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Abstract

Shared memory multi-core systems benefit from transactional memory implemen-

tations due to the inherent avoidance of deadlocks and progress guarantees. In

this research, we examine how the system performance is affected by transac-

tion fairness in scheduling and by the precision in consistency. We first explore

the fairness aspect using a Lazy Snapshot (multi-version) Algorithm. The fairness

of transactions scheduling aims to balance the load between read-only and up-

date transactions. We implement a fairness mechanism based on machine learning

techniques that improve fairness decisions according to the transaction execution

history. Experimental analysis shows that the throughput of the Lazy Snapshot

Algorithm is improved with machine learning support.

We also explore the impacts on performance of consistency relaxation. In trans-

actional memory, correctness is typically proven with opacity which is a precise

consistency property that requires a legal serialization of an execution such that

transactions do not overlap (atomicity) and read instructions always return the

most recent value (legality). In real systems there are situations where system de-

lays do not allow precise consistency, such as in large scale applications, due to

network or other time delays. Thus, we introduce here the notion of approximate

consistency in transactional memory. We define K-opacity as a relaxed consistency

property where transactions’ read operations may return one of K most recent

written values. In multi-version transactional memory, this allows to save a new

object version once every K object updates, which has two benefits: (i) it reduces

space requirements by a factor of K, and (ii) it reduces the number of aborts, since

there is smaller chance for conflicts. In fact, we apply the concept of K-opacity on

regular read and write, count and queue objects, which are common objects used

v



in typical concurrent programs. We provide formal correctness proofs and we also

demonstrate the performance benefits of our approach with experimental analy-

sis. We compare the performance of precise consistent execution (1-opaque) with

different consistency values of K using micro benchmarks. The results show that

increased relaxation of opacity gives higher throughput and decreases the aborts

rate significantly.
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Chapter 1
Introduction

Currently multi-processor systems have become essential in handling bursts of data

usages on computers. One of the advanced techniques to enhance and improve

quantity and quality of computation is parallel computing. Parallel computing

means to run many computations and tasks at the same time [2]. However, some

problems require access to memory to be solved. Hence, multi-processor systems

need to be supported by efficient memory techniques to allow concurrent operations

which increases the throughput and preserves the consistency. To clarify, consis-

tency means that there are no conflicts and the state of the system after each action

is predictable [22]. We can achieve memory consistency, if there are some rules to

make the results of the operations predictable. For example, if x = 1, and there are

two write operations running simultaneously where the first one writes x = 2 and

the second writes x = 3, we must have rules that decide which operation executes

first. Only then we will be able to predict the value of x after each operation.

In addition, an important way to deal with the difficulty of writing concurrent

applications is to use Transactional Memory (TM) [19]. TM enhances systems

performance because it allows to avoid locks cost and problems [25]. TM supports

concurrent processing by allowing concurrent access to shared data. Also, Software

Transactional Memory (STM) is now available to perform as efficiently as hardware

one but it provides more flexibility and control over the concurrent programming

[34]. STMs use the principle of shared memory transaction [19] which is a piece of

code or a finite sequence of operations that access local and shared memory. The

basic operations are either read or write. The read operation reads the data from
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the memory while the write operation writes data to the memory. A transaction

is called read-only transaction if it has only read operations, and is called update

transaction if it has at least one write operation. When all operations are executed,

a transaction commits or aborts. Commit means to save all the changes and effects

which are made by the current transaction. Abort means to discard all actions and

changes that are made by the transaction [34][19].

To process multi-tasks in parallel, the memory access requires appropriate tech-

niques to avoid conflicts. Conflicts happen between concurrent transactions if one

reads a shared memory object and the other writes to it, or if both write to the

same object at the same time. Hence we have three kinds of conflicts which are read

after write (rw), write after read (wr) and write after write (ww). To avoid such

conflicts we need first to know the critical sections which are the parts of mem-

ory (shared objects) or the piece of program that may cause conflicts. In some

cases we use mutual exclusion and lock-based techniques to assure the consistency.

In mutual exclusion and lock-based techniques only one transaction is allowed to

enter the critical section. Using locks is safer but it is very expensive and it may

cause other problems such as deadlock and starvation. Deadlock happens when two

transactions are blocking each other such that each transaction has a lock that is

required by the other. Starvation happens when some transactions may wait forever

and do not get a chance to execute. Therefore, precise lock-free synchronization

is required. In fact, the isolation and atomicity of transactions support lock-free

techniques as they allow for many transactions to access the same shared data and

the concurrent execution appears as if it is sequential [19][15].

STMs run transactions concurrently, and then detect conflicts. A transaction

aborts only if there is conflict that affects the correctness of the execution. High
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rate of parallelism may lead to high rate of aborts resulting in huge negative impact

on performance [6].

Many applications and algorithms avoid the abort of read-only transactions be-

cause those transactions do not directly affect the consistency of the memory.

Perelman et al. [27], show that 80% of the execution time might be wasted as a

result of aborting read-only transactions. In order to minimize aborts and maintain

consistency, multi-version STMs keep multiple versions for each object in the mem-

ory [7]. In this way, when an update transaction commits, it creates new versions

for every objects in its write set, which is a set of all object the transaction writes

to. Using multiple versions of memory objects helps read-only transactions to suc-

cessfully commit (without aborting at all) by preserving the versions in the read

sets of the transactions, which is a set of all object the transaction reads. However,

using multi-version STMs causes a surplus negative effect on the systems’ space

complexity.

In this research, we aim to raise the throughput of multi-version algorithms,

decrease the aborts rate and reduce the negative impact on the space complexity.

Actually, we suggest to increase the throughput by maintaining the scheduling of

the transactions and by reducing the precision in consistency using the principal

of approximation. First we examine the fairness of scheduling. It is obvious that

algorithms work well on some systems and under some conditions but they fail

with others. However, under any conditions transactions’ scheduling has a huge

impact on the performance as we can increase the throughput by scheduling the

independent transactions to execute together. Also, some kinds of transactions,

such as read-only ones, do not cause conflicts because they do not change the

memory content. Therefore, they can be scheduled to execute concurrently. Clearly,

different systems have different data structures and various transactions’ structure,
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length and number. Thus, we need to find the suitable scheduling procedure for

each system. We use machine learning techniques to find out the suitable scheduling

procedure based on the history of the transactions. Moreover, focusing only on the

throughput may result in unfair scheduling for transactions as some transactions

may usually delay. Hence, we acquire fair scheduling to prevent starvation.

On the other hand, relaxing opacity to avoid some aborts is sometimes necessary

on non-sensitive data and non-sensitive systems, or where data changes frequently.

In large scale network systems when an update happens to an object in a local

memory, it takes some time to update the object’s global view. In fact, some read

operations might be executed on other local copies during such delay (between the

updates of local and global memory) which makes them illegal and causes aborts.

Also, long read-only transactions may cause many aborts as well.

In addition, in real life there are many kinds of systems that do not require to

have precise results, especially on non-sensitive data [36][30]. For example some ap-

proximated results might be acceptable for Online Analytical Processing (OLAP)

that answers nested and complicated database queries such as inventory queries

and reports generations [9]. Also, approximated results work with Decision Support

Systems such as queries about average income and the percentage of newborns in

the country [1]. Moreover, social network mining systems result in huge data with

very frequent changes which increases the importance of approximation [8]. Sys-

tems for advertising and recommendation (for movies, music or restaurants) could

allow approximated results since this does not propagate any risks. Sometimes the

approximation is part of the system specifications such as the systems that use

sensors for temperatures, locations and weather forecasting.

In such cases, the approximated data is enough and that allows to relax the

precision level. Therefore, we will be able to commit some transactions even if
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they violate consistency which increases throughput and reduces aborts. Thus, we

introduce K-consistency concept to relax the consistency, where K is an integer

number that represents the approximation degree. It means if the result is within

K approximation degree it commits; otherwise, it aborts.

Furthermore, we use approximation to reduce the number of created versions

(or the number of updates to the global copies of the objects). As we mentioned

before, using multi-version algorithms, each committed update transaction creates

a new version for each object in its own write set. However, with approximation we

create a new version for each object every K commits which improves the space

complexity and reduces the total number of versions by factor K compared to

STMs that do not provide approximated opacity.

1.1 STM Scheduling
1.1.1 The Machine Learning Techniques

At the beginning, we explain the machine learning models which are supervised

and unsupervised learning models. In supervised learning, we generate a function

that maps inputs to suitable outputs that is called labels or classes. Experts of-

ten provide some training examples that supply systems with labels or classes.

For example, in classification problems, the learner suggests a function that maps

vectors of inputs into classes by looking at training examples. On the other hand,

unsupervised learning is to model a set of inputs while labels are unknown during

training [18]. In fact, the model itself recognizes labels while it is running. In our

problem we use supervised learning models, namely Support Vector Machine and

K-Nearest Neighbor, and unsupervised learning with Hidden Markov Model.

1.1.2 Fairness of Transactions’ Scheduling Using Machine Learning
Techniques

In Chapter 4, we suggest to increase the throughput of a classic multi-version al-

gorithm which is Lazy Snapshot Algorithm (LSA) by maintaining the scheduling
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of the transactions. The fairness of transactions’ scheduling is to balance between

read-only transactions and update transactions. In addition, the duration of read-

only and update transactions and the transactions’ dependencies vary from one

system to another, which implies that different scheduling is required for different

systems. Therefore, fairness of scheduling is to decide how many read-only trans-

actions to be committed per update ones and this ratio is called the Fairness Value

(FV). The FV is determined according to a machine learning technique through

keeping the track of transactions’ history.

By recording a prefix of transactions’ execution, we find out the order and num-

ber of read-only and update transactions and pass them to the learning model.

Two supervised machine learning techniques which are the Support Vector Ma-

chine (SVM) and the K-Nearest Neighbor (KNN) are used for classification. Ac-

cording to the prefix information, SVM and KNN map the given information to

the suitable FV. Furthermore, we compare the results of the supervised machine

learning techniques with the Hidden Markov Model (HMM), which is an unsuper-

vised machine learning technique. In fact, the KNN shows the best performance

and accuracy. Also, the scheduling using KNN satisfies the fairness and improves

the throughput of LSA.

1.2 STM Approximation

Correctness of concurrent execution in transactional memory is typically proven

with opacity [15], which is a consistency property that requires a legal serialization

of an execution such that transaction intervals do not overlap (atomicity of trans-

actions) with preserving of real-time order of events, and read operations always

return the most recent written value to the object (legality of objects). However,

system applications may not permit precise consistency of an execution due to

hardware delays (network delays, I/O operations, etc.) or other unforeseen reasons
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during execution. In such cases it may be allowed for read operations to return old

values.

We introduce the notion of approximately opaque multi-version permissive trans-

actional memory, a novel STM algorithm that never aborts read-only transactions

and reduces the number of newly created object versions. We create a new version

with each K commits on the object.

We define K-opacity as a relaxation of the opacity correctness property where a

transaction can read one of the last K committed values on the object (relaxation

of legality).

1.2.1 Approximately Opaque Read-only Transactions

At the beginning, we apply K-opacity on read-only transactions, while update

transactions access only the latest version of an object. In a read-only transaction,

a read operation tries to first read the latest value of the object, and if that value

violates the correctness of the execution, then it reads the value of a saved version

of the object which allows it to commit. In contrast, update transaction must

always read the latest value of the object.

1.2.2 Approximated Opacity for Other Kinds of Transactions

The promising results of applying the K-opacity concept on read-only transactions

encourages us to apply it on update transactions as well. Actually, unbounded

number of read operations can access each version of any object, but only K write

operations can be committed on a version, and they can be concurrent.

Precisely, a read operation can read one of the last K writes on the prospective

object. However, the committed update transactions may write some values based

on those inconsistent reads which would make them produce inaccurate results.

If some new transactions use those inaccurate results to write, the errors would

propagate. To prevent error propagation, we do not allow to read from inconsistent
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values. Although we can have up to K writes and they can be in parallel but only

one of them creates a new version (or overwrites the object if we use single-version).

Indeed, the one that creates the new version is definitely correct and consistent.

Thus we have a consistent version every K writes and newer transactions only read

from the consistent versions.

To guarantee that the created versions are consistent, we introduce the idea of a

writer list to implement the concept of visible writes where we record the values of

all committed write operations. These values help to achieve the correct value on

the new version. Therefore, every system or data structure needs a specific way for

recording and correcting. However, we only focus on the concurrent read, write,

counting and queue operations.

1.3 The Garbage Collector

We provide a garbage collector to get rid of old versions. Our garbage collector

does not remove the version that shows the last written value. Our garbage col-

lector works on the old version lists of objects which contain the versions that are

saved every K commits on the objects. Our garbage collector decides unwanted

versions according to the needs of the live transactions. Certainly, it finds the live

transaction with the smallest timestamp mints. Then, it deletes all old versions of

the objects except the ones that are needed by mints or the ones that have greater

timestamps. Obviously, we keep the versions that might still be required by live

transactions.

1.4 Outline of the Dissertation

The rest of this dissertation is organized as follows: In Chapter 2 we discuss some

related works. The system model, definitions and preliminaries are presented in

Chapter 3. In Chapter 4, we present the design of the machine learning tech-

niques, scheduling algorithm and some experimental results. Chapter 5 discusses

8



the approximation of read-only transactions. In Chapter 6, we introduce the ap-

proximation of all transactions that have read, write and counting operations, while

Chapter 7 shows the approximation of transactions that execute queue operations.

Chapter 8 discusses the design and the benefits of the garbage collection procedure.

Chapter 9 concludes the research with some discussion and future works.
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Chapter 2
Related Work

STM was introduced to support multi-processor and multicore systems [34]. How-

ever, it requires careful implementation to avoid conflicts. STMs allow many trans-

actions to be executed in parallel and each transaction validates to either commit

or abort. In fact, STM is a suitable paradigm to support parallel processing since it

can guarantee progressiveness and permissiveness properties [34]. Progressiveness

on STM is proposed to reduce aborts such that if there is conflict between transac-

tions, at least one of the conflicted transactions commits [17]. Permissiveness also

reduces aborts by avoiding the abortion of read-only transactions (which only have

read operations) [34][5].

Devietti et al. [10] show how to acquire determinism and consistency in the ex-

ecution. Transactions can be classified according to whether the objects’ statuses

are private or shared, and whether the operations are reads or writes. They offer

different techniques to handle determinism. In some situations, thread must get the

token to execute a transaction while in other situations thread can execute trans-

action directly. The token is used to guarantee sequential execution for conflicted

transactions. However, this algorithm has two problems: deadlock and starvation.

In our algorithm in Chapter 4, we schedule transactions according to the type of

their operations, while in the other algorithms we use timestamp-based scheduling.

Another approach to reduce aborts is the multi-version permissive STMs, which

keep multiple versions of each memory object [14][28]. In case of a conflict, this

kind of STMs could prevent aborts by allowing some operations of the conflicted

transactions to use old versions of the perspective object, thus maintaining the
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consistency. The main quality of using multi-version permissive STMs is to never

abort read-only transactions.

One example of the famous multi-version algorithms is LSA [29]. With LSA, we

check the states of the consistency of each object version at the access moment

(when transaction accesses the object to execute the operation). Therefore, we can

build consistent snapshots during the execution of the transaction to assure that

the transaction reads consistent versions and guarantees correctness of execution.

The correctness of transaction’s execution is verified if the snapshots of all objects’

versions it accesses are consistent, which will be explained in detail in Chapter 4.

However, we claim that the type, length and order of transactions affect the per-

formance of any algorithm. Thus, we suggest scheduling transactions in a way that

suits the transaction’s operation types and number, as well as the data structure

they use.

Moreover, one of the machine learning techniques used in our research is SVM.

SVM is a supervised machine learning technique that enables programmer to design

a dataset that includes some training examples. Then, SVM classifies the data

according to the given examples. The accuracy of classification of SVM will be

computed according to the margins and distances among classes [23][4].

Another supervised machine learning technique is K-Nearest Neighbor, which

classifies object based on the nearest training examples [3][33]. In other words,

it clusters similar data in classes. Both of them can be used in our algorithm to

determine the proper FV.

A further idea presented by Wang suggests to use different algorithms according

to the inputs’ types [37]. Wang uses transactional memory with a machine learning

model and compares it with the one that uses an expert system. However, the

experiment focuses on some hardware features such as transactional memory type
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and cache size. On the other hand, our algorithm uses a learning model to find the

suitable FV to guide the scheduling process and improve the performance.

Another work applies Markov Chain to improve STM performance [11]. It uses

the Markov Chain for scheduling to control the contention of transactions and

decide on blocking temporarily when needed. In fact, they focus on contention

and the number of transactions running in parallel regardless of the type or the

length of these transactions. However, in our work we use the HMM which is an

unsupervised learning model [21][11], to decide how to schedule the transactions

based on their types.

In concurrent execution different strategies are used to track conflicts. The use

of timestamps helps to track the order of operations such that each transaction

has a unique timestamp and each version has a timestamp of the transaction that

creates it. So, each transaction tries to read the version that does not cause conflict

[24][19].

In addition, the concept of invisible reads allows each transaction to read the

value of an object and ensure that the object is not updated until transactions that

access it commit [31][32]. However, some STMs use visible read, where a transaction

adds itself to the object’s reader list, and then it reads the object [24][31][32].The

read-only transactions commit directly but update transactions have to check the

reader list of each object in its access set to detect conflicts. This way the update

transaction does not update any version if that invalidates other reads and causes

conflict.

The correctness of the execution can be achieved by satisfying opacity consis-

tency property [15]. Opacity means that all transactions that are executed con-

currently must appear as if they are executed in sequential order. Opacity also

considers the aborted transactions. Most transactional memory systems use opac-
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ity to ensure correctness [16]. Opacity helps to avoid conflicts by preventing some

writes. It prevents to write to any object if it is being read by a live transaction. In-

deed, opacity prevents those writes through aborts which is very expensive [16][15].

To reduce the cost of aborts, we try to reduce the number of aborts by relaxing

the opacity property.

In fact, the idea of relaxing the opacity has also been introduced by Siek and

Wojciechowski [35] in a different way than ours. They proposed a relaxed model

that allows for update transaction A to update any object that belongs to the read

set of a live transaction B, if the live transaction B would not access that object

any more [35].

Another approach proposes an approximate consistency [36]. The strategy clas-

sifies data in the database as sensitive or non-sensitive. Sensitive data requires

strong consistency and full precision, while non-sensitive just requires approximate

solutions. They show that in real life there are some systems that do not require

returning results with high precision but the approximated results are acceptable.

Actually the approximation is acceptable up to some degree which is decided based

on the system and data sensitivity [36].

Yu and Vahdat [38] propose an approach for database systems that balances

between the availability of replications and the consistency. According to a system

needs, they decide to increase the availability by placing more copies of the objects

into caches and local memories. However, this way affects the consistency level.

Otherwise, they raise the consistency by reducing the copies of the objects.

However, we use an approximate consistency (approximated opacity) on TM up

to a degree K. In K-opacity we allow to use one of the most recent K versions of

the objects which will be explained in detail in the following chapters.
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Also, Herlihy [20] defines the transaction to be a piece of code that executes

the operations atomically. We use the same concept with our K-opacity to exe-

cute counting (mathematical) operations and queue operations in addition to the

regular reads and writes.

For garbage collection, 4-versioned and 8-versioned [27][29] STMs, keep a fixed

number of versions for each object. However, fixed number of versions may not be

accurate, as for example, is the 4-versioned STM, we may have a situation where

we need more than 4 versions for some objects to maintain consistency without

aborting transactions.

STM Selective Multi-versioning (SMV) avoids the use of a fixed number of ver-

sions and keeps old object versions that may still be useful to some readers [27].

SMV tries to distinguish among objects by the number of accesses. Consequently,

for infrequently-updated objects most of the time, it keeps only one version while it

keeps more for the others. In our garbage collecting procedure we try to reduce the

number of versions, even for frequently-updated objects by reducing the version

creation rate and fulfilling the needs of live transactions.
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Chapter 3
Notation and Definition

TM consists of several shared memory objects that can be accessed by multiple

transactions which execute different kinds of operations [20]. The system contains

many threads that execute possibly multiple transactions, where each transaction

is a piece of code that accesses multiple shared objects in TM [20]. Each transaction

contains a sequence of operations and, in addition, has operations to local objects.

3.1 Kinds of Operations and Sequential Object

In this research, transactions may perform read/write operations, counting opera-

tions such as addition and subtraction, and queue operations such as enqueue and

dequeue.

i. Read/Write Objects

Let x be a shared read/write object. The object supports the read operation

x.r() which returns a stored data in the object, and it also supports the write

operation x.w(data) which writes the value data to x. A sequence of opera-

tions on object x is legal if every read operation on x returns the most recent

written value to x (or the initial value if there is no previous write operation).

We can relax this definition, and we say that a sequence of operations to ob-

ject x is K-legal if every read operation returns one of the K most recent

written values to x (or also the initial value if the number of previous write

operations is less than K). Clearly, for K = 1, a 1-legal execution is also

a legal execution. In the example below the sequential execution is 1-legal

for object x, and 2-legal for object y, since the last y.r() operation returns

the value written by the second to the last write operation to y. (Returned
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values are shown below respective operations.)

x.w(1) y.w(1) x.w(2) y.w(2) x.r() y.r()

2 1

ii. Count Objects

Let x be a shared count object. The object supports the add operation

x.add(data), which returns the value of x and adds data to the current value

of x. A sequence of operations on object x is legal if every add operation

returns the last value written to the object by the immediately previous add

operation (or the initial value if there is no previous add operation). We relax

this definition, and we say that a sequence of operations to object x is K-legal

if every add operation returns the value written by one of the K most recent

add operations applied to the object (or also the initial value if the number

of previous add operations is less than K). In the example below assume that

count objects x and y are initialized to value 0. The sequential execution is

1-legal for object x, and 2-legal for object y, since the last add operation

y.add(3) returns the outcome of the second to the last add operation to y.

(Returned values are shown below respective operations.)

x.add(1) y.add(1) x.add(2) y.add(2) x.add(3) y.add(3)

0 0 1 1 3 1

iii. Queue Objects

Let x be a shared queue object. The object supports the enqueue operation

x.enq(data) which inserts an element data in the queue, and it also supports

the dequeue operation x.deq() which removes an element from the queue and
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returns it. A sequence of operations on object x is legal if every dequeue

operation returns the oldest inserted element to the queue (if the queue

is empty then it returns nil). We relax this definition, and we say that a

sequence of operations to object x is K-legal if every dequeue operation

returns one of the K oldest inserted elements to the queue (or also nil if

the number of elements in the queue is less than K). In the example below

assume that queue objects x and y are initially empty (hold no elements).

The sequential execution is 1-legal for object x, and 2-legal for object y, since

the last dequeue operation y.deq() returns the second to the oldest inserted

element to queue y. (Returned values are shown below respective operations.)

x.enq(a) y.enq(c) x.enq(b) y.enq(d) x.deq() y.deq()

a d

3.2 Approximated Opacity

When a transaction executes all of its operations, the transaction tries to commit

by executing function TryC(), which validates the object values in the concurrent

execution and based on that decides to commit or abort. Commit means that all

changes made to the shared objects in the transaction are saved to shared memory,

but abort means to ignore the changes. In fact, each transaction has a status that

initially equals to live and updated to committed or aborted after transaction

validation. Also, read-only transactions have only read operations (to the shared

objects), while update transactions have at least one write operation (to the shared

objects).

In our model, when a transaction arrives it gets a unique timestamp i [29][24].

We will use the timestamp i as an identifier, as for example, Ti means a transaction

with timestamp i, and Ti arrives before Tj if i < j.
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A transaction Ti has a read set Ti.rSet (write set Ti.wSet) which contains all

shared objects that would be read (written) by Ti. Note that an object may belong

in both the read and write sets. A transaction’s access set T.accSet consists of all

elements in both read and write sets, namely, T.accSet = T.rSet ∪ T.wSet.

A transaction execution consists of a sequence of operations’ executions. Every

operation execution is represented with two events which are the operation invo-

cation (when operation execution starts) and respective response (when operation

execution ends). Every event is instantaneous and it has a real time that it occurs.

The event is used to indicate different situations of the system. The time between

the invocation and response is the operation interval. In addition, in the execution

of a transaction there are three special intervals, one for obtaining the timestamp

and the second for the function call TryC(), and the third is to commit by calling

Commit() or abort by calling Abort(). The timestamp interval is the first interval

in the transaction, while the TryC() and Commit() or Abort() intervals are the

last. Based on the response of TryC(), the status of the transaction changes from

live to either committed or aborted. None of the intervals within the transaction

overlap with each other. The interval of the transaction is the time period between

the first invocation event and the last response event.

A pending operation (of a function call) is one that starts but has not yet finished,

or in other words, there is an invocation event but no respective response event. A

pending (live) transaction is the one that either contains a pending operation, or

it doesn’t have an invocation event for at least one of its operations or the TryC(),

Commit() or Abort() function calls.

A history H is a sequence that includes all events of all involved transactions

[15]. With respect to history H, we can use the relation order <H to define the real

time order of the transactions, such that for each two transactions Ti and Tj in H,
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Ti <H Tj if all events of Ti happen before all events of Tj. We say that the relation

<H respects the real time order of the transactions if Ti <H Tj implies i < j (recall

that i and j are timestamps in our notation). From now on we will only consider

histories that respect the real time order of transactions. The relation <H may be a

partial order on the transactions, since if for some pair of transactions Ti and Tj in

H, it could be that the first event invocation of Tj happens before the last response

event of Ti; namely, there is an execution overlap between Ti and Tj [20][24][15].

The complete history of H, denoted as complete(H), is obtained by defining the

status for each pending transaction. If a pending transaction didn’t invoke TryC(),

its status is aborted, while in any other case the status can be either committed

or aborted [15]. Since History complete(H) may include aborted transactions, we

have to define the legality and K-legality carefully to discard the effects of all

operations that belong to the aborted ones. Based on what we mentioned before,

we extend the definitions of the legal and K-legal operations to match with the

transactional manner.

A history S is sequential if it is complete, and all transactions in S appear as if

they execute sequentially, namely <S is a total order. In other words, in S there

are no pending transactions, and moreover, every pair of transactions is ordered,

so that the intervals of any two transactions do not overlap. Suppose that S is

equivalent to H; they have the same set of events. Also, we say that S preserves

the real time order of H if for any two transactions Ti and Tj, Ti <H Tj implies

Ti <S Tj [20][24].

Now, to define the legality to the respect of transactions we need to be very

careful since we have to discard the operations that belong to aborted update

transactions. Therefore, let S be a sequential history. Now, for any transaction Ti

denote by Si the subsequence of S that includes Ti and all committed transactions
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that appear in S before Ti. In other words, for any transaction Tj ∈ Si, either j = i

or Tj committed and Tj <s Ti.

In addition, for any transaction Ti there is Vi which is a set of all the write,

counting and queue operations in Si; in other words, Vi contains all operations

that are visible to Ti. However, with respect to any shared object x, we can define

Vi(x), as a subset of Vi that considers only the operations on x.

Based on the above, a legal operation by Ti on object x is the one that reads

the value of the last operation in Vi(x). Moreover, a K-legal operation on the

object x is the one that reads the value of one of the K last operations in Vi(x).

For this legality definition, we assume that for a read/write object, there is at

most one write operation for each transaction, which is the last write operation

for the object within the transaction. Similarly, for a count object, there is at

most one representative add operation in a transaction, which aggregates all the

individual add operation arguments in the transaction. On the other hand, for a

queue object each individual enqueue or dequeue operation is considered in the

legality specification of the object.

Thus, Ti is legal, if all operations in Ti are legal. Then, S is legal if all transac-

tions in S are legal. Also Ti is K-legal, if all operations in Ti are K-legal. Then,

S is K-legal if all transactions in S are K-legal. Consequently, a legal history is a

special case of K-legal history by taking K = 1.

In FIGURE 3.1 we give an example that demonstrates the notion of legal and

K-legal executions on a read/write object x. In FIGURE 3.1(a) transaction T1, T2

and T3 arrive consecutively. Transaction T2 has a read operation that returns the

value 1 which is a legal read because it reads the initial value of x. Then, T2 writes

the value 2 to x and it commits. Transaction T1 has illegal read as for some reasons,

it returns 1 while the last write to x writes the value 2, so it aborts. However, T3
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FIGURE 3.1. (a) Example of Legal Reads on Read/write Object, (b) Example of K-Legal
Reads on Read/write Object

reads 2 which is the last written value to x and that is legal. It also writes to x

and commits.

In FIGURE 3.1(b) we show how K-legal allows to commit more transactions.

Suppose K = 2, which means it is allowed to read one of the last two writes on

x. Now, the three transactions arrive. Transaction T2 reads the initial value of x

which is 1, so it is a legal read. Then, it writes 2 to x and commits. Thus, the last

two writes on x are 1 and 2 (we consider the initial value of the object as the first

write). Transaction T1 has a read operation that reads the value 1 which is the

second last write to x. As K = 2 it is K-legal, and then T1 commits. Moreover, the

read operation in T3 reads the last write to x which is legal. After that, it writes

to x and commits.

We say that two histories are equivalent, if they have the same set of events.

Definition 3.1 (Opacity). A history H is opaque if it has an equivalent complete

history H ′ which further has an equivalent sequential history S such that:

• H ′ preserves the real time order of transactions in H, namely, <H⊆<H′.
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• S preserves the real time order of transactions in H ′, namely, <H′⊆<S.

• S is legal with respect to all of the involved operations.

Definition 3.2 (K-approximated opacity). A history H is K-opaque if it has an

equivalent complete history H ′ which further has an equivalent sequential history

S such that:

• H ′ preserves the real time order of transactions in H, namely, <H⊆<H′.

• S preserves the real time order of transactions in H ′, namely, <H′⊆<S.

• S is K-legal with respect to all of the involved operations.

FIGURE 3.2. (a) Example of Opaque Execution for Transactions that Access Read/write
Objects, (b) Example of K-opaque Execution for Transactions that Access Read/write
Objects

FIGURE 3.2 shows two executions of three transactions T1, T2 and T3, sharing

two read/write objects which are x and y. The respective histories Ha and Hb are

shown below. It is clear that the histories Ha and Hb of the two executions are

complete as there is no live transaction or pending operation, and they preserve

real-time order. FIGURE 3.2(a) shows an opaque execution (Ha) that has to abort
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T2 as it violates the validity of T1. By aborting T2, there is an equivalent legal

sequential history S, such that S = 〈T2 <s T1 <s T3〉. So Ha is opaque.

FIGURE 3.2(b) illustrates Hb which is not opaque. This is because if T2 com-

mits then T1 cannot be ordered before T2 as T1 reads y = 1, and it cannot be

ordered after T2 as it reads the initial value of x, which means it reads before T2

writes. However, Hb is K-opaque (where K > 1), as there is an equivalent K-legal

sequential history S, such that S = 〈T2 <s T1 <s T3〉. For K = 2, T1 reads one of

the last K writes. Furthermore, the first read operation in T1 returns x = 0, which

is the second last write to x (considering the initial value as a write). So, Hb is

K-opaque.

Ha = 〈x1.r(0), x2.w(1), y2.w(1), T ryC()2, Abortted2, y1.r(0), y3.r(0), T ryC()1,

Committed1, y3.w(2), T ryC()3, Committed3〉

Hb = 〈x1.r(0), x2.w(1), y2.w(1), T ryC()2, Committed2, y1.r(1), y3.r(0), T ryC()1,

Committed1, y3.w(2), T ryC()3, Committed3〉

Definition 3.3. The approximately opaque permissive multi-version transactional

memory never aborts read-only transaction while the read operations in the read-

only transactions may return approximated results, and update transaction is aborted

only if it conflicts with another transaction.
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Chapter 4
Transactional Memory Scheduling Using
Machine Learning Techniques

4.1 Introduction

This chapter is previously published by IEEE 1. Clearly from one system to another,

there are different kinds of data structures, hardware capabilities and transactions’

types. Also transactions have different kinds of operations and durations. Thus

it is not easy to propose an algorithm or a technique that works well with all

systems and under any conditions. Therefore the main focus of this chapter is to

propose a flexible scheduling algorithm that is able to adjust itself to perform well

under different conditions. To achieve such flexibility, we support our scheduling

algorithm with a machine learning technique that checks the history of transactions

in the system and based on that we adjust the scheduling process. We apply our

algorithm on a famous and classic algorithm (LSA) to show the benefits of our

algorithm. Actually, in this chapter we just focus on the read/write operations

on the shared read/write objects. In this chapter, we illustrate the design of the

supervised machine learning models and the design of the unsupervised machine

learning model. Also, we discuss the LSA algorithm and our scheduling algorithm.

After that, we present the experiments and some results that show the effect of

learning on the performance of LSA.

4.2 The Supervised Machine Learning Techniques and Dataset

To use a supervised model we have to generate a dataset that includes some train-

ing examples. The training examples show how to map the inputs (features) to

1This chapter previously appeared as [Basem Assiri and Costas Busch, Transactional Memory Scheduling Using
Machine Learning Techniques, published by The Institute of Electrical and Electronics Engineers (IEEE)]. See

the letter in Appendix.
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the suitable FV. In our dataset, there are three features, which are the number

of reads-only, the number of updates and the order of the transactions which we

call the sequence length. In fact, we track the prefix of transactions’ history and

pass it to the learning model. We count how many read-only transactions and how

many updates are in the prefix. Also, we convert the order of reads and updates

into one number and we call it the sequence length.

TABLE 4.1. Two Different Scenarios of 10 Transactions and How to Calculate the Se-
quence Length (r means a read-only transaction and u means an update transaction)

Scenario 1
The
sequence

The
Sequence
Length

Scenario 2
The
Sequence

The
Sequence
Length

r1 5, 5 2 u1 1, 1, 1, 1, 1, 1, 10
r2 r1 1, 1, 1, 1
r3 u2
r4 r2
r5 u3
u1 r3
u2 u4
u3 r4
u4 u5
u5 r5

TABLE 4.1 shows an example of how to calculate sequence length for only 10

transactions with different orders. In the first scenario, there are 5 reads followed

by 5 updates. The sequence consists of two numbers which are 5 and 5, so the

sequence length equals to 2. In the second scenario, the sequence consists of 1

update, 1 read, 1 update, 1 read and so on. It consists of 10 numbers, so the

sequence length is 10.

Our dataset consists of four columns which are the three features followed by the

suitable FV. To generate the dataset we first need to know the size of the prefix

which is a piece of history we track to extract the pattern from. Then we need to

find all possible combinations of the three features. For example, if the prefix size

is 20, the first combination is 1 read-only, 19 updates and the sequence length is 2,

which means the read-only transaction is the first or the last one in the prefix. The
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next combination will be 1 read-only and 19 updates and the sequence length is 3,

which means the read-only transaction is somewhere in the middle of the prefix,

and so on. Then we pass each permutation as an input set to the LSA and we

run it with all FVs we want to test. During the runs we record the throughput of

all FVs on our algorithm, and the FV with the maximum throughput will be the

suitable class. This way we generate all training examples in the dataset.

For simplicity and to avoid learning process overhead, in our experiment we

reduce the size of the prefix to 10 transactions. In our experiment, we test all FVs

from 1 to 9, and according to the results we select only three FVs which are 1, 4 and

8. The FV= 1 means 1 read-only transaction per 9 updates. The FV= 4 means 4

read-only transactions per 6 updates, while FV= 8 means 8 read-only transactions

per 2 updates. More details about FV selecting will be illustrated later in section

4.5.

TABLE 4.2. Some Training Example from our Dataset

54 4 1 4 8
1 9 2 1
2 8 2 1
2 8 5 1
:
:
5 5 2 8
5 5 5 4
5 5 10 8
:
:
9 1 2 8
:

TABLE 4.2 shows a sample of our dataset which consists of rows and columns.

The first row gives a summary of dataset. It states that the number of examples is

54, the number of columns is 4, and shows the three classes. Then, each example

is placed individually in a row. For example, in the row number 2 in the table, the
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example 1, 9, 2, 1 means that if there are 1 read-only, 9 updates and the sequence

length is 2, then the suitable FV is 1.

4.2.1 Support Vector Machine SVM

FIGURE 4.1. SVM

The basic SVM takes a set of input data and predicts the suitable output, so each

given input will be classified into a suitable class [23]. FIGURE 4.1, shows the SVM

classification accuracy which is calculated according to the following formula:

w ∗ x + b = 0, where

x denotes the features

w the normal vector to the hyper plane

b denotes misclassification

Higher accuracy of the classification using SVM requires bigger margins among

classes.

At the beginning we need to test the classification accuracy of SVM and KNN.

We design a dataset with only two features, which are the number of read-only
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and update transactions, and we have only 3 FVs. We use Scikit-learn to test the

machine learning models in this thesis (Scikit-learn is a package that is designed

to introduce many machine learning algorithms and codes (in Python) in a simple

and understandable way) [26]. The result of running the SVM classifier using the

dataset of two features is shown in FIGURE 4.2 (a). In FIGURE 4.2 (a), the x-

axis represents the number of read-only and y-axis represents updates. The classes

represent the three FVs. Each point in the figure represents a training example.

The accuracy of this classification was about 73% which is not high. Some dots

are classified in the wrong class. It is clear that there is misclassification, which de-

creases the classification accuracy. Therefore, the SVM fails at some point because

SVM accuracy increases when the margin between classes is bigger. However, in

our model we need to classify some dots where the number of read-only transac-

tions is close to the number of updates and those usually affect the accuracy of

SVM [23].

FIGURE 4.2. SVM and KNN with the Dataset of Two Features

4.2.2 K-Nearest Neighbor

The K-Nearest Neighbor algorithm (KNN) is a classifier that classifies objects

based on closest training examples in the feature space [3][33]. FIGURE 4.2 (b)
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shows the implementation of KNN on the datasets of two features [26]. FIG-

URE 4.2 (b) shows that all dots are classified under the correct class. The accuracy

of KNN is higher that SVM as it achieves about 90%. Apparently, the KNN model

is nonlinear; it is able to classify the critical dots. In short KNN model is more

suitable for our system than SVM. Thus, we decide to use KNN to support the

transactions’ scheduling process.

However, as aforementioned we have to run the classifier on the dataset of the

three features that appears in TABLE 4.2. FIGURE 4.3 shows the result of the

KNN classification on the three features where each feature is represented by an

axis on the graph. The KNN classifies the data example into three classes which

are red, blue and yellow representing the FVs 1, 4 and 8 respectivly.

FIGURE 4.3. KNN with our Dataset

4.3 The Unsupervised Machine Learning Model

HMM is one of the unsupervised machine learning models. In unsupervised ma-

chine learning techniques the data appears without labels. So, in HMM there are

unobserved hidden states X which must be discovered based on the observed data

Y . HMM consists of some states and all states have probabilities that help to pre-

dict the hidden state [21]. For example, it is difficult to find a scheduling model that
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suits all systems by increasing throughput and reducing conflicts. Therefore, the

suitable transactions’ scheduling for each system is the hidden state. However, we

can find the hidden state based on some observations such as system performance,

the transactions’ history and transactions duration. Furthermore, by recording ob-

servations and states frequently, the first result helps to predict the second one and

so on. Thus, HMM calculations rely on the following:

i. The initial probabilities for hidden states.

ii. Transition probabilities that tells how to transit among states over time.

iii Observation probabilities which are used as indications to find out the hidden

state.

In our model the hidden states are the suitable FVs. As we mentioned above the

FVs we use are 8, 4 and 1. FIGURE 4.4 shows the initial probabilities which we

need to start. The probabilities of FVs 8 and 1 are .33 while it is .34 for FV 4, so

the system starts with state FV= 4. Even if we start with inaccurate probabilities,

the model can improve itself over time by maintaining probabilities based on the

observations. Also, as the probability of X changes over time, we propose transition

probabilities, and we favor remaining in the current state. Therefore, the state of

X at first unit of time T1 is more likely to remain the same at the second unit

of time T2. The probability of switching from X = 8 or from 1 to 4 is .35 and it

is less likely to transit between 8 and 1 directly since the probability is just .15.

The probability of switching from X = 4 to 1 or to 4 is .25. The two states at

the bottom of FIGURE 4.4 shows the probabilities of our observed data, which is

Y 1 = read-only and Y 2 = update. Thus, the more reads favors the FV= 8, the

more updates favors the FV= 1 and the equal number of both suits the FV= 4.
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FIGURE 4.4. HMM and the Probabilities (Start is the initial state, X’s are the states
and Y’s are the observations)

FIGURE 4.5 shows how to build the sequence of states over time. It means to

find the state of X4, we need to calculate the probability of initial state X1, the

transition probability from X1 to X2, the probabilities of Y1 using X2, the transition

probability from X2 to X3, finding Y2 using X3, and the transition probability from

X3 to X4. Indeed, we get the probability from the model (in FIGURE 4.5) and we

multiply them to calculate X4.

FIGURE 4.5. Sequence of States in HMM

4.4 The Design of our Algorithm
4.4.1 The Design of LSA

First, we need to talk about LSA [29]. Using LSA, each object in the memory may

have more than one version. This algorithm is used to execute transactions in paral-
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lel where some read and write operations may interleave and affect the correctness

of each other. The correct concurrent execution can be verified by extending the

execution to match a sequential valid execution; otherwise, it is incorrect. Many

algorithms run transactions and validate the transaction’s execution at the end

to commit or abort, but LSA verifies the consistency at each object access point

of time. Thus, an LSA is able to verify the consistency of execution during each

object access by building consistent snapshots. This can accumulatively verify the

validity and the correctness of the execution.

When a transaction starts execution, it sets the lower bound of its snapshots.

The read operations try to read the last written version of the object. However, if

the last written version was created after the transaction starts, it checks if this

version violates the consistency and, if it does, it ignores that version and reads

an older one which has validity range that suits the transaction. This way LSA

selects the version that produces a consistent snapshot. The write operations are

executed locally and they create new versions at transaction’s commit time.

Consequently, read-only transactions commit directly and they do not abort.

The update transaction must validate the versions to commit or abort, and if it

commits it has to get a unique commit time [29].

4.4.2 Scheduling Algorithm

At the beginning of the execution, our algorithm executes transactions using LSA.

We suppose that we know whether the transaction is read-only or update at the

beginning of the execution. (In many systems, the kinds of transactions are iden-

tified at the beginning such as read balance and bank statements in bank systems,

or products quantities in inventory systems). We record the transactions’ numbers,

order and types in recordingArray[]. The size of the recordingArray[] is related to

how much data we want to investigate. It is preferred to keep it as small as possible
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to avoid the learning overhead and its negative impact on the performance. Then,

we pass the recorded data to the learning model which is either KNN or HMM

and we conduct online and real-time learning. The learning model processes the

data and returns the best FV that suits the execution. After that, the model uses

the proposed FV to schedule transactions on LSA.

In fact, we need to have continuous learning however that influences the perfor-

mance of the system. Therefore, we add flexibility to the algorithm using frequent,

which is a number used to decide how frequently we call the learning model. The

stability and consistency of the numbers, types and arrival times of transactions

differ from one system to another. So, if the system is stable then we have a large

value for frequent, meaning we call the learning model infrequently.

In our algorithm, each transaction arrives increase a global counter which is

called transactionCounter. The transaction first checks the frequent to know if it

is time to call the learning model or not. Then, if it is the time to call the learning

model, it starts recording transactions. In the recording process, each transaction

is represented in the recordingArray[] as a 0 if it is a read-only and as a 1 if it is an

update transaction. Then, it executes using LSA. After the, recording finishes, we

pass the recordingArray[] to the learning model (KNN or HMM) which returns

the FV. The learning model returns the number of read-only fvReadonly and from

that, we calculate the number of updates fvUpdate. From this point, we schedule

transactions based on the FV we have. Indeed, we ignore this FV just in case there

is only one type of transaction. In the algorithm, we use readonly and update

which are counters telling how many pending transactions there are of each type.

4.5 Experimental Results and Discussion

In our experiment, we use standard benchmarks to verify the benefit of learning

on transactional memory scheduling. In fact, we use Linked-list, Red-black Tree
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Algorithm 1: The Algorithm

/* Global variable initialization */
transactionCounter ← −1;
size← x; //To set the size of recordingArray[]
recordingArray[size]; //It records the transactions order and type
recording ← false;
frequent← number. //It tells how frequently we call learning model.
r ← 0; //Counts reads
u← 0; //Counts updates
fvReadonly; //The value assigned by learning model
fvUpdate; //The value assigned by learning model
i← 0;
readonly ← 0; //Counts the pending reads-only
update← 0; //Counts the pending updates

Upon receipt of a transaction do;

//We use an atomic operation to increase transactionCounter
transactionCounter.getAndInc();
//Check if it is the time to record transactions and call learning model
if ((transactionCounter mod frequent) = 0) then

recording ← true;

if (recording = true) then
i + +;
if (i < size) then

if (TransctionType is read-only) then
//0 means read-only
recordingArray[i]← 0;

else
//1 means update
recordingArray[i]← 1;

else
//The learning model is called and returns the FV
fvReadonly ← LearningModel(recordingArray[i]);
fvUpdate← (10− fvReadonly);
i← 0;
//To stop recording
recording ← false;

//Start execution using LSA
LSA(transaction);
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and Bank benchmarks from TinySTM-1.0.5 [13]. We run the experiments on a

machine with dual Intel(R) Xeon(R) CPU E5-2630 (6 cores total) clocked at 2.30

GHz. Each run of the benchmark takes about 10000 milliseconds using 10 threads.

In the Bank benchmark, there are three kinds of operations which are read balance,

write amount and transfer from one account to another. Read balance is a read-only

transaction, while write amount and transfer are update transactions; we consider

any transaction that includes at least one write operation as an update. Initially,

there are only 20% reads-only and 80% updates. The benchmark executes millions

of transactions that access 1024 bank accounts in parallel.

CONTINUE...
else

if ( TransctionType is read-only) then
readonly.getAndInc();
//When it exceeds the FV and there is no update transactions
while (r > fvReadonly) ∧ (update = 0) ) do

wait();

r + +;
LSA(transaction); //Start execution using LSA
readonly.getAndDec();

else
update.getAndInc();
//When it exceeds the FV and there is no read-only transactions
while ((u > fvUpdate) ∧ (readonly = 0)) do

wait();

u + +;
LSA(transaction); //Start execution using LSA
update.getAndDec();

if ((r > fvReadonly) ∧ (u > fvUpdate)) then
r ← 0;
u← 0;

return;
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In Linked-list and Red-black Tree benchmarks, there are three kinds of opera-

tions which are add node, delete node and contain which searches for specific value

in the list or tree. Contain operations are considered as a read-only but add node

and delete node operations are update transactions. In both, initially there are

80% reads-only and only 20% updates.

However, we test the three benchmarks with three different scenarios which are

80% reads-only and 20% updates, 50% reads-only and 50% updates, and 20%

reads-only and 80% updates.

First, we run each benchmark against all FVs to obtain a general idea about

FVs themselves and how they affect the performance. The FVs we use are ratios

out of 10 such that the FV= 9 means 9 : 1, where the first number represents

the number of reads-only and the other represents the number of updates. We test

FVs from 1 to 9 with all three benchmarks and all scenarios.

FIGURE 4.6 (a) demonstrates the throughput of FVs with the Linked-list bench-

mark using different percentages of reads and writes. The figure shows that the

performance improves as we increase the number of read-only transactions and

that happens with all three scenarios. It is clear that the scenario of 80% of reads

only is the best, while throughput drops as we increase the number of updates.

Also, within each scenario, large FVs allow more reads-only to be scheduled con-

currently which increases throughput as well. This happens because the reads-only

usually have less durations than updates and do not abort as they do not affect

the consistency. This increases the throughput and improves the performance.

The same thing happens with the Red-black Tree benchmark, FIGURE 4.6 (b)

shows the Red-black Tree throughput with all FVs. The figure shows dramatic

increment in the throughput for the three scenarios when the FV allows more

reads-only (using large FVs) because the reads-only is much faster than updates.
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FIGURE 4.6. (a) The Linked-list Throughput (Commits Per Time) with All FVs. (b)
The Red-black Tree Throughput with All FVs. (c) The Bank Throughput with All FVs.

In updates, transaction has to traverse the entire tree to the leaf and it may need to

change the colors of some nodes and the shape of the tree which make the update

transaction much longer. Thus, raising the number of reads-only through the per-

centage of generated reads-only or through scheduling improves the performance.

FIGURE 4.6 (c) illustrates the Bank benchmark where all FVs have almost the

same performance with all scenarios. This happens because of the data structure

type, and because of the differences between the duration of read-only transactions

and update ones is very small. Indeed, the duration of read-only transactions here

is a bit longer than the duration of updates. Thus, the scenario of 20% reads-only

and 80% updates achieves the top performance.
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Furthermore, having all FVs as classes in the learning model will affect the

accuracy and increase the learning overhead. Therefore, we need to reduce the

number of FVs in the learning model based on the results shown in FIGURE 4.6.

We select only three FVs which are 1, 4 and 8 to be the classes in our learning

process. Apparently, FIGURE 4.6 shows that the performance of FV= 1 is very

close to FV= 2, the FV= 4 is comparable to 3, 5 and 6, and the performance of

FV= 8 is akin to FVs 7 and 9.

FIGURE 4.7. (a) The Accuracy of LSA Using KNN and LSA Using HMM Compared
to the Enforced FV s Using the Linked-lest Benchmark. (b) The Accuracy of LSA Using
KNN and LSA Using HMM Compared to the Enforced FV s Using the Red-black Tree
Benchmark. (c) The Accuracy of LSA Using KNN and LSA Using HMM Compared to
the Enforced FV s Using the Bank Benchmark. (We Measure the Accuracy Based on the
Throughput)
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In FIGURE 4.7 we show the accuracy of learning models. We run LSA with

learning models which are HMM and KNN such that the learning models check the

prefix of execution and decide the suitable FVs. Then we enforce different FVs in

LSA scheduling and we compare their (FVs) throughputs with throughputs of LSA

using HMM and LSA using KNN. Actually we run them on the three benchmarks

(Linked-list, Red-black Tree and bank) and we run each one with three scenarios

(80% reads-only and 20% updates, 50% reads-only and 50% updates and 20%

reads-only and 80% updates).

FIGURE 4.7 (a) shows the throughput of LSA on the Linked-list benchmark

where FV = 9 shows the best of the enforced FVs. LSA using HMM shows high

accuracy in some cases and fails with others. Clearly, HMM returns an accurate

FV when there is 80% reads-only and 20% updates but it returns inaccurate FVs

with the other scenarios (50% reads-only and 50% updates and 20% reads-only

and 80% updates). On the other hand, LSA using KNN returns accurate FVs with

all three scenarios.

FIGURE 4.7 (b) shows the throughput of LSA on the Red-black benchmark

where FV = 9 also shows the best performance (highest throughput) of the en-

forced FVs. LSA using HMM performs well with the scenario of 80% reads-only

and 20% updates but it does not succeed with the other two scenarios. However,

LSA using KNN performs well with all three scenarios which indicates the success

and accuracy of KNN in the selection of FVs.

FIGURE 4.7 (c) shows the throughput of LSA on the Bank benchmark where

all FVs perform almost the same. Thus, the accuracy of HMM and KNN cannot be

judged as the selection of any FV does not show any difference on the throughput.

However, it is clear that both HMM and KNN do not show negative impact on
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the performance because they are designed in a proper way that minimize their

overhead.

FIGURE 4.8. (a) Comparison of the Throughputs of LSA, LSA with KNN and LSA
with HMM Using the Linked-list Benchmark. (b) Comparison of the Throughputs of
LSA, LSA with KNN and LSA with HMM Using the Red-black Tree Benchmark. (c)
Comparison of the Throughputs of LSA, LSA with KNN and LSA with HMM Using the
Bank Benchmark.

FIGURE 4.8 demonstrates a comparison of the performance of LSA using trans-

actions’ timestamps scheduling, LSA with KNN and LSA with HMM. Timestamps

scheduling means to schedule transactions based on their arrival times. Using the

Linked-list benchmark, FIGURE 4.8 (a) shows that high percentage of read-only

transactions usually results in high throughput as we mentioned before. FIG-

URE 4.8 (a) proves the advantage of using machine learning for transactions’
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scheduling. For LSA using KNN, it shows the highest throughput with all sce-

narios. Also, when we use HMM, it improves the performance of LSA only when

the percentage of reads-only is high. On the other hand, the performance of LSA

with HMM is negatively affected as the percentage of updates increases. The figure

also illustrates the risk of the learning process, as the learning accuracy problems

lead to unsuitable scheduling which causes more aborts. This clearly happens with

HMM when there are 50% or 80% updates. Thus, KNN obviously is more suitable

to LSA scheduling.

The same thing happens with the Red-black Tree benchmark in FIGURE 4.8

(b), where KNN is more efficient than HMM and timestamps scheduling. HMM

works well only with large number of read-only transactions and it fails when we

reduce the reads-only.

In FIGURE 4.8 (c), with the Bank benchmark, the duration of update transac-

tion is less than read-only one. So, the throughput drops when there are more read-

only transactions. Furthermore, KNN and HMM do not have significant influence

on the performance of the Bank benchmark because the durations of transactions

in general are very short, and the durations of updates with aborts almost equals

to the durations of reads-only.

Thus, the learning techniques are more helpful if transactions’ durations on

average are long, and when the costs of updates and aborts are very expensive. Also,

the KNN learning model helps to achieve high throughput and better performance

of LSA.
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Chapter 5
Approximately Opaque Multi-version
Transactional Memory for Read-only
Transactions

5.1 Introduction

This chapter is previously published by IEEE 1. In multi-version transactional

memory, read-only transactions do not abort, while transactions that update ob-

jects may abort. Since any new update creates new version and we still save pre-

vious ones, read-only transactions avoid aborting by finding the version that pre-

serves the correctness and satisfies the consistency. In this chapter we improve the

space complexity by reducing the number of saved versions. However, some trans-

actions would not be able to find the suitable version which affects the consistency.

To cope with this issue, we propose to relax the consistency for some transactions

such that they are allowed to read some stale values of the memory up to some

limit K. Thus, we use an approximate consistency in transactional memory. We

define K-opacity as a relaxed consistency property where transactions’ read oper-

ations may return one of K most recent written values. In this chapter we apply

K opacity only on read-only transactions while the update transactions access

only the latest version of an object. Actually, in this chapter we just focus on

the regular read/write operations on the shared read/write objects. This chapter

shows the design of the K-opaque algorithm and the proof of correctness. After

that, we present some experimental results to illustrate the impacts of consistency

relaxation on performance.

1This chapter previously appeared as [Basem Assiri and Costas Busch, Approximately Opaque Multi-version
Permissive Transactional Memory, published by The Institute of Electrical and Electronics Engineers (IEEE)].
See the permission letter in Appendix.
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5.2 Design of the Algorithm

Our multi-version algorithm (Algorithm 2) is a timestamp-based algorithm (similar

to previous works that do not consider approximated opacity proposed [24][12]).

As shown in FIGURE 5.1, each shared object x has multiple versions v that are

stored in list x.vl = (v1, v2, ..., vn). A version is denoted as vi = (ts, data, rl), where

ts represents the timestamp of the transaction that writes this version, data is the

value of x, and rl is a reader list that includes the timestamps of all transactions

that have been reading this version. In our algorithm, we create a new version

of x each K commits and we save it in version list x.vl. The last written value is

maintained in x.lastCommit = (ts, data, rl) which is overwritten with each commit

on x to record the last write.

FIGURE 5.1. Object Data Structure

In our algorithm, there is a special timestamp object with a respective atomic

getAndIncrement() method which increments the timestamp value by 1. So, each

transaction that arrives is given a unique value by increasing the current timestamp

value. As noted before, we use the timestamp to index the transaction, as for

example a transaction with timestamp i is denoted Ti. For two transactions Ti and

Tj, if j > i then Ti arrives before Tj. At any point of time, liveT is a special object

43



that contains a list of timestamps of read-only transactions that are currently

pending.

Consider now read-only transactions. As shown in Algorithm 2, after a read-only

transaction Ti arrives and gets a timestamp, it is added to the list of live trans-

actions liveT . As we will show in the correctness analysis of our algorithm, read

operations within a read-only transaction are K-legal; in other words, read-only

transactions are K-legal. (In many systems, the kinds of transactions are identified

at the beginning such as read balance and bank statements in bank systems, or

product quantities in inventory systems). A read operation x.r(data) in Ti tries

to read the latest version by invoking function GetLatestVersion() (Algorithm 3).

Algorithm 3 tries first to read x.lastCommit, the latest committed version. If the

timestamp x.lastCommit.ts is smaller than the transaction’s Ti timestamp i, then

GetLatestVersion() returns x.lastCommit. Otherwise, if x.lastCommist.ts > i, it

finds a saved version vj in x.vl (version list) where vj.ts is the largest timestamp

smaller than i. After that, it adds Ti timestamp to the version’s rl (reader list)

and returns the version to be read. When Ti finishes the execution of all its read

operations, it calls TryC() (Algorithm 4) and commits directly (recall that in our

algorithm read-only transactions do not abort).

FIGURE 5.2(a) shows an example where read-only transaction can read the ver-

sion x.lastCommit without violating the correctness of execution. The execution

in FIGURE 5.2(a) illustrates the situation where there is no concurrent write on

the object. The read-only transaction T3 finds that the x.lastCommit.ts equals to 2

which is smaller than its own timestamp 3. Therefore, it reads x.lastCommit which

shows the last write on the object x. In contrast, FIGURE 5.2(b) demonstrates a

situation where there is one concurrent write on the object x. When the read-only

transaction T3 executes the operation x.r(data) it finds that x.lastCommit.ts = 4
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FIGURE 5.2. (a) Read-only Transaction with no Concurrent Writes, (b) Read-only
Transaction with a Concurrent Write

(due to the update transaction T4) which is greater than its own timestamp 3.

Thus, it reads a version from x.vl. In particular, it reads the latest saved version

with the timestamp smaller than its own.

We shift now our focus to update transactions. In Algorithm 2 consider an

update transaction Ti and read operation x.r(data). As before, the algorithm in-

vokes GetLatestVersion() (Algorithm 3) but now it checks only x.lastCommit and

adds i to x.lastCommit.rl (reader list). Then, Algorithm 1 checks the condition

x.lastCommit.ts > i and, if true, Ti aborts immediately, since the object has been

updated by a concurrent transaction. Otherwise, it saves locally x.lastCommit.ts

(for validation) and reads the data of x. On the other hand, for any write oper-

ation, the transaction Ti just saves the newly written value to its local memory

temporarily until it commits in shared memory; also Ti maintains its own wSet

(set of locally written objects) during the execution.

When the update transaction Ti finishes the execution of all operations, it calls

TryC() (Algorithm 4). If any object x updated by Ti has been overwritten by a

newer transaction than i, then Ti aborts. This is checked by invoking function

Validate() (Algorithm 5), and checking if the timestamp x.lastCommit.ts has a
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value greater than i. Moreover, for all objects in Ti’s wSet (write set), we check

if there is a transaction Tm that arrives after Ti (i.e. m > i) and reads the latest

version, then it aborts. In this case, we may need to abort Ti because we will not

be able to serialize Ti and Tm in the process of generating S which is required

to prove the correctness of concurrent execution as we prove later. If Ti aborts,

TryC() returns false and then we change the status of Ti to aborted.

In commit of transaction Ti, TryC() locks2 all objects in its wSet. We over-

write the x.lastCommit version and update x.lastCommit.ts = i. We do not

create new versions with each commit, but with each commit we increase the

x.versionCounter and we create a new version for x only every K commits. We

let the new version’s ts to be equal to the committed transaction’s timestamp (i.e.

i) and we add it to x.vl. After that, we release all locks and change the transaction

status to committed. The garbage collection for unused object versions will be

explained in detail in Chapter 8.

5.3 Correctness of the Algorithm

In the correctness analysis we prove that our algorithm is opaque for update trans-

actions, and K-opaque for read-only transactions. Let H be an arbitrary execution

history, and H ′ the respective complete history. Consider the sequential execution

S which is a serialization of the transactions in H ′ such that the order of transac-

tions is determined by the timestamps of the transactions, such that if in H ′ for

any two transaction Ti and Tj, i < j, then Ti <s Tj.

Lemma 5.1. S preserves the real time order of H ′.

Proof. According to Algorithm 1, for a transaction Ti the timestamp i is obtained

through an atomic operation i ← timestamp.getAndInc(); If Ti <H′ Tj then, it

2To prevent deadlock we assume that all transactions acquire locks for the individual objects in a predefined

order.
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Algorithm 2: K-opaque Permissive Algorithm

/* K-opacity for read-only transaction */
/* Global variable initialization */
timestamp← 0;
liveT ← ∅;

Upon receipt of a transaction do;

foreach transaction Ti do
/* i gets a unique timestamp */
i← timestamp.getAndInc();
Ti.status← active;
if Ti.kind = readonly then

/* liveT is used for garbage collector */
liveT ← i ∪ liveT ;

Ti.wSet← ∅;
while there is an unexecuted operation o do

/* Read operation where y contains data */
if o = x.r(y) then

v ← GetLatestVersion(i, x);
if v.ts > i then

/* This check applies only for read operations within update
transactions and can cause immediate abort */
Ti.status← aborted;
return;

// y contains the value that is read */ y ← v.data;

else
/* o = x.w(y); write local value y */
xlocal.data← y;
Ti.wSet← x ∪ Ti.wSet;

//Based on TryC(), transaction commits or aborts
if TryC(i, i.wSet) then

Ti.status← committed;

else
Ti.status← aborted;

return;
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Algorithm 3: GetLatestVersion(i, x)

last← null;
Lock x;
if Ti.kind = readonly then

if x.lastCommit.ts < i then
last← x.lastCommit;
Add i to list x.lastCommit.rl;

else
v ← the most recent version in x.vl with timestamp smaller than i;
last← v;
Add i to list v.rl;

else
/* Update transaction */
last← x.lastCommit;
Add i to list x.lastCommit.rl;

Unlock x;
return last;

has to be that i < j. Since S orders transactions in the timestamp order, then we

also have that Ti <S Tj, as needed.

We continue to prove that S is K-legal with respect to any object x for read-only

transactions, and then we prove that it is 1-legal for update transactions.

Lemma 5.2. For any object x, the history S is K-legal with respect to read-only

transactions accessing x.

Proof. Let Ti be a read-only transaction. Note that in our algorithm read-only

transactions do not abort, and hence Ti does not abort. Suppose Ti executes oper-

ation x.ri(y). According to function GetLatestVersion(), we have that Ti observes

either x.lastCommit.ts < i or x.lastCommit.ts > i. We examine these two cases

separately.

i. x.lastCommit.ts < i:

then GetLatestVersion() returns x.lastCommit and data y = x.lastCommit.data,
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Algorithm 4: TryC(i, i.wSet)

/* Check if Ti is readonly */
if Ti.kind = readonly then

/* Remove Ti from liveT */
liveT ← liveT \ i;
return true;

/* Ti has to be update transaction */
L← ∅;
/* Assume a predetermined order for the objects */ forall the x ∈ Ti.wSet
do

Lock x;
L← L ∪ x;
if Validate(i, x) = false then

unlock all locked objects in L;
return false;

forall the x ∈ i.wSet do
x.versionCounter.getAndInc();
if x.versionCounter mod K = 0 then

/* Add new version to x.vl */
Add (i, xlocal.data, nil) to x.vl;

/* Overwrite x.lastCommit */
x.lastCommit← (i, xlocal.data, nil);

Unlock all objects in L;
return true;

Algorithm 5: Validate(i, x)

/* Check if lastCommit has been overwritten */
if x.lastCommit.ts > i then

return false;

/* Check if some other transaction Tm has read the latest version where
m > i */
if x.lastCommit.rl contains a transaction Tm, where m > i then

return false;
return true;
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which is the latest version of the object at that moment when x is ac-

cessed by Ti. Let Tj be the transaction that committed the value; that is,

j = x.lastCommit.ts < i. Since S preserves the timestamp order, Tj appears

before Ti in S. Suppose that there is another transaction Tk, with j < k < i,

that commits a value to object x. If Tk commits after x.ri(y) locks x (in

GetLatestVersion()), then according to function Validate(), Tk has to abort

because Ti is in the reader list of x when Tk attempts to commit. On the

other hand, if Tk commits before x.ri(y) locks x, then Ti must have read the

value committed by Tk, or in other words Tk = Tj.

ii. x.lastCommit.ts > i:

then GetLatestVersion() returns a version v, and data y = v.data, where v

belongs to version list x.vl and it is the latest version of x with timestamp

v.ts = j < i. Let Tj be the transaction that created version v. We need to

prove that there cannot be more than K − 1 other committed transactions

for object x between the time that Tj commits and Ti starts in H ′. We

observe that any transaction Tk that commits a value for x after Tj must

have timestamp k > j, since otherwise the interval of Tk would contain the

interval of Tj in H ′, and according to function Validate() Tk would abort.

We have that in S, Tj appears before Ti, since j < i. Let X be the set

of transactions which appear in S between Tj and Ti and commit a value

for x (for any Tk ∈ X it holds that j < k < i). We want to show that

|X| ≤ K − 1. Similar to the reasons explained above in case i, X cannot

contain any transaction which commits after x.ri(y) locks x. Moreover, X

cannot contain any transaction Tk that commits before Tj, since in H ′ interval

Tj would contain interval Tk and according to function Validate() Tj would
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abort. Hence, all the transactions in X must have timestamp greater than j

and must commit in H ′ after Tj. If |X| ≥ K, according to our algorithm, a

newer version v′ of x must have been saved (in x.vl) after Tj commits and

before Ti starts, by some transaction Tζ ∈ X. However, this is impossible,

since Ti would have read v′ and not v.

Therefore, we have that in case i execution S is 1-legal, while in case ii the execution

S is K-legal.

Lemma 5.3. For any object x, the history S is 1-legal with respect to update

transactions accessing x.

Proof. Now consider the update transactions that access object x. Let Ti be an

update transaction that invokes operation x.ri(y). According to the algorithm,

if x.lastCommit.ts > i, then Ti is aborted and operation x.ri(y) never com-

pleted. On the other hand, if x.lastCommit.ts < i then x.ri(y) completes with

y = x.lastCommit.data. Let j = x.lastCommit.ts, namely, Ti reads the value

written by Tj, with j < i. Similar to the proof of Lemma 5.2, any transaction Tk

that commits a value for x after Tj must have timestamp k > j.

In S transaction Tj appears before Ti. We only need to show that in S there

is no other committed transaction between Tj and Ti for object x. Suppose that

there is a transaction Tk, with j < k < i, which appears between Tj and Ti in S

and commits a value to x. If Tk commits before Tj in H ′, function Validate() would

cause to abort Tj. If Tk commits before x.ri(y) locks object x, then Ti must have

used the value committed by Tk. On the other hand, if Tk commits after x.ri(y)

locks object x, then according to function Validate() Tk has to abort, since Ti is in

the reader list of x when Tk attempts to commit, and i > k.
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Since H ′ respects the real time order of H, considering all objects used in H,

from Lemmas 1, 2 and 3 we obtain the following theorem.

Theorem 5.4. Any execution history H of our algorithm is K-opaque with respect

to read-only transactions and 1-opaque with respect to update transactions.

Theorem 5.5. An approximately opaque multi-version transactional memory is

never to abort read-only transaction but update transaction is aborted only if it has

a conflict with another transaction.

Proof. Clearly read-only transactions execute the read operations and in TryC()

they commit directly. However, update transaction in TryC() may abort if it inval-

idates the correctness of another transaction. So it has to lock the object and check

x.rl to know if it is being read by another transaction that has greater timestamp.

In such a case the update transaction aborts. This obviously means it aborts to

allow another transaction to commit.

It is easy to check that the proposed algorithm does not deadlock, since function

GetLatestVersion() accesses one object at a time, and function TryC() accesses

objects in a predetermined order, avoiding racing situations.

Lemma 5.6. Our algorithm does not deadlock.

Assume that the transactions in our algorithm access the set of objects O =

(x1, x2, ..., xn). Let V be the set of all committed versions (updating xi.lastCommit)

and V ′ the set of all saved versions (saved in xi.vl).

Theorem 5.7. In any execution of our Algorithm, the total number of saved object

versions is |V ′| = Θ(|V |/K + |O|).

Proof. Through the execution, for any object xi let the number of committed

versions be vxi (updating xi.lastCommit). The total number of committed versions
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for all objects is |V | =
∑n

i=1 vxi . Our algorithm saves a new version for object xi

each K object commits. Thus, the total number of saved versions for object xi

(saved in xi.vl) is vxi/K, and consequently, the total number of saved versions |V ′|

for all objects will be |V |/K. In addition, each object has a lastCommit version

which adds a number of |O| versions to |V |/K.

Now, if we exclude the last committed versions, the total version space of regular

multi-version permissive transactional memory is Θ(|V |), since every version is

saved at some point of time. On the other hand, from Theorem 5.7, with our

approximately opaque multi-version permissive algorithm we only create a new

version each K commits reducing this number to Θ(|V |/K). Furthermore, with

the garbage collector, old versions are deleted which reduces the active number of

|V ′| at any point of the execution, and that will be shown in detail in chapter 8.

5.4 Experimental Results

In our experiment, we simulate Bank, Linked-list and Red-black Tree bench-

marks from TinySTM-1.0.5 [13], but we modify the structure of the object to

match our specification. We run the experiments on a machine with dual Intel(R)

Xeon(R) CPU E5-2630 (6 cores total) clocked at 2.30 GHz. Each run of the bench-

mark takes about 5500 milliseconds using 10 threads. In the Bank benchmark, there

are three kinds of operations which are read balance, write amount and transfer.

In the Linked-list and the Red-black Tree benchmarks, we have search operations,

add node and delete node. Read balance (in Bank) and search (in Linled-list and

Red-black Tree) are read-only, but write, transfer (in Bank) and add/delete node

(in Linled-list and Red-black Tree) are update transactions. In our execution we

generate 50% read-only transactions and 50% update ones.

In FIGURE 5.3, we compare the throughput (commits per time) of an opaque

execution (1-opaque), 2-opaque, 4-opaque and 8-opaque using the three bench-
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FIGURE 5.3. (a) Comparison of the Throughputs (Committed Transactions Per Time) of
Opaque, 2-opaque, 4-opaque and 8-opaque Using the Linked-list Benchmark. (b) Com-
parison of the Throughputs of Opaque, 2-opaque, 4-opaque and 8-opaque Using the
Red-black Tree Benchmark, (c) Comparison of the Throughputs (Committed Transac-
tions Per Time) of Opaque, 2-opaque, 4-opaque and 8-opaque Using the Bank Bench-
mark.

marks. Clearly, the relaxed opacity in 2-opaque, 4-opaque and 8-opaque help to

avoid some aborts and to improve the throughput. Furthermore, in 1-opaque all

read-only transactions are precise but in 2-opaque, 4-opaque and 8-opaque the

percentage of approximated read-only transactions is smaller than the percentage

of the precise ones. We note that there is an increase in the number of commit-
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FIGURE 5.4. Compare the Number of Committed Updates to the Number of the Saved
Versions in Opaque, 2-opaque, 4-opaque and 8-opaque Using the Linked-list Benchmark

ted updates since relaxing the opacity of a read-only transaction sometimes allows

to avoid many aborts; as 1-opaque read-only transaction may conflict with many

update ones.

FIGURE 5.4 shows a comparison between the number of committed updates

and the number of the saved versions using the Linked-list benchmark. In 1-opaque

the number of committed updates and the number of the saved versions are the

same, since we save a new version with each committed update. In 2-opaque and

4-opaque, the number of saved version increases because such relaxations allow

to commit very large number of updates. However, in 8-opaque the number of

committed updates increases but the number of none-saved versions is very large

(as we save 1 version every 8 commits), so the number of saved versions decreases.
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Chapter 6
Approximately Opaque Transactional
Memory for Read/Write and Count
Objects

6.1 Introduction

After the promising results of applying approximated opacity on read-only transac-

tions, in this chapter we apply the concept of K-opacity on update transactions as

well. The update transactions access regular read/write and count objects, which

are common objects used in typical concurrent programs. This chapter shows the

design of the K-opaque algorithm for read/write and counting operations. In fact,

for counting operations we just consider addition and subtraction. Then we show

the proof for correctness. After that, we present some experimental results to il-

lustrate the impacts of consistency relaxation on performance.

6.2 The Design of the Algorithm

Let us start with the structure of the TM objects where there are two kinds of ob-

jects which are read/write and count objects. FIGURE 6.1 (a) shows the read/write

object x has fields of (ts, data, commitsCounter,maxT, dataT, rl[]), where ts shows

the maximum timestamp of the transactions that commit values to x, data is the

value of x, commitsCounter records the number of commits on x to ensure that

we overwrite x every K commits, maxT records the maximum timestamp of the

transactions that commit on x, dataT records the data of maxT transaction and

rl[] records the timestamps of the live transactions that have been reading x.

FIGURE 6.1 (b) illustrates the count object x which consists of some fields

which are (ts, data, wl[][], index), where ts represents the maximum timestamp

of the transactions that commit values to x, data is the value of x and wl[][] is

a writer list which is an array of size n, where n is the number of threads in
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FIGURE 6.1. (a) Read/Write Object Data Structure. (b) Count Object Data Structure.

the system. Actually, wl[][] has three columns such that each update transaction

writes to x must post its timestamp (tx) in the first column, the data it writes

in the second column, and the transaction status (live, committed or aborted) in

the third column. Since the wl[][] is an integer array we represent the transaction

status with 0, 1 and 2 corresponding respectively to live, committed and aborted.

In addition, we use index to tell the update transactions where to write in wl[][].

To start with our algorithm, the classes RWObject and Count, show the structure

of the objects. Basically, our algorithm is timestamp-based that executes transac-

tions concurrently but it does not update objects with each commits. Indeed every

K commits on the object overwrites it with a new value.

Main() (Algorithm 6) shows the structure of the transaction where it has a

unique timestamp i using getAndIncerement() method that increments the value

of a special object timestamp by 1. Transaction has a status Ti.status that is set to

live and adds itself to the liveT list which is used for the garbage collector in chap-

ter 8. It also has an access set Ti.accSet that is maintained during the execution.

Moreover, valid Boolean variable is used as a flag to continue the execution of Ti
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or abort it immediately when it is needed. We have also two global variables which

are correct (that is used to calculate the correct value of update transactions) and

commits which counts the number of commits on x.

Then, transaction Ti executes all its operations which are read, write and add.

For all operations we add the object x to Ti.accSet and then execute the operation

by calling function ReadWrite() or Add(). If the functions return false, then we

change valid to false and Ti aborts immediately. When Ti executes all operations

it calls TryC() and based on that it commits or aborts.

6.2.1 Read/Write Operations

For read/write operations, in ReadWrite() (Algorithm 7), if the transaction’s times-

tamp i is smaller than x.ts, then Ti aborts since it violates the correctness property

(timestamp-based execution). Otherwise, if data = Null means the operation is

read, then we add i to x.rl[] and get x.data. At the end of Ti execution, it calls

TryC() (Algorithm 10) where the read operations do not validate.

On the other hand, if data ! = Null means the operation is write, Ti writes in

its own local memory. At the end of Ti execution, it calls TryC() to validate. It

locks x (we lock objects in a predetermined order to avoid deadlock) to check if

there is another transaction with a timestamp greater than i commits on x. Also,

it checks if another transaction with greater timestamp have read x. In these two

cases Ti aborts. Otherwise if the validation goes well, in Commits() (Algorithm

12) we change Ti.status to committed and we store the maximum timestamp of

the transactions that commit on x in x.maxT , and the data of that transaction

in x.dataT . Then we increase x.commitsCounter by one. If it is equal to K, then

we overwrite x with the timestamp and the data that are stored in x.maxT and

x.dataT . We reset x.commitsCounter, x.maxT and x.dataT , and we release all
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locks. However if x.commitsCounter < K, Ti just commits and does not overwrite

x.

In Abort() (Algorithm 11), we change Ti.status to aborted.

6.2.2 Counting Operations

For counting operations, in Add() (Algorithm 8), if x.ts > i, then Ti aborts. Oth-

erwise, to read the count object x (x.add(0)) we get x.data and write locally. To

add a nonzero value to x, if Ti accesses x for the first time, then Ti adds itself to

x.wl[][], such that it increases x.index which tells in which row Ti can write, and

then it posts i, data and Ti.status to x.wl[][]. Ti also writes in its local memory. If

Ti already accessed x, then it would already be in x.wl[][]. In this case, just add

the data of the operation to the data that is already stored in x.wl[][].

Then, in TryC(), we lock x and call CheckStatus() (Algorithm 9) to know if Ti

is aborted by another transaction, or x has been overwritten by a transaction Tm

which has a timestamp greater than i, then we return false and Ti aborts.

Otherwise the validation goes well and then Ti calls Commit() and checks if the

number of committed transactions including (Ti) equals to K, then Ti overwrites

x with the correct value that considers all values of the committed transactions

in x.wl[][]. Therefore, Ti aborts all live transactions in x.wl[][], copies the data of

committed transactions from x.wl[][] to temporary array temp[][] and sorts temp[][]

based on the transactions’ timestamps. After that, it calculates the correct value

of the x.data and finds the maximum timestamp in temp[][] (max). It overwrites

x with x.ts = max, x.data = correct and resets all other fields of x. We release all

locks and change Ti.status to committed. However, if the number of committed

transactions is less than K, Ti just commits and changes its status in wl[][].

In Abort() (Algorithm 11), we change Ti.status to aborted, and we change Ti

status to aborted in the writer lists of all objects in Ti.accSet.
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Class RWObject
int ts← 0;
int data← 0;
int commitsCounter ← 0;
int maxT ← −1;
int dataT ;
int rl[];

Class Count

int ts← 0;
int data← 0;
int commitsCounter ← 0;
int index← 0;//Array’s index
//wl[][] is an array to record update transactions
//n is the number of the thread in the system
int wl[n][3];

6.3 Correctness of the Algorithm

In the correctness analysis we prove that our algorithm is K-opaque for all transac-

tions. Let H be an arbitrary history of an execution. Let H ′ be a complete history

that we obtain such that if a pending transaction in H didn’t invoke either Com-

mit() or Abort() then its status is aborted, while in any other case the status is

either committed or aborted, according to which of the two functions the trans-

action invoked. Let S be the sequential execution, which is a timestamp-based

serialization of the transactions in H ′.

Lemma 6.1. S preserves the real time order of the transactions in H ′.

Proof. According to Main() (Algorithm 6), each transaction Ti obtains a unique

timestamp using i ← timestamp.getAndInc(), which is an atomic operation. If

Ti <H′ Tj, then i < j. Since S orders transactions based on their timestamp, we

get Ti <S Tj. In other words, <H′⊆<S, as needed.
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Algorithm 6: Main ()

/* Global variable initialization */
timestamp← 0;
int correct← 0;//To calculate the correct value
int commits← 0;
bool valid = true;

Upon receipt of a transaction do;

foreach (transaction T ) do
//Get a unique timestamp
i← Timestamp.getAndInc();
Ti.status← live;
/* liveT is used for garbage collector */
liveT ← i ∪ liveT ;
Ti.accSet← ∅;
while (there is unexecuted operation on object x) do

switch operation on x do
case (x.r())

//Read operation
Ti.accSet← x ∪ Ti.accSet;
valid = ReadWrite(i, x, data);

case (x.w(data))
//Write operation
Ti.accSet← x ∪ Ti.accSet;
valid = ReadWrite(i, x, data);

case (x.add(data))
//Add operation
Ti.accSet← x ∪ Ti.accSet;
valid = Add(i, x, data);

if (valid = false) then
Abort(i, Ti.accSet);
return;

//Based on TryC(), transaction commits or aborts
if (TryC(i, Ti.accSet)) then

Commit(i, Ti.accSet);

else
Abort(i, Ti.accSet);

return;
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Algorithm 7: ReadWrite(i, x, data)

//If a newer transaction overwrites x, then Ti aborts
if (i < x.ts) then

return false;

if (data = Null) then
//Read operation
add i to x.rl[];
get(x.data);

else
//Write operation
//Write the value data to x in local memory
let xlocal.data← data;

return true;

We continue to prove that S is K-legal with respect to any object x for any

transaction.

Lemma 6.2. The history S is K-legal, for any read/write object x.

Proof. Let Ti be a transaction that executes read operation x.ri(data). Accord-

ing to function ReadWrite(), Ti checks x.ts that shows the timestamp of the last

transaction that overwrites x. If x.ts = j > i , then Ti aborts. If Tj is the last

transaction that overwrites x, then we need to prove that there cannot be more

than K − 1 other committed transactions on x between the time that Tj commits

and Ti performs its read in S. Since j < i we have that in S, Tj <S Ti. Let Q be

the set of transactions which appear in S between Tj and Ti which have a write

operation to x and commit (Q does not contain Tj or Ti). We only need to show

that |Q| ≤ K − 1.

We first show that none of the transactions in Q overwrite x. Suppose for the sake

of contradiction that there is a transaction Tm ∈ Q which overwrites x, namely, it

sets x.commitsCounter = 0 and updates x.data = xlocal.data and x.ts = m. Note

that j < m < i. We examine three cases with respect to when Tm commits in H ′:
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Algorithm 8: Add(i, x, data)

int max← −1;
//If a newer transaction overwrites x, then Ti aborts
if (x.ts > i) then

return false;

//If the operation is reading the counter
if (data = 0) then

//Get the value of x
int y = x.data;
let xlocal.data← y;

else
//If the operation is writing to the counter
//If the same transactions execute more than one counting operation on
the same object x
for ( from m← 0 to m = n) do

if (wl[m].tx = i) then
x.wl[].data = x.wl[].data + data;

//If Ti accesses x for first time
r ← x.index.getAndInc();
//wl is an array of size n
x.wl[r].tx← i;
x.wl[r].data← data;
x.wl[r].status← Ti.status;
//Write the value data to x in local memory
int y = x.data;
let xlocal.data← y;

return true;

• Tm commits before Tj commits.

In this case, when Tj invokes TryC() it observes one of the following two

scenarios:

– maxT = m > j: Tj observes that a transaction Tm with higher times-

tamp (m > j) has committed on x (but it does not overwrite x), since

maxT records the maximum timestamp of the committed transactions,

and hence Tj aborts.
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Algorithm 9: CheckStatus(i, x)

int TiRemoved← 0;
//Check if Ti is aborted and removed from wl by another transaction
for ( from m← 0 to m = n) do

if (x.wl[m].tx = i) then
TiRemoved← 1;//It is not removed
break;

//If Ti is removed from wl
if (TiRemoved = 0) then

commits = −1;
return commits;

//Ti still in wl
x.wl[m].status = committed;
//Check how many committed transactions
commits = x.commitsCounter;
return commits;

– x.ts ≥ j: Tj observes that x was actually overwritten by Tm or by a

more recent transaction, and hence, Tj aborts.

In either scenario, Tj aborts, which is impossible.

• Tm commits and overwrites x before x.ri() starts.

In this case, Ti reads either the value written by Tm or by a more recent trans-

action (with timestamp x.ts ≥ m). However, this contradicts the assumption

that Ti reads x.ts = j.

• Tm commits and overwrites x after x.ri() ends.

In this case, in its TryC() transaction Tm will observe that x.commitsCounter ≥

K − 1 (which means Tm is the Kth transaction), and also it observes that Ti

is in the reader list of x (that is, i ∈ x.rl with i > m), and the combination of

these two observations together force Tm to abort, which is a contradiction.

Therefore, no transaction in Q overwrites x. This implies that each transaction

in Q increments x.commitsCounter. For a transaction Tk ∈ Q, let ck denote the
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Algorithm 10: TryC(i, Ti.accSet)

L← ∅;
forall the (x in Ti.accSet) do

lock();
L← L ∪ x;
switch Type of x do

case x is RWObject
if (data = Null) then

//Read operations do not validate

else
//For write operation
if ((x.ts > i) ∨ (maxT > i)) then

//Aborting because a concurrent write
Unlock() all objects in L;
return false;

if ((x.rl[] has a transaction Tm where
m > i) ∧ (x.commitsCounter = K − 1)) then

//Aborting because a concurrent read
Unlock() all objects in L;
return false;

case (x is Counter)
commits←CheckStatus(i, x);
if ((commits = −1) ∨ (x.wl[] has a transaction Tm where m > i))
then

Unlock() all objects in L;
return false;

return true;

Algorithm 11: Abort(i, Ti.accSet)

Ti.status← aborted;
//Change its status in all counters and queues it accesses
forall the (x in Ti.accSet) do

x.wl[x.index].status← aborted;
remove i from x.rl[];

return;
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Algorithm 12: Commit(i, Ti.accSet)

int max← −1;
Ti.status← committed;

forall the (x in Ti.accSet) do
switch Type of x do

case x is RWObject
if (x.maxT < i) then

//Recording the maximum timestamp and its data
x.maxT = i;
x.dataT = data;

x.commitsCounter + +;
if (x.commitsCounter = K) then

//Overwrite x
x.ts = x.maxT ;
x.data = x.dataT ;
reset x.commitsCounter, x.maxT and x.dataT ;

case (x is Counter)
x.commitsCounter + +;
if (x.commitsCounter = K) then

//Calculate the correct value considering only the committed
transactions
abort the other live transactions in x.wl[][];
copy the data of committed transactions from x.wl[][] to
temp[][];
sort(temp[][]); //Based on the timestamps
max = max(temp[].tx); //Maximum timestamp in temp[][]
for (from j ← 0 to j < K) do

correct← correct + temp[j].data;

x.data← correct;
x.ts← max;
reset x.wl[][] and x.index;

else
//Just Commit
x.wl[].status = Committed;

Unlock() all objects in L;
return true;
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respective updated value of x.commitsCounter. Next we show that for any pair

Tk, Tl ∈ Q, where k < l, it must hold that ck 6= cl. Since x.commitsCounter is

updated atomically (is locked by each transaction that modifies it), if ck = cl then

some transaction Tm must commit and overwrite x (reset x.commitsCounter) after

Tk commits and before Tl commits in H ′. We know that transaction Tm cannot

be in Q. Therefore, m < j, which is impossible since Tm would abort observing a

higher timestamp on x than its own (x.ts ≥ j). Therefore, the transactions in Q

assign unique values to x.commitsCounter. Since the x.commitsCounter cannot

exceed K − 1 and none of the transactions in Q set x.commitsCounter = 0, we

get that |Q| ≤ K − 1, as needed.

As a special case, the same properties for Q hold even if Ti reads the initial value

of x and Tj is replaced by a special instantaneous event that initializes x.

Lemma 6.3. The history S is K-legal, for any count object x.

Proof. According to the implementation of Algorithm Add(), within a transaction

Ti we can treat the sequence of all add operations as a single x.addi(vi) operation

which aggregates the added values of the operations to a single operand value vi,

to be added to the current value of x. So assume that in each transaction Ti there

is at most one add operation on object x with operand vi.

Let S(x) = T1, T2, . . . , Tq be the subsequence of transactions in S that invoke

an add operation to x. A transaction Ti that overwrites x is a transaction that

commits and updates x.data = xlocal.data, and it also sets x.commitsCounter = 0

and x.ts = i. Let S ′(x) denote the subsequence of S(x) consisting of all trans-

actions that commit. Let S ′′(x) denote the subsequence of S(x) consisting of all

transactions that overwrite x.
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Let r1, . . . , rq be the respective sequence of returned values of the add operations

of transactions in S(x), namely, ri = x.addi(vi) is the value returned by Ti. Let r′g

denote the precise value that would have been returned by the add operation of

transaction Tg when the consistency is precise, that is, r′g = v0+
∑

(1≤l<g)∧Tl∈S′(x) vl,

where v0 is the initial value of x. Let og = rg+vg be the result of the add operation

of transaction Tg. Similarly, let o′g = r′g + vg be the respective precise result of the

add operation of transaction Tg.

For each Tg ∈ S(x) let Pg denote the set of the last K transactions which precede

Tg in S ′(x). We only need to prove the following two properties:

(i) For each Tg ∈ S ′′(x), rg = r′g (the transactions in S ′′(x) are precise).

(ii) For each Tg ∈ S(x) \ S ′′(x), either rg = ol and Tl ∈ Pg and Tl ∈ S ′′(x), or

rg = v0 and |Pg| < K.

We prove these properties by induction on q. For q = 0, S(x) is empty and the

properties hold trivially. Assume now that the properties hold for any q < i; we

will show that the properties hold also for q = i > 0.

Consider now the last transaction Ti. According to function Add(), Ti checks

x.ts that shows the timestamp of the last transaction that overwrites x. Suppose

that x.ts = j > i. Let Q be the set of transactions which appear in S between Tj

and Ti and that have an add operation to x and commit (Q does not contain Tj

or Ti). We continue to show that |Q| ≤ K − 1.

We first show that none of the transactions in Q overwrite x. Suppose for the

sake of contradiction that there is a transaction Tm ∈ Q which overwrites x. Note

that j < m < i. We examine three cases with respect to when Tm commits in H ′:
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• Tm commits before Tj commits.

In this case, when Tj invokes TryC() it observes one of the following two

scenarios:

– m ∈ x.wl and m > j: Tj observes that a transaction Tm with higher

timestamp (m > j) has committed on x but it does not overwrite x,

and hence Tj aborts.

– x.ts ≥ j: Since Tm commits and overwrites x based on the Algorithm

Commit(), Tm aborts all live transactions with smaller timestamp than

m, and hence Tj aborts.

In either scenario, Tj aborts, which is impossible.

• Tm commits and overwrites x before x.addi() starts.

In this case, Ti reads either the value of x written by Tm or by a more

recent transaction (with timestamp x.ts ≥ m). However, this contradicts the

assumption that Ti reads x.ts = j.

• Tm commits and overwrites x after x.addi() ends.

In this case, in its TryC() transaction Tm will observe that x.commitsCounter ≥

K−1 (which means Tm is the Kthth transaction), and also it observes that Ti

is in the writer list of x (that is, i ∈ x.wl with i > m), and the combination of

these two observations together force Tm to abort, which is a contradiction.

Therefore, no transaction in Q overwrites x. This implies that each transaction

in Q increments x.commitsCounter. Therefore, similar to the proof of Lemma

6.2 the transactions in Q assign unique values to x.commitsCounter. Since the

x.commitsCounter cannot exceed K − 1 and none of the transactions in Q set

x.commitsCounter = 0, we get that |Q| ≤ K − 1. The same observations for Q
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hold even if Ti reads the initial value of x and Tj is replaced by a special event

that initializes x.

Suppose now that Ti ∈ S ′′. When Ti invokes Algorithm Commit() the only

committed transactions in the writer list of x are the ones in set Q. Therefore,

the value returned by the add operation of Ti is equal to ri = oj +
∑

Tl∈Q vl. By

induction hypothesis, rj = r′j, and hence ri = r′i, and therefore, property (i) holds.

If Ti ∈ S \S ′′, then it returns ri = rj = r′j. Since, Q∪{Tj} ⊆ Pi property (ii) holds

as well. (Note that properties (i) and (ii) hold even if Ti reads the initial value v0

and Tj is replaced with a special initialization event of x.)

Based on Lemmas 6.1, 6.2 and 6.3, we obtain the following theorem.

Theorem 6.4. Any execution history H of our algorithm is K-opaque.

6.4 Experimental Results

In our experiment, we simulate Bank from TinySTM-1.0.5 [13], but we modify

the structure of the object and the algorithm to match our specifications. We run

the experiments on a machine with dual Intel(R) Xeon(R) CPU E5-2630 (6 cores

total) clocked at 2.30 GHz. Each run of the benchmark takes about 7000 millisec-

onds using 10 threads. We test the benchmark to compare the opaque execution

(1-opaque) with 2-opaque, 4-opaque and 8-opaque. The the Bank benchmark is

used to test the counting operations. In the Bank benchmark, each account is

a count object. Also there are three kinds of operations which are read balance

(add(0)), write amount (add(data) where data is a positive or negative number),

and transfer (which has two add operations one to subtract a number from one

account and add it to another account). Read balance represents read-only trans-

action, but write and transfer are update transactions. We run our experiment

with different ratios of read-only and update transactions. We run our execution
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FIGURE 6.2. Compare the Throughput of 1-opaque, 2-opaque, 4-opaque and 8-opaque
Executions on the Bank Benchmark with 25% Read-only and 75% Update, 50% Read-
-only and 50% Update, and 75% Read-only and 25% Update Transactions.

with 25% read-only and 75% update, 50% read-only and 50% update, and 75%

read-only and 25% update transactions.

FIGURE 6.2 shows the throughput of 1-opaque, 2-opaque, 4-opaque and 8-

opaque executions on the Bank benchmark. The figure shows an execution of 25%

read-only and 75% updates, where in opaque executions all committed transac-

tions are precise. In 2-opaque, 4-opaque and 8-opaque executions the throughput

increases because of the relaxation (which means to have some approximated trans-

actions) of some read-only and update transactions results in the avoidance of some

aborts. Moreover, the same thing happens with executions of 50% read-only and

50% updates, and 75% read-only and 25% update transactions.

FIGURE 6.3 shows the aborts rate of 1-opaque, 2-opaque 4-opaque and 8-opaque

executions on the Bank benchmark. The figure shows executions of 25% read-only

and 75% updates, 50% read-only and 50% updates, and 75% read-only and 25%

update transactions. In all executions the aborts rate decreases as we relax the
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FIGURE 6.3. Compare the Aborts of 1-opaque, 2-opaque, 4-opaque and 8-opaque Exe-
cutions on the Bank Benchmark with 25% Read-only and 75% Update, 50% Read-only
and 50% Update, and 75% Read-only and 25% Update Transactions.

opacity. In 8-opaque, the aborts rate drops by about 88% where all read-only

transactions are committed.

6.5 Approximately Opaque Multi-version STM

After we applied the concept of approximated opacity on the single version STM,

we applied the same concept on multi-version STM. In multi-version transactional

memory each shared object may have multiple versions. In this way, when an

update transaction commits, it creates new versions for the objects in its write set.

Using multiple memory object versions, read-only transactions can successfully

commit (without aborting at all) by preserving the versions in the read sets of

the transactions. Therefore, we have modified the structure of the read/write and

count object to satisfy multi-version objects.

FIGURE 6.4 (a) shows the multi-version read/write object data structure where

the object x has version list (x.vl). Each version in x.vl has the same structure of

the object that is explained in FIGURE 6.1 (a). The versions in the x.vl preserve

the timestamp order. Actually, we add a new version to x.vl every K commits
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FIGURE 6.4. (a) Multi-version Read/write Object Data Structure. (b) Multi-version
Count Object Data Structure.

on x. FIGURE 6.4 (b) shows the multi-version count object data structure where

the count object x has version list (x.vl). Also each version in x.vl has the same

structure of the object that is explained in FIGURE 6.1 (b). Similar to multi-

version read/write object the versions in the count object preserve the timestamp

order and we add new version to x.vl every K commits on x.

Using multi-version, we make slight modification to the algorithm, such that

when the Kth transaction commits on x it does not overwrite the object. Instead,

it creates new version and adds it to the x.vl. The new version has the maxi-

mum timestamp of all committed transactions which is definitely higher than the

timestamps of all previous versions.

Also, in functions 7 and 8, when a read-only transaction Ti tries to read any

object, if a newer transaction commits and overwrites the object, Ti aborts. How-

ever using multi-version object, if a newer transaction commits, it creates a new

version of the object. Thus, Ti does not have to abort. Instead, Ti traverses x.vl

and finds the version with the maximum timestamp that is smaller than i. This

way, the read-only transactions usually can find the suitable version in x.vl. The
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FIGURE 6.5. (a) Compare the Throughput of 1-opaque Single-version STM to 1-opaque
Multi-version STM Using the Bank Benchmark. (b) Compare the Throughput of
2-opaque Single-version STM to 2-opaque Multi-version STM Using the Bank Bench-
mark. (c) Compare the Throughput of 4-opaque Single-version STM to 4-opaque Mul-
ti-version STM Using Bank Benchmark. (d) Compare the Throughput of 8-opaque Sin-
gle-version STM to 8-opaque Multi-version STM Using the Bank Benchmark.

suitable version is the one that enables the read and counting operations to satisfy

the K-legality.

6.6 Multi-version STM Experimental Results

Now we compare the performance of the single-version STM to the multi-version

STM using the Bank benchmark. We use different ratios of read-only and update

transactions. We run our experiments with 25% read-only and 75% update, 50%

read-only and 50% update, and 75% read-only and 25% update transactions.
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FIGURE 6.5 (a) Compares the throughput of 1-opaque single-version STM to

1-opaque multi-version STM using the Bank benchmark. With all different ratios

of read-only and update transactions, multi-version STM usually shows better per-

formance than the single-version one. More improvement of throughput happens

when there is a higher ratio of read-only transactions, since in multi-version STM

read-only transactions never abort. The same thing happens with FIGURE 6.5

(b) which compares the throughput of 2-opaque single-version STM to 1-opaque

multi-version STM using the Bank benchmark. However, because of the relaxation

of opacity we have some approximated read-only and approximated update trans-

actions. In addition FIGURE 6.5 (c) and (d) show the 4-opaque and the 8-opaque

executions. In both, the throughput of multi-version STM and the throughput

of single-version STM are almost the same with all different ratios of read-only

and update transactions. This happens because more commits to the read-only

transactions results in more aborts to the update transactions. However, using

multi-version STM, the ratio of precise read-only transactions is usually higher.
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Chapter 7
Approximately Opaque Transactional
Memory for Queue Objects

7.1 Introduction

Based on the promising results of applying approximated opacity on read-only

transactions and update transactions that execute read/write and counting oper-

ations, in this chapter we apply the concept of K-opacity on queue objects, which

are common objects used in typical concurrent programs. This chapter shows the

design of the K-opaque algorithm for enqueue and dequeue operations, and the

proof for correctness. Then, we present some experimental results to demonstrate

the benefits of consistency relaxation on performance.

7.2 The Design of the Algorithm

Let us start with the structure of the TM queue object. FIGURE 7.1 shows the

structure of the queue object x which has fields ts which is the maximum times-

tamp of the transactions that update x. queue[][] is an array of two columns. The

first one is for data and the other is for the timestamp of the transaction that

enqueues or dequeues that data. Also x has head and tail. To show the number of

concurrent transactions that perform enqueues and dequeues, we use enqCounter

and deqCounter. Moreover, every queue has wl[][] (writer list), which is an array

of size n, where n is the number of threads in the system. In fact wl[][] has three

columns such that each update transaction writes to x must post its timestamp in

the first column, the second column illustrates the kinds of the operation, which

is either enqueue or dequeue, and the status of the transaction (which is either

live, committed or aborted) appears in the third column.

76



FIGURE 7.1. Queue Object Data Structure.

To start with our algorithm, the class Queue shows the structure of the objects.

Basically our algorithm is timestamp-based that executes transactions concurrently

but it does not update the head and/or tail objects with each commits. Indeed,

every K commits on the object, a transaction overwrites it with a new value.

Main() (Algorithm 13) shows the structure of the transaction where it has a

unique timestamp i using getAndIncerement() method that increments the value

of a special object timestamp by 1. Transaction has a status Ti.status that is set

to live and adds itself to the liveT list which is used for the garbage collector

in chapter 8. It also has an access set Ti.accSet that is maintained during the

execution. Moreover we have also two global variables which are correct (which is

used to calculate the correct value of update transactions) and commits (which

counts the number of commits on x).

Then, transaction Ti executes all its operations which are either enqueue and

dequeue. For all operations we add the object x to Ti.accSet and then execute

the operation by calling function Enqueue() or Dequeue(). If the functions return

false, then we change valid flag to 1 and Ti aborts immediately. When Ti executes

all operations it calls TryC() and based on that it commits or abort.
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In Enqueue() (Algorithm 14) if there is no version of object x in Ti’s local

memory, then Ti accesses the (global) shared object x, and Ti aborts if x.ts > i.

Otherwise, if x.ts < i we get x.tail and we use enqs which shows how many

concurrent enqueues there are, and that is used to map Ti to the right spot in the

x.queue. If the queue is full, we return nil (special specification of the queue object),

or Ti enqueues the element data in any position between tail+1 and tail+K. Also,

we write Ti timestamp next to the element. Ti posts i, Ti.status and op (enqueue or

dequeue) in wl[][], and returns true. Now we check if x.commitsCounter = K − 1

which means that this operation is the Kth operation on x, then we change x.copied

flag to 1 and we copy x to Ti local memory.

However, if the operation finds x in Ti local memory (which means Ti already

access x and executes the Kth operation on x) then Ti accesses the local copy.

After that it will do the same procedures that would be done on the global x but

on the local copy. If Ti executes another Kth operation on x, it just overwrites the

local copy and does not touch global x.

In Dequeue() (Algorithm 15) if there is no version of object x in Ti’s local

memory, then Ti accesses the (global) shared object x and Ti aborts if x.ts > i.

Otherwise, if x.ts < i we get x.tail and x.head. If the queue is empty, we return

true (special specification of the queue object), or we use deqs (which shows the

number of concurrent dequeues) to map Ti to a specific position in the queue

and copy the element. Ti can be mapped to dequeue an element between head,

and head + K. Also, Ti writes its information in wl[][] and returns true. Indeed,

a dequeue operation does not remove the element from the queue since Ti may

abort later. Now we check if x.commitsCounter = K − 1 which means that this

operation is the Kth operation on x; we do the same thing in Enqueue().
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In TryC() we call function CheckStatus() to know if Ti is aborted and removed

from wl[][] by another transaction, then we return false and call function Abort().

In addition, in TryC() if another transaction copies x to its local memory (which

means another transaction is committing the Kth operation on x), or x.wl[][] has

a transaction with a timestamp greater than i, then Ti aborts.

Otherwise the validation goes well and then in Commit() we check if the number

of committed transactions including (Ti) equals to K. Then we abort all the other

live transactions in x.wl[][] and there are two scenarios:

i. If a copy of x is in Ti local memory, we just copy the local copy of x to global.

ii. If there is no copy of x in Ti local memory, then Ti overwrites shared object x.

We adjust the x.queue by deleting the elements of committed dequeues and

removing the empty spots that result from aborted enqueues. In addition we

update x.ts and reset x.enqCounter, x.deqCounter and x.wl[][].

On the other hand, if the number of committed transactions does not equal to

K, then we do nothing. We release all locks and we change Ti.status to committed.

In Abort() (Algorithm 18), we change Ti.status to aborted, and we change Ti

status to aborted in the writer lists of all objects in Ti.accSet. Also, for any x that

has a copy in Ti local memory, we reset x.copied to 0.

7.3 Correctness of the Algorithm

In the correctness analysis we prove that our algorithm is K-opaque for all trans-

actions. Let H be an arbitrary history of an execution. Let H ′ be a complete

history that we obtain such that if a pending transaction in H didn’t invoke ei-

ther Commit() or Abort(), then its status is aborted, while in any other case the

status is either committed or aborted, according to which of the two functions the
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Class Queue
int ts← 0;
int head← 0;
int tail← 0;
int queue[size][];
int commitsCounter ← 0;
int x.copied = 0;
//wl[][] is an array to record update transactions
//n is the number of the thread in the system
int wl[n][3];
int index← 0;//wl[][] array’s index
enqCounter ← −1;
deqCounter ← −1;
int rl[];

transaction invoked. Let S be the sequential execution which is a timestamp-based

serialization of the transactions in H ′.

Lemma 7.1. S preserves the real time order of the transactions in H ′.

Proof. According to Main(), each transaction Ti obtains a unique timestamp using

i← timestamp.getAndInc(), which is an atomic operation. If Ti <H′ Tj, then i < j.

Since S orders transactions based on their timestamp, we get Ti <S Tj. In other

words, <H′⊆<S, as needed.

We continue to prove that S is K-legal with respect to any object x for any

transaction.

Lemma 7.2. The history S is K-legal, for any queue object x.

Proof. According to the implementation of algorithms Enqueue() and Dequeue(),

within a transaction Ti each individual enqueue or dequeue operation is considered

in the legality specification of the queue object x. So assume that in transaction

Ti, each enqueue and dequeue operation on object x is denoted as qOi.
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Algorithm 13: Main ()

timestamp← 0;
int correct← 0;//To calculate the correct value
int commits← 0;
bool valid = true;

Upon receipt of a transaction do;

foreach (transaction T ) do
//Get a unique timestamp
i← Timestamp.getAndInc();
Ti.status← live;
/* liveT is used for garbage collector */
liveT ← i ∪ liveT ;
Ti.accSet← ∅;
while (there is unexecuted operation on object x) do

switch operation on x do
case (x.enqueue(data))

//Enqueue operation
enqs← x.enqCounter.getAndInc();//How many concurrent
enqueues
Ti.accSet← x ∪ Ti.accSet;
valid = enqueue(i, x, data, enqs);

case (x.dequeue(data))
//Dequeue operation
deqs← x.deqCounter.getAndInc();//How many concurrent
dequeues
Ti.accSet← x ∪ Ti.accSet;
valid = dequeue(i, x, deqs);

if (valid = false) then
Abort(i, Ti.accSet);
return;

//Based on TryC(), transaction commits or aborts
if (TryC(i, Ti.accSet)) then

Commit(i, Ti.accSet);

else
Abort(i, Ti.accSet);

return;
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Algorithm 14: Enqueue(i, x, data, enqs)

//If x is not in any transaction’s local memory
if (x.copied = 0) then

//If a newer transaction overwrites x, or there are more than K dequeues,
then Ti aborts
if ((x.ts > i) ∨ (enqs >= K)) then

return false;

t← x.tail;
//We check if the queue is full then we cannot map it
if (t = size) then

//The queue is full
return nil;

//Mapping
position← enqs + t + 1;
//Insert element
x.queue[position].data← data;
x.queue[position].tx← i;
x.wl[index].tx← i;
x.wl[index].op← enqueue;
x.wl[index].status← live;
//Now we check if it is the Kth operation
if (x.commitsCounter = K − 1) then

x.copied = i;
//We prepar a local version of x
copy x to Ti local memory;
adjust xlocal.queue[][];
max = max(xlocal.queue[].tx);//Maximum timestamp in xlocal.queue[][]
update xlocal.head; update xlocal.tail; xlocal.ts← max;
reset xlocal.enqCounter; x.localdeqCounter; xlocal.wl[][];
xlocal.commitsCounter = 0;

else
//If x is in another transaction local memory
if (x.copied 6= i) then

return false;

do the same thing (in if() part) on the local copy but we do not copy x to
local memory again;

return true;

82



Algorithm 15: Dequeue(i, x, deqs)

//If x is not in any transaction’s local memory
if (x.copied = 0) then

//If a newer transaction overwrites x, or there are more than K dequeues,
then Ti aborts
if ((x.ts > i) ∨ (deqs >= K)) then

return false;

h← x.head;
t← x.tail;
//We check if the queue is empty then we cannot map it
if ((t = 0) ∨ ((t− h) + 1) < deqs)) then

//Empty queue
return nil;

//Mapping
position← deqs + (h + 1);
//Get element
data← x.queue[position].data;
x.queue[position].tx← i;
x.wl[index].tx← i;
x.wl[index].op← dequeue;
x.wl[index].status← live;
//Now we check if it is the Kth operation
if (x.commitsCounter = K − 1) then

x.copied = 1;
//We prepar a local version of x
copy x to Ti local memory;
adjust xlocal.queue[][];
max = max(xlocal.queue[].tx);//Maximum timestamp in
xlocal.queue[][]
update xlocal.head; update xlocal.tail; xlocal.ts← max;
reset xlocal.enqCounter; x.localdeqCounter; xlocal.wl[][];
xlocal.commitsCounter = 0;

else
//If x is in another transaction local memory
if (x.copied 6= i) then

return false;

do the same thing (in if() part) on the local copy but we do not copy x to
local memory again;

return true;
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Algorithm 16: CheckStatus(i, x)

int TiRemoved← 0;
//Check if Ti is aborted and removed from wl by another transaction
for ( from m← 0 to m = n) do

if (x.wl[m].tx = i) then
TiRemoved← 1;//It is not removed
break;

//If Ti is removed from wl
if (TiRemoved = 0) then

commits = −1;
return commits;

//Ti still in wl
x.wl[m].status = committed;
//Check how many committed transactions
commits = x.commitsCounter;
return commits;

Algorithm 17: TryC(i, Ti.accSet)

L← ∅;
forall the (x in Ti.accSet) do

lock();
L← L ∪ x;
commits←CheckStatus(i, x);
if ((commits = −1) ∨ (x.wl[][] has a transaction Tm where m > i)) then

Unlock() all objects in L;
return false;

return true;

Algorithm 18: Abort(i, Ti.accSet)

Ti.status← aborted;
//Change its status in all counters and queues it accesses
forall the (x in Ti.accSet) do

if (x.copied = i) then
x.copied = 0;

x.wl[x.index].status← aborted;
remove i from x.rl[];

return;
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Algorithm 19: Commit(i, Ti.accSet)

int max← −1;
Ti.status← committed;
forall the (x in Ti.accSet) do

x.commitsCounter + +;
if (a version of x ∈ Ti.accSet) then

abort the other live transactions in x.wl[][];
let x = xlocal;

else if (x.commitsCounter = K) then
abort the other live transactions in x.wl[][];
adjust x.queue[][];
max = max(queue[].tx); //Maximum timestamp in queue[][]
update x.head; update x.tail; x.ts← max;
reset x.enqCounter; x.deqCounter; x.wl[][];
reset x.copied; x.commitsCounter;

else
//Just Commit
x.wl[].status = Committed;

Unlock() all objects in L;
return true;

Let S(x) = T1, T2, . . . , Tq be the subsequence of transactions in S that invoke

enqueue or dequeue operations to x. A transaction Tg that overwrites x is a

transaction that commits and updates x.queue[][], x.head and x.tail. It also sets

x.copied = 0, x.ts = g and x.commitsCounter = 0; Let S ′(x) denote the subse-

quence of S(x) consisting of all transactions that commit. Let S ′′(x) denote the

subsequence of S(x) consisting of all transactions that overwrite x. Let V (x) denote

all individual operations in S(x) and let V ′(x) denote all individual operations in

S ′(x) while V ′′(x) denote all individual operations in S ′′(x). For any queue oper-

ation qOpg,u, g is the timestamp of the transaction that executes qOpg,u and u is

the order of qOpg,u in V .

Let qs denote the queue status and qs0,0, . . . , qsq,d be the respective sequence

of returned queue status of the enqueue and dequeue operations of transactions
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in S(x), namely, qsg,first, . . . , qsg,last represent the queue statuses returned by Tg.

Let sq′g,u denote the precise queue status that would have been returned by any

queue operation of transaction Tg when the consistency is precise, that is, qs′g,u =

qOp0,0∧
∑

(1≤l<j)∧qOpl,s∈V ′(x) qOpl,s, where qOp0,0 is the initial value of x. Let og,u =

qsg,a ∧ qOpg,u be the result of any queue operation of transaction Tg. Similarly, let

o′g,u = qs′g,u ∧ qOpg,u be the respective precise result of the queue operation of

transaction Tg.

For each qOpg,u ∈ V (x) let Pg,u denote the set of the last K operations which

precede qOpg,u in V (x). We only need to prove the following two properties:

i. For each qOpg,u ∈ V ′′(x), qsg,u = qs′g,u (the operations in V ′′(x) are precise.

ii. For each qOpg,u ∈ V (x) \ V ′′(x), either qsg,u = or,z and qOpr,z ∈ Pg,u and

qOpr,z ∈ V ′′(x), or qsg,u = qs0,0 and |Pg,u| < K.

We prove these properties by induction on q. For q = 0, V (x) is empty and the

properties hold trivially. Assume now that the properties hold for any q < n; we

will show that the properties hold also for q = n > 0.

Consider now the last operation qOpi,n. According to function Enqueue() and

Dequeue(), qOpi,n checks x.ts that shows the timestamp of the last transaction

that overwrites x. Suppose that x.ts = j ≥ i. Let Q be the set of operations that

appear in V between qOpj,a ∈ Tj and qOpi,n ∈ Ti and that have queue operations

to x and commit (Q does not contain qOpj,a or qOpi,n). We continue to show that

|Q| ≤ K − 1.

We first show that none of the operations in Q overwrite x. Suppose for the sake

of contradiction that there is an operation qOpm,b ∈ Q which overwrites x. Note

that j, a ≤ m, b ≤ i. We examine three cases with respect to when qOpm,b belongs

to a committed transaction Tm in H ′:
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• Tm commits before Tj commits.

In this case, when Tj invokes TryC() it observes one of the following scenarios:

– m ∈ x.wl and Tj observes that a transaction Tm with higher timestamp

(m > j) has committed on x but it does not overwrite x, and hence Tj

aborts (considering that j 6= m 6= i).

– x.ts ≥ j: Since Tm commits and overwrites x based on the Algorithm

Commit(), Tm aborts all live transactions with smaller timestamp than

m, and hence Tj aborts (considering that j 6= m 6= i).

– Since some of these operations may belong to the same transaction, and

since Tm commits before Tj commits, then qOpj,a and qOpm,b belong to

different transactions.

1. Now let us assume that j = i (which means qOpj,a and qOpi,n be-

long to the same transaction). Based on Enqueue() and Dequeue(),

qOpj,a would copy x to Tj local memory and qOpi,n would read from

the local copy. Then qOpm,b would find that the object is copied by

another concurrent transaction, so Tm aborts and qOpm,b would not

execute between qOpj,a and qOpi,n which means it cannot be in Q,

contradiction.

2. If m = i and then qOpm,b would copy x to Tm local memory and

qOpi,n would read the from local copy, which contradicts with our

assumption that qOpi,n reads qOpj,a.

In all scenarios, either Tj aborts, which is impossible, or qOpm,b is not in Q.
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• Tm commits and overwrites x before qOpi,n starts.

In this case, qOpi,n reads either the value of x.head and/or x.tail that is

written by qOpm,b or by a more recent operation. However, this contradicts

the assumption that qOpi,n reads qOpj,n. Actually, this also holds if j = m,

j = m = i or m = i.

On the other hand, if j = i, then qOpj,a would copy x to Tj local memory

and qOpm,b would find that x is copied. So Tm aborts and it cannot execute

between qOpj,a and qOpi,n. Thus, qOpm,b /∈ Q, contradiction.

• Tm commits and overwrites x after qOpi,n() ends.

In this case, we have the following scenarios:

– In the case of j 6= m 6= i, in its TryC() transaction Tm will observe that

x.commitsCounter ≥ K − 1 (which means Tm is the Kth transaction),

and also it observes that Ti is in the writer list of x (that is, i ∈ x.wl

with i > m), and the combination of these two observations together

force Tm to abort, which is a contradiction.

– Since some of these operations may belong to the same transaction, it

observes one of the following scenarios:

1. Since Tm commits and overwrites x after qOpi,n() ends, then we

cannot have that m = i or j = m = i; otherwise, qOpmb
/∈ Q

2. If j = i, then x would be copied by Tj and qOpm,b /∈ Q.

3. If j = m, then x would be copied by Tj, and Ti would abort and

qOpi, n cannot execute.
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Therefore, no operation qOpm,b in Q overwrites x. This implies that each op-

eration in Q increments x.commitsCounter. Therefore, similar to the proof of

Lemma 6.2 the operations in Q assign unique values to x.commitsCounter. Since

the x.commitsCounter cannot exceed K − 1 and none of the operations in Q set

x.commitsCounter = 0, we get that |Q| ≤ K − 1. The same observations for Q

hold even if qOpi,n reads the initial value of x and qOpj,a is replaced by a special

event that initializes x.

Suppose now that qOpi,n ∈ V ′′, which implies that Ti ∈ S ′′. When Ti invokes

Algorithm Commit(), the only committed transactions in the writer list of x are

the ones in set Q. Therefore, the value returned by the qOpi,n of Ti is equal to

qsi,n = qsj ∧
∑

qOpl∈Q qOpin . By induction hypothesis, qsj,a = qs′j,a, and hence

qsi,n = qs′i,n, and therefore, property (i) holds. If qOpi,n ∈ V \ V ′′ (which implies

Ti ∈ S \ S ′′ ), then it returns qsi,n = qsj,a = qs′j,a. Since, Q ∪ {qOpj,a} ⊆ Pi,n

property (ii) holds as well. (Note that properties (i) and (ii) hold even if qOpi,n

reads the initial value qs0,0 and qOpj,a is replaced with a special initialization event

of x.)

Based on Lemmas 7.1 and 7.2 we obtain the following theorem.

Theorem 7.3. Any execution history H of our algorithm is K-opaque.

7.4 Experimental Results

In our experiment, we simulate Linked-list benchmarks from TinySTM-1.0.5

[13], but we modify the structure of the object and the algorithm to match our

specifications. We run the experiments on a machine with dual Intel(R) Xeon(R)

CPU E5-2630 (6 cores total) clocked at 2.30 GHz. Each run of the benchmark takes

about 7000 milliseconds using 10 threads. We test the benchmark to compare the

opaque execution (1-opaque) with 2-opaque, 4-opaque and 8-opaque. We use the
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FIGURE 7.2. Comparison of the Throughput of 1-opaque, 2-opaque, 4-opaque and
8-opaque Executions on the Linked-list Benchmark.

FIGURE 7.3. Comparison of the Aborts Rate of 1-opaque, 2-opaque, 4-opaque and
8-opaque Executions on the Linked-list Benchmark.

Linked-list benchmark to test the queue operations. In the Linked-list we initialize

70 lists (where we modify the structure of each list to be a queue object) and

we have that add and delete nodes to simulate enqueue and dequeue operations.

Both enqueue and dequeue operations are considered as update transactions. In

our execution we generate 50% enqueue operations and 50% dequeue operations.
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FIGURE 7.2 demonstrates the throughput of 1-opaque, 2-opaque, 4-opaque and

8-opaque executions on the Linked-list benchmark.

The throughput of the 8-opaque execution is the maximum since the through-

put improves as we relax the opacity. Moreover FIGURE 7.3 shows the aborts

rate of 1-opaque, 2-opaque, 4-opaque and 8-opaque executions on the Linked-list

benchmark. The figure illustrates the drop of the aborts rate as we relax opacity.

91



Chapter 8
Garbage Collector

8.1 Introduction

This chapter is previously published by IEEE 1. The basic idea behind having mul-

tiple versions of each object is to avoid some aborts and guarantee progressiveness.

However, there is a negative effect due to the increase on the space requirements.

So, many multi-version STMs have garbage collection procedure to delete old ver-

sions which are no longer needed by active transactions. Some multi-version STMs

keep a specific number of versions for each object, such as 4 or 8 versions [29].

However, this may not be very efficient as the determined number of versions may

be smaller than what is needed for some objects or larger than what is needed

for others. In this chapter we introduce our garbage collector GB to decide which

versions are wanted or unwanted for each object dynamically. Now we present

the design and the algorithm of GB. Then we show the correctness and efficiency

proofs.

8.2 Design of the GB

Our garbage collector (Algorithm 20) decides which versions are wanted or un-

wanted for each object dynamically. It does not remove the last written version of

an object, but it just works on the saved version list x.vl for all objects x. To find

unneeded versions for an object x, the garbage collector finds the minimum times-

tamp of the live transactions minliveT . In fact, we record the live transactions in

a list that is called liveT . Then, it finds the version with the largest timestamp

smaller than minliveT , and this version is denoted as maxvl. Now, the garbage

1This chapter previously appeared as [Basem Assiri and Costas Busch, Approximately Opaque Multi-version
Permissive Transactional Memory, published by The Institute of Electrical and Electronics Engineers (IEEE)].

See the permission letter in Appendix.]
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collector keeps any version with timestamp greater than or equal to maxvl and

deletes any version with timestamp smaller than it.

Algorithm 20: Garbage Collector

minliveT ← smallest timestamp of any transaction in liveT ;
foreach object x do

maxvl← 0;
forall the (ts, data, rl) ∈ x.vl do

if ts > maxvl ∧ ts < minliveT then
maxvl← ts;

forall the (ts, data, rl) ∈ x.vl do
if ts < maxvl then

/* delete (ts, data, rl) from x.vl */
x.vl← x.vl \ {(ts, data, rl)};

8.3 Correctness of the Algorithm

Theorem 8.1. Our garbage collector Algorithm 20 does not violate the correctness

of our execution.

Proof. Our garbage collector works only on the saved version list of each object,

x.vl. It finds the minimum timestamp of the live transactions minliveT and the

version maxvl which has the largest timestamp smaller than minliveT . Then, it

deletes all saved versions with timestamps smaller than maxvl.

Let v ∈ x.vl be the version of x with v.ts = maxvl. Assume for contradiction

that our garbage collector deletes a needed saved version of object x, say version

v′, with v′.ts < maxvl. Note that the version v′ must be created and stored in

x.vl before v, since the intervals of the respective transactions that create v and v′

would overlap, and hence one of these transaction would have to abort according

to function Validate().

Let Ti be the live transaction that needs v′. We know that i ≥ minliveT , and

hence i > maxvl. Transaction Ti has to be read-only, since it accesses v′ which is
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stale (update transactions only access the x.lastCommit version which must have

timestamp at least maxvl). Therefore, when transaction Ti invokes the function

GetLatestVersion() it has to read v and not v′, since v′.ts < v.ts < i; a contradic-

tion.

Assume that the transactions in our algorithm access the set of objects O =

(x1, x2, ..., xn). Let V be the set of all committed versions and V ′ the set of all

saved versions.

Theorem 8.2. There are execution scenarios in which our garbage collector can

reduce the space required to no more than 2|O| saved versions.

Proof. The worst case scenario for space requirement happens when for all objects

on the system, there is at least one pending transaction on each version in object

vl. So, all versions in the system are still needed and the garbage collector cannot

delete any version. In this case, the garbage collector space complexity remains the

same. Based on Theorem 5.7, the worst case scenario space complexity (max size

of |V ′|) of our algorithm without the garbage collector will be Θ(|V |/K + |O|).

However, in all other cases the garbage collector can delete some versions and

improve the space complexity. Suppose the best case scenario is when there are

some pending transaction working only on the last written versions in some objects’

saved version list vl, or when there are no live transactions at all. In this case,

the space complexity of our algorithm without the garbage collector according to

Theorem 5.7 is Θ(|V |/K + |O|). While using the garbage collector, the needed

versions for each object are two, which are the lastCommit and the last saved

version maxvl. So, the space complexity drops to 2|O|.
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Chapter 9
Conclusion

In conclusion, our scheduling algorithm uses the idea of supervised and unsuper-

vised machine learning models to improve the performance of transactional mem-

ory algorithms. This way of scheduling allows more flexibility to find the suitable

scheduling for different problems. Indeed finding the suitable scheduling FV helps

to increase the throughput and to decrease the aborts. Our results show that the

types and the durations of transactions extremely impact the performance of trans-

actions execution. In addition, the frequent calls of learning model allows for the to

change the scheduling ratio in response to any changes of arriving transactions. In

the future, we want to test some other learning techniques on different algorithms.

Furthermore, we have introduced the notion of K-opacity, which is useful in

systems which allow some transactions to return approximated values. A benefit of

K-opacity is that it enables the system to save a smaller number of object versions.

We show that more relaxation to the opacity helps to increase the throughput and

reduce aborts. Our algorithm guarantees progressiveness such that it never aborts

transactions unless if it is necessary for the correctness of the execution. Moreover,

the algorithm never aborts read-only transactions, and at least one of the conflicted

update transactions can commit.

In addition, count object can be extended to execute other arithmetic operations

such as multiplication and division. Therefore, we can add another column in the

wl array to record the type of the arithmetic operations. The order of operations

(or operator precedence) will be based on the transactions timestamps.
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Also the timestamp order of the sequential history S is used to prove the cor-

rectness of transactions execution, while it is possible to find another S that does

not respect the timestamps order but it is more flexible to allow more commits.

Moreover, the concept of K-opacity works with transactions that access read/write

and count objects as well as transactions that access queue objects. However, ob-

viously the approximated opacity concept is composable such that we may have a

transaction that accesses read/write, count and queue objects. For future works,

the composability of approximated opacity can be extended to be applied on other

data structures such as stack and linked list.
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