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Abstract

In wireless communication systems, economic approaches can be applied to spectrum

sharing and enhance spectrum utilization.

In this research, we develop a model where geographic information, including licensed

areas of primary users (PUs) and locations of secondary users (SUs), plays an important

role in the spectrum sharing system. We consider a multi-price policy and the pricing power

of noncooperative PUs in multiple geographic areas. Meanwhile, the value assessment of

a channel is price-related and the demand from the SUs is price-elastic. By applying an

evolutionary procedure, we prove the existence and uniqueness of the optimal payoff for

each PU selling channels without reserve. In the scenario of selling channels with reserve,

we predict the channel prices for the PUs leading to the optimal supplies of the PUs and

hence the optimal payoffs.

To increase spectrum utilization, the scenario of spatial spectrum reuse is considered.

We consider maximizing social welfare via on-demand channel allocation, which describes

the overall satisfaction of the SUs when we involve the supply and demand relationship. We

design a receiver-centric spectrum reuse mechanism, in which the optimal channel allocation

that maximizes social welfare can be achieved by the Vickrey-Clarke-Groves (VCG) auction

for maximal independent groups (MIGs). We prove that truthful bidding is the optimal

strategy for the SUs, even though the SUs do not participate in the VCG auction for MIGs

directly. Therefore, the MIGs are bidding truthfully and the requirement for social welfare

maximization is satisfied.

To further improve user satisfaction, user characteristics that enable heterogeneous

channel valuations need to be considered in spatial spectrum reuse. We design a channel

transaction mechanism for non-symmetric networks and maximize user satisfaction in con-

sideration of multi-level flexible channel valuations of the SUs. Specifically, we introduce

a constrained VCG auction. To facilitate the bid formation, we transform the constrained

VCG auction to a step-by-step decision process. Meanwhile, the SUs in a coalition play a

viii



coalitional game with transferable utilities. We use the Shapley value to realize fair payoff

distribution among the SUs in a coalition.
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Chapter 1
Introduction to Spectrum Sharing Using Economic Approaches

Spectrum sharing is a secondary distribution mechanism to mitigate the growing con-

flict between scarce spectrum resources and the explosion of wireless devices [1]. The basic

assumption of spectrum sharing is a hierarchical system composed of primary users (PUs)

and secondary users (SUs). When economic approaches are applied to the model of spec-

trum sharing, idle channels of PUs can be traded as merchandise. Channel transactions

usually feature several properties. For example, channels are perishable assets. Meanwhile,

channels of different PUs are differentiable products, providing different utilities. There-

fore, economic approaches can be applied to study the behaviors of PUs and SUs in a

spectrum sharing system.

In this research, we study the impact of flexible channel valuations of SUs in spectrum

sharing. Not only are SUs benefited from our research, but also PUs can increase their

payoffs by estimating the behaviors of the SUs more accurately and pricing the channels

more appropriately. When a PU has multiple channels for SUs to use, the simple assump-

tion that an SU continues to buy channels at a fixed price neglects the actual supply and

demand relationship. As a result, channel transactions will be far from the expectation and

payoffs of the PUs will be jeopardized. In practice, the channel valuation of an SU usually

decreases when the number of obtained channels increases. In this research, we analyze

the behaviors of SUs and PUs in consideration of flexible channel valuations, which helps

the PUs to better estimate the behaviors of the SUs. Specifically, the research focuses on

location-oriented spectrum sharing and channel auctions for spatial spectrum reuse.

Geographical information, including licensed blocks of PUs and locations of SUs, plays

an important role in a spectrum sharing system. In simplified models such as the dynamic

multi-band sharing in [2], utility-based cooperative game in [3], two-tier market in [4],

supermodular game in [5], and spectrum trading pricing game in [6], each licensed block

of PUs covers the entire system so that the relative locations of SUs with respect to PUs

1



can be neglected. However, if each licensed block of PUs covers the system partially,

permissions of channel transactions need to be granted according to the locations of SUs.

In such a case, regional differences in supply and demand need to be taken into account.

As a result, channel selection preference of each SU, channel selling preference of each PU,

and channel prices of different regions become new parameters, which cannot be handled

in the simplified models without geographical consideration.

User locations have been considered in several spectrum sharing games to model non-

isotropic interference of SUs. In [7], an inter-tier spectrum sharing algorithm between a

macro cell and several pico cells in consideration of cell ranges is built based on Stackelberg

games. In [8], a cellular operator balances between femtocell and macrocell services in a

Stackelberg game based on the coverage of femtocell services. In both models, there exists

only one PU in the spectrum sharing system. When there are multiple PUs, the selling

competition among PUs and the different channel selection preferences of SUs need to be

considered. In [9] and [10], PUs’ competition of shared bandwidth at neighboring locations

has been studied, in which SUs are combined into independent sets according to mean valid

graphs and floating channel prices among these sets. In [11], dynamic spectrum access of

multiple PUs and multiple SUs is designed as a multiauctioneer progressive auction. The

optimal channel assignment is achieved by Kuhn-Munkres algorithm. However, the channel

demand models of SUs in [9–11] are based on the simplified mechanism that an SU will buy

a channel when the channel price is lower than a threshold. In practice, channel demand

is a function of channel price.

Among existing spectrum sharing models, few consider the licensed blocks of PUs. In

[12] and [13], pricing-based decentralized spectrum access of SUs is studied in a Stackelberg

game for two scenarios, monopoly PU market and multi-PU market. Although bounded

licensed areas of the PUs are considered to perform admission control, channel selling

preferences of the PUs are neglected due to the assumption that all SUs are within the

intersection of the PUs’ licensed areas. In [14], dynamic spectrum trading among multiple

2



sellers and multiple buyers is considered under deterministic and stochastic models. In

these models, the spectrum access opportunities are restricted to the licensed areas of the

PUs. However, similar to the models in [10] and [11], the single price policy of the PUs

and the simple channel demand model of the SUs limit the application of this approach to

a large network.

To further increase spectrum utilization, we consider the scenario of spatial spectrum

reuse. Spatial spectrum reuse is a spectrum sharing mechanism that enhances spectrum

utilization by allowing users at different locations to access the same channel simultaneously.

PUs, as authorized channel holders, can share a channel with multiple SUs who do not own

the spectrum resource. The strengths of the received signal and co-channel interference are

the two main factors to consider in spatial spectrum reuse [15].

Recently, more attention on spatial spectrum reuse has been paid to spectrum efficiency

improvement through system throughput maximization under different network settings.

In [16], enhanced spatial spectrum reuse for the coexistence of LTE and Wi-Fi systems is

achieved through delicate allocation of spatial degrees of freedom. The throughput of the

spatial spectrum sharing system is derived and hence can be optimized between the LTE

cells and the Wi-Fi system. In [17], dynamic spectrum access is modeled as a matching

game between PUs and SUs. A mechanism that raises buyers’ willingness to pay and in-

creases channel utilization is proposed to maximize the number of accessible channels of

an SU given the minimum demand on the spectrum. In [18], spectrum reuse in a dense

network of small cells with given traffic statistics is considered. With the proposed user as-

sociation and spectrum allocation, the network capacity increases. In [19], temporal-spatial

spectrum reuse in a millimeter-wave ultra-dense network is considered. To maximize the

system throughput, a non-cooperative game among SUs is proposed and the existence of

Nash Equilibrium (NE) is proved. In [20], a mechanism is proposed for the coexistence

of massive multiple-input multiple-output (MIMO) cellular and Wi-Fi networks. The pro-

posed method improves the MIMO cellular network throughput without significantly jeop-

3



ardizing the performance of nearby Wi-Fi devices. In [21], three dynamic spectrum reuse

techniques incorporating both spatial and time domains are introduced. The performance

of these techniques when applied to the coexistence of LTE and WiFi networks is evalu-

ated. In [22], the coexistence of device-to-device (D2D) and cellular networks is discussed.

A mode selection scheme to manage intra-cell interference in a limited cellular network

region is proposed and hence the number of successful transmissions among D2D users

increases. In [23], the optimal channel allocation in a spatial spectrum reuse scenario is

analyzed under centralized and decentralized policies. In [24], a resource allocation prob-

lem for spectrum reuse between uplink and D2D communications is introduced. To solve

the problem, a nonconvex optimization problem is formulated and a suboptimal resource

allocation algorithm is obtained via convex approximation. In [25], the efficiency of spatial

spectrum reuse is studied in consideration of signal features in the THz frequency band.

It is proved that there exists an optimal distance among receivers to maximize the system

throughput in an ultra-dense THz wireless network. In [26], an opportunistic spectrum ac-

cess problem in the MAC layer is introduced, the interference minimization game is proved

to be a potential game, and two decoupled learning algorithms are proposed to approach

the NE. In [27], the spatial spectrum reuse is modeled as a congestion game, in which an

SU selects which channel to use and its payoff depends on the strategies of other SUs due

to the co-channel interference. In the congestion game, a NE is obtained with a distributed

learning algorithm. More discussions are presented in [28–31].

In large spectrum sharing systems, auction games that involve interactions between the

auctioneers and bidders provide an alternative way to allocate channels in spatial spectrum

reuse. By setting proper auction rules and incentives, an auction game exhibits its specific

features. For example, bidders in a Vickrey auction [32] tend to submit bids that reveal

their true valuations, and an English auction helps the seller to gain more profit [33]. Auc-

tion games have been applied to spatial spectrum reuse in [34], where the game design aims

towards efficient and fraud-free channel allocation. In [35], the application of double auc-

4



tion to spectrum reuse in heterogeneous networks is studied. The proposed double auction

design helps both the buyers and sellers to achieve a truthful, rational, and budget-balanced

market. In [36], a spectrum auction game in a two-tier network is proposed. In between

end users and channel holders, the secondary service provider (SSP) plays a role as an

intermediary. The SSP obtains channels from channel holders through an auction process

and distributes these channels to end users for spectrum reuse. In [37], an auction game

in which channel sellers have the option to quit is proposed. Conditions on using private

negotiation instead of auction are given in consideration of valuations of both buyers and

sellers. In [38], the ex-post and ex-ante auctions in consideration of channel supply uncer-

tainties are proposed. The expected payoffs to buyers and sellers and the social welfares

of these auctions are compared. In [39], a truthful spectrum auction mechanism is pro-

posed to improve spectrum utilization in consideration of both the quality of service (QoS)

and spatial spectrum reuse. In addition, auction games improve spatial spectrum reuse

in heterogeneous networks. In [40], a mechanism for truthful double spectrum auctions,

TRUST, is proposed. The mechanism minimizes the tradeoff between spectrum reusability

and economic robustness. In [41], two auction mechanisms with different charging poli-

cies are proposed for power allocation in spatial spectrum reuse. Both mechanisms obtain

socially optimal outcome for a large spectrum sharing system.

The rest of the dissertation is organized as follows. In Chapter 2, we consider both

the locations of SUs and the licensed blocks of PUs. By modeling the multi-price policy

of the PUs and the price-elastic demand of the SUs, we specify channel selling preferences

of the PUs, channel selection preferences of the SUs, and channel prices of the PUs in

different regions. In Chapter 3, we propose a new mechanism for spatial spectrum reuse

by considering flexible valuations of SUs’ channels, which manifests supply and demand

relationship. In Chapter 4, we consider multi-level flexible channel valuations of the SUs

over non-identical channels, and propose a mechanism that better serve the SUs in terms

of the overall satisfaction.
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Chapter 2
Location-Oriented Evolutionary Games for Price-Elastic
Spectrum Sharing

2.1 Introduction

In this chapter, we consider both the locations of SUs and the licensed blocks of PUs.

By modeling the multi-price policy of the PUs and the price-elastic demand of the SUs,

we specify channel selling preferences of the PUs, channel selection preferences of the SUs,

and channel prices of the PUs in different regions. Specifically, we consider a spectrum

sharing system in a large geographic region based on our preliminary work in [42], where

the licensed areas of the PUs are bounded. Hence, each PU could sell idle channels only

to the SUs in its licensed area. In such a scenario, the SUs have different lists of suppliers.

On the other hand, based on the competition status, each PU has a chance to increase

its payoff by selecting appropriate SUs to sell channels and setting appropriate prices for

the SUs. To quantize the competition status, we establish a price-elastic demand model

that incorporates both the double log demand (DLD) [43] and multi-nomial logit (MNL)

models [44]. Our demand model is applicable to both oligopoly and monopoly markets,

two common market structures for spectrum sharing [45–47].

To maximize the payoffs of the PUs, we propose a unique quota transaction process.

In the process, the PUs set the number of channels that they would like to sell to each

particular SU, or quota. In our individual analysis for nonhomogeneous SUs, we prove the

existence and uniqueness of the evolutionary stable strategy (ESS) quota vector of each PU

when the PUs sell channels without reserve. Based on the evolutionary procedure defined

as replicator dynamics, we design a learning process to obtain the best integer quota (BIQ).

Furthermore, we consider the scenario that the PUs sell channels with reserve. We predict

the channel prices for the PUs leading to the optimal supplies of the PUs. Moreover, we

This chapter, previously published as F. Zhang, X. Zhou, and X. Cao, “Location-oriented evolutionary
games for price-elastic spectrum sharing,” IEEE Transactions on Communications, vol. 64, no. 9, pp.
3958-3969, Sept. 2016, is reprinted here by permission of IEEE.

6



apply a grouping mechanism when the SUs are homogeneous to simplify the process based

on utility zones.

The rest of the chapter is organized as follows. In section 2.2, we give our model of the

spectrum sharing system. In section 2.3, we propose our unique quota transaction process,

based on which we discuss the ESS quotas for two scenarios, selling channels without reserve

and selling channels with reserve. In addition, we design the learning processes for the two

scenarios, respectively. Next, in section 2.4, we introduce the grouping mechanism to

simplify the process. In section 2.5, we present our simulation results for the two scenarios.

Finally, we draw our conclusions in section 2.6.

2.2 System Model

2.2.1 System Setup

Suppose that there are M PUs and N SUs in a spectrum sharing system. For the mth

PU, it has a supply of Sm non-overlapping channels to sell to the SUs. Cm is the cost of

each channel for the mth PU. We assume that a channel can be sold only once in a single

transaction, and the transaction cost for each channel is CT . For the nth SU, it has a

demand of Dn channels given a budget price ψn, which is the price that the nth SU expects

to pay for a channel.

In our system, themth PU is licensed to use a certain bandwidth in a specific geographic

block Am and can only sell its idle channels in Am. For different SUs, their lists of suppliers

are therefore not the same. In Figure 2.1, we illustrate possible circumstances regarding

the geographical relationship of the PUs.

We set (xn, yn) as the location of the nth SU. Based on whether the nth SU is inside

Am or not, we use tmn = 1 to denote the acceptance when (xn, yn) ∈ Am and tmn = 0

the denial of a transaction that the nth SU offers to buy channels from the mth PU when

(xn, yn) /∈ Am. We define pmn as the channel price at which the mth PU expects to sell to

the nth SU. If tmn = 0, the mth PU cannot sell channels to the nth SU. In this case, pmn

is set to the choke price [48] to avoid possible transactions. We define dmn as the number

7
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Figure 2.1. System model in location-oriented spectrum sharing.

of channels that the nth SU offers to buy from the mth PU after the nth SU obtains the

information of channel prices. Meanwhile, since transaction amounts may be different from

demands, we define bmn as the number of channels that the nth SU actually buys from the

mth PU. Note that bmn = 0 if tmn = 0.

2.2.2 Channel Utility

In our system, we use Umn to denote the channel utility obtained by the nth SU buying

a channel from the mth PU. Based on the economic model in [49],

Umn = umn + Ξmn, (2.1)

where umn reflects the channel capacity, and Ξmn is a linear price-income sensitivity function

that describes how the channel utility is related to the channel price [50]. Specifically,

umn = δWm log(1 + SNRmn) (2.2)
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and

Ξmn = γ(ψn − pmn), (2.3)

where δ > 0 and γ > 0 are weighting factors,Wm is the bandwidth of each channel from the

mth PU, and SNRmn is the signal to noise ratio that the nth SU can achieve when buying

a channel from the mth PU, without breaking the interference temperature constraint on

the boundary of Am [51, 52].

2.2.3 Demand Model

To determine dmn, we use the DLD and MNL models [43, 44] to reflect the price-

elastic demand of the SUs and the market shares of the PUs, respectively. In [53], a similar

concept of price-elastic demand is applied to a spectrum trading system catering to demand

variations of SUs. In this chapter, we expand the application of price-elastic demand to a

system considering license boundaries and location-oriented channel utilities.

Firstly, given a spectrum sharing system consisting of only the mth PU and the nth

SU, the demand of the nth SU will vary according to the channel price of the mth PU.

Given its budget price ψn, the SU would like to buy more channels to increase data rate if

the channel price of the PU is low, and vice versa. A typical model to describe such price

elasticity is the DLD model that has been applied to describing the demand of customers

in the gasoline market [54]. Let dmn denote the demand after the nth SU has the price

information of the mth PU. According to the DLD model,

dmn = Λmne
ζ0 ln(ψn)−ζ1 ln(pmn), (2.4)

where ζ0 > 1, ζ1 > 1 are constants, and Λmn is the demand that the nth SU offers to buy

from the mth PU at ψn. In this single-PU and single-SU system, Λmn = Dn.

Then we analyze a spectrum sharing system of multiple PUs and multiple SUs. In

this case, the market shares of the PUs need to be determined. Since the channels of

different PUs are different only in channel utilities, we regard the channels of different

9



PUs as different brands. Therefore, the attempts of selling channels to the SUs can be

interpreted as brand competitions. We apply the MNL model, a well-known method for

the analysis of brand choice, to estimate Λmn out of the origin Dn. Specifically,

Λmn = Dn
tmne

Umn∑M
i=1 tine

Uin

, (2.5)

where tmneUmn∑M
i=1 tine

Uin
is known as the multi-nomial logit that reflects the percentage of Dn

obtained by the mth PU. In the multi-PU and multi-SU system, dmn depends on not only

the channel price of the mth PU but also the channel prices of all the other suppliers of

the nth SU.

The MNL model determines the share of Dn that each PU can have, but does not

change Dn. Meanwhile, the DLD model describes the variation of the nth SU’s demand on

the mth PU because of price elasticity. Our demand model is applicable to both oligopoly

and monopoly markets, which can be used to stimulate channel selection preferences of the

SUs and to prevent the PUs from irrational high prices.

2.2.4 Problem Formulation

For the mth PU, the satisfaction of channels requests is not guaranteed, since Sm

is finite. Hence, the actual transaction number, bmn, is not necessarily equal to dmn.

Meanwhile, the mth PU may be reluctant to sell all the channels in consideration of its

potential payoff. In other words, bmn ≤ dmn and
∑N

n=1 tmnbmn ≤ Sm. Therefore, the payoff

of the mth PU is

πm =
N∑
n=1

(pmn − CT )bmn − SmCm. (2.6)

We assume that each PU tries to achieve its maximum payoff. For the mth PU, the

problem of interest is

max
(pm1,··· ,pmN )
(bm1,··· ,bmN )

πm(pm1, · · · , pmN , bm1, · · · , bmN) (2.7)
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subject to

pmn > 0, for n = 1, 2, · · · , N, (2.8)

bmn ≤ dmn, for n = 1, 2, · · · , N, (2.9)

and
N∑
n=1

bmn ≤ Sm. (2.10)

Since the licensed block of the mth PU could be covered or partially overlapped by the

licensed blocks of other PUs, the interest conflicts induced by competitions of selling chan-

nels in the same area are inevitable. As a result, the solution for the optimization problem

in (2.7)-(2.10) is to find the best response to channel prices and channel transactions of all

the other PUs which well fits a game theory framework.

2.3 Evolutionary Games of PUs with Nonhomogeneous SUs

In classical game theory, each PU must consider the strategies of other PUs to ensure

its own strategy appropriate. However, the inequities of channel demands and supplies in

our model add complexity for the PUs to find optimal pure strategies or mixed strategies.

Meanwhile, analyzing the optimal strategies of other PUs requires more effort in a large

system like ours. To solve the problem, we apply evolutionary games [55]. Therefore, each

PU can adjust its strategy and achieve the ESS with its own payoff history. Furthermore,

using evolutionary games can add robustness to our system when there are irrational PUs.

In general, the SUs have nonidentical budget prices. According to (2.3), the demand

from each SU has to be analyzed individually. Hence, we define the SUs with nonidentical

budget prices as nonhomogeneous SUs. In the following, we design evolutionary games to

solve the problem in (2.7)-(2.10).

2.3.1 Quota Transaction Process

To apply evolutionary games, we design a quota transaction process, in which the PUs

set the numbers of channels they would like to sell to particular SUs, or quotas. Specifically,

the quota that themth PU sets for the nth SU is kmn. Note that if tmn = 0, kmn = 0. There
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are two scenarios in the quota transaction process. If the mth PU sells channels without

reserve,
∑N

n=1 kmn = Sm. If the mth PU sells channels with reserve,
∑N

n=1 kmn < Sm. As

long as a quota is set, the transaction number should be under the quota, i.e., bmn ≤ kmn.

Hence, bmn = min(kmn, dmn).

On the kmn-dmn plane, there are two possible situations.

1. When (kmn, dmn) ∈ {kmn ≥ dmn}, we have bmn = dmn. We can view the unsold chan-

nels as reserved channels of the mth PU, without changing the transaction numbers

and the payoff of the mth PU as if kmn = dmn.

2. When (kmn, dmn) ∈ {kmn ≤ dmn}, we have bmn = kmn. Note that given bmn, the

higher pmn is, the higher payoff can be obtained according to (2.7). Meanwhile,

a higher pmn indicates a lower dmn from (2.5). Hence, the highest payoff implies

dmn = kmn.

Therefore, we let kmn = dmn = bmn to maximize the payoff of each PU.

Given the quota information of the PUs, the payoff of each PU can be determined. For

the mth PU, we denote N ⋄
m as the set of SU indices satisfying tmn ̸= 0. Hence, the payoff

of the mth PU in the quota transaction process is

πm =
∑
n∈N ⋄

m

(pmn − CT )kmn − SmCm, (2.11)

where pmn can be determined by

dmn(p1n, · · · , pMn) = kmn (2.12)

for all n ∈ N ⋄
m.

From (2.12), we notice that pmn can be expressed as a function of (kmn, k−mn), where

k−mn are the quotas set for the nth SU by the PUs other than the mth PU. Meanwhile, πm

is related not only to the quotas of the mth PU, but also to the other PUs. For clarity, we
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further describe πm as πm(km,k−m), where km = (km1, · · · , kmN) denotes the quota vector

of the mth PU and k−m the quota vectors of the PUs other than the mth PU.

Based on the above discussion, the original optimization problem in (2.7)-(2.10) can

be transformed into

max
km

πm(km,k−m) (2.13)

subject to
N∑
n=1

kmn ≤ Sm. (2.14)

In the quota transaction process, we eliminate transaction situations that could not maxi-

mize the payoffs of the PUs, i.e., when dmn ̸= bmn. Therefore, instead of being a function of

prices and transaction numbers, the payoff of the mth PU can be adjusted by changing its

quotas according to (2.13). In addition, the mth PU no longer needs to consider constraint

(2.9).

2.3.2 Formulation of Evolutionary Games

In our quota transaction process, each PU tries to set more quotas to the SUs with

higher channel utility assessment. However, the payoff of a PU still depends on two other

factors. Firstly, channel price is a decreasing function of channel supply. It does not

necessarily guarantee that setting more quota can bring more payoff to the PU. Secondly,

the PU has to consider the competitions of other PUs, which may reduce the expected

payoff. Obviously, selling all channels to one SU is not an optimal solution. Therefore,

each PU has to answer the following two questions. Which SUs to set non-zero quotas?

How to set these non-zero quotas?

According to classical game theory, each PU needs to figure out the optimal strategies

of other PUs, and then finds its best response of quotas. However, analyzing the optimal

mixed strategies of other PUs requires more effort in a large system like ours. Instead, we

suppose that the mth PU randomly sets non-zero initial quotas to the SUs in its licensed

block. Afterwards, the mth PU changes its quotas according to its payoff history and
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gradually finds out the optimal strategy. Therefore, we formulate the optimization problem

of the mth PU in (2.13)-(2.14) as evolutionary games, denoted by Hm. If the mth PU sells

channels without reserve, the virtual players are the Sm channels. If the mth PU sells

channels with reserve, the virtual players are S ′
m channels (S ′

m ≤ Sm). For each player,

the strategy space is {n|n ∈ N ⋄
m}. Hence, the payoff for each player who chooses strategy

n is π̄mn = pmn − Cm − CT , and the population of the players who choose strategy n is

kmn. Apparently, the quota vector km includes all strategies of the players. Let Km[Sm]

denote the set of quota vectors available to the mth PU in the scenario of selling channels

without reserve, and Km[S
′
m] denote the set of quota vectors available to the mth PU

in the scenario of selling channels with reserve. Since an ESS is an evolutionarily stable

Nash equilibrium (NE) which prevents each player from alternating its strategy [55], the

optimization problem in (2.13) and (2.14) is equivalent to finding an ESS quota vector

in Km[Sm] in the scenario of selling channels without reserve, or to finding an ESS quota

vector in Km[S
′
m] in the scenario of selling channels with reserve.

2.3.3 ESS Quotas Without Channel Reserve

In this subsection, we discuss the existence and uniqueness of the ESS quota vector

of each PU. We suppose that each PU has at least one SU to sell channels, and each PU

sells channels without reserve. To obtain an ESS quota vector, the mth PU follows an

evolutionary procedure defined as replicator dynamics [55]. In this procedure, to build the

relationships between quotas and payoffs, themth PU adjusts km(τ) in each contract period

τ , τ = 1, 2, · · · . Note that the contract periods mark the iteration steps in the evolutionary

games. Furthermore, we use contract periods to synchronize the evolutionary games played

by the PUs. Since each PU plays its evolutionary games individually, different time lengths

of contract periods will cause fluctuation on channel utilities in between transactions, and

therefore cause system chaos. In our model, the default length of a contract period is set

by the spectrum sharing system. Additionally, the transaction cost for each channel CT is

related to the duration of a contract period. In practice, frequent channel transactions will
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reduce channel efficiency, and overlong duration of a contract period will decrease payoffs

of PUs.

We set the replicator dynamics as

∆kmn(τ) =µmkmn(τ)π̄mn (kmn(τ), k−mn(τ))

− µmkmn(τ)π̄m (km(τ),k−m(τ)) (2.15)

for all n ∈ N ⋄
m, where ∆kmn(τ) = kmn(τ+1)−kmn(τ), π̄mn(kmn(τ), k−mn(τ)) is the average

channel payoff of the channels sold to the nth SU for the mth PU, and π̄m(km(τ),k−m(τ))

is the average payoff of all the channels for the mth PU. Specifically, we have

π̄mn(kmn(τ), k−mn(τ)) = pmn(kmn(τ), k−mn(τ))− Cm − CT (2.16)

and

π̄m(km(τ),k−m(τ)) =
∑
n∈N ⋄

m

kmn(τ)

Sm
pmn(kmn(τ), k−mn(τ))

−
∑
n∈N ⋄

m

kmn(τ)

Sm
(Cm − CT ). (2.17)

In (2.15), µm > 0 is a multiplier to control the growth rate ∆kmn(τ)/kmn(τ) within (0, 1),

which ensures the variation range of kmn(τ) within (0, Sm) for any kmn(1) ̸= 0 and kmn(1) ̸=

Sm. Hence, negative quota will not emerge during the process.

If π̄mn(kmn(τ), k−mn(τ)) is larger than π̄m(km(τ),k−m(τ)), the mth PU will increase

kmn(τ) in the (τ + 1) contract period, indicating selling more channels to the nth SU, and

vice versa. Although each PU changes its quotas in each contract period, the stability of∑
n∈N ⋄

m
kmn(τ) is automatically satisfied in the replicator dynamics according to Proposition

2.1. Therefore, the constraint
∑

n∈N ⋄
m
kmn = Sm is guaranteed.

Proposition 2.1. The summation of quotas of each PU will not change during the repli-
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cator dynamics. In other words,
∑

n∈N ⋄
m
kmn(τ) =

∑
n∈N ⋄

m
kmn(τ + 1).

Proof. See Appendix A.1.

From (2.15), a stable quota vector of the mth PU requires ∆kmn(τ) = 0 for all n ∈ N ⋄
m.

It can be verified that π̄mn(kmn, k−mn) = π̄m(km,k−m) is the general solution to ∆kmn(τ) =

0, while kmn = 0 and kmn = Sm are special solutions. Furthermore, each PU changes its

quota vector towards a stable quota vector for increased payoff according to Proposition

2.2.

Proposition 2.2. The quota changes of each PU in each contract period generate higher

payoffs. In other words,
∑

n∈N ⋄
m
π̄mn(kmn(τ), k−mn(τ)) · ∆kmn(τ)

Sm
≥ 0.

Proof. See Appendix A.2.

Proposition 2.2 shows that the replicator dynamics are myopic adjustment dynamics

[56]. The quota variations by (2.15) can bring the mth PU a higher payoff, assuming

the average channel payoff level does not change. Proposition 2.2 can be viewed as the

motivation of the PUs to change quotas. Meanwhile, Proposition 2.2 also reveals that the

mth PU will lose the impetus for quota change when the average channel payoffs from

the SUs inside its licensed area are identical, i.e., π̄mn(kmn, k−mn) = π̄m(km,k−m) for all

n ∈ N ⋄
m.

We can determine a stable quota vector k∗
m = (k∗m1, · · · , k∗mN) of the mth PU for the

following two case:

1. The mth PU has only one SU to sell channels, i.e.,
∑N

n=1 tmn = 1.

In this case, k∗mn = Sm when n ∈ N ⋄
m, and k

∗
mn = 0 when n /∈ N ⋄

m.

2. The mth PU has at least two SUs to sell channels, i.e.,
∑N

n=1 tmn ≥ 2.

In this case, k∗mn ∈ (0, Sm) satisfies π̄mn(k
∗
mn, k

∗
−mn) = π̄m(k

∗
m,k

∗
−m) when n ∈ N ⋄

m.

And k∗mn = 0 when n /∈ N ⋄
m.
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In the second case, since

π̄mn(k
∗
mn, k−mn) = π̄m(k

∗
m,k−m)

holds for all n ∈ N ⋄
m, the average channel payoffs from these SUs are identical. According

to (2.16), the channel prices for these SUs are equal. Denote the uniform price as ρ∗m for

the SUs in N ⋄
m. Hence, ρ

∗
m and k∗mn, n ∈ N ⋄

m, are the solutions to the following equations,

∑
n∈N ⋄

m

k∗mn = Sm (2.18)

and

dmn(ρ
∗
1, · · · , ρ∗m, · · · , ρ∗M) = k∗mn (2.19)

for all n ∈ N ⋄
m. In this case, the mth PU does not adopt kmn = 0 or kmn = Sm as possible

quota when n ∈ N ⋄
m, since neither of them depends on the payoff obtained from the nth

SU. These two possible solutions will be represented as kmn → 0 and kmn → Sm if either

one happens.

In the following, we analyze the existence and uniqueness of k∗mn, n ∈ N ⋄
m.

Theorem 2.1. If a PU is eligible for selling channels to at least one SU, the stable quota

vector k∗
m = (k∗m1, · · · , k∗mN) always exists and is unique.

Proof. See Appendix A.3.

In Theorem 2.1, we have shown the existence and uniqueness of k∗
m. More importantly,

k∗
m is an ESS quota vector for the mth PU according to Theorem 2.2.

Theorem 2.2. Suppose stable quota vectors k∗
−m are set. Starting from any quota vector

km(1) ∈ Km[Sm], km(τ) converges to k∗
m in the replicator dynamics defined by (2.15), if

h(τ)h(τ + 1) ≥ 0 (2.20)

17



for all n ∈ N ⋄
m and τ = 1, 2, · · · , where h(τ) = π̄mn(kmn(τ), k

∗
−mn)− π̄m(km(τ),k

∗
−m).

Proof. See Appendix A.4.

Theorem 2.2 indicates that under k∗
−m and constraint (2.20), k∗

m is asymptotically

stable in the replicator dynamics, and thus an ESS quota vector [57]. Here we use constraint

(2.20) to control the quota changing speed and to ensure the convergence of the evolutionary

procedure theoretically. In practice, convergence can be easily achieved by setting an

appropriate µm in (2.15) so that ∆kmn(τ) is a small variation in comparison with kmn(τ).

Since each PU tries to maximize its payoff and sells channels without reserve, πm(k
∗
m,k

∗
−m)

is the optimal stable payoff for the mth PU.

2.3.4 Learning Process For PUs Without Channel Reserve

In the case that the PUs sell channels without channel reserve, we propose a learning

process to reach the ESS quotas. Without loss of generality, we assume that the PUs are

unsophisticated users without knowing that ESS quotas indicate single-price policy in the

replicator dynamics, and the PUs share quota information with others. At the same time,

channel utilities and budget prices are accessible for all the PUs. In the learning process,

the mth PU can obtain k∗
m with the payoff history of its own only. After setting an initial

quota vector, the mth PU can calculate the channel price for each SU by (2.12). Then the

mth PU will adjust its quota vector according to (2.15), redistributing channels among SUs

to render higher average channel payoffs. When ∆kmn = 0 for all n ∈ N ⋄
m, the learning

process will stop as the PUs have reached the ESS quota vectors.

However, the value of each ESS quota k∗mn may have a fractional part and thus unreal-

izable for the PUs that sell each channel as a whole. Therefore, the PUs need to obtain the

BIQ vectors k̃∗
m, m = 1, · · · ,M , by modifying the learning process as follows. Firstly, we

round the ESS quotas to the nearest integers and thus
∑

n∈N ⋄
m
round(kmn(τ)) − Sm = ω,

where round(·) is the nearest integer function. If ω ≥ 0, we let k̃mn(τ) = round(kmn(τ))−1

for the ω SUs bringing the least quota payoffs while round(kmn(τ)) ̸= 0, and k̃mn(τ) =

round(kmn(τ)) for the other SUs. If ω < 0, we let k̃mn(τ) = round(kmn(τ)) + 1 for the ω
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SUs bringing the highest quota payoffs, and k̃mn(τ) = round(kmn(τ)) for the other SUs.

As a result, the channel price p̃∗mn under BIQ k̃∗mn is different from ρ∗m.

The learning process can be described as in Algorithm 1. Note that the BIQs are not

necessarily equal to the ESS quotas. Note that ∆kmn, n ∈ N ⋄
m may not converge to zero

for the learning process to stop. Therefore, we set a maximum number of contract periods

τmax.

Algorithm 1 Learning process for PUs without channel reserve.

1: Initialize: Sm = Sm, τ = 1, kmn(1) = Sm/
∑N

n′=1 tmn′ for n ∈ N ⋄
m, and kmn(1) = 0

for n /∈ N ⋄
m, n ∈ N . Meanwhile, channel capacity u and budget price ψ are accessible

for all the PUs.
2: Do
3: The PUs share quota information with each other.
4: Calculate pmn(kmn(τ), k−mn(τ)), n ∈ N ⋄

m, by (2.12).
5: The PUs inform the SUs of quota and price information.
6: Complete channel transaction.
7: Calculate π̄mn(kmn(τ), k−mn(τ)), n ∈ N ⋄

m,
and π̄m(km(τ),k−m(τ)) by (2.16) and (2.17) respectively.

8: Calculate ∆kmn, n ∈ N ⋄
m, by (2.15).

9: Let kmn(τ + 1) = kmn(τ) + ∆kmn(τ), n ∈ N ⋄
m.

10: Let ω =
∑

n∈N ⋄
m
round(kmn(τ))− Sm.

11: if ω ≥ 0 then
12: k̃mn(τ) = round(kmn(τ)) − 1 for the ω SUs bringing the least quota payoffs while

round(kmn(τ)) ̸= 0, and k̃mn(τ) = round(kmn(τ)) for the other SUs.
13: else
14: k̃mn(τ) = round(kmn(τ)) + 1 for the ω SUs bringing the highest quota payoffs, and

k̃mn(τ) = round(kmn(τ)) for the other SUs.
15: end if
16: τ = τ + 1.
17: Repeat do until ∆kmn = 0 for n ∈ N ⋄

m or τmax is reached.

In the evolutionary procedure, we let the PUs share quota information with each other

to reduce the complexity and overhead of obtaining channel prices to sell allocated quotas.

However, channel prices can be obtained by designing another learning process without

knowing the quota information of other PUs. In a contract period, the SUs will continuously

feed demands back to the PUs for given channel prices till demands equal quotas. Then

we obtain the channel prices to sell allocated quotas. We omit this learning process due to

space limit.
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2.3.5 ESS Quotas With Channel Reserve

To achieve a higher payoff, the mth PU may sell some but not all of its channels,

i.e.,
∑

n∈N ⋄
m
kmn = S ′

m ≤ Sm. Similar to the scenario of selling channels without channel

reserve, we denote k∗
m[S

′
m] as the ESS quota vector constrained by

∑
n∈N ⋄

m
kmn = S ′

m. We

can determine k∗
m[S

′
m] for the following two cases:

1. The mth PU has only one SU to sell channels, i.e.,
∑N

n=1 tmn = 1.

In this case, k∗mn[S
′
m] = S ′

m when n ∈ N ⋄
m, and k

∗
mn[S

′
m] = 0 when n /∈ N ⋄

m.

2. The mth PU has at least two SUs to sell channels, i.e.,
∑N

n=1 tmn ≥ 2.

In this case, k∗mn[S
′
m] ∈ (0, S ′

m) satisfies

π̄mn(k
∗
mn[S

′
m], k

∗
−mn[S

′
−m]) = π̄m(k

∗
m[S

′
m],k

∗
−m[S

′
−m])

when n ∈ N ⋄
m, where S

′
−m are the channel supplies of the PUs other than the mth

PU. And k∗mn[S
′
m] = 0 when n /∈ N ⋄

m.

Similar to (2.18) and (2.19), k∗
m[S

′
m] and the uniform price ρ∗m[S

′
m] to obtain k∗

m[S
′
m]

can be found by solving ∑
n∈N ⋄

m

k∗mn[S
′
m] = S ′

m (2.21)

and

dmn(ρ
∗
1[S

′
1], · · · , ρ∗m[S ′

m], · · · , ρ∗M [S ′
M ]) = k∗mn[S

′
m] (2.22)

for all n ∈ N ⋄
m.

To further increase the payoff, the mth PU needs to find the optimal supply S ′∗
m ac-

cording to the optimal supplies of the other PUs S ′∗
−m. In the scenario of selling channels

with reserve, we can anticipate that the optimal payoff of each PU will be obtained by an

ESS quota vector. In other words, the mth PU should adopt a single-price policy to search

for S ′∗
m.
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Proposition 2.3. If the mth PU sets the same price ρm for the SUs in its licensed area,

∂πm
∂ρm

= 0 if and only if ρm = ζ1
ζ1−1

CT .

Proof. See Appendix A.5.

According to Proposition 2.3, ρm = ζ1
ζ1−1

CT is a critical point for πm. Actually,

ρm = ζ1
ζ1−1

CT is the global maximizer for πm. If the optimal supplies of the other PUs

S ′∗
−m are set, let the total channel supply needed be S ′′

m when ρm = ζ1
ζ1−1

CT . Therefore, S
′∗
m =

min(S ′′
m, Sm). Accordingly, the optimal stable payoff of themth PU is πm(k

∗
m[S

′∗
m],k

∗
−m[S

′∗
−m]).

2.3.6 Learning Process For PUs With Channel Reserve

In the scenario of selling channels with reserve, the PUs need to search for the ESS

quota vectors repeatedly for selected supplies of the PUs. Therefore, it is more difficult and

time consuming for the mth PU to find the optimal supply S ′∗
m and the ESS quota vector

k∗
m[S

′∗
m], compared with that in the scenario of selling channels without reserve.

To reach the optimal supplies (S ′∗
1 , · · · , S ′∗

M), we propose a learning process for the PUs

that sell channels with reserve. Without loss of generality, we assume that the PUs are

unsophisticated users without the knowledge that ρ∗m[S
′∗
m] may be equal to ζ1

ζ1−1
CT . The

learning process consists of several iterations. The iteration sequence is indexed by β and

the supplies of the PUs can be adjusted once in each iteration. Then the ESS quota vectors

and the payoff levels of the PUs can be obtained by Algorithm 1 based on the supplies of

the PUs. Afterwards, based on the variations of the payoff levels, the PUs can adjust the

supplies in the next iteration. By applying the secant line method [58], the supply change

of the mth PU is

∆S ′
m(β) =ϕm ·

π̄m(k
∗
m[S

′
m(β)],k

∗
−m[S

′
−m(β)])

S ′
m(β)− S ′

m(β − 1)

− ϕm ·
π̄m(k

∗
m[S

′
m(β − 1)],k∗

−m[S
′
−m(β − 1)])

S ′
m(β)− S ′

m(β − 1)
, (2.23)

where ϕm is a constant that defines the supply variation step of themth PU. When |∆S ′
m| <

σ for m = 1, · · · ,M , where σ is a small tolerance, the learning process will stop as the PUs
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obtain the optimal supplies (S ′∗
1 , · · · , S ′∗

M).

The learning process can be described as in Algorithm 2. To reduce the complexity,

we assume the initial supply of the mth PU is Sm and the mth PU searches for S ′∗
m by

decreasing channel supply. The maximum number of iterations is βmax.

Algorithm 2 Learning process for PUs with channel reserve.

1: Initialize: S ′
m(1) = Sm, S

′
m(2) = S ′

m(1)− 1,
π̄m(k

∗
m[S

′
m(1)],k

∗
−m[S

′
−m(1)]) = π̄m(k

∗
m,k

∗
−m),

and β = 1.
2: Do
3: Calculate π̄m(k

∗
m[S

′
m(β)],k

∗
−m[S

′
−m(β)]) according to Algorithm 1 by letting Sm =

S ′
m(β).

4: Calculate ∆S ′
m(β) by (2.23).

5: Let S ′
m(β + 1) = S ′

m(β) + ∆S ′
m(β).

6: if S ′
m(β + 1) > Sm then

7: S ′
m(β + 1) = Sm.

8: end if
9: β = β + 1.

10: Repeat do until |S ′
m(β + 1)− S ′

m(β)| < σ or βmax is reached.

2.4 Evolutionary Games of PUs with Homogeneous SUs

SUs using the same frequency band often have identical budget prices. In other words,

the SUs are homogeneous in our model. To simplify the evolutionary procedure for homo-

geneous SUs, we introduce the utility zones, based on which we group the SUs and apply

evolutionary games to groups of SUs.

2.4.1 Utility Zone

For homogeneous SUs, we set several utility zones for each PU. The SUs in each utility

zone will obtain similar channel capacities when buying channels from the corresponding

PU.

We divide Am into Zm utility zones. For the zth utility zone of the mth PU, the

estimated channel capacity is ũm,z, and ũm,z+1 − ũm,z = 1
Zm
um,max, where um,max is the

maximum possible channel capacity inside the licensed area Am. For the nth SU, if umn ∈

( z−1
Zm
um,max,

z
Zm
um,max], we can identify that the nth SU is in the zth utility zone of the

mth PU with ũm,z =
2z−1
2Zm

um,max.
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2.4.2 Grouping Mechanism

The SUs with the same PUs as their suppliers, and in the same utility zone of each sup-

plying PU, belong to one group. In each group, the SUs have identical selection preference

on suppliers and therefore can be treated as a single unit.

Suppose there are G groups of SUs in the spectrum sharing system. Similar to the

nonhomogeneous scenario, we use t̂mg = 1 to denote the acceptance and t̂mg = 0 the denial

of a transaction that group g offers to buy channels from the mth PU. We further define

p̂mg as the channel price at which the mth PU expects to sell to group g, d̂mg as the number

of channels that group g offers to buy from the mth PU after obtaining the information

of channel prices, b̂mg as the number of channels that group g actually buys from the mth

PU, and k̂mg as the quota that the mth PU sets for group g. We have

d̂mg = D̂g
t̂mge

Ûmg∑M
i=1 t̂ige

Ûig

eζ0 ln(ψ̂g)−ζ1 ln(p̂mg), (2.24)

where D̂g =
∑
n∈Ng

Dn , Ng is the set of SU indices in group g, ψ̂g is the budget price of the

homogeneous SUs in group g, and Ûmg is the channel utility obtained by an SU in group

g if the SU buys a channel from the mth PU. Here we suppose that the SUs in group g

obtain identical channel capacity if the SUs buy channels from the same PU. Specifically,

Ûmg = ũm,zg + γ(ψ̂g − p̂mg), (2.25)

where zg reveals the utility zone index in which group g is located. Moreover, the payoff

of the mth PU in the quota transaction process is

π̂m =
∑
g∈G⋄

m

(p̂mg − CT )k̂mg − SmCm, (2.26)

where G⋄
m is the set of group indices such that t̂mg ̸= 0.

We can similarly apply the quota transaction process to the spectrum sharing system

23



with M PUs and G SU groups. The replicator dynamics is

∆k̂mg(τ) =µ̂mk̂mg(τ)¯̂πmg(k̂mg(τ), k̂−mg(τ))

− µ̂mk̂mg(τ)¯̂πm(k̂m(τ), k̂−m(τ)) (2.27)

for all g ∈ G⋄
m, where ∆k̂mg, µ̂m, ¯̂πmg, and ¯̂πm are the counterparts of ∆kmg, µm, π̄mg, and

π̄m in (2.15). As a result, when the PUs sell channels without reserve, the ESS quotas in

our grouping mechanism can be obtained by following the replicator dynamics defined in

(2.27), and the BIQs in our grouping mechanism can be obtained by the learning process

described by Algorithm 1. In addition, when the PUs sell channels with reserve to achieve

optimal supplies, the ESS quotas that leads to the optimal payoff for the mth PU in our

grouping mechanism is k̂∗
m[Ŝ

′∗
m], and the BIQs that leads to the optimal realizable payoff for

the mth PU in our grouping mechanism can be obtained by the learning process described

by Algorithm 2.

Compared with the quota transaction process and the learning process in the scenario of

nonhomogeneous SUs, the computational complexity in our grouping mechanism is reduced.

In each contract period or iteration, only M × G variables need to be determined instead

of M ×N variables. On the other hand, the larger the number of utility zones is, the more

accurate the estimated channel capacity in a utility zone will be. With the increase of

the number of utility zones, the channel allocation results of the grouping mechanism will

approach the results of the individual analysis.

2.5 Simulation Results

2.5.1 Parameters

We study a system with 3 PUs. The licensed blocks of these PUs are rectangular,

similar to the geographic licensing schemes of the Federal Communications Commission

(FCC) [59,60]. In this system, homogeneous SUs whose budget price is 40 per channel are

uniformly distributed. When channel price equals the budget price, each SU has a demand
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Figure 2.2. Illustration of the system in our simulation and the utility zones in grouping
mechanism. Z1 = Z2 = Z3 = 2.

of 4 channels. Figure 2.2 gives an illustration of the system in our simulation.

We suppose that the channels of the PUs are Rayleigh fading channels with additive

white Gaussian noise (AWGN) [61], and the average power over each channel Γ̄Thr at the

licensed block boundary is 2× 10−10 W under the interference temperature constraint [62].

According to the two-ray model [63],

SNRmn = |ω|2 Γ̄Thr
ξnε0Wm

rαmn, (2.28)

where ω is the channel gain that follows complex normal distribution CN (0, 1) [61], rmn is

the minimum distance from (xn, yn) to the boundary of Am, α is the path loss exponent,

ξn is a constant related to the nth SU’s antenna, and ε0/2 is the power spectral density

of AWGN. In our simulation, we let α = 4 to simulate typical urban areas [63], ξn =

106, ε0/2 = 3 × 10−18 W/Hz, and the channel bandwidth Wm = 1 MHz. Under these

assumptions, we illustrate the grouping mechanism when each PU has 2 utility zones in
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Figure 2.3. Total channel payoffs for selected 2 PUs and system throughput in individual
analysis and grouping mechanism when N = 100.

Figure 2.2.

Meanwhile, we set δ = 10−5 and γ = 0.1 to make the channel capacity comparable to

the price-income sensitivity. In addition, we assume that channel demand is 10Dn when

channel price is 1
4
ψn, and channel demand is 1

4
Dn when channel price is 9

4
ψn in the DLD

model. Under this assumption, ζ0 = ζ1 = 1.66.

2.5.2 Selling Channels Without Reserve

In this scenario, each PU has a supply of 50 idle channels, and the cost Cm+CT = 10.

We set µm for the individual analysis as

1

µm
= max

n∈N ⋄
m

π̄mn(kmn(1), k−mn(1))

− min
n∈N ⋄

m

π̄mn(kmn(1), k−mn(1)), (2.29)

and µ̂m similarly in grouping mechanism.

Firstly, we suppose there are 100 SUs in the system. Figure 2.3 shows the total channel
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payoffs in 20 contract periods for selected 2 PUs in both individual analysis and grouping

mechanism. Meanwhile, Figure 2.3 shows the channel capacities obtained by all the SUs

in the system in the same contract periods. The total channel payoffs in the searches for

BIQs in the individual analysis fluctuate in tiny amounts after about 5 contract periods.

These fluctuations come from the integerization of the ESS quotas. In contrast, the total

channel payoffs in the grouping mechanism when each PU has 2 utility zones converge

to constant values in about 10 contract periods. Due to a relatively large quota in the

grouping mechanism, integerization of the ESS quotas does not affect a large portion of

quotas. In addition, the total channel payoffs of the BIQs in the grouping mechanism are

close to those in the individual analysis. Therefore, our grouping mechanism is a good way

to simplify the individual analysis. Additionally, the payoff variation ranges after several

contract periods are very small, indicating that quota changes do not bring significant

payoff increases. If we consider the cost of switching channels of the SUs, fewer contract

periods are needed for the convergence process to stop.

From Figure 2.3, the system throughput obtained by the SUs also increases to a higher

level in our learning process of maximizing the payoffs of the PUs. Therefore, the quota

transaction process together with the evolutionary procedure does increase the spectrum

efficiency of the whole system. Note that the system throughput fluctuation in the searches

for BIQs in the individual analysis also comes from the integerization of the ESS quotas.

To further study the reliability of our method, we change the number of SUs from

10 to 200. And we calculate the ESS quotas in the individual analysis and the BIQs

in both individual analysis and grouping mechanism for 100 different SU distributions by

following our learning processes. Figure 2.4 shows the average total channel payoffs of PU1.

Meanwhile, we use the total channel payoffs of the ESS quotas in the individual analysis

as our baseline to study the accuracy of the payoffs of the BIQs. Figure 2.4 also shows

the normalized standard deviation (NSTD) of payoff differences of the ESS quotas in the

individual analysis and the BIQs in both individual analysis and grouping mechanism.
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Figure 2.4. Average total channel payoff of PU1, and normalized standard deviation
(NSTD) of the payoff differences between BIQs and ESS quotas.

From Figure 2.4, the average total channel payoffs of the BIQs in the individual analysis

are close to those of the ESS quotas and the NSTD of payoff differences is relatively small

if the number of SUs is under 140. Meanwhile, the average total channel payoffs of the

BIQs in the grouping mechanism are close to those of the ESS quotas for any number of

SUs, but the NSTD of payoff differences are relatively large if the number of SUs is under

30. Therefore, BIQs in the individual analysis are better choices for a small number of SUs,

while BIQs in the grouping mechanism are better choices for a large number of SUs.

2.5.3 Selling Channels With Reserve

In this scenario, we analyze the trends of the total channel payoffs of the PUs with the

increase of their supplies. Suppose there are 100 SUs in the system and let Cm +CT = 10.

Changing the supply of each PU from 10 to 910, we calculate the total channel payoffs of

each PU by following Algorithm 2. Figure 2.5 shows the total channel payoffs of the ESS

quotas in the individual analysis of PU2 for 5 different cost combinations in the scenario of

selling channels with reserve. When PU2 only has a small number of channels to sell, the
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Figure 2.5. Total channel payoff of PU2 in individual analysis when selling channels with
reserve and N = 100.

total channel payoff in the scenario of selling channels with reserve is the same as that in

the scenario of selling channels without reserve. But if we increase the supply continuously,

there always exists a point at which PU2 will consider selling some but not all of its channels

to make higher profit. And this supply point will increase with the decrease of the channel

transaction cost CT .

2.5.4 Comparison With Centralized PUs

In a centralized system, channel transactions of all PUs are controlled by a central

agent to maximize the payoff of the system [64], while non-cooperative PUs only care

about their own payoffs. Suppose the parameters of the centralized system are identical

to our non-cooperative system, there are 100 SUs in both systems, and let Cm + CT = 10.

Figure 2.6 shows the optimal total channel payoff comparison between non-cooperative

PUs and centralized PUs when they sell channels without reserve. The optimal total

channel payoffs of both systems are identical. In the centralized system, the PUs do not

compete with each other. Therefore, the multi-nomial logit tmneUmn∑M
i=1 tine

Uin
in (2.5) always
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centralized PUs in individual analysis when selling channels without reserve and N = 100.

equals 1. In this case, the central agent randomly distributes the channels, and is reluctant

to distribute the channels in an efficient way, i.e., providing more system throughput with

no profit increase. In the non-cooperative system, the competitions of the PUs in different

areas provide them incentives to delicately distribute the channels. Therefore, the optimal

total channel payoffs of individual PUs differ from each other based on channel utilities.

Furthermore, the competitiveness leads to a lower efficiency in terms of iteration steps used

to achieve the optimal payoff, but at the same time increases the system throughput in

comparison with the average system throughput of random channel distribution.

2.6 Conclusions

In this chapter, we consider a spectrum sharing system in which the licensed areas of

the PUs and the locations of the SUs play important roles, and we seek to maximize the

payoffs of the PUs in such a system. For each PU, the geographic information not only

distinguishes the eligible SUs to sell channels, but also determines the potential competitors.

In our model, the PUs adopt a multi-price policy and have the pricing power. We employed
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a generalized utility model in which both the channel capacities and the channel prices in

the forms of price-income sensitivity functions are considered. Meanwhile, we established a

price-elastic demand model that incorporates the DLD and MNL models and is applicable

to both oligopoly and monopoly markets, two common market forms for spectrum sharing.

To solve the problem, we proposed a unique transaction process and discussed two different

scenarios. In the scenario of selling channels without reserve, we proved the existence and

the uniqueness of the ESS quota vector of each PU by applying an evolutionary procedure

defined as replicator dynamics. In the scenario of selling channels with reserve, we predicted

the channel prices for the PUs to render the optimal supplies of the PUs. Meanwhile, we

designed two learning processes for both scenarios. Furthermore, we introduced a grouping

mechanism for homogeneous SUs to simplify the process. In our simulation, we verified the

effectiveness of the learning processes and the efficiency of our spectrum sharing scheme.
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Chapter 3
On-Demand Receiver-Centric Channel Allocation for Spatial
Spectrum Reuse

3.1 Introduction

When maximizing the spectrum efficiency in spatial spectrum reuse under different

settings, we often ignore whether channels are allocated to the users in need of them. In

other words, supply and demand relationship is another factor that affects the valuation

of a channel, which is omitted in the existing work on spatial spectrum reuse. In this

chapter, we propose a new mechanism for spatial spectrum reuse by considering flexible

valuations of channels, which manifests supply and demand relationship. In other words,

the flexible channel valuations of SUs reflect the degree of desire for channels and comply

with the marginal value theory [65,66]. Different from conventional spatial spectrum reuse

mechanisms solely devoted to maximizing spectrum efficiency, our goal is to allocate chan-

nels to the SUs who treasure them and to increase spectrum utilization. In this way, the

social welfare, i.e., the accumulated valuation of channels, is maximized. Not only are SUs

benefited from our mechanism, but also PUs can increase their payoffs by estimating the

behaviors of SUs more accurately and pricing the channels more appropriately. When a

PU has multiple channels for SUs to reuse, the simple assumption that an SU continues

to buy channels at a fixed price neglects the actual supply and demand relationship. As

a result, channel transactions will be far from the expectation and payoffs of the PUs will

be jeopardized. In practice, the channel valuation of an SU usually decreases when the

number of obtained channels increases. Therefore, we need to find a method to increase

the social welfare in consideration of flexible channel valuations, which helps the PUs to

better estimate the behaviors of the SUs.

In our model, we design a receiver-centric spatial spectrum reuse mechanism, in which

This chapter, partially published as F. Zhang, X. Zhou, and M. Sun, “Constrained VCG auction for
spatial spectrum reuse with flexible channel evaluations,” in Proceedings of IEEE Global Communications
Conference, Dec. 2017, is reprinted here by permission of IEEE.
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the co-channel interference suffered by the receivers is considered. Meanwhile, the valua-

tions of channels of an SU are decreasing when the number of supplied channels increases,

which reflects the variation of marginal values. To maximize the social welfare, we con-

sider the Vickrey-Clarke-Groves (VCG) auction process [67,68] that sells multiple identical

items and leads to a socially optimal outcome. However, the application of the VCG

auction to our model needs to reflect the restriction on avoiding co-channel interference

when the PU allocates channels to the SUs. To solve the problem, we first group the

SUs into several maximal independent groups (MIGs) by adding an interference control

feature into the Bron-Kerbosch algorithm [69]. Then we introduce the VCG auction for

MIGs. We prove that truthful bidding, i.e., revealing the truthful valuations on channels,

is the optimal strategy for the SUs, such that the MIGs are bidding truthfully in the VCG

auction for MIGs. To determine the truthful bids for the MIGs, we design a step-by-step

decision process to help the MIGs to bid truthfully and the PU to allocate channels in a

socially optimal manner. Meanwhile, the VCG style prices charged to the MIGs can be

determined. Furthermore, we use three approximation methods to approach the optimal

channel allocation.

The rest of the chapter is organized as follows. In Section 3.2, we introduce our model of

the spatial spectrum sharing system and the flexible channel valuations of SUs. In Section

3.3, we introduce the constrained VCG auction for SUs and the VCG auction for MIGs.

We prove that truthful bidding is the optimal strategy for the SUs in the VCG auction for

MIGs, and design a decision process to implement truthful bidding for the MIGs and VCG

style pricing for the PU. In Section 3.4, we approach the optimal channel allocation using

a greedy algorithm, Dijkstra’s algorithm, and batch allocation. In Section 3.5 we present

our simulation results. Finally, we draw our conclusions in Section 3.6.
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3.2 System Model

3.2.1 System Setup

Suppose that there is a PU andM SUs in the spatial spectrum sharing system. The PU

has N non-overlapping idle channels to share with the SUs. Each SU consists of a transmit-

ter and a receiver. For SU m, m = 1, 2, · · · ,M , its transmitter and receiver are denoted as

Tm and Rm, respectively. The transmit power of Tm is pm, which is open information for the

PU. In this system, channels are tradable items and the SUs can only use channels bought

from the PU. To make our model more realistic, we consider the co-channel interference

suffered by the receivers rather than the transmitters to mitigate the hidden/exposed node

problem, such that the channel allocation is receiver-centric. In addition, the randomly

located transmitter-receiver pairs form a geographical non-symmetric network.

We consider the scenario when the spectrum resource is limited, i.e., M ≫ N . To

increase its payoff, the PU will share a channel with several SUs. On the other hand, an

SU benefits from using channels, and pays the PU in return. We use e
(n)
m = 1 to denote

that SU m is authorized to use channel n and e
(n)
m = 0 otherwise. In this way, we form an

M ×N transaction matrix E. Specifically,

E =


e
(1)
1 · · · e

(N)
1

...
. . .

...

e
(1)
M · · · e

(N)
M

 . (3.1)

3.2.2 Flexible Channel Valuation

We assume that the SUs are not sensitive to the achievable rate of a channel as long

as the achievable rate is larger than a threshold for an established quality of service (QoS)

requirement. Instead of competing for a channel with high interference, an SU uses a more

reliable way to acquire a higher data rate, that is, to buy more channels from the PU.

As a result, the achievable rate of a channel does not affect the channel valuation of an

SU and channels are identical items for SUs. However, the valuation for the next channel
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decreases according to the marginal value theory. In other words, as the tension between

the channel supply and the expectation on data rate eases, the willingness of an SU to pay

for an additional channel diminishes since the incremental benefit of an additional channel

decreases. Let the valuation of the ith channel of SU m be µm(i), and µm(i) > µm(i + 1)

due to such downward-sloping channel valuations. Therefore, the total channel valuation

of SU m for its lm channels is

ηm(lm) =
lm∑
i=1

µm(i), (3.2)

where lm =
∑N

n=1 e
(n)
m .

3.2.3 Problem Formulation

We use λlmm to denote the price charged to SU m for using lm channels, π to denote

the PU’s payoff, and ϖlm
m to denote the payoff of SU m using lm channels. Apparently,

π =
∑M

m=1 λ
lm
m and ϖlm

m = ηm(lm) − λlmm . Therefore, the payoff of all the SUs is ϖ =∑M
m=1(ηm(lm)− λlmm ) and the social welfare of the system is π +ϖ =

∑M
m=1 ηm(lm).

In this chapter, our goal is to maximize the social welfare in the system without vi-

olating the interference limit. Specifically, we need to find an optimal transaction matrix

E∗:

max
E

(π +ϖ) =
M∑
m=1

ηm(l
∗
m) (3.3)

s.t. ∑
m′ ̸=m

e
(n)
m′ pm′ |hm′,m|2 < pthr, (3.4)

form = 1, · · · ,M , n = 1, · · · , N , where l∗m is the number of channels obtained by SUm and

l∗m =
∑N

n=1 e
(n)∗
m , |hm′,m|2 is the channel gain between Tm′ and Rm, and pthr is the maximum

allowable interference power at the receiver. The constraint (4.6) sets a threshold for the

QoS requirement of a channel, i.e., for SU m using channel n, the interference from the

other SUs using channel n should be under pthr.
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3.3 VCG Auctions and Truthful Bidding

To maximize the social welfare, we need to find a proper channel allocation mechanism,

in which the PU can avoid co-channel interference when allocating channels and the SUs

reveal their truthful channel valuations. It is known that a VCG auction can maximize the

social welfare by encouraging bidders to submit their bids truthfully [33]. In this section,

we introduce the constrained VCG auction for SUs and the VCG auction for MIGs. To

maximize the social welfare, we discuss the truthfulness of the bids of the SUs in the VCG

auction for MIGs. In addition, we design a decision process to implement truthful bidding

and VCG style pricing for the PU.

3.3.1 Constrained VCG Auction for SUs

In our model, we suppose that channel transactions occur according to a constrained

VCG auction for SUs held by the PU, which is a sealed-bid process for selling multiple items.

In other words, each SU submits its bids independently, without the knowledge of bids of

other SUs. However, different from the conventional VCG auction, the PU cannot simply

select SUs who hold the highest bids to sell channels in the constrained VCG auction for

SUs. Co-channel interference has to be considered during the selection. In the constrained

VCG auction process, the set of auction items is N = {1, · · · , N} and the set of bidders is

M = {1, · · · ,M}. The main steps of the constrained VCG auction for SUs in a contract

period are as follows.

1. SU m submits its bid vector bm = (bm(1), · · · , bm(N)) to inform the PU its valuation

for the ith channel, i = 1, · · · , N . In a VCG auction, a bid is also the maximum

acceptable price that a user is willing to pay. However, the bids are not equal to the

charging prices in most circumstances.

2. The PU calculates over all cases and allocates channels in a way that maximizes the

total bid of all winners, which equals the social welfare. Meanwhile, the channel

allocation has to comply with the interference limit (4.6).
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3. The PU charges each winner, i.e.,

λlmm = V
M\{m}
M\{m} − V

M\{m}
M , (3.5)

where λlmm is the price charged to SU m for using lm channels, V
M\{m}
M is the accu-

mulated bids of all winners except SU m when the set of bidders is M, and V
M\{m}
M\{m}

is the accumulated bids of all winners if the set of bidders is M \ {m}. This charging

price to SU m is based on the virtual losses of the other SUs when SU m participates

in the constrained VCG auction for SUs. It can also be interpreted as the harm that

SU m causes to the other SUs. According to this pricing policy, the more SUs, the

higher probabilities that the charging prices approach the bids of the winners.

It is impractical to apply the constrained VCG auction for SUs directly to allocating

channels. The PU in this case has to explore all combinations of allocations to the SUs to

avoid interference and maximize the social welfare. It is computational expensive and time

consuming. The same issue exists in the pricing. The determination of V
M\{m}
M\{m} requires

channel allocation results when the bidder set is M \ {m} and thus another round of

constrained VCG auction for SUs. In this case, the PU has to calculate V
M\{m}
M\{m} for every

user and every allocation. To simplify the constrained VCG auction for SUs, we introduce

MIGs and the VCG auction for MIGs.

3.3.2 Maximal Independent Groups

In our model, the PU needs to select a group of SUs to reuse the same channel. Mean-

while, the PU is responsible to avoid unacceptable co-channel interference when allocating

its channels. To maximize the social welfare, the PU needs to select a maximal group of

SUs, such that any additional SU added to the selected group will break the interference

limit (4.6) at the location of at least one user’s receiver.

To find the maximal groups, we first build a directed interference graph C (M,A),

where A is the set of edges in C and A = M × M. The value of the directed edge
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(m′ → m) is denoted as am′,m, representing the interference to Rm caused by Tm′ if SUs m

and m′ use the same channel, i.e., am′,m = pm′ |hm′,m|2. We define I ⊂ M as an independent

group in terms of interference if
∑

m′∈I, m′ ̸=m am′,m < pthr holds for any m ∈ I. In other

words, SUs in I can use the same channel simultaneously. In addition, we define that I is

a maximal independent group (MIG) if there does not exist any other independent group

I′ such that I ⊂ I′. Therefore, to find the maximal groups of SUs using the same channel

without interference is equivalent to finding the MIGs in C . Note that vertices in an MIG

are still connected and MIGs are not maximal independent sets in C [70].

Algorithm 3 Searching MIGs in C .

1: Initialize: X = ø, Y = M, Z = ø, j = 0.
2: MIG-Search(X,Y,Z):
3: if Y = ø and Z = ø then
4: j = j + 1. Ij = X.
5: else
6: for ∀m ∈ Y do
7: if

∑
m′′∈X∪{m}, m′′ ̸=m′ pm′′ |hm′′,m′ |2 < pthr, ∀m′ ∈ X ∪ {m}. then

8: MIG-Search(X ∪ {m}, Y ∩∆(m), Z ∩∆(m)).
9: Y = Y \ {m}. Z = Z ∪ {m}.

10: end if
11: end for
12: end if

The algorithm to find all MIGs in C is described in Algorithm 6. The algorithm

adds an interference control feature based on the Bron-Kerbosch algorithm, which was

originally developed to search all maximal independent sets in a graph. The worst-case

complexity of our modified algorithm is O(3M/3M), while the worst-case complexity of the

Bron-Kerbosch algorithm is O(3M/3) [71]. In Algorithm 6, X is a possible MIG, ∆(m) =

{m′|pm′ |hm′,m|2 < pthr}, i.e., Tm′ alone does not violate the interference limit at the location

of Rm if m′ ∈ ∆(m), Y contains SUs that each of them does not break the interference

limit at the receiver of every SU currently in X, and Z contains SUs that are already been

considered or processed to remove duplicate MIGs. We suppose that there are J MIGs in

C , and an MIG is denoted as Ij, j = 1, · · · , J .

As a result, we have a new J ×N transaction matrix Ê in consideration of the MIGs.
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Specifically,

Ê =


ê
(1)
I1

· · · ê
(N)
I1

...
. . .

...

ê
(1)
IJ

· · · ê
(N)
IJ

 , (3.6)

where ê
(n)
Ij

= 1 denotes that the SUs in Ij are authorized to use channel n, and ê
(n)
Ij

=

0 otherwise. Obviously, a channel can only be sold to one MIG. As results, we have∑J
j=1 ê

(n)
Ij

= 1 and Ê is a sparse matrix. In fact, since the possible combinations of the SUs

are limited to the MIGs, the channel index is not needed as a parameter to differentiate

SU combinations. Therefore, we focus on the number of channels that an MIG obtains,

i.e., l̂Ij =
∑N

n=1 ê
(n)
Ij

.

The MIGs simplify our optimization problem in (4.5) and (4.6). To maximize the social

welfare, the optimal channel allocation l̂∗ = (l̂∗I1 , · · · , l̂
∗
IJ
) satisfies

max
Ê

(π +ϖ) =
J∑
j=1

η̂Ij(l̂
∗
Ij
) (3.7)

with no constraint, where η̂Ij(l̂
∗
Ij
) is the channel valuation of Ij for l̂

∗
Ij

channels. In fact,

η̂Ij(l̂Ij) =
∑
m∈Ij

ηm<Ij>(l̂Ij) =
∑
m∈Ij

l̂Ij∑
î=1

µm<Ij>(̂i), (3.8)

where µm<Ij>(̂i) is the channel valuation of SU m for the îth channel obtained in Ij, and

ηm<Ij>(l̂Ij) is the channel valuation of SU m for the l̂Ij channels obtained in Ij.

3.3.3 VCG Auction for MIGs

After determining the MIGs, the PU does not need to estimate interference levels when

allocating channels. Therefore, the constrained VCG auction for SUs can be substituted by

a standard VCG auction if the set of bidders is J = {I1, · · · , IJ}, while the set of auction

items is still N. In other words, an MIG is a bidding entity and a bid of an MIG reflects

the accumulated valuations by all the SUs in the MIG. The main steps of the VCG auction
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for MIGs are as follows.

1. MIG Ij submits its bid vector b̂Ij = (b̂Ij(1), · · · , b̂Ij(N)) to inform the PU its valuation

for the îth channel, î = 1, · · · , N , where b̂Ij (̂i) =
∑

m∈Ij bm<Ij>(̂i), and bm<Ij>(̂i) is

the sub-bid of SU m for the îth channel obtained in Ij.

2. The PU calculates (l̂I1 , · · · , l̂IJ ). The PU simply chooses the largest N b̂Ij (̂i) such

that
∑J

j=1

∑l̂Ij

î=1
b̂Ij (̂i) is maximized subject to

∑J
j=1 l̂Ij = N .

3. The PU charges each MIG, i.e.,

λ̂
l̂Ij
Ij

= V̂
J\{Ij}
J\{Ij} − V̂

J\{Ij}
J , (3.9)

where λ̂
l̂Ij
Ij

is the price that MIG Ij needs to pay for using the l̂Ij channels, V̂
J\{Ij}
J

is the summation of the submitted bids of the SUs who obtain channels except the

bids associated with channels obtained by MIG Ij when the set of bidders is J, and

V̂
J\{Ij}
J\{Ij} is the summation of the submitted bids of all the SUs who obtain channels

when the set of bidders is J \ {Ij}. In addition, we regulate that SUs in Ij will split

the cost according to their sub-bids. Specifically,

λ
l̂Ij
m<Ij>

=

∑l̂Ij

î=1
bm<Ij>(̂i)∑l̂Ij

î=1
b̂Ij (̂i)

λ̂
l̂Ij
Ij
, (3.10)

where λ
l̂Ij
m<Ij>

is the split cost of Ij to SU m.

In the VCG auction for MIGs, the charging prices to the MIGs are straightforward

to evaluate according to the submitted bids. To understand the VCG style charging price

to Ij, we show the bid rankings when the set of bidders is J and J \ {Ij} in Figures 3.1a

and 3.1b, respectively. As shown in Figure 3.1a, the PU allocates the N channels to the

MIGs that hold the highest N bids and Ij wins l̂Ij channels. If MIG Ij does not bid, the

PU would reallocate the l̂Ij channels to the MIGs except Ij that holds the next l̂Ij bids, as
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The highest N bids Bids that do not win a channel

Bids of MIG Ij that win l̂Ij channels

Next l̂Ij highest bids except bids of Ij

(a) Bid ranking when the set of bidders is J.

The highest N bids Bids that do not win a channel

The above l̂Ij bids that do not win a channel

when the set of bidders is J

(b) Bid ranking when the set of bidders is J \ {Ij}.

Figure 3.1. Bid ranking in VCG auction for MIGs.

highlighted in both Figures 3.1a and 3.1b. Therefore, the charging price for MIG Ij to use

the l̂Ij channels can be determined as

λ̂
l̂Ij
Ij

= V̂
J\{Ij}
J\{Ij} − V̂

J\{Ij}
J =

∑
j′ ̸=j

l̂′Ij′∑
î=l̂Ij′

+1

b̂Ij′ (̂i), (3.11)

where (l̂′I1 , · · · , l̂
′
IJ
) is the channel allocation vector if MIG Ij does not bid.

With the set of bidders being the MIGs, the computational complexity of the con-

strained VCG auction for SUs reduces significantly.

3.3.4 Truthful Bidding

It is known that bidding truthfully is Dominant-strategy incentive-compatible (DSIC)

in a VCG auction [33, 72]. A strategy that is DSIC indicates that the strategy brings the

optimal payoff or at least does not deteriorate the payoff irrespective of the strategies of

others [73]. As a result, the social welfare can simply be maximized by choosing the highest

bids in the VCG auction for MIGs. We define truthful bidding of an MIG as follows.

Definition 3.1 (Truthful Bidding of an MIG). MIG Ij is bidding truthfully for the

îth channel if its bid of the îth channel equals its channel valuation of the îth channel,

which is the accumulated channel valuations from the SUs in Ij for the îth channel, i.e.,
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b̂Ij (̂i) =
∑

m∈Ij bm<Ij>(̂i) =
∑

m∈Ij µm<Ij>(̂i).

Therefore, the optimal bidding strategy of Ij as an entity is to reveal the truthful

accumulated valuations of the SUs in Ij , i.e., b̂Ij (̂i) =
∑

m∈Ij µm<Ij>(̂i), for î = 1, · · · , N ,

regardless of the truthfulness of the bids of other MIGs. However, the problem with the

VCG auction for MIGs is how to determine bm<Ij>(̂i) associated with b̂Ij .

In the VCG auction for MIGs, channels are evaluated by the SUs in an MIG, and the

channel bid for the îth channel of an MIG is the summation of the sub-bids of the SUs

in the MIG, i.e., b̂Ij (̂i) =
∑

m∈Ij bm<Ij>(̂i). Therefore, the truthful bids of an MIG require

truthful sub-bids of the SUs in the MIG. An ideal scenario is based on the assumption

that an SU belongs to only one MIG, i.e., Ij ∩ Ij′ = ø for any j ̸= j′, which may hold

true for symmetric networks. In such a scenario, bm<Ij>(̂i) = bm(̂i) for any m. If we can

prove that the optimal bidding strategy of an SU in an MIG is still truthful bidding, we

can draw the conclusion that b̂Ij (̂i) =
∑

m∈Ij µm(̂i), for î = 1, · · · , N . In other words, even

when Ij ∩ Ij′ = ø, the truthfulness of the bids of the MIGs are not guaranteed without

considering the bidding strategies of the SUs. In a general scenario that an SU belongs to

different MIGs, i.e., bm<Ij>(̂i) ̸= bm(̂i), we need to figure out whether truthful bidding is

the optimal strategy for an SU in the VCG auction for MIGs. We define truthful bidding

of an SU as follows.

Definition 3.2 (Truthful Bidding of an SU). An SU is bidding truthfully for the îth

channel in an MIG if its bid of the îth channel equals its valuation of the îth channel in

the MIG, i.e., bm<Ij>(̂i) = µm<Ij>(̂i).

Proposition 3.1. An SU does not bid more than its truthful bids in the VCG auction for

MIGs.

Proof. See Appendix B.1.

Proposition 3.2. An SU does not bid less than its truthful bids in the VCG auction for

MIGs.
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Proof. See Appendix B.2.

We can anticipate that an SU does not bid more than its truthful bids since the in-

creased bids only add the payment share of the SU. The proof of Proposition 3.1 provides

details about this conclusion. On the other hand, SUs seem motivated to bid less than their

truthful bids. According to (4.18), an SU can reduce its payment share by bidding less

than its truthful bids, and the payoffs of truthful bidding SUs are jeopardized by SUs who

bid less than their truthful bids. However, the SUs do not bid less than their truthful bids

either, such that they do not risk losing channels according to Proposition 3.2. Therefore,

truthful bidding is also the optimal strategy for an SU in the VCG auction for MIGs.

3.3.5 Decision Tree

Although the SUs are inclined to submit truthful sub-bids, i.e., bm<Ij>(̂i) = µm<Ij>(̂i),

the problem goes back to the determination of µm<Ij>(̂i) when an SU is involved in multiple

MIGs. In other words, for an SU, providing truthful sub-bids to multiple MIGs simulta-

neously is contradict to our definition of flexible channel valuation, defined for the next

channel only. In this subsection, we design a step-by-step decision process to provide a

mechanism that determines µm<Ij>(̂i) such that the MIGs submit truthful channel valu-

ations. Meanwhile, we can find a solution l̂∗ = (l̂∗I1 , · · · , l̂
∗
IJ
) to the optimization problem

(3.7).

The decision process for channel allocation is composed of N steps. We assume that

there is only one channel being sold in each step. Instead of submitting N bids at once in

the VCG auction, an MIG only needs to calculate its bid for the next channel. Therefore,

SUs in an MIG can update their channel valuations based on the channels that they have

obtained before each step of channel allocation. We use êIj [k] = 1 to denote that Ij obtains

a channel in the kth step, and êIj [k] = 0 otherwise. Suppose that the SUs submit their

43



sub-bids truthfully. The bid of Ij for the first step is

b̂Ij [1] =
∑
m∈Ij

µm<Ij>[1] =
∑
m∈Ij

µm(1) (3.12)

and the bid of Ij for the kth step is

b̂Ij [k] =
∑
m∈Ij

µm<Ij>[k]

=
∑
m∈Ij

µm(
k−1∑
τ=1

∑
{j′|m∈Ij′}

êIj′ [τ ] + 1), (3.13)

where µm<Ij>[k] is the channel valuation of SU m in Ij for the kth step, k = 2, · · · , N .

Therefore, every MIG is bidding truthfully in each step.

The decision process has a tree structure illustrated in Figure 4.2a. In each step, the

PU chooses an MIG from J to sell a channel. Therefore, each node at level N represents a

possible way of channel allocation since the path that reaches the node is unique. We let

the value of an edge to level k be b̂Ij [k]. As a result, we can evaluate the social welfare of a

path as the summation of the values of the edges that the path passes through. Therefore,

the optimization problem is equivalent to finding the longest path to level N in the tree

structure. Correspondingly, the optimal channel allocation l̂∗Ij to Ij is the frequency that

the longest path passes through Ij.

Proposition 3.3. The optimal channel allocation l̂∗ = (l̂∗I1 , · · · , l̂
∗
IJ
) is a weak dominant

strategy for the PU.

Proposition 3.4. The longest path to level N that leads to the optimal channel allocation

l̂∗ = (l̂∗I1 , · · · , l̂
∗
IJ
) in the decision tree is not unique.

The proofs of Propositions 3.3 and 3.4 can be combined. Based on channel allocation

l̂∗, the social welfare of the system is π +ϖ =
∑J

j=1 η̂Ij(l̂
∗
Ij
) =

∑M
m=1 ηm(

∑
{j|m∈Ij} l̂

∗
Ij
). If

there is another channel allocation l̂∗
′
= (l̂∗

′
I1
, · · · , l̂∗′IJ ) such that

∑M
m=1 ηm(

∑
{j|m∈Ij} l̂

∗
Ij
) =
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Start

I1 I2 IJ

I1 I2 IJ I1 I2 IJI1 I2 IJ

I1 I2 IJ I1 I2 IJ

N steps

(a) The decision tree that determines optimal channel allocation.
Start

N steps

I1 Ij−1Ij+1 IJ

I1 Ij−1Ij+1 IJ I1 Ij−1Ij+1 IJ

I1 Ij−1Ij+1 IJ I1 Ij−1Ij+1 IJ

(b) The decision tree that determines optimal channel allocation when Ij does not bid.

Figure 3.2. Illustration of decision tree.∑M
m=1 ηm(

∑
{j|m∈Ij} l̂

∗′
Ij
), l̂∗

′
will bring the same social welfare as channel allocation l̂∗. This

scenario may occur when different SUs have identical channel valuations. Therefore, l̂∗ is

a weak dominant strategy for the PU. Furthermore, different paths in the decision tree

that lead to the same channel allocation l̂∗ do not change the number of channels that

an SU obtains. In other words, the sequence of channel allocation does not affect the

social welfare in the decision tree. Therefore, the longest path to level N that leads to the

optimal channel allocation l̂∗ in the decision tree is not unique. In fact, there are at most

N ! different paths in the decision tree that lead to the same channel allocation, and the

uniqueness of the optimal channel allocation depends on the valuations from the SUs.

The decision tree slows down the VCG auction for MIGs and helps the MIG to submit

truthful bids. In the VCG auction for MIGs, the optimal bid b̂∗Ij (̂i), î = 1, · · · , l̂∗Ij is

determined according to the selected longest path in the decision tree, i.e.,

b̂∗Ij (̂i) =b̂Ij [kî], (3.14)
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where kî is the first level that satisfies
∑kî

k=1 êIj [k] = î. Since b̂Ij [kî] reflects the truthful

valuations of a channel from all SUs in Ij at the time when the transaction happens, b̂∗Ij (̂i),

î = 1, · · · , l̂∗Ij is consistent with the definition of truthful bidding and thus the channel

allocation of the VCG auction for MIGs maximizes the social welfare. Since the longest

path that leads to l̂∗ is not unique, b̂∗Ij (̂i) is not unique either.

Once we find out the optimal channel allocation l̂∗, we need to determine the charging

prices to the MIGs. If MIG Ij, j = 1, · · · , J , can find a proper way to set truthful bids

beyond l̂∗Ij channels, i.e., b̂∗Ij(l̂
∗
Ij
+ 1), · · · , b̂∗Ij(N), we can simply apply (3.11) to evaluating

the charging prices to the MIGs.

Proposition 3.5. There do not exist truthful bidding vectors b̂∗
I1
, · · · , b̂∗

IJ
in the VCG

auction for MIGs, where b̂∗
Ij
= (b̂∗Ij(1), · · · , b̂

∗
Ij
(N)), according to which the charging prices

to all MIGs bidding truthfully can be calculated by (3.11).

Proof. Suppose MIG Ij will have an extra channel beyond l̂∗Ij channels if Ij′ or Ij′′ does not

bid. Suppose the bid ranking of the extra channel of Ij when Ij′ does not bid is
∑

γ ̸=j′ l̂
†
Iγ
,

where (l̂†I1 , · · · , l̂
†
Ij′−1

, l̂†Ij′+1
, · · · , l̂†IJ ) reflects channel allocation status before Ij obtains the

extra channel. Similarly, the bid ranking of the extra channel of Ij when Ij′′ does not bid

is
∑

γ ̸=j′′ l̂
‡
Iγ
. The truthful bid of Ij when Ij′ or Ij′′ does not bid is

b̂∗Ij(l̂
∗
Ij
+ 1) =

∑
m∈Ij

µm(
∑

{γ|m∈Iγ ,γ ̸=j′}

l̂†Iγ + 1)

or

b̂∗Ij(l̂
∗
Ij
+ 1) =

∑
m∈Ij

µm(
∑

{γ|m∈Iγ ,γ ̸=j′′}

l̂‡Iγ + 1).

Obviously, b̂∗Ij(l̂
∗
Ij
+1) varies in different scenarios. We cannot set a fixed value for b̂∗Ij(l̂

∗
Ij
+1)

such that it satisfies the truthful bidding restriction for any MIG that quits bidding. Sim-

ilarly, truthful bids for channels beyond the optimal allocation vary in different scenarios.
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Therefore, we cannot find fixed truthful bidding vectors to calculate charging prices with

(3.11).

Proposition 3.5 shows that truthful bidding brings some difficulty to the determination

of charging prices, although the maximization of social welfare is benefited from bidding

truthfully in the VCG auction for MIGs. Although (3.11) is not applicable, we can still

use the original definition (3.9) to calculate charging prices.

We build a decision process similar to the one that we have discussed, but the selection

space for the PU in each step is J \ Ij instead of J. The illustration of this decision

process can be found in Figure 4.2b. The longest path of the decision tree represents

the optimal channel allocation if Ij does not bid. Suppose that the channel allocation is

l̂∗
′

J\Ij = (l̂∗
′

I1
, · · · , l̂∗′Ij−1

, 0, l̂∗
′

Ij+1
, · · · , l̂∗′IJ ). The charging price to Ij is

λ̂
l̂Ij
Ij

= V̂
J\{Ij}
J\{Ij} − V̂

J\{Ij}
J =

∑
j′ ̸=j

η̂Ij′ (l̂
∗′
Ij′
)−

∑
j′ ̸=j

η̂Ij′ (l̂
∗
Ij′
). (3.15)

To determine the charging prices to all MIGs, we need to go through J different decision

processes.

The outcome of the decision tree provides the optimal channel allocation that maxi-

mizes the social welfare and the VCG style charging prices to the MIGs. Although the shape

of the decision tree is similar to a sequential allocation process, no channel is allocated after

each step. The optimal channel allocation is only known after the comparison of all possible

allocations. In addition, the complexity of a decision process is O(J1 + · · ·+ JN) ∼ O(JN)

and we have to go through J + 1 decision processes. Although the original problem has

been simplified in comparison with the constrained VCG auction for SUs, the complexity

of the decision process is still high.

3.4 Low-Complexity Channel Allocation

Instead of finding out all the optimal channel allocations in the decision tree, we con-

sider improving the computational efficiency of the algorithm so that we can approach the
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optimal channel allocation with lower complexity. In this section, we approach the optimal

channel allocation using a greedy algorithm, Dijkstra’s algorithm, and batch allocation

through approximation.

3.4.1 Greedy Algorithm

Firstly, we apply a greedy algorithm in the decision process. Intuitively, the PU would

choose the MIG that holds the highest bid as the winner of each step in the decision tree.

Correspondingly, the allocation result is l̂Greedy = (l̂I1,Greedy, · · · , l̂IJ ,Greedy). According to

(3.9), the charging price to Ij is evaluated according to the channel allocation when Ij does

not bid, which is also determined by the greedy algorithm.

Proposition 3.6. In the decision process, the greedy algorithm may not maximize the social

welfare in the spatial spectrum sharing system.

Proof. See Appendix B.3.

Proposition 3.6 shows that choosing the MIG with the highest bid in each step cannot

guarantee the maximization of social welfare in the decision tree. Furthermore, since chan-

nel valuations in the kth step are related to the channel allocation in the previous k − 1

steps, we anticipate that a myopic strategy [74] may fail to maximize the social welfare in

the decision tree. However, maximizing the bid in every step significantly reduces the com-

plexity to O(N). The greedy algorithm is straightforward and requires less computation

for the PU.

3.4.2 Dijkstra’s Algorithm

We build a directed graph G = (Φ,Ψ) to represent a simplified N -step channel alloca-

tion, where Φ is the set of N × J + 2 vertices and Ψ is the set of edges. Specifically,

Φ = {I[0], I1[1], · · · , IJ [1], · · · , I1[N ], · · · , IJ [N ], I[N + 1]},

where Ij[k] is the MIG Ij in the kth step, and I[0] and I[N + 1] are the virtual source and

target. The directed edge (Ij[k] → Ij′ [k+1]) exists for any Ij, Ij′ ∈ J, k = 1, · · · , N−1, and
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Figure 3.3. Longest path problem in Dijkstra’s algorithm.

the weight of the edge is b̂Ij′ [k+1]. Note that b̂Ij′ [k+1] depends on the channel allocation of

the previous k steps. Additionally, the directed edges (I[0] → Ij[1]) and (Ij[N ] → I[N +1])

are present for any Ij ∈ J, and the weight of (I[0] → Ij[1]) is b̂Ij [1], while the weight of

(Ij[N ] → I[N + 1]) is zero. We illustrate graph G in Figure 4.3.

Algorithm 4 The application of Dijkstra’s algorithm in G .

1: Initialize: dist[Ij[k]] = 0 for every vertex in G , Path[Ij[1]] = {I[0]} for j = 0, · · · , J .
2: for k = 1 to N − 1 do
3: for Ij ∈ J do
4: for Ij′ ∈ J do

5: alt = dist[Ij[k]] + b̂Ij′ [k + 1].
6: if alt > dist[Ij′ [k + 1]] then
7: dist[Ij′ [k + 1]] = alt.
8: Path[Ij′ [k + 1]] = Path[Ij[k]] ∪ Ij[k]
9: end if

10: end for
11: end for
12: end for
13: Path[I[N + 1]] = Path[argmaxIj [N ](dist[Ij[N ]])] ∪ argmaxIj [N ](dist[Ij[N ]]).

We apply Dijkstra’s algorithm [75] to finding the longest path between the source and

target in graph G . The process of Dijkstra’s algorithm is described in Algorithm 4, where

dist[Ij[k]] is the longest distance from the source node to Ij[k], and Path[Ij[k]] records

the vertices that the longest path to Ij[k] passes through. Correspondingly, the allocation

result of Dijkstra’s algorithm is l̂Dijkstra = (l̂I1,Dijkstra, · · · , l̂IJ ,Dijkstra), where l̂Ij ,Dijkstra is

the frequency of the longest path to I[N + 1] passing through Ij in G . To determine the

charging price to Ij, we need to find the longest path in G ′ = (Φ \ Ij,Ψ′), where Ψ′ does
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not contain any edge towards Ij or from Ij. Afterwards, we are able to find the channel

allocation if Ij does not bid and thus the charging price to Ij.

The application of Dijkstra’s algorithm assumes

dist[Ij′ [k + 1]] = max
Ij [k]

(dist[Ij[k]] + b̂Ij′ [k + 1]). (3.16)

Note that b̂Ij′ [k + 1] is related to the channel allocation of the previous k steps. In other

words, we eliminate the possibility that there is a non-longest path to Ij[k] that turns out

to be the longest path to Ij′ [k+1]. The complexity of Dijkstra’s algorithm is O(|Φ|+ |Ψ|) =

O(NJ +NJ2). Dijkstra’s algorithm searches more pathes in the decision tree and hence is

more reliable than the greedy algorithm.

3.4.3 Batch Allocation

Algorithm 5 Batch allocation.

1: Initialize: SU m submits its bid vector bm = (bm(1), · · · , bm(N)) to the PU, m =
1, · · · ,M . Let the untruthful bid vector of MIG Ij be b̃Ij = (b̃Ij(1), · · · , b̃Ij(N)), where

b̃Ij (̂i) =
∑

m∈Ij bm(̂i). The MIGs that hold the highest N b̃Ij (̂i) are selected to allocate

channels. The allocation result is l̂Batch.
2: Do
3: In the decision tree, find the path that allocates channels in the same way as l̂Batch and

the corresponding truthful bids of the MIGs. The lowest truthful bid for the current
allocation is b̂[N ].

4: Calculate the truthful bid of Ij for the next channel, i.e., b̂Ij(l̂Ij ,Batch + 1), for j =

1, · · · , J . There are Θ MIGs whose b̂Ij(l̂Ij ,Batch + 1) > b̂[N ].
5: if Θ ≤ Θmax then
6: Substitute the Θ MIGs for the last Θ nodes in the path.
7: else
8: Substitute the MIGs that holds the highest Θmax b̂Ij(l̂Ij ,Batch + 1) for the last Θmax

nodes in the path.
9: end if

10: Update the allocation result l̂Batch.
11: Repeat do until Θ = 0 or the maximum number of iteration steps is reached.

In batch allocation, the PU allocates all channels to selected MIGs in the first step

to improve allocation efficiency, and then tries to increase the social welfare by replacing

MIGs in a learning process. The process of batch allocation is described in Algorithm 8,
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Figure 3.4. A random SU distribution and the number of MIGs involved with each SU.

where Θmax controls the number of MIGs being replaced in each step to maintain stability.

The channel allocation result is l̂Batch = (l̂I1,Batch, · · · , l̂IJ ,Batch).

3.5 Simulation Results

In our simulation, we consider additive white Gaussian noise (AWGN) channels with

power spectrum density ε/2 = 3 × 10−18 W/Hz. We let the interference threshold be

1×10−10 W and the transmit power of the SUs be identical with pm = 1 W. Using the two-

ray model [63], we let |hm′,m|2 =
ξm′,m
dα
m′,m

, where ξm′,m is a constant related to the antennas of

Tm′ and Rm, which is set to ξm′,m = 106, dm′,m is the distance between Tm′ and Rm, and α

is the path loss exponent, which is set to α = 4 to simulate typical urban areas [63]. Under

this setting, we calculate the number of MIGs involved with each SU based on a random

SU distribution shown in Figure 3.4. Transceivers of 20 SUs are located in the area and

there are 92 MIGs in total. The SUs located in a dense area are involved with a relatively

small number of MIGs. According to the modified Bron-Kerbosch algorithm, an SU in a

dense area is more likely to be excluded from an MIG to avoid co-channel interference.
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As a result, an SU located in a sparse area has more opportunities to obtain channels in

comparison with an SU in a dense area.

Considering the uncertainty and irregularity of the channel valuations by the SUs, we let

the valuations from an SU be random descending numbers and follow uniform distribution

between 0 and 1000. Based on the SU distribution in Figure 3.4, we show the social welfare

of our approximation methods along channel allocation steps when M = 30 and N = 20

in Figure 3.5. The step-wise performance curves of the greedy algorithm and Dijkstra’s

algorithm are very close to each other, as both algorithms allocate all channels and obtain

the channel allocation results after N steps. In batch allocation, all channels are allocated

in the first step and thus the social welfare is higher than the other two algorithms before

the final steps. Meanwhile, the social welfare of batch allocation fluctuates for about two

steps. Although the greedy algorithm and Dijkstra’s algorithm can achieve higher social

welfare, batch allocation needs fewer allocation steps, especially when there are a large

number of channels to allocate. In Figure 3.6, we show the channel allocation to the SUs
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Figure 3.6. Channel allocation to the SUs when M = 30 and N = 20.

using different approximation methods when M = 30 and N = 20. The greedy algorithm

and Dijkstra’s algorithm allocate channels to the SUs in almost the same way, while their

allocations to the MIGs are quite different, which can be well-explained by Proposition 4.1.

In comparison with the greedy algorithm and Dijkstra’s algorithm, channel allocation of

batch allocation shows the same trend.

To further study the performance of the greedy algorithm, Dijkstra’s algorithm, and

batch allocation, we change the number of channels from 5 to 40 while fixing the number of

users to 20. In an ideal case, we do not consider the possibility that the charging price could

be higher than the channel valuation. We run the geographical distributions and channel

valuations of the SUs 2,000 times and obtain the average social welfare and average system

throughput with a specific number of channels. The results are shown in Figure 3.7. In

terms of social welfare in the ideal case, the greedy algorithm and Dijkstra’s algorithm are

very close to each other, which is difficult to differentiate. Dijkstra’s algorithm obtains

slightly higher social welfare than the greedy algorithm. In comparison, the social welfare
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gap between batch allocation and Dijkstra’s algorithm enlarges with the increasing number

of channels. Additionally, we consider the case that every channel is allocated to the MIG

with the highest system throughput, which maximizes system throughput. In comparison

with the social welfare of the channel allocation that maximizes system throughput, the

social welfares of the channel allocations obtained by our algorithms are significantly higher.

The system throughputs of all of our three algorithms are at the same level and within an

acceptable range of the maximum system throughput.

Similarly, we change the number of users from 10 to 35 while fixing the number of

channels to 20. We run the distributions and valuations of the SUs 2,000 times and obtain

the average social welfare and average number of MIGs with a specific number of SUs in

the ideal case. In Figure 3.8, we show the average social welfare and average number of

MIGs with different numbers of SUs. In consideration of social welfare, similar conclusions

can be drawn as in the case of varying the number of channels. In comparison with
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the social welfare of the channel allocation that maximizes system throughput, the social

welfare of the channel allocation obtained by our algorithms is significantly higher. With

the increasing number of SUs, the number of MIGs soars according to the modified Bron-

Kerbosch algorithm. As a result, applying Dijkstra’s algorithm is time-consuming when

there is a large number of SUs.

Furthermore, as the complexity of the decision process is O(JN), it is time-consuming

to find the optimal channel allocation by following the decision process, especially when

there are a large number of channels to allocate. To evaluate the performance of the three

approximation methods in comparison with the decision process, we examine the adjusted

average social welfare after charging prices are determined. In practice, an MIG will refuse

to buy channels if the VCG style charging price is higher than its valuation of these channels.

As a result, the number of channel transactions may be smaller than the number of channels,

which lowers the social welfare. This case occurs when an algorithm fails to find the optimal
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20.

channel allocation, but successfully finds a better channel allocation when determining the

charging price to an MIG. Therefore, the gap between the social welfare in the ideal case and

the adjusted average social welfare in consideration of charging prices reveals the accuracy

of an approximation method. In our simulation, we change the number of channels from

5 to 40 while fixing the number of users to 20, run the distributions and valuations of the

SUs 2,000 times, and obtain the adjusted average social welfare in consideration of charging

prices with a specific number of channels. The results are shown in Figure 4.9. The three

approximation methods are more accurate when there are fewer channels.

3.6 Conclusions

In this chapter, we design a receiver-centric spatial spectrum reuse mechanism with

downward-sloping channel valuations of the SUs. The PU conducts on-demand channel

allocation and aims to maximize social welfare. We adopt the VCG auction to sell multiple

identical channels under the constraint of co-channel interference. We group the SUs into
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several interference-free MIGs, and then simplify the constrained VCG auction for SUs to

the VCG auction for MIGs. We also prove that bidding truthfully is the optimal bidding

strategy for the SUs, such that the MIGs are bidding truthfully in the VCG auction for

MIGs. Since truthful bids are difficult to determine without knowing the sequence of

channel allocation, we build a decision process such that the MIGs as representatives of the

SUs can update their channel valuations in each step and submit truthful bids. Therefore,

the PU can determine the optimal channel allocation that maximizes social welfare and the

charging prices to the MIGs accordingly. We prove that the optimal channel allocation is

not unique and thus a weakly-dominant strategy for the PU. Furthermore, we use a greedy

algorithm, Dijkstra’s algorithm, and batch allocation to approach the optimal channel

allocation. In our simulation, we compare the proposed methods and demonstrate that our

on-demand channel allocation increases social welfare.
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Chapter 4
Multi-Level Channel Valuations for Spatial Spectrum Reuse

4.1 Introduction

Although existing studies of spatial spectrum reuse focus more on the system through-

put, system throughput maximization may not result in the maximum number of SUs

being satisfied. In some cases, the SUs who anticipate relatively small data rates may be

in urgent need of channels, and thus systems need to take user satisfaction into account.

To address the conflict between system throughput and user satisfaction, we consider in

channel allocation a neglected factor, the supply and demand relationship, in addition to

the data rates. Focusing on such user characteristics, we for the first time enable hetero-

geneous channel valuations in spatial spectrum reuse. In consideration of this factor, user

satisfaction can be achieved and spatial spectrum reuse is more efficient and practical.

In this chapter, we maximize the social welfare, which better describes the overall

satisfaction of the SUs when we involve the supply and demand relationship. In addition,

we consider multi-level flexible channel valuations of the SUs over non-identical channels.

Specifically, channel valuations are related to both data rates and marginal values [65,66].

Therefore, we need to reveal the channel supply and demand relationship in consideration of

the impact of data rates on channel valuations. Meanwhile, we need to find a mechanism to

better serve the SUs in terms of the overall satisfaction. In practice, the channel valuation

of an SU decreases when the number of obtained channels at the same data rate level

increases. In addition, the channel valuations of SUs are different due to the differences in

the demands of the SUs. Therefore, a channel transaction mechanism that motivates the

SUs to submit their truthful valuations to the PU is necessary.

In our model, the PU and SUs form a non-symmetric network in a spatial spectrum

sharing system. Channel valuations of the SUs are related to both data rates and existing

This chapter, previously published as F. Zhang, X. Zhou, and M. Sun, “Constrained VCG auction with
multi-Level channel valuations for spatial spectrum reuse in non-symmetric networks,” IEEE Transactions
on Communications, 2018, is reprinted here by permission of IEEE.
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channel supplies. For a specific data rate level valuated by an SU, the willingness to pay

for an additional channel decreases since the incremental benefit of an additional channel

diminishes. In the system, the PU maximizes the social welfare through channel allocation

to delicately selected SUs. The maximization of the social welfare in our model increases

system throughput to an appropriate level that satisfies the demands of the SUs. In other

words, the PU not only considers providing channels to the SUs at the data rate levels

that meet the urgent demands of the SUs, which are reflected by the channel valuations of

the SUs, but also needs to avoid channel oversupply to specific SUs or at specific data rate

levels.

To maximize the social welfare, we group the SUs into allowable user crowds (AUCs)

through a modified Bron-Kerbosch algorithm [69]. The AUCs are candidates for channel

allocation of the PU, and at least the lowest data rate level is guaranteed in the AUCs.

Then we introduce a Vickrey-Clarke-Groves (VCG) auction [67, 68] that sells multiple

items in a socially optimal manner, in which the participants are limited to the AUCs.

Different from conventional VCG auctions, the bids of the AUCs are determined according

to channel supply status and cannot be submitted at once. Therefore, we transform the

constrained VCG auction for the AUCs to a step-by-step decision tree, which slows down

the auction but maintains its social optimality. We further define truthful bids of an AUC

as the accumulated valuation of the coalition of the AUC in each step. A coalition of

an AUC represents the highest accumulated valuation among all the subsets of the AUC

in a specific step, according to the valuations of the SUs in the AUC based on channel

supply status. Furthermore, we introduce channel cost split among coalition members as

a coalitional game with transferable utilities. The proposed cost split mechanism based on

the Shapley value is a fair payoff distribution and guarantees the formation of the coalitions.

To approach the optimal channel allocation, we provide three low-complexity algorithms,

finding the longest path in a directed acyclic graph (DAG), a greedy algorithm, and batch

allocation.
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The rest of the chapter is organized as follows. In Section 4.2, we model the spatial

spectrum sharing system and the channel valuations related to different data rate levels

and supply status. In Section 4.3, we present a modified Bron-Kerbosch algorithm to find

all AUCs, design a constrained VCG auction for the AUCs to maximize the social welfare,

and later transform the auction to a decision tree. In addition, we discuss truthful bidding

of the AUCs and the Shapley value to distribute payoffs to the SUs. In Section 4.4, we

simplify the decision process using three low-complexity algorithms. In Section 4.5, we

provide our simulation results. Finally, we draw our conclusions in Section 4.6.

4.2 System Model

4.2.1 System Setup

We consider a spatial spectrum sharing system with one PU and M SUs, in which N

non-overlapping idle channels of the PU are treated as merchandise and the PU is the only

channel provider for the SUs in the system. In our system, the spectrum resource is scarce,

i.e., M ≫ N , such that the PU will sell a channel to multiple SUs.

In our model, each SU represents a transmitter-receiver pair. Tm and Rm denote the

transmitter and receiver of SU m, m = 1, 2, · · · ,M , respectively. The transmit power of

Tm is pm, which is known to the system. To make our model more realistic, we consider

the co-channel interference suffered by the receiver rather than the transmitter to mitigate

the hidden/exposed node problem, such that the positions of the transmitter and receiver

in a transmitter-receiver pair are not interchangeable. In addition, the randomly located

transmitter-receiver pairs form in a geographically non-symmetric shape. Therefore, the

network composed of the transmitter-receiver pairs is referred to as a non-symmetric net-

work. Figure 4.1 is an illustration of our model.

An M ×N matrix E can be used to describe the channel transactions between the PU
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Figure 4.1. System model.

and SUs. Specifically,

E =


e
(1)
1 · · · e

(N)
1

...
. . .

...

e
(1)
M · · · e

(N)
M

 , (4.1)

where e
(n)
m = 1 indicates that SU m obtains channel n and e

(n)
m = 0 otherwise.

4.2.2 Channel Rate

Let υ
(n)
m denote the achievable channel rate of SU m when using channel n. Specifically,

υ(n)m = W log(1 +
pm |hm|2

N +
∑

m′ ̸=m e
(n)
m′ pm′ |hm′,m|2

), (4.2)

where W is the channel bandwidth, N is the background noise power, |hm|2 is the channel

power gain between Tm and Rm, |hm′,m|2 is the channel power gain between Tm′ and Rm,

such that
∑

m′ ̸=m e
(n)
m′ pm′ |hm′,m|2 denotes the interference power suffered by Rm when there

are other SUs using channel n.

4.2.3 Multi-Level Channel Valuations

Channel valuations are heterogeneous among SUs due to several reasons. Firstly, in-

terference levels of a channel vary at different locations, which results in different channel

61



valuations among the SUs. Secondly, supply and demand status of the SUs also adds

uncertainty to the channel valuations according to the marginal value theory. Therefore,

channel valuations are flexible in our model, which is specifically related to channel rate

levels and existing channel supply.

According to the achievable rate, a channel can be labeled by different levels according

to the requirements of different services. We suppose that there are totally Q levels, i.e.,

Υ1, · · · ,ΥQ, where ΥQ indicates the highest channel rate level in the system while Υ1

indicates the lowest one. The number of levels Q is pre-determined based on the trade-off

between accuracy and complexity.

We define υ
(n)
m ∼ Υq if υ

(n)
m is beyond the requirement of level Υq but does not meet

the requirement of level Υq+1, indicating that channel n is labeled as Υq by SU m. Note

that a channel can be labeled differently by the SUs because of different interference levels.

For an SU, channels with the same label are identical items. However, the willingness of

an SU to pay for an additional channel decreases since the incremental benefit of an addi-

tional channel diminishes as the tension between the channel supply and channel demand

diminishes. Therefore, we model the valuation for a channel as the marginal valuation for

the next channel with the same label. Let the valuation for the ith channel with label Υq

of SU m be µm(q, i), and µm(q, i) > µm(q, i + 1) due to such downward-sloping channel

valuations. In addition, we have µm(q,N) > µm(q
′, 1), if q > q′. Therefore, the channel

valuation of SU m for its lm,q channels with label Υq is

ηm,q(lm,q) =

lm,q∑
i=1

µm(q, i), (4.3)

and the total channel valuation of SU m for all its obtained channels is

ηm(lm) =

Q∑
q=1

lm,q∑
i=1

µm(q, i), (4.4)

where lm = (lm,1, · · · , lm,Q). Although channels are evaluated independently, the SUs share
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their channel valuations with each other.

4.2.4 Problem Formulation

The payoff the the PU is π =
∑M

m=1 λ
lm
m , where λlmm is the price charged to SU m for

using lm channels. The payoff of SU m when using lm channels is ϖlm
m = ηm(lm) − λlmm .

Therefore, the payoff of all the SUs is ϖ =
∑M

m=1(ηm(lm)− λlmm ), and the social welfare is

π +ϖ =
∑M

m=1 ηm(lm).

In this chapter, our goal is to maximize the social welfare under the interference limit.

Specifically, we need to determine the optimal transaction matrix E∗ such that

max
E

(π +ϖ) =
M∑
m=1

ηm(l
∗
m), (4.5)

s.t. ∑
m′ ̸=m

e
(n)
m′ pm′ |hm′,m|2 < pthr (4.6)

for m = 1, · · · ,M , n = 1, · · · , N , where l∗m = (l∗m,1, · · · , l∗m,Q) and
∑Q

q=1 l
∗
m,q =

∑N
n=1 e

(n)∗
m .

Note that the rate level of a channel for SU m is affected by the interference from the

other SUs using the same channel, i.e., {m′|e(n)m′ = 1}. Therefore, the optimization of E

translates to the optimization of lm. The constraint in (4.6) reflects the QoS requirement,

i.e., the interference power suffered by SU m using channel n cannot exceed a threshold

pthr. Satisfying the constraint indicates that a channel is at least at level Υ1 for an SU.

4.3 Constrained VCG Auctions and Shapley Value

In this section, we discuss the solution to social welfare maximization in spatial spec-

trum reuse in consideration of multi-level channel valuations. To maximize the social

welfare, the PU needs to consider both the channel rate levels for the SUs in channel allo-

cation and the descending feature of the channel valuations of the SUs. The strategy space

of the PU is composed of the combinations of the SUs, and its channel allocation is to

select among different combinations of the SUs. Therefore, we first eliminate the SU com-

binations that render unacceptable co-channel interference among the SUs by finding all
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AUCs. Based on the AUCs, we apply the constrained VCG auction as the channel alloca-

tion mechanism, which is well known by its socially optimal transactions. The constrained

VCG auction guarantees the bidding truthfulness of the AUCs and hence maximizes the

social welfare. In the later part of this section, we discuss the bid formation process of the

AUCs and the payoff distribution among the SUs in an AUC.

4.3.1 Allowable User Crowd

According to our model, a group of SUs is formed to reuse a channel. At the same

time, unacceptable interference defined by (4.6) has to be avoided among the SUs using

the same channel. To eliminate the SU combinations that render unacceptable co-channel

interference, we need to figure out all the maximal allowable SU combinations. Here a

maximal allowable SU combination indicates that any additional SU participating in the

combination will breach the interference upper bound at the location of at least one user’s

receiver. Therefore, any subset of a maximal allowable SU combination can use a channel

simultaneously.

To find all the maximal allowable SU combinations, we use a directed complete graph

G (M,M × M). A directed edge (m′ → m) represents the co-channel interference to Rm

caused by Tm′ , i.e., ϵm′,m = pm′ |hm′,m|2. Let I ⊂ M be an allowable SU combination if∑
m′∈I, m′ ̸=m ϵm′,m < pthr holds for any m ∈ I. Therefore, the SUs in I are allowed to use

the same channel simultaneously. Furthermore, we define that I is a maximal allowable SU

combination, or an allowable user crowd (AUC), if there does not exist any other allowable

SU combination such that I ⊂ I′. Note that an allowable SU combination is determined

according to the values of the connected edges, and hence an AUC is different from the

definition of an independent set in graph theory [70].

Algorithm 6 is a modified Bron-Kerbosch algorithm to find all AUCs in G . Specifically,

we add an interference control function to the Bron-Kerbosch algorithm, such that the

formation of a vertex set is not based on the existences of edges, but through decision

functions related to the accumulated value of edges. The Bron-Kerbosch algorithm is used
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Algorithm 6 AUC formation in G .

1: Initialize: A = ø, B = M, C = ø, j = 0.
2: AUC-Search(A,B,C):
3: if B = ø and C = ø then
4: Ij = A. j = j + 1.
5: else
6: for ∀m ∈ B do
7: if ∀m′ ∈ A ∪ {m},

∑
m′′∈A∪{m}, m′′ ̸=m′ pm′′ |hm′′,m′ |2 < pthr then

8: AUC-Search(A ∪ {m}, B ∩∆(m), C ∩∆(m)).
9: B = B \ {m}. C = C ∪ {m}.

10: end if
11: end for
12: end if

to identify all maximal independent sets in a graph. The worst-case complexity of our

modified algorithm is O(3M/3M), while the worst-case complexity of the Bron-Kerbosch

algorithm is O(3M/3) [71]. In Algorithm 6, A is a possible AUC, vertices in B indicate that

each of the corresponding SUs does not cause unacceptable interference to the receiver of

any SU currently in A, and vertices in C indicate that the corresponding SUs have already

been excluded. We let ∆(m) = {m′|pm′ |hm′,m|2 < pthr}, i.e., Tm′ alone does not cause

unacceptable interference to Rm if m′ ∈ ∆(m). The number of AUCs in G is J , and an

AUC is denoted as Ij, j = 1, · · · , J .

A J × N matrix Ê can be used to describe the channel transactions between the PU

and AUCs. Specifically,

Ê =


ê
(1)
1 · · · ê

(N)
1

...
. . .

...

ê
(1)
J · · · ê

(N)
J

 , (4.7)

where ê
(n)
j = 1 indicates that AUC Ij obtains channel n, and ê

(n)
j = 0 otherwise. To avoid

unacceptable co-channel interference, two AUCs cannot share the same channel. Therefore,∑J
j=1 ê

(n)
j = 1, i.e., Ê is a sparse matrix. The number of channels that AUC Ij obtains

is l̂j =
∑N

n=1 ê
(n)
j . Note that we use ·̂ to indicate the notation related to an AUC in this

chapter.
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To maximize the social welfare, the optimal channel allocation l̂∗ = (l̂∗1, · · · , l̂∗J) satisfies

max
Ê

(π +ϖ) =
J∑
j=1

η̂j(l̂
∗
j ), (4.8)

where η̂j(l̂
∗
j ) is the channel valuation of Ij for l̂∗j channels. Similar to ηm(lm), we have

η̂j(l̂j) =
∑l̂j

î=1
µ̂j (̂i), where µ̂j (̂i) is the valuation of the îth channel of Ij. The relationship

between µ̂j (̂i) and µm(q, i) will be explained later. Note that an SU may be excluded from

an AUC to maximize the social welfare.

4.3.2 Constrained VCG Auction

In the transaction process, the SUs are authorized to use channels through a constrained

VCG auction of the PU. The participants of the auction are limited to the AUCs, instead of

the individual SUs. As a result, the PU can simply select the AUCs submitting the highest

bids to allocate channels, while the PU has to estimate channel rate levels and avoid

unacceptable interference when allocating channels if the participants are the individual

SUs. In the auction, an AUC is a bidding entity whose bid is the accumulated valuation

by all or some of the SUs in the AUC. The VCG auction is a sealed-bid process. In

other words, an AUC only knows its own bid information. The auction is defined as the

constrained VCG auction for AUCs. The set of auction items is N = {1, · · · , N} and the

set of bidders is J = {I1, · · · , IJ}. The constrained VCG auction follows three main steps:

bid submission, channel allocation, and price determination.

1. Bid submission. AUC Ij informs the PU its bid vector b̂j = (b̂j(1), · · · , b̂j(N)), where

b̂j(n) is the channel valuation of Ij for the îth channel.

2. Channel allocation. The PU determines the number of channels allocated to each

AUC, i.e., (l̂1, · · · , l̂J). Specifically, the PU selects the largest N b̂j (̂i), where l̂j is the

number of selected bids of Ij.

3. Price determination. The price λ̂
l̂j
j that AUC Ij needs to pay for the obtained l̂j
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channels is

λ̂
l̂j
j = V̂

J\{Ij}
J\{Ij} − V̂

J\{Ij}
J , (4.9)

where V̂
J\{Ij}
J sums the bids of all winners except AUC Ij when the set of bidders is

J, and V̂
J\{Ij}
J\{Ij} sums the bids of all winners when the set of bidders is J \ {Ij}.

Note that in the VCG auction, a bid submitted by an AUC is the upper bound of

charging price given its existing channel supply status. An AUC will refuse a channel

transaction if the charging price exceeds the bid or the channel valuation. This price

charged to AUC Ij is interpreted as the loss of the other AUCs caused by the participation

of AUC Ij in the VCG auction. According to the constrained VCG auction, the payoff ϖ̂
l̂j
j

of AUC Ij obtained by using l̂j is ϖ̂
l̂j
j = η̂j(l̂j)− λ̂

l̂j
j .

It is known that bidding truthfully is Dominant-strategy incentive-compatible (DSIC)

in a VCG auction [33, 72]. A strategy that is DSIC indicates that the strategy brings the

optimal payoff or at least maintain the payoff level regardless of the strategies of others [73].

As a result, the social welfare can simply be maximized by the choice of the highest bids

in the constrained VCG auction.

4.3.3 Decision Tree

The optimal bidding strategy of Ij as an entity is to submit the truthful channel

valuations, irrespective of the truthfulness of other competitors. However, it is problematic

to determine truthful bids for the AUCs in the constrained VCG auction. A bid of an

AUC can reflect the accumulated valuations by all or some of the SUs in the AUC, and the

involvement of an SU can affect channel rate level evaluations of other SUs in the AUC.

Meanwhile, an AUC has to submit N truthful bids at the beginning of the constrained

VCG auction. Note that generally an SU belongs to different AUCs. In this situation,

the submission of N truthful bids indicates that the channel allocation result is known to

the AUCs before the auction, which is in contradiction to the procedure of the constrained

VCG auction.
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In this subsection, a decision process is designed for the PU such that the AUCs can

determine their truthful bids in the constrained VCG auction. The decision process consists

of N steps. In each step, the PU only allocates one channel to a selected AUC. As a result,

an AUC does not need to determine N bids at the beginning of the constrained VCG

auction. Instead, an AUC can calculate its channel valuation in each step based on the

channels obtained in the previous steps. We use êj[n] = 1 to denote that Ij wins a channel

in the nth step, and êj[n] = 0 otherwise. Similarly, we use em⟨Ij⟩[n] = 1 to imply that SU

m in Ij wins a channel in the nth step, and em⟨Ij⟩[n] = 0 otherwise. The bid of Ij in the

nth step is b̂j[n].

In Figure 4.2a, we illustrate our decision process, which involves a tree structure. In

each step, an AUC is selected by the PU. As a result, each leaf node in step N represents

a possible channel allocation outcome. Note that a leaf node can only be reached through

a specific path. We further assign the value of an edge to node Ij in the nth step as b̂j[n],

and hence the social welfare of channel allocation is the accumulated value of the edges

on the corresponding path. Therefore, the optimal channel allocation that maximizes the

social welfare in the constrained VCG auction is equivalent to the path with the highest

accumulated value in the decision tree. In addition, the optimal number of channels l̂∗j

allocated to Ij is the number of times that the longest path crosses Ij.

The decision tree separates the bid submission process in the constrained VCG auction

into N steps. Meanwhile, the winning N bids in the constrained auction are the values of

the edges on the longest path in the decision tree. Specifically,

b̂∗j (̂i) = b̂j[nî] (4.10)

for j = 1, · · · , J , î = 1, · · · , l̂∗j , where nî is the first step when
∑nî

n=1 êj[n] = î.

Proposition 4.1. The optimal channel allocation l̂∗ = (l̂∗1, · · · , l̂∗J) is a weak dominant

strategy for the PU in the decision tree.
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The proof of Propositions 4.1 is straightforward. The optimal channel allocation

(l̂∗1, · · · , l̂∗J) to the AUCs corresponds to the optimal channel allocation (l∗1, · · · , l∗M) to

the SUs. There may exists another channel allocation to the AUCs, (l̂∗
′

1 , · · · , l̂∗
′
J ), and the

corresponding channel allocation to the SUs is (l∗
′

1 , · · · , l∗
′
M). As long as

∑M
m=1 ηm(l

∗
m) =∑M

m=1 ηm(l
∗′
m), the two different allocations result in the same social welfare. Therefore,

(l̂∗1, · · · , l̂∗J) is a weak dominant strategy for the PU in the decision tree.

Once we find out (l̂∗1, · · · , l̂∗J), we determine the VCG style charging prices to Ij in

another decision tree, which is similar to the one that we have discussed, but the se-

lection space for the PU in each step is J \ {Ij} instead of J. The illustration of this

decision process can be found in Figure 4.2b. The longest path of the decision tree rep-

resents the channel allocation if Ij does not bid. Suppose that the channel allocation is

(l̂′1, · · · , l̂′j−1, 0, l̂
′
j+1, · · · , l̂′J). The charging price to Ij is

λ̂
l̂j
j = V̂

J\{Ij}
J\{Ij} − V̂

J\{Ij}
J =

∑
j′ ̸=j

η̂j′(l̂
′
j′)−

∑
j′ ̸=j

η̂j′(l̂
∗
j′). (4.11)

To determine the charging prices to all AUCs, we need to go through J different decision

processes.

The decision tree provides the AUCs a practical method to determine their bids and

keeps the VCG style charging prices to the AUCs. The VCG style charging prices motivate

the AUCs to reveal their truthful biddings and hence help to maximize the social welfare.

Although the shape of the decision tree is similar to that of a sequential allocation process,

no channel is allocated in each step and the channel allocation is only known after the

comparison of all possible allocations.

4.3.4 Truthful Bidding of an AUC

The decision tree provides a feasible way for the AUCs to submit bids in each step and

guarantees the truthfulness of the bids. However, the decision process allocates channels

to the AUCs instead of directly to the SUs. As a result, channel allocation to specific SUs
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(a) The decision tree that determines the optimal channel allocation.
Start

N steps

I1 Ij−1Ij+1 IJ

I1 Ij−1Ij+1 IJ I1 Ij−1Ij+1 IJ

I1 Ij−1Ij+1 IJ I1 Ij−1Ij+1 IJ

(b) The decision tree that determines the charging price to Ij .

Figure 4.2. Illustration of decision tree.

is still unknown because whether an SU will be included in an AUC cannot be determined

yet. On the other hand, the realization of the optimal channel allocation in the decision

tree is based on the truthful bidding of the AUCs. However, the definition of truthful

bidding of the AUCs in each step is still missing. To address these issues, we regulate the

truthful bidding of the AUCs in this subsection.

For the AUCs in a step of the decision tree, a bid that reflects the accumulated valu-

ations by any subset of the SUs in Ij is considered a truthful bid, as long as the channel

use is confined in the subset. Note that the valuation of an SU varies in different subsets.

While an AUC has many options to perform truthful bidding, only the largest truthful

bid, i.e., the maximum accumulated valuation, can maximize the chance of obtaining the

channel for the AUC. Let the SUs in the subset of Ij that hold the maximum accumulated

valuation in the nth step form the coalition Θj[n] of Ij in the nth step, i.e.,

Θj[n] = argmax
θj⊆Ij

(
∑
m∈θj

µm(q(θj), km,n−1 + 1), (4.12)
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where θj is a subset of Ij, q(θj) is the evaluated channel rate level of SU m in θj, and

km,n−1 is the number of obtained channels of SU m in the previous n−1 steps. Specifically,

km,0 = 0, km,n−1 =
∑n−1

τ=1 em⟨Ij⟩[τ ], q(θj) is related to the locations of the other SUs in θj,

and υ̂m(θj) ∼ Υq(θj), where

υ̂m(θj) = W log(1 +
pm |hm|2

N +
∑

m′∈θj , m′ ̸=m pm′ |hm′,m|2
). (4.13)

In a simplified scenario, the coalition of Ij in each step is Ij itself. The grand coalition

usually forms when an additional channel for an SU is always considered more valuable than

the channel rate level upgrade of another SU. For example, the gap between the highest

and lowest channel rate levels may not be significant, especially when maxm,i(µm(Q, i) −

µm(1, i)) < µm′(q, i′) for m′ = 1, · · · ,M , i, i′ = 1, · · · , N and q = 1, · · · , Q. In a more

general scenario, AUC Ij has to explore all the subsets in Ij to determine Θj[n] since

the valuations of the SUs are not regulated to follow any pattern. In practice, channel

valuations for the next channel are exchanged among the SUs in an AUC in each step of

the decision tree, and the channel levels of the SUs can be estimated according to system

specifications or via historical data. This requires little computational power and can be

implemented through a common control channel among the SUs.

We define the truthful bidding of an AUC in a step of the decision tree as follows.

Definition 4.1 (Truthful Bidding of an AUC). AUC Ij is bidding truthfully in the

nth step of the decision tree if its bid equals the maximum accumulated valuation of all or

some of the SUs in Ij, i.e.,

b̂j[n] =
∑

m∈Θj [n]

µm(q(Θj[n]), km,n−1 + 1). (4.14)

According to the definition, some SUs in Ij may be excluded from joining the coalition
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in a step to increase the bid of Ij and hence the chance to obtain a channel. For example,

there may exist some SUs in an AUC in urgent need of channels in higher rate levels and

the exclusion of some other SUs can increase the accumulated valuation of the AUC. Since

the SUs can be involved in multiple AUCs, the exclusion of the SUs from the coalition in

the step is acceptable for them.

With the defined truthful bidding, the outcome of the decision tree is

max
j[1],··· ,j[N ]

(
N∑
n=1

b̂j[n][n]) = max
j[1],··· ,j[N ]

N∑
n=1

∑
m∈Θj[n][n]

µm(q(Θj[n][n]), km,n−1 + 1), (4.15)

where j[n] is the AUC that obtains a channel in the nth step, i.e., j[n] = j if êj[n] = 1. In

comparison with the optimization problem in (4.5) and (4.6), the outcome through truthful

bidding of the AUCs maximizes the social welfare. Therefore, the channel allocation based

on our regulated truthful bidding in the decision tree is the optimal one, i.e., l̂∗ = (l̂∗1, · · · , l̂∗J)

for the AUCs and l∗m = (l∗m,1, · · · , l∗m,Q) for the SUs, m = 1, · · · ,M .

In addition, the truthful bidding of an AUC also defines the relationship between µ̂j (̂i)

and µm(q, i). Specifically, we have µ̂j (̂i) =
∑

m∈Θj [nî]
µm(q(Θj), km,nî−1+1), where nî is the

first level that satisfies
∑nî

n=1 êj[n] = î.

4.3.5 Shapley Value

We have transformed the constrained VCG auction for AUCs to the decision tree, such

that the AUCs bid truthfully in a feasible way. In the nth step, AUC Ij bids as an entity

and submits the accumulated valuation of all the SUs in the coalition Θj[n] in Ij. However,

the SUs cannot form coalitions without appropriate rules. At this stage, we consider the

factor that can bond SUs together, which is the payoff distribution in a coalition.

We suppose that the SUs in Θj[n] play a coalitional game with complete information

[74], denoted as κj[n] = (Θj[n], ϕ̂j[n]), where ϕ̂j[n] is the payoff function associated with

each subset of Θj[n] using a channel obtained in the nth step, i.e., ϕ̂j[n](θj) for any θj ⊆
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Θj[n]. We assume

ϕ̂j[n](θj) = fΘj [n](
∑
m∈θj

µm(q(θj), km,n−1 + 1)) ·
∑
m∈θj

µm(q(θj), km,n−1 + 1), (4.16)

where fΘj [n](·) is an increasing convex function that determines the winning probability of a

bid from non-coalitional SU groups. Note that fΘj [n], as well as the winning probability, is

a hypothetical consensus among the SUs in coalition Θj[n], which exists only in the process

of payoff distribution. This function may be inaccurate, but is accepted by all the SUs in

Θj[n]. Specifically, ϕ̂j[n](ø) = 0 and ϕ̂j[n](Θj[n]) = ϖ̂j[n], where ϖ̂j[n] is the payoff of Ij

in the nth step.

In the coalitional game κj[n], we can easily prove that ϕ̂j[n](θj+θ
′
j) > ϕ̂j[n](θj) for any

θj, θ
′
j ⊂ Θj[n] and θj ∩ θ′j = ø. Meanwhile, only one coalition in Ij is allowed in each step

since an AUC can only submit one bid in each step. Therefore, the coalitional game κj[n] =

(Θj[n], ϕ̂j[n]) can be considered superadditive, i.e., ϕ̂j[n](θj + θ
′
j) ≥ ϕ̂j[n](θj)+ ϕ̂j[n](θ

′
j) for

any θj, θ
′
j ⊂ Θj[n] and θj ∩ θ′j = ø. Note that ϕ̂j[n](θ

′
j) is assumed to be zero since only one

coalition is allowed.

In addition, the SUs in Θj[n] will split channel cost λ̂j[n] if they obtain a channel in

the nth step. The cost split process can be interpreted as utility transfer among the SUs.

Therefore, κj[n] can be modeled as a coalitional game with transferable utilities. It is well

known that the Shapley value provides solutions to coalitional games with transferable

utilities [76]. The Shapley value is considered as a fair and unique way to distribute the

payoff of a coalition among members in a coalitional game [77]. The main concept of the

Shapley value is to charge more to the players who are benefited more from the coalition.

In the coalitional game κj[n], the SUs in Θj[n] who value a channel more can be

desperate to obtain the channel, and hence they need to pay more for the obtained channel

according to the Shapley value. The Shapley value assigns the payoff ϖ̂j[n] to each SU in
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Θj[n]. Specifically,

ϖm⟨Ij⟩[n] =
1

|Θj[n]|
∑

θj⊆Θj [n]\{m}

|θj|!(|Θj[n]| − |θj| − 1)![ϕ̂j[n](θj ∪ {m})− ϕ̂j[n](θj)] (4.17)

for all m ∈ Θj[n], where ϖm⟨Ij⟩[n] is the payoff of SU m in Ij in the nth step and |·|

reveals the cardinality of a set. The expression ϕ̂j[n](θj ∪ {m})− ϕ̂j[n](θj) is the marginal

contribution of SU m to SU combination θj ∪ {m}. Therefore, the Shapley value is the

expected marginal contribution of SU m to coalition Θj[n]. The Shapley value satisfies the

efficiency condition [76], i.e.,
∑

m∈Θj [n]
ϖm⟨Ij⟩[n] = ϖ̂j[n]. Meanwhile, the Shapley value

always exists if a coalitional game with transferable utilities is superadditive [76] and this

condition is satisfied in κj[n].

According to the payoff distributed by the Shapley value, we can figure out the charging

prices to the SUs in each step. Specifically,

λm⟨Ij⟩[n] = µm(q(Θj), km,n−1 + 1)−ϖm⟨Ij⟩[n] (4.18)

for all m ∈ Θj[n], where λm⟨Ij⟩[n] is the charging price to SU m in the nth step.

Proposition 4.2. Under incomplete information, an SU may lower its shared channel cost

λm⟨Ij⟩[n] in step n through channel devaluation, i.e., reporting µm(q(θj), km,n−1+1)− ϱ(θj)

instead of µm(q(θj), km,n−1 + 1) to the coalition, where ϱ(θj) is the devaluation in θj.

Proof. See Appendix C.1.

In this chapter, we assume that the SUs will share their channel valuations with each

other under the promise of fair payoff distribution in a coalitional game. Without the

assumption, i.e., under incomplete information, an SU does have the chance to lower its

shared charging price for a channel through channel devaluation according to Proposition

4.2. However, the restraint of the SU providing devalued bid under incomplete information

is that the coalition in which the SU is included may end up not winning a channel because
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of the devaluation, or the SU may be excluded from the coalition.

The prerequisite for applying (4.17) and (4.18) is the knowledge of ϖ̂j[n], where ϖ̂j[n] =

b̂j[n]− λ̂j[n] and λ̂j[n] is the charging price to Ij in the nth step. However, λ̂j[n] cannot be

determined according to the decision tree since the decision process only feeds the charging

price λ̂
l̂j
j back for all the l̂j channels obtained by Ij.

To address the problem, we assume that each coalition of Ij that obtains a channel

enjoys the payoff ϖ̂
l̂j
j equally, i.e., ϖ̂j[n] =

1

l̂j
(
∑

{n|êj [n]=1} b̂j[n]−λ̂
l̂j
j ). Therefore, the charging

prices to the SUs in each coalition, determined by the Shapley value, are believed to be fair,

and hence the SUs prefer to join the coalitions rather than being excluded. The charging

price to SU m in Ij is

λm⟨Ij⟩ =
∑

{n|e
m⟨Ij⟩[n]=1}

λm⟨Ij⟩[n]. (4.19)

Therefore, SU m needs to pay
∑J

j=1 λm⟨Ij⟩ for all its obtained channels.

In a simplified scenario where the grand coalition forms in each step, i.e., Θj = Ij, the

charging prices to the SUs can be calculated precisely. When the grand coalition forms,

the payoff distribution to SU m in Θj = Ij in the nth step is

ϖm⟨Ij⟩[n] =
1

|Ij|
∑

θj⊆Ij\{m}

|θj|!(|Ij| − |θj| − 1)![ϕ̂j[n](θj ∪ {m})− ϕ̂j[n](θj)] (4.20)

for all m ∈ Θj[n]. Accumulating the payoffs of SU m in the steps that Ij obtains some

channels, we have

∑
{n|êj [n]=1}

ϖm⟨Ij⟩[n] =
l̂j
|Ij|

∑
θj⊆Ij\{m}

|θj|!(|Ij| − |θj| − 1)![ϕ̂j[n](θj ∪ {m})− ϕ̂j[n](θj)] (4.21)

since every SU in Ij obtains l̂j channels. Let ϕ̂
l̂j
j (θj) = l̂jϕ̂j[n](θj) and ϕ̂

l̂j
j (Ij) = ϖ̂

l̂j
j , we

have

ϖm⟨Ij⟩ =
1

|Ij|
∑

θj⊆Ij\{m}

|θj|!(|Ij| − |θj| − 1)![ϕ̂
l̂j
j (θj ∪ {m})− ϕ̂

l̂j
j (θj)], (4.22)
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where ϖm⟨Ij⟩ =
∑

{n|êj [n]=1}ϖm⟨Ij⟩[n]. Note that (4.22) is the payoff distribution to SU m

in Ij in terms of the Shapley value in the decision tree. Therefore, the charging price to

SU m in Ij is

λm⟨Ij⟩ =
∑

{n|êj [n]=1}

µm(q(Ij), km,n−1 + 1)−ϖm⟨Ij⟩. (4.23)

The interaction among SUs in an AUC in each step of the decision tree to obtain a

channel is cooperation rather than competition. The Shapley value as a payoff distribution

mechanism does not affect channel allocation results in the decision tree. Instead, the

Shapley value helps to form the coalition that holds the maximum accumulated valuation

in each step through fair payoff distribution among the SUs in the coalition.

4.4 Low-Complexity Channel Allocation

The decision tree provides the PU a way to achieve the optimal channel allocation.

However, the complexity of a decision tree is O(J1 + · · · + JN) ∼ O(JN) and we have to

go through another J decision trees to determine the charging prices to the AUCs. In this

section, we consider low-complexity algorithms to approach the optimal channel allocation.

Since the decision tree can be easily transformed to a directed acyclic graph (DAG), we try

to find the longest path in the DAG, which is a problem with linear time complexity. Then

we compare the algorithm with a straightforward greedy algorithm and batch allocation.

4.4.1 Directed Acyclic Graph

We simplify the N -step decision tree to a directed graph D = (Φ,Ψ). Specifically,

Φ = {I[0], I1[1], · · · , IJ [1], · · · , I1[N ], · · · , IJ [N ], I[N + 1]}, (4.24)

where I[0] and I[N + 1] are the virtual source and end vertices in steps 0 and N + 1, and

Ij[k] represents AUC Ij in the nth step. The directed edge (Ij[n] → Ij′ [n + 1]) exists for

any j, j′ = 1, · · · , J , n = 1, · · · , N − 1, and the weight of the edge is b̂j′ [n+1]. In addition,

the directed edge from the source vertex (I[0] → Ij[1]) and the directed edge to the end

vertex (Ij[N ] → I[N + 1]) are present for any j = 1, · · · , J . The weight of (I[0] → Ij[1])
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Figure 4.3. Topological sorting of the directed acyclic graph D .

is b̂j[1] and the weight of (Ij[N ] → I[N + 1]) is zero. Note that there is no way to start

from any vertex and return to the same vertex by following the directed edges in graph

D . Therefore, graph D is a DAG [78]. Instead of following the procedure of topological

ordering, we can easily arrange all the vertices in a row from step 0 to N + 1 to form a

topological sorting of graph D [79], which is illustrated in Figure 4.3.

To approach the optimal channel allocation, we find the longest path from the source

to end vertices in the DAG according to Algorithm 7. In Algorithm 7, dist[Ij[n]] is the

longest distance from I[0] to Ij[n], path[Ij[n]] logs the vertices on the longest path to Ij[n],

and weight(Ij[n], Ij′ [n + 1]) is the weight of the edge (Ij[n] → Ij′ [n + 1]). The allocation

result of Algorithm 7 is l̂Acyclic = (l̂1,Acyclic, · · · , l̂J,Acyclic), where l̂j,Acyclic is the number of

times that the longest path to I[N +1] crosses Ij in D . The time complexity of Algorithm

7 is O(Ψ) = O(NJ2).

The application of the algorithm that finds the longest path in a DAG assumes

dist[Ij′ [n+ 1]] = max
Ij [n]

(dist[Ij[n]] + weight(Ij[n], Ij′ [n+ 1])). (4.25)
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In other words, we eliminate the non-longest paths to Ij[n] when we search for the longest

path to Ij′ [n+1], which makes the algorithm less complex than the decision tree. However,

if there is a non-longest path to Ij[n] that turns out to be the longest path to Ij′ [n + 1],

channel allocation of the algorithm that finds the longest path in a DAG will be sub-

optimal. As long as the algorithm that finds the longest path in a DAG allocates channels

optimally most of the time, the AUCs will still bid truthfully in the long run according to

Proposition 4.3.

Proposition 4.3. If sub-optimal channel allocation results occur occasionally in a series

of constrained VCG auctions based on a low-complexity algorithm, the optimal strategy for

the AUCs is still to bid truthfully.

Proof. See Appendix C.2.

Algorithm 7 Finding the longest path in graph D .

1: Initialize: dist[β] = 0 for every vertex β ∈ Φ, path[β] = {I[0]} for β = Ij[1], j =
1, · · · , J .

2: for every vertex β ∈ Φ in topological order do
3: for every adjacent vertex ζ of β do
4: if dist[ζ] < dist[β] + weight(β, ζ) then
5: dist[ζ] = dist[β] + weight(β, ζ)
6: path[ζ] = path[β] ∪ {β}
7: end if
8: end for
9: end for

4.4.2 Greedy Algorithm

The greedy algorithm can be applied to searching the longest path in the decision

tree. In each step, the PU selects the AUC that submits the largest bid. Accordingly,

the allocation outcome is l̂Greedy = (l̂1,Greedy, · · · , l̂J,Greedy). The time complexity of the

greedy algorithm is O(N). The greedy algorithm is straightforward and hence requires less

computation. However, the greedy algorithm searches fewer paths in the decision tree in

comparison with the algorithm that finds the longest path in a DAG, and hence is less

reliable for the PU to approach the optimal channel allocation.
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4.4.3 Batch Allocation

In batch allocation, the PU allocates all channels to selected AUCs in the first step,

and then tries to increase the social welfare by replacing AUCs in a learning process. The

process of batch allocation is described in Algorithm 8, where Λmax controls the number

of AUCs being replaced in each step to maintain stability. The channel allocation result

is l̂Batch = (l̂1,Batch, · · · , l̂J,Batch). The batch allocation allocates all channels in the first

step and therefore improves the computational efficiency. However, different from the

algorithm that finds the longest path in a DAG and the greedy algorithm, untruthful bids

are submitted in batch allocation. Here the batch allocation is introduced as a comparison

with the algorithms in which the AUCs bid truthfully.

Algorithm 8 Batch allocation.

1: Initialize: AUC Ij submits its untruthful bid vector b̃j = (b̃j(1), · · · , b̃j(N)) assuming
the grand coalition will always form, i.e., b̃j (̂i) =

∑
m∈Ij µm(q(Ij), î). The PU chooses

AUCs that hold the largest N b̃j (̂i) to allocate channels. The allocation result is l̂Batch.
2: Do
3: Find the path in the decision tree that leads to l̂Batch and the truthful bids of the AUCs

along the path. Let the lowest truthful bid for the current allocation be b̂[N ].
4: The truthful bid of AUC j for the next channel is b̂j(l̂j,Batch + 1), j = 1, · · · , J . There

are Λ AUCs whose b̂j(l̂j,Batch + 1) > b̂[N ].
5: if Λ ≤ Λmax then
6: Substitute the last Λ nodes in the path for the Λ AUCs.
7: else
8: Substitute the last Λmax nodes in the path for the AUCs that hold the highest Λmax

b̂j(l̂ȷ,Batch + 1).
9: end if

10: Update the allocation result l̂Batch.
11: Repeat do until Λ = 0 or the maximum number of steps is reached.

4.5 Simulation Results

In the simulation, we consider additive white Gaussian noise (AWGN) channels. The

noise power spectrum density is ε/2 = 3 × 10−18 W/Hz. The transmit power of SU m is

pm = 1 W, form = 1, 2, · · · ,M and the interference threshold pthr is 1×10−10 W. We adopt

the two-ray model [63] such that |hm′,m|2 =
ξm′,m
dα
m′,m

, where ξm′,m is a constant determined by

the antenna parameters including Tm′ and Rm, dm′,m is the distance between Tm′ and Rm,
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Figure 4.4. An illustration of random SU distribution in the simulation.

and α is the path loss exponent. To simulate the urban environment, we let ξm′,m = 106

and α = 4 [63].

In Figure 4.4, we illustrate a random SU distribution. There are 20 SU transmitter-

receiver pairs in the area. The number of AUCs in the system is 64. At the upper right

corner of each SU, we label the number of AUCs involving the SU. To avoid unacceptable

co-channel interference, an SU in a crowded area is less likely to participate in an AUC.

Therefore, the SUs in crowded areas have less chance to obtain channels in comparison

with the SUs located in sparse areas.

There are Q− 1 data rate boundaries in the system with Q rate levels, and the Q− 1

data rate boundaries are υbound,1, · · · , υbound,Q−1, where υbound,q =
q
Q
υstep and

υstep =
1

M
(
M∑
m=1

υm,max +
M∑
m=1

υm,min), (4.26)

where υm,max = W log(1 + pm|hm|2
N

) indicates that SU m occupies a channel alone, and

υm,min = W log(1+ pm|hm|2
N +pthr

) indicates the lowest achievable rate of SU m in the system. In

consideration of the uncertainty and irregularity of the channel valuations of the SUs, we

80



suppose that the descending valuations of an SU are random and follow uniform distribu-

tion. The valuations for channels at level q is between 100q and 100(q + 1).

To study the performance of our low-complexity algorithms, we consider the case that

the goal of the PU is to maximize the system throughput. Specifically, the PU allocates all

channels to an SU combination that generates the highest achievable rate. We suppose that

the channels are categorized by the SUs into high rate and low rate ones, i.e., Q = 2. We

fix the number of SUs to 20 while changing the number of channels in the market from 5 to

35. The geographical distributions and channel valuations of the SUs are simulated 1,000

times. Figure 4.5a shows the average social welfare of each of the three low-complexity

algorithms with respect to the number of channels. Compared with the social welfare

associated with the maximum system throughput, the social welfares associated with all

our low-complexity algorithms are higher. The algorithm that finds the longest path in

the DAG and the greedy algorithm are very close to each other, and they both perform

better than the batch allocation in terms of the social welfare. However, the algorithm that

finds the longest path in the DAG and the greedy algorithm both need N steps to allocate

all the channels while the batch allocation roughly allocates all channels in one step. In

addition, Figure 4.5b shows the average system throughput of the three low-complexity

algorithms with respect to the number of channels. When we pursue the maximization of

the social welfare using our low-complexity algorithms, we sacrifice the system throughput.

In comparison with the maximum system throughput, the decreases in system throughputs

of all our low-complexity algorithms are within an acceptable range. Similar to the case

when we consider the social welfare, the performance of the algorithm that finds the longest

path in the DAG and that of the greedy algorithm are close, and they are both better than

the batch allocation in terms of the system throughput.

Additionally, we set Q = 2 and fix the number of channels to 15, while changing the

number of SUs from 10 to 30. Again, the geographical distributions and channel valuations

of the SUs are simulated 1,000 times. Figure 4.6 shows the average social welfare and
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Figure 4.5. Average social welfare and average system throughput vs. number of channels
when M = 20 and Q = 2.

average system throughput with respect to the number of SUs. In Figure 4.6a, the average

social welfare of the channel allocation of the low-complexity algorithms is higher than

the social welfare of the channel allocation that maximizes the system throughput. In

Figure 4.6b, the average system throughput of the channel allocation of the low-complexity

algorithms is lower but in an acceptable range in comparison with the maximum system

throughput. In addition, the increase of both the social welfare and system throughput

slows down with the increasing number of SUs in the system. When there are more SUs in

the system, the number of AUCs increases rapidly according to the modified Bron-Kerbosch

algorithm, while the average number of SUs included in each AUC is limited due to the

co-channel interference constraint. Therefore, the social welfare and system throughput

are both limited by the number of channels shared by the PU.

The social welfares with different numbers of total channel rate levels are not compara-

ble since channel valuations of the SUs need to be adjusted for a particular number of total

channel rate levels. On the other hand, changing the number of total channel rate levels

in the system does not affect the measure of system throughput. Therefore, we compare

the system throughputs with different numbers of total channel rate levels. In Figure 4.7,

we show the average system throughput calculated by the algorithm that finds the longest
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Figure 4.6. Average social welfare and average system throughput vs. number of SUs when
N = 15 and Q = 2.

path in the DAG with respect to the number of channels while changing the number of total

channel rate levels from 1 to 4, i.e., Q = 1, 2, 3, 4. For each setting, we change the number

of channels in the market from 5 to 35, and run the random geographical distributions and

channel valuations of the SUs 1,000 times, while setting the number of SUs to 20. The

case Q = 1 indicates that the SUs are not sensitive to the data rates and hence channels

are identical items, which is discussed in our previous work [80]. In comparison with the

case Q = 1, the average system throughput increases with the increasing number of total

channel rate levels. Therefore, the more channel rate levels in a system, the more emphasis

the PU puts on the system throughput in the channel allocation. On the other hand, the

fewer channel rate levels in a system, the more the PU focuses on the on-demand channel

allocation. In addition, the channel allocation is also related to the number of total channel

rate levels. In Figure 4.8a, we show the average number of winning SUs out of 20 SUs with

respect to the number of channels. The channel allocation is obtained with the algorithm

that finds the longest path in the DAG. In Figure 4.8b, we show the average number of

channels obtained by each winning SU with respect to the number of channels. From these

two figures, channels are allocated to a small amount of SUs in the case of Q = 4, while

about two thirds of the SUs can obtain channels in the case of Q = 1. With the increasing
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Figure 4.7. Average system throughput vs. number of channels calculated by the algorithm
that finds the longest path in the DAG with different numbers of total channel rate levels.
M = 20.

number of total channel rate levels, the channel allocation of the PU is concentrated to a

smaller group of SUs who generate more system throughput.

The algorithms that we select are low-complexity ones to approach the optimal channel

allocation, in comparison with searching the whole decision tree that has a time complexity

O(JN). Whether the channel allocation outcome using a selected algorithm is optimal, i.e.,

the accuracy, is therefore our concern. To evaluate the accuracy of the algorithm that finds

the longest path in the DAG in comparison with searching the decision tree, we examine

the adjusted average social welfare after charging prices are determined. Ideally, positive

utility is guaranteed in optimal channel allocation by the VCG auction process. In non-

optimal channel allocation, payments required by the PU may exceed valuations of some

AUCs under a certain condition, i.e., a low-complexity algorithm obtains a sub-optimal

solution rather the optimal channel allocation when determining the charging price to an

AUC. However, an AUC will refuse a channel transaction if the charging price exceeds the

bid or the channel valuation. Therefore, the social welfare will be adjusted accordingly and

become smaller than that in the ideal case. The gap between the social welfare in the ideal

case and the adjusted average social welfare in consideration of charging prices is related

to the accuracies of the low-complexity algorithms. In Figure 4.9, we show the ideal and
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Figure 4.8. Average numbers of winning SUs and their obtained channels vs. number of
channels when M = 20.

adjusted average social welfares of the algorithm that finds the longest path in the DAG

and the greedy algorithm with respect to the number of channels when Q = 1, 2, 3, 4. For

each setting, we fix the number of SUs to 20 while changing the number of channels in the

market from 5 to 35. The geographical distributions and channel valuations of the SUs are

simulated 1,000 times. The accuracies of the algorithm that finds the longest path in the

DAG and the greedy algorithm are both acceptable in terms of the gaps between the ideal

and adjusted social welfares with different Q. With the increasing numbers of channels and

total channel rate levels, the accuracies of the algorithms decrease.

In a VCG auction, the VCG pricing mechanism motivates the AUCs to submit truth-

ful bids and the social welfare maximization is to select the largest bids. In sub-optimal

channel allocation schemes, the charging prices to the AUCs deviate from the VCG pric-

ing. As a result, the AUCs lose the motivation to bid truthfully if sub-optimal channel

allocation results occur frequently. However, sub-optimal channel allocation results only

occur occasionally in a series of constrained VCG auctions based on the algorithm that

finds the longest path in the DAG and the greedy algorithm as shown in Figure 9. There-

fore, the AUCs are still motivated to bid truthfully in the long run in both low-complexity
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Figure 4.9. Ideal and adjusted average social welfares vs. number of channels. M = 20.

algorithms according to Proposition 4.3. In fact, this can be explained by the concept of

Panopticon [81]. Auctions that result in optimal allocation outcomes can be understood as

observations over the truthfulness of the AUCs, while auctions that result in sub-optimal

allocation outcomes rarely occur. In other words, the AUCs are being watched continu-

ously, in which untruthful AUCs will be punished frequently, i.e., losing potential payoffs,

while most auctions allocate channels optimally in the algorithm that finds the longest

path in the DAG and the greedy algorithm. Therefore, the AUCs always bid truthfully

in the two low-complexity algorithms as if the auctions would result in optimal allocation

outcomes at all times.

4.6 Conclusions

In this chapter, we design a secondary market for spatial spectrum reuse in a non-

symmetric network, where satisfying the demands of the SUs is more important than the

system throughput. Therefore, we consider the multi-level channel valuations of the SUs

and maximize the social welfare accordingly. The PU allocates channels to the combinations

of SUs at the channel rate levels that best satisfy the demands of the SUs, and avoids

channel oversupply to specific SUs or at specific channel rate levels. We first find all AUCs

of the SUs as candidates for the channel allocation of the PU. We also adopt the concept

of the VCG auction process to maximize the social welfare. To cater to the bid formation
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process in the spatial spectrum sharing system, we transform the constrained VCG auction

for AUCs to a step-by-step decision process, in which the AUCs can update their bids based

on realtime channel supply status. To maximize the probability of obtaining a channel, a

coalition of SUs forms in an AUC in each step. We then define the truthful bidding of an

AUC as submitting the accumulated valuation of the coalition, which reflects the highest

accumulated valuation of the subsets of the AUC in each step. The relationship of the SUs

in a coalition is modeled as a coalitional game. We apply the Shapley value to fair payoff

distribution among the SUs in coalitions. Furthermore, we approach the optimal channel

allocation through finding the longest path in a directed acyclic graph, a greedy algorithm,

and batch allocation. In our simulation, we compare the low-complexity algorithms and

demonstrate the efficiency of our proposed channel transaction mechanism.
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Chapter 5
Summary and Conclusions

To build a secondary market for spatial spectrum reuse, flexible channel valuations

of SUs as channel users have to be considered and reflect different user locations, data

rate requirements, and supply status. According to these factors, PUs as channel sellers

decide their spectrum sharing strategies, including market structure, channel allocation,

and pricing policy.

In this research, we study the impact of flexible channel valuations of SUs in spectrum

sharing. Not only are SUs benefited from our research, but also PUs can increase their pay-

offs by estimating the behaviors of the SUs more accurately and pricing the channels more

appropriately. We analyze the behaviors of SUs and PUs in consideration of flexible channel

valuations, which helps the PUs to better estimate the behaviors of the SUs. Specifically,

the research focuses on location-oriented spectrum sharing and channel auctions for spatial

spectrum reuse.

For a spectrum sharing system using economic approaches, conventional models with-

out geographic considerations are oversimplified. In Chapter 2, we develop a model where

geographic information, including licensed areas of PUs and locations of SUs, plays an

important role in the spectrum sharing system. We consider a multi-price policy and the

pricing power of noncooperative PUs in multiple geographic areas. Meanwhile, the value

assessment of a channel is price-related and the demand from the SUs is price-elastic. To

maximize the payoffs of the PUs, we propose a unique quota transaction process. By ap-

plying an evolutionary procedure defined as replicator dynamics, we prove the existence

and uniqueness of the evolutionary stable strategy quota vector of each PU, which leads to

the optimal payoff for each PU selling channels without reserve. In the scenario of selling

channels with reserve, we predict the channel prices for the PUs leading to the optimal

supplies of the PUs and hence the optimal payoffs. Furthermore, we introduce a grouping

mechanism to simplify the process. In the simulation, the effectiveness of the learning pro-
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cesses designed for the two scenarios is verified and our spectrum sharing scheme is shown

efficient in utilizing the frequency resources.

To further increase spectrum utilization, the scenario of spatial spectrum reuse is con-

sidered in Chapter 3. Spatial spectrum reuse enables better utilization of limited spectral

resources to achieve higher system throughput. However, improving the system through-

put or spectrum efficiency does not necessarily translate to the satisfaction of more SUs

according to their demands. Instead of focusing solely on spectrum efficiency, we consider

maximizing social welfare via on-demand channel allocation, which better describes the

overall satisfaction of the SUs when we involve the supply and demand relationship. We

design a receiver-centric spectrum reuse mechanism, in which the optimal channel allocation

that maximizes social welfare can be achieved by the constrained Vickrey-Clarke-Groves

(VCG) auction for SUs. To simplify the constrained VCG auction for SUs, we group the

SUs into maximal independent groups (MIGs) using a modified Bron-Kerbosch algorithm.

We prove that truthful bidding is the optimal strategy for the SUs, even though the SUs

do not participate in the VCG auction for MIGs directly. Therefore, the MIGs are bidding

truthfully and the requirement for social welfare maximization is satisfied. We also prove

that the optimal channel allocation is not unique and thus a weakly-dominant strategy for

the primary user, and the VCG style pricing based on truthful bidding can be implemented

by using a decision tree repeatedly. Furthermore, we approximate and simplify the optimal

channel allocation with a greedy algorithm, Dijkstra’s algorithm, and batch allocation. In

our simulation, we compare the proposed methods and demonstrate that our on-demand

channel allocation increases social welfare.

To further improve user satisfaction, user characteristics that enable heterogeneous

channel valuations need to be considered in spatial spectrum reuse. In Chapter 4, we

design a channel transaction mechanism for non-symmetric networks and maximize user

satisfaction in consideration of multi-level flexible channel valuations of the SUs. Specif-

ically, we introduce a constrained VCG auction, in which the participants are limited to
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the allowable user crowds (AUCs). To facilitate the bid formation, we transform the con-

strained VCG auction to a step-by-step decision process. Meanwhile, the SUs in a coalition

play a coalitional game with transferable utilities. We use the Shapley value to realize fair

payoff distribution among the SUs in a coalition. Furthermore, we approach the optimal

channel allocation via finding the longest path in a directed acyclic graph, a greedy algo-

rithm, and batch allocation. In our simulation, we compare the low-complexity algorithms

and demonstrate the efficiency of the channel transaction mechanism.
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Appendix A
Proofs in Chapter 2

A.1 Proof of Proposition 2.1

Proof. We know that kmn(τ + 1) = kmn(τ) + ∆kmn(τ) and
∑

n∈N ⋄
m
kmn(τ) = Sm. Hence,

∑
n∈N ⋄

m

kmn(τ + 1) =
∑
n∈N ⋄

m

kmn(τ) +
∑
n∈N ⋄

m

∆kmn(τ).

According to (2.15),

∑
n∈N ⋄

m

∆kmn(τ)

Sm
=µmπ̄m(km(τ),k−m(τ))

− 1 · µmπ̄m(km(τ),k−m(τ))

=0

so that
∑

n∈N ⋄
m
∆kmn(τ) = 0. Therefore,

∑
n∈N ⋄

m

kmn(τ + 1) =
∑
n∈N ⋄

m

kmn(τ).

A.2 Proof of Proposition 2.2

Proof.

∑
n∈N ⋄

m

π̄mn(kmn(τ), k−mn(τ)) ·
∆kmn(τ)

Sm

=µm ·
∑
n∈N ⋄

m

kmn(τ)

Sm
π̄2
mn(kmn(τ), k−mn(τ))

− µm[
∑
n∈N ⋄

m

kmn(τ)

Sm
π̄mn(kmn(τ), k−mn(τ))]

2.
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Note that
∑

n∈N ⋄
m

kmn(τ)
Sm

= 1. From Jensen’s inequality, we have

µm ·
∑
n∈N ⋄

m

kmn(τ)

Sm
π̄2
mn(kmn(τ), k−mn(τ))

≥µm[
∑
n∈N ⋄

m

kmn(τ)

Sm
π̄mn(kmn(τ), k−mn(τ))]

2,

and equality holds if and only if π̄mn(kmn(τ), k−mn(τ)), n ∈ N ⋄
m, equals each other. There-

fore, ∑
n∈N ⋄

m

π̄mn(kmn(τ), k−mn(τ)) ·
∆kmn(τ)

Sm
≥ 0.

A.3 Proof of Theorem 2.1

Proof. We prove the existence and uniqueness of k∗
m in the following two cases, respectively.

1.
∑N

n=1 tmn = 1.

In this case, the mth PU has no choice but to sell all its channels to the only SU

inside the licensed area. Apparently, k∗
m exists and is unique.

2.
∑N

n=1 tmn ≥ 2.

Suppose k∗
−m are already set. According to (2.19), we have

Dn
eumn+γ(ψn−ρm)∑M
i=1 e

uin+γ(ψn−ρ∗i )
eζ0 ln(ψn)−ζ1 ln(ρm) − kmn = 0, (A.1)

where ρm is a uniform channel price set by the mth PU. Apparently, for any kmn ∈

(0, Sm),
∂ρm
∂kmn

< 0. Hence, the mth PU can always find ρ+m > 0, and when 0 < ρm <

ρ+m,
∑

n∈N ⋄
m
kmn > Sm always holds. Similarly, the mth PU can always find ρ−m > ρ+m,

and when ρm > ρ−m,
∑

n∈N ⋄
m
kmn < Sm always holds.

Because of the continuity of (A.1), there always exists a price ρ∗m, and when ρm = ρ∗m,∑
n∈N ⋄

m
kmn = Sm. Furthermore, because of the monotony of ρm on kmn ∈ (0, Sm),

n ∈ N ⋄
m, ρ

∗
m is the unique positive solution that satisfies (2.18) and (2.19).
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Correspondingly, k∗mn, n ∈ N ⋄
m, is the unique solution to (2.18) and (2.19). Therefore,

we conclude that k∗
m always exists and is unique.

A.4 Proof of Theorem 2.2

Proof. In contract period τ , we denote N+
m as the set of SU indices whose quotas will be

increased, and N−
m as the set of SU indices whose quotas will be decreased, and N+

m ⊂ N ⋄
m

and N−
m ⊂ N ⋄

m. According to Proposition 2.1,

∑
n+∈N+

m

∆kmn+(τ) +
∑

n−∈N−
m

∆kmn−(τ) = 0. (A.2)

Apparently,

π̄−
m(τ) < π̄m(km(τ),k

∗
−m) < π̄+

m(τ),

where π̄−
m is the average channel payoff for the SUs in N−

m and π̄+
m is the average channel

payoff for the SUs in N+
m . Specifically,

π̄−
m(τ) =

∑
n−∈N−

m
kmn−(τ) · π̄mn−(kmn−(τ), k∗−mn−)∑

n−∈N−
m
kmn−(τ)

and

π̄+
m(τ) =

∑
n+∈N+

m
kmg+(τ) · π̄mn+(kmn+(τ), k∗−mn+)∑

n+∈N+
m
kmn+(τ)

.

If (2.20) holds, the quotas for the SUs in N+
m will continue to be increased, and the quotas

for the SUs in N−
m will continue to be decreased. Therefore, we have π̄+

m(τ + 1) < π̄+
m(τ)

and π̄−
m(τ + 1) > π̄−

m(τ). Meanwhile,

π̄−
m(τ + 1) < π̄m(km(τ + 1),k∗

−m) < π̄+
m(τ + 1).

Obviously, the value range of π̄m is narrowed in contract period τ + 1.
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Since (2.20) always holds, π̄+
m and π̄−

m both converge to π̄m. Specifically,

lim
τ→∞

π̄−
m(τ) = lim

τ→∞
π̄m(km(τ),k−m) = lim

τ→∞
π̄+
m(τ).

In the replicator dynamics, it is equivalent to

lim
τ→∞

π̄mn−(kmn−(τ), k∗−mn−)

= lim
τ→∞

π̄m(km(τ),k
∗
−m)

= lim
τ→∞

π̄mn+(kmn+(τ), k∗−mn+),

i.e., limτ→∞ kmn−(τ) = k∗mn− and limτ→∞ kmn+(τ) = k∗mn+ , n+ ∈ N+
m , and n− ∈ N−

m .

Therefore, km converges to k∗
m if (2.20) holds.

A.5 Proof of Proposition 2.3

Proof. By simplifying (A.1), we have

kmn = Dnψ
ζ0
n ρ

−ζ1
m

1

1 + Fmneγρm
,

where

Fmn =

∑M
i=1
i ̸=m

tine
uin−γpin

tmneumn
.

According to (2.11),

πm =
∑
n∈N ⋄

m

(ρm − CT )kmn − SmCm

=
∑
n∈N ⋄

m

Dnψ
ζ0
n

ρ−ζ1m (ρm − CT )

1 + Fmneγρm
− SmCm.
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Therefore,

∂πm
∂ρm

=ρ−ζ1m

∑
n∈N ⋄

m

Dnψ
ζ0
n

−γFmne
γρm

(1 + Fmneγρm)2

+ ζ1ρ
−ζ1−1
m CT

∑
n∈N ⋄

m

Dnψ
ζ0
n

−γFmne
γρm

(1 + Fmneγρm)2

− ζ1ρ
−ζ1
m

∑
n∈N ⋄

m

Dnψ
ζ0
n

−γFmne
γρm

(1 + Fmneγρm)2
.

Let ∂πm
∂ρm

= 0, we have

−ζ1ρ−ζ1−1
m (ρm − CT ) + ρ−ζ1m = 0,

or ρm = ζ1
ζ1−1

CT , which completes the proof.
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Appendix B
Proofs in Chapter 3

B.1 Proof of Proposition 3.1

Proof. Suppose that MIG Ij submits a truthful bidding vector, i.e., b̂Ij = (µ̂Ij(1), · · · , µ̂Ij(N)),

and obtains l̂Ij channels in the VCG auction for MIGs. The truthful bids of MIG Ij indicate

that each SU in Ij is bidding truthfully, i.e., bm<Ij> = (µm<Ij>(1), · · · , µm<Ij>(N)) for any

m ∈ Ij. The buyer’s payoff of Ij by bidding truthfully is

ϖ̂Ij =

l̂Ij∑
î=1

µ̂Ij (̂i)− λ̂
l̂Ij
Ij

=

l̂Ij∑
î=1

µ̂Ij (̂i)− [V̂
J\{Ij}
J\{Ij} − V̂

J\{Ij}
J ]. (B.1)

Let ϖ
l̂Ij
m<Ij>

denote the buyer’s payoff of SU m in Ij by bidding truthfully. Specifically,

ϖ
l̂Ij
m<Ij>

=

l̂Ij∑
î=1

µm<Ij>(̂i)− λ
l̂Ij
m<Ij>

=

l̂Ij∑
î=1

µm<Ij>(̂i)

−
∑l̂Ij

î=1
bm<Ij>(̂i)∑

m∈Ij

∑l̂Ij

î=1
bm<Ij>(̂i)

[V̂
J\{Ij}
J\{Ij} − V̂

J\{Ij}
J ]. (B.2)

We then slightly increase the bids of SU m and set the bid vector as b+
m<Ij>

, while the bids

of other SUs in Ij remain the same. As a result, the bidding vector of Ij also increases.

Accordingly, Ij will obtain l̂
+
Ij

channels when the bids of the other MIGs are unchanged.

1. If l̂+Ij = l̂Ij , the buyer’s payoff of SU m is

ϖ
l̂+Ij
m<Ij>

=

l̂+Ij∑
î=1

µm<Ij>(̂i)− λ
l̂+Ij
m<Ij>

,
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where

λ
l̂+Ij
m<Ij>

=

∑l̂Ij

î=1
b+m<Ij>

(̂i)∑l̂Ij

î=1
b+m<Ij>

(̂i) +
∑

m′∈Ij
m′ ̸=m

∑l̂Ij

î=1
bm′<Ij>(̂i)

·[V̂ J\{Ij}
J\{Ij} − V̂

J\{Ij}
J ].

Therefore, ϖ
l̂+Ij
m<Ij>

< ϖ
l̂Ij
m<Ij>

. In this case, the bid increment of SU m does not bring

an extra channel but adds its own cost.

2. If l̂+Ij = l̂Ij + 1, the buyer’s payoff of MIG Ij is

ϖ̂+
Ij
=

l̂+Ij∑
î=1

µ̂Ij (̂i)− λ̂
l̂+Ij
Ij

=

l̂Ij+1∑
î=1

µ̂Ij (̂i)− [V̂
J\{Ij}
J\{Ij} − (V̂

J\{Ij}
J )′].

The payoff difference of Ij is

ϖ̂+
Ij
− ϖ̂Ij = µ̂Ij(l̂Ij + 1) + (V̂

J\{Ij}
J )′ − V̂

J\{Ij}
J

=µ̂Ij(l̂Ij + 1) +
∑
j′ ̸=j

l̂′Ij′∑
î=1

b̂Ij′ (̂i)−
∑
j′ ̸=j

l̂Ij′∑
î=1

b̂Ij′ (̂i),

where l̂Ij′ is the number of channels that Ij′ has obtained when Ij is bidding truthfully,

and l̂′Ij′ is the number of channels that Ij′ obtains after the bid change of Ij. We

assume that the extra channel obtained by MIG Ij has originally been allocated to

MIG Iβ, i.e., l̂
′
Iβ

= l̂Iβ − 1. We have

ϖ̂+
Ij
− ϖ̂Ij =µ̂Ij(l̂Ij + 1)− b̂Iβ(l̂Iβ) < 0.
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Otherwise Ij would obtain l̂Ij + 1 channels when bidding truthfully. The payoff of Ij

decreases when SU m increases its bids. Meanwhile, only the payment share of SU m

increases according to (4.18). Therefore, we have ϖ
l̂+Ij
m<Ij>

< ϖ
l̂Ij
m<Ij>

. In other words,

the bid increment reduces the payoff of SU m, despite an extra channel.

It is straightforward to prove that if we increase the bids of SU m further, the payoff

gap between truthful bidding and non-truthful bidding will be larger. Therefore, SU m

does not bid more than its truthful bids.

B.2 Proof of Proposition 3.2

Proof. Under the same set-up as in Appendix B.1, MIG Ij obtains l̂Ij channels through

truthful bidding, and the buyer’s payoff of Ij and that of SU m in Ij by bidding truthfully

is (B.1) and (B.2), respectively. We then slightly decrease the bids of SU m and set the bid

vector as b−
m<Ij>

= (b−m<Ij>
(1), · · · , b−m<Ij>

(N)), while the bids of other SUs in Ij remain

the same. As a result, the bidding vector of Ij also decreases. Accordingly, Ij will obtain l̂
−
Ij

channels when the bids of the other MIGs are unchanged. Let l̂−Ij = l̂Ij − δ, δ = 0, · · · , l̂Ij .

The buyer’s payoff of SU m is

ϖ
l̂−Ij
m<Ij>

=

l̂Ij−δ∑
î=1

µm<Ij>(̂i)− λ
l̂−Ij
m<Ij>

,

where

λ
l̂−Ij
m<Ij>

=

∑l̂Ij

î=1
b−m<Ij>

(̂i)∑l̂Ij

î=1
b−m<Ij>

(̂i) +
∑

m′∈Ij
m′ ̸=m

∑l̂Ij

î=1
bm′<Ij>(̂i)

·[V̂ J\{Ij}
J\{Ij} − (V̂

J\{Ij}
J )′′].

98



The payoff difference of SU m is

ϖ
l̂−Ij
m<Ij>

−ϖ
l̂Ij
m<Ij>

=−
l̂Ij∑

î=l̂Ij−δ

µm<Ij>(̂i) + (λ
l̂Ij
m<Ij>

− λ
l̂−Ij
m<Ij>

).

Since the virtual losses of the other MIGs decrease when Ij obtains fewer channels, [V̂
J\{Ij}
J\{Ij} −

(V̂
J\{Ij}
J )′′] < [V̂

J\{Ij}
J\{Ij} − V̂

J\{Ij}
J ]. In addition, we have

∑l̂Ij

î=1
b−m<Ij>

(̂i)∑l̂Ij

î=1
b−m<Ij>

(̂i) +
∑

m′∈Ij
m′ ̸=m

∑l̂Ij

î=1
bm′<Ij>(̂i)

<

∑l̂Ij

î=1
bm<Ij>(̂i)∑

m∈Ij

∑l̂Ij

î=1
bm<Ij>(̂i)

.

Therefore, λ
l̂Ij
m<Ij>

− λ
l̂−Ij
m<Ij>

> 0, i.e., the channel cost of SU m reduces. However, it is

not guaranteed that SU m can benefit from untruthful bidding. While bidding less than

the truthful bids reduces channel cost, SU m does risk losing some or all of its obtained

channels. The payoff of SU m can either increase or decrease through untruthful bidding,

depending on if the reduced channel cost exceeds the channel valuations of the lost channels.

In the VCG auction for MIGs, the gaps between the winning bids and close-to-winning

bids are only known to the PU, since the VCG auction for MIGs is a sealed-bid process.

Most importantly, the winning bids and close-to-winning bids are very close due to the

severe competition among the MIGs. As a result, the space for SU m to lower its bids while

keeping its obtained channels is limited. Therefore, the reduced channel cost is always less

than the channel valuations of the lost channels, i.e., λ
l̂Ij
m<Ij>

−λ
l̂−Ij
m<Ij>

<
∑l̂Ij

î=l̂Ij−δ
µm<Ij>(̂i).

As a result, an SU does not bid less than its truthful bids in the VCG auction for MIGs.
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B.3 Proof of Proposition 3.6

Proof. We examine a two-step decision tree, which corresponds to N = 2. b̂Ij [1] is the

highest bid when k = 1. After Ij is selected, b̂Ij′ [2] is the highest bid when k = 2. The

social welfare is

(π +ϖ) =
∑

m∈Ij\Ij′

µm(1) +
∑

m∈Ij′\Ij

µm(1)

+
∑

m∈Ij∩Ij′

(µm(1) + µm(2)),

where Ij \ Ij′ is the set of SUs in Ij but not in Ij′ .

Different from choosing the MIG with the highest bid, we select Ij′ when k = 1, and

Ij′′ when k = 2. Suppose Ij′ ∩ Ij′′ = ø. The social welfare is

(π +ϖ)′ =
∑
m∈Ij′

µm(1) +
∑
m∈Ij′′

µm(1).

We have

(π +ϖ)− (π +ϖ)′

=
∑

m∈Ij\(Ij′∪Ij′′ )

µm(1) +
∑

m∈Ij∩Ij′

µm(2)−
∑

m∈Ij′′\Ij

µm(1).

Meanwhile, since b̂Ij [1] > b̂Ij′′ [1], we have

∑
m∈Ij\(Ij′∪Ij′′ )

µm(1) +
∑

m∈Ij∩Ij′

µm(1) >
∑

m∈Ij′′\Ij

µm(1).
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Therefore, when

∑
m∈Ij\(Ij′∪Ij′′ )

µm(1) +
∑

m∈Ij∩Ij′

µm(2)

<
∑

m∈Ij′′\Ij

µm(1) <
∑

m∈Ij\(Ij′∪Ij′′ )

µm(1) +
∑

m∈Ij∩Ij′

µm(1),

choosing the MIG with the highest bid does not maximize the social welfare.

When N > 2 and Ij′ ∩ Ij′′ ̸= ø, similar cases can be found, which completes the proof

of Proposition 3.6.
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Appendix C
Proofs in Chapter 4

C.1 Proof of Proposition 4.2

Proof. We suppose that there is a coalition Θj[n] in Ij composed of two SUs in the nth

step. If both SUs report their truthful channel valuations, the payoff functions associated

with all subsets of Θj[n] = {1, 2} are

ϕ̂j[n]({1}) = f{1,2}(µ1(q({1}), k1,n−1 + 1)) · µ1(q({1}), k1,n−1 + 1),

ϕ̂j[n]({2}) = f{1,2}(µ2(q({2}), k2,n−1 + 1)) · µ2(q({2}), k2,n−1 + 1),

ϕ̂j[n]({1, 2}) = µ1(q({1, 2}), k1,n−1 + 1) + µ2(q({1, 2}), k2,n−1 + 1),

and ϕ̂j[n](ø) = 0. Therefore, the payoff distribution to SU 1 according to the Shapley value

is

ϖ1⟨Ij⟩[n] =
1

2
(ϕ̂j[n]({1})− ϕ̂j[n](ø)) +

1

2
(ϕ̂j[n]({1, 2})− ϕ̂j[n]({2}))

=
1

2
[µ1(q({1, 2}), k1,n−1 + 1) + µ2(q({1, 2}), k2,n−1 + 1)

+f{1,2}(µ1(q({1}), k1,n−1 + 1)) · µ1(q({1}), k1,n−1 + 1)

−f{1,2}(µ2(q({2}), k2,n−1 + 1)) · µ2(q({2}), k2,n−1 + 1)],

and the charging price to SU 1 is

λ1⟨Ij⟩[n] = µ1(q({1, 2}), k1,n−1 + 1)−ϖ1⟨Ij⟩[n].

Then we suppose that SU 1 will devalue its channel valuation, while SU 2 continues to

report truthful channel valuation. In this case, the payoff functions associated with all
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subsets of Θj[n] are

ϕ̂′
j[n]({1}) = f ′

{1,2}(µ1(q({1}), k1,n−1 + 1)− ϱ({1})) · µ1(q({1}), k1,n−1 + 1),

ϕ̂′
j[n]({2}) = f ′

{1,2}(µ2(q({2}), k2,n−1 + 1)) · µ2(q({2}), k2,n−1 + 1),

ϕ̂′
j[n]({1, 2}) = µ1(q({1, 2}), k1,n−1 + 1))− ϱ({1, 2}) + µ2(q({1, 2}), k2,n−1 + 1),

and ϕ̂′
j[n](ø) = 0, where f ′

{1,2}(·) is the adjusted winning probability function. Since

ϕ̂j[n](Θj[n]) = ϖ̂j[n], we have

f{1,2}(µ1(q({1, 2}), k1,n−1 + 1)) + µ2(q({1, 2}), k2,n−1 + 1))

=f ′
{1,2}(µ1(q({1, 2}), k1,n−1 + 1))− ϱ({1, 2}) + µ2(q({1, 2}), k2,n−1 + 1)) = 1.

Note that f ′
{1,2} is adjusted based on f{1,2}, and hence f{1,2} and f ′

{1,2} are both increasing

convex functions that belong to the same family of functions. Therefore, we have f ′
{1,2}(µ) >

f{1,2}(µ). In this case, the payoff distribution to SU 1 when SU 1 devalues its valuation is

ϖ′
1⟨Ij⟩[n] =

1

2
(ϕ̂′

j[n]({1})− ϕ̂′
j[n](ø)) +

1

2
(ϕ̂′

j[n]({1, 2})− ϕ̂′
j[n]({2}))

=
1

2
[µ1(q({1, 2}), k1,n−1 + 1)− ϱ({1, 2}) + µ2(q({1, 2}), k2,n−1 + 1)

+f ′
{1,2}(µ1(q({1}), k1,n−1 + 1)− ϱ({1})) · [µ1(q({1}), k1,n−1 + 1)− ϱ({1})]

−f ′
{1,2}(µ2(q({2}), k2,n−1 + 1)) · µ2(q({2}), k2,n−1 + 1)],

and the charging price to SU 1 is

λ′1⟨Ij⟩[n] = µ1(q({1, 2}), k1,n−1 + 1)− ϱ({1, 2})−ϖ′
1⟨Ij⟩[n].

103



The charging price difference is

λ1⟨Ij⟩[n]− λ′1⟨Ij⟩[n] =
1

2
[ϱ({1, 2}) + δµ1(q({1, 2}), k1,n−1 + 1)

−δϱ({1})− ϱ({1})f{1,2}(µ1(q({1}), k1,n−1 + 1)], (C.1)

where δ = f ′
{1,2}(µ1(q({1}), k1,n−1 + 1)− ϱ({1}))− f{1,2}(µ1(q({1}), k1,n−1 + 1)). According

to (C.1), SU 1 can manipulate its shared charging price through channel devaluation in

every subset of Θj[n] where SU 1 is involved. When λ1⟨Ij⟩[n] − λ′1⟨Ij⟩[n] > 0, SU 1 is

benefited from channel devaluation. For example, when ϱ({1}) = 0 such that δ > 0, we

have λ1⟨Ij⟩[n]− λ′1⟨Ij⟩[n] =
1
2
[ϱ({1, 2}) + δµ1(q({1, 2}), k1,n−1 + 1)] > 0.

When more SUs are included in a coalition, an SU can still decrease its shared charging

price through channel devaluation. However, it takes effort for the SU providing untruthful

bid information in a large coalition to determine the profitable channel devaluation in every

subset of the coalition.

C.2 Proof of Proposition 4.3

Proof. For AUCs that cannot obtain any channel through truthful bidding, untruthful

bidding only leads to negative payoffs, i.e., the payment exceeds channel valuation. There-

fore, only the AUCs that can obtain channels are considered and there are four different

scenarios.

1. AUC Ij bids truthfully, and the channel allocation outcome is optimal. The payoff of

Ij is ϖ̂j and ϖ̂j > 0.

2. AUC Ij bids truthfully, but the channel allocation outcome is sub-optimal. The payoff

of Ij is ϖ̂j +∆ϖj,1, where ∆ϖj,1 is the adjusted payoff in this scenario.

3. AUC Ij bids untruthfully, and the channel allocation outcome is optimal according to

the submitted bids. The payoff of Ij is ϖ̂j+∆ϖj,2, where ∆ϖj,2 is the adjusted payoff

in this scenario. Since untruthful bidding is not DSIC strategy in the constrained
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VCG auction, ∆ϖj,2 ≤ 0.

4. AUC Ij bids untruthfully, and the channel allocation outcome is sub-optimal. The

payoff of Ij is ϖ̂j +∆ϖj,3, where ∆ϖj,3 is the adjusted payoff in this scenario.

Denote ϑ the probability that a low-complexity algorithm results in the optimal channel

allocation. If AUC Ij bids truthfully, the expected payoff in a low-complexity algorithm is

ϖ̄j,truthful = ϖ̂j + (1− ϑ)∆ϖj,1.

If AUC Ij bids untruthfully, the expected payoff in a low-complexity algorithm is

ϖ̄j,untruthful = ϖ̂j + ϑ∆ϖj,2 + (1− ϑ)∆ϖj,3.

Since ∆ϖj,2 ≤ 0, we have ϖ̄j,truthful ≥ ϖ̄j,untruthful if ϑ approaches 1. In other words, if

sub-optimal channel allocation results only occur occasionally in a series of constrained

VCG auctions based on a low-complexity algorithm, the optimal strategy for the AUCs is

still to bid truthfully.

In addition, we have

ϑ = ϑo =
∆ϖj,1 −∆ϖj,3

∆ϖj,1 −∆ϖj,3 +∆ϖj,2

by setting ϖ̄j,truthful = ϖ̄j,untruthful. If ∆ϖj,1 −∆ϖj,3 ≥ 0, we have ϑo ≥ 1 or ϑo ≤ 0. In

other words, the optimal strategy for the AUCs is always to bid truthfully regardless of the

sub-optimal allocation results of a low-complexity algorithm. If ∆ϖj,1 − ∆ϖj,3 < 0, the

value of ϑo depends on the ratio of
∆ϖj,2

∆ϖj,1−∆ϖj,3
. With a higher adjusted payoff in scenario

3 or a smaller difference between the adjusted payoffs in scenarios 2 and 4, the optimal

strategy for the AUCs is to bid truthfully even when sub-optimal channel allocation results

occur more often, as long as ϑ > ϑo.
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