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Abstract

My primary objective in this dissertation is to establish a framework under which

I launch a systematic study of the fundamental tradeoff between deliverable and

private information in statistical inference. My research was partly motivated by

arising and prevailing privacy concerns of users in many machine learning problems.

In this dissertation, I begin by introducing examples where I am concerned of

privacy leakage versus decision utility in statistical inference problems. I then go

into further details about what I have achieved in formulating and solving such

problems using information theory related metrics in a variety of settings. Both

related works and my own results are later summarized in the first chapter.

In the second chapter, I introduce a problem of detecting any subgraph using bi-

nary codeword queries. Furthermore, I seek and find limits imposed by the privacy

of each graph which help me develop an understanding of privacy versus utility

problems.

In the third chapter, I shift my focus from the original graphical framework

to a more general bin allocation problem motivated by addressing concerns on

privacy leakage in regard to users’ web surfing patterns with usage of proxy or VPN

services. After problem formulation, I deem it necessary to introduce submodular

functions as a means of simplifying such problems and finding their solutions.

In chapter four, I expand upon the concept introduced in chapter three by allow-

ing uncertainty between hypotheses and find the relationship between distinguisha-

bility, privacy leakage and utility in a deterministic bin allocation framework.

In chapters five and six, motivated by my previous works, I shift my focus to

the problem of tradeoff between utility and leaked information when a random-

ization, rather than a deterministic mapping, is introduced as a privacy protec-
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tion mechanism. In particular, I first seek solutions using a typical and widely

accepted Information Bottleneck (IB) approach. I then detail how the original

information bottleneck method does not necessarily provide an optimal solution

to the proposed problem. I then offer my own novel approach based upon Aug-

mented Lagrange Multipliers (ALM) and Alternating Direction Method of Multi-

pliers (ADMM) with both theoretical justification and empirical evidence , as well

as the inherent structures of both the objective function and privacy constraints.

My approach has been shown to attain notable improvements than that under the

IB framework, with well justified enhancement on efficiency of local convergence.

Finally in chapter seven, I present plans to cope with issues of lacking true

statistics, by exploiting a set of information theoretical measures which have been

shown to be equipped with more benign properties in robustness against limited

amount of training data than the regular mutual information measure.
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Chapter 1
Introduction
Throughout this chapter, I aim to offer insight as to the motivations of my cur-

rent research in as detailed a manner as possible by offering everyday examples.

Furthermore, a chronological summary of my work is provided. I go into details as

to how every step of the way was first initiated and how it led to the next step so

as to offer insight into the logical progress of the work. In the next step, I high-

light my contributions so as to reiterate how my work is both novel and valuable.

Following is a section dedicated to the related works I have taken advantage of to

some degree in the development of my results. Finally, I will finish this chapter by

detailing the organization of the rest of this dissertation.

1.1 Motivation

Automated decision making systems based on statistical inference and learning

are widely used in real-world applications today. These systems have an initial

input of a dataset containing many items and their corresponding features and the

decisions made for such items. Then they use machine learning to come up with

an underlying algorithm which given the same features could result in the same

decisions for these inputs. These algorithms are designed over the features of such

inputs. By this method, the system has managed to develop an in-built predictor

which now has the ability to make decisions for a new set of inputs based on their

features. Furthermore, such a system’s predictor could always be updated with

new inputs thus staying current. However, there are still some detriments to such

systems worthy of notice.

All of these systems are trained based on historical data. This in term means

that the system is designed to honor the previous set of decisions for every input
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regardless of whether such decisions were fair or not. Rather, these systems choose

to blindly accept previous decisions made upon the data and simply try and follow

them through. Thus, if there ever were any kind of injustice in the original process

of decision making, such unfair behavior will never be noted or fixed. Such un-

fair data could result in discrimination, which is defined as gratuitous distinction

between individuals with different sensitive attributes. This in turn results in a

continuous unfair behavior in the automated decision making system which will

also influence future behavior. It is important to note that although such a sce-

nario might seem far-fetched, they happen more often than one could suspect and

the reason behind such unfairness usually lays in historical or cultural differences

between past and present time.

We thus introduce a new goal; to design the same automated decision-making

systems that could help us predict any decision for future data while limiting

the amount of information revealed about the user’s sensitive features. As a direct

result, I clearly cannot use the same dataset as before since it reveals some sensitive

information. But I still need a clean version of this data to make any kind of

inference system. Thus a tradeoff problem blossoms.

In this dissertation, I set my goal as finding a tradeoff between deliverable in-

formation (the information required for making a decision with little to do with

sensitive information) and private information (the sensitive information which

might result in unfair treatment of a group of users). In order to better understand

the predicament and my role in this tradeoff problem, I offer a number of examples:

Example 1: One of the most sensitive features of any person in today’s world

is their race. As an example, in the United States, courts use features of criminals

such as their age, race, sex, years of being in jail and so forth to estimate their pos-

sible recidivism (future arrest)[1]. Then based on these estimates, a judge chooses
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whether to set a prisoner free or not. While such a system might seem quite fair

at first, there is an underlying discrimination at play.

In the not so distant past and due to cultural climates, there used to be a

tendency for police officers to treat African-Americans more harshly and thus more

African-Americans tended to be arrested again in the future. Thus, in the data

currently present at the hands of the court, there is a bias towards setting African-

American prisoners free, simply because the data from the past suggest that they

have a higher likelihood of being arrested again. However, missing from this data is

the fact that most of these arrests were more than likely just a product of another

time and culture. Thus judging new prisoners based on such criteria would be

considered discrimination.

Example 2: Another sensitive attribute in a person in today’s world is their

gender. To find examples of a bias in gender representations I can simply look at

some image search results in any online search engine [2]. In a Google image search

for “CEO”, a mere 11 percent of the depicted results are women while a whopping

89 percent are men. These results are at odds with reality seeing as how in the

real world, 27 percent of U.S. chef executives are women. As another example, in

a Google image search for “telemarketer”, 64 percent of the depicted results are

women while in the real-world the male to female ratio in telemarketing positions

is almost 50-50.

Once again, these results show an underlying discrimination towards women and

their position in today’s world. Google search results are a collection of data (in

this case images) gathered through the years. Now since the positions of "CEO"

and "telemarketer" used to be very male and female-oriented respectively, does not

mean that image results should be more male or female-oriented as well. Rather,

3



a fair search result should be able to demonstrate the reality of the world today

rather than be affected by previous matters.

Solution: Both these examples showcase a less-explored side of privacy prob-

lems. In such problems, I am still trying to develop a predictor. However, private

attributes such as race and gender need to be kept either completely hidden or

revealed to a minimum. Furthermore, I cannot completely dismiss the previous

decisions either. Rather, whatever predictor I develop, it still needs to be offering

decisions quite close to the previous predictors whether it was the likelihood of a

prisoner to be arrested again or the image of a CEO or telemarketer. I thus choose

to design my decision making system through the disclosable section of the data

and try and cut off all connections with the private section. I note that there might

be interconnections between the sensitive and disclosable features (like a prisoner’s

race and their residential Zip code) and offer algorithms on how to deal with this

problem as well. Furthermore, I choose an auxiliary variable to design an optimal

compression channel helping us reduce the number of features (otherwise if all

the features could be saved, I might have over-fitting rendering the final results

pointless)

Throughout this discussion, I assume that (1) the true distribution of the private

features is known and (2) the true statistical interconnection between private and

non-private features is known. Later on, in Chapter 7, I offer insight on how to deal

with cases where I only have access to empirical versions of these two statistics.

1.2 Research Tasks Completed

1.2.1 Detection of Hidden Active Subgraphs

The process of formulating such questions and offering solutions to them started

when I posed a question of the average time it would take to detect a hidden
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subgraph in a larger network of graphs. Such a question was first imposed in other

works such as [3, 4]. However, in their research the authors assumed a very strict

characteristic on the subgraphs they aimed to detect such as the subgraph being

two colorable or complete respectively. This assumption prompted us to ask the

same question for any possible set of subgraphs as long as they were edge-wise

disjointed. If solved, the solution could help us find further insight into questions

of community detection within a higher level network where the edges within the

same subgraph showcase a stronger connection compared with those placed outside

the subgraph. For example, a group of people on Facebook might be more deeply

connected to one another based on their taste in musical artists in comparison with

another group who might enjoy a different set of artists. The goal would then be to

detect which of these groups is active at a certain time in the shortest time possible

by following a set of general queries (such as age, gender, etc). After doing so, the

detector is able to introduce these people to one another as a commodity (like the

friend or page suggestions on Facebook). Furthermore, the detector is able to offer

these users well-suited advertisements based upon their portfolio. However, he/she

is not able to further separate these networks to offer more specifically-suited ads

to each member within the subgraph.

Assuming that the queries were made in the form of bit allocations and offering a

definition of feasible queries -so as to make certain of distinguishability of different

edgewise disjoint subgraphs- I was able to offer algorithms on how I could carry

out such a task. Introducing the concept of query(attribute) tables, I was able to

find decision trees for every desirable subgraph. I then offered insight as to how

these decision trees could work to my advantage to help find an average stopping

time for each subgraph. Finally, by carrying out a second level average stopping

time over the sum of all subgraphs I was able to find the average time it takes to
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detect the first of such subgraphs (the active subgraph). The results of this section

of the research were finalized and published in [5].

First, I proposed a novel framework to study the problem of sequential detection

of active substructures under the constraint of protection of edge-wise activity

patterns. I began by offering a definition of privacy within this framework as a

means to a better interpretation of the constraints concerning my discussion. I then

formulated the novel problem of detecting active subgraphs from a given set of link-

wise disjoint substructures. I showed how such active graphs could be identified

by querying with a series of feasible binary queries satisfying the constraint of

protecting link-wise states over the detection period, a feat whose representation is

further interpreted using vertex covering of subgraphs. Furthermore, I introduced

the relationship between partial and complete vertex covering and the resulting

breach of privacy imposed by the latter in my problem. A random coding approach

was proposed to establish a sequential and non-adaptive binary search process

whose average stopping time is analyzed based on both upper and lower bounds.

Then the complexity of the method was calculated and shown to be efficient.

Finally, simulation results were provided to demonstrate the efficiency of proposed

bounds.

This is where I introduced the concept of utility versus privacy which formed the

basis for the rest of my research. To do so, I introduced the definition of privacy

in my framework and showcased how it changes to utility function. The results of

this section of my work were gathered and published in [6]. A culmination of my

work thus far has been presented in Chapter 2 which mostly covers my journal

paper [6] since [5] is simply a precursor to the former.
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1.2.2 Utility versus Privacy

Once I was introduced to the concept of privacy in such networks, I shifted my

focus towards privacy in communication networks and other utilities which could

be developed over such a background. A significant example could be found in

personal security versus meta data gathered by different agencies. Meta data refers

to the overall information which could be gathered about each of us as a collection

of our online browse history is gathered over a week, a month or even longer. As

mentioned beforehand, the use of internet is so intertwined with our lives these

days that abandoning it is not an option. While there are still methods of hiding

your online activities, they all have a certain cost. The best tool to fight leaking

information would be the use of a Virtual Private Network (VPN) which would

change a user’s IP address to a virtual (or at least untraceable) IP thus rendering

the user untraceable. However, the use of a VPN slows the connection down thus

resulting in a loss of bitrate.

Another method of fighting such leaks is the use of proxy websites. These sites

also change the user’s IP address so as to cover his/her trace and they also slow

down the connection. However, a user is allowed to utilize more than one of them

at the same time allowing him/her to divide the bitrate load over more than one

network and thus possibly achieving a higher bitrate utility. I acknowledge that

using more than one proxy site is going to result in a higher privacy leakage but

still deem it worthwhile in comparison with a lesser loss of bandwidth.

To model this solution I introduce a binning problem where the goal is to browse

a total of M desired websites each with a certain frequency using N proxy sites.

my goal is then to hide the frequency of each site use. A service provider usually

traces the browsing history of a user by following his/her URLs. It follows that if

N = 1, all the websites are visited through the same proxy and thus no information

7



about the frequency of either of them is revealed. On the other hand if N = M ,

then each website is visited through one proxy and thus all the browsing frequency

information is revealed. Since I am attempting to find a balance between these two

extremes I assume N < M and try to find the best binning (allocation) algorithm

to maximize the overall utility described as a mixture of bitrate utility and leaked

information.

FIGURE 1.1. Binning problem Representation of M -to-N proxy use

To solve such a problem I find it necessary to introduce submodular and sub-

sequently multi-submodular functions which I aim to use to find a solution for

my proposed problem. Due to the complex nature of submodular functions, I am

required to find a series of sufficient conditions for my utility function which guar-

antees the existence of a solution for 2 < N < M but unfortunately does not offer

a closed form solution. Then for the case of N = 2 I offer both the same and more

simplified sets of sufficient conditions for the existence of a solution. Furthermore,

for this case, I offer algorithms as to how the problem could be fully solved using

algorithms previously developed. The results of this section were submitted and

recently accepted to the 2018 International Conference on Telecommunications [7]

and are represented in Chapter 3 of this dissertation.

1.2.3 Hypotheses Detection Under Privacy Constraints

A natural progress from my previous work would be to aim the question of what

if a user wants to be distinguishable from other users so as to enjoy the accom-
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modations offered by service provider to individuals. As an example, they wish to

be offered a series of well-suited suggestions on Amazon while not being tracked

on every items they may view. In other words, the user aims to be detected as

an individual but not have his/her vital information revealed. For such a goal the

user could once again choose applying multiple proxies for different browses. By

doing so the user (1) hides a portion of his browsing information by applying it

through the same proxy thus rendering it indistinguishable (2) leaves a portion of

information open to interpretation as a means of detection.

Rather, the user marks a group of browses as the same, thus imposing ambiguity

among them and offers a chance to the service provider to detect him/her as an

individual by the frequency of each proxy’s use and corresponding output.

Thus if a utility function based upon distinguishability between a number of

users is calculable, a privacy constrained problem between the user and an eaves-

dropper (for example a service provider) could be defined. I further assume the

existence of a cost function imposed by the use of any proxy websites (assuming

they might charge the user for their imposed load). The solution to such a problem

could offer insight in regards to the tradeoff between proxy allocation utility and

meta information leakage when I face the problems of partitioning one of multiple

possible sets of random items (i.e. websites that 2 or more users have chosen to

visit following their own distributions) into a given number of bins with the hopes

of distinguishing the users (i.e. a given set of proxy servers each of which has its

own cost function). The results of this study were recently submitted to IEEE

Transactions on Information Forensics and Security [8] and are also presented in

Chapter 4 of the dissertation.
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1.2.4 Revisiting Information Bottleneck

Until this section of my research, I was mainly concerned with finding the optimal

deterministic channel to accommodate different privacy and hypotheses distin-

guishability goals. Then I decided to look into the design a probabilistic channel

for the same goals. To do so, I revisited the original Information Bottleneck problem

[9] and the solution offered for it. I then discovered the many inadequacies of this

problem’s solution which had not only to do with the non-convexity of the problem

but also with imposing Bayes rule upon the variables ,based solely on following

the path of [10] and [11] and with the one goal of a simple answer. I thus found

it interesting to utilize recent mathematical approaches to finding a solution for a

non-convex optimization problem. To do so, I first used the Augmented Lagrange

Multipliers (ALM) method [12] to rewrite the constraints as part of the objective

function. Then I introduced and used Alternating Direction Method of Multipliers

(ADMM) [13] to find a more optimal solution to the original Information Bottle-

neck problem. I then showcased the superiority of my method in comparison with

those of the original IB solution through numerical results.

The results of this study were submitted to and published in 57th Annual Aller-

ton Conference on Communication, Control, and Computing (Allerton) [14]. They

can also be found in Chapter 5 of this dissertation.

1.2.5 Tradeoff between Disclosable and Private Latent Information
revealed via Compressed One: an ADMM-Based Approach

Motivated by my previous work on the original Information Bottleneck problem,

I attempted to offer a formulation of a more complicated problem. Here, I de-

scribed the goal as finding the optimal tradeoff between disclosable and private

latent information through a compression channel. Whereas in Chapter 5 mutual

information was chosen as a measure of revealed information due to the nature
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of the Markov chain in the compression network, here I offer my own reasoning

behind the use of mutual information as a measure of revealed information using

the concept of typical sequences in a consecutively used communication channel;

thus rendering such a measure novel. Although the final formulation of the prob-

lem turns out to be quite close to that of [15], it is important to note that (1)

in [15], it was simply assumed that mutual information would be an acceptable

measure of revealed information (2) in [15], the final solution to the problem was

just an expansion on the original information bottleneck problem wherein the sim-

plicity of the solution is preferred over how well it performs as long as there’s a

brief mention of how the problem at hand is a non-convex constrained optimiza-

tion problem. However, due to my experience, I am equipped with a new set of

tools, namely Augmented Lagrange Multipliers (ALM) and Alternating Direction

Method of Multipliers (ADMM) which I utilize in two different ways to offer a

solution to the formulated problem. I then use numerical results to indicate how

my method offers a better solution than simply implementing the Information

Bottleneck method as suggested by [15].

The results of this study are in the process of submission to IEEE Transactions

on Information Forensics and Security and can also be found in Chapter 6 of this

dissertation.

1.2.6 Empirical Data Analysis of the Same Problem

After an overall review of the contributions so far in the field of privacy and utility,

I find it important to note how all the analysis made until now was based on the

assumption that I have access to the true distribution of the data whether it be the

condition channel between input and median in Chapter 5 or the interconnected

channels between disclosable and private inputs and the median in Chapter 6.

However, this assumption is almost never true. In the real-world, I only have access
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to a limited number of samples from these two channels and am forced to assume an

empirical distribution between the two of them. Then the question becomes "Are

I certain that the designed system based on empirical data will also be compatible

with true data?". Rather, is there a guarantee that once a system is designed for

the optimal tradeoff based on a limited number of samples, will it still be any

good for an unlimited number of samples or will it begin to falter? A response to

this question was proposed in [16]; where it was deduced that for a specific set

of privacy measures such a hypotheses will hold true. Unfortunately, in the same

paper, it was shown that mutual information is not one of such privacy measures,

seeing as how it is not Lipschitz continuous. This thus results in a push for us to

change my measure of privacy from mutual information to another (compatible)

measure and revise all previous results accordingly. This represents my current

ongoing work a better understanding of which has been presented in Chapter 7.

1.3 Summary of Contributions

Throughout my research, I was able to impose many problems as models of real

life situations and offer solution algorithms and insight into them. Following is an

extensive list of my contributions through this dissertation:

In Chapter 2, I

(1) expand upon the ideas of random group testing and hidden graph detection

to find an average stopping time for the detection of any set of edge-wise disjoint

subgraph using a codeword based sets of queries and introducing decision tables

and trees to carry out such a goal.

(2) introduce the concept of feasibility in any graph detection problem and then

go into further details as to what the existence or lack of such a constraint imposes

upon the network
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(3) introduce the concept of utility versus privacy in the framework of hidden

graph detection and discussing the trade-off between these two as both an addi-

tional point to the hidden graph detection problem and a step towards the second

half of my research where privacy becomes a main point of concern.

In Chapter 3, I

(4) offer insight into issues of meta data and its corresponding privacy constraints

and how the solution to it could be modeled in the form of a binning problem where

each bin represents a possible proxy website

(5) introduce submodular and multi-submodular functions as the required tools

for solving the problem of avoiding privacy leakage and their corresponding repre-

sentation in the form of diminishing returns property

(6) find the set of sufficient conditions for the existence of a solution to the

problem offered and modeled in the previous two steps for a general N number

of possible bins (proxy sites) and then offering less restrictive sets of sufficient

conditions for the existence of a solution to the problem under the assumption

that N = 2 and offering a solution algorithm by the end of which the optimal bin

allocation scheme is well-defined.

In Chapter 4, I

(7) introduce a measure of distinguishability between 2 hypothesis plus a measure

of average leaked information given any number of the hypothesis is active;

(8) develop a formulation of a multi-agent multi-variant optimization problem

with a privacy leakage constraint

(9) offer insight into the complexity of such an NP -hard problem and further

sufficient conditions under which I can simplify it into a polynomial problem

(10) offer a description of the algorithm utilized to find the solution given the suf-

ficient conditions followed by the proximity results and resort to numerical exam-
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ples to further demonstrate the applicability of submodular solutions, as compared

with the results using exhaustive search in manageable settings.

In Chapter 5, I

(11) revisit the Information Bottleneck problem and the algorithm to solving it

as suggested by [9] and explain exactly if and how any step in the original algorithm

could be problematic

(12) introduce the concept of ALM and ADMM solutions to the same original

problem and showcase every possible superiority offered by the new method of

looking at the problem

(13) offer an algorithm and an in-depth look at how it could be implemented

to my problem and demonstrate the practical results of running my suggested

algorithm (ADMM) over the same problem; and offer in-depth reasoning for the

numerical results to further justify the novelty and importance of my new sugges-

tion.

In Chapter 6, I

(14) offer a novel formulation of the problem of tradeoff between disclosable and

private information through a compressed one with a novel justification of the use

of mutual information as a measure of privacy

(15) go into details as to why the information bottleneck-based method of solving

such a problem is not necessarily optimal by going through every step in detail

(16) utilize the concept of ALM and ADMM solutions for the new problem and

showcase every possible superiority offered by the new method of looking at the

problem

(17) offer two separate ADMM-based algorithms and an in-depth look at how

they could be implemented to my problem and demonstrate the practical results

of running these suggested algorithms (ADMM) over the same problem; and offer
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in-depth reasoning for the numerical results to further justify the novelty and

importance of my new suggestions.

Finally, in Chapter 7, I

(18) introduce the main issue with any of my suggested methods of privacy so

far which lays in the empirical nature of real data in any machine learning problem

(19) offer some insight as to how such issues could be addressed thus paving the

way for future studies in the field.

1.4 Related Works

In this section I would like to go into details as to which papers and how each of

them helped us develop my conceptual understanding of the problem.

1.4.1 Non-Adaptive Sequential Detection of Active Edge-Wise
Disjoint Subgraphs Under Privacy Constraints

Our interest in hidden subgraph detection came from previous works in group test-

ing where the main goal was the detection of a number of defective items between

a large set in as short of a time span as possible. Examples of such utilization

could be further witnessed in the fields of disease diagnosis, experimental design

and active learning [17, 18], to name a few.

In [3, 19] a similar issue was raised where the objective was to find a lower bound

on time required to establish any two-colorable graph. However, my work assumes

a set of particular candidates upon the detection of which a decision should be

made rather than just a two-colorability condition. Also note that in [3, 19] it was

assumed that only one edge is causing the actual failure, however in my case any of

the edges within a certain component could lead the system astray. Thus, my only

utilization of [3, 19] comes down to borrowing the idea of node and edge removals

based on random coding.
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Unlike group testing problems where a certain actual active set shall be identified

[20], the final graph in my work has multiple equivalent candidates. Compared to

the problems tackled in [3, 19], both encoding and decoding in this discussion

have to be done sequentially rather than blockwise -where a lower bound was

offered. More importantly, a particular labeled graph out of M candidates has to

be built through communications, rather than an arbitrary two colorable graph

without any other specification. Thus, both the codebook and decoding have to

be tailored to this purpose. And the primary goal is to maximize the efficiency of

building the desired graph in terms of finding an optimal probabilistic encoding

and corresponding decoding strategies to attain the minimum average decision

stopping time at which the graph is formed.

It should be noted that sequential group testing under graph constraints has

been considered in [21] where tested nodes must form a path in a given graph [22].

However, in my settings, there is no such restriction on tested nodes in each time

slot. Rather, the set of active node pairs are selected from one of M candidate

subgraphs.

[23] also dealt with a similar situation where emphasis was put on finding struc-

tures where some fault may be hidden. However in their respective work, they did

not assume any known substructures and tested every circuit for a possible error

and then forming a respective component based on these search results. Thus, in

their model system case, all edges are observable. However in my model, I am

searching for a hidden network which can only be probed and studied based on a

codebook and a binary channel output vector Y .

After finishing my first publication [5], I aimed to expand upon my previous

studies by finding more real life examples where my design of the problem could

be applied to interesting results.
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We first came across some studies concerned with understanding community

structures within multiple types of networks. In [24], an example of such nature

concerning social networks was offered. Most problems associated with this field

are closely tied with the concept of community detection. Community detection

refers to the problem of clustering nodes [24] or links [25] in a given network

(which structure-wise is represented through a graph) into multiple substructures

under which the infrastructure connectivity density is higher than that between

different substructures. Borrowing this concept, I opt to shift my focus towards

the issue of detecting active substructures assuming I already have access to a list

of such possible edge-wise disjoint subgraphs or community ties using any existing

link-wise community detection algorithm. [26, 27, 28].

The reason why I choose edge-wise disjoint subgraphs rather than vertex-wise

disjoint subgraphs is due to how overlapping vertexes could be utilized in charac-

terizing relationships where agents may get involved within multiple contexts, e.g

friendship networks, collaboration networks [25, 26, 27]. After identifying such sub-

graphs, my goal is to find an active subgraph by utilizing queries about structure-

wise activity states without compromising private information of actual link-wise

states. In that sense, my work could be considered along the line of active learning

but with constraints of protecting local private information in a network [29, 30].

In all previous cases of detection I already had access to a prior set of queries

and hypothesis and aimed to differentiate the latter in the form of a set of known

tests and outcomes [31, 32, 33, 34]. However due to my new constraints, I need to

first find a set of feasible queries. Furthermore, I need to establish the relationship

between query codewords and subgraphs in terms of a query table in accordance

with the properties of a given set of edge-wise disjoint subgraphs, given a priori in

my problem. In other words, I must offer a method of building a table indicating
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the relationship between such tests and outcomes as an added contribution. Then,

sequential querying process could be carried out and the insight their corresponding

outputs offer will help indicate which substructure is active after a certain number

of observations.

In my work, I may face multiple issues such as possibly large size networks,

potential feedback noise in responses to the queries as well as subgraph decon-

structions. To handle such problems, I opt for a random query method (a more

information theoretically inspired approach) best known as the random coding

method [35, 36], to seek both the upper and lower bounds on the average stopping

time of the proposed problem.

As mentioned previously, my proposed framework for active graph detection

could find connections to existing works on group testing and detection of some

specific active non-labelled structures. Group testing as introduced in [37] could be

graphically modeled as starting with a graphG(V,E) where |V | = N and |E| =
(
N
2

)
with the goal of cutting down G in as short a time span as possible to end up with

G(V ′, E ′) where |V ′| = k and |E ′| =
(
k
2

)
. This was carried out by sequentially

removing kk subgraphs (complete subgraphs of order k) or unions of star shaped

trees. In [4], the goal was changed to detecting graphs of a certain characteristic

(complete or star shaped) by allowing the graphs to have overlapping edges. Queries

were made in the form of complete graphs and whether or not they shared any

edges with the graph I was hoping to detect. Following the same concept was [3]

where the authors attempted to find a stopping point where G(V ′, E ′) contains

only two defective nodes and is also a two colorable graph rather than a graph of

a certain order or a certain shape.
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1.4.2 Partition of Random Items: Tradeoff between Binning Utility
and Meta Information Leakage

In my proposed framework, meta data information refers to the patterns about a

sequence of items(for example the user’s favorable websites) infer-able based upon

a sequence of bins (e.g. proxy sites) observed by an eavesdropper. This assumption

is an expansion of [38] and [39].

The concept of privacy has already been explored in many works such as [40, 41]

where a general but non-mathematical explanation was offered. However; in my

work, I go into further details as to what privacy represents in my framework and

how it could be formulated into many settings. Later, I found it necessary to uti-

lize the concept of multi-submodular set function problems and their solutions.

This concept was widely discussed in [42] where they introduced a series of suffi-

cient conditions on multi-submodular set functions by which the multi-submodular

problem could be transformed into a submodular set function problem. Then, fur-

ther discussions about the existence of a solution to the new problem were made.

By doing so -and if a solution was proven to exist-, the complexity of the problem

could be shown to be reduced from NP to polynomial. However, [42] did not offer

any algorithmic solutions in such cases which unfortunately results in us simply

proving the existence of a solution rather offering an algorithm to support such

solution as well. Thus, I simply utilize the works of [42] to define problems who

should have a solution.

1.4.3 Partition of Random Items: Tradeoff between Binning Utility,
Meta Information Leakage and Hypotheses Distinguishability

To the best of my knowledge, the closest work to mine was done by [43]. In [43],

they also considered the tradeoff between distinguishability and information leak-

age where the former is quantified using KL-distance and the latter using mutual

information. However, in [43], (1) they assumed a probabilistic mapping between
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inputs and outputs, but I am considering deterministic and singular mapping (i.e.

many-to-one); and (2) they did not consider costs associated with such mapping.

In addition, in order to reduce the complexity of their problem from NP to P, they

further pursued special cases with negligible information leakage. On the other

hand, in my problem I relax the objective to seek conditions for submodularity

structure in my discrete optimization framework.

It later turns out that in order to simplify the solution complexities of the prob-

lem, I impose a quadratic property over the cost function. However, as is further

explained in [44], such an assumption is not necessarily as limiting as it seems,

seeing as how in many economic models, functions are written as extensions of

quadratic functions.

It is important to note that one of the most prominent measures of privacy as

described in works such as [45] has been differential privacy. Differential privacy is

mainly concerned with limiting the information leaked through different sequences

generated by a randomized process. In my problem settings, differential privacy

aims to investigate the effects of a minimal change in the input in the overall

output of the system. In other words, if there are originally Xn sequences at my

disposal which are mapped to Y n sequences in the output, is there a minor change

in the input sequence that could result in an out of control change in the output

sequence?

Overall, differential privacy in literature is concerned of one-shot measure ([46]).

However, all my measures are in average sense including average utility, mutual in-

formation, KL divergence, whose functional significance rests upon repeated draw-

ing from a distribution over long run. Thus differential privacy is not of concern

here. Even if I could consider differential privacy in the settings of long sequences,

such privacy measure is not quite relevant due to the long-sequence constraints.
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As for the addition of distinguishability, to the best of my knowledge, the clos-

est work to mine was done by [47] where they considered the tradeoff between

distinguishability and information leakage when the former is quantified using KL-

distance and the latter using mutual information. However, they formulated the

problem using the concept of missed detection and false alarm as the basis of hy-

potheses testing. In this work, the authors were interested in a randomized binning

process which tended to be more complex than my routine. Such a goal came at

the cost of sacrificing the concept of trade-off by only allowing very small privacy

leakage (less than ε) in order to invoke a first order approximation to reduce the

computational complexity of the optimization problems. However; in my work, I am

concerned with any amount of trade-off with deterministic binning to seek subop-

timal and polynomial order approximations enabled by the fundamental properties

of multi-submodular set functions.

The multi-submodular function was discussed extensively in [42] where they

introduced a series of sufficient conditions on multi-submodular set functions by

which the multi-submodular problem could be transformed into a submodular

problem. Then, further discussions about the existence of a solution to the new

problem were made. By doing so -and if a solution were proven to exist-, the

complexity of the problem could be shown to be reduced from NP to polynomial.

Such sufficient conditions have been adopted by us in in seeking proper binning

utility functions under which such sufficient conditions hold true.

1.4.4 Information Bottleneck Problem Revisited

Due to the nature of my chapter, which heavily relies on discussing every step of

the information bottleneck method, my main point of reference will be the original

Information Bottleneck paper [9]. I later find it important to note that [9] was

inspired by the works of [10] and [11]. Thus, from time to time, in order to indicate
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the inadequacies of [9]’s results, I will refer to these papers. Further comments

on the inadequacies of [9] have been made in many works as recent as [15] which

reflect the concerns of many previous authors who while aware of the limitations

of IB, still chose to utilize it due to its simple implementation.

The idea of solving Lagrange multiplier problems where the goal is to either max-

imize or minimize a function using penalty functions has been explored in many

previous mathematical and computing works such as [12]. These issues could be

modeled in the form of an Augmented Lagrange Multiplier (ALM) problem. How-

ever, due to the still-complex nature of solving any non-convex Lagrange multiplier

problem (which requires carrying out gradient descent and checking for conditions

on every Lagrange multiplier), further studies and methods are required. One al-

gorithm of dealing with the limitations of an ALM problem is to instead try and

adopt an ADMM algorithm. One of the most recent works about this method is [13]

which details the superiority of adopting ADMM over continuing with ALM. [13]

makes further observations on the accuracy of a non-convex Augmented Lagrange

Multiplier problem which I will utilize to justify the numerical results achieved

through this chapter.

Finally, [48] offers a series of sufficient conditions on the desired utility function

by which a convergence of the ADMM method could be guaranteed. I will offer

insight into these sets of sufficient conditions and whether or not they are applicable

to my problem settings.

1.4.5 Tradeoff between Disclosable and Private Latent Information
revealed via Compressed One: an ADMM-Based Approach

We recently became aware of the works done in [15] which closely resemble my over-

all formulation of the problem. However, in my work, my definition of the original

problem and how I come to formulate it as such are quite different. Furthermore,
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even though information bottleneck alike approach has also been considered by us

as [15], it should be noted this approach serves as a comparison reference, leading

to my novel new algorithm. . Also of note is how [15] did not offer any numerical

results for the method developed and simply sufficed to reiterate how the problem

is non-convex (as was the original IB problem) and that the results are not nec-

essarily optimal. While it is true that the overall problem is still non-convex, as

I will show, there are methods that could outdo simply running the Information

Bottleneck method again with little fixtures. I will detail such novel approaches

and algorithms whose performances are compared with the IB based approach

using numerical results.

In order to introduce my method, I find it necessary to introduce the concept

of Augmented Lagrange Multiplier (ALM) [12] and later on Alternating Direction

Multiplier Method (ADMM) [13]. Overall, this chapter is a further generalization

of my previous work in [14] where I discussed applying ADMM to the original

information bottleneck problem; however without an additional privacy constraint.

1.4.6 Proposed Works: Empirical Data Analysis

Seeing as how in Chapter 7, I am mainly concerned with the implications of using

empirical data in my problems, my main source of study has been [16] where I use

the works done to develop some ideas as to how I could generalize my previous

results.

1.5 Dissertation Organization

In Chapter 2, I will present my journal paper [6] where the main goal is to find the

average time it would take to detect a hidden subgraph and form an opinion on the

relationship between the elapsed time and the privacy leakage. Then in Chapter 3,

I offer the full length version of my conference paper [7] a shorter version of which

was made to match the page limitations of the conference requirements [14]. In
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this section, the goal is to generalize the utility function hinted at in Chapter 2 to

find a more general formulation of the problem concerning utility versus privacy.

In Chapter 4, another level of uncertainty is added to the problem formulated in

Chapter 3 where I aim to also distinguish different possible hypotheses while max-

imizing utility and keeping the leaked information to a constraint. This in turn,

results in a journal paper [8] fully presented in Chapter 4. In chapter 5, I present

my conference paper [14] where as a natural progression from Chapter 4, I look at

the problem of finding an optimal probabilistic channel between input and output

for a good tradeoff between utility and privacy. I thus come across the concept of

the Information Bottleneck problem and its solution [9]. I offer insight about the

pros and cons of this method and then offer my own method based upon ALM

and ADMM to find better results than those gathered in [9]. In Chapter 6, I of-

fer my current journal paper in progress where introduce the concept of private

and disclosable information and offer a formulation of the previous privacy-utility

optimization problem where different sections of information are meant to be hid-

den or revealed. I then use the previously discussed ADMM approaches to find

two new solutions and compare them with those of using the original Information

Bottleneck method. Finally, in Chapter 7, I discuss a few issues with my assump-

tions in problem formulation so far and offer insight on how I can deal with such

shortcomings in future works.
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Chapter 2
Non-Adaptive Sequential Detection of
Active Edge-Wise Disjoint Subgraphs
Under Privacy Constraints

2.1 Introduction

In my work, I provide an algorithm to find average stopping time for any feasible

graph with no specifications on either the shape or the order of the final graph.

This then results in calculation complexities higher than those offered by previous

works. Furthermore I need to impose edge overlapping or non-edge-overlapping

characteristics to my problem and am thus able to offer more insight into the issues

of privacy. The privacy issue studied herein is due to possible revelation about

edge activity patterns of a given active sub-graph, which can be inferred based on

query outputs. Such information leakage is further quantified using average mutual

information between edge status and query outputs.

Overall, my work in [5] mainly dealt with finding an average stopping time for

detecting an active hidden subgraph given enough feasible queries and primarily

focused on the mathematical aspect of such a detection problem. In this discussion,

I address the possible issue of an insufficient number of feasible codewords and how

to deal with it, the consequent tradeoff between privacy and subgraph detection

and all new detection complexities. More specifically, the main contributions of

this discussion are listed as follows: (1) development of algorithms to evaluate

average stopping time for any tree shaped decision intersection hypergraph; (2)

finding the calculation complexities faced when using the random query method;

(3) defining and evaluation of privacy in terms of information leakage on edge

activity patterns. The privacy issue further prompts us to propose an expansive
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notion of feasible queries, as well as intersection hyper graphs for the detection

purpose. The resulting tradeoff between average stopping time, and information

leakage is then further evaluated.

The rest of the chapter is organized as follows. I present my system model and

problem formulation in Section 2.2. Then in Section 2.3, I provide the basis of

privacy within my framework of study and later rationalize why feasibility is an

issue which needs to be addressed. In Section 2.4, I offer insights as to whether

such problems are always solvable; that is whether I am able to distinguish a given

set of subgraphs under the constraint of protected edge-wise activity information.

In Section 2.5, I offer a mathematical solution to the problem I have raised using

Bayes’ decision rule. In Section 2.6, by adapting the proposed random coding

approach, I find upper and lower bounds for the average stopping time of the

formulated sequential and non-adaptive subgraph detection problem and compare

the final results. Simulation results are also demonstrated in Section 2.7 to assist

any further understanding. Furthermore, I offer calculation complexity levels for

all solutions. Finally, in Section 2.8 I offer a comparison between my approach and

the deterministic non-adaptive algorithm and show it is not an acceptable method

for my problem.

2.2 System Model and Formulation

In my model I assume there are M edge-wise disjoint subgraphs G1 = (V1, E1),

G2 = (V2, E2), ...GM = (VM , EM), where Vi and Ei denote the vertex and edge

sets for Gi. There are in total N vertices in these subgraphs, and each vertex

could belong to multiple structures. Over the course of my test, only one of these

subgraphs is active, for example G1. The state of G1 being active is equivalent to

stating that each edge in Ei is equally likely to be active at each testing time slot.
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Over each testing time slot, a codeword (i.e. a query) of N binary bits is used to

inquire the status of the hidden subgraph. The relationship between the allocation

of N bits and the response of the subgraph Gi to the query given that Gi is the

hidden active subgraph, shall follow these rules : (1) If vertex covering imposed by

the nodes allocated with 1 bits covers all the edges of a subgraph Gi, the output

of the system is 1 ; (2) If vertex covering imposed by the nodes assigned with

1 bits covers none of the edges of subgraph Gi, the output of the system is 0.

Since codewords are at my disposal, I will make certain only codewords resulting

in one of the 2 above situations are allowed. This measure is taken as a means of

protecting privacy in metadata as further discussed in Section 2.3.

During each time slot, all subgraphs whose outputs are different from the one

observed are removed from the list of candidate subgraphs. As a result of a sequence

of such queries and candid subgraph removals, the desired subgraph is found. It

follows that the stopping time is subject to both the set of queries used and the

actual active subgraph. My first objective is to find a feasible set A = {a1, a2, ...aK}

of codewords where aj ∈ {0, 1}N for 1 ≤ j ≤ K, subsets of whom result in the

detection of each edge-wise disjoint Gi subgraphs. This means that every Gi could

be constructed using one of iLi
(referred to from now on as decision factors) sets

gathered in Si = {Si1 , Si2 , ..., SiLi
} where (a) Sik ⊆ A and (b) Sik 6⊆ Sil where k 6= l

and k, l ∈ {1, 2, ..., Li}. For the non-adaptive sequential detection problem, my goal

is to develop algorithms to find an acceptable sequence of codewords from the set A

to run a sequence of Boolean queries whose outcomes enable us to determine which

subgraph is being active, with a minimum average stopping time. The average is

taken over the prior distribution of the states of the given M subgraphs. Without

loss of generality, I assume all subgraphs are equally likely to be active in the rest

of the chapter.
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2.3 The Issue of Privacy

In this section, I aim to quantize privacy in a more strict manner so as to deal

with it in a mathematical framework.

To do so, assuming I have identified the active subgraph Gi I would like to find

more information about each of the edges within this subgraph and their (sup-

posed) probability of activity. I allow a new definition of partial covering stating

that the output is 1 if and only if the active edge is adjacent to at least one node

with bit 1 and the output is 0 otherwise. Then, if I repeat the same query many

times, a probability distribution of activity over such edges is developed meaning

the uncertainty among these edges becomes less and thus new insight is developed.

In other words, a codeword a, could be modeled as a channel which will divide

the edges of an active graph Gi into two sets; those with output 0 labelled E[0] and

those with output 1 labelled E[1]. This could be modeled in Figure 2.1 where the

probability distribution of each such sets could be calculated as πE[0] =
∑

e∈E[0] πe

and πE[1] =
∑

e∈E[1] πe where πx is the probability distribution function of variable

x and the index e ∈ E[Gi].

FIGURE 2.1. Communication Channel Representation of Codeword a

Now, I would like to see how much information about the inputs could be revealed

using the binary output Y ∈ {0, 1}. Assuming Se = E[0]∪E[1] and X numerically
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representing each member of Se, I can have:

I[X;Y |a, Gi] = H[Y |a, Gi]−H[Y |X, a, Gi] = H[Y |a, Gi] (2.1)

In the last equation I have used the fact that knowing a, Gi and X will let us

know exactly what Y is going to be and thus H[Y |X, a, Gi] = 0.

I also know that Y follows the probability distribution of P [Y = 0] = πE[0] =

1− P [Y = 1]. Thus the mutual information between X and Y will be equal to

I[X;Y |a, Gi] = H[Y |a, Gi] = h
(
πE[0]

)
(2.2)

where I have introduced h(q) = −q log(q) − (1 − q) log(1 − q), where q ∈ [0, 1].

The above equation dictates that if codeword a was repeatedly chosen as a channel

to transfer bits of information over, based on outputs 1 and 0, a certain level of

information would be revealed about edge variations and thus assumptions about

the original edges could have been made. Then if n channel uses were made (a

query a is used n times repeatedly), at most 2nI(X;Y ) number of messages each of

which represents a particular edge-wise activity pattern can be revealed based on

the vector of [Y1, Y2, · · · , Yn]. In other words, mutual information I (X;Y |a, Gi)

quantifies the rate at which information in regard to edge-wise activity patterns

is disclosed due to adoption of a query codeword a which offers a partial vertex

covering for the given graph Gi.

It then follows that for the codeword a = [a1, a2, ..., aN ]′ and based on the number

of edges these N bits cover, the above mutual information could vary between 0

and 1 bit.

As an example, I assume the graph in Figure 2.2 represents an active subgraph.

Under this framework, if I assume pij represents the probability of the edge between

nodes i and j being active, then all I know is that p12 + p23 + p34 + p41 = 1.

Now, I opt to apply a certain codeword to such a graph.
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FIGURE 2.2. Active Subgraph Example

FIGURE 2.3. Mapping Possibly active edges to Outputs Given a1

An example could be viewed in Fig. 2.3 where codeword a1 = [1000]′ has been

applied to each (possibly active) edge and the resulting outputs have been wit-

nessed. Here, I am able to write a formula representing the mutual information

within original inputs which models the relationship between the active edges and

the observed outputs given codeword a1 was chosen.

I(Y ;X|a1) = H(Y |a1) (2.3)

where for this specific example H(Y |a1) = h(p12 +p41) represents the entropy over

the final output.

It thus becomes obvious that by choosing a codeword and running it repeat-

edly, I will be able to obtain new information about the edge-activity patterns.

It is important to note that some codewords will not be able to offer us any new
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information such as codeword a2 = [1010]′ for which I will have:

I(Y ;X|C1) = H(Y |a2) =

−(p12 + p41 + p23 + p34) log(p12 + p41p23 + p34) = 0 (2.4)

FIGURE 2.4. Mapping Possibly active edges to Outputs Given a2

where I have used the fact that p12 + p23 + p34 + p41 = 1.

Now I am able to define invasion of privacy in my framework of graphical struc-

tures. If by the use of certain codeword aj, further information about the patterns

of active edges within an active subgraph Gi is revealed, I concur a breach of pri-

vacy has occurred which can be quantized by the formula BoP i,j = I(X;Y |aj, Gi)

where BoP represents Breach of Privacy.

Generalizing the above formula over a number of codewords aj each with prob-

ability P (aj) and possible active subgraphs Gi each with probability P (Gi) of

occurrence will result in the following formulation for a measure of privacy inva-

sion which quantifies the average amount of information leaked about the edge

activity patterns of a detected graph Gi among M candidates.

BoP (G) =
M∑
1

P (Gi)

iLi∑
j=1

P (aj)BoP i,j (2.5)
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2.4 Queries and Codewords

In a binary setting, a codeword over original graph G = (V,E) where |V | = N

could have 1 of 2N possible forms. Thus in the first step I am able to form anM×2N

table T where every cell Tij represents the output of subgraph Gi, 1 ≤ i ≤M after

applying codeword aj, 1 ≤ j ≤ 2N .

Following from my ideas in Section 2.3, I search for any cell Tij whose output is

neither 0 nor 1. Such a cell shows that aj is causing inconsistency for subgraph Gi

and is thus not a feasible codeword. After a thorough search over all M × 2N cells,

I am able to find all such codewords which cause inconsistency in even 1 respective

subgraph and remove them. The table remaining will have a size of M ×K ′ where

K ′ represents the number of consistent codewords. All such problems are in relation

to the concept of complexity in search for vertex covering which [50] shows is an

NP-complete problem. Tables 2.1 and 2.2 represent the initial binary response

relationship between queries and outputs for detection of the set of graphs in

Fig. 2.5 and Fig. 2.6, respectively.

2.4.1 Detectability of Subgraphs with Feasible Queries

It’s important to note that in [4, 3] (a) the subgraphs were not labelled and (b)

subgraphs were not assumed to be of a certain shape and size. In my work, I need

to first determine if a given set of edge disjoint subgraphs can be distinguished

using consistent vector queries.

I am adapting sequential detection which means the results of my previous ob-

servations will help us limit the next set of results. This, in turn, means that those

series of 1s and 0s which offer the same output for all possible subgraphs are idle

to detection; thus a number of consistent codewords should be removed.

I anticipate that the set of acceptable codewords or queries might not be sufficient

to let us differentiate all given subgraphs. I illustrate this issue using two example
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TABLE 2.1. Outputs of each subgraph to each codeword in Figure 2.5
b1 b2 b3 b4

G1 1 1 1 1
G2 0 1 1 1
G3 1 1 1 1
G4 1 1 1 1
G5 1 1 0 1
G6 1 0 1 1
G7 1 1 0 0

where one set of M = 7 of N = 6 nodes is given in Figure 2.5 and another set

of M = 5 of N = 6 nodes is given in Figure 2.6. In the first case, the set of

acceptable codewords consists of b1 = [000111]′, b2 = [110101]′, b3 = [111000]′,

and b4 = [111100]′ while for the second case there is only one accpetable codeword

d1 = [110010]′ , both of which, as explained next, turn out to be not enough.

FIGURE 2.5. Original Subgraphs of Example 1

FIGURE 2.6. Original Subgraphs of Example 2

The reason why I am able to say that the number of codewords for Figures 2.5

and 2.6 is not enough could be seen in both Tables 2.1 and 2.2; in Table 2.1 if the

33



TABLE 2.2. Outputs of each subgraph to each codeword in Figure 2.6
d1

G1 1
G2 1
G3 0
G4 1
G5 1

active subgraph is any of G1, G3 or G4, there is no distinction between them which

could be detected by the selection of codewords I have. The same similarity is seen

between G1, G2, G4 and G5 in Table 2.2 when I suffice to d1.

Thus I should add new codewords (queries) to my current selection. However;

these codewords should still hold up the consistency requirement of the model.

It then follows that to find such codewords I need to change the shapes of some

subgraphs.

I want to find the most number of new applicable codewords with minimum num-

ber of changes. Thus, I need to find the general form of the codewords consistent

with all subgraphs. Usually, the subgraph with maximum number of edges imposes

the most consistency issues since there is a higher possibility of inconsistent edges

within such subgraphs. So, I try to find the general form of the codeword consistent

with the subgraph with maximum number of edges. To do so, I must make sure

that no two adjacent nodes within such subgraphs are allocated the same bit. This

is because if such same bits were both 0s, they could result in a 0 edge within the

subgraph and thus cause inconsistency. Once the general form of such codewords

has been found, I need to make sure these codewords are also consistent with all

other subgraphs. Thus, I apply this codeword form to all remaining subgraphs;

if any two adjacent nodes in the following subgraphs are offered the same bit, I

remove the edge within them from mentioned subgraph and treat it as a single

edge subgraph. Once all such single edge subgraphs have been found, I have found
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a form of codewords which is compatible with all new subgraphs. If the number of

newly added subgraphs is not enough, I will follow the same steps as before this

time starting from the subgraph with second most number of edges and so forth

until enough codewords have been gathered.

To model the general form of consistent codewords, I suggest using graph color-

ing. After coloring a certain subgraph G all nodes within G will have a different

color than their adjacent nodes. Thus if a certain node is given color r (which

represents a 0 bit in my framework) I can make sure that all adjacent nodes are

given contrasting colors b, g,... all of which represent a 1 bit in my framework.

Furthermore, if a certain node is given color b (which represents a 1 bit in my

framework) all adjacent nodes are free to choose whichever color they want as long

as there is no inconsistency induced amongst them.

Now, I am able to introduce the same method using vertex coloring frameworks.

Assuming there are ML subgraphs, |1s|L single edge graphs and CL applicable

codewords in the Lth step of the algorithm, the algorithm could be summed up as:

Algorithm 1 : Algorithm to generate enough codewords for detection given a set of
initial subgraphs

0. L = 1;

1. Find the subgraph Gi with maximum number of edges.

2. Color the Gi.

3. Remove Gi from the list of possible subgraphs.

4. Treat all nodes with the same color as single edge subgraphs.

5. Check to see if 2|CL|−|1sL| ≥M − |1sL|. If yes go to 6, otherwise, go to 1.

6. End

The stopping condition results from the fact that every single edge subgraph

could be detected using one and only one codeword (which consists of all 1s and

two 0s in the place of adjacent nodes of the edge). This means that if there areML
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TABLE 2.3. Outputs of each subgraph to each codeword in Figure 2.7
a1 a2 a3 a4 a5 a6 a7

G1 0 1 1 1 1 1 1
G2 0 0 1 1 1 1 1
G3 1 1 1 1 1 1 1
G4 0 1 0 1 1 1 1
G51 1 1 1 1 0 0 1
G52 0 1 0 1 0 1 0
G6 1 1 1 0 1 1 1
G7 1 1 1 1 0 1 1

TABLE 2.4. Outputs of each subgraph to each codeword in Figure 2.8
f3 f4 f5 f6 f7 f8 f9 f10

G1 1 1 1 1 1 1 1 1
G2 1 1 1 0 1 1 1 1
G31 1 1 1 1 0 1 1 1
G32 1 1 1 1 0 0 1 1
G411 1 1 1 1 1 1 0 1
G412 1 1 1 0 1 1 1 0
G42 0 1 1 1 1 1 1 1
G51 1 1 0 1 1 1 1 1
G52 1 0 1 1 1 1 1 1

subgraphs and |1s|L single edge subgraphs, |1s|L codewords will be used to simply

identify the single edge subgraphs. Thus if there are a total of |CL| codewords

available, seeing as how there are only 2 possible outputs sequentially speaking, I

at least need to satisfy the above inequality wherein the left side shows the number

of possible different subgraphs.

This algorithm results in the original set of subgraphs in Figure 2.5 to change

into the new set visible in Figure 2.7. This example took 1 repetition to find the fi-

nal set of subgraphs and its final codewords are a1 = [000010]′, a2 = [000111]′, a3 =

[101010]′, a4 = [110101]′, a5 = [111000]′, a6 = [111001]′, a7 = [111010]′, a8 =

[111100]′. The same algorithm for the original set of subgraphs in Figure 2.6 re-

sulted in the set of graphs apparent in Figure 2.8 and the corresponding codewords

f1 = [010010]′, f2 = [010011]′, f3 = [010111]′, f4 = [011011]′, f5 = [011110]′ and f6 =
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[101100]′, f7 = [110010]′, f8 = [110011]′, f9 = [110101]′, f10 = [111100]′. These code-

words took 3 repetitions to develop. I see that in both cases 2|CL|−|1sL| > M −|1sL|

meaning I have more than satisfied the necessary condition and thus one or more

of the codewords could be dropped with no detection problems arising, and thus I

drop a8 from the first and f1 and f2 from the second case.

FIGURE 2.7. Final Subgraphs of Example 1

FIGURE 2.8. Final Subgraphs of Example 2

Thus by using the algorithm, I am able find the minimum number of changes

I need to impose on the subgraphs to find enough codewords to solve the ini-

tial problem. However, by assuming new single edge subgraphs and new resulting

subgraphs, I am compromising the level of privacy, as described in Section 2.3.

Still, given the assumption that all edges within an active subgraph are equally

likely to be active, I am able to use these minimum changes to find an average

stopping time for the original subgraphs. As an example, I can find the average
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stopping time of G5 in Figure 2.5 by calculating the average stopping times of

G51 and G52 in Figure 2.7 and then averaging the result over the number of edges

within the two new subgraphs meaning E(λG5,old
) = 0.5E(λG51,new)+0.5E(λG52,new)

where λ indicates the stopping time variable. Furthermore in Figure 2.8 I will have

E(λG3,old
) =

2

3
E(λG31,new) +

1

3
E(λG32,new) (2.6)

2.4.2 Methods of Codebook Construction

For implementation of such a network, I have chosen a probabilistic approach,

where I assume that at every time slot one of the codewords in A is randomly chosen

to transmit upon. Using these codewords, the detector performs a semi generalized

binary search, which will end up with forming the chosen subgraph. THere, I can

assume a binomial distribution for each codeword aj ∈ {0, 1}N for 1 ≤ j ≤ K

meaning P (aj) = pN(1s)(1 − p)N−N(1s) where 0 ≤ p ≤ 1 and N(1s) represents

the number of 1 bits in codeword aj and then find the optimal p∗ under which I

generate the codewords randomly following the assigned probability distribution.

As long as the average stopping time over all graphs can be minimized, there must

exist a good sequential codebook to achieve such performance. I will go into further

details as to why this method is optimal in Section 2.8.

2.5 Solution

In this section, I offer a method that helps solve the problem introduced in Section

2.2. These methods are based upon random codebook detection as explained in

Section 2.4.2. I will offer further reasoning and analysis hidden behind this method

and specified algorithms concerning it. I will start my work by decision factor

identification and then move on to the random code generation method.

2.5.1 Decision Factor Identification

In this section, I explain how decision factors for a certain subgraph are discovered.

In order to do so, I would advise the reader to review [31] where the main goal was
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to find a sequence of queries to form the most symmetric decision tree possible for

a set of queries and hypotheses. [31] could then be modified to help us find the

most effective decision factors for a certain subgraph.

FIGURE 2.9. Decision Factors for Example in Figure 2.7

The most effective decision factors distinguish the target subgraph as soon as

possible; thus if I were to label the system’s output to subgraph Gi, i = 1, ...,M

and codeword ak, k = 1, ..., |C| as Ti,k, then I would have access to all possible

M × |C| outputs as witnessed in Table 2.1.

Since I am attempting to find the fastest stopping time factors, it would be logical

that for a given active subgraph Gi, I would choose the codeword Ci,1 which puts

it in the most distinguished selection of subgraphs where (i, 1) index represents

the number 1 choice of a codeword for detection of active graph Gi. By doing so

repeatedly, I will be able to fully distinguish Gi from all other possible choices with

the minimum number of queries.

The idea presented above represents a greedy method of finding the best possible

solution factors. However, such an algorithm might only offer a local optimum
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point for my solution. This is because at every step I choose the best option, I

am choosing one locally optimum choice and following it with another. It may in

return be possible that I am missing an overall better representation due to such

strict local choices. Thus, I add a randomized selection method as well to account

for such cases where in every step top 10 percent of the codeword choices are

accounted for as possible solutions and thus an overall group of possible solutions

is developed.

FIGURE 2.10. Decision Factors for Example in Figure 2.8

Algorithm 2 : Randomized Decision Factor Identification Algorithm Given a

Set of Subgraphs and Codewords

1. Choose the target subgraph Gj

2. Find the codewords ck′ such that the number of subgraphs with the same

output to the codeword ck′ as those of Gj would be in the minimum 10

percent

Repeat the following steps for each of these codewords
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i. If there are more than 1 such codewords, choose each of them sep-

arately

ii. Write down ck′ as the first decision factor

3. Form a new output matrix consisting of only those subgraphs with the

same output to the codeword ck′ as that of Gj.

4. If the size of the output matrix is not 1× 1, go to 2 Otherwise, go to 5

5. End.

Applying the algorithm above will result in the best decision factors for every

subgraph in Fig. 2.7 and 2.8 to be as observed in Fig. 2.9 and 2.10 respectively. I

plot the results as hypergraphs where each node represents a series of codewords

and two nodes are adjacent if they share at least one codeword. I call such hyper-

graphs intersection graphs.

It is important to note that Algorithm 2 is basically offering a decision tree

whose every vertex is a codeword. Union of these codewords on every walk from

the root to any of the branches then represents a decision factor. It follows that

any intersection graph will be in the form of a complete graph since every vertex

(decision factor) at least shares the root with all other vertices. I now aim to

calculate the maximum number of vertices on an intersection graph.

I know that the number of branches in a binary decision tree is maximal when

all the vertices have the lowest degree. The vertices cannot all have degree 0, be-

cause such a condition would assume that at least two different codewords could

identify the same subgraph alone which means the codewords must represent com-

plementary vertex coverings. However, such coverings do not occur in my binary

framework.

41



It thus follows that the number of branches in a binary decision tree is maximal

when all the vertices have degree 1 except one vertex. In such a case, if there are

|C| codewords, there could be a total of |C| − 1 branches. Then the intersection

graph will form a |C| − 1 complete graph (as witnessed in Fig. 2.11). Thus, the

FIGURE 2.11. Example on two representations of decision factors

most number of vertices an intersection graph for the detection of a subgraph Gi

could have is equal to |C| − 1. It then follows that for a second, third and fourth

subgraph Gj, j 6= i this number is equal to a maximum of |C| − 1 since the same

decision factor (such as {g1g2} in Fig. 2.11) could reoccur as long as the outputs

to the same query are different (for example when the output given g1g2 and

subgraphs Gj, Gj+1, Gj+2, Gj+3 active, is [00], [01], [11], [10] respectively). However

for the fifth subgraph this maximum is dropped by 1 since the same decision

factor cannot reappear. It then follows that for the detection of M subgraphs the

maximum number of vertices in all decision factors will be equal to:

4(|C| − 1 + |C| − 2 + ...+ |C| − M

4
) =

M |C| − M

2
(
M

4
+ 1) (2.7)

I will use Eq. (2.7) to calculate the complexity of the solution for my problem.
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2.5.2 Implanting the Bayes Optimization Rule

I see that there are 2 possible types of decision factors: (a) they each consist of

several combinations of Sil , 1 ≤ l ≤ Li (as introduced in Section 2.2) which do

not share any ae with each other (b) they consist of several combinations of Sil

which have some ae in common with one another. For a better understanding, in

Figure 2.9 subgraphs (4) and (8) fall into category (b) and all the rest follow the

definition of category (a).

For the first case, in order to compute the probability distribution of the overall

stopping time, I would simply calculate the stopping time of each possible Sil and

then use the Bayes rule as a means of determining which of them has occurred

first. In other words I utilize the conditional probability mass function (PMF) to

describe the stopping time given that Gi is active:

P [λGi
= n] =

P [λSi1
= n]P [λSi2

> n, λSi3
> n, ...|λSi1

= n] + ...

P [λSiLi
= n]P [λSi1

> n, λSi2
> n, ...|λSi1

= n] (2.8)

where P (λGi
= n) represents the probability of Gi being detected at time slot n

and P [λSil
= n] represents the probability of Gi being detected at time slot n by

Sil . It would then follow that for case (a) I will have the above equation simplified

to:

P [λGi
= n] = P [λSi1

= n]...P [λSiLi
> n] + ... (2.9)

Next, all I need to do is find the probability distribution of stopping time caused

by a group of exclusive queries presented in the form of P [λSij
= n] in the above

section. I am going to do so for the case of two or more of such queries occurring. I

will go into details about one important case and then find a method to generalize

my results to any number of agents.
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Let us assume that Gi depends on two queries a1 and a2 both occurring. As with

most probability distributions I start by writing down the cumulative probability

distribution (CDF) of x′ = {a1, a2} simply as P (λGi
≤ n) = P (λa1,a2 ≤ n) where

the index defines the decision factor detection is based upon and n represents a

discrete variable defined for the number of time slots. Now I may continue:

P (λGi
≤ n) = P (λa1,a2 ≤ n) =

P (λa1 ≤ n, λa2 ≤ n) = P (λa1 ≤ n)P (λa2 ≤ n)

−
n∑
i=1

P (λa1 = i)P (λa2 = i) (2.10)

where in the last line of formula, the first part is due to the exclusivity of

individual actions and the second part is due to the fact that at any time slot only

one of these two agents may occur and thus I cross out the possibility of double

counting.

Now that I have managed to find the CDF of stopping time for Gi, I could quite

easily find the PMF:

P (λGi
= n) = P (λa1,a2 ≤ n)− P (λa1,a2 ≤ n− 1) (2.11)

where I already know that P (λa1 ≤ n) = 1− (1− P (a1))n which is the CDF of

a geometric distribution.

So far, I have managed to find the formula for PMF of an event’s stopping time

when it consists of two exclusive agents happening. I can see that for any general

number L of actions the CDF of Gi will contain, one initial P (λa1 ≤ n)P (λa2 ≤

n)...P (λaL
≤ n) plus a series of sums and deductions represented in the form of

a1 ∪ a2 ∪ ... ∪ aL. Thus, the derivation in decision factors of type (a) is complete

and I have managed to find an analytical method to compute the CDF of the

stopping time; and for the PMF I will add P (λSij
= n) = P (λSij

≤ n)− P (λSij
≤

n− 1).
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2.5.3 Approximating the Average Stopping Time of Connected Sets

I now study the second case where possible solution combinations share one or

more actions with one another. In such the intersection graph could either contain

a cycle or it may simply be a hypertree. I will first deal with the issue of the tree

and then cope with the cyclic case.

Any of the nodes in the tree could have caused the formation of the subgraph

Gi; this is why once again, I will follow the same route as the one in case (a) with

Equation 2.8 meaning I will calculate the probability of each of these combinations

resulting in the stopping time excluding all others from stopping the network at

any time before then. However, I cannot simplify the formulas as easily as the

previous cases seeing as how they are connected to one another through the edges

of a tree and thus affect conditional probabilities. Instead I can use the following

algorithm:

Algorithm 3 : Approximating the Average Stopping Time Part 1

for every node j where 1 ≤ j ≤ Li where Li represents the number of such

possible sets

0. Label all nodes as Child with counter lk, 1 ≤ k ≤ Li.

1. Choose node j as Parent. Make lj ← 0.

2. If node j is Parent send message "I’m Parent" to all neighbors along with

lj

3. If node k is labelled as Parent and receives "I’m Parent" do nothing.

4. If node k is labelled as Child and receives "I’m Parent" from node, mark

k as Parent and j, lk = lj + 1.

45



5. go back to step 2 until no Child labels left and let L← lk

The above steps help us organize the tree in such a manner that the parent

node will have a counter lj = 0 and the nodes at a distance d from the root node

will have a counter lk = d. An example of such algorithm is provided in Figure

2.12 where I finally have L = 3. I then define PMF (Silj=0
) as the probability

FIGURE 2.12. Output of Algorithm.3 with node 3 as parent

distribution function of stopping time for graph Gi given node j in Gi’s decision

factor graph is the stopping factor and CDF (Silj − Sil′j=lj−1
)) as the cumulative

density function of all agents in node j which are not appearing in node j′ = j−1.

I can then offer the below algorithm to approximate the PMF of stopping time

caused by node p:

Algorithm 4 : Approximating the Average Stopping Time Part 2

for every node j where 1 ≤ j ≤ Li where Li represents the number of such

possible sets

6. PMFTi,j = 1 and counter ← 0

7. if lj = 0 calculate the PMF of j titled PMF (Silj=0
) and PMFTi,j ←

PMFTi,j × PMF (Silj=0
) and counter ← counter + 1
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8. if lj > 0 then PMFTi,j ← PMFTi,j × (1 − CDF (Silj − Sil′
j
=lj−1

)) and

counter ← counter + 1

9. j ← j + 1 and repeat 8 until counter = L

Thus, once I have attained all such probability distribution functions, the sum-

mation of them for all possible n will again offer us an amount which is proportional

to the overall probability distribution function that is PMFTi =
∑Li

j=1 PMFTi,j .

2.6 Cyclic Intersection Graphs: Upper and Lower Bounds

So far, I have provided an algorithm to deal with tree shaped intersection graphs.

However adjusting this algorithm for cyclic intersection graphs proves to be com-

plexity wise exponentially expensive. Instead, I aim to turn an intersection graph

with cycles into a tree shaped intersection graph; I acknowledge the fact that

changing the shape of the graph in any manner would cause my results not to

be exact anymore and am thus going to use the idea of turning the shape with

cycles into a tree as a means of finding upper and lower bounds for the average

stopping time instead of exact results. To do so, I next introduce the concept of

factor graphs.

FIGURE 2.13. Factor Graph for a General Case of subgraph Gi
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A factor graph consists of two types of nodes; variable nodes each of whom

represent one specific variable and factor nodes which represent a function over

a subset of variable nodes. My system in question has been demonstrated in the

form of an intersection graph in Fig. 2.13.

In my case, the edges from any variable node to a factor node represent a rela-

tionship of "∈" and the variables connected to the same factor node share a "∩"

relationship.

I see that for an upper bound I simply need to remove one (or more) factor nodes

from the factor graph; by this method, I am removing some possible combinations

which may result in the system finding a desired shape and subsequently stopping.

It will then follow that the total average stopping time will become larger for the

subgraphs concerned with the removed factor node. Using the same observations,

in order to find a lower bound for my system’s average stopping time I aim to

lessen the requirements of (at least one of) the contributing factors to the stopping

time. Such a goal could simply be achieved by removing a number of "∈" edges

between the variable and factor nodes.

Thus, I will have a number of possible methods of "edge removal" which result

in my desirable bounds. I then run my algorithm of finding the average stopping

time on trees for these possible methods and choose the one which offers us the

tightest average stopping time.

In Figure 2.9 for subgraph G8, the easiest way of reaching a lower bound would

be to remove
{
a6

}
from

{
a1, a5, a6

}
and

{
a5

}
from

{
a3, a5, a6

}
and an upper

bound by removing one of the factor nodes least likely to occur for every possible

situation which results in only
{
a3, a5, a6

}
and

{
a5, a6, a7

}
remaining.
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2.7 Simulation and Numerical Results

The results of my work are presented in Figures 2.14, 2.15, 2.16 and 2.17 given that

the codewords follow a normalized bernoulli distribution with p as the probability

of a 1 bit in the codeword as previously explained in Section 2.4.2. As can be seen,

the decision factors in Figure 2.10 did not contain any loops and thus no upper or

lower bounds were required; instead I directly offer the numerical and simulation

results in Figure 2.15. Furthermore, corresponding rates of privacy invasion as

calculated through Eq.(2.5) are presented in Figures 2.16 and 2.17 respectively.
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FIGURE 2.14. Numerical and Simulation Results for Subgraphs in Figure 2.9

As can be witnessed in Figures 2.14 and 2.15, average stopping time versus query

probability distribution is minimal around the point p = 0.5. This is quite under-

standable seeing as how for any higher or lower amounts of p codeword probabilities

incline towards a specific query. This thus result in a higher average stopping time

since the frequency of certain queries and the detection of their corresponding de-

cision factors might become more sparse. This conclusion is further based upon

the initial inspection that all active subgraphs are equally likely.

49



However, breach of privacy is not following a specific behavior. In Figure 2.16,

a behavior close to that of Figures 2.14 and 2.15 is maintained, while in Figure

2.17, a completely different behavior is witnessed. This contrast in behavior could

be traced back to my issues of feasibility as manifested in Section 2.4 where after

creating a pseudo table for both Figures 2.5 and 2.6, I witnessed how additional

codewords could cause breach of privacy within the original subgraphs. Further-

more, I assumed I was able to remove a number of codewords to make the cal-

culation of decision factors simpler. Thus, the reason why I observe such different

behaviors, lays in the dependence between my measure of privacy and the pseudo

tables and the number of subgraphs (M) as further suggested by Eq.(2.5).
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FIGURE 2.15. Numerical and Simulation Results for Subgraphs in Figure 2.10

I started the dicussion with a problem of detecting one of Gi, 1 ≤ i ≤ M edge-

wise disjoint subgraphs in a binary codeword query setting. Every following step

represented the necessary issues to accommodate such a problem. I first introduced

the concept of feasibility of the problem. I then witnessed how in order to address

this issue, I would need to impose minor changes to the original set of subgraphs.

These changes then resulted in a breach of privacy within the original subgraphs

since I was forced to allow queries concerning separate edges within a certain
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subgraph to be addressed. Thus the average breach of privacy introduced in the

discussion and Eq. (2.5) is specific to the set of original subgraphs.
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FIGURE 2.16. Breach of Privacy for graph detection in Figure 2.5
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FIGURE 2.17. Breach of Privacy for graph detection in Figure 2.6

It is interesting to note how even the concept of which codewords are chosen

could factor in such results. In my work, due to the complexities of calculating

decision factors while keeping all 2N possible codewords, I chose to limit myself to
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a very limited number of codewords. However, if I had kept all 2N queries, I would

have witnessed more consistent results in the form of breaches of privacy.

However, this realization can help us utilize results such as those depicted in Fig.

16 and 18 as privacy representations of such detection problems (a characteristic

of any network of graphs I hope to detect and my specific choice of codewords). I

can then use this information about BoP in three manners:

(a) I can assume a threshold of breach of privacy Ith I would like to insure and

thus choose the range of p ∈ [0, 1] which holds BoP (p) ≤ Ith. I will then choose the

best p within the new range which will help minimize the average stopping time.

(b) Taking into account the relationship between codewords, decision factors

and the resulting average stopping times, it follows that aveage stopping time is

also a function of the set of codewords used in my process of detection. I can

thus assume an overall utility function in the form of the summation of average

stopping time and the BoP using a Lagrange coefficient. I then aim to minimize

this utility function as a whole (since I aim to minimize both the average stopping

time and the leaked information). I could do so by two methods: (1) finding the

corresponding p ∈ [0, 1] which helps satisfy this condition given a specific set of

codewords are chosen (as explained in Section. IV-A) or (2) defining a set selection

problem over the original |C| codewords for any subgraphs such as those depicted

in Fig. 2.5 and 2.6 respectively to find optimal selections which could offer us the

best utility function.

2.7.1 Calculation Complexities

Using the steps explained in Algorithm 4, I will simply need to calculate two

CDF complements between any two factor nodes j and j′ in a factor graph each

representing (1−CDF (Silj −Sil′j=lj−1
)) and (1−CDF (Sil′

j

−Silj=l′
j
+1

)). These CDF

complements will help us go through every decision tree possible (whichever node
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might have caused stopping) and fully support calculation transmissions from one

factor node to another. Thus if there are V ′ factor nodes in a certain factor graph I

need 2(V ′−1) CDF complements to fully support step 8 of Algorithm 4. Second, I

need to acquire the PMF of V ′ nodes to calculate the 7th step in the Algorithm 4.

This brings us the final conclusion that in a factor graph of a tree nature with V ′

factor nodes, I require a total of 3V ′ − 2 calculations to fully recover the average

stopping time.

I note that in Eq. (2.7) I showed that the maximum number of vertices in

all decision factors will be in order of O(M |C|) assuming |C| >> M . It thus

follows that the complexity of the final solution will also be in order O(M |C|). It

is important to note that the total number of queries |C| is a variable that may

be given to us or I may need to find for myself. In the latter case, |C| might be

as high as 2N . Then the overall complexity of the problem will be exponentially

large. However, if |C| is a given set of codewords, the complexity levels are much

lower.

2.8 Comparison with Generalized Binary Search

It is important to note that given a table of queries and outputs like those offered

in Tables 2.1 and 2.2, there are other methods of detection or rather classification

as presented in [31, 32]. These papers introduced Generalized Binary Search (GBS)

as the fastest method of classification. GBS aims to choose the query which divides

the set of possible hypotheses into the two most symmetric sets repeatedly. This

means that if I have a total of M possible candidate subgraphs, at the first step

of querying, each query will decompose the set of hypotheses into two sets; those

with an output of 1 to query aj or those with an output 0 to the same query. I then

aim to choose the query which offers us the two such sets closest to one another

in size. In the next step the two queries whose output division to the two new sets
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result in the most symmetric sets are chosen and so forth. However, the nature of

my query and output tables is different.

In all previous cases of such tables, the outputs were definite, meaning if a sub-

graph was detected, only this subgraph would be active and all outputs to any

query would be consistent. In my work (and both examples) I have cases where

the original set of subgraphs could not be detected directly given the nature of my

allowed queries. I then opted to decompose my set of subgraphs to allow consis-

tency with the nature of my queries and then attempted to detect such subgraphs.

However, such a decomposition would mean that a deterministic decision tree

could only detect one and only one decomposed subgraphs rather than the original

subgraphs. For example, in Table 2.4 each of the subgraphs G411, G412 and G42

represent an edge-wise disjoint substructure of the original subgraph G4. I aim to

detect the activity of G4, which means that I want to assume at any time slot

any of the edges within G4 which may belong to either G411, G412 or G42 could be

active. However, by making a deterministic query (as is done in [31] and [32]) and

viewing the result, I move down the decision tree in the direction of detecting one

and only one of G411, G412 or G42. Now if in the next time slot another one of the

3 possible subgraphs contains the active edge, I may not be able to move down

the decision tree since my previous decision and move was based upon another

subgraph’s activity. Thus, I may get stuck at a certain point of the decision tree

and not be able to make any decision about the active subgraph.

On the other hand, in my framework, I assume any of the subgraphs may be

active and then simply keep on querying the system until a pattern corresponding

to one of them appears. There may be a difference in the active subgraph identity

in my sequential queries however, I am not stopping until one certain pattern

representing a specific substructure G411, G412 or G42 appears.
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In other words, in my method, I respect the random nature of the table I have

created to satisfy my needs by making randomized queries while all other methods

of detection are based upon a deterministic table and thus creating a deterministic

decision tree. However, a deterministic method cannot satisfy the conditions of a

random table. I thus choose to refer to my modified tables such as Tables 2.3 and

2.4 as pseudo tables to represent their randomized nature.

Still, I could assume that the random outputs to different queries are the result

of a noisy channel so as to utilize the research done over GBS for noisy cases

[17]. It is important to note that I do not have channel noise in this discussion.

However, random response to a given query due to random edge activities could be

treated as an equivalent noisy channel effect. Unfortunately, any solution offered

by [17] needs to introduce an ε error range which makes any comparison between

my results and those of a GBS nature irrelevant. Furthermore, this revised version

of GBS under channel uncertainty does not take advantage of latent structures as

a result of decomposition that my approach enables.
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Chapter 3
Partition of Random Items: Tradeoff
between Binning Utility and Meta
Information Leakage

3.1 Introduction

Today internet has become so intertwined with our everyday activities that it is

impossible to imagine living without it. However, this dependency could be subject

to exploitation by the eavesdroppers. Assuming every browse as a query, it could

be argued that the search history of a user contains a series of queries specific to

him which could point to his specific likes and dislikes. By following every user’s

history of browses vital information specific to each user could be developed. It

then becomes important that each user attempt to add some level of protection to

their browses to hide necessary -or rather enough information about themselves.

One method is the use of proxy websites. Such websites offer the user a URL box

where he can input any website he wishes to visit. The only difference is that in such

websites, the address input is encoded into a series of characters which appear at

the end of the URL of the original proxy website. These characters change through

time by seconds meaning if the service provider records the URL opened through

the proxy website and decides to open it to access specific content by inputting

the URL, he will not go to the encoded web page. Also, such websites slow the

connection. However, through this method, the user has the option of choosing

multiple proxy websites and thus presumably cutting down on the utility loss.

Thus if a utility function based upon connection speed -bandwidth- for the user is

calculable, a privacy constrained problem between the user and an eavesdropper

(for example a service provider) could be defined. The solution to such a problem
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could offer insights in regards to the tradeoff between proxy allocation utility and

meta information leakage when I face the problems of partitioning a set of random

items (i.e. websites that a user has chosen to visit following his own distributions)

into a given number of bins (i.e. a given set of proxy servers each of which has its

own utility function, as will be further detailed in Section 3.2).

In my proposed framework as detailed in Section 3.2, meta data information

refers to the patterns about a sequence of items(for example the user’s favorable

websites) infer-able based upon a sequence of bins (e.g. proxy sites) observed by

an eavesdropper. This assumption is an expansion of [38] and [39]. However, it

should be noted that due to usage of proxy sites, an eavesdropper cannot directly

observe the original input items, but rather bin indexes. Under my proposed novel

framework, I introduce multi-submodularity and submodularity as two means of

reducing the complexity level of such problems, namely, dividing M random items

into N bins, under an upper-bound on leaked meta information.

This chapter represents an expansion of my previous works in [5, 6] where in

[5] a utility function was introduced in the form of the average stopping time for

detection of an active subgraph using certain queries while in [6], I developed a

concept of information leakage through a vast set of possible queries. In this chap-

ter, I shift my attention from detection of an active subgraph to seeking tradeoff

between optimizing utility of partitioning a set of random items and restraining

information leakage.

The concept of privacy has already been explored in many works such as [40, 41]

where a general but non-mathematical explanation was offered. However; in my

work, I go into further details as to what privacy represents in my framework and

how it could be formulated into many settings. Later in this chapter, I find it

necessary to utilize the concept of multi-submodular set function problems and
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their solutions. This concept was widely discussed in [42] where they introduced a

series of sufficient conditions on multi-submodular set functions by which the multi-

submodular problem could be transformed into a submodular set function problem.

Then, further discussions about the existence of a solution to the new problem were

made. By doing so -and if a solution was proven to exist-, the complexity of the

problem could be shown to be reduced from NP to polynomial. However, [42] did

not offer any algorithmic solutions in such cases.

The novel contributions of this chapter are as follows: (1) I introduce a new

multi-agent multi-variant optimization problem with a privacy leakage constraint

offering specific accommodations for online browsing which turns out to be NP -

complicated; (2) I introduce the novel idea concerning dual nature of the multi-

agent optimization problems and their corresponding implications in such prob-

lems; (3) I utilize multi-submodularity property to prove the existence of a trans-

formation to submodular set problems given a series of sufficient conditions and

then concluded the existence of a polynomial solution; by doing so, I simplify the

complexity of the problem from NP to polynomial (4) I offer a new less restric-

tive set of sufficient conditions as well as a submodular set function optimization

solution algorithm with its corresponding calculation complexities for the specific

case of N = 2.

The rest of the chapter is organized as follows. In Section 3.2 I formulate the

problem in terms of privacy and utility functions. I dissect what the goal and the

constraints are. In Section 3.3, I first introduce a revised version of the utility func-

tion and then find the sufficient conditions under which this function is equipped

with multi-submodular property. Due to general limited knowledge about multi-

submodular solutions and how they are developed, I then assume a specific case

N = 2. In Section 3.4 an algorithm for this specific case is developed which has a
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polynomial cost and an accuracy of 0.432. Finally, in Section 3.6, I conclude the

discussion by reiterating what I have accomplished in this chapter.

3.2 System Model

First, I propose an abstract framework to formalize the goal of seeking partition

of N items into M bins. More specifically, I aim to allocate each one of 1 ≤ i ≤M

possible items (queries) to one of N output bins. There could be at most NM such

partitions. It follows that any set allocation Al, 1 ≤ l ≤ NM results in N sets

S
(l)
j ⊆ {1, 2, ...,M}, j = 1, 2, ..., N . Each such set is defined as

S
(l)
j = {i|θi,j = 1}

where θ
(l)
ij =


1 i ∈ S(l)

j

0 i /∈ S(l)
j

(3.1)

I further assume S(l)
j ∩S

(l)
k = ∅, j 6= k. Furthermore I have

⋃N
j=1 S

(l)
j = {1, 2, ...,M}.

Finally the size of each such set S(l)
j is defined as L(l)

j .

3.2.1 Probabilistic Model

I assume at any time slot one and only one of the inputs is chosen with a certain

probability. Thus if I use variable X ∈ {1, 2, ...,M} as a representation of set of

items, I could have P (X = i) = P (γi = 1) = πi, 1 ≤ i ≤ M as a representation

of the probability of choosing item i from the set X where γi ∈ {0, 1}. It further

follows that
∑M

i=1 γi = 1, stipulating that one and only one of M items is selected.

These M items could represent a set of M web pages to be visited by a user at a

particular time instant. The prior probability distribution of M items reflects the

user’s favoritism toward these web pages. .

Next, I introduce an observable random variable Y ∈ {1, 2, · · · , N}, denoting

the index of the bin (the proxy site) employed to carry one of theM > N items. It

follows that the probability of each bin’s appearance given a set allocation scheme
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such as Al will be equal to

P (Y = j|Al) =
M∑
i=1

P (Y = j|Al, X = i)P (X = i|Al)

=
M∑
i=1

P (Y = j|Al, X = i)P (X = i) (3.2)

where I have dropped the second conditional probability due to the independence

between X and Al. Furthermore P (Y = j|Al, X = i) = θ
(l)
ij ∈ {0, , 1}. It thus

follows that

P (Y = j|Al) =
M∑
i=1

θ
(l)
ij P (X = i)→

P (Y = j|Al) =
∑
i∈S(l)

j

πi = α
(l)
j (3.3)

3.2.2 Revealed Information

By choosing to allocate M items to N bins where N ≤ M , I have injected am-

biguity and uncertainty into the output binning index sequence about the input

item sequence over a successive n visits or channel uses. In other words, if I origi-

nally chose to transmit n of such items, my total set of possible sequences would

be of form
−→
Xn = [X1X2...Xn] out of Mn possible outcomes. From an observer’s

perspective which can only have access to which one of N bins is deployed in each

time slot, sequences in the form of
−→
Yn = [Y1Y2...Yn] has cardinality of at most

Nn < Mn. Despite the amount of uncertainty added due to the many-to-one map-

ping between items and bins, the output sequence sill reveals certain amount of

information regarding the patterns of sequences of M random items.

This observation could be further studied by indicating how my allocation system

resembles a coding framework where I have an equivalent channel whose input

variable is X and output Y , as show in Figure 3.1.

Under such a framework, the equivalent channel output sequence Yn can help an

eavesdropper classify the input sequence X
n into a number of differential classes.
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As a result, information about the specific input item patterns is leaked to certain

degree and can be measured using conditional mutual information I(X;Y |Al) be-

tween X and Y , given a particular channel mapping (i.e. partition Al relationship

as illustrated in Figure 3.1.

FIGURE 3.1. Coding Channel Representation of the Problem

Such conditional mutual information thus measures the maximum number of

bits of meta information about item sequence per channel use. Therefore, I can

have at most 2nI(X;Y |Al) sequences Xn distinguishable by inferring based on Yn. I

thus adopt I(X;Y |Al) as the privacy metric conditioned on a particular partition

mapping Al.

It follows that due to the combinatorial nature of a set allocation problem there

are a total of NM possible methods to allocate these M items to the N sets. I can

formulate the mutual information over a set allocation Al, 1 ≤ l ≤ NM as:

I(X;Y |Al) = H(X|Al)−H(X|Y,Al) =

H(Y |Al)−H(Y |X,Al) = H(Y |Al) =

H(α
(l)
1 , α

(l)
2 , ..., α

(l)
N ) (3.4)

where I have used the notion of H(a1, a2, ..., am) = −
∑m

v=1 av log av and the fact

that H(Y |X,Al) = 0 because if both the input X and the channel scheme Al are

known, then output Y could simply be calculated.
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3.2.3 Utility Function

Note that the main reason why I chose bin allocation was to reach a higher utility

function. In this section I define a utility function to apply to the problem. If

an allocation scheme Al has resulted in S
(l)
1 , S

(l)
2 , ..., S

(l)
N , I assume each of the

N bins offer a utility function of their own based upon the set they have been

bestowed. Every bin j thus offers a utility represented by fj(S
(l)
j ). It is important

to note that fj represents a set function meaning it would change as different

subsets of the universal set are chosen. An example for such a function would be

if fj(S
(l)
j ) = fj(|S(l)

j |) meaning the function changes as the number of members

within the set S(l)
j changes.

It then follows that the average utility function will be in the form of Ul =∑N
j=1 fj(S

(l)
j )P (Y = j|Al) =

∑N
j=1 α

(l)
j fj(S

(l)
j ).

3.2.4 Problem Definition

Based on the previous observations I set a goal to find the set allocation Al over

which (a) Ul is maximized and (b) I(X;Y |Al) ≤ Ith where Ith represents the

maximal allowed revealed information.

I aim to gather both the utility and the constraint imposed in the form of

one function I hope to maximize. Thus, a new maximization problem could be

developed:

max
1≤l≤NM

Ul + λ(Ith −H(α
(l)
1 , α

(l)
2 , ..., α

(l)
N )) (3.5)

where λ ≥ 0 represents a variable connecting the utility and the constraint to each

other so as to allow comparison between them. I can further express this equation

by opening it as:

max
1≤l≤NM

N∑
j=1

[α
(l)
j fj(S

(l)
j ) + λα

(l)
j log (α

(l)
j )] (3.6)
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I can now see that if I define F (l)
j = α

(l)
j fj(S

(l)
j ) + λα

(l)
j log (α

(l)
j ), Equation (3.5)

is simply a sum of functions defined over a series of sets. I refer to these as multi-

variate set functions seeing as how their values are based upon specific sets and

variables introduced in each of these sets.

3.3 Multi-Submodular Set Functions as a Means of Solution

As mentioned previously, the problem formulated in Eq. (3.5) is NP-complicated

(it is solved when a search over NM possible set allocations is carried out and

the best allocation is chosen). Still, I could opt to utilize the definition of multi-

submodular set functions so as to reduce the complexity to that of polynomial at

the cost of accuracy. In order to do so, I raise concerns about possible solutions.

Next, I offer insight as to how I could deal with each case.

3.3.1 Imposing Multi-submodularity

In [42], it was shown that if I can prove multi-submodularity for functions such

as those formulated in Eq. (3.5), then they could be modeled as simpler problems

(submodular set functions). I thus, aim to find the sufficient conditions for such

occurrence. To do so, I first offer a review of multi-submodularity.

As mentioned in [42], if I define M = {1, 2, ...,M}, then a multivariate function

F : (2M)N → R+ is multi-submodular if for all pairs of tuples (S1, ..., SN) and

(T1, ...TN) ∈ (2M)N I will have:

F (S1, ..., SN) + F (T1, ..., TN) ≥ F (S1 ∪ T1, ..., SN ∪ TN)

+F (S1 ∩ T1, ..., SN ∩ TN) (3.7)

Since in my formulation functions are separately defined on different sets, the

condition in Eq. (3.7) is simplified to the sufficient condition of submodularity of

F
(l)
j for all sets Sj for Equation (3.5). I now need to find the sufficient condition

for submodularity of F (l)
j when defined over a set Sj.
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3.3.2 Imposing Separate Submodularities

For an easier mathematical representation of the following derivation I denote

F (Sj) = F
(l)
j . Furthermore, I denote fj(S

(l)
j ) = f(S

(l)
j ). Both these denotations

allude to the fact that once a set allocation Al is chosen, its index could be dropped.

In the next step, I opt to use diminishing return property as the means of

making certain each of these functions are submodular. Following is a definition

of diminishing returns for submodular functions, after which I derive the sufficient

conditions for the case discussed in Eq. (3.5).

Diminishing Property Return dictates that if I define S as the universal set,

a set function F : 2S → R+ is submodular if, for all A,B ⊆ S with A ⊆ B and for

each x ∈ S−B I have [51]:

F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B) (3.8)

Now I attempt to expand Eq. (3.8) for each F (Sj). However, to properly do so,

I first need to account for the behavior of this function.

I have defined F (Sj) = αjf(Sj) + λαj log (αj) where it seems that the function

has a singular relationship with set Sj. However; there is a secondary relationship

the function shares with the set SC
j = S−Sj where S = S represents the universal

set. This relationship could be modeled as F (SC
j ) = (1 − βj)f(S − SC

j ) + λ(1 −

βj) log (1− βj) where I have used the fact that βj = 1− αj seeing as how I define

β
(l)
j =

∑
i∈{S−S(l)

j }

πi (3.9)

Thus, for any set Sj, I must find the sufficient conditions for the existence

of diminishing property for both functions F1(Sj) = αjf(Sj) + λαj log (αj) and

F2(Sj) = (1 − αj)f(S − Sj) + λ(1 − αj) log (1− αj). To do so, I will evaluate

their necessary conditions and then find their intersection as the final conditions

(assuming they do not negate one another).

64



Note: For any further references, I first need to address a series of variable and

function definitions which are going to play a vital role in the rest of this chapter:

Definitions

1. Any variable represented with a capital Letter represents a set.

2. Any variable represented with a small letter represents an element.

3. A − B represents a set containing all elements of set A which do not appear
in set B.

4. αx represents the probability of item x and αA represents the sum of proba-
bilities of items mapped into a set A.

5. αBA represents the difference in the sum of probabilities of items mapped into
the sets B and A which could be further shown as αBA = αB − αA.

6. g(C,D) represents the 1st order difference of a set function f(C) from f(C−D)
where D ⊆ C which could be formulated as g(C,D) = f(C)− f(C −D).

7. q(C,C1, D,D1) represents the 2nd order difference of a set function f(C) where
C1 ⊆ C andD1 ⊆ D which could be formulated as q(C,C1, D,D1) = g(C,D)−
g(C1, D1).

8. I assume the probability of items is sorted in a decreasing manner such as
π1 ≥ π2 ≥ ... ≥ πM .

Theorem 3.3.1. The set functions F1(Sj) and F2(Sj) and as a result F (Sj) are

submodular if

(1) g(Sj, Sw) ≤ 0

(2) q(Sj, Su, Sw, Sy) ≤ 0

(3) |g(Sj, Sw)| ≥ λ log ( 1
πM

)

for all possible sets Sw ⊆ Sj ⊆ S and Su ⊆ Sj and Sy ⊆ Sw where S is the

universal set.

The proof for this lemma is presented in the Appendix under Theorem III-1. In

the proof, a series of sufficient conditions for either F1(Sj) and F2(Sj) are evaluated

separately. This is done because although their conditions turn out to be the same,

their derivations are vastly different as require separate discussions. It then follows
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that since both functions require the same set of sufficient conditions, the function

F (Sj) which represents either of them being chosen, also follows the same set of

sufficient conditions. In the proof, I rewrite inequality (3.8) for set function F1(Sj),

start factorizing αA, αBA separately and αx and 1 together and impose sufficient

conditions so that each of their coefficients is always positive.

Unfortunately, [42] does not provide us with an algorithm to remodel my multi-

submodular problem in a submodular problem, they simply prove that this could

be done. Thus, in order to expand upon the idea of polynomial complexity of

solution algorithms I opt to assume N = 2 and offer the reader the algorithm

to deal with such a specific case. I then calculate the complexity imposed by the

algorithm to further stress the benefits of using such an idea in spite of accepting

error.

3.3.3 Specific Case of N = 2

As mentioned previously, in order to show the applicability of submodular functions

I choose to reiterate the utility function dictated in Eq. (3.5) for when N = 2:

max
1≤l≤2M

α
(l)
1 f(S

(l)
1 ) + (1− α(l)

1 )f(S − S(l)
1 )

+λ(Ith + α
(l)
1 log (α

(l)
1 ) + (1− α(l)

1 ) log (1− α(l)
1 )) = T (S1) (3.10)

As can be seen, the problem is still exponentially complex seeing as how I need to

search over 2M possible solutions to find the optimal. Thus, once again I aim to

impose multi-submodularity (in this case simplified to submodularity) on the new

utility function. For the utility function above the same results derived for a general

N could be used as a set of sufficient conditions. However, taking into account the

joint relationship between the 2 sets and writing the same Inequality (3.8) for

Equality (3.10) I am able to find a less restrictive set of sufficient conditions for

the submodularity of this utility function as indicated below:
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Lemma 3.3.2. When N = 2, the function in Eq. (3.10) is submodular if

(1) g(S
(l)
j , S

(l)
w ) ≤ 0

(2) 2|g(S
(l)
j , S

(l)
w )| ≥ λ log (K), K < ( 1

πM
)2

(3) q(S(l)
j , S

(l)
u , S

(l)
w , S

(l)
y ) ≤ 0

for all possible sets S(l)
w ⊆ S

(l)
j ⊆ S and S(l)

u ⊆ S
(l)
j and S(l)

y ⊆ S
(l)
w where S is the

universal set.

The proof for this lemma is presented in Appendix under Lemma III-2. In the

proof, I rewrite inequality (3.8) for set function described in Eq. (3.10), start fac-

torizing αA, αBA separately and αx and 1 together and impose sufficient conditions

so that each of their coefficients is always positive. In the following section, I will

offer a method of solving a problem as introduced in Eq. (3.10).

3.4 Submodular Solution

Starting by [52] there has been monumental work done over greedy algorithms

with constraints (as long as they introduce down-monotone solvable polytopes)

with a solution proximity of 1
e
. Later [53] introduced a solution proximity of 0.372.

Finally [54] proved that this proximity could be increased to 0.432 in maximization

problems which is quite close to the no-constraint solution of a symmetric problem.

It is important to note that while all these papers dealt with the issue of

constraints, they assumed much more complex constraints than I am dealing

with in this discussion. My only constraint is that α(l)
1 ≤ αs where I assume

h(αs) = Ith, αs ≤ 0.5 which is obviously a down-monotone constraint. Thus, I

can simply use the results from their work to create my own algorithm to find the

submodular function solution to my problem. I present:

Algorithm 1 : Submodular Function Solution to the problem as described in Eq.(3.5)

1. Let S1 = argmaxe∈X={1,...,M}T [S1 = {e}] while |0.5− α
(l,1)
1 | ≥ |0.5− αs|.
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2. If there is an element e ∈ X \ S1 such that T [S1 + {e}] ≥ T [S1] and |0.5 −
α
(l)
1 − αe| ≥ |0.5− αs|, let S1 = S1 + {e}.

3. If there is an element e ∈ S1 such that T [S1 \ {e}] ≥ T [S1] and |0.5−α(l)
1 +αe| ≥

|0.5− αs|, let S1 = S1 − {e}. Go to Step 2.

4. Return maximum of T [S1] and T [X \ S1].

where I know that at the very last step T [S1] = T [X \ S1]. Now I opt to calculate

the complexities of this method. Steps 2 and 3 could repeat (M − 1) + (M −

2) + ... + 1 = M(M+1)
2

times each while every item could be removed and thus

replaced a total of 2M times. Thus the total complexity of steps 2 and 3 is equal

to M2(M + 1) = O(M3). The complexity of step 1 is also equal to M . Thus the

total complexity of the solution is equal to O(M3).

This polynomial solution simply makes certain the maximal function obtained

is at least 0.432 times the optimal objective function. This range of error occurs

because in this method, I am removing and adding members from and to the set S1

one by one. Thus, at each decision point I am making one locally optimal decision.

However, it is widely known that a locally greedy method is not necessarily globally

optimal [55].

3.5 Examples and Comparison

In this section I aim to offer the reader two problems where I am hoping to use

the results gathered in Lemma 4.3.2 to first find a proper utility function given the

specifics of each case. I will then follow Algorithm 1 and compare its results with

that of an exhaustive search to compare the two methods in terms of complexity

and exactness of the solution in both problems. In both examples, I assume M =

4, N = 2, λ = 0.25, Ith = 0.4 and that f(S) = f(|S|) where S and |S| represent any

set and its cardinality respectively. The only difference between the two examples

would then lay in their item probability distributions.
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3.5.1 Utility function for π1 = π2 = π3 = π4 = 0.25

One of the simplest utility functions which could satisfy the conditions presented

in Lemma 4.3.2 is a quadratic function in the form of f1(|S|) = a|S|2 + b|S| + C.

By calculating the 1st and 2nd order derivatives I can see that they follow the form

of g1(|S|) = 2a|S|+ b− a and q1(|S|) = 2a respectively. I could then have:

2a ≤ 0→ a ≤ 0

2a|S|+ b+ a ≤ −λ log (K)

2
, |S| = 0, 1, ..., 4 (3.11)

where by using the worst case scenario I attempt to find the tightest upper bound

for b between any case of |S|. I will then have:

b ≤ −λ log (K)

2
+ a (3.12)

Finally, I must have

f1(|S|) ≥ 0→ c ≥ −a|S|2 − b|S|, |S| = 0, 1, ..., 4 (3.13)

Since K < ( 1
πM

)2 = 16, I assume K = 8 and by further assuming that a = −1, I

can find acceptable amounts for both b = −2 and c = 25. Thus, the overall utility

function will be in the form of f1(|S|) = −|S|2 − 2|S|+ 25.

3.5.2 Utility function for π1 = 0.5, π2 = 0.25, π3 = π4 = 0.125

Once again I assume a quadratic function in the form of f2(|S|) = a|S|2 +b|S|+C.

By calculating the 1st and 2nd order derivatives I can see that they follow the form

of g2(|S|) = 2a|S| + b− a and q2(|S|) = 2a respectively. The mathematics will be

the same as depicted in Eq. (3.11) and (3.12) and (3.13). Since K < ( 1
πM

)2 = 64,

I assume K = 32 and by further assuming that a = −1, I can find acceptable

amounts for both b = −2 and c = 25. Thus, the overall utility function will be

in the form of f(|S|) = −|S|2 − 2|S| + 25. It is important to note that while the
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two utility functions for two different sets of item probability distributions are the

same, the results of my methods might be different as I will see in Subsection 3.5.3.

3.5.3 Solution Comparison

The results of running Algorithm 1 on the two scenarios have been gathered in

Table 3.1. Each cell represents the maximum overall utility achieved in either

case by each method where it is obvious that the probability distribution plays

a major role on the exactness of the solution compared to the utility function -

which is the same in both cases. Also of interest is the negligible loss of utility at

1− 16.8614
16.8972

= 0.0021 at a desirable cost reduction from NP to P which helps justify

my persistence on utilizing submodular solutions.

TABLE 3.1. Solution Exactness Comparison
scenario number exhaustive search solution worst submodular set solution

1 16.85 16.85
2 16.8972 16.8614

3.6 Conclusions

In this chapter, I introduced and formulated a problem widely regarded in online

browses. To do so, I revisited the concept of privacy leakage discussed in both

other and my own previous publications. I further introduced a utility function

based upon the user’s utilization of the network. I showcased how the problem for-

mulation results in a multi-agent multi-variate problem which is NP -complicated.

I then introduced the concept of submodularity and multi-submodularity which

help reduce the complexity of such problems to that of a polynomial at the cost of

some accuracy. I derived a series of sufficient conditions which would guarantee the

existence of a solution. To do so, I introduced a novel observation of the behavior

of such multi-agent multi-variate set functions which I called duality. Once the ex-

istence of such solutions was guaranteed, I introduced algorithms that could help
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us when N = 2 (but the original complexity is still combinatorial) and showcased

how they help reduce the complexities.
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Chapter 4
Partition of Random Items: Tradeoff
between Binning Utility, Meta Information
Leakage and Hypotheses Distinguishability

4.1 Introduction

In our daily use of internet there are two very specific issues of privacy. The first

issue rises when we aim to hide as much information about ourselves while still

enjoying the service of web -which is always prone to eavesdrops. As an exam-

ple, we hope to use the Google search engine without a third party studying our

search history and learning about us. For future references, we refer to this class

of problems as Utility versus Privacy (UvP).

The second scenario rises when we wish to be distinguished from other users but

not reveal all the information we share on the web. As an example, when we surf

Amazon, based upon our previous searches over the website, we are offered new

suggestions we may be interested in. However, we hope to keep our privacy intact

to some level at the same time. If we search for a specific political ideology, we do

not like to have this ideology be revealed to a third party. If we were, we would

feel uneasy about how much private information about us has leaked. This class

of problems will be referred to as Utility versus Privacy and Distinguishability

(UvPD).

It could then be deduced that in both scenarios we aim to maximize a utility

reflected by my browses (a good internet service in the first case and suggestion of

a relating product in the second) while keeping the privacy reflected by patterns

shown in sequence of webpages visited and obscured by the underlying browses to

a certain upper bound. It could be argued that the best solution for such invasion
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of privacy problems for a user is to find approaches seeking tradeoff between some

utility and the resulting privacy leakage.

One method to carry this out, is the use of website proxies. Such websites offer

the user complete anonymity by coding the IP address of the visited web pages

into a series of characters which can no longer be traced. The only detriment to

such proxy websites is their limited bandwidth and time-outs.

As a solution, we can employ multiple proxy websites and thus cut down on

the utility loss. However, by using multiple proxy sites we are allowing a level of

privacy breach into my browses where the eavesdropper is able to deduce some

information about my tendencies by observing the distribution of used webpages

over multiple networks. Then, if a utility function based upon connection speed

-bandwidth- for the user is calculable, a privacy constrained problem between the

user and an eavesdropper (for example a service provider) could be defined.

I next elaborate on the relationships between the terms used throughput the

chapter: utility, information leakage, and hypothesis distinguishability.

Utility represents the advantage received by using a number of bins. Each of

these bins may have their own specific advantages and thus utility represents

a sum of such advantages over all bins.

Once an item is mapped into a specific bin, its exact properties are obscured

by the properties of the bin meaning it becomes indistinguishable from other

items mapped into the bin. This is called information protection. On the

other hand, a bin reveals a certain level of information about the items within

it. This is called information leakage. The privacy leakage I quantify is thus

via patterns of long sequence of binning items showing up to an observer.
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Hypotheses distinguishability represents a measure of difference between mul-

tiple modes where based upon the frequency of different outputs it could be

deduced that a certain other mode is activated. Thus distinguishability offers

an insight into the statistics revealed over long sequence of symbols.

To formalize such trade-off problems, I propose a partitioning framework in

which a set of M items (e. g. websites) are placed into N bins (e. g. proxy sites)

to maximize a certain payoff function while meeting constraints imposed due to

concerns of privacy leakage or distinguishing capability. Then, a given distribution

G1, G2, ... on the random items represents a particular operating mode or behavior

over a larger scale, which the user is willing to be classified. Under a particular

distribution, however, a user is more concerned of the sequence patterns, which

could be inferred to certain extent by the resulting patterns of bins (e. g. proxy

sites) deployed.

my overarching goal is to pose and then solve the underlying constrained com-

binatorial optimization problems by first considering the tradeoff between meta

leakage and binning utility, and then to further add the distinguishability into the

objective by seeking optimal binning of items. Due to the exponentially growing

cost in searching such partitions, I instead seek sufficient conditions under which

polynomial order complexity algorithms exist by resorting to multi-submodular

and submodular structures in my problems.

4.1.1 Related Works

The concept of privacy has already been explored in many works such as [40, 41]

where a general but non-mathematical explanation was offered. However, in my

work, I offer a novel representation of privacy through the introduction of typical

sequences.
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It is important to note that one of the most prominent measures of privacy as

described in works such as [45] has been differential privacy. Differential privacy is

mainly concerned with limiting the information leaked through different sequences

generated by a randomized process. In my problem settings, differential privacy

aims to investigate the effects of a minimal change in the input in the overall

output of the system. In other words, if there are originally Xn sequences at my

disposal which are mapped to Y n sequences in the output, is there a minor change

in the input sequence that could result in an out of control change in the output

sequence?

Overall, differential privacy in literature is concerned of one-shot measure ([46]).

However, all my measures are in average sense including average utility, mutual in-

formation, KL divergence, whose functional significance rests upon repeated draw-

ing from a distribution over long run. Thus differential privacy is not of concern

here. Even if I could consider differential privacy in the settings of long sequences,

such privacy measure is not quite relevant due to the long-sequence constraints.

As for the addition of distinguishability, to the best of my knowledge, the clos-

est work to mine was done by [47] where they considered the tradeoff between

distinguishability and information leakage when the former is quantified using KL-

distance and the latter using mutual information. However, they formulated the

problem using the concept of missed detection and false alarm as the basis of hy-

potheses testing. In this work, the authors were interested in a randomized binning

process which tended to be more complex than my routine. Such a goal came at

the cost of sacrificing the concept of trade-off by only allowing very small privacy

leakage (less than ε) in order to invoke a first order approximation to reduce the

computational complexity of the optimization problems. However; in my work, I am

concerned with any amount of trade-off with deterministic binning to seek subop-
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timal and polynomial order approximations enabled by the fundamental properties

of multi-submodular set functions.

The multi-submodular function was discussed extensively in [42] where they

introduced a series of sufficient conditions on multi-submodular set functions by

which the multi-submodular problem could be transformed into a submodular

problem. Then, further discussions about the existence of a solution to the new

problem were made. By doing so -and if a solution were proven to exist-, the

complexity of the problem could be shown to be reduced from NP to polynomial.

Such sufficient conditions have been adopted by us in in seeking proper binning

utility functions under which such sufficient conditions hold true.

4.1.2 Chapter Contributions

It is important to note that some of the problems introduced in this chapter, were

partially introduced in my previous work [49] namely the first problem introduced

in the chapter (UvP). However much novel required discussion of the material is

presented here. Furthermore, in this chapter I introduce a new class of problems

namely UvPD which represents a much more complicated scenario. Even more, in

this work, I go into full details to address all issues and ideas intertwined with my

work. Finally, a more thorough set of numerical results is presented.

More specifically, the major results obtained are itemized below: (1) a measure of

distinguishability between the K = 2 hypothesis; (2) a measure of average leaked

information given any of the K hypothesis is active; (3) a formulation of a multi-

agent multi-variant optimization problem with a privacy leakage constraint; (4) the

development of insight into the complexity of such an NP -hard problem and fur-

ther sufficient conditions under which I can simplify it into a polynomial problem;

(5) a description of the algorithm utilized to find the solution given the sufficient

conditions followed by the proximity results and finally (6) numerical examples to
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further demonstrate the applicability of submodular solutions, as compared with

the results using exhaustive search in manageable settings.

It is important to further discuss the contributions of this chapter in further

detail to fully acknowledge the novelty of my results:

Firstly, to the best of my knowledge, a binning representation of utility versus

privacy or distinguishability versus either of these two has never been developed

before and is thus well-worthy of a more in-depth study.

Secondly, during the proof of sufficient multi-submodularity conditions, I came

across the concept of duality in finite size binning problems where simply satisfy-

ing the submodularity condition for a series of set functions does not necessarily

guarantee the multi-submodularity of the entire multi-set function. In order to deal

with this issue, I introduced the concept of imposing submodularity on the com-

plements of different sets. This poses a further set of sufficient conditions on the

overall set utility function. Then I discussed how the intersection of sufficient con-

ditions on both the original sets and their complements will result in the required

overall sufficient conditions. my in-depth study of the imposed duality in such set-

tings, to the best of my knowledge, has never been done before. In most cases such

as [42], it has simply been assumed that the number of items is infinite making

sure that a one way satisfaction of submodularity will be enough to guarantee the

overall convergence of the methods introduced later on, which unfortunately can

not be applied in my case with finite number of items. I thus offer my own spin on

the same concept to account for this new problem.

4.1.3 chapter Organization

The rest of this chapter is organized as follows. In Section 4.2 I formulate the

problems in terms of privacy and utility functions. I dissect what the goal and

the constraints are. In Section 4.3, I inspect the overall utility functions of each
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problem and then find the sufficient conditions under which they are equipped with

multi-submodular structure. In Section 4.4 an algorithm for each case is developed

offering a polynomial complexity and an accuracy level of e or 1
e
depending on

whether the goal is to minimize or maximize the overall utility function respectively.

4.2 System Model

First, I propose an abstract framework to formalize the goal of seeking partition

of M items into N bins. More specifically, I aim to allocate each one of 1 ≤ i ≤M

possible items (queries) to one of N output bins. There could be at most NM such

partitions. It follows that any set allocation Al, 1 ≤ l ≤ NM results in N sets

S
(l)
j ⊆ {1, 2, ...,M}, j = 1, 2, ..., N . Each such set is defined as

S
(l)
j = {i|θ(l)i,j = 1}

where θ
(l)
ij =


1 i ∈ S(l)

j

0 i /∈ S(l)
j

(4.1)

I further assume S(l)
j ∩S

(l)
k = ∅, j 6= k. Furthermore I have

⋃N
j=1 S

(l)
j = {1, 2, ...,M}.

Finally the size of each such set S(l)
j is defined as L(l)

j .

4.2.1 Probabilistic Model

I assume at any time slot one and only one of the inputs is chosen with a certain

probability. Thus, assuming hypotheses Gp is active and if I use variable X ∈

{1, 2, ...,M} as a representation of set of items, I could have P (X = i|Gp) =

P (γip = 1) = πi,p, 1 ≤ i ≤ M, , p ∈ {1, 2} as a representation of the probability of

choosing item i from the set X under hypotheses Gp where γip ∈ {0, 1}. It further

follows that
∑M

i=1 γip = 1, p ∈ {1, 2}, stipulating that one and only one of M items

is selected.

Next, I introduce an observable random variable Y ∈ {1, 2, · · · , N}, denoting

the index of the bin (the proxy site) employed to carry one of theM > N items. It
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follows that the probability of each bin’s appearance given a set allocation scheme

such as Al under hypotheses Gp will be equal to

P (Y = j|Al, Gp)

=
M∑
i=1

P (Y = j|Al, X = i, Gp)P (X = i|Al, Gp) (4.2)

=
M∑
i=1

P (Y = j|Al, X = i)P (X = i|Gp) (4.3)

Furthermore, P (Y = j|Al, X = i) = θ
(l)
ij ∈ {0, , 1}. It thus follows that

P (Y = j|Al, Gp) =
M∑
i=1

θ
(l)
ij P (X = i|Gp)→

P (Y = j|Al, Gp) =
∑
i∈S(l)

j

πip = α
(l,p)
j (4.4)

4.2.2 Revealed Information

By choosing to allocateM items toN bins whereN ≤M , I have injected ambiguity

and uncertainty into the output binning index sequence about the input item

sequence over a successive n visits. In other words, if I originally chose to transmit n

of such items, my total set of possible sequences would be of form
−→
Xn = [X1X2...Xn]

out of Mn possible outcomes. From an observer’s perspective which can only have

access to which one of N bins is deployed in each time slot, sequences in the form

of
−→
Yn = [Y1Y2...Yn] has cardinality of at most Nn < Mn. Despite the amount of

uncertainty added due to the many-to-one mapping between items and bins, the

output sequence sill reveals certain amount of information regarding the patterns

of sequences of M random items.

This observation could be further studied by indicating how my allocation system

resembles a coding framework where I have an equivalent channel whose input

variable is X and output Y , as shown in Fig. 4.1.
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Under such a framework, the equivalent channel output sequence Yn can help an

eavesdropper classify the input sequence X
n into a number of differential classes.

As a result, information about the specific input item patterns is leaked to certain

degree and can be measured using conditional mutual information I(X;Y |Al, Gp)

between X and Y , under a hypotheses Gp given a particular binning (i. e. partition

Al relationship as illustrated in Fig. 4.1.

FIGURE 4.1. Coding Channel Representation of the Problem

Such conditional mutual information thus measures the maximum number of

bits of meta information about item sequence per channel use. Therefore, I can

have at most 2nI(X;Y |Al,Gp) sequences Xn distinguishable by inferring based on Yn.

FIGURE 4.2. Jointly typical sequences

This concept could be further illustrated as shown in Fig.4.2 where a jointly typ-

ical set is presented [56]. There are about 2nH(X) typical X sequences and about
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2nH(Y ) typical Y sequences. However, since there are only 2nH(X,Y ) jointly typical

sequences, not all pairs of typical Xn and typical Y n are also jointly typical. The

probability that any randomly chosen pair is jointly typical is about 2−nI(X;Y ).

Hence, I consider about 2nI(X;Y ) such pairs before I are likely to come across a

jointly typical pair. This in turn, suggests that there are about 2nI(X;Y ) distin-

guishable signals Xn.

I thus adopt I(X;Y |Al, Gp) as the privacy metric conditioned on a particular

partition mapping Al under a specific hypotheses Gp. It follows that due to the

combinatorial nature of a set allocation problem there are a total of NM possible

methods to allocate these M items to the N sets.

I can formulate the mutual information over a set allocation Al, 1 ≤ l ≤ NM

under hypotheses Gp as:

I(X;Y |Al, Gp) = H(X|Al, Gp)−H(X|Y,Al, Gp) =

H(Y |Al, Gp)−H(Y |X,Al, Gp) = H(Y |Al, Gp) =

H(α
(l,p)
1 , α

(l,p)
2 , ..., α

(l,p)
N ) (4.5)

where I have used the notion of H(a1, a2, ..., am) = −
∑m

v=1 av log av and the fact

that H(Y |X,Al, Gp) = 0 because if the input X and the channel scheme Al and

hypotheses Gp are known, then output Y will offer no uncertainty.

4.2.3 Distinguishability Measure

In this section, I aim to define a measure which can evaluate the distinguishability

between a number of discrete distributions Gp, with p ∈ {1, 2}.

Given that a certain set allocation Al has been chosen, depending on the choice of

Gp, two different distributions defined by using variables α(l,p)
j could be developed

where I have:

α
(l,p)
j = P (Y = j|Al, Gp), p ∈ {1, 2}, j ∈ {1, ..., N} (4.6)
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where the two probability sets P1 = {α(l,1)
j , j = 1, 2, ..., N} and P2 = {α(l,2)

j , j =

1, 2, ..., N} represent the distributions under allocation scheme l given two prior

probability distributions G1 and G2 which I aim to distinguish. To evaluate the

distinguishability between two such distributions, I utilize the definition of sym-

metrized KL divergence[57] defined as:

1

2
{KL(P1||P2) +KL(P2||P1)}

=
1

2

N∑
j=1

(α
(l,1)
j − α(l,2)

j )(logα
(l,1)
j − logα

(l,2)
j ) (4.7)

It is important to note how this measure of distinguishability is different in

nature than that of leaked information. Through binning, a sequence of outputs are

produced which I aim to limit. However, I could use an average (note the average

nature of KL distance) of these sequences over multiple choices as a measure of

maximum likelihood detection deciding which hypotheses is truly active. By doing

so, I am both controlling the level of leaked information and utilizing it for further

gain.

4.2.4 Problem Formulation

Using the definitions addressed above, I could show that the UvP problem could

be modeled in the form of finding the allocation scheme Al which satisfies [49]

max
0≤l≤NM

N∑
j=1

[α
(l,1)
j fj(S

(l,1)
j ) + λα

(l,1)
j log (α

(l,1)
j )] (4.8)

where fj(S
(l,1)
j ) represents the utility function offered by the jth bin while using

allocation scheme Al under Gp hypotheses and λ ≥ 0 demonstrates the Lagrange

multiplier accounting for the leaked information constraint. Equation (4.8) is a

sum of functions defined over a series of sets. I refer to these as multi-variate set

functions seeing as how their values are based upon specific sets and variables

introduced in each of these sets. Furthermore, I note that since there is only one
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active hypotheses G1 in this scenario, I can have α(l,1)
j = α

(l)
j and fj(S

(l,1)
j ) =

fj(S
(l)
j ).

I then aim aim to add another objective, namely, binary hypothesis testing be-

tween two candidate prior distributions {G1, G2} on the item set. I thus choose

binning as my method of observation meaning I attempt to find an M -to-N map-

ping between the set of M items and set of N outputs which can best help us

distinguish which distribution was chosen.

Overall, I aim to find a partition of M items under which I can maximize the

binning utility of the solution while keeping the distinguishability between G1 and

G2 and the leaked information about the item sequences higher and less than some

thresholds respectively.

max
1≤l≤NM

2∑
p=1

N∑
j=1

P (Gp)[α
(l,p)
j f(S

(l,p)
j ) + λ2α

(l,p)
j logα

(l,p)
j ]

+
λ1
2

N∑
j=1

(α
(l,1)
j − α(l,2)

j )(logα
(l,1)
j − logα

(l,2)
j ) (4.9)

I thus pose my problem as a constrained optimization problem with the goal of

maximizing the average binning utility while controlling the average leakage and

measure of distinguishability, as reflected by the range of some regularization terms

in Eq.(4.9) where λ1, λ2 > 0 are Lagrange multipliers accounting for the constraints

over distinguishability and leaked information respectively.

4.3 Multi-Submodular Set Functions as a Means of Solution

As mentioned previously, both UvP and UvPD are NP-complicated (they are

solved when searches over NM and 2M possible set allocations are carried out

respectively and the best allocation is chosen). Still, I could opt to utilize the defi-
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nition of multi-submodular set functions so as to reduce the complexity to that of

polynomial at the cost of accuracy.

Note: For any further references, I first need to address a series of variable and

function definitions which are going to play a vital role in the rest of this chapter:

Definitions for Problem 1

1. Any variable represented with a capital Letter represents a set.

2. Any variable represented with a small letter represents an element.

3. A − B represents a set containing all elements of set A which do not appear
in set B.

4. αx represents the probability of item x and αA represents the sum of proba-
bilities of items mapped into a set A.

5. αBA represents the difference in the sum of probabilities of items mapped into
the sets B and A which could be further shown as αBA = αB − αA.

6. g(C,D) represents the 1st order difference of a set function f(C) from f(C−D)
where D ⊆ C which could be formulated as g(C,D) = f(C)− f(C −D).

7. q(C,C1, D,D1) represents the 2nd order difference of a set function f(C) where
C1 ⊆ C andD1 ⊆ D which could be formulated as q(C,C1, D,D1) = g(C,D)−
g(C1, D1).

8. I assume the probability of items is sorted in a decreasing manner such as
π1 ≥ π2 ≥ ... ≥ πM .

4.3.1 Imposing Multi-submodularity

In [42], it was shown that if I can prove multi-submodularity of complex set func-

tions, then they could be modeled as simpler problems (submodular set functions).

I thus, aim to find the sufficient conditions for such occurrence. To do so, I first

offer a brief review of multi-submodularity.

As in [42], if I defineM = {1, 2, ...,M}, then a multivariate function F : (2M)N →

R+ is multi-submodular if for all pairs of tuples (S1, ..., SN) and (T1, ...TN) ∈ (2M)N

84



I will have:

F (S1, ..., SN) + F (T1, ..., TN) ≥ F (S1 ∪ T1, ..., SN ∪ TN)

+F (S1 ∩ T1, ..., SN ∩ TN) (4.10)

In my formulation of the problem, on the other hand, the function F (S1, S2, ..., SN)

is defined as

N∑
j=1

[α
(l,1)
j fj(S

(l,1)
j ) + λα

(l,1)
j log (α

(l,1)
j )] (4.11)

where the two components α(l,1)
j fj(S

(l,1)
j ) and α

(l,1)
j log (α

(l,1)
j ) represent the com-

ponents carrying the effect of one set S(l,1)
j . As a result, Eq.(4.10) can be further

expressed as

{α1f(S1) + λα1 logα1}+ {α2f(S2) + λα2 logα2}+ ...

+{αNf(SN) + λαN logαN}+ {β1f(T1) + λβ1 log β1}+

{β2f(T2) + λβ2 log β2}+ ...+ {βNf(TN) + λβN log βN}

≥ {ω1f(S1 ∪ T1) + λω1 logω1}

+...+ {ωNf(SN ∪ TN) + λωN logωN}

+{ζ1f(S1 ∩ T1) + λζ1 log ζ1}

+...+ {ζNf(SN ∩ TN) + λζN log ζN} (4.12)

where αj, βj, ωj and ζj represent the probability of output Y = 1 when the alloca-

tion schemes Sj, Tj, Sj ∪ Tj and Sj ∩ Tj are respectively chosen.

It follows that one sufficient condition to ascertain that Eq.(4.12) holds true

would be to satisfy submodularity for each function f over any set meaning I find
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the sufficient conditions that result in

{αjf(Sj) + λαj logαj}+ {βjf(Tj) + λβj log βj} ≥

{ωjf(Sj ∪ Tj) + λωj logωj}+ {ζjf(Sj ∩ Tj)

+λζj log ζj}, ∀j ∈ {1, .., N} (4.13)

then, Eq.(4.10) will be satisfied and thus the overall function will be multi-submodular.

Satisfying Eq.(4.13) would be equivalent to making sure that a set function G(S)

under any possible set allocation Al as defined below

G(S) = [α(l,1)f(S(l,1)) + λα(l,1) log (α(l,1))] (4.14)

is submodular.

4.3.2 Imposing Separate Submodularities for UvP

For an easier mathematical representation of the following derivation I denote

G(Sj) = G
(l)
j . Furthermore, I denote fj(S

(l)
j ) = f(S

(l)
j ). Both these denotations

allude to the fact that once a set allocation Al is chosen, its index could be dropped.

In the next step, I opt to use diminishing return property as the means of

making certain each of these functions are submodular. Following is a definition

of diminishing returns for submodular functions, after which I derive the sufficient

conditions for the case discussed in UvP).

Diminishing Property Return dictates that if I define S as the universal set,

a set function F : 2S → R+ is submodular if, for all A,B ⊆ S with A ⊆ B and for

each x ∈ S−B I have [51]:

F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B) (4.15)

Now I attempt to expand Eq. (4.15) for each G(Sj). However, to properly do

so, I first need to account for the behavior of this function. While thus far, I have
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found Eq.(4.13) to be a sufficient condition of multisubmodularity on F , there is

another issue I need to address which comes from the finite nature of the universal

set in my problem settings.

In my problem it is assumed that S1 ∪ S2 ∪ ... ∪ SN = T1 ∪ T2 ∪ ... ∪ TN =

{1, 2, ..,M} = U . In other words, any of the sets Sj, j ∈ {1, .., N} can be described

as

Sj = U − ]Ni 6=j,i=1Si (4.16)

This in turn means that any set Sj can be modeled as a complement of other sets

in the same settings and as a result, in order to ensure multi-submodularity, I need

to ensure that the submodularity condition for set functions of type Eq.(4.13) also

hold true for a complementary set SC which in turn results in a second sufficient

condition:

{(1− αj)f(U − Sj) + λ(1− αj) log (1− αj)}

+{(1− βj)f(U − Tj) + λ(1− βj) log (1− βj)} ≥

{(1− ωj)f(U − {Sj ∪ Tj}) + λ(1− ωj) log (1− ωj)}

+{(1− ζj)f(U − {Sj ∩ Tj}) + λ(1− ζj) log (1− ζj)},

∀j ∈ {1, .., N} (4.17)

This condition, which has been referred to as duality in my definitions, guarantees

that the dual nature of the sets (the fact that they are defined over a finite universal

set) does not cause any problems for my set of sufficient conditions.

Thus, for any set Sj, I must find the sufficient conditions for the existence

of diminishing property for both functions G1(Sj) = αjf(Sj) + λαj log (αj) and

G2(Sj) = (1 − αj)f(S − Sj) + λ(1 − αj) log (1− αj). To do so, I will evaluate
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their sufficient conditions and then find their intersection as the final conditions

(assuming they do not negate one another).

Theorem 4.3.1. For a general N ≥ 2, the set functions G1(Sj) and G2(Sj) and

as a result G(Sj) are submodular if

(1) g(Sj, Sw) ≤ 0

(2) q(Sj, Su, Sw, Sy) ≤ 0

(3) |g(Sj, Sw)| ≥ λ log ( 1
πM

)

for all possible sets Sw ⊆ Sj ⊆ S and Su ⊆ Sj and Sy ⊆ Sw where S is the

universal set.

The proof for this theorem is presented in the Appendix under Theorem III. 1.

Thus far, I have found the sufficient conditions of submodularity for a binning

problem where N ≥ 2 using previous works. It would be interesting to see how

such conditions change when I take into account the specific case of N = 2 and

there is a symmetry between the 2 bins.

4.3.3 Specific Case of N = 2

As mentioned previously, in order to show the applicability of submodular functions

I choose to reiterate the overall utility function dictated in UvP for when N = 2:

max
1≤l≤2M

α
(l)
1 f(S

(l)
1 ) + (1− α(l)

1 )f(S − S(l)
1 )

+α
(l)
1 log (α

(l)
1 ) + (1− α(l)

1 ) log (1− α(l)
1 ))

= T (S1) (4.18)

As can be seen, the problem is still exponentially complex seeing as how I need to

search over 2M possible solutions to find the optimal. Thus, once again I aim to

impose multi-submodularity (in this case simplified to submodularity) on the new

utility function. For the utility function above the same results derived for a general
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N could be used as a set of sufficient conditions. However, taking into account the

joint relationship between the 2 sets and writing the same Inequality (4.15) for

Equality (4.18) I am able to find a less restrictive set of sufficient conditions for

the submodularity of this utility function as indicated below:

Theorem 4.3.2. When N = 2, the function in Eq. (4.18) is submodular if

(1) g(S
(l)
j , S

(l)
w ) ≤ 0

(2) 2|g(S
(l)
j , S

(l)
w )| ≥ λ log (1 + 1−πM

π2
M

)

(3) q(S(l)
j , S

(l)
u , S

(l)
w , S

(l)
y ) ≤ 0

for all possible sets S(l)
w ⊆ S

(l)
j ⊆ S and S(l)

u ⊆ S
(l)
j and S(l)

y ⊆ S
(l)
w where S is the

universal set.

where I have deduced that the new set of sufficient conditions are less restrictive

because they allow a smaller lower bound (a looser lower bound) for the absolute

value of the first order derivative of the set function f(Sj).

The proof for this theorem is presented in Appendix under Theorem III. 2 in [8].

The steps in this theorem are quite close to those taken in the proof for Theorem

III.1 where the only difference is in how I utilize the dual nature of the formulation

as developed in Eq.(4.18) to further loosen the sufficient conditions.

4.3.4 Imposing Separate Submodularities for the UvPD Problem

In this section, I aim to find sufficient conditions for multisubmodularity of the

overall utility function described for the UvPD Problem.

Once again, I use the intuition offered in the previous section to break down Eq.

(4.9) into a sum of simpler set functions and then impose submodularity over all

such sets and thus guarantee the overall multisubmodularity as well. Following the
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previous reasoning, I aim to find the sufficient conditions of submodularity for

G(S
(l)
j ) = P (G1)[α

(l,1)
j f(S

(l,1)
j ) + λ2α

(l,1)
j logα

(l,1)
j ]

+P (G2)[α
(l,2)
j f(S

(l,2)
j ) + λ2α

(l,2)
j logα

(l,2)
j ]

+
λ1
2

(α
(l,1)
j − α(l,2)

j )(logα
(l,1)
j − logα

(l,2)
j ) (4.19)

for all sets Sj. Assuming that a specific allocation scheme Al has been chosen, I

can further simplify Eq. (4.19) by rewriting

G(S
(l)
j ) = G(Sj) = P (G1)[α

(1)
j f(S

(1)
j ) + λ2α

(1)
j logα

(1)
j ]

+P (G2)[α
(2)
j f(S

(2)
j ) + λ2α

(2)
j logα

(2)
j ]

+
λ1
2

(α
(1)
j − α

(2)
j )(logα

(l,1)
j − logα

(l,2)
j ) (4.20)

where I have simply dropped every iteration of l from my previous formulation for

easier representation.

As in the previous cases, it seems that the function G(Sj) has a singular re-

lationship with set Sj. However; there is a secondary relationship the function

shares with the set SC
j = S − Sj where S = S represents the universal set. This

relationship could be modeled as

G(SCj ) = P (G1)[(1− β(l,1)
j )f(S − S(l,1)C

j )

+λ2(1− β(l,1)
j ) log (1− β(l,1)

j )]

+P (G2)[(1− β(l,2)
j )f(S − S(l,2)C

j )

+λ2(1− β(l,2)
j ) log (1− β(l,2)

j )]

+
λ1
2

(β
(l,2)
j − β(1)

j )(log (1− β(1)
j )− log (1− β(2)

j )) (4.21)

where I have used the fact that βj = 1− αj seeing as how I define

β
(l)
j =

∑
i∈{S−S(l)

j }

πi (4.22)
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Thus, for any set Sj, I must find the sufficient conditions for the existence of

diminishing property for both functions described in Eq. (4.20) and Eq. (4.21). To

do so, I will evaluate their sufficient conditions and then find their intersection as

the final conditions (assuming they do not negate one another).

Theorem 4.3.3. The set functions defined for the UvPD for a general N ≥ 2

problem is submodular if

(1) q(Sj, Sw, Sr, St) ≤ 0

(2) g(Sj, Sw) ≤ 0

(3) |g(Sj, Sw)| ≥

max{λ2 logω′1 +
λ1

P (G1)
log (ω′1ω

′
2),

λ2 logω′2 +
λ1

P (G2)
log (ω′2ω

′
1)}

, ω′1 =
1

πM1

, ω′2 =
1

πM2

(4.23)

for all possible sets Sw ⊆ Sj and St ⊆ Sr and Sr ⊆ Sj.

The proof for this theorem is presented in the appendix under Theorem III. 3

in [8]. Here, a series of sufficient conditions for G(Sj) as formulated in either Eq.

(4.20) or in Eq. (4.21) are evaluated separately and their intersection is calculated.

It is important to note how adding distinguishability as a factor to account for

has changed the dynamic of my sets of sufficient conditions to assure accessibility

of a submodular solution for the problem. In the UvP formulation of the prob-

lem, λ referred to the Lagrange multiplier accounting for the leaked information

constraint. The same role is played by λ2 in the formulation of UvPD problem.

Furthermore, in both problems, I aim to maximize a utility while keeping the

leaked information to a threshold. This would mean that if there were no concerns

of distinguishability in the UvPD problem, I would be expecting the same sets
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of sufficient condition as the two problems basically become the same. As can be

seen, if I assume λ1 (which represents the Lagrange multiplier accounting for the

distinguishability measure) is very small, then the two sets of sufficient conditions

turn out to be the same (noting that there is basically only one hypotheses to

account for when distinguishability is of no importance).

4.3.5 Selection of Utility Function

In this section I aim to detail how to use the results gathered in previous theorems

and Algorithms to find a proper utility function given the specific properties of the

problem. I assume a fixed arbitrary value of M and N = 2 and randomly generate

item probabilities all the while assuming that πM1 , πM2 ≥ δ. I then use P (G1)

and P (G2) = 1 − P (G1) and fixed values of λ1, λ2 and λ. Finally, I assume that

f(S) = f(|S|) where S and |S| represent any set and its cardinality respectively.

It is important to note that in my derivations of a desirable utility function I

focus on developing a quadratic utility function. Such an assumption might appear

to be extremely limiting to my class of functions at first sight. However, as is further

explained in [44], such an assumption is quite understandable and rather desirable

seeing as how in many economic models, functions are written as extensions of

quadratic function and thus later calculations are simplified while still maintaining

the essence of a utility function. Furthermore, such an assumption for the set

function will result in the simplification of 1st and 2nd order derivatives of set

function f into linear and constant functions respectively.

Here I try to find a utility set function which can satisfy the sufficient conditions

gathered in Theorems III.1 and III.3 for UvP and UvPD respectively. In order to

save space, I choose to find a utility function which can satisfy both the sufficient

conditions for UvP and UvPD’s multisubmodularity. Thus, the objective functions

should satisfy the first 2 conditions from Theorems III.1 and III.2 and the following
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sufficient condition:

|g(Sj, Sw)| ≥ Q (4.24)

where I have defined

Q = max{λ2 logω′1 +
λ1

P (G1)
log (ω′1ω

′
2),

λ2 logω′2 +
λ1

P (G2)
log (ω′2ω

′
1),

λ

2
log (1 +

1− δ
δ2

)} (4.25)

and

ω′1 = ω′2 =
1

δ
(4.26)

As previously mentioned, I assume that f(S) = a|S|2 + b|S| + c. Thus, g(S) =

2a|S|+ (b− a) and q(S) = 2a. The above equations could thus be rewritten as:

(1) 2a ≤ 0

(2) 2a|S|+ b− a ≤ 0

(3) |2a|S|+ b− a| ≥ Q ∀|S| ∈ {1, ...,M} (4.27)

I further choose to add another condition f(S) ≥ 0 ∀S which ascertains that the

cost function is always positive.

I can thus plot the above 4 conditions in a 3-D figure consisting of a, b and c and

find the region acceptable for all 4 conditions resulting in a range of acceptable a, b

and c’s.

An Example of such derivation will be offered in Section 4.5.

4.4 Submodular Solution

In this section, I offer two algorithms specifying how each UvP and UvPD problem

could be solved in a polynomial manner (assuming N = 2). I further expand upon

how the complexity solutions has been compromised. Finally, I offer an example

to showcase the relationship between solution error and complexity.
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4.4.1 Solution to UvP

I choose to modify the results from [58] to create my own algorithm to find the

submodular function solution to my problem. I present:

Algorithm 1 : Submodular Function Solution to the UvP Problem)

1. Let S1 = argmaxe∈X={1,...,M}T [S1 = {e}].

2. If there is an element e ∈ X \ S1 such that T [S1 + {e}] ≥ T [S1], let S1 =
S1 + {e}.

3. If there is an element e ∈ S1 such that T [S1 \ {e}] ≥ T [S1], let S1 = S1 − {e}.
Go to Step 2.

4. Return maximum of T [S1] and T [X \ S1].

4.4.2 Solution to the UvPD Problem

Following the same pattern as that of Algorithm 1, I can write:

Algorithm 2 : Submodular Function Solution to the UvPD Problem

1. Let S1 = argmaxe∈X={1,...,M}T [S1 = {e}].

2. If there is an element e ∈ X \ S1 such that T [S1 + {e}] ≥ T [S1], let S1 =
S1 + {e1}.

3. If there is an element e ∈ S1 such that T [S1 \ {e}] ≥ T [S1], let S1 = S1 − {e}.
Go to Step 2.

4. Return maximum of T [S1] and T [X \ S1].

In both cases, I know that at the very last step T [S1] = T [X \ S1]. Now I opt to

calculate the complexities of this method. Steps 2 and 3 could repeat (M − 1) +

(M −2) + ...+ 1 = M(M+1)
2

times each while every item could be removed and thus

replaced a total of 2M times. Thus the total complexity of steps 2 and 3 is equal

to M2(M + 1) = O(M3). The complexity of step 1 is also equal to M . Thus the

total complexity of the solution is equal to O(M3).

These polynomial solutions simply make certain the maximal and minimal func-

tions obtained are at least 0.432 and at most 2.315 times the optimal objective

functions respectively. This range of error occurs because in this method, I am
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removing and adding members from and to the set S1 one by one. Thus, at each

decision point I am making one locally optimal decision. However, it is widely

known that a locally greedy method is not necessarily globally optimal [55].

I acknowledge that the algorithms proposed above represent a modification of

the original set-allocation algorithm proposed in [58] with N = 2 for submodular

problems. It’s important to note that for any N > 2 the algorithm could get

extremely complicated as in N = 2 the addition of an item to a set S1 means

the removal of the same item from the other set S2 while in more general values

of N such a relationship is not necessarily true and thus many more complicated

scenarios need to be considered. As a result, I have decided to offer results for the

case of N = 2 (two bins) to demonstrate the validity of of my proved sufficient

conditions which enable use to modify the existing algorithms in my scenarios.

4.5 Numerical Examples

In this section I aim to offer examples where I aim to use the results gathered

in previous theorems and Algorithms to first find a proper utility function given

the specifics and then run and test the Algorithms’ results with that of an ex-

haustive search to compare the two methods in terms of complexity and exactness

of the solution. To address a variety in my results, I assume different values of

M = 6, ..., 20 and randomly generate item probabilities all the while assuming

that πM1 , πM2 ≥ 10−5 due to MATLAB settings. I then use P (G1) = 0.8 and

P (G2) = 0.2 and λ = λ2 = 0.4, λ1 = 0.6 and that f(S) = f(|S|) where S and |S|

represent any set and its cardinality respectively to find appropriate utility function

to make certain the submodular solution is converging and relatively exact.

It is important to note that my main goal here is to guarantee a polynomial

algorithm to UvP and UvPD problems is relatively acceptable in comparison with

an NP-complicated exhaustive algorithm. I thus choose to simply plot the final

95



objective functions of UvP and UvPD algorithms and compare them with one

another in Fig.4.4 and 4.5. Using the previously developed results, it could be seen

that I need to satisfy conditions (1) and (2) from Eq.(4.27) and a third condition

|2a|S|+ b− a| ≥ 73.66 ∀|S| ∈ {5, 6, ..., 20} (4.28)

The condition (2) from Eq.(4.27) and the condition from Eq.(4.28) can be plotted

in Fig.(4.3) where in the top figure, the allowed region is on the left side of the

border defined by the many graphs and in the bottom figure, the allowed region is

on the outer side of the borders indicated by the many graphs. I also have a third

condition which entails that a ≤ 0 I need to tend to.

Allowed range of a and b based on Eq.(3) for UvP and UvPD

-20 -15 -10 -5 0 5 10 15 20

a

-20

-10

0

10

20

b

Allowed range of a and b based on Eq.(2) for UvP and UvPD
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FIGURE 4.3. a and b regions based on different sufficient conditions

Taking all these conditions into account one possible value for a and b could

be a = −15, b = 10. Finally, in order to account for the value of c, I note that
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f(S) ≥ 0 ∀S meaning

−15|S|2 + 10|S|+ c ≥ 0 ∀|S| ∈ {5, 6, ..., 20}

→ c ≥ 15(|S| − 1

3
)2 − 5

3

→ c ≥ 5802 (4.29)

Finally, the utility function is defined to be f(S) = −15|S|2 + 10|S|+ 5810.

4.5.1 Comparison for UvP

The results of running Algorithm 1 and an exhaustive search algorithm on different

UvP problems have been gathered in Fig.4.4 .
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FIGURE 4.4. Objective Functions for UvP through Different Algorithms

As can be seen, there are times when the submodular solution has the same

optimal output as those of exhaustive search and times when it showcases a loss of

exactness. Although I previously mentioned the possibility of a loss of accuracy, I

still need to discuss the reason behind this disparity of results. While running the

submodular algorithm for some examples, I need to satisfy maximization of the
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utility function, this then results in the selection of the item with highest allowed

probability. However, once this item is fixed into the solution set, I cannot add

any more items, because adding any further items will result in a lesser overall

objective function. However, if I was to run the exhaustive search method, I would

see that choosing the two items with the lowest probabilities would have offered

a better overall utility. Thus, the biggest limitation in submodular set solutions

appears in the process of allocating the first item to the solution set. Depending

on different scenarios, such an issue may or may not rise.

4.5.2 Comparison for UvPD

Once again, assumingM = 6, ..., 20, I offer multiple examples of the performance of

submodular solution in the UvPD problem with a further assumption that P (G1) =

0.8 and P (G2) = 0.2. The results have been gathered in Fig.(4.5).

0 5 10 15 20 25

M

0

500

1000

1500

2000

2500

F
in

a
l 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Exhastive Serach (Optimal Method)

1/e times Exhaustive Serach

Submodular Method

FIGURE 4.5. Objective Function for UvPD through Different Algorithms

As can be witnessed, due to the addition to hypotheses probabilities P (G1)

and P (G2) and their inclusion in the conditions gathered in Theorem III.3, the
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utility functions adjusted for submodularity in UvPD are much larger than those

appearing in UvP. As a result, the overall objective function is also much larger

than the one gathered in Fig.(4.4). Otherwise, the results in comparison with those

gathered by exhaustive search are quite similar to those seen previously in Fig.(4.4).
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Chapter 5
Information Bottleneck Problem Revisited

5.1 Introduction

The information bottleneck problem was first introduced as a trade-off problem

between an input and an output through a median variable [9]. Namely, given

two random variables U and X following a given joint distribution P (U,X), I

seek a mapping between X and Y to form a Markov Chain U → X → Y under

which the mutual information between X and Y is minimized under a constraint

that the mutual information between U and Y is higher than a lower bound. A

straightforward instance for such a model could be exemplified when I am observing

X at one point, which shall be quantized and shared with another entity, who is

interested in inferring about U using such quantized information of X. Thus, the

cost due to distortion induced by compression is in terms of mutual information

I(U ;Y ). In this scenario, I hope that minimal rate is used to describe X through

output Y , however I also want to make sure that an enough level of information

about input U could be revealed through output Y .

In the information bottleneck method as detailed by [9], the above constrained

optimization was posed as a non-convex problem with remarks of lacking a guar-

anteed globally optimal solution. The problem was then rewritten in the format

of a Lagrange multiplier problem where the goal would be to minimize a linear

combination of the two functions (I(X;Y ) and I(U ;Y )) connected to one another

through a Lagrange multiplier.

Such interpretation of the problem gave way to the use of convenient Lagrange

multiplier methods and an iterative algorithm with every step of the algorithm

specified in a simple formula. It was shown in [9] that the solution might not
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be optimal and instead they emphasized on the importance of the simplicity of

the algorithm. This simplicity has resulted in the Information Bottleneck (IB)

algorithm being widely used in many settings including both learning driven and

information theoretic problems.

In this chapter, I revisit the original information bottleneck problem in a con-

strained optimization setting. I go into details as to what the concerns of using the

simplified Lagrange method are and not only offer a new algorithm of solving the

problem to address such issues, but also (by going into details about the poten-

tial issues in the canonical IB approach) further justify the adoption of free and

auxiliary variables as described in my new algorithm.

We then propose to adopt a more systematic method in optimization literature,

namely Alternate Direction Method of Multipliers (ADMM) to develop a more ef-

ficient algorithm to solve such problems. This method offers the option of adapting

penalty functions as a means of controlling the constraints imposed on the prob-

lem [12]. I showcase how such a method is superior to previous algorithms by both

discussing the nature of two solutions and offering sufficient numerical evidence.

5.1.1 Related Works

Due to the nature of my chapter, which heavily relies on discussing every step of

the information bottleneck method, my main point of reference will be the original

Information Bottleneck paper [9]. We later find it important to note that [9] was

inspired by the works of [10] and [11]. Thus, from time to time, in order to indicate

the inadequacies of [9]’s results, I will refer to these papers. Further comments

on the inadequacies of [9] have been made in many works as recent as [15] which

reflect the concerns of many previous authors who while aware of the limitations

of IB, still chose to utilize it due to its simple implementation.
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The idea of solving Lagrange multiplier problems where the goal is to either max-

imize or minimize a function using penalty functions has been explored in many

previous mathematical and computing works such as [12]. These issues could be

modeled in the form of an Augmented Lagrange Multiplier (ALM) problem. How-

ever, due to the still-complex nature of solving any non-convex Lagrange multiplier

problem (which requires carrying out gradient descent and checking for conditions

on every Lagrange multiplier), further studies and methods are required. One al-

gorithm of dealing with the limitations of an ALM problem is to instead try and

adopt an ADMM algorithm. One of the most recent works about this method is [13]

which details the superiority of adopting ADMM over continuing with ALM. [13]

makes further observations on the accuracy of a non-convex Augmented Lagrange

Multiplier problem which I will utilize to justify the numerical results achieved

through this chapter.

Finally, [48] offers a series of sufficient conditions on the desired utility function

by which a convergence of the ADMM method could be guaranteed. I will offer

insight into these sets of sufficient conditions and whether or not they are applicable

to my problem settings.

5.1.2 chapter Contributions

In this chapter, I (1) revisit the Information Bottleneck problem and the algorithm

to solving it as suggested by [9]; (2) explain exactly if and how any step in the

original algorithm could be problematic; (3) introduce the concept of augmented

Lagrange multiplier problems to the same original problem; (4) showcase every

possible superiority offered by the new method of looking at the problem; (5) offer

an algorithm and an in-depth look at how it could be implemented to my problem;

(6) demonstrate the practical results of running my suggested algorithm (ADMM)
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over the same problem; and (7) offer in-depth reasoning for the numerical results

to further justify the novelty and importance of my new suggestion.

Finally, some proof and observations have been left out of this work and instead

further explained in the technical report [59] for any required clarification.

5.2 System Model and Problem Formulation

We assume a Markov chain U → X → Y meaning

p(Y = y|U = u,X = x) = p(Y = y|X = x) (5.1)

Then, I am seeking a conditional PMF PY |X(y|x) to attain an optimal tradeoff

between quantization rate and information loss about a hidden variable U . I could

rewrite this problem in the following manner:

minPY |X(y|x) I(X;Y )

s.t I(U, Y ) ≥ Ith (5.2)

I will later address how the problem formulated in Eq.(5.2) represents a non-convex

optimization problem and what this classification means for my studies. However,

for the time-being, I choose to rewrite Eq.(5.2) in the format of a Lagrange multi-

plier problem:

minPY |X(y|x) I(X;Y )− βI(U ;Y ) (5.3)

where β ≥ 0 is assumed to be a Lagrange multiplier connecting the two mutual

information functions given to us by the user and I have removed the term +βIth

from the utility function I aim to minimize as it would be a constant for a fixed

value of β.

Furthermore, there are a series of hidden constraints imposed upon the problem

which ensure that the final solution PY |X(y|x) is a probabilistic matrix resulting
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in:

(1) p(y|x) ∈ [0, 1]∀x ∈ X , y ∈ Y ,

(2)
∑
y∈Y

p(y|x) = 1,∀x ∈ X (5.4)

These sets of conditions, while important, could be dealt with in two different

manners; one as suggested by [9] and the other as suggested in this chapter. As a

result, I instead change my focus to the problem formulated in either Eq.(5.2) or

Eq.(5.3) and only address the conditions in Eq.(5.4) when needed.

5.3 Revisiting the Original Information Bottleneck Solution

In this section, I briefly revisit the solution method offered by [9] to exemplify how

the problem was tackled previously and so as to offer an in-depth study of the

possible limitations of such an algorithm.

To do so, I find it necessary to introduce two types of variables: (1) Free variables

which represent the set of variables I am able to choose so as to optimize the overall

objective function; in other words, they are the variables achieved by imposing the

first order derivative to be equal to 0; (2) Auxiliary variables which help form an

iterative relationship with free variables resulting in a more methodical algorithm.

5.3.1 Problem Formulation

In [9], it was first acknowledged how the problem formulated in Eq.(5.2) is about

minimizing a convex function over a non-convex set. Thus, the overall problem is a

non-convex optimization. The proof, while not necessarily difficult, was never fully

presented. Here I offer the proof for this observation:

Theorem 5.3.1. The optimization problem presented in Eq.(5.2) represents a non-

convex optimization.

The proof for this theorem is presented in Appendix under Theorem III.1 in

[59]. To prove the non-convexity of the optimization, I first show that the functions
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I(X;Y ) and I(U ;Y ) are both convex functions of p(y|x). Then it could be argued

that the set I(U ;Y ) ≥ Ith represents a non-convex set while the objective function

is still convex in regards to p(y|x) and thus the entire problem in Eq.(5.2) would

be a non-convex optimization.

As a direct result of Theorem III.1 , it could be deduced that any solution offered

using techniques developed for solving convex optimization problems would be

suboptimal. One such suboptimal solution was developed by [9] by reintroducing

the original problem in the format of a Lagrange multiplier problem where the goal

is to

minPY |X(y|x) I(X;Y )− βI(U ;Y )−
∑
x,y

γ(x)p(y|x) (5.5)

where once again β > 0 is assumed to be a Lagrange multiplier connecting the two

mutual information functions given to us by the user. Furthermore γ(x) represents

the constraints imposed by the probabilistic nature of the problem mainly how∑
x,y p(x, y) = 1. Moreover, it is assumed that the normalization of the conditional

probability matrix is imposed through the solution meaning I will definitely have∑
yi∈Y P (yi|x) = 1,∀x ∈ X and I need not worry about such series of conditions

for the time being.

Before continuing to the derivation of the problem, I find it necessary to intro-

duce another observation through Eq. (5.3) which was not previously mentioned

in [9].

Theorem 5.3.2. In the Lagrangian version of the problem as depicted in Eq.(5.3),

I assume β > 1, otherwise the minimal value of the Lagrangian objective function

will be equal to 0.
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The proof to this theorem is gathered in Appendix under Theorem III.2 in [59]

and turns out to be quite straightforward.

As a direct result of Theorem III.2, from this point on, I will assume that β > 1

and focus on the answer to this class of problems.

5.3.2 An Analysis of the IB Method

In this subsection, I will offer an in-depth study of what [9] suggests in order to

solve the problem formulated in Eq.(5.3).

In order to find the optimal PY |X(y|x) to minimize L = I(X;Y ) − βI(U ;Y ) −∑
x,y γ(x)p(y|x), [9] opted to calculate the first order derivative of L with respect

to P(y = y∗|x = x∗) for any possible x∗ and y∗ and have it be equal to 0. In other

words, PY |X(y|x) was chosen as the free variable.

To do so, [9] used the fact that

p(y) =
∑
x∈X

p(x)p(y|x)

→ ∂p(y)

∂p(y|x)
|x=x∗,y=y∗ = p(x∗) (5.6)

and the notion that

p(y|u) =
∑
x∈X

p(x|u)p(y|x)

→ ∂p(y|u)

∂p(y|x)
|x=x∗,y=y∗ = p(x∗|u) (5.7)

Having made the above assumptions, I would have

∂L
∂p(y|x)

|x=x∗,y=y∗ = 0→

p(x∗){log p(y∗|x∗) + 1 + (β − 1) log p(y∗) + (β − 1)

−β − β
∑
u

p(u|x∗) log
p(y∗)p(u|y∗)

p(u)
} − γ(x∗)

p(x∗)
= 0 (5.8)
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It then follows that

log p(y∗|x∗) = log p(y∗) +
γ(x∗)

p(x∗)

+β{DKL{p(u|x∗)||p(u)} −DKL{p(u|x∗)||p(u|y∗)}}

→ p(y∗|x∗) = p(y∗)

×exp(−β{DKL{p(u|x∗)||p(u|y∗)}

−DKL{p(u|x∗)||p(u)} − γ(x∗)

βp(x∗)
})

→ p(y∗|x∗) = p(y∗)exp{−βZ(x∗, y∗)} (5.9)

where I have used the definition of KL-divergence asDKL{P(X)||Q(X)}=
∑

x∈X P (x) log P (x)
Q(x)

[56].

Assuming that the original function L is convex (which I have shown and [9]

has mentioned to not be true), then the result as gathered in Eq.(5.9) will help

minimize L.

However, there is still another issue which needs to be addressed. p(y∗|x∗)s as

gathered in Eq.(5.9) do not necessarily indicate a set of probability variables; while

they are always greater than 0, there is no guarantee that they will remain below

1 or even that the sum of all of its possible values follow the marginal property

(both defined in Eq.(5.4)).

[9] suggested that in order to deal with this issue, I would redefine the optimal

p(y∗|x∗) as

p(y∗|x∗) =
p(y∗)exp{−βZ(x∗, y∗)}∑
y∗∗ p(y

∗∗)exp{−βZ(x∗, y∗∗)}
(5.10)

By doing so, [9] has guaranteed that
∑

y∈Y p(y|x) = 1 and that p(y|x) ≤ 1. How-

ever, normalizing p(y∗|x∗) as seen in Eq.(5.10), takes away from the concept of an

optimal p(y∗|x∗) in the first place. Thus, even if convexity of L were guaranteed,

by the above imposition, the calculated p(y∗|x∗) is no longer the optimal minimizer
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I was looking for. Later on, I will offer further details as to why such an argument

is important and quite problematic.

We could thus conclude that in the calculation of the optimal p(y∗|x∗) as de-

scribed in [9] much has been left to desire.

In [9], once the optimal free variable p(y∗|x∗) was calculated, it was assumed

that I would treat PY (y) as auxiliary variables and fix

p(y∗) =
∑
x∈X

p(x)p(y∗|x),∀y∗ ∈ Y (5.11)

Such an assumption would guarantee another series of conditions that all marginal

probability distributions should satisfy. Finally, it was suggested that by repeatedly

fixing p(y∗) and then finding the optimal p(y∗|x∗) and vice versa, I could reach a

point of convergence where the overall function L is minimized.

We have already shown that for a fixed p(y∗), p(y∗|x∗)s as formulated in Eq.(5.10)

are not necessarily optimal (they are not moving in the minimization direction).

In this section, I show that for a fixed set of p(y∗|x∗)s, p(y∗)s as formulated in

Eq.(5.11) do not move in minimization direction either.

To show this, I assume two different functions F = Ex,y[log
PY |X(y|x)
QY (y)

] and G =

Ex,y[log
PY |X(y|x)∑

x∈X PX(x)PY |X(y|x) ] .

Note that in the function of F , Q() is a legitimate probability measure on Y , but

not necessary satisfying Bayes rule as in Eq.(5.11). This is because I are attempting

to show some relationship between F and G for a more general setting. It follows

that

F − G =
∑
x,y

PX(x)PY |X(y|x) log

∑
x PX(x)PY |X(y|x)

QY (y)

≥
∑
x,y

PX(x)PY |X(y|x){1− QY (y)∑
x PX(x)PY |X

}

= 1− 1 = 0 (5.12)
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where in the penultimate line I have used the log-inequality log x ≥ 1− 1
x
with =

only appearing when x = 1. (which in this scenario is equivalent to the condition

that QY (y) =
∑

x PX(x)PY |X ,∀y ∈ Y). It follows that if I define

K = Ex,y[log
PY |X(y|x)

QY (y)
]− βEu,y[log

PY |U(y|u)

QY (y)
] (5.13)

and

M = Ex,y[log
PY |X(y|x)∑

x∈X PX(x)PY |X(y|x)
]

−βEu,y[log
PY |U(y|u)∑

x∈X PX(x)PY |X(y|x)
] (5.14)

Then, I will not be able to derive much about the difference between K andM as

K − L =
∑
x,y

PX(x)PY |X(y|x) log

∑
x PX(x)PY |X(y|x)

QY (y)

−β
∑
u,x,y

PX(x)PU |X(u|x)PY |X(y|x)× log

∑
x PX(x)PY |X(y|x)

QY (y)
(5.15)

where the first sum is always positive and the second always negative. As a result,

based on the value of β the overall difference may be either positive or negative. If

I assume β << 1, then the overall difference will be positive and as a result fixing

QY (y) =
∑

x PX(x)PY |X(y|x) will minimize the overall difference. On the other

hand, for β >> 1, the overall difference will be negative and as a result fixing

QY (y) =
∑

x PX(x)PY |X(y|x) will maximize the overall difference.

Overall, it could be deduced that fixing QY (y) =
∑

x PX(x)PY |X(y|x) will not

necessarily result in minimizing L for a fixed PY |X(y|x) and is thus not optimal.

Overall, one of the primary contributions of [9] was to offer two closed-form

formulas by whose iterations and many choices of starting variables, it could be

shown that a final value of L could be reached. However, as was mentioned in [9],

this overall value is not necessarily the minimum I was looking for. In this section,

I went one step further and demonstrated how this non-optimality is not only due
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to the non-convexity of the original problem (as [9] had pointed out), but also due

to the method [9] has offered.

By revisiting the original formulation of L it could be witnessed that for a fixed

I(X;Y ), further increasing I(U ;Y ) would result in the minimization of the overall

L.

As a result, I suggest treating PY |U(y|u) as a completely independent set of

variables. I will simply introduce a series of conditions required to be satisfied to

guarantee the linear relationship between PY (y), PY |X(y|x) and PY |U(y|u). Conse-

quently, I propose to turn the objective function L as following:

L = Ex,y[log
PY |X(y|x)

QY (y)
]− βEu,y[log

PY |U(y|u)

QY (y)
] (5.16)

Such an idea has 2 very important advantages in my optimization problem:

1: In Eq.(5.16), it could be seen that the overall L is a convex function of

PY |X(y|x) (check the proof for Theorem III.1) and thus minimization overall PY |X(y|x)

alone is calculable.

2: Assuming a fixed PY |X(y|x) and PY (y), I need to show that there exists a

class of variables PY |U(y|u) which will help minimize the overall L. By utilizing the

same idea introduced in [10] and assuming that PY (y) and PY |X(y|x) are fixed and

introducing F ′ = Eu,y[log
QY |U (y|u)
PY (y)

] and G ′ = Eu,y[log
WY |U (y|u)
PY (y)

] where WY |U(y|u) =

PY (y)PU|Y (u|y)∑
y∈Y PY (y)PU|Y (u|y) , I can write

G ′ −F ′ =
∑
u,y

PY (y)PU |Y (u|y)× log
PY (y)PU |Y (u|y)

QY |U(y|u)
∑

y∗ PY (y∗)PU |Y (u|y∗)

≥
∑
u,y

PU |Y (u|y)PY (y)−
∑
u,y

QY |U(y|u)PU(u)

= 1− 1 = 0 (5.17)

110



where I have once again utilized the log inequality and = only holds true when

QY |U(y|u) =
PY (y)PU |Y (u|y)∑
y∈Y PY (y)PU |Y (u|y)

=

∑
x PX|U(x|u)PY |X(y|x)∑
x,y PX|U(x|u)PY |X(y|x)

(5.18)

where I have simplified the first line using some simple mathematical calculations.

It follows that satisfying Eq.(5.18) results in maximizing F ′ and thus minimizing

L for a fixed PY |X(y|x) and PY (y). Interestingly, this condition is a direct result of

imposing an extension of the Bayes rules on variables PY |U(y|u) and PY |X(y|x). As

a result, I choose to select a third class of variables namely PY |U(y|u) as another

set of auxiliary variables to be updated alternatively together with PY (y), and

PY |X(y|x).

As was witnessed, the biggest fall-back of [9]’s suggestions appeared when an

attempt was made to ensure that the Bayes conditions between P (Y ) and P (Y |X)

and that between P (Y |U) and P (Y |X) underlying the Markov Chain U → X → Y

are reinforced with respect to only one free set of variables P (Y |X). In order to deal

with these problems, I suggest the use of Augmented Lagrange Multiplier (ALM)

Method and more specifically the Alternating Direction Method of Multipliers

(ADMM) which I will discuss in the following section.

5.3.3 Introducing Penalty (cost) Functions

After careful observation of the issues introduced in the previous subsection, I

could deduce that most of the deficiencies of [9] come from a restrictive manner of

dealing with constrained non-convex optimization problems. In both calculations,

I have sacrificed the optimal direction of reaching a solution for making certain

a constraint is met at every step of the iteration. It would then make sense to

try and find a solution which can satisfy an acceptable threshold of constraints at

every step of the iteration while not diverging from the optimal path of reaching
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a solution. It turns out such a solution could be developed by introducing a series

of cost functions.

5.3.4 Constrained Optimization using Augmented Lagrange
Multipliers

As mentioned previously, the biggest issue with the IB solution lays in the strict

nature of a constraint resulting in many inconsistencies while developing an itera-

tive algorithm. More specifically, I either allow the constraints to be fully broken so

as to develop a straightforward solution (the ideal p(y∗|x∗) calculated in Eq.(5.9))

or I impose the constraints so rigidly that they result in the a misdirection in the

solution as was the case for imposing the marginal property in Eq.(5.11).

A method of dealing with such scenarios was addressed by the Augmented La-

grange Multiplier method [12] which allows a level of flexibility from such con-

straints but also introduces a penalty function for such diversions. As a result, by

controlling the value of the penalty coefficient, I will be able to both account for

possible diversions and also keep them under a specific threshold. Furthermore, by

imposing a large penalty function, I will be able to virtually find answers when the

constraints are not broken at all.

A secondary source of problems in developing [9]’s method could be traced back

to forming an iterative relationship between only 2 classes of variables (namely

PY |X(y|x) and PY (y)s. In [9], by simply fixing one of the classes, I would try and find

the other optimal class of variables. Such a solution would impose further weight

and constraints over one of the variable classes. For example in the problem at hand

as exemplified in Eq.(5.3), if I fix PY (y), the optimal value of PY |X(y|x) needs to

account for traces of a secondary class of variables tentatively known as PY |U(y|u)’s

as demonstrated through Eq.(5.7). I could argue that by further introducing new

classes of variables, I could cut then on such variable interconnections thus dealing
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with simpler problems. As a result, from this point on, I assume I would like to

optimize L over 3 sets of variable classes PY (y), PY |X(y|x) and PY |U(y|u).

To introduce the penalty coefficients in my constrained optimization problem, I

first list all possible constraints in detail assuming I am searching over all sets of

variables PY (y), P (Y |X) and PY |U(y|u)s. I break these constraints into those of an

inequality nature:

0 ≤ p(y|x) ≤ 1,∀x ∈ X ,∀y ∈ Y

0 ≤ p(y|u) ≤ 1,∀u ∈ U ,∀y ∈ Y

0 ≤ p(y) ≤ 1,∀y ∈ Y (5.19)

and those of an equality nature such as:

∑
x

p(x)p(y|x) = p(y), ∀y ∈ Y

p(y|u) =

∑
x p(x|u)p(y|x)∑
x,y p(x|u)p(y|x)

, ∀y ∈ Y ,∀u ∈ U

∑
y

p(y|x) = 1, ∀x ∈ X

∑
y

p(y|u) = 1, ∀u ∈ U ,
∑
y

p(y) = 1 (5.20)

Note: It should be noted that all the variables p(y|u) and p(y) are linear functions

of the original variables p(y|x) and thus, the problem is still that of an optimization

over the matrix PY |X(y|x) with all the constraints over the same matrix. However,

in order to further simplify the calculations and use the results from other works

specifically ADMM [60], I treat p(y|u) and p(y) as separate variables and then

use the set of constraints gathered in Eq.(5.19) and Eq.(5.20) as new constraints

within theses variables.

5.3.5 New Problem Formulation using Penalties

To offer the new formulation, I first need to introduce some definitions:
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1. Any λ, λ′, λ′′, λ′′′, λ′′′′ represents the Lagrange multipliers defined over their

corresponding set of equality constraints and their indices simply reveal over

which variables they are defined.

2. Any µ, µ′ represents the Lagrange multipliers defined over their correspond-

ing set of inequality constraints and their indices simply reveal over which

variables they are defined.

Using the concept of ALM over constrained sets, I could write the overall new

utility function in the format of Lc as described in [59].

I need to address two new definitions in this new formulation:

(1) There is a use of max function in the formulation of Lc which is due to

the fact that I have chosen to rewrite the inequality constraints in the format of

equality constraints using a positive variable. I then find the optimal value for such

positive variables to minimize the overall utility function. This then in turn results

in choosing a value between the optimal and 0, then if the optimal is positive, the

optimal is chosen and otherwise, 0 is chosen which is the optimal allowed value

[12].

(2) I have chosen a cost scalar c which controls the level of allowed invasion of

constraints over the course of optimization[12].

5.3.6 Solution Derivation

We find the optimal set of answers PY |X(y|x), PY (y) and PY |U(y|u) over which the

function Lc is minimized. I could carry this out in 3 different ways:

(1) I could solve the problem using the original Augmented Lagrange Multiplier

Method as described in [12]. To do so, I will need to carry out the gradient descent

method over a total of |Y | variables (to account for all p(y)s) plus |X|×|Y | variables

(to account for all p(y|x)s) plus |U |×|Y | variables (to account for all p(y|u)s) at the
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same time. Such work, while computationally doable, is (1) very time-consuming

and (2) does not offer a high convergence rate. This limit in convergence is due to

the fact that I am trying to minimize an objective function L over a large number

of variables each of whom impose their own set of constraints (λ ’s and µs) and all

of which need to be at least partially satisfied.

(2) I could solve this problem by optimizing L over different variable classes

separately. To do so, I assume all PY |X(y|x) and PY |U(y|u)s are fixed and then try

to minimize L over all possible PY (y)s. I then fix PY (y) and PY |X(y|x) and try to

optimize L over all PY |U(y|u)s and so forth. If I continue to iteratively optimize

L over such sets, I could then hope that I will end up at a desirable minimum

value for L. By doing so, I will be able to cut down on the level of complications

arising from optimization over a large number of variables as was the case in the

original Augmented Lagrange Multiplier Method (ALM) and thus multiply the

rate of convergence. This method is widely referred to as Alternating Direction

Method of Multipliers (ADMM) and has been used in many recent studies to

discuss non-convex optimization problems (as is the case in my problem).

(3) I could opt to use randomized ADMM [61] which is simply an extension of

the original ADMMmethod as described in (2) where at every step of optimization,

the order of optimization over different sets of varibale classes PY |X(y|x), PY |U(y|u)

and PY (y) is randomly selected. In other words, at every step, 1 of the 6 possible

permutations of these variables is randomly chosen and then ADMM is carried

out. While never mathematically proven, this method has been shown to offer a

better optimization result through many practical implementations. [61, 62]

Note: It is important to note that in both ALM and ADMM, optimization is

carried out through gradient descent. The only difference is that by using ADMM,

I am breaking down a large scale ALM problem to a number of smaller scale ALM
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problems thus raising my chances of a converging solution. I thus suffice to solving

the original problem using ADMM.

As for the Lagrange multipliers, I choose to update them at every t+ 1th step

as follows:

λy∗
(t+1) = λ

(t)
y∗ + c{p(t)(y∗)−

∑
x

p(x)p(t)(y∗|x)}

λ
′(t+1)

u∗,y∗ = λλ
′(t)

u∗,y∗ + c{p(t)(y∗|u∗)−
∑

x p(x|u)p(y|x)∑
x,y p(x|u)p(y|x)

}

λ
′′(t+1)

= λ
′′(t)

+ c{−1 +
∑
y

p(t)(y)}

λ
′′′(t+1)

u∗ = λ
′′′(t)

u∗ + c{−1 +
∑
y

p(t)(y|u)}

λ
′′′′(t+1)

x∗ = λ
′′′′(t)

x∗ + c{−1 +
∑
y

p(t)(y|x)}

µ
(t+1)
x∗y∗ =

µ
(t)
x∗y∗

2
, µ

′(t+1)

x∗y∗ =
µ
′(t)

x∗y∗

2

µ
(t+1)
u∗y∗ =

µ
(t)
u∗y∗

2
, µ

′(t+1)

u∗y∗ =
µ
′(t)

u∗y∗

2

µ
(t+1)
y∗ =

µ
(t)
y∗

2
, µ

′(t+1)

y∗ =
µ
′(t)

y∗

2
(5.21)

where the overheads t and t + 1 for a certain variable represent the value of said

variable in t and t+ 1 steps. Finally, I follow these steps as an algorithm of solving

the Information Bottleneck problem:

Step 0: Choose random initial values for p(0)(y∗|x∗),p(0)(y∗|u∗) and p(0)(y∗) and

all λ(0)s and µ(0)s.

Step 1: Run Gradient Descent Algorithm to find p(t+1)(y∗|x∗) which minimizes

Lc for fixed values of p(t)(y∗|u∗) and p(t)(y∗) and all λ(t)s and µ(t)s.

Step 2: Run Gradient Descent Algorithm to find p(t+1)(y∗|u∗) which minimizes

Lc for fixed values of p(t+1)(y∗|x∗) and p(t)(y∗) and all λ(t)s and µ(t)s.
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Step 3: Run Gradient Descent Algorithm to find p(t+1)(y∗) which minimizes Lc

for fixed values of p(t+1)(y∗|x∗), p(t+1)(y∗|u∗) and all λ(t)s and µ(t)s.

Step 4: Use Eq.(5.21) to update λ(t+1)s and µ(t+1)s.

Step 5: Go to step 2 unless all variables from steps t and t+ 1 are equal.

5.4 Numerical Results and Comparison

In this section, I run 3 different algorithms upon 3 different settings (U → X

probability distributions channels) assuming that in all cases |X| = |U | = 3, |Y | =

2. For all cases, I have assumed that

P(X|U) =


0.3 0.1 0.6

0.8 0.1 0.1

0.5 0.4 0.1

 (5.22)

and

(1)P(U) =

[
0.3 0.4 0.3

]
(2)P(U) =

[
0.4 0.4 0.2

]
(5.23)

The algorithms I opt to use are the original IB method [9], my proposed ADMM

based algorithm and a randomized ADMM method.

5.4.1 Grounds for Comparison

In order to fairly compare the algorithms, I take note of how the IB method requires

a given constant β > 1.

As a result, my first measure of comparison is to plot the final calculated value

of the objective function L versus differing values of β > 1. Then, one method

of comparing the efficiency of each method is to see which one of them offers a

minimal L and is thus the optimal in my scenario. By doing so, I are inadvertently

choosing the probability distribution matrix which helps minimize the function
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gathered in Eq.(5.3). These results are gathered in part (2) of Figures 5.1 and 5.2

respectively.
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FIGURE 5.1. (1) I(U ;Y ) for a fixed I(X;Y ) and (2) L for Example 1

Furthermore, I opt to compare different values of I(U ;Y ) for a fixed value of

I(X;Y ). By doing so, I am somehow moving away from the Lagrange multiplier

nature of the problem and instead focusing on the more constrained optimization

nature of it instead (as better formulated in Eq.(5.2)). Then, one method of com-

paring the efficiency of each method is to see which one of them offers the maximal

L and is thus the optimal choice in my scenario. The results are gathered in part

(1) of Figures 5.1 and 5.2 respectively.

5.4.2 Final Results

As can be witnessed, in both series of results, the optimal value is achieved through

the use of randomized ADMM, followed by normal ADMM followed by the original

IB method. As expected, there are times when two or even all 3 of the algorithms

result in the same overall objective function however there are many times when

one overpowers the other 2.
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Finally, I would like to offer further insight as to why I have chosen to plot graphs

representing I(U ;Y ) vs I(X;Y ) at all. It might seems like just by plotting L for

different values of β > 1, one might be able to judge the efficiency of randomized

ADMM over all other methods. While that may be true, I am more interested in

the relationship between these two variables.
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FIGURE 5.2. (1) I(U ;Y ) for a fixed I(X;Y ) and (2) L for Example 2

[9] previously discussed how in an optimal setting (if the problem was convex),

the optimal solution of the problem formulated in Eq.(5.3) would satisfy:

∂I(U ;Y )

∂I(X;Y )
=

1

β
(5.24)

This is a direct conclusion from optimizing L by calculating its first derivative and

putting it equal to 0. Using this intuition, I can now compare my solution with the

optimal I am hoping to achieve for every possible solution.

We refer the reader to part (1) of Figures 5.1 and 5.2. Optimally speaking, I

hope to find the part of the figure whose slope is the closest to 1
β

for a given

β. The slopes indicated on the figure represent the closest slopes I could get to

1
β

= 1
2

= 0.5. As can be seen, the least amount of difference between the two
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slopes ∆ 1
β
belongs to randomized ADMM followed by normal ADMM followed by

IB. This offers us another insight as to why randomized ADMM is the optimal

solution to my problem at hand seeing as how it trails the optimal setting the

closest.

5.4.3 Convergence versus Accuracy

As a means of better understanding how Augmented Lagrange Multiplier whether

it be ALM or ADMM improves my chances of a solution, I decided to plot a series

of figures indicating how different quality factors of the problem change based upon

the value of the penalty coefficient (indicated as c during this chapter). The final

results turned out to be quite interesting and well worth a deeper study. Parts (1)

FIGURE 5.3. Convergence Rate vs c for Example 1 in (1) Run 1 (2) Run 2

and (2) of Figure 5.3 demonstrate the convergence rate of the ADMM solution

versus the value of c for Example 1 in 2 runs of 10, 000 repetitions. As can be seen,
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as a general rule, as c grows larger, the convergence rate grows higher and higher

until for some large enough value of c, the method is almost always converging.

Unfortunately, this large value of c is very case-dependent, as under the same

circumstances and with simply different starting points (Step 0 of the algorithm)

it could drastically change.

On the other hand, I have Figure 5.4 which demonstrates the accuracy of the so-

lution I end up with at the end of running my algorithm. Such accuracy is calculated

through the measure ∆ 1
β
which was fully described previously. An accuracy of 1

means ∆ 1
β
→ 0 and an accuracy of almost zero refers to when ∆ 1

β
→ max( 1

β
, 1− 1

β
)

where the 2 extremes of the max refer to when the closest slope to the desired β

is infinity and 1 respectively. The resulting graph will be in the following format.

FIGURE 5.4. Accuracy Rate vs c for Example 1

It’s quite interesting to see that the 2 measures of quality act completely opposite

one another as c increases. In order to explain this phenomenon, I need to remind

the reader of the meaning behind Lc. By allowing penalty coefficients in the form

of quadratic functions, I am simplifying some of the more non-convex elements of

the original objective function. It then follows that if c grows larger, the quadratic
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elements of the new objective function will become more prominent and could

direct the entire objective function into a completely convex nature thus resulting

in a very high convergence rate. However, if I keep increasing c with no regards

to the original objective function, I will no longer be solving an optimization over

L but rather a new objective mainly defined over c and thus while an answer will

almost certainly exist (if c is large enough), it will start to diverge drastically from

the desired optimization problem (a very low accuracy). [13]

Finally, I would like to investigate if an actual lower bound for c could be found

to ensure that the overall objective function will converge. So far, in the 2 exam-

ples provided above, it could be witnessed that such a lower bound might not be

truly calculable (as the threshold changes for the same problem settings with only

different starting points).

[48] discusses a series of sufficient conditions whose satisfaction would result in

the absolute convergence of a non-convex optimization problem. Namely, [48] in-

troduces the concept of Lipschitz continuity over each select set of variable class

and shows how if such a condition is granted, convergence is guaranteed. To do so,

[48] introduces the concept of Lipschitz Differentiability which needs to hold true

over functions of each separate variable set. Next, I will show that unfortunately

such a series of conditions do not hold true in my scenario. All in all, it could be

shown that such sufficient conditions do not hold true over my class of optimiza-

tion problem and thus I could not use the results from [48] to make any further

conclusions.
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Chapter 6
Tradeoff between Disclosable and Private
Latent Information revealed via
Compressed One: an ADMM-Based
Approach
6.1 Introduction

Previously in [49], I introduced mutual information between an input and an out-

put as a measure of calculating the leaked information about the input sequences

by an observer who only has access to the output sequences. More accurately, I dis-

cussed how mutual information is closely related to the number of input sequences

decipherable by the observer assuming a long enough sequence of input has been

produced and shared.

While the concept of leaked information [49] was initially introduced over a

deterministic channel, as I will show, it could be further generalized to account for a

channel of probabilistic nature as well. Using such notion, I could then reintroduce

the original Information Bottleneck problem [9] described over the probabilistic

channel U → X → Y as an optimization problem where the goal is to minimize

I(X;Y ) while keeping I(U ;Y ) greater than a lower bound.

Using the same definition of the problem I can then introduce a new class of

problems modeled as (U1, U2) → X → Y where the goal is to minimize I(X;Y )

while keeping I(U1;Y ) greater than a lower bound and I(U2;Y |U1) less than a

specific upper bound.

In such a model, U1 and U2 represent the disclosable and private aspects of

the input respectively which may or may not be probabilistically intertwined. X

represents a median variable available to the data owner which is the result of

a probabilistic channel P(X|U1,U2) given (U1, U2) and Y represent a variable
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accessible to the observer. The goal of the observer is then to find a probabilistic

channel between X and Y with as much compression which can reveal a lower

bound threshold of information about U1 while keeping the leaked information

about U2 given the revealed information about U1 to an upper bound. The rest of

this chapter will be dedicated to introducing methods of solving such a problem.

We recently became aware of the works done in [15] which closely resemble

my overall formulation of the problem. However, in my work, my definition of

the original problem and how I come to formulate it as such are quite different.

Furthermore, even though information bottleneck alike approach has also been

considered by us as [15], it should be noted this approach serves as a comparison

reference, leading to my novel new algorithm. . Also of note is how [15] did not offer

any numerical results for the method developed and simply sufficed to reiterate

how the problem is non-convex (as was the original IB problem) and that the

results are not necessarily optimal. While it is true that the overall problem is still

non-convex, as I will show, there are methods that could outdo simply running the

Information Bottleneck method again with little fixtures. I will detail such novel

approaches and algorithms whose performances are compared with the IB based

approach using numerical results.

In order to introduce my method, I find it necessary to introduce the concept

of Augmented Lagrange Multiplier (ALM) [12] and later on Alternating Direction

Multiplier Method (ADMM) [13]. Overall, this chapter is a further generalization

of my previous work in [14] where I discussed applying ADMM to the original

information bottleneck problem; however without an additional privacy constraint.

The rest of the chapter is organized as follows. In Section 6.2, I develop and

formulate the problem at hand. In Section 6.3, I utilize the original Information

Bottleneck method to develop an initial solution for the problem. I make note to
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discuss why this method might not be optimal. Then in Section 6.4, I develop 2

ADMM-based algorithms for solving the same problem. I proceed to indicate how

and why each of these methods are well-worth studying. Afterwards, in Section

6.5, I offer many numerical results to showcase the superiority of my 2 methods

over the original IB method and further compare the 2 of them in different regards.

Finally in Section 6.6 I conclude the chapter.

6.2 System Model and Problem Formulation

We assume a probabilistic Markov chain (U1, U2) → X → Y, x ∈ X , y ∈ Y where

the initial probabilities of u1 ∈ U1, u2 ∈ U2 and the elements of the probabilistic

matrix P(X|U1,U2) are given. It should further be noted that all random vari-

ables are assumed to be discrete with finite alphabet set. Then the goal of the

problem would be to find the probabilistic matrix P(Y|X) to attain the tradeoff

between disclosable and Private Latent Information revealed via compressed One.

To further elaborate upon this concept I deem it necessary to first introduce a

measure of leaked information.

6.2.1 Revealed Information

In a memoryless probabilistic channel V → Z where the joint distribution P (V, Z)

is known, there is ambiguity and uncertainty when observing the output sequence

about the specific input sequence over a successive n i.i.d visits. More specifically,

if the input is a sequence of n independent realization of V symbols, the output

sequence would be of form
−→
Vn = [V1, V2, · · · , Vn], out of |V |n possible outcomes.

From an observer’s perspective who can only have access to sequences appearing

in the form of
−→
Zn = [Z1Z2...Zn], the goal is to classify the input sequence V

n into

a number of differential classes in the presence of uncertainty caused by the proba-

bilistic mapping of the channel P(Z|V) =
∏n

i=1PZ|V(Zi|Vi) when n is sufficiently

large. As a result, information about the specific input patterns is leaked to certain
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degree and can be measured using mutual information I(V ;Z) between V and Z,

under a joint distribution P(V,Z). Such mutual information thus measures the

maximum number of bits of meta information about item sequence per channel

use. Therefore, I can have at most 2nI(V ;Z) sequences Vn distinguishable by in-

ferring based on Zn for large n [56]. I thus adopt I(V ;Z) as the privacy metric

conditioned on a particular joint distribution P(V,Z).

Note that I am not considering a communication problem in which both trans-

mitter and receiver share a codebook whose rate is below channel capacity so that

the specific sequence representing a message from the sender can be restored with-

out errors in asymptotic regime [56] . I do however rely on jointly typical sequences

ideas to justify the operational meaning of I(V ;Z) to quantify the information dis-

closed about patterns of long input sequences.

6.2.2 Problem Formulation

Using this measure of leaked information, the problem will then be to find the

optimal P(Y|X) by which

Set of Requirements for P(Y|X)

• I(X;Y ) is minimized.

• I(U1;Y ) is kept higher than a lower bound I1.

• I(U2;Y |U1) is kept lower than an upper bound I2.

where I(X;Y ) represents the compression rate between X and Y ; I(U1;Y ) rep-

resents the revealed information about U1 (public section of input) through Y

and I(U2;Y |U1) represents the revealed information about U2 given the revealed

information about U1 through Y .

As a result, the overall problem could be formulated as:
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minp(y|x)L,

L = I(X;Y )− βI(U1;Y ) + γI(U2;Y |U1),

β, γ > 0 (6.1)

In Sections 6.3 and 6.4 I will detail multiple methods of solving the problem

formulated in Eq. (6.1).

Note: It can be shown that in order for Eq.(6.1) to be more meaningful, I must

have β > 1. If I assume β ≤ 1, then I will have:

L = I(X;Y )− βI(U1;Y ) + γI(U2;Y |U1)

≥ I(X;Y )− I(U1;Y ) + γI(U2;Y |U1) ≥ (1 + γ)I(U2;Y |U1) (6.2)

Then, an optimal value could be found by making Y independent of X, and

(U1, U2). Thus, throughout the rest of this chapter I assume β > 1.

Note: I find it necessary to offer two definitions that are going to repeatedly

appear throughout this chapter; primary variables are the original variables over

whom the optimization problem is carried out. Auxiliary variables on the other

hand refer to variables defined throughout the chapter which are dependent on the

primary variable. For example in Eq.(6.1), the variable p(y|x) is a primary variable

and the variable p(y) is auxiliary seeing as how it could be calculated through a

Bayes rule concerning p(y|x).

6.3 Solving the Problem using the Information Bottleneck method

In this section I will formulate the problem in a mathematical format and find a

solution for it using the information bottleneck method.

To do so, I rewrite the problem in the following Lagrange multiplier format:

minp(y|x)I(X;Y )− βI(U1;Y ) + γI(U2;Y |U1) +
∑
x,y

ξ(x)p(y|x) (6.3)
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where ξ(x) is chosen so as to guarantee the final p(y|x) satisfies the Bayes rule that

p(y) =
∑

x∈X p(x)p(y|x), ∀y ∈ Y .

The information bottleneck method states that a solution can be met if

The Idea behind Information Bottleneck Method

1. The first order derivative of the objective function with respect to the

primary variable is put equal to 0 and the respective primary variable is

found as a function of auxiliary variables.

2. The auxiliary variables are updated through the primary variable follow-

ing the Bayes rule.

3. This process is done iteratively until a convergence criterion is met .

To further investigate how this method works for Eq. (6.1) I first need to find a

series of derivatives in the following manner.

p(u1, u2, y) = p(u1, u2)p(y|u1, u2) =

p(u1, u2)
∑
x

p(y|x)p(x|u1, u2)

→ ∂p(u1, u2, y)

∂p(y|x)
|y=y∗,x=x∗ = p(u1, u2, x

∗) (6.4)

where x∗ and y∗ represent specific values of x ∈ X and y ∈ Y wherein the derivative

of p(u1, u2, y) is calculated. Using the same logic I could deduce that

∂p(u1, y)

∂p(y|x)
|y=y∗,x=x∗ = p(u1, x

∗)

∂p(y)

∂p(y|x)
|y=y∗,x=x∗ = p(x∗) (6.5)
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We can now calculate the first order derivative with respect to P(Y|X):

∂L
∂p(y|x)

|y=y∗,x=x∗ = 0→ p(x∗) log (
p(y∗|x∗)
p(y∗)

)− βp(x∗)×

{−DKL{p(u1|x∗)||p(u1|y∗)}+DKL{p(u1|x∗)||p(u1)}}+ γp(x∗)

{
∑
u1

p(u1|x∗){−DKL{p(u2|u1, x∗)||p(u2|u1, y∗)}+DKL{p(u2|u1, x∗)||p(u2)}}}

+ξ(x∗) = 0 (6.6)

whereDKL[q1(ω)||q2(ω)] represents the KL-divergence between two probability dis-

tributions q1, q2 defined over a variable ω. Thus, I could deduce that a relationship

in the manner of an exponential ratio for p(y∗|x∗)
p(y∗)

could be developed where:

p(y∗|x∗) = p(y∗)exp{Z(x∗, y∗)},

Z(x∗, y∗) = +β{−DKL{p(u1|x∗)||p(u1|y∗)}+

DKL{p(u1|x∗)||p(u1)}}

−γ{
∑
u1

p(u1|x∗){−DKL{p(u2|u1, x∗)||p(u2|u1, y∗)}

+DKL{p(u2|u1, x∗)||p(u2)}}}+
ξ(x∗)

p(x∗)
(6.7)

As can be witnessed in Eq.(6.7), I have managed to find the optimal p(y∗|x∗) as a

function of auxiliary variables p(y∗), p(u1|y∗) and p(u2|u1, y∗). So, I need to offer a

method of applying the Bayes rule over these 3 auxiliary variables. It follows that

p(y∗) =
∑
x∈X

p(x)p(y∗|x),∀y∗ ∈ Y (6.8)

p(u1|y∗) =
p(u1)

∑
x∈X p(x|u1)p(y∗|x)

p(y∗)
(6.9)
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p(u2|u1, y∗) =
p(u1, u2)

∑
x∈X p(x|u1, u2)p(y∗|x)

p(y∗)p(u1|y∗)
(6.10)

We can thus develop the information bottleneck algorithm as gathered in Algorithm

1 where t and t + 1 represent the iteration number or rather the iteration states.

Thus by following Algorithm 1 and choosing enough random initial points for

p(0)(y|x), I am more than likely to find a point of convergence. However; (1) there

is no guarantee that with very few random initial points p(0)(y|x) I will converge

(2) different initial points could lead to different convergence points many or all of

which may not be optimal. (as I will further explain in Subsection 6.3.3)

It is important to note that the steps gathered in Eq.(6.8,6.9,6.10) represent the

imposing of Bayes rule over the probabilistic channel as a whole. Such a solution

was also developed in [15] where the original problem was defined in the format of

fair supervision of data.

Algorithm 1: Optimizing L using IB
Step 0: Choose random initial values for p(0)(y∗|x∗) and use Eq. (6.8), (6.9) and

(6.10) to find an initial value for the auxiliary variables p(0)(y∗), p(0)(u1|y∗) and

p(0)(u2|u1, y∗).

Step 1: Use Eq. (6.7) to find p(t+1)(y∗|x∗) assuming all auxiliary variables are

in their (t)th states.

Step 2: Use Eq. (6.8) to find p(t+1)(y∗) with the latest states of p(y∗|x∗), p(u1|y∗)

and p(u2|u1, y∗).

Step 3: Use Eq. (6.9) to find p(t+1)(u1|y∗) with the latest states of p(y∗|x∗), p(y∗)

and p(u2|u1, y∗).

Step 4: Use Eq. (6.10) to find p(t+1)(u2|u1, y∗) with the latest states of p(y∗|x∗),

p(y∗) and p(u1|y∗).

Step 5: Go to step 2 unless all variables from step t and t+ 1 are equal.
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However, as was explained in [14], imposing such Bayes rules are not necessarily

pushing the overall value of L in a desired direction and might result in the overall

value being non-optimal. I thus choose to first demonstrate these shortcomings and

then follow my steps from [14] where I will explore the inherent structure of the

objective function after introduction of a set of properly defined auxiliary variables

to enable a more efficient and effective ADMM based algorithm than those offered

by Information Bottleneck.

6.3.1 Optimal Probabilistic Channel for a Rate-Distortion Problem

It was proven [10] that the optimal channel mapping X → Y in a rate-distortion

problem can be found in an iterative manner when the input is a given p(x). In

particular, the goal of minimizing I(X;Y ), for a fixed output distribution p(y),

can be achieved by finding the optimal p(y|x) by solving a convex problem. Then,

given a fixed channel mapping p(y|x) the optimal p(y) follows the Bayes rule in

that p(y) =
∑

x p(x)p(y|x).

To show this, I assume two different functions F = Ex,y[log
PY |X(y|x)
QY (y)

] and G =

Ex,y[log
PY |X(y|x)∑

x∈X PX(x)PY |X(y|x) ] .

Note that in the function of F , Q() is a legitimate probability measure on Y ,

but not necessary satisfying Bayes rule. This is because I am attempting to show

some relationship between F and G for a more general setting. It follows that

F − G =
∑
x,y

PX(x)PY |X(y|x) log

∑
x PX(x)PY |X(y|x)

QY (y)

≥
∑
x,y

PX(x)PY |X(y|x){1− QY (y)∑
x PX(x)PY |X

}

= 1− 1 = 0 (6.11)

where in the penultimate line I have used the log-inequality log x ≥ 1− 1
x
with =

only appearing when x = 1. (which in this scenario is equivalent to the condition
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that QY (y) =
∑

x PX(x)PY |X ,∀y ∈ Y). Thus, it could be concluded that given

a fixed channel mapping p(y|x) the optimal p(y) follows the Bayes rule in that

p(y) =
∑

x p(x)p(y|x).

6.3.2 Optimal Probabilistic Channel for a Channel Capacity Problem

Similar to the previous subsection, to solve the dual problem, i.e. channel capacity

problem, under a given channel mapping p(y|x), the goal of maximizing I(X;Y )

for a fixed posterior probability p(x|y), can be achieved by finding the optimal

p(x). Then, given a fixed p(x), the optimal p(x|y) follows the Bayes rule in that

p(x|y) = p(x)p(y|x)∑
x p(x)p(y|x)

[10].

To show this, I assume two different functions F = Ex,y[log
QX|Y (x|y)
PX(x)

] and G =

Ex,y[log

PX (x)PY |X (y|x)∑
x PX (x)PY |X (y|x)

PX(x)
] .

Note that in the function of F , Q() is a legitimate probability measure on X ,

but not necessarily satisfying Bayes rule. This is because I am attempting to show

some relationship between F and G for a more general setting. It follows that

G − F =∑
x,y

PX(x)PY |X(y|x) log
PX(x)PY |X(y|x)

QX|Y (x|y)
∑

x PX(x)PY |X(y|x)

≥ 1− 1 = 0 (6.12)

where in the penultimate line I have used the log-inequality log x ≥ 1− 1
x
with =

only appearing when x = 1. (which in this scenario is equivalent to the condition

that QX|Y (x|y) =
PX(x)PY |X(y|x)∑
x PX(x)PY |X(y|x) ,∀x ∈ X , y ∈ Y). Thus, it could be concluded

that given a fixed channel mapping p(y|x) the optimal p(y) follows the Bayes rule

in that p(x|y) = p(x)p(y|x)∑
x p(x)p(y|x)

.

6.3.3 Results from Optimal Probabilistic Channel Settings

In this subsection, I utilize the results from Subsections 6.3.1,6.3.2 to derive some

results for the implementation of IB on the problem formulated in Eq.(6.1).
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We can see that

I(X;Y ) = Ex,y[log
p(y|x)

p(y)
] = −Ex,y[log

p(y)

p(y|x)
]

I(U1;Y ) = Eu1,y[log
p(y|u1)
p(y)

] = −Ex,y[log
p(y)

p(y|u1)
]

I(U2;Y |U1) = Eu1,u2,y[log
p(y|u1u2)p(u1u2)
p(u1)p(u2)p(y|u1)

]− Eu1,u2 [log
p(u2|u1)
p(u2)

] =

−Eu1,u2,y[log
p(u1)p(u2)p(y|u1)
p(y|u1u2)p(u1u2)

]− Eu1,u2 [log
p(u2|u1)
p(u2)

] (6.13)

As a result, imposing Bayes rule on p(y) based upon p(y|x) (and p(y|u1, u2) by

Markov Chain) will result in the minimization of both I(X;Y ) and I(U1;Y ) which

is not necessarily desirable as I seek to maximize I(U1;Y ). On the other hand,

imposing Bayes rule on p(y|u1) based upon p(y) (and p(y|u1, u2) by Markov Chain)

will result in the maximization of I(U1;Y ) and minimization of I(U2;Y |U1) which

is completely desirable.

Rather, fixing the variables using Bayes rule is not necessarily an optimal option.

6.4 ADMM Solution

The nature of my proposed ADMM solution for the problem formulated in Eq.(6.1)

is essentially to introduce cost functions for any violations of necessary Bayes rule

(as was the case in Subsection 6.3.3) conditioned over the probabilistic channel

(U1, U2)→ X → Y and then run separate gradient descent algorithms over differ-

ent variables assuming all of them are primary variables.

6.4.1 Original ADMM

To develop a setting amenable to ADMM approach to the problem formulated

in Eq.(6.1), I need to first introduce a series of primary and auxiliary variables

over which I then find the set of necessary conditions that need to hold true to

satisfy either the probabilistic nature of the variables or the Bayes rules imposed

upon them. I then develop an ADMM version cost function of L, namely, L′ to be

minimized instead.
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Set of Constraints for Optimizing L′

p(y) =
∑
x

p(x)p(y|x), p(y) =
∑
u1

p(u1)p(y|u1), ∀y ∈ Y

p(y|u1) =
∑
u2

p(u2)p(y|u1, u2), ∀u1 ∈ U1, y ∈ Y

∑
y

p(y) = 1

∑
y

p(y|u1) = 1 ∀u1 ∈ U1

∑
y

p(y|x) = 1, ∀x ∈ X

∑
y

p(y|u1, u2) = 1 ∀u1 ∈ U1, u2 ∈ U2 (6.14)

0 ≤ p(y) ≤ 1 ∀y ∈ Y

0 ≤ p(y|x) ≤ 1 ∀x ∈ X , y ∈ Y

0 ≤ p(y|u1) ≤ 1 ∀u1 ∈ U1

0 ≤ p(y|u1, u2) ≤ 1 ∀u1 ∈ U1, u2 ∈ U2, y ∈ Y (6.15)

To do so, I fix all the primary variables except one and then find the optimal

variable class to minimize the overall L′ repeatedly. In other words, I am taking

the original Information Bottleneck solution (where the only goal was to optimize

over the primary variable class and fix all auxiliary variables through it) and rein-

troduce the auxiliary variables as primary variables themselves and optimize them

independently after making desirable changes to the original objective function L.

To run the original version of ADMM over the problem formulated in Eq.(6.1),

I simply assume 4 primary variable classes p(y), p(y|x), p(y|u1) and p(y|u1, u2).

These variables were chosen because they are the ones that originally came up in
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the formulation of L in Eq.(6.13). Over these classes I find the necessary set of

conditions that need to hold true.

We then develop a new version of L named L′ which is a costly version of L and

attempt to minimize it instead. This costly version uses the concept of Augmented

Lagrange Multipliers (ALM) [12] to include the constraints of an optimization

problem in the objective function by adding a quadratic cost function to the overall

objective function. Thus, any divergence from the assumed constraints will result

in an overall larger objective function.

Algorithm 1 offers the method to solving such problem.

L′ =
∑
x,y

p(y|x) log p(y|x)−
∑
y

p(y) log p(y)

−β{
∑
u1,y

p(y|u1) log p(y|u1)−
∑
y

p(y) log p(y)}

+γ{
∑
u1,u2,y

p(u1, u2)p(y|u1, u2) log p(y|u1, u2)

−
∑
u1,y

p(u1)p(y|u1) log p(y|u1)}

+
7∑
i=1

ECi +
8∑
j=1

ICj (6.16)

where

EC1 =
∑
y

λy{p(y)−
∑
x

p(x)p(y|x)}+
c

2

∑
y

{p(y)−
∑
x

p(x)p(y|x)}2

EC2 =
∑
y

λ′y{p(y)−
∑
u1

p(y)p(y|u1)}+
c

2

∑
y

{p(y)−
∑
u1

p(u1)p(y|u1)}2
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EC3 =
∑
u1,y

λ′′u1,y{p(y|u1)−
∑
u2

p(u2)p(y|u1, u2)}+
c

2

∑
u1,y

{p(y|u1)−
∑
u2

p(u2)p(y|u1, u2)}2

EC4 = λ′′′{
∑
y

p(y)− 1}+
c

2
{
∑
y

p(y)− 1}2

EC5 =
∑
u1

λ′′′′u1{
∑
y

p(y|u1)− 1}+
c

2

∑
u1

{
∑
y

p(y|u1)− 1}2

EC6 =
∑
x

λ′′′′′x {
∑
y

p(y|x)− 1}+
c

2

∑
x

{
∑
y

p(y|x)− 1}2

EC7 = +
∑
u1,u2

λ′′′′′′u1,u2
{
∑
y

p(y|u1, u2)− 1}+
c

2

∑
u1,u2

{
∑
y

p(y|u1, u2)− 1}2 (6.17)

represent the ALM version of the constraints gathered in Eq.(6.14) and

IC1 =
1

2c

∑
y

{max(0, µy − cp(y))2 − µ2
y}

IC2 =
1

2c

∑
x,y

{max(0, µx,y − cp(y|x))2 − µ2
x,y}

IC3 =
1

2c

∑
u1,y

{max(0, µu1,y − cp(y|u1))2 − µ2
u1,y
}

IC4 =
1

2c

∑
u1,u2,y

{max(0, µu1,u2,y − cp(y|u1, u2))2 − µ2
u1,u2,y

}

IC5 =
1

2c

∑
y

{max(0, µ
′

y − c+ cp(y))2 − µ′2y }

IC6 =
1

2c

∑
x,y

{max(0, µ′x,y − c+ cp(x, y))2 − µ′2x,y}

IC7 =
1

2c

∑
u1,y

{max(0, µ′u1,y − c+ cp(y|u1))2 − µ
′2

u1,y
}

IC8 =
1

2c

∑
u1,u2,y

{max(0, µ′y − c+ cp(y|u1, u2))2 − µ
′2

u1,u2,y
} (6.18)

represent the ALM version of the constraints gathered in Eq.(6.15). Furthermore,

λs, µs and c represent the equality constraint coefficients, inequality constraint

coefficients and the cost coefficient respectively.

While running the simulation, I opt to run a randomized version of Algorithm

2 where at every iteration one of the 4! = 24 permutations of steps 1,2,3 and 4
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are chosen and then run in order. I will refer to this version of the algorithm as

Randomized ADMM. (R-ADMM) [61]

Algorithm 1: Minimizing L′ using ADMM

Step 0: Choose random initial values for p(0)(y|x), p(0)(y), p(0)(y|u1), p(0)(y|u1, u2)

and all λ(0)s and µ(0)s.

Step 1: Run Gradient Descent Algorithm to find p(t+1)(y|x) which minimizes

L′ for fixed values of p(t)(y), p(t)(y|u1), p(t)(y|u1, u2) and all λ(t)s and µ(t)s.

Step 2: Run Gradient Descent Algorithm to find p(t+1)(y) which minimizes

L′ for fixed values of p(t+1)(y|x), p(t)(y|u1), p(t)(y|u1, u2) and all λ(t)s and µ(t)s.

Step 3: Run Gradient Descent Algorithm to find p(t+1)(y|u1) which mini-

mizes L′ for fixed values of p(t+1)(y|x), p(t+1)(y), p(t)(y|u1, u2) and all λ(t)s and

µ(t)s.

Step 4: Run Gradient Descent Algorithm to find p(t+1)(y|u1, u2) which mini-

mizes L′ for fixed values of p(t+1)(y|x), p(t+1)(y), p(t+1)(y|u1) and all λ(t)s and

µ(t)s.

Step 5: Update λ(t+1)s and µ(t+1)s.

Step 6: Go to step 2 unless all variables from steps t and t+ 1 are equal.

By this method, I am still imposing some of the Bayes rules I deem necessary

while allowing some room for violations controlled by the cost variable c. As c grows

larger, the set of necessary conditions become more restrictive (imposed) and if c

becomes too small, none of the necessary conditions are assumed important.
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6.4.2 Observant Randomized ADMM

By revisiting Eq.(6.13), it could be seen that the major drawback in utilizing Bayes

rules for an optimal objective function was the fact that the same variables in

different sections of the objective function (different mutual informations) reacted

differently to imposing the Bayes rules over them. I thus find it interesting to see

how the entire process would have worked if the same variables in different mutual

information functions were treated as if they were independent of one another.

We thus decide to break the original L into 3 different parts I(X;Y ), I(U1;Y ) and

I(U2;Y |U1) and optimize each of them using 2 independent sets of variables namely

p(y|x), p1(y) for I(X;Y ); p1(y|u1), p2(y) for I(U1;Y ) and finally p2(y|u1), p(y|u1, u2)

for I(U2;Y |U1). For the time being, I assume that the variables with the same letter

denotation and different indexes represent independent variables and introduce a

cost function to reflect the cost of violation of their equality.

We now seek to see if I can simplify any of the set of constraints using the

nature of each part of L. To do so, I simply look at Eq.(6.13). Assuming that the

same variables in different mutual information functions are independent, it could

be deduced that the optimal value of L can only be achieved when I(X;Y ) and

I(U2;Y |U1) are minimized and I(U1;Y ) is maximized. [10] has already shown that

I(X;Y ) can be minimized when (1) the optimal p(y|x) is found using gradient

descent and (2) p1(y) is forced to follow the Bayes rule imposed by p(y|x). By

simply referring to Eq.(6.13) and noticing the similarity of the function to I(X;Y ),

it could also be deduced that I(U2;Y |U1) can be minimized when (1) the optimal

p(y|u1, u2) is found using gradient descent and (2) p2(y|u1) is forced to follow the

Bayes rule imposed by p(y|u1, u2). Finally, through the same notation I(U1;Y ) is

maximized or rather −I(U1;Y ) is minimized when (1) the optimal p1(y) is found
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using gradient descent and (2) p1(y|u1) is forced to follow the Bayes rule imposed

by p1(y).

Similarly, to solve the dual problem, i.e. channel capacity problem, under a

given channel mapping p(y|x), the goal of maximizing I(X;Y ) for a fixed posterior

probability p(x|y), can be achieved by finding the optimal p(x). Then, given a fixed

p(x), the optimal p(x|y) follows the Bayes rule in that p(x|y) = p(x)p(y|x)∑
x p(x)p(y|x)

.

Using this notion, I can optimize each of the mutual functions separately by

running one gradient descent to find an optimal variable and then fixing the

other variable through the first one. Furthermore, I can cut down on some of

the constraints I need to make certain are satisfied. Assuming the set of vari-

ables (p(y|x), p1(y), p1(y|u1), p2(y), p2(y|u1), p(y|u)), the set of optimal constraints

to impose in Observant ADMM (O-ADMM) can be developed as in Eq.(6.19) and

Eq.(6.20).

Optimal Constraints to Impose in Observant ADMM (O-ADMM)
• For a fixed p(y|x) and I(U1;Y ) and I(U2;Y |U1), the optimal value of

p1(y) follows the Bayes rule and is equal to p1(y) =
∑

x p(x)p(y|x).

• For a fixed p2(y) and I(X;Y ) and I(U2;Y |U1), the optimal value of

p1(y|u1) follows the Bayes rule and is equal to p1(y|u1) = p(u1|y)p2(y)∑
y p(u1|y)p2(y)

.

• For a fixed p(y|u1, u2) and I(U1;Y ) and I(X;Y ), the optimal value of

p2(y|u1) follows the Bayes rule and is p2(y|u1) =
∑

u2
p(u2)p(y|u1, u2).

Set of Constraints for Optimizing L
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p1(y) = p2(y), ∀y ∈ Y

p1(y|u1) = p2(y|u1) ∀u2 ∈ U2, y ∈ Y∑
y

p1(y) = 1

∑
y

p1(y|u1) = 1 ∀u1 ∈ U1

∑
y

p(y|x) = 1 ∀x ∈ X

∑
y

p(y|u1, u2) = 1 ∀u1 ∈ U1, u2 ∈ U2 (6.19)

0 ≤ p1(y) ≤ 1, ∀y ∈ Y

0 ≤ p(y|x) ≤ 1 ∀x ∈ X , y ∈ Y

0 ≤ p1(y|u1) ≤ 1 ∀u1 ∈ U1, y ∈ Y

0 ≤ p(y|u1, u2) ≤ 1 ∀u1 ∈ U1, u2 ∈ U∈, y ∈ Y (6.20)

We can then follow with the new objective function L′′ (which I have once more

developed using Augmented Lagrange Multiplier method) and run the following

algorithm:

L′′ =
∑
x,y

p(y|x) log p(y|x)−
∑
y

p1(y) log p1(y)

−β{
∑
u1,y

p1(y|u1) log p1(y|u1)−
∑
y

p2(y) log p2(y)}

+γ{
∑
u1,u2,y

p(u1, u2)p(y|u1, u2) log p(y|u1, u2)

−
∑
u1,y

p(u1)p2(y|u1) log p2(y|u1)}

+
6∑
i=1

ECi +
8∑
j=1

ICj (6.21)
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where ECs represent the costly representation of the equality constraints gathered

in Eq.(6.19) and are calculated to be

EC1 =
∑
y

λy{p1(y)− p2(y)}+
c

2

∑
y

{p1(y)− p2(y)}2

EC2 =
∑
u1,y

λ
′

u1,y
{p1(y|u1)− p2(y|u1)}+

c

2

∑
u1,y

{p1(y|u1)− p2(y|u1)}2

EC3 = λ′′{
∑
y

p1(y)− 1}+
c

2
{
∑
y

p1(y)− 1}2

EC4 =
∑
u1

λ′′′u1{
∑
y

p1(y|u1)− 1}+
c

2

∑
u1

{
∑
y

p1(y|u1)− 1}2

EC5 =
∑
x

λ′′′′x {
∑
y

p(y|x)− 1}+
c

2

∑
x

{
∑
y

p(y|x)− 1}2

EC6 = +
∑
u1,u2

λ′′′′′u1,u2
{
∑
y

p(y|u1, u2)− 1}+
c

2

∑
u1,u2

{
∑
y

p(y|u1, u2)− 1}2 (6.22)

and ICs represent the costly representation of the inequality constraints gathered

in Eq.(6.20) and are calculated to be

IC1 =
1

2c

∑
y

{max(0, µy − cp1(y))2 − µ2
y}

IC2 =
1

2c

∑
x,y

{max(0, µx,y − cp(y|x))2 − µ2
x,y}

IC3 =
1

2c

∑
u1,y

{max(0, µu1,y − cp1(y|u1))2 − µ2
u1,y
}

IC4 =
1

2c

∑
u1,u2,y

{max(0, µu1,u2,y − cp(y|u1, u2))2 − µ2
u1,u2,y

} (6.23)

Algorithm 3: Minimizing L′′ using ADMM

Step 0: Choose random initial values for p(0)(y|x), p
(0)
1 (y), p

(0)
1 (y|u1), p(0)2 (y) and

p
(0)
2 (y|u1), p(0)(y|u1, u2) and all λ(0)s and µ(0)s.

Step 1: Run Gradient Descent Algorithm to find p(t+1)(y|x) which minimizes

L′′′ for fixed values of p(t)1 (y), p
(t)
1 (y|u1), p(t)2 (y), p

(t)
2 (y|u1), p(t)(y|u1, u2) and all

λ(t)s and µ(t)s. Then impose p(t+1)
1 (y) =

∑
x p(x)p(t+1)(y|x).
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Step 2: Run Gradient Descent Algorithm to find p(t+1)
2 (y) which minimizes L′′′

for fixed values of p(t+1)(y|x), p
(t+1)
1 (y), p

(t)
1 (y|u1), p(t)2 (y|u1), p(t)(y|u1, u2) and all

λ(t)s and µ(t)s. Then impose p(t+1)
1 (y|u1) =

p(t)(u1|y)p(t+1)
2 (y)∑

y p
(t)(u1|y)p(t+1)

2 (y)
.

Step 3: Run Gradient Descent Algorithm to find p(t+1)(y|u1, u2) which mini-

mizes L′′′ for fixed values of p(t+1)(y|x), p
(t+1)
1 (y), p

(t+1)
2 (y), p

(t+1)
1 (y|u1), p(t)2 (y|u1)

and all λ(t)s and µ(t)s. Then impose p(t+1)
2 (y|u1) =

∑
u2
p(u2)p

(t+1)(y|u1, u2)

Step 4: Update λ(t+1)s and µ(t+1)s as done in [12].

Step 5: Go to step 2 unless all variables from steps t and t+ 1 are equal.

IC5 =
1

2c

∑
y

{max(0, µ
′

y − c+ cp1(y))2 − µ′2y }

IC6 =
1

2c

∑
x,y

{max(0, µ′x,y − c+ cp(x, y))2 − µ′2x,y}

IC7 =
1

2c

∑
u1,y

{max(0, µ′u1,y − c+ cp1(y|u1))2 − µ
′2

u1,y
}

IC8 =
1

2c

∑
u1,u2,y

{max(0, µ′y − c+ cp(y|u1, u2))2 − µ
′2

u1,u2,y
} (6.24)

where λs, µs and c represent the equality constraint, inequality constraint and cost

coefficients respectively.

While running the simulation, I opt to run a randomized version of Algorithm 3

where at every iteration one of the 3! = 6 permutations of steps 1,2 and 3 are chosen

and then run in order. Works such as [13] have shown that such randomization will

help achieve better results. I will refer to this version of the algorithm as Observant

Randomized ADMM. (OR-ADMM)

6.5 Numerical Results and Comparison

In this section I offer the numerical results of running any of the 3 methods, namely

Information Bottleneck, Randomized ADMM, Observant Randomized ADMM.
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However to do so, I first need to offer a measure of comparison between these

methods:

6.5.1 Objective Function L

The most straightforward measure of comparison between different methods would

be to compare the original objective function L = I(X;Y )−βI(U1;Y )+γI(U2;Y |U1)

for different values of β and γ. The method offering the lowest objective function

will then be the optimal.

6.5.2 Non-optimality Measure

It should be noted that the overall goal of the original problem was to minimize L

with an optimal selection of p(y|x)s. Thus, if a final value for p(y|x)s were found

(any algorithm had converged), it would be optimal if and only if

dL
dp(y|x)

= 0→

dI(X;Y )

dp(y|x)
− βdI(U1;Y )

dp(y|x)
+ γ

dI(U2;Y |U1)

dp(y|x)
= 0

β
dI(U1;Y )

dI(X;Y )
− γ dI(U2;Y |U1)

dI(X;Y )
− 1 = 0 (6.25)

We can thus introduce a measure of non-optimality which indicates how far the

final solution of an algorithm is from the optimal solution. I choose

W = β
dI(U1;Y )

dI(X;Y )
− γ dI(U2;Y |U1)

dI(X;Y )
− 1 (6.26)

and calculate it for different methods. The method with the closest absolute value

of W to 0 will then be chosen as the optimal.

Seeing as how the original problem is non-convex, just running one iteration of

the algorithm seems barely fair and I thus choose to run many examples of the

algorithm and then make a judgement call over the entire results.

Furthermore, due to the discrete nature of the final values for I(X;Y ), I(U1;Y )

and I(U2;Y |U1), (since they are all realized through runs of algorithms and thus
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not all their values exist) I use linear interpolations to calculate the derivative

required in Eq.(6.26).

6.5.3 Accuracy and Convergence versus cost

Another measure of comparison between these different methods could be that

of their behavior in regards to the value of c. This behavior could be monitored

through two measures; (1) accuracy and (2) convergence.

Accuracy represents the closeness of a solution to the optimal solution and has

been formulated through W in the following manner:

A = exp(−α|W |) (6.27)

where α is a constant chosen so as to make the final values comparable. By this

method, overall accuracy is only equal to 1 when W = 0 and is otherwise less than

1.

Convergence on the other hand represents the frequency of a method converging

to a settling point regardless of how optimal this final stop may be. There is thus

no real formula for this measure and it could only be calculated after running each

specific algorithm many times.

It would be interesting to see how each of these methods change their accuracy

and convergence with a change in the value of c as it seems to play a critical role

in the formation of the objective function.

6.5.4 Simulation Settings

We run a simulation over the channel (U1, U2) → X → Y where I have assumed

that |U1| = |U2| = 256 and |X| = 512 and |Y | = 20. The elements within the

probabilistic channel p(x|u1, u2) are randomly chosen and then normalized to ac-

count for the probabilistic nature of the matrix. Furthermore p(u1) and p(u2) are

randomly chosen and normalized to 1.
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While discussing the non-optimality measure, the cost function is chosen to

be c = 10 and to account for as many scenarios as possible, a mixed range of

β ∈ {1, 2, ..., 20} and γ ∈ {1, 2, ..., 20} is chosen and optimization is run over all

400 possible cases.

While discussing the accuracy and convergence behaviors, it is assumed that

β = γ = 10, α = 5 and that c ∈ {1, ..., 3000}.

6.5.5 Simulation Results

It turns out that the final overall objective function attained by either the R-

ADMM or OR-ADMM algorithm are much less than the objective function devel-

oped by IB as witnessed in Fig. 6.1.

FIGURE 6.1. Objective Function for R-ADMM, OR-ADMM and IB vs β and γ

Furthermore, Fig. 6.2 offers a 3D representation of the measure of non-optimality

versus different values of β and γ. As can be witnessed, the amount of non-

optimality offered by the Information Bottleneck method is much higher than
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those offered by the ADMM based methods thus further proving the superiority

of the ADMM-based method.

FIGURE 6.2. Non-optimality vs β and γ for R-ADMM, OR-ADMM and IB

Finally, I conclude this section by offering Fig. 6.3 which represent the behavior

of the 3 algorithms as far as their accuracy and convergence rate are concerned as

the value of c grows larger.

As can be seen, the accuracy of the 2 ADMM-based methods are quite the

same for different values of c and better than that offered by IB method. What

is more interesting is how as c grows larger, the accuracy seems to deteriorate in

all methods. This is because as c grows larger, the original objective function goes

through a larger change to form na new L, L′ and L′′ respectively. Then however,

minimizing these 3 objective functions is no longer as closely comparable with

minimizing the original objective function L.

Furthermore, it can be seen that as c grows larger, the convergence rate goes up

in all ADMM-based algorithms. The reason for such behavior can once again be
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found in the definition of new objective functions L,L′ and L′′ . As c grows larger,

the quadratic section of these objective functions becomes more eminent and as a

result the overall objective function tends to behave more like a quadratic function

thus resulting in a higher convergence rate.
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FIGURE 6.3. Convergence Rate and Accuracy vs c variable for Algorithms

So far, I have managed to indicate the superiority of ADMM-based methods

over IB. However there is one more measure which I have so far neglected; speed

of convergence. It turns out that while running these two algorithms will result in

almost the same accuracy and convergence rate, the speed of convergence in Al-

gorithm 3 is much higher than that of Algorithm 2. This observation is justifiable

seeing as how in Algorithm 2, every run of gradient descent attempts to solve a

non-convex problem (overall 4 possible gradient descents in every iterations), how-
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ever in Algorithm 3, I have managed to decrease the number of required gradient

descents over non-convex functions to 3, thus reducing the delay in every iteration.

Over a large number of repetitions, this minor change in the number of gradient

descent runs results in an undeniable superiority for Algorithm 3 in comparison

with Algorithm 2.

Thus, overall I could conclude that Algorithm 3 offers the best objective function

with the best rate and speed of convergence in comparison with all other ADMM-

based algorithms and the IB method.

6.6 Conclusions

In this chapter, I revised a well-known machine learning problem where the goal is

to reveal as much information about a segment of the data while keeping another

segment of it, relatively hidden. To do so, I modeled the settings in the format

of a Lagrange multiplier problem. Initially motivated by [9]’s work, I opted to

carry out the IB method over the problem. However, since I had already shown in

[14] that such a method might not be optimal, I chose to develop ADMM-based

algorithms for solving the same problem. 2 different methods were developed and

their respective resulting objective functions were calculated. Then through many

examinations and numerical results, I identified the optimal solution of the 2 and

indicated its many advantages over the previous methods discussed in works such

as [15].
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Chapter 7
Proposed Works: Empirical Data Analysis

Thus far, in both Chapters 5 and 6 I have been concerned about leaked information

assuming a full knowledge of the true distribution between the input and the

median (U and X variables) in the former and between deliverable and private

features and the median ((U1, U2) and X variables) in the latter. However, such

a knowledge of the true distribution might not be feasible in real life applications

where I only have access to a limited set of data and thus can only access an

empirical distribution. I then would like to answer the question "How closely do

the results gained from this empirical data distribution resemble those of an ideally

true data distribution?" Rather, if I only have access to an empirical distribution

of the dataset, will treating it as the true distribution of the dataset be misleading

or could it be justified?

7.1 Recent Works in the Field

A version of this question was recently acknowledged in [16] wherein a problem

quite similar to the original Information Bottleneck was challenged. In a channel

U → X → Y , it is assumed that only empirical knowledge of the probability

distributions P̃U(u) and P̃X|U(x|u) are known, a priori. . In this channel, U and X

represent the private and non-private features of the data which are connected to

one another through the conditional channel PX|U(x|u).

Then a randomized mapping aka "privacy mechanism" PY |X(y|x) is applied to

the non-private features to produce a perturbed version of the original data which

satisfies a series of privacy and utility guarantees over the empirical distributions.

These guarantees usually have to do with some form of information about the
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private and non-private features through the output variable Y and protecting or

revealing these types of information to an adversary.

7.1.1 Real-world Example

As an example [63], assume that a dataset containing the information about 2500

prisoners and whether or not they were offered parole is available. This data sheet

may contain some sensitive features such as the name of the prisoner (U is the

name). There are some other features in this data sheet which may not be neces-

sarily sensitive features but could be related to such sensitive features for example

race, gender or zip code through an empirical conditional channel PX|U(x|u)(X

represents these features). Thus, simply removing the private feature (names) may

not hide the sensitive information since they could still be accurately inferred

through other features. Thus, a randomized mapping PY |X(y|x) is applied to non-

private features to help make such private features less accessible. The output of

this mapping is then protected through a semi-design of an IB problem.

Then, the main question is "How strong do the results of this design for a limited

(and thus empirical) number of samples hold true for a completely new set of data?"

So far, the problem formulation in [16] is quite similar to that of an Information

Bottleneck problem. However, rather than simply designing an optimal privacy

mechanism given the empirical distribution at hand and using mutual information

as a measure of revealed information as was done in Chapters 5 and 6, [16] sought

out to see the required conditions on functions of revealed information for an

empirical distribution to be closely applicable for a true distribution as well.

7.1.2 Results

[16] showed that for a certain family of functions representing leaked information,

it could be shown that the results for the design of a privacy mechanism based

upon limited empirical data work just as well for those based on true data within
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an acceptable bound. These families of functions include α-leakage [64], Arimoto’s

mutual information of order α ∈ (0,∞) [65, 66], the maximal α-leakage [64] and

Sibson’s mutual information of order α ∈ (0,∞) [69].

This was accomplished by (1) rewriting the overall problem formulation using

each of the above functions as measures of leaked information (2) utilizing the

definition of Lipschitz continuity for each of these functions to show that they are

upper bounded and (3) utilizing the definition of Large Distribution Bounds for

distribution estimation.

7.1.3 Future Works

Although the above results may sound like fine findings in my problem scenario

as well, unfortunately [16] specifically showed that mutual information does not

satisfy the Lipschitz continuity condition and thus cannot be used as a measure

of revealed information for real-world problems where I am dealing with empirical

distributions.

As a result, in order to implement my ADMM-based methods into real-world

applications, I will need to start employing one of the above functions of α-leakage

including Arimoto’s mutual information of order α ∈ (0,∞) , the maximal α-

leakage and Sibson’s mutual information of order α ∈ (0,∞) as a measure of

revealed information and rethink my algorithm from there.

In addition, for the problem under the model of Markov Chain (U1, U2)→ X →

Y , I want to retain the capacity of inference using Y about U1, while keeping the

leakage on U2 minimum, i.e. f(U1|X)−f(U1|Y ) should be minimized, while f(U2|Y )

satisfies a lower bound , where the function f could be a metric adopted as in [16].

With training data only, I could face a problem of defining both (U1, U2), and the

conditional p(X|U1, U2), while keeping the marginal of X unchanged, by seeking a

properly defined set of latent variables (U1, U2) under precedent constraints.
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Appendix A: Supplementary Material for
Chapter 3
A.1. Theorem III.1

Proof. For an easier understanding, my proof of the theorem is broken into two

sections:

Sufficient Conditions for F1(Sj):

Starting for F1(Sj), by rewriting Eq. (3.8) I will have:

(αA + αx)f(A+ {x}) + λ(αA + αx) log (αA + αx)

−αAf(A)− λαA log (αA) ≥

(αA + αBA + αx)f(B + {x})

+λ(αA + αBA + αx) log (αA + αBA + αx)

−(αA + αBA)f(B)− λ(αA + αBA) log (αA + αBA) (7.1)

I can then factorize the inequality as

αBA[−f(B + {x}) + f(B)− λ log (αA + αBA + αx)

+λ log (αA + αBA)] + αx[f(A+ {x})

−f(B + {x}) + λ log (αA + αx)− λ log (αA + αBA + αx)]

+αA[f(A+ {x})− f(B + {x})− f(A) + f(B)

+λ log (αA + αx)− λ log (αA + αBA + αx)

−λ log (αA) + λ log (αA + αBA)] ≥ 0 (7.2)
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Using g and q set functions, I can then rewrite the factorization as:

αBA[−g(B + {x}, B) + λ log [
1

1 + αx

αA+αBA

]]

+αx[−g(B + {x}, A+ {x}) + λ log [
1

1 + αBA

αA+αx

]]

+αA[−q(B + {x}, B,A+ {x}, A) + λ log
1 + αBA

αA

1 + αBA

αA+αx

≥ 0 (7.3)

Since the above inequality needs to hold true for all possible sets of A ⊆ B,

x /∈ B, I aim to determine the maximal amount enforced by the above set of

inequalities. The first factorization results in two inequalities: (1) g(C,D) ≤ 0 and

(2) |g(C,D)| ≥ λmax(log (1 + αx

αB
)) for all sets D ⊆ C. To find the maximum of

such a limit, I need to impose the one item with highest probability to {x} and

assume the one lowest probability item to set B. Then the above inequality is

maximized.

The second factorization results in two inequalities: (1) g(C,D) ≤ 0 and (2)

|g(C,D)| ≥ λmax(log (1 + αBA

αA+αx
)) for all sets D ⊆ C. To find the maximum of

such a limit, I need to impose the item with lowest probability to {x} and that

αA = 0 and then have αBA = 1− αx = αB.

Once again, it is important to note that by doing so, I am removing the possibility

of αA = 0 and αx = 0 as a case. In other words, I am assuming that αA+αx = 0 is

not a scenario I need to discuss. I will now demonstrate why such an assumption

is accurate.

When αA + αx = 0, I can rewrite inequality (3.8) in the following format:

0 ≥ αBAf(B)− αBAf(B) = 0 (7.4)

which is always true.

The third factorization could be simplified. The logarithm argument consists

of a nominator greater than denominator thus resulting in the overall logarithm
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argument to be positive. I thus only need to impose that q(C,C1, D,D1) ≤ 0 for

all sets C1 ⊆ C,D1 ⊆ D and D ⊆ C.

It then follows that the probability of each item is sorted in a decreasing manner

as π1, ..., πM , I can write the set of 3 sufficient conditions for submodularity of

set function F1(Sj), j = 1, ..., N as (1) g(C,D) ≤ 0 (2) q(C,C1, D,D1) ≤ 0 (3)

|g(C,D)| ≥ λ log [max(1 + π1
πM
, 1 + 1−πM

πM
)] = λ log ( 1

πM
) for all sets C1 ⊆ C,D1 ⊆

D and D ⊆ C.

Note 1: It is important to note that any maximization is carried out by assuming

that the lower bound cannot go to ∞. However there are times when specific set

allocations could result in denominators being equal to 0. Such set allocations

then need to be addressed separately by rewriting Inequality (3.8) and finding

their specific sufficient conditions.

In this proof, I have two denominators αB and αA + αx. I need to address each

specific condition under which either of these are equal to 0 to find their specific

sufficient conditions.

First, I assume that αB = 0. This in turn means that B = ∅. Furthermore, since

A ⊆ B, I can conclude that αA = αB = 0 and then rewrite inequality (3.8) in the

following format:

αxf({x}) ≥ αxf({x}) (7.5)

which is always true.

Second, I assume that αA + αx = 0; however, this could never occur seeing as

how αx > 0. Thus, the second possibility does not need to be further checked.
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Sufficient Conditions for F2(Sj): I now follow the same method for F2(Sj),

j = 1, ..., N by rewriting Eq. (3.8):

(1− αA − αx)f(S − A− {x})+

λ(1− αA − αx) log (1− αA − αx)− (1− αA)f(S − A)

−λ(1− αA) log (1− αA) ≥

(1− αA − αBA − αx)f(S −B − {x})

+λ(1− αA − αBA − αx) log (1− αA − αBA − αx)

−(1− αA − αBA)f(S −B)−

λ(1− αA − αBA) log (1− αA − αBA) (7.6)

I can then factorize the inequality as

αBA[f(S −B − {x})− f(S −B)

−λ log (1 +
αx

1− αA − αBA − αx
)]

+αx[−f(S − A− {x}) + f(S −B − {x})

−λ log (1 +
αBA

1− αA − αx − αBA
)]

+αA[−f(S − A− {x}) + f(S −B − {x}) + f(S − A)

−f(S −B) + λ log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)]

+1[f(S − A− {x})− f(S −B − {x})− f(S − A)

+f(S −B) + λ log (
1− αA − αx

1− αA
1− αA − αBA

1− αA − αBA − αx
)]

≥ 0 (7.7)
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Using g and q set functions, I can rewrite the factorization as:

αBA[−g(S −B, S −B − {x})

−λ log (1 +
αx

1− αA − αBA − αx
)]

+αx[−g(S − A− {x}, S −B − {x})

−λ log (1 +
αBA

1− αA − αx − αBA
)]

+αA[q(S − A, S − A− {x}, S −B, S −B − {x})

+λ log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)]

+1[−q(S − A, S − A− {x}, S −B, S −B − {x})

+λ log (
1− αA − αx

1− αA
1− αA − αBA

1− αA − αBA − αx
)] ≥ 0 (7.8)

Since the above inequality needs to hold true for all possible sets of A ⊆ B,

x /∈ B, I aim to determine the maximal amount enforced by the above set of

inequalities. The first factorization results in two inequalities: (1) g(C,D) ≤ 0 and

(2) |g(C,D)| ≥ λ log (1 + αx

1−αB−αx
) for all sets D ⊆ C. To find the maximum of

such a limit, I need to impose the one item with highest probability to {x} and

assume that αB is maximal while still less than 1 − αx. This limit is imposed so

that the denominator is not equal to 0.

The second factorization results in two inequalities: (1) g(C,D) ≤ 0 and (2)

|g(C,D)| ≥ λmax(log (1 + αBA

1−αB−αx
)) for all sets D ⊆ C. To find the maximum of

such a limit, I once again need to impose the one item with highest probability to

{x} and assume that αA = 0 and αB is maximal while still less than 1− αx. This

limit is once again imposed so that the denominator is not equal to 0.
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The third and forth factorizations could be simplified. I could write them as

q(S − A, S − A− {x}, S −B, S −B − {x})[−1 + αA]+

λαA log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)

+λ log (
1− αA

1− αA − αBA
1− αA − αx

1− αA − αBA − αx
) ≥ 0 (7.9)

Depending on whether the sum of logarithmic arguments on the LHS is positive

or negative, I can write two inequalities:

(1) λαA log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)

+λ log (
1− αA

1− αA − αBA
1− αA − αx

1− αA − αBA − αx
) ≥ 0→

q(S − A, S − A− {x}, S −B, S −B − {x})[−1 + αA]+

λαA log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)

+λ log (
1− αA

1− αA − αBA
1− αA − αx

1− αA − αBA − αx
) ≥

q(S − A, S − A− {x}, S −B, S −B − {x})[−1 + αA]

+λαA log (
1− αA

1− αA − αBA
)

?

≥ 0 (7.10)

where I have simply summed the two logarithmic arguments. It then turns out

that the logarithmic argument is always positive seeing as how the nominator of

the fraction inside it is greater than the denominator. It thus follows that I merely

need to impose q(C,C1, D,D1) ≤ 0 for all sets C1 ⊆ C,D1 ⊆ D and D ⊆ C to
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help above inequality hold true. A second scenario dictates when:

(1) λαA log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)

+λ log (
1− αA

1− αA − αBA
1− αA − αx

1− αA − αBA − αx
) ≤ 0→

q(S − A, S − A− {x}, S −B, S −B − {x})[−1 + αA]+

λαA log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)

+λ log (
1− αA

1− αA − αBA
1− αA − αx

1− αA − αBA − αx
) ≥

q(S − A, S − A− {x}, S −B, S −B − {x})[−1 + αA]

+λ log (
1− αA

1− αA − αBA
)

?

≥ 0 (7.11)

where I have once again simply summed the two logarithmic arguments. It again

turns out that the logarithmic argument is always positive seeing as how the nomi-

nator of the fraction inside it is greater than the denominator. It once more thus fol-

lows that I merely need to impose q(C,C1, D,D1) ≤ 0 for all sets C1 ⊆ C,D1 ⊆ D

and D ⊆ C to help above inequality hold true.

Note 2: Once again, note that any maximization is carried out by assuming

that the lower bound cannot go to ∞. However there are times when specific set

allocations could result in denominators being equal to 0. Such set allocations

then need to be addressed separately by rewriting Inequality (3.8) and finding

their specific sufficient conditions.

In this proof, I have one denominators 1 − αB − αx appearing twice. I need to

address the specific condition under which this amount is equal to 0. This could

only occur when B = {x}C . In such cases, I can rewrite inequality (3.8) in the
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following format:

(1− αA − αx)f(S − A− {x})+

λ(1− αA − αx) log (1− αA − αx)− (1− αA)f(S − A)

−λ(1− αA) log (1− αA) ≥ −(1− αA − αBA)f(S −B)

−λ(1− αA − αBA) log (1− αA − αBA)→

αBA{−f(S −B)− λ log (1− αA − αBA)}+

αx{−f(S − A− {x})− λ log (1− αA − αBA)}+

αA{−f(S − A− {x}) + f(S − A)− f(S −B)−

λ log (1− αA − αx) + λ log (1− αA)

−λ log (1− αA − αBA)}+ 1{f(S − A− {x})− f(S − A)+

f(S −B) + λ log (1− αA − αx)− λ log (1− αA)

+λ log (1− αA − αBA)} ≥ 0 (7.12)

By adding and removing three factors of f(S −B − {x}), λ log (1− αA − αx) and

λ log (1− αA − αBA) to each of the factorizations above and using the definitions of

g and q functions as previously, I can simplify the above inequality in the following
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format:

αBA{−g(S −B, S −B − {x}) + λ log (1− αA − αx)}+

αx{−g(S − A− {x}, S −B − {x}) + λ log (1− αA − αBA)}

+αA{q(S − A, S −B, S − A− {x}, S −B − {x})+

λ log (1− αA)}+

1{−q(S − A, S −B, S − A− {x}, S −B − {x})}

−λ log (1− αA)}+

{λ log (1− αA − αx) + λ log (1− αA − αBA)}

{−αBA − αx − αA + 1} ≥ 0 (7.13)

Using the fact that αBA + αx + αA = 1 and merging the 3rd and 4th factorizations

together, I will have:

αBA{−g(S −B, S −B − {x}) + λ log (1− αA − αx)}+

αx{−g(S − A− {x}, S −B − {x})+

λ log (1− αA − αBA)}+ (1− αA)

{−q(S − A, S −B, S − A− {x}, S −B − {x})

−λ log (1− αA)} ≥ 0 (7.14)

which would hold true as long as (1) g(C,D) ≤ 0 for all sets C and (2)

|g(C,D)| ≥ λmax(log 1
αx

) and (3) q(C,C1, D,D1) ≤ 0 for all sets C1 ⊆ C,D1 ⊆ D

and D ⊆ C. It could be perceived that this specific set allocation demands a dif-

ferent lower bound for the absolute value of the first order difference of function f

over sets.

Thus 3 sufficient conditions for submodularity of F2(Sj), j = 1, ..., N are devel-

oped: (1) g(C,D) ≤ 0 (2) q(C,C1, D,D1) ≤ 0 (3) |g(C,D)| ≥ λ log ( 1
πM

) for all

sets C1 ⊆ C,D1 ⊆ D and D ⊆ C.
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Finally, the intersection of the two sets of sufficient conditions for submodularity

of F1(Sj) and F2(Sj) gives us the sufficient conditions for submodularity of F (Sj)

which turns out to be the same as either of theirs.

A.2. Lemma III.2

Proof. For the specific case N = 2:

F (A) = αAf(A) + (1− αA)f(S − A) + αA log (αA)

+(1− αA) log (1− αA) (7.15)

In such a case, diminishing return property requires that

(αA + αx)f(A+ {x}) + (1− αA − αx)f(S − A− {x})

+(αA + αx) log (αA + αx)

+(1− αA − αx) log (1− αA − αx)− (αA)f(A)

−(1− αA)f(S − A)− (αA) log (αA)

−(1− αA) log (1− αA) ≥

(αA + αBA + αx)f(B + {x})

+(1− αA − αBA − αx)f(S −B − {x})

+(αA + αBA + αx) log (αA + αBA + αx)

+(1− αA − αBA − αx) log (1− αBA − αA − αx)

−(αB)f(B)− (1− αA − αBA)f(S −B)

−(αA + αBA) log (αA + αBA)

−(1− αA − αBA) log (1− αA − αBA) (7.16)
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I then factorize this inequality in the following manner:

αBA{−f(B + {x}) + f(B) + f(S −B − {x})− f(S −B)

+λ log (
αA + αBA

αA + αBA + αx

1− αA − αBA − αx
1− αA − αBA

)}+

αx{f(A+ {x})− f(B + {x})− f(S − A− {x})

+f(S −B − {x})+

λ log (
αA + αx

αA + αx + αBA

1− αA − αx − αBA
1− αA − αx

)}

+αA{f(A+ {x})− f(B + {x})− f(S − A− {x})

+f(S −B − {x})− f(A) + f(B) + f(S − A)− f(S −B)

+ log (
αA + αx

αA + αx + αBA

1− αA − αx − αBA
1− αA − αx

αA + αBA
αA

1− αA
1− αA − αBA

)}

+{f(S − A− {x})− f(S −B − {x})− f(S − A)

+f(S −B) + λ log (
1− αA − αx

1− αA − αx − αBA
1− αA − αBA

1− αA
)}

≥ 0 (7.17)
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I then use the definitions of set functions g and q to simplify the above inequality:

αBA{−g(B + {x}, B)− g(S −B, S −B − {x})

+λ log (
αA + αBA

αA + αBA + αx

1− αA − αBA − αx
1− αA − αBA

)}+

αx{−g(B + {x}, A+ {x})− g(S − A− {x}, S −B − {x})

+λ log (
αA + αx

αA + αx + αBA

1− αA − αx − αBA
1− αA − αx

)}

+αA{−q(B + {x}, B,A+ {x}, A)

+q(S − A, S − A− {x}, S −B, S −B − {x}) + λ

log (
αA + αx

αA + αx + αBA

1− αA − αx − αBA
1− αA − αx

αA + αBA
αA

1− αA
1− αA − αBA

)}

+{−q(S − A, S − A− {x}, S −B, S −B − {x})

+λ log (
1− αA − αx

1− αA − αx − αBA
1− αA − αBA

1− αA
)}

≥ 0 (7.18)

I aim to find sufficient conditions so that the above inequality can hold true. The

first factorization is the coefficients of αBA ≥ 0. I thus need to ascertain that the

coefficient is also positive. To do so, I impose that

−2g(C,D) + λ log (
αA + αBA

αA + αBA + αx

1− αA − αBA − αx
1− αA − αBA

)}

≥ 0 (7.19)

for all possible sets D ⊆ C. I thus need to impose two sufficient conditions:

(1) g(C,D) ≤ 0,∀C

(2) 2|g(C,D)| ≥

max(|λ log (
αA + αBA

αA + αBA + αx

1− αA − αBA − αx
1− αA − αBA

)}|) (7.20)
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The second factorization is the coefficients of αx ≥ 0. I once again need to ascertain

that the coefficient is also positive. To do so, I impose that

(1) g(C,D) ≤ 0,∀C

(2) 2|g(C,D)| ≥

max(|λ log (
αA + αx

αA + αx + αBA

1− αA − αx − αBA
1− αA − αx

)|) (7.21)

for all sets D ⊆ C. I could see that the RHS of the secondary condition could be

written as:

λmax(log ((1 +
αBA

αA + αx
)(1 +

αBA
1− αA − αx

))) = K (7.22)

It is clear to see that the two fractions could not be maximal at the same time

seeing as how (1) the maximal occurs when denominator of each is close to zero

and (2) their denominators have opposing behavior. It thus turns out that the RHS

as indicated in Eq. (7.22) is limited by:

K < λ log (max(1 +
αBA

αA + αx
)max(1 +

αBA
1− αA − αx

)) (7.23)

The first fraction is maximized when αA = 0, αx = πM and αBA = 1 − πM while

the second fraction can never be as high. It thus follows that:

K < λ log (
1

πM
)2 (7.24)

The 3rd and 4th factorizations could be merged together in the following manner:

[−1 + αA]q(S − A, S − A− {x}, S −B, S −B − {x})− αAq(B + {x}, B,A+ {x}, A)

+λ{αA log (
αA + αx

αA + αx + αBA

1− αA − αx − αBA
1− αA − αx

αA + αBA
αA

1− αA
1− αA − αBA

)

+ log (
1− αA − αx

1− αA − αx − αBA
1− αA − αBA

1− αA
)} ≥ 0 (7.25)
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I can show that:

log (
1− αA − αx

1− αA − αx − αBA
1− αA − αBA

1− αA
) =

log (
1− αBA

1−αA

1− αBA

1−αA−αx

) ≥ 0 (7.26)

I can thus find a lower bound for the LHS of the inequality (7.25):

LHS ≥ [−1 + αA]q(S − A, S − A− {x}, S −B, S −B − {x})

−αAq(B + {x}, B,A+ {x}, A)

+αAλ log (
αA + αx

αA + αx + αBA

αA + αBA
αA

) ≥ 0 (7.27)

Furthermore, I can show that

log (
αA + αx

αA + αx + αBA

αA + αBA
αA

) = log (
1 + αBA

αA

1 + αBA

αA+αx

) ≥ 0 (7.28)

Thus, all I need to impose to guarantee the 3rd and 4th factorizations do not cause

any ambiguities, is q(C,C1, D,D1) ≤ 0 for all sets C1 ⊆ C,D1 ⊆ D and D ⊆ C.

Note 3:: In this case there are two lower bound denominators αA+αBA+αx and

1− αA − αBA. The first denominator cannot be equal to 0 because αx > 0. If the

second denominator is equal to 0, that means that αA = 1−αx ≤ alphaB ≤ 1−αx

which means that A = B thus inequality (3.8) will definitely hold true.
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Appendix B: Supplementary Material for
Chapter 4
B.1. Theorem III. 1

Proof. For an easier understanding, my proof of the theorem is broken into two

sections:

Sufficient Conditions for F1(Sj):

Starting for F1(Sj), by rewriting Eq. (4.15) I will have:

αBA[−g(B + {x}, B) + λ log [
1

1 + αx

αA+αBA

]]

+αx[−g(B + {x}, A+ {x}) + λ log [
1

1 + αBA

αA+αx

]]

+αA[−q(B + {x}, B,A+ {x}, A) + λ log
1 + αBA

αA

1 + αBA

αA+αx

≥ 0 (7.29)

where I have used the definition of functions f and g.

Since the above inequality needs to hold true for all possible sets of A ⊆ B,

x /∈ B, I aim to determine the maximal amount enforced by the above set of

inequalities. The first factorization results in two inequalities: (1) g(C,D) ≤ 0 and

(2) |g(C,D)| ≥ λmax(log (1 + αx

αB
)) for all sets D ⊆ C. To find the maximum of

such a limit, I need to impose the one item with highest probability to {x} and

assume the one lowest probability item to set B. Then the above inequality is

maximized.

The second factorization results in two inequalities: (1) g(C,D) ≤ 0 and (2)

|g(C,D)| ≥ λmax(log (1 + αBA

αA+αx
)) for all sets D ⊆ C. To find the maximum of

such a limit, I need to impose the item with lowest probability to {x} and that

αA = 0 and then have αBA = 1− αx = αB.

The third factorization could be simplified. The logarithm argument consists

of a nominator greater than denominator thus resulting in the overall logarithm
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argument to be positive. I thus only need to impose that q(C,C1, D,D1) ≤ 0 for

all sets C1 ⊆ C,D1 ⊆ D and D ⊆ C.

It then follows that if the probability of each item is sorted in a decreasing

manner as π1, ..., πM , I can write the set of 3 sufficient conditions for submodularity

of set function F1(Sj), j = 1, ..., N as (1) g(C,D) ≤ 0 (2) q(C,C1, D,D1) ≤ 0 (3)

|g(C,D)| ≥ λ log [max(1 + π1
πM
, 1 + 1−πM

πM
)] = λ log ( 1

πM
) for all sets C1 ⊆ C,D1 ⊆

D and D ⊆ C.

Sufficient Conditions for F2(Sj): I now follow the same method for F2(Sj), j =

1, ..., N by rewriting Eq. (4.15):

αBA[−g(S −B, S −B − {x})− λ log (1 +
αx

1− αA − αBA − αx
)]

+αx[−g(S − A− {x}, S −B − {x})− λ log (1 +
αBA

1− αA − αx − αBA
)]

+αA[q(S − A, S − A− {x}, S −B, S −B − {x})

+λ log (
1− αA

1− αA − αx
1− αA − αBA − αx

1− αA − αBA
)]

+1[−q(S − A, S − A− {x}, S −B, S −B − {x})

+λ log (
1− αA − αx

1− αA
1− αA − αBA

1− αA − αBA − αx
)] ≥ 0 (7.30)

where I have used the definition of functions f and g.

Since the above inequality needs to hold true for all possible sets of A ⊆ B,

x /∈ B, I aim to determine the maximal amount enforced by the above set of

inequalities. The first factorization results in two inequalities: (1) g(C,D) ≤ 0 and

(2) |g(C,D)| ≥ λ log (1 + αx

1−αB−αx
) for all sets D ⊆ C. To find the maximum of

such a limit, I need to impose the one item with highest probability to {x} and

assume that αB is maximal while still less than 1 − αx. This limit is imposed so
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that the denominator is not equal to 0. Then the lower bound for g(C,D) will be

equal to λ log (1 + π1
πM

).

The second factorization results in two inequalities: (1) g(C,D) ≤ 0 and (2)

|g(C,D)| ≥ λmax(log (1 + αBA

1−αB−αx
)) for all sets D ⊆ C. To find the maximum of

such a limit, I once again need to impose the one item with highest probability

to {x} and assume that αA = 0 and αB is maximal while still less than 1 − αx.

This limit is once again imposed so that the denominator is not equal to 0. The

secondary lower bound for g(C,D) will be equal to λ log (1 + 1−πM−πM−1

πM
).

The third and forth factorization could be simplified. I could write them as

[−1 + αA]{q(S − A, S − A− {x}, S −B, S −B − {x})

+λ log
1− αA − αx

1− αA
1− αA − αBA

1− αA − αBA − αx
}+

+αAλ log (1) ≥ 0 (7.31)

Furthermore, the logarithmic argument is always positive seeing as how the nomi-

nator of the fraction inside it is greater than the denominator. It once more thus fol-

lows that I merely need to impose q(C,C1, D,D1) ≤ 0 for all sets C1 ⊆ C,D1 ⊆ D

and D ⊆ C to help above inequality hold true.

Thus 3 sufficient conditions for submodularity of F2(Sj), j = 1, ..., N are devel-

oped: (1) g(C,D) ≤ 0 (2) q(C,C1, D,D1) ≤ 0 (3) |g(C,D)| ≥ λ log ( 1
πM

) for all

sets C1 ⊆ C,D1 ⊆ D and D ⊆ C.

Finally, the intersection of the two sets of sufficient conditions for submodularity

of F1(Sj) and F2(Sj) gives us the sufficient conditions for submodularity of F (Sj)

which turns out to be the same as either of theirs.
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