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Abstract

While Cloud Computing has transformed how we solve many computing tasks, some scien-
tific and many-task applications are not efficiently executed on cloud resources. Decentralized
scheduling, as studied in grid computing, can provide a scalable system to organize cloud
resources and schedule a variety of work. By measuring simulations of two algorithms, the
fully decentralized Organic Grid, and the partially decentralized Air Traffic Controller from
IBM, we establish that decentralization is a workable approach, and that there are bottle-
necks that can impact partially centralized algorithms. Through measurements in the cloud,
we verify that our simulation approach is sound, and assess the variable performance of cloud
resources. We propose a scheduler that measures the capabilities of the resources available
to execute a task and distributes work dynamically at run time. Our scheduling algorithm is
evaluated experimentally, and we show that performance-aware scheduling in a cloud envi-
ronment can provide improvements in execution time. This provides a framework by which
a variety of parameters can be weighed to make job-specific and context-aware scheduling
decisions. Our measurements examine the usefulness of benchmarking as a metric used to
measure a node’s performance, and drive scheduling. Benchmarking provides an advantage
over simple queue-based scheduling on distributed systems whose members vary in actual
performance, but the NAS benchmark we use does not always correlate perfectly with ac-
tual performance. The utilized hardware is examined, as are enforced performance variations,
and we observe changes in performance that result in running on a system in which different
workers receive different CPU allocations. As we see that performance metrics are useful
near the end of the execution of a large job, we create a new metric from historical data of
partially completed work, and use that to drive execution time down further. Interdependent
task graph work is introduced and described as a next step in improving cloud scheduling.
Realistic task graph problems are defined and a scheduling approach is introduced. This dis-
sertation lays the groundwork to expand the types of problems that can be solved efficiently
in the cloud environment.
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Chapter 1
Introduction

1.1 Problem Description

Many scientific fields, such as quantum chemistry, genomics, phylogenetics, astrophysics,
geophysics, computational neuroscience, or bioinformatics, require massive computational
power and resources that might exceed those available on a single local supercomputer. His-
torically, there have been two drastically different approaches for harnessing the combined
resources of a distributed collection of machines: traditional computational supercomputer
grids and large-scale desktop-based master-worker grids. Over the last decade, a commer-
cial alternative has become available with cloud computing. For many smaller scientific
applications, using cloud computing resources might be cheaper than maintaining a local
supercomputer. However, cloud computing has not yet been successful for high-performance
computing applications.
Virtual machines may never be competitive for running large high-performance computing

applications with fine-grained parallelism, such as large dense matrix multiplications. For
applications that can be broken into a set of smaller tasks, however, it may be possible
to match the performance requirements of a task with the performance characteristics of a
subset of the cloud nodes. For grids and supercomputers, this many-task computing approach
[32] has proven very effective. E.g., Rajbhandari et al. [33] structured the computation of a
quantum chemistry tensor contraction equation as a task graph with dependencies and were
able to scale the computation to over 250,000 cores. They dynamically schedule tasks on
groups of processors and use work-stealing for load balancing.
A possible solution for running high-performance or many-task computing applications in

the cloud is to identify the performance characteristics of the cloud nodes and the network
connections between them and to map computational tasks onto subsets of the nodes with
appropriate performance characteristics. Maintaining this information centrally for a large
number of machines, however, is prohibitively expensive. IBM’s Air Traffic Control (ATC)
algorithm [4] attempts to solve this problem by arranging cloud nodes in groups and by
letting the leader of each group (the air traffic controller) direct the compute tasks (aircraft)
from a central job queue to their destination worker nodes that will then execute the task.
While this approach distributes the load of maintaining performance information for worker
nodes, the central job queue is still a potential bottleneck. Also, the air traffic controllers
may not have enough information about the computational requirements and communication
patterns of the individual tasks.

1.2 Problem Statement

The thesis of this dissertation is that a fully decentralized approach in which the applications
decide on which nodes to run will improve the performance of some applications in the
cloud. Our approach relies on the nodes to advertise their performance characteristics. If
performance information is available from the hypervisor or operating system, we will use
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it. Otherwise, the nodes periodically measure their own performance as well as any other
relevant metrics. This performance information is then distributed in aggregate form to
neighboring nodes along an overlay network. Computational tasks can be inserted into the
cloud at any point. The application queries the resource availability through an API and
migrates the tasks along the overlay network to where appropriate resources are available.
By letting the application decide which nodes to run on, the decision can be based on
information about the communication and computation characteristics of the application
that may not be available if the decision is made by leader nodes.
Similar to real-world air traffic control, applications can enter the cloud at any point

instead of through a centralized job queue. The pilot (application) communicates with air
traffic control, e.g., to obtain information about the weather (resource availability) at the
destination, but the final decision rests with the pilot in command. As in our approach,
aircraft (tasks) travel along air routes (an overlay network) to their destination.
Our approach to high-performance and many-task computing in the cloud is based on

our prior work on the Organic Grid (OG), a decentralized desktop grid prototype [11, 12].
Evidence supporting our design is provided by simulations of the Organic Grid and by both
simulations and cloud measurements of Barsness et al.’s Air Traffic Control algorithm. A
comparison of our ATC simulation and measurements performed on machines requisitioned
from the CloudLab system [15] validates our simulation approach. All sets of measurements
support pursuing a decentralized approach to scheduling work in the cloud.

1.3 Simulation Introduction

In the next sections, we first describe the Organic Grid and ATC approaches in more detail
and then present our simulation approach. We present the results of our simulations that
demonstrate that our proposed scheduling approach would result in decreased communica-
tion overhead. Cloud experiments are performed and compared to the simulation result. We
interpret both the cloud and simulation measurements, and what the OG and ATC compar-
ison tells us about decentralized scheduling. Comparing the simulated and cloud ATC runs
allows us both to justify the simulation methodology and present interesting measurements
of cloud performance.
After presenting simulations, we present a framework for decentralized scheduling on the

cloud. This framework utilizes multiple metrics combined via a vector to drive where work
moves on a fully decentralized system. We measure different metrics to drive scheduling, and
present the benefits of a variety of approaches. We determine what measurements drive a
decentralized scheduler to better scheduling decisions. We present several approaches that did
not produce an advantage, and the disadvantages actually encountered. Finally, we discuss
task graphs and many-task computing, and how such problems can be approached on the
cloud.

1.4 Lessons Learned from Simulations

Utilizing simulations we notice the possibilities of the ATC model of partial centraliza-
tion along with its drawbacks. We also see the potential benefits of the Organic Grid’s
performance-based restructuring. Restructuring of the overlay network, as in the Organic
Grid, however, has disadvantages for the type of applications we are targeting. Any move-
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ment, either of work by scheduling, or of nodes via restructuring, complicates job-to-job
communication, as the location of the job and the path of communication itself is subject
to change. Additionally, more complicated locking procedures would be required to be sure
that jobs are not torn away mid communication by a restructured node, and that a job with
a message to send knows where to look to send its result.
The first change we make in our second approach is to prefer work pushing rather than

pulling. A node with excess work analyzes itself and its immediate neighbors, and as a result
of that analysis it targets the correct neighboring nodes to send work to. We hypothesize
that this will be preferable to a work-stealing approach for several reasons. First, and most
obviously, rescheduling is done when there is something to reschedule. A work-stealing ap-
proach has the fundamental downside of unfulfillable requests in the event that there are
fewer jobs than nodes. While proving this was not a fundamental goal of our experiments, we
present results in the experimental section that point towards this downside. While we did
not implement pure work stealing, we did experiment with allowing nodes to request work
from neighbors. These request messages had some benefits in initial phases, but when al-
ready overburdened resources were given the additional responsibility of responding to these
types of messages, a significant amount of time was wasted that pushed back the completion
of the entire set of work. Additionally, implementing work stealing required a slightly more
complicated procedure programmatically, as a single entity could no longer be responsible
both for initiating rescheduling and starting a new job on a node. A work-pushing approach
makes coding the locks around the work queue much more straightforward, as both dequeues,
dequeue to start work, and dequeue to move work, can be done by the same entity.
For these reasons, we have built an intermediary system based on the ideas of the Organic

Grid, but without some of its key components, especially network restructuring. We will
enhance and more completely describe the node quality measurement, and discuss different
mechanisms for measuring node performance and the benefits received for having done so.
This system can be extended to work with other metrics for scheduling. E.g., for adding
measurements of network speed and bandwidth, we can reuse the existing framework for
information distribution and use.
We posit that a good job scheduler in the Cloud will have the following capabilities. It

should be scalable, able to handle a variety of hardware platforms, as well as multi-site
systems. It should match available hardware to job requirements. It should maintain up-to-
date information about the status of computing resources. It should be extensible to allow
jobs to tailor their requirements to any resource data is available. Our goal is to build a
system that could be extended to work with a variety of measurable traits, but we will need
to provide at least two specific traits to test the viability of our model. The two traits that
seem to be the most important would be the queue length, or the number of jobs that a
particular resource has queued to perform, and a measurement of the resource’s performance.
As a research tool, we need to provide verbose and accurate logging from which we can
analyze performance and determine the usefulness of different metrics for scheduling.
Harnessing a variety of computing resources is the fundamental challenge of the hybrid

cloud. A hybrid cloud consists of either a set of cloud resources with varying characteristics,
or a system that contains a combination of cloud computing and other computing resources.
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For example, a company providing a web service might utilize local resources for most of
their traffic, but during high traffic times supplement their computing power with resources
temporarily allocated from a cloud provider. A research center might have a variety of
computing resources available to be allocated from a common portal. Such hybrid clouds
provide an interesting scheduling challenge. It may also be the case that even resources
allocated from a homogeneous cloud system may differ in performance characteristics. This
will be more likely if computing hardware is shared between several processes.

1.5 Cloud Vector Scheduling Approach

We use a vector-based model to describe how we will utilize node information. By describing
a vector of coefficients, we can weigh the value of any node information that can be described
numerically. By plotting the nodes on an N-dimensional space, the coefficient vector and the
dot product formula can be used to find the node with characteristics most similar to the
vector. Therefore, it is possible to think of the vector as the direction in which work should
flow. Trivially, any scheduler should move work from a high queue length node to a low queue
length node. However, if we also take into account a measurement of node performance, it
might be beneficial to weigh that value as well when determining the correct location for
scheduling. A central component of our experiments will be determining an optimal vector
to minimize the time for computing jobs on a decentralized network of nodes.
We are targeting programs that can take advantage of specialized hardware, but do not

need to be precisely written for one exact system, programs that lie between extremely
parallel programs that can take advantage of any hardware via Map-Reduce and programs
written to precisely use a specific piece of hardware, such as a typical supercomputer program.
Many-task computing problems seem to be ideal for this environment. While other programs
should still be able to be scheduled on our system, we hypothesize that these middle-ground
programs would receive the most advantage from a hardware-conscious automatic scheduler.
In a decentralized network, any choice to move work has to be done based on a limited

amount of information available at a certain point in the network. We organize our exper-
imental network as a graph of worker nodes. When a set of jobs exist at a node that node
will have to make a decision based on its view of the network about whether to leave those
jobs to be completed locally or to move them to a adjacent nodes.
Our most immediate issue is how much information an individual node should possess. Our

current experiments use nodes that view themselves and a set of immediate neighbor nodes.
We have considered the possibility of more distant information but we run into an immedi-
ate problem with doing so. When receiving information about more distant resources from
neighbor nodes, there does not seem to be an obvious or consistent way to show that those
resources are ideally gained through those nodes. In fact, it is possible that this information
might have traversed a loop that includes the node which itself is asking for information.
Because of scaling, we do not want to maintain specialized information sets for each querying
node.
Additionally, we need to measure the usefulness of the data we are gathering. If we measure

performance, i.e., the speed at which independent tasks are completed, is our measurement
going to correlate to actually completing jobs more quickly? While we had several bench-
marks available to us in the form of the NAS benchmark set, which has been used in prior
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work to test the effectiveness of cloud computing platforms [19], how relevant are these
benchmarks to actual computing tasks? While we were not able to completely answer this
question before we started work, with hindsight we can measure this fairly accurately. In
Figure 1.1 we can see an imperfect correlation between the job completion times and the
measured performance times from the data of specifically the Queue and Performance mixed
test that we discuss more in our experimental section. This test utilized the performance
data to dictate where jobs were scheduled.

FIGURE 1.1. Average Benchmark Performance vs Average Measured Actual Performance of Per-
formance and Queue test populations
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Chapter 2
Related Work

2.1 Improving Scheduling Algorithms

Prior work has shown the possibility of using a mix of decentralized strategies for work
scheduling. The Organic Grid used a hierarchical strategy to move high performing nodes
closer to a source of work. The ATC uses controller nodes to organize groups of workers,
and controllers compete to get work for their worker nodes. Simulations of each of these
algorithms have identified the comparative benefits and drawbacks of each approach.
The Organic Grid’s organization helps move work to high performing nodes more quickly,

however it builds an overlay network centered around a single work source. In a very large
scale cloud system, we may not always have a single source for work, so on a larger scale
we have to consider how to build a network that takes performance into account when
scheduling, but does not rely on a single point source of all work. We want to take the idea
of measuring performance and using that information to drive scheduling. We experimented
with simulating the Organic Grid, and one trend we noticed was that when work was added
in to a new location, the overlay network that was built was destroyed and recreated around
the new insertion point. Because in the original Organic Grid, the agents that reorganized the
network were associated with individual jobs, the knowledge gained in the previous session
was lost and unavailable to the next job to use the system. The Organic Grid is still a useful
strategy for scheduling a very large amount of work from a consistent insertion point, but
there is room for improvement.
The ATC algorithm contains a degree of mid-level centralization, nodes are categorized

into worker and controllers. Controllers organize a group of workers, and take on groups of
tasks for workers. Our simulations show that this can improve performance. Centralization
allows the benefit of full utilization. A controller knows how many workers it has, and is
able to pull a job that will most completely utilize the nodes. A fully decentralized solution
will not know exactly how to make an ideally sized job at each scheduling step. However
the downside to this solution in our simulations was the communications burden that was
placed on the controller nodes.
These experiments suggest many more possibilities than could be tested. The Organic

Grid scheduling algorithm is appropriate for a reliable work source, and it might be useful
for organizing a set of nodes under a controller, such as the one used in the ATC model.
Using the Organic Grid’s measurement tools is valuable, however different jobs may have
different requirements than a single performance metric. Characteristics such as access speed
to a data source, proximity to other nodes, or communication speed may also need to be
considered. As jobs might have different requirements, it would be desirable to allow jobs
themselves to choose how to prioritize variables that can be used for scheduling.
We want to benefit from the node information used by the Organic Grid, but reorganization

may be detrimental both because of multiple job sources and because the initial organization
may represent a beneficial hardware organization. We also want to develop an algorithm that
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can use different types of node information to make a job-specific scheduling decision. When
our only concern is node performance, the correct decision is always to move towards the
highest performing node. When we have multiple sources of node information, we need a
cost model in order to prioritize different node variables.
It has been shown that for certain problems, especially those that require complex inter-

communication between multiple jobs, typical cloud resources, such as Amazon’s EC2, do
not provide adequate performance. [38] [19] Methods such as MapReduce [16] provide the
basis of cloud computing, but require two things: some level of centralization, to map the
tasks onto a known set of processors, and independence, so that tasks do not have to be
coordinated between the working resources until the reduce step. These are both reasonable
restrictions for a wide range of problems, and have allowed the cloud to become a radically
successful platform displacing older grid-computing-based systems.
However, what if the problem requires some intercommunication, thereby being unsuited

to a simple MapReduce approach, but also is not composed of tasks of perfectly predictable
scope and size? We will attempt to schedule many-task problems on cloud hardware in a
variety of conditions and test what approaches may be leveraged to improve throughput
and ensure resources remain utilized. We will test a mix of interdependent and independent
tasks, and analyze how many independent tasks are necessary to keep resources utilized while
waiting for dependencies, and what tradeoffs can be made to complete a set of interdependent
tasks as quickly as possible.

2.2 Literature Review

Research on traditional grid scheduling has focused on algorithms for determining an opti-
mal computation schedule based on the assumption that sufficiently detailed and up-to-date
knowledge of the systems state is available to a single entity (the metascheduler) [22, 7, 1, 37].
While this approach results in a very efficient utilization of the resources, it does not scale
to large numbers of machines, since maintaining a global view of the system becomes pro-
hibitively expensive. Variations in resource availability and potentially unreliable networks
might even make it impossible.
A number of large-scale desktop grid systems have been based on variants of the mas-

ter/workers model [6, 35, 39, 20, 14, 29, 30, 24, 27, 9, 26, 25]. The fact that SETI@home had
scaled to over 5 million nodes and that some of these systems have resulted in commercial
enterprises shows the level of technical maturity reached by the technology. However, the
obtainable computing power is constrained by the performance of the master, especially for
data-intensive applications. Since networks cannot be assumed to be reliable, large desktop
grids are designed for independent task applications with relatively long-running individual
tasks.
Cloud computing has been very successful for several types of applications, especially

for applications that do not require frequent communication between different cloud nodes,
such as MapReduce [16] or graph-parallel [40] algorithms. However, for applications with
fine-grained parallelism, such as the NAS MPI benchmarks or atmospheric monitoring pro-
grams, it shows less than satisfactory performance [38, 19]. The main reasons are that the
performance of cloud nodes is often not predictable enough, especially with virtualization,
and that the communication latency is typically worse than that of a cluster [38]. While it is
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possible to rent dedicated clusters from cloud providers, they are significantly more expen-
sive per compute hour than virtual machines (VMs). With virtualization, however, the user
may not know whether a pair of VMs run on the same physical machine, are in the same
rack, or are on different ends of the warehouse.
Additionally, there have been many advances in supercomputer and high-performance

cluster computing for problems that require advanced communication [17, 8]. Automatic
handling of small-scale and compiler-level parallelization to optimize task-graph problems is
a proven approach. If the scope of the problem is known before it is started, and individual
task size can be predicted, many specific alterations can be done to improve performance
and synchronize communication steps. Problems that alternate between computation and
communication steps can be scheduled on known and homogeneous hardware precisely to
optimize throughput.
Other cloud computing projects have expanded the realm of what computation is possible

in the cloud. Spark [41], a system from Berkeley’s Amp Lab, is designed to improve perfor-
mance on iterative algorithms, such as machine learning algorithms, which repeatedly access
a single data set. The primary mechanism is a “resilient distributed dataset” that allows
multiple independent processes to access the same set of data more efficiently, at least for
read operations, than would otherwise be possible.
Google has dedicated research time to improving distributed application performance [10].

They have moved monitoring of application performance into applications themselves. This
was used to improve the understanding of application performance across locations and
when scaled up, but not obviously for actual scheduling decisions. Omega, another system
described in [10], decentralized some of the scheduling systems, allowing peer schedulers to
operate and make optimistic decisions, and avoid a “monolithic centralized master”.

2.3 Scheduling Algorithms

In prior work, we have built a prototype of a decentralized desktop grid system, the Organic
Grid [11, 12]. In the Organic Grid, Java mobile agents are utilized to wrap and transport tasks
to the nodes on which they are executed. Nodes start with connections to a set of neighbor
nodes, as shown in Figure 2.1. The tasks collectively form an application. An application can
be added to any node, and will be completed by the network of nodes connected to it. Nodes
without work will utilize work stealing to get jobs from neighbors who possess extra work.
Some applications are too large for a single agent to complete. In this case an agent may
clone itself, and move that clone to a location requesting work. The new clone will receive a
portion of the application tasks. Cloned agents will complete their tasks and any results will
be reported back to the original work source. If the work assigned to a clone is still too large,
the cloning process may be repeated, creating an overlay network. This network is defined
by the connections between cloned agents as the application tasks are spread through the
network of nodes. This overlay network will form a tree in which the root is the location at
which the application was originally added to the network.
The Organic Grid is designed to move high-performing nodes closer to the root node of

the overlay network. Because work radiates outwards from the root node, this means that
high-performers will be the immediate choices for any work being moved out of the root.
Parent nodes measure the time taken by child nodes when completing individual tasks. This
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FIGURE 2.1. Organic Grid Initial Network

information is used to identify high performing child nodes. High performing child nodes are
candidates to be promoted to a parent’s parent, moving them up the overlay network and
closer to the root of the tree, as seen in Figure 2.2. This process could result in too many
high performing nodes communicating directly with the root. To avoid this, the number
of possible direct children of any one node is limited. This limit may be altered on a per-
application basis. When tasks are moved to a child node, an algorithm similar to the TCP
sliding window protocol is used. This allow us to overlap communication and computation.
It has been demonstrated that this approach will result in improved performance for two ap-
plications. The BLAST sequence alignment application [11], and a Cannon-style distributed
matrix multiplication [12]. The overlay network restructuring algorithm was identical for
both application. However to achieve optimal performance some parameters were altered in
the different runs. The maximum number of children a node could have, and the details of
the sliding-window protocol to stream tasks, were different for the two different applications.
In the Organic Grid, the agents themselves measure the performance of their child nodes

without any support from the underlying agent platform. In a cloud computing environ-
ment, this would be undesirable, since the performance information would be lost when
an application terminates. We, therefore, propose that the nodes measure the performance
independently of any task and provide that information to applications through an API.
We also build upon the intelligently self-organizing network described in IBM’s Air Traffic

Controller patent [4]. In this algorithm, groups of computational nodes are defined at the
start, and provided with a leader (air traffic controller). These leaders query a central job
queue, and communicate with other leaders to acquire work for their groups. A leader will
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FIGURE 2.2. Organic Grid after Network Restructuring

choose the best task for its group, and then either request more workers from other leaders,
or spawn a smaller group to size itself correctly to the task. While these groups may resize,
this middleman centralization means that tasks are always only two hops away from the node
that will complete them. This, however, does create a high communication burden both on
the single job queue and the leader nodes that are organizing workers.
In Figure 2.3, we show the organization of an ATC network, with each leader controlling

a subset of worker nodes. Two jobs are currently in the queue, the smaller Job 1, and the
larger Job 2. Figure 2.4 displays how the network changes as the jobs are distributed. Group
leader A will split off a smaller network, A′, to size itself appropriately for the smaller Job 1.
Group leader B will merge with C to create a larger group to tackle the larger Job 2.
Notice that the new merged or split groups maintain the intra-leader relationships that
existed before the changes, so that the graph of group leaders cannot become disconnected.
Additionally, a new relationship between the split groups lead by A and A′ is created. If,
in the future, A’s group needed to grow to take on a larger job, it would attempt first to
re-merge with A′ before querying other nearby leaders, as it is assumed that the initial group
layout of the network reflects the physical organization of the system. Arranging groups in
a manner that reflects hardware organization will result in groups of jobs being assigned to
groups of nodes with superior interoperability.
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FIGURE 2.3. Air Traffic Controller Initial Network
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FIGURE 2.4. Air Traffic Controller after Work Distribution
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Chapter 3
Framework

3.1 Simulation Methodology

We have developed a simulation application to help us understand the strengths and weak-
nesses of different methods used to distribute work. This tool provides the measurements
necessary to justify our approach to distributed computing and guide us towards how it
will be implemented. It gives us a way to measure and compare the behavior of existing
algorithms, and understanding what factors play the most significant role in how different
approaches distribute work. We have measured simulations of both the Organic Grid (OG)
and Air Traffic Control (ATC) algorithms in several different configurations to try to un-
derstand where each approach is superior and how we can develop a new system that may
combine the strengths and mitigate the weaknesses of each.
A primary concern when attempting to create a simulation is showing that it is an accurate

representation of the system that it simulates. We do not attempt to measure the compu-
tational time taken, we simply measure the messages sent and the burdens on individual
computing nodes. By observing and categorizing the messages sent by each algorithm, we
are able to compare the ways each algorithm places burden on the network. Our primary
assumption is that any implementation of these algorithms on a real network would require
the same types of messages in order to distribute and complete similar work. The computa-
tional time taken by the simulation, on the other hand, might be an inferior measurement
because it might not match with real-world implementations of the tested algorithms. For
this reason, we do not present time measurements in this preliminary investigation, we are
more interested in examining how each algorithm’s distribution method can be optimized
than proving which is fastest.
Additionally, how can we be certain that what we have done will be relevant in an imple-

mentation on the cloud? The simulation attempts to accurately mimic different distributed
algorithms on a common simulated set of nodes, and produces measurements to distinguish
how those nodes will be burdened and how they will be utilized by each algorithm. On a cloud
implementation, the differences in node performance may come from other factors, such as
multiple processes competing for processor time, or delays due to communication overhead,
but the simulation will still show how each distributed algorithm responds to these stressors
even if the source of the stress is a simplified simulation parameter. And more importantly,
the simulation can still guide us to the best experiments to run on a real implementation,
and help us identify the variations on each algorithm that can result in the largest changes
in performance or balance.
With the Organic Grid, we have the benefit of past prototypes against which we can

compare our simulation. The Organic Grid organizes its overlay network and moves high-
performing nodes closer to the root, or source of work. In the original Organic Grid paper [12]
this was done by starting with a random graph of “fast” and “slow” nodes, constructing an
overlay tree for disseminating tasks and collecting results, and, based on the performance

12



of the nodes, migrating the fast nodes to near the top, leaving the slow nodes near the
bottom. Figures 2.1 and 2.2 show the start configuration for a sample run and the result
of restructuring the overlay network, respectively. Our simulation produces similar results,
although instead of designating only two categories of nodes, we assign each node a perfor-
mance modifier as a floating point number between 0.5 and 1.0. In Figure 3.1, we can see the
resulting overlay network from a simulated run of the Organic Grid algorithm. The nodes
begin the experiment with randomly selected neighbors, and a randomly selected node is
chosen to be the source of work. Note that the root, or source of work, cannot be switched
out, and, therefore, remains a relatively slow node. However, its immediate children are very
high performing nodes. The ordering is not completely based on performance, as not enough
time has elapsed to force every high performing node higher in the network and there is a
limit to the number of immediate children any node can have. Comparing this to Figure 2.2
demonstrates that the simulation can accurately reproduce the behavior of the Organic Grid
algorithm.

FIGURE 3.1. Node Tree From OGSimulation

Defending the simulations of the Air Traffic Controller algorithm is more difficult, as we
are referring to a patent and not a prior implementation. There are a range of possible
implementations discussed in IBM’s patent [4]. We simulate the basic system as described
in Section II, monitoring communication as it takes place through leader nodes, while the
leader nodes utilize a decentralized network to reorganize themselves and their worker nodes
appropriately based on the sizes of jobs added to the job queue. To accurately compare
the ATC and OG algorithms, these nodes have the same performance modifiers, however,
because the ATC does not utilize this information when reorganizing the network, it has
no visible effect on the algorithm’s actions, only the speed at which work is completed. We
monitor messages from the job queue, among the leader nodes as they organize themselves,
and from leader to worker nodes as jobs are assigned.
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Messages in our simulated network are organized into information, job, and result types.
We are most interested in job messages, which move work from node to node through the
network, and the result messages, which move the results of completed work back to the
point at which that work was inserted. A message that moves computation or results from
one location to another is in all likelihood larger than a simple status or heartbeat message,
and unlike a request for work, will occur more often as the network becomes more heavily
burdened. It is, therefore, not just a good measurement of how well the algorithm distributes
work, but by examining which nodes participate in which messages, it is also a good mea-
surement for estimating which nodes are disproportionally burdened by the communication
requirements of a distributed algorithm.
Grouping messages by type also allows us to distinguish signal from noise. For example, as

both algorithms we examine are work-stealing approaches, there will be an increasing amount
of unfulfilled requests for work as a system becomes less burdened. These requests are much
less interesting than work transfers, and their overhead will increase when the system does
not have other meaningful work to do. Finally, by examining the participants in specific
messages, we can analyze which nodes in the system are playing a disproportionally large role
in managing information. While we remove statistical outliers in most of our measurements,
it is useful here to examine individual participants that are consistent outliers. We examine
the top three most overburdened nodes under each configuration, organized by the type of
message, to determine if any interesting patterns arise.
In order to compare algorithms in different environments, many simulations were per-

formed with several different values for relevant variables. The ones we compare here are
based on the number of nodes in the network, (Node Count or NC in the figures), the num-
ber of jobs added to the system (Job Count or JC), and the amount of time each piece of
a job takes to complete (Job Time or JT ), which we measure in milliseconds. These three
variables are shared by the two algorithms we simulate and make the best points of com-
parison, both for these algorithms and for any future algorithms we may wish to simulate
and measure. While we do not scale the number of nodes in our simulation as far as we
will eventually scale our implementation, the varying size measurements still serve to show
measurable differences between the OG and ATC methodologies.

3.2 Cloud ATC Experimental Methodology

For validating the simulation results, we have run experiments on the CloudLab platform [15].
CloudLab is designed to allow for repeatable experiments performed in the cloud. By defining
a profile that describes the machines used and using randomly generated but preserved
machine configurations, we can create a variety of experiments and maintain an experimental
log that will allow these experiments to be reliably replicated [34]. We used a machine
template running Docker 1.6.2 on Ubuntu 12.04 LTS. These machines were provisioned on
the APT Utah Cluster, which possesses two classes of nodes. The information in Table 3.1
on the available hardware is from the CloudLab Utah hardware description [3]:
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TABLE 3.1. CloudLab Utah Hardware
Name CPU RAM
r320 1x Xeon E5-2450 processor 16 GB
c6220 2x Xeon E5-2650v2 processors 64 GB

Each node is connected to three network interfaces, a public Internet facing control net-
work, a “flexible fabric” network, and a “commodity fabric” network [3].
The cloud experiment utilized nodes that were requisitioned from CloudLab in a common

manner. While the simulation artificially created performance distinctions between different
nodes, that was not the case in the cloud simulation. Distinctions in performance are due to
differences in the hardware, in the load on that hardware, on the communication latency, and
on differences in workload on the participating nodes. Even when all nodes are pulled from
the same system, there may be some measurable variation in performance. Measurements of
node performance are taken and compared to judge whether these similar nodes will perform
measurably differently.
Our experimental platform is a Python application that uses the Python-twisted libraries

for networking, packaged in a Docker container. Each running Docker instance maintains
a server program that listens for incoming messages and a thread of execution to generate
messages to send to other instances. This program is implemented primarily in a base class
called SimMgr. This class is extended by other classes to specialize into an ATCSimMgr and
ExpSimMgr. ATCSimMgr has the specialized logic required to take on the roles of nodes in an
ATC system, including the Queue, Controller, and Worker nodes. It also contains extensive
local logging, for both debugging and experimental measurement purposes. We will refer to
Docker instances running ATCSimMgr nodes as experiment nodes. ExpSimMgr allows a Docker
instance to manage and report on an entire experiment as an experimental monitor. These
nodes contain information about every experimental node in an experiment, they dictate
roles to experimental nodes, and once a given experiment is completed they contact the
nodes to gather and collect their individual log information. Logs are written each time
useful messages are sent or received. These collected logs are the basis for the cloud-based
measurements presented below.
Experimental nodes listen for the following messages:

• Send Experimental Logs

• Terminate

• Add Batch Job

• Batch Job Done

• Add Sub Job

• Sub Job Done

• Set Type
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– Controller, Queue, or Worker

– Also informs controllers of queue location

• Add Sub Nodes (assigns workers to controller)

The experimental monitor listens for the following messages:

• Terminate

• Receive Logs

• Receive experimental node

• Batch Job Done

We simulated work in the form of 200 batch jobs, each of which contains 18 parallel
portions. Each of the parallel portions range in time from 100 to 200 milliseconds. These
200 batch jobs are added to the queue node and given on a first-come first-served basis to
controllers that request work. A controller then allocates work for each of its worker nodes.
Once a worker completes a piece of work, it reports that to the controller, and once the
controller completes a batch job, it reports to the queue. Once all jobs in the queue have
completed, the experiment is over and the logs are collected.
In the cloud application, we bundled messages when communicating from a controller to

the queue, which results in a reduced number of messages for the queue. This can be seen as
an improvement over the original simulation methodology, however it does not necessarily
translate into a reduced communication load overall, since the same information must be
transmitted. Depending on the algorithm implemented, and how much information returned
to the point of origin could be reduced in size, the burden on the queue could grow or shrink.
However the burden on the controllers, which is more interesting, is primarily based on the
number of workers that it manages. Although the overall burden will be determined by the
nature of the work, the disproportionate burden will be determined by the structure of the
network.

3.3 Vector-Based Scheduling

What we are calling vector-based scheduling is the idea that there is a direction in which
work should move through a network of nodes. We theorize that if the nodes can be placed
in an n-dimensional space based on n measurable attributes, the best direction for work to
move can be defined as a vector in that space. Therefore, we measure attributes about nodes
at a given time, such as their current workload, or their performance on a given benchmark.
After we describe each node’s position, we can compare those positions to an ideal vector
using the dot product operation in order to determine which nodes most fit the direction
defined by that vector. By collecting the dot product values of a group of nodes, we can
create a weighted job distribution from any individual node to any set of neighbors. Using
this methodology, we can make distributed scheduling decisions based on recent information
at any point in the network of nodes.
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As an example, suppose we measure only node performance and queue length. Node A

enters a redistribution cycle, as a result of having a job surplus. Its neighbors are nodes B,
C, and D. A has the information about itself and its neighbors as seen in Table 3.2.

TABLE 3.2. Node Information
Node Queue Length Benchmark (sec)
A 7 0.8
B 1 0.1
C 0 0.2
D 1 0.6

According to the table, A has a high number of jobs, and a it took 0.8 seconds to complete
the benchmark run. As a general rule, we expect that for the work we are doing, moving jobs
towards unburdened nodes will be a good scheduling strategy. Unless the cost of movement
is greater than the total cost of computation time, this will be the case. We also hope to show
that moving jobs towards higher performing nodes will be beneficial, and to what degree this
is the case. B in this scenario is the highest performing node, and C is the node with the
fewest jobs in its queue.
We can either view these characteristics as facts about the nodes, or we can view them

comparatively by transforming them to a known range. Transformed, we can distinguish
between comparatively good characteristics. For evenly burdening the network, which is
important if no one node has global information, this is valuable, however it can have the
negative result of magnifying small differences in performance. Note that this example occurs
for one scheduling choice at one point in time, therefore we will transform the set 7 1 0 1 into
the range [-1, 1]. If another scheduling decision is made at a later time, the data that exists
at that point will be transformed independently of this decision point. The transformed data
is shown in Table 3.3

TABLE 3.3. Node Info on [-1,1]

Node Queue Length Benchmark
A 1 1
B -0.714 -1
C -1 -0.714
D -0.714 0.429

Now we can describe the direction we want work to move in terms of a vector in this
space. We experimentally test several vectors. For this example, we use (-0.9, -0.3). If we
consider the first coordinate to represent the weight given to Queue Length, and the second
coordinate as the weight given to Benchmark Performance, we have a space as shown in
Figure 3.2.
An additional factor to consider when determining where to move jobs is the cost of

movement. The communication burden of moving a job from one location to another is
always present, and may vary from job to job depending on the memory requirements of
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a job. Additionally, in a decentralized network of independent decision makers, there is a
danger of a thrashing behavior, in which jobs are repeatedly shifted around between the
same set of nodes. We have implemented two policies to mitigate this problem, although it
may be counterproductive to completely eliminate it.
The first and simplest rule is to provided a minimum queue length below which a node

will not attempt to move jobs. For our initial experiments that queue length is 1. The second
possibility, which is more in line with our experimental methodology, is to provide a stasis
vector as an experimental parameter. This vector offsets the metrics of the work source node
to make it a more likely candidate for work redistribution. This stasis vector is not large
enough to override a significant difference in measured node quality, but should be large
enough to keep insignificant changes in measured node quality from prompting wasteful
rescheduling. Proving whether a stasis vector is useful, and what characteristics it should
have will be a focus of the experimental stage.
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Chapter 4
Software Architecture

4.1 Platforms and Resource Management

To test the vector scheduling algorithm, we have implemented a decentralized scheduling
program for the cloud. The primary software artifact is the platform. Platforms are stationary
on a piece of hardware, and they present that hardware’s resources to the decentralized
network of platforms through neighbor relationships. They also control a queue of work
for that piece of hardware, starting jobs and reporting completed ones. Platforms consist
primarily of a TCP/IP server that listens for incoming messages and responds to them.
The specific class hierarchy of the current Platform utilizes the BenchNodePM class, which
inherits from the NodePlatformManager class, which inherits from the PlatformManager

class. Certain basic functionality that defines the platform is spread through these three
classes.
Platforms are initiated via the script StartNBenchPM.bash, which will start a parameter

defined number of platforms based on input arguments. This directly calls the BenchN-
odePM.py file as an argument, therefore the entry point for execution of one individual
Platform is at the end of the BenchNodePM.py file. This file pulls the IP and Port that the
platform will listen on, as well as the IP and Port of an experimental manager that it will re-
port to. An instance of BenchNodePM is created, and its member function StartAll is called.
StartAll is defined in NodePlatformManager, which also calls the StartAll implementa-
tion in the parent class PlatformManager. StartAll is designed to start the fundamental
threads used by the platform manager.
The three threads started by each platform are filewaiter, serverThread, and manager-

Thread. serverThread will listen for incoming messages at the parameter defined platform
IP and Port. It will be utilized to respond to incoming messages. managerThread will manage
the local work queue, dequeuing available work and checking and responding to completed
work. filewaiter is designed for the limited purpose of handling larger incoming messages
that we do not want to block on. When the conceptual object that is a job is being trans-
ferred from platform to platform, it may transfer one or more files that may involve a few
connections. filewaiter manages partially transferred jobs, keeping them in an incoming
queue, monitoring for the transfer to be complete, and then finally dropping them into the
actual queue once transfer has completed successfully.
The platform carries a few member variables that fundamentally define its state. The

following is not an exhaustive list of member variables, but instead a grouping of the most
meaningful data structures that will be acted on by the Platform to complete work and
interact with neighbors:

1. workqueue, the list of local jobs.

2. A list of neighbors, and the IP/Port information to message them
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3. ExecContainer, the thin manager of a currently executing job.

4. Measurement data about itself that it can present to neighbors.

5. Times when measurements were taken, in case they should be retaken.

6. A data structure containing the information neighbors have provided it.

7. An instance of MsgMonitor, which is in charge of making sure that outgoing messages
send successfully.

The breakdown of the platform classes is visible in Figure 4.1, as well as separate fig-
ures for each class, Figure 4.2 (PlatformManager), Figure 4.3 (NodePlatformManager), Fig-
ure 4.4 (ExpPlatformManager), Figure 4.5 (BenchNodePM), and Figure 4.6 (TaskGraphPM).
The PlatformManager class is the parent class for all platforms, both ExpPlatformMana-

ger, which runs experiments and does not perform work and the NodePlatformManager then
BenchNodePM, then TaskGraphPM classes, which are experimental platforms that gradually
build more sophisticated experimental capabilities. The msgmon variable, which is utilized
to send messages between platforms, is defined at the PlatformManager level, as it is used
by both the experimental platform and node platform hierarchy. The workqueue, which is
relevant only to nodes that actually perform work, is defined at the level of the node plat-
form. Benchmarking and vector scheduling work is divided, but much of it is added at the
level of BenchNodePM. The ability to execute task graphs is largely defined at the level of
TaskGraphPM. This design is largely the result of the gradual implementation and testing
of different and enhanced features over time, with the desire to impact as little as possible
previously implemented functionality, so that comparison between different implementations
would be as fair as possible.

FIGURE 4.1. UML Diagram of Platform Manager Hierarchy
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FIGURE 4.2. UML Diagram of Platform Manager
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FIGURE 4.3. UML Diagram of Node Platform Manager
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FIGURE 4.4. UML Diagram of Experiment Platform Manager

FIGURE 4.5. UML Diagram of Benchmark Based Node Platform Manager
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FIGURE 4.6. UML Diagram of Task Graph Platform Manager

NodePlatformManager’s primary functions can be seen as pseudocode in Algorithm 1.
These functions control how the platform is started and stopped, and how jobs are actually
processed in the node. Once a job is started it is started as a separate process and moni-
tored, not run within the same thread as the platform. The platform therefore consists of

24



at least three threads of execution. The monitor thread in Algorithm 1, the thread(s) of
execution of any work that is being performed, and the thread that maintains ongoing TCP
communications with other platforms.

Algorithm 1 NodePlatformManager’s primary monitor thread functions. These functions
control the lifetime of a platform and the execution and reporting of any jobs the platform
is responsible for.

1: function NodeManagerRun(self)
2: if self.ExecContainer = None then

3: self.ExecContainer ← self.GetWorkToDo()
4: self.ExecContainer.Start()
5: else if self.ExecContainer.IsFinished() then
6: self.SendExecFinished()
7: self.ExecContainer ← None

1: function ManagerThreadRun(self)
2: self.ReportToExp()
3: while True do

4: time.sleep(MANAGERCHECKTIME)
5: if self.terminate then

6: self.SafeStopServer()

7: if self.managerOn then

8: self.NodeManagerRun()
9: else

10: if time.now() > self.unpausetime then

11: self.managerOn ← True

BenchNodePM, which inherits from NodePlatformManager, contains additional functional-
ity that controls how information is shared between neighbors, and how work is moved from
platform to platform. In Algorithm 2, we can see the additional functionality that surrounds
work redistribution. A platform can only redistribute the work that is contained in its own
queue, it relies on information from its neighbors to understand their queue lengths, and
works under the knowledge that they will also be making independent decisions about where
to send the work in their own queues. The vector method allows us to choose nodes with
less burden and send them a proportional amount of work. The direction that work should
flow is described by a vector, and the dot product of that vector and the statistics of any
given node let us build a ratio that will determine the amount of work to send any node.
In Algorithm 3 we can see the functionality that performs this task. FlowVector is one of
several classes that were designed to test different ways to handle different experimental
methods as this project evolved.

4.2 Intra-Platform Communication

The classes that define information to be sent are called message generators and inherit
from the MesssageGenerator class, shown in Figure 4.7. Message generators are created,
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Algorithm 2 BenchNodePM. Much of this class’s functionality is inherited from NodePlat-
formManager. It adds the ability to collect statistics about neighbor nodes, and to use those
statistics along with the experimentally parameterized vector to redistribute the work in its
queue.

1: function NodeManagerRun(self)
2: NodePlatformManager.NodeManagerRun(self)
3: if self.sendInfoInterval() then
4: outmgens ← self.GetOtherMGensForNeighbors()
5: outmgens.send()
6: self.redistributeWork()

1: function redistributeWork(self)
2: nbench ← []
3: nqls ← []
4: nbench[0] ← self.GetBench()
5: nqls[0] ← self.GetQueueLen()
6: for nid in self.neighborQueueLen do

7: nbench.append(self.neighborBench[nid])
8: nqls.append(self.neighborQueueLen[nid])

9: dictRedist ← FlowVector.getRedistDict(nbench, nqls)
10: for nid in dictRedist do
11: for i in range(dictRedist[nid]) do
12: msg ← self.dequeueWorkForNeighbor()
13: msg.send()
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Algorithm 3 FlowVector. The functionality here is used only by BenchNodePM, but is not
stored in that class because it is much more developmentally volatile as we test different
vector functionality. The purpose here is to use the statistics about each node, including the
local node at index zero, to determine how many jobs from the local nodes queue each should
have. Nodes should have more jobs if their statistics match with the vector that defines the
ideal parameters. This is accomplished via the dot product operation.

1: function getRedistDict(nbenches, nqls)
2: flowvector ← getFlowVectorParameter()
3: nbenches ← normalize(nbenches)
4: nqls ← normalize(nqls)
5: dptotal ← 0
6: dpnodes ← new dictionary()
7: for nid in nbenches do
8: dpval ← dotproduct([nqls[nid], nbenches[nid]], flowvector)
9: dpnodes[nid] ← dpval

10: dptotal ← dptotal + dpval

11: jobsToDist ← nqls[0]
12: extra ← 0
13: jobdict ← new dictionary()
14: for nid in dp nodes do
15: dpratio ← dpnodes[nid] / dptotal
16: jval ← jobsToDist * dpratio
17: jobdict[nid] ← floor(jval)
18: extra ← extra + (jval - floor(jval))

19: nids sort ← keys of jobdict sorted descending by values
20: while extra > 1 do

21: for nid in nids sort do
22: jobdict[nid] ← jobdict[nid]+1
23: extra ← extra - 1
24: if extra < 1 then

25: break
26: return jobdict

27



then passed to a platform’s msgmon variable, an instance of the class MsgMonitor, shown
in Figure 4.8. This class is provided with message generator objects, and is charged with
ensuring that messages are completely received at their destinations. MsgMonitor calls the
twisted library’s connectTCP method, which actually opens a connection to a specific IP
address and port, when it is provided with a MessageGenerator to send to a location. Once
the connection is opened, the MessageGenerator is read, as a stream might be, until its
message is sent. After the message is sent, a message generator might close the connection,
or it might expect a message back from the destination. This is the value of the OneShot()
function, it defaults to True, which closes the connection when a message is sent, but if
overridden to return False, the connection will remain open expecting a response back.

FIGURE 4.7. UML Diagram of Message Generators

FIGURE 4.8. UML Diagram of Message Monitor
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In Figure 4.9, we can see some of the most basic inheritors of the MessageGenerator class.
Most message generators inherit from StringMessageGenerator. Not all message genera-
tors we use are visible in Figure 4.9, as there are too many to easily show. Classes that
inherit from StringMessageGenerator send simple, small amounts of information, such
that the entire message can be defined by a single string variable. More interesting mes-
sage generators inherit from ContainerMessageGenerator, which sends a message that
essentially contains a portion of work, and FileMessageGenerator, which sends a file.
ContainerMessageGenerator must send potentially multiple files, and must be managed
at the destination so that once an entire job container is sent, it can be marked as available
to either be worked or transfered once again. We do not implement any kind of job container
pipelining, a job must be completely moved from one location to another before it is moved
again.

FIGURE 4.9. UML Diagram of Message Generator Hierarchy

FileMessageGenerator, as seen in Figure 4.10 is used to send a file, but it is typically
not utilized unless a file transfer is first proven to be necessary. Most file messages are pre-
ceded by the DoYouNeedFileMG, in Figure 4.11, which sends the unique file identifier to a
destination to see if the file is actually necessary. As many jobs we test utilize the same code,
with different arguments, needlessly sending the same files around would waste time. If a
destination responds that a file is needed, a FileMessageGenerator will at that point be
created to actually send the file. TGObligFMG is an extension of this class with the added
ability to relate a file to a specific task id, and to send extra information along with the file.
ComboMessageGenerator is simply a combination of multiple message generators.
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FIGURE 4.10. UML Diagram of File Message Generator

FIGURE 4.11. UML Diagram of Conditional File Transfer Classes

Each MessageGenerator at a source has a corresponding MessageReader at that message’s
destination. We can see the UML breakdown of some of the readers in Figure 4.12. Once
a message is received by a platform, it is sent to the ReaderFactory, which examines its
header and creates an instance of a message reader class specifically designed to handle that
type of message, with the buildMessageHandler function. One thing to notice at this point
in both Figure 4.13 and Figure 4.7 is the context variable that each possess. The context

is the instance of the platform that the message is relevant to. A message is sent from one
platform/context, to another platform/context. In order to read relevant information from a
platform, and write relevant information to a platform, the message generators and message
readers must have access to those platforms, and the context variable allows them to get it.
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FIGURE 4.12. UML Diagram of Message Readers
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FIGURE 4.13. UML Diagram of TCPReader

Notice that readers have the ability to define a method called GetResponse, which es-
sentially lets the reader create a message generator to send a response message, which will
be managed by a corresponding reader at the original location of the message. So while
each message is managed by a temporary class that is really only relevant to the individual
message currently being delivered, a more complex exchange might involve the creation of
several message generators and message readers as information is passed back and forth.
Readers default to reading ASCII encoded text from the TCP connection, but with the
method SetToRaw, they can switch to reading byte arrays of defined length. This means that
any raw byte information to be sent must be prefixed by an ASCII encoded header defining
the amount of byte information to be sent.
Work is managed by wrapper classes we can see in Figure 4.14. The two primary classes,

ContainerManager and TGManager, wrap around specific pieces of work, allowing them to
be transfered from platform to platform, and once completed, allow them to report results.
TGManager has additional capabilities related to handling task graph dependencies. To move
work from one node to another, the Package function is called to create the message gener-
ators necessary to transfer the work. JobRequirement and LocationForwarder are helper
classes used by TGManager to define dependencies between jobs and the locations to send
those dependencies.
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FIGURE 4.14. UML Diagram of Container Managers

With a decentralized system containing the ability to move multiple jobs, scheduling a task
graph and making sure dependencies end up in the correct locations is a major challenge.
The LocationForwarder allows interdependent jobs that move from one node to another to
leave what amounts to a forwarding address, so messages for that job can be forwarded to
a new location. Forwarders should be removed as jobs are updated with new locations, and
maintain an index that will increment every time a job is moved, so that the most recent
information about a job’s location can be identified.
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serverThread will create a listener based on an instance of MessageDispatcherFactory,
which will actually utilize the python twisted library we are basing our TCP/IP server
on. There are several layers of abstraction around which our messages are actually built
designed to make the creation of new types of messages as easy as possible, but this also
makes it somewhat hard to understand exactly what happens when information is sent
through TCP/IP. When a platform listening for incoming messages receives an incoming
connection, MessageDispatcherFactory creates an instance of MessageDispatcher, which
inherits from twisted’s LineReciever class. This instance will handle information on this
connection until that individual connection is terminated. A connection may consist of one or
more back and forth messages. Each message will start with a portion of string information
separated by commas. While we can and do transfer byte data, we always first send a message
that explains what byte data to expect and what to do with it, and when we can complete
that transfer and return to looking for ASCII encoded data.
The first full line of new information will be provided to the ReaderFactory’s build-

MessageHandler method. This method is the entry point to best understanding specialized
message handling. While MessageDispatcher does a lot of the work of siphoning information
from the connection, the class instantiated by ReaderFactory contains the context specific
handling of the information that is actually received. This abstraction also serves to keep
the details of the twisted library implementation away from the code that actually handles
the message. Any reader, (inheritor of the TCPReader class), is instantiated with a member
variable called context. context is always the instance of the PlatformManager class that
may need to be read or altered based on the content of the message. This is the link that
allows an incoming message to alter the platform’s neighbor information, or add a job to its
queue.
While the TCPReader class defines a few methods, most are not overridden in most readers.

Two which often are are HandleLine, and GetResponse. HandleLine is necessary to handle
any information passed by the message other than the type of message which it is. There are
some messages for which this is unnecessary, for example PauseReader pauses the platform
(via context), and prepares a response, but there is no extra information in the line to
handle. It is also possible for a reader to choose to lose a connection. GetResponse always
creates either a null value, or an instance of a class inheriting from the MessageGenerator

class.
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While the subclasses of TCPReader handle received messages at a target platform, out-
going messages from a source platform are dealt with by subclasses of MessageGenerator.
Many simple messages inherit from an intermediate class, StringMessageGenerator, for any
message that can be completely represented by a single string. Therefore, message passing
between a source platform and a destination platform involves:

1. Creating an instance of a subclass of MessageGenerator at the source platform specific
to the message.

2. Enqueuing that instance into the MessageMonitor instance attached to that platform.

3. Using the information in the MessageGenerator to open a connection and send the
message.

4. At the destination, once at least one complete line of the message has been read, a
reader will be created by ReaderFactory and given the platform instance as context.

5. The reader will process the message, altering the state of the platform if necessary.

6. Potentially, a response MessageGenerator will be created, utilizing the same connec-
tion but otherwise returning to step 3.

7. Potentially, the connection will be closed.

Messages may therefore go back and forth almost as a tennis ball through a single con-
nection, but all messages we use will eventually end in a completion state that terminates
the connection. The complete set of messages we can generate is constrained by the classes
we have implemented that inherit from MessageGenerator, some of which are deprecated
at this point. Message generators exist for the following general purposes, each will have a
corresponding reader that will process the message at its destination:

1. Ask for work

2. Sending Benchmark Information

3. Sending a neighbor introduction - (sent from experimental controller)

4. Sending queue length information

5. Pause and Unpause the platform - (sent from experimental controller)

6. Sending the result of a piece of work

7. Sending a piece of work.

The last two are some of the more complex messages, which involve multiple parts. Work
is wrapped by the ContainerManager class in SubContManager.py. This thin wrapper lists
a set of necessary files for a job, an origin for the job’s completion to be reported to, a set of
arguments to be used to start the job, an expected result to send once the job is completed,
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and as of writing this, we are expanding this class to also contain details about requirements
and obligations for the purposes of the task graph implementation. One of the member
functions of ContainerManager is Package, which essentially serializes the instance into a
MessageGenerator, allowing the piece of work to then be sent to another platform. This
ContainerMessageGenerator sends the specific information about the job, and then for
each necessary file, additionally creates and sends an instance of DoYouNeedFileMG. This is
because, especially for most of our test work, each job utilizes the same basic compiled code,
even if it runs differently, and constantly sending redundant copies of this code around would
be extremely wasteful. DoYouNeedFile messages can either be responded to with instances
of IHaveFileMG, or INeedFileMG, depending on what files are present at the destination.
A response that requires the file to be sent will trigger the use of a more complicated
FileMessageGenerator, which uses a combination of ASCII prefixes, as well as byte data
transfers through the connection to send a file. A job can only be considered ready to be
executed, or moved again, after all its files have been transferred or verified. Making sure
this rule is held for all mid-transfer jobs is the purpose of the filewaiter thread.
This brings up a point that will have to be addressed when this implementation is provided

as a usable library, but is not particularly interesting experimentally. What makes a file
unique is not at the moment clear if the system is handling multiple pieces of work, potentially
added by multiple users, ideally not requiring that those users avoid file name collisions. This
is not difficult to solve but it is worth pointing out that it is not solved right now, as it seemed
to be unnecessary functionality for a proof of concept.
While the message generators and readers control the transmission of specific messages,

they are supported by a generalized message handling system. Each platform attaches an
instance of MessageDispatcherFactory, as shown in Figure 4.15, to the port that it listens
on. This factory is able to create a MessageDispatcher to manage an incoming connec-
tion. The connection will send data, which will be sent to the ReaderFactory, which will
determine which reader will actually handle the incoming information. By cycling through
a sequence of generators at a sending location, and corresponding readers at a destination,
many simple class instances can be created to handle modularized pieces of a complex mes-
sage. Several message generators and readers are created to send an entire piece of work from
a source to a destination. When a platform wants to establish an outgoing connection, a gen-
erator is passed to a MessageSenderFactory, shown in Figure 4.16 that is able to establish
a TCP connection and manage communication for any message that we might want to send.
That MessageSenderFactory creates a MessageSender, which is a simple extension of a
MessageDispatcher that is primed to start initial communication. After that initial unso-
licited communication, MessageDispatcher will handle passing information to readers, and
any additional information will be essentially a response. However, responses can provoke
responses, and this cycle can continue until all relevant information is transfered. To clarify,
the dispatch concept in MessageDispatcher involves dispatching incoming information to
an appropriate reader.
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FIGURE 4.15. UML Diagram of Message Managements

FIGURE 4.16. UML Diagram of Message Sender

While many messages can be completely transmitted in a simple fashion, some larger mes-
sages must be marked as in transit, and finalized when file information has been completely
transferred. This is the purpose of the reactorFileConfirmer object in the Platform-

Manager, see Figure 4.2. This allows us to move a job, mark that job as in transit at a
destination, and then mark a job as completely transferred when all its files are confirmed
as delivered. At this point a job can be moved to an active queue for execution or further
movement through the platform network.

4.3 Vector-Based Work Redistribution

VectorContainer, shown in Figure 4.17 stores a flow vector, to be used to direct work
through the graph, and a stasis vector, which is meant to prejudice the scheduling algorithm
towards keeping work where it is already located, and avoid rescheduling based on differences
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too minor to be valuable. As our scheduling mechanism evolved over time with our experi-
ments, the stasis vector remained but was unused, as we weren’t able to create experimental
support for its utilization. We also added the swap time ability. The primary idea behind the
vector scheduler is that the direction in which work should flow in a decentralized network
can be determined only by the knowledge available at that point in the network. Information,
starting with node queue lengths and relative node performance, can be utilized to make
intelligent scheduling decisions. Positioning a vector on each node will provide it with the
ability to weigh the value of each piece of information that it possesses.

FIGURE 4.17. UML Diagram of Vector Container

We had originally suspected that the vectors would need to gradually change over the
lifetime of an experiment, but our initial results with single vector experiments showed that
work actually progressed in three fairly distinct stages. In stage one, the work is concentrated
and most of the network is unutilized. Improving that stage involves more rescheduling
actions. The second stage is when the available hardware can be fully utilized. Scheduling
based on queue length is most important at this point, as every node should remain utilized.
In the third phase, we will not have enough work remaining for all nodes to remain busy,
so we should prioritize high performers. To enable the shift between phase two and phase
three, we implemented swap times, which would shift the scheduling strategy from one flow
and stasis vector combination, to another combination, after a certain amount of time had
passed.
Vector containers, along with a node’s information about itself and its neighbors, will be

passed to a redistribution function that will gather the information sets, apply the vector
coefficient to each piece of data, and determine what jobs available from a node will be
distributed to its neighbors. If a node does not possess any work to distribute, this process
will be skipped as it is a computational overhead. An additional benefit of vector weighing is
that it allows us not just to move work in a direction, but provide a weight for each neighbor
node that can be used to determine the proportion of the available work that it will receive.
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4.4 Experiment Parameterization

Alongside the experimental platform, we have built a set of experiment definition classes to
describe experiments parameters. These classes build the experiment, but do not play a role
in the system once an experiment has actually started and the worker nodes are processing
jobs. One such class, the BenchDefinition class, in Figure 4.18 defines a single bench type
of experiment, which was the low level name for experiments utilizing the vector scheduling
approach with the inclusion of benchmark measurements.

FIGURE 4.18. UML Diagram of Bench Experiment Definition

The BenchDefinition class contains the basic variables to define the experiment, how
many nodes will participate, the graph that will be used to create the neighbor relationships
between those nodes.

1. node count - how many worker nodes in experiment

2. graph - the graph that defines node neighbor relationships

3. container manager - the work that will be done

4. work alloc - which nodes will start with work

5. vec stases - the stasis vectors to be used

6. vec flows - the flow vectors to be used

7. swapTimes - the time points to switch which vector is used

8. expectedTime - how long we expect the experiment to take

An instance of this class can be serialized, recorded to or created from a json file. This
allows us to store an actual experiment that was performed to improve repeatability. Initially,
we assumed each experiment would be defined by a json file, but this proved to be a tedious
and unwieldy method. We instead created the BenchDefFactory class, which is able to
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predictably and repeatably generate BenchDefinitions within certain parameters. By using
the graphseed variable to seed a random number generator, we can utilize this class to create
a set of random experiments, and by using the same seed we can generate the same set of
graphs and make our experiments repeatable without saving a json file for every single
experiment run. Instead, we define the parameters of the experiment in a json file, and have
the BenchDefFactory, in Figure 4.19 use those parameters to generate as many instances of
BenchDefinition as we want to run. Instead of a single graph, we have a defined random
seed and the value of prob connected, which controls how likely it will be that any given two
nodes are connected by a neighbor relationship. prob work alloc controls the probability
that a node will start with work. If set to zero, all the work will start on one single node.
Other than those randomized variables, most of the other values, such as the vectors to be
used, are passed directly to the generated BenchDefinition.

FIGURE 4.19. UML Diagram of Bench Experiment Factory

This process was expanded on in the task graph portion of our work to generate re-
peatable task graph experiments. This work was completed under some more stringent
time constraints, so rather than build a more sophisticated inheritance mechanism, exist-
ing functionality was simply copy pasted into the TaskGraphDefinition (Figure 4.20) and
TaskGraphDefFactory (Figure 4.21) classes. These are augmented with the ability to create
task graph work for the nodes to perform. For a more detailed review of the reasoning behind
how task graph jobs are created see the experimental section 5.3.
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FIGURE 4.20. UML Diagram of Task Graph Experiment Definition

FIGURE 4.21. UML Diagram of Task Graph Experiment Factory

One last implementation detail is the distinction between worker/node platforms and
the single experimental platform/manager that controls the experiment. The experimental
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manager is contained in the ExpPlatformManager class, which also inherits from Platform-

Manager, and therefore uses essentially the same system to communicate with the platforms
that are part of the experiment. It is capable of communicating with the worker nodes,
and does to set up the experiment, providing the graph of neighbors, as well as the initial
work. After providing this startup information it sends out a time at which the nodes will
unpause, starting the experiment. After this message, the experimental controller does not
communicate with the workers during the experiment until after a certain timeout by which
the experiment should have completed. At that point it sends termination messages to all
participating workers, and collects their individual logs of the work done and messages sent.
It is from these logs that the figures and information presented in the experimental section
are created. The experimental manager also always has its own set of processor cores set
aside for only it, so that it impacts the hardware of the experiment as little as possible. Dur-
ing the duration of the experiment, it does not perform any actions except to occasionally
check for the timeout. Pseudocode of the ExpPlatformManager can be seen in Algorithm 4.
When the ExpPlatformManager starts an experiment, it will refer to an experimental def-
inition that will describe that experiment’s parameters. It does this by taking the worker
nodes that have reported to it and sending them to an instance of BenchDefinition or
TaskGraphDefinition’s startExperiment method, which can be seen in pseudocode in
Algorithm 5

4.5 Experiment Timeline

From this we can now construct the timeline of an entire single experiment. An experimental
manager is started on a specific set of cores, and is given information about the experiment,
as well as how many platforms will be participating. It starts listening on a defined port.
Platforms are started on the rest of the hardware, usually with deliberately unbalanced
resource allocation, and each platform is provided the IP address and port of the experimental
manager. Each platform identifies itself to the manager, and pauses itself so that it will not
attempt to do any work. When the manager has received as many platforms as the experiment
defines, it sends information to each Platform, including which neighbor platforms it can
contact, and an initial work set. After that information has been sent, the manager sends
each platform a time at which it should unpause, so that the entire experiment starts nearly
at the same time. At the start point, nodes measure themselves, present that information
to neighbors, rebalance work using whatever approach we are experimenting on, lately the
vector scheduling approach, and execute the jobs in their individual queues. After a timeout
is reached on the manager, it contacts each platform, kills it, and collects its log. At this
point we can start an new experiment, terminating all processes and restarting with a new
manager and new platforms.
Each configuration we test ends up being run between 20 and 30 times. These run sets

are defined to test some information held in common, such as the same scheduling vector,
but also contain some randomness. To reduce distinctions between experiments and improve
repeatability, an experimentally defined seed is used so that things such as the graph of
neighbors will be the same at the same points in different experiments. For example, ex-
periment index 13 using a queue preferring vector should have the same neighbor graph as
experiment index 13 using a performance preferring vector. Running a set of experiments is
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Algorithm 4 ExpPlatformManager’s primary functionality. Unlike nodes that process work,
it is started with a specific experiment to run, defined by inexpdef. Worker platforms are
started with the location of a ExpPlatformManager to report to, then it will communicate
whatever information is necessary to those workers.

1: function Constructor(self, inexpdef)
2: self.expdef ← inexpdef

1: function ManagerThreadRun(self)
2: self.terminate ← False
3: while True do

4: time.sleep(MANAGERCHECKTIME)
5: if sent terminate then

6: if time since term > TERM WAIT then

7: self.SafeStopServer()
8: self.dumpLogToStdOut()
9: break

10: else if requested logs then
11: if time since log request > LOG WAIT then

12: self.compilelogs()
13: self.SendTerminate()

14: else if experiment started then

15: if time since exp start > exp expected time then

16: send gather logs request

17: else

18: self.ExpManagerRun()

1: function ExpManagerRun(self)
2: if exp nodes reported and not experiment started then

3: self.expdef.startExperiment(self, reported exp node info dictionary)
4: experiment started ← True
5: upm ← unpause message of now + 20 seconds
6: Send upm to all exp nodes
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Algorithm 5 BenchDefinition’s primary functionality. The BenchDefinition class must con-
tain the information listed in the constructor to define a valid experiment. This will in reality
either happen through a factory or generator method. The startExperiment method will be
called from an instance of ExpPlatformManager to parameterize worker nodes and start an
experiment.

1: function Constructor(self)
2: define graph of nodes
3: define expectedTime
4: define work to be done
5: define flow vectors to use
6: define time frames for flow vectors
7: define number of nodes

1: function startExperiment(self, context, expnodes)
2: for node in expnodes do
3: Get node’s neighbor info from graph
4: Send neighbor introduction to node
5: Send Flow Vector information to node
6: if node receives starting work then

7: Send starting work to node

done by the script RunExpBareMetal.py, using two input files, one of which describes the
cloud resources we will connect to, and one of which defines the parameters of the experi-
ment, such as the scheduling vector to use, and the number of jobs that will be added to the
system.
While we discuss the possibilities of a general purpose open source application, there are

no doubt limitations to this tool due to its primary current use as a research platform.
Particularly, because our test work has been fairly simplistic, we have deployed the platform
and test work at one time, although this is not a restriction of the current system, and
once an experiment is completed we have removed the system entirely from the hardware
that it utilized. This is to allow us to use allocated cloud resources for multiple independent
experiments. In a general purpose system, we would face an additional architectural problem
when trying to appropriately divide the portion of code that would ideally be packaged with
the hardware from that which would more correctly be packaged with the jobs.
How extensive the job wrapper will be is an open question we will face going forward. A

design principle of the Organic Grid is that work itself should be the primary decision maker
with regards to scheduling decisions. However, this distinction may or may not be meaningful
in all systems. While work could be seen as making a request of the Platforms or hardware, it
would fundamentally have to tolerate that request being unsatisfiable. Alternatively, we can
see the work as providing information to the system that the system will need to utilize in
order to appropriately allocate resources for that work. The question will then become what
meta-information, (information about the job itself), if any, will need to be the result of active
monitoring of the job as it executes, and what meta-information can simply be provided in
some static form prior to execution, as is done with systems such as ProActive[5].
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We can postulate a many-task job that contains some task A. When A completes, it will
either add 10 or 100 new tasks to the system, with a graph dependency configuration that
cannot be known accurately at the time before the job is started. Such a situation may not be
common, but it serves to help us think about what type of information might be produced
by a job at run time that would be unavailable before job completion and necessary to
guide scheduling decisions. While understanding the range of possible outcomes would be a
desirable precondition, it is our current viewpoint that the task itself should report its new
requirements to the platform on which it resides at the earliest possible point. The platform
can then respond to those needs as it is able. The location at which the scheduling decision
takes place is most obviously the platform, but the information that guides the decision
making process is a mixture of the task’s requirements and the platform’s capabilities.
A second issue with the notion of intelligent jobs is that a system loaded with many more

jobs than can be executed at a single time will not find it useful to provide each of those
jobs, particularly the ones that are not yet executing, or have completed execution, with
any processor time to communicate or self analyze. In the task graph example this becomes
most crucial to understand. Let us consider a set of interdependent tasks as a directed graph
from some set of sources to some set of sinks. As work is completed, the tasks currently
being executed can be visualized as a wave that progresses through the graph of all possible
tasks. Communication to satisfy dependencies is necessary from completed tasks to those
that are about to start. However, especially in a large graph with multiple dependencies to
some tasks, some of a task’s requirements may need to be reported significantly before that
task can begin, because all requirements must first be satisfied.
Therefore, we will be visualizing the system as a set of immobile platforms that make

decisions about work, and a set of mobile jobs that, along with transmitted information
and measurements, provide information to those platforms to allow them to make the best
decisions possible. We want the decision making apparatus to be extensible and to provide a
changeable method to weigh the different metrics available to it. While work provided by an
ideal programmer may be able to provide the best possible information about how it can be
run, that information will be utilized by the platform system. Only the platform itself can
best understand not only the job but the hardware available. Additionally, a system that is
only useful to the ideal programmer is likely to suffer an unfortunate limitation on the size
of its user base. As a general hypothesis we will test, more and more accurate information
ought to drive better scheduling decision.
Because of this fact, as we move into task-graph computing we may consider a system

of temporary ATC style leaders that are marshalled as needed in response to a many-task
interdependent job, and maintain mid-level centralized control over a set of workers as long
as those workers are needed for this specific type of job. These leaders and workers will be
pulled from a general decentralized pool of neighbors, and will be released back into that
pool as tasks complete. Node information can be used to identify ideal group members. Such
information could be simply declaring which nodes are co-located and ideal communicators,
to actual measurements of connection speed and bandwidth between nodes. We do not expect
such a system to be ideal for an environment in which all jobs are many-task type work, but
with a mix of independent and interdependent tasks we hypothesize we can occupy all nodes
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and intelligently schedule work to the correct locations to complete interdependent tasks
more quickly. However this leader based approach is appropriately classified as potential
future work.
The downside of the ATC leaders as seen in the simulations is that they are a messaging

bottleneck, and we expect that we will see the same issues here. While fully decentralizing
many-task work was discussed, maintaining the locations of all dependencies as tasks moved
unpredictably through a decentralized network was too burdensome and any completely
decentralized solution we have imagined would also face scalability issues. We hypothesize,
but will not immediately set out to prove, that we could break some many-task jobs up into
portions if they are amenable to graph-cutting algorithms, allowing each portion to fall under
the purview of an independent controller, and providing each controller with knowledge about
its superstructure dependencies and obligations. Such a tiered system would allow scalable
centralization in which controllers face manageable levels of middleman centralization at
even potentially multiple tiers.
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Chapter 5
Experimental Results

5.1 Simulation Results

The most relevant results of the simulation concern the job messages in the network. Fig-
ure 5.1 shows the total number of job messages that were sent by each algorithm in each
network in the eight environments simulated. This includes the messages for when a subtask
is moved from one node to another. There are many fragments of work for each job added,
which is why for a job count of 800 one can see as many as 14000 messages under the ATC
algorithm. Figure 5.1 shows that the number of job messages sent by the ATC algorithm is
in all situations higher than the number sent by the Organic Grid algorithm. This is because
in the ATC algorithm all jobs are relayed through leader nodes, while in the Organic Grid
each node can both compute and relay jobs.
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FIGURE 5.1. Sim Job Messages Total

The ATC algorithm cannot over-allocate jobs because each leader has complete knowledge
of its own group. This makes the ATC algorithm better at immediately leveraging available
computing nodes. We can see that, in general, the Organic Grid improves as the number of
jobs and nodes in the network increases. This suggests that adopting a decentralized strategy
that contained some deliberately organized grouping with defined leaders, such as the one
in the ATC, would allow us to more quickly leverage large numbers of computing nodes.
However, this advantage is less evident as more nodes and work are added to the network. It
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is least evident in the fifth and sixth cases, which represent the simulation with the highest
number of jobs and the lowest number of computational nodes, or the most-overloaded
network. Still, groupings such as those defined by the ATC algorithm likely confer additional
advantages when they collect nodes that work better as a group. An ideal solution should
allow for nodes to be collected into groups when this produces superior results, but utilizing
the grouping strategy in all situations would limit both the types of computing resources
that could be managed by the network and the types of jobs that the network was capable
of managing.
Figure 5.2 shows that leader nodes in the ATC algorithm can bear a disproportionally high

communication load and, therefore, could become a bottleneck. Since in all cases the most-
overloaded node in the ATC algorithm was the node containing the centralized job queue,
we compared the number of job messages for the second-most-overloaded nodes. In six out
of eight cases, the ATC approach results in a significantly larger communication burden
placed on leader nodes than the Organic Grid. Only when run with the large computational
pool and the smaller workload did both algorithms place similar burdens on the most used
nodes. As this is the least overworked network, the problem of evenly balancing the workload
becomes less difficult. Figure 5.2 also shows that in the case where the Node Count is 100
and the Job Count is 800, which results in the most-overloaded network, the ATC algorithm
places the heaviest load on the leader nodes in the network and shows the worst performance
relative to the Organic Grid.
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FIGURE 5.2. Sim Job Messages on 2nd Most Overloaded Nodes

This pattern is repeated in Figure 5.3, a measurement of the second-most-overloaded nodes
handling messages containing job results to be collected. This suggests that the Organic Grid
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approach may be superior at handling an overloaded network. If we adopt an approach that
borrows from both methods, this suggests a further question. Is there a work-load point at
which a leader node should fragment its own group in order to avoid becoming a bottleneck?
Such a multi-layered fragmenting approach might be superior, but the Organic Grid already
possesses this multi-layered aspect. On the other hand, an improved Organic Grid might
vary the maximum number of children allowed to a single parent based on the load on an
individual node or portion of the network, since lightly loaded nodes could afford to manage
more children than heavily loaded nodes. This would result in an overlay network in a lightly
loaded case that would be a flatter and shallower tree, while a more heavily loaded network
might more optimally self-organize as a taller, narrower one.
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FIGURE 5.3. Sim Result Messages on 2nd-Most-Overloaded Nodes

The patterns we observed in the second-most-overloaded nodes were repeated in the most-
overloaded and third-most-overloaded nodes as well. However, a different implementation of
the ATC might partially decentralize the job queue, or utilize a system designed to make
that bottleneck irrelevant to the work throughput. Therefore, by looking at the second-most-
overloaded nodes, we can show the effects on group leader nodes, which is what we are most
interested in, as they are a fundamental difference between the ATC and the OG approaches.
In IBM’s patent [4], the possibility of leader bottlenecks was discussed, a potential solution

that was mentioned was to simply increase the number of leader nodes in the system. This
would put multiple nodes in charge of a group. However this addition might introduce further
complications when making decisions for this group, or when managing resources. A multi-
layered approach has the benefit of allowing one individual node to be the final manager for
a group of nodes, without necessarily having knowledge of each single node that it manages.
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After examining our first results we looked at what other possible variables could be
changed to allow algorithms to perform more optimally. Two possible approaches to change
the Organic Grid algorithm were considered, changing the initial structure of the network
to be a more strongly connected graph and changing the job stealing algorithm to steal
more work from parent nodes. The first approach did not result in a meaningful difference
from our previous results. However, the second approach did produce a definite change in
some of our metrics. Figure 5.4 shows the total jobs messages within the network with this
altered approach. If the Organic Grid increases the work stolen, then it predictably moves
more jobs, overtaking the ATC algorithm in the total number of job messages for the case
with a Job Count of 200 and a Node Count of 600, which is the most underloaded network
simulated. However, Figure 5.5 shows that while the most-overloaded nodes carry a heavier
burden than in the previous scenario in Figure 5.2, the Organic Grid still does not perform
worse than the ATC algorithm. Since the ATC steals work based on the size of node groups,
the amount of work it steals cannot be further optimized.
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FIGURE 5.4. Sim Job Messages Total, OG Steals More Jobs

A crucial decision for a decentralized scheduler is enabling a node to determine the type and
amount of work it should take from an individual work source. Since nodes in a decentralized
network do not possess perfect information, and since any information we send has a cost,
identifying what information is most relevant to balanced job distribution is critical. Our
initial approach in the Organic Grid was to base the number of jobs pulled from a parent on
the number of children possessed by a node. This would allow nodes with existing children
to steal more work so that their entire subtree would have more work to pull. However,
the fact that we can see an improved workload balance when the amount of work stolen
is flatly increased suggests that this may not be the ideal metric to use. Since the network
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FIGURE 5.5. Sim Job Messages 2nd-Most-Overloaded Nones, OG Steals More Jobs

is dynamically altered over time, the number of child nodes possessed by any node is in
flux, and pulling a larger amount simply to force the network to distribute work faster in
our simulation improves workload balance. Once a node possessing work has saturated its
immediate neighbors, the only way it will obtain more children is by one of its existing
children being promoted to the root. Spreading work in larger pieces also more quickly
builds a larger and deeper tree, as each node gives more work immediately to the first child
or neighbor who requests it. This gives the Organic Grid algorithm a larger network to begin
optimizing. In a combined system the approach could change as the overlay network as a
whole matures, moving from a riskier strategy, stealing more work in order to generate more
decentralized knowledge about node performance, to a more conservative strategy that is
optimized based on the knowledge generated by a mature network.
We argue that, ideally, the best aspects of both systems should be combined. Our proposed

model utilizes node grouping where appropriate, but allows a more robust system for leader
nodes than the ATC, and lets work enter from any point in the network. If we extend the
Organic Grid’s multi-layered tree overlay network into a node leader system, we gain several
advantages. One interesting difficulty with the Organic Grid is for a node to discover, using
the limited knowledge available to it, how much work it should pull, keeping in mind that
it will also be the path by which its children, and their children, receive work. If nodes
are gathered in groups it will be possible to create a somewhat smaller overlay tree that
contains more information about the total number of computational nodes available. This
should combine the Air Traffic Controller’s advantage in quickly disseminating work, with
the Organic Grid’s complete decentralization and multi-layered architecture that is more
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appropriate to a variety of tasks, and is better able to handle an overloaded network in a
balanced manner.
Both methods provide a mechanism by which the system can be restructured. In the ATC

algorithm, leader nodes join or split their groups in order to fit the available job. In the Or-
ganic Grid, the overlay network is restructured based on measuring node performance. In a
combined approach, we would maintain the Organic Grid’s performance-based restructuring,
but additionally allow both node groups and individual nodes to participate in the network.
Dividing node groups may still be necessary, but it will no longer be required to gather nodes
into artificial groups. Node gathering can be done by the overlay network structure, which
can maintain smaller groups below one super leader. This would avoid a potential pitfall of
the ATC approach, that over time the original groups can be dissolved not because of perfor-
mance, but simply based the size of past workloads. This has the disadvantage of decoupling
the overlay network from the actual hardware arrangement, which could cause performance
penalties. In the proposed combined approach, we could ensure that node groups, while frag-
mented, can remain neighbors and will not need to be merged into other unrelated groups
that might result in inferior performance over the entire network. Additionally, if the initial
configuration is not optimal, a measurement-based restructuring can discard it.

5.2 Cloud ATC Results

The cloud experiment is an implementation of the ATC algorithm that was tested in the
original simulation. The cloud experiment was very similar to the smaller scale simulation
experiment. This experiment was run on requisitioned cloud machines and used TCP-IP for
interprocess communication, while the original simulation was run on a single machine and
simulated all messages. Both experiments used simulated work, with a major job consisting
of a certain number of distributable sub-jobs, each of which takes a defined amount of time.
The cloud experiment measurements operate on a different implementation of the ATC

algorithm than the one used in the simulation, therefore, the numbers generated are not
identical. However, the same patterns are evident in the cloud experiment that were seen in
the simulation. This experiment produced a similar, although not exactly the same, number
of total job messages as the 100 nodes, 200 jobs and 100 nodes, 800 jobs configurations
from the simulation measurements, as seen in Figure 5.6. The cloud experiment used 100
workers, five controllers, a single queue, and 200 or 800 jobs. The controllers are set by the
algorithm and do not dynamically shift during the experiment. The five most overburdened
nodes are all controller nodes, with the queue as the sixth. The controller nodes in the
cloud experiment are more heavily burdened than those in the simulation experiment. Either
experiment demonstrates the large messaging burden placed on controller nodes, as seen in
Figure 5.8. Both of these experiments, therefore, point to the need for a more decentralized
method for work scheduling as work scales up on Cloud systems.
In Figure 5.7 we compare the job message burdens on the controllers in the cloud and

the simulation. The columns marked “1st” refer to the most-burdened controller node, those
marked “2nd” refer to the second-most-burdened controller node. This comparison shows
that both systems display a consistent pattern. The simulation experiments produced much
smaller error bars, as the simulation is in general very consistent. In the cloud the actual
performance variations on real hardware produced a much larger 95% confidence interval.
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When we compare the simulation experiment and the cloud experiment, we notice some
differences, but the patterns are similar. In Figure 5.6 we can see a shift in our measurements
moving from simulation to cloud. However, Figure 5.7 shows that in both tests we measure
a larger messaging burden on the controller nodes. We can see that the algorithm performed
largely the same in the cloud environment as it did in the simulation. In Figure 5.6 the
cloud experiments, as the simulation experiments, were very consistent in the compared
measurement of absolute job messages, hence the essentially invisible error bars. This is
largely due to the implementation of the algorithm being quite similar, and the scope of the
problem being as similar as possible when migrating to a new system and implementation.
While Figure 5.6 may be used to compare the cloud approach to the simulation approach,

the burdens on the individual overburdened nodes are a more interesting measurement. In
the simulation, all performance distinctions were due to artificial differences in performance
defined by the simulated environment. In the cloud, we are in the position to test whether
we will see performance distinctions emerge from machines that should be requisitioned from
one uniform system without artificial distinctions in performance. In fact, the experiment
confirms the need to handle variation in performance of cloud hardware.
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FIGURE 5.6. Sim and Cloud Experiment Job Message Total Comparison

Beyond validating the simulation, the cloud experiment is specifically useful for pointing
out that even cloud hardware on a common system can show performance variation. Fig-
ure 5.8 shows that there is a clear difference between the burden placed on the different
controllers. While there is some variation in the measured burdens, and the 95% confidence
intervals of the most-overloaded and second-most-overloaded controllers does overlap, this
is not the case for the most- and least-overloaded controller nodes. There is a definite mea-
surable difference in burden on different controllers. This lends support to the idea that a

53



200 1st 800 1st 200 2nd 800 2nd
0

500

1000

1500

2000

2500

3000

3500

4000

M
es
sa
ge

s

Sim.
Cloud

FIGURE 5.7. Sim and Cloud Job Message Burden Comparison

distributed scheduler, particularly one that measures the performance of the nodes on which
work is scheduled, would be useful.

5.3 Vector Scheduling Experimental Definition

One concern with cloud scheduling is how realistic our experimental work can be. HPC
problems often have communication and computation steps that are synchronized over very
short time periods. Without specialized hardware with a separate scheduling mechanism, it
is not possible to be competitive on that type of work. We also benefit from using work that
is short enough to allow us to run many different experiments in a relatively short amount
of time. However, if we make our work phases too short, then our experiment will become
unrealistic because the amount of time spent on communication will dwarf computation,
creating a situation in which the experiment is no longer a useful representation of any likely
scenario. We have chosen to use matrix multiplication work as our fundamental computa-
tional workload. We size these workloads to take about 50 seconds of computational time on
our higher performing nodes.
Organizing our experiments has allowed us to develop a cloud experiment management

system. Cloud management systems, such as those used by CloudLab, have sophisticated
tools in place to manage allocated resources. However, after those resources are allocated
and in place, we often end up communicating with them via ssh. Even if we deploy our
system in a Docker container, there must be some higher-level work done to deploy the
containers, to perform the initial startup, and, crucially, to mutually identify cloud resources
to one another. A general problem, of which we only attack a small part, is how to make
cloud resources as automatically responsive as possible. When programming for either HPC
or the cloud, there are questions of scale, of appropriate resource utilization, of ideal levels
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of parallelization, which may be solvable or at least approximately solvable automatically,
but are still quite often left to be configured in a tedious and manual manner.
Building the experimental manager allowed us the opportunity to see how much of our

individual cloud setup problem could be automated, how much of that automation is general
purpose, and how much would be necessary to build for each new problem deployed onto
the cloud. Ideally, it seems we would want cloud resources to be as transparent as possible,
but this requires intelligence in place to automatically allocate and schedule as much work
as possible.
Building an experiment requires not just developing the work that will be executing,

but also describing the network that will execute it. Although we consider a decentralized
system that will be applicable to very large scale networks, we are somewhat restricted
to the actual hardware available in our own labs or on CloudLab. Therefore, most of our
experiments concern how we can schedule work on heterogeneous decentralized networks, and
what measurements and approaches produce measurably useful results. We can characterize
a set of interconnected computing resources as a connected graph, but how do we determine
what characteristics that graph should possess? We use the Erdős-Rényi algorithm for graph
generation [18]. We define a probability that any two nodes in our graph of computing
platforms are connected, and generate different graphs for different experiments. We examine
any generated graph and ensure that it is connected by adding extra links between low ranked
vertices of disconnected portions.
While this is an accepted method for graph generation, it may or may not be the best

approach. It allows us to create very balanced graphs in which nodes are likely to be similar to
one another. However, this may not be representative of a large scale computing network. A
common real world setup might contain manager nodes with many connections, and worker
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nodes that simply report via a single connection to one manager. Networks will likely be laid
out along geographic terms, either along the network of a computing facility, or for a larger
scale system actual geography. While graph generation might be improved, generic graphs
form a useful test base. They can be strictly defined and generated in a predictable, and, as
we use a defined seed for a random number generator, a repeatable fashion. We would argue
that this causes our results to be more generally applicable than they would be if we utilized
a set of manually defined graphs, absent a well accepted standard to apply.
Reviewing other approaches to task graph scheduling [28] [2] provides more information on

the characteristics of a realistic task graph [36] than the characteristics of a realistic large scale
heterogeneous cloud system. Task graph problems can be classified into static or dynamic
problems. [28]. Static task graph problems are those in which the entire graph, including all
dependencies, are known before scheduling. In dynamic task graph problems, dependencies
and, therefore, new jobs may be generated as the result of the partial completion of the
problem. We interpret this as allowing a completed task to add additional dependent jobs
to the network upon completing its computation.
Based on this understanding of practical task graph problems, we organized a facsimile

of a partially dependent task matrix. We generate a two dimensional matrix of tasks, with
a probability, controlled by tg prob connected, that a dependency exists between directly
subsequent tasks. The tasks that we view as directly subsequent are those that immediately
follow in either or both of the dimensions, a total of three possible dependent tasks. If we view
the matrix of tasks as shown in Figure 5.9, we see that for task A, immediate dependencies
may exist only to tasks B, C, and D. In fact, in this example that tasks C and D do
depend on A, but B does not. E also indirectly depends on A, but only through a direct
dependency on C. This methodology allows us to create a set of tasks with a controllable level
of dependency, to mix dependent and independent tasks, and to have a variety of levels of
dependency. This approach was based on task graph scheduling problems used by Agrawal [2]
[28], particularly the Smith-Waterman algorithm [36]. We are not trying to directly recreate
this exact algorithm, we simply are mimicking the structure to provide what we consider to
be a more realistic problem to optimize.

5.4 Vector Scheduling Experimental Description

When an experiment is started, we first allocate machines and then start Docker containers
on each of the machines. One container functions as an experimental controller, while the
rest are experimental nodes. The controller is started first and is provided with information
that defines the experiment. It knows how many nodes will participate in the experiment,
how long the experiment should take, and what configuration information to give to the
experimental nodes. The controller builds the graph that defines node-neighbor relationships,
and contains the vector(s) to use in driving vector-based scheduling. The controller starts
listening for connections from nodes. When nodes start up, they are provided with the
controller’s location, and contact the controller to start the experiment.
Once enough nodes have contacted the controller, the controller will provide each with

configuration information, potentially a set of starting jobs, and a time to start executing,
which will be the start time of the experiment. At that time, the nodes will begin processing
work as well as communicating with their neighbors. Communication will contain information
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FIGURE 5.9. Partially Dependent Task Matrix

about the node’s benchmark results and current work queue, as well as jobs to move from
one node to another. Nodes will log all communication as well as all work they start and
complete, all such logs contain time information from the perspective of the node on which
the log was written. After the experiment time has elapsed, the nodes are terminated and
their logs are collected. These logs form the basis of the experimental data presented in later
sections.
Our first proof of concept tests concern using benchmark results to schedule indepen-

dent jobs. For these tests, nodes will independently measure their own performance using a
benchmark test, and then report this information to their neighbors. Additionally, we en-
sured that the nodes we worked with have differing performance characteristics by providing
different nodes with more or fewer CPUs on which to operate. This creates what we consider
to be a more realistic cloud system resource limitation than our prior simulation work that
produced differing performance characteristics artificially. However, this also came with an
additional effect, a suboptimal usage of those limited resources compounds a negative result
across several processes that share both the same CPU and the same poor strategy. For
consistent measuring and grouping, we allocated nodes such that those listening on specific
ports have specific performance characteristics, as seen in Table 5.1. More detailed hardware
information is available in Table 5.2.
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TABLE 5.1. Node Information
Port Group Node Count CPU Count Hardware Type

1100X 6 2 c8330
1200X 5 2 c8330
1300X 5 12 c8330
1400X 5 2 c6320
1500X 5 2 c6320
1600X 5 2 c6320
1700X 5 7 c6320
1800X 5 7 c6320
1900X 5 8 c6320

TABLE 5.2. CloudLab Clemson Hardware
Name CPU RAM
c8220 2x Intel E5-2660 v2 10 core processor 256 GB
c6320 2x Intel E5-2583 v2 14 core processors 256 GB

We measured performance to see if the hardware allocation produced the altered perfor-
mance results intended, and as we can see in Figure 5.10 it did. Note that the error bars in
Figure 5.10 measure one standard deviation. Notably, a decrease in a subset’s performance,
indicated by a higher value in Figure 5.10 is also associated with more deviation in that
performance. Standard deviation is more interesting here than any kind of confidence inter-
val, as we are observing the effects of the performance variation on the hardware that was
used. We are not attempting to draw conclusions about a population from a sample. Each
of these experiments was run 25 times, and within each of those individual runs multiple
measurements of job completion time can be taken, depending on how many jobs an indi-
vidual node completed. We also noticed that in some substandard approaches, additional
burden on those low performers would exacerbate the problem and cause extremely poor
performance. In Figure 5.11 we can see this issue on nodes 16000 and 16004. This figure
represents a scheduling diagram of a single experiment, in which tasks’ computational times
are represented as bars, which allows the time consumed on each node to be easily visualized.

5.5 Initial Cloud Vector Scheduling Results

The first test we performed indicated that there were essentially three phases of the schedul-
ing problem for a decentralized scheduler with one large application to be completed by
multiple nodes. By large we mean sized to completely utilize the available computing re-
sources for the majority of the total computation time. Phase One occurs when work moves
from an extreme concentration at a single entry point to be distributed evenly throughout
the network. Phase Two occurs while there is enough work to keep every computational
node busy. Phase Three happens when there is still work to do, but not enough to provide
work for each node. All three phases are visible in Figure 5.12. This figure, as well as several

58



FIGURE 5.10. Node Average Performance and Standard Deviations by Port Prefix

more, show a job divided into 400 tasks that are gradually completed by a set of decentral-
ized computing resources. Each line represents a single scheduling strategy, each of which
was run through more than 20 experimental runs, allowing us to create a 95% confidence
interval, indicated by a cone around the line indicating the average value. Approaches with
an overall lower completion time, indicated by a lower position on the graph, are superior
scheduling strategies. Note that the first and third phase each take a small portion of time,
indicated by the curves at the beginning and end of each strategy.
Initial testing showed that for phases one and two, most vector-based approaches are

indistinguishable in performance, except for some extremely suboptimal methods that do
not strongly weigh node queue lengths, such as the black line in Figure 5.12. Phase One
produced poor results originally, however this was not alleviated by using different vector
scheduling strategies, but by increasing the frequency of rescheduling actions. This allowed
work to spread through the network more quickly, allowing us to reach Phase Two work
saturation more quickly. Phase Three proved more difficult to optimize, and the location at
which the advantage of more vector-based strategies became clearer.
We also conducted experiments to determine the usefulness of our benchmark system.

Initially this was a promising route, as seen in Figure 5.13. All our experiments have borne
out the benchmark as a useful metric to drive scheduling at certain points, although later
tests on a larger number of more diverse hardware have shown less of a relationship between
a nodes average benchmark and average performance, as seen in Figure 1.1. The benchmark
is a subset of the NAS benchmarks[31], specifically we utilize the cg benchmark from the
Workstation class. This benchmark performs a Conjugate Gradient test, involving “irregular
memory access and communication.” [31].
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FIGURE 5.11. Schedule Diagram representing a poor approach. Extra scheduling burden is placed
on stragglers, and there are some gaps where nodes become idle only to receive work at a later
time.

5.6 Cloud Vector Scheduling Experimental Results

We have demonstrated the use of both benchmark values and node queue lengths as metrics
to determine where work should move across computing nodes. We now examine our use
of vectors to weigh the value of these metrics across several test cases on a larger platform
with more performance and hardware diversity. Our first experiments are done using two
different vectors, a flow vector and a stasis vector. The flow vector defines the characteristics
of an ideal destination node, and all available nodes’ characteristics can be compared to that
vector to judge how many jobs they should be allocated. Therefore, if the flow vector defines
a queue length of zero as a desirable characteristic, then the nodes with the smallest queue
length will be considered the ideal targets for work to migrate towards. The stasis vector is
meant to be a guard against unnecessary job movement and is used to prejudice the scheduler
towards jobs remaining on the node that they already occupy. However, our experimental
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FIGURE 5.12. Initial Vector Scheduling Comparison. The red scheduling approach is superior, but
of red, blue, and green none clearly diverge until after 75% or 300 tasks are completed. This early
graph most clearly demonstrates three phases, but none of these approaches were used in the most
up to date experiments.

results did not show that using a stasis vector was beneficial. In the most optimized scenarios
it was, therefore, not used.
Our initial experiments showed that there were three primary phases and that we should

utilize a different strategy to optimize each one of these phases. Speeding up the distribution
of work throughout a network is absolutely crucial to improving network performance in the
first phase. The adjustment we make to do this is to allow a node that exhausted its queue to
request additional rescheduling tasks from its neighbors, in the hope that they might be able
to provide it with more work. To avoid thrashing when the network itself ran low on work,
we only allow a node to make one such request within a limited time frame of 10 seconds,
and we do not allow any work requests after a certain point in the experiment.
While this achieves the desired result of improved initial performance, the overall perfor-

mance of the network suffers. Even though we attempt to avoid flooding the network with
reschedule requests at the end, the additional tax on the resources of the poor performers
causes their last one or two jobs to take as much as three times as long as their already
slower completion times. Recall that poor performance in this context is caused by sharing a
CPU, therefore, a poor choice for a scheduling strategy on multiple nodes sharing the same
CPU will have a strong negative influence on the performance of each individual node. We
argue that this is a valuable artifact of this experimental system, as shared resources are a
potential problem with low-cost cloud systems. We eliminate this problem by creating a sim-
pler strategy that only allows rapid rescheduling operations in response to the introduction
of new work into the system.
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FIGURE 5.13. Initial Average Benchmark vs Average Performance. We can see that there is a fairly
strong relationship between the benchmark value and the actual node’s performance, producing a
strong linear relationship modeled by the red line. The P value for this model is particularly low,
considering the number of samples used to generate this plot. Note however that all these samples
are from one site, so we do not claim that this strong relationship will necessarily hold on all
hardware platforms. Nevertheless, we do use this initial test to show the benchmark was a valid
approach to bring to larger scale testing on more varied hardware.

The final phase of the network, when there is no longer enough work to satisfy every node
in the system, requires a different approach. From our initial experiments, we saw that we
have two primary goals here. First, work must be moved away from the low performing nodes
and onto the higher performing nodes. Second, any other burden on the network while the
last jobs are completed should be avoided. Accomplishing the second goal in our setup simply
involves turning off the functionality that allows nodes to request work once the initial job
set has spread throughout the network. For future work we will look at a more sophisticated
way to make this choice, for these experiments we simply turned off the functionality after
a certain amount of time. After running many experiments it was fairly easy to pick a time
in early Phase Two to stop allowing nodes to request more work.
Flow-vector-based scheduling was most beneficial in optimizing the final phase. For most

of the duration of an experiment, any rescheduling based on relative queue length is more
or less indistinguishable. As long as it does not impose a large computational burden it
will spread work throughout the network, saturating the available computational resources.
However, just before some nodes become idle, it is important to move work preferentially
to high performing nodes, so that the last few straggling jobs are given to nodes that will
complete the jobs faster. To do this we change from a flow vector of (-1.0, -0.3), which prefers
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a shorter queue, and considers a better performance less relevant, to a vector of (-0.7, -0.5),
which puts more emphasis on performance.
This methodology is compared to a method that simply uses the vector (-1.0, 0.0) through-

out the run in Figure 5.14. Note that both of these scheduling approaches contained the
optimizations to Phase One, and that neither of them produced any visible difference dur-
ing the second phase. This demonstrates that the performance metric in the initial vector
makes little difference until the network is no longer saturated with work. This is illustrated
in the schedule graphs of two schedule sample graphs from the experimental population,
Figures 5.15 and 5.16. Note that in the queue-length-only setup that there are some jobs on
low performing nodes that push back the completion time of the entire system.

FIGURE 5.14. Job Completion Time Comparisons. Here we can see the scheduling performance
of a vector that balances both queue length and performance benchmark, in blue, versus a vector
that ignored the performance benchmark in red. Note the extremely poor performance of the red
set near the end, exacerbated by the large performance variance of the computing nodes.

The fact that performance metrics are only useful in Phase Three, near the end of the
entire application, leads to another possible improvement. Our initial data showed that the
benchmark was a reasonable predictor of a node’s job completion speed, see Figure 5.13.
With more data as a result of completed experiments, we can better analyze the value of the
CG benchmark. The data in Figure 1.1 shows a much weaker relationship between average
benchmark and average performance. Regardless, experimental results have shown the most
recent benchmark to be useful when driving scheduling decisions as seen in Figure 5.14.
Additionally, this data shows the relationship between the average benchmark performance
measurement, and the average job completion time. The relationship is not as consistent on
the more diverse hardware used for the larger scale tests as it was on the original smaller
scale setup. The measurement that is used for scheduling is not the overall average bench-
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FIGURE 5.15. Performance and Queue Based Rescheduling. This is the actual schedule for each
node in a single experiment using both benchmark and queue length as scheduling indicators. Notice
that while it is not ideal, it is an improvement over Figure 5.16

mark measurement but the most recent benchmark measurement that a node has taken.
This distinction is valuable, because we suggest the most recently taken benchmark most
accurately measures the node’s expected performance at that time, considering that other
usage of the node’s hardware is a likely cause of performance degradation.
Note that in Figure 1.1 the group that is spread along the x-axis (benchmark values),

but are all consistently low on the y-axis (actual job performance). These measurements are
all from nodes with a port in the 13000s. The 13000 range is one of the subsets meant to
be high performers, which was born out by the actual job completion rates, but not by the
average benchmark measurements. Nodes in a given port range are executed on a subset of
the hardware with similar characteristics, which are meant to provide either advantages or
disadvantages in performance. The compared performance of each set is shown in Figure 5.10.
The error bars in this figure are simply one standard deviation, indicating that the nodes with
worse performance also had more highly deviating performance. We use standard deviation
here, as opposed to a 95% confidence interval, as we are more interested in seeing the result
of the performance modifications on the experiments that were run, and less interested in
drawing conclusions about them as samples from a larger population.
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FIGURE 5.16. Queue Based Rescheduling. Here we can see a single schedule for one experiment
that uses queue length only. Notice that the straggler jobs on the low performers take even longer
to complete than other jobs on those already slow nodes. We suggest that this is due to these nodes
bearing an additional burden of unfulfillable requests for work.

Even if the average benchmark value is not useful, the most recent performance measure
may be, as it did produce the more advantageous experimental results presented originally in
Figure 5.14. As a result of both the deficiencies in benchmark selection, and the result that
a performance measurement is only useful near the end of work scheduling, a more simple
and obvious methodology can be implemented for problems whose tasks are of consistent
or predictable sizes. We considered using historical data at the beginning of the project,
but initially rejected the approach because we would need some stop-gap measure to utilize
before historical data was generated. A benchmark-based methodology seemed to be a better
general solution, and may still be applicable given more relevant benchmarks. However, given
that more than half of the work can be completed before implementing performance based
scheduling, we can utilize the partial historical data available to us when some work has
been completed to drive performance based scheduling, instead of using a benchmark. This
result is available in Figure 5.17. The final phase curve is even less evident in these results,
indicating that this strategy is superior.
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FIGURE 5.17. Historical Performance Based Scheduling. This compares a more sophisticated queue
length based scheduler to one that weighs a performance metric that is constructed during the
execution of the test. Note that the phase three curve on the blue line is barely evident here.
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Chapter 6
Summary

Given past performance measurements [19] it is unlikely that typical cloud resources will
match supercomputing resources at the type of interdependent tasks that supercomputers
excel at. There is nothing to stop a cloud service provider from simply offering access to
supercomputing hardware, but the optimal use of such hardware will violate the cloud com-
puting principle of transparency. Essentially, it is our view that we are approaching a moment
at which it will be necessary to expand the capabilities of the layer that exists between the
programmer and the hardware on which the program is run so that cloud resources can
be effectively allocated and provided work, even for sources of work that require complex
interdependencies. This is arguably the goal of system such as ProActive [5], but there is
an ongoing problem of a dense and arcane amount of configuration required to harness such
resources.
Software written for standard multi-core processors does not often require a detailed knowl-

edge of core hardware to harness multi-threadedness. Now we face a similar problem in the
cloud, with the distinction that for some truly massive problems, fully centralized solutions
may not be satisfactory. As simpler cloud solutions are driven by transparency, organizing
the use of the cloud hardware is properly the role of automatic compiler or deployment sys-
tem. Understanding this problem, and solving some cases of it, is the primary purpose of
this work.
We have presented a framework for running high-performance and many-task applications

in the cloud. Since cloud resources often have unpredictable performance characteristics,
we have proposed to periodically measure the performance of cloud nodes and network
connections to allow computational tasks to be placed on the most appropriate (sets of)
nodes. Since centrally maintaining such detailed performance information for a large network
is prohibitively expensive, we have argued that some degree of decentralization is needed.
We have evaluated two candidate decentralized approaches, our Organic Grid and IBM’s Air
Traffic Control framework, by simulating their network traffic.
Our simulations have shown that group leaders such as those used by the ATC framework

can be very beneficial in efficiently allocating work to many child nodes. However, when net-
works are more heavily loaded that same strategy can result in the leader nodes becoming
saturated in trying to organize much more computation than can be easily handled. The
Organic Grid’s decentralized methods are not as effective at moving work quickly, but the
burden of work distribution and management is spread more evenly through the network.
Managing computation in the cloud requires utilizing a scalable approach that can dynam-
ically adapt to variations in cloud hardware performance, and our simulation results show
that our proposed cloud framework will be able to provide that scalability.
While our simulations have been run with limited numbers of nodes and jobs and have only

measured communication events, they nonetheless have shown clear trends in the expected
performance of the ATC and OG approaches to distributing computational tasks. They

67



are providing guidance in designing a better framework for deploying high-performance and
many-task applications in the cloud.
We have also run further experiments in the cloud to verify both the simulation’s accu-

racy and the existence of performance variation between cloud nodes. We did not attempt to
replicate every simulated experiment in the cloud, as we want to move towards building com-
plete functional systems as a next step, not continuing to build more and more sophisticated
simulations. However, since the general patterns of the simulation have also been observed
on the cloud platform, we are more confident in using the simulation to guide our future
progress. Both the simulation and cloud experiments help to make the case that we need a
more sophisticated, decentralized work scheduling model based on concepts from both the
ATC algorithm and the Organic Grid.
The vector-based approach to scheduling has proven capable of scheduling work on a

decentralized model and useful when we have to make a choice of which computing resources
to use. When we are saturating all available resources, this approach reduces to a simple
search for available computing power, but when we reach the end of a set of jobs, it can
switch towards searching for high performers to significantly reduce the time at which all
jobs are completed. In some systems this might also reduce waste.
We have observed three phases in processing of a set of jobs that fully utilizes a network

of computing resources. The first phase was when work was spread throughout the network,
and was optimized by performing extra scheduling tasks at that point. The second phase
corresponded to the time when the entire network was occupied with computing, and behaved
similarly in all of our test runs. Hypothetically, this phase could be optimized by reducing
overhead traffic, but we did not test this possibility in these sets of tests. Finally, we have
observed a third phase during which there was not enough work to satisfy every node in
the network. We have demonstrated that our vector-based approach optimizes this phase by
preferentially scheduling work to nodes with a history of high performance.
We predict that interdependent task scheduling will become more important as more

sophisticated computation moves into the cloud. Additionally, making this type of com-
putation more accessible will require cloud providers to create more intelligent and useful
scheduling systems, detecting and automatically handling any exploitable parallelism the
problem provides. As we improve this type of development, any automatic solutions that
exploit parallelism will be beneficial in the cloud environment, even if they are approximate
and not applicable in all situations. This will allow cloud systems to take on a larger set of
computation than currently possible.
Scheduling work with dependencies is a necessary next step in the system. Independent

work may always be best served by a MapReduce [16], however interdependent work might
require a more sophisticated solution. The first step is to understand what type of work is
available that fits a certain set of criteria. It must contain interdependent tasks, but the
scope of the entire job must be large enough that the ideal solution will not simply be a
hardware-specific supercomputer program.
Initially three approaches have been considered. The first was to schedule interdependent

work within centralized subsections of the actual system. This allows us to maintain cen-
tralized information about the scheduling of interdependent tasks, and that control could be
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used to ensure that links between tasks are maintained. The difficulty with a decentralized
approach is that two dependent tasks may travel to a point at which a connection between
them either could no longer be established or would be prohibitively expensive.
We have discussed two possible decentralized approaches. In the first, we would lock a

task’s immediate neighbors while that task moves, defining absolute locations for all depen-
dent tasks before movement could occur. This was discarded as it appeared to produce a
very difficult locking problem. Additionally, as one task would need to acquire many locks
in order to move, the practical result for applications with large number of dependencies
would be a constant tradeoff of locks while no one task was able to actually move. This
starvation problem could be overcome, but the number of communications required seemed
to us to make this a difficult to achieve result. Nevertheless, for certain low-dependency task
groups, this may still be a viable path, as we do not have experimental results to support
any conclusions on this approach.
The approach finally chosen is to use a system of forwarding addresses left behind by a

task when it moves. Provided all tasks start with accurate information on the locations of
all dependent tasks, and whenever those tasks move they leave behind a forwarding marker
directing information to their new location, task dependencies should be able to travel freely.
What we need to experimentally determine is the burden created by these forwarded mes-
sages, and how we can efficiently remove forwarding information when it is no longer neces-
sary.
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Chapter 7
Future and In Progress Work

Our goal is building a distributed system for scheduling arbitrary many-task computing
problems. We are working on target problems defined by task graphs, to allow for a mix-
ture of dependent and independent jobs, as well as jobs that may have differing hardware
requirements and expected run times. We predict that some of these tasks will require tight
communication between several nodes to perform optimally, while some will be more easily
handled by nodes that require little to no communication. This type of problem, with a
mixture of high performance requirements and tasks that can be distributed to lower per-
forming nodes provides an ideal testing ground for a hybrid cloud platform unifying disparate
resources. In the future, we plan to work with a specific application that seeks to gain an
understanding of chemical properties by generating a task graph based on tensor operations.
Our experimental setup will have each task keep track of its own unique identifier, the

unique identifiers of all dependencies, and an integer number that counts the number of
movements that that individual task has taken. When a task moves, it leaves behind a
forwarder that contains both that task’s identifier, and the current movement count. The
task then increments its own movement count and moves to a new location. This creates
a system in which the current location of a task can always be determined by following a
thread of ever more up-to-date forwarders, and provided we handle messages sent to tasks
that are in-transit, should always allow a message to find its target, barring outages and
network disconnections.
The next problem to face will be cleaning up forwarders, and how long they should be

allowed to linger in the system. This presents an interesting problem, and one that we do
not attempt to solve in our first baseline tests, as it will first be important to know what the
burden of such forwarders is, and how many will build up over time. However, there are a few
obvious approaches. The simplest would be to have a task remove its own forwarders once it
begins processing, as at that point any messages to that task will have by necessity already
arrived. Note here that we are currently viewing individual tasks as autonomous, and not
requiring communication during computation, only as a prerequisite for it. This would be a
safe approach, but not necessarily the most efficient. A more aggressive approach would be
to remove forwarders as they become redundant. A forwarder could be enhanced with the
ability to determine how many tasks should contact it and how many have contacted it so
far. When it exhausts that number it could self-terminate without input from the task that
left it behind. This is likely the approach that will be taken, however it might run the risk
of leaving behind some forwarders in exceptional situations.
While we intend to start with similar amounts of computational work as our original

experiments, we will also be on the lookout for any indications that interdependent tasks
also follow the three-phase breakdown we saw in our independent task tests. If so, we will
likely move towards experiments that only partially utilize a network, or that fully utilize it
for shorter periods of time. It is clear that for independent tasks only the last phase is a good
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target for comparative scheduling efforts as long as performance differences are not egregious.
Additionally, suppose we have multiple job sets and our goal is not to reach the end of all of
them, but have each complete within its own deadline. As a deadline approaches, provided
the job has reached levels of completion, we should test whether a performance-based metric
works for just the tasks of that particular job while other jobs are still being scheduled using
a simple queue length metric.
Having group leaders can improve the efficient assignment of groups of tasks to groups

of nodes, but it can also result in those same leaders becoming bottlenecks. While using an
overlay network instead of a central job queue performs and scales better overall, it may be
beneficial to use group leaders similar to the ones in the ATC framework near the leaves of
the overlay network.1

There are many other characteristics of jobs and computational nodes that might produce
interesting information to guide job scheduling. Developing an extensible system would allow
an intelligent platform in a decentralized network to utilize many different parameters to
judge the correct method to match work to processors. We need to ensure that rather than
limiting our system to only the attributes that we identify as useful, our system can allow
the growth, identification, and use of as-yet unknown parameters, the measurement and
monitoring of which could result in better solutions to the distributed scheduling problem.
While we may not be able to build a system that can adjust fully to the unknown, we
intend to make it as extensible as possible. Since our approach does not rely on any specific
cloud vendor or technology, it could be used to construct a hybrid cloud to coordinate a
combination of multiple academic and commercial clouds as well as spare desktop machines
and local supercomputers.
Additionally, it will be necessary to look at a variety of methods to move tasks through

the network. A basic starting point is simply moving atomic tasks onto specific machines,
but many cloud models are built on virtual machines that may migrate between hardware
locations while processes are running. Work done on self-organizing overlay networks of
VMs [21] has demonstrated the possibility of extending our approach to handle VMmigration
but also the extreme cost in communication latency between migrating virtual machines.
Work has been done to optimize migration itself [23], but if our work is fine-grained enough
it may be necessary to use a more fine-grained method for work migration such as using
mobile agents with strong mobility [13] as containers for groups of tasks.

1We could think of those leaders as the approach and tower controllers who organize the flow of traffic in the vicinity of an

airport, while the overlay network is used for traveling between airports, as in actual air traffic control.
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