
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2017

Analysis and Optimization of Scientific
Applications through Set and Relation Abstractions
M. Tohid (Rastegar Tohid, Mohammed)
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Tohid (Rastegar Tohid, Mohammed), M., "Analysis and Optimization of Scientific Applications through Set and Relation
Abstractions" (2017). LSU Doctoral Dissertations. 4404.
https://digitalcommons.lsu.edu/gradschool_dissertations/4404

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/4404?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4404&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

ANALYSIS AND OPTIMIZATION OF SCIENTIFIC APPLICATIONS THROUGH
SET AND RELATION ABSTRACTIONS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The School of Electrical Engineering and Computer Science

by
Mohammad Rastegar Tohid

M.Sc., Newcastle University, 2008
B.Sc., Azad University (S. Tehran Campus), 2006

May 2017

Dedication

Dedicated to my parents who have dedicated their lives to their children.

ii

Acknowledgments

I thank my advisor Dr. Ramanujam for valueing independent research and allowing me

to work on topics that geniunely intrigued me while never lettig me go off the rail. His

optimism and words of encouragement always aspired me. It has been a great pleasure to

have known and worked with him.

I would like to thank Dr. Paul Kelly at Imperial College for supporting me during my

visit. I respect his exemplary passion to create an environment for collaboration and

sharing knowledge among peers. I also would like to thank Fabio Luporini for intersting

discussions we had on many topics both in person and over the Skype.

Many thanks to Carlo (Dr. Bertolli at IBM) for introducing me to the research topic which

has inspired the work presented in this dissertation.

I would like to thank Sahar who has never stopped believing in, supporting me and helping

me survive difficult times. I thank Vahid, for I also thank my other colleagues and friends,

Sameer, for providing insights into software development, Ye, for showing interest in my

research and commenting on my work and Zahra, for the

I thank my siblings, Reza and Raana, and their spouses, Mahta and Pascal, for their words

of encouragement and setting great examples for me to follow.

Finally, I thank my parents. Thank you mom for your never ending love and support, and

being my best friend all throught my life. Thank you dad for all your sacrifices and for

teaching me how to think critically.

iii

Contents
DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

CHAPTERS

1 INTRODUCTION . 1

1.1 Challenges . 1

1.1.1 Hardware Architecture . 1

1.1.2 Memory . 4

1.2 Objectives and Outline . 4

2 BACKGROUND . 6

2.1 Binary Relations . 6

2.1.1 Formal Definition . 6

2.1.2 Types of Relations . 7

2.2 Hypergraphs . 8

2.2.1 Definition . 8

2.3 Zoltan Library. 9

2.3.1 Load Balancing . 10

2.3.2 Distributed Directory . 10

2.3.3 Unstructured Communication . 12

3 RELATED WORKS . 15

iv

3.1 Regular Applications . 15

3.1.1 PLUTO . 15

3.1.2 Polly . 17

3.1.3 CHiLL . 17

3.1.4 Halide . 18

3.2 Irregular Applications . 18

3.2.1 FEniCS . 18

3.2.2 Liszt . 20

3.2.3 OP2 . 21

3.2.4 PyOP2 . 23

4 HARMONIOUS DECOMPOSITION OF DATA AND COM-

PUTATION THROUGH THE RELATION ABSTRACTION 25

4.1 Underlying Notions . 25

4.2 Load Balance Objectives . 27

4.2.1 Memory Analysis . 28

4.2.2 Cost-Function . 29

4.3 Data Decomposition . 30

4.3.1 Partitioning Sets vs Data Structures . 30

4.3.2 Data Decomposition for Message Passing Systems 31

4.4 Computation Reorganization . 34

4.4.1 Data and Computation Bloc . 35

4.4.2 Avoiding Data Movement . 36

4.5 Conclusion . 37

5 THE KAASHI PARALLELIZATION FRAMEWORK . 38

5.1 Core Concepts . 39

5.1.1 Kaashi Set (KSet) . 40

v

5.1.2 Kaashi Data (KData) . 41

5.1.3 Kaashi Relation (KRelation) . 41

5.1.4 Class Kaashi . 43

5.2 Kaashi Load Balancer (KLB) . 43

5.3 Kaashi’s Iteration Transformation Engine (KITE) . 44

5.3.1 Kaashi Extended Relation (KER) . 44

5.3.2 Kaashi Parallel Iteration (KPI) . 45

5.4 Experiment. 45

5.5 Conclusion . 46

6 CONCLUSIONS . 48

6.1 Contribution . 48

6.2 Future Work . 49

REFERENCES . 51

VITA . 56

vi

List of Tables
1.1 Examples of processors commonly employed in supercomputers

to illustrate their diversity. 3

vii

List of Figures
1.1 Performance gap between memory and processor. [Pat11] . 4

2.1 An example hypergraph. 8

2.2 Program flow of a Zoltan application. 9

2.3 Zoltan’s load balancing routine. 10

2.4 Zoltan’s distribured directory routines. 11

2.5 Zoltan unstructured communication routines. 13

3.1 FEniCS toolchain- adapted form [Rat14a] . 19

3.2 OP2 architecture. [Rat14c] . 21

3.3 PyOP2 architecture.[Rat14b] . 23

5.1 Schematic overview of the Kaashi. 39

5.2 Class diagram of KSet- the set abstraction within Kaashi. 40

5.3 Kaashi API for defining sets. 41

5.4 KData constructor. 41

5.5 Kaashi API for defining relations. 42

5.6 Class diagram of KRelation- the relation abstraction within Kaashi. 42

5.7 Describing the application’s data space in Kaashi. 43

5.8 Simulation of the airflow around the airplane wing. 44

viii

5.9 KER constructor. 45

5.10 KPI constructor. 45

5.11 Load balance for various number of processes. 46

5.12 Balance distribution of the load among the processes. 46

5.13 Speed up against sequential execution. 46

ix

Abstract

Writing high performance code has steadily become more challenging since the design of

computing systems has moved toward parallel processors in forms of multi and many-core

architectures. This trend has resulted in exceedingly more heterogeneous architectures and

programming models. Moreover, the prevalence of distributed systems, especially in fields

relying on supercomputers, has caused the programming of such diverse environment more

difficulties.

To mitigate such challenges, an assortment of tools and programming models have been

introduced in the past decade or so. Some efforts focused on the characteristics of the code,

such as polyhedral compilers (e.g. Pluto, PPCG, etc.) while others took in consideration

the aspects of the application domain and proposed domain specific languages (DSLs).

DSLs are developed either in the form of a stand-alone language, like Halide for image

processing, or as a part of a general purpose language (e.g., Firedrake- a DSL embedded

in Python for solving PDEs using FEM.) called embedded. All these approaches attempt

to provide the best input to the underlying common programming models like MPI and

OpenMP for distributed and shared memory systems respectively.

This dissertation introduces Kaashi, a high-level run-time system, embedded in C++ lan-

guage, designed to manage memory and execution order of programs with large input data

and complex dependencies. Kaashi provides a uniform front-end to multiple back-ends

focusing on distributed systems.

Kaashi abstractions allows the programmer to define the problem’s data domain as a collec-

tion of sets and relations between pairs of such sets. The aforesaid level of abstraction could

enable series of optimizations which, otherwise, are very expensive to detect or not feasi-

ble at all. Furthermore, Kaashi’s API helps novice programmers to write their code more

structurally without getting involved in details of data management and communication.

x

Chapter 1
Introduction

This chapter reviews the current state of the high-performance computing to demonstrate

the motivations and influences behind the research presented in following chapters. In the

first part, we discuss challenges of today’s heterogeneous HPC systems. Next, an overview

of pertinent ideas and solutions available to tackle such challenges is provided. Finally,

the objectives and contribution of the research conducted for the dissertation in hand is

presented.

1.1 Challenges

1.1.1 Hardware Architecture

Since the turn of the millennium the focus of micro-architecture design has shifted toward

multi- and many-core processors. This trend started in response to power dissipation and

fault tolerance issues arisen from higher clock rates in smaller fabrication scales. Meanwhile,

the number of transistor per unit area has grown according to Moore’s Law which has

enabled the processor architects to pack more resources into a single die. There have been

two major consequences as a result of these developments:

1. deploying new hardwares will no longer automatically translates to faster execution

of the software. Because the information required for parallelism above instruction

level is not available to hardware.

2. HPC systems have progressively become more and more heterogeneous and, therefore,

more difficult to program.

1

The following reviews two primary processor design strategies, namely, multi-core and

many-core systems, and highlights their pros and cons.

• Multi-core Processors

Multi-core architectures prioritize the performance of each core on the chip over the aggre-

gate throughput of the all. Therefore, such processors have a few number of complex cores

tuned to deliver maximum performance for a single task- a task usually consists of series

of operations. To alleviate memory accesses latencies, CPUs allocate a significant portion

of the die to multiple levels of on-chip, hardware-managed, cache. The multi-level cache

design enables the processor to exploit spatial and temporal localities. Multi-core proces-

sors employ many intricate techniques such as pre-fetching and out-of-order execution to

maximize the ILP (instruction level parallelism). Meanwhile, modern processors have at-

tempted to improve the parallel processing capabilities by introducing single instruction,

multiple data (SIMD) extension (i.e., vectorization).

Performance Analyses. Multi-core architectures perform better in the presence of

coarse-grained parallel data. Larger cache sizes and agile hardware-managed caches en-

able the programmer to optimize the code by exploiting spatial and temporal localities.

One can improve spatial locality by storing data consumed by a thread in contiguous mem-

ory locations while larger caches would help boost the temporal locality in such processors.

Moreover, high degree of ILP in the workload leads to high utilization of Arithmetic and

Logic Units (ALUs), hence, better computational performance. Also, it is necessary to

recourse to vector extensions (SIMD instructions) for attaining near peak performance.

• Many-core Processors

As the name suggests, a many-core processor is an assembly of many simple cores which run

in parallel to accommodate the throughput-driven design. Many-core processors usually act

as accelerators where the parallel workload is offloaded. The CPU (a multi-core processor)

often manages the flow of data to and from the accelerators as well as launching kernels on

2

such devices.

Performance Analyses. Since most of the die on many-core processors is dedicated to

processing cores in order to boost the computational throughput of the device, there is not

much room for other resources such as registers and shared memory, i.e., L1 cache. These

resources are shared among the resident threads of each multiprocessor and therefore are

scarce. It is the programmer’s responsibility to meticulously marshal the data between the

shared and on-device memory to maximize the memory bandwidth utilization. Although,

to alleviate the memory latency problem, context switching is managed by the hardware

with no overhead, programmer still needs to ensure that access to on-device memory is

coalesced. Avoiding divergence among the threads of a warp is another essential factor in

increasing the effective computational throughput of the device.

To summarize, The number of cores are considerably lower in multi-processors while the

clock frequency and cache sizes are much higher. On the other hand, beside having many

more cores, many-core architectures provide better memory bandwidth in order to overcome

limitations of the smaller caches and also providing more data for their cores. Table 1.1

nicely captures the heterogeneity of specifications and configurations of four state-of-the-art

processors employed in many of TOP500 supercomputers.

Table 1.1: Examples of processors commonly employed in supercomputers to illustrate
their diversity.

Processor #Cores Freq. Cache L1/L2/L3 Mem. BW Power

(MHz) (MB) (GB/s) (Watts)

Multi-core
Intel Xeon 18 2300 0.576/4.608/45 102 150

IBM Power8 12 2750 0.768/6.144/96 230 250

Many-core
Intel Xeon Phi 61 1238 1.952/31.232/- 351 300

Nvidia K80 2496 560 0.064/1.572/- 480 300

3

1.1.2 Memory

Interestingly enough, despite of all aforementioned difficulties in the advancement of pro-

cessing units, the performance gap between the processor and memory has never been

higher than today (figure 1.1). Imbalance between the computation time and memory

latency has caused the memory bandwidth to become the bottleneck of many scientific

applications. Techniques such as overlapping of the communication and computation, and

pre-fetching have been introduced and implemented to minimize the effective latency of

memory access (the delay between the data request and execution). Intuitively, eliminat-

ing the need to move the data is the ultimate solution to this issue, alas, impossible to

entirely achieve. However, avoiding data movement, whenever possible, is almost always

a favorable optimization that can be adopted in conjunction with any other optimization

technique.

Figure 1.1: Performance gap between memory and processor. [Pat11]

1.2 Objectives and Outline

Work presented in this dissertation researches solutions for two classes of algorithms: (1)

those aimed at optimizing memory management, mainly for distributed systems, and (2)

optimizations geared toward maximizing data reuse and minimizing data movement via a

4

run-time scheduler. These algorithms have been implemented in Kaashi run-time multi-

stage scheduler with an embedded automatic data management system. Kaashi’s API

provides high-level abstractions to enable programmers conveniently define the domain of

interest, usually a grid, through simple interface, and run a single code on range of processor

architecture and configurations.

The rest of the dissertation is organized as follows. Chapter 2 provides the mathematical

foundation as well as an overview of software Kaashi has upon which been built. Chapter 3

Introduces Kaashi and describes its memory management utilities in addition to the details

of the scheduling algorithm used in clusters with NUMA configuration,i.e., inter-node tech-

niques. In Chapter 4 we discuss the intra-core scheduling techniques and elaborate on ben-

efits of hierarchical scheduling techniques used in Kaashi. Chapter 5 provides experimental

results focusing on real world scientific problems through Kaashi. Finally, conclusions and

future works are discussed in Chapter 6.

5

Chapter 2
Background

This chapter begins with a short review of binary relations, the mathematical foundation of

this work, to familiarize the reader with the notations and terminologies used throughout

the dissertation. Subsequently, we introduce the Zoltan library with a focus on functional-

ities which Kaashi relies upon.

2.1 Binary Relations

Augustus De Morgan, the prominent British mathematician, defines relations as follows:

“when two objects, qualities, classes, or attributes, viewed together by the mind,

are seen under some connexion, that connexion is called a relation.”

2.1.1 Formal Definition

In general, a relation could be defined over any number of sets. However, in this work,

we are solely interested in relations defined over two sets, i.e., binary relations. A binary

relation between two sets A and B, denoted by R, is a collection of ordered pairs where

the first element is an element of the set A and the second belongs to B. This collection is

a subset of A×B. Formally:

Definition 1. Binary Relation. A binary relation R between two arbitrary sets X and Y ,

denoted by xRy, is the graph G- a subset of the Cartesian product X × Y . X is called the

departure set and Y is the codomain.

It is worth mentioning that the relation is not commutative, that is:

6

xRy 6=⇒ yRx

This means elements’ order in each pair of G must be respected, because, if X 6= Y , each

of the relations xRy and yRx could hold, independent of the other.

Also, if two relations have the same graph, one cannot conclude that the relations are the

same. As an example, let’s consider G = (1, 3), (1, 4), (2, 3), (2, 4) as a relation graph. We

can define distinct relations R1 and R2, both with G, one from N to Z and the other from

Z to R.

2.1.2 Types of Relations

To function properly, Kaashi relies on certain properties which relations passed to it must

carry. In this section we discuss such properties.

Definition 2. Injective Relation. A relation is injective if for all elements x and z in X,

and y in Y , if a relation is defined between x and y as well as z and y, then x must be

equal to z.

∀x, y ∈ X and y ∈ Y : if xRy and zRy =⇒ y = x

Definition 3. Functional Relation. A relation is functional if for all elements x in X, and

y and z in Y , if a relation is defined between x and y as well as x and z, then y must be

equal to z.

∀x ∈ X and y, z ∈ Y : if xRy and xRz =⇒ x = z

Definition 4. Left-Total Relation. Relation R is left-total if for any element x in X there

exists y in Y such that xRy.

∀x ∈ X, ∃ y ∈ Y 3 xRy

7

Definition 5. Right-Total Relation. Relation R is right-total if for any element y in Y

there exists x in X such that xRy.

∀y ∈ Y, ∃ x ∈ Y 3 xRy

2.2 Hypergraphs

We use hypergraphs to represent sets and relations among them. This section offers a brief

introduction to this concept.

2.2.1 Definition

In mathematics, hypergraph structure is a generalization of the concept of graphs. While

in graphs each edge could only have two adjacent vertices, there is no limit on the number

of neighboring vertices’ of an edge in a hypergraph. Formally, a hypergraph H is a pair

H = (V,N) where, V is the set of elements, i.e., vertices, and N nets, also know as

hyperedges, between such vertices. Nets are collection of non-empty subsets of V. Figure 2.1

illustrates an example of a hypergraph.

Figure 2.1: An example hypergraph.

In the example above, the set of vertices is V = {v0, v1, v2, v3, v4, v5} and N = {n0, n1, n2, n3}

is the hyperedges (nets) set. Where

n0 = {v0, v1, v2}

8

n1 = {v0, v3}

n2 = {v4}

n3 = {v2, v5}

One should note that a heyperedge may only be connected to one vertex, like n2 in the last

example.

2.3 Zoltan Library

The Zoltan library [DBR+09, DBH+02] is a toolkit of combinatorial algorithms. Zoltan

provides a collection of highly optimized functionalities for load balancing and data man-

agement, e.g., distributed data directories, graph partitioning and graph coloring routines.

We have decided to use Zoltan it is a powerful library with no dependency on any other

library other than MPI. Also, Zoltan does not require any particular data structure. In lieu,

Zoltan library employs callback function approach to acquire required data from the appli-

cation. In this section we introduce a number of such utilities which have been employed

by Kaashi.

Figure 2.2 shows a prototypical flow of an application built on top of the Zoltan library.

Figure 2.2: Program flow of a Zoltan application.

9

2.3.1 Load Balancing

Zoltan provides a wide range of partitioning algorithms, both native and third party,

through a uniform interface. Well-established third party partitioning libraries, such as

ParMETIS [Kar11] and SCOTCH [PR96], for graphs, and PaToH [ÇA11], for hypergraphs,

are supported, however, these libraries should be installed independently. Listing 2.3 is the

Zoltan’s routine used for domain decomposition. In this routine, the argument zz is the

pointer to the Zoltan structure invoked to manage the partitioning. Next is an output ar-

gument called changes which identifies whether or not the partitioning has changed by the

invocation of the method. Arguments num gid entries and num lid entries, respectively,

determine the number of entries describing a single global and local ID (These should be

set to maximum value used among all the processes). Upon return, if the process needs to

import objects from other processes, Zoltan sets variables number import and import procs

accordingly and allocates arrays import golbal ids and import local ids with size of the num-

ber of imports and fills them with IDs of import objects. Similarly, the export information

is provided by Zoltan.

1 int Zoltan_LB_Balance (struct Zoltan_Struct ∗zz ,
2 int ∗changes ,
3 int ∗num_gid_entries ,
4 int ∗num_lid_entries ,
5 int ∗num_import ,
6 unsigned ∗import_global_ids ,
7 unsigned ∗import_local_ids ,
8 int ∗∗ import_procs ,
9 int ∗num_export ,

10 unsigned ∗export_global_ids ,
11 unsigned ∗export_local_ids ,
12 int ∗∗ export_procs) ;

Figure 2.3: Zoltan’s load balancing routine.

2.3.2 Distributed Directory

Zoltan’s distributed directory is a distributed hash table with a pointer to the data held in

the directory. A distributed design of this data management utility alleviates the memory

and processing bottlenecks common in centralized designs. An object stored in the table

10

is known by its global identification number (global ID), set by the application. Hashing

provides very fast lookup for the information associated with a global ID in a two stage

process using two hash algorithms. The first algorithm yields the rank of the owner of

the ID. On the next step, a separate hash algorithm retrieves the associated data from

the process’ hash table. More information on Zoltan’s hashing algorithms can be found

in [HP01]

Listing 2.4 reviews some of the Zoltan’s distributed directory routines. Before calling

any other function, the routine Zoltan DD Create must be invoked to create an empty

distributed directory. Subsequently, each object’s identification code(s), namely, global

ID, as well as other optional entries including, but not limited to, the local IDs, i.e., local

indices, and associated data to the object are added to the directory through the invocation

of Zoltan DD Update. In order to access the information already stored in the directory,

one should call Zoltan DD Find which returns the directory information for the list of input

global IDs. Finally, Zoltan DD Destroy. destroys the directory and returns the memory to

the system.

2.3.3 Unstructured Communication

To manage data and also to schedule execution order in parallel, Kaashi performs myriad

of communications across processes. Zoltan’s unstructured communication functionality is

one of the best candidates for conducting data movements as it has a straightforward inter-

face for complicated point-to-point communication patterns. Moreover, the asynchronous

versions of Zoltan Comm Do routine, provided as a part of the communication package,

enables overlapping of the computation and communication.

In this section, we touch on functions used by Kaashi, listed in 2.5 - more information on

this can be, found at [zol]

Similar to other Zoltan utilities, Zoltan Comm Create must first be called before any other

routines in the package. Calling this function results in the allocation of a communication

11

1 int Zoltan_DD_Create (
2 struct Zoltan_DD_Struct ∗
3 ∗dd , // St ruc ture maintains d i r e c t o r y s t a t e and hash t a b l e .
4 MPI_Comm
5 comm , // MPI comm dup l i c a t ed and s tored s p e c i f y i n g d i r e c t o r y proces sor s .
6 int num_gid_entries , // Length (number o f) o f g l o b a l IDs .
7 int num_lid_entries , // Length o f l o c a l IDs− zero .
8 int user_length , // Length (number o f char) o f user de f ined data f i e l d
9 // (op t iona l , may be zero) .

10 int table_length , // Length o f hash t a b l e (0 f o r de f au l t , i . e . , 100 ,000)
11 int debug_level) ; // [0 , 9] .
12
13 int Zoltan_DD_Update (
14 struct Zoltan_DD_Struct ∗
15 ∗dd , // St ruc ture maintains d i r e c t o r y s t a t e and hash t a b l e .
16 unsigned ∗gid , // Input : L i s t o f g l o b a l to update .
17 unsigned ∗lid , // Input : L i s t o f corresponding l o c a l IDs (op t i ona l) .
18 char ∗data , // Input : L i s t o f corresponding user data (op t i ona l) .
19 int ∗part , // Input : L i s t o f corresponding par t s (op t i ona l) .
20 int count) ; // Number o f g l o b a l IDs in update l i s t ;
21
22 int Zoltan_DD_Find (
23 struct Zoltan_DD_Struct
24 ∗dd , // St ruc ture maintains d i r e c t o r y s t a t e and hash t a b l e .
25 unsigned ∗gid , // Input : L i s t o f g l o b a l to update
26 unsigned ∗lid , // Input : L i s t o f corresponding l o c a l IDs (op t i ona l) .
27 char ∗data , // Input : L i s t o f corresponding user data (op t i ona l) .
28 int ∗part , // Input : L i s t o f corresponding par t s (op t i ona l) .
29 int count , // Number o f g l o b a l IDs in update l i s t ;
30 int ∗owner) ; // Corresponding l i s t o f data owners (out) .

Figure 2.4: Zoltan’s distribured directory routines.

plan. In addition to the amount of data being transfered, the communication plan describes

the processes to which data will be sent and / or received.

The Zoltan Comm Do function performs the communication described in the plan returned

by Zoltan Comm Create. Based on the information extracted from the plan, Zoltan’s com-

munication copies data objects to a buffer and transfers data to the destination processors.

Zoltan Comm Do also receives object data from other processors and copies it into the

receive buffer.

For the cases where there are possibilities for overlapped communication and processing,

Zoltan offers POST and WAIT variants of Zoltan Comm Do. In such instances communi-

cation is initiated by Zoltan Comm Do Post; incoming messages are posted and outgoing

messages are sent. Then the application can proceed with the computation. After the

processing is complete, the corresponding Zoltan Comm Do Wait must be invoked to wait

for all incoming messages to complete receiving data. The Post and Wait routines take the

same arguments as Zoltan Comm Do.

12

1 int Zoltan_Comm_Do (
2 struct Zoltan_Comm_Obj
3 ∗plan , // A po in t e r to a communication plan b u i l t by Zoltan Comm Create .
4 int tag , // An MPI message tag .
5 char ∗send_data , // A bu f f e r f i l l e d with o b j e c t data to be sent to o ther
6 // proces sor s .
7 int nbytes , // The s i z e (in by t e s) o f the data f o r one ob j ec t , or the s c a l e
8 // f a c t o r i f the o b j e c t s have v a r i a b l e s i z e s .
9 char ∗recvbuf // Upon return , a b u f f e r f i l l e d with o b j e c t data r ece i v ed from

10 // other proces sor s .
11) ;
12
13 int Zoltan_Comm_Do_Post (
14 struct Zoltan_Comm_Obj
15 ∗plan , // A po in t e r to a communication plan b u i l t by Zoltan Comm Create .
16 int tag , // An MPI message tag .
17 char ∗send_data , // A bu f f e r f i l l e d with o b j e c t data to be sent to o ther
18 // proces sor s .
19 int nbytes , // The s i z e (in by t e s) o f the data f o r one ob j ec t , or the s c a l e
20 // f a c t o r i f the o b j e c t s have v a r i a b l e s i z e s .
21 char ∗recvbuf // Upon return , a b u f f e r f i l l e d with o b j e c t data r ece i v ed from
22 // other proces sor s .
23) ;
24
25 int Zoltan_Comm_Do_Wait (
26 struct Zoltan_Comm_Obj
27 ∗plan , // A po in t e r to a communication plan b u i l t by Zoltan Comm Create .
28 int tag , // An MPI message tag .
29 char ∗send_data , // A bu f f e r f i l l e d with o b j e c t data to be sent to o ther
30 // proces sor s .
31 int nbytes , // The s i z e (in by t e s) o f the data f o r one ob j ec t , or the s c a l e
32 // f a c t o r i f the o b j e c t s have v a r i a b l e s i z e s .
33 char ∗recvbuf // Upon return , a b u f f e r f i l l e d with o b j e c t data r ece i v ed from
34 // other proces sor s .
35) ;
36
37 int Zoltan_Comm_Invert_Map (
38 int ∗lengths_to , // Input array with the number o f va lue s in each o f the
39 // messages to be sent . Note t ha t the ac tua l s i z e o f each
40 // va lue i s not s p e c i f i e d u n t i l the Zoltan Comm Do rout ine
41 // i s invoked .
42 int ∗procs_to , // Input array with the d e s t i na t i on processor f o r each o f the
43 // messages to be sent .
44 int nsends , // Input argument with the number o f messages to be sent .
45 // (Length o f the l e n g t h s t o and proc s t o arrays .)
46 int self_msg , // Input argument i n d i c a t i n g whether a processor has data f o r
47 // i t s e l f (=1) or not (=0) wi th in the p roc s t o and l e n g t h s t o
48 // arrays .
49 int ∗∗
50 lengths_from , // Returned array with l e n g t h s o f messages to be r ece i v ed .
51 int ∗∗procs_from , // Returned array o f proces sor s from which data w i l l be
52 // rece i v ed .
53 int ∗nrecvs , // Returned va lue with number o f messages to be rece i v ed
54 // (l e n g t h s o f l eng th s f rom and procs from arrays) .
55 int my_proc , // The ID of the processor in the comm communicator .
56 int nprocs , // Number o f proces sor s in the comm communicator .
57 int out_of_mem , // Since i t has a ba r r i e r operat ion , t h i s rou t ine i s a
58 // convenient time to t e l l a l l the proces sor s t ha t one o f
59 // them i s out o f memory . This input argument i s 0 i f the
60 // processor i s OK, and 1 i f the processor has f a i l e d in a
61 // mal loc c a l l . A l l the proces sor s w i l l re turn with a code
62 // o f COMMMEMERR i f any o f them i s out o f memory .
63
64 int tag , // A message tag which can be used by t h i s rou t ine .
65 MPI_Comm comm // MPI Communicator f o r the processor numbering in the procs
66 // arrays .
67) ;

Figure 2.5: Zoltan unstructured communication routines.

13

Supplementary to routines that carry the actual communication, Zoltan also provides the

Zoltan Comm Invert Map. This low level communication routine can be used when a

process knows to whom it needs to send data, but not from who- and vice versa. To

accomplish this, each process pass to this routine a set of lengths and destinations for the

messages to be transferred. This routine enables Kaashi to pass information regarding the

size and location of the data being transferred for the purpose of partitioning.

14

Chapter 3
Related Works
This chapter surveys the latest approaches to automatic code optimization. We explore

tools for both regular (software with static control structure and affine memory accesses)

and irregular programs. Some of these are developed as libraries while the others are

Domain-Specific Languages (DSLs). First we study efforts for optimizations of applications

over structured loops under the umbrella of polyhedral model. Subsequently, tools for

boosting performance of codes over unstructured meshes are examined.

3.1 Regular Applications

Many tools [Gri04, LLL01, LCL99, GL96, HNS09] for optimizing applications with static

control flow and affine memory access rely on polyhedral model. The polyhedral model

provides a mathematical abstraction to represent dynamic instances of each statement as a

lattice point within a polytope. To reason the correctness of loop transformations within the

mathematical representation, dependence analysis of the code must also be present. Having

this information, one can apply a collection of transformation, all within the polyhedral

abstraction, to optimize a program.

There have been works employing polyhedral techniques in static and just-in-time (JIT)

compilers as well as DSLs. The following are the widely used tools based on polyhedral

model.

3.1.1 PLUTO

PLUTO [BHRS08] is a directive-based fully automatic source-to-source transformation

framework which simultaneously optimizes regular programs for both parallelism and lo-

cality using polyhedral model. An optimization process is usually accomplished in three

steps:

15

1. Static dependence analysis of the input program [Fea88,Fea91,Pug91].

2. Applying code transformations in the polyhedral abstraction.

3. Generation of the transformed code [GLW98,KPR95,Bas04].

Step 1 is implemented using Clan (Chunky Loop ANalyzer) [BCG+03] to generate polyhe-

dral representation of Static Control Parts (SCoPs) of codes and Candl (Chunky ANalyzer

for Dependences in Loops) [Bas07] for data dependency computations.

In step 2, PLUTO tries to find a transformation (classic transformations in code opti-

mization sense is carried out by a single transformation function in polyhedral model) to

generate coarse-grained parallel code which is communication- and locality-optimized. This

is achieved through minimizing the following cost function:

δe(
−→s ,−→t) = ΦSj

(
−→
t)− ΦSi

(−→s), 〈−→s ,−→t 〉 ∈ ρesi→sj (3.1)

where δ is the cost function, −→s and
−→
t are, respectively, source and target (transformed)

iteration spaces, ΦSi
is a one-dimensional affine transformation of statement Si, ρ is the

dependence polyhedron and esi→sj denotes a dependency edge from Si to Sj.

PipLib (The Parametric Integer Programming) [Fea88] is used as the Integer Linear Pro-

gramming (ILP) solver to find the lexicographic minimal solution to minimize equation 4.1.

To minimize the cost function, PLUTO iteratively finds independent solutions for each

statement. Solving the ILP finds the coefficients of the best mappings for a single state-

ment (this means that the number of independent solutions must at least be as many as

the dimensionality of the polytope associated with each statement).

Finally, ClooG [Bas04] is used to generate the transformed, optimized code. The affine

functions, Φ , are called scattering functions in the specification of Cloog. Cloog can scan

a union of polyhedra specified as scattering functions. Scattering functions are specified

statement-wise, and the legality of scanning the polyhedron with these dimensions in the

particular order should be guaranteed by the specifier – PLUTO in this case. The code

16

generator does not have any information on the dependences and hence, in the absence

of any scattering functions would scan the union of the statement polyhedra in the global

lexicographic order of the original iterators.

3.1.2 Polly

Polly [GZA+11] is an optimization infrastructure for LLVM. Like PLUTO, Polly uses an

abstract polyhedral representation to analyze and optimize loop and memory access pattern

of a program. Currently classic loop transformations, such as, tiling and loop fusion as well

as ones enabling OpenMP parallelism and SIMDization are provided by this framework.

Since Polly is implemented within LLVM, it can support any LLVM frontend and more

importantly generate code for wide range of backends including GPUs.

In contrast to PLUTO, Polly analyze the code for parallelism and tilability over the trans-

formed AST [GVC15].

3.1.3 CHiLL

CHiLL [CCH08] is a compiler framework which provides rich set of composable transforma-

tions including loop permutation (interchange), tiling, unroll-and-jaand others. Developers

of the framework argue that employing fixed transformation strategies as well as perform-

ing transformation in isolation have caused the codes generated by automatic optimizing

compilers to fall short of manually optimized versions.

To optimize a code CHiLL reads a transformation script which describes the intended

transformation sequence with minimal parameters. Afterwards, based on the provided

script, CHiLL transforms the input program and generates high-quality code with min-

imum overhead (even for complex code constructs). Through uniform representation of

iteration spaces and statements, CHiLL is able to compose multiple transformations with-

out generating any intermediate code.

17

3.1.4 Halide

So far frameworks for optimizing regular applications have been discussed in this chapter.

This section overviews Halide [RKBA+13] a DSL, with an optimizing compiler, embedded

in C++. Halide systematically model the tradeoff space between locality, parallelism, and

redundant recomputation in stencil pipelines. It also provides a scheduling representation

that spans this space of choices. The DSL compiler then combines Halide programs and

schedule descriptions to synthesize points anywhere in this space. Finally, the code gener-

ator produces high quality vector code for image processing pipelines, using a machinery

much simpler than the polyhedral model. Halide also includes an auto-tuner that can infer

high performance schedules for complex image processing pipelines using stochastic search.

3.2 Irregular Applications

Unlike code optimizers for regular application most of the effort in the area of optimizing

applications with indirect memory accesses have been through DSLs. In this section three

of successful DSLs as well OP2, an industry-quality library, are studied.

3.2.1 FEniCS

FEniCS [LMW+12] is an open source toolchain targeting automated solution of differential

equations. Figure 3.1 illustrates the core components of FEniCS toolchain and the interac-

tion among these components. Following paragraphs offer more details the building blocks

of FEniCS.

DOLFIN. DOLFIN (Dynamic Object-oriented Library for FINite element computation) [LW10]

is a C++/Python library which implements data structures and algorithms for computa-

tional meshes and finite element assembly. In other word, DOLFIN is a problem solving

environment for models based on partial differential equations. DOLFIN wraps function-

alities of other FEniCS components, as well as a few external softwares, and handles the

communication among all these components.

18

UFL

FIATFFC

UFC

FEniCS
Interface

SWIG

DOLFIN PETSc

Instant JIT Compiler

MPI

CPU (OpenMP)

P
y
th

o
n

C
+

+

Figure 3.1: FEniCS toolchain- adapted form [Rat14a]

UFL. The Unified Form Language [ALn12] is a DSL, embedded in Python programming

language, for describing finite element variational forms and functionals. Through this

front-end weak forms and finite element spaces can be expressed very similar to mathe-

matical notations. UFL acts as the front-end of the FEniCS Form Compiler [LoRW12]

(discussed in next section). Moreover, it analyzes and transforms the expressions unaware

of the mesh and function spaces.

FFC. FEniCS Form Compiler generates efficient C++ code from a high-level mathematical

description (defined at UFL layer) of a finite element variational problem.

UFC. Unified Form-assembly Code [ALM12]is a unified framework for finite element as-

sembly. UFC is the interface between the FFC and DOLFIN. More precisely, the UFC

interface defines the structure and signature of the code that is generated by the form

compilers for DOLFIN.

19

FIAT. FInite element Automatic Tabulator [KIr04] is implemented as Python module

which automatically tabulates finite element basis functions over polynomial function spaces.

Instant. Instant [WMA12] is a Python module for just-in-time compilation C/C++ codes.

Instant is built on top of the SWIG[Bea03] and Distutils which enables dynamic inlining

of DOLFIN or FFC code.

3.2.2 Liszt

Liszt [DJP+11] is a domain-specific language embedded in Scala for optimizing unstructured

mesh applications for wide range of backends including CUDA, pthread and MPI.

Liszt extends the Scala language through abstract data types for mesh elements (nodes,

edges, ...) which are put together in sets. Built-in function used to access to neighboring

elements of mesh are used to discover the mapping among the mesh elements instead of

the explicitly defining such relationships. In other words, since map values do not exist in

Liszt, program analysis techniques are used to compute the stencil of expressions within a

phase.

Code parallelization in Liszt is done at two levels: First, the coarse-grain partitioning for the

MPI backend with automatic determination of halo elements which must be communicated

between MPI processes. Second, the coloring strategy to avoid race conditions in pthreads

and CUDA programming models.

Elegant high-level abstraction of the Liszt enables effortless implementation of mesh based

application such as PDE solvers. Nonetheless, the inconvenience of interfacing Scala with

commonly used programming languages in scientific community like Fortran and C, and

therefore, powerful 3rd party libraries implemented in these language, puts Liszt at a

disadvantage

20

3.2.3 OP2

OP2 [MGR+12] is an active library1 [VG98] to parallelize execution of kernels, in loops

with no intra-dependencies, over unstructured meshes. Through an unified API, OP2

generates optimized code for OpenMP, MPI and CUDA backends by utilizing source-to-

source translation and compilation of transformed code.

Since the main contribution of this dissertation, Kaashi optimization framework, is inspired

by this library, this section continues with detailed expositions of OP2 design, concepts and

programming model.

Figure 3.2: OP2 architecture. [Rat14c]

Design Strategies. OP2 components as well as the control flow of the program within

the library is illustrated in figure 3.2. The application declares OP2 data structures as well

as kernels complying with the library’s restrictions, through the OP2 API. Since OP2 in

an extension of C (and FORTRAN) language, unlike Liszt, exploiting full-fledged features

1Active libraries take an active role in compilation and may generate components, specialize algorithms,
optimize code, configure and tune themselves for a target machine, and describe themselves to tools (such
as profilers and debuggers) in an intelligible way.

21

of these language is fairly straightforward.

The serial reference implementation can be viewed as an unoptimized DSL, with no dynamic

optimization, suitable for fast prototyping of applications over meshes. In this mode, shown

on the left box of the figure 3.2 (within the gray box), OP2 acts as an static library where the

source-to-source translation of the input code is bypassed and user kernels are left intact.

Since no optimization is applied in this mode, the program execution is expected to be

slow. To access optimization capabilities of the OP2 for each target architecture, the code

translator must be utilized to generate high performance code (as shown on right side of

the figure 3.2). The source-to-source translator analyzes each parallel loop invocation and,

based of the characteristics of the loop, generates a code with a parallel execution plan and

platform-specific kernel, a wrapper over the user kernel routine. The execution plan defines

the partitioning of the datasets using a coloring strategy to avoid racing condition. Finally,

for optimal execution, the automatically generated, platform-specific kernel is invoked based

on the plan.

The OP2 Data Model.

The OP2 library is developed on the foundationod three basic abstraction:

Sets Mesh elements, such as nodes, edges, etc., are abstracted as sets. OP2 only keeps

track of the size and name of the sets (op set) and therefore is not able to distinguished

them in any other way.

Data. This data structure (op dat) associates data items to each element of a particular

set. It is important to note that any number of op dat may be associated to a single op set.

Map Maps are access descriptors used to describe the mesh structure. Through maps the

connectivities between elements of two opsets are defined.

Maps also used to determine if the elements of a certain set are accessed directly or indirectly

within a parallel loop. Indirect accesses imply that the elements of the set, in a particular

22

loop, will be accessed through the mappings to elements of neighboring sets. On the other

hand, direct access means the set elements independently accessed.

In summary, OP2 is an abstraction framework, in a form of an active library, for parallel

execution of the solution of applications over unstructured grids. OP2 parallelizes code

for wide range of target architectures by creating optimized execution plan with respect to

data dependencies for indirectly accessed data and reordering the data (AoS vs SoA) based

on the backend characteristics.

3.2.4 PyOP2

PyOP2 [RMM+12] started as a Python implementation of the OP2 library, however, it has

since grown out of the initial goal and is by itself has become a powerful tool for applying

parallel operations over unstructured meshes. PyOP2 shares the same basic abstractions

(sets, maps, etc.) with OP2 and defines the topology of an unstructured grid and parallel

loops over such meshes in a very similar manner.

OpenCL CUDA

Just-in-Time (JIT)

Compilation

PyOpenCL

(JIT)

PyCUDA

(JIT)

CPU OpenMPCPU seq.

MPI

PyOP2 Lib & Runtime Core
colouring, parallel scheduling

COFFEE AST Optimizer

Solvers

PETSc/Cusp

KernelsData
Access

Descriptors

Application code

Figure 3.3: PyOP2 architecture.[Rat14b]

PyOP2 distinguishes itself from OP2 by providing easy to use interface to wildly used linear

23

algebra solvers and custom designed tools, such as COFFEE [LVR+14], for optimized

execution of codes used for solving PDEs using finite element method (FEM). In fact,

PyOP2 is used as the parallel execution layer of Firedrake [RHM+15], an automated system

for solving finite element problems.

24

Chapter 4
Harmonious Decomposition of Data
and Computation through the
Relation Abstraction

Due to the discrete nature of computers, most scientific programs express the domain of

their application in the form of grids. This approach has led many codes to spend most of

their time and resources on applying an operation (i.e., an instance of a kernel), to a small

portion of a domain, usually, construed as a mesh element. One can view this as the local

effect of a global phenomenon, i.e., the kernel, at a given moment in time. This implies

that the reordering of the kernel execution, during a single time-step, is legal. Moreover, in

the absence of reduction operations and dynamic global variables kernel instances can run

in parallel. Such prevailing characteristics of scientific codes are prime motivations behind

the research presented in this dissertaion.

In the first section of this chapter, we introduce the core concepts which serve as the

cornerstones of the research conducted for this dissertation. Next, we elaborate our model

to describe data and computaion spaces and continue by introducing our optimization

approach based on such model.

4.1 Underlying Notions

To afford high-level abstractions, we place reliance on a handful of fundamental concepts.

In this section, we expound these underlying notions.

Set. The founder of the set theory, Georg Cantor, has defined the set as [Can95]:

25

“A set is a gathering together into a whole of definite, distinct objects of our

perception or of our thought—which are called elements of the set.”

The Set in this research represents the same concept. This means a set could denote any

ensemble of entities, for example, a collection of objects (like edges and cells), indices, or

even iteration spaces. A set is defined by three attributes: (1) set name, (2) cardinality, i.e.,

the number of elements in the set and (3) list of items in the set. The latter is represented

as a list of identification numbers which we call global IDs. Keeping track of set elements

by their global IDs, instead of the actual objects, grants the opportunity to work with a

set whilst being oblivious of actual object held in the set. For the cases where the access

to the actual object is necessary we introduce the concept of the data space, discussed later

in section 4.1.

Relation. Associations between a pair of sets are described by relations. This is analogue

to the concept of binary relations in mathematics (see 2.1). The generality of the relation

concept provides the foundation to express any range of mathematical objects such as

matrices, grids, and so forth. Three components required to construct a relation are (1) the

departure set, (2) the codomain set, and (3) the list of associations between each element

of the departure set and a collection of elements in the codomain. One may view the

relation as a characteristic function which indicates whether an element of the departure set

corresponds to a particular element of the codomain. In consideration of keeping generality,

we do not put any restrictions on arity of the relations, meaning, the relation arity does

not have to be constant across all associations.

Data Space. A data space is a one-to-one relation between set’s objects and their global

IDs- one can view the global IDs as the indices of elements in the set. Keeping the set and

data as two separate entities allows us to perform the data decomposition analyses with no

knowledge on the actual data associated with the set.

We treat the data object as a map (in programming languages terms) where the global

26

IDs are keys and application’s data objects are values of the map. In addition to this

information, we also collect meta-data on some data qualities such as its type. These

information are used for both automatic memory allocations, and the proper invocation

of kernels by matching the types. As soon as the application data is attached to a data

object, Kaashi takes over the management of the data for all purposes including storage,

communication, and layout.

Computation Space. We define the computation space as a collection of relations between

data sets and iteration sets. The computation space relates a series of kernels to a collection

of data sets. To increase the accuracy of our data dependency analyses, in addition to

relations between the iteration and data spaces, we also track data access modes. We

recognize four modes of access: (1) only read, (2) just write, (3) read and then write, causing

WAR dependency, or (4) write and then read (i.e., RAW). Furthermore, we distinctly

recognize reduction, albeit a RAW dependency. Reductions happen when an object is read

and written in one statement. A dependency imposed by a reduction prevents some data

locality optimizations such as interleaving. We elaborate on such optimizations later in

this chapter in section 4.4.

4.2 Load Balance Objectives

Orderly distribution of data across the resources is one of the biggest challenges of parallel

programming. The ultimate goal of the domain decomposition is to achieve minimum

execution time by efficiently dividing data among resources. There are two principals that

are usually considered for optimal decomposition of the data domain:

1. Even distribution of workload.

2. Minimum communication between resources.

Unfortunately, there is no single algorithm capable of optimally partitioning all classes

of applications for both these objectives. Applications like molecular dynamics require

27

partitioners to preserve geometric locality of the data, while others, like FEM, benefit

more from exploiting data interdependencies. Usually, applications with dynamic structure

(e.g., adaptive meshes) are better-off with faster partitioning algorithms (at the expense of

lower quality). On the other hand, codes with static domains perform better utilizing more

expensive approaches. For example, partitioning algorithms based on hypergraphs increase

the computation cost in early execution stages to, later, minimize the time spent on the

remaining, iterative, parts of the application. The load balance approach introduced here

is tuned to work best with partitionings based on hypergraphs since the primary targets of

the our research are parallel applications with static domains. In the rest of this section,

we elaborate on the data modeling of our approach based on the notions introduced in the

last section. We also define the cost-function to be minimize for optimal decomposition of

data.

4.2.1 Memory Analysis

Once the data and computation spaces are defined in terms of sets and relations, we can

adapt existing partitioning algorithms, including graphs and hypergraphs, to partition the

data space. In this work, we model relations as hypergraphs since our cost-function is

based on the communication cost and hypergraphs best represent such models. We define

the relation Ri between a pair of sets as the hypergraph Hi:

Hi = Ri(Di, Ci) (4.1)

where Di and Ci are, respectively, departure (computation or iteration), and codomain

(data) sets. Therefore, we can describe all the N relations of an application as:

H =
N−1⋃
i=0

Ri(Di, Ci) (4.2)

28

subsequently, the memory requirement of an application can be written as:

M =
Nr−1∑
i=0

MRi
+

Ns−1∑
j=0

MSj
(4.3)

where MR and MS are, respectively, memory requirements of relations and sets, while Nr

andNs correspond to the number of such relations and sets in the application. The objective

is to maximize the load balance among the P processes while maintaining minimum number

of communications for the computation.

4.2.2 Cost-Function

Once we formulated the memory requirements, we need to define the cost-function of our

parallel partitioning algorithm. The objective is to distribute the data across resources

with minimum load imbalance, and communication among processes.

Although it is more common to model the partitioning problem in terms of graphs we have

decided to work with hypergraphs for two reasons:

1. hypergraphs model the communication more accurately.

2. hypergraphs allow modeling of non-symmetric dependencies among departure sets.

We should note that such benefits come at the cost of a more computationally expensive

algorithm. However, the parallel implementation of our data decomposition approach and,

also, the speed-up gained in iterative fragments of the application will compensate the

overheads endured for partitioning.

Analogues to Williams’ definition of the partitioning problem in [Wil91], we define the load

balancing problem as a hypergraph-coloring problem: given a finite number of elements

(vertices) and relation between them (nets), color (associate) them with K colors (pro-

cesses), to minimize a cost-function F for a given coloring. By defining F as a minimum-cut

29

problem, we can write:

F (N,P) =

|E|−1∑
i=0

(λi(N,P)− 1) (4.4)

where N is the set of nets of the hypergraph, P is the particular coloring we are evaluating

and λi(N,P) is the number of partitions (colors) spanned by the ith net in the partitioning

P . By adding the constraint λi(N,P) ≤ K we get the (K-1)-cut metric which can accurately

reflect the cost of the communications [DBH+06]– We assume all the nodes in the system

have similar throughputs for a given task.

4.3 Data Decomposition

Modeling the application, at the abstract level of sets and relations, allows us to reason

with the minimal information on characteristics of the data objects. Additionally, sets and

relations, as defined in this dissertation, imply that:

1. the order of applying kernels to the set elements does not affect the final result.

2. the sets and relations are static.

Taking advantage of these relaxed constraints, our data decomposition approach targets to

optimize temporal and spatial localities, although in two separate stages. We target spatial

locality at inter-node level —distributed memory— and temporal locality at intra-node —

shared memory— layers. Following sections expound on how we achieve these objectives.

4.3.1 Partitioning Sets vs Data Structures

Considering the memory and processing performance gap in addition to the added cost of

the communication network, leads us to, when possible, favor paying penalty in terms of

computation in lieu of the communication. In other words, we aim to divide the workload

equally among the resources and avoid the communication when possible. In other words,

the priority in our data and computation reorganization approach is the minimization of

30

the communication rather than the imbalance.

However, one should differentiate the partitioning of the sets and the data structures. The

former only considers the number of memory receptacles required for a space described in

the framework of sets and relations while the latter requires the actual size of the data

memory space. The identical memory requirements of elements within a particular set

allows our load balancing technique to minimize the cost function oblivious of the actual

physical memory requirements of data objects. In fact, it is only the executer which needs

to know the actual physical memory requirements.

4.3.2 Data Decomposition for Message Passing Systems

We defining the data space as the union of all data sets (Please note that D notation refers

to data not departure):

Sdata = D1 ∪D2 . . . ∪Dn (4.5)

In a K-way partitioning, the goal of our data decomposition is to divide each of the data

sets into K subsets

Di = s1 ∪ s2 . . . ∪ sK , where ∀i, j if i 6= j then si ∩ sj = Ø (4.6)

where each subset has the same cardinality , i.e., number of members:

|s1| = |s2| . . . = |sK | (4.7)

Recalling the memory requirements of an application from equation 4.3:

M =
∑Nr−1

i=0 MRi
+
∑Ns−1

j=0 MSj

and recognizing the uniformity of nodes’ throughputs, we can calculate the optimal load

31

for each node in a K-way partitioning:

M = (
Nr−1∑
i=0

MRi
+

Ns−1∑
j=0

MSj
)/K

= (
Nr−1∑
i=0

MRi
)/K + (

Ns−1∑
j=0

MSj
)/K

(4.8)

The above optimal load balance may not be achievable especially as we defined the objective

of cost-function (equations 4.4) to be minimum communications. Also, such cost-function

only considers the communication cost a single relation. One solution to over come the

later is to impose the cost-function constraints to each individual relation, but there are

two caveats with this approach:

1. the parallel hypergraph partitioning algorithm is expensive.

2. the partitioning of each relation must be done independent of the others, even though

they may have shared sets.

In response to such challenges, we define one relation as the seed and impose the cost

function on it. Once the codomain of the seed relation is partitioned, we color the remaining

sets based on their adjacency, directly or indirectly, to the seed set, hence we will be able

to:

1. minimize the number of required, expensive, hypergraph partitionings.

2. take the data dependency between sets of various relations into the consideration.

To partition the departure set of the relation R, we define the hypergraph H = R(D,C),

and impose cost-function F to partition the codomain set C:

F (N,P) =
∑|E|−1

i=0 (λi(N,P)− 1)

32

As soon as the seed set, i.e., the codomain of the seed relation, is decomposed, we can

also partition the departure set based on the codomain following the algorithm 1. First we

lookup the partitions containing each element of the codomain. Then, for each element of

the departure set, d we lookup the partition rank of members of the codomain which are

related to d and assign d to the minimum rank.

Algorithm 1: Partition the departure set based on the codomain partitioning.

Input : Departure set D; codomain set C; relation R; partition hash table
HTcodomain

1 Function PartitionDeparture (D,C,R,HT)
2 for c ∈ C do
3 pins owner[c] = HTcodomain[c]
4 end
5 for d ∈ D do
6 HTdeparture[d] = min(pins owner[a]), ∀ a ∈ C adjacent to d.
7 end

Output: HTdeparture

We may encounter two scenarios once the seed relation is partitioned:

1. there are sets which are not reachable from either of the seed relation’s set.

2. all the sets within the data space are, directly or indirectly, related to the two sets of

the seed relation.

The first case implies there are data sets that do not have any dependency to remaining

sets of the data sets. Therefore, their decomposition does not affect the rest of the space as

long as they are also partitioned evenly among the resources. Hence, we can use the same

approach as before to partition them.

For the second scenario, suppose set x is partitioned and is related to an unpartitioned set

u through R. In this case, s could be the departure or codomain of R. If it is the codomain

set, we can apply algorithm 1 to partition u. We follow a similar approach for the opposite

case, as detailed in algorithm 2.

33

Algorithm 2: Partition the codomain set based on the departure partitioning.

Input : Departure set D; codomain set C; relation R; partition hash table
HTdeparture

1 Function PartitionCodomain (D,C,R,HT)
2 for d ∈ D do
3 for p ∈ Pins[d] do
4 HTcodomain[p] = min(HTcodomain[p], HTdeparture[d]
5 end

6 end

Output: HTcodomain

To partition a codomain set based on the departure set, each member of the codomain is

assigned to the same partition as the net it is belonged to and has the minimum partition

rank.

4.4 Computation Reorganization

Since the parallel processing, both in micro and macro scales, has emerged to be the

dominant design, throughput has become the primary criterion of software optimizations.

The maximum theoretical throughput of a particular system is only gained if:

1. there are enough chunks of data to keep all the processors active at all time.

2. parallel execution of such chunks (at least the same number of chunks as the number

of processors at any point in time) is legal.

3. the distance between the processor and the data it operates on is zero.

Considering the performance gap between the memory and processors, and also sequential

nature of many applications (or at least section of it) make it impossible to attain the

ideal throughput. However, optimization for such prerequisites puts us on the right path

to achieve higher effective throughput. The data partitioning approach discussed in the

last section 4.3 is the backbone of our solution for management of the data chunks. The

data decomposition distributes chunks of data almost equally among the resources.

34

Once the data space is evenly decomposed among the resources, it is time to reorganize the

computation with the goal of minimizing execution time by minimizing the distance be-

tween the computation and the corresponding data. We pursue this strategy by improving

data locality in two ways:

1. Temporally. Once a data is available in the processor, do all the possible computa-

tions on it.

2. Spatially. Keep the data to be processed as close as possible to the resource which

will access it.

The rest of this section expounds our strategies for such optimizations.

4.4.1 Data and Computation Bloc

So far, we have profited from the relation abstraction for the data decomposition. In this

section, we study strategies developed to benefit from such abstraction to schedule the

computation.

Our goal is to form a bloc of data and computation with the purpose of eliminating data

movements whenever possible. For this we define both the data and computation spaces

(we call the combination of the two the application domain) in terms of sets, describe an

association between a pair of them in terms of relations. Meanwhile, as discussed in 4.1,

we also collect information on data qualities and access modes. The resulting framework

enables us to systematically examine dependencies and efficiently arrange the data and

computation together.

Similar to data decomposition, the computation set is broken down into K subsets. Our

aim is to find the optimal relation between each subset of data and computation which

ensures lowest cost of communication.

Since the associations between computations and their corresponding data are modeled

based on relations, algorithm 1 can readily be used to partition the computations. In this

35

approach, the computation space is represented as the departure set and the data space

serves as the codomain of the relation.

In short, we divide the data and computation domain, and consequently the relation be-

tween the two, into a series of subsets. Each of these subsets could be viewed as a tile, in

compiler terms, and the overall decomposition as the interleaving of the relations.

4.4.2 Avoiding Data Movement

Hitherto we have been able to evenly partition the application domain among the resources

and minimize the distance between computation and the data. In other words, we have

improved the spatial and temporal locality for a single iteration. Nevertheless, most of the

scientific applications involve iterations over the same domain, either till convergence or for

a fix number of iterations. In such cases, at the end of each iteration, data dependencies

across partitions force some communication on boundaries of partitions. In this section we

introduce an approach which enables us to identify dependencies that could be respected

without the communication. A dependency is not carried by the outer iteration if:

1. it is first written into at the beginning of the iteration.

2. it is only read throughout the iteration.

If a data is not owned by a process but it is consumed by it, a copy of the data is transferred

to such process before the first iteration begins. Now, if the first operation on the data is a

write, this means that the process will have access to the latest version of the data for the

following iterations and there is no need for communication in such cases. Also, if a data

object is only read within the application domain, once a data is provided to a resource, it

is guaranteed that the data is up to date for all iteration. Hence, communication for such

objects can also be avoided. Collecting the access mode information in addition to the

relation between the data and computation, enables us to straightforwardly recognize data

sets that do not carry dependencies across the iterations. We will avoid communication for

such data sets.

36

4.5 Conclusion

In this chapter we introduced a high-level framework based on the set and relation ab-

stractions to efficiently describe the application domain. This model is accompanied by a

cost-function which accurately models the data movement cost. Also, we introduced a new

loop interleaving technique for for harmonious decomposition of data and computation to

improve spatial and temporal locality within sequence of loops. Finally, we discussed how

our introduced abstraction for describing the relation between computation and data can

be exploited to help us avoid unnecessary communication.

37

Chapter 5
The Kaashi Parallelization
Framework

Many numerical algorithms and scientific computations such as particle simulations, and

FEMs can be viewed as the independent application of kernels on local elements of an

unstructured grid. Despite their parallel nature, the inherited indirect memory accesses

in such applications makes them difficult to parallelize and optimize during the compila-

tion. Many [SGO12, ATD04, MSS+88], pioneered by [SMC91], have proposed a run-time

system based on the inspector/executor strategy. At run-time, the inspector traverses the

application domain and extracts access pattern information to plan an optimized compu-

tation scheme. However, inferring data and computation dependencies, especially in the

absence of user directives, is costly and not always feasible in practice. In this chapter, we

introduce Kaashi, a run-time framework based on the relation abstraction implemented in

C++. Kaashi is designed to facilitate the describing of the application domain and entailed

dependencies, and to automatically handle the cumbersome tasks of memory management

and data movement (communication) across parallel resources.

Kaashi primarily targets irregular applications (those with indirect memory accesses, usu-

ally over unstructured meshes). The user friendly interface of the Kaashi enables the

developers to describe the domain of their application in terms of a collection of sets and

series of relations among them. On the other hand, the relational model built by Kaashi’s

translator, provides a robost yet easy to use framework to interpret dependencies and

optimize execution order.

38

MPI

Kaashi API

Kaashi Iteration Tranformation Engine (KITE)

Executer

Application code

Kaashi Load-Balancer (KLB)

Z
o

lta
n

Figure 5.1: Schematic overview of the Kaashi.

Figure 5.1 shows the modular view of the Kaashi library. As illustrated in this diagram,

conforming with our streamline design, Kaashi solely depends on Zoltan and no other third

party library. The rest of this chapter is dedicated to explain designs of the building blocks

of the Kaashi and exhibit its capabilities.

5.1 Core Concepts

The design of the Kaashi API allows the programmer to describe sets and relations ab-

stractly. KDT translates such descriptions into a distributed relational model and allocates

the objects. The application domain’s data and computation (iteration) spaces are rep-

resented as sets. Meanwhile, there are two separate classes to represent relations: (1)

KRelation to describe a relation between a pair of data sets, and (2) KER to define a

relation between a single computation set and one or more data sets. KER also records

memory access modes. Distinguishing the two types of relations enables more complex

39

optimizations, like such as loop interleaving, discussed later in this chapter. The rest of

this section provides implementation details of the set and relations concepts.

5.1.1 Kaashi Set (KSet)

The set abstraction is implemented as the class KSet. Sets are abstract representations

of both data and iteration (computation) spaces. The KSet diagram 5.2 illustrates how

Kaashi’s design closely mimics the set abstraction in the mathematical term. Besides the

standard set functionalities, we have implemented the MakeHash member function which

creates a distributed directory of set element locations. The globally accessible distributed

directory is in fact a distributed hash table with the objects’ global IDs as the keys.

Figure 5.2: Class diagram of KSet- the set abstraction within Kaashi.

Sets, as shown in figure 5.3, are defined by their name (which also acts as the identifier) and

the cardinilaity, i.e., the global size of the set. Since sets are distributed objects, Kaashi

also stores the local size of the set (the part of the set within a particular process). Kaashi

40

numbers the set elements, meaning, assign global IDs, sequentially starting from zero.

However, if the application provides the global IDs, Kaashi follows the user’s numbering.

Please note that at this point we do not distinguish between the data and computation

sets since the KSet abstracts away the type of its elements.

1 KSet (std : : string set_name ,
2 int set_cardinality ,
3 int set_size) ;
4
5 KSet (std : : string set_name ,
6 int set_cardinality ,
7 std : : vector<unsigned> gids) ;

Figure 5.3: Kaashi API for defining sets.

5.1.2 Kaashi Data (KData)

KData is the encapsulation of the user data within the Kaashi framework. KData associates

the actual data object values to their corresponding index system defined as KSets. Once

a KData is defined, Kaashi takes over the management of its data objects, in other words,

KData abstractly represents the distributed array which holds data values. Encapsulating

the user data in KData and also separating the actual values from their indices allows

Kaashi’s load balancer ?? to efficiently partition and manage the data objects among all

participating processes for optimized distributed parallel computations.

1 KData (KSet &data_set ,
2 KType data_type ,
3 void ∗dat) ;

Figure 5.4: KData constructor.

5.1.3 Kaashi Relation (KRelation)

A relation between two sets, where both represent data, is defined through the KRelation

(figure 5.5) by determining the departure and codomain sets as well as the relation name

and the associativity list between the sets.

The associativity is represented as an adjacency matrix between the codomain and de-

41

parture sets. Considering the sparse nature of the relations, the adjacency (associativity)

information of the relations are implemented as sparse matrices- represented in Compressed

Sparse Row (CSR) format. We choose to work with sparse matrices as they guarantee min-

imal memory footprint and, also, comply by our load balancing algorithm ??.

1 KRelation (std : : string relation_name ,
2 KSet ∗relation_departure ,
3 KSet ∗relation_codomain ,
4 size_t relation_size ,
5 std : : vector<unsigned> ∗relation_data ,
6 std : : vector<int> ∗relation_offset) ;

Figure 5.5: Kaashi API for defining relations.

The actual values of the relations, i.e., the sparse matrix, just like sets, are distributed

across the processes. The keys of a relation’s hash table is the global ID’s of its departure

set. Figure 5.6 shows the class diagram of the KRelation.

Figure 5.5 shows the signature of the KRelation constructor. The relation data and the

relation offset are pointers to vectors which keep track of the segment of the adjacency

matrix that is stored within the process- note the relation size is the local size of the

relation.

Figure 5.6: Class diagram of KRelation- the relation abstraction within Kaashi.

42

5.1.4 Class Kaashi

The class Kaashi acts as a wrapper over all the other Kaashi’s functionalities. Kaashi acts

as a glue which manages the interaction between different components of the framework.

Each functionality of the Kaashi framework has a corresponding data structure which

maintains all the responsibilities for one instance it. Each class is defined in a header file

and encapsulates a Kaashi data structure and the functions that operate on that structure.

The Kaashi class allows the user to access all these functionalities through one streamlined

class with minimal efforts. Figure 5.7 demostrates how one can define the data space with

the Kaashi’s framework.

1 Kaashi (MPI_Comm mpi_communicator) ;
2
3 void Kaashi : : AddSeedRelation (std : : string departure_name ,
4 int departure_cardinality ,
5 std : : string codomain_name ,
6 int codomain_cardinality ,
7 std : : string relation_name ,
8 size_t relation_size ,
9 std : : vector<unsigned> ∗relation_data ,

10 std : : vector<int> ∗relation_offset) ;
11
12 void Kaashi : : AddRelation (std : : string departure_name ,
13 int departure_cardinality ,
14 std : : string codomain_name ,
15 int codomain_cardinality ,
16 std : : string relation_name ,
17 size_t relation_size ,
18 std : : vector<unsigned> ∗relation_data ,
19 std : : vector<int> ∗relation_offset) ; // As many needed .

Figure 5.7: Describing the application’s data space in Kaashi.

Kaashi distributes data and relations and generates the corresponding directory of addresses

as soon as they are added to the framework. The data management is done through Kaashi

Load Balancer (KLB), introduced in next section.

5.2 Kaashi Load Balancer (KLB)

Kaashi provides two separate routines to define relations. If non of the departure and

codomain sets are defined, the relation is defined by Kaashi::AddSeedRelation. KLB treats

such relations as a parallel hypergraph and distributes all three departure set, codomain

set, and the relation. The load is balanced across the resources based the cost-function

43

introduced in 4.4 , i.e., for minimum communication cost:

F (N,P) =
∑|E|−1

i=0 (λi(N,P)− 1)

KLB carries out the data movement according to such partitioning. Also, to keep track

of data locations, the load-balancer generates the Kaashi index database (KID)– imple-

mented as a distributed hash table. Meanwhile if only the departure or codomain set is

not partitioned KLB follows 1 or 2 respectively.

Wing

Figure 5.8: Simulation of the airflow around the airplane wing.

5.3 Kaashi’s Iteration Transformation Engine (KITE)

The goal of the Kaashi framework is to reorganize the data and computation space with the

aim of achieving maximum performance. Kaashi’s iteration transformation engine (KITE)

is implemented to carry out the analyses of finding the best iteration permutation matching

the data distribution done and indexed by KLB.

Before we can explain the KITE approach for scheduling the computation, we introduce

two essential Kaashi classes in the following sections.

5.3.1 Kaashi Extended Relation (KER)

Kaashi Extended Relation represents the relations defined between a computation set,

namely, the iteration set and one or more data sets. In addition, KER object constructor

also takes access descriptors which describe how each data set is accessed by the kernel.

44

1 KER (KData data ,
2 KRelation relation ,
3 KAccess access_mode) ;

Figure 5.9: KER constructor.

5.3.2 Kaashi Parallel Iteration (KPI)

Parallel iterations imitate for loops in other ordinary programming languages, however,

with one important characteristic: The order of applying the kernel on data objects does

not affect the final result. In other words, any permutation of the iteration space is legal.

KPI, as shown in 5.10 encapsulates a computation set, a list of KERs based on such set

and a kernel to be applied to each elements of the data set.

1 KPI (std : : string kernel_name ,
2 KSet ∗iter_set ;
3 std : : vector<KER> kers) ;

Figure 5.10: KPI constructor.

5.4 Experiment

In this section we provide an example application to examine Kaashi’s capabilities. As

shown in figure 5.11, our experiment [GGD05] is a two dimensional inviscid airfoil applica-

tion over an unstructured grid. This irregular application uses a cell-centred discretization

of the domain. The domain described in this example includes 72000 cells, 721801 nodes

and 1438600 edges.

Figure 5.12 shows how the load among the resources has been balanced for all resources

across variety of configurations. Figure 5.13, demonstrates how utilizing Kaashi not only

simplifies the programming of the application, but also how high performance could be

acheived through this library.

45

Figure 5.11: Load balance for various number of processes.

Figure 5.12: Balance distribution of the load among the processes.

Figure 5.13: Speed up against sequential execution.

5.5 Conclusion

In this chapter we introduced Kaashi, a run-time parallel memory manager and scheduler

written in C++. Kaashi provides a high-level interface based on set and relation abstrac-

tions which can efficiently model many scientific programs. Throughout the design of the

46

Kaashi, we have strived to preserve the generality and stick to abstract concepts when

possible. The chief target of the Kaashi is irregular applications, namely, applications

with indirect memory access. Nevertheless, performance improvement is expected for any

program definable in terms of Kaashi.

47

Chapter 6
Conclusions

The complexity of today’s computing systems, due to the heterogeneity of hardware ar-

chitectures as well as the programming models, has steadily made the programming of

such systems more challenging. In this thesis we have provided solutions to alleviate such

difficulties through new approaches and tools. In the next section, we briefly review our

contribution and conclude with ideas for future works.

6.1 Contribution

In this work we have tackled the challenges risen from heterogeniety of HPC in two ways:

1. introducing efficient algorithms to analyze and optimize irregular applications

2. providing a framework with user-friendly interface to manage error-prone and cum-

bersome tasks of memory management and data movement.

Our scheduling algorithm focuses on irregular applications and aims at avoiding communi-

cation to improve performance. We introduce overlapped tiling of the domain during each

iteration step. Our algorithm minimizes the communication requirements by:

1. efficiently distributing the data and computation with the goal of minimizing the

distance between the two.

2. avoiding the communication by tracking memory access patterns.

Our algorithm utilizes a parallel hypergraph partitioning algorithm with a cost-function

based on the communication cost to minimize the distance between the computation and

48

the corresponding data. Furthermore, when possible, our algorithm redundantly schedule

a single task on multiple resources in order to avoid expensive communication. Finally,

the memory accesses are tracked to determine the scope of the changes for each memory

location. The communication is again avoided if the changes are contained within a single

resource.

In addition to these algorithm we introduced Kaashi, a run-time parallel memory manager

and scheduler written in C++. Kaashi provide a high-level easy to use interface which

allows developer to describe their applications in terms of sets and relations. Throughout

the design of the Kaashi, we have strived to preserve the generality and stick to abstract

concepts when possible. The chief target of the Kaashi is irregular applications, namely,

applications with indirect memory access. Nevertheless, performance improvement is ex-

pected for any program definable in terms of Kaashi.

The modular design of the library allows the user to rely on the library according to their

needs. More experienced programmers may want to utilize the lower level functionalities

of the library without losing the control, while others may allow Kaashi to entirely take

over the management of data and computation.

6.2 Future Work

The Kaashi library has been designed with future expansions in mind, meaning, third

party developers can access Kaashi’s data structures transparently and extend the libraries

functionalities. In the following, we discuss a number of possible areas to improve Kaashi’s

functionalities.

Power. Since the energy consumption of new processors hitting the power wall, power

consumption analyses is no more limited to embedded system and must be considered as

an optimization criterion.

Artificial Intelligence. As mentioned before, the primary target of the Kaashi is the

irregular applications. The lack of formal parametric abstractions to describe such applica-

49

tions makes them a suitable candidates to use heuristics and machine learning techniques

for optimizations. Such techniques can be utilize for determining the best partitioning

size, best performing backend, or different optimization techniques according to features

detected by Kaashi.

50

Bibliography
[ALM12] Martin S. ALnæs, Anders Logg, and Kent-Andre Mardal. UFC: a Finite

Element Code Generation Interface, chapter 16. Springer, 2012.

[ALn12] Martin S. ALnæs. UFL: a Finite Element Form Language, chapter 17.
Springer, 2012.

[ATD04] Manuel Arenaz, Juan Touriño, and Ramón Doallo. An inspector-executor
algorithm for irregular assignment parallelization. In International Symposium
on Parallel and Distributed Processing and Applications, pages 4–15. Springer,
2004.

[Bas04] Cédric Bastoul. Code generation in the polyhedral model is easier than you
think. In Proceedings of the 13th International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 7–16. IEEE Computer Society,
2004.

[Bas07] Cédric Bastoul. Chunky analyzer for dependencies in loops. http://goo.gl/
4TK3p1, 2007.

[BCG+03] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier
Temam. Putting polyhedral loop transformations to work. In LCPC’16 In-
ternational Workshop on Languages and Compilers for Parallel Computers,
LNCS 2958, pages 209–225, College Station, Texas, october 2003.

[Bea03] David M Beazley. Automated scientific software scripting with swig. Future
Generation Computer Systems, 19(5):599–609, 2003.

[BHRS08] Uday Bondhugula, A Hartono, J Ramanujam, and P Sadayappan. Pluto: A
practical and fully automatic polyhedral program optimization system. In Pro-
ceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI 08), Tucson, AZ (June 2008). Citeseer,
2008.

[ÇA11] Ümit Çatalyürek and Cevdet Aykanat. Patoh (partitioning tool for hyper-
graphs). In Encyclopedia of Parallel Computing, pages 1479–1487. Springer,
2011.

[Can95] Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Math-
ematische Annalen, 46(4):481–512, 1895.

[CCH08] Chun Chen, Jacqueline Chame, and Mary Hall. Chill: A framework for com-
posing high-level loop transformations. Technical report, Citeseer, 2008.

[DBH+02] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courte-
nay Vaughan. Zoltan data management service for parallel dynamic applica-
tions. Computing in Science & Engineering, 4(2):90–97, 2002.

51

http://goo.gl/4TK3p1
http://goo.gl/4TK3p1

[DBH+06] Karen D Devine, Erik G Boman, Robert T Heaphy, Rob H Bisseling, and
Umit V Catalyurek. Parallel hypergraph partitioning for scientific computing.
In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pages 10–pp. IEEE, 2006.

[DBR+09] Karen D Devine, Erik G Boman, Lee Ann Riesen, Umit V Catalyurek, and
Cédric Chevalier. Getting started with zoltan: A short tutorial. In Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[DJP+11] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montser-
rat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik
Duraisamy, et al. Liszt: a domain specific language for building portable mesh-
based pde solvers. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, page 9. ACM,
2011.

[Fea88] P. Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22(3):243–268, 1988.

[Fea91] P Feautrier. Data flow analysis of scalar end array references. Intern. Journal
of Parallel Programming, 20(1), 1991.

[GGD05] MB Giles, D Ghate, and MC Duta. Using automatic differentiation for adjoint
cfd code development. 2005.

[GL96] Martin Griebl and Christian Lengauer. The loop parallelizer loopo. In Proc.
Sixth Workshop on Compilers for Parallel Computers, volume 21, pages 311–
320. Citeseer, 1996.

[GLW98] Martin Griebl, Christian Lengauer, and Sabine Wetzel. Code generation in
the polytope model. In Parallel Architectures and Compilation Techniques,
1998. Proceedings. 1998 International Conference on, pages 106–111. IEEE,
1998.

[Gri04] Martin Griebl. Automatic parallelization of loop programs for distributed mem-
ory architectures. Univ. Passau, 2004.

[GVC15] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhedral ast gener-
ation is more than scanning polyhedra. ACM Transactions on Programming
Languages and Systems, 2015.

[GZA+11] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin
Größlinger, and Louis-Noël Pouchet. Polly-polyhedral optimization in llvm.
In Proceedings of the First International Workshop on Polyhedral Compilation
Techniques (IMPACT), volume 2011, 2011.

52

[HNS09] Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. Annotation-
based empirical performance tuning using orio. In Parallel & Distributed Pro-
cessing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–11.
IEEE, 2009.

[HP01] B Hendrickson and A Pinar. Communication support for adaptive computa-
tion. In Proc. 10th SIAM Conf. Parallel Processing for Scientific Computing,
2001.

[Kar11] George Karypis. Metis and parmetis. In Encyclopedia of Parallel Computing,
pages 1117–1124. Springer, 2011.

[KIr04] Robert C. KIrby. Algorithm 839: Fiat, a new paradigm for computing fi-
nite element basis functions. ACM Transactions on Mathematical Software,
30(4):502–516, 2004.

[KPR95] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple
mappings. In Frontiers of Massively Parallel Computation, 1995. Proceedings.
Frontiers’ 95., Fifth Symposium on the, pages 332–341. IEEE, 1995.

[LCL99] Amy W Lim, Gerald I Cheong, and Monica S Lam. An affine partitioning
algorithm to maximize parallelism and minimize communication. In Proceed-
ings of the 13th international conference on Supercomputing, pages 228–237.
ACM, 1999.

[LLL01] Amy W Lim, Shih-Wei Liao, and Monica S Lam. Blocking and array contrac-
tion across arbitrarily nested loops using affine partitioning. ACM SIGPLAN
Notices, 36(7):103–112, 2001.

[LMW+12] Anders Logg, Kent-Andre Mardal, Garth N. WElls, et al. Automated Solution
of Differential Equations by the Finite Element Method. Springer, 2012.

[LoRW12] Anders Logg, Kristian B. ølgaard, Marie E. ROgnes, and Garth N. WElls.
FFC: the FEniCS Form Compiler, chapter 11. Springer, 2012.

[LVR+14] Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor
Bercea, J Ramanujam, David A Ham, and Paul HJ Kelly. Coffee: an optimiz-
ing compiler for finite element local assembly. arXiv preprint arXiv:1407.0904,
2014.

[LW10] Anders Logg and Garth N. WElls. Dolfin: Automated finite element comput-
ing. ACM Transactions on Mathematical Software, 37(2), 2010.

[MGR+12] G Mudalige, MB Giles, I Reguly, C Bertolli, PHJ Kelly, et al. Op2: An active
library framework for solving unstructured mesh-based applications on multi-
core and many-core architectures. In Innovative Parallel Computing (InPar),
2012, pages 1–12. IEEE, 2012.

53

[MSS+88] Ravi Mirchandaney, Joel H Saltz, Roger M Smith, DM Nico, and Kay Crowley.
Principles of runtime support for parallel processors. In Proceedings of the 2nd
international conference on Supercomputing, pages 140–152. ACM, 1988.

[Pat11] David A Patterson. Computer architecture: a quantitative approach. Elsevier,
2011.

[PR96] François Pellegrini and Jean Roman. Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture graphs. In
International Conference on High-Performance Computing and Networking,
pages 493–498. Springer, 1996.

[Pug91] William Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 4–13. ACM, 1991.

[Rat14a] Florian Rathgeber. Firedrake: Re-imagining fenics by composing domain-
specific abstractions. https://goo.gl/mfvvij, 2014.

[Rat14b] Florian Rathgeber. Firedrake: Re-imagining fenics by composing domain-
specific abstractions. https://goo.gl/zprrmQ, 2014.

[Rat14c] Florian Rathgeber. Productive and efficient computational science through
domain-specific abstractions. 2014.

[RHM+15] Florian Rathgeber, David A Ham, Lawrence Mitchell, Michael Lange, Fabio
Luporini, Andrew TT McRae, Gheorghe-Teodor Bercea, Graham R Markall,
and Paul HJ Kelly. Firedrake: automating the finite element method by
composing abstractions. arXiv preprint arXiv:1501.01809, 2015.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image processing
pipelines. ACM SIGPLAN Notices, 48(6):519–530, 2013.

[RMM+12] Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Loriant,
David Ham, Carlo Bertolli, Paul HJ Kelly, et al. Pyop2: A high-level frame-
work for performance-portable simulations on unstructured meshes. In High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion:, pages 1116–1123. IEEE, 2012.

[SGO12] Michelle Mills Strout, Geri Georg, and Catherine Olschanowsky. Set and
relation manipulation for the sparse polyhedral framework. In International
Workshop on Languages and Compilers for Parallel Computing, pages 61–75.
Springer, 2012.

[SMC91] Joel H Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time parallelization
and scheduling of loops. IEEE Transactions on computers, 40(5):603–612,
1991.

54

https://goo.gl/mfvvij
https://goo.gl/zprrmQ

[VG98] T Veldhuizen and E Gannon. Active libraries: Rethinking the roles of compilers
and libraries, volume 5. Oct, 1998.

[Wil91] Roy D Williams. Performance of dynamic load balancing algorithms for
unstructured mesh calculations. Concurrency: Practice and experience,
3(5):457–481, 1991.

[WMA12] Ilmar M Wilbers, Kent-Andre Mardal, and Martin S Alnæs. Instant: just-in-
time compilation of c/c++ in python. In Automated Solution of Differential
Equations by the Finite Element Method, pages 257–272. Springer, 2012.

[zol] Zoltan user’s guide: Communication utilities.

55

Vita
Mohammad Rastegar Tohid was born in Tehran, Iran, in 1983. In 2006 he finished his BSc

in Computer Engineering at Azad University. The same year he moved to England and got

his MSc in Communication and Signal Processing from Newcastle University in 2008. After

spendig a year as a guest researcher, Mohammad moved to United States and began his

PhD in Electrical and Computer Engineering at Louisiana State University. Mohammad

will graduate in May 2017.

56

	Louisiana State University
	LSU Digital Commons
	2017

	Analysis and Optimization of Scientific Applications through Set and Relation Abstractions
	M. Tohid (Rastegar Tohid, Mohammed)
	Recommended Citation

	 DEDICATION 12pt
	 ACKNOWLEDGMENTS 12pt
	 LIST OF TABLES 12pt
	 LIST OF FIGURES 12pt
	 ABSTRACT
	Introduction
	Challenges
	Hardware Architecture
	Memory

	Objectives and Outline

	Background
	Binary Relations
	Formal Definition
	Types of Relations

	Hypergraphs
	Definition

	Zoltan Library
	Load Balancing
	Distributed Directory
	Unstructured Communication

	Related Works
	Regular Applications
	PLUTO
	Polly
	CHiLL
	Halide

	Irregular Applications
	FEniCS
	Liszt
	OP2
	PyOP2

	Harmonious Decomposition of Data and Computation through the Relation Abstraction
	Underlying Notions
	Load Balance Objectives
	Memory Analysis
	Cost-Function

	Data Decomposition
	Partitioning Sets vs Data Structures
	Data Decomposition for Message Passing Systems

	Computation Reorganization
	Data and Computation Bloc
	Avoiding Data Movement

	Conclusion

	The Kaashi Parallelization Framework
	Core Concepts
	Kaashi Set (KSet)
	Kaashi Data (KData)
	Kaashi Relation (KRelation)
	Class Kaashi

	Kaashi Load Balancer (KLB)
	Kaashi's Iteration Transformation Engine (KITE)
	Kaashi Extended Relation (KER)
	Kaashi Parallel Iteration (KPI)

	Experiment
	Conclusion

	Conclusions
	Contribution
	Future Work

	 REFERENCES
	 VITA

