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ABSTRACT 

The Shipboard Power System (SPS) supply energy to sophisticated systems for 

navigation, communication, weapons, and operation. Due to the ship’s critical operating 

condition, faults can be very detrimental. Faults in the SPS may happen because of failure of 

electrical components or by damages that happen during a battle. These faults may interrupt the 

paths for supplying energy to loads that are not damaged. To enhance survivability of naval 

ships, SPS requires an efficient fault location algorithm in order to locate and clear the fault as 

well as provide an alternative path to supply energy to the loads that are not faulty or damaged. 

This thesis introduces a method to generalize the Active Impedance Estimation (AIE) 

fault location method for Shipboard Power Systems (SPS.) In the proposed method short-

duration high-frequency voltage sources are employed at selected buses and voltage/current 

measurements are taken for the purpose of fault location. The goal is to obtain the minimum 

number of voltage and current sources and measurements that observe all the faults of interest 

that occur in the SPS. In contrast with the conventional AIE method, in the proposed fault 

location method both sources and measurements are applied at multiple buses. Moreover, both 

voltage and current are measured at measurement buses. The proposed approach is not restricted 

to lateral branches and can be applied to interconnected SPSs. The fault location method does not 

interfere with the system’s normal operation due to the applied high frequency(s) and thus 

superposition is used in the analysis. This approach reduces the number of measurement devices 

for fault location in the SPS which results in significant cost reduction. The proposed method is 

then applied to a SPS in simulation using MATLAB/Simulink to show the effectiveness of the 

approach.  
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CHAPTER 1 

INTRODUCTION 

1.1 History of Shipboard Power Systems (SPS) 

The first shipboard power system was installed on the USS Trenton (figure 1.1) in 1883. 

The system was supplying current to 247 lamps at a voltage of 110 volts dc [1]. 

 

Figure 1.1 USS Trenton 

Until the 1914 to 1917, the early electric power systems on ships were mostly dc with 

mainly motors and lighting loads. During World War I, 230 volt, 60 Hz power systems were 

introduced into naval vessels. Since World War II, the ship’s electric systems have continued to 

improve, including the use of 4,160 volt power systems and the introduction of protective 

devices [1]. 
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Protective devices were developed to monitor the essential parameters of electric power 

systems. Also, they were uses to determine the degree of configuration of the system that is 

necessary to limit the damage to components and equipment and to enhance the continuity of 

electric service for the system. While fuses were used in the past, circuit breakers were added at 

the end of the century. The first electronic solid-state overcurrent protective device used by the 

U.S. Navy was installed on the 4,160 power system in Nimitz class carriers [1].  

1.2 SPS System Structure  

The power in the Shipboard Power Systems (SPS) is produced by multiple generators 

that are normally placed in a ring configuration [1]-[7]. Usually, there are two kinds of loads in 

the SPS: vital loads and non-vital loads [1]-[5], [8], [9]. Navigation, communication, operation 

and weapons are examples of the vital loads while lighting and air conditioning systems are part 

of the non-vital loads [1]-[4], [6], [8], [11]. The SPS aims at supplying energy for both types of 

loads. In the fault condition, the system is not able to supply electrical energy to the loads. The 

SPS needs a comprehensive protection system in order to detect the exact location of the fault 

and use some alternate path to supply energy to the unfaulty loads [6], [8], [10]. It is important to 

note that the fault location mechanisms need not be as fast as the protective mechanisms that 

disconnect in milliseconds. Rather, the fault location algorithms capture the fault data quickly 

and try to locate the fault in a reasonably short time to redirect the electric power to the vital 

loads. There are three main protection schemes in power system: overcurrent, distance, and 

differential [7], [11]. 

Shipboard power system uses three-phase generators that are in a ring configuration and 

generally work at 60 Hz to generate AC voltage for the system. Generators are in a ring 

configuration in order to have alternative paths for vital loads from different generators. It 
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enables the system to supply power to vital loads when the normal path from the main generator 

is defective or destroyed [1]-[5], [8].  

Figure 1.2 shows single-line diagram of an 11-bus SPS [1]. This system consists of four 

three-phase main generators in a ring configuration operating at 60 Hz. In this system, vital loads 

have an alternative path in addition to the normal path from other generators to receive energy 

from sources in fault situations. The vital loads use either Automatic Bus Transfer (ABT) or 

Manual Bus Transfer (MBT) to choose an unfaulty path in order to receive the energy from the 

generators [1]-[6], [8]. In normal condition ABT/MBT connects the normal path to the load. 

When the fault occurs ABT/MBT disconnects the normal path and connects the alternative path. 

 

Figure 1.2 11-Bus SPS 

1.3 Distance Protection and its Drawbacks  

The cables lengths in the SPS are normally shorter (about 10-200 feet long [11]) than in 

the large distribution grids and thus the impedances of the cables are small (about 0.04/1000 feet 
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[11].) Using distance protection in short-length power systems is impractical because the 

impedances of the cables are too low to detect with small error. An improved distance scheme 

can be utilized to detect faults in short-length cables. The Active Impedance Estimation (AIE) 

fault location method [13] utilizes a high-frequency voltage at a bus in the electric system and 

measures the injected current followed by calculating the impedance at that frequency. A higher 

frequency adds resolution to the cable impedance and makes fault location easier in the 

shipboard power systems. In the AIE method when the system is exposed to the fault, a short 

duration voltage will be utilized in order to find the impedance of the system seen from the 

injection bus and locate the fault. This method has been applied only to radial distribution 

systems. This method uses the value of measured impedance to locate the fault [13], [15]. 

Though the available AIE can distinguish between far and close-up faults, it can be mainly 

utilized in lateral branches where the Thevenin equivalent impedance is equal to the cable 

impedance and is proportional to the fault distance. Thus, in interconnected systems, such as 

shipboard power systems with ring topology, the available active impedance estimation method 

has topological limitations.  

1.4 Overcurrent Protection and its Drawbacks  

Another conventional fault detection and location method is overcurrent scheme. The 

main power of the SPS is produced by multiple generators. Having multiple power supplies 

causes a complex overcurrent protection in the system that requires time delay in order to avoid 

over tripping [7]. Due to cables short lengths, SPS is considered a highly coupled electric 

system; that is, if a fault occurs in one point of the system and a quick detection and isolation is 

not provided by the protection system, the fault will propagate through the entire system in a 

short period of time and can cause catastrophic consequences [2]. Thus, using only the 
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conventional overcurrent protection mechanisms is impractical in the shipboard power system 

due to short cables, time-delay requirements, and multiple supplies, that complicate the scheme 

[7], [11]. Overcurrent protection, however, can be employed as a safety feature to increase 

protection capabilities in addition to another protection scheme. 

1.5 Differential Protection and its Drawbacks  

Differential protection scheme, on the other hand, works properly in the system with 

short cables. Differential relays compare the entering current to the protected equipment with the 

current that leaves the equipment. If these two currents are equal, as shown in figure 1.3(a), there 

is no fault. However, if these two currents are not equal, as shown in figure 1.3(b), indicating that 

there is a fault in the protected equipment, the relay trips [7], [11].  In this method each piece of 

equipment in the SPS requires a differential relay to locate the fault effectively. Also, a 

comprehensive communication system between all protected zones and pertinent equipment is 

needed in order to cover the entire SPS, appropriately. Vulnerability of the communication 

system to fault highly reduces system reliability [9], [13]. Moreover, the approach is costly since 

it requires numerous differential relays and a comprehensive communication infrastructure. 

 

Figure 1.3(a) Differential Fault Detection (No Fault) 
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Figure 1.3(b) Differential Fault Detection (With Fault) 

1.6 Proposed Method 

There is a need to develop a more efficient fault location scheme to locate all the faults 

that occur in the shipboard power system with low cost. This thesis introduces an economical 

and reliable fault location scheme for the SPS. This method requires short-duration voltage 

application(s) with high frequency(s) in fault condition and observation of the changes in 

voltages and currents of the system buses due to the fault. Changes in the voltage and current in 

the measurement point are indicators of the location and magnitude of the fault. Different faults 

may have similar effects on the voltage and current at a measurement point. In this case, multi-

estimation occurs [14]. Thus, the system needs multiple voltage application and/or measurement 

points to have unique data set for each fault. The goal is to minimize the number of the voltage 

applications and measurements and to find their optimal places in the system in order to uniquely 

identify each fault. In this paper, three-phase symmetrical faults are analyzed; however, the 

proposed method can be generalized to other types of faults. 
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CHAPTER 2 

METHODOLOGY 
 

2.1 Introduction 

In this thesis observation is made on the effect of each fault on the voltages and/or 

currents of a specific measurement set when a voltage with high frequency is applied to the 

system at injection buses. Pertinent terms and definitions are given: 

Injection bus: For convenience, here the term injection bus is referred to the bus where the high 

frequency voltage is applied. There can be multiple injection buses with different frequencies in 

a SPS. 

Measurement bus: Measurement bus is used to address the bus where the voltage and/or current 

is measured. It is important to mention that the injection bus may or may not be the same as the 

measurement bus. In addition, more than one measurement bus may be utilized. In this sense the 

proposed approach generalizes the conventional active impedance estimation fault location 

method [1], [2]. 

Measurement set: Measurement set is referred to the set of voltage and/or current measurement 

on all the buses with specified injection bus, frequency and 𝑅𝑓𝑎𝑢𝑙𝑡. Measurement set helps to 

compare the results of measurement to find the unique result and the best combination of 

injection and measurement bus for the fault location. 

Each fault may have a different effect on the voltage or current of a specific measurement 

bus. The goal of this paper is to find optimal places for the injection and the measurement buses 

to have unique measurement set for each fault. The unique measurements are then referred to a 

specific fault to detect the fault exact location. 
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Since SPS is working at 60 Hz, voltage application(s) and voltage/current 

measurement(s) should be applied at higher frequencies to avoid interference with the protection 

system. That is, superposition can be used for the analysis since the fault location algorithm is 

working separately from the normal operation of the system. Fault location algorithm does not 

see the voltage that is produced by main generators at 60 Hz but it still can detect the fault. 

2.2 The Proposed Fault Location Algorithm 

Suppose that I is the number of the bus that has the voltage application, M is the number 

of the bus that has the measurement, and F is the number of the bus that is faulty. Then, the 

ordered triple (I,M,F) represents a fault detection observation. In this case, 𝑉⃗ 𝐼,𝑀,𝐹 represents the 

voltage vector of the measurement bus when the injection is on bus I, measurement is on bus M, 

and fault is on bus F. If 𝐹 = 0 it shows the initial values when there is no fault in the system. 

Similar definition is used for current measurement 𝐼 𝐼,𝑀,𝐹. The goal is to observe the values of 

𝑉⃗ 𝐼,𝑀,𝐹 and 𝐼 𝐼,𝑀,𝐹 for all the faults, given the measurement and injection buses, and to compare the 

values with the normal values of currents and voltages to see if the faults are detectable. The 

algorithm starts from 𝐼 = 1, 𝑀 = 1 and applies a certain fault on each bus and observes the 

changes in voltages and currents at the measurement buses. For this purpose the algorithm 

calculates ∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹 if 𝐼 ≠ 𝑀, and ∆𝐼⃗⃗⃗⃗ 

𝐼,𝑀,𝐹 if 𝐼 = 𝑀; that is, 

∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹 = 𝑉⃗ 𝐼,𝑀,𝐹  −  𝑉⃗⃗  ⃗𝐼,𝑀,0 

∆𝐼⃗⃗⃗⃗ 
𝐼,𝑀,𝐹 = 𝐼 𝐼,𝑀,𝐹  −  𝐼⃗⃗ 𝐼,𝑀,0. 

Figures 2.1 and 2.2 show the magnitude and phase angle of 𝑉⃗ 𝐼,𝑀,𝐹 for the simulated 

system described in figure 1.2 when 𝐼 = 10, 𝑀 = 9, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and 𝑓 = 1000𝐻𝑧 for 
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different values of F (1 ≤ 𝐹 ≤ 11.) A sequence of faults with impedance 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 is 

applied to different nodes of the systems as shown in figures and the effects are observed. 

Figures 2.3 and 2.4 show the magnitude and phase angle of 𝐼 𝐼,𝑀,𝐹 for the simulated system when 

𝐼 = 2, 𝑀 = 2, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and 𝑓 = 1000𝐻𝑧 for different values of F (1 ≤ 𝐹 ≤ 11.) Note 

that if 𝐼 = 𝑀, algorithm considers the current values whereas for 𝐼 ≠ 𝑀 it considers the voltage 

values. 

 

Figure 2.1 Magnitude of 𝑉⃗ 𝐼,𝑀,𝐹  when 𝐼 = 10, 𝑀 = 9, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and 𝑓 = 1000𝐻𝑧 for 

different values of F 
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Figure 2.2 Phase angle of   𝑉⃗ 𝐼,𝑀,𝐹  when 𝐼 = 10, 𝑀 = 9, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and 𝑓 = 1000𝐻𝑧 for 

different values of F 

 

 

 

Figure 2.3 Magnitude of  𝐼 𝐼,𝑀,𝐹 when 𝐼 = 2, 𝑀 = 2, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and 𝑓 = 1000𝐻𝑧 for 

different values of F 
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Figure 2.4 Phase angle of 𝐼 𝐼,𝑀,𝐹 when 𝐼 = 2, 𝑀 = 2, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and 𝑓 = 1000𝐻𝑧 for 

different values of F 

 

In the shipboard power system if |
𝑉⃗⃗ 𝐼,𝑀,𝐹−𝑉⃗⃗ 𝐼,𝑀,0

|𝑉⃗⃗ 𝐼,𝑀,0|
| = |

∆𝑉⃗⃗⃗⃗  ⃗𝐼,𝑀,𝐹

|𝑉⃗⃗ 𝐼,𝑀,0|
| or |

𝐼 𝐼,𝑀,𝐹−𝐼 𝐼,𝑀,0

|𝐼 𝐼,𝑀,0|
| = |

∆𝐼⃗⃗⃗⃗ 𝐼,𝑀,𝐹

|𝐼 𝐼,𝑀,0|
| <

0.001, ∆𝑉⃗⃗⃗⃗  ⃗ and ∆𝐼⃗⃗⃗⃗  are difficult to detect. Table 2.1 shows the simulation results for the system 

presented in figure 1.2 when 𝐼 = 10, 𝑀 = 9, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and 𝑓 = 1000𝐻𝑧. The numbers in 

Table 2.1 are the values of F that show which bus is faulty. Highlighted numbers show at which 

bus fault is not detectable with the selected measurement and injection buses. In other words, 

faults are not detectable when relative value of  |∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹%| =

|∆𝑉⃗⃗⃗⃗  ⃗𝐼,𝑀,𝐹|

|𝑉⃗⃗ 𝐼,𝑀,0|
=

|𝑉⃗⃗ 𝐼,𝑀,𝐹−𝑉⃗⃗ 𝐼,𝑀,0|

|𝑉⃗⃗ 𝐼,𝑀,0|
 is smaller 

than 0.001 and/or |∆𝐼⃗⃗⃗⃗ 
𝐼,𝑀,𝐹%| =

|∆𝐼⃗⃗⃗⃗ 𝐼,𝑀,𝐹|

|𝐼 𝐼,𝑀,0|
=

|𝐼 𝐼,𝑀,𝐹−𝐼 𝐼,𝑀,0|

|𝐼 𝐼,𝑀,0|
  is smaller than 0.001. 
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Table 2.1 Detectable and undetectable bus faults when 𝐼 = 10, 𝑀 = 9, 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3, and    

𝑓 = 1000𝐻𝑧 
 

Bus 

# 

1 2 3 4 5 6 7 8 9 10 11 

Delta 

V/I 

0.06 0.066 0.02 0.0008 0.069 0.025 0.023 0.064 0.07 0.01 0.0009 

 

The algorithm examines all the possible combinations with different values for M, I, and 

F to find the optimal buses for the injection and measurement that can detect all the faults 

(various fault impedances.) If one injection and measurement is not adequate to cover the entire 

system, the system requires more injection and/or measurement buses to cover all the faults. The 

proposed approach looks for injection and measurement buses that result in the lowest number of 

undetectable faults (location and impedance.) The fault is undetectable when |∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹%| <

0.001, or |∆𝐼⃗⃗⃗⃗ 
𝐼,𝑀,𝐹%| < 0.001. 

Thus, the algorithm finds the cases that have the lowest number of undetectable faults 

with |∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹%| < 0.001, or |∆𝐼⃗⃗⃗⃗ 

𝐼,𝑀,𝐹%| < 0.001. For convenience, if the number of undetected 

faults are 0 or 1, the injection-measurement set comprising the selected injection and 

measurement buses are chosen. Then, the algorithm will check if these cases cause unique 

changes in |∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹%| or |∆𝐼⃗⃗⃗⃗ 

𝐼,𝑀,𝐹%|for different faults. If |∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹%| or |∆𝐼⃗⃗⃗⃗ 

𝐼,𝑀,𝐹%| has the same 

results for different faults (i.e., that differ less than 0.001,) system faces multi-estimation. In 

order to check this, the algorithm evaluates ∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹%  or ∆𝐼⃗⃗⃗⃗ 

𝐼,𝑀,𝐹% for all fault conditions 

(location and impedance) to find any similar pairs (i.e., that differ less than 0.001,) of voltage 

change vectors ∆𝑉⃗⃗⃗⃗  ⃗
𝐼,𝑀,𝐹% and current change vectors ∆𝐼⃗⃗⃗⃗ 

𝐼,𝑀,𝐹%, given a set of injection and 
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measurement buses. If similarity happens, the injection-measurement set cannot offer unique 

results for different faults. In this case system observes multi-estimation. 

Next step is to repeat the algorithm for different combinations of injection and 

measurement buses along with (and possibly their frequencies) to find the optimal buses for 

injection and measurement in order to cover all the faults with minimum number of injection and 

measurement buses and to avoid multi-estimation. The proposed algorithm is depicted in the 

flowchart of figure 2.5. 

 

Figure 2.5 Algorithm of finding best injection and measurement placement 
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2.3 Fault Location Algorithm by Using Line Current Measurement  

So far, current measurement has been considered only when injection and measurement 

buses are the same. When the injection and measurement busses are different, multiple lines may 

be connected to the measurement bus with different current on each line. Therefore, one must 

specify which line is used for the measurement. In this thesis, line current measurement is used 

to locate the fault based on the difference in the measured current in the faulty and unfaulty 

systems. Using the results from voltage and current measurements helps reduce the number of 

measurement equipment for fault location leading to the lowest number of undetectable faults. 

For this purpose one needs to measure currents on all the lines that are connected to the 

measurement bus to see which one has the highest variation for a range of faults under 

consideration.  

Since each bus connects multiple lines together and each of these lines have different 

currents, it is important to know which line to use for the fault location resulting the lowest 

undetectable faults. Start with naming the lines that are connected to each measurement bus from 

1 to n where n is the number of the lines connected to the selected measurement bus. Note that 

for buses with two lines only one current measurement is taken since the lines have the same 

current when the load current is ignored. This procedure is repeated for all the measurement 

buses (figure 2.6); i.e., all the power system buses. In the proposed method the algorithm 

measures currents on all the lines connected to a measurement bus for different injection buses 

and faulty buses, then it proceeds to the next measurement bus and repeats the same procedure 

for the lines connected to that bus until it covers all the measurement buses (the entire system’s 

buses.) 
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Figure 2.6 11-Bus SPS  

Suppose that I is the number of the bus that has the voltage application (injection bus), B 

is the number of the measurement bus, M is the number of the lines connected to measurement 

bus B, and F is the number of the faulty bus. In this case 𝐼 𝐼,𝐵,𝑀,𝐹  represents a current vector 

measured at measurement bus B. If 𝐹 = 0 it shows the unfaulty values; that is when there is no 

fault in the system. The goal is to observe the values of 𝐼 𝐼,𝐵,𝑀,𝐹 for all the faults, given the 

measurements, and to compare the values with the normal values of currents to see if the faults 

are detectable. The algorithm starts from 𝐵 = 1, 𝐼 = 1, 𝑀 = 1 and applies a certain fault on each 
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bus and observes the changes in currents at the measurement bus. For this purpose the algorithm 

calculates ∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹; that is, 

∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹 = 𝐼 𝐼,𝐵,𝑀,𝐹 − 𝐼 𝐼,𝐵,𝑀,0. 

In the shipboard power systems, faults are not detectable when relative value |∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹%|  that is 

equal to 
|∆𝐼⃗⃗⃗⃗ 𝐼,𝐵,𝑀,𝐹|

|𝐼 𝐼,𝐵,𝑀,0|
=

|𝐼 𝐼,𝐵,𝑀,𝐹−𝐼 𝐼,𝐵,𝑀,0|

|𝐼 𝐼,𝐵,𝑀,0|
, is smaller than 0.001. 

The algorithm examines all the possible combinations with different values for, I, B, M, 

and F to find the optimal bus for the injection and optimal line current measurement that can 

observe all the faults (various fault impedances.) If one injection bus and measurement bus are 

not adequate to cover the entire system, the system requires more injection buses and/or current 

measurements from a measurement bus or even more measurement buses to cover all the faults. 

The proposed approach looks for a set of injection and measurement buses that result in the 

lowest number of undetectable faults (location and impedance.) The fault is undetectable when 

|∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹%| < 0.001. The algorithm evaluates all injection and measurement buses to cover the 

entire system. 

After the algorithm finds the cases that have the lowest number of undetectable faults 

with |∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹%| < 0.001, it will check if these cases cause unique changes in |∆𝐼⃗⃗⃗⃗ 

𝐼,𝐵,𝑀,𝐹%|for 

different faults with the selected measurement and injection buses. If |∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹%| has the same 

results for different faults (i.e., that differ less than 0.001,) system faces multi-estimation. In 

order to check this, the algorithm evaluates ∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹% for all fault conditions (location and 

impedance) to find any similar pairs (i.e., that differ less than 0.001,) of current change vectors 

∆𝐼⃗⃗⃗⃗ 
𝐼,𝐵,𝑀,𝐹%, given a set of injection and measurement buses. One must repeat the algorithm for 
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different combinations of injection and measurement buses (and possibly with different injection 

frequencies) to find the optimal buses for injection and measurement in order to cover all the 

faults with minimum number of injection and measurement buses and to avoid multi-estimation. 

The proposed algorithm is depicted in the flowchart of figure 2.7. 

 

Figure 2.7 Algorithm of finding best injection and measurement placement by Using Current 

Measurement 
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CHAPTER 3 

EFFECTS OF INJECTION FREQUENCY 

3.1 Introduction 

Using standard fault analysis, one can find ∆𝑉 and ∆𝐼 for the proposed fault location 

algorithm based on the elements of 𝑍𝑏𝑢𝑠 matrix. In order to find the relation between injection 

frequency and fault location one needs to track the effect of frequency in 𝑍𝑏𝑢𝑠 matrix elements. 

For this purpose one needs to develop the 𝑍𝑏𝑢𝑠 matrix. 

3.2 Background-Impedance Matrix 

The bus impedance matrix is an important tool for power system fault analysis [1]. There are 

different ways to find impedance matrix of the system. Inversion of the admittance matrix is 

more appropriate for small systems. In the proposed method the target is obtain the mathematical 

relationship between the frequency and impedance; however, inversion makes it too difficult to 

track the relationship. Moreover, for large systems, inversion of the admittance matrix becomes 

very time consuming.  

The bus impedance matrix can also be directly found from power system structure [1]. In 

order to build the impedance matrix directly, one starts with a simple 1 × 1 impedance matrix 

between a bus and the reference node and then modifies this simple network by adding 

subsequent buses and lines between buses one at a time.  

In order to understand how to modify impedance matrix 𝑍𝑏𝑢𝑠, consider notations h, i,  j, and 

k for existing buses and m and n for the new buses, respectively, as shown in Cases 1 to 4 

depicted in figures 3.1 to 3.4 below. There are four different cases that one can benefit from in 

modifying 𝑍𝑏𝑢𝑠.  

Case 1. Adding branch 𝑍𝑏𝑢𝑠 between reference node and new bus m 
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In order to update original impedance matrix 𝑍𝑏𝑢𝑠
𝑜𝑟𝑖𝑔

 when there is an impedance (𝑍𝑏) 

added between the reference node (0) and the new bus (m), one needs to add a row and column 

to 𝑍𝑏𝑢𝑠
𝑜𝑟𝑖𝑔

 with the values in equation (3.1) [1]. 
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Figure 3.1 Case 1. Adding branch 𝑍𝑏 between reference node and new bus m 

 

Case 2. Adding branch 𝑍𝑏 between existing bus k and new bus m 

In order to update original impedance matrix 𝑍𝑏𝑢𝑠
𝑜𝑟𝑖𝑔

 when there is a new bus (m) 

connected through 𝑍𝑏 to an existing bus (k) equation (3.2) can be used [1].  
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Figure 3.2 Case 2. Adding branch 𝑍𝑏 between existing bus k and new bus m 

 

Case 3. Adding branch 𝑍𝑏 between existing bus k to the reference node 

In this case there is an impedance 𝑍𝑏 between bus k (an existing bus) and bus (0) (the 

reference node). In order to obtain 𝑍𝑏𝑢𝑠
𝑛𝑒𝑤 one needs to add a temporary bus (m) connectedthrough 

𝑍𝑏 to bus k (figure 3.3), then one needs to repeat case 2 and then remove row m and column m by 

Kron reduction. In order to use Kron reduction to find each element equation (3.3) is employed 

[1].  

 

𝑍ℎ𝑖(𝑛𝑒𝑤) = 𝑍ℎ𝑖 −
𝑍ℎ(𝑁+1)𝑍(𝑁+1)𝑖

𝑍𝑘𝑘+𝑍𝑏
        (3.3) 

 

Figure 2.3 Case 3. Adding branch 𝑍𝑏 between existing bus k to the reference node 
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Case 4. Adding branch 𝑍𝑏 between existing bus j to existing bus k 

In order to obtain original impedance matrix 𝑍𝑏𝑢𝑠
𝑛𝑒𝑤 for this case one needs to form the 

matrix using equation (3.4) [1]. 


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Figure 3.4 Case 4. Adding branch 𝑍𝑏 between existing bus j to existing bus k 

where 𝑍𝑡ℎ,𝑗𝑘 = 𝑍𝑗𝑗 + 𝑍𝑘𝑘 − 2𝑍𝑗𝑘 and then remove row n and column n by Kroon reduction [1]. 

By knowing how to modify 𝑍𝑏𝑢𝑠 using these four cases one can find 𝑍𝑏𝑢𝑠 of the system. 

Impedance matrix 𝑍𝑏𝑢𝑠 can be obtained starting from one bus connected through a branch 

impedance to the reference node and then expanding this simple network, based on the system 

topology and the four cases that mentioned above , to modify the 𝑍𝑏𝑢𝑠 
and find the large system 

impedance matrix. This approach is used in chapter 3.3 in order to find the relationship between 

injection frequency and fault location. 

 

 

 

 

 



25 

 

3.3 Effect of Injection Frequency on Fault Location 

In the SPS, cables are resistive, inductive and in the form of RL which makes the 

impedance of each cable equals to 𝑍 = 𝑅 + 𝑗𝐿𝜔. Note that 𝜔 = 2𝜋𝑓 that makes 𝜔 depend on the 

frequency of the injection. Therefore, impedance of the cable also depends on the frequency. 

Resistance (R) and inductance (L) of the cables are also related to the length of cables in the 

SPS. That is, 𝑅 = 𝑟𝑙 where r is the resistance per mile and l is the length of the cable. With the 

same approach 𝐿 = 𝑎𝑙 where 𝑎 is the inductance per mile and l is the cable length. Under the 

assumption that the same cable is used in the entire SPS, the value for a and r remain the same 

for the entire system and the only parameter that is changing is the length which makes R and L 

different for each cable. Let each element of 𝑍𝑏𝑢𝑠 be represented by a complex number 𝑍𝑖𝑗 =

𝑅𝑖𝑗 + 𝑗𝜔𝐿𝑖𝑗. Then, 𝑍𝑖𝑗 can be converted to form 𝑍𝑖𝑗 = 𝛹𝑙 where 𝛹 ∈ 𝐶1 is a constant complex 

number and is equal to 𝛹 = 𝑟 + 𝑗𝜔𝑎. In addition, one can consider 
𝑅

𝐿
=

𝑟𝑙

𝑎𝑙
= 𝑐𝑜𝑛𝑠𝑡 = 𝐾. By 

considering this one can write:  

𝑍 = 𝑅 + 𝑗𝐿𝜔 = 𝐿 (
𝑅

𝐿
+ 𝑗𝜔) = 𝑎𝑙(𝐾 + 𝑗𝜔) = 𝐾̅(𝜔)𝑙 

Since K is considered as a constant and a as inductance per mile which is the same for all the 

cables used in the SPS, there are only two variables in this equation that are l and ω. 

In the proposed approach the algorithm is supposed to look at  ∆𝑉 and ∆𝐼 values in order 

to find the location of the fault in the system. By using standard fault analysis, the observant bus 

voltage changes at bus h (when fault occurs at bus p) can be described as: 

∆𝑉ℎ =
𝑍(ℎ, 𝑝)

𝑍(𝑝, 𝑝) + 𝑅𝑓𝑎𝑢𝑙𝑡
× 𝑉𝑝𝑟𝑒𝑓 
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where 𝑍(ℎ, 𝑝) is the (ℎ, 𝑝) entree of the impedance matrix and 𝑍(𝑝, 𝑝)  is the system Thevenin 

impedance seen from bus p, and 𝑉𝑝𝑟𝑒𝑓 is the prefault voltage at the point of fault in the system. 

As shown in the equation one needs to find impedance matrix (𝑍𝑏𝑢𝑠) in order to find ∆𝑉ℎ. Since 

the proposed algorithm is related to the frequency of the injection and measurement, one needs to 

find the relationship between impedance matrix and frequency to find the proper frequency in 

order to get the best result and find the unique value of ∆𝑉 and ∆𝐼 for each fault. This will then 

lead to find the exact location of the fault for different values of 𝑅𝑓𝑎𝑢𝑙𝑡. 

One can find 𝑍𝑏𝑢𝑠 by finding 𝑌𝑏𝑢𝑠 and inverting it, but this is not convenient because it 

makes one unable to track the effect of frequency in the fault location formulation. For this 

reason the direct building algorithm of 𝑍𝑏𝑢𝑠 is used to precisely find its relationship with the 

frequency of the injection. In the process of finding 𝑍𝑏𝑢𝑠 it appears that all the elements of this 

matrix has 𝑎(𝐾 + 𝑗𝜔) in their numerator. Note that Kron reduction in this process will retain this 

value in the numerator of each 𝑍𝑏𝑢𝑠 element. As mentioned, for fault analysis one needs to look 

at ∆𝑉 and  ∆𝐼 values to find the exact location of the fault. Since each element of 𝑍𝑏𝑢𝑠 has 

𝐾̅(𝜔) = 𝑎(𝐾 + 𝑗𝜔), one can rearrange the equation as: 

∆𝑉ℎ =
𝐾̅(𝜔)𝑍̅(ℎ, 𝑝)

𝐾̅(𝜔)𝑍̅(𝑝, 𝑝) + 𝑅𝑓𝑎𝑢𝑙𝑡

× 𝑉𝑝𝑟𝑒𝑓 

where 𝑍̅(ℎ, 𝑝) and 𝑍̅(𝑝, 𝑝) are the elements of 
𝑍𝑏𝑢𝑠

𝐾̅(𝜔)
 matrix.  

Similarly, for the current measurement since ∆𝑉ℎ is available for any h within the 

network according to the standard power system fault analysis, lines current changes can be 

expressed as: 
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∆𝐼ℎ𝑢 =
∆𝑉ℎ − ∆𝑉𝑢

𝑍ℎ𝑢
= 𝑌ℎ𝑢 × (∆𝑉ℎ − ∆𝑉𝑢) 

𝑍ℎ𝑢 =
1

𝑌ℎ𝑢
=

−1

𝑌(ℎ, 𝑢)
 

∆𝐼ℎ𝑢 = 𝑌(ℎ, 𝑢) × (∆𝑉𝑢 − ∆𝑉ℎ) 

 

where h is the measurement bus and u is the adjacent bus connected to h by transmission line hu, 

𝑍ℎ𝑢 is the line impedance and 𝑌(ℎ, 𝑢) is the (ℎ, 𝑢) entree of the admittance matrix. Since 𝑌𝑏𝑢𝑠 =

1

𝑍𝑏𝑢𝑠
 it appears that all the elements of this matrix has 

1

(𝐾+𝑗𝜔)
 in their numerator. Note that Kron 

reduction in this process will retain this value in the numerator of each 𝑌𝑏𝑢𝑠 element. As 

mentioned, for fault analysis one needs to look at ∆𝑉 and ∆𝐼 values to find the exact location of 

the fault. Since each element of 𝑌𝑏𝑢𝑠 has  
1

𝐾̅(𝜔)
=

1

𝑎(𝐾+𝑗𝜔)
, one can rearrange the equation as: 

∆𝐼ℎ𝑢 =
1

𝐾̅(𝜔)
𝑌̅(ℎ, 𝑢) × (∆𝑉𝑢 − ∆𝑉ℎ) 

where 𝑌̅(ℎ, 𝑢) is the element of 𝑌𝑏𝑢𝑠 × 𝐾̅(𝜔) matrix.  

From the above equations one can conclude that if 𝑅𝑓𝑎𝑢𝑙𝑡 is a small value, frequency will 

not have critical effects on the ∆𝑉 and ∆𝐼 values and fault location, but if 𝑅𝑓𝑎𝑢𝑙𝑡 is large, one can 

get higher ∆𝑉 and ∆𝐼 by increasing the frequency. 

3.4 References 

[1] Grainger, J. J., & Stevenson, W. D. Power system analysis (Vol. 621). New York: McGraw-

Hill., 1994. 
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CHAPTER 4 

SIMULATION RESULTS 

4.1 Introduction 

The 11-bus SPS in figure 1.2 is considered as the case study. The proposed algorithm is 

applied to this system in the Matlab/Simulink in order to find the minimum number of injections 

and measurements and the best place for them to cover all the faults in the network. Algorithm 

examines all the possible places for measurement and injection to see which faults are covered 

and which ones are not covered. 

4.2 Simulation Results for 𝑓 = 1000𝐻𝑧 

Table 4.1 shows the number of faults (occurred on buses) that are not detectable for the 

selected values of M and I. The algorithm is also able to show which faults are not covered in 

each case (numbers in the parentheses). Table 4.1 shows the results when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−4 and 

𝑓 = 1000𝐻𝑧 in both the injections and measurements. For example, based on the Table 4.1, if 

we have the injection on bus 2 and the measurement on bus 3 we have two undetectable faults 

which are at bus 6 and bus 9. 
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Table 4.1 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−4 and 𝑓 = 1000𝐻𝑧   

M→ 

I↓ 
1 2 3 4 5 6 

1 1 

(11) 

7 

(3,4,5,7,8,10,11) 

7 

(2,5,6,7,8,9,10) 

7 

(2,5,6,7,8,9,10) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

2 4 

(4,6,9,11) 

2 

(4,11) 

2 

(6,9) 

2 

(6,9) 

4 

(4,6,9,11) 

9 

(1,3,4,5,7,8,9,10,11) 

3 2 

(4,11) 

2 

(4,11) 

2 

(6,9) 

8 

(1,2,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

4 1 

(11) 

1 

(11) 

8 

(2,5,6,7,8,9,10,11) 

7 

(2,5,6,7,8,9,10) 

1 

(11) 

1 

(11) 

5 5 

(4,7,8,10,11) 

5 

(4,7,8,10,11) 

3 

(7,8,10) 

3 

(7,8,10) 

7 

(1,2,3,4,6,9,11) 

5 

(4,7,8,10,11) 

6 2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

7 2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

8 3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

9 2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

3 

(3,4,11) 

10 2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

11 0 0 
6 

(2,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 
0 0 
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Table 4.1 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−4 and 𝑓 = 1000𝐻𝑧 

M→ 

I↓ 
7 8 9 10 11 

1 6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 

(2,3,4,6,9,11) 

7 

(2,5,6,7,8,9,10) 

2 4 

(4,6,9,11) 

4 

(4,6,9,11) 

9 

(1,3,4,5,6,7,8,10,11) 

4 

(4,6,9,11) 

2 

(6,9) 

3 2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

8 

(1,2,5,6,7,8,9,10) 

4 1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

9 

(1,2,3,5,6,7,8,9,10)) 

5 9 

(1,2,3,4,6,8,9,10,11) 

8 

(1,2,3,4,6,7,9,11) 

5 

(4,7,8,10,11) 

8 

(1,2,3,4,6,7,9,11) 

3 

(7,8,10) 

6 2 

(4,11) 

2 

(4,11) 

3 

(3,4,11) 

2 

(4,11) 
0 

7 10 

(1,2,3,4,5,6,8,9,10,11) 

3 

(3,4,11) 

2 

(4,11) 

3 

(3,4,11) 
0 

8 4 

(3,4,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

3 

(4,10,11) 

9 

(1,2,3,4,5,6,7,9,11)) 

1 

(10) 

9 2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

2 

(4,11) 
0 

10 3 

(3,4,11) 

3 

(3,4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 
0 

11 0 0 0 0 
10 

(1,2,3,4,5,6,7,8,9,10) 
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Table 4.1 shows that there are some cases with the lowest numbers (0 or 1) of 

undetectable faults. Zero shows that measurement on bus M can observe all the faults of the 

system when the injection is on bus I. If there is no zero in the table, system will consider more 

than one injection and/or measurement buses to observe all the possible faults of interest. Next, 

the cases with the lowest number of undetectable faults have to be checked for multi-estimation. 

In other words, these cases should prove that they have unique effects on the selected 

measurements for each fault. If the measurements for some faults are the same, multi-estimation 

has occurred, because these faults are not recognizable from one another and thus it increases the 

number of undetectable faults. In our simulation none of the cases in Table 4.1 involve multi-

estimation. Highlighted sections in the tables are showing the cases which require multi-

estimation. 

Table 4.2, 4.3, 4.4, and 4.5 show that by assuming higher 𝑅𝑓𝑎𝑢𝑙𝑡 for the system with the 

same value for the frequency (1000 Hz) results will slightly change. In this case some of the 

cases involve multi-estimation.  
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Table 4.2 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧   

M→ 

I↓ 
1 2 3 4 5 6 

1 
1 

(11) 

7 

(3,4,5,7,8,10,11) 

7 

(2,5,6,7,8,9,10) 

7 

(2,5,6,7,8,9,10) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

2 
4 

(4,6,9,11) 

2 

(4,11) 

2 

(6,9) 

2 

(6,9) 

4 

(4,6,9,11) 

9 

(1,3,4,5,7,8,9,10,11) 

3 
2 

(4,11) 

2 

(4,11) 

2 

(6,9) 

8 

(1,2,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

4 
1 

(11) 

1 

(11) 

8 

(2,5,6,7,8,9,10,11) 

7 

(2,5,6,7,8,9,10) 

1 

(11) 

1 

(11) 

5 
5 

(4,7,8,10,11) 

5 

(4,7,8,10,11) 

3 

(7,8,10) 

3 

(7,8,10) 

7 

(1,2,3,4,6,9,11) 

5 

(4,7,8,10,11) 

6 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

7 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

8 
3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

9 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

3 

(3,4,11) 

10 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

11 0 0 
6 

(2,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 
0 0 
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Table 4.2 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧 

M→ 

I↓ 
7 8 9 10 11 

1 
6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 

(2,3,4,6,9,11) 

7 

(2,5,6,7,8,9,10) 

2 
4 

(4,6,9,11) 

4 

(4,6,9,11) 

9 

(1,3,4,5,6,7,8,10,11) 

4 

(4,6,9,11) 

2 

(6,9) 

3 
2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

8 

(1,2,5,6,7,8,9,10) 

4 
1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

9 

(1,2,3,5,6,7,8,9,10)) 

5 
9 

(1,2,3,4,6,8,9,10,11) 

8 

(1,2,3,4,6,7,9,11) 

5 

(4,7,8,10,11) 

8 

(1,2,3,4,6,7,9,11) 

3 

(7,8,10) 

6 
2 

(4,11) 

2 

(4,11) 

3 

(3,4,11) 

2 

(4,11) 
0 

7 
10 

(1,2,3,4,5,6,8,9,10,11) 

3 

(3,4,11) 

2 

(4,11) 

3 

(3,4,11) 
0 

8 
4 

(3,4,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

3 

(4,10,11) 

9 

(1,2,3,4,5,6,7,9,11)) 

1 

(10) 

9 
2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

2 

(4,11) 
0 

10 
3 

(3,4,11) 

3 

(3,4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 
0 

11 0 0 0 0 
10 

(1,2,3,4,5,6,7,8,9,10) 
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Table 4.3 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−2 and 𝑓 = 1000𝐻𝑧 

M→ 

I↓ 
1 2 3 4 5 6 

1 
2 

(1,11) 

8 

(1,3,4,5,7,8,10,11) 

8 

(1,2,5,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

2 
5 

(2,4,6,9,11) 

3 

(2,4,11) 

3 

(2,6,9) 

3 

(2,6,9) 

5 

(2,4,6,9,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

3 
1 

(11) 

1 

(11) 

2 

(6,9) 

8 

(1,2,5,6,7,8,9,10) 

1 

(11) 

1 

(11) 

4 0 0 
7 

(2,5,6,7,8,9,10) 

7 

(2,5,6,7,8,9,10) 
0 0 

5 
6 

(4,5,7,8,10,11)) 

6 

(4,5,7,8,10,11) 

4 

(5,7,8,10) 

4 

(5,7,8,10) 

8 

(1,2,3,4,5,6,9,11) 

6 

(4,5,7,8,10,11) 

6 
3 

(4,6,11) 

4 

(3,4,6,11) 

1 

(6) 

1 

(6) 

3 

(4,6,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

7 
3 

(4,7,11) 

3 

(4,7,11) 

1 

(7) 

1 

(7) 

4 

(3,4,7,11) 

3 

(4,7,11) 

8 
3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

9 
3 

(4,9,11) 

4 

(3,4,9,11) 

1 

(9) 

1 

(9) 

3 

(4,9,11) 

4 

(3,4,9,11) 

10 
3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

11 
1 

(11) 

1 

(11) 

8 

(2,5,6,7,8,9,10,11) 

9 

(1,2,5,6,7,8,9,10,11) 

1 

(11) 

1 

(11) 
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Table 4.3 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−2 and 𝑓 = 1000𝐻𝑧 

M→ 

 

I↓ 

7 8 9 10 11 

1 
7 

(1,2,3,4,6,9,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,2,5,6,7,8,9,10) 

2 
5 

(2,4,6,9,11) 

5 

(2,4,6,9,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

5 

(2,4,6,9,11) 

3 

(2,6,9) 

3 
1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

8 

(1,2,5,6,7,8,9,10) 

4 0 0 0 0 
9 

(1,2,3,5,6,7,8,9,10) 

5 
10 

(1,2,3,4,5,6,8,9,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

6 

(4,5,7,8,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

4 

(5,7,8,10) 

6 
3 

(4,6,11) 

3 

(4,6,11) 

4 

(3,4,6,11) 

3 

(4,6,11) 

1 

(6) 

7 
11 

(1,2,3,4,5,6,7,8,9,10,11) 

4 

(3,4,7,11) 

3 

(4,7,11) 

4 

(3,4,7,11) 

1 

(7) 

8 
4 

(3,4,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

3 

(4,10,11) 

8 

(1,2,3,4,6,7,9,11)) 

1 

(10) 

9 
3 

(4,9,11) 

3 

(4,9,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

3 

(4,9,11) 

1 

(9) 

10 
4 

(3,4,10,11) 

4 

(3,4,10,11) 

3 

(4,10,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

1 

(10) 

11 
1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 
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Table 4.4 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−1 and 𝑓 = 1000𝐻𝑧 

M→ 

I↓ 
1 2 3 4 5 6 

1 
3 

(1,4,11) 

8 

(1,3,4,5,7,8,10,11) 

8 

(1,2,5,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

2 
6 

(2,3,4,6,9,11) 

4 

(2,3,4,11) 

3 

(2,6,9) 

3 

(2,6,9) 

6 

(2,3,4,6,9,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

3 
3 

(3,4,11) 

3 

(3,4,11) 

9 

(1,2,3,5,6,7,8,9,10) 

9 

(1,2,3,5,6,7,8,9,10) 

3 

(3,4,11) 

3 

(3,4,11) 

4 
2 

(4,11) 

2 

(4,11) 

10 

(1,2,4,5,6,7,8,9,10,11) 

9 

(1,2,4,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

5 
7 

(3,4,5,7,8,10,11) 

7 

(3,4,5,7,8,10,11) 

4 

(5,7,8,10) 

4 

(5,7,8,10) 

8 

(1,2,3,4,5,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 
4 

(3,4,6,11) 

4 

(3,4,6,11) 

1 

(6) 

1 

(6) 

4 

(3,4,6,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

7 
4 

(3,4,7,11) 

4 

(3,4,7,11) 

1 

(7) 

1 

(7) 

4 

(3,4,7,11) 

4 

(3,4,7,11) 

8 
5 

(3,4,8,10,11) 

5 

(3,4,8,10,11) 

2 

(8,10) 

2 

(8,10) 

5 

(3,4,8,10,11) 

5 

(3,4,8,10,11) 

9 
4 

(3,4,9,11) 

4 

(3,4,9,11) 

1 

(9) 

1 

(9) 

4 

(3,4,9,11) 

4 

(3,4,10,11) 

10 
4 

(3,4,10,11) 

4 

(3,4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

4 

(3,4,10,11) 

11 
1 

(11) 

1 

(11) 

9 

(1,2,5,6,7,8,9,10,11) 

9 

(1,2,5,6,7,8,9,10,11) 

1 

(11) 

1 

(11) 
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Table 4.4 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−1 and 𝑓 = 1000𝐻𝑧 

M→ 

I↓ 
7 8 9 10 11 

1 7 

(1,2,3,4,6,9,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,2,5,6,7,8,9,10) 

2 6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

6 

(2,3,4,6,9,11) 

3 

(2,6,9) 

3 3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

9 

(1,2,3,5,6,7,8,9,10) 

4 2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,10) 

5 10 

(1,2,3,4,5,6,8,9,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

7 

(3,4,5,7,8,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

4 

(5,7,8,10) 

6 4 

(3,4,6,11) 

4 

(3,4,6,11) 

4 

(3,4,6,11) 

4 

(3,4,6,11) 

1 

(6) 

7 11 

(1,2,3,4,5,6,7,8,9,10,11) 

4 

(3,4,7,11) 

4 

(3,4,7,11) 

4 

(3,4,7,11) 

1 

(7) 

8 5 

(3,4,8,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

5 

(3,4,8,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

2 

(8,10) 

9 4 

(3,4,9,11) 

4 

(3,4,9,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

4 

(3,4,9,11) 

1 

(9) 

10 4 

(3,4,10,11) 

4 

(3,4,10,11) 

4 

(3,4,10,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

1 

(10) 

11 1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 
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Table 4.5 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

M→ 

I↓ 
1 2 3 4 5 6 

1 
4 

(1,3,4,11) 

8 

(1,3,4,5,7,8,10,11) 

8 

(1,2,5,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

2 
6 

(2,3,4,6,9,11) 

4 

(2,3,4,11) 

3 

(2,6,9) 

3 

(2,6,9) 

6 

(2,3,4,6,9,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

3 
3 

(3,4,11) 

3 

(3,4,11) 

9 

(1,2,3,5,6,7,8,9,10) 

9 

(1,2,3,5,6,7,8,9,10) 

3 

(3,4,11) 

3 

(3,4,11) 

4 
2 

(4,11) 

2 

(4,11) 

10 

(1,2,4,5,6,7,8,9,10,11) 

9 

(1,2,4,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

5 
7 

(3,4,5,7,8,10,11) 

7 

(3,4,5,7,8,10,11) 

4 

(5,7,8,10) 

4 

(5,7,8,10) 

8 

(1,2,3,4,5,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 
4 

(3,4,6,11) 

4 

(3,4,6,11) 

1 

(6) 

1 

(6) 

4 

(3,4,6,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

7 
4 

(3,4,7,11) 

4 

(3,4,7,11) 

1 

(7) 

1 

(7) 

7 

(2,3,4,6,7,9,11) 

4 

(3,4,7,11) 

8 
5 

(3,4,8,10,11) 

5 

(3,4,8,10,11) 

2 

(8,10) 

2 

(8,10) 

8 

(2,3,4,6,8,9,10,11) 

5 

(3,4,8,10,11) 

9 
4 

(3,4,9,11) 

4 

(3,4,9,11) 

1 

(9) 

1 

(9) 

4 

(3,4,9,11) 

4 

(3,4,9,11) 

10 
4 

(3,4,10,11) 

4 

(3,4,10,11) 

1 

(10) 

1 

(10) 

7 

(2,3,4,6,9,10,11) 

4 

(3,4,10,11) 

11 
1 

(11) 

1 

(11) 

9 

(1,2,5,6,7,8,9,10,11) 

9 

(1,2,5,6,7,8,9,10,11) 

1 

(11) 

1 

(11) 
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Table 4.5 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

M→ 

I↓ 
7 8 9 10 11 

1 
7 

(1,2,3,4,6,9,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,2,5,6,7,8,9,10) 

2 
6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

6 

(2,3,4,6,9,11) 

3 

(2,6,9) 

3 
3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

9 

(1,2,3,5,6,7,8,9,10) 

4 
2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,10) 

5 
10 

(1,2,3,4,5,6,8,9,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

7 

(3,4,5,7,8,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

4 

(5,7,8,10) 

6 
4 

(3,4,6,11) 

4 

(3,4,6,11) 

4 

(3,4,6,11) 

4 

(3,4,6,11) 

1 

(6) 

7 
11 

(1,2,3,4,5,6,7,8,9,10,11) 

7 

(2,3,4,6,7,9,11) 

4 

(3,4,7,11) 

7 

(2,3,4,6,7,9,11) 

1 

(7) 

8 
8 

(2,3,4,6,8,9,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

5 

(3,4,8,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

2 

(8,10) 

9 
4 

(3,4,9,11) 

4 

(3,4,9,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

4 

(3,4,9,11) 

1 

(9) 

10 
7 

(2,3,4,6,9,10,11) 

8 

(1,2,3,4,6,9,10,11) 

4 

(3,4,10,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

1 

(10) 

11 
1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 
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The algorithm is also applied to the system with 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧. As shown 

in Table 4.5, in this scenario all cases that have the lowest number of undetectable faults suffer 

from multi-estimation (highlighted numbers). That is, for higher 𝑅𝑓𝑎𝑢𝑙𝑡, combinations of 

injection and measurement buses with 𝑓 = 1000𝐻𝑧 cannot cover all the fault locations unless 

multiple injection and measurement buses are selected. It requires the algorithm to run at a 

higher frequency (𝑓 = 7000𝐻𝑧.)  

4.3 Simulation Results for 𝑓 = 7000𝐻𝑧 

The algorithm repeats all the steps with 𝑓 = 7000𝐻𝑧 for different values of 𝑅𝑓𝑎𝑢𝑙𝑡 

(1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1, and 1) to minimize the number of multi-estimations. Each 𝑅𝑓𝑎𝑢𝑙𝑡 will 

produce a table similar to Table 4.1 that shows the number of undetectable faults for each case 

(Tables 4.6, 4.7, 4.8, .49, and 4.10).  
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Table 4.6 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−4 and 𝑓 = 7000𝐻𝑧  

M→ 

I↓ 
1 2 3 4 5 6 

1 
1 

(11) 

7 

(3,4,5,7,8,10,11) 

7 

(2,5,6,7,8,9,10) 

7 

(2,5,6,7,8,9,10) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

2 
4 

(4,6,9,11) 

2 

(4,11) 

2 

(6,9) 

2 

(6,9) 

4 

(4,6,9,11) 

9 

(1,3,4,5,7,8,9,10,11) 

3 
2 

(4,11) 

2 

(4,11) 

2 

(6,9) 

8 

(1,2,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

4 
1 

(11) 

1 

(11) 

8 

(2,5,6,7,8,9,10,11) 

7 

(2,5,6,7,8,9,10) 

1 

(11) 

1 

(11) 

5 
5 

(4,7,8,10,11) 

5 

(4,7,8,10,11) 

3 

(7,8,10) 

3 

(7,8,10) 

7 

(1,2,3,4,6,9,11) 

5 

(4,7,8,10,11) 

6 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

7 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

8 
3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

9 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

3 

(3,4,11) 

10 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

11 0 0 
6 

(2,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 
0 0 
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Table 4.6 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−4 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
7 8 9 10 11 

1 
6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 

(2,3,4,6,9,11) 

7 

(2,5,6,7,8,9,10) 

2 
4 

(4,6,9,11) 

4 

(4,6,9,11) 

9 

(1,3,4,5,6,7,8,10,11) 

4 

(4,6,9,11) 

2 

(6,9) 

3 
2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

8 

(1,2,5,6,7,8,9,10) 

4 
1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

9 

(1,2,3,5,6,7,8,9,10)) 

5 
9 

(1,2,3,4,6,8,9,10,11) 

8 

(1,2,3,4,6,7,9,11) 

5 

(4,7,8,10,11) 

8 

(1,2,3,4,6,7,9,11) 

3 

(7,8,10) 

6 
2 

(4,11) 

2 

(4,11) 

3 

(3,4,11) 

2 

(4,11) 
0 

7 
10 

(1,2,3,4,5,6,8,9,10,11) 

3 

(3,4,11) 

2 

(4,11) 

3 

(3,4,11) 
0 

8 
4 

(3,4,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

3 

(4,10,11) 

9 

(1,2,3,4,5,6,7,9,11)) 

1 

(10) 

9 
2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

2 

(4,11) 
0 

10 
3 

(3,4,11) 

3 

(3,4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 
0 

11 0 0 0 0 
10 

(1,2,3,4,5,6,7,8,9,10) 
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Table 4.7 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
1 2 3 4 5 6 

1 
1 

(11) 

7 

(3,4,5,7,8,10,11) 

7 

(2,5,6,7,8,9,10) 

7 

(2,5,6,7,8,9,10) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

2 
4 

(4,6,9,11) 

2 

(4,11) 

2 

(6,9) 

2 

(6,9) 

4 

(4,6,9,11) 

9 

(1,3,4,5,7,8,9,10,11) 

3 
2 

(4,11) 

2 

(4,11) 

2 

(6,9) 

8 

(1,2,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

4 
1 

(11) 

1 

(11) 

8 

(2,5,6,7,8,9,10,11) 

7 

(2,5,6,7,8,9,10) 

1 

(11) 

1 

(11) 

5 
5 

(4,7,8,10,11) 

5 

(4,7,8,10,11) 

3 

(7,8,10) 

3 

(7,8,10) 

7 

(1,2,3,4,6,9,11) 

5 

(4,7,8,10,11) 

6 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

7 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

8 
3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

9 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

3 

(3,4,11) 

10 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

11 0 0 
6 

(2,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 
0 0 
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Table 4.7 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 7 8 9 10 11 

1 
6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 

(2,3,4,6,9,11) 

7 

(2,5,6,7,8,9,10) 

2 
4 

(4,6,9,11) 

4 

(4,6,9,11) 

9 

(1,3,4,5,6,7,8,10,11) 

4 

(4,6,9,11) 

2 

(6,9) 

3 
2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

8 

(1,2,5,6,7,8,9,10) 

4 
1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

9 

(1,2,3,5,6,7,8,9,10)) 

5 
9 

(1,2,3,4,6,8,9,10,11) 

8 

(1,2,3,4,6,7,9,11) 

5 

(4,7,8,10,11) 

8 

(1,2,3,4,6,7,9,11) 

3 

(7,8,10) 

6 
2 

(4,11) 

2 

(4,11) 

3 

(3,4,11) 

2 

(4,11) 
0 

7 
10 

(1,2,3,4,5,6,8,9,10,11) 

3 

(3,4,11) 

2 

(4,11) 

3 

(3,4,11) 
0 

8 
4 

(3,4,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

3 

(4,10,11) 

9 

(1,2,3,4,5,6,7,9,11)) 

1 

(10) 

9 
2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

2 

(4,11) 
0 

10 
3 

(3,4,11) 

3 

(3,4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 
0 

11 0 0 0 0 
10 

(1,2,3,4,5,6,7,8,9,10) 
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Table 4.8 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−2 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
1 2 3 4 5 6 

1 
1 

(11) 

7 

(3,4,5,7,8,10,11) 

7 

(2,5,6,7,8,9,10) 

7 

(2,5,6,7,8,9,10) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

2 
4 

(4,6,9,11) 

2 

(4,11) 

2 

(6,9) 

2 

(6,9) 

4 

(4,6,9,11) 

9 

(1,3,4,5,7,8,9,10,11) 

3 
2 

(4,11) 

2 

(4,11) 

2 

(6,9) 

8 

(1,2,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

4 
1 

(11) 

1 

(11) 

8 

(2,5,6,7,8,9,10,11) 

7 

(2,5,6,7,8,9,10) 

1 

(11) 

1 

(11) 

5 
5 

(4,7,8,10,11) 

5 

(4,7,8,10,11) 

3 

(7,8,10) 

3 

(7,8,10) 

7 

(1,2,3,4,6,9,11) 

5 

(4,7,8,10,11) 

6 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

7 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

8 
3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

9 
2 

(4,11) 

3 

(3,4,11) 
0 0 

2 

(4,11) 

3 

(3,4,11) 

10 
2 

(4,11) 

2 

(4,11) 
0 0 

3 

(3,4,11) 

2 

(4,11) 

11 0 0 
6 

(2,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 
0 0 
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Table 4.8 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−2 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
7 8 

 

9 
10 11 

1 6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 

(2,3,4,6,9,11) 

7 

(2,5,6,7,8,9,10) 

2 4 

(4,6,9,11) 

4 

(4,6,9,11) 

9 

(1,3,4,5,6,7,8,10,11) 

4 

(4,6,9,11) 

2 

(6,9) 

3 2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

8 

(1,2,5,6,7,8,9,10) 

4 1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

9 

(1,2,3,5,6,7,8,9,10)) 

5 9 

(1,2,3,4,6,8,9,10,11) 

8 

(1,2,3,4,6,7,9,11) 

5 

(4,7,8,10,11) 

8 

(1,2,3,4,6,7,9,11) 

3 

(7,8,10) 

6 2 

(4,11) 

2 

(4,11) 

3 

(3,4,11) 

2 

(4,11) 
0 

7 10 

(1,2,3,4,5,6,8,9,10,11) 

3 

(3,4,11) 

2 

(4,11) 

3 

(3,4,11) 
0 

8 4 

(3,4,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

3 

(4,10,11) 

9 

(1,2,3,4,5,6,7,9,11)) 

1 

(10) 

9 2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

2 

(4,11) 
0 

10 3 

(3,4,11) 

3 

(3,4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 
0 

11 
0 0 0 0 

10 

(1,2,3,4,5,6,7,8,9,10) 
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Table 4.9 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−1 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
1 2 3 4 5 6 

1 
2 

(1,11) 

8 

(1,3,4,5,7,8,10,11) 

8 

(1,2,5,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

2 
5 

(2,4,6,9,11) 

3 

(2,4,11) 

3 

(2,6,9) 

3 

(2,6,9) 

5 

(2,4,6,9,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

3 
3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,6,9) 

9 

(1,2,3,5,6,7,8,9,10) 

3 

(3,4,11) 

3 

(3,4,11) 

4 
2 

(4,11) 

2 

(4,11) 

9 

(2,4,5,6,7,8,9,10,11) 

8 

(2,4,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

5 
6 

(4,5,7,8,10,11) 

6 

(4,5,7,8,10,11) 

4 

(5,7,8,10) 

4 

(5,7,8,10) 

8 

(1,2,3,4,5,6,9,11) 

6 

(4,5,7,8,10,11) 

6 
3 

(4,6,11) 

4 

(3,4,6,11) 

1 

(6) 

1 

(6) 

3 

(4,6,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

7 
3 

(4,7,11) 

3 

(4,7,11) 

1 

(7) 

1 

(7) 

4 

(3,4,7,11) 

3 

(4,7,11) 

8 
4 

(4,8,10,11) 

4 

(4,8,10,11) 

2 

(8,10) 

2 

(8,10) 

5 

(3,4,8,10,11) 

4 

(4,8,10,11) 

9 
3 

(4,9,11) 

4 

(3,4,9,11) 

1 

(9) 

1 

(9) 

3 

(4,9,11) 

4 

(3,4,9,11) 

10 
3 

(4,10,11) 

3 

(4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

3 

(4,10,11) 

11 
1 

(11) 

1 

(11) 

8 

(2,5,6,7,8,9,10,11) 

9 

(1,2,5,6,7,8,9,10,11) 

1 

(11) 

1 

(11) 
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Table 4.9 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−1 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
7 8 9 10 11 

1 
7 

(1,2,3,4,6,9,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,2,5,6,7,8,9,10) 

2 
5 

(2,4,6,9,11) 

5 

(2,4,6,9,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

5 

(2,4,6,9,11) 

3 

(2,6,9) 

3 
3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

9 

(1,2,3,5,6,7,8,9,10) 

4 
2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,10) 

5 
10 

(1,2,3,4,5,6,8,9,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

6 

(4,5,7,8,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

4 

(5,7,8,10) 

6 
3 

(4,6,11) 

3 

(4,6,11) 

4 

(3,4,6,11) 

3 

(4,6,11) 

1 

(6) 

 

7 
11 

(1,2,3,4,5,6,7,8,9,10,11) 

4 

(3,4,7,11) 

3 

(4,7,11) 

4 

(3,4,7,11) 

1 

(7) 

 

8 
5 

(3,4,8,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

4 

(4,8,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

2 

(8,10) 

9 
3 

(4,9,11) 

3 

(4,9,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

3 

(4,9,11) 

1 

(9) 

 

10 
4 

(3,4,10,11) 

4 

(3,4,10,11) 

3 

(4,10,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

1 

(10) 

 

11 
1 

(11) 

1 

(11) 

1 

(11) 

1 

(11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 
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Table 4.10 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
1 2 3 4 5 6 

1 
4 

(1,3,4,11) 

8 

(1,3,4,5,7,8,10,11) 

8 

(1,2,5,6,7,8,9,10) 

8 

(1,2,5,6,7,8,9,10) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

2 
6 

(2,3,4,6,9,11) 

4 

(2,3,4,11) 

3 

(2,6,9) 

3 

(2,6,9) 

6 

(2,3,4,6,9,11) 

10 

(1,2,3,4,5,7,8,9,10,11) 

3 
3 

(3,4,11) 

3 

(3,4,11) 

9 

(1,2,3,5,6,7,8,9,10) 

9 

(1,2,3,5,6,7,8,9,10) 

3 

(3,4,11) 

3 

(3,4,11) 

4 
2 

(4,11) 

2 

(4,11) 

10 

(1,2,4,5,6,7,8,9,10,11) 

9 

(1,2,4,5,6,7,8,9,10) 

2 

(4,11) 

2 

(4,11) 

5 
7 

(3,4,5,7,8,10,11) 

7 

(3,4,5,7,8,10,11) 

4 

(5,7,8,10) 

4 

(5,7,8,10) 

8 

(1,2,3,4,5,6,9,11) 

7 

(3,4,5,7,8,10,11) 

6 
4 

(3,4,6,11) 

4 

(3,4,6,11) 

1 

(6) 
1 

(6) 

4 

(3,4,6,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

7 
4 

(3,4,7,11) 

4 

(3,4,7,11) 

1 

(7) 

1 

(7) 

4 

(3,4,7,11) 

4 

(3,4,7,11) 

8 
5 

(3,4,8,10,11) 

5 

(3,4,8,10,11) 

2 

(8,10) 

2 

(8,10) 

5 

(3,4,8,10,11) 

5 

(3,4,8,10,11) 

9 
4 

(3,4,9,11) 

4 

(3,4,9,11) 

1 

(9) 
1 

(9) 

4 

(3,4,9,11) 

4 

(3,4,9,11) 

10 
4 

(3,4,10,11) 

4 

(3,4,10,11) 

1 

(10) 

1 

(10) 

4 

(3,4,10,11) 

4 

(3,4,10,11) 

11 
1 

(11) 

1 

(11) 
9 

(1,2,5,6,7,8,9,10,11) 

9 

(1,2,5,6,7,8,9,10,11) 

1 

(11) 
1 

(11) 



50 

 

Table 4.10 Results of applying proposed approach when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

M→ 

I↓ 
7 8 9 10 11 

1 
7 

(1,2,3,4,6,9,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,3,4,5,7,8,10,11) 

7 

(1,2,3,4,6,9,11) 

8 

(1,2,5,6,7,8,9,10) 

2 
6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,11) 

10 

(1,2,3,4,5,6,7,8,10,11) 

6 

(2,3,4,6,9,11) 

3 

(2,6,9) 

3 
3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

3 

(3,4,11) 

9 

(1,2,3,5,6,7,8,9,10) 

4 
2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

2 

(4,11) 

10 

(1,2,3,4,5,6,7,8,9,10) 

5 
10 

(1,2,3,4,5,6,8,9,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

7 

(3,4,5,7,8,10,11) 

9 

(1,2,3,4,5,6,7,9,11) 

4 

(5,7,8,10) 

6 
4 

(3,4,6,11) 

4 

(3,4,6,11) 

4 

(3,4,6,11) 

4 

(3,4,6,11) 

1 

(6) 

7 
11 

(1,2,3,4,5,6,7,8,9,10,11) 

4 

(3,4,7,11) 

4 

(3,4,7,11) 

4 

(3,4,7,11) 

1 

(7) 

8 
5 

(3,4,8,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

5 

(3,4,8,10,11) 

10 

(1,2,3,4,5,6,7,8,9,11) 

2 

(8,10) 

9 
4 

(3,4,9,11) 

4 

(3,4,9,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

4 

(3,4,9,11) 

1 

(9) 

10 
4 

(3,4,10,11) 

4 

(3,4,10,11) 

4 

(3,4,10,11) 

11 

(1,2,3,4,5,6,7,8,9,10,11) 

1 

(10) 

11 
1 

(11) 

1 

(11) 

1 

(11) 
1 

(11) 
11 

(1,2,3,4,5,6,7,8,9,10,11) 
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The algorithm compares all of these tables together to find the optimal buses for injection 

and measurement in order to find the unique location of the fault with minimal multi-estimation. 

Table 4.10 shows the results for 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 when 𝑓 = 7000𝐻𝑧. This table is compared to other 

tables at 𝑓 = 7000𝐻𝑧 for different 𝑅𝑓𝑎𝑢𝑙𝑡 to find the optimal locations of measurement and 

injection. The cases with circle have the lowest number of undetectable faults for all possible 

𝑅𝑓𝑎𝑢𝑙𝑡 which does not involve multi-estimation. 

The optimal injection-measurement set for the analyzed system in this paper requires two 

injections and two measurements to cover all the faults (1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1, and 1) in the 

system. By comparing the tables for 𝑓 = 7000𝐻𝑧 it is shown that the first injection needs to be 

on bus 6 with the measurement on bus 3. The second pair of injection and measurement can be 

one of these cases: 𝐼 = 9, 𝑀 = 3, or 𝐼 = 11, 𝑀 = 1, or 𝐼 = 11, 𝑀 = 2, or 𝐼 = 11, 𝑀 = 5, or 

𝐼 = 11, 𝑀 = 6, or 𝐼 = 11, 𝑀 = 7, or 𝐼 = 11, 𝑀 = 8, or 𝐼 = 11, 𝑀 = 9, or 𝐼 = 11, 𝑀 = 10. 

4.4 Fault Location Results by Using Line Current Measurement 

Since each bus connects multiple lines together and each of these lines have different 

currents one needs to know which line is used for the fault location and which line results the 

lowest undetectable faults. 

The 11-bus SPS in figure 4.1 is considered as the case study. In this figure each line has a 

number used for the current measurement. The proposed algorithm is applied to this system in 

the Matlab/ Simulink in order to find the minimum number of injections and measurements and 

the best place for them to cover all the faults in the network. Algorithm examines all possible 

places for measurement and injection to see which faults are covered and which ones are not. 

The proposed algorithm is tested for 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 for both 𝑓 = 1000𝐻𝑧 and 

𝑓 = 7000𝐻𝑧. In this section, each table shows the results for both current and voltage 
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measurements. In this section, circles in the tables show the cases with better results for current 

measurement than voltage measurement. The highlighted tables are showing the cases that 

require multi-estimation. 

 

 

Figure 4.1 11-Bus SPS 
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4.5 Current Measurement Results for 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧 

Table 4.11 Voltage and current measurement for Bus-1 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧 

 

Msr 

 

 

 

Inj 

Bus-1 

Voltage Current 

Bus-1 Bus-1-Line-1 Bus-1-Line-2 Bus-1-Line-3 Bus-1-Line-4 

Bus

-1 

10 
(2,3,4,5,6,7,8,

9,10,11) 

1 
(11) 

7 
(2,5,6,7,8,9,10

) 

6 
(2,3,4,6,9,11) 

7 
(3,4,5,7,8,10,1

1) 

Bus

-2 

4 
(4,6,9,11) 

4 
(4,6,9,11) 

2 
(6,9) 

4 
(4,6,9,11) 

4 
(4,6,9,11) 

Bus

-3 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus

-4 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 

Bus

-5 

5 
(4,7,8,10,11) 

5 
(4,7,8,10,11) 

3 
(7,8,10) 

5 
(4,7,8,10,11) 

5 
(4,7,8,10,11) 

Bus

-6 

2 
(4,11) 

2 
(4,11) 

0 2 
(4,11) 

2 
(4,11) 

Bus

-7 

2 
(4,11) 

2 
(4,11) 

0 3 
(3,4,11) 

2 
(4,11) 

Bus

-8 

3 
(4,10,11) 

3 
(4,10,11) 

1 
(10) 

4 
(3,4,10,11) 

3 
(4,10,11) 

Bus

-9 

2 
(4,11) 

2 
(4,11) 

0 2 
(4,11) 

2 
(4,11) 

Bus

-10 

2 
(4,11) 

2 
(4,11) 

0 3 
(3,4,11) 

2 
(4,11) 

Bus

-11 
0 0 0 0 0 
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Table 4.12 Voltage and current measurement for Bus-2 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧 

Msr 

 

 

 

Inj 

Bus-2 

Voltage Current 

Bus-2 Bus-2-Line-1 Bus-2-Line-2 Bus-2-Line-3 Bus-2-Line-4 

Bus-

1 

7 
(3,4,5,7,8,10

,11) 

7 
(3,4,5,7,8,10,1

1) 

7 
(3,4,5,7,8,10,11

) 

4 
(3,4,7,11) 

7 
(3,4,5,7,8,10,1

1) 

Bus-

2 

10 
(1,3,4,5,6,7,

8,9,10,11) 

2 
(4,11) 

4 
(4,6,9,11) 

9 
(1,3,4,5,7,8,9,

10,11) 

9 
(1,3,4,5,6,7,8,1

0,11) 

Bus-

3 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

4 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 

Bus-

5 

5 
(4,7,8,10,11) 

5 
(4,7,8,10,11) 

5 
(4,7,8,10,11) 

3 
(4,7,11) 

5 
(4,7,8,10,11) 

Bus-

6 

3 
(3,4,11) 

3 
(3,4,11) 

2 
(4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

Bus-

7 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

8 

3 
(4,10,11) 

3 
(4,10,11) 

3 
(4,10,11) 

3 
(4,10,11) 

3 
(4,10,11) 

Bus-

9 

3 
(3,4,11) 

3 
(3,4,11) 

2 
(4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

Bus-

10 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

11 
0 0 0 0 0 
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Table 4.13 Voltage and current measurement for Bus-3 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-3 

Voltage Current 

Bus-3 Bus-3-Line-1 Bus-3-Line-2 Bus-3-Line-3 

Bus-

1 

7 
(2,5,6,7,8,9,10) 

7 
(2,5,6,7,8,9,10) 

7 
(2,5,6,7,8,9,10) 

7 
(2,5,6,7,8,9,10) 

Bus-

2 

2 
(6,9) 

2 
(6,9) 

2 
(6,9) 

2 
(6,9) 

Bus-

3 

10 
(1,2,4,5,6,7,8,9,10,11) 

2 
(6,9) 

2 
(4,11) 

8 
(1,2,5,6,7,8,9,10) 

Bus-

4 

8 
(2,5,6,7,8,9,10,11) 

8 
(2,5,6,7,8,9,10,11) 

1 
(11) 

8 
(1,2,6,7,8,9,10,11) 

Bus-

5 

3 
(7,8,10) 

3 
(7,8,10) 

3 
(7,8,10) 

3 
(7,8,10) 

Bus-

6 
0 0 0 0 

Bus-

7 
0 0 0 0 

Bus-

8 

1 
(10) 

1 
(10) 

1 
(10) 

1 
(10) 

Bus-

9 
0 0 0 0 

Bus-

10 
0 0 0 0 

Bus-

11 

6 
(2,6,7,8,9,10) 

6 
(2,6,7,8,9,10) 

0 7 
(2,5,6,7,8,9,10) 
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Table 4.14 Voltage and current measurement for Bus-4 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-4 

Voltage Current 

Bus-4 Bus-4-Line-1 Bus-4-Line-2 Bus-4-Line-3 

Bus-

1 

7 
(2,5,6,7,8,9,10) 

7 
(2,5,6,7,8,9,10) 

7 
(2,5,6,7,8,9,10) 

7 
(2,5,6,7,8,9,10) 

Bus-

2 

2 
(6,9) 

2 
(6,9) 

2 
(6,9) 

2 
(6,9) 

Bus-

3 

8 
(1,2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10) 

Bus-

4 

10 
(1,2,3,5,6,7,8,9,10,11) 

7 
(2,5,6,7,8,9,10) 

8 
(2,5,6,7,8,9,10,11) 

9 
(1,2,3,5,6,7,8,9,10) 

Bus-

5 

3 
(7,8,10) 

3 
(7,8,10) 

3 
(7,8,10) 

3 
(7,8,10) 

Bus-

6 
0 0 0 0 

Bus-

7 
0 0 0 0 

Bus-

8 

1 
(10) 

1 
(10) 

1 
(10) 

1 
(10) 

Bus-

9 
0 0 0 0 

Bus-

10 
0 0 0 0 

Bus-

11 

8 
(1,2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10) 

7 
(2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10) 
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Table 4.15 Voltage and current measurement for Bus-5 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 1000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-5 

Voltage Current 

Bus-5 Bus-5-Line-1 Bus-5-Line-2 Bus-5-Line-3 

Bus-

1 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

Bus-

2 

4 
(4,6,9,11) 

4 
(4,6,9,11) 

4 
(4,6,9,11) 

4 
(4,6,9,11) 

Bus-

3 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

4 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 

Bus-

5 

10 
(1,2,3,4,6,7,8,9,10,

11) 

7 
(1,2,3,4,6,9,11) 

7 
(1,2,3,4,6,9,11) 

7 
(1,2,3,4,6,9,11) 

Bus-

6 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

7 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

Bus-

8 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

Bus-

9 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

10 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

Bus-

11 
0 0 0 0 
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Table 4.16 Voltage and current measurement for Bus-6, Bus-7, and Bus-8 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 

and 𝑓 = 1000𝐻𝑧 

 

Measu

rement 

 

Inj 

Bus-6 Bus-7 Bus-8 

Voltage Current Voltage Current Voltage Current 

Bus-1 
7 

(3,4,5,7,8,1

0,11) 

3 

(3,4,11) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,

11) 

Bus-2 
9 

(1,3,4,5,7,8,

9,10,11) 

6 

(3,4,7,9,10,

11) 

4 

(4,6,9,11) 
4 

(4,6,9,11) 
4 

(4,6,9,11) 
4 

(4,6,9,11) 

Bus-3 2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-4 1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

Bus-5 
5 

(4,7,8,10,11

) 

3 

(4,7,11) 

9 

(1,2,3,4,6,8,

9,10,11) 

9 

(1,2,3,4,6,8,

9,10,11) 

8 

(1,2,3,4,6,7,

9,11) 

8 

(1,2,3,4,6,

7,9,11) 

Bus-6 
10 

(1,2,3,4,5,7,

8,9,10,11) 

10 

(1,2,3,4,5,7,

8,9,10,11) 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-7 2 

(4,11) 
2 

(4,11) 

10 

(1,2,3,4,5,6,

8,9,10,11) 

10 

(1,2,3,4,5,6,

8,9,10,11) 

3 

(3,4,11) 
3 

(3,4,11) 

Bus-8 3 

(4,10,11) 
3 

(4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 

10 

(1,2,3,4,5,6,

7,9,10,11) 

9 

(1,2,3,4,5,

6,7,9,11) 

Bus-9 3 

(3,4,11) 
3 

(3,4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-10 2 

(4,11) 
2 

(4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-11 
0 0 0 0 0 0 
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Table 4.17 Voltage and current measurement for Bus-9, Bus-10, and Bus-11 when 𝑅𝑓𝑎𝑢𝑙𝑡 =

1𝑒−3 and 𝑓 = 1000𝐻𝑧 

 

Measu

rement 

Inj 

Bus-9 Bus-10 Bus-11 

Voltage Current Voltage Current Voltage Current 

Bus-1 

7 

(3,4,5,7,8,1

0,11) 

7 

(3,4,5,7,8,1

0,11) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,1

1) 

7 

(2,5,6,7,8,9

,10) 

7 

(2,5,6,7,8,9

,10) 

Bus-2 

9 

(1,3,4,5,6,7,

8,10,11) 

9 

(1,3,4,5,6,7,

8,10,11) 

4 

(4,6,9,11) 
4 

(4,6,9,11) 
2 

(6,9) 
2 

(6,9) 

Bus-3 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

8 

(1,2,5,6,7,8

,9,10) 

8 

(1,2,5,6,7,8

,9,10) 

Bus-4 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

9 

(1,2,3,5,6,7

,8,9,10) 

9 

(1,2,3,5,6,7

,8,9,10) 

Bus-5 

5 

(4,7,8,10,11

) 

5 

(4,7,8,10,11

) 

8 

(1,2,3,4,6,7

,9,11) 

8 

(1,2,3,4,6,7

,9,11) 

3 

(7,8,10) 
3 

(7,8,10) 

Bus-6 
3 

(3,4,11) 
3 

(3,4,11) 
2 

(4,11) 
2 

(4,11) 
0 0 

Bus-7 
2 

(4,11) 
2 

(4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
0 0 

Bus-8 
3 

(4,10,11) 
3 

(4,10,11) 

9 

(1,2,3,4,5,6

,7,9,11) 

9 

(1,2,3,4,5,6

,7,9,11) 

1 

(10) 
1 

(10) 

Bus-9 

10 

(1,2,3,4,5,6,

7,8,10,11) 

10 

(1,2,3,4,5,6,

7,8,10,11) 

2 

(4,11) 
2 

(4,11) 
0 0 

Bus-10 
2 

(4,11) 
2 

(4,11) 

10 

(1,2,3,4,5,6

,7,8,9,11) 

10 

(1,2,3,4,5,6

,7,8,9,11) 
0 0 

Bus-11 0 0 0 0 

10 

(1,2,3,4,5,6

,7,8,9,10) 

10 

(1,2,3,4,5,6

,7,8,9,10) 
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4.6 Current Measurement Results for 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

Table 4.18 Voltage and current measurement for Bus-1 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

 

Msr 

 

Inj 

Bus-1 

Voltage Current 

Bus-1 Bus-1-Line-1 Bus-1-Line-2 Bus-1-Line-3 
Bus-1-Line-

4 

Bus-

1 

11 
(1,2,3,4,5,6,7,8

,9,10,11) 

4 
(1,3,4,11) 

10 
(1,2,4,5,6,7,8,9,

10,11) 

7 
(1,2,3,4,6,9,11

) 

8 
(1,3,4,5,7,8,1

0,11) 

Bus-

2 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

5 
(2,4,6,9,11) 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

Bus-

3 

3 
(3,4,11) 

3 
(3,4,11) 

11 
(1,2,3,4,5,6,7,8,

9,10,11) 

3 
(3,4,11) 

3 
(3,4,11) 

Bus-

4 

2 
(4,11) 

2 
(4,11) 

7 
(1,6,7,8,9,10,11

) 

2 
(4,11) 

2 
(4,11) 

Bus-

5 

7 
(3,4,5,7,8,10,1

1) 

7 
(3,4,5,7,8,10,

11) 

6 
(4,5,7,8,10,11) 

7 
(3,4,5,7,8,10,1

1) 

7 
(3,4,5,7,8,10,

11) 

Bus-

6 

4 
(3,4,6,11) 

4 
(3,4,6,11) 

3 
(4,6,11) 

4 
(3,4,6,11) 

4 
(3,4,6,11) 

Bus-

7 

4 
(3,4,7,11) 

4 
(3,4,7,11) 

3 
(4,7,11) 

7 
(2,3,4,6,7,9,11

) 

4 
(3,4,7,11) 

Bus-

8 

5 
(3,4,8,10,11) 

5 
(3,4,8,10,11) 

4 
(4,8,10,11) 

8 
(2,3,4,6,8,9,10

,11) 

5 
(3,4,8,10,11) 

Bus-

9 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

3 
(4,9,11) 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

Bus-

10 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

3 
(4,10,11) 

7 
(2,3,4,6,9,10,1

1) 

4 
(3,4,10,11) 

Bus-

11 

1 
(11) 

1 
(11) 

7 
(1,2,5,6,7,9,11) 

1 
(11) 

1 
(11) 
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Table 4.19 Voltage and current measurement for Bus-2 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

 

Msr 

 

 

 

Inj 

Bus-2 

Voltage Current 

Bus-2 Bus-2-Line-1 Bus-2-Line-2 Bus-2-Line-3 Bus-2-Line-4 

Bus-

1 

8 
(1,3,4,5,7,8,

10,11) 

8 
(1,3,4,5,7,8,10

,11) 

8 
(1,3,4,5,7,8,10

,11) 

8 
(1,3,4,5,7,8,10

,11) 

8 
(1,3,4,5,7,8,10,1

1) 

Bus-

2 

11 
(1,2,3,4,5,6,

7,8,9,10,11) 

4 
(2,3,4,11) 

6 
(2,3,4,6,9,11) 

10 
(1,2,3,4,5,7,8,

9,10,11) 

10 
(1,2,3,4,5,6,7,8,

10,11) 

Bus-

3 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

Bus-

4 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

5 

7 
(3,4,5,7,8,10

,11) 

7 
(3,4,5,7,8,10,1

1) 

7 
(3,4,5,7,8,10,1

1) 

7 
(3,4,5,7,8,10,1

1) 

7 
(3,4,5,7,8,10,11) 

Bus-

6 

4 
(3,4,6,11) 

4 
(3,4,6,11) 

4 
(3,4,6,11) 

9 
(1,3,4,5,6,7,8,

10,11) 

4 
(3,4,6,11) 

Bus-

7 

4 
(3,4,7,11) 

4 
(3,4,7,11) 

4 
(3,4,7,11) 

4 
(3,4,7,11) 

4 
(3,4,7,11) 

Bus-

8 

5 
(3,4,8,10,11) 

5 
(3,4,8,10,11) 

5 
(3,4,8,10,11) 

5 
(3,4,8,10,11) 

5 
(3,4,8,10,11) 

Bus-

9 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

9 
(1,3,4,5,7,8,9,10

,11) 

Bus-

10 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

4 
(3,4,10,11) 

Bus-

11 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 
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Table 4.20 Voltage and current measurement for Bus-3 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

Msr 

 

 

 

Inj 

Bus-3 

Voltage Current 

Bus-3 Bus-3-Line-1 Bus-3-Line-2 Bus-3-Line-3 

Bus-

1 

8 
(1,2,5,6,7,8,9,

10) 

8 
(1,2,5,6,7,8,9,10) 

10 
(1,2,4,5,6,7,8,9,10,11) 

8 
(1,2,5,6,7,8,9,10) 

Bus-

2 

3 
(2,6,9) 

3 
(2,6,9) 

5 
(2,4,6,9,11) 

3 
(2,6,9) 

Bus-

3 

11 
(1,2,3,4,5,6,7,

8,9,10,11) 

9 
(1,2,3,5,6,7,8,9,1

0) 

11 
(1,2,3,4,5,6,7,8,9,10,1

1) 

9 
(1,2,3,5,6,7,8,9,10

) 

Bus-

4 

10 
(1,2,4,5,6,7,8,

9,10,11) 

10 
(1,2,4,5,6,7,8,9,1

0,11) 

10 
(1,2,4,5,6,7,8,9,10,11) 

10 
(1,2,4,5,6,7,8,9,10

,11) 

Bus-

5 

4 
(5,7,8,10) 

4 
(5,7,8,10) 

6 
(4,5,7,8,10,11) 

4 
(5,7,8,10) 

Bus-

6 

1 
(6) 

1 
(6) 

3 
(4,6,11) 

1 
(6) 

Bus-

7 

1 
(7) 

1 
(7) 

3 
(4,7,11) 

1 
(7) 

Bus-

8 

2 
(8,10) 

2 
(8,10) 

4 
(4,8,10,11) 

2 
(8,10) 

Bus-

9 

1 
(9) 

1 
(9) 

3 
(4,9,11) 

1 
(9) 

Bus-

10 

1 
(10) 

1 
(10) 

3 
(4,10,11) 

1 
(10) 

Bus-

11 

9 
(1,2,5,6,7,8,9,

10,11) 

9 
(1,2,5,6,7,8,9,10,

11) 

9 
(1,2,5,6,7,8,9,10,11) 

9 
(1,2,5,6,7,8,9,10,1

1) 

 

 

 



63 

 

Table 4.21 Voltage and current measurement for Bus-4 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

Msr 

 

 

 

Inj 

Bus-4 

Voltage Current 

Bus-4 Bus-4-Line-1 Bus-4-Line-2 Bus-4-Line-3 

Bus-

1 

8 
(1,2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10) 

8 
(1,2,5,6,7,8,9,10

) 

Bus-

2 

3 
(2,6,9) 

3 
(2,6,9) 

3 
(2,6,9) 

3 
(2,6,9) 

Bus-

3 

9 
(1,2,3,5,6,7,8,9,10) 

9 
(1,2,3,5,6,7,8,9,1

0) 

9 
(1,2,3,5,6,7,8,9,10

) 

9 
(1,2,3,5,6,7,8,9,

10) 

Bus-

4 

11 
(1,2,3,4,5,6,7,8,9,10

,11) 

9 
(1,2,4,5,6,7,8,9,1

0) 

10 
(1,2,4,5,6,7,8,9,10

,11) 

10 
(1,2,3,4,5,6,7,8,

9,10) 

Bus-

5 

4 
(5,7,8,10) 

4 
(5,7,8,10) 

4 
(5,7,8,10) 

4 
(5,7,8,10) 

Bus-

6 

1 
(6) 

1 
(6) 

1 
(6) 

1 
(6) 

Bus-

7 

1 
(7) 

1 
(7) 

1 
(7) 

1 
(7) 

Bus-

8 

2 
(8,10) 

2 
(8,10) 

2 
(8,10) 

2 
(8,10) 

Bus-

9 

1 
(9) 

1 
(9) 

1 
(9) 

1 
(9) 

Bus-

10 

1 
(10) 

1 
(10) 

1 
(10) 

1 
(10) 

Bus-

11 

9 
(1,2,5,6,7,8,9,10,11) 

9 
(1,2,5,6,7,8,9,10,

11) 

9 
(1,2,5,6,7,8,9,10,1

1) 

9 
(1,2,5,6,7,8,9,10

,11) 
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Table 4.22 Voltage and current measurement for Bus-5 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 1000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-5 

Voltage Current 

Bus-5 Bus-5-Line-1 Bus-5-Line-2 Bus-5-Line-3 

Bus-

1 

7 
(1,2,3,4,6,9,11) 

7 
(1,2,3,4,6,9,11) 

7 
(1,2,3,4,6,9,11) 

7 
(1,2,3,4,6,9,11) 

Bus-

2 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

6 
(2,3,4,6,9,11) 

Bus-

3 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

3 
(3,4,11) 

Bus-

4 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

2 
(4,11) 

Bus-

5 

11 
(1,2,3,4,5,6,7,8,9,

10,11) 

8 
(1,2,3,4,5,6,9,11) 

8 
(1,2,3,4,5,6,9,11) 

8 
(1,2,3,4,5,6,9,11) 

Bus-

6 

4 
(3,4,6,11) 

4 
(3,4,6,11) 

4 
(3,4,6,11) 

4 
(3,4,6,11) 

Bus-

7 

7 
(2,3,4,6,7,9,11) 

7 
(2,3,4,6,7,9,11) 

7 
(2,3,4,6,7,9,11) 

7 
(2,3,4,6,7,9,11) 

Bus-

8 

8 
(2,3,4,6,8,9,10,11

) 

8 
(2,3,4,6,8,9,10,1

1) 

8 
(2,3,4,6,8,9,10,1

1) 

8 
(2,3,4,6,8,9,10,1

1) 

Bus-

9 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

4 
(3,4,9,11) 

Bus-

10 

7 
(2,3,4,6,9,10,11) 

7 
(2,3,4,6,9,10,11) 

7 
(2,3,4,6,9,10,11) 

7 
(2,3,4,6,9,10,11) 

Bus-

11 

1 
(11) 

1 
(11) 

1 
(11) 

1 
(11) 
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Table 4.23 Voltage and current measurement for Bus-6, Bus-7, and Bus-8 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 

𝑓 = 1000𝐻𝑧 
 

Measu

remen

t 

Inj 

Bus-6 Bus-7 Bus-8 

Voltage Current Voltage Current Voltage Current 

Bus-1 
8 

(1,3,4,5,7,8,

10,11) 

8 

(1,3,4,5,7,8,

10,11) 

7 

(1,2,3,4,6,9,

11) 

7 

(1,2,3,4,6,9,

11) 

7 

(1,2,3,4,6,9,

11) 

7 

(1,2,3,4,6,

9,11) 

Bus-2 
10 

(1,2,3,4,5,7,

8,9,10,11) 

10 

(1,2,3,4,5,7,

8,9,10,11) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,

11) 

Bus-3 3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-4 2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-5 
7 

(3,4,5,7,8,1

0,11) 

7 

(3,4,5,7,8,1

0,11) 

10 

(1,2,3,4,5,6,

8,9,10,11) 

10 

(1,2,3,4,5,6,

8,9,10,11) 

9 

(1,2,3,4,5,6,

8,9,11) 

9 

(1,2,3,4,5,

6,8,9,11) 

Bus-6 
11 

(1,2,3,4,5,6,

7,8,9,10,11) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 

Bus-7 4 

(3,4,7,11) 
4 

(3,4,7,11) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

7 

(2,3,4,6,7,9,

11) 

7 

(2,3,4,6,7,

9,11) 

Bus-8 
5 

(3,4,8,10,11

) 

5 

(3,4,8,10,11

) 

8 

(2,3,4,6,8,9,

10,11) 

8 

(2,3,4,6,8,9,

10,11) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

10 

(1,2,3,4,5,

6,7,8,9,11

) 

Bus-9 4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 

Bus-10 4 

(3,4,10,11) 
4 

(3,4,10,11) 

7 

(2,3,4,6,9,1

0,11) 

7 

(2,3,4,6,9,1

0,11) 

8 

(1,2,3,4,6,9,

10,11) 

7 

(2,3,4,6,9,

10,11) 

Bus-11 1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
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Table 4.24 Voltage and current measurement for Bus-9, Bus-10, and Bus-11 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 

and 𝑓 = 1000𝐻𝑧 

 

Measu

remen

t 

Injecti

on 

Bus-9 Bus-10 Bus-11 

Voltage Current Voltage Current 
Voltage Current 

Bus-1 

8 

(1,3,4,5,7,8,

10,11) 

8 

(1,3,4,5,7,

8,10,11) 

7 

(1,2,3,4,6,9,

11) 

7 

(1,2,3,4,6,9,

11) 

8 

(1,2,5,6,7,8,

9,10) 

8 

(1,2,5,6,7,8,

9,10) 

Bus-2 

10 

(1,2,3,4,5,6,

7,8,10,11) 

9 

(1,2,3,4,5,

6,7,10,11) 

5 

(2,3,4,6,11) 
5 

(2,3,4,6,11) 
3 

(2,6,9) 
3 

(2,6,9) 

Bus-3 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

9 

(1,2,3,5,6,7,

8,9,10) 

9 

(1,2,3,5,6,7,

8,9,10) 

Bus-4 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
6 

(4,5,6,7,8,9) 
6 

(1,5,6,7,8,9) 

Bus-5 
4 

(7,8,10,11) 
3 

(7,10,11) 
5 

(5,6,7,9,11) 
5 

(5,6,7,9,11) 
4 

(5,7,8,10) 
4 

(5,7,8,10) 

Bus-6 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
1 

(6) 
1 

(6) 

Bus-7 
4 

(3,4,7,11) 
4 

(3,4,7,11) 
5 

(2,6,7,9,11) 
5 

(2,6,7,9,11) 
1 

(7) 
1 

(7) 

Bus-8 

5 

(3,4,8,10,11

) 

5 

(3,4,8,10,

11) 

10 

(1,2,3,4,5,6,

7,8,9,11) 

10 

(1,2,3,4,5,6,

7,8,9,11) 

2 

(8,11) 
2 

(8,11) 

Bus-9 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

10 

(1,2,3,4,5,

6,7,8,9,11 

4 

(3,4,9,11) 
4 

(3,4,9,11) 
1 

(9) 
1 

(9) 

Bus-10 
4 

(3,4,10,11) 

4 

(3,4,10,11

) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

1 

(10) 
1 

(10) 

Bus-11 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 
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4.7 Current Measurement Results for 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧  

Table 4.25 Voltage and current measurement for Bus-1 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧  

 

Msr 

 

 

 

 

Inj 

Bus-1 

Voltage Current 

Bus-1 Bus-1-Line-1 Bus-1-Line-2 Bus-1-Line-3 Bus-1-Line-4 

Bus

-1 

10 

(2,3,4,5,6,7,8,9,1

0,11) 

1 

(11) 

7 

(2,5,6,7,8,9,10

) 

6 

(2,3,4,6,9,11) 
7 

(3,4,5,7,8,10,

11) 

Bus

-2 

4 

(4,6,9,11) 
4 

(4,6,9,11) 

2 

(6,9) 
4 

(4,6,9,11) 
4 

(4,6,9,11) 

Bus

-3 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus

-4 

1 

(11) 
1 

(11) 
2 

(9,11) 
1 

(11) 
1 

(11) 

Bus

-5 

5 

(4,7,8,10,11) 
5 

(4,7,8,10,11) 
3 

(7,8,10) 
5 

(4,7,8,10,11) 
5 

(4,7,8,10,11) 

Bus

-6 

2 

(4,11) 
2 

(4,11) 

0 2 

(4,11) 
2 

(4,11) 

Bus

-7 

2 

(4,11) 
2 

(4,11) 

0 3 

(3,4,11) 
2 

(4,11) 

Bus

-8 

3 

(4,10,11) 
3 

(4,10,11) 

1 

(10) 
4 

(3,4,10,11) 
3 

(4,10,11) 

Bus

-9 

2 

(4,11) 
2 

(4,11) 

0 2 

(4,11) 
2 

(4,11) 

Bus

-10 

2 

(4,11) 
2 

(4,11) 

0 3 

(3,4,11) 
2 

(4,11) 

Bus

-11 
0 0 

1 

(9) 
0 0 
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Table 4.26 Voltage and current measurement for Bus-2 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧 

Msr 

 

 

Inj 

Bus-2 

Voltage Current 

Bus-2 Bus-2-Line-1 Bus-2-Line-2 Bus-2-Line-3 Bus-2-Line-4 

Bus-

1 

7 

(3,4,5,7,8,10,1

1) 

7 

(3,4,5,7,8,10,1

1) 

7 

(3,4,5,7,8,10,1

1) 

7 

(3,4,5,7,8,10,1

1) 

7 

(3,4,5,7,8,10,

11) 

Bus-

2 

10 

(1,3,4,5,6,7,8,9

,10,11) 

2 

(4,11) 

4 

(4,6,9,11) 

9 

(1,3,4,5,7,8,9,

10,11) 

9 

(1,3,4,5,6,7,8,

10,11) 

Bus-

3 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

4 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

Bus-

5 

5 

(4,7,8,10,11) 
5 

(4,7,8,10,11) 
5 

(4,7,8,10,11) 

4 

(4,7,10,11) 
5 

(4,7,8,10,11) 

Bus-

6 

3 

(3,4,11) 
3 

(3,4,11) 

2 

(4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-

7 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

8 

3 

(4,10,11) 
3 

(4,10,11) 
3 

(4,10,11) 
3 

(4,10,11) 
3 

(4,10,11) 

Bus-

9 

3 

(3,4,11) 
3 

(3,4,11) 

2 

(4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-

10 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

11 
0 0 0 0 0 
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Table 4.27 Voltage and current measurement for Bus-3 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧 

Msr 

 

 

 

 

 

Inj 

Bus-3 

Voltage Current 

Bus-3 Bus-3-Line-1 Bus-3-Line-2 Bus-3-Line-3 

Bus-

1 

7 

(2,5,6,7,8,9,10) 
7 

(2,5,6,7,8,9,10) 
7 

(2,5,6,7,8,9,10) 
7 

(2,5,6,7,8,9,10) 

Bus-

2 

2 

(6,9) 
2 

(6,9) 
2 

(6,9) 
2 

(6,9) 

Bus-

3 

10 

(1,2,4,5,6,7,8,9,10,11) 
2 

(6,9) 
2 

(4,11) 
8 

(1,2,5,6,7,8,9,10) 

Bus-

4 

8 

(2,5,6,7,8,9,10,11) 
8 

(2,5,6,7,8,9,10,11) 

1 

(11) 
8 

(1,2,6,7,8,9,10,11) 

Bus-

5 

3 

(7,8,10) 
3 

(7,8,10) 
3 

(7,8,10) 
3 

(7,8,10) 

Bus-

6 
0 0 0 0 

Bus-

7 
0 0 0 0 

Bus-

8 

1 

(10) 
1 

(10) 
1 

(10) 
1 

(10) 

Bus-

9 
0 0 0 0 

Bus-

10 
0 0 0 0 

Bus-

11 

6 

(2,6,7,8,9,10) 
6 

(2,6,7,8,9,10) 

0 7 

(2,5,6,7,8,9,10) 
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Table 4.28 Voltage and current measurement for Bus-4 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-4 

Voltage Current 

Bus-4 Bus-4-Line-1 Bus-4-Line-2 Bus-4-Line-3 

Bus-

1 

7 

(2,5,6,7,8,9,10) 
7 

(2,5,6,7,8,9,10) 
7 

(2,5,6,7,8,9,10) 
7 

(2,5,6,7,8,9,10) 

Bus-

2 

2 

(6,9) 
2 

(6,9) 
2 

(6,9) 
2 

(6,9) 

Bus-

3 

8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 

Bus-

4 

10 

(1,2,3,5,6,7,8,9,10,11) 
7 

(2,5,6,7,8,9,10) 
8 

(2,5,6,7,8,9,10,11) 
9 

(1,2,3,5,6,7,8,9,10) 

Bus-

5 

3 

(7,8,10) 
3 

(7,8,10) 
3 

(7,8,10) 
3 

(7,8,10) 

Bus-

6 
0 0 0 0 

Bus-

7 
0 0 0 0 

Bus-

8 

1 

(10) 
1 

(10) 
1 

(10) 
1 

(10) 

Bus-

9 
0 0 0 0 

Bus-

10 
0 0 0 0 

Bus-

11 

8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 

7 

(2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 
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Table 4.29 Voltage and current measurement for Bus-5 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 and 𝑓 = 7000𝐻𝑧 

  Msr 

 

 

 

 

 

Inj  

Bus-5 

Voltage Current 

Bus-5 Bus-5-Line-1 Bus-5-Line-2 Bus-5-Line-3 

Bus-

1 

6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 

Bus-

2 

4 

(4,6,9,11) 
4 

(4,6,9,11) 
4 

(4,6,9,11) 
4 

(4,6,9,11) 

Bus-

3 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

4 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

Bus-

5 

10 

(1,2,3,4,6,7,8,9,10,11) 
7 

(1,2,3,4,6,9,11) 
7 

(1,2,3,4,6,9,11) 
7 

(1,2,3,4,6,9,11) 

Bus-

6 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

7 

3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-

8 

4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 

Bus-

9 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

10 

3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-

11 
0 0 0 0 
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Table 4.30 Voltage and current measurement for Bus-6, Bus-7, and Bus-8 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1𝑒−3 

and 𝑓 = 7000𝐻𝑧 

 

Msr 

 

 

 

Inj 

Bus-6 Bus-7 Bus-8 

Voltage Current Voltage Current Voltage Current 

Bus-

1 

7 

(3,4,5,7,8,

10,11) 

7 

(3,4,5,7,8,1

0,11) 

6 

(2,3,4,6,9,11

) 

6 

(2,3,4,6,9,11

) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,1

1) 

Bus-

2 

9 

(1,3,4,5,7,

8,9,10,11) 

9 

(1,3,4,5,7,8,

9,10,11) 

4 

(4,6,9,11) 
4 

(4,6,9,11) 
4 

(4,6,9,11) 
4 

(4,6,9,11) 

Bus-

3 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

4 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

Bus-

5 

5 

(4,7,8,10,1

1) 

4 

(4,7,10,11) 

9 

(1,2,3,4,6,8,

9,10,11) 

9 

(1,2,3,4,6,8,

9,10,11) 

8 

(1,2,3,4,6,7

,9,11) 

8 

(1,2,3,4,6,7

,9,11) 

Bus-

6 

10 

(1,2,3,4,5,

7,8,9,10,1

1) 

10 

(1,2,3,4,5,7,

8,9,10,11) 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

7 

2 

(4,11) 
2 

(4,11) 

10 

(1,2,3,4,5,6,

8,9,10,11) 

10 

(1,2,3,4,5,6,

8,9,10,11) 

3 

(3,4,11) 
3 

(3,4,11) 

Bus-

8 

3 

(4,10,11) 
3 

(4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 

10 

(1,2,3,4,5,6

,7,9,10,11) 

9 

(1,2,3,4,5,6

,7,9,11) 

Bus-

9 

3 

(3,4,11) 
3 

(3,4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

10 

2 

(4,11) 
2 

(4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-

11 
0 0 0 0 0 0 
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Table 4.31 Voltage and current measurement for Bus-9, Bus-10, and Bus-11 when 𝑅𝑓𝑎𝑢𝑙𝑡 =

1𝑒−3 and 𝑓 = 7000𝐻𝑧 

 

Msr 

Injec

tion 

Bus-9 Bus-10 Bus-11 

Voltage Current Voltage Current Voltage Current 

Bus-

1 

7 

(3,4,5,7,8,1

0,11) 

7 

(3,4,5,7,8,10

,11) 

6 

(2,3,4,6,9,

11) 

6 

(2,3,4,6,9,11) 

7 

(2,5,6,7,8,

9,10) 

7 

(2,5,6,7,8,

9,10) 

Bus-

2 

9 

(1,3,4,5,6,7

,8,10,11) 

9 

(1,3,4,5,6,7,

8,10,11) 

4 

(4,6,9,11) 
4 

(4,6,9,11) 
2 

(6,9) 
2 

(6,9) 

Bus-

3 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

8 

(1,2,5,6,7,

8,9,10) 

8 

(1,2,5,6,7,

8,9,10) 

Bus-

4 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

9 

(1,2,3,5,6,

7,8,9,10) 

9 

(1,2,3,5,6,

7,8,9,10) 

Bus-

5 

5 

(4,7,8,10,1

1) 

5 

(4,7,8,10,11) 

8 

(1,2,3,4,6,

7,9,11) 

8 

(1,2,3,4,6,7,9

,11) 

3 

(7,8,10) 
3 

(7,8,10) 

Bus-

6 

3 

(3,4,11) 
3 

(3,4,11) 
2 

(4,11) 
2 

(4,11) 
0 0 

Bus-

7 

2 

(4,11) 
2 

(4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
0 0 

Bus-

8 

3 

(4,10,11) 
3 

(4,10,11) 

9 

(1,2,3,4,5,

6,7,9,11) 

9 

(1,2,3,4,5,6,7

,9,11) 

1 

(10) 
1 

(10) 

Bus-

9 

10 

(1,2,3,4,5,6

,7,8,10,11) 

10 

(1,2,3,4,5,6,

7,8,10,11) 

2 

(4,11) 
2 

(4,11) 
0 0 

Bus-

10 

2 

(4,11) 
2 

(4,11) 

10 

(1,2,3,4,5,

6,7,8,9,11) 

10 

(1,2,3,4,5,6,7

,8,9,11) 
0 0 

Bus-

11 
0 0 0 0 

10 

(1,2,3,4,5,

6,7,8,9,10) 

10 

(1,2,3,4,5,

6,7,8,9,10) 
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4.8 Current Measurement Results for 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

Table 4.32 Voltage and current measurement for Bus-1 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

Ms

r 

 

 

 

Inj 

Bus-1 

Voltage Current 

Bus-1 Bus-1-Line-1 Bus-1-Line-2 Bus-1-Line-3 Bus-1-Line-4 

Bus

-1 

11 

(1,2,3,4,5,6,7,

8,9,10,11) 

4 

(1,3,4,11) 

8 

(1,2,5,6,7,8,9,

10) 

7 

(1,2,3,4,6,9,11

) 

8 

(1,3,4,5,7,8,10

,11) 

Bus

-2 

6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 

3 

(2,6,9) 
6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 

Bus

-3 

3 

(3,4,11) 
3 

(3,4,11) 
6 

(2,3,4,6,9,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus

-4 

2 

(4,11) 
2 

(4,11) 
5 

(2,4,6,9,11) 
2 

(4,11) 
2 

(4,11) 

Bus

-5 

7 

(3,4,5,7,8,10,

11) 

7 

(3,4,5,7,8,10,1

1) 

4 

(5,7,8,10) 

7 

(3,4,5,7,8,10,1

1) 

7 

(3,4,5,7,8,10,1

1) 

Bus

-6 

4 

(3,4,6,11) 
4 

(3,4,6,11) 

1 

(6) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 

Bus

-7 

4 

(3,4,7,11) 
4 

(3,4,7,11) 

1 

(7) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 

Bus

-8 

5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 
2 

(8,10) 
5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 

Bus

-9 

4 

(3,4,9,11) 
4 

(3,4,9,11) 
1 

(9) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 

Bus

-10 

4 

(3,4,10,11) 
4 

(3,4,10,11) 
1 

(10) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 

Bus

-11 

1 

(11) 
1 

(11) 
4 

(2,6,9,11) 
1 

(11) 
1 

(11) 
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Table 4.33 Voltage and current measurement for Bus-2 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-2 

Voltage Current 

Bus-2 
Bus-2-Line-

1 
Bus-2-Line-2 Bus-2-Line-3 Bus-2-Line-4 

Bus-

1 

8 

(1,3,4,5,7,8,

10,11) 

8 

(1,3,4,5,7,8,1

0,11) 

8 

(1,3,4,5,7,8,10

,11) 

8 

(1,3,4,5,7,8,10

,11) 

8 

(1,3,4,5,7,8,10,

11) 

Bus-

2 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

4 

(2,3,4,11) 

6 

(2,3,4,6,9,11) 

10 

(1,2,3,4,5,7,8,

9,10,11) 

10 

(1,2,3,4,5,6,7,8

,10,11) 

Bus-

3 

3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-

4 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

5 

7 

(3,4,5,7,8,10

,11) 

7 

(3,4,5,7,8,10,

11) 

7 

(3,4,5,7,8,10,1

1) 

7 

(3,4,5,7,8,10,1

1) 

7 

(3,4,5,7,8,10,1

1) 

Bus-

6 

4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 

Bus-

7 

4 

(3,4,7,11) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 

Bus-

8 

5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 

Bus-

9 

4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 

Bus-

10 

4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 

Bus-

11 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
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Table 4.34 Voltage and current measurement for Bus-3 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-3 

Voltage Current 

Bus-3 Bus-3-Line-1 Bus-3-Line-2 Bus-3-Line-3 

Bus

-1 

8 

(1,2,5,6,7,8,9,10

) 

8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 

Bus

-2 

3 

(2,6,9) 
3 

(2,6,9) 
3 

(2,6,9) 
3 

(2,6,9) 

Bus

-3 

11 

(1,2,3,4,5,6,7,8,9

,10,11) 

9 

(1,2,3,5,6,7,8,9,10

) 

5 

(3,4,6,9,11) 

9 

(1,2,3,5,6,7,8,9,10

) 

Bus

-4 

10 

(1,2,4,5,6,7,8,9,1

0,11) 

10 

(1,2,4,5,6,7,8,9,10

,11) 

5 

(2,4,6,9,11) 

10 

(1,2,4,5,6,7,8,9,10

,11) 

Bus

-5 

4 

(5,7,8,10) 
4 

(5,7,8,10) 
4 

(5,7,8,10) 
4 

(5,7,8,10) 

Bus

-6 

1 

(6) 
1 

(6) 
1 

(6) 
1 

(6) 

Bus

-7 

1 

(7) 
1 

(7) 
1 

(7) 
1 

(7) 

Bus

-8 

2 

(8,10) 
2 

(8,10) 
2 

(8,10) 
2 

(8,10) 

Bus

-9 

1 

(9) 
1 

(9) 
1 

(9) 
1 

(9) 

Bus

-10 

1 

(10) 
1 

(10) 
1 

(10) 
1 

(10) 

Bus

-11 

9 

(1,2,5,6,7,8,9,10,

11) 

9 

(1,2,5,6,7,8,9,10,1

1) 

4 

(2,6,9,11) 

9 

(1,2,5,6,7,8,9,10,1

1) 
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Table 4.35 Voltage and current measurement for Bus-4 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-4 

Voltage Current 

Bus-4 Bus-4-Line-1 Bus-4-Line-2 Bus-4-Line-3 

Bus

-1 

8 

(1,2,5,6,7,8,9,10

) 

8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 
8 

(1,2,5,6,7,8,9,10) 

Bus

-2 

3 

(2,6,9) 
3 

(2,6,9) 
3 

(2,6,9) 
3 

(2,6,9) 

Bus

-3 

9 

(1,2,3,5,6,7,8,9,1

0) 

9 

(1,2,3,5,6,7,8,9,10) 
9 

(1,2,3,5,6,7,8,9,10) 
9 

(1,2,3,5,6,7,8,9,10) 

Bus

-4 

11 

(1,2,3,4,5,6,7,8,9

,10,11) 

9 

(1,2,4,5,6,7,8,9,10) 

10 

(1,2,4,5,6,7,8,9,10,

11) 

10 

(1,2,3,4,5,6,7,8,9,1

0) 

Bus

-5 

4 

(5,7,8,10) 
4 

(5,7,8,10) 
4 

(5,7,8,10) 
4 

(5,7,8,10) 

Bus

-6 

1 

(6) 
1 

(6) 
1 

(6) 
1 

(6) 

Bus

-7 

1 

(7) 
1 

(7) 
1 

(7) 
1 

(7) 

Bus

-8 

2 

(8,10) 
2 

(8,10) 
2 

(8,10) 
2 

(8,10) 

Bus

-9 

1 

(9) 
1 

(9) 
1 

(9) 
1 

(9) 

Bus

-10 

1 

(10) 
1 

(10) 
1 

(10) 
1 

(10) 

Bus

-11 

9 

(1,2,5,6,7,8,9,10,

11) 

9 

(1,2,5,6,7,8,9,10,1

1) 

9 

(1,2,5,6,7,8,9,10,1

1) 

9 

(1,2,5,6,7,8,9,10,1

1) 
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Table 4.36 Voltage and current measurement for Bus-5 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 𝑓 = 7000𝐻𝑧 

Msr 

 

 

 

 

Inj 

Bus-5 

Voltage Current 

Bus-5 Bus-5-Line-1 Bus-5-Line-2 Bus-5-Line-3 

Bus-

1 

7 

(1,2,3,4,6,9,11) 
7 

(1,2,3,4,6,9,11) 
7 

(1,2,3,4,6,9,11) 
7 

(1,2,3,4,6,9,11) 

Bus-

2 

6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 

Bus-

3 

3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus-

4 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus-

5 

11 

(1,2,3,4,5,6,7,8,9,10,11) 
8 

(1,2,3,4,5,6,9,11) 
8 

(1,2,3,4,5,6,9,11) 
8 

(1,2,3,4,5,6,9,11) 

Bus-

6 

4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 

Bus-

7 

4 

(3,4,7,11) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 

Bus-

8 

5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 
5 

(3,4,8,10,11) 

Bus-

9 

4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 

Bus-

10 

4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 

Bus-

11 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
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Table 4.37 Voltage and current measurement for Bus-6, Bus-7, and Bus-8 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 and 

𝑓 = 7000𝐻𝑧 
 

Ms

r 

Inj 

Bus-6 Bus-7 Bus-8 

Voltage Current Voltage Current Voltage Current 

Bus

-1 

8 

(1,3,4,5,7,8

,10,11) 

8 

(1,3,4,5,7,8,

10,11) 

7 

(1,2,3,4,6,9

,11) 

7 

(1,2,3,4,6,9

,11) 

7 

(1,2,3,4,6,9,1

1) 

7 

(1,2,3,4,6,

9,11) 

Bus

-2 

10 

(1,2,3,4,5,7

,8,9,10,11) 

10 

(1,2,3,4,5,7,

8,9,10,11) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,1

1) 

6 

(2,3,4,6,9,11) 

6 

(2,3,4,6,9,

11) 

Bus

-3 

3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 

Bus

-4 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

Bus

-5 

7 

(3,4,5,7,8,1

0,11) 

7 

(3,4,5,7,8,1

0,11) 

10 

(1,2,3,4,5,6

,8,9,10,11) 

10 

(1,2,3,4,5,6

,8,9,10,11) 

9 

(1,2,3,4,5,6,8

,9,11) 

9 

(1,2,3,4,5,

6,8,9,11) 

Bus

-6 

11 

(1,2,3,4,5,6

,7,8,9,10,1

1) 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 

Bus

-7 

4 

(3,4,7,11) 
4 

(3,4,7,11) 

11 

(1,2,3,4,5,6

,7,8,9,10,11

) 

11 

(1,2,3,4,5,6

,7,8,9,10,11

) 

4 

(3,4,7,11) 
4 

(3,4,7,11) 

Bus

-8 

5 

(3,4,8,10,1

1) 

5 

(3,4,8,10,11

) 

5 

(3,4,8,10,1

1) 

5 

(3,4,8,10,1

1) 

11 

(1,2,3,4,5,6,7

,8,9,10,11) 

10 

(1,2,3,4,5,

6,7,8,9,11) 

Bus

-9 

4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 
4 

(3,4,9,11) 

Bus

-10 

4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 
4 

(3,4,10,11) 

Bus

-11 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 
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Table 4.38 Voltage and current measurement for Bus-9, Bus-10, and Bus-11 when 𝑅𝑓𝑎𝑢𝑙𝑡 = 1 

and 𝑓 = 7000𝐻𝑧 

 

Ms

r 

Inj 

Bus-9 Bus-10 Bus-11 

Voltage Current Voltage Current Voltage Current 

Bus

-1 

8 

(1,3,4,5,7,8,

10,11) 

8 

(1,3,4,5,7,8,1

0,11) 

7 

(1,2,3,4,6,9,1

1) 

7 

(1,2,3,4,6,9,1

1) 

8 

(1,2,5,6,7,

8,9,10) 

8 

(1,2,5,6,7,

8,9,10) 

Bus

-2 

10 

(1,2,3,4,5,6,

7,8,10,11) 

10 

(1,2,3,4,5,6,7

,8,10,11) 

6 

(2,3,4,6,9,11) 
6 

(2,3,4,6,9,11) 
3 

(2,6,9) 
3 

(2,6,9) 

Bus

-3 

3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
3 

(3,4,11) 
4 

(1,2,3,10) 
9 

(1,2,3,10) 

Bus

-4 

2 

(4,11) 
2 

(4,11) 
2 

(4,11) 
2 

(4,11) 

10 

(1,2,3,4,5,

6,7,8,9) 

10 

(1,2,3,4,5,

6,7,8,9) 

Bus

-5 

7 

(3,4,5,7,8,1

0,11) 

7 

(3,4,5,7,8,10,

11) 

9 

(1,2,3,4,5,6,7

,9,11) 

9 

(1,2,3,4,5,6,7

,9,11) 

4 

(5,7,8,10) 
4 

(5,7,8,10) 

Bus

-6 

4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
4 

(3,4,6,11) 
1 

(6) 
1 

(6) 

Bus

-7 

4 

(3,4,7,11) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 
4 

(3,4,7,11) 
1 

(7) 
1 

(7) 

Bus

-8 

5 

(3,4,8,10,11 
5 

(3,4,8,10,11 
5 

(5,7,8,9,11) 
5 

(5,7,8,9,11) 
2 

(8,11) 
2 

(8,11) 

Bus

-9 

11 

(1,2,3,4,5,6,

7,8,9,10,11) 

11 

(1,2,3,4,5,6,7

,8,9,10,11) 

4 

(3,4,9,11) 
4 

(3,4,9,11) 
1 

(9) 
1 

(9) 

Bus

-10 

4 

(3,4,10,11) 
4 

(3,4,10,11) 

11 

(1,2,3,4,5,6,7

,8,9,10,11) 

11 

(1,2,3,4,5,6,7

,8,9,10,11) 

1 

(10) 
1 

(10) 

Bus

-11 

1 

(11) 
1 

(11) 
1 

(11) 
1 

(11) 

9 

(1,3,5,6,7,

8,9,10,11 

9 

(1,3,5,6,7,

8,9,10,11 

As it shown in the tables current measurement can provides better results with less 

undetectable buses and less multi-estimation over voltage measurements. 
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CHAPTER 5 

CONCLUSIONS  

Conclusions 

In this thesis, a new method for fault location in the shipboard power system is proposed 

by using applied voltages and measured voltages/current when there is a fault in the system. The 

system is tested for all the possible buses for the injections and measurements and the optimal 

points that lead to minimal numbers of injections and measurements in the system are found. The 

proposed approach generalizes the Active Impedance Estimation (AIE) fault location method 

where injection and measurements are not necessarily at the same location. Also, it is shown that 

by increasing the frequency of the injections multi-estimation is significantly reduced. The 

proposed approach is a reliable and economical method that can find the location of the fault in 

the shipboard power system with the minimum number of injections and measurements.   
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