
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2015

New Identification and Decoding Techniques for
Low-Density Parity-Check Codes
Tian Xia
Louisiana State University and Agricultural and Mechanical College, tiaxian@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Xia, Tian, "New Identification and Decoding Techniques for Low-Density Parity-Check Codes" (2015). LSU Doctoral Dissertations.
1557.
https://digitalcommons.lsu.edu/gradschool_dissertations/1557

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1557?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

NEW IDENTIFICATION AND DECODING TECHNIQUES FOR LOW-DENSITY
PARITY-CHECK CODES

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The School of Electrical Engineering and Computer Sciences

by
Tian Xia

B.S., University of Electronic Science and Technology of China, 2008
M.S., University of Electronic Science and Technology of China, 2011

M.S., Louisiana State University, 2013
May 2015

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Dr. Hsiao-Chun Wu. This work

cannot be fulfilled without his kind and precious guidance. Dr. Wu’s profound knowledge and

constant encouragement inspire and motivate me to pursue the challenging but interesting

questions encountered in this work. His academic serious and respectable personality will

surely have a lasting impact for my future career.

I also would like to thank my committee members Dr. Xuebin Liang, Dr. Xin Li, Dr.

Supratik Mukhopadhyay, and Dr. Frank Tsai for their invaluable time and constructive

suggestions to improve this work. I would like to thank the division of the electrical and

computer engineering as well for building a great learning environment during my study.

Moreover, I would like to thank my former group members Dr. Yonas G. Debessu and

Ms. Hongting Zhang. They generously share their experience and knowledge not only in

directions of research topics but also in details of daily life. They also helped me a lot by

leaving me useful books and driving me to buy groceries, just to name a few.

I am also grateful to the Graduate School of Louisiana State University for offering me

the distinguished Dissertation Year Fellowship. Part of this work was developed under this

financial assistance.

Finally, I would like to say thanks to my parents who raised me in their unconditional

love. Their endless support keeps me focused on my research and lets me continue to chase

my dreams. Their patience and diligence are absolutely reflected in every aspect of this

work.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . ix

1 INTRODUCTION . 1

1.1 LDPC Codes . 1
1.2 Iterative BP Decoding . 3
1.3 Motivation and Objectives . 6

2 BLIND IDENTIFICATION OF LDPC CODES FOR AWGN CHANNELS 9

2.1 System Model . 10
2.2 Blind LDPC Encoder Identification . 12

2.2.1 EM Estimation . 12
2.2.2 APPs of Coded Bits . 14
2.2.3 LDPC Encoder Identification . 16

2.3 Simulation . 18
2.4 Summary . 21

3 BLIND IDENTIFICATION OF LDPC CODES FOR FADING CHANNELS 22

3.1 Blind LDPC Encoder Identification for Time-Varying Fading Channels . . . 22
3.1.1 System Model . 23
3.1.2 Blind LDPC Encoder Identification . 26
3.1.3 Simulation . 29
3.1.4 Summary. 31

3.2 Joint Blind Frame Synchronization and Encoder Identification 32
3.2.1 Signal Model . 34
3.2.2 New Joint Blind Scheme. 35
3.2.3 Computational Complexity Reduction 37
3.2.4 Simulation . 40
3.2.5 Summary. 45

4 FAST LDPC DECODING ALGORITHMS . 47

4.1 A New Stopping Criterion . 47
4.1.1 Undecodable Blocks . 49
4.1.2 Robust T -Tolerance Stopping Criterion. 51
4.1.3 Complexity Comparison . 55
4.1.4 Simulation . 56

iii

4.1.5 Summary. 59
4.2 An Efficient APP-based Dynamic Scheduling 60

4.2.1 Existing Serial Scheduling Algorithms 63
4.2.2 The APPRBP Algorithm . 67
4.2.3 Simulation . 70
4.2.4 Summary. 73

5 FAST ITERATIVE DECODING THRESHOLD ESTIMATION. 75

5.1 Preliminaries . 77
5.1.1 LDPC Convolutional Codes (LDPC-CCs) 77
5.1.2 PEXIT Analysis . 79

5.2 Monotonicity Analysis and the PEXIT-fast Algorithm 82
5.2.1 Our Proposed PEXIT-Fast Algorithm 90
5.2.2 Complexity Analysis . 92

5.3 Numerical Results . 94
5.4 Summary . 98

BIBLIOGRAPHY . 100

VITA . 107

iv

LIST OF TABLES

4.1 Proportions of decodable and undecodable blocks 50

5.1 Comparison between IDTs obtained from our PEXIT-fast algorithm and IDTs
in [1] . 98

5.2 IDT Estimates η̂ for Various (J,K, L) LDPC-CCs Using Our PEXIT-fast
Algorithm . 99

v

LIST OF FIGURES

1.1 An example of a Tanner graph representation for a regular LDPC code. . . . 2

2.1 The illustration of the one-to-one mapping for a typical 16-QAM constellation
together with two sets A1 and A3. 15

2.2 The probabilities of correct identification Pc with respect to Eb/N0 for 4-QAM
signals. 17

2.3 The probabilities of correct identification Pc with respect to Eb/N0 for 16-
QAM signals. 18

2.4 The probabilities of correct identification Pc with respect to Eb/N0 for 64-
QAM signals. 19

2.5 The average iteration numbers with respect to Eb/N0 for 4-QAM, 16-QAM,
and 64-QAM signals. 20

3.1 The probabilities of correct identification Pc with respect to Eb/N0 for the four
LDPC encoder candidates using Eq. (3.11) (“hard decision”) and Eq. (3.13)
(“soft decision”), respectively. BFSK modulator is used, and the normalized
Doppler rate is fDTs = 0.001. 31

3.2 The probabilities of correct identification Pc with respect to Eb/N0 using
Eq. (3.13) for different FSK modulation orders and different normalized Doppler
rates. 32

3.3 The average LLR Γθ′

t versus the sliding window’s starting time point t for the
rate 1/2 LDPC encoder (θ′ = θ). 38

3.4 The probabilities of correct identification Pc with respect to Eb/N0 for different
SIR values when L = 3 (three channel paths). 41

3.5 The average LLR Γθ′

t with respect to the sliding window’s starting time point
t for each encoder θ′ = θ. 43

3.6 The probabilities of correct identification Pc with respect to Eb/N0 for the
search step-size scenarios v0 and v1 when L = 3 (three channel paths) and
SIR = 5 dB. 44

vi

3.7 The probabilities of correct identification Pc with respect to Eb/N0 for the
search step-size scenarios v0 and v2 when L = 3 (three channel paths) and
SIR = 5 dB. 45

3.8 The probabilities of correct identification Pc with respect to Eb/N0 for L = 3
and L = 5 when SIR = 5 dB. The conventional one-stage sample-by-sample
search is used here. 46

4.1 The cumulative density functions of the iteration numbers required for decod-
able blocks subject to different Eb/N0 values. 51

4.2 The evolution of the total APP P (t) with respect to the iteration number t
for Eb/N0 = 9 dB. 53

4.3 The frame error rate of the binary LDPC code (648, 324) versus Eb/N0 for
different T values. 57

4.4 The average iteration number of the binary LDPC code (648, 324) with respect
to Eb/N0 for different T values. 58

4.5 The frame error rate of the nonbinary LDPC code (147, 108) over GF(64)
versus Eb/N0 for different T values. 59

4.6 The average iteration number of the nonbinary LDPC code (147, 108) over
GF(64) with respect to Eb/N0 for different T values. 60

4.7 The illustration of the flooding BP decoding to correct erasures using three
iterations [2]. The channel is binary erasure channel (BEC). The received
signal is denoted by y, and the estimated codeword is denoted by ĉ. The
solid line represents messages of 0 or 1, and the dashed line represents the
messages of erasure after each iteration. 62

4.8 The VNWRBP algorithm. 66

4.9 The APPRBP scheduling algorithm. 69

4.10 The BER performances of the APPRBP algorithm using different threshold
δ. The BER performances of the FBP algorithm, the LBP algorithm, and the
NWRBP algorithm are also depicted for comparison. 71

4.11 The AIN of the APPRBP algorithm using different threshold δ. The AIN
performances of the FBP algorithm, the LBP algorithm, and the NWRBP
algorithm are also depicted for comparison. 73

vii

5.1 The variance threshold σ̄2
ch(L) with respect to the termination length L for

some typical LDPC-CCs with three different (J,K) combinations. 90

5.2 Our proposed PEXIT-fast algorithm. 91

5.3 The evolution of mutual information of APP z
(l)
j for different iteration num-

bers l and different Eb/N0 values when the conventional PEXIT algorithm is
adopted. The (3, 6, 500) LDPC-CC is used for illustration here. 95

5.4 The IDT estimates for the (3, 6, L) LDPC-CCs resulting from our proposed
PEXIT-fast algorithm and [1], where the termination lengths L range from
20 to infinity. 96

5.5 The total numbers of iterations undertaken by the conventional PEXIT algo-
rithm and our PEXIT-fast algorithm for calculating the IDTs of the (3, 6, L)
LDPC-CCs with the termination lengths L ranging from 10 to 5000. 97

viii

ABSTRACT

Error-correction coding schemes are indispensable for high-capacity high data-rate com-

munication systems nowadays. Among various channel coding schemes, low-density parity-

check (LDPC) codes introduced by pioneer Robert G. Gallager are prominent due to the

capacity-approaching and superior error-correcting properties. There is no hard constraint on

the code rate of LDPC codes. Consequently, it is ideal to incorporate LDPC codes with var-

ious code rate and codeword length in the adaptive modulation and coding (AMC) systems

which change the encoder and the modulator adaptively to improve the system throughput.

In conventional AMC systems, a dedicated control channel is assigned to coordinate the

encoder/decoder changes. A questions then rises: if the AMC system still works when such

a control channel is absent. This work gives positive answer to this question by investigating

various scenarios consisting of different modulation schemes, such as quadrature-amplitude

modulation (QAM), frequency-shift keying (FSK), and different channels, such as additive

white Gaussian noise (AWGN) channels and fading channels.

On the other hand, LDPC decoding is usually carried out by iterative belief-propagation

(BP) algorithms. As LDPC codes become prevalent in advanced communication and storage

systems, low-complexity LDPC decoding algorithms are favored in practical applications. In

the conventional BP decoding algorithm, the stopping criterion is to check if all the parities

are satisfied. This single rule may not be able to identify the undecodable blocks, as a result,

the decoding time and power consumption are wasted for executing unnecessary iterations.

In this work, we propose a new stopping criterion to identify the undecodable blocks in the

ix

early stage of the iterative decoding process. Furthermore, in the conventional BP decoding

algorithm, the variable (check) nodes are updated in parallel. It is known that the number

of iterations can be reduced by the serial scheduling algorithm. The informed dynamic

scheduling (IDS) algorithms were proposed in the existing literatures to further reduce the

number of iterations. However, the computational complexity involved in finding the update

node in the existing IDS algorithms would not be neglected. In this work, we propose a new

efficient IDS scheme which can provide better performance-complexity trade-off compared

to the existing IDS ones.

In addition, the iterative decoding threshold, which is used for differentiating which LDPC

code is better, is investigated in this work. A family of LDPC codes, called LDPC convo-

lutional codes, has drawn a lot of attentions from researchers in recent years due to the

threshold saturation phenomenon. The IDT for an LDPC convolutional code may be com-

putationally demanding when the termination length goes to thousand or even approaches

infinity, especially for AWGN channels. In this work, we propose a fast IDT estimation

algorithm which can greatly reduce the complexity of the IDT calculation for LDPC convo-

lutional codes with arbitrary large termination length (including infinity). By utilizing our

new IDT estimation algorithm, the IDTs for LDPC convolutional codes with arbitrary large

termination length (including infinity) can be quickly obtained.

x

1. INTRODUCTION

In this chapter, we give a brief introduction of low-density parity-check (LDPC) codes

and the conventional iterative belief-propagation algorithms used for LDPC decoding. The

following chapters of this work are developed upon these fundamental concepts. For much

wider and deeper details on LDPC codes, the reader is referred to [2–4] and the references

therein.

1.1 LDPC Codes

LDPC codes were introduced by Robert G. Gallager in 1960s [3]. An LDPC code is

defined by a sparse parity-check matrix (PCM). The sparsity implies that the number of

non-zero entries in the PCM increase linearly rather than quadratically with respect to the

codeword length. Denote a sparse PCM by H with dimension m× n (m < n). An LDPC is

defined by H if and only if each codeword, denoted by c with dimension n× 1, satisfies

Hc = 0, (1.1)

where 0 is all-zero vector with dimension m× 1. The corresponding code rate R ≥ 1−m/n,

where the equality hold when all the rows in H are independent. If all the non-zero entries

in H are 1, then H defines a binary LDPC code; if all the non-zero entries in H are from

finite field with order q (q > 2) , denoted by GF(q), then H defines a nonbinary LDPC code

over GF(q).

1

edge

permutation

variable nodes check nodes

Figure 1.1: An example of a Tanner graph representation for a regular LDPC code.

LDPC codes are one of the graph codes. Specifically, an LDPC code’s PCM H can

also be represented by a bipartite graph, which is also called a Tanner graph [5]. In the

corresponding Tanner graph, the jth column of H is represented by a variable node j, the ith

row of H is represented by a check node i, and there is an edge between a variable node j and

a check node i if the entry is non-zeros in the ith row and jth column of H. It is inevitable

to have cycles in the corresponding Tanner graph when constructing LDPC codes [2]. The

minimum length of any cycles in a Tanner graph is called girth. Usually, LDPC codes are

constructed carefully to avoid cycles with length 4 (the girth is thus at least 6), since short

cycles are unfavorable for the iterative LDPC decoding algorithms and impairs the bit-error

rate (BER) performance.

In a Tanner graph, if every variable node has degree dl and every check node has degree

dr, the corresponding LDPC code is called regular ; otherwise, it is irregular. An example of

a Tanner graph representation for a regular LDPC code is depicted in Figure 1.1. Note that

there is an edge permutation operation in Figure 1.1 to permute edge connections between

variable nodes and check nodes. Given all possible edge permutation instances, an LDPC

2

ensemble is then formed. It is of interest to investigate an LDPC ensemble rather than a

particular instance due to the concentration property when codeword length n grows [6].

An LDPC ensemble is characterized by a degree distribution pair [7]. Give a specific degree

distribution pair, the iterative decoding threshold (IDT) can then be determined by the den-

sity evolution technique [6] or the extrinsic information transfer (EXIT) chart analysis [8].

The IDT indicates the best possible performance of an LDPC code under iterative decoding

and can then be utilized for LDPC code design. Usually, carefully designed irregular LDPC

codes have better iterative decoding thresholds than regular LDPC codes.

The encoding procedure of an LDPC code is usually not straightforward. A efficient

encoding scheme was proposed in [9] for general LDPC codes. For practical applications, it

is favorable to employ quasi-cyclic LDPC codes whose PCM is constructed by concatenating

circulant sub-matrix [10]. The constraint can greatly simplify the encoding process and the

corresponding circuit design [11, 12].

It is worth mentioning that in recent years LDPC convolutional codes, also called spatially-

coupled LDPC codes, have drawn a lot of attentions from both academia and industry [13].

A remarkable phenomenon, called threshold saturation, is observed for terminated LDPC

convolutional codes when the termination length goes large [14]. In detail, the iterative

decoding threshold (IDT) of an LDPC convolutional code can approach the maximum a

posteriori (MAP) decoding threshold as the termination length increases.

1.2 Iterative BP Decoding

The superior error-correction performance of LDPC codes is offered by the iterative belief-

propagation (BP) decoding algorithms. When a Tanner graph of an LDPC code has no

3

cycles, the BP decoding is optimal and can be accomplished in one iteration. As mentioned

above, to construct LDPC codes to be good in finite lengths, cycles are inevitable but short

cycles of length 4 should be eliminated. Consequently, the BP algorithms has to be carried

out iteratively for decoding LDPC codes, and in general, the iterative BP decoding is not

optimal anymore. Here, we illustrate the iterative BP decoding procedure for binary LDPC

codes. For nonbinary LDPC decoding, the reader is referred to [15–18].

The iterative BP decoding process can be described over the Tanner graph. Each variable

node (each column of the PCM H) is considered as a repetition code, and each check node

(each row of H) is considered as a single parity-check code. The soft extrinsic information

messages, presented by the probabilities or log-likelihood ratios (LLR) which infer the beliefs

of the received symbols being 0 or 1, are propagated between the variable nodes and the

check nodes. Thus, the name belief propagation comes.

Consider the binary phase-shift keying modulation and additive white Gaussian noise

(AWGN) channels. Denote the received symbol by rj, j = 1, 2, . . . , n. Denoted the extrinsic

information in LLR from the variable node j to the check node i by αi,j. Denoted the

extrinsic information in LLR from the check node i to the variable node j by βi,j . Denote

the LLR of a posteriori probability (APP) for the variable node j by ρj. The standard

iterative BP algorithm for LDPC decoding can thus be described as follows [4].

Step 1 Initialization: The LLR input to the LDPC decoder can be represented by

µj =
2arj
σ2

, j = 1, 2, . . . , n, (1.2)

where a is the signal amplitude and σ2 is the noise variance. For every edge connecting the

variable node j to the check node i (every non-zero entry in PCM H in row i and column

4

j), initialize αi,j by

αi,j = µj. (1.3)

Step 2 Check-node processing: At the check-node side, calculate βi,j using the in-

coming messages αi,j by

βi,j =
∏

j′∈Vi\j

sign
(
αi,j′

)
φ

∑

j′∈Vi\j

φ
(

|αi,j′|
)

 , (1.4)

where Vi\j is the set of the variable nodes connected to the check node i except the variable

node j, and the function φ(x) is expressed by

φ(x)
def
= log

(
1 + e−x

1− e−x

)

, x ≥ 0. (1.5)

Step 3 Variable-node processing: At the variable-node side, calculate αi,j using the

incoming messages βi,j by

αi,j = µj +
∑

i′∈Cj\i

βi′,j, (1.6)

where Cj\i is the set of the check nodes connected to the variable node j except the check

node i.

Step 4 APP: Calculate the LLR of APP, ρj , which can be expressed by

ρj = µj +
∑

i∈Cj

βi,j , j = 1, 2, . . . , n, (1.7)

where Cj is the set of the check nodes connected to the variable node j.

Step 5 Stopping rule: Perform hard decision on ρj to obtain the codeword estimation ĉ.

Carry out the syndrome check using Eq. (1.1). If all the parity check equations are satisfied,

that is, Hĉ = 0, terminate the algorithm and output estimated codeword ĉ. Otherwise, go

back to Step 2 until the maximum iteration number, denoted by Niter, is reached.

5

The aforementioned iterative BP decoding is called the sum-product algorithm in the

logarithm domain [4]. The complexity burden lies at the check-node processing in the Step

2. Take a closer look at the function φ(x) defined by Eq.(1.5). It can be observed that the

smallest |αi,j′| dominates the sum in Eq.(1.4) [4]. That is,

φ

∑

j′∈Vi\j

φ
(

|αi,j′|
)

 ≈ φ

(

φ
(

min
j′∈Vi\j

|αi,j′|
))

= min
j′∈Vi\j

|αi,j′|. (1.8)

Thus, replacing Eq.(1.4) by

βi,j =
∏

j′∈Vi\j

sign
(
αi,j′

)
min

j′∈Vi\j
|αi,j′|, (1.9)

we obtain the so called min-sum algorithm. Although the expensive calculation on φ(x) is

avoided in the min-sum algorithm, there is certain BER performance degradation incurred

by the approximation in Eq. (1.8) [4].

1.3 Motivation and Objectives

LDPC codes have been successfully adopted in various standards, such as the DVB-S2

(digital televisions) [19], the IEEE 802.11 WLAN (Wi-Fi) [20], 10 Gigabit Ethernet [21], etc.

Research interests and applications of LDPC codes can also be found in advanced optical

communications and modern data-storage systems [22, 23].

In the aforementioned standards, LDPC codes are defined by various code rates and

codeword lengths. Consequently, the transceivers therein can employ different LDPC en-

coders/decoders according to the channel qualities. This is the so-called adaptive modulation

and coding technique. Usually, there is a dedicated control channel to facilitate the changes

6

of encoders/decoders between transceivers, which complicates the transceiver design and

impairs the spectral efficiency. To avoid such a control channel, blind LDPC encoder iden-

tification schemes are proposed in this work so that the receiver can blindly identify LDPC

codes from a predefined LDPC encoder candidate set. We investigate various modulation

schemes and channel models and assume that the receivers have no knowledge of the channel

state information.

Furthermore, there are possibilities to reduce the computational complexity (number of

iterations) of the standard iterative BP decoding algorithm described in Chapter 1.2 in

following ways. Note that the conventional stopping rule (Step 5 in Chapter 1.2) cannot

recognize undecodable blocks. As a result, when an undecodable block is experienced in the

BP decoding, all available iterations will be exhausted and no legitimate codeword will be

generated. To save the decoding time and the power consumption when an undecodable

block is experienced, in this work, we devise a new stopping criterion for BP decoding,

which can identify undecodable blocks and terminate the BP decoding process in an early

stage. Moreover, the parallel scheduling method in the standard iterative BP decoding

algorithm could be replaced by serial scheduling schemes. It is known that serial scheduling

schemes can reduce the number of iterations and converge fast compared to the parallel

(flooding) scheme. In this work, we propose an efficient dynamic scheduling scheme for

BP decoding, which can further reduce the number of iterations compared to the existing

dynamic scheduling algorithms.

In addition, the IDTs of LDPC convolutional codes with large termination lengths are

computationally demanding to be determined, especially for the additive white Gaussian

noise (AWGN) channel. Instead of using the existing protograph-based extrinsic informa-

7

tion transfer (PEXIT) algorithm to determine the IDTs for protograph-based LDPC convo-

lutional codes, in this work, we propose a PEXIT-fast algorithm based on our new analysis

and proofs on the monotonic properties involved in the PEXIT analysis of LDPC convolu-

tional codes. The computational complexity can thus be greatly reduced for determining the

IDTs of LDPC convolutional codes with arbitrary large termination lengths which include

infinity.

The rest of this work is organized as follows. In Chapter 2 and Chapter 3, the blind

identification schemes for LDPC codes are developed for different modulation formats and

channels. Joint blind frame synchronization and LDPC encoder identification is also ad-

dressed in Chapter 3. In Chapter 4, two fast BP decoding algorithms are proposed to reduce

the computational complexity (number of iterations). One is a new stopping criterion, and

the other one is an efficient dynamic serial scheduling for LDPC decoding. In Chapter 5, we

propose an efficiently IDT estimate algorithm for LDPC convolutional codes, which is useful

especially for large termination length.

8

2. BLIND IDENTIFICATION OF LDPC CODES FOR AWGN CHANNELS

Adaptive modulation and coding (AMC) technologies exploit the channel state informa-

tion (CSI) to improve the data rate (throughput) or enhance the bit-error-rate performance,

especially in time-varying fading channels [24]. Based on the feedback CSI, the AMC trans-

mitter dynamically selects an appropriate combination of modulator and channel encoder

from the predefined candidate pool [25–28]. Instead of employing a dedicated control chan-

nel to update the changes in the modulation/demodulation and coding/decoding schemes

in conventional AMC transceivers, people proposed blind encoder identification techniques

in [29–34] and blind modulation classification schemes in [35–37] recently to boost the spectral

efficiency and remove the corresponding control mechanisms (thus simplify the transceiver

design) by using advanced signal processing methods.

It is known that the redundancy introduced in the existing coding schemes offers potentials

for the receiver to blindly identify the unknown encoder adopted by an AMC transmitter.

In [29, 30], the space-time redundancy of the received signal samples was exploited to dis-

tinguish the underlying coding schemes for flat- and frequency-selective fading channels,

respectively. In [31], the receiver utilized the parity-check constraints to identify the original

encoder. In [32, 33], the blind encoder identification schemes were developed for binary and

nonbinary low-density parity-check (LDPC) codes over the additive white Gaussian noise

(AWGN) channel, respectively.

In this chapter, we extend our previous work in [32] to blindly identify binary LDPC

codes for M-quadrature amplitude modulation (M-QAM) signals over the additive white

9

Gaussian noise (AWGN) channel. The main contributions of this work are highlighted as

follows. First, since the transmitted symbols change from BPSK modulation to M-QAM

modulation, an unknown phase offset is introduced. The expectation-maximization (EM)

algorithm is thus developed accordingly for estimating the unknown parameters, namely

signal amplitude, noise variance, and phase offset. Second, the a posteriori probabilities

(APPs) of the received signal symbols have to be transformed to the corresponding coded

bits for facilitating the syndrome APP of binary LDPC codes subject to the mapping of M-

QAM. This new framework involving the two aforementioned attributes enables our proposed

blind binary LDPC encoder identification scheme to work reliably in the AMC systems where

both modulation type and coding scheme change dynamically with respect to the channel

state.

The rest of this chapter is organized as follows. The basic AMC transceiver system is

introduced in Chapter 2.1. The blind LDPC encoder identification method for M-QAM sig-

nals and the associated EM algorithm are presented in Chapter 2.2. Monte Carlo simulation

results are demonstrated in Chapter 2.3 to illustrate the effectiveness of our proposed new

scheme.

2.1 System Model

In this section, we introduce the basic AMC system model for the transceivers involving a

binary LDPC encoder and an M-QAM modulator. At the transmitter, original information

bits are grouped into blocks, each of which consists of k consecutive bits, say bν , where ν

is the block index. This block of information bits are passed to the binary LDPC encoder

θ to generate a corresponding block of codeword or coded bits, say cθν with codeword length

10

n, where θ denotes a particular type of binary LDPC encoder. Obviously the corresponding

code rate is R = k/n. Then, the codeword cθν is modulated by the M-QAM such that L

(L = log2M) consecutive coded bits form one M-QAM symbol. The corresponding block of

modulated symbols to cθν are denoted by sθν with length N = n/L.

It is assume that the timing, frequency, and frame synchronizations are properly under-

taken at the receiver frontend [38–40]. Thus, the received baseband signal symbols are also

collected in blocks, say rν . We propose to feed rν to our blind encoder identification scheme

to identify θ, the unknown binary LDPC encoder adopted in the transmitter. Once the

encoder type is identified by our proposed scheme as θ̂ν where the subscript ν indicates that

it is estimated from the νth block of received signal symbols, then the appropriate LDPC

decoder can be employed to construct the information symbol estimates b̂ν . As our blind

binary LDPC encoder identification scheme can rely on a single codeword block, the block

index ν can be omitted for notational convenience in the rest of this chapter.

To establish the signal model, each element of one block of received baseband signal

symbols, r
def
= [r1, r2, . . . , rj , . . . , rN]

T , can be expressed as

rj = aeıϕsθj + wj, j = 1, 2, . . . , N, (2.1)

where a is the unknown signal amplitude, ı
def
=

√
−1, ϕ is the unknown phase offset, sθj is the

M-QAM symbol generated from the encoder θ, and wj is the zero-mean complex AWGN

with independent real and imaginary parts both having the variance σ2. Consequently, the

energy per information bit to the noise power spectrum density ratio Eb/N0 is given by

Eb

N0
=

a2

2σ2LR
. (2.2)

11

In practice, the AMC transceivers would not change their modulators and encoders arbi-

trarily but have a predefined modulator/encoder candidate set. In this chapter, we assume

that a predetermined LDPC encoder candidate set, say Θ, which contains multiple encoder

candidates, is known to both transmitter and receiver. We also assume that the encoders in

Θ are different from each other so that the parity-check matrices of any two encoders do not

share identical row(s). In the next section, we will present our scheme to blindly identify the

binary LDPC encoder θ ∈ Θ for M-QAM signals.

2.2 Blind LDPC Encoder Identification

Note that the unknown parameters, namely signal amplitude a, noise variance σ2, and

phase offset ϕ need to be estimated first in our blind binary LDPC encoder identification

scheme (see [32]). According to the system model formulated by Eq. (2.1), we propose to

adopt the EM algorithm to estimate all of them [41].

2.2.1 EM Estimation

When a maximum-likelihood estimation (MLE) problem is complicated, it is favorable

to adopt the EM algorithm to find the optimal solution due to its monotonicity [41]. The

received signal samples formulated by Eq. (2.1) comply with the Gaussian mixture model

which the EM algorithm is built upon.

In the EM framework, the missing data are the transmitted symbols s = [s1, s2, . . . , sN].

The complete data are denoted by z = [r; s]. Let C denote the M-QAM constellation set

where xm ∈ C (m = 1, 2, . . . ,M) represents themth constellation point. Each xm corresponds

to a mode in the Gaussian mixture. Here we assume that sj is randomly picked from xm

12

and therefore the probability weight of the mth mode is 1/M . The unknown parameter

set is λ = [a, σ2, ϕ]. According to Eq. (2.1), the conditional expected log-likelihood function

Q(λ|λ(t)), where λ
(t) is the EM estimate in the tth iteration, can thus be formulated as

(see [41])

Q
(

λ|λ(t)
)

=
N∑

j=1

Esj |rj ,λ
(t)

[

logP {rj, sj |λ}
]

=
N∑

j=1

M∑

m=1

δ
(t)
j,m log

(
1

M
φm (rj|sj,λ)

)

=

N∑

j=1

M∑

m=1

δ
(t)
j,m

(

C − |rj|2 − a2|xm|2
2σ2

+
aℜ{r∗jeıϕxm}

2σ2

)

, (2.3)

where

δ
(t)
j,m

def
= P

{

sj = xm|rj,λ(t)
}

, (2.4)

φm(rj |sj,λ) def
=

1

2πσ2
exp

(

−|rj − a eıϕ xm|2
2σ2

)

, (2.5)

and

C = log

(
1

2πσ2M

)

. (2.6)

At the E-step, according to Eq. (2.3), only δ
(t)
j,m needs to be updated such that

δ
(t)
j,m =

φm

(

rj |sj,λ(t)
)

∑M
m=1 φm

(

rj|sj,λ(t)
) . (2.7)

At the M-step, one needs to solve

λ
(t+1) = max

λ

Q(λ|λ(t)). (2.8)

The phase offset needs to be updated such that

ϕ(t+1) = argmax
ϕ

{
N∑

j=1

M∑

m=1

δ
(t)
j,mℜ

{
r∗je

ıϕxm

}

}

. (2.9)

13

According to [42], Eq. (2.9) leads to

ϕ(t+1) = −∠

{
N∑

j=1

M∑

m=1

δ
(t)
j,mℜ

{
r∗j xm

}

}

. (2.10)

By setting the partial derivatives of Q(λ|λ(t)) with respect to a and σ2 to zero respectively

and using the phase offset estimator given by Eq. (2.10), one can obtain the optimal updates

for the signal amplitude and the noise variance as follows:

a(t+1) =

∑N
j=1

∑M
m=1 δ

(t)
j,mℜ

{

r∗j e
ıϕ(t+1)

xm

}

∑N
j=1

∑M
m=1 δ

(t)
j,m|xm|2

, (2.11)

σ2(t+1)
=

1

2N

N∑

j=1

M∑

m=1

δ
(t)
j,m|rj − a(t+1)eıϕ

(t+1)

xm|2. (2.12)

By the end of each iteration, to check if the EM algorithm converges, the log-likelihood also

needs to be updated as

f (t+1) =
1

N

N∑

j=1

log

(

1

M

M∑

m=1

φm

(

rj |sj,λ(t+1)
)
)

. (2.13)

The EM algorithm continues to iterate its E-step and M-step alternately if |f (t+1)−f (t)| ≥ ǫ,

where ǫ is a predefined threshold; it stops when either |f (t+1) − f (t)| < ǫ or the maximum

iteration number is reached, and outputs the ultimate estimates λ̂ = [â, σ̂2, ϕ̂].

2.2.2 APPs of Coded Bits

Note that in order to identify the binary LDPC codes, the a posteriori probabilities

(APPs) of coded bits need to be carried out to facilitate the log-likelihood ratios (LLRs).

This calculation is straightforward for BPSK signals [32]. Nevertheless, more rigors are

required for M-QAM signals. Recall that there is a one-to-one mapping between each M-

QAM constellation point and L consecutive bits within a binary LDPC codeword. Therefore,

14

−5 −3 −1 1 3 5
−5

−3

−1

1

3

5

Q
u
ad
ra
tu
re

In-Phase

0000

0001

0011

0010

0100

0101

0111

0110

1100

1101

1111

1110

1000

1001

1011

1010

�1

�3

Figure 2.1: The illustration of the one-to-one mapping for a typical 16-QAM constellation
together with two sets A1 and A3.

each received symbol rj corresponds to the L consecutive bits denoted by cj,1, cj,2, . . . , cj,L.

For each bit cj,l, l = 1, 2, . . . L, denote Al ⊆ C such that the constellation points xm ∈ Al all

result in the mapping cj,l = 0. The APP of the coded bit cj,l can therefore be obtained from

the APP of the transmitted symbol sj as expressed by

P{cj,l = 0|rj} =
∑

xm∈Al

P{sj = xm|rj}, (2.14)

and

P{cj,l = 1|rj} = 1− P{cj,l = 0|rj}, (2.15)

15

where P{sj = xm|rj} can be carried out according to Eq. (2.4) by plugging in â, σ̂2, and ϕ̂

resulting from the EM algorithm which is discussed in Section 2.2.1.

Figure 2.1 depicts the one-to-one mapping for a typical 16-QAM constellation. The

constellation points contained in the set A1 are circled by the solid line while the constellation

points contained in A3 are circled by the dashed line. For clarity, the constellation subsets

A2 and A4 are not illustrated therein. It is obvious that each set Al, l = 1, 2, . . . , log2 (M),

contains M/2, i.e., half of the constellation points.

2.2.3 LDPC Encoder Identification

According to Eqs. (2.14) and (2.15), we can calculate the corresponding LLR as given by

L(cj,l|rj) = log
P{cj,l = 0|rj}
P{cj,l = 1|rj}

. (2.16)

Let g denote a row vector of the LLRs of APPs such that g
def
= [L(c1,1|r1), L(c1,2|r1), . . .,

L(c1,L|r1), L(c2,1|r2), . . ., L(c2,L|r2), . . ., L(cN,L|rN)] with length n = NL.

For each encoder θ′ ∈ Θ, denote its q× n parity-check matrix by Hθ′. Denote the ith row

of Hθ′ by hθ′

i , i = 1, 2, . . . , q. Denote gi
def
= [gi,1, gi,2, . . . , gNi

] the sub-vector of g by retaining

the elements in g which coincide with the positions of the non-zero elements of hθ′

i , where Ni

is the total number of the non-zero elements of hθ′

i . According to [32], the LLR of syndrome

APP for hθ′

i can then be expressed as

γθ′

i
def
=

Ni

⊞
τ=1

gi,τ

def
= gi,1 ⊞ gi,2 ⊞ · · ·⊞ gi,Ni

= 2 tanh−1

(
Ni∏

τ=1

tanh
(
gi,τ/2

)

)

, (2.17)

16

−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/N0 (dB)

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

EM: R = 1/2
EM: R = 2/3
EM: R = 3/4
EM: R = 5/6
True: R = 1/2
True: R = 2/3
True: R = 3/4
True: R = 5/6

Figure 2.2: The probabilities of correct identification Pc with respect to Eb/N0 for 4-QAM
signals.

where ⊞ is the box-plus operation defined in [32]. The average LLR of syndrome APP subject

to the encoder candidate θ′ is thus given by

Γθ′ def
=

1

q

q
∑

i=1

γθ′

i . (2.18)

Consequently, according to Eqs. (2.17) and (2.18), the underlying LDPC encoder can be

identified as

θ̂ = argmax
θ′∈Θ

Γθ′, (2.19)

where Θ is the predefined encoder candidate set.

17

−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/N0 (dB)

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

EM: R = 1/2
EM: R = 2/3
EM: R = 3/4
EM: R = 5/6
True: R = 1/2
True: R = 2/3
True: R = 3/4
True: R = 5/6

Figure 2.3: The probabilities of correct identification Pc with respect to Eb/N0 for 16-QAM
signals.

2.3 Simulation

The performances of our proposed blind LDPC-encoder identification scheme forM-QAM

signals are evaluated by computer simulations. The performance metric we choose is the

probability of correct identification, which is the probability that the receiver can correctly

identify the types of the LDPC encoders adopted by the transmitter, i.e., Pc = P
{
θ̂ = θ

}
.

The binary LDPC codes with length n = 648 and four different code-rates R = 1/2, 2/3,

3/4, and 5/6 defined in the IEEE 802.11-2012 standard constitute the encoder candidate set

Θ here [20]. For each particular modulation order M , one thousand Monte Carlo trials are

taken for each encoder to be the actual one adopted by the transmitter. In each trial, one

18

−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/N0 (dB)

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

EM: R = 1/2
EM: R = 2/3
EM: R = 3/4
EM: R = 5/6
True: R = 1/2
True: R = 2/3
True: R = 3/4
True: R = 5/6

Figure 2.4: The probabilities of correct identification Pc with respect to Eb/N0 for 64-QAM
signals.

codeword block consisting of random information bits is generated, and the phase offset is

randomly chosen within (−π/4, π/4) to avoid the phase ambiguity inherent in any square

QAM constellation (see [25, 43]). For the EM algorithm, we use the M2M4 method in [44]

to establish the initial estimates a(0) and σ2(0). The phase offset is initialized as ϕ(0) =

1/4 ∠
{

−∑N
j=1 r

4
j

}

according to [45]. In addition, the initial log-likelihood f (0) is set as an

arbitrary number, say 1. The threshold ǫ is set as 10−3 and the maximum iteration number

is set as 100.

Figures 2.2–2.4 delineate the probabilities of correct identification Pc with respect to

Eb/N0 for M-QAM signals when M is 4, 16, and 64, respectively. It can be discovered

19

−5 0 5 10 15
0

10

20

30

40

50

A
v

er
ag

e
It

er
at

io
n

 N
u

m
b

er

Eb/N0 (dB)

4-QAM

R = 1/2
R = 2/3
R = 3/4
R = 5/6

64-QAM

16-QAM

Figure 2.5: The average iteration numbers with respect to Eb/N0 for 4-QAM, 16-QAM, and
64-QAM signals.

that Pc can achieve 100% for all the four codes when Eb/N0 > 5 dB for 4-QAM signals,

Eb/N0 > 9 dB for 16-QAM signals, and Eb/N0 > 13 dB for 64-QAM signals. Moreover,

the probabilities of correct identification Pc using the estimated signal amplitude â, noise

variance σ̂2 and phase offset ϕ̂ from the EM algorithm (denoted by “EM” in the figures) are

compared to those using the true values of a, σ2, and ϕ (denoted by “True” in the figures).

The simulation results show that the differences between these two cases are quite negligible.

Note that as the modulation order M goes larger, the block length N of the received

symbols becomes shorter since the binary LDPC codeword length n remains the same. As a

result, the EM algorithm requires more iterations to converge for higher modulation orders.

20

Hence, it is interesting to investigate the average iteration number (AIN) of the EM algorithm

for different M . Figure 2.5 demonstrates the AINs with respect to Eb/N0 forM-QAM signals

when M is 4, 16, and 64. It exhibits that the AIN required for 64-QAM signals is much

larger than that required for 4-QAM signals as expected.

2.4 Summary

In this chapter, we propose a novel blind binary LDPC encoder identification technique

for arbitrary M-QAM signals. The EM algorithm is also devised to estimate the unknown

signal amplitude, noise variance, and phase offset. Monte Carlo simulation results illustrate

the effectiveness of our blind binary LDPC encoder identification scheme. Besides, the

average iteration number the EM algorithm needs to converge will be proportional to the

modulation order M under the same channel condition. Our proposed new LDPC encoder

identification mechanism can be a very promising solution for the next generation wireless

adaptive modulation and coding transceivers.

21

3. BLIND IDENTIFICATION OF LDPC CODES FOR FADING CHANNELS

In this chapter, we would like to address blind LDPC encoder identification problems

in fading channels. In Chapter 3.1, how to blindly identify LDPC codes for time-varying

fading channels is discussed. In Chapter 3.2, a joint blind frame synchronization and LDPC

encoder identification scheme is proposed for multipath fading channels. In order to keep

our identification scheme blind, the channel state information which is hard to be estimate

accurately for fading channels is not required anymore in our proposed identifications schemes

by proper approximation techniques in this chapter.

3.1 Blind LDPC Encoder Identification for Time-Varying Fading Channels

The blind LDPC encoder identification schemes discussed in Chapter 2 in [31–33] cannot

be directly applied to time-varying fading channels, which are often used as a practical

scenario for modern wireless communication systems. Therefore, we would like to address

the blind LDPC encoder identification for time-varying flat-fading channels in this section.

Specifically, our blind LDPC encoder identification scheme does not require the receiver

to have any knowledge of the channel station information (CSI), i.e., symbol energy, noise

variance, fading amplitude, and phase offset. Instead of trying to blindly estimate these

parameters, our proposed new scheme resorts to the following techniques to avoid deal-

ing with the CSI directly. To ignore the phase offset, an orthogonal modulation, namely

M-ary frequency-shift-keying (FSK) is adopted so that the non-coherent detection can be

carried out. The fading amplitude, assumed to be Rayleigh distributed, can also be aver-

22

aged out analytically and hence it does not need to be estimated. To make our identification

scheme “blind” to the signal energy and the noise variance, we propose to use the “max-log”

and “min-sum” approximations to calculate the log-likelihood ratio (LLR) of the syndrome

a posteriori probability (APP), which is the key metric for identifying different encoders

(see [32, 33] for details).

3.1.1 System Model

In this section, we introduce the basic transceiver system model in the baseband for our

focused problem. At the transmitter, k successive information bits are grouped and passed

through a particular binary (n, k) LDPC encoder (labeled by θ), which generates a codeword

cθ with length n. Then, D blocks of codewords are interleaved by the interleaver with the

interleaving depth D. The interleaved stream is modulated by the M-ary FSK modulator

to generate the orthogonal signal. After it travels over a time-varying flat-fading channel,

the tth received signal sample can be represented by

rt = at e
jφt st +wt, t = 1, 2, . . . , nD, (3.1)

where j
def
=

√
−1, at e

jφt is the complex fading coefficient that both real and imaginary parts

are zero-mean Gaussian variables with the same variance 1/2, and st is the M-ary FSK

symbol in vector form. Specifically, at is the Rayleigh distributed fading amplitude and

φ is the phase offset uniformly distributed over [0, 2π]. The complex fading coefficients

at e
jφt are generated by Jakes’ model [46]. In essence, the lth M-ary FSK symbol el can be

represented by an M-dimensional vector whose entries are all 0 except that the lth entry

should be
√
Es instead where Es is the symbol energy. Usually, M is a radix-2 number and

23

therefore every log2(M) bits resulting from the interleaver generates one M-ary FSK symbol

st. In addition, wt denotes the M-dimensional complex AWGN vector such that the real

and imaginary parts of each complex entry are statistically independent with zero mean and

the same variance σ2. Note that one should write st = sθt and θ here specifies a particular

LDPC encoder used by the transmitter but unknown to the receiver. How to blindly identify

θ will be discussed in Section 3.1.2. Without loss of generality, we neglect the superscript θ

for notational convenience throughout this section. The energy per information-bit to noise

power-spectrum-density ratio, Eb/N0, can thus be represented as

Eb

N0
=

Es

2σ2 R log2(M)
, (3.2)

where R = k/n is the code rate.

According to the system model given by Eq. (3.1), we can derive the APP and the

corresponding LLR as follows. For notional simplicity, henceforth we will omit the index t

dictated in Eq. (3.1) without causing any further ambiguity. Given a, φ, and s = el, the

channel transition probability p(r|s, a, φ) can then be expressed by

p(r|el, a, φ) =

(
1

2πσ2

)M

exp

(

− 1

2σ2

∣
∣r− aejφel

∣
∣
2
)

= C1 exp

(

−Esa
2

2σ2
+

√
Esa

σ2
ℜ
{
rle

−jφ
}
)

,

(3.3)

where

C1
def
=

(
1

2πσ2

)M

exp

(

− 1

2σ2

M∑

m=1

∣
∣rm
∣
∣2

)

, (3.4)

and rm, rl denote them
th and lth entries of r, respectively. It is obvious that C1 is independent

of l and is not related to a and φ.

24

Since the receiver has no knowledge of the phase offset φ and the fading amplitude a and

there is no pilot available for estimating these parameters (as we consider the blind scenario),

these two unknown variables need to be “averaged” out. First, a non-coherent detection is

carried out by averaging over φ using Eq. (3.3), which can be expressed by

p(r|el, a) =
1

2π

∫ 2π

0

p(r|el, a, φ) dφ

= C1 exp

(

− Es

2σ2
a2
)

I0

(√
Es

σ2
a
∣
∣rl
∣
∣

)

, (3.5)

where I0() is the zero-order modified Bessel function of the first kind. Then, by averaging

over a, which is Rayleigh-distributed, using Eq. (3.5), according to [47], we have

p(r|el) =

∫ ∞

0

p(a)p(r|el, a) da

= C1

∫ ∞

0

2a exp

[

−
(

Es

2σ2
+ 1

)

a2
]

× I0

(√
Es

σ2
a
∣
∣rl
∣
∣

)

da

=
C1

(
Es

2σ2 + 1
) exp

[

Es|rl|2
4σ2

(
Es

2
+ σ2

)

]

. (3.6)

For the input of the binary LDPC decoder, the M-ary FSK demodulator’s “soft output”

should be the probability for each information bit rather than that for each modulated symbol

as shown in Eq. (3.6). Therefore, a “symbol-to-bit” probability mapping needs to be carried

out. Moreover, the LDPC decoding algorithm is usually performed in the logarithm domain

for the numerical precision reason. Thus, the bit probabilities will be further converted to

the LLRs prior to decoding. Denote Aµ the set of modulation indices l such that the µth

bit of el is 0, and denote Ac
µ the set of indices l such that the µth bit of el is 1 instead, for

µ = 1, 2, . . . , log2(M). For a time instant t, the received signal sample r contains log2(M)

coded bits cµ, µ = 1, 2, . . . , log2(M). Assume that the coded bits have equal probabilities to

25

be 0 or 1. The corresponding LLR L(cµ|r) can thus be expressed as

L(cµ|r) = log

∑

l∈Aµ

p(r|el)
∑

l∈Ac
µ

p(r|el)

= log

∑

l∈Aµ

exp

[

Es|rl|
2

4σ2(Es
2
+σ2)

]

∑

l∈Ac
µ

exp

[

Es|rl|2

4σ2(Es
2
+σ2)

]

. (3.7)

The LLRs given by Eq. (3.7) are obtained and then the deinterleaving operation is performed.

These “deinterleaved” LLRs can be sent to our new blind encoder identification scheme for

identifying the unknown encoder θ finally.

3.1.2 Blind LDPC Encoder Identification

In this section, we present our proposed blind LDPC encoder identification scheme for

the system model involving FSK modulated signals and the time-varying flat-fading channel

manifested in Section 3.1.1. Note that the encoder θ cannot be arbitrary and it should be

drawn from a predefined candidate set Θ which is known to both transmitter and receiver.

For LDPC codes, each encoder θ is specified by its associated (n − k)-by-n parity-check

matrix Hθ. Each row of Hθ, denoted by hθ
i , i = 1, 2, . . . , n− k, manifests the corresponding

parity-check constraint. Without loss of generality, it is assumed that the parity-check matrix

Hθ has full rank, that is, all rows of Hθ are linearly independent of each other. Since only the

codeword generated from encoder θ can satisfy the syndrome check of Hθ, i.e., Hθcθ
T
= 0

(0 is an (n− k)-by-1 all-zero vector), we can investigate the likelihood of the received signal

block satisfying the parity check for each encoder candidate, and then identify the unknown

encoder θ in the sense of maximum likelihood. Such likelihood is usually represented by

26

the LLR of the syndrome APP (see [32, 33]), which can be obtained from LLRs given by

Eq. (3.7).

Note that in Eq. (3.7), the CSI, namely the symbol energy Es and the noise variance σ2,

are needed. Because the receiver has no knowledge of these parameters, our proposed blind

encoder identification scheme can depend on neither Es nor σ
2, and therefore we propose to

adopt “max-log” and “min-sum” approximations as follows.

First, based on the max-log approximation, Eq. (3.7) can be modified as

L(cµ|r) ≈ max
l∈Aµ

{
Es|rl|2

2Esσ2 + 4σ4

}

−max
l∈Ac

µ

{
Es|rl|2

2Esσ2 + 4σ4

}

= C2

[

max
l∈Aµ

{
|rl|2

}
−max

l∈Ac
µ

{
|rl|2

}
]

, (3.8)

where

C2
def
=

Es

2Esσ2 + 4σ4
. (3.9)

Thus, according to Eq. (3.9), Es and σ2 are inherently included in the new parameter C2.

Note that when the FSK modulation order M is 2, the max-log approximation becomes

equality since there remains only one term in the max operation.

Denote Hθ′ the (n−k)×n parity-check matrix of the encoder candidate θ′. The locations

of the non-zero elements in the ith row of Hθ′ are denoted by a vector zi
def
= [zi1 , zi2 , . . . , ziNi

]T ,

where Ni is the total number of the non-zero elements in the ith row of Hθ′. Denote R
def
=

[r1, r2, . . . , rν], where ν
def
= n/ log2(M) such that R results from one LDPC codeword block

c = [c1, c2, . . . , cn]. Recall that in the min-sum algorithm [48], the box-plus operation in

the check node can be approximated by selecting the incoming information which has the

minimum absolute value among those calculated from all connected variable nodes. Thus,

27

by adopting the min-sum algorithm (see [40,48]), the LLR of syndrome APP for the ith check

node, denoted by γθ′

i , can be expressed as

γθ′

i ≈
[

Ni∏

d=1

sign
[

L
(
czid |R

)]
]

× min
zid

∣
∣
∣L
(
czid |R

)
∣
∣
∣ . (3.10)

Since the coefficient C2 involving Es and σ2 poses no effect on the sign and min operations

used in Eq. (3.10), it can be simply dropped from Eq. (3.8). Therefore, after these two

approximations in Eqs. (3.8) and (3.10), our proposed blind identification scheme does not

depend on the CSI anymore.

The calculation of the LLRs of the syndrome APP, according to Eq. (3.10), is essentially

undertaken at the check nodes involved in the message passing (MP) decoding algorithm.

Note that all incoming information from the variable nodes must be used to compute the

syndrome APP, while only extrinsic information are used at the check nodes in the MP

decoding algorithm.

Having obtained the LLRs of the syndrome APP, we are ready to identify the unknown

encoder θ. Obviously, the encoder can be identified if it has the highest percentage of the

satisfied syndrome checks over all candidates. It yields

θ̂ = argmax
θ′∈Θ

{

1

n− k

n−k∑

i=1

(γθ′

i)
+

}

, (3.11)

where

(γθ′

i)
+ def
=

1, γθ′

i > 0

0, γθ′

i < 0

. (3.12)

Eq. (3.12) can be considered as a “hard” decision. If γθ′

i > 0, the ith parity check relation

is more likely to be satisfied, then Eq. (3.12) will mark the ith parity check “satisfied”;

otherwise, if γθ′

i < 0, Eq. (3.12) indicates that the parity check is failed.

28

In analogy to the difference between the hard decision and the soft decision used in

decoders, a soft decision can also be carried out to identify θ, i.e.,

θ̂ = argmax
θ′∈Θ

{

1

n− k

n−k∑

i=1

γθ′

i

}

, (3.13)

where the argument of argmax{ } is the average LLR of the syndrome APP according

to [32, 40]. Note that different encoders θ may have different combinations of n and k, and

therefore the normalization factor 1/(n− k) is necessary in both Eq. (3.11) and Eq. (3.13).

When a parity-check matrix of some encoder has more (independent) rows than others,

it implies that more parity-check constraints are available and thus better identification

performance could be expected. As a matter of fact, this normalization factor serves to

facilitate a fair comparison among different encoder candidates so that the impact of the

variations in the total number of parity-check constraints would be mitigated.

Since the unknown encoder θ is identified by examining the likelihood of a codeword (or

multiple codewords) satisfying all the parity-check relations manifested by the parity-check

matrix, a crucial assumption has to be made for Θ that the parity-check matrices of any

two encoders share no common rows (no identical parity-check relations). This assumption

is usually valid for LDPC codes. On the other hand, the encoders in Θ can have the same

length and/or the same code rate. They can even be drawn from the same ensemble.

3.1.3 Simulation

The performance of our proposed new blind LDPC encoder identification scheme for the

transmitted signals subject to orthogonal modulations traveling through time-varying flat-

fading channels is evaluated via Monte Carlo simulations in this section. The performance

29

metric we choose is the probability of correct identification, Pc, which is the probability that

the receiver can correctly identify the unknown LDPC encoder, i.e., Pc
def
= Pr(θ̂ = θ). The

LDPC parity-check matrices with codeword length n = 1944 specified in the IEEE 802.11-

2012 standard [20] are adopted for our simulations. Thus, there are four encoder candidates

with code rates R = 1/2, R = 2/3, R = 3/4, and R = 5/6 in the candidate set Θ. The

interleaver depth is 50 so that 50 codewords are interleaved before passed into the M-ary

FSK modulator. The complex fading coefficients described in Eq. (3.1) are generated by

Jakes’ model [46], in which the maximum Doppler shift is denoted by fD, the symbol period

is denoted by Ts, and the normalized Doppler rate is denoted by fDTs. One thousand Monte

Carlo trials are carried out to obtain the average performance for each simulation setting.

Figure 3.1 depicts the probabilities of correct identification Pc with respect to Eb/N0 for

the four aforementioned LDPC encoders using the hard decision given by Eq. (3.11) and

the soft decision given by Eq. (3.13), respectively. The binary FSK (BFSK) modulation is

used and the normalized Doppler rate fD Ts is 0.001 for this figure. It is shown that the

probabilities of correct identification Pc for all encoders approach 100% when Eb/N0 ≥ 15

dB. The lower the code rate (the more the parity-check bits), the better the identification

performance. Moreover, the average LLR of the syndrome APP (Eq. (3.13)) offers better

identification than the percentage of the satisfied syndrome checks (Eq. (3.11)) in the high

Eb/N0 region. This phenomenon coincides with the well-known concept that soft-decision

based methods are superior to hard-decision based schemes. Nevertheless, the performance

gap between these two methods narrows down as the code rate increases.

The probabilities of correct identification Pc with respect to Eb/N0 using Eq. (3.13) are

investigated in Figure 3.2 for different FSK modulation orders and different normalized

30

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

Rate = 1/2
Rate = 2/3
Rate = 3/4
Rate = 5/6
Hard decision
Soft decision

fDTs = 0.001

Eb/N0 (dB)

Figure 3.1: The probabilities of correct identification Pc with respect to Eb/N0 for the four
LDPC encoder candidates using Eq. (3.11) (“hard decision”) and Eq. (3.13) (“soft decision”),
respectively. BFSK modulator is used, and the normalized Doppler rate is fDTs = 0.001.

Doppler rates. For clarity, only rate 1/2 code’s identification performances are presented.

It is shown that as the FSK modulation order M increases, the identification performance

improves. Moreover, the normalized Doppler rates varying from 0.001 (slow fading) to 0.05

(fast fading) have little impact on the performance of our proposed blind scheme. Similar

results can be observed for other encoder candidates.

3.1.4 Summary

In this section, we propose a novel blind LDPC encoder identification scheme for time-

varying flat-fading channels when orthogonal modulations such as M-ary FSK are used. The

31

0 5 10 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BFSK, fDTs = 0.001
4FSK, fDTs = 0.001
16FSK, fDTs = 0.001
BFSK, fDTs = 0.01
BFSK, fDTs = 0.05

Eb/N0 (dB)

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

Figure 3.2: The probabilities of correct identification Pc with respect to Eb/N0 using
Eq. (3.13) for different FSK modulation orders and different normalized Doppler rates.

proposed blind scheme is devised in a convenient way that all channel state information,

namely the phase offset, the fading coefficient, the symbol energy, and the noise variance,

are not required. The performances of our proposed LDPC encoder identification scheme

through Monte Carlo simulations demonstrate that this method is very robust against both

slow and fast time-varying flat-fading channels.

3.2 Joint Blind Frame Synchronization and Encoder Identification

For the aforementioned blind LDPC encoder identification schemes in Chapter 2 and

Chapter 3.1, one common underlying assumption is that the frame synchronization is per-

32

fectly accomplished beforehand. However, in a “practical” blind scenario, this assumption

is unrealistic. Fortunately, various blind techniques were proposed to address timing syn-

chronization, carrier frequency offset or phase offset estimation [39, 49, 50]. Among these

schemes, the blind synchronization methods for LDPC-coded systems in [39, 50] are based

on the log-likelihood ratios (LLRs) of the syndrome, which are related to the essential metric,

the average LLR of syndrome a posteriori probability (APP) in our recently proposed blind

encoder identification schemes [33, 51].

Therefore, it would be quite interesting to investigate a “practical” blind transceiver

structure addressing both blind frame synchronization and blind encoder identification. In

this chapter, we would like to explore the joint blind frame synchronization and blind encoder

identification of binary LDPC codes for binary phase-shift keying (BPSK) signals over multi-

path fading channels. We propose to use average LLR as the unifying metric for this new

joint blind scheme. Furthermore, we propose a two-stage search method with a search step-

size q by taking advantage of the quasi-cyclic property of the parity-check matrix. Such

a new method can mitigate the cumbersome computational burden brought by the blind

frame synchronization problem. Our proposed new joint blind scheme is then evaluated by

the probability of correct identification in various multi-path channel scenarios.

The rest of this section is organized as follows. The signal model is introduced in Sec-

tion 3.2.1. The joint blind frame synchronization and LDPC encoder identification scheme is

presented in Section 3.2.2. The new two-stage search algorithm is presented in Section 3.2.3

to reduce the complexity of blind frame synchronization. Monte Carlo simulation results are

demonstrated in Section 3.2.4 to evaluate the effectiveness of our proposed new scheme.

33

3.2.1 Signal Model

In this section, we introduce the basic binary LDPC-coded system. At the transmitter,

original information bits are grouped into blocks, each of which consists of k consecutive bits.

Each block of information bits is passed to the LDPC encoder θ to generate a corresponding

block of codeword, say cθ with length n, where θ denotes a particular type of LDPC encoder.

The corresponding code rate is thus R = k/n. Then, the codeword cθ should be modulated

by BPSK modulator and the corresponding block of modulated symbols is denoted by sθ.

The transmitted pass-band signals travel through the multipath channel and arrive at the

receiver. Each sample of the received baseband signals, r(j), can be expressed as

r(j) =
L∑

l=1

al s
θ(j − τl) + w(j), (3.14)

where L is the number of the paths, al is the unknown channel fading coefficient for the

lth signal path, sθ(j) is the modulated BPSK signal generated from the encoder θ, τl is the

time delay for the lth signal path, and w(j) is the zero-mean additive white Gaussian noise

(AWGN) with the variance σ2. Without loss of generality, it is assumed that al1 ≥ al2 and

τl1 ≤ τl2 for l1 < l2. That is, the shorter path the signal travels, the larger the signal strength

one expects.

According to Eq. (3.14), the signal-to-interference ratio (SIR) is given by

SIR
def
=

a21
L∑

l=2

a2l

, (3.15)

and the signal energy per bit (bit energy Eb) to noise power spectrum density (N0) ratio is

defined as

Eb

N0

def
=

a21
R σ2

. (3.16)

34

In practice, the AMC transceivers usually select the modulation/encoder schemes only

over a predefined candidate set. In this chapter, we assume that a predetermined LDPC

encoder candidate set, say Θ, which contains multiple encoder candidates, is known to both

transmitter and receiver beforehand. We also assume that the encoders in Θ are different

from each other by that the parity-check matrices of any two encoders do not have identical

row(s). This assumption is valid for existing AMC schemes. It is further assumed that the

delay for the first signal path (with the shortest time delay) is within a codeword length,

that is, τ1 ∈ [0, n − 1] according to [39]. In the next section, we will present a joint blind

frame synchronization and blind encoder identification method using the average LLR of

syndrome APP.

3.2.2 New Joint Blind Scheme

First consider blind frame synchronization. The probability of having a verified parity-

check equation (the syndrome is 0) when the timing synchronization is achieved is greater

than the probability of making the same statement true when it is out of synchronization

according to [39]. Then consider blind encoder identification. The average LLR of syndrome

APP when the true encoder is picked is larger than those average LLRs when incorrect

encoders are picked from the candidate set instead according to [33, 51]. Therefore, when

the receiver needs to blindly identify the encoder θ and to blindly estimate the time delay τ1

altogether from the received signals given by Eq. (3.14), it is expected that the average LLR

of syndrome APP attains its maximum when the underlying signal block is synchronized

and meanwhile the true encoder is identified. In this section, we will design a new unified

framework for joint blind frame synchronization and blind LDPC encoder identification.

35

The proposed joint scheme will be based on the same metric, namely the average LLR of

syndrome APP.

Denote Hθ′ the m× n parity-check matrix of the encoder candidate θ′. The locations of

the non-zero elements in the ith row of Hθ′ are denoted by a vector zi = [zi1 , zi2 , . . . , ziNi
]T ,

where Ni is the total number of the non-zero elements in the ith row of Hθ′. Denote rθt
def
=

[r(t), r(t + 1), . . . , r(t + n − 1)]T the received signal vector starting from the time instant

t subject to the encoder θ used by the transmitter. The range of t (t = 0, 1, . . . , n − 1) is

determined by the time delay of the first path, τ1. According to [48,51], the LLR of syndrome

APP for the ith parity-check equation (i = 1, 2, . . . , m) of Hθ′ when the sliding window for

collecting received signal samples starts at t can be written as follows:

γθ′

t,i = ln

1 +
Ni∏

d=1

tanh

(

L
(

r(t+ zid)|c(zid)
)/

2

)

1−
Ni∏

d=1

tanh

(

L
(

r(t+ zid)|c(zid)
)/

2

)

= 2 tanh−1

[
Ni∏

d=1

tanh

(

L
(

r(t+ zid)|c(zid)
)/

2

)]

≈
[

Ni∏

d=1

sign

(

L
(

r(t+ zid)|c(zid)
))]

× min
d

∣
∣
∣
∣
L
(

r(t+ zid)|c(zid)
)∣
∣
∣
∣
. (3.17)

When the SIR is much larger than 1, the effect of “fading interferences” al (l = 2, . . . , L)

can be neglected. Thus, according to [51], the LLR can be approximated as

L
(
r(j)|c(j)

)
≈ 2a1 r(j)

σ2
. (3.18)

It is obvious that L
(
r(j)|c(j)

)
in Eq. (3.18) can be simplified as r(j) when sign and min

operations are taken in Eq. (3.17). Consequently, it is not required to estimate the fading

coefficient a1 and the noise variance σ2.

36

Following [39,51], the LLR of syndrome APP, γθ′

t,i, is expected to be a positive value when

the true encoder is picked and the sliding window aligns with the time delay of the first path,

that is, θ′ = θ and t = τ1 for all i = 1, 2, . . . , m. On the other hand, if θ′ 6= θ or t 6= τ1,

the parity-check equations do not necessarily hold. As a result, individual LLRs γθ′

t,i may be

sometimes positive and sometimes negative and thus they exhibit fluctuations around zero.

Therefore, for each θ′ and t, we can average γθ′

t,i over all i and the maximum average value

should correspond to the true encoder θ and the correct time delay τ1. The average LLR for

the received signal block rθt subject to the encoder candidate θ′ is given by

Γθ′

t
def
=

1

m

m∑

i=1

γθ′

t,i. (3.19)

Consequently, according to Eqs. (3.17) and (3.19), the underlying LDPC encoder and the

time delay of the first path for the received signals can be identified by

Λ
def
= [θ̂, τ̂] = argmax

θ′∈Θ,t∈∆
Γθ′

t , (3.20)

where ∆
def
= {0, 1, 2, . . . , n− 1}. One can see that it is necessary to search for every possible

encoder candidate θ′ ∈ Θ and every possible time delay t ∈ ∆ for the joint blind scheme.

3.2.3 Computational Complexity Reduction

According to Eq. (3.20), the complexity of our proposed joint blind encoder identification

and blind frame synchronization scheme depends on the dimension of the entire search space,

|Θ| × n. Usually, the encoder candidate set Θ just includes a few elements; however, the

codeword length n is as large as hundreds or even thousands. For instance, twelve high-

throughput LDPC codes (|Θ| = 12) are specified in the IEEE 802.11-2012 standard [20] with

codeword lengths n equal to 648, 1296, and 1944. Therefore, when n ≫ |Θ|, the big majority

37

0 100 200 300 400 500 600
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

A
v

er
ag

e
L

L
R

Figure 3.3: The average LLR Γθ′

t versus the sliding window’s starting time point t for the
rate 1/2 LDPC encoder (θ′ = θ).

of the complexity burden of our joint scheme arises from blind frame synchronization. To

combat this computational bottleneck, in this section, we propose a two-stage search method

to reduce the search scope for time delays.

We observe that when θ′ = θ, the average LLR Γθ′

t may show an abrupt peak around

t = τ1 for quasi-cyclic LDPC codes (see [20, 52] for quasi-cyclic LDPC codes). For instance,

as illustrated in Figure 3.3, the average LLR Γθ′

t is depicted with respect to the sliding

window’s starting time t for the LDPC code with codeword length 648 and the code rate

1/2 specified in the IEEE 802.11-2012 standard [20]. The explanation of this phenomenon

is that the quasi-cyclic property makes γθ′

t,i repeat a lot of times between consecutive time

38

points t’s; hence the average LLR Γθ′

t would not decrease drastically when t lies within the

neighborhood of the true time delay τ1 (a few time points away from it). Thanks to this

neat quasi-cyclic property, we do not need to search the time delay sample by sample from

t = 0 to t = n − 1. Instead, the search grid spacing can be a few samples apart to save a

lot of computational complexity. This “coarse search” will be facilitated at Stage One. The

coarse search will narrow our general time-delay search down to the neighborhood of the

true value. Then, at Stage Two, we carry out the fine search with the one-sample resolution

over the neighborhood of the spotted time delay from the coarse search. Through these two

stages, we can find the correct time delay which corresponds to the maximum of Γθ′

t at the

second search stage.

In summary, our proposed two-stage time-delay search algorithm is detailed as follows:

Step 1) Choose a proper search step-size q; for each encoder candidate θ′ ∈ Θ, do Step 2

to Step 5;

Step 2) First-Stage Search (coarse search): slide the window by q samples each time from

the starting point t = 0, that is, t ∈ {0, q, 2q, 3q, . . .} (t ≤ n−1); compute the corresponding

average LLRs Γθ′

t accordingly;

Step 3) Find the time position t1(θ
′) where Γθ′

t1(θ′)
attains the maximum among Γθ′

t , t ∈

{0, q, 2q, 3q, . . .} (t ≤ n− 1);

Step 4) Second-Stage Search (fine search): slide the window sample by sample only in the

range of b1 ≤ t ≤ b2, where b1 = max{0, t1− q+1} and b2 = min{t1+ q− 1, n− 1}; compute

the corresponding average LLRs Γθ′

t accordingly;

Step 5) Find the time position t2(θ
′) and Γθ′

t2(θ′)
which attains the maximum among Γθ′

t , t ∈

{b1, b1 + 1, b1 + 2, . . . , b2};

39

Step 6) Pick θ̂ for which Γθ̂
t2(θ̂)

is the maximum of Γθ′

t2(θ′)
among θ′ ∈ Θ. The corresponding

time delay t2(θ̂) is chosen as τ̂1.

Now we can calculate the total number of search points required by the above-mentioned

two-stage search method. In the first stage, the total number of search points is ⌈n/q⌉ where

⌈a⌉ gives a nearest integer which is not less than a. In the second stage, the total number of

search points is upper-bounded by 2q − 1. Hence, compared to the exhaustive search, the

total number of search points required by our proposed two-stage algorithm is tremendously

decreased from n to at most ⌈n/q⌉+2× q− 1. Theoretically speaking, it is better to choose

q (q ≤
√

n/2) as large as possible so that the computational complexity can be greatly

reduced. However, in practice, the search step-size q has to be smaller than the peak width

of the average LLR for a particular encoder so that the global maximum of the average LLR

can be found. The peak width of the average LLR Γθ′

t is the neighborhood of τ1 (Γθ′

τ1
attains

the maximum), denoted by Nτ1
def
= {τ1− δ1, τ1− δ1+1, . . . , τ1, . . . , τ1+ δ2− 1, τ1+ δ2}, where

δ1 and δ2 are non-negative integers to be chosen as large as possible, such that

Γθ′

t > Γθ′

t′ , ∀ t ∈ Nτ1 , ∀ t′ 6∈ Nτ1 . (3.21)

For a proper search step-size q (q ≪ n), our proposed two-stage search method can

decrease the dimension of the search scope for t by almost q times .

3.2.4 Simulation

The performance of our proposed new joint blind LDPC-encoder identification and blind

frame synchronization scheme is evaluated by Monte Carlo computer simulations in this sec-

tion. The performance metric we choose is the probability of correct identification, Pc, which is

40

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/N0 (dB)

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

R = 1/2
R = 2/3
R = 3/4
R = 5/6
SIR = ∞
SIR = 2 dB
SIR = 0 dB

Figure 3.4: The probabilities of correct identification Pc with respect to Eb/N0 for different
SIR values when L = 3 (three channel paths).

the probability that the receiver can correctly identify the LDPC encoder the transmitter ac-

tually adopts and estimate the true time delay of the first path, i.e., Pc
def
= Pr

{
θ̂ = θ, τ̂ = τ1

}
.

The LDPC parity-check matrices with codeword length n = 648 specified in the IEEE 802.11-

2012 standard [20] are adopted for our simulations. Hence, there are four encoder candidates

to form Θ. Different channel scenarios are randomly created by different numbers of channel

paths as well as different SIR values. One thousand Monte Carlo experiments are carried

out to obtain the average performance for each particular simulation set-up.

Figure 3.4 depicts the probability of correct identification with respect to Eb/N0 for dif-

ferent SIR values. When SIR approaches either infinity (the multipath channel becomes the

41

AWGN channel in this case) or 2 dB, the probability of correct identification can reach up

to 100% as Eb/N0 is larger than 7 dB. In other words, our proposed joint blind scheme can

correctly identify the encoder and estimate the true time delay at the same time. Moreover,

it is shown that the performance difference between SIR = ∞ dB and SIR = 2 dB is very

small. On the contrary, when SIR decreases to 0 dB, the probability of correct identification

cannot be any significantly better than Pc = 0% for all encoders no matter how large Eb/N0

is. It is also observed that the lower the code rate of the encoder, the better the detection

performance (similar to the phenomenon presented in our previous chapter [51]). This is

because the lower-rate encoder has more parity-check bits which lead to a more reliable

average LLR.

The exceptions can be found for SIR = 2 or ∞ dB, where the probability of correct

identification of the rate 1/2 encoder becomes smaller than that of the rate 2/3 encoder

when Eb/N0 is larger than 3 dB. This eccentric phenomenon is due to the peak widths of the

average LLRs Γθ′

t as shown in Figure 3.5. Each sub-figure of Figure 3.5 depicts the average

LLR Γθ′

t versus t for θ′ = θ. The number of channel paths is L = 3 and the SIR is set to be

5 dB. For the rate 1/2 encoder, the peak width covers 11 samples within t ∈ [144, 154]; for

the rate 2/3 encoder, the peak width covers 5 samples in the interval t ∈ [165, 169]; for the

rate 3/4 encoder, the peak width covers 4 samples in the interval t ∈ [94, 99]; for the rate

5/6 encoder, the peak width covers only 3 samples in the interval t ∈ [244, 246]. It suggests

that the average LLR of the lower rate encoder has a larger peak width. When the noise

level is high, the more ambiguity (error) would be induced for time-delay estimation by the

larger peak width. Indeed, the time-delay estimate is usually just a sample apart from the

true time delay when this phenomenon is observed during our simulations.

42

0 200 400 600
−0.2

0

0.2

0.4

0.6
(a) R = 1/2

t

A
v

er
ag

e
L

L
R

0 200 400 600
−0.2

0

0.2

0.4

0.6
(b) R = 2/3

t

0 200 400 600
−0.2

0

0.2

0.4

0.6
(c) R = 3/4

t
0 200 400 600

−0.2

0

0.2

0.4

0.6
(d) R = 5/6

t

Figure 3.5: The average LLR Γθ′

t with respect to the sliding window’s starting time point t
for each encoder θ′ = θ.

On the other hand, the peak width of the average LLR is also related to the proper

value of the search step-size for each LDPC encoder, which is a key parameter involved in

our proposed two-stage search scheme. Recall that the peak width of the average LLR is

due to the quasi-cyclic property of the parity-check matrix. The reason that the peak width

decreases as the code rate increases as demonstrated by Figure 3.5 is that the two consecutive

rows of the parity-check matrix for the higher rate encoder are much more different due to

a larger row weight of its parity-check matrix. The search step-size cannot be chosen larger

than the peak width; otherwise, there may be some risk that no time point would be chosen

from the peak area in the first stage so the global maximum of average LLR cannot be

43

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R = 1/2
R = 2/3
R = 3/4
R = 5/6
v0

v1

Eb/N0 (dB)

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

Figure 3.6: The probabilities of correct identification Pc with respect to Eb/N0 for the search
step-size scenarios v0 and v1 when L = 3 (three channel paths) and SIR = 5 dB.

spotted during the second stage.

Figure 3.6 and Figure 3.7 illustrate the probabilities of detection for three different search

step-size scenarios denoted by v0 = [1, 1, 1, 1]T (one-stage search only, namely the conven-

tional sample-by-sample search), v1 = [5, 3, 2, 1]T , and v2 = [10, 6, 4, 2]T . The four elements

of v1, v2, and v0 correspond to the search step-size for the rate 1/2, 2/3, 3/4, and 5/6

encoders, respectively. The lower rate encoder should correspond to a larger search step-size

because it leads to a broader peak width as illustrated by Figure 3.5. One can observe from

Figures 3.6 and 3.7 that the detection performances for the search step-size scenario v1 al-

most stay the same as those for the scenario v0. However, the detection performances for the

44

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/N0 (dB)

R = 1/2
R = 2/3
R = 3/4
R = 5/6
v0

v2

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

Figure 3.7: The probabilities of correct identification Pc with respect to Eb/N0 for the search
step-size scenarios v0 and v2 when L = 3 (three channel paths) and SIR = 5 dB.

search step-size scenario v2 demonstrate obvious degradations compared to the conventional

scenario v0.

Finally, the probabilities of detection are also investigated for two different numbers of

channel paths (L = 3 and L = 5) in Figure 3.8. It is shown that the number of channel

paths poses little impact on the detection performance when the SIR is fixed.

3.2.5 Summary

In this section, we propose an innovative joint scheme for blind LDPC encoder identifica-

tion and blind frame synchronization in a unified framework. The encoder is blindly identified

45

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R = 1/2
R = 2/3
R = 3/4
R = 5/6
L = 3
L = 5

Eb/N0 (dB)

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

Id
en

ti
fi

ca
ti

o
n

Figure 3.8: The probabilities of correct identification Pc with respect to Eb/N0 for L = 3
and L = 5 when SIR = 5 dB. The conventional one-stage sample-by-sample search is used
here.

and the time delay is blindly estimated both by maximizing the average log-likelihood ra-

tio. In order to mitigate the computational complexity of blind frame synchronization, we

propose a new two-stage search algorithm with a search step-size q by taking advantage of

the quasi-cyclic property of the parity-check matrices so that the complexity of our proposed

scheme can be greatly reduced by almost q times. The effectiveness of our proposed new joint

blind scheme is evaluated by the probability of detection performances. Numerous Monte

Carlo simulations are carried out for various SIRs and multipath channel scenarios. Besides,

how to choose the proper search step-sizes is also studied via empirical information.

46

4. FAST LDPC DECODING ALGORITHMS

In this chapter, we will shift our focus from blind identification schemes on LDPC codes to

LDPC decoding techniques. In Chapter 4.1, we propose a new stopping criterion which can

be useful when undecodable blocks are experienced frequently. In Chapter 4.2, we propose

an efficient informed dynamic scheduling (IDS) algorithm for LDPC decoding, which can

provide more freedom in the performance-complexity trade-off compared to existing IDS

algorithms. Both schemes discussed in this chapter are to reduce the number of iterations

during the iterative decoding process. The computational complexities involved in both

schemes are very little compared to the existing algorithms.

4.1 A New Stopping Criterion

The outstanding LDPC decoding performance relying on the conventional belief propa-

gation (BP) algorithms would often induce high computational complexity, especially for

nonbinary LDPC codes. The computational bottleneck lies in the check node processing in

the iterative BP algorithms [15,53]. To combat this complexity problem, the extended min-

sum (EMS) algorithm was proposed lately where the messages of length q were truncated

by choosing the nm largest ones (nm ≪ q) [17,54]. In [55,56], new sophisticated decoding al-

gorithms were proposed to adaptively truncate the message length over iterations to further

reduce the decoding complexity.

In addition to the message length, the decoding complexity of BP algorithms for LDPC

codes also depends on the required iteration number. Usually, a maximum iteration number

47

is preset. The BP algorithms terminate when either the estimated codeword satisfies all

parity checks or the maximum iteration number is reached. This conventional stopping cri-

terion is not efficient since it is observed that for the undecodable blocks, the BP algorithms

always run up to the maximum iteration limit and cannot generate the correct codeword.

Therefore, it would be better to terminate the BP algorithms early so as to avoid the un-

necessary computational time and reduce the extra power consumption when undecodable

blocks are experienced. To deal with this problem, a stopping criterion was proposed before

to decode binary LDPC codes using the variable node reliability for identifying undecodable

codeword blocks in [57]. In [58], the iterative decoding process would be terminated when a

soft-word cycle appears. In [59], an BP algorithm would skip further iterations if the mean

magnitude of the log-likelihood ratios converges. In [60], an error frame is identified for both

binary and nonbinary LDPC codes when the check-sum stays the same value over several

consecutive iterations.

However, the aforementioned previous stopping criteria either require a lot of memory

storage space [58] or involve several parameters which are difficult to optimize systemati-

cally in practice [57, 59]. Moreover, it cannot be justified that undecodable blocks always

demonstrate the constant check-sum patterns. To address these issues, in this chapter, we

propose a robust new stopping criterion for both binary and nonbinary LDPC decoders,

which involves only one parameter and requires little computational burden. Heuristically,

the maximum a posteriori probability (APP) for each variable node would increase when an

BP algorithm is executed in progress across iterations [55]. Consequently, we propose to use

the total a posteriori probability (APP) as the essential metric to check if an BP algorithm

has a tendency to converge to a correct solution. Specifically, we propose a T -tolerance

48

criterion such that the iterative decoding process terminates when the total APP decreases

exactly for T + 1 times in aggregate during the execution of an BP algorithm.

The rest of this section is organized as follows. The LDPC decoding complexity in terms

of iteration number is analyzed in Chapter 4.1.1. Based on this analysis, we devise a new

T -tolerance stopping criterion for BP algorithms in Chapter 4.1.2. Monte Carlo simulation

results are shown in Chapter 4.1.4 to demonstrate the trade-off between the error perfor-

mance and the complexity of our proposed stopping criterion for both binary and nonbinary

LDPC codes.

4.1.1 Undecodable Blocks

To reduce the overall complexity of an BP algorithm for decoding LDPC codes, not

only it is important to lower the computational complexity for each iteration, but also it is

desirable to make the required iteration number as small as possible. Generally speaking,

the lower Eb/N0 is given, the more iterations may be required. In this section, we carry

out Monte Carlo simulations to illustrate how many iterations are actually taken for a given

Eb/N0 when a certain LDPC codeword is transmitted. We take a (147, 108) LDPC code

over GF(64), which is arbitrarily generated using the finite field method according to [61],

for illustration. The maximum iteration number is set to be 50. One thousand Monte Carlo

trials are undertaken for each of four Eb/N0 values. In each trial, the codeword is modulated

by 64-quadrature amplitude modulation (64-QAM) and transmitted over the additive white

Gaussian noise (AWGN) channel. The received signal is decoded using q-ary sum-product

algorithm (QSPA) subject to the maximum iteration number.

49

Table 4.1: Proportions of decodable and undecodable blocks

Eb/N0 (dB) 8 9 10 11

Decodable (correct) 0.168 0.837 0.993 1

Decodable (wrong) 0.017 0.033 0.003 0

Undecodable 0.815 0.130 0.004 0

According to Table 4.1, the estimated codewords can be classified into three groups: (i)

codewords which are correctly restored, (ii) codewords which satisfy the parity checks but are

not the true ones, and (iii) codewords which are undecodable and thus exhaust all possible

iterations but the syndrome still contains nonzero element(s). For the blocks belonging to the

first two aforementioned groups, we say that the blocks are decodable since QSPA succeeds

in generating a valid codeword. It is explicit that for low Eb/N0, undecodable blocks account

for a large portion, while for high Eb/N0 undecodable blocks are rare.

To investigate how many iterations are taken for decodable blocks, we depict the cumu-

lative density function (CDF) of the iteration numbers subject to different Eb/N0 values in

Figure 4.1. One can observe that when Eb/N0 is 9 dB, more than 95% of decodable blocks

need at most 20 iterations for QSPA to converge; when Eb/N0 is enlarged to 11 dB, all

decodable blocks need at most just 5 iterations for QSPA to converge. On the other hand,

the maximum iteration number should be set to 48 when Eb/N0 is 9 dB for all decodable

blocks, and it should be reduced to 33 when Eb/N0 increases to 10 dB.

Since it is hard to estimate a precise upper bound of the required iteration number for

an arbitrary Eb/N0, the maximum iteration number is usually set to be rather large in BP

algorithms. However, the larger the maximum iteration number, the less efficient the BP

algorithm when undecodable blocks are encountered, especially in low Eb/N0 conditions. To

50

0 10 20 30 40
0

0.5

1

Iteration Number

C
D

F 0 10 20 30 40
0

0.5

1

Iteration Number

0 10 20 30
0

0.5

1

Iteration Number

0 1 2 3 4 5
0

0.5

1

Iteration Number

Eb/N0 = 8 dB Eb/N0 = 9 dB

Eb/N0 = 10 dB Eb/N0 = 11 dB

Figure 4.1: The cumulative density functions of the iteration numbers required for decodable
blocks subject to different Eb/N0 values.

tackle this difficulty, in the next section, we will introduce a new stopping criterion for BP

algorithms.

4.1.2 Robust T -Tolerance Stopping Criterion

For undecodable blocks which constitute a great portion of codeword blocks in the low

signal-to-noise ratio (SNR) conditions, no matter how large the maximum iteration number

is chosen, the BP algorithm will always use up all iterations but fail to converge to the correct

codeword. Indeed, the conventional stopping criterion of BP algorithms does not involve any

convergence check during the iterative decoding process and therefore lacks the ability to

51

identify the undecodable blocks. In this section, we propose a novel robust stopping criterion

to monitor the evolution of the total APP such that the BP iterative decoding process can

be terminated at an early stage when dealing with an undecodable block.

4.1.2.1 Total A Posteriori Probability

For BP algorithms in the probability domain, at the end of the tth iteration, the estimated

codeword symbols are obtained as

ĉj = argmax
{

p
(t)
j

}

, j = 1, 2, . . . , n (4.1)

where p
(t)
j is the q×1 APP vector whose elements sum to 1, q is the order of the Galois field,

and n is the codeword length. Refer to [15] for the detailed formulation of the APP vectors.

If an BP algorithm, say QSPA, can converge to the correct codeword, the distribution of APP

vectors pj would concentrate more and more around the jth correct symbol as the iteration

number increases according to [55] since the iterative decoding process can be deemed an

SNR amplifier [62]. On the other hand, if the BP algorithm has difficulty to converge, it

indicates that some estimated symbols either change from iteration to iteration or converge

to the incorrect results. Based on this fact, to distinguish whether the iterative decoder is

progressive or stagnant, we propose to use the measure of total APP, denoted by P (t), as

given by

P (t) def
=

1

n

n∑

j=1

max
{

p
(t)
j

}

. (4.2)

Figure 4.2 depicts the evolution of the total APP P (t) with respect to the iteration number

t when Eb/N0 is fixed at 9 dB for the nonbinary LDPC code (147, 108) over GF(64) using

QSPA. Note that four individual trials drawn from the simulations stated in Chapter 4.1.1

52

5 10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1

Iteration Number

T
o

ta
l

a
 P

o
s
te

r
io

r
i

P
ro

b
ab

il
it

y

Decodable Block a
Decodable Block b
Undecodable Block c
Undecodable Block d

Figure 4.2: The evolution of the total APP P (t) with respect to the iteration number t for
Eb/N0 = 9 dB.

are evinced here as examples: two decodable blocks a and b and two undecodable blocks c

and d. Specifically, both block a and block b are correctly recovered by using six and eighteen

iterations of QSPA, respectively. On the other hand, for both undecodable blocks c and d,

QSPA runs out of fifty iterations but cannot restore any valid codeword.

4.1.2.2 New T -Tolerance Criterion

According to Figure 4.2, the number of the cumulative times that the total APP decreases

from one iteration to next during the LDPC decoding process for undecodable blocks is

usually much larger than that for decodable blocks. Based on this key observation, we

devise a new T -tolerance stopping criterion for BP algorithms where T -tolerance suggests

53

that an BP algorithm can only tolerate at most T times of total APP decreases and will

terminate as long as the number of the cumulate times of such total APP decreases exceeds

T .

In detail, the T -tolerance stopping criterion can be carried out as follows:

(1) Initialization: Set the tolerance time T , and reset a counter C = 0;

(2) At the end of the tth iteration, compute the total APP P (t) according to Eq. (4.2);

(3) Compare P (t) with the previous value P (t−1); if P (t) < P (t−1), a decrease occurs and

C is incremented by 1;

(4) Once C > T , the BP algorithm terminates; otherwise, continue to the next iteration

(t+ 1) and go back to Step (2).

Obviously, our proposed T -tolerance criterion only requires to record two scalars, namely

P (t) and C. The computation of P (t) is also handy since the “max” operation in Eq. (4.2) is

already available when the BP algorithm iteratively estimates the codeword in the probability

domain. Hence, only a simple arithmetic average is required as the additional computational

burden. For the BP algorithms executed in the logarithm domain, the log-likelihood ratios

need to be converted to the APPs (see [55]) to accommodate our proposed new stopping

criterion. Note that our proposed new T -tolerance criterion will be incorporated into the

standard syndrome-check stopping criterion for early termination of BP algorithms. Thus,

the iterative decoding process will terminate when either there are T times of total APP

decreases or the maximum iteration number is reached.

54

4.1.3 Complexity Comparison

The complexity comparison between the BP decoding using our proposed T -tolerance

stopping criterion and using the conventional syndrome check stopping rule is investigated

as follows. As the T -tolerance stopping criterion includes the syndrome check process, the

computational complexity of the T -tolerance stopping criterion actually increases for each

iteration of the BP decoding process. The extra computational complexity arises from calcu-

lating the total APP expressed by Eq. (4.2), which is O(qn). If the messages are represented

by log-likelihood ratios (LLRs) rather than probabilities, then a conversion from LLRs to

probabilities is needed, the complexity of which is also O(qn). The extra memory require-

ment for the T -tolerance stopping criterion is negligible, only two scalars, the total APP

and the counter, need to be stored. The complexity of comparison between P (t) and P (t−1)

can also be neglected. Note that the computational complexity of the check-node processing

in the BP decoding algorithms is O(q log q Nedge), where Nedge is the total number of edges

(non-zero entries of the parity-check matrix). Thus, the extra computational complexity of

the T -tolerance stopping criterion is rather small compared to the that of the conventional

BP decoding algorithm, which is on the order of n
log q Nedge

of the conventional BP decoding

algorithm.

On the other hand, the number of iterations used by the T -tolerance stopping criterion

is no more than that used by the conventional BP decoding algorithm. When undecodable

blocks are frequently encountered, it is shown by simulations in the next section that the

number of iterations can be greatly reduced by adopting the T -tolerance stopping criterion

compared to that of the conventional BP decoding algorithm. Therefore, it is favorable

55

to adopt the T -tolerance stopping criterion when undecodable blocks are experienced very

often.

4.1.4 Simulation

The performance of a popular BP algorithm (QSPA) using our proposed new T -tolerance

criterion is investigated for both binary and nonbinary LDPC codes via numerous Monte

Carlo simulations. A binary (648, 324) LDPC code from the IEEE 802.11-2012 standard [20]

and a nonbinary (147, 108) LDPC code over GF(64) generated according to [61] are used

for illustration. The maximum iteration number is defaulted to 50. The binary (648, 324)

LDPC codewords are modulated by binary phase-shift keying (BPSK) and the nonbinary

(147, 108) LDPC codewords are modulated by 64-QAM. All codewords are transmitted over

the AWGN channel.

Figure 4.3 depicts the frame error rate (FER) performance of binary (648, 324) LDPC

code versus Eb/N0 for different T values compared to the performance of the conventional

sum-product algorithm (labeled as “SPA” in the figure). It can be observed that the larger

the value of T , the better the FER performance. When T is too small, such as T = 0, 1,

the T -tolerance criterion is more likely to terminate the algorithm too early before the

decodable block can be recovered. However, the FER performance of SPA using the T -

tolerance criterion approaches the performance of the conventional scheme very quickly as

T increases. It is shown that the FER performance degradation due to the 5-tolerance

criterion (T = 5) is almost within 0.1 dB compared to the conventional SPA in the low

Eb/N0 conditions.

56

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10−3

10−2

10
−1

10
0

F
E

R

T = 0
T = 1
T = 5
SPA

Eb/N0 (dB)

Figure 4.3: The frame error rate of the binary LDPC code (648, 324) versus Eb/N0 for
different T values.

Since the proposed stopping criterion is to reduce the iteration numbers (thus reducing

the complexity), Figure 4.4 is drawn to show the average iteration number (AIN) versus

Eb/N0 for different T values compared to that of the conventional SPA. It can be observed

that the smaller the value of T , the less the value of AIN. The AIN gap between the SPA

using the 5-tolerance criterion and the conventional SPA scheme is large in the low Eb/N0

scenarios.

Figure 4.5 and Figure 4.6 also depict the FER performances and the AINs of nonbinary

(147, 108) LDPC code versus Eb/N0 for different T values compared to the performances

of the conventional q-ary sum-product algorithm (labeled as “QSPA” in the figures), re-

57

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

A
v

er
ag

e
It

er
at

io
n

 N
u

m
b

er
T = 0
T = 1
T = 5
SPA

Eb/N0 (dB)

Figure 4.4: The average iteration number of the binary LDPC code (648, 324) with respect
to Eb/N0 for different T values.

spectively. Compared to the results for the binary code in Figures 4.3 and 4.4, the FER

performances of the nonbinary code for T = 0, 1 are much closer to the performance of the

conventional scheme, and the AIN gap between the QSPA using the T -tolerance criterion

and the conventional scheme is yet larger in the low Eb/N0 scenarios.

The FER-complexity trade-off can simply be maneuvered by adjusting T . Our simulation

results suggest that it is favorable to adopt the T -tolerance criterion in the low Eb/N0

situations where undecodable blocks are often found.

58

Eb/N0 (dB)
8 8.5 9 9.5 10 10.5 11

10
−4

10
−3

10
−2

10
−1

10
0

F
E

R

T = 0
T = 1
T = 5
QSPA

Figure 4.5: The frame error rate of the nonbinary LDPC code (147, 108) over GF(64) versus
Eb/N0 for different T values.

4.1.5 Summary

In this section, we propose a novel T -tolerance stopping criterion for decoding LDPC

codes. It allows the total a posteriori probability to decrease iteration by iteration at most

T times when a message passing algorithm is executed. Monte Carlo simulation results

demonstrate that the 5-tolerance criterion (T = 5) can greatly reduce the average iteration

number (complexity) in the low Eb/N0 conditions while maintaining the frame-error-rate

performance degradation within 0.1 dB. It is desirable to adopt our proposed new stopping

criterion when undecodable blocks are frequently encountered during the LDPC decoding

process.

59

8 8.5 9 9.5 10 10.5 11
0

5

10

15

20

25

30

35

40

45

Eb/N0 (dB)

A
v

er
ag

e
It

er
at

io
n

 N
u

m
b

er
T = 0
T = 1
T = 5
QSPA

Figure 4.6: The average iteration number of the nonbinary LDPC code (147, 108) over
GF(64) with respect to Eb/N0 for different T values.

4.2 An Efficient APP-based Dynamic Scheduling

The LDPC decoding procedure is usually carried out using the belief-propagation (BP)

algorithms as discussed in Chapter 1.2. In practice, an LDPC code is of finite length and

the Tanner graph representation of its parity-check matrix (PCM) inevitably has cycles [2].

As a result, the BP algorithm for LDPC decoding is an iterative process. The conventional

BP decoding is carried out in a flooding fashion. That is, in one iteration, all the variable

(check) nodes are updated in parallel, then all the check (variable) nodes are updated in

parallel. On the contrary, serial BP decoding schemes can be carried out by sequentially

60

updating the variable nodes [63] or the check nodes [64]. The serial BP decoding in which

the check nodes are updated in a fixed order is also called layered BP (LBP) decoding [65].

The advantage of the serial scheduling is that the useful extrinsic information can be used

in the same iteration. Compared to the flooding BP (FBP) decoding, it is demonstrated by

analysis and simulation that fixed-order serial scheduling schemes can reduce the required

number of iterations by half and thus converge twice faster [65,66]. To make fair comparison

between different LDPC decoding scheduling algorithms, we need to define the meaning

of iterations and sub-iterations. For FBP decoding, one iteration consists of updating all

variable and check nodes once, and there is no sub-iterations. For check-node (variable-node)

based serial scheduling algorithms, one iteration is counted when the number of check-node

(variable-node) updates is equal to the total number of check (variable) nodes, and each

check-node (variable-node) update is called a sub-iteration. Note that in serial scheduling

schemes, there is no restriction that every check (variable) node needs to be updated and

updated once in each iteration. Some check (variable) nodes may be updated as many times

and some other check (variable) nodes may not even have opportunities to be updated.

An example for illustrating the importance of scheduling is given by Figure 4.7 which

is drawn from [2]. It can be seen that three erasures are recovered correctly by the FBP

decoding using three iterations. One might ask how many iterations are required for a

serial scheduling decoding algorithm to correct these three erasures. The answer is only one

iteration. The order of the erasure being corrected by the FBP decoding algorithm actually

suggests the sequential order for the serial scheduling decoding. Specifically, we first update

the bottom check node (same as iteration 1), then update the top check node (same as

iteration 2), and finally update the middle check node (same as iteration 3).

61

y�̂

0

0

?

0

1

?

?

0

0

?

0

1

?

?

variable nodes to check nodes

y�̂

0

0

?

0

1

?

?

0

0

?

0

1

?

1

variable nodes to check nodes

(a) iteration 0 (b) iteration 1

y�̂

0

0

?

0

1

?

?

0

0

?

0

1

1

1

variable nodes to check nodes

y�̂

0

0

?

0

1

?

?

0

0

1

0

1

1

1

variable nodes to check nodes

(c) iteration 2 (d) iteration 3

Figure 4.7: The illustration of the flooding BP decoding to correct erasures using three
iterations [2]. The channel is binary erasure channel (BEC). The received signal is denoted
by y, and the estimated codeword is denoted by ĉ. The solid line represents messages of 0
or 1, and the dashed line represents the messages of erasure after each iteration.

The optimal scheduling order for serial scheduling soon becomes intricate when we con-

sider LDPC codes with codeword length over thousands and other channels, such as additive

white Gaussian noise (AWGN) channels. The number of possible serial scheduling exponen-

62

tially increases with respect to the number of check (variable) nodes or even the number of

edges (the non-zero entries in the corresponding PCM). The optimal serial scheduling algo-

rithm for LDPC decoding is not discovered yet. In fact, it is still an open question whether

such an optimal serial scheduling algorithm exists.

In the rest of this section, we first reviews several existing state-of-art serial scheduling

algorithm in Chapter 4.2.1 which also includes a variable-node-wise RBP (VNWRBP). In

Chapter 4.2.2, we propose an efficient serial scheduling algorithm, called a posteriori prob-

ability (APP) based residual BP (APPRBP). The simulation results are shown in Chap-

ter 4.2.3 to demonstrate the effectiveness of our proposed APPRBP algorithm.

4.2.1 Existing Serial Scheduling Algorithms

Serial scheduling LDPC decoding algorithms appeared in early 2000s soon after the re-

naissance of LDPC codes [64, 67]. In [63], a serial BP decoding scheme was proposed to

update the variable nodes sequentially. In [64, 65], it was suggested to serially update the

check nodes. In these serial scheduling algorithms, the variable (check) nodes updating order

is fixed for each iteration. It was demonstrated in these algorithms that the serial scheduling

for LDPC decoding can converge twice faster compared to the conventional FBP decoding

algorithm [65, 66]. The serial scheduling can also improve the bit-error-rate (BER) perfor-

mance when the maximum number of iteration, denoted by Niter, is limited. For the rest of

this chapter, we choose the LBP algorithm [65] as the representative for these fixed-order

serial algorithms.

Later, check-node based informed dynamic scheduling (IDS) algorithms, namely residual

BP (RBP) and node-wise RBP (NWRBP), were proposed in [68, 69] in which the updating

63

order of check nodes is determined by the maximum residual. The residual is defined by

the absolute difference between the message before and after the update. Consequently,

the check nodes updating order is no long fixed but varies for each iteration in the IDS

algorithms. The simulation results in [68, 69] suggested that the NWRBP algorithm not

only converges faster than the LBP algorithm but also provides superior BER performance

compared to the FBP algorithm. The reduction in number of iterations comes from the

greedy nature of the NWRBP algorithm by updating the check node having the maximum

residual. The reason for BER performance enhancement is that the NWRBP algorithm has

capabilities to break the trapping sets when serially updating the check nodes.

Several other IDS algorithms were then proposed. In [70], an efficient dynamic schedule for

layered LBP decoding of LDPC codes was presented. Note that the check nodes connecting to

a variable node with maximum relative message residual are chosen to be updated. In [71], an

IDS strategy, called informed variable-to-check RBP (IVCRBP) was proposed which utilizes

not only the instability of the variable node (the hard decisions before and after one update

are different) but also the residual of the variable-to-check message to locate the message

to be updated first. In [72], a new dynamic selection strategy was proposed by adding the

unsatisfied syndrome checks into consideration. An oscillation processing method was also

proposed in [72] to suppress the oscillating behaviors of variable nodes.

One common feature of the aforementioned IDS algorithms is that after each sub-iteration,

the stopping rule will be carried out. Note than the conventional stopping rule, namely the

syndrome check, is not computationally free and would become a burden if carried out in

such high frequency.

64

There are also some other serial scheduling algorithms in the existing literatures. Prob-

abilistic scheduling based on the girth or reliability were proposed in [73–75], in which the

variable or check nodes will be updated in certain probabilities determined by their cor-

responding girths or reliabilities. A maximum mutual information increase (M2I2)-based

algorithm was proposed recently to find the fixed edge-based order [76]. The edge-based

updating order is determined by running the protograph-based extrinsic information trans-

fer (PEXIT) algorithm and finding the maximum mutual information increase. High order

prediction was also proposed in [76] to determine the update sequence in more than one

step. The edge updating order for an LDPC ensemble can be predetermined in the M2I2

algorithm. Thus the complexity is actually the same as the LBP algorithm. The simulation

results in [76] demonstrated that the M2I2 algorithm is superior than the LBP algorithm in

terms of convergence and the BER performance. However, the authors did not compare the

M2I2 algorithm to the NWRBP algorithm in [76].

To facilitate the illustration of our proposed new scheduling algorithm in Chapter 4.2.2,

here we present the variable-node-wise RBP (VNWRBP) algorithm which is the counterpart

of the NWRBP algorithm in [69] but not presented in the existing literatures. Denote the

message (extrinsic information in log-likelihood ratio) from the jth variable node to the ith

check node before and after the update by αi,j and α′
i,j. Then the residual for each edge can

be expressed by

ξi,j = |α′
i,j − αi,j|. (4.3)

Consequently, each variable node j can be assigned a metric ξ∗j which is the maximum

residual of ξi,j among all check nodes connected to the variable node j. Denote the set of

65

Input: The initial LLR values µj and the corresponding PCM H
Output: The estimated codeword ĉ
1: Initialize αi,j = µj, βi,j = 0, and ξi,j = |µj|
2: for k = 1 to n do
3: Find j∗ according to Eq. (4.4) and (4.5)
4: for every check node i ∈ Cj∗ do
5: Generate and propagate αi,j∗

6: Reset ξ∗j∗ = 0
7: for every variable node j ∈ Vi\j∗ do
8: Generate and propagate βi,j

9: Update ξi,j

10: Generate ĉ and carry out the stopping criterion
11: if the stopping criterion is not satisfied then
12: Go back to Line 2
13: else
14: return ĉ

Figure 4.8: The VNWRBP algorithm.

neighboring check nodes of a variable node j by Cj and the set of neighboring variable nodes

of a check node i by Vi. The metric ξ∗j can then be expressed by

ξ∗j = max
i∈Cj

{
ξi,j
}
. (4.4)

A variable node j∗ will be picked up for update if

j∗ = argmax
j

{
ξ∗j
}
, j ∈ {1, 2, . . . , n}. (4.5)

where n is the total number of variable nodes, i.e., the codeword length. According to

Eq. (4.4) and (4.5), the variable node will be updated if it has the maximum residual ξi,j

among all (i, j) pairs.

Denote the initial log-likelihood ratio (LLR) for the variable node j by µj . The correspond-

ing PCM is denoted by H with dimension m×n. Denote the message (extrinsic information

in LLR) from the ith check node to the jth variable node by βi,j. The pseudocode of the

VNWRBP algorithm can be illustrated in Figure 4.8.

66

Note that the stopping criterion is carried out after updating variable nodes n times in the

VNWRBP algorithm. Recall that the in existing IDS algorithms, the stopping criterion is

triggered after each variable (check) node update. Thus, for the same number of iterations,

the number of executing the stopping criterion in the VNWRBP algorithm is the same as

that of the FBP algorithm, but the number of executing the stopping criterion in the existing

IDS algorithms is around m times (check-node based) or n times more (variable node based).

Now we are ready to propose a new IDS algorithm for LDPC decoding in Chapter 4.2.2.

4.2.2 The APPRBP Algorithm

Although the IDS algorithms, for instance, the NWRBP scheduling algorithm, can further

reduce the number of iterations compared to that of the LBP scheduling algorithm, their

additional computational complexities cannot be neglected, which arise from the calculation

of the residuals and the often checking operations on the stopping criterion. Since the check-

node processing is more complex than the variable-node processing in the LDPC iterative

decoding algorithms [4], the check-node based RBP scheduling algorithms usually involve

higher computational complexity than the variable-node based RBP scheduling algorithms.

To address the aforementioned drawbacks inherent in the existing IDS algorithms, in this

section, we devise a novel efficient variable-node based IDS algorithm called the “a posteriori

probability RBP (APPRBP) scheduling algorithm”. A threshold parameter δ is introduced

in the APPRBP scheduling algorithm to determine if a variable node needs to be updated

or can remain as it is. The BER performance and the number of iterations (complexity) of

the APPRBP scheduling algorithm can thus be maneuvered by adjusting δ.

67

Denote the LLR of APP for the variable node j before and after the update by ρj and ρ′j ,

respectively. The APP residual for the variable node j, denoted by ξj, can thus be expressed

by

ξj
def
=
∣
∣ρ′j − ρj

∣
∣. (4.6)

The pseudocode of our proposed APPRBP scheduling algorithm is illustrated in Fig-

ure 4.9. The threshold parameter δ is included as one input. The number of iterations

executed by the APPRBP scheduling algorithm is recorded as the output Nused. In Line 1,

a counter C is initialized to 0, which is used to record the number of variable-node updates.

In Line 2, reset a queue Q to be empty. In Line 4, the APP residuals ξj are duplicated to

ηj , ∀j so that the following manipulations on ηj will not change ξj. In Line 5, ηj is reset

to 0 for the variable nodes whose indices j are in the queue Q. By doing this, it can avoid

the possibility that some variable nodes are updated more often than others. In Line 6, the

variable node j∗ is chosen to be updated, which has the maximum of ηj among all variable

nodes. In Line 7, the threshold δ is compared with the current maximum APP residual ηj∗ .

If ηj∗ < δ, then the for-loop indexed by k will break as shown by Line 8. The intuition

behind this threshold-controlled termination is as follows. As the index k of the for-loop

increments, ηj∗ becomes smaller and smaller due to the confinement of the queue Q in Line

5. Thus, at some point, ηj∗ is very small so that there is no significant change even after the

update of variable node j∗. Hence, no further increment in k is required and the for-loop

terminates thereby.

On the other hand, if ξj∗ > δ, we place the index j∗ into the queue Q as stated by Line

9. Lines 10 to 13 are the same as Lines 4, 5, 7, and 8 of the VNWRBP scheduling algorithm

68

Input: The initial LLR values µj, ∀j, the corresponding PCM H, and the threshold param-
eter δ

Output: The estimated codeword ĉ, and the number of iterations executed Nused

1: Initialize αi,j = µj, βi,j = 0, ξj = |µj|, for all i, j, and a counter C = 0
2: Reset an empty queue Q
3: for k = 1 to n do
4: Duplicate ξj to ηj , for j = 1, 2, . . . , n
5: Set ηj = 0, for j ∈ Q
6: Find j∗ = argmax

j
{ηj}, j ∈ {1, 2, . . . , n}

7: if ηj∗ < δ then
8: break
9: Append j∗ into Q
10: for every check node i ∈ Cj∗ do
11: Generate and propagate αi,j∗ (see [69] for details)
12: for every variable node j ∈ Vi\j∗ do
13: Generate and propagate βi,j (see [69] for details)
14: Update ξj according to Eq. (4.6)

15: Increment the counter by C = C + k
16: Generate ĉ using the APP-based hard-decision and then check the stopping criterion

according to [4]
17: if the stopping criterion is not satisfied then
18: Go back to Line 2
19: else
20: return ĉ and Nused = C/n

Figure 4.9: The APPRBP scheduling algorithm.

described in Figure 4.8. In Line 14, ξj is updated according to Eq. (4.6).

After the k-for-loop finishes (it runs through k = n or terminates for some k = k0 at

Line 8), in Line 15, the counter C will be incremented by k, which indicates the number of

variable-node updates. In Line 16, the hard decision on the LLR of APP will be performed

to generate the estimated codeword ĉ and then a stopping criterion is checked if ĉ is a

legitimate (hopefully correct) codeword [4]. If the stopping criterion is not satisfied, the

APPRBP scheduling algorithm will go back to Line 2 where the queue Q will be reset to

empty again. Otherwise, the estimated codeword ĉ and the number of iterations Nused = C/n

will be returned as outputs in Line 20. Note that the number of variable-node updates C

69

is normalized by the total number of variable nodes n to obtain Nused according to the

definition of iteration stated in Section 4.2.

The key merits of our proposed new APPRBP scheduling algorithm can be summarized as

follows. The APP residual is calculated for each variable node rather than each edge in our

scheme. Thus, the number of residuals is greatly reduced and the computational complexity

for finding the maximum residual is reduced thereby. The calculation of the APP residual

ξj is straightforward, which is the absolute difference between the messages from the check

node i to the variable node j before and after the update, i.e.,
∣
∣βi,j − β ′

i,j

∣
∣. This calculation

is valid for there is no cycle of length 4 in the corresponding Tanner graph of the PCM H,

which is usually the case when an LDPC code is constructed [77].

It can be perceived that the APP residual calculation in the APPRBP scheduling algo-

rithm involves the least computational complexity over all IDS algorithms. The threshold δ

can also be adjusted to further reduce the number of iterations and thus speed up the con-

vergence. Note that when the threshold δ is set to 0, the condition stated by Line 7 in the

APPRBP scheduling algorithm will never be true. An appropriate value of δ which leads to

remarkable reduction in the number of iterations will be pursued via computer simulations

in the next section.

4.2.3 Simulation

Computer simulations are carried out to demonstrate the effectiveness of our proposed

APPRBP algorithm described in Chapter 4.2.2. The performances of the conventional FBP

algorithm descried in Chapter 1.2, the LBP algorithm [65], and the NWRBP algorithm [69]

are also investigated for comparison. Since the VNWRBP algorithm (variable-node based)

70

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Eb/N0 (dB)

B
E

R
FBP
LBP
NWRBP
APPRBP, δ = 0

APPRBP, δ = 0.1

APPRBP, δ = 0.2

10
−1

10
−2

10
−3

10
−4

10
−5

Figure 4.10: The BER performances of the APPRBP algorithm using different threshold
δ. The BER performances of the FBP algorithm, the LBP algorithm, and the NWRBP
algorithm are also depicted for comparison.

is the counterpart of the NWRBP algorithm (check-node based), these two algorithms have

almost the same performance according to our simulations. Thus, for clarity of illustration,

the performance of the VNWRBP algorithm is not shown in the simulation results. The

LDPC code defined in the IEEE 802.11 standard [20] with codeword length 1944 and code

rate 1/2 is taken for the simulations. The maximum iteration number Niter is set to 50 for

all examined scheduling algorithms.

Figure 4.10 depicts the BER performances of the APPRBP algorithm using different

threshold δ. When δ = 0 (the condition in Line 6 in the APPRBP algorithm described in

71

Figure 4.9 will never be satisfied and Line 7 will never be carried out), the BER performance

of the APPRBP algorithm is almost the same as that of the NWRBP algorithm. When

δ = 0.1, the BER performance of the APPRBP algorithm is very close to that of the LBP

algorithm, When δ = 0.2, the BER performance of the APPRBP algorithm is a little worse

than that of the FBP algorithm. It is clear that the bigger the threshold δ, the worse the

BER performance of the APPRBP algorithm. The reason is that when δ is larger, the

condition in Line 6 will be more likely satisfied. Therefore, the APPRBP may be terminated

before converging to the correct codeword for large δ. However, it is worth mentioning that

the BER degradation is not too much (within 0.05 dB) when δ is increased from 0 to 0.1.

Figure 4.11 illustrates the average iteration numbers (AIN) of the APPRBP algorithm

using different threshold δ. When δ = 0, the AIN curve of the APPRBP algorithm is

between that of the LBP algorithm and the NWRBP algorithm. When δ = 0.1, the AIN

curve of the APPRBP algorithm is below that of the NWRBP algorithm in the low Eb/N0

region (Eb/N0 < 1.4 dB). When δ = 0.2, the AIN of the APPRBP is further reduced for

Eb/N0 < 0.4 dB. On the other hand, when Eb/N0 > 1.4 dB, the AINs of the APPRBP

using δ = 0.1 and δ = 0.2 are almost the same as that of the NWRBP algorithm. When

Eb/N0 = 1 dB, the APPRBP using δ = 0.1 reduces the AIN of the NWRBP by almost half.

This remarkable AIN reduction phenomenon is not observed in the existing advanced IDS

algorithms, considering that the BER performance of the APPRBP is almost the same as

that of the LBP algorithm and is very close to that of the NWRBP.

According to Figure 4.10 and 4.11, there is apparently more freedom in the APPRBP

algorithm to leverage the BER performance and computational complexity (indicated by

the AIN) trade-off by adjusting threshold δ.

72

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

5

10

15

20

25

30

A
v

er
ag

e
It

er
at

io
n

 N
u

m
b

er
s

FBP
LBP
NWRBP
APPRBP, δ = 0
APPRBP, δ = 0.1
APPRBP, δ = 0.2

Eb/N0 (dB)

Figure 4.11: The AIN of the APPRBP algorithm using different threshold δ. The AIN
performances of the FBP algorithm, the LBP algorithm, and the NWRBP algorithm are
also depicted for comparison.

4.2.4 Summary

In this section, a new efficient informed dynamic scheduling (IDS) algorithm is proposed

for LDPC (low-density parity-check) decoders, called a posteriori probability residual belief

propagation (APPRBP) scheduling algorithm. A threshold parameter is incorporated in our

proposed algorithm to maneuver the performance-complexity trade-off. The computational

complexity burden involved in the residual calculation of the proposed APPRBP scheduling

algorithm is reduced compared to those in other existing IDS algorithms. The remarkable

complexity reduction in terms of the average iteration numbers shown by the simulation

73

results demonstrates that our proposed APPRBP scheduling algorithm is capable of provid-

ing excellent flexibility for maneuvering the performance-complexity trade-off compared to

existing scheduling schemes for LDPC decoding.

74

5. FAST ITERATIVE DECODING THRESHOLD ESTIMATION

Low-density parity-check convolutional codes (LDPC-CCs), also called spatially-coupled

codes, have drawn a lot of research interest in recent years [13, 78]. One common way

to construct LDPC-CCs is based on protographs [79, 80]. LDPC-CCs can be of infinite

length [13] or be terminated [14]. For terminated LDPC-CCs, a significant observation is

the threshold saturation phenomenon that makes the iterative decoding threshold of LDPC-

CCs asymptotically approach the maximum a posteriori (MAP) decoding threshold [14,80].

Recently proposed window decoding techniques [81, 82] also made LDPC-CCs favorable in

practical applications subject to stringent memory and latency requirements.

Given a channel, the iterative decoding threshold (IDT) is one of the key parameters

associated with an LDPC code ensemble and related to the belief-propagation (BP) algo-

rithms [1]. For instance, let us consider the additive white Gaussian noise (AWGN) channel

where the link quality can be expressed by the signal-energy-per-bit-to-noise-power-spectral-

density ratio, denoted by Eb/N0. For some LDPC-CC ensemble, if Eb/N0 is greater than

the corresponding IDT, then reliable communications can be achieved using BP decoding

algorithms as the codeword length approaches infinity. On the other hand, if Eb/N0 is lower

than the IDT, no matter how many iterations the BP decoding algorithms take, the bit error

probability is bounded above zero (the error probability can never be zero). Thus, how good

an LDPC code ensemble is can be evaluated by examining the gap between its IDT and the

Shannon limit, and there exists ceaseless effort for researchers to design good LDPC codes

with IDTs as close to the Shannon limit as possible.

75

One of the IDT calculation techniques is density evolution (DE) (see [83]), which tracks

the evolution of the probability densities during the BP decoding process. For a given

channel, the IDT is obtained when the bit error probability approaches zero. To avoid the

potential complexity of calculating the probability densities in DE, an alternative to compute

the IDT is utilizing the extrinsic information transfer (EXIT) chart (see [8, 84]), by which

one can investigate the mutual information (MI) between the extrinsic information at the

variable (check) nodes and the transmitted bits/symbols. The IDT is found from the EXIT

chart when the MI curve for check nodes partially overlaps with the MI curve for variable

nodes. Recently, a protograph-based EXIT (PEXIT) analysis was proposed for protograph-

based LDPC codes [85], which calculated the MI for each edge (each non-zero entry of the

protograph base matrix), and could be capable of dealing with protograph base matrices of

multi-edge type, punctured type, etc.

While the IDT calculation for conventional LDPC block code ensembles can be carried out

given the degree distribution pair [84], averaging over degree distributions cannot be directly

applied to LDPC-CCs due to the spatially-coupled structure [14]. Instead, to determine

the IDT for given LDPC-CCs using either DE or EXIT analysis, the calculation has to be

performed for each individual variable and check node. As a result, it is inevitable to go

through the BP iteration process for determining the IDTs for LDPC-CCs. For LDPC-CCs

with large termination length L, given the AWGN channel, it can be time-consuming to

estimate the IDT, denoted by η, due to the exorbitant number of decoding iterations and

high storage memory requirement.

For the rest of this chapter, the IDT actually means “the IDT for the AWGN chan-

nel”. For simplicity, the AWGN channel is omitted in the IDT expression. To mitigate

76

the computational complexity involved in the calculation of the IDT for protograph-based

LDPC-CCs [1], in this chapter, we propose a novel PEXIT-fast algorithm. Based on the fact

that the termination effect propagates from both ends to the center of the Tanner graph for

LDPC-CCs, we propose to monitor the MI of the a posteriori probability for the first variable

node. If this MI value can approach one, the investigated (Eb/N0) value is then an upper

bound of the IDT; on the other hand, if this MI value converges to a value less than one, the

evaluated (Eb/N0) value is instead a lower bound of the IDT. It is thus unnecessary to get

through the whole evolution process and the corresponding computational complexity can

be greatly reduced. We also develop the asymptotic analysis when the termination length

L of an LDPC-CC goes to infinity. This leads to an efficient way to determine the IDTs of

LDPC-CCs for an arbitrarily large L, which includes the case of L → ∞.

5.1 Preliminaries

In this section, we first provide a brief introduction on LDPC-CCs constructed by pro-

tographs and then establish the basics of the PEXIT analysis.

5.1.1 LDPC Convolutional Codes (LDPC-CCs)

A protograph-based LDPC-CC is constructed from a protograph. For simplicity of illus-

tration, in this chapter, we assume that there are no multiple edges between any two nodes

in a protograph. Besides, we only consider terminated LDPC-CCs with termination length

L; however, the asymptotic analysis of L will also be addressed. A terminated LDPC-CC

77

can be derived upon a base matrix, denoted by B[0,L−1], which can be expressed as

B[0, L−1]
def
=

L
︷ ︸︸ ︷

B0

B1 B0

... B1
. . .

Bms

...
. . . B0

Bms

. . . B1

. . .
...

Bms

, (5.1)

where ms is called the syndrome former memory, and the sub-matrices Bµ, µ = 0, 1, . . . , ms,

have dimension b× c, b ≤ c, in which all entries are equal to one [81].

We call B[0,L−1] a (J,K, L) base matrix if B[0,L−1] has exactly J nonzero entries in each col-

umn and K nonzero entries in each row (except that the top and bottom rows of B[0,L−1] have

less weights due to the termination effect of the corresponding protograph). A (J,K, L,M)

LDPC-CC can then be constructed from B[0,L−1] by changing every nonzero entry in B[0,L−1]

into an arbitrary permutation matrix with dimension M (M is also called the graph lifting

factor). All possible permutation combinations consist of the (J,K, L,M) LDPC-CC ensem-

ble. Generally speaking, the code rate of the protograph-based LDPC-CC can be determined

by its (J,K, L) base matrix and has nothing to do with M .

It is known that the IDT of an LDPC-CC ensemble can be improved (get closer to the

Shannon limit) by increasing the termination length L. Meanwhile, the rate loss incurred

by termination is mitigated to 0 when L goes to infinity. When determining the IDT of

an protograph-based LDPC-CC, it is assumed that the graph lifting factor M approaches

78

infinity. How to use the PEXIT analysis to determine the IDTs for LDPC-CCs with finite

L is discussed as follows.

5.1.2 PEXIT Analysis

In the EXIT analysis for the AWGN channel, by modeling the extrinsic information

propagated over each edge connecting a check node and a variable node as a Gaussian

variable with mean σ2/2 and variance σ2, one can express the MI between the extrinsic

information and the transmitted bits as (see [8])

J (σ) = 1−
∫ ∞

−∞

exp
{

− (y−σ2/2)2

2σ2

}

√
2πσ

log2
(
1 + e−y

)
dy. (5.2)

The curve-fitting functions are given in [84] to calculate J (σ) and its inverse J −1(σ) effi-

ciently.

The EXIT analysis is usually implemented by averaging the degree distributions from the

edge perspective [84]. Thus, in each iteration of the EXIT analysis, there is only one MI

value between the extrinsic messages from variable (check) nodes to check (variable) nodes

and the transmitted random bits. However, to deal with the protograph-based LDPC codes

which involve base matrices of multi-edge type, punctured type, etc., the EXIT analysis is

extended to the PEXIT analysis which is carried out for each edge [85]. Apparently, the

downside of the PEXIT analysis is that it consumes more storage memory and leads to

higher computational complexity since the MI for each edge has to be calculated and stored

during the iterative BP process.

Nevertheless, due to the spatially-coupled structure imposed by an LDPC-CC, its iterative

decoding threshold can not be evaluated anymore by taking average of the variable/check-

79

node degree distributions from the edge perspective. Instead, the EXIT analysis has to be

carried out for each edge exactly as the PEXIT analysis does. A protograph-based LDPC-

CC’s IDT can be determined by running the PEXIT algorithm on its (J,K, L) protograph

base matrix. Here, to simplify the discussion, it is assumed that the (J,K, L) base matrix

has the form given by Eq. (5.1).

In the lth iteration of the PEXIT algorithm, denote the mutual information between the

extrinsic information from the jth variable node to the ith check node and the coded bit cj

by x
(l)
i,j , the mutual information between the extrinsic information from the ith check node to

the jth variable node and the coded bit cj by y
(l)
i,j , and the mutual information between the

LLR (log-likelihood ratio) of APP (a posteriori probability) and cj by z
(l)
j . The details of

the PEXIT algorithm for determining the IDT of an protograph-based LDPC-CC, given its

(J,K, L) base matrix, can be described as follows.

Input: Eb/N0, a (J,K, L) base matrix with dimension m× n.

Step 1: Initialize x
(l)
i,j = 0, y

(l)
i,j = 0 for all edges (i, j), and z

(l)
j = 0 for all j, i ∈

{1, 2, . . . , m}, j ∈ {1, 2, . . . , n}. Set the maximum iteration number Niter, and the iteration

number is reset to l = 0. Calculate the initial variance of the channel output to the decoder,

denoted by σ2
ch, as

σ2
ch = 8R

(
Eb

N0

)

, (5.3)

where R
def
= 1−m/n is the code rate of the LDPC-CC having the (J,K, L) base matrix.

Step 2: Increment l by 1. Update x
(l)
i,j for each edge at variable nodes:

x
(l)
i,j = J

√
√
√
√

∑

k∈Cj\i

[

J −1
(
y
(l−1)
k,j

)]2

+ σ2
ch

 , (5.4)

80

where Cj is the set of the neighboring check nodes of the jth variable node, and Cj\i excludes

the ith check node from Cj.

Step 3: Update y
(l)
i,j for each edge at check nodes:

y
(l)
i,j = 1−J

√
∑

k∈Vi\j

[

J −1
(
1− x

(l)
i,k

)]2

 , (5.5)

where Vi is the set of the neighboring variable nodes of the ith check node, and Vi\j excludes

the jth variable node from Vi.

Step 4: Update z
(l)
j for all variable nodes:

z
(l)
j = J

√
∑

k∈Cj

[

J −1
(
y
(l)
k,j

)]2

+ σ2
ch

 . (5.6)

Step 5: If l < Niter and there is any j such that z
(l)
j < 1, go back to Step 2. If z

(l)
j = 1, ∀j,

terminate the PEXIT algorithm and declare “The input Eb/N0 is larger than the IDT. Thus,

an upper bound of IDT, η′ = Eb/N0, is found.” Otherwise, all Niter iterations are used up

but there is some j such that z
(l)
j < 1; this indicates “The input Eb/N0 is lower than the

IDT and a lower bound of IDT, η′′ = Eb/N0, is found instead.”

Run the PEXIT algorithm above in a search routine for a sequence of Eb/N0 values.

Then one can find a closest adjacent pair of Eb/N0 values (η
′′, η′) in between the IDT η lies,

i.e., η ∈ [η′′, η′]. For a given accuracy requirement θ, if the difference between η′′ and η′

is smaller than θ, i.e., η′ − η′′ < θ, we assign η′ as the estimated IDT, denoted by η̂, i.e.,

η̂ = η′; otherwise, the search routine continues. Therefore, the smaller the value of θ, the

more accurate the IDT estimate η̂ one can obtain.

When the termination length L is very large, it may require an enormous number of

iterations for the PEXIT algorithm to find the IDT of the given LDPC-CC. This is because

81

the maximum iteration number of the PEXIT algorithm, Niter, has to be set very large for

large L values to guarantee that all z
(l)
j can converge to 1 if the input Eb/N0 is greater than

the IDT, and on the other hand an Eb/N0 value less than the IDT during the search routine

will consume all Niter iterations. The memory requirement of the PEXIT algorithm may

also be very demanding for very large L values. On the other hand, as L goes to infinity,

the PEXIT algorithm cannot be employed anymore. However, according to the threshold

saturation phenomenon, the terminated LDPC-CC specified by the (J,K, L) base matrix has

the best possible IDT when L → ∞, where the values of J and K are fixed. Consequently, it

would be very favorable to design a new algorithm to estimate this “best possible IDT” for

the theoretical study of the best scenario when the termination length L approaches infinity.

5.2 Monotonicity Analysis and the PEXIT-fast Algorithm

In this section, we propose a new “PEXIT-fast algorithm” which can address all afore-

mentioned issues challenging the existing PEXIT algorithm as discussed in Section 5.1.2.

According to [2], we first establish several crucial monotonic properties of the functions in-

volved in the PEXIT algorithm when an LDPC-CC is evaluated. Based on these monotonic

properties, we derive two corollaries for efficiently facilitate a pair of upper and lower bounds

of the IDT. According to these two corollaries, our PEXIT-fast algorithm can terminate the

algorithm in a very early stage by only monitoring the MI of APP for the first variable node

rather than all variable nodes. That is, the number of required iterations (the computational

complexity) can be significantly reduced.

82

When the input Eb/N0 happens to be the IDT η, Eq. (5.3) facilitates the corresponding

variance threshold, denoted by σ̄2
ch, that is,

σ̄2
ch = 8R η. (5.7)

Note that both R and η vary with respect to L. Thus, according to Eq. (5.7), we can write

σ̄2
ch(L) = 8R(L)η(L). (5.8)

Obviously, from Eq. (5.8), one can find that the IDT η(L) can be easily calculated when

σ̄2
ch(L) is available. Therefore, we would like to establish the asymptotic analysis of σ̄2

ch(L) as

L goes to infinity and investigate the convergence of σ̄2
ch(L) as L → ∞. Assume that σ̄2

ch(L)

converges as L > L0 for a moderate value L0 (the simulation results presented later in this

section demonstrate that L0 = 100 is a good choice). According to Eq. (5.8), the estimate

of the IDT η(L) of an LDPC-CC with L > L0 can be obtained as

η̂(L)
def
=

R(L0) η̂(L0)

R(L)
, for all L > L0. (5.9)

Note that the LDPC-CC’s code rate R(L) can be easily computed for an arbitrary L given

the (J,K, L) base matrix defined by Eq. (5.1). Thus, our new PEXIT-fast algorithm will

first determine L0 (=100), then calculate σ̄2
ch(L0), and compute the IDT estimates according

to Eq. (5.9) for all L > L0 quickly.

To facilitate the detailed analysis of the PEXIT algorithm for an LDPC-CC, we rewrite

Eq. (5.4) and Eq. (5.5) in vector forms. Denote the number of edge of the (J,K, L) base

matrix by N . Then in the lth iteration, there are two sets of MI vectors with dimension N :

one consists of the MI values from the variable nodes to the check nodes, denoted by x(l),

and the other consists of the MI values from the check nodes to the variable nodes, denoted

83

by y(l). Thus, Eq. (5.4) and Eq. (5.5) can be expressed abstractly as

x(l) def
= F

(
y(l−1), σ2

ch

)
, (5.10)

where F : [0, 1]N × [0,∞) → [0, 1]N represents the evaluation (functional mapping) of

Eq. (5.4) and

y(l) def
= G

(
x(l)
)
, (5.11)

where G : [0, 1]N → [0, 1]N represents the evaluation (functional mapping) of Eq. (5.5).

Denote the N -dimensional all-zero and all-one vectors by 0 and 1, respectively. As a matter

of fact, we have (i) F(0, 0) = 0, F(1, σ2
ch) = 1, and F(x,∞) = 1; (ii) G(0) = 0 and

G(1) = 1.

Substitute Eq. (5.11) into Eq. (5.10). For notational simplification, we further let ǫ = σ2
ch.

Then, we have the following recursion:

x(l+1) = F
(

G
(
x(l)
)
, ǫ
)

, l = 0, 1, (5.12)

where l specifies the iteration number during the execution of the PEXIT algorithm.

The IDT of an LDPC-CC depends on the monotonicity properties of Eq. (5.12). Before

establishing the analysis, we present the following definitions.

Definition 1. Given two arbitrary N-dimensional real-valued vectors v = (v1, v2, . . . , vk, . . . , vN)

and w = (w1, w2, . . . , wk, . . . , wN), we say v ≦ w if and only if vk ≤ wk, ∀k.

Definition 2. A real-valued multivariate function g(v1, v2, . . . , vN) can be expressed as a

function with an N-dimensional variable vector v ∈ RN such that g(v1, v2, . . . , vN) = g(v).

For any two vectors v′ ∈ RN and v′′ ∈ RN , if v′ ≦ v′′, we have g(v′) ≤ g(v′′). Thus, we

say g(v1, v2, . . . , vN) is a “monotonically increasing” function.

84

Definition 3. A collection of P real-valued multivariate functions g1(v), g2(v), . . . , gP (v)

can be expressed as G(v)
def
= [g1(v), g2(v), . . . , gP (v)]

T where v ∈ RN . If all element func-

tions gp(v), p = 1, 2, . . . , P , are monotonically increasing, we say G(v) is monotonically

increasing. In other words, given a monotonically increasing functional collection G(v), we

have G(v′) ≦ G(v′′) for all v′ ∈ RN , v′′ ∈ RN , and v′ ≦ v′′.

Based on Definitions 1-3, we can investigate the monotonicity of Eq. (5.12) with respect

to x and ǫ. Let’s just check one iteration (for any particular iteration l) with the following

lemma.

Lemma 1. The function F
(
G(x), ǫ

)
is monotonically increasing with respect to both x and

ǫ.

Proof. It is easy to justify that the functions J (·, ·) and J −1(·) in Eqs.(5.4)-(5.5) are both

monotonically increasing and J (·, ·) is bounded within [0, 1]. Therefore, F(·, ·) and G(·) are

both monotonically increasing with respect to their arguments. Specifically, for 0 ≦ x1 ≦

x2 ≦ 1, F
(
G(x1), ǫ

)
≦ F

(
G(x2), ǫ

)
; for 0 ≤ ǫ1 ≤ ǫ2, F

(
G(x), ǫ1

)
≦ F

(
G(x), ǫ2

)
.

Next, we will provide the following lemma for the monotonicity of x(l) in Eq. (5.12) over

the iteration l.

Lemma 2. Let 0 ≦ x(0) ≦ 1. Then x(l) is a monotonic sequence, for l = 0, 1, . . ., and will

converge to a fixed point as l goes to infinity.

Proof. If x = 0 and ǫ = 0, then F
(
G(0), 0

)
= 0. Thus, for ǫ = 0, x = 0 is a fixed point. If

x = 1 and ǫ can be arbitrary, F
(
G(1), ǫ

)
= 1. Thus, x = 1 is a fixed point in this regard. If

ǫ = ∞, then x(l+1) = F
(
G(x(l)),∞

)
= 1, for l = 0, 1, 2, Thus, after one iteration, x = 1

becomes the corresponding fixed point.

85

If 0 ≦ x, for some iteration l0, we have x(l0−1) ≦ x(l0). According to the monotonicity

given by Lemma 1, x(l0) = F
(
G(x(l0−1)), ǫ

)
≦ F

(
G(x(l0)), ǫ

)
= x(l0+1). Since x(l) ∈ [0, 1], x(l)

will converge to some fixed point, denoted by x∞, when the iteration number l approaches

infinity.

In the protograph represented by the (J,K, L) base matrix, the termination length L

can be seen as L positions [80]. According to Eq. (5.1), there are c variable nodes for each

position. It can be seen that the variable nodes at the same position are isomorphic to

each other since relabeling them leads to the identical protograph. From the base matrix

perspective, relabeling the variable nodes at the same position is equivalent to permuting the

corresponding columns of the base matrix, which results in the same base matrix. Conse-

quently, the variable nodes at the same position have the same MI of APP. For illustrational

simplicity, the positions of the variable (check) nodes are indexed in the following way ac-

cording to the termination length L. If L is even, the positions of variable nodes are indexed

as t ∈ {−L/2,−L/2+ 1, . . . ,−1, 1, . . . , L/2}. If L is odd, the positions of variable nodes are

indexed as t ∈ {−(L− 1)/2,−(L− 1)/2 + 1, . . . ,−1, 0, 1, . . . , (L− 1)/2} instead.

Proposition 1. Assume that at iteration 0, x(0) = 0 is initialized. For two variable nodes j1

and j2 where j1 is at the position t1 and j2 is at the position t2, if |t1| ≥ |t2|, then z
(l)
j1

≥ z
(l)
j2

for the iteration number l = 1, 2,

Proof. At iteration 1, x(1) = J (σch) since x(0) = 0 and G(x) = 0. Given two variable nodes

j1 and j2, for all check nodes i ∈ Cj1 , place all the corresponding check node degree di in a

vector dj1 of a nondecreasing order; for all check nodes i′ ∈ Cj2 , place all the corresponding

check node degree di′ in a vector dj2 of a nondecreasing order. Since all variable nodes for

86

an LDPC-CC have the same degree distribution J , dj1 and dj2 have the same dimension J .

Then, if |t1| ≥ |t2|, we have dj1 ≦ dj2 because the check nodes connected to j1 are closer to

the boundary of the corresponding protograph and the check node degree is non-increasing

from the middle positions to the boundary positions of the protograph.

Let ik, k = 1, 2, . . . , J be the kth check node which is connected to the variable node j1

and it has the degree given by the kth element of dj1. Let i′k be the kth check node which

is connected to the variable node j2 and it has the degree given by the kth element of dj2 .

Then, according to Eq. (5.5), y
(l)
ik,j1

≥ y
(l)
i′
k
,j2

for ik ∈ Cj1 , i′k ∈ Cj2 . Thus, according to Eq. (5.6),

we have

z
(l)
j1

= J

√
√
√
√

J∑

k=1

[

J −1
(
y
(l)
ik,j1

)]2

+ σ2
ch

≥ J

√
√
√
√

J∑

k=1

[

J −1
(
y
(l)

i′
k
,j2

)]2

+ σ2
ch

= z
(l)
j2
.

The phenomenon manifested by Proposition 1 that the MI of APP is larger for the variable

nodes at the boundary positions was also observed in [1]. However, the proof was not

provided in [1]. It is well known that the termination of an LDPC-CC makes the variable

nodes at the boundary positions of the protograph “stronger” (see [1]) and the termination

effect is propagated from both boundary positions to the middle positions of the protograph

for a terminated LDPC-CC.

Remark: According to Proposition 1, at the iteration l, z
(l)
1 ≥ z

(l)
j , ∀j. Thus, when the

currently investigated Eb/N0 is appropriate (Eb/N0 > η), it is the MI of the first variable z
(l)
1

87

that achieves 1 ahead of all other variable nodes during the iterative process of the PEXIT

analysis. Thus, we can have the following corollary which can be used for identifying the

lower bound of the IDT in the PEXIT analysis without exhausting all Niter iterations.

Corollary 1. If the MI of the LLR of APP cannot approach 1 for the first variable node,

then the MI of the LLR of APP cannot reach 1 for any other variable node no matter how

many iterations are undertaken.

Revisit Eqs. (5.8) and (5.9). It is crucial to analyze the asymptotic behavior of the

variance threshold σ̄2
ch(L) with respect to L in order to calculate η̂(L) for a large termination

length L. The pertinent analysis is facilitated by the following lemma.

Lemma 3 (Monotonicity of σ̄2
ch(L)). Given an LDPC-CC having the (J,K, L) base matrix,

the threshold σ̄2
ch(L) is monotonically increasing with respect to L.

Proof. We prove this lemma by contradiction. Suppose that L1 = L2 + 1 and σ̄2
ch(L1) <

σ̄2
ch(L2). Since σ̄2

ch(L1) can make z
(l)
j = 1, ∀j when l is sufficiently large, according to Propo-

sition 1, at some iteration l0, z
(l)
j first become 1 for all j belonging to the very left boundary

position. Because of the isomorphism of the variable nodes at the same position, the MI val-

ues of APP for all variable nodes at the very left boundary position also attain 1. Note that

once the variable node j’s MI of APP attains 1 (the corresponding coded symbols can be cor-

rectly decoded), this variable node has no further influence on the PEXIT recursion. Thus,

the variable nodes at the very left boundary position can be deleted in the PEXIT algorithm.

The remaining protograph becomes the protograph constituted by the (J,K, L2) base matrix

with L1 = L2 + 1. Since σ̄2
ch(L1) can make all z

(l)
j achieve 1, it is greater than or equal to

88

the IDT, i.e., σ̄2
ch(L2), of the LDPC-CC having the (J,K, L2) base matrix. This contradicts

with the assumption. Finally, by induction, for L′ ≥ L′′, we have σ̄2
ch(L

′) ≥ σ̄2
ch(L

′′).

Lemma 3 leads to the following corollary which can be used to identify the upper bound

of the IDT in the PEXIT analysis without requiring z
(l)
j = 1, ∀j.

Corollary 2. If the MI of the LLR of APP can reach 1 for the first variable node, i.e.,

z
(l)
1 = 1, then by running a sufficiently large number of iterations furthermore, the MI values

of the LLR of APP for all other variable nodes will also reach 1, i.e., z
(l)
j = 1, for j = 2, . . . , n.

As L goes to infinity, the LDPC-CC with termination length L or L + 1 can be seen as

the same code. According to Lemma 3, it implies that σ̄2
ch(L) converges as L gets large.

Suppose that there exists a value L0 such that for L ≥ L0, the threshold σ̄2
ch(L) converges.

Then, we can utilize Eq. (5.9) to easily derive the IDTs of the LDPC-CCs for any arbitrary

termination length L > L0 since the code rate R(L) is available given the (J,K, L) values.

Thus, as long as L0 is not a huge number, we can first identify it and then all IDTs for L > L0

(no matter how large L is) can be computed. Figure 5.1 illustrates the trend of σ̄2
ch(L) with

respect to L for several typical J,K values. It is shown that σ̄2
ch(L) increases rapidly when

L increases from 10 to 20. The convergence behavior of σ̄2
ch(L) appears substantial as L

exceeds 50. Generally speaking, it is thus quite handy to choose L0 = 100 and calculate

the IDT for L ≥ 100 using σ̄2
ch(100). Obviously, one does not need to carry out the PEXIT

algorithm to compute σ̄2
ch(L) for large L since its convergence is fortunately fast. This fact

greatly simplifies the IDT calculation for the LDPC-CCs having arbitrary large L, which

includes the asymptotic case for L → ∞.

89

0 50 100 150 200 250 300 350 400 450 500
3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

L

J = 3, K = 6

J = 4, K = 8

J = 5, K = 10

��
ch2
(�
)

Figure 5.1: The variance threshold σ̄2
ch(L) with respect to the termination length L for some

typical LDPC-CCs with three different (J,K) combinations.

5.2.1 Our Proposed PEXIT-Fast Algorithm

By taking advantage of Corollary 1, Corollary 2, and the aforementioned asymptotic

analysis of σ̄2
ch(L), we propose a new PEXIT-fast algorithm which can greatly reduce the

complexity for obtaining the IDT estimate of an LDPC-CC with an arbitrary termination

length L over AWGN channels. The pseudocode of our proposed PEXIT-fast algorithm is

presented by Figure 5.2. The specifications of the input variables are given as follows. For

the (J,K, L) base matrix, it is assumed that we are interested in L ≥ 10 because LDPC-CCs

become favorable in practice when L is large. According to Figure 5.1, L0 is set to 100. The

initial Eb/N0 search range is specified by [η′′, η′]. An initial lower bound η′′ can be set as

90

Input: A (J,K, L) base matrix with dimension m× n, L0, η
′′, η′, θ, δ.

Output: The IDT estimate η̂(L).
1: if L ≤ L0 then
2: if η′ − η′′ < θ then
3: return η̂(L) = η′

4: Eb/N0 = (η′ − η′′)/2
5: Do Step 1 of the PEXIT algorithm in Section 5.1.2
6: Initialize z

(0)
1 = 0

7: Do Steps 2 to 4 of the PEXIT algorithm in Section 5.1.2
8: Store z

(l)
1

9: if z
(l)
1 = 1 then

10: η′ = Eb/N0; go to Line 2

11: else if z
(l)
1 < 1 and z

(l)
1 − z

(l−1)
1 < δ then

12: η′′ = Eb/N0; go to Line 2
13: else
14: Go to Line 7
15: else
16: Go to Line 2 using the (J,K, L0) base matrix instead to obtain η̂(L0). Note that L

should be replaced by L0 here for Lines 2-14
17: return η̂(L) = η̂(L0)R(L0)/R(L)

Figure 5.2: Our proposed PEXIT-fast algorithm.

the ultimate Shannon limit, −1.59 dB. An initial upper bound η′ can then be obtained by

running the PEXIT algorithm using the (J,K, L′ = 10) base matrix several times; each time

the input Eb/N0 is incremented by 1 dB starting from Eb/N0 = η′′. The accuracy of the IDT

estimate is specified by θ. In this chapter, we set θ = 10−3 dB. Whether the MI of APP for

the first variable node z
(l)
1 converges or not is specified by δ such that convergence occurs

when z
(l)
1 − z

(l−1)
1 ≤ δ. Here δ is set to be 10−12. The aforementioned specifications of these

input variables may be changed for other circumstances if necessary.

As illustrated by Figure 5.2, in Lines 5 and 7, Steps 1-4 of the PEXIT algorithm stated in

Section 5.1.2 are carried out. In Line 6, the first variable node’s MI of APP z
(0)
1 is initialized

as 0. In Line 8, at the iteration l, store the first variable node’s MI of APP z
(l)
1 which will

be needed for comparison with the result from the previous iteration. In Lines 9-14, a new

91

stopping criterion is facilitated to determine, in a fast manner, if the currently investigated

Eb/N0 is the upper or lower bound of the IDT.

Note that for large L (L > L0), the PEXIT-fast algorithm does not need to be executed

directly for L as specified by Lines 16 and 17 (impossible to be directly executed anyway for

L → ∞). Instead, it calculates the threshold σ̄2
ch(L0) using Eq. (5.8) by running the routine

specified by Lines 2-14 to compute η̂(L0). Then, σ̄2
ch(L0) is used to calculate the estimated

IDT η̂ for arbitrary L > L0 using Eq. (5.9). As a matter of fact, one only needs to calculate

σ̄2
ch(L0) once to obtain various IDT estimates for all L > L0.

Our proposed new PEXIT-fast algorithm does not carry out the entire iterative process

which is otherwise needed by the conventional PEXIT analysis described in Section 5.1.2.

Our scheme also provides a computationally-efficient way to determine the IDT of an LDPC-

CC for an arbitrary large termination length L, which includes the case of L → ∞. Thus,

the computational complexity for calculating the IDTs of LDPC-CCs over AWGN channels

can be significantly reduced.

5.2.2 Complexity Analysis

The advantage of our proposed PEXIT-fast algorithm is manifested by the “early termi-

nation” mechanism described in Section 5.2.1 and by that one may simply use a “small”

termination length L0 to obtain all IDT estimates for L > L0. For a given L, the computa-

tional complexities of the existing PEXIT algorithm and our proposed PEXIT-fast algorithm

can be represented by the total number of iterations applied to obtain the IDT estimate η̂,

denoted by ∆(L) and Λ(L), respectively. The computational complexity comparison can

then be carried out by evaluating the trends of ∆(L) and Λ(L) with respect to L.

92

In the search procedure for the IDT of a given LDPC-CC with termination length L, there

will be a sequence of Eb/N0 values to be examined (see Line 4 of Figure 5.2) for determining

the final IDT estimates. For the PEXIT algorithm, denote the examined sequence of Eb/N0

by [α1, α2, . . . , αD1]. For the PEXIT-fast algorithm, denote the examined sequence of Eb/N0

by [β1, β2, . . . , βD2]. The lengths of these two sequence, say D1 and D2, are determined by

the precision requirement θ for the IDT estimates. Assume that the conventional PEXIT

algorithm and our proposed PEXIT-fast algorithm both use the same precision parame-

ter θ and the same binary section search procedure described in Figure 5.2. For each αµ,

µ = 1, 2, . . . , D1, denote the number of iterations undertaken in the conventional PEXIT

algorithm by ∆µ(L). For each βν , ν = 1, 2, . . . , D2, denote the number of iterations under-

taken in our proposed PEXIT-fast algorithm by Λν(L). The total number of iterations used

by the PEXIT algorithm, ∆(L), can thus be expressed by

∆(L) =

D1∑

µ=1

∆µ(L). (5.13)

On the other hand, according to Figure 5.2, the total number of iterations used by the

PEXIT-fast algorithm, Λ(L), can be expressed by

Λ(L) =

D2∑

ν=1

Λν(L), L ≤ L0

Λ(L0), L > L0

. (5.14)

According to Eq. (5.13), it is expected that ∆(L) always increases with L. However,

Λ(L) becomes a “constant” for L > L0. Thus, the larger the termination length L, the more

efficient the PEXIT-fast algorithm for calculating the IDT estimate. Since the PEXIT-fast

algorithm always runs up to L0 (once) for obtaining the IDT estimates for L > L0, the

memory storage requirement for the PEXIT-fast algorithm does not increase furthermore

93

with respect to L for L > L0. On the other hand, the memory storage requirement of the

PEXIT algorithm always increases with L.

5.3 Numerical Results

In this section, we demonstrate the numerical results for evaluating our proposed new

PEXIT-fast algorithm over various (J,K, L) LDPC-CCs. First, the evolution of mutual

information of APP z
(l)
j with respect to the iteration number l for different Eb/N0 values

will be illustrated. Then, the IDTs estimated from our proposed PEXIT-fast algorithm are

compared to the IDTs given by [1]. Finally, the computational complexity comparison is also

demonstrated in terms of total number of iterations for our proposed PEXIT-fast algorithm

(details can be referred to Section 5.2.1) and the conventional PEXIT algorithm (details can

be referred to Section 5.1.2).

Figure 5.3 illustrates the evolution of mutual information z
(l)
j when the conventional

PEXIT algorithm is carried out for the LDPC-CC with the (3, 6, 500) base matrix whose

corresponding IDT estimate η̂ is 0.475 dB. Two Eb/N0 values are examined to exemplify the

two cases of evolution. For Eb/N0 = 0.55 dB which is greater than η̂ (note that η̂ is quite

precise and very close to the true IDT η), the percentage of the variable nodes j with z
(l)
j = 1

increases linearly with the number of iterations l as shown by Figure 5.3. In particular, 15.2%

of the variable nodes have attained z
(l)
j = 1 when 1000 iterations are undertaken. And this

percentage is further increased to 32%, 48.4%, and 64.8% as we carry out 2000, 3000, and

4000 iterations, respectively. Actually, 5,912 iterations are needed to make z
(l)
j = 1 for all

variable nodes. Note that as the iteration number l increases, z
(l)
j reaches 1 sequentially from

both ends (boundary positions) of the variable nodes to the center. On the other hand, for

94

0.5

0.6

0.7

0.8

0.9

1
M

I-
A

P
P

 z
(l

)

0 100 200 300 400 500 600 700 800 900 1000

Variable Nodes j

Eb/N0 = 0.55 dB (>IDT)
Eb/N0 = 0.45 dB (<IDT)

l = 1000

l = 3000

l = 4000

l = 2000

l >1000

j

Figure 5.3: The evolution of mutual information of APP z
(l)
j for different iteration numbers

l and different Eb/N0 values when the conventional PEXIT algorithm is adopted. The
(3, 6, 500) LDPC-CC is used for illustration here.

Eb/N0 = 0.45 dB which is smaller than η̂, the mutual information z
(l)
j for each variable node

exhibits the “premature” convergence (to some value below 1) at an early stage. Regardless

of how many iterations are carried out in the PEXIT algorithm (as shown in Figure 5.3,

l > 1000), the MI z
(l)
j for each variable node stops increasing and none of them can reach 1.

Similar phenomena can be observed for LDPC-CCs with other (J,K, L) combinations. It

is also observed that for very large L, when an Eb/N0 value is greater than but quite close to

the IDT, the evolution of the mutual information z
(l)
j becomes very slow, and an enormously

large iteration number l is required to make z
(l)
j reach 1 for every variable node.

95

0.4 0.42 0.44 0.46 0.48 0.5 0.52

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Code Rate

IDT estimates by PEXIT-fast
IDT estimates by [1]

0.498 0.499 0.5

0.46

0.465

0.47

0.475
L = 10

L = 20

L = 50

L = 100
L = 200

L = 500

L = 1000

L → ∞

ID
T

 E
st

im
at

es

(d

B
)

�̂

Figure 5.4: The IDT estimates for the (3, 6, L) LDPC-CCs resulting from our proposed
PEXIT-fast algorithm and [1], where the termination lengths L range from 20 to infinity.

Figure 5.4 depicts the trend of IDT estimates versus code rates for the (3, 6, L) LDPC-

CCs with different termination lengths L. It is shown that with the increase of L, the IDT

continues to decrease and the code rate continues to increase. The IDTs estimated by [1]

using the density evolution technique are also provided here for comparison. The closeness

between these two sets of estimated IDTs (by our proposed method and by [1]) demonstrates

the effectiveness of our proposed PEXIT-fast algorithm.

The detailed comparison between the IDTs obtained by our proposed PEXIT-fast algo-

rithm and the IDTs presented in [1] is shown in Table 5.1. Note that code rate 0.5 implies

L → ∞. The IDT for L → ∞ using our proposed PEXIT-fast algorithm is derived by

96

L

T
o

ta
l

N
u

m
b

er
s

o
f

It
er

at
io

n
s

10
3

101 102 103 104

10
4

10
5

10
6

10
7

∆(L): PEXIT
Λ(L): PEXIT-fast

Figure 5.5: The total numbers of iterations undertaken by the conventional PEXIT algorithm
and our PEXIT-fast algorithm for calculating the IDTs of the (3, 6, L) LDPC-CCs with the
termination lengths L ranging from 10 to 5000.

σ̄2
ch(L0 = 100). It is shown by Table 5.1 that the absolute values of errors between these

two sets of IDTs are within 0.025 dB. In Table 5.2, we list the IDTs for various (J,K, L)

LDPC-CCs using our PEXIT-fast algorithm.

In Figure 5.5, the total numbers of iterations, namely ∆(L) and Λ(L) given by Eq. (5.13)

and Eq. (5.14), respectively, are compared with respect to L. For the conventional PEXIT

algorithm, ∆(L) increases linearly with L. However, for our PEXIT-fast algorithm, Λ(L)

converges to a constant as L > L0 = 100. It is obvious that for L=50, 500, and 5000,

there is a 10-, 100-, and 1000-times complexity reduction by using our proposed PEXIT-fast

algorithm, respectively. As a result, our PEXIT-fast algorithm demonstrates the outstanding

97

Table 5.1: Comparison between IDTs obtained from our PEXIT-fast algorithm and IDTs
in [1]

(J,K) Code Rate η̂ ([1]) η̂ (PEXIT-fast) Absolute Error

(3, 6) 0.49 0.55 dB 0.545 dB 0.005 dB

(3, 6) 0.50 0.46 dB 0.458 dB 0.002 dB

(4, 8) 0.49 0.35 dB 0.326 dB 0.024 dB

(4, 8) 0.50 0.26 dB 0.238 dB 0.022 dB

(5, 10) 0.49 0.30 dB 0.278 dB 0.022 dB

(5, 10) 0.50 0.21 dB 0.190 dB 0.020 dB

computational-complexity advantage for estimating IDTs.

5.4 Summary

In this chapter, we propose a novel PEXIT-fast algorithm to estimate the iterative de-

coding thresholds (IDTs) for prevalent low-density parity-check convolutional codes (LDPC-

CCs). Our PEXIT-fast algorithm can determine the lower and upper bounds of the IDTs

quickly. New theoretical analysis and lemmas are established as the basis of our new IDT es-

timation scheme. Accordingly, we devise an efficient approach to determine the IDTs for the

LDPC-CCs with arbitrarily large termination lengths L. The effectiveness of our PEXIT-fast

algorithm is demonstrated by comparing the IDTs obtained by our PEXIT-fast algorithm

and the conventional method. The computational-complexity analysis is also presented to

demonstrate the significant advantage of our PEXIT-fast algorithm for calculating the IDT

estimates, especially when the termination length L becomes large.

98

Table 5.2: IDT Estimates η̂ for Various (J,K, L) LDPC-CCs Using Our PEXIT-fast Algorithm

(J,K) Code Rate IDT Estimate η̂ (dB)

L = 20 L = 50 L = 100 L = 500 L → ∞ L = 20 L = 50 L = 100 L = 500 L → ∞

(3, 6) 0.4500 0.4800 0.4900 0.4980 0.5000 0.911 0.635 0.545 0.475 0.458

(3, 9) 0.6333 0.6533 0.6600 0.6653 0.6666 1.581 1.448 1.404 1.369 1.360

(3, 12) 0.7250 0.7400 0.7450 0.7490 0.7500 2.072 1.984 1.955 1.932 1.926

(3, 15) 0.7800 0.7920 0.7960 0.7992 0.8000 2.443 2.378 2.356 2.338 2.334

(3, 18) 0.8166 0.8266 0.8300 0.8326 0.8333 2.737 2.685 2.667 2.653 2.650

(4, 8) 0.4250 0.4700 0.4850 0.4970 0.5000 0.943 0.507 0.370 0.264 0.238

(4, 12) 0.6166 0.6466 0.6566 0.6646 0.6666 1.477 1.271 1.205 1.152 1.139

(4, 16) 0.7125 0.7350 0.7425 0.7485 0.7500 1.932 1.798 1.754 1.719 1.710

(4, 20) 0.7700 0.7880 0.7940 0.7988 0.8000 2.291 2.191 2.158 2.132 2.126

(4, 24) 0.8083 0.8233 0.8283 0.8323 0.8333 2.581 2.501 2.475 2.454 2.449

(5, 10) 0.4000 0.4600 0.4800 0.4960 0.5000 1.158 0.552 0.367 0.225 0.190

(5, 15) 0.6000 0.6400 0.6533 0.6640 0.6666 1.540 1.260 1.170 1.100 1.083

(5, 20) 0.7000 0.7300 0.7400 0.7480 0.7500 1.951 1.769 1.710 1.663 1.652

(5, 25) 0.7600 0.7840 0.7920 0.7984 0.7800 2.290 2.155 2.111 2.076 2.068

(5, 30) 0.8000 0.8200 0.8266 0.8320 0.8333 2.569 2.462 2.427 2.399 2.392

99

BIBLIOGRAPHY

[1] M. Lentmaier, A. Sridharan, D. Costello, and K. Zigangirov, “Iterative decoding thresh-
old analysis for LDPC convolutional codes,” IEEE Trans. Inform. Theory, vol. 56,
no. 10, pp. 5274–5289, Oct. 2010.

[2] T. Richardson and R. Urbanke, Modern Coding Theory. New York, NY, USA: Cam-
bridge University Press, 2008.

[3] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA: MIT Press, 1963.

[4] W. Ryan and S. Lin, Channel Codes: Classical and Modern. New York, NY, USA:
Cambridge University Press, 2009.

[5] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. The-
ory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[6] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under
message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 599–618,
Feb. 2001.

[7] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irreg-
ular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.
619–637, Feb. 2001.

[8] S. Ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, Oct. 2001.

[9] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes,”
IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638–656, Feb 2001.

[10] M. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation
matrices,” IEEE Trans. Inform. Theory, vol. 50, no. 8, pp. 1788–1793, Aug 2004.

[11] S. Myung, K. Yang, and J. Kim, “Quasi-cyclic ldpc codes for fast encoding,” Information
Theory, IEEE Transactions on, vol. 51, no. 8, pp. 2894–2901, Aug 2005.

[12] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-
density parity-check codes,” IEEE Trans. Commun., vol. 54, no. 1, pp. 71–81, Jan
2006.

[13] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convolutional codes
with low-density parity-check matrix,” IEEE Trans. Inform. Theory, vol. 45, no. 6, pp.
2181–2191, Sep. 1999.

[14] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via spatial coupling:
Why convolutional LDPC ensembles perform so well over the BEC,” IEEE Trans. In-
form. Theory, vol. 57, no. 2, pp. 803–834, Feb. 2011.

100

[15] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE Com-
mun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[16] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC
codes over GF(q),” in Proc. IEEE International Conference on Communications
(ICC’2004), Paris, France, Jun. 2004, pp. 772–776.

[17] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over
GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643, Apr. 2007.

[18] R. A. Carrasco and M. Johnston, Non-binary Error Control Coding for Wireless Com-
munication and Data Storage. West Sussex, United Kingdom: John Wiley & Sons,
Ltd, 2008.

[19] Digital Video Broadcasting (DVB); Second generation framing structure, channel cod-
ing and modulation systems for Broadcasting, Interactive Services, News Gathering and
other broadband satellite applications (DVB-S2), European Telecommunications Stan-
dards Institute Std. ETSI EN 302 307 V1.2.1, 2009.

[20] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
IEEE Std. 802.11n-2012, 2012.

[21] Physical Layer and Management Parameters for 10 Gb/s Operation, Type 10GBASE-T,
IEEE Std. 802.3an-2006, 2006.

[22] A. Leven and L. Schmalen, “Status and recent advances on forward error correction
technologies for lightwave systems,” J. Lightwave Technol., vol. 32, no. 16, pp. 2735–
2750, Aug 2014.

[23] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-correction codes in
NAND flash memory,” IEEE Trans. Circuits Syst. I, vol. 58, no. 2, pp. 429–439, Feb
2011.

[24] A. Goldsmith and S.-G. Chua, “Adaptive coded modulation for fading channels,” IEEE
Trans. Commun., vol. 46, no. 5, pp. 595–602, May 1998.

[25] X. Huang, H.-C. Wu, and Y. Wu, “Novel pilot-free adaptive modulation for wireless
OFDM systems,” IEEE Trans. Veh. Technol., vol. 57, no. 6, pp. 3863–3867, Nov. 2008.

[26] S.-K. Ahn and K. Yang, “Adaptive modulation and coding schemes based on LDPC
codes with irregular modulation,” IEEE Trans. Commun., vol. 58, no. 9, pp. 2465–2470,
Sep. 2010.

[27] A. Sharma and S. De, “Exploiting fading dynamics along with AMC for energy-efficient
transmission over fading channels,” IEEE Commun. Lett., vol. 15, no. 11, pp. 1218–1220,
Nov. 2011.

[28] M. Mazzotti, S. Moretti, and M. Chiani, “Multiuser resource allocation with adaptive
modulation and LDPC coding for heterogeneous traffic in OFDMA downlink,” IEEE
Trans. Commun., vol. 60, no. 10, pp. 2915–2925, Oct. 2012.

101

[29] V. Choqueuse, M. Marazin, L. Collin, K. Yao, and G. Burel, “Blind recognition of linear
space-time block codes: A likelihood-based approach,” IEEE Trans. Signal Processing,
vol. 58, no. 3, pp. 1290–1299, Mar. 2010.

[30] M. Marey, O. A. Dobre, and R. Inkol, “Blind STBC identification for multiple-antenna
OFDM systems,” IEEE Trans. Commun., vol. 62, no. 5, pp. 1554–1567, May 2014.

[31] R. Moosavi and E. Larsson, “A fast scheme for blind identification of channel codes,”
in Proc. IEEE Global Telecommunications Conference (GLOBECOM’2011), Houston,
TX, Dec. 2011, pp. 1–5.

[32] T. Xia and H.-C. Wu, “Novel blind identification of LDPC codes using average LLR of
syndrome a posteriori probability,” IEEE Trans. Signal Processing, vol. 62, no. 3, pp.
632–640, Feb. 2014.

[33] ——, “Blind identification of nonbinary LDPC codes using average LLR of syndrome a
posteriori probability,” IEEE Commun. Lett., vol. 17, no. 7, pp. 1301–1304, Jul. 2013.

[34] Y. Debessu, H.-C. Wu, and H. Jiang, “Novel blind encoder parameter estimation for
turbo codes,” IEEE Commun. Lett., vol. 16, no. 12, pp. 1917–1920, Dec. 2012.

[35] H.-C. Wu, M. Saquib, and Z. Yun, “Novel automatic modulation classification using
cumulant features for communications via multipath channels,” IEEE Trans. Wireless
Commun., vol. 7, no. 8, pp. 3098–3105, Aug. 2008.

[36] F. Hameed, O. Dobre, and D. Popescu, “On the likelihood-based approach to modu-
lation classification,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 5884–5892,
Dec. 2009.

[37] W. Headley and C. da Silva, “Asynchronous classification of digital amplitude-phase
modulated signals in flat-fading channels,” IEEE Trans. Commun., vol. 59, no. 1, pp.
7–12, Jan. 2011.

[38] M. Morelli, C.-C. Kuo, and M.-O. Pun, “Synchronization techniques for orthogonal
frequency division multiple access (OFDMA): A tutorial review,” Proc. IEEE, vol. 95,
no. 7, pp. 1394–1427, July 2007.

[39] R. Imad, G. Sicot, and S. Houcke, “Blind frame synchronization for error correcting
codes having a sparse parity check matrix,” IEEE Trans. Commun., vol. 57, no. 6, pp.
1574–1577, Jun. 2009.

[40] T. Xia and H.-C. Wu, “Joint blind frame synchronization and encoder identification for
low-density parity-check codes,” IEEE Commun. Lett., vol. 18, no. 2, pp. 352–355, Feb.
2014.

[41] M. R. Gupta and Y. Chen, “Theory and use of the EM algorithm,” Found. Trends
Signal Process., vol. 4, no. 3, pp. 223–296, Mar. 2011.

102

[42] W. Gappmair, R. Lopez-Valcarce, and C. Mosquera, “Joint NDA estimation of carrier
frequency/phase and SNR for linearly modulated signals,” IEEE Signal Processing Lett.,
vol. 17, no. 5, pp. 517–520, May 2010.

[43] H.-C. Wu, X. Huang, and D. Xu, “Novel semi-blind ICI equalization algorithm for
wireless OFDM systems,” IEEE Trans. Broadcast., vol. 52, no. 2, pp. 211–218, Jun.
2006.

[44] D. Pauluzzi and N. Beaulieu, “A comparison of SNR estimation techniques for the
AWGN channel,” IEEE Trans. Commun., vol. 48, no. 10, pp. 1681–1691, Oct. 2000.

[45] E. Serpedin, P. Ciblat, G. Giannakis, and P. Loubaton, “Performance analysis of blind
carrier phase estimators for general QAM constellations,” IEEE Trans. Signal Process-
ing, vol. 49, no. 8, pp. 1816–1823, Aug. 2001.

[46] W. C. Jakes, Ed., Microwave Mobile Communications. New York, NY, USA: Wiley-
IEEE Press, 1994.

[47] “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release
1.0.9 of 2014-08-29. [Online]. Available: http://dlmf.nist.gov/

[48] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolu-
tional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.

[49] H. Bolcskei, “Blind estimation of symbol timing and carrier frequency offset in wireless
OFDM systems,” IEEE Trans. Commun., vol. 49, no. 6, pp. 988–999, Jun. 2001.

[50] R. Imad, S. Houcke, and M. Ghogho, “Blind estimation of the phase and carrier fre-
quency offsets for LDPC-coded systems,” EURASIP Journal on Advances in Signal
Processing, vol. 2010, no. 1, pp. 293–572, 2010.

[51] T. Xia and H.-C. Wu, “Novel blind identification of LDPC codes using average LLR of
syndrome a posteriori probability,” in Proceedings of IEEE International Conference on
Intelligent Transport Systems Telecommunications (ITST’2012), Taipei, Taiwan, Nov.
2012, pp. 12–16.

[52] S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction
of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” IEEE Trans.
Commun., vol. 57, no. 1, pp. 84–93, Jan. 2009.

[53] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans.
Inform. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[54] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity decod-
ing for non-binary LDPC codes in high order fields,” IEEE Trans. Commun., vol. 58,
no. 5, pp. 1365–1375, May 2010.

103

[55] W. Tang, J. Huang, L. Wang, and S. Zhou, “Nonbinary LDPC decoding by min-sum
with adaptive message control,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’2011), Prague, Czech Republic, May 2011, pp.
3164–3167.

[56] X. Guan and Y. Fei, “Adaptive extended min-sum algorithm for nonbinary LDPC
decoding,” in Proc. IEEE Global Telecommunications Conference (GLOBECOM’2011),
Houston, TX, Dec. 2011, pp. 1–6.

[57] F. Kienle and N. Wehn, “Low complexity stopping criterion for LDPC code decoders,”
in Proc. IEEE Vehicular Technology Conference (VTC’2005-Spring), May 2005, pp.
606–609.

[58] G. Glikiotis and V. Paliouras, “A low-power termination criterion for iterative LDPC
code decoders,” in Proc. IEEE Workshop on Signal Processing Systems: Design and
Implementation (SiPS’2005), Athens, Greece, Nov. 2005, pp. 122–127.

[59] J. Li, X.-H. You, and J. Li, “Early stopping for LDPC decoding: convergence of mean
magnitude (CMM),” IEEE Commun. Lett., vol. 10, no. 9, pp. 667–669, Sep. 2006.

[60] G. Han and X. Liu, “A unified early stopping criterion for binary and nonbinary LDPC
codes based on check-sum variation patterns,” IEEE Commun. Lett., vol. 14, no. 11,
pp. 1053–1055, Nov. 2010.

[61] L. Zeng, L. Lan, Y. Tai, S. Song, S. Lin, and K. Abdel-Ghaffar, “Constructions of
nonbinary quasi-cyclic LDPC codes: A finite field approach,” IEEE Trans. Commun.,
vol. 56, no. 4, pp. 545–554, Apr. 2008.

[62] D. Costello and G. Forney, Jr., “Channel coding: The road to channel capacity,” Proc.
IEEE, vol. 95, no. 6, pp. 1150–1177, Jun. 2007.

[63] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans. Commun.,
vol. 53, no. 2, pp. 209–213, Feb. 2005.

[64] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High throughput low-density
parity-check decoder architectures,” in Proc. IEEE Global Telecommunications Confer-
ence (GLOBECOM’01), 2001, pp. 3019–3024 vol.5.

[65] D. Hocevar, “A reduced complexity decoder architecture via layered decoding of LDPC
codes,” in Proc. IEEE Workshop on Signal Processing Systems (SIPS’2004), Oct. 2004,
pp. 107–112.

[66] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing schedules for
LDPC decoding,” IEEE Trans. Inform. Theory, vol. 53, no. 11, pp. 4076–4091, Nov.
2007.

[67] J. Zhang and M. Fossorier, “Shuffled belief propagation decoding,” in Conference Record
of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers 2002,
vol. 1, Nov 2002, pp. 8–15 vol.1.

104

[68] A. Vila Casado, M. Griot, and R. Wesel, “Informed dynamic scheduling for belief-
propagation decoding of LDPC codes,” in Proc. IEEE International Conference on
Communications (ICC’07), Jun. 2007, pp. 932–937.

[69] ——, “LDPC decoders with informed dynamic scheduling,” IEEE Trans. Commun.,
vol. 58, no. 12, pp. 3470–3479, Dec. 2010.

[70] G. Han and X. Liu, “An efficient dynamic schedule for layered belief-propagation de-
coding of LDPC codes,” IEEE Commun. Lett., vol. 13, no. 12, pp. 950–952, Dec. 2009.

[71] Y. Gong, X. Liu, W. Yecai, and G. Han, “Effective informed dynamic scheduling for
belief propagation decoding of LDPC codes,” IEEE Trans. Commun., vol. 59, no. 10,
pp. 2683–2691, Oct. 2011.

[72] X. Liu, Y. Zhang, and R. Cui, “Variable-node-based dynamic scheduling strategy for
belief-propagation decoding of LDPC codes,” IEEE Commun. Lett., vol. 19, no. 2, pp.
147–150, Feb. 2015.

[73] Y. Mao and A. Banihashemi, “Decoding low-density parity-check codes with probabilis-
tic scheduling,” IEEE Commun. Lett., vol. 5, no. 10, pp. 414–416, Oct. 2001.

[74] M. Beermann, L. Schmalen, and P. Vary, “Improved decoding of binary and non-binary
LDPC codes by probabilistic shuffled belief propagation,” in Proc. IEEE International
Conference on Communications (ICC’2011), Jun. 2011, pp. 1–5.

[75] D. Levin, E. Sharon, and S. Litsyn, “Lazy scheduling for LDPC decoding,” IEEE Com-
mun. Lett., vol. 11, no. 1, pp. 70–72, Jan. 2007.

[76] H.-C. Lee and Y.-L. Ueng, “LDPC decoding scheduling for faster convergence and lower
error floor,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3104–3113, Sep. 2014.

[77] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth
tanner graphs,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.

[78] D. Costello, L. Dolecek, T. Fuja, J. Kliewer, D. Mitchell, and R. Smarandache, “Spa-
tially coupled sparse codes on graphs: theory and practice,” IEEE Commun. Mag.,
vol. 52, no. 7, pp. 168–176, July 2014.

[79] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from protographs,”
Jet Propulsion Lab, Pasadena, CA, IPN Progress Rep. 42-154, Aug. 2003.

[80] M. Lentmaier, D. Mitchell, G. Fettweis, and D. Costello, “Asymptotically good LDPC
convolutional codes with AWGN channel thresholds close to the shannon limit,” in
6th International Symposium on Turbo Codes and Iterative Information Processing
(ISTC’2010), Sep. 2010, pp. 324–328.

[81] A. Iyengar, M. Papaleo, P. Siegel, J. Wolf, A. Vanelli-Coralli, and G. Corazza, “Win-
dowed decoding of protograph-based LDPC convolutional codes over erasure channels,”
IEEE Trans. Inform. Theory, vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

105

[82] N. ul Hassan, A. Pusane, M. Lentmaier, G. Fettweis, and D. Costello, “Non-uniform
windowed decoding schedules for spatially coupled codes,” in Proc. IEEE Global Com-
munications Conference (GLOBECOM’2013), Dec. 2013, pp. 1862–1867.

[83] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under
message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 599–618,
Feb. 2001.

[84] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes
for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670–678, Apr.
2004.

[85] G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” in
Proc. IEEE Global Telecommunications Conference (GLOBECOM’2007), Nov. 2007,
pp. 3250–3254.

106

VITA

Tian Xia was born in 1987 in a small town of Shanxi province, China. He received his

B.S. and M.S. degrees in electrical engineering from the University of Electronic Science

and Technology of China, Chengdu, China, in 2008 and 2011, respectively. He also received

an M.S. degree in electrical engineering from Louisiana State University in 2013. He came

to Louisiana State University in 2012 and is currently a Ph.D. candidate in electrical and

computer engineering.

107

	Louisiana State University
	LSU Digital Commons
	2015

	New Identification and Decoding Techniques for Low-Density Parity-Check Codes
	Tian Xia
	Recommended Citation

	disseration_v1.dvi

