection typically involves the combination of both dynamic and static techniques in 

tandem to completely analyze a program. 

This combination of techniques is also the case for Android.  Feizollah et al. analyzed 

100 papers on Android malware analysis and provided statistics on where the different papers 

focused their analysis.  They break the features down into four overarching categories: Static 

Features, Dynamic Features, Hybrid Features, and Application Metadata Features.  As one might 

expect, approximately 45% focused on static features, 42% focused on dynamic features, 10% 

focused on hybrid features and just 3% focused on application metadata [5]. 

3.3.2 Static Analysis Approaches 

Static analysis is the process of examining the code contained within a program either 

manually or with the help of automated tools to determine its function and purpose.  Static 

analysis is used to improve both in the field of malware analysis to detect malicious applications 

and also for benign applications to help detect the presence of bugs or problems that may not be 

readily apparent through traditional program execution [20].  This review will focus entirely on 

the application of static analysis to malware detection and specifically on the tools that have been 

developed for APKs on the Android operating system. 
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3.3.2.1 Flow Analysis 

In static analysis one of the most popular techniques for program analysis involves the 

use of data flow analysis to track how information moves through program code and when and 

how it might be modified.  In particular, data flow analysis makes use of what is typically called 

a Control Flow Graph (CFG, sometimes called a Call Flow Graph), which is a graphical model 

of the paths that could be taken during code execution.  Given the large amount of information 

included in any program, CFGs are typically abstracted to cover larger code blocks such as 

methods, functions, or classes, depending on the application.  In a CFG each node in the graph 

represents a block of code while the edges show the connection between the code segments. 

The process of analyzing Call Flow Graphs to determine properties of the underlying 

program was originally proposed by Frances Allen in his 1970 paper and has become a staple of 

static analysis since then [21].  The CFG can be used to analyze the flow of information within 

the program by tracking the flow of variables among the basic blocks.  However, constructing 

and analyzing a complete call flow graph for an application is an undecidable problem and as 

such approximations are used when attempting analysis [22].   

3.3.2.2 String Analysis 

In string analysis, the decompiled malware is searched for plaintext strings and the strings 

are then compared against a database of strings known to be associated with malicious files.  The 

type of strings typically used in this technique are malicious urls, IP addresses, package names, 

and other similar information.  A major limitation of string analysis is that it is relatively trivial 

for malware to obscure plain text strings by building them dynamically during program 

execution and only storing encoded or partial versions of the strings in the source code. 
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3.3.2.3 Signature Analysis 

In signature-based analysis, programs or subsections of programs are identified by 

signatures.  The signatures are generated to describe those code sections.  There are a variety of 

methods for generating signatures to describe malware.  The simplest approach involves 

identifying code sections and then using hashes, such as md5, to produce a signature for that 

code.  A slightly more complex approach is to use a known malicious sequence as the signature 

and compare other code sequences to it using some form of difference metric to compute the 

similarity.  Finally, signatures can be based on heuristics that describe the behavior of the 

malware in a more general way, which can be distilled into a set of rules for the signature [23].  

While signature-based approaches are typically very fast in practice, they can be very susceptible 

to intentional obfuscation techniques. 

3.3.3 Static Analysis Tools for Android 

The following is a short overview of some of the recently published static analysis tools 

available for analyzing Android APK files. 

3.3.3.1 Signature-Based Analysis Tools 

The following tools attempt to extract features either directly from the application source 

code or from a secondary representation of the application such as the call flow graph.  These 

feature sets are then used to identify signatures, which can be used to identify and classify 

malware that exhibit similar features. 

3.3.3.1.1 Androsimilar 

The approach laid out in Androsimilar by Frauki et al. is unique in comparison to many 

of the other techniques presented so far in that it deals directly with the raw, unprocessed 
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bytecode to extract features.  The features are generated and ranked based on the entropy values 

of the underlying byte streams.  The entropy is calculated over an ASCII representation of 64 

byte segments of the bytecodes in the file based on the occurrence log likelihood of a character 

appearing relative to the string length.  The authors then apply a number of processes to reduce 

the feature set to only the strong features and then use clustering algorithms to group apps based 

on similarity [15].   

3.3.3.1.2 DenDroid 

In creating the DenDroid classifier, Suarez-Tangil, Tagiador, Peris-Lopez, and Blasco 

first disassemble the code using Androguard and identify a sequence of symbols representing the 

code within each method of the APK as code chunks.  These code chunks are then compared 

across different applications to determine the similarity between the different applications.  The 

basic supposition is that malware from the same family will have greater commonality between 

code chunks.  Code chunks are then classified using an SVM model over the code chunks within 

the applications.  One of the more interesting assertions of the authors is that the lineage of 

families that may have succeeded each other, such as the multiple DroidKungFu families and the 

AnserverBot and Basebridge families, have greater similarity in their code chunks than unrelated 

families [24].  It should be noted that Dendroid is not designed as a malware detector but instead 

only focuses on categorizing malware into distinct families. 

3.3.3.2 Call Flow Analysis Tools 

The following section gives an overview of several tools that primarily make 

classifications based on analysis of some form of CFG or dependency graph generated from 

analysis of the application code. 
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3.3.3.2.1 DroidLegacy 

In DroidLegacy, the Deshotels, Notani, and Lakhotia develop a method based solely on 

using API calls within the Android code in order to classify the malware into known families 

using 10-fold cross-validation.  The authors make the important point that since API calls 

represent the core functionality of the APK file they are invariant to renaming and some of the 

other obfuscation techniques commonly employed.  This is because an application, particularly 

malware, must make certain system calls in order to execute its malicious payload, which can be 

obscured but not completely omitted without disabling the malicious payload. 

In order to create signatures for analysis in DroidLegacy, the APK is first partitioned into 

modules by creating a Class Dependence Graph (CDG) where each class represents a node that 

is connected by edges to other classes with which it shares a dependence.  This graph then 

clusters classes together based on a similarity threshold.  The authors note a key difference 

between their approach and that of Zhou [63], which is that their approach is more granular 

because they perform clustering at the class as opposed to the package level.  Each clustered 

module is then compared using the Jaccard similarity to the known malware training set.  The 

document frequency of the API calls in the module is then computed and then used to compare 

the module to other modules. 

The authors make the point that since their module can identify suspicious modules, it 

can more effectively be used to identify the portions of an APK that should receive attention by a 

human analysts. 

3.3.3.2.2 DroidNative 

In this work the Alam, Qu, Riley, Chen and Rastogi use static Call Flow Graph analysis 

in order in to detect and classify malware.  One important contribution of the authors is the 
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addition of the ability to process native libraries that may be included with the application as well 

as the Java bytecode.  This is a non-trivial task and provides an important insight into other 

avenues that could be exploited by malware.  While the threat of native code malware is just 

beginning to take root in Android (only 3 of the 20 families the researchers analyzed use native 

code and the rest use bytecode). 

If large sections of the call flow graph match, then the application in question is 

determined to be malware.  They use two different techniques, ACFG and SWOD, which are 

intended generate signatures from the call flow graphs [64, 65].  However, as the authors note, 

different obfuscation techniques, which are becoming more common, could seriously hamper the 

effectiveness of their detector.  Techniques such as control flow flattening, irreducible flow 

graphs, and branch/function obfuscation are all listed as potential hazards to detection [13]. 

3.3.3.3 Tools with Behavioral Approaches 

The following tools use static features and also attempt to take into account the behavior 

of the application relative to the feature set applied.  The importance of moving beyond 

signature-based classification to behavioral-based classification lies in the improvement in 

flexibility and potential to counteract some of the obfuscation techniques employed by malware 

authors.  With behavioral-based approaches there exists the possibility to identify new and 

unknown malware variants [45]. 

3.3.3.3.1 Risk Ranker 

In RiskRanker, Zhou et al. created an application that looks through applications that 

exhibit suspicious behavior such as exploiting known system vulnerabilities and using code 
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encryption to flag potentially risky apps.  These apps still require manual review after the fact to 

confirm the presence of malware.  This tool was effective in flagging zero day exploits. 

The first order analysis employed by the tool is mostly static analysis for non-concealed 

malware.  To flag high risk apps, RiskRanker looks for specific code patterns known to be 

associated with malware applications.  For example, to detect rooting malware code, signatures 

based on known exploits are compared.  For SMS charging type exploits, the tool looks for code 

paths that could charge users money without involving direct user interaction.  A second order 

analysis was also conducted to look for malicious behavior in apps that might be concealed.  

Examples of this type of behavior include launching a second child APK inside of the original 

APK (where the second APK exists as an .apk or .jar file inside the first APK) or launching 

additional code from an obfuscated source. 

The results of both the first and second order analysis are then combined to give the 

application a 'Risk Score,' which can be used by a human analyst to further inspect suspicious 

applications.  In addition to showing good classification results, the methods proposed in this 

paper allowed the researchers to identify the previously unknown AnserverBot malware family 

[2]. 

What is unique about RiskRanker is that the authors determined a set of classification 

rules that focused more generally on the behavior of the application than on the specific statically 

defined features within the malicious files.  This approach allowed the application to be more 

flexible in identifying new malware than some of the other approaches described here. 

3.3.3.3.2 AsDroid 

In AsDroid, Huang, Zhang, Tan, Wang, and Liang take a different approach to detecting 

malware in Android applications by focusing on identifying sections of the code where the 
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functionality of the code does not match the description provided to the user through the user 

interface.  In these types of malware, the malicious applications trick the user into taking certain 

actions by providing a deceptive or unrelated user interface to launch activities such as sending 

premium SMSes and installing additional components. 

The authors focus on a small set of intent filters such as SendSMS, HTTP Access, and 

Application Installation to identify sections of code to analyze.  The authors then extract the user 

interface information including the string information presented to the user.  This is then 

compared with a set of statically defined rules to determine whether the application presented is 

attempting to undertake stealthy or malicious behavior without the user's knowledge.  While this 

approach is interesting in that it attempts to identify malicious applications that try to take 

advantage of users using legitimate commands such as SendSMS while obscuring their use from 

the user, it is very limited in the static nature of rules applied and the limited depth of its analysis 

of the underlying code [46]. 

3.3.3.3.3 DroidMat 

In DroidMat, Wu et al. take a similar approach to detecting Android malware.  They 

focus on combining information obtained from API calls, permissions listed in the Android 

manifest, and intent filters to create a set of features.  The features are then used to make a 

classification with Singular Value Decomposition along with K-means clustering to group the 

applications into distinct clusters. 

The authors claim to compare the functionality of API calls to the type of component that 

uses them.  This allows them to compare the usage of the API in the calling class to determine if 

it matches the expected behavior.  As an example, the authors cite the use of getDeviceID by a 

background process as a signal of potential malicious intent [28]. 



 

17 

 

3.3.3.3.4 Execute This 

One of the major challenges and potential limitations of static code analysis is that it can 

be vulnerable to external code loading after the application has been installed.  In this scenario, a 

malicious application may remove the code that undertakes the nefarious activities and publish 

this application for users to install.  However, the application contains hooks to load and execute 

malicious external code after installation.  As described by Poeplau et al. in ExecuteThis there 

are many legitimate uses for external code loading in applications, making it a challenge to 

separate out legitimate and malicious uses. 

In proposing ExecuteThis, the authors lay out methods to separate potentially legitimate 

code loading techniques from dangerous ones.  This is done by examining the surrounding code 

as well as the arguments passed in to the code loader to assess the risk [35]. 

3.3.4 Dynamic Analysis 

Broadly, dynamic analysis is the process of using information gathered during execution 

of the program under test.  When examining malware, this process is typically done on an 

isolated emulation environment such as a virtual machine.  During execution the program can be 

given interaction to stimulate activity either manually or through automated approaches.  As with 

static analysis the choice of which features to log has a decided impact on the quality of the 

results.  Typical features that are tracked are memory accesses, system calls, and external 

communications. 

3.3.4.1 Dynamic Analysis Tools for Android 

The following section gives a brief overview of the different dynamic approaches that 

have been put forward for analyzing Android apps.  As described by Feizollah et al. 
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approximately half of the dynamic analysis techniques surveyed focused on tracking system calls 

(API calls) while the other half were roughly split between network traffic analysis and other 

features [5].  While there is certainly merit in techniques other than system calls analysis for 

malware detection, this review of literature will focus primarily on papers that used API call 

analysis since that is most relevant to the work being proposed. 

3.3.4.1.1 TaintDroid 

In TaintDroid, Enck et al. put forward a framework for tracking the taint of information 

flow in an Android application during dynamic analysis.  TaintDroid uses variable level tracking 

of information flows and thus represents a very fine-grained and detailed approach to 

information flow tracking.  TaintDroid only tracks information flows through the Java bytecode.  

Native code propagation is not handled directly but is indirectly tagged when information crosses 

from the Dalvik VM to native code and vice versa.  The authors then apply TaintDroid to a 

number of well-known applications and show how it can successfully track the access and flow 

of private information to potentially untrusted sinks such as network transmission [30]. 

3.3.4.1.2 CopperDroid 

Tam et al. present an emulation-based behavioral approach for logging malware behavior, 

which they term CopperDroid.  CopperDroid is particularly relevant given the number of 

dynamic analysis tools that use features extracted from the CopperDroid environment.  

CopperDroid is built on top of the QEMU emulator and uses system call logging to reconstruct 

applications.  In particular, CopperDroid is capable of connecting multiple system calls together 

to create a more understandable description of the underlying behavior [11]. 
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3.3.4.1.3 DroidScope 

DroidScope is another emulation platform for dynamic analysis of Android APKs built on 

top of QEMU.  DroidScope provides an ability to reconstruct and monitor information from both 

the Java and OS level.  This allows analysis of the application code itself and its effect on the 

underlying Android operating system.  DroidScope provides a number of interesting analysis 

tools such as native and Dalvik instruction tracer for following sequences of instruction calls, a 

taint tracker to track the flow of sensitive information sources, and the ability to track memory 

usage at the OS level.  Another valuable feature of DroidScope is that it provides an API to allow 

users to create custom analysis frameworks [32]. 

3.3.4.1.4 NDROID 

In their paper on tracking information flows through the Java Native Interface (JNI) in 

Android applications, Qian et al. introduce a dynamic malware analysis engine that is capable of 

tracking taints through native library codes.  The engine is called NDROID and is implemented 

in the QEMU emulation environment.  The researchers propose a dynamic analysis approach that 

specifically focuses on watching the flow of information between the Java code and native code.   

NDROID builds on the taint analysis form TaintDroid, which also checks whether the 

tagged elements reach selected sinks by monitoring flows as they cross into the native source 

code.  This allows the engine to inspect not only calls made within the Java bytecode but also 

calls executed in the native code. 

One key point that the researchers make about dynamic analysis, particularly with 

Android applications, is that it is difficult to test apps because of behaviors that are triggered by 

user interactions, and tools like monkeyrunner have trouble tracking all possible input options.  
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This is a key limitation with dynamic analysis as some malware behavior is only triggered by 

specific interactions or after wait timers expire [1]. 

3.3.4.1.5 DroidScribe 

In DroidScribe, Dash et al. build on top of the CopperDroid dynamic analysis framework 

and use SVM to do the classification into distinct malware families.  The system uses the higher 

level behaviors developed by CopperDroid for classification as opposed to directly working with 

the raw system calls.  One major limitation of the system is that it is not designed to do malware 

identification, but only to classify files that have already been identified as malware into known 

families.  The authors use the feature identified through CopperDroid analysis and their major 

contribution is the use of SVM models to fit these features into a classification model [12]. 

3.3.4.1.6 GetOffMyMarket 

In this paper, Zhang et al. outline an approach that uses dynamic analysis informed by 

statically collected features to help identify potential malware.  A set of heuristic rules from a 

basic analysis of the APK code is used to configure the dynamic analysis, such as required 

permissions and dynamic loading of code.  The dynamic analysis then focuses on logging only 

code patterns and system calls that are known to be associated with malicious files.  The logs 

from the dynamic analysis are then analyzed in depth by the researchers to determine if the 

application is malicious [36]. 

3.3.5 Malware Obfuscation Techniques 

As has been alluded to several times in the preceding sections, there are a number of 

techniques for obfuscating known malware variants to avoid detection.  These techniques involve 

modifying strings and methods or class names, adding additional control flow to change the 
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shape of the CFG, and hiding or encrypting malicious code in the application.  The less flexible 

the signature used by the malware detector, the more likely it is that malware obfuscations will 

be effective against it.  Purely signature-based algorithms are the most susceptible to even small 

changes as sometimes even changing a single symbol can cause the detector to fail. 

DroidChameleon is an Android malware obfuscation tool that is used to test the ability of 

malware detectors to identify obfuscated malware.  DroidChameleon applies additional code 

transformations, such as the insertion of junk code, reordering of code, and call indirection.  

Reordering of code is accomplished in the bytecode by moving instructions and inserting go-to 

statements in its place to change the layout of instruction in the bytecode.  Call indirection and 

function outline/inlining changes the underlying CFG by splitting or merging functions in the 

original code into different functions in the obfuscated code while still maintaining the original 

instruction flow.  This type of transformation can seriously inhibit detection techniques based on 

class or method level analysis as the original methods may no longer exist in the obfuscated code 

[16]. 

Maiorca et al. took a number of known Android malware and applied simple obfuscation 

techniques against them, such as string encryption, class renaming and encrypting, and 

reflection, to attempt to avoid detection [4].  These two papers cover the major techniques 

currently being applied in obfuscating Android malware and should give the reader a basic 

understanding of the challenges.  For a more thorough review of Android obfuscation techniques, 

the reader is referred to Pomilia's overview of the topic [29]. 

In both cases, the obfuscated malware were then run through a number of virus detection 

packages leading to relatively poor detection rates.  There are many more tools even within the 

Android ecosystem that can do code obfuscation [18].  Given that Android applications are 
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relative easy to decompile and thus reverse-engineer, there are a variety of commercial tools that 

are designed to do code obfuscation for legitimate purposes [53, 54].  Google, the developer of 

Android, is even encouraging and including simple obfuscation in the Android Studio 

environment [55].  The presence and ease with which these types of code transformations and 

obfuscations can be applied clearly shows the need to develop malware detection techniques not 

based on static features or signatures but instead capable of analyzing the underlying behavior of 

the malware to improve flexibility in detection. 

Dynamic analysis can also be subject to manipulation, although the format is typically 

different than that taken for static analysis.  One tactic taken by malicious applications is to 

attempt to detect when they are running in a virtual machine and if so, not activate the malicious 

payload, making it impossible to detect dynamically [47].  This problem is compounded with 

Android as mobile phones have a bevy of sensors that can be used to test if the environment is 

real or an emulation [25].  Using simple timers that wait days or weeks is another method used 

by malware to avoid dynamic analysis as is inspecting device variables or searching for the 

presence of user information, which is more problematic in the mobile environment than with 

traditional PCs [26].  
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Chapter 4 Parsing APK Files to Create Feature Vectors 

This section proposes a method for extracting a sequence of API calls from an Android 

APK file that can later be used for classifying the application.  The goal in selecting a feature set 

for this research was to generate the most generic feature set possible in an automated manner to 

ensure that the features will continue to be useful with the continuing development of new 

malware techniques.  This section describes the design choices made in selecting this particular 

feature representation and outlines the specific algorithm employed for parsing APK files to 

generate the API calls list. 

4.1 Choosing a Suitable Representation of the classes.dex Code 

The first task necessary to test the effectiveness of DNNs in detecting and classifying 

malware is to create a representation of the APK file suitable for ingestion by a DNN.  As with 

most machine learning models, DNNs typically require that the data be in a vectorized format.  

While the raw classes.dex file itself can easily be represented as a series of hexadecimal numbers 

as is specified in the Android documentation, this is not an ideal representation for training and 

classification.  The placement of different items within the dex file is not well suited to analysis 

by any of the currently used algorithms.  Additionally, there is a large amount of overhead 

required in the dex file format, which would only serve to reduce the effectiveness of a DNN. 

Excluding direct ingestion of the raw classes.dex file, there are two remaining options: 

decompile the code to Java code or smali bytecodes.  Feature extraction can then be performed 

from that code representation.  Some code obfuscation and optimization techniques can result in 

errors when attempting to recompile dex code into Java leading to additional challenges in 

analysis [9].  Additionally, the code format in Java is slightly less linear and requires 
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implementation of a far greater variety of commands and syntax given that it is a higher level 

language. 

Smali is a human readable representation of the dex opcodes.1  Since smali is quite nearly 

a literal representation of the Dalvik opcodes, it follows a very tightly structured format, which 

makes it considerably easier to develop parsing rules to process smali code than Java code.  

Additionally, the utilities already available in Androguard make executing such a parsing 

algorithm much simpler than would be the case for a Java representation of the code.  Using 

smali as representation of the code strikes an optimal balance between the higher level Java 

language and the raw dex format. 

4.2 Identifying Malware through Sequences of API Calls 

After deciding to work with smali code, we must determine the best way to convert the 

structure and flow of the smali commands into a vectorized format.  There are two principal 

questions that must be addressed.  First, we must determine exactly which of the smali 

commands should be included in the representation.  Second, we must determine how to 

represent the flow of program execution that is not linear and therefore difficult to encapsulate in 

a vectorized format. 

A basic approach would simply record every possible smali command sequentially as the 

commands appear in the smali representation of the classes.dex file.  This approach presents 

several significant problems.  There are a large number of commands that provide little insight 

                                                 

1Technically smali is only a human readable presentation of the Dalvik opcodes contained in the 

dex file.  Given the way in which Androguard and the additional parsing techniques described 

here work, the model being described here technically is operating on the raw Dalvik 

opcodes.  However, for clarity of presentation, the parsing rules are explained in terms of the 

relevant smali commands. 
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for malware detection and including them could overwhelm the DNN with too much noisy and 

unnecessary information, which at best would require significant additional computation time 

and at worst could prevent the model from successfully converging.  Also, reading the files 

sequentially as they appear in the smali representation of the code does not reflect the order of 

execution at run time, giving an incorrect view of the code. 

The core API function calls are those which interact with the underlying Android 

operating system and are defined in the Android specification.  Specifically, these API calls can 

largely be broken up into three major libraries: the Java, Javax, and Android libraries [48].  In 

total, across the applications downloaded, approximately 500 unique API calls were identified.  

This set of 500 API calls were treated as the words making up the vocabulary used for the 

classes.dex files.  More specifically, only those API calls initiated by a Dalvik opcode invoke- 

(virtual, direct, etc.) were considered. 

The rationale to limit considered instructions to only system API calls is that standard 

register-to-register operations are not likely to exploit vulnerabilities that would be considered 

malicious.  Other instructions may provide necessary processing steps to execute a malicious 

payload (e.g., string processing or function argument preparation), but in order to deliver a 

malicious payload, the program needs to gain unauthorized access to the underlying system 

functions (e.g. sending unauthorized SMSs, exploiting system vulnerabilities, etc.).  The only 

way to interact with the underlying Android operating system from an application is through the 

use of API calls.  Thus, while register operations are often important functions of malware 

programs, the key structure of malware access is accomplished through a series of API calls 

[2,3]. 
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4.3 Creating a Parser to Extract API Sequences 

4.3.1 Handling Branching and Control Flow 

With the decision to include only core Android API commands as part of the vectorized 

representation, we need a way to represent the control flow of the program, specifically method 

calls and brnaching.  As with any programming language, Android code is highly non-linear due 

to the presence of branching statements. The following image gives a visual representation of 

just one method call within an APK. 

Preliminary testing confirmed the basic intuition that the smali commands for branching 

and jump statements need to be accounted for during the processing of the classes.dex file.  

Excluding the control flow information in the APKs led to poor performance on the testing 

dataset.  This result should not come as a surprise since without considering the branching 

instruction the string representation of the APK file assumes that the order of execution of the 

program can be disregarded without loss of information.  Also, ignoring branching statements 

often leads to API calls appearing in an unnatural order not found in actual program execution 

and even allowing for scenarios such as sections of unreachable code to be included in the API 

representation of the dataset. 

We cannot represent all of the control flow information (branching statements, method 

invocations, etc.) in an effective way for processing by a neural network.  This is because the set 

of all branching operations in a program roughly represents a binary tree, so attempting to cover 

all branching possibilities would be an exponential problem.  Instead of attempting to represent 

all of the control flow information in one feature set for each APK, we will generate code 

sequences from the APK by following normal code execution and randomly deciding which 

branch to take at any conditional branch statement. 
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Clearly, by randomly following a single branch option at each conditional statement, 

some portion of the information of the APK will be lost in each pass of the parser.  However, it is 

not necessary to cover every possible combination of branches in a single sequencing of the 

program in order to gain a sufficient understanding of the overall program functionality.  Instead, 

high coverage of all areas of the code normally accessed during execution can effectively be 

obtained by allowing the parser to run over the program multiple times in order to gain more 

complete coverage of the code.  Running the parser between approximately ten times for each 

APK generated sufficiently good results in experimental testing. 

4.3.2 Method Invocation 

Many of the approaches to static analysis presented in the literature consider each method 

as a separate entity, analyze the code in the method independently, and then represent relations 

between methods.  The parser presented here takes a different approach.  As with actual program 

execution when a method is invoked, the analyzer identifies the called method and then 

processes all commands within the called method including recursively processing additional 

method calls until the return statement is reached.  Once the return statement for a method is 

reached, the analyzer retrieves the information for the calling method and proceeds to process 

that method from the previous location. 

4.3.3 Accounting for Multiple Entry Points in Each APK 

Unlike a traditional computer program with only a single entry point, Android APKs have 

multiple potential entry points, which complicates program analysis [36].  While applications can 

launch in the traditional manner when a user clicks on the icon, they can also begin execution in 

response to intents or receivers for which they are registered in the Android manifest.  Thus each 
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registered service or activity within an Android APK represents a potential start point for 

execution of the program code and they must all be examined to determine the nature of the 

application.  To account for multiple entry points, the parser compiles a list of all entry points 

listed in the Android manifest file and creates an execution string for each possibly entry point. 

4.4 Algorithm for Parsing of Android APKs 

The following section describes the specific parsing algorithm applied when converting 

the classes.dex file into a feature list of API calls.  We decompile each APK file from dex format 

into smali code using the Androguard malware analysis tool, so the decompilation process will 

not be further described here [56].  Once the file is decompiled, all manipulations described 

below are performed using the analysis tools and framework provided by Androguard. 

After each file is decompiled by Androguard, we retrieve a list of all services and 

activities registered in the Android manifest.  We lookup the initial function call for each service 

or activity identified and place the function calls into an array to be processed.  This array 

represents all possible starting points for code execution within the APK. 

For each initial function called by an activity or service, the parser establishes an instruction 

pointer that points to the first instruction in that method call.  For each smali instruction 

encountered, the parser processes it according to the rules described below and then increments 

the program counter based on the length of the instruction as shown in  

 

Table 4-1.  The exception to this rule is for branching commands, both conditional and 

non-conditional, which are described in more detail below.  The parser then proceeds to access 

the instruction stored at the location indicated by the updated program counter.  This process 

continues until either a method call command or return statement is reached. 
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Table 4-1. Parser actions for each of the major classes of opcodes defined in the dex format. 

Command Analyzer action 

Invoke- (target is non Android API call) Look up method called, store current program 

counter, begin processing called method 

Invoke- (target is Android API call) Log API called, increment program counter 

Goto v1 Update program counter with value  from v1 

Return Return to the method the called invoke and 

continue processing from the last program counter 

Throw Return to the method the called invoke and 

continue processing from the last program counter 

If- Randomly select whether to follow branch, update 

program counter accordingly 

Packed-switch and Sparse-switch Identify the switch payload; from the switch 

payload select a random branch target, update 

program counter based using chosen target 

All other instructions Advance program counter by instruction length 

 

For branching instructions, the instruction pointer is incremented as follows.  When the 

parser reaches a go-to instruction, it increments the program counter in accordance with the 

variable argument in the instruction.  When the parser reaches a conditional branch statement, it 

first randomly selects whether to take the branch.  If the branch is taken, the instruction pointer is 

updated by the offset variable similar to the go-to instruction.  If the branch is not taken, then the 

instruction pointer is updated by the conditional instruction’s length. 

The packed-switch and sparse-switch commands are conditional branches in smali 

similar to the case statement in the Java programming language.  While the handling of these 

switch statements is conceptually similar to what is done for the branch statements, the 

mechanics differ slightly.  When a switch statement is found, first the payload for the switch 

statement must be located in the dex file and unpacked.  The list of target offsets often contains 
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duplicate values to allow for multiple conditions to point to the same branch.  Since the goal of 

our parser is code coverage rather than recreation of specific runtime behavior, we first eliminate 

any duplicate values and then randomly select a branch target.  The instruction pointer is then 

updated with this branch target. 

When the parser encounters invoke-virtual and invoke-direct commands, it determines 

from the instruction argument whether the method being invoked is a method defined within the 

dex file or if it is one of the core Android API method calls.  If the method is a core Android API, 

then the parser appends that API call to the API call list and updates the program counter based 

on the instruction length. 

If the invoke command is not an API call, then it signals calling a method defined within 

the APK.  In this case, the parser retrieves a pointer to the called method using the method name 

to complete the lookup and increments the program counter.  The pointer to the method currently 

being processed and the current program counter are then pushed onto the method stack.  The 

called method then becomes the current method with a program counter of 0, corresponding to 

the start point of that method. 
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Table 4-2. Algorithm for generating string-based representation of API calls within an APK 

entryPointList  = [] 

from AndroidManifest.xml push activityList, serviceList onto entryPointList 

API_call_list = [] 

method_stack = [] 

 

for entryPoint in entryPointList: 

     method = findInitialMethod(entryPoint) 

     offset = 0 

     do: 

        instruction = retrieveInstruction(method, offset) 

        if instruction.type == branch: 

             choice = random(0,1) 

             if choice == 0: 

                  offset += instruction.getBranchOffset 

             else: 

                  offset += instruction.getLength 

        if instruction.type == switch: 

             switch_targets = switch.find_payload() 

             switch_targets = removeDuplicates(switch_targets) 

             offset += randomChoice(switch_targets) 

        if instruction.type == 'Invoke': 

             if invoke target is Android API: 

                  API_call_list.append(methodName) 

                  offset += instruction.getLength 

             else: 

                  method_stack.push(method, offset) 

                  method = invoke.getInvokedMethod 

                  offset = 0 

        if instruction.type == goto: 

             offset += instruction.getBranchOffset 

        if instruction.type ==return or throw: 

             method, offset = method_stack.pop 

        else: 

             offset += instruction.length 

 

return API_call_list 

 

Whenever a return statement is reached, the analyzer pops the first program counter and 

method pointer, these correspond to the method that called the current method, off of the method 
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stack.  The parser sets the popped method and program counter as the current method and 

program counter and continues processing. 

When the parser reaches a return statement and the method stack is empty, processing for 

the particular service or activity is complete, which is functionally equivalent to program 

termination.  The parser then retrieves the next activity or service on the activity stack and 

repeats the process until the activity stack is empty.  The string of API calls is then returned as 

the output of the algorithm representing potential executions of each service and activity of the 

APK. 

4.5 Discussion 

One way to think about the sequential API call list representation generated by this parser 

is as a hypothetical execution of the target APK.  This reason for this is that the list was 

generated by starting from an entry point to the APK file and following program instructions as 

they would be encountered in actual program execution.  Granted, it is highly unlikely that this 

execution path would occur in practice given the fact that each branching option was given equal 

probability while in actual execution many branches will follow one fork 90% of the time or 

more [cite].  However, this is inconsequential to our analysis since we are focused on obtaining 

good code coverage and providing repetitive loops would likely be of little or no value to our 

classifier. 

Conceptually this makes the approach somewhat of a hybrid between static analysis and 

dynamic analysis.  It contains static elements in that the API sequence was generated from only 

examining and not executing the source code.  However, it is similar to dynamic analysis in that 

it could represent an actual execution of the source code.  This similarity could be exploited to 
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allow the classifier proposed in the next section to also work against API call sequences that are 

generated by either static analysis or dynamic analysis without modification. 

There are several other benefits to generating a list of sequential API calls in the manner 

described here.  It should be readily apparent that this approach to feature generation is invariant 

to any form of function, class, or package renaming typically employed to obfuscate code.  This 

is trivially true since that information is completely omitted in the API call list. 

Additionally, since all method calls are unrolled and only the individual API calls are 

retained, this approach is also invariant to code obfuscations which modify the call tree of a 

function by subdividing methods or providing additional unnecessary method calls.  Again this is 

trivially true since method calls and relationships are completely abstracted away in our 

representation.  This is a major distinction between the approach proposed here and many of the 

typical approaches which by a Call Flow Graph to analyze a problem. 

There are a few limitations with the parser implementation that bear mentioning.  The 

first is that the parser does not currently do a check to determine the percentage of code coverage 

obtained after multiple runs.  A more sophisticated approach would be to tag sections of the code 

once covered and then specifically select branches to follow until all code in the source file is 

covered.  This approach would require significantly greater computational complexity and, as we 

will show shortly, the current approach is more than adequate for the classification task at hand. 

The manner in which exceptions are handled could also be improved.  Currently, the 

parser treats exceptions in the same manner as return statements and then continues processing 

from that point.  However, it may be more accurate to determine the target of the exception and 

begin code execution at that point. 
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Chapter 5 Deep Learning Literature Review 

Neural networks were originally proposed in the late 1940s but gained very little traction 

due to the computationally expensive nature of training for all but the smallest networks.  While 

there were some limited successes prior to the early 2000s, given the limitations of 

computational power, it was not practical to train neural networks with enough nodes and depth 

to produce useful results in most cases.  This changed greatly around 2006 based on the general 

increase in computing power available and the use of GPUs in training.  The realization that the 

training equations for neural networks could be run much more efficiently using the specialized 

hardware in a GPU to handle the matrix multiplication operations allowed for a speedup of ten 

times or more in computation time [cite – Graves?].  This made it much more practical to train 

and employ neural networks for practical applications and led to the renewed interest currently 

seen. 

Neural networks derive their name from the similarity of the individual computational 

components to neurons in the brain.  Neurons or nodes in the network are connected together by 

weighted edges, which allow for flow of information through the network.  At each neuron or 

node in the network a non-linearity of some form is applied to the summation of the weighted 

inputs from the incoming connected edges to produce an output.  This output value is then 

propagated to other nodes in the network through the outgoing edges of the node. 

The “deep” portion of the term deep learning comes from arranging the neurons in the 

network in layers of arbitrary size and then stacking these layers on top of each other.  This 

approach effectively increases the computational complexity of the network.  While it has been 

shown that a neural network with two layers is Turing complete, and thus capable of representing 



 

35 

 

any function, this takes an exponential cost when only expanding the width and not the depth of 

the network [81, 82]. 

The major advancements in recent years came in methods to improve training of neural 

networks for practical applications.  The typical method for training neural networks is to use 

backpropagation in combination with a technique such as stochastic gradient descent to update 

the weights of the edges and node biases.  In backpropagation the output of the neural network is 

compared with the target or expected value and then the difference between the two values is 

propagated backwards through all elements of the network.  The error at each node is then used 

with an update algorithm such as stochastic gradient descent to update the weights and biases in 

the neural network to minimize the training error.  This process is repeated with additional 

training examples until the stopping criteria are met. 

There are several modifications to traditional stochastic gradient descent such as 

Adagrad, which is employed in this research.  These modifications aim to improve convergence 

by taking into account past variations in the gradient descent algorithm [82].  This is done by 

tacking the weight updates on individual parameters to smooth convergence, usually by applying 

some form of dampening or momentum tracking.  Additionally, in practice the update procedure 

is normally conducted over a batch of training examples instead of individually to speed 

convergence.  In batch processing a number of training examples are provided at once and the 

error is calculated across all examples when computing the updates.  This can increase 

processing performance in certain implementations and helps to smooth the path of the learning 

algorithm by reducing the error introduce by reducing the effects of individual training examples 

[83]. 
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Convolutional neural networks have recently gained popularity and success in the field of 

image recognition.  Convolutional networks use a series of local filters, typically called receptive 

fields, applied across the image to generate a feature map and were first demonstrated in Lenet-5 

by Lecunn et al. in 1998 [74].  There are two benefits of applying the same convolutional kernel 

repeatedly across the image.  By creating small convolutional filters, with shared weights across 

the whole network, the computational load is greatly decreased as compared to a fully connected 

deep network.  Additionally, convolutional networks help address the problem of overfitting and 

increase generalization by looking for the same features across the entire image or document 

[75]. 

The last few years have seen several stunning successes with deep neural networks, 

particularly in the realm of image processing and nature language processing.  ImageNet 2012 

marked the first time that a deep learning algorithm, named AlexNet, won the iconic image 

classification challenge.  Not only did AlexNet win, it did so by a wide margin compared to the 

other techniques employed [76].  Since then the competition has been dominated by deep neural 

networks as opposed to the previous techniques, which focused more on using an ensemble of 

hand generated features with other machine learning techniques [77].  Some of the other 

important recent results from the ImageNet competition include GoogleNet in 2014 [78] and the 

use of Resnets in 2015 [79]. 

Pooling is often applied in convolutional neural networks for two reasons: to reduce the 

size of the resultant feature maps from the convolutional layers and to generalize the presence of 

a feature to a particular area.  In the example of a 4x4 max pooling layer, this is accomplished by 

selecting the maximal filter response in each 4x4 error of the input layer to pass forward to the 

next layer, removing the specific location information in the process.  Pooling also helps reduce 
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the computational load by effectively shrinking the size of the feature maps passed to the next 

layer in the network. 

AlexNet won the 2012 ImageNet competition using a neural network consisting of eight 

layers; five convolutional layers followed by three fully connected layers.  Pooling was also 

applied to the first, second, and fifth convolutional layers.  At the time, AlexNet’s size and depth 

were state-of-the-art, requiring multiple graphics cards working simultaneously to train the 

network.  However, by modern standards, AlexNet follows a fairly traditional convolutional 

neural network architecture and can easily be trained on a single GPU [80]. 

In GoogleNet, the network uses what Simonyan et al. term “inception layers,” which are 

the major distinguishing feature of the network from previous models.  Fundamentally, the 

inception layers use convolutional layers of several different sizes (such as using a 1x1, 3x3, and 

5x5 filter) along with a pooling layer to create the feature map for the next layer to process.  This 

allows each layer of the network to learn features at several different scales simultaneously.  

GoogleNet combines this technique with the additional application of more 1x1 convolutional 

layers before the filters and after the pooling layer to allow for dimensionality reduction.  This 

allows the construction and training of a much deeper network than would otherwise be possible 

[78]. 

The most recent ImageNet winning network used Resnets to achieve a depth of 152 

layers.  In the simplest terms, Resnets (or Residual Networks) work by applying convolutional 

layers and then repeatedly feeding the original input to the network back in at later layers.  In this 

regard the approach taken with Resnets is similar to Recurrent Neural Networks (RNNs) and 

research has shown that Resnets are in fact equivalent to an RNN [84].  The current speculation 

is that by using the residual approach, the network is able to continuously learn distinct features 
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in higher levels since it can compare already learned features from lower levels with the input 

image.   

While the majority of CNN applications have focused on image processing, there have 

also been some successes in other fields such as text classification.  Santos and Gatti discuss a 

network based on employing CNNs to classify sentiment in short sentences.  They take the 

stream of words and develop features based on each word and character level embeddings, which 

independently apply convolutional layers and are then merged into a second convolutional 

network, creating a classifier for the whole sentence [85].  In a similar paper on sentence 

classification, Kim uses a CNN to classify sentences.  First each word is converted to a feature 

vector using pre-trained language data.  Then sequential strings of pre-trained word vectors are 

input to a convolutional neural network to learn features, which are then pooled over time and 

fed to a dense layer for final classification [86].  Lai et al. combine both recurrent and 

convolutional networks to achieve a high level of success in classifying document length texts.  

By adding the recurrent component to the convolutional network, they are able to more 

effectively deal with inputs of longer lengths [87].  
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Chapter 6 Using Deep Neural Networks to Classify APK Files 

This section develops the process for using neural networks, specifically Convolutional 

Neural Networks (CNN), to classify APK files.  The process for converting the API call 

sequences generated by the parser into a format amenable to use with a CNN will be described.  

Then the structure of the classification network will be presented along with a discussion of the 

hyper parameter selection.  The section concludes with a series of experiments testing the ability 

of the neural networks to classify malware and benign applications and a discussion of the 

results. 

6.1 Neural Network Topology for APK Classification 

6.1.1 Formatting Data for Input to a Convolutional Neural Network 

Convolutional neural networks require fixed sized matrices as input for classification.  As 

described previously, the parser generates a representation of the APK of the form: 

𝑅  = [𝑎1, 𝑎2, … . 𝑎𝑛] 

where 𝑎𝑖 is the ith API called in the hypothetical execution of the APK.  We create a lookup table 

that maps each API call to a unique number in the range of API calls, replacing the string of API 

call names with a string of integers representing the program execution.  These integers are then 

be converted into a sequence of one-hot vectors, which are more amenable to use with a CNN 

(Figure 6-1). 
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Figure 6-1 A sample conversion of a string of API calls to one-hot vectors by first converting via 

a lookup to integers and then creating a list of one-hot vectors. 

 

The length of API sequences varied from under 100 to well over 10000 API calls 

depending on the APKs.  However, convolutional neural networks expect a fixed sized input 

across all samples, so in order to accommodate this discrepancy in sizes of the API lists, we 

select a set length 𝐿𝑛𝑒𝑡. The list of API calls 𝑅 can be divided into 𝑅 =  {𝑅1 + 𝑅2+. . . 𝑅𝑛} such 

that each 𝑅1 to 𝑅𝑛−1 have length 𝐿𝑛𝑒𝑡.  This leaves a small remainder of API calls in 𝑅𝑛, of 

length 𝐿𝑒𝑛𝑔𝑡ℎ(𝑅𝑛)  =  𝐿𝑒𝑛𝑔𝑡ℎ(𝑅) 𝑚𝑜𝑑 𝐿𝑛𝑒𝑡.  We repeatedly tile these remaining API calls to 

fill the final section 𝑅𝑛.  Each of these sections 𝑅𝑖 can then be fed into a convolutional neural 

network to provide a classification. 

6.1.2 Convolutional Neural Network Topology 

In order to classify each individual segment 𝑅𝑖 we use a convolutional neural network 

with the following topology.  First there is an input layer followed by a convolutional layer with 

a filter size of (𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒, 𝑓𝑖𝑙𝑡𝑒𝑟1).  This allows the network to reduce the dimensionality of 

the one-hot vector in the first layer and generate features based on the number of API calls in this 

size of 𝑓𝑖𝑙𝑡𝑒𝑟1.  This layer is followed by a dropout layer to avoid overfitting and co-dependence 

between different filters within the convolutional layer.  Next a pooling layer is applied, 
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completing the first level of the CNN.  This first level is followed by another convolutional layer, 

dropout layer, and pooling layer.  The final pooling layer is fully connected to a softmax output 

layer with a node for each category within the test set.  A diagram of the convolutional network 

topology is show in Figure 6-2.  Dropout layers are only applied during training and serve as a 

simple pass through in testing. 

 

Figure 6-2 Diagram of the Convolutional Neural Network used in testing with two convolutional 

pooling layers and a dense layer connecting to a softmax output. 

 

The target value for each chunk of program code, 𝑅𝑖, fed to the CNN carries the label for 

the entire APK file.  The training loss function applied over the softmax layer was categorical 

cross entropy and the ADAGrad update algorithm was used to propagate updates through the 

network.  All functions were implemented using the relevant Lasagne and Theano packages for 

Python [49,50]. 

Early stopping was used during training to determine when to stop training for the model.  

However, the loss used in the early stopping calculation was not categorical cross entropy of 

each segment 𝑅𝑖 as used for backpropagation.  Instead, the average prediction accuracy of the 
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whole APK file, calculated over each of 𝑅1, 𝑅2, … 𝑅𝑛, was used as the early stopping metric.  

Once the model failed to show improvement over a random subset of the validation set, the 

training was stopped and the best model results were chosen for use in testing. 

6.1.3 Final Classification 

As noted above, the CNN only generates labels for each segment 𝑅𝑖 and does not directly 

label the whole APK file.  It is expected that different segments within each APK may be 

assigned labels from conflicting classes.  To resolve this conflict and provide a final 

classification for each APK file we take the output 𝑠𝑖 for each segment 𝑅𝑖 from the softmax 

output layer and calculate the sum across all output vectors 𝑠𝑖.  The maximal position of the 

resultant vector is selected as the classification for the APK file as shown in the equation below. 

𝑐𝑖  =  𝑎𝑟𝑔𝑚𝑎𝑥(∑ 𝐶𝑁𝑁(𝑅𝑖)) 

6.1.4 Excluding Repetitive API calls 

An analysis of the generated API call strings showed that certain API calls tended to be 

called many times in direct succession.  The Java string builder API in particular is often called 

five or more times in a row.  This repetitive calling does not provide meaningful new 

information to the classifier and the noise can actually significantly impair classification.  In 

order to improve the performance of the DNNs in classifying the API lists, the repetitive call 

strings were reduced to a single API call in the API list provided to the DNN for training.  

Testing showed an almost 10% increase in accuracy between classification done when repetitive 

API calls were included in the API lists and when they were excluded. 
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6.2 Experiments 

6.2.1 Datasets 

Two datasets were used for testing the CNN: a benign dataset and a malware dataset.  The 

composition or each dataset is described below. 

6.2.1.1 Malware Dataset 

Malware samples were obtained from the Contagio Mobile repository [51].  In particular, 

for this evaluation, we focus on six families of malware from the Contagio dataset consisting of a 

total of 231 individual APK files.  All of these samples are recent with the oldest malware having 

been detected in May of 2016 and should accurately represent currently employed malware 

techniques.  Table 6-1 shows a breakdown of the different malware families.  Additional 

information on each of the malware samples used can be found from a number of different 

sources listed in the references [66, 67, 68, 69, 70, 71]. 

Table 6-1. Malware families and number of samples within each used in testing 

Malware Family Number of Samples 

Godless 8 

Hacking Team Crisis Android 70 

SberbBanker 7 

Hummingbad2 42 

OverlayLocker 55 

Marcher 5 

Xiny 6 

AndroidXbot 9 

                                                 

2Note that the Hummingbad dataset posted on Contagio mobile contained over 590 distinct APK 

files.  In order to avoid skewing the tests with the large sample size, a random subset of the 

APKs were used in testing.  Additional testing confirmed that increasing the number of 

Hummingbad examples did not adversely affect detection. 
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6.2.1.2 Clean Dataset 

Android applications for the category classification task were gathered from a variety of 

third party app stores.  The categories used for the classification task were chosen to match the 

common categories found in app stores for sorting applications for display to users.  A small 

number of files were not able to be decompiled by the Androguard decompiler and were 

removed from the dataset. 

In total 800 unique APK files were used for the classification task spanning nine 

categories as shown in Table 6-2.  To ensure that no duplicate APK files were included in the 

dataset, an MD5 hash was run over all APKs and any files that had matching signatures were 

removed from the test dataset.  Additionally, to the extent possible different versions of the same 

applications were excluded as they represent only minor differences in code structure, making 

classification trivial for one application if the other is included in the training set.   

Table 6-2. The categories and number of applications per category for the benign applications 

used in testing. 

Category Number of Applications 

System Tools 97 

Books & Reference 108 

Puzzle Games 101 

Health & Fitness 58 

Photos 87 

Themes & Wallpaper 86 

Communications 103 

Arcade Games 76 

Shopping 68 
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6.2.2 Comparison Models 

In order to give a baseline comparison for the proposed CNN model, several standard 

classification algorithms were also employed.  The model is compared to an N-Grams SVM 

classifier and a Naïve Bayes classifier, which are both standard classifiers used for classifying 

text documents.  Text documents represent the best analog for the sequence of API calls used in 

this testing since each API call can be considered as a word in the language and the ordered 

sequence represents a document.  All models used the same set of API string representations as a 

baseline dataset. 

For the N-Gram SVM, each sequence of API calls was converted into a feature vector 

listing the number of occurrences for each 3-gram, as testing showed this to be the optimal 

feature size.  Term frequency–inverse document frequency (TF-IDF) was used to normalize the 

feature vectors before classifying with the SVM.  SVM was applied using the Scikit-Learn 

toolkit in Python with an RBF kernel.  The Naïve Bayes classifier was also implemented using 

the Scikit-Learn toolkit [52]. 

6.3 Malware Classification Experiments 

Two tasks were included in the malware classification tests.  The first task was malware 

detection where the CNN needs to differentiate between malicious and benign APKs.  To train 

the CNN for this task the third party app store dataset was used to represent the benign APKs, 

while the Contagio Mobile dataset was used to represent the malicious APKs.  The results in 

Table 6-3 show the accuracy scores for the various models using 5-fold cross validation. 

Since the number of applications included in the clean dataset significantly outnumbers 

the malware dataset, only a subset of the benign training data was used to train the model.  This 

subset of the clean samples was chosen randomly within each training cross fold.  This approach 
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avoided the typical problems associated with unbalanced datasets when dealing with machine 

learning models where the model achieves good accuracy at the cost of precision.   

To evaluate this approach, two tests were conducted.  The classifier was presented with 

equal sized datasets of malware and clean samples in the first test and unequally sized datasets 

for which the clean samples greatly outnumbered the malware in the second test.  In addition to 

being able to consistently detect malware, the classifier must also have an acceptably low false 

positive rate in this type of scenario.  The second test is more indicative of reality, in that most 

real world datasets (i.e. application marketplaces) consist of majority benign applications with 

only a few malware samples included.  Thus the second test gives a better indication of the 

possible effects of false positives in a real world application. 

Table 6-3 shows the accuracy precision and recall rates for the malware detection rate in 

both the balanced and unbalanced validation sets.  The chart also calculates the precision, and 

recall for each case. 

Table 6-3. Results of each model for the malware detection test. 

Model Accuracy Precision Recall 

CNN 99.4% 100% 98.3% 

Ngram SVM 66% 53.3% 34.8% 

Naïve Bayes 82.0% 47% 54% 

 

Table 6-4 Confusion matrix for the malware classification test 

  Predicted  

   Benign Malware 

Actual Benign 339 0 

 Malware 4 226 
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In the second malware task the CNN is trained not to identify malware but to classify 

each malware variant into its respective family.  The value of malware family classification is 

that knowing to which family a piece of malware belongs can help researchers more quickly 

analyze its code or assess what damage a malicious app may have caused by referring to 

previous analyses of its familial counterparts.   

The same datasets including the benign applications were used again with 5-fold cross 

validation and the results are shown below in Table 6-5. 

Table 6-5. Confusion matrix for the CNN classifier in the malware family classification test 

 

It is not uncommon for a classifier to have higher accuracy in the malware detection task, 

comparing malware and benign applications, as opposed to the family classification task where 

the malware is grouped into specific families.  As explained in more detail by Tangil et al. [24], 

this can be a result of the fact that certain malware families (as classified by malware analysts) 

may actually be based on the same exploit or basic code fragments.   

One of the limitations in testing against the malware datasets is that the variation within 

available malware families tend to be small.  This makes it easy for a classier to identify 
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additional variants of a particular malware without providing good generality and flexibility.  

Given the small variation between different APK variants within a malware family, the test and 

validation sets may contain nearly identical examples.  Thus it may be possible to construct a 

classifier to achieve a high level of performance without actually obtaining good generalization 

by simply memorizing the features of the training set.3 

6.4 Classification of APKs into Categories Based on Functionality 

As shown in the preceding section, the model does very well in detecting and classifying 

malware from known families.  However, this task provides somewhat less insight into the 

flexibility offered by the model since many malware families and variants are so internally 

similar as to make classification a relative easy process.  Surprisingly, for machine learning 

models, it is potentially more challenging to group the benign applications into thematic 

categories such as System Tools, Games, etc., than it is to identify malware variants.  By testing 

the ability of the model to distinguish APKs within this context, we can better demonstrate its 

flexibility and understanding of the underlying program functionality. 

The malware detection tests only require the identification of small, unique sections of 

code that can be used as signatures to detect other applications attempting to accomplish the 

same task, in order to properly classify the malware families.  However, given the huge variety 

of applications within each category in this thematic classification test, the model must 

demonstrate a higher level of understanding of the application functionality to succeed. 

In this task only the benign dataset is used and all applications are classified into the 

categories based on their functionality and listing in the application markets.  Again, 5-fold cross 

                                                 

3 As a note, this is essentially how signature-based detection of malware works. 
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validation is used to judge the results and the average score across all validation sets is reported 

below in Error! Reference source not found.. 

Table 6-6 Results for different models in thematic classification of benign dataset 

Model Accuracy 

CNN 61.3% 

Ngram SVM 22.2% 

Naïve Bayes 18.8% 

Table 6-7 Accuracy measurements for each model and confusion matrix for the CNN classifier 

on the benign dataset. 

 

6.4.1 Segment Prediction Accuracy vs APK Prediction Accuracy 

The plot in Figure 6-3 shows the accuracy of prediction for the APK as compared to the 

prediction accuracy of each segment of the APK.  It is not surprising that the segment accuracy is 
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significantly lower than the prediction accuracy, which is the result of the averaging done across 

all segments in the final classification; however, the reason for this effect may be less clear.  

While each category of applications has distinct characteristics that allow for successful 

classification, there are certain aspects that are common across many applications.  A good 

example might be a section of code or library from a third party used in multiple applications.  

Many applications use external add libraries in their code and therefore it would not be 

uncommon to see the code for the add library appear across all categories.  As such, those chunks 

of code could not be correctly categorized since they will appear across several or all categories. 

 

 

Figure 6-3 Plots of correctly predicted segments of APK files compared with correct predictions 

for the entire file.  

6.4.2 Training Size vs Accuracy 

In these experiments the size of the training set was varied and the accuracy of the model 

plotted against training size.  The size and contents of the validation set were held constant 

throughout these tests.  It is important to state the benefit of the small number of training samples 
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needed to effectively train the model.  This is particularly true in the case of malware detection 

as when new malware families are discovered, there may be only one or a handful of examples 

of the malware variant with which to train a classifier. 

 

Figure 6-4 Plot of the accuracy of the CNN classifier compared to the percentage of the training 

data used during the training. 

 

As described earlier, each APK is broken into to 10 API string representations, which are 

distinct based on the random selections made regarding branching statements within the APK 

code.  The second plot shows how the accuracy is affected when only one API string 

representation is used per APK.  This shows the benefit that is accrued by taking this approach to 

creating the string representation.  In concept this approach is similar to expanding a limit dataset 

by adding noise, which has been shown to be effective in training neural networks [62].  This 

strategy has the same effect of introducing small variations that keep the model from over fitting 

specific API call sequences with the added advantage that this is accomplished not by noisy (and 

possibly) incorrect data but instead by using potentially real variations of the dataset. 
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6.4.3 API Calls vs Accuracy Plot 

Figure 6-5 shows the accuracy of the model labels for an APK file plotted against the 

number of API calls in our analyzer’s representation of the APK.  The trendline suggests that 

there is no correlation between the number of API calls in an application and the prediction 

accuracy.  This is an encouraging trend since logically we would not expect that the length of a 

program’s code should change the prediction accuracy of the network. 

 

Figure 6-5 Comparison of the number of API calls in the string representation of an APK and the 

classification accuracy of the CNN classifier 

 

6.4.4 Input Chunk Size and Accuracy 

In this test we examine the correlation between the length of the API call segments that 

are fed into the CNN for classification and the accuracy in predicting the value for that segment 

along with the accuracy in predicting the APK category (Figure 6-6).   
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Figure 6-6 Accuracy of the CNN classifier based on the size of the input layer to the classifier 

 

While we would expect to see a correlation between increased length and overall 

accuracy (up to a point), we also want to find the smallest input length that produces good 

results.  The importance of accuracy over small chunks is that in the malware detection scenario, 

it allows an analyst to focus on particular sections of code in an APK that has been flagged as 

potentially malicious.  By being able to focus on a smaller section of the code for manual 

analysis, human analysts can be more efficient and reduce the overall human cost of analyzing 

malware. 

The ideal network length breaks API strings up into sequences of approximately 200-500 

API calls each.  On an intuitive level this makes sense for several reasons.  First, the median API 

sequence string length for all APKs in the test set is approximately 4000 API calls.  Second, and 

perhaps more importantly, it makes sense that outside of a certain length of time, API calls would 

be relatively unrelated.  Chunks of approximately 200 APIs likely represent the maximum size of 

a logic block in most programs in the dataset.  By segmenting larger files into chunks and 
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classifying each chunk separately, we allow the classifier to make a determination of each logical 

block within the program and then combine those individual determinations to make a final 

classification. 

While there is a drop off in accuracy in using sequences under 200 API calls, the model 

works almost as well at sequences of only 100 API calls.  Even at sequences of 50 API calls the 

accuracy rate is less than 3% below the peak.  This means that small API windows could be used 

to help narrow down the sections of code in an APK that might be malicious to a small handful 

of function calls out of the entire APK. 

6.5 Discussion 

As is demonstrated in the tests, a CNN is clearly capable of learning features necessary to 

classify Android APKs both in the malware detection test and the categorization of benign 

applications tests.  Furthermore, it outperforms the other standard models used for comparison in 

our testing.  One of the major benefits of using a CNN as described in this paper is the lack of 

any manually generated features and the flexibility of the features to new and novel examples. 

To understand why a CNN is well-suited to this task, it is worth considering the 

fundamental nature of CNNs and an analogy to the field of image processing where CNNs have 

been widely studied.  First, in analyzing program code, feature locality is very important.  Two 

API calls that appear close to each other are much more tightly related than two API calls that 

exist hundreds of lines apart.  CNNs naturally take this fact into account by using small local 

filters to develop features in each layer of the network, which are consecutively passed upward to 

create more abstract features in the network.  This is very similar to how human experts approach 

malware analysis, by looking at small sections of code to determine their function and 

progressively considering the interactions of these code segments with one another. 
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Also, in the image processing realm, CNNs have shown great strength in being resistant 

to spatial transformations of images such as deformation, noise, and rotation [62].  While code is 

not deformed in the same way as images, the insertion of extra API calls between segments of 

code containing key features is very similar to elongation of an object in an image.  The ability to 

tolerate noise and deformations makes it harder for typical code obfuscation techniques to defeat 

analysis without changing the underlying effect of the code and potentially eliminating its 

malicious payload. 

Interestingly, CNNs have also demonstrated decent accuracy in providing labels to 

partially occluded objects [73].  In the malware classification task, this might correlate to 

instances where only partial features are available for analysis either because the malware was 

obfuscated or portions of the code were launched from external resources.  Specifically, we can 

see this in the classifier’s ability to categorize the Godless examples.  Two of the Godless 

samples are distinct from other members of the family because they obtain the majority of the 

malicious payload via a web download after the application is installed, only having a minimum 

amount of code within the APK available for analysis. 

For comparison, the very insightful and effective work done by Zhou et al. in RiskRanker 

produced excellent results but relied heavily on manually generated features to aid in detection 

[2].  As malware evolves, these features need to constantly be updated to keep up with the new 

techniques of malware writers.  The classifier proposed here will automatically update and 

generate new features after training with new examples reducing the burden on human analysts. 

Many static analysis techniques described in the literature review rely on two commonly 

used techniques: package or class name analysis and call flow graphs.  As detailed in the 

literature review, both of these techniques are vulnerable to obfuscation techniques that can be 



 

56 

 

relatively easily employed by malware authors.  The problem with and limitation of these 

techniques is that they rely on transient properties of the APK file for analysis, which can be 

modified without changing the effect of the underlying code by several different obfuscation 

techniques. 

Package renaming is a relatively straightforward undertaking; there are a plethora of 

online tools and IDEs to assist in this process [88].  Since the proposed model never considers 

package or class names directly in its analysis, it is clearly invariant to these obfuscation 

techniques, representing a clear improvement in durability when compared to models that require 

that form of information. 

While call flow graphs are slightly more difficult to alter without affecting the end 

function of the code, there exist a number of known techniques for obfuscating call flow graphs 

[59, 60, 61].  Several of the papers discussed in the literature review focus specifically on trying 

to improve the resiliency and flexibility of CFGs, but they remain susceptible to manipulation.  

By unrolling the sequence of API calls that would be encountered during a real execution of the 

program, the model presented here has the potential to avoid many of these techniques.  

Additionally, analysis of CNNs in the realm of image processing have shown that with proper 

training techniques, the networks are resilient to rotations, deformations, and noise.  While the 

field of image processing is not a direct analogue to that of code analysis, there is reason to 

believe that CNNs for code analysis could maintain some of this invariance, making it more 

difficult for obfuscation techniques to be applied [72]. 

6.6 Limitations of the Current Model 

There are several limitations to the model presented above that could limit its 

effectiveness.  These limitations include the failure to consider native libraries or additional 
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resources in the APK file, the potential for reflection to reduce the parser’s effectiveness in 

processing all relevant code section, and the failure to confirm all code sections have been 

followed. 

The methods described in this approach only consider the code contained within the 

classes.dex file.  Recently there have been a number of malware strains that launch their attacks 

from native code libraries or hide code in additional resource files.  While it is possible that the 

model could still detect these types of attacks through the calling procedures needed to launch 

the code from the classes.dex file, this is somewhat less likely as these operations also have 

legitimate functions [35]. 

The model also does not directly address the concept of reflection where instead of 

calling a package directly, the application uses Java-based reflection techniques to generate the 

function call.  This type of approach could cause the parser to skip important sections of 

application code, effectively hiding malicious code from analysis.  This limitation could 

potentially be deal with in two ways.  First, the parser could be enhanced to recognize reflection 

and determine the correction function to follow during parsing.  Second, we could keep track of 

all code sections in the APK and after initial parsing, identify any methods that were not covered 

and individually cover those methods (independent of the start point list).  Both of these 

approaches should adequately address the use of reflection. 

The model currently does not confirm that all sections of code contained within the 

classes.dex file have been covered during parsing.  This could lead to critical sections of the code 

potentially being omitted based on the random selections made when the parser encounters 

conditional branches.  This could be addressed by tagging code sections and conditional 
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branches that have been parsed and ensuring that subsequent passes of the parser go to the 

unvisited branches. 
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Chapter 7 Future Research 

There are a number of areas for further research that could lead to a model with greater 

understanding and predictive power than what is presented here.  Some of these topics include 

enhancing the test and training dataset, combining the proposed model with other types of 

analysis, and converting the model to work with dynamic analysis tools. This section will be 

devoted to a brief discussion of some of these key areas. 

7.1 Inclusion of Code from Native Libraries 

Only the classes.dex file is considered in this analysis.  None of the native libraries or 

additional resources included in the APK file are considered.  As was shown in DroidNative 

there have recently been a small number of known malicious APKs that use native library code 

to launch their attacks.  It is likely that this approach will be increasingly adopted by malware 

writers both to avoid detection and to take advantage of system vulnerabilities that may only be 

present using native code [13]. 

While the structure and nature of API calls in native libraries is different from that present 

in the dex file, the same concept for classification using a CNN could apply.  The major 

difference would be in the decompilation process for the native library source code.  While 

decompiling native library source code is not a trivial task, it is one that has been addressed by 

multiple other researchers [57, 58]. 

7.2 Applying a More Sophisticated Neural Network Architecture 

Although the network used in this paper was sufficient to obtain excellent results in the 

malware detection and classification scenario, it is relatively simplistic compared to many of the 

recently released Convolutional (and Resnet) architecture being employed in the field of image 
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recognition.  While there is not a direct link between image recognition tasks and malware 

detection, the high level of success obtained by these networks does suggest that using a more 

sophisticated neural network may provide additional insight and predictive power than the CNN 

described here.  This is an area for future consideration. 

7.3 Including Techniques to Examine Additional APK Resource Files 

Malware or parts of malware can be hidden with ancillary resources within the APK and 

be reconstructed and launched by the code in the classes.dex file.  The analysis of these types of 

files is mostly orthogonal to the analysis of the API calls in the classes.dex file and as such could 

be combined with the model described here with relative ease. 

7.4 Complementary Techniques 

The model does not take into account information relating to package or class names, or 

string information included in the dex file.  While these types of analyses are subject to relative 

simple obfuscation methods such as dynamic string building within the dex code and 

package/class renaming, they are nonetheless still effective in analyzing malware. 

7.5 Configuring to Work with Dynamic Analysis Techniques 

The approach described here of using a CNN to classify APKs based on API call 

sequences can be directly translated from static analysis as described in this paper to dynamic 

analysis.  Multiple dynamic analysis tools, such as CopperDroid, already log the API calls made 

by an application under test.  It would therefore be a relatively straightforward process to convert 

these sequences of API calls into a format similar to the one presented in this paper for 

classification by a CNN.  As discussed in the literature review, tools such as NDROID already 

log not only API calls from ART, but also calls made from native libraries and communication 
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across the VM and underlying OS.  This could allow the method described here to detect and 

classify malware that is launched from native code. 

There are several potential advantages of moving from a static to a dynamic approach.  

Code that is hidden in other APK resources or downloaded from external sources must 

eventually be executed at run time.  While the malicious exploit API calls made by these types of 

malware may not be observed in static analysis, they must be executed at run time to be 

successful and could then be detected and logged by a dynamic analysis tool. 
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Chapter 8 Conclusion 

In this paper we have shown the effectiveness of using Deep Neural Networks and 

specifically Convolution Neural Networks to identify and classify malware.  This approach 

represents one of the first attempts to apply deep learning techniques to Android Malware 

classification, as there are no other comparable approaches in the published literature.  While this 

paper accomplishes the goal of proving the effectiveness of deep learning techniques to malware 

analysis, there is considerable room for improvement going forward.  There are many potential 

benefits to continuing research in deep learning, drawing from the fundamental ability of deep 

learning techniques to automatically derive rich feature sets from the input data. 

We demonstrated a parser capable of generating a representation of an APK file as a list 

of API calls.  These API calls were then converted into a vector, segmented into smaller chunks, 

and used as the input to a CNN for classification.  The CNN used two convolutional and pooling 

layers followed by a dense layer connected to a softmax output to classify each chunk of the API 

string representation.  The classification applied to each of the API list segments were then 

averaged to obtain a final classification for the APK. 

Experiments with six recent malware variants showed that the combination of the vector 

representation created by the APK parser in conjunction with the CNN classifier successfully 

detected malware files from benign applications nearly 100% of the time with 100% precision.  

Furthermore, through tests of classifying benign applications into categories based on their 

functionality, the CNN classifier showed that it achieves far better generalization of the 

functional relationship between then API calls than standard text classification methods such as 

n-grams classified by SVM or a Naïve Bayes classifier. 
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Finally, we discussed methods that could be used to expand upon the initial success 

demonstrated here in using deep learning techniques to analyze Android APKs.  One of the key 

benefits of using a list of API calls in sequential order of execution as the input to the CNN 

classifier is that it allows for the classification techniques discussed in this paper to be easily 

adapted to work with dynamic techniques or to incorporate analysis of native code libraries in 

APK files.  This means that two of the biggest weaknesses of the proposed approach, namely 

malware launched through native code and malware that is dynamically loaded after installation, 

could potential be addressed with minor modifications. 
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