
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2015

Synthesis With Hypergraphs
Christopher Thomas Alvin
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Alvin, Christopher Thomas, "Synthesis With Hypergraphs" (2015). LSU Doctoral Dissertations. 2633.
https://digitalcommons.lsu.edu/gradschool_dissertations/2633

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/2633?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

SYNTHESIS WITH HYPERGRAPHS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Christopher T. Alvin

B.A., Ripon College, 1999
M.S., University of Wisconsin at Madison, 2001

M.S., Marquette University, 2011
August 2015

Acknowledgments

I would like to thank Supratik Mukhopadhyay for his efforts and creativity as my advi-

sor. I would also like to thank Louisiana State University and the Economic Development

Assistantship. To Sumit Gulwani for his creative ideas in intelligent tutoring. I am in-

debted to Rupak Majumdar for a chance walk in the Alps, advice, and tremendous ability

to simplify complex notions. I also need to thank Michal Brylinski and Jimmie Lawson for

their ideas as well as the Misagh Naderi and Brian Peterson for their collaborations.

Finally, I must thank Lori for putting up with me; it is not an easy set of challenges.

ii

Table of Contents

ACKNOWLEDGMENTS . ii

ABSTRACT . v

CHAPTER
1 INTRODUCTION . 1

1.1 Geometry Problem and Solution Synthesis . 1
1.2 Molecular Synthesis . 2

2 HYPERGRAPHS. 4
2.1 Graphs . 4
2.2 Synthesis Hypergraph . 5
2.3 Hyperpaths and Hyper-Reachability . 5
2.4 Sub-Hypergraph Selection through Pebbling . 7

3 SYNTHESIS OF GEOMETRY PROOF PROBLEMS AND
THEIR SOLUTIONS . 9
3.1 Introduction . 9
3.2 Informal Theoretical Foundations in Euclidean Geometry 11
3.3 Formal Theoretical Foundations in Euclidean Geometry 15

3.3.1 Geometric Classes . 15
3.3.2 Theories and Figures . 16
3.3.3 Synthesis Hypergraphs and Problems . 20

3.4 Algorithm for Problem Generation . 24
3.4.1 Step 1: Hypergraph Construction . 25
3.4.2 Step 2: Minimal Assumption Generation . 26
3.4.3 Step 3: Strictly Interesting Problem Synthesis 27

3.5 Problem Generation Interface . 30
3.5.1 Features of a Geometry Problem . 30
3.5.2 Query Interface to Problem Generation . 31

3.6 Experimental Results . 31
3.6.1 Benchmark . 32
3.6.2 Evaluation of Algorithm GenProblem . 32
3.6.3 Effectiveness of Our Methodology . 36

4 SYNTHESIS OF PROBLEMS AND SOLUTIONS FOR SHADED
AREA GEOMETRY REASONING . 39
4.1 Introduction . 39
4.2 Preprocessing: Constructing a Figure of Convex Components 42

4.2.1 Implicit and Computable Properties of a Figure 42
4.2.2 Polygon Identification . 45

4.3 Shaded Area Problem Formalization . 45
4.4 Theoretical Foundations for Shaded Area Geometry Reasoning 47

iii

4.4.1 Extending Theories of Figures with Area Com-
putations with a Calculational Logic . 49

4.4.2 Synthesis Hypergraph and Problems . 51
4.5 Figure Synthesis . 54

4.5.1 Figure Synthesis with Templates and Snapping 54
4.5.2 Constraint-Based Synthesis of Problem As-

sumptions From a Figure . 57
4.6 Solving Shaded Area Problems . 59

4.6.1 Atomic Region Identification. 59
4.6.2 Constructing the Analysis Hypergraph . 63
4.6.3 Finding a Path in the Hypergraph . 66

4.7 Problem Generation . 67
4.8 Experimental Results . 67
4.9 Related Work in Geometry Problem and Solution Synthesis 72

4.9.1 Automated Tutoring Systems . 73
4.9.2 Technology for Geometry Education in Proof Synthesis 73
4.9.3 Technology for Geometry Education in Shaded

Area Synthesis . 74
4.9.4 Automatic Problem Generation . 74

5 MOLECULAR SYNTHESIS . 76
5.1 Significance of the Problem . 76
5.2 Molecular Fragments . 80
5.3 Synthesis . 83

5.3.1 Algorithms . 83
5.3.2 Molecular Filtration with Bloom Filters . 87

5.4 Molecular Hypergraph . 88
5.4.1 Definitions . 88
5.4.2 The Molecular Hypergraph . 89

5.5 On-Demand Molecular Hypergraph Construction and Traversal 90
5.6 Experimental Results . 92

5.6.1 Self-Reconstruction . 92
5.6.2 Cross-Validation . 95

5.7 Related Techniques . 98

6 CONCLUSIONS AND FUTURE WORK . 100
6.1 Generalizing the Hypergraph Approach . 100
6.2 Conclusions and Future Work in Geometry Problem Synthesis 100
6.3 Conclusions and Future Work in Molecular Synthesis 102

REFERENCES . 103

VITA . 112

iv

Abstract

Many problems related to synthesis with intelligent tutoring may be phrased as program

synthesis problems using AI-style search and formal reasoning techniques. The first two

results in this dissertation focus on problem synthesis as an aspect of intelligent tutoring

systems applied to STEM-based education frameworks, specifically high school geometry.

Given a geometric figure as input, our technique constructs a hypergraph representing

logical deduction of facts, and then traverses the hypergraph to synthesize problems and

their corresponding solutions.

Using similar techniques, our third result is focused on exhaustive synthesis of molecules.

This synthesis process involves bonding sets of basic, molecular ‘fragments’ according to

chemical constraints to create molecules of increasing size. For each input set of fragments,

synthesis results in a significant set of molecules. Due to big data constraints we give

special consideration in how to construct a corresponding molecular hypergraph based on

a target, template molecule. Synthesis of the target molecule in a laboratory environment

then corresponds to any path in the molecular hypergraph from the set of fragments to the

target molecule.

v

Chapter 1
Introduction

Program synthesis is the task of automatically discovering an executable piece of code

when given constraints through demonstrations, input-output pairs, or other example-based

input. Many problems may be phrased as program synthesis problems using AI-style search

and formal reasoning techniques; in this dissertation we focus on two distinct synthesis

problems. Specifically, we will focus on the construction and exploration of hypergraphs

for problem and solution synthesis in intelligent tutoring systems as well as synthesis of

molecular compounds. In Chapter 3 and Chapter 4 we describe problem and solution

synthesis as applied to STEM-based education frameworks, specifically high-school geom-

etry. In Chapter 5, we apply some similar techniques to the space of molecules with the

goal of providing the theoretical foundation and toolset for discovery of new antibiotic /

antimicrobial compounds.

1.1 Geometry Problem and Solution Synthesis

With the advent of visualization technologies (tablets, graphing calculators, etc.) in

the classroom, there has been a shift in mathematics teaching where a problem is viewed

from multiple perspectives: graphical, numerical, and algebraic. High school geometry is

particularly interesting in this regard because it combines the implicit visual perspective

and deductive logic skills. Many online teaching and learning tools exist for high school

mathematics courses through Calculus; however there is a limit to the number and types

of problems a student may use for practice or a teacher may use for test generation.

On-demand generation of new problems that have specific problem and solution char-

acteristics (such as difficulty level, use of a certain set of concepts, etc.) is a difficult task

for any teacher. The ultimate goal for problem synthesis is effective student learning, but

automating problem synthesis has several benefits including efficient construction of home-

work and exams, facilitating effective differentiated instruction, and avoiding copyright

issues encountered with textbooks or other copyrighted materials.

1

In Chapter 3 we present a semi-automated methodology and tool, GeoTutor [7], for

generating geometric proof problems of the kind found in a high-school curriculum. We

formalize the notion of a geometry proof problem and describe an algorithm for generating

such problems over a user-provided figure. Our experimental results indicate that our prob-

lem generation algorithm can effectively generate proof problems in elementary geometry.

On a corpus of 110 figures taken from popular geometry textbooks, our system generated

an average of about 443 problems per figure in an average time of 4.7 seconds per figure.

In Chapter 4, we present a tool, GeoShader [8], that not only solves shaded area ge-

ometry problems but also synthesizes such problems. We consider three distinct use cases:

1. given a geometric figure and a shaded region within it, solve the problem by calcu-

lating the area of the shaded region,

2. given a geometric figure, synthesize all possible interesting shaded area problems from

it, and

3. given a set of shapes (e.g., triangles, circles, etc.) compose them in all possible

configurations (e.g., one shape inside another, one shape adjoining another, etc.) to

synthesize a geometric figure that provides interesting shaded area problems.

On a corpus of 102 problems taken from popular geometry textbooks, GeoShader success-

fully solved the original problem and generated an average of 257 problems per figure in

an average time of 13.4 seconds per figure. Given a set of three polygons, we synthesized

3533 figures resulting in a mean of 16.5 interesting problems per figure.

1.2 Molecular Synthesis

According to the Centers for Disease Control (CDC), antibiotic / antimicrobial resis-

tance is a significant threat that results in at least 23,000 deaths each year [37]. In order to

combat the worldwide epidemic of antimicrobial resistance, we describe a molecular syn-

thesis process that, given a set of basic molecular building blocks (molecular fragments),

we perform an exhaustive synthesis in order to construct all possible molecules using those

2

constituent molecular fragments. We then discuss validation of our synthesis techniques

and give evidence that our implementation tool Synth is accurate, efficient, and can explore

deep in the chemical compound search space in a short amount of time thus facilitating

discovery of new drug compounds.

3

Chapter 2
Hypergraphs

In each synthesis space we must decide how to encode that information in a target

data structure. The synthesis efforts we describe in this thesis generally require deduction

of facts. For example, in order to represent logical deduction in a directed graph data

structure, we must define correspondences among nodes and edges as well as operations such

as paths and reachability. In this section, we first consider a directed graph data structure

before expanding into a hypergraph [13], a generalizeation of a graph data structure.

2.1 Graphs

We may define a directed graph based on sets of nodes and edges connecting nodes.

Definition 1 (Directed Graph). A directed graph G(N,E) is a data structure where N

is a set of nodes and E a set of directed edges. Each directed edge e ∈ E is defined by the

ordered pair e = (s, t) where s, t ∈ N ; we may refer to s as the source node and t as the

target node.

∼=
sides

∼=
∠’s

∼=
sides ∆2∆1

∼=
∆’s

SAS

Figure 2.1: Logical Deduction of Triangle Congruence using SAS

However, for a directed graph G(N,E) where, for all n ∈ N , n corresponds to a

singleton fact, the graph data structure is limiting. General deduction of a single fact often

arises from many antecedent facts. For example, as shown in Figure 2.1, the Side-Angle-

Side (SAS) geometry congruence axiom requires three facts relating two triangles in order

to deduce the single fact that the two triangles are congruent. Our synthesis efforts hence

require a more general, many-to-one relationship among facts; thus we require a hypergraph

structure.

4

. . . ◦ . . .

Figure 2.2: A Many-To-Many Directed Hyperedge.

2.2 Synthesis Hypergraph

We first consider a many-to-many hypergraph structure in Definition 2 before focusing

on a special case of a hypergraph we use in our synthesis efforts in Definition 3.

Definition 2 (General, Directed Hypergraph). A directed hypergraph (N,E) is a data

structure where N is a set of hypernodes and E a set of directed hyperedges. Each directed

hyperedge e ∈ E is defined by the ordered pair e = (S, T) where S, T ⊆ N .

In a deductive domain, it is not necessary to adopt a many-to-many directed hyperedge

as defined in Definition 2 and shown in Figure 2.2. We instead use a hypergraph in which

hyperedges consist of many source nodes and a single target node as shown in Figure 2.1

and defined in Definition 3.

Definition 3 (Synthesis Hypergraph). A synthesis hypergraph is a directed hypergraph

H (N,EA) where N is a set of hypernodes and E a set of directed hyperedges over a set

of annotations A. Each directed hyperedge e ∈ E is defined by the ordered pair e = (S, t)

where S ⊆ N and t ∈ N .

2.3 Hyperpaths and Hyper-Reachability

In each of our synthesis efforts, we seek correspondence with the nodes and hyperedges

of our synthesis hypergraph as well as operations on those hypergraphs. Specifically, we are

most interested in hyperpaths and hyper-reachability. For completeness purposes, we define

these concepts with respect to a synthesis hypergraph in Definition 6 and Definition 7, but

first we define the necessary structures to acquire hyperpaths.

5

To simplify this path-finding process we define a ‘reverse’ structure of a synthesis

hypergraph by first defining a transpose hyperedge (Definition 4) and secondly the dual of

a synthesis hypergraph (Definition 5). We note that the dual of a synthesis hypergraph

is a directed graph as stated in Definition 1 where operations on graphs such as path and

reachability are well-defined [26].

Definition 4 (Transpose Hyperedge). For a hyperedge e = (S, t) with source nodes S and

target node t, the corresponding transpose hyperedge is a set of edges given by eT = {(t, s) :

∀s ∈ S}.

Definition 5 (Synthesis Hypergraph Dual). Let H (N,EA) be a synthesis hypergraph with

nodes N and hyperedges E over a set of annotations A. The dual of an analysis hypergraph,

HT (N, E), is a graph with nodes N and edges defined by E =
⋃
e∈E e

T , the union of all

transpose hyperedges of E.

In simple terms, the dual of a synthesis hypergraph is a graph with the same set of nodes

and the hyperedges of the hypergraph are split into one-to-one edges with the directions

reversed. We may now easily define a hyperpath in a synthesis hypergraph using the dual

of a synthesis hypergraph.

Definition 6 (Hyperpath). Let H (N,EA) be a synthesis hypergraph, I ⊂ N , and g ∈ N .

The hyperpath from I to g is the set of hypernodes and hyperedges corresponding to the

nodes and edges of the path from g to each f ∈ I in HT . We say that the shortest hyperpath

from I to g is the hyperpath that uses the fewest number of hyperedges.

We can now easily define hyper-reachability in a synthesis hypergraph.

Definition 7 (Hyper-Reachability). Let H (N,EA) be a synthesis hypergraph, I ⊂ N , and

g ∈ N . Then g is hyper-reachable from I if there exists a hyperpath from I to g.

Both of these operations will play a critical role in each of our forthcoming results in

Chapter 3 through Chapter 5.

6

2.4 Sub-Hypergraph Selection through Pebbling

In a synthesis hypergraph H (N,EA) each hyperedge is annotated with a parameterized

set of values A ∈ A defined in the synthesis space. Edge annotations provides the user with

an ability to exclude a set of hyperedges and restrict the corresponding set of syntheses in

the synthesis space. We more formally define this notion in a pebbled synthesis hypergraph

in Definition 8 as computed using Algorithm 2.1, a process we informally call pebbling.

Algorithm 2.1 Sub-Hypergraph Selection Through Pebbling

1: procedure Pebble(Hypergraph H (N,EA), NP ⊆ N , AP ⊆ A)
2: Hypergraph P . Pebbled Sub-Hypergraph
3: Worklist W ← NP

4: while !W.empty() do
5: n← W.dequeue() . Acquire a node
6: if !n.pebbled() then
7: n.pebble() . Mark the node
8: P.AddNode(n)
9: for all e ∈ n.edges do

10: . Consider only allowable hyperedges
11: if e.annotation ∈ AP then
12: . If all hyperedge source nodes are pebbled, add target to worklist
13: . to propogate forward
14: if e.pebbled() then
15: P.AddHyperedge(e)
16: W.enqueue(e.target)
17: end if
18: end if
19: end for
20: end if
21: end while
22: return P
23: end procedure

Definition 8 (Pebbled Synthesis Hypergraph). Let H (N,EA) be a synthesis hypergraph

with NP ⊆ N a subset of nodes and a subset of annotations AP ⊆ A. Then HP (NP , EAP) is

a pebbled synthesis hypergraph containing only reachable nodes and hyperedges as dictated

by NP and AP , respectively.

7

Algorithm 2.1 is a modification of the classic algorithm marking algorithm as first

defined by Dowling and Gallier [32] for satisfiability of propositional horn clauses. Pebbling

is a linear-time traversal over a synthesis hypergraph that identifies the sub-hypergraph [13]

that satisfies the constraints stated by the user. As described in Algorithm 2.1, pebbling

is a breadth-first traversal over a synthesis hypergraph where we mark each node with a

pebble once it is visited (Line 7). Then on Line 9 through Line 19 we use the following rule

for pebbling and propogation: if all source nodes of a hyperedge are pebbled, we place the

target node of the hyperedge in the work list. As pebbling continues, we add all pebbled

nodes (Line 8) and hyperedges (Line 15) to the sub-hypergraph in preparation for the

return of the pebbled version of the hypergraph (Line 22).

8

Chapter 3
Synthesis of Geometry Proof Problems and Their Solutions

This chapter presents a semi-automated methodology for generating geometric proof

problems of the kind found in a high-school curriculum. We formalize the notion of a

geometry proof problem and describe an algorithm for generating such problems over a user-

provided figure. Our experimental results indicate that our problem generation algorithm

can effectively generate proof problems in elementary geometry. On a corpus of 110 figures

taken from popular geometry textbooks, our system generated an average of about 443

problems per figure in an average time of 4.7 seconds per figure.

3.1 Introduction

Learning in mathematics is more deeply rooted when a student is able to view a prob-

lem from multiple perspectives: graphically, numerically, and algebraically. High school

geometry is particularly interesting in this regard because it combines the implicit visual

perspective and deductive logic skills. For some, geometry is the favorite mathematics

course in high school because of the combination of the implicit visual perspective and the

constant exercising of deductive logic skills. This chapter presents a technology to enhance

geometry education. In particular, we present a technique for automatically generating

fresh geometry proof problems from the figures of given problems.

Generating fresh problems that have specific solution characteristics (such as difficulty

level, use of a certain set of concepts) is a difficult task for educators. Automating problem

generation has several benefits. First, it can help avoid copyright issues. It is illegal to

make photocopies of a textbook and may not be legal to publish an original problem from a

textbook on a course website. A problem generation tool can provide instructors with fresh

problems (that have characteristics similar to that of the original problem) for use in their

assignments, exams, or lecture notes. Second, it can help prevent cheating in classrooms

or online education platforms (with unsynchronized instruction) since each student can be

provided with a different problem but with the same characteristics. Third, it can be used

9

to generate personalized workflows for students. If a student solves a problem correctly,

then the student may be presented with a problem that is more difficult than the last

problem, or exercises a richer set of concepts. If a student fails to solve a problem, then

the student may be presented with simpler problems to identify, reinforce, and master core

concepts.

We formalize the notion of a geometry proof problem, which consists of a figure, some

assumptions about the figure, goals that need to be established about the figure, and the set

of axioms that need to be used. We propose a semi-automated methodology for generating

such problems. Given a figure and a set of axioms, our problem generation technique

produces a set of problems over that figure in the form of pairs of assumptions and goals.

Such problems, generated across a large set of figures provided by the user, can be stored

in a database along with their characteristics. This empowers users to query the database

with specific characteristics to obtain custom problems.

Our problem generation technique operates in three steps. First, it produces a logi-

cal geometry hypergraph (Definition 14) that represents all possible proofs for all possible

problems over a given pair of user-provided figures and axioms. The hypergraph construc-

tion requires enumerating all facts that are true of the figure as nodes in the hypergraph.

Furthermore, a set of source facts is connected to a target fact using a directed hyperedge

labeled with a user-provided axiom if the axiom can be used to deduce the target fact from

the source facts. Then, the tool systematically enumerates all minimal sets of assumptions

(Algorithm 3.1). An assumption is a fact about the figure, and informally, a set of as-

sumptions is minimal if every assumption is non-redundant. Finally, for any minimal set of

assumptions I, the tool systematically enumerates all possible goal sets G such that (I,G)

is an interesting problem (Algorithm 3.2).

We evaluated the effectiveness of our problem generation algorithm on 110 figures taken

from various geometry textbooks. Our algorithm generated an average of 443 problems in

10

an average time of 4.7 seconds per figure. We also observed that there were several problems

with same characteristics across various figures.

This chapter makes the following contributions:

• We informally describe the geometry proof problem synthesis domain (§3.2).

• We then formalize a geometric figure as a partial ordering of geometric classes as well

as the notion of a geometry problem (§3.3).

• We then motivate problem generation interfaces corresponding to characteristics of

geometry proof problems (§3.5).

• We present a technique for generating proof problems over a given geometric figure

(§3.4).

• We describe experimental results illustrating the efficacy of our problem generation

interfaces and our problem generation algorithm (§3.6).

3.2 Informal Theoretical Foundations in Euclidean Geometry

Informally, a geometric figure is a pictorial representation of a collection of geometric

objects (points, lines, circles) in a specific orientation with each other. Internally, we repre-

sent geometric figures using first-order logic constraints which can be derived by analyzing

a pictorial representation. We work in a first order language with arithmetic and constants

ranging over points. We omit a full description of the logical language and illustrate it

through examples. Our logic consists of relations such as betweenness Between(A,B,C)

(which implies collinearity of points A, B, and C), congruence, and equality relations on line

segments or angles. For ease of readability, in the following examples, we also use derived

predicates such as Triangle(A,B,C) (the three points form a triangle, denoted ∆ABC),

Collinear(A,B,C) (points are collinear), RightAngle(A,B,C), etc.

We compute internal representations from pictorial representations of a figure. We

assume that input figures are drawn to scale but the problem instances we generate will

not assume that figures are drawn to scale. Thus, in the internal representation for a

11

Table 3.1: Example Set of Geometric Axioms

Axiom Name Premise(s) Conclusion(s)

Midpoint Definition Midpoint(M , AB) AM = MB

Angle Addition ∠ABC,∠CBD ∠ABC + ∠CBD = ∠ABD
Exterior(D,∠ABC)

Vertical Angles Intersect(X,AB,CD) ∠AXD ∼= ∠CXB,
∠AXC ∼= ∠BXD

Side-Side-Side ∆ABC,∆DEF , ∆ABC ∼= ∆DEF

AB ∼= DE,BC ∼= EF

CA ∼= FD

Alternate Interior Angles CD ‖ EF , ∠ENM ∼= ∠NMD,

Intersect(M,AB,CD), ∠FNM ∼= ∠NMC

Intersect(N,AB,EF)

figure Fig, we distinguish between implicit and explicit facts. Implicit predicates only

provide orientation (or “betweenness”) information but not relationships on measurements.

Explicit predicates provide relations based on measurement and may not hold when the

figure is distorted. For example, implicit predicates would state that ABC is a triangle

or that line segments AB and CD intersect at M , and explicit predicates would state

AB = CD or ∠ABC is a right angle. Technically, implicit predicates are those facts about

the figure provable in ordered geometry [27], and explicit predicates are those facts provable

in Euclidean geometry minus the implicit ones. For a figure Fig, we write I(Fig) for the

set of implicit facts and E(Fig) the set of explicit facts.

We may now formalize the definition of a geometry axiom as a mechanism that uses a

set of facts to derive a new target fact.

Definition 9 (Geometry Axiom). A geometry axiom is a Horn clause whose ground in-

stances are implicit or explicit predicates and consists of a set of premises and a conclusion.

The free variables in a geometry axiom are (implicitly) universally quantified. Given

an axiom A, we say that A derives a predicate p from a set P of predicates if there is an

instantiation of the premises of A with P and the conclusion with p: P `Ap. Table 3.1 gives

some examples of geometry axioms.

12

Definition 10 (Geometry Problem). Let Fig be a figure, I(Fig) be the set of implicit facts,

and Axm be a set of geometry axioms. A geometry (proof) problem over (Fig,Axm) is a

pair (I,G), where the assumptions I ⊆ E(Fig) and goals G ⊆ E(Fig) are sets of explicit

facts such that I∩G = ∅ and I(Fig)∪I∪Axm imply each g ∈ G using first-order reasoning.

In Definition 10 we require the disjointness condition between I and G to ensure prob-

lems are non-trivial, and the derivation condition to ensure problems have solutions. Given

a geometry problem, we may now define a converse geometry problem.

Definition 11 (Converse Geometry Problem). The converse of a problem (I,G) over

(Fig,Axm) is the problem (G, I) over (Fig,Axm), if it is indeed a problem.

We note that a corresponding converse problem may not exist for a given (I,G) over

(Fig,Axm). We may now define concepts related to the quality of a geometry problem.

Definition 12 (Strict, Interesting Geometry Problem). A geometry problem (I,G) over

(Fig,Axm) is interesting if no strict subset of I together with I(Fig) can establish every

goal in G using Axm. An interesting problem is strict if G is minimal, i.e., (I,G′) is not

interesting for any strict subset G′ (G.

Observe that an interesting problem where G is a singleton is strict.

Definition 13 (Complete Geometry Problem). An interesting geometry problem (I,G)

over (Fig,Axm) is complete if for any predicate p ∈ E(Fig), I(Fig) ∪ I ∪ Axm derives p.

A complete problem is strict if it is not complete for any strict subset G′ of G. Figure 3.1

gives some examples of interesting and complete geometry problems.

Let (I,G) be a problem over (Fig,Axm). A proof that I(Fig) ∪ Axm ∪ I derives G

consists of first-order derivations, one for each g ∈ G, whose root is labeled g, whose leaves

are elements of I(Fig) ∪ E(Fig) and whose internal nodes are obtained by instantiating

13

Let Axm be a common set of geometric axioms in figures (Fig1,Axm) and (Fig2,Axm).

B

A

C

D E

X

(Fig1,Axm)
B′

A′

C′

D′ E′

X′

(Fig2,Axm)

For both figures the original textbook

problem is stated as (I,G) where

I = {4ABE ∼= 4ACD}

and

G = {4ADE ∼ 4ABC}.

Fig1 is indistinguishable from Fig2 ex-

cept points D,D′, E,E ′, and consequently

X,X ′. Specifically, in Fig2 D
′

is the midpoint of segment A′B′; similarly E ′ is the midpoint of A′C ′. That is, I(Fig1) =

I(Fig2) while E(Fig1) 6= E(Fig2) since
{

Midpoint(D′, A′B′),Midpoint(E ′, A′C ′)
}
⊂

E(Fig2).

For (Fig1,Axm) and (Fig2,Axm) we will generate the exact same set of problems (I, {g1})

where I = {∆ABE ∼= ∆ACD} and g1 may be any of the following propositions.

• 4ADE ∼ 4ABC

• ∠BCD ∼= ∠CBE

• 4DBC ∼= 4ECB

• 4BCX is Isosceles

• 4DEX is Isosceles

• DE ‖ BC

• ∠DEA ∼= ∠CBA

• 4BDX ∼= 4CEX

I completely defines Fig1; hence all problems (I, {g1}) are strictly complete problems.

I does not define Fig2 since it is not possible to prove Midpoint(D′, A′B′) nor

Midpoint(E ′, A′C ′). For Fig2, all problems in (I, {g1}) are simply interesting problems.

Figure 3.1: Example of Strictly Interesting and Strictly Complete Problems

an axiom from Axm. Our problem generation algorithm will search through many proofs.

Hence, we use a hypergraph representation for all possible derivations. Since the set I(Fig)

is fixed, we do not represent nodes for them.

14

Definition 14 (Logical Geometry Hypergraph). For a pair (Fig,Axm), the logical geometry

hypergraph H (Fig,Axm) is a synthesis hypergraph whose nodes consist of all predicates in

E(Fig) and whose edges are of the form (P, p, A), where P ⊆ E(Fig) is a set of explicit

predicates, p ∈ E(Fig) is an explicit predicate, and A ∈ Axm, such that there exists a set

Q ⊆ I(Fig) such that A derives p from P ∪Q.

We then say reachability in the logical geometry hypergraph corresponds to logical

derivability. For a set T ⊆ E(Fig), we define

Derive(T) = {g ∈ E(Fig) | T ∪ I(Fig) ∪ Axm |= g}.

The set Derive(T) coincides with the set of nodes reachable in the hypergraphH (Fig,Axm)

starting from the set T of nodes. Thus, Derive(T) can be computed for every set T ⊆ E(Fig)

in time polynomial in the size of the hypergraph.

3.3 Formal Theoretical Foundations in Euclidean Geometry

In this section we consider a more formal discussion of the framework for problem

synthesis in Euclidean geometry. In these discussion, we assume immutable figures in

which the properties of that figure are not allowed to be modified nor any new information

constructed.

3.3.1 Geometric Classes

There are several distinct types of objects in Euclidean geometry, most notably: points,

rays, segments, lines, triangles, quadrilaterals, and circles. For our purposes, we define a

class for each geometric object: the class of points P , the class of segments S, the class of

triangles T , etc.

Since points are considered to be the framework for which Euclidean geometry is

founded, the only characteristic we will impose on a point is a coordinate in n dimen-

sions (n ≥ 2); that is, we coordinatize our geometry even if it is not apparent to the user.

This also implies coordinate axes for the user interface even though they may be trans-

parent to the user. As our focus is high school Euclidean geometry, we will restrict our

15

notion of a point to two or three dimensions as needed. We define the class of segments

in terms of the class of points. We define the class of all triangles T as a collection of sets

of three segments with the constraint that their intersections result in three unique points:

the vertices of a triangle.

3.3.2 Theories and Figures

Let L be a logic [22] in which properties of a geometric figure are described. We assume

a finite set of geometric classes including point, segment, triangle, isosceles triangle, and

equilateral triangle. Let Fig = {Fig1, . . . ,Figk} be the collection of k geometric classes.

Also let Fig be a figure that belongs to a class Fig: formally, Fig ∈ Fig. We then define

the theory of a class of figures Fig as Th (Fig) = {φ1, . . . , φj} where each φi is a property

(a formula in L) and 1 ≤ i ≤ j enumerate the minimal set of the implicit properties of

Fig, I(Fig); i.e., ∀φi ∈ Th (Fig) , {Th (Axm) ∪ Th (Fig) \ φi} 2 φi where Axm is the set of

Euclid’s axioms [51]. That is, Th (Fig) consists of all properties of a class Fig that are

innate to the class, but cannot be proven; in other words, implicit properties are those

provable in ordered geometry [27]. For example, in the triangle class, one can neither prove

that triangles have three segments nor prove that they have three internal angles. These

are the implicit properties of the triangle class.

Ordering on Geometric Classes. The geometric classes defined in §3.3.1 give rise to an

ordering among particular sets of classes. We first define the ordering operator and then

prove that it implies a partial order on the set of geometric classes.

Definition 15 (Class Ordering Operator v). We define the ordering operator v on classes

as Fig1 v Fig2 if and only if Th (Fig1) � Th (Fig2), i.e., if Th (Fig1) logically entails

Th (Fig2).

Proposition 1 (Partial Order of v). v defines a partial order on Fig.

Proof. Let Figc ∈ Fig. Then it is clear Th (Figc) � Th (Figc). Hence, v is reflexive. Let

Fig1,Fig2 ∈ Fig with Fig1 v Fig2 and Fig2 v Fig1. It follows Th (Fig1) � Th (Fig2) and

16

Th (Fig2) � Th (Fig1). This implies that for the logical formulae p1, . . . , pk ∈ Th (Fig1) and

q1, . . . , q` ∈ Th (Fig2), ∀qi,∃{pj} � qi and similarly ∀pi, ∃{qj} � pi. This implies Fig1 = Fig2

and thus v is antisymmetric.

Let Fig1,Fig2,Fig3 ∈ Fig with Fig1 v Fig2 and Fig2 v Fig3. By definition, Th (Fig1) �

Th (Fig2) and Th (Fig2) � Th (Fig3). Since theories are logical formulae, it follows that Fig1

is the set of logical formulae such that Th (Fig1) � Th (Fig3). Hence, Fig1 v Fig3 and v is

transitive.

For a figure Fig to be described by a particular class Fig we say that the figure forces

the theory of the class Fig: Fig Th (Fig). Thus Fig ∈ Fig if and only if Fig Th (Fig). We

now need to show that a figure cannot be an element in two distinct chains in the partial

order; e.g. a figure cannot be both a triangle and circle.

Lemma 3.3.1 (Unique Figure Chain). For a figure Fig and classes Fig1 and Fig2, if Fig ∈

Fig1 and Fig ∈ Fig2, then either Fig1 v Fig2 or Fig2 v Fig1.

Proof. Suppose without loss of generality Fig1 6 vFig2. By definition, Fig Th (Fig1)

and Fig Th (Fig2). As Fig1 6 vFig2, there exists a logical formula p ∈ Fig2 such that

Fig Th (Fig1) 2 p. As Fig Th (Fig2) � p, this is a contradiction so Fig1 v Fig2 as

desired.

We also require a figure to be defined by the most appropriate class.

Corollary 3.3.2. For a figure Fig, there exists classes Figb and FigB such that for Fig ∈

Figb,Fig ∈ FigB and for all Fig′ such that Fig ∈ Fig′, Figb v Fig′ v FigB.

Figb defines the greatest lower bound of classes for a figure Fig. We call Figb the strongest

class corresponding to figure Fig and write strong (Fig). FigB defines the least upper bound

of classes for a figure Fig. We call FigB the weakest class corresponding to figure F and

write weak (Fig). As an example, consider the class of triangles (T), isosceles triangles (I),

and equilateral triangles (E), it is clear E v I v T as E contains the most information and

is thus the strongest class.

17

A

B

C D

E

F

A′

B′

C′

E′

D′

F ′

Figure 3.2: Invariant Figures Fig and Fig′ (Fig ≈ Fig′)

Given a geometric figure Fig, we will construct two sets of properties that describe

Fig. The first set of properties, I(Fig), describe the invariant characteristics of Fig. That

is, we note the relationships among the points, lines, and shapes that are independent of

specific information about Fig; that is, angles and distances between points may differ but

not the overall structure of the figures as previously described in §3.2 according to ordered

geometry [27]. In Figure 3.2 two distinct figures Fig and Fig′ are invariant. We now formally

define the notion of invariance between figures.

Definition 16 (Invariant Figures). Two figures G and G′ are invariant if there exists a

class of geometric figures Fig such that weak (G) = Fig = weak (G′). We write G ≈Fig G
′

to say figure G is invariant to figure G′ with respect to class Fig.

For a figure Fig, we define the theory of Fig denoted by Th (Fig) to be Th (Fig) where

Fig = strong (Fig). We may also extend to the theory of a class Fig being defined as all

figures in Fig implying all properties of Fig.

As an example, let figure Fig be a right triangle4ABC with m∠BAC = 90o (m∠BAC

refers to the measure of ∠BAC). The theory of Fig, denoted by Th (Fig) is given by

Th (Fig) = {4ABC,m∠BAC = 90o} = {Triangle(A,B,C),RightTriangle(B,A,C)}.

Let T be the class of triangles and Tr be the class of right triangles, then we note for

the right triangle F above, it is true that F ∈ T and F ∈ Tr with Tr v T .

In general, Th (Fig) denotes the minimal set of properties of the figure Fig.

18

Geometric Axioms. For Euclidean geometry, we assume modified versions of Euclid’s

original axioms [51]; these axioms are universally quantified. These axioms are stated

below:

1. Segment Addition: If B is between A and C, then AB +BC = AC.

2. Angle Addition: If point D lies on the interior of ∠ABC, then m∠ABD+m∠DBC =

m∠ABC.

3. Angle Addition for Straight Angles: If ∠ABC is a straight angle and D is any point

not on
←→
AC, then m∠ABD +m∠DBC +m∠ABC = 180o.

4. Algebraic Properties of equality including addition, subtraction, multiplication, and

division.

5. Equality (=). congruence (∼=), and similarity (∼) are equivalence relations.

The set of axioms describing algebraic properties of equality including addition, sub-

traction, multiplication, and division and those describing the fact that equality (=). con-

gruence (∼=), and similarity (∼) are equivalence relations are called the algebraic axioms

and are denoted by Axma. In addition, a few existentially quantified axioms are assumed:

1. A line contains at least two points.

2. Through any two points, there exists exactly one line.

3. If two parallel lines are cut by a transversal, then corresponding angles are congruent.

4. SSS, SAS, and ASA congruency of triangles.

5. Corresponding Parts of Congruent Triangles are Congruent (CPCTC).

6. AA Similarity of Triangles.

Each of the axioms above requires an encoding into a logical form. For the Segment

Addition Axiom to be applied, we require two distinct pieces of information: (1) three points

are collinear, (2) which of the three points lies between the other two points. Consider a

segment χ1χ2 with point χ3 between χ1 and χ2. Then

Collinear (χ1,χ2,χ3) ∧ Between (χ3,χ1χ2)⇒ χ1χ3 + χ3χ2 = χ1χ2.

19

With CPCTC, we require two congruent triangles and the labeling of the respective

vertices of the congruent triangles to be consistent:

(∆ABC) ∧ (∆DEF) ∧ (∆ABC ∼= ∆DEF)⇒(AB ∼= DE) ∧ (∠ABC ∼= ∠DEF)∧

(CA ∼= FD) ∧ (∠BCA ∼= ∠EFD)∧

(BC ∼= EF) ∧ (∠CAB ∼= ∠FDE)

Definitions of Geometric Terms. We presume standard definitions of common geomet-

ric terms; e.g.:

• Collinear refers to a set of points lying on one line.

• Midpoint of a segment refers to the point that divides a given segment into two

congruent segments.

These definitions have ramifications because they imply more properties regarding a

figure. For example, if M is the midpoint of XY , then the definition states XM = MY .

However, the definitions are implicit in the theory of a figure F as well as the theory of

given information. For a figure Fig, we call this information the theory of assumptions,

Th
(
IFig
)
.

3.3.3 Synthesis Hypergraphs and Problems

The formal framework we use to represent a geometric figure together with the assump-

tions is a hypergraph. Proof problems will be synthesized by exploring this hypergraph.

Given only a figure, we may construct a corresponding hypergraph based solely on the

implicit properties, axioms, and student knowledge base. The student knowledge base

comprises the lemmas and theorems that the student possesses in their knowledge base.

Definition 17 (Basic Geometry Synthesis Hypergraph). Given a figure Fig, the basic

geometry synthesis hypergraph corresponding to Fig is HFig
b (P,E) where P is the set of

nodes and E is the set of hyperedges. We define the set of nodes in the hypergraph P =

Th (Fig) ∪ Th (Axmx) ∪ Th (K) where Fig = strong (Fig), K is the student knowledge base,

20

and Axmx is the set of Euclid’s axioms. The hyperedges E of the hypergraph are defined

as a set of functions mapping a set of nodes to a single node: E ⊆
|P |⋃
i=1

P i → P where

〈p1, . . . , p`〉 → p ∈ E if Th (Fig) ∪ Th (Axmx) |= p1 ∧ . . . ∧ p` ⇒ p holds true.

Each node in the basic hypergraph is typed so it belongs to one discrete class in the

set of types τ = {algebraic, geometric}. We make these distinctions among nodes so that

later we may formally define a problem with respect to a basic geometry hypergraph. We

now define how the type of each node in a basic geometry hypergraph is acquired.

Definition 18 (Algebraic and Geometric Nodes). Let n be a node in a basic geometry

synthesis hypergraph H. If n is a propositional formula associated with some a ∈ Axma, we

say n is a purely algebraic node. We define leaves
(
HT
)

to be the set of all nodes in HT

without parents. If for all ` ∈ leaves
(
HT
)

such that there exists a path from n to ` in HT ,

` is a purely algebraic node, we say n is an algebraic node. We note that purely algebraic

nodes are considered algebraic nodes. We similarly define the terms purely geometric nodes

and geometric nodes for Euclid’s axioms, Ax.

We can extend our notion of the basic geometry hypergraph HFig
b for a geometric

figure Fig by including the problem statement in the corresponding hypergraph. This is

accomplished by incorporating the assumptions, IFig, and the goal, g.

Definition 19 (Standard Geometry Synthesis Hypergraph). Given a figure Fig and corre-

sponding basic geometry synthesis hypergraph, HFig
b (P,E), the standard geometry syn-

thesis hypergraph corresponding to Fig with assumptions IFig and goal g, is given by

HFig
s

(
HF
b , Pg, Eg, g

)
. We define the additional set of typed nodes in the hypergraph Pg =

Th
(
IFig
)
∪ {g}. The corresponding additional hyperedges, Eg are a result of the theories

derived from all typed nodes given by P ∪ Pg where P are the typed nodes defined in HFig
b .

It is clear that for a figure Fig, HFig
b is a sub-hypergraph [13] of HFig

s .

If we do not distinguish between a basic hypergraph or standard hypergraph we will

refer to a problem hypergraph (or simply hypergraph when context is clear), H (P,E) where

21

P is the set of typed nodes and E is the set of hyperedges. We note that this definition is

analogous to the logical geometry hypergraph of Definition 14.

Geometry Problems. Now that we have defined a hypergraph in the deductive space

of Euclidean geometry, we can define a geometry problem with respect to problem hyper-

graphs. A traditional high school geometry problem in simplest form is a natural language

statement, but more common is the combination of a description composed of mathemati-

cal relationships and natural language which describe a figure. In a problem hypergraph,

we informally define a problem as a set of typed nodes that describe the assumptions of

the problem and a corresponding typed goal node that follows from the assumptions. The

corresponding path from the typed assumption nodes to the typed goal node is a solution

to the problem (i.e., a proof of the goal).

Definition 20 (Basic and Standard Problems). Given a basic hypergraph HFig
b correspond-

ing to a figure Fig, a basic geometry problem P is a statement of the form p1∧ . . .∧ pk ` p

for some k > 0 where for all i, pi is the propositional formula corresponding to typed node

ni of HFig
b , p is the propositional formula corresponding to typed node n of HFig

b , and there

exists a path P from 〈n1, . . . , nk〉 to n. The path P is a solution to geometry problem P .

For a node g, we say that Pg defines the collection of all paths in hypergraph HFig
b with

goal node g; a valid student solution is any path in Pg. A standard geometry problem is

defined similarly for a standard hypergraph HFig
s .

We will use the general term problem in situations where the context is clear. For a goal

g and a set of source nodes S in a standard hypergraph HFig
s

(
HFig
b , Pg, Eg, g

)
corresponding

to figure Fig with assumptions A, we say that S is strict with respect to g if S ` g is a

problem and no U ` g is a problem for U ⊂ S as stated in Definition 12.

As mentioned in §3.1, not all problems are interesting. Interesting problems for a figure

and a set of assumptions are those that require at least one or more of the assumptions,

the assumptions are minimal with respect to the goal, and the goal cannot be derived from

a set of algebraic expressions through purely algebraic manipulation.

22

Analogous Problems. We use the term analogous to define a problem as an independent,

’interesting’ problem that mimics the difficulty and length of a given problem. For a prob-

lem P in a hypergraph H, the problem hypergraph P̃ is the sub-hypergraph of H induced

by P . We begin with a strict view of problem analogy that views problem hypergraphs as

graphs.

Definition 21 (Coarse Problem Homomorphism). Let H (V,E) and H ′ (V ′, E ′) be problem

hypergraphs. Then φ : H → H ′ is a coarse problem homomorphism if vi ∈ V for 1 ≤ i ≤ k,

for all 〈v1, . . . , vk〉 = ~v ∈ P (V) such that (~v → v) ∈ E for v ∈ V ,

• v and φ(v) are typed nodes in which type (v) = type (φ(v)) ∈ τ ,

• ~v and φ(~v) are sets of typed nodes in which |~v|t = |φ(~v)|t for each type t ∈ τ , and

• there exists an edge φ(~v)→ φ({v}) ∈ E ′.

In Definition 21 we define analogous problems by requiring (1) corresponding node

types be equivalent for each problem, (2) for each corresponding edge the number of source

nodes of each type are equivalent and the the target node of the edge is of the same type,

and (3) each edge has a corresponding edge in both problems. We may now define a

coarse problem isomorphism based on the structural requirements of the coarse problem

homomorphism.

Definition 22 (Coarse Problem Isomorphism). φ is a coarse problem isomorphism if (i) φ

is a bijection, (ii) φ is a coarse problem homomorphism, and (iii) φ−1 is a coarse problem

homomorphism. If φ is a coarse problem isomorphism between H and H ′, we may write

H ∼=c H
′.

Definition 23 (Coarsely Analogous Problem). Two problems P1 and P2 are coarsely anal-

ogous if there exists a coarse problem isomorphism between P̃1 and P̃2.

In Figure 3.3, the two problems proving that (F) ∆BMC is isosceles and (G) ∆DMA

is isosceles are coarsely analogous. However, coarse analogy can be too strong a concept

23

In the figure at right, assume

1. M is the midpoint of AC,

2. M is the midpoint of BD, and

3. m∠BCD = 90o.[75]

A

D C

B

M

With the given set of assumptions using the associated figure, we may prove the fol-

lowing set of facts.

(A) ∆BMC ∼= ∆DMA,

(B) m∠ADC = 90o,

(C) ∆ADC ∼= ∆BCD,

(D) 2BM = AC,

(E) ∆DMC is isosceles,

(F) ∆BMC is isosceles,

(G) ∆DMA is isosceles,

(H) BC ‖ AD. (BC is

parallel to AD.)

Figure 3.3: Provable Facts From A Geometric Problem Statement

to formally capture the notion of “analogy”. For example, in Figure 3.3 a student who has

been able to prove statements (F) and (G) should also be able to prove statement (E) since

all three statements require one to prove that a particular triangle is isosceles although the

task of proving (E) is not coarsely analogous to that of proving (F) nor (G).

Formally capturing a weaker notion of analogy motivates the following definition.

Definition 24 (Goal Analogous Problems). Let P1 and P2 be two problems with goals g1

and g2, respectively. We say problems P1 and P2 are goal analogous problems if type (g1) =

type (g2) and strong (g1) = strong (g2). This is clearly an equivalence relation and we refer

to the induced equivalence classes as a goal analogous partition.

3.4 Algorithm for Problem Generation

Our algorithm for problem generation has three steps. The first step creates a hyper-

graph according to Definition 14 that represents all possible proofs for all possible problems

over a given pair of a user-provided figure and axioms. The second step systematically enu-

merates all minimal sets of assumptions (Algorithm 3.1). The third step enumerates, for

each minimal set of assumptions I, all possible goal sets G such that (I,G) is a strictly

24

Using the provided figure and the fact
that M is the midpoint of AB, prove that
2AM = AB and 2MB = AB.

A
(0, 0)

B
(2, 0)

M

(4, 0)

Figure 3.4: Statement of the Midpoint Theorem

Implicit

G
iv

e
n

Between(M,AB)

Midpoint(M,AB)

S
e
g

A
d
d
itio

n
A

x

D
e
f.

o
f

M
id

p
o
in

t

Def. of Midpoint

AM +MB = AB

S
u
b
st

+
S
im

p

S + S

S + S

AM = MB

S
u
b
st

+
S
im

p

D
e
f.

o
f

M
id

p
o
in

t

2AM = AB

Subst + Simp

2MB = AB
Substitution

Substitution

(“S + S” refers to algebraic substitution followed by algebraic simplification.)

Figure 3.5: Logical Geometry Hypergraph for the Midpoint Theorem of Figure 3.4

interesting problem.

In the following exposition, we focus on clarity rather than performance. The enumer-

ation of problems is exponential in the worst case; we show in §3.6 that nevertheless, the

enumeration can be performed successfully in practice.

3.4.1 Step 1: Hypergraph Construction

We compute a logical geometry hypergraph as defined in Definition 14. The input

to the algorithm is a geometry figure Fig drawn to scale and a set of axioms represented

as Horn clauses. The algorithm internally computes the sets I(Fig) and E(Fig) and then

constructs the logical geometry hypergraph for (Fig,Axm). The hypergraph is used to

25

Algorithm 3.1 Algorithm AllMinimalSets

1: Input: Figure Fig, axioms Axm
2: Output: Set of all minimal sets of E(Fig)
3: AllSets ← {∅}
4: Old ← ∅
5: while AllSets 6= Old do
6: Old ← AllSets
7: for all I ∈ AllSets do
8: for all f ∈ E(Fig) s.t. Derive(I) 6= Derive(I ∪ {f}) do
9: AllSets ← AllSets ∪ {I ∪ {f}}

10: end for
11: end for
12: end while return AllSets

compute Derive(T) queries for sets T ⊆ E(Fig) in the subsequent steps of the algorithm.

As an example, we consider the Midpoint Theorem, often the first proof in a geometry

course, as stated in Figure 3.4. We note that the statement of the Midpoint Theorem has

I = {Midpoint(M,AB)} and G = {2AM = AB, 2MB = AB} with |G| = 2. We also note

that the figure associated with the problem in Figure 3.4 provides a set of sample coordi-

nates demonstrating the embedding of the figure in the Euclidean plane thus facilitating

computation of the geometric facts of I(Fig) and E(Fig).

We then construct the logical geometry hypergraph corresponding to the problem in

Figure 3.4 in Figure 3.5. In this construction of the hypergraph for Figure 3.4, the geometry

facts describing each node are self-explanatory except for Between(M,AB). The Between

predicate construct (1) implies collinearity of the three points M , A, and B and (2) M falls

between the endpoints of the segment A and B. In other words, for M 6= A and M 6= B,

Between(M,AB) ⇐⇒ AM +MB = AB.

3.4.2 Step 2: Minimal Assumption Generation

A set T ⊆ E(Fig) is minimal if either T = ∅ or for each t ∈ T , we have that T \ {t}

is minimal and Derive(T) 6= Derive(T \ {t}). Minimality is a necessary condition for an

interesting problem.

26

Algorithm 3.2 Algorithm GenProblem

1: Input: Figure Fig, axioms Axm, minimal set I ⊆ E(Fig)
2: Output: Strictly interesting problem (I,G)
3: G = ∅
4: while ∃f ∈ I s.t. G ⊆ Derive(I \ {f}) do
5: f = choose({f ∈ I | G ⊆ Derive(I \ {f})})
6: T = Derive(I) \ Derive(I \ {f})
7: g = choose(T \ I)
8: G = G ∪ {g}
9: end while

10: return (I,G)

In the second step, the problem synthesis algorithm systematically enumerates all min-

imal sets of assumptions; Algorithm 3.1 is a simple fixed-point procedure to compute the

set of all minimal sets.

Theorem 3.4.1 (Completeness of AllMinimalSets). AllMinimalSets(Fig,Axm) returns the

set of all minimal sets for a pair (Fig,Axm), .

Proof. As a base case, consider a singleton fact p ∈ E(Fig) that defines a minimal set {p}.

On Line 3, AllSets = {∅}. Therefore, the first time through the generative loop from Line 8

through Line 10, I = ∅. Hence, for p ∈ E(Fig), since {p} is a minimal set, ∅ ∪ {p} = {p} is

added to AllSets on Line 9 and is thus generated by AllMinimalSets .

Suppose M = {p1, . . . , pk} is a minimal set containing k > 1 facts generated by

AllMinimalSets . Also suppose for some q ∈ E(Fig), M ∪ {q} is a minimal set. As M

is a minimal set, M ∈ AllSets . Hence, at some point during execution, I = M (Line 7).

Since q ∈ E(Fig) and M∪{q} is a minimal set containing k+1 facts satisfying the condition

on Line 8, it follows M ∪ {q} ∈ AllSets (Line 9).

3.4.3 Step 3: Strictly Interesting Problem Synthesis

The final step enumerates, for each minimal set of assumptions I, all possible goal sets

G such that (I,G) is a strictly interesting problem.

27

We present the third step as the non-deterministic procedure in Algorithm 3.2. It takes

as input a figure Fig and axioms Axm, as well as a minimal set I of explicit predicates. It

computes a strictly interesting problem by “growing” a set G of goals and returns (I,G)

as the generated problem. Initially, the set G is empty (Line 3). While the current set

of goals is not strong enough to ensure the problem is interesting (Line 4), the algorithm

generates a new goal. To generate a new goal, the algorithm finds (non-deterministically,

Line 5) an assumption f that is not used to prove the current set of goals and finds (non-

deterministically, Line 6) a goal that is derivable using I but not without this assumption.

Notice that since I is minimal, the set T on Line 6 is non-empty. However, to ensure the

condition I ∩G = ∅, we choose g from the set T \ I on Line 7, which may be empty.

By construction, Algorithm 3.2 ensures that returned problems are strictly interesting.

For the returned pair (I,G), since the while loop exits, we know that every f ∈ I is

necessary to prove some goal in G; hence (I,G) is interesting. Further, the problem is

strictly interesting since the algorithm returns a minimal set of goals G.

The non-deterministic choices of the algorithm are denoted by the choose operator,

which selects an element of a set (if non-empty), and fails otherwise. By iterating over pos-

sible non-deterministic choice, the algorithm can generate every possible strictly interesting

problem with assumption I.

Finally, in order to generate a complete problem, we can check that the input I to

procedure GenProblem can derive all explicit facts, i.e., Derive(I) = E(Fig).

Theorem 3.4.2 (Soundness of GenProblem). If GenProblem(Fig,Axm, I) returns (I,G)

for a minimal set I, then (I,G) is a strictly interesting problem over (Fig,Axm).

Proof. Suppose GenProblem returns (I,G) where G = {g1}. In this base case it is clear

that executing GenProblem on Line 3 that ∅ ⊂ G. (I, ∅) is clearly not an interesting

problem and the loop (Line 4 to Line 9) will be executed. With a choice of g1 (Line 7)

GenProblem will generate (I, {g1}). It follows that (I, {g1}) is strictly interesting since the

only strict subset of {G1} does not result in an interesting problem.

28

Now suppose GenProblem returns (I,G) where G = {g1, . . . , gk} for k > 1. Take some

g ∈ G. During execution, the loop condition (Line 4) in GenProblem would be satisfied

for G \ {g}; thus (I,G \ {g}) would not be returned as a strictly interesting problem.

That is, there exists f ∈ I such that G \ {g} ⊆ Derive(I \ {f}). Specifically, for all subsets

G′ = G\{g} where g is an arbitrary element of G, GenProblem would continue to loop since

(I,G′) is not an interesting problem. The final loop execution would non-deterministically

choose g (Line 7) to construct the original set G = G′ ∪ {g} = {g1, . . . , gk} for k > 1. It

follows (I,G) is a strictly interesting problem.

Theorem 3.4.3 (Completeness of GenProblem). If (I,G) is a strictly interesting problem

for (Fig,Axm), there is a run of GenProblem(Fig,Axm, I) that returns (I,G).

Proof. Suppose (I,G) is a strictly interesting problem for (Fig,Axm) whereG = {g1, . . . , gk}

for k ≥ 1. We will construct a set of G′ from ∅ until G′ = G at the end of the run.

In the first execution of the loop, we have for all f ∈ I, ∅ = G′ ⊆ Derive(I \ {f}).

We choose some f and subsequently some gc ∈ Derive(I) \ Derive(I \ {f}) \ I (Line 7).

We note that many facts may exist in Derive(I) \ Derive(I \ {f}) \ I; however, we non-

determindistically choose a desired goal in the G: gc ∈ G. Put G′ = {gc}. Since (I,G) is

strictly interesting, (I,G′) is not interesting and looping continues. If G is a singleton set,

looping would cease and GenProblem would successfully generate (I,G).

Suppose G′ ⊂ G where G′ = {g1, . . . , gk−1} for k > 1 is constructed while ex-

ecuting GenProblem. Since (I,G′) is not interesting, looping continues and we non-

deterministically choose f for which gk ∈ Derive(I) \ Derive(I \ {f}) \ I. Hence, on

Line 8, G = G′ ∪ {gk}. We have successfully constructed (I,G) as a strictly interesting

problem; looping will cease and the desired problem will be returned.

Figure 3.1 shows some problems that were automatically generated by our algorithm.

Figure 3.6 is the minimal solution to the stated problem as derived by GeoTutor.

29

If ∆ABE ∼= ∆ACD, show that ∆ADE ∼ ∆ABC.

4ADE ∼ 4ABC

SAS Similarity

∠EAD ∼= ∠EAD
EA

AC
=

DA

AB

Reflexive

AB ∼= AC EA ∼= DA

∼= segments are proportional

4ABE ∼= 4ACD

Given

CPCTC
CPCTC

B

A

C

D E

X

Figure 3.6: Example Problem and Minimal Solution Generated by GeoTutor

3.5 Problem Generation Interface

Before we present our problem synthesis algorithm, we provide a user’s view to in-

teracting with our system: how the user may interact with our system to obtain a set of

desired problems. The user provides a geometry figure drawn to scale and a set of axioms

as inputs to the system, and can specify parameters to generate a desired set of problems

with specific features.

3.5.1 Features of a Geometry Problem

A geometry problem P = (I,G) over a pair (Fig,Axm) has several features such as:

• The objects of the figure Fig and their properties I(Fig), E(Fig), e.g., the number of

points, triangles, etc.

• The size of the goal set |G|.

• The type of the goal, e.g., congruent triangles, equal segments, etc.

• Quantitative features of a proof such as depth of a proof (i.e., the longest path from

30

the assumptions to the goal in the proof), the width of a proof (maximal number

of nodes in a level in the proof), the number of deduction steps (i.e., the number

of hyperedges in the proof), and the number of axioms used. These features can be

computed from the representation of proofs in the hypergraph.

• A subset of Axm that occurs in every proof of the problem.

• Whether the problem is complete or not.

Our system allows defining arbitrary features as long as they are efficiently computable

from the syntactic description of the problem or from the hypergraph representation.

3.5.2 Query Interface to Problem Generation

We propose an interface where the teacher can specify a relational query over the

set of problem features and obtain a corresponding set of problems. We describe a semi-

automated methodology to support this interface. Our methodology requires manual input

of (Fig,Axm) pairs. For each such pair, we generate the set of all interesting problems using

the problem generation technique described in §3.4. This set of problems, along with their

features, populate a relational database. We may then query the database using a standard

relational query (§3.6 gives examples of such queries with results in Table 3.2).

A student or teacher may define their own pair (Fig,Axm) using their own creativity

or directly from textbooks to generate fresh problems corresponding to that pair. In that

respect, our methodology has a multiplicative effect: starting from the figure of a problem,

our algorithms generate many more problems over the same figure.

3.6 Experimental Results

We first describe our benchmark set of problems and characteristics of the correspond-

ing figures. Second, we evaluate our solution technique with respect to time required to

construct the corresponding hypergraph and identify the solution path. Last, we corre-

late structural characteristics of a solution with respect to the time taken to generate that

solution.

31

0 20 40 60 80 100 120

0

10

20

30

40

|I(Fig)|

N
u
m

b
er

of
F

ig
u
re

s
F

ig

0 100 200 300 400 500

0

5

10

15

20

25

|E(Fig)|

N
u
m

b
er

of
F

ig
u
re

s
F

ig

Figure 3.7: Histogram of |I(Fig)| and |E(Fig)| Per Figure F

3.6.1 Benchmark

We ran our problem generation algorithm on a set of 110 figures taken from standard

mathematics textbooks in India [76, 75] as well as textbooks and workbooks popular in the

United States [16, 56, 64, 51]. We used a uniform set of axioms for all of our experiments;

this set included axioms related to parallel lines, congruent triangles, similar triangles, etc.

The distribution of these 110 figures described by the number of the implicit facts per

figure, |I(Fig)|, is a bimodal distribution with modes around 40 and 75 and mean 46.5

as shown in Figure 3.7. The bimodal distribution indicates our attempt to balance our

experiments with simple as well as more complex figures.

The distribution of these 110 figures described by the number of deduced facts per

figure, |E(Fig)|, is a positively-skewed distribution as shown in Figure 3.7 with mean 108,

median 82, and standard deviation 96.7. The skewed distribution indicates how few figures

result in a large hypergraph making our problem generation algorithm often run efficiently

in practice.

3.6.2 Evaluation of Algorithm GenProblem

We now present evaluation of our problem generation algorithm GenProblem with

respect to the number of problems that it generates as well as the time taken to generate

32

1 2 3 4 5 6

0

10

20

30

40

50

|I| for Textbook Problem (I,G)

N
o.

T
ex

tb
o
ok

P
ro

b
le

m
s

(I
,G

)

Figure 3.8: Number of Assumptions |I| Per Textbook Problem (I,G)

those problems. We ran our experiments on a laptop with Intel Core i5-2520M CPU at

2.5GHz with 8 GB RAM on 64-bit Windows 7 operating system.

We modified GenProblem to only generate problems where |G| ≤ 2. This is because

our preliminary prototype encountered memory issues with |G| > 2 since the problem

generation procedure is exponential in |G|. For each (Fig,Axm) pair, we fixed I to be the

minimal set of assumptions that corresponded to the original textbook problem description

corresponding to the figure F . For the 110 figures we observed a mean of 2.3 assumptions

per figure with standard deviation 1.1; Figure 3.8 presents statistics on the size of this fixed

minimal set per figure.

We found that complexity of the figure correlates with the length of time to process:

more implicit facts in a figure results in more explicit facts and thus requires more time

to generate problems. Given a set of assumptions I over a pair (Fig,Axm), we determine

the Boolean classification whether I completely defines Fig. We may informally describe

a complete problem as a problem that is not open to interpretation. That is, complete

problems are ideal for formal assessments. On the other hand, interesting problems are more

malleable and therefore more applicable to homework or in-class investigations. Textbook

problems are generally a mix of interesting and complete problems. We found for only 45

33

0 20 40 60

0

20

40

60

80

100

120

Figure Pairs (Fig,Axm)N
o.

S
tr

ic
tl

y
In

te
re

st
in

g
P

ro
b
le

m
s

(|G
|=

1)

(a)

0 10 20 30 40

0

20

40

60

80

100

Figure Pairs (Fig,Axm)N
o.

S
tr

ic
tl

y
C

om
p

le
te

P
ro

b
le

m
s

(|G
|=

1)

(b)

Figure 3.9: Strictly Interesting (a) and Complete (b) Problems Generated Per Pair
(Fig,Axm) (|G| = 1)

0 20 40 60

0

1,000

2,000

3,000

Figure Pairs (Fig,Axm)N
o.

S
tr

ic
tl

y
In

te
re

st
in

g
P

ro
b
le

m
s

(|G
|=

2)

(a)

0 10 20 30 40

0

2,000

4,000

Figure Pairs (Fig,Axm)N
o.

S
tr

ic
tl

y
C

om
p
le

te
P

ro
b
le

m
s

(|G
|=

2)

(b)

Figure 3.10: Strictly Interesting (a) and Complete (b) Problems Generated Per Pair
(Fig,Axm) (|G| = 2)

of 110 figures, the original textbook problem associated with it was complete. We expected

a larger number of complete problems, but found that when drawing figures into our front-

end slate, we were more likely to construct figures with unintended facts (e.g. points were

likely to be midpoints, triangles likely to be isosceles or equilateral). This psychological

factor lead to a greater number of original textbook problems being classified as interesting

(but not complete).

34

Our methodology results in a large multiplicative effect: from a single pair (Fig,Axm)

we are able to generate many problems. For the 65 of 110 original textbook figures that

were classified as corresponding to interesting (but not complete) problems, we generated

a total of 1309 and an average of 20.1 strictly interesting problems (I,G) where |G| = 1;

the associated distribution is shown in Figure 3.9(a). For the remaining 45 of 110 original

textbook figures, which were classified as corresponding to complete problems, we generated

a total of 877 and an average of 19.5 strictly complete problems (I,G) where |G| = 1 with

distribution in Figure 3.9(b). For |G| = 2, we generated 14760 strictly complete problems

and 31801 strictly interesting (but not complete) problems. When |G| = 2 we have an

empirical validation of the exponential growth in the number of generated problems. For

a fixed set of assumptions I, the definition of a strict problem dictates |I| ≥ |G| for

any G. Since many of our original textbook problems had |I| = 1, many figure pairs

(Fig,Axm) cannot generate problems with more than a single goal. The corresponding

distributions (shown in Figure 3.10) are heavily skewed with mean 489 and median 84 for

strictly interesting (but not complete) problems as well as mean 328 and median 49 for

strictly complete problems.

GenProblem took an average time of 4.7 seconds (with standard deviation of 10.5

seconds) per (Fig,Axm) pair to generate the above mentioned problems with |G| ≤ 2. For a

given (Fig,Axm) pair, the majority of the processing time is in construction of the saturated

hypergraph. Therefore, we expect a correlation between the number of explicit facts for Fig

and the amount of time to process. As the worklist construction of H (Fig,Axm) requires

that we compare each newly deduced node against all existent nodes in H, we expect

hypergraph construction to be quadratic in the number of nodes in H; we have a strong

quadratic correlation with coefficient r2 = 0.7785.

35

0 20 40 60 80 100 120

0

20

40

60

Figure Pairs (Fig,Axm)

N
o.

P
ro

b
le

m
s

fr
om

Q
u

er
y
Q

Figure 3.11: Problems Per Pair (Fig,Axm) for Query Q = {steps = 6 to 10,width = 4 to 8}

Let (Fig,Axm) be a pair where Fig is the

figure at right and Axm is our common set

of axioms.

A

D C

B

M

The original problem from the textbook over (Fig,Axm) is (I,G), where

I = {Midpoint(M,BD), AM = MC,RightAngle(B,C,D)}

and

G = {4BMC ∼= 4DMA,RightAngle(A,D,C),4ADC ∼= 4BCD, 2BM = AC}.

The query Q generates several new problems of the form (I ′, g′) over the pair (Fig,Axm),

where I ′ = I and g′ takes on any of the following propositions.

• CD is an altitude of 4ADC

• RightTriangle(A,D,C)

• AD ⊥ CD

• AD ‖ BC

• ∠CDB and ∠MAD are complemen-

tary

Figure 3.12: Satisfying Query Q over Fig where Q = {|G| = 1, s = 6− 10, w = 4− 8}

3.6.3 Effectiveness of Our Methodology

Once problems are generated from all pairs (Fig,Axm), we may obtain problems with

similar features across different figures. We consider the use-cases of a teacher and student.

36

Table 3.2: Number of Problems (and Figures) Satisfying Queries (s: steps, d: depth, w:
width, G = {∼= 4s})

i Query: Qi Number of Problems Over (Fig,Axm)
1 {s = 1− 2, G} 23 22
2 {s = 3− 7, G} 73 50
3 {s = 6, d = 4,w = 5, G} 1 1
4 {s = 6, d = 4− 5, G} 54 28
5 {s ≥ 10, G} 26 14

Consider the scenario where a teacher wants to generate a set of problems for students

to review before the final exam. The teacher might construct a query Q to obtain problems

that are (1) medium-to-hard (6 to 10 deductive steps) with (2) average width (4 to 8), and

(3) contain a single goal. Q returns a total of 706 problems from our database with an

average of 6.4 problems per pair (Fig,Axm); the graph in Figure 3.11 details the number of

problems per pair that satisfy Q. Figure 3.12 shows a sample of those 706 problems.

Now let’s consider a common scenario for a student preparing for an exam that will

test on proving triangles congruent using any technique. In this case, the student may

specify a series of queries Qi capturing problems of increasing difficulty as measured by the

number or kind of deductive steps required. Each Qi also specifies that the problem should

have a single goal g that makes use of CongruentTriangles predicate. These queries Qi are

discussed below with the query results enumerated in Table 3.2.

The student begins by specifying the query Q0 = { steps = 1 to 2, g} and is pro-

vided one of the 23 problems. Assuming success with a few practice problems, the student

seeks a series of more difficult problems and defines Q1 = {steps = 3 to 7, g}. After

completing some of the 73 possible interesting problems that match Q1, the student en-

counters a problem that is intriguing in its structure. As a point of interest and prac-

tice, the student defines a query based on the parameters of the problem just completed:

Q2 = {steps = 6, depth = 4, width = 5, g}. The result of the query is that there is no

other problem with the defined characteristics. Instead, the student relaxes the restrictions

37

resulting in Q3 = {steps = 6, depth = 4 to 5, g} and acquires 26 problems. Finally, the

student may provide a query that requires the proof problem to have more than 10 deduc-

tions steps: Q4 = {steps ≥ 10, g}. After successfully completing one or more of these 26

problems, the student can be confident in their preparation for the exam.

38

Chapter 4
Synthesis of Problems and Solutions for Shaded Area Geometry
Reasoning

We motivate and address the task of automatically solving and computing characteris-

tics of shaded area geometry problems and formalize the notion of a shaded area geometry

problem and its solution. Our approach consists of identifying atomic regions in a pixel-

based geometry image, building an analysis hypergraph that represents all facts that can be

derived of the figure (using saturation based reasoning) and then finding a path in the hy-

pergraph from the given facts to the goal. On a corpus of 102 problems taken from popular

high-school geometry textbooks, our tool GeoShader successfully solved and characterized

all problems in an average time of 13.4 seconds.

4.1 Introduction

We describe GeoShader, a tool that can solve shaded area geometry problems. A shaded

area problem is composed of a geometric figure, a set of given facts about that figure, and a

shaded region in the figure whose area is to be found. Figure 4.1 describes a sample shaded

area problem.

A solution to a typical high school geometry problem requires a student to use deductive

logic while reasoning about the visual elements in a given figure. For this reason, geometry

can be challenging for students. Shaded area problems go a step further by requiring

recall of formulae for different shapes as well as exercising the associated quantitative skills

necessary to compute the area of the desired region.

While a typical shaded area problem is quite demanding of a student to exercise their

skills, it has a simply stated quantitative answer. This makes shaded area problems an

ideal question format for multiple choice problems compared to geometry construction or

proof problems that have many possible solutions and require expert knowledge to assess a

solution. It becomes clear why shaded area problems are often encountered on standardized

39

Find the area of the shaded region where a

circular arc of radius 7cm has been drawn

with vertex O of an equilateral 4OAB, of

side 12cm, as center. [21]

The goal region g is the entire figure

with explicit facts {EqTri(O,A,B), OM =

7, OA = 12}. The solution sum-

ming the areas of MajSector(M,O,N) and

EqTri(O,A,B) is depicted as a hypergraph.

A

B

O

M

N

EqTri(O,A,B)

Minor(∠BOA) =
60o

MajSector(∠BOA) = 300o

OA = 12

Area(s) =
√

3
4
s2

Area (4OAB) =
36
√

3

Area(α) + Area(β)

OM = 7

Area(m, r) = m
360
· πr2

Area(Fig) =
245π

6
+ 36

√
3

Area (MajSector(M,O,N)) =
245π

6

60o Angles for Equilateral Triangles

Minor + Major = 360o

Ag = MajSector(M,O,N) + EqTri(O,A,B) = 245
6
π + 36

√
3

Figure 4.1: Example Shaded Area Problem and Solution

high school Mathematics examinations (e.g., ACT, SAT, State Comprehensive Assessment

Exams [61, 69], etc.) and even on some graduate level ones (e.g., GRE quantitative).

One can represent the solution process for a shaded area problem as a directed acyclic

graph (DAG), where each node represents intermediate facts that are true of the figure

40

(and are derivable from the predecessor nodes), and are useful for computing the goal

area. A solution to a shaded area problem thus has quantifiable features corresponding to

properties of its solution DAG. For example, a solution (and its corresponding problem)

has depth and width. GeoShader computes the structural features of a solution as well as

other descriptive features of a solution, including a level of difficulty corresponding to the

number of deductions, geometric facts, and facts related to area. Each of these features

gives a teacher the ability to effectively identify or compare problems (with associated

solution) when constructing homework problem sets or exams.

GeoShader solves a shaded area problem by first dissecting the given figure into its

closed, constituent areas using a planar graph-based representation. It then arranges the

shapes in the figure into a hierarchy followed by a fixed-point technique to acquire the area

of regions in the figure. The area of region is thus a linear combination of areas of other

regions. GeoShader represents all possible algebraic decompositions as a hypergraph in

which the solution to a problem can be obtained by traversing this hypergraph.

GeoShader can also synthesize all possible interesting shaded area problems from a

given geometric figure. It can classify problems to be interesting (there are no irrelevant

‘top’-level shapes) and complete (the areas of all regions in the figure can be computed

from the assumptions).

We evaluated the effectiveness of our problem generation algorithm on 102 figures

taken from popular geometry textbooks and exams. GeoShader solved each problem in an

average of 13.4 seconds and generated an average of 257 problems.

Lastly, given a set of shapes (e.g., triangles, circles, etc.) we compose them in all

possible ways (e.g., one shape inside another, one shape sharing a side with another, etc.)

using a template-based approach. That is, GeoShader represents families of area problems

as templates α1± . . .±αk, where αi are shapes. The result from GeoShader is a geometric

figure and the associated set of interesting shaded area problems. We evaluated our figure

synthesis algorithm using a small set of polygons generating 3533 distinct figures.

41

This chapter makes the following contributions:

• In §4.4 we formalize the notion of a shaded area geometry problem (along with some

useful features associated with it) and its solution.

• We present a technique for generating fresh figures and the associated problems (§4.5).

• We formalize the notion of an interesting and complete shaded area geometry problem

(§4.7).

• We describe an algorithm to efficiently solve shaded area problems (§4.6).

• We describe algorithms to efficiently generate fresh problems from existing figures

(§4.7).

• We describe experimental results illustrating the efficacy of our problem solving al-

gorithm, problem generation algorithm, and figure synthesis techniques (§4.8).

4.2 Preprocessing: Constructing a Figure of Convex Components

Our formalization and figure analysis algorithms depend require the input shaded area

figure be composed of convex elements. In this section we describe the process that all

figures must go through in order to satisfy the forthcoming analyses. In the forthcoming

discussion, for simplicity, we will refer to circles, sectors, and arcs as circle-based compo-

nents.

4.2.1 Implicit and Computable Properties of a Figure

We begin by describing a geometric figure and then describing the constituent compo-

nents of a figure. As described in Chapter 3, we consider a geometric figure to be a collection

of immutable, geometric objects (points, lines, circles) embedded in the Euclidean plane.

When context is clear, we will refer to a geometric figure as a figure.

For a figure Fig, we maintain the set of points that define the components of the figure

(Fig.DefinePts) and defining characteristics for use as the basis of analyses. For circle-based

components (Fig.Circles), we maintain the centers (Fig.Centers) and length each radius.

For all segments, we maintain endpoints (Fig.Endpoints) and the set of explicit segments

42

Figure 4.2: Constructing Radii and Chords Figure 4.3: Sample Pathological Region

(Fig.eSegments); in the case of three collinear points A, M , Z where AM + MZ = AZ,

Fig.eSegments = {AM,MZ,AZ}. All other points that are labeled in Fig, but are not

required in defining Fig, are maintained as Fig.Labeled. Last, for a component C of a

figure Fig and a set of points P , we define (P) .LiesOn (C) ⊆ P such that for all p ∈

(P) .LiesOn (C), p lies on C.

In Figure 4.1, figure Fig contains Fig.Circles = {Circle(O,OM)}, Fig.Centers = {O},

and Fig.eSegments = {AB,OM, . . .}. We provide these defining elements of Fig as demon-

strative and not exhaustive.

We use these ground facts about a figure as a basis to compute other facts, including

the set of implied and extended segments.

Implied Segment Construction. A typical shaded area problem often omits implied

information; for example, radii and chords in circles are often implied, but not drawn. In

order to compute this set of implied segments of a figure Fig (Fig.iSegments), we define

the set of intersection points as those points arising from the intersection of circle-based

components and explicit segments:

Fig.inter = {p | Intersection (c, s) for c ∈ Fig.Circles and s ∈ Fig.eSegments}.

We construct the set of implied radii and chords based on the set of intersection points:

Fig.iRadii =
⋃

C∈Fig.Circles

{EP |∀P ∈ (Fig.inter) .LiesOn (C) ,

E = C.Center, EP /∈ Fig.eSegments}

43

Figure 4.4: Extending Segments for Non-
Convex Polygons

Figure 4.5: Extending Sides of an Orphan
Shape

Fig.iChords =
⋃

C∈Fig.Circles

{PQ |∀P,Q ∈ (Fig.inter) .LiesOn (C) ,

PQ /∈ Fig.eSegments}

We observe the construction pattern of implied radii and chords in Figure 4.2 where

there are three ‘open’, intersection points resulting in three implied radii and three implied

chords.

Construction of radii and chords helps identify a special type of region we refer to as

pathological. A pathological region is a bounded region that is external to all shapes in a

figure. Figure 4.3 defines a pathological shaded area that can be identified using the planar

graph technique described in §4.6.1 once implied chords are constructed.

Convexity through Extended Segments. Although most figures in shaded area problems

involve convex polygonal shapes, combining those shapes may result in non-convex regions

as shown in bold in Figure 4.4.

Our definitions and algorithms rely on the constituent closed objects in a figure be

convex. We ensure this convexity from non-convex polygons by extending all applicable

sides through the interior (indicated by dashed lines in Figure 4.4). We also extend line

segments from orphan shapes (indicated by dashed lines in Figure 4.5). In total, for a figure

Fig, we refer to these extended segments as Fig.extSegments and use this set of segments

only for atomic region identification (§4.6.1) and not for problem synthesis (§4.7).

44

4.2.2 Polygon Identification

In simplest terms, a figure is a set of points, segments, and circle-based components.

Solving a shaded area problem requires that we identify the set of all polygons in a figure

Fig, Fig.Polygons where Fig.Polygons[i] refers to the set of all polygons in Fig with i sides.

We describe an algorithm for identifying all polygons (both convex and non-convex) in a

given figure Fig. Our analysis assumes input of the set of explicit and implied segments

Fig.eSegments ∪ Fig.iSegments.

We first identify candidate segments which may be combined into a polygon by elimi-

nating invalid combinations of segments that do not share a vertex or are collinear. Second,

we exhaustively construct the set of all triangles in the figure from the set of valid, closed

combinations of three segments. Last, we inductively construct polygons of increasing

numbers of sides by considering valid sets of segments that do not contain any previously

established polygon. That is, for a quadrilateral, we consider all candidate sets of four valid

segments as long as no subset of three segments have been used to construct a triangle. We

then continue with five segments not containing a triangle nor quadrilateral constructing a

pentagon. This method continues inductively to some parameterized upper bound number

of sides.

4.3 Shaded Area Problem Formalization

In this section we formally define a shaded area problem and its solution as well as

illustrate them via a sample problem and corresponding solution.

Before describing our techniques for solving shaded area problems, we first define some

terms related to visual components of a geometry figure.

Definition 25 (Bounded Geometric Object). A bounded geometric object is a simple

closed curve (Jordan curve [62]) embedded in the Euclidean plane.

Definition 26 (Atomic Region). Given a fixed figure Fig, an atomic region is a convex,

bounded geometric object in Fig that has no existing line or arc passing through it.

45

In other words, for a fixed figure, the set of all atomic regions is the set of all smallest,

closed components of a figure; in Figure 4.16, Fig consists of four atomic regions labeled

(1)-(4).

Definition 27 (Region). A region in a figure Fig is a non-empty set of atomic regions in

Fig.

We observe for a figure Fig, the set of all regions Fig.Regions = P(Fig.Atoms) \ ∅; in

Figure 4.16, Fig consists of 24 − 1 = 15 regions. Thus, computing the regions of a figure

requires computing the atomic regions.

Facts. The statement and solution to a shaded area problem requires manipulating

two kinds of facts—geometric facts and facts about dimensions.

Definition 28 (Geometric Fact). A geometric fact for a figure Fig is a atomic proposition

about a figure. We refer to the geometric facts of Fig as E(Fig), the explicit facts (as

described in §3.2).

Examples of geometric facts in Figure 4.1 include “OAB is an equilateral triangle” or

“OM ∼= ON .”

Definition 29 (Dimension Fact). A dimension fact for a figure Fig is an atomic proposition

which relates an object in Fig and a numeric constant by equality.

Definition 30 (Length and Area Facts). A length fact is a dimension fact of the form

“Length (`) = c” where ` refers to a single-dimensional component of Fig (segment, an-

gle measurement) and c is a numeric constant having a standard unit for length (e.g.

cm, ft, radians, etc.). Similarly, an area fact is a dimension fact of the form “Area (α) = c”

where α is a two-dimensional component of Fig (e.g. circle, atomic region, etc.) and c is

a numeric constant having a squared unit of measure for area (e.g. cm2, ft2, etc.).

An example of a length fact is the measure of an angle is 45o and an example of an

area fact is that the area of circle O is 49π cm2. When context is clear, we will omit units

46

for readability. For shaded area problems, we need only consider one- and two-dimensional

objects and facts; however, extending this notion to n > 2 dimensions is possible.

The objective is to compute the area of the shaded portion using geometric reasoning

(i.e., logical reasoning using the given facts and the axioms of geometry), area computa-

tions of shapes (e.g., computing the area of a circle whose radius is known), and algebraic

manipulations (e.g., expressing the area of a region as the sum or difference of two other

regions). We may now informally define a shaded area geometry problem.

Definition 31 (Shaded Area Geometry Problem (Informal)). A shaded area geometry

problem P = 〈Fig, I, R〉 consists of (i) a geometric figure Fig, (ii) a set of facts I we

assume about Fig, and (iii) the region R for which we wish to calculate Area (R) (the ‘goal’

area fact).

4.4 Theoretical Foundations for Shaded Area Geometry Reasoning

Following the theoretical foundation described in §3.3, we discuss Euclidean geometry

with respect to the shaded area reasoning framework.

Shape Axioms. We add to the universally quantified and existentially quantified axioms

with shape axioms (Axms): axioms used to calculate the area of a geometric object. That

is, we include standard geometric formulae for computing areas lengths and areas in the

relations of deduction. If b refers to base length, h refers to height, and d, e, f are the

lengths of the sides of a triangle, we have a (non-exhaustive) set of formulae:

• Right Triangles with hypotenuse length f : d2 + e2 = f 2 (Pythagorean Theorem).

• Triangles: A = 1
2
· b · h.

• Rectangles: A = b · h.

• Squares: A = b2.

For trigonometric relations of deduction, we rely upon formulae for triangles. For a

triangle with sides a, b, and c and respective opposing angles A, B, and C we have:

47

Trigonometric Area of Triangles:

Triangle(A,B,C)⇒ Area (Triangle(A,B,C)) = 1/2 · a · b · sinC
Triangle(A,B,C)⇒ Area (Triangle(A,B,C)) = 1/2 · a · c · sinB
Triangle(A,B,C)⇒ Area (Triangle(A,B,C)) = 1/2 · b · c · sinA

Right Triangle Trigonometry:

RightTriangle(A,B,C,Hypotenuse(c))⇒ Area (Triangle(A,B,C)) = 1/2 · a · b

RightTriangle(A,B,C,Hypotenuse(c))⇒ A = arctan
(a
b

)
RightTriangle(A,B,C,Hypotenuse(c))⇒ a = b · tanA

RightTriangle(A,B,C,Hypotenuse(c))⇒ b = a · cotA

RightTriangle(A,B,C,Hypotenuse(c))⇒ c =
√
a2 + b2

RightTriangle(A,B,C,Hypotenuse(c))⇒ a =
√
c2 − b2

RightTriangle(A,B,C,Hypotenuse(c))⇒ b =
√
c2 − a2

Figure 4.6: Logical Encoding of Shape Axioms

• Law of Cosines: a2 = b2 + c2 − 2 · b · c cosA.

• Law of Sines: sinA
a

= sinB
b

= sinC
c

.

• Area of Triangle: A = 1
2
· a · b · sinC.

• Right Triangle Trigonometry with hypotenuse c: tanA = a
b
, sinA = a

c
, and cosA = b

c
.

Each shape axiom requires encoding into a logical form. For the trigonometric area of

any triangle, we have three distinct deductive encodings shown in Figure 4.6; the remaining

encodings are straightforward.

The resulting set of encodings for right triangle trigonometry is extensive since we may

solve for any variable in each of the equations. A selection of the encodings are provided

in Figure 4.6.

Theory of Area Manipulations. We presume standard notions of areas and their ad-

ditivity for disjoint components of a figure; likewise, for subtraction of one component

completely contained inside another. For example, additivity of Fig in Figure 4.1 al-

lows Area (Circle(O,OM)) = Area (MajSector(O,M,N)) + Area (MinSector(O,M,N)), con-

sequently, Area (Circle(O,OM))−Area (MinSector(O,M,N)) = Area (MajSector(O,M,N)).

48

Additivity has ramifications because it implies more properties of a figure, specifically, ar-

eas of components of a figure. The definitions are implicit in the theory of a figure Fig as

well as the theory of assumed information. For a figure Fig, we call this information the

theory of areas, Th
(
AreaFig

)
.

4.4.1 Extending Theories of Figures with Area Computations with a Calculational Logic

Let C be a logic [22] that extends L described in §3.3.2 by including descriptions of

calculations that may be performed on a geometric figure in order to deduce dimension

facts, both lengths and areas.

We define the predicates {Known,Unknown} to indicate whether a proposition corre-

sponding to a geometry or dimension fact f is an assumption f ∈ I or is deducible from

I: I ` f . We define C to include all rules in L (§3.3) as well as rules such as those stated

in Figure 4.7. Rule (1) defines a method by which we can calculate dimension facts from

other dimension facts; for example, all of the non-area shape axioms stated in Figure 4.6

such as the Pythagorean theorem. Rule (2) through Rule (4) define methods by which we

can deduce dimension facts from problem assumptions and geometric deductions (equal-

ity, congruence, and similarity). Rule (5) states that for a shape with the appropriate

parameters known according to a geometric area formula, we can compute the area of that

shape. Rule (6) through Rule (7) compute areas based on other known areas. We note

that computing an area using complementation is accomplished via subtraction.

Theorem 4.4.1 (Completeness of the Calculational Logic). For a figure Fig in a shaded

area problem, the area of a region in Fig can be calculated using the rules of C, assuming

the area is computable. That is, C defines a complete logic;

Proof. Let P be a shaded area problem with figure Fig and assumption facts I. Also let

r ∈ Fig.Regions be a region.

We pursue completeness as a proof by induction on the depth of a region in a fig-

ure. We define a depth function Depth : r → N ∪ {0}, that maps a region to a nat-

49

Dim(X1, . . . , Xn) refers to a geometric formula by which a dimension parameter Y can

be computed from other dimension parameters X1, . . . , Xn. Ar(X1, . . . , Xn) refers to a

geometric area formula for a shape that has parameters X1, . . . , Xn. Contains (X, Y) is

interpreted as an area Y is completely contained within area X. Disjoint (X, Y) means

there is no overlap between area of X and area of Y .

1.
Known (X1) ∧ · · · ∧ Known (Xn) ∧ Dim(X1, . . . , Xn)

Known (Y)

2.
Known (X) ∧ I ` X = Y

Known (Y)

3.
Known (X) ∧ I ` X ∼= Y

Known (Y)

4.
Known (X) ∧ I ` X ∼ Y

Known (Y)

5.
Known (X1) ∧ · · · ∧ Known (Xn) ∧ Ar(X1, . . . , Xn)

Known (Y)

6.
Known (X) ∧ Known (Y) ∧ Disjoint (X, Y)

Known (X + Y)

7.
Known (X) ∧ Known (Y) ∧ Contains (X, Y)

Known (X − Y)

Figure 4.7: Calculational Logic C for Computing Dimension Facts

ural number. For r ∈ Fig.Regions, Depth (r) = 0 if r is not contained in any other

region in Fig: ¬Contains (X, r) is true for all X ∈ Fig.Regions. We define the depth of

a region r based on the maximum depth of the regions it contains: Depth (r) = 1 +

max {Depth (c) | Contains (r, c) ∧ c ∈ Fig.Regions}.

In the base case we consider a set of zero depth regions that define a figure. In this case,

Area (Fig) is simply the sum of the constituent regions: Area (Fig) =
∑

r∈Fig.Regions Area (r).

For this reason, we consider a single region r ∈ Fig.Regions. To perform the deduction

50

Ar(p1, . . . , pn) ` Area (r) for n ≥ 1, we must be able to deduce Known (p1) , . . . ,Known (pn).

For all p ∈ {p1, . . . , pn}, Known (p) is true by assumption (I |= p) or by deducing dimension

facts using Rule (1) through Rule (4). If Known (p1) , . . . ,Known (pn) for all parameters of

r, then we may directly compute the area of r via Rule (5): Ar(p1, . . . , pn) ` Area (r).

We inductively consider each of the area rules in turn: Rule (6) and Rule (7).

Assume that a region r contains k > 1 regions, each of known area: for all c ∈ C,

Known (Area (c)) and C = {c | Contains (r, c) ∧ c ∈ Fig.Regions}. We note that an arbitrary

region is composed of a set of atomic regions. In this case, define r = {a1, . . . , an} for

1 < n ≤ k and for all a ∈ {a1, . . . , an}, a ∈ Fig.Atoms and Contains (r, a). Using Rule (6)

n− 1 times, we can additively compute the area of Area (r) =
∑n

i=1 Area (ai).

With Rule (7), for a region r ∈ Fig.Regions assume Area (r) is known. As with our

previous inductive case, we define r as a constituent set of atomic regions r = {a1, . . . , an}

for n > 1 such that for all a ∈ {a1, . . . , an}, Contains (r, a). Assume Area (r) is known, for

all a ∈ {a1, . . . , an−1}, Area (a) is known, and Area (an) is unknown. Applying Rule (7)

n− 1 times with Area (r) and each {a1, . . . , an−1}, in turn, results in Area (an).

Given C we can formally define the notion of a shape.

Definition 32 (Shape, Root Shape). For a set of dimension facts D describing a geometric

object Fig and a shape axiom A ∈ Axms, Area (Fig) is computable using C: strong (Fig)∧D `A

Area (Fig). A shape R is a root shape if for all S ∈ Fig.Shapes, ¬Contains (S,R) is true.

A shape is informally a standard geometric objects (square, circle, triangle, etc) in

which we can compute the area, if the dimension parameters are known. A root shape is

a shape that is not completely contained within any other shape in a given figure.

4.4.2 Synthesis Hypergraph and Problems

As a formal framework, we again use a hypergraph to represent a geometric figure

together with the theory of assumptions and theory of areas. Given a geometric figure Fig

and a set of geometric axioms Axm, Chapter 3 describes a logical geometry hypergraph in

51

which nodes correspond to E(Fig) and whose hyperedges are of the form (S, t, A) where

S `A t for A ∈ Axm. Our solving technique extends a logical geometry hypergraph to

additionally track dimension facts in an analysis hypergraph as well as include shape axioms.

We synthesize shaded area problems by exploring this analysis hypergraph.

Definition 33 (Analysis Hypergraph). Given a figure Fig, the analysis hypergraph corre-

sponding to Fig is HFig (P,E) where P is the set of nodes and E is the set of hyperedges. We

define the set of nodes in the hypergraph P = Th (Fig) ∪ Th (Axmx) ∪ Th (Axms) ∪ Th (K)

where Fig = strong (Fig), Axmx is the set of Euclid’s axioms, Axms is the set of shape

axioms, and K is the student knowledge base. Each hyperedge in E ⊆
⋃|P |
i=1 P

i → P is a

function mapping a set of nodes to a single node: if Th (Fig) ∪ Th (Axmx) ∪ Th (Axms) |=

(p1 ∧ . . . ∧ p` ⇒ p), then 〈p1, . . . , p`〉 → p ∈ E.

Each node in an analysis hypergraph corresponds to a fact about a figure Fig. As

described in §4.3 there are two types of facts that are properties of Fig. Nodes in an

analysis hypergraph belong to one of two categories τ = {geometric, dimension}We make

these distinctions among nodes so that later we may formally define a problem with respect

to an analysis hypergraph.

Definition 34 (Geometric and Dimension Nodes). Let n be a node in an analysis hyper-

graph H. If n is a propositional formula associated with some a ∈ Axms, we say n is a

dimension node. If n is a propositional formula associated with some a ∈ Axmx, we say n

is a geometry node.

We may further distinguish dimension nodes according to our previous discussions to

include length nodes and area nodes.

Shaded Area Geometry Problems. We informally defined a shaded area problem as a

triple in Definition 31. We may now formally define the notion of a shaded area problem

as a set of assumptions corresponding to a set of geometric nodes and dimension nodes in

an analysis hypergraph and a goal fact corresponding to an area node. The corresponding

52

The figure at right contains two mutually

tangent circles of radii 2cm. The figure de-

fines two distinct goal regions in the figure:

α and β = {β1, β2} as well as three roots

shapes (two circles and a square).

α

β1

β2

Figure 4.8: Uninteresting Problem Computing Area (α) and Interesting Problem Comput-
ing Area (β1 + β2)

path from the categorical assumption nodes to the categorical goal node is a solution to

the shaded area problem (i.e., deductive proof resulting in computation of the goal area).

Definition 35 (Shaded Area Problem (Formal)). For an analysis hypergraph HFig corre-

sponding to a figure Fig, a shaded area geometry problem P is a statement of the form

p1∧ . . .∧pk ` a for some k > 0 where for all i, pi is the propositional formula corresponding

to the geometric or dimension node ni of H, a is the propositional formula corresponding to

area node g of H, and there exists a path P from 〈n1, . . . , nk〉 to g. The path P is a solution

to the shaded area geometry problem P . For an area node g, we say that Pg defines the

collection of all paths in hypergraph H with goal area node g; a valid student solution is

any path in Pg.

Not all regions in a figure result in meaningful or insightful shaded area problems. We

therefore define the concept of interesting and complete shaded area problems following

the paradigm defined in Chapter 3.

Definition 36 (Interesting, Complete Shaded Area Problem). For a shaded area problem

P = 〈Fig, I, g〉, if for all R ∈ Fig.RootShapes, strong (Fig) ∧ R ∧ I ` Area (g) we say P is

an interesting shaded area problem over Fig. A complete shaded area problem over Fig is

an interesting shaded area problem where for all a ∈ Fig.Atoms, strong (Fig)∧ I ` Area (a).

Figure 4.16 is an example of a complete problem since the area of all the atomic regions

are computable (hence all regions have computable areas).

53

For an example of interesting and uninteresting problems, we consider Figure 4.8. In

Figure 4.8, α is defined by two roots shapes: the square with one side acting as the diameter

of the leftmost circle. For the region defined by α the rightmost circle does not play a role

in calculating Area (α) It follows that computing Area(α) is an uninteresting problem. For

the region defined by β = {β1, β2}, it is clear that both circles and the square define β.

Since all three root shapes are required to compute Area(β), the problem corresponding to

computing Area(β) defines an interesting problem.

4.5 Figure Synthesis

Synthesis of shaded area problems based on existing figures is, in the end, limiting to

the user; new figures along with the corresponding problems are needed. Given a set of

shapes, we describe how to synthesize a figure for a shaded area geometry problem and

then describe a technique for generating problem assumptions for a given figure.

4.5.1 Figure Synthesis with Templates and Snapping

Our figure synthesis technique is a template-driven approach which defines precisely

how one figure is to be composed with another. Figure composition is a challenging propo-

sition with an infinite search space. We overcome this problem using a template-based

approach with snapping in concert with the identification and removal of symmetric fig-

ures to limit the search to a finite space and provide meaningful problems.

The central question we attempt to address is: How can two shapes be combined into a

meaningful composition for a shaded area problem? A quantitative inspection of textbook

problems in §4.8 reveals most shaded area figures contain 3 or fewer root shapes as shown

in Figure 4.17. A qualitative inspection reveals that typical shaded area problems combine

at most 3 shapes (not necessarily root shapes). If we can address the issue of combining

two shapes, we can solve the general problem of figure synthesis by repeating our solution

to this central question and generate good figures for shaded area problems.

54

Snapping Points. Not all valid figure compositions are distinct enough for an interesting

shaded area problem. That is, minor asymmetric variations in figure compositions may still

be deemed similar to a human observer. In order to maximize variation and limit the figure

composition search space we use the concept of snapping points. In the context of figure

synthesis, snapping points have the same interpretation as they do in any drawing program.

A set of snapping points for a shape α is the exact set of points for which a shape β may

be situated by its snapping points; we note the vertices of a polygon are a subset of its

snapping points. The set of snapping points for a particular shape is parameterized. For

example, the simplest set of snapping points for shapes may consist of the following:

• all midpoints of segments and midpoints along arcs,

• the center of each circle, and

• quadrantal points of circles (points that lie on the axes in the Cartesian plane at

angles 0o, 90o, 180o, and 270o).

Composition Templates. Let α and β be shapes. The shaded area subtraction operation

α − β refers to β being situated on the interior of α where all outermost vertices (outer

snapping points) of β align with snapping points of α; therefore, Area (α− β) = Area (α)−

Area (β). The shaded area addition operation α+β refers to α being appended to β so that

α and β share more than one snapping point and α ∩ β = ∅. Since α and β are disjoint,

Area(α + β) = Area(α) + Area(β).

Definition 37 (Shaded Area Composition Template). A shaded area figure template is

an expression of the form γ = α1 ± . . . ± αn where α1, . . . , αn are shapes and Area (γ) =

Area (α1)± . . .± Area (αn).

We remark that neither addition nor subtraction is commutative nor associative.

For both templates α1±α2, there are clearly an infinite number of satisfiable configura-

tions. Snapping points are used to limit the search space for composition. For shapes α and

55

Let α − β − γ be a shaded area template

where α is a square, β an isosceles trape-

zoid, and γ a right triangle. Snapping at

midpoints results in one unique asymmet-

ric composition of α− β shown at right.

β

With γ a right triangle, there are 14 such asymmetric compositions for α− β − γ.

β
γ

β

γ

β

γ

β

γ

β
γ

βγ

β
γ

β

γ

β

γ

β
γ

β
γ

β

γ

β
γ

β
γ

Figure 4.9: Example of Template-Driven Figure Synthesis with α− β − γ

If α is a square and β is an isosceles trapezoid and the depicted set of snapping points

are the vertices of the polygons and the midpoints of each side of square, we may

construct α + β as follows.

α β α
β

α

β

Figure 4.10: Example of α + β Figure Composition

56

β, α−β requires all vertices of β align with snapping points of α. Figure 4.9 demonstrates

snapping with α− β and α− β − γ. Figure 4.10 demonstrates snapping with α + β.

Depending on the difficulty of the desired problem or to increase the number of possible

compositions, we may increase the length of the desired template or granularity of snapping

points. One might use more than the midpoints along segments or more than the 16-point

unit circle [86] familiar to trigonometry students.

Given a figure generated using our template approach with snapping, we can generate

the associated problems using the technique described in §4.7.

4.5.2 Constraint-Based Synthesis of Problem Assumptions From a Figure

In Chapter 3 we described a technique to identify all minimal sets in a logical geometry

hypergraph which in turn become the set of assumptions for a geometry problem. However,

since the number of minimal sets increases exponentially with the addition of length-based

geometry facts about a figure, we now describe a technique to identify a minimal set of

assumptions for a shaded area geometry problem as a heuristic for problem generation from

fresh figures.

Defining the shaded area problem P = 〈Fig, I, g〉 is accomplished through a constraint-

based approach that results in a minimal set of measurements for I. We begin by noting

each shape α ∈ Fig.Shapes is associated with one or more geometric facts. For example, if α

is a rectangle, the corresponding set of geometric facts Known include: each interior angle is

a right angle, both sets of opposing sides are congruent and parallel, and the measurements

of the sides.

For each shape α ∈ Fig.Shapes, we use the underlying coordinates to strengthen the

general shape from an implicit fact to an explicit fact about Fig: α ∈ I(Fig) to strong (α) ∈

E(Fig) where strong : I(Fig) → E(Fig) is a function that elevates a shape from a general

polygon to a specific polygon (quadrilateral may strengthen to a rectangle).

We now consider how to select which length facts shall be used to compute the area

of each shape in Fig.Shapes for P . Each shape α ∈ Fig.Shapes has an associated set of

57

Let α− β be a shaded area template with

α a square and β an isosceles trapezoid. A

reference construction of α− β is depicted

where αi label the sides of α and βj label

the sides of β.

α1

α2

α3

α4

β1 β2

β3
β4

We list a subset of the constraints resulting from α− β.

• α1 ‖ α4

• α2 ‖ α3

• β1 = β3

• α1 > β1

• β2 > β4

• β2 ‖ β4

• α1 = α2 = α3 =
α4

There exists an infinite number of isosceles trapezoids that meet the stated constraints.

Combining constraint-driven construction of assumptions with snapping limits the car-

dinality of the set of applicable isosceles trapezoids.

Figure 4.11: Example Set of Constraints Attributed to Composition of Shapes

constraintsKstrong(α) guided by strong (α) ∈ E(Fig). For example, there are limited methods

to calculate the area of a quadrilateralQ, but recognizing strong (Q) as a rectangle means we

have the following facts: the opposing sides of strong (Q) are congruent and parallel. Hence,

for sides of rectangle strong (Q), γi, Kstrong(Q) = {γ1 = γ3, γ1 ‖ γ3, γ2 = γ4, γ2 ‖ γ4}. See

Figure 4.11 for an example of constraints attributed to a shaded area template subtraction

operation.

To define I as the minimal set of assumptions, we refer to the solution equation E for

region g which is a linear combination of areas of regions: Area (g) = E. We first construct

the set of dependent variables Dg required to calculate Area (g) using E. That is, for each

shape s ∈ E, Area (s) is computable if the associated set of parameters Ps are known or

calculable using E(fig) thus satisfying the constraints Ks for shape s. So Dg =
⋃
s∈E

Ps. We

now construct the minimal facts in I iteratively.

1. Randomly select a variable v ∈ Dg.

2. Add v to I: I := I ∪ {v}.

58

3. Add the shape strong (s) associated with v to I: I := I ∪ {strong (s)}.

4. Query E(fig) to identify if the current known set of values I can be used to calculate

any other dependent variables in Dg, updating Dg accordingly.

The result is the set I containing a minimal set of assumptions required to calculate Area (g).

In the next section we describe how to solve a shaded area problem through reachability

in an analysis hypergraph.

4.6 Solving Shaded Area Problems

In this section we describe GeoShader, our tool for solving shaded area problems. For

a shaded area problem P = 〈Fig, I, g〉, the input is Fig which has been analyzed according

to §4.2. We then continue processing Fig to identify the set of atomic regions. Last, we

construct an analysis hypergraph relating the geometric and dimension facts of Fig and

traverse the hypergraph to identify a solution to P .

4.6.1 Atomic Region Identification

In this subsection we describe the challenges associated with converting a figure to a

planar graph using a disambiguation process, but first we describe how to compute facets

of a a planar graph (which correspond to the atomic regions of a figure).

Facet Identification for a Planar Graph. Atomic region identification is accomplished

by identifying the the smallest, bounded regions of a planar graph (commonly referred to

as facets [35]).

Definition 38 (Planar Graph). A planar graph Gp (Np, Ep) is an undirected graph embed-

ded in the Euclidean plane where Np is a set of points in the Euclidean plane. Each planar

edge ep = (s, t) ∈ Ep is defined as a segment with endpoints s, t ∈ Np.

Facet identification for a planar graph embedded in the plane is a well-known problem

and is described in [29] and explained in detail in [34]. For clarity, we present pseudocode

for facet identification in Algorithm 4.1. Given a planar graph Gp (Line 1), Algorithm 4.1

identifies and returns the corresponding facets (simple cycles in Gp on Line 2).

59

Algorithm 4.1 Facet Identification in a Planar Graph

1: procedure FacetIdentification(Gp (Np, Ep): Planar Graph)
2: C ← ∅: Cycles
3: while Np 6= ∅ do
4: s← Np.least() . Least Lexicographic Point
5: C ← {s}: Cycle
6: p← s
7: c← CounterClockNeighbor(Gp, s)
8: switch |Adjacent(s)| do
9: case 0

10: Np ← Np \ {s}
11: case 1
12: Np ← Np \ {s}
13: Ep ← Ep \ {(s, c)}
14: case > 2
15: while c 6= s do . Extract a Cycle
16: C ← C ∪ {c}
17: n← CounterClockNeighbor(Gp, p, c)
18: p← c
19: c← n
20: end while
21: C ← C ∪ {C}
22: Ep ← Ep \ {(s, c)}
23: end while
24: return C
25: end procedure

Identification of simple cycles continues until we have exhausted the set of points

(Line 3). In the (outer) loop, we begin cycle identification with the lexicographically

‘least’ point (Line 4). We are most interested in simple cycles in Gp (Line 14), but as we

modify Gp, orphaned points (Line 9) or points with no return edges (Line 11) may arise

so we check the number of adjacent points from s by calling Adjacent(s). Cycle iden-

tification involves greedy point selection in a counterclockwise manner (Line 15 through

Line 20). The first call to CounterClockNeighbor(Gp, s) chooses the point that cre-

ates the smallest angle with the downward reference vector from s. The subsequent call

to CounterClockNeighbor(Gp, p, c) chooses the point creating the smallest counter-

clockwise angle measured with respect to the reference vector −→pc. Once a cycle is acquired,

60

Figure 4.12: Preprocessing a Figure

D

E

FG

Figure 4.13: A Failed Disambiguation
Scheme for a Figure

we extract the facet (corresponding to an atomic region in Fig) and remove the first edge

(Line 22) from Gp so the first edge is never taken again. We repeat this process identifying

all facets of Gp.

Ambiguity of the Planar Graph Corresponding to a Figure. The atomic regions in a

figure Fig corresponds to the facets in a corresponding planar graph Gp (Np, Ep) using Algo-

rithm 4.1 assuming that Gp completely defines Fig. For figure Fig illustrated in Figure 4.12,

the set of points Fig.DefinePts are the dark, ‘filled’ points and Fig.inter are the ‘open’ points.

It is clear that if Ep = Fig.iRadii and Np = Fig.DefinePts ∪ Fig.inter in Gp, no facets are

identifiable in the corresponding planar graph. In this case, the planar graph does not

completely define Fig; ambiguities arise from arcs and circles.

We require more information to completely define Fig with a corresponding planar

graph. If we define a set of disambiguating points D as the larger points that are ‘shaded’

with lines in Figure 4.13 an ambiguity persists when defining Np = Fig.DefinePts∪Fig.inter∪

D. For Fig depicted in Figure 4.13, Algorithm 4.1 begins facet identification from point D.

Now, we greedily seek the next counterclockwise point resulting from the reference vector

−−→
DG. The next point in a counterclockwise traversal should be F ; however, points D, E,

61

Figure 4.14: Minimal Disambiguating Set of
a Figure

1

1

1

1

3

3

7

7

Figure 4.15: Automated Disambiguation Set
of a Figure

and F are collinear and thus ∠FDG ∼= ∠EDG. Without the inclusion of another point

along DF
_

, the choice of the next edge from D is ambiguous: we cannot distinguish the edge

D to E from the edge from D to F . Adding a single point to all arcs is not sufficient to

define a figure through a planar graph; we must be able to distinguish between segments

and arcs in all situations.

Resolving the Ambiguity of a Planar Graph Corresponding to a Figure. To resolve the

ambiguity that arises when constructing a planar graph from a figure Fig, we need to define

a new set of constructed, disambiguating points we call Fig.Disambiguating along each arc.

Figure 4.14 demonstrates one successful addition of (dark) points for the planar graph to

uniquely determine the figure; this is the minimal set of points required to define Fig as

a planar graph. Our approach to resolving these ambiguities is based on the number and

size of circles in Fig. Sorting the circles by radius length from least to greatest, we add an

exponentially increasing number of points (1, 3, 7, etc.) at constant intervals along all arcs.

Our automated approach for disambiguation is shown in Figure 4.15 where Fig.inter are

‘open’ points and Fig.Disambiguating are the dark points; the numeric values in Figure 4.15

refer to the number of disambiguating points added along each arc (between intersection

points).

62

Our approach does not minimize the number of constructed points required to resolve

ambiguity, but successfully resolves such ambiguities for standard shaded area problems.

We informally reason that, in the case of Figure 4.13, if the respective angles formed by

tangent
−−→
DG and the rays

−−→
DE and

−−→
DF are equal in measure, the arcs are equal in measure.

By subdividing the smaller arc into 2n equal subarcs by inserting 2n− 1 constructed points

and subdividing the larger arc into 2m equal subarcs by inserting 2m−1 constructed points

(where m > n) ensures that all subarcs in the larger circle measure less than all subarcs

in the smaller circle. Hence, circles with distinct radii lengths will have distinct counter-

clockwise angles with respect to
−−→
DG. If it is the case that the respective angles formed by

tangent circles does not result in arcs that are equal in measure, we modify our argument

to account for the ratio between the two measures. This technique removes ambiguity in

general for any tangent situation for two circles intersecting by defining Fig.Disambiguating

for a figure Fig.

Identification of Atomic Regions for a Figure. To compute Fig.Atoms for a figure

Fig, we construct a planar graph Gp (Np, Ep) in which Np = Fig.DefinePts ∪ Fig.inter ∪

Fig.Disambiguating and edges appropriately connect elements of Np using the set of arcs and

both implied and explicit segments: Fig.Arcs∪Fig.eSegments∪Fig.iSegments. The atomic re-

gions Fig.Atoms correspond to the facets of Gp computed using FacetIdentification(Gp)

as defined in Algorithm 4.1. As an example set of atomic regions, for figure Fig in Fig-

ure 4.15 Fig.Atoms contains six semicircles and two symmetric atomic regions inside the

outer circle, but outside the three smaller circles.

4.6.2 Constructing the Analysis Hypergraph

For a figure Fig, the corresponding analysis hypergraph HFig is composed of geometric

facts (HFig.E(Fig)), length (HFig.Length), and area facts (HFig.Area); we note the set of

dimension facts in an analysis hypergraph are given by HFig.Dimension = HFig.Length ∪

HFig.Area. Since the analysis hypergraph is an extension of the logical hypergraph in

Chapter 3, we construct HFig.E(Fig) using the technique described in §3.4.1 for geometric

63

facts. Since a figure Fig is immutable, each single-dimensional measurement (angle measure,

segment length, etc.) is added to the analysis hypergraph as an element of HFig.Length;

for example, OM = 7 and OA = 12 in Figure 4.1 are length facts. The set of area facts

HFig.Area are computed using two techniques: (1) the first relates geometric facts and length

facts and (2) the second relates area facts to other area facts using addition or subtraction.

We first compute area facts using shape axioms for figure Fig. For each shape s ∈

Fig.Shapes, we add a corresponding hyperedge to HFig for all D ⊂ HFig.Dimension, for all

A ∈ Axms, if strong (s)∧D `AArea (s). We note in Figure 4.16 that 4OAB corresponds to

region {(2), (3), (4)} and in Figure 4.1 we use the length factsOA = 12 and ∠BOAmeasures

60o to deduce Area(4OAB) = 36
√

3 by way of the area formula for an equilateral triangle.

Deducing an area fact from two area facts by means of addition or subtraction of the

respective areas is a simple process, but is computationally expensive. This is due to the

fact that the number of facets of a planar graph is linear in the size of the graph and the

number of regions, corresponding to sets of facets, is thus exponential. We therefore do not

construct the entire analysis hypergraph for a given figure, but can limit construction of

nodes to the set of assumptions in the problem, if available. We use the following algorithm

as a heuristic to avoid area facts that are not computable with the problem parameters.

We deduce an area fact from sets of area facts using an algorithm composed of two parts.

(1) Organize the shapes into a hierarchy, computing areas of regions traversing down the

hierarchy. (2) Use a fixed-point approach to compute areas of regions that are unions or

differences of two regions by respectively adding or subtracting known areas.

Deducing Area Facts from Area Facts Using a Shape Hierarchy. Instead of exhaustively

exploring all possible relationships among subsets of atomic regions, we use a hierarchy of

shapes as a heuristic. This hierarchy mimics the set of shapes a student may identify and

employ in their solving.

For a figure Fig, we organize shapes as a directed acyclic graph called the shape hierar-

chy. The roots of the shape hierarchy are Fig.RootShapes. We construct the shape hierarchy

64

We reconsider the problem in Figure 4.1
with annotated figure Fig at right.
For atomic region identification we con-
struct chord MN resulting in four atomic
regions labeled (1)-(4) (thus 24 − 1 = 15
regions).

A

B

O

M

N
(1)

(2)

(3)

(4)

We have the corresponding shape hierarchy for Fig noting that Fig consists of a circle,
two sectors, a trapezoid, and two triangles.

Circle(O)
{(1), (2), (3)}

4OAB
{(2), (3), (4)}

Major
Sector(M,O,N)

{(1)}

Minor
Sector(M,O,N)
{(2), (3)}

Trapezoid(B,M,N,A)
{(3), (4)}

4MON
{(2)}

Computability of Shape Areas. Most of the shapes have computable areas using standard
shape axioms. Thus the areas of the corresponding regions are computable as well.

Area ({(1), (2), (3)}) = 49π
Area ({(1)}) = 245

6
π

Area ({(2), (3), (4)}) = 36
√

3

Area ({(2), (3)}) = 49
6
π

Area ({(2)}) = 49
4

√
3

Hierarchical Subtraction. We demonstrate a few of the hierarchical subtraction opera-
tions that result in more computable region areas.

{(1), (3)} = {(1), (2), (3)} − {(2)}
{(3)} = {(2), (3)} − {(2)}

{(4)} = {(2), (3), (4)} − {(2), (3)}
{(3), (4)} = {(2), (3), (4)} − {(2)}

Fixed-Point Combining. Shape subtraction is not satisfactory to solve this problem
since it seeks the area of the entire figure. We combine all existent region expressions
to acquire the shortest solution found by our tool GeoShader.

Area ({(1), (2), (3), (4)}) = Area ({(1)}) + Area ({(2), (3), (4)}) = 245
6
π + 36

√
3

Figure 4.16: Solving the Shaded Area Problem of Figure 4.1

by noting that the children of a node are shapes that are fully contained in the shape cor-

responding to their parent node in the hierarchy. In Figure 4.16, MinSector(M,O,N) is

directly contained within both Circle(O,OM) and Triangle(O,A,B) so there exists directed

edges in the associated shape hierarchy from MinSector(M,O,N) to both shapes.

65

Given a shape hierarchy, we mimic how a student may approach handling area cal-

culations by taking a series of differences between a node and all of its descendants.

That is, for each s ∈ Fig.Shapes, for each c ∈ Fig.Shapes (c 6= s), if Contains (c, s) ∧

Known (Area (c)) ∧ Known (Area (s)) ` Known (Area (c− s)) we add a corresponding hyper-

edge to the analysis hypergraph. For example, in Figure 4.16, we can compute the area

of region {(1), (3)} by taking the difference between Circle(O,OM) and Triangle(M,O,N):

Area ({(1), (3)}) = Area (Circle(O,OM)) − Area (Triangle(M,O,N)) = 49π − 49
√

3
4

. Simi-

larly, we may compute the area of region {(3), (4)} which defines Trapezoid(B,M,N,A) as

Area (Triangle(O,A,B))− Area (Triangle(M,O,N)) = Area ({(3), (4)}) = 36
√

3− 49
√

3
4

.

Deducing Area Facts from Area Facts With Fixed-Point Combining. Thus far we have

computed facts for areas of regions as (1) directly from shape axioms and (2) subtrac-

tion of areas with the shape hierarchy; we refer to these facts as K. Our last step

in constructing area facts uses a fixed-point approach to computing the areas of addi-

tional regions. That is, for each a1, a2 ∈ K, if Contains (a1, a2) ∧ Known (Area (a1)) ∧

Known (Area (a2)) ` Known (Area (a1 − a2)) we add a corresponding hyperedge to the anal-

ysis hypergraph. Similarly, we add a corresponding hyperedge to the analysis hypergraph

if Disjoint (a1, a2) ∧ Known (Area (a1)) ∧ Known (Area (a2)) ` Known (Area (a1 + a2)).

Finding the area of a goal region in some shaded area problems does not require

this step; however, in the case of Figure 4.16 solving the problem is impossible without

this algebraic fixed-point process. In Figure 4.16 we know Area (MajSector(M,O,N)) =

245
6
π and Area (4OAB) = 36

√
3 with respective regions {(1)} and {(2), (3), (4)}. Tak-

ing the union of the two regions results in the solution to the problem Area (Fig) =

Area ({(1), (2), (3), (4)}) = 245
6
π + 36

√
3. We note that this algebraic combining is how

we initially solved the problem in Figure 4.1.

4.6.3 Finding a Path in the Hypergraph

As noted in Definition 35, a solution to a shaded area problem is a path in the corre-

sponding analysis hypergraph. Our goal is to identify such a path for some shaded area

66

problem P = 〈Fig, I, g〉. Identifying a solution to problem P consists of two distinct steps.

The first step takes Fig and uses the process described in §4.6.2 to construct the corre-

sponding analysis hypergraph, HFig. The second step is to identify a path from the nodes

corresponding to I and the node corresponding to the area fact Area (g) in HFig. Identifying

the solution to P corresponds to reachability from the node corresponding to Area (g) to

the nodes corresponding to I in HFig
T as described in §2.3. The resultant solution is the

path representing the solution to problem P . See Figure 4.1 for a solution constructed by

GeoShader for the stated problem.

4.7 Problem Generation

A student studying for an exam or a teacher attempting to construct novel questions

are limited by their resources and ingenuity. With that in mind, we present an algorithm for

synthesizing interesting shaded area problems based on an existing figure either acquired

from a slate or from figure synthesis described in §4.5.

The problem synthesis algorithm is quite simple because it relies upon previous results

described in Chapter 3. Given a figure Fig, we construct the analysis hypergraph as de-

scribed in §4.6 where the set of nodes are the geometric facts and area facts for each region

in Fig and hyperedges correspond to geometric deduction.

To acquire the set of shaded area problems based on Fig we use the GenProblem

algorithm described in Algorithm 3.2 in §3.4 where the goal is a singleton area fact node

labeled Area(g) = c for some constant c where g is a region in Fig. We restrict our problem

synthesis to interesting shaded area problems based on whether a problem with goal region

g meets the criteria for an interesting problem.

4.8 Experimental Results

Evaluation Criteria. We first describe our benchmark set of problems and characteris-

tics of the corresponding figure. Second, we evaluate our solution technique with respect

to time required to construct the corresponding hypergraph and identify the solution path.

67

5 10 15 20 25 30

0

10

20

No. Shapes in Fig

N
o.

T
ex
tb
oo
k
P
ro
b
le
m
s

1 2 3 4 5

0

20

40

60

No. Root Shapes Per Fig

N
o.

P
ro
b
le
m
s

5 10 15 20
0

10

20

30

No. Atomic Regions in Fig

N
o.

T
ex
tb
oo
k
P
ro
b
le
m
s

Figure 4.17: Characteristics of Textbook Problems

Last, we correlate structural characteristics of a solution with respect to the time taken to

generate that solution.

We ran our solution generation algorithm on a laptop with Intel Core i5-2520M CPU

at 2.5GHz with 8 GB RAM on 64-bit Windows 7 operating system.

Benchmark Problem Set. We ran our solution generation algorithm on a set of 102 fig-

ures taken from standard mathematics textbooks and workbooks from the United States

[51, 47, 56, 16, 23] as well as released exams from the Indian Class X exam [21]. We used

a uniform set of geometric area formulas and geometric axioms for all of our experiments:

tangent relationships to circles, quadrilaterals, congruent triangles, etc.

In the set of 102 figures from textbook problems we observe a figure in a shaded area

problem has mean (and standard deviation) 11.5 (7.8) shapes 1.56 (0.88) root shapes,

and 7.3 (4.6) atomic regions. The number of shapes, root shapes, and atomic regions per

problem result in right-skewed distributions as shown in Figure 4.17.

Problem Solving vs. Time. As described in §4.6, solving a shaded area problem requires

computing the atomic regions in the figure (§4.6.1), construct the logical hypergraph, con-

structing the analysis hypergraph (§4.6.2) and path identification of the solution (§4.6.3);

Figure 4.18 shows the time required for each of the three phases. We note a mean (and

standard deviation) of 2.79 (2.53) seconds for atomic region identification, 7.29 (12.10)

seconds for deduction engine construction, 3.33 (7.91) seconds for area fact deduction and

computing the solution, and overall time 13.4 (17.24) seconds.

68

0 20 40 60 80 100
0

20

40

60

80

Problem Number

T
im

e
(S

ec
on

d
s)

Figure 4.18: Sorted Times for Finding the Solution to a Shaded Area Problem: Atomic
Region Identification (red), Deduction Engine (yellow), and Computing the Solution and
its Features (blue)

5 10 15 20

0

20

40

60

Number of Atomic Regions in Fig

S
ol

v
in

g
T

im
e

(S
ec

on
d

s)

Figure 4.19: Number of Atomic Regions Compared to Solving Time

We note that in constructing the nodes and edges in the analysis hypergraph, which

avoids eager consideration of the exponential number of regions, is thus well-motivated

since the number of atomic regions can often be too large. In Figure 4.19 we see a positive

correlation (r2 = 0.599) for an exponential regression when we consider the number of

atomic regions compared to the length of time for the last phase of the solution process:

area facts and deductions as well as compute the solution.

Solution Characteristics. As defined in §4.6, the solution to a shaded area geometry

problem is a DAG and therefore has several quantitative features. For example, the depth

69

0 50 100 150 200 250 300

0

20

40

60

No. of Inter. Problems

N
o.

of
F

ig
u

re
s

F
ig

Figure 4.20: Histogram of Generated Inter-
esting Problems by Fig

0 20 40 60 80 100

0

2,000

4,000

6,000

8,000

Fig

N
o.

In
te

r.
P

ro
b

le
m

s
fr

om
F

ig

Figure 4.21: (Sorted) Number of Generated
Interesting Problems Per Fig

Table 4.1: Synthesis with Existing Figures: Mean (Standard Deviation)

Figures Atomic Regions Generated Interesting Problems
Without Circles 25 4.44 (2.66) 10.28 (15.61)

With Circles 77 7.65 (4.16) 336.7 (1188.1)
Composite 102 6.86 (4.11) 256.7 (1040.3)

of a solution is the longest path from the assumptions to the area in the solution, width is

maximal number of nodes in a level, and number of deduction steps corresponding directly

to the number of hyperedges in the solution. With our solutions to the 102 shaded area

problems, we see a mean (and standard deviation) for depth 7.0 (2.5), width 6.8 (3.8), and

number of deductions 11.9 (8.0). For the solutions, we observe mean 13.1 (8.2) geometry

facts and 2.1 (0.9) area facts.

Effectiveness of Problem Synthesis on Existing Figures. Using the 102 textbook figures

as a basis of analysis, we show the effectiveness of our problem synthesis algorithm with a

mean of 256.7 (1040.3) interesting problems per figure Fig as stated in Table 4.1. Figure 4.20

shows that most figures result in a small number (less than 25) of generated problems while

some figures result in thousands of problems (as shown in Figure 4.21).

We consider the relationship between the number of solvable regions compared to the

number of generated problems with respect to Table 4.1. Solving shaded area problems

according to the algorithms described in §4.6 requires construction of radii and chords

70

0 50 100 150 200

0

500

1,000

1,500

2,000

2,500

No. Inter. Problems

N
o.

F
ig

u
re

s
F

ig

Figure 4.22: Histogram of Interesting Prob-
lems Generated Per Synthesized Figure Fig

0 1,000 2,000 3,000

0

100

200

300

400

500

Fig

N
o.

In
te

r.
P

ro
b

s
fr

om
F

ig

Figure 4.23: (Sorted) Generated Interesting
Problems Per Synthesized Figure Fig

Table 4.2: Figure and Problem Synthesis for α, β, γ ∈ {Square,Rectangle,Right Triangle}:
Mean (Standard Deviation)

Template Figures Atomic Regions Generated Interesting Problems
α− β 52 2.63 (0.93) 6.92 (7.42)
α + β 67 2.50 (0.5) 3 (0.0)

119 2.56 (0.72) 4.71 (5.25)
α− (β − γ) 505 5.56 (2.67) 37.2 (73.40)
(α− β)− γ 705 4.91 (2.18) 26.0 (31.24)
(α− β) + γ 623 4.62 (1.35) 14.4 (19.99)
α + β + γ 994 4.78 (0.83) 6.49 (1.83)

(α + β)− γ 587 4.44 (1.08) 8.79 (5.88)
3414 4.83 (1.70) 16.65 (34.63)

Overall 3533 4.76 (1.73) 16.51 (34.12)

when the figure includes a circle; construction of segments results in more atomic regions

in the figure. In Table 4.1 we see 77 of the 102 textbook problems involve circles. Those

77 problems involving circles have a significant increase in the number of atomic regions

(7.65) compared to the 25 problems that do not involve circles (4.44 atomic regions).

The number of atomic regions thus influences the number of interesting problems; 10.28

problems without circles compared to 336.7 with circles, a significant disparity.

Effectiveness of Problem Synthesis through Figure Synthesis. We evaluate the figure

synthesis technique described in §4.5 by limiting the search space with the selection of

shapes, snapping points, and templates. In this analysis we considered the set of shapes

71

which included squares, rectangles, and right triangles. We used the midpoints of segments

as snapping points. We consider each of the templates listed in Table 4.2 with the set of

shapes {Square,Rectangle,RightTriangle}. For each template, we generated a minimal set of

assumptions using the technique described in §4.5.2. Under these conditions, we generated

3533 figures with corresponding mean 16.5 (34.1) interesting problems.

We compare our figure synthesis procedure to existing figures. Visually, we see a similar

shape in the distribution in Figure 4.22 for figure synthesis compared to Figure 4.20 with

existing figures; similarly Figure 4.23 is comparable to Figure 4.21. Numerically, existing

figures without circles have a mean of 10.28 interesting problems compared to 16.51 for

synthesized figures without circles. We attribute the slight difference to the number of

atomic regions in the figures: mean atomic regions is slightly larger for synthesized figures

without circles (4.76) compared to existing figures without circles (4.44).

Last, we consider the number of atomic regions as a feature of a figure with circles.

According to Table 4.1, a mean of 7.65 atomic regions results in 336.7 interesting problems.

For β = {Isosceles Trapezoid,Right Triangle,Rectangle,Equilateral Triangle}, the template

Circle − β resulted in figures with 11.0 (4.24) atomic regions. We observe figure synthesis

results in more atomic regions compared to existing figures. We attribute this difference

due to our definition of subtraction with templates requiring one shape to be completely

contained within another whereas existing figures may orient shapes such that one shape

intersects another, but either shape is not completely contained within the other.

4.9 Related Work in Geometry Problem and Solution Synthesis

We discuss work related to automated problem and solution generation for high school

geometry problems as well as template-based problem generation with respect to geometry

proof problem synthesis with GeoTutor and shaded area problem solving and synthesis

with GeoShader.

72

4.9.1 Automated Tutoring Systems

Existing automated tutoring systems provide varied levels of personalized feedback to

students. Wolfram Alpha [1] provides step-by-step solutions and hints for computational

domains. AutoTutor [2] is an interactive dialogue-based tutoring system for physics and

computer literacy that provides feedback to students of all ability levels. However, these

systems do not automatically synthesize analogous exercises to provide personalized prac-

tice to a student having difficulties in particular areas or types of exercises. Individualized,

but analogous assignments can mitigate cheating while maintaining fairness. None of the

existent systems cover difficult topics like Geometry. Unlike GeoTutor, these systems pro-

vide problems from a predefined set that are slightly modified versions of those scoured

from a plethora of textbooks or in the case of Wolfram Alpha, generated from discrete,

algebraic problem templates. GeoTutor and GeoShader can synthesize problems beyond

those available in textbooks; the student is free to generate their own problems by creating

their own figures and associated assumptions.

4.9.2 Technology for Geometry Education in Proof Synthesis

Automated geometry theorem proving (consisting of several techniques such as Wu’s

method [82], Grobner basis method [52], and angle method [24]) is one of the most suc-

cessful areas of automated reasoning. Traditional automated geometry theorem proving

systems tend to produce arbitrary proofs in the underlying logical domain that may not

be readable and may be beyond the vocabulary taught in the class. Tutoring oriented

systems such as Geometry Expert [39] and Geometry Explorer [87] allow students to create

geometry constructions and use interactive provers to check and prove properties of those

constructions. [44, 49] even present techniques for automatically synthesizing geometry

constructions given logical constraints that relate the various objects in the construction.

The GeoTutor system can be used to solve those proof problems that do not require

construction of any new object in the given geometric figure. It uses a relatively simple

methodology of hypergraph reachability to check whether the goal can be reached from the

73

assumptions. The novelty of our system lies in the hypergraph construction and associated

algorithms over it that enables generation of various interesting problems.

4.9.3 Technology for Geometry Education in Shaded Area Synthesis

Our work with GeoTutor first formalized the notion of implicit and explicit atomic

geometry facts in a given geometry figure as well as rules for reasoning over those facts.

With GeoShader we extend that formalism to deal with a richer class of facts involving

area facts and rules that relate these facts with each other and also with atomic geometry

facts. More significantly, we address the novel challenge of parsing a given coordinate-based

geometry image into implicit facts related to both atomic properties and area properties.

We also present an approach for synthesizing new geometry figures that can be used to

construct new problems unlike past work [7] that is restricted to considering only existing

figures. [63] also addressed solution generation for a wide range of mathematics problems

including analytic geometry based solely on a textual description. We use a pixel-based

approach and reason about existing figures in our solution generation.

Recently, [74] describe a technique of diagrammatic understanding by extracting im-

plicit atomic geometry facts from a figure using vision-based techniques. We present a

distinct technique to address a more involved problem of also extracting area geometry

facts.

4.9.4 Automatic Problem Generation

[77] describes a template-based problem generation technology for generating problems

where the input problem defines the structural template for a given algebraic identity proof

problem. Our figure synthesis technique does not require an input problem as stimulus,

but allows the user to specify a general set of interactions among the figures through the

template which influences the structural nature of the resultant figure.

Problem generation technologies exist for a procedural domain [10] in which problems

are generated for various paths a student is required to learn in a given procedure. In

74

contrast, we address problem generation for a conceptual domain where there is no single

step-by-step decision procedure that the student can use to solve a problem. The conceptual

domain of problems requires creativity in solving such as induction, deduction, or pattern

matching.

[7] describes a problem generation technique that represents all possible applications

of the various axioms and traverses that graph to simultaneously construct new interesting

problems and their solutions. This is similar to the technique in [5] for natural deduction

problems which constructs a Universal proof hypergraph of all possible inference rule appli-

cations and traverses this graph to generate problems with certain features. Our technique

for area reasoning problems is similar in that we use hypergraph construction for solution

generation and interesting problem generation.

75

Chapter 5
Molecular Synthesis

In this chapter we discuss background in molecular synthesis and significance of the

antibiotic resistance problem, introduce techniques for decomposing compounds into frag-

ments, algorithms for combining fragments (synthesis of molecules), and the steps by which

we construct a molecule in the form of a molecular hypergraph.

5.1 Significance of the Problem

There is an urgent need for new antibiotics. Although the multidrug-resistance in

pathogens is growing fast, the number of new drugs being developed to treat bacterial

infections has reached its lowest point since the beginning of the antibiotic era [15, 79]. The

resistance is particularly problematic in Gram-positive organisms S. aureus, E. faecalis and

S. pneumoniae as well as a number of Gram-negative organisms including K. pneumonia,

A. baumannii, and P. aeruginosa [72]. Hence, there is a dire need to develop new platforms

and approaches to discover antibacterial agents against novel molecular targets. Not only

new drugs are not being created, but also the existing process of creating drugs is slow and

inefficient. Therein lies our innovation that makes this process more efficient.

Since fatty acids are only used for membrane biogenesis in bacteria, the enzymes of

the fatty acid biosynthetic pathway have been identified as attractive targets for the de-

velopment of novel antibacterial agents [46, 18, 88]. Bacterial biotin carboxylase (BC) is

one portion of acetyl-CoA carboxylase (ACCase), a multifunctional enzyme complex that

catalyzes the committed and regulated step in fatty acid biosynthesis. This metabolic path-

way in bacteria is critical for several important biological processes including the synthesis

and maintenance of cellular membranes. Scientists at Pfizer discovered several antibiotics

against BC that belong to three different classes: pyridopyrimidines [65], amino-oxazoles

[66] and the benzimidazole carboxamides[65]. Notwithstanding a great success of this

structure-based design, all BC inhibitors developed to date show antibacterial activity only

against Gram-negative organisms, while exhibiting either limited or no activity against

76

Gram-positive species. Therefore, novel broad-spectrum antibiotics against this promising

molecular target remain to be discovered.

Due to extremely high costs of high-throughput screening, many drug discovery projects

commonly employ inexpensive computations to support experimental efforts. In particular,

virtual screening, a technique that shows great promise for lead discovery, has become an

integral part of modern drug design pipelines. Here, the idea is to considerably reduce the

number of candidate compounds that need to be tested experimentally against a protein

target of interest. Due to advances in computer technology resulting in constantly in-

creasing computational power, virtual libraries comprising many thousands of compounds

can be rapidly evaluated in silico prior to experimental screens and at a fraction of the

cost. Virtual screening approaches, historically divided into ligand- and structure-based

algorithms prioritize drug candidates by estimating the probability of binding to the tar-

get receptor [57]. Among many methods developed to date, docking-based techniques are

valuable tools for lead identification [28]. These algorithms rank compounds by predicting

the binding mode for a query molecule in the binding pocket of the target protein, followed

by the prediction of binding affinity from molecular interactions. There are many examples

of a successful application of virtual screening tools to develop compounds with desired

bioactivities [20, 81].

Computer-aided drug discovery traditionally utilizes large compound libraries for vir-

tual screening. For example, the ZINC database is one of the most comprehensive reposi-

tories of commercially available compounds for virtual screening [48]. It currently features

over 35 million compounds in ready-to-dock formats. These large generic collections of

low molecular weight organic compounds provide a sufficient diversity to perform virtual

screening against any molecular target, however, the vast majority of compounds will have a

very low probability to exhibit the desired bioactivity for a specific target protein. Further-

more, considering the imperfections of compound ranking by virtual screening algorithms

[55], even a large top-ranked subset of compound library may contain few active molecules.

77

Thus, the chances to identify novel, high-quality leads from large compound repositories

are low. For instance, an internal analysis of the Abbott compound collection suggested

that less than 4% of the compounds in their repository have the potential to yield novel

kinase hinge-binders [6]. In order to address these issues, there have been significant efforts

to augment existing collections with large numbers of compounds that have a higher poten-

tial for binding to specific targets of interest. Consequently, the trend in library design has

shifted to include target class focusing in addition to diversity and drug-likeness criteria

[59].

A target-focused library is a screening collection of compounds specifically tailored to

modulate the function of a particular target or a protein family [9, 70]. There are a variety

of approaches that have been developed for the design of target-specific focused libraries

against, e.g. protein kinases, ion channels, G-protein coupled receptors (GPCRs), nuclear

receptors, and protein-protein interfaces. Interestingly, these libraries not only reduce waste

by eliminating compounds that are unlikely to bind to the target proteins, but often lead

to an increase in the potency or specificity of binders, as demonstrated for c-Src kinase [60].

Several approaches employ molecular docking to determine target-specific thresholds that

can be used as filters in virtual screening. This strategy was experimentally validated on

the kinase-targeted library of 1,440 compounds and 41 kinases from five different families,

demonstrating a 6.7-fold higher overall hit enrichment compared to a generic compound

collection [42]. Furthermore, a structure-based modeling was used to create a small focused

library against C. pneumoniae, a common pathogen recently linked to atherosclerosis and

risk of myocardial infarction [11]. The experimentally determined hit rate for the targeted

library was 24.2%, which is considerably higher than what would be expected for a generic

library. Similar to structure-based approaches, ligand-based techniques can also be used in

the focused library design, as shown for the GPCRs family [59]. Compared to large, diverse

screening libraries, using relatively small, targeted collections significantly improves the

odds of finding potential drug candidates, thus further reduces the costs of drug discovery.

78

Target-focused libraries are either designed or assembled based on some understanding

of a specific protein target or a protein family. These collections are often compiled from

larger, more diverse libraries using either molecular docking (structure-based approach)

or ligand fingerprint similarity (ligand-based approach). The former employs structural,

sequence and mutagenesis data, whereas the latter is based on the bio-molecular properties

derived from known ligands, offering a useful way of “scaffold hopping” from one ligand class

to another [73]. Target-focused libraries are often constructed around a single scaffold with

one or more positions used to attach various chemical moieties or side chains. Although

this approach can result in millions of different compounds [17], the chemical space remains

largely unexplored, therefore truly novel compounds will not be discovered. On the other

hand, combinatorial chemistry methods can produce a vast collection of divers compounds,

so vast that only a tiny fraction of it could be explored, even using supercomputers. One

can hardly imagine screening the chemical universe containing from 1012 to 10180 drug-like

compounds [41]. Therefore, techniques for the design of libraries that populate the chemical

subspace covering regions that are relevant to biology [30] are desperately needed. These

methods hold a promise to contribute to the advancement of our knowledge of biological

processes leading to new strategies to treat diseases.

Focused library design by molecular synthesis is essentially a combinatorial problem

that can be addressed using graph theory. These techniques have been already extensively

used in Computer Science and Artificial Intelligence (AI) for the synthesis of plans [40],

problems and solutions in geometry [7, 8], hardware from specifications [78], and protocols

[4, 71]. Graph-based approaches also have a wide range of applications in drug discovery

including the analysis of chemical structures to better understand the common features

present in drug molecules [12], the design of novel bioactive compounds with desired phar-

macological profiles [36], structure-based modeling of protein flexibility upon ligand binding

[19], the investigation of systems-level drug-target interaction networks [67], and drug repo-

sitioning [43].

79

Molecular bonding can be represented as a hypergraph whose nodes are molecular

fragments and hyperedges represent molecular combinations that follow the laws of chemical

bonding. The traversal algorithm filters the chemical space using additional assumptions

about molecular properties and heuristics to restrict the search to relevant molecules. A

path in the hypergraph from a set of source nodes to a target node represents a sequence of

reactions that can lead to the formation of a complex molecule from constituent fragments.

Hypergraph-based algorithms guarantee that all possible compounds will be generated and

evaluated. We consider these details in the remainder of this chapter.

5.2 Molecular Fragments

Many focused collections of compounds for drug development have been compiled by

industry from the results of high-throughput screens collected over years of experiments.

However, these libraries often cover only a very limited repertoire of drug targets that are of

interest to a particular company and are not available to the general scientific community.

Existing computational methods for the construction of focused libraries are not only lim-

ited to the derivatives of already discovered scaffolds, but also designed for specific proteins,

thus may not be generalized to a broad range of molecular targets. In contrast, our ap-

proach offers a unique capability to deliver high-quality focused libraries for a broad range

of target proteins. Specifically, we include in this discussion our approach to compound

decomposition into molecular fragments. Decomposition offers an easy way to create new

chemical entities. Organic compounds are composed of sets of connected rigid fragments,

essentially different ring structures, and flexible linkers with a varying number of rotatable

bonds. Such description allows for the decomposition of any molecule into its building

blocks tracking the atomic connectivity, so that new, chemically feasible molecules can be

easily generated from molecular fragments.

Extraction of Molecular Fragments. Before describing the algorithm for molecular de-

composition into fragments, we first define a few terms.

80

Figure 5.1: Fragment Extraction: A Bioactive Molecule

Figure 5.2: Fragment Extraction: Rigid Fragments (thick polygons) Identified

Figure 5.3: Fragment Extraction: Remaining Parts are Linkers (thick lines)

Input: A molecule M represented by atoms and chemical bonds.
Output: A unique set of constituent molecular fragments for M .

1. Identify all rotatable bonds in M .

2. Identify all rigid moieties of M .

3. Extract the remaining parts of M as flexible linkers.

4. Delete identical moieties.

Figure 5.4: Algorithm for Extracting Molecular Fragments from a Molecule

Definition 39. A rigid fragment (rigid) is a set of at least four non-hydrogen atoms con-

nected through non-rotatable bonds.

81

C.ar

C.ar

C.ar

C.ar

C.ar

C.arC.3 C.ar

Figure 5.5: Sample Rigid Fragment

C.3 (3) C.3 (2) N.3 (3)

Figure 5.6: Sample Linking Fragment

Definition 40. A linking fragment (linker) is a flexible fragment composed of a set of

atoms connected through rotatable bonds.

We now describe the algorithm stated in Figure 5.4 that decomposes chemical com-

pounds into molecular fragments. In Step (1), We start with a molecule represented by

atoms and chemical bonds as shown in Figure 5.1. Since rigids and linkers are defined

based on rotatable bonds, the first step is identify such bonds in the given molecule. Since

rigid fragments are closed sets of atoms, Step (2) extracts all of the rigids from the molecule

as shown in Figure 5.2. Knowing what atoms have already been extracted as rigids, what

remains in Step (3) are flexible linkers as shown Figure 5.3. It is clear that rigids pro-

vide structure to the molecule and linkers provide connectivity. Furthermore, in order to

properly bond fragments using graph-based algorithms, we track the connectivity between

individual fragments so that chemically feasible compounds can be synthesized. Last, in

Step (4), the redundancy is removed from molecular fragments extracted from multiple

compounds by deleting identical moieties.

This approach to molecular fragment extraction is fast (linear in the number of atoms

and bonds in a given molecule) and is capable of processing large datasets of chemical

compounds.

82

A sample rigid and linking fragment are depicted in Figure 5.5 and Figure 5.6, respec-

tively. For a rigid fragment, we specify all constituent atoms in bold outline. All possible

single bonds in a rigid fragment are specified with atom types surrounded with a dashed

outline. In Figure 5.5, there are six carbon-aromatic atoms (C.ar), two of which can have

a single bond, one to a carbon-3 (C.3) and one to a carbon-aromatic. For each atom in a

linking fragment, the atom type of each atom is specified as well as the number of possible

bonds in parentheses. The linking fragment in Figure 5.6 contains three atoms, the left-

most atom has atom type carbon-3 (C.3) and can connect with up to three carbon-3 atom

types.

5.3 Synthesis

We formalize molecular bonding over a given set of rigid and linking fragments re-

stricted by the laws of chemistry. Molecular synthesis is a multi-phase process. First, we

use a fixed-point approach to generate the complete set of molecules. Next, we identify a

particular molecule of interest based on user input. Last, based on the input fragments

and target molecule, we construct a molecular hypergraph. This molecular hypergraph

can then be traversed to extract reachability and hyperpaths accordingly. In total, the

synthesis of a molecule is not just the resultant molecule, it is the exact sequence of steps

by which the molecule was generated.

5.3.1 Algorithms

A fragment-based approach to synthesis can theoretically result in an infinite molecular

search space. By stating an upper bound based on molecule size, the synthesis process

may still result in 108 molecules or more. It is therefore highly desirable to develop an

efficient fixed-point algorithm for molecular synthesis that is complete; that is, all possible

molecules that can be synthesized under chemical and physical constraints are guaranteed

to be generated.

83

Algorithm 5.1 Complete, Level-Based Molecular Synthesis

1: procedure Synthesize(L,R, max) . A set of linkers L, set of Rigids R, max
2: Set〈Molecule〉M [max]← {∅} . An array of unique molecules for each level
3: F ←M [1]← L∪R
4: for ` = 2 to max do
5: for all f ∈ F do
6: for each m ∈M [`− 1] do
7: M [`].AddAll(f.Compose(m))
8: end for
9: end for

10: end for

11: return
max⋃
`=2

M [`]

12: end procedure

C.ar

C.ar

C.ar

C.ar

C.ar

C.ar C.ar

C.ar

C.ar

C.ar

C.ar

C.ar

Figure 5.7: 2-Molecule Resulting From Compose(R,R) with Rigid R from Figure 5.5

For expository purposes, we will refer to a k-molecule as a molecule that is composed

of k molecular fragments. The algorithm in Algorithm 5.1 uses a level-based approach to

molecular synthesis where all molecules in a level are composed of the same number of

fragments.

In Algorithm 5.1, Line 3 initializes the synthesis process by storing the 1-molecules

(i.e. fragments) into the array M (at index 1). In Line 4 to Line 10, we exhaustively

synthesize each new level of molecules from the 2-molecules to max-molecules where max

is the upper bound parameter set by the user. For simplicity, we store all of the k-molecules

at index k in M . The low-level synthesis process is performed by the Compose(m1,m2)

function which takes two molecules m1 and m2 then combines them together in all possible

orientations. Figure 5.7 depicts the result of calling Compose(R,R) for the rigid fragment

R from Figure 5.5. In this case, there is only one possible way to compose R with itself. For

84

C.ar

C.ar

C.ar

C.ar

C.ar

C.ar
C.3
(3)

C.3
(2)

N.3
(3)

C.ar

C.ar

C.ar

C.ar

C.ar

C.ar
C.3
(2)

C.3
(3)

N.3
(3)

Figure 5.8: 2-Molecules From Compose(R,L) with Rigid R from Figure 5.5 and Linker L
from Figure 5.6

rigid fragment R from Figure 5.5 and linking fragment L from Figure 5.6, Compose(R,L)

results in the molecules shown in Figure 5.8.

Hypergraph construction is an exhaustive process in which two molecules (nodes) will

be combined with a single bond to create a molecule. That is, if two source molecules may

bond together two atoms to construct a target complex molecule, the bond is created and a

new molecule is formed. This process describes the notion of a two-to-one source-to-target

edge in the molecular hypergraph and the systematic construction of all possible complex

molecules that may be formed from the input set of rigids and linkers.

Compose returns a set of molecules that meet the stated constraints, including Lipinski

compliance [84] and added to the appropriate set of k-molecules. Last, on Line 11, we

combine the sets of all synthesized molecules into a single collection that is to be returned.

The level-based approach described in Algorithm 5.1 is malleable depending on com-

putational constraints. For example, Algorithm 5.1 implies that a level k must complete

before level k + 1 starts. However, an astute observer will recognize that Algorithm 5.1

85

Algorithm 5.2 Bounded, Level-Based Molecular Synthesis

1: . Input: sets of linkers and rigids, upper bound of MAX-molecules to synthesize.
2: . Output: Collection of synthesized molecules.
3: procedure Synthesize(L,R, MAX)
4: Set〈Molecule〉M [max]← {∅} . Molecule accumulator
5: Set〈Molecule〉W [max]← {∅} . Worklist
6: W [1]← F ← L ∪R . Initialize 1-molecules as fragments
7: while ¬W [1].empty() do . Empty W[1] ⇒ all levels ≥ 2 complete
8: SynthesizeHelper(1, W, F , MAX, M)
9: end while

10: return
max⋃
`=2

M [`]

11: end procedure
12:

13: . SynthesizeHelper: inductively construct under bound constraints: `→ `+ 1
14: procedure SynthesizeHelper(`, W, F , MAX, M)
15: if ` > MAX then . Adhere to upper bound on level `-molecules.
16: return
17: end if
18: while ¬W [`].empty() do
19: . Check level `+ 1 capacities; process level ` molecules, if any
20: while ¬W [`+ 1].atCapacity() and ¬W [`].empty() do
21: m← W [`].pop() . Acquire molecule to process
22: M [`].Add(m)
23: for all f ∈ F do . Compose all F with m: level `→ `+ 1
24: W [`+ 1].AddAll(f.Compose(m))
25: end for
26: end while
27: SynthesizeHelper(`+ 1, W, F , MAX, M) . Process level `+ 1.
28: end while
29: end procedure

can easily be modified for a multi-threaded approach in which level k is a producer for

level k + 1, the consumer. Thus, if each level maintains a thread acting as producer and

consumer, synthesis can be expedited.

Similarly, we may introduce a bounded alternative of Algorithm 5.1. In Algorithm 5.2,

we maintain an array of worklists (Line 5), one for each level that has an explicit capacity. If

we reach the capacity of a worklist at level `, we forgo processing the remaining items at level

` and inductively complete processing of all molecules at level `+ 1 (Line 20). Otherwise,

in Line 23 to Line 25 we compose a molecule from level ` with all of the fragments into

86

level `+ 1 as before. We note that the approach in Algorithm 5.2 is appropriate for either

serial or parallel syntheses depending on availability of computational power.

5.3.2 Molecular Filtration with Bloom Filters

Synthesis of molecules is limited by physical restrictions on molecules, but moreso time

and space. An efficient synthesis must overcome time and space considerations, generate

molecules within the physical restrictions, but do so without redundancy.

Using either Algorithm 5.1 or Algorithm 5.2 results in significant redundancy in syn-

thesized molecules. The typical synthesis scenario from a basis of fragments will generate

hundreds of millions of molecules which makes storing these molecules in memory infeasi-

ble; eliminating molecular redundancy requires a memoryless technique; synthesis requires

a series of Bloom filters [14].

A Bloom filter is a probabilistic data structure that is efficient in terms of time and

space. Although Bloom filters are well-studied, we describe their use in our synthesis

domain. The main purpose of a Bloom filter is to determine whether an element is in a

given set. LetM be a set of molecules and M a molecule. A Bloom filter is guaranteed to

answer the query M ∈M if molecule M is in setM. Since a Bloom filer is a probabilistic

data structure, it is subject to false positives: a query returns M ∈ M when M /∈ M.

Fortunately, the rate of false-positives can be controlled.

While we omit some details of a Bloom filter, we consider the rate of false-positives. A

Bloom filter is based on b the number of bits in the filter array, the number of distinct hash

functions h, and the number of elements n we expect to insert into the filter. Assuming

all hash functions hash elements uniformly to all b bits in the target array, the rate of

false-positives for an element M not in a set M is given by P (M /∈M) =
(

1− e−n·hb
)h

.

It can be shown that to minimize the rate of false-positives, the required number of hash

functions h is given by h = b
n
· ln 2. If p is the desired false-positive rate, it can also be

shown that the required number of bits b = − n ln p
(ln 2)2 [14].

87

Consider a molecular Bloom filter F in which we tolerate a 1% false-positive rate for

108 molecules. In this case, we require b = 9.585 · 108 ≈ 120 megabytes with h = 7 hash

functions. This means each addition of a molecule to F and each query on F is subject to

the worst case O(h) = 7 hashings.

Molecular synthesis requires a string representation of molecules. In particular, a

molecule M is represented using the SMILES specification [3] as a molecular fingerprint

as input to each Bloom filter. We can modify the Compose function in Algorithm 5.2 by

including several Bloom filters: a single, overall filter F as well as a filter F` for each level.

When an `-molecule M is synthesized, we first check whether it has been previously syn-

thesized by querying F`. If the molecule has not been synthesized (M /∈ F`), we add M to

F` and query F . If M /∈ F , we add M to F and proceed as in Algorithm 5.2 by adding

M to the level-` queue to be processed into level-(` + 1) molecules. Clearly, the global

F requires the most memory, but ensures that molecules containing different number of

fragments with the same SMILES representation are filtered as redundant.

5.4 Molecular Hypergraph

In this section we formalize the molecular synthesis space as a hypergraph, specifically,

a molecular hypergraph. We begin with some definitions related to molecules and end with

our definition of a molecular hypergraph.

5.4.1 Definitions

For a molecule M , R (M) is the constituent set of unique rigid fragments and L (M)

the constituent set of unique linking fragments. For a set of molecules M, R (M) =⋃
M∈MR (M) the unique set of rigid fragments and L (M) =

⋃
M∈M L (M) the constituent

set of unique linking fragments.

Molecular synthesis depends on a set of fragments we refer to as the molecular basis as

defined in Definition 41.

88

Definition 41 (Molecular Basis and Cardinality). For a set of moleculesM, we refer to the

simple molecular moieties composed of rigid fragments R = R (M) and linking fragments

L = L (M) as the molecular basis for molecular set M , BM, such that BM = R ∪ L. We

also refer to the cardinality of a basis, |BM|, as the number of unique fragments in BM.

We note that the cardinality of a basis set of molecules is a simple sum of the number of

unique rigids and linkers: |B| = |R (M)|+ |L (M)|. We also note that for a rigid fragment

R, BR = {R}, the singleton set containing only itself and thus |BR| = 1, similarly for

linking fragments.

Our goal in molecular synthesis is to combine fragments into various combinations

yielding molecules; we explicitly define the notion of complex molecule.

Definition 42 (Complex Molecule). A complex molecule is a molecule composed of two or

more fragments; the fragments may or may not be unique.

Clearly, any k-molecule where k ≥ 2 is a complex molecule. We note that in some

special cases it is possible for a complex molecule, C, be composed of copies of a single

fragment; hence, |BC | = 1.

We also define notation for the number of fragments of a k-molecule.

Definition 43 (Cardinality of a Molecule). A k-molecule is composed of k, possibly non-

unique fragments. We say that for a molecule M , |M | = k.

5.4.2 The Molecular Hypergraph

We use a hypergraph-based approach to synthesis of complex molecules. Each node in

the hypergraph represents a molecule, either rigid, linker, or complex molecule. When two

molecules (source nodes) can be combined with a single, target bond to create a molecule,

the hypergraph will contain a corresponding hyperedge as defined in Definition 44.

Definition 44 (Attraction and Repulsion Hyperedges). We refer to a hyperedge in which

two source molecules are combined into a complex, target molecule as an attraction hy-

89

peredge. Similarly, a repulsion hyperedge has two source nodes in which one molecule is

subtracted from the other complex molecule resulting in a simpler molecule.

Given three molecules S1, S2, and T that constitute an attraction hyperedge {S1, S2}
A−→

T , we conversely have two repulsion hyperedges {S1, T}
R−→ S2 and {S2, T}

R−→ S1. In

these two cases, we annotate each hyperedge with the type of hyperedge: repulsion (R) or

attraction (A).

Having defined the correspondence in the molecular synthesis space with nodes and

hyperedges, we may now define the molecular hypergraph.

Definition 45 (Molecular Hypergraph). A molecular hypergraph H (M, EA) is a synthesis

hypergraph in which M is the set of molecules (nodes) and E is the set of hyperedges over

a set of bond-based annotations A. We say that H (M, EA) is the molecular hypergraph

corresponding to the molecular synthesis of basis BM and note that BM ⊆ M. Each

hyperedge E ∈ EA is of the form (S, t, A) where S ⊆M is a set of molecules, t ∈ M, and

A ∈ A.

The set of bond-based annotations A is a parameterized set of expressions defined by

the user. For example, in the case where a user wishes to omit all repulsion edges, the

associated set of annotations will lead to a subset of all hyperedges that meet the defined

characteristics.

5.5 On-Demand Molecular Hypergraph Construction and Traversal

Without an upper bound placed of the number of fragments in a molecule, Algo-

rithm 5.1 results in a complete synthesis of the entire molecular synthesis space; however,

computational and memory limitations prohibit construction of a corresponding molecular

hypergraph. Given a molecule Mt and the basis of Mt, BMt , we construct the corresponding

template-based molecular hypergraph H (M, EA). In order to construct a template-based

molecular hypergraph, we use a fixed-point version of Algorithm 5.1 as defined in Algo-

rithm 5.3.

90

Algorithm 5.3 Template-Based Hypergraph Construction

1: . Linkers L, Rigids R, Template Molecule Mt

2: procedure TemplateConstruct(L,R, Mt)
3: Hypergraph G
4: Queue〈Molecule〉 W ← L∪R
5: while ¬W.empty() do
6: c← W.dequeue()
7: G.addNode(c)
8: for all m ∈ G do
9: for all t ∈ Compose(m, c) do

10: if |Mt| > |t| then
11: W.Add(t)
12: G.AddNode(t))
13: G.AddHyperedge((m, c), t)
14: end if
15: end for
16: end for
17: end while
18: return G
19: end procedure

The result of Algorithm 5.3 is a hypergraph H (M, EA) with the following characteris-

tics:

• All hyperedges are attraction edges.

• The nodes corresponding to fragments in BMt have no incoming hyperedges (they are

leaves in HT).

• The node corresponding to Mt has no outgoing hyperedges (root in HT).

• Mt is the largest molecule in H. That is, for each M ∈M, |Mt| > |M |.

Algorithm 5.3 takes a constructivist perspective in which fragments are combined into

larger and larger molecules. A converse, equivalent destructivist version of the algorithm

might begin with molecule Mt by splitting it into smaller molecules and eventually frag-

ments. This observation is due to the fact that a molecular hypergraph H (M, EA) with

only attraction edges results in HT being a directed acyclic graph (DAG).

Molecular synthesis is a process by which we construct all possible molecules from

fragments, but more importantly, a molecular hypergraph provides the sequence of bonds

91

necessary to create a molecule. Let H (M, EA) be a molecular hypergraph using Algo-

rithm 5.3 with input Mt and basis BMt . Recall, each hyperedge in a molecular hypergraph

is annotated according to user parameters. For H, it is possible to select a pebbled molec-

ular hypergraph HP (M, EA) according to Algorithm 2.1. Each hyperpath from BMt to Mt

in HP corresponds to a sequence of molecular bonds that may be replicated in a physical

laboratory environment.

5.6 Experimental Results

The main experimental objective was to validate the molecular synthesis technique.

We used two protocols for validation: self-reconstruction and cross-validation with leave-

one-out testing to determine if Synth can generate novel molecules.

5.6.1 Self-Reconstruction

Validation is performed by (1) deconstructing fragments from active molecules and

(2) running Synth to validate that the original, parent molecule is reconstructed from its

own fragments. Failing at this step means that Synth was incapable of forming reasonable

compounds.

We ran these steps on our set of active molecules from the database of useful decoys

(DUD-E) [33], more than 20,000 chemical compounds in total. In these experiments we

use the Tanimoto (similarity) Coefficient (TC) [85] as a heuristic to compare molecules;

0 ≤ TC ≤ 1 where TC = 0 means no similarity and TC = 1 means absolute similarity.

In Figure 5.9, two different sets were used to evaluate the ability of Synth to synthesize

a single molecule from its components. Specifically, the min info refers to a library of

fragments where the linkers have bonding rules similar to rigids in which a connection may

occur only from points in which there was an original connection. We compare this to

the max info library where linkers are able to connect at any point that a hydrogen could

attach. The min info library reduces the chance (lowers the probability) of synthesizing

ill-structured molecules with short linkers attaching to a large rigids at every atom; for an

92

Figure 5.9: Reconstruction with Min and Max Info Libraries

Figure 5.10: Cumulative Frequency of Time to Reconstruct Molecules

example of this phenomenon see Figure 5.15. Overall, 70% of the original molecules were

recaptured with TC of 1.0, and more than 80% were synthesized to a very high degree of

similarity (TC > 0.8).

Figure 5.10 demonstrates that the majority (90%) of the compounds were rebuilt with

TC greater than 0.9 in less than a minute while half of the molecules took only a fraction

93

Figure 5.11: A Molecule Composed of a Single Rigid Fragment that Fails Reconstruction

Figure 5.12: Original Molecule
Figure 5.13: False-Negative Corresponding
to Figure 5.12

of a second to be reconstructed. In the end, this means that Synth is accurate, efficient,

and can explore deep in the chemical compound search space in a short amount of time.

Failed Reconstruction of Molecules. There are three reasons Synth did not regenerate

every parent molecule from its fragments; we describe each in turn.

The first failed case is attributed to a molecule that is composed of one solid, rigid

fragment. For example, the molecule in Figure 5.11 is composed of a single, rigid fragment

composed of four hexagons. If we reconstruct the molecule in Figure 5.11, no connection

points exist for further bonding. Hence, no further fragments can bond with this fragment

and the result of synthesis would be one molecule, the molecule itself composed of a single

rigid.

The second failure in reconstruction is not attributed to the fragmentation nor synthesis

process, it is a result of using the open-source chemical toolbox, Open Babel [68]. Given

94

Figure 5.14: Original Molecule
Figure 5.15: Corresponding Synthesized
Molecule with Large Probability Space

the molecule in Figure 5.12, we synthesized the corresponding molecule in Figure 5.13

which differs only in the 3-dimensional coordinates of some atoms. This is a case of a

false negative in the Open Babel similarity search. That is, Open Babel does not recognize

the two molecules (Figure 5.12 and Figure 5.13) as perfectly similar (TC = 1.0), rather

Open Babel calculates TC = 0.8 and that is not accurate upon inspection in a visual

environment. Synth successfully synthesized the parent molecule in this case, but the

similarity assessment protocol fails to recognize the equality.

The last synthesis scenario that fails arises when we compare the original molecule in

Figure 5.14 to the synthesized version in Figure 5.15. This situation was described previ-

ously when discussing min / max info libraries. In this case, the molecule in Figure 5.15

contains many short linkers and is saturated with large groups or fragments at every single

atom. Linkers do not function as thus in practice; hence, such molecules are not plausi-

ble due to steric hindrance (large groups prevent reactions we might observe in a related

molecule with smaller groups).

5.6.2 Cross-Validation

We use cross-validation to determine if Synth can synthesize novel molecules, signifi-

cantly different from their original parent molecules. Cross-validation is performed using

a scenario. In this context a scenario involves clusters of active compounds that are parti-

95

C
u
m

u
la

ti
ve

F
ra

ct
io

n
of

A
ct

iv
e

M
ol

ec
u
le

s

Tanimoto Coefficient using OpenBabel

Figure 5.16: Self-Reconstruction of Scenario Target Compounds with TC < 0.5

tioned as follows: one cluster represents the target set of up to 3 active compounds while

the remaining clusters of active compounds are defragmented and passed to Synth. The

goal is verify whether Synth generated the active compounds in the target cluster.

Cross-validation was implemented using a fast search protocol via OpenBabel to col-

lect only those molecules with TC > 0.5 compared to an active compound in the target

cluster. As a second similarity measure, we take the set of ‘similar’ molecules acquired from

OpenBabel and reconstruct the 3D coordinates of the atoms using obgen [80] and invoke

kcombu [53, 54] to compare with the target active compounds.

20,000 scenarios were constructed and executed. In 8,000 of these scenarios, synthesis

resulted in TC ≤ 0.5 of target compounds with OpenBabel in the ‘first’ round. In these

cases we need to verify that the target compounds were significantly different than the

constituent fragments that would be used to construct it; that is, we verify our algorithms

properly synthesize since the information to build these target compounds did not exist

96

C
u
m

u
la

ti
ve

F
ra

ct
io

n
of

A
ct

iv
e

M
ol

ec
u
le

s

Tanimoto Coefficient using kcombu

Figure 5.17: Self-Reconstruction of Scenario Target Compounds with TC > 0.5

in the other clusters used for synthesis. In Figure 5.16, we observe that the target 8,000

molecules were subjected to self-reconstruction (§5.6.1) using Synth: 80% of molecules are

reconstructed with TC > 0.7 on par with our self-reconstruction analyses.

The remaining 12,000 scenarios with TC > 0.5 are represented in Figure 5.17 where

all of the target molecules have somewhat similar molecules constructed by Synth: more

than 50% of the target molecules have a corresponding synthesized molecule with TC > 0.5.

This is significant since the constituent fragments of the target molecules were not available

in the synthesis process, yet similar molecules were constructed.

Last, we compare similarity measures using kcombu and Openbabel in Figure 5.18.

From Figure 5.18 we see that kcombu is more strict in predicting similarity. This is an

important observation as we can say that our approach to select target molecules with

TC > 0.5 using the OpenBabel ‘fast’ search followed by kcombu for refinement does not

97

C
u
m

u
la

ti
ve

F
ra

ct
io

n
of

A
ct

iv
e

M
ol

ec
u
le

s

Tanimoto Coefficient using 3D Coordinates from obgen

Figure 5.18: Comparing Similarity with Scenarios using kcombu and OpenBabel

lose any molecules with TC < 0.5. Specifically, using OpenBabel captures everything with

TC > 0.5 (and more).

5.7 Related Techniques

There are two techniques that are often used in search for developing target proteins:

(1) protein redesign [83] and from-scratch (de novo) protein design.

In protein redesign, some mutation of amino acids occurs while most residues in the

sequence are maintained—the backbone. [31] is a protein redesign suite that improves flex-

ibility of the protein backbone and models proteins and ligands as ensembles of low-energy

structures as the K* algorithm [58]. From there, [31] performs globally optimal protein

design search with respect to an input model. Comparatively, our synthesis technique con-

structs the entire protein search space in the form a library as a de novo protein design

since fragment-based construction is not based on a previous sequence.

98

Synth is one example of de novo protein design. Some of the best-known software im-

plementations for de novo construction using fragment-based assembly techniques include

Fragfold [50], Simfold [38], and Rosetta [25]. Each differ in computational techniques in

energy functions, fragment size, and heuristics. [45] uses Rosetta to investigate the de novo

construction with a focus on fragment length and move size (an insertion-based approach).

Specifically, [45] considers fragment length in the range of 6 to 18. The fragment size in

[45] is extremely coarse compared to our fragmentation techniques. Secondly, our synthe-

sis technique is focused on constructing a library by exploring the entire synthesis space

whereas folding techniques such as [45] use insertion operations to investigate candidate

proteins.

99

Chapter 6
Conclusions and Future Work

We conclude this dissertation with our contributions and suggest avenues of continued

research in synthesis, including a generalization of hypergraphs in the synthesis problem

space.

6.1 Generalizing the Hypergraph Approach

Our hypergraph-based approach can be adapted to work for any domain where the goal

is to derive a new fact (or even compute some desired value) using a series of steps starting

from some set of facts. Using the notion that each step should involve deriving a new

fact using previously known facts is applicable to a variety of non-inductive proof domains

(including geometry, algebra, and logic). We also feel that we might be able to generalize

our approach to some domains in physics including mechanics and electrical circuits where

the solution is again a sequence of steps in many cases. In contrast, our approach will

not work for domains where the solution is not a sequence of steps such as construction

problems (including algorithms, automata, geometry constructions, etc).

6.2 Conclusions and Future Work in Geometry Problem Synthesis

In Chapter 3 we described and evaluated a semi-automated technique for geometry

proof problem synthesis implemented as GeoTutor. In Chapter 4 we built on GeoTu-

tor and presented algorithms in a tool called GeoShader that efficiently solves a given

shaded area problem, synthesizes such shaded area problems for existing figures as well

as fresh figures. Our work in geometry problem synthesis is a cross-disciplinary approach

that combines ideas from computational geometry, logical reasoning, and search heuristics.

Together, GeoTutor and GeoShader provide a computationally viable foundation for an

intelligent tutoring system for Euclidean Geometry. Generating problems for assignments

or exams is a difficult and tedious process for an educator and the gift of time for a teacher

100

is the most valuable asset to educating all children. Time means more individual attention

for each student so that teachers can do what they do best: teach students.

While not all features of a formal intelligent tutor have been explored in this disserta-

tion, both GeoTutor and GeoShader are the foundation for an intelligent tutoring system

with respect to problem synthesis. Future work will include a formal implementation and

investigation into automated generation of interesting assignments as a component of per-

sonalized workflow, complete exam generation for teachers, an interactive hint system, and

interactive solution verification system for students.

In the future, we plan to deploy our tools in high schools and conduct user studies to

understand its effectiveness in an educational environment by measuring its effectiveness in

improving student learning. Other future work will involve a user study that will examine

the utility of the figure synthesis techniques as well as our definitions of interesting and

complete for both proof problems and shaded area problems.

We also would like to explore natural language generation. Our problem generation tool

generates problems at the level of logical predicates. It would therefore be useful to translate

the logical predicates into an equivalent, but succinct, natural language description in the

form of a word problem.

With our work in geometry problem synthesis, we assumed all figures were embedded

in the Euclidean plane and drawn to scale. Future work may consider figure mutability.

Although most geometry books offer problems with figures that are drawn to scale, in

reality, biology, physics, and mathematics sometimes depict imperfect diagrams and thus

require pre-processing to handle scale. Simply, what you see is not always what you get.

Overcoming mutability of figures is a significant, but important task for synthesis of realistic

problems in any domain.

Last, we may also consider problem and solution synthesis of other mensuration prob-

lems such as area and volume in Calculus by extending our approach to handle functions.

101

6.3 Conclusions and Future Work in Molecular Synthesis

In Chapter 5 we described algorithms to perform synthesis of molecules based on molec-

ular fragments. The synthesis and hypergraph construction algorithms were developed in

tool Synth. We validated Synth by creating the molecular fragments for a set of more than

20000 molecules and then used Synth to regenerate an equivalent, original molecule in less

than one minute for 90% of molecules and one hour for 100% of molecules.

Currently, Synth prunes the infinite search space in a limited manner using Lipinski

compliance, probability pruning, and an upper bound to molecular weight. These pruning

techniques are based mainly on limiting depth in the search space (e.g. we limit the number

of constituent fragments of molecules); however, we currently do not limit the width of

the search space. Future work will introduce template-based techniques for pruning the

width of the search space; i.e. providing the user with a more targeted synthesis using

user-specified parameters specified by the user. For example, we may introduce distance

metrics to construct neighborhoods around target molecules focusing the synthesis by using

proximity techniques. Such heuristics require corresponding features be integrated into

Synth; as complexity increases, a visual interface is required for broad appeal in the biology

and chemistry communities.

102

References

[1] http://www.wolframalpha.com/problem-generator/$#$/, 2014.

[2] http://www.autotutor.org/, 2014.

[3] http://www.opensmiles.org/, 2015.

[4] F. Afrati, C. Papadimitriou, and G. Papageorgiou. The synthesis of communication

protocols. Algorithmica, 3:451–472, 1988.

[5] U. Z. Ahmed, S. Gulwani, and A. Karkare. Automatically generating problems and

solutions for natural deduction. In IJCAI 2013, Proceedings of the 23rd International

Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, 2013.

[6] I. Akritopoulou-Zanze and P. Hajduk. Kinase-targeted libraries: the design and syn-

thesis of novel, potent, and selective kinase inhibitors. Drug Discov Today, 14(5-

6):291–7, 2009.

[7] C. Alvin, S. Gulwani, R. Majumdar, and S. Mukhopadhyay. Synthesis of geometry

proof problems. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial

Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 245–252, 2014.

[8] C. Alvin, S. Gulwani, R. Majumdar, and S. Mukhopadhyay. Synthesis of solutions for

shaded area geometry problems. In Submitted to IJCAI, 2015.

[9] H. and et al. The design and application of target-focused compound libraries. Comb

Chem High Throughput Screen, 14(6):521–31, 2011.

[10] E. Andersen, S. Gulwani, and Z. Popovic. A trace-based framework for analyzing and

synthesizing educational progressions. In 2013 ACM SIGCHI Conference on Human

Factors in Computing Systems, CHI ’13, Paris, France, April 27 - May 2, 2013, pages

773–782, 2013.

103

http://www.wolframalpha.com/problem-generator/$#$/
http://www.autotutor.org/
http://www.opensmiles.org/

[11] A. andet al. Similarity based virtual screening: a tool for targeted library design. J

Med Chem, 49(7):2353–6, 2006.

[12] G. Bemis and M. Murcko. The properties of known drugs. 1. molecular frameworks.

J Med Chem, 39(15):2887–93, 1996.

[13] C. Berge. Graphs and hypergraphs, volume 45. North-Holland Mathematical Library;

ELSEVIER SCIENCE PUBLISHERS B.V., 1989.

[14] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM, 13(7):422–426, 1970.

[15] Boucher, H.W. and et al. Bad bugs, no drugs: no eskape! an update from the infectious

diseases society of america. Clin Infect Dis,, 48(1):1–12., 2009.

[16] Boyd, Cindy J. and et al. Geometry (NJ Edition). Glencoe / McGraw-Hill, New York,

NY, 2006.

[17] M. Brylinski and G. Waldrop. Computational redesign of bacterial biotin carboxylase

inhibitors using structure-based virtual screening of combinatorial libraries. Molecules,

19(4):4021–45, 2014.

[18] J. Campbell and J. J.E. Cronan. Bacterial fatty acid biosynthesis: targets for antibac-

terial drug discovery. Annu Rev Microbiol, 55:305–32, 2001.

[19] H. Carlson. Protein flexibility and drug design: how to hit a moving target. Curr

Opin Chem Biol, 6(4):447–52, 2002.

[20] C. Cavasotto and A. Orry. Ligand docking and structure-based virtual screening in

drug discovery. Curr Top Med Chem, 7(10):1006–14, 2007.

[21] CBSE, India, 2012. http://cbse.nic.in/.

104

[22] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, Inc., Orlando, FL, USA, 1st edition, 1997.

[23] T. Chew. Singapore Math Challenge (Grade 5+). Frank Schaffer Publications, 2008.

[24] S.-C. Chou, X. shan Gao, and J.-Z. Zhang. Machine proofs in geometry—Automated

production of readable proofs for geometry theorems. World Scientific, 1994.

[25] R. Consortium. The rosetta software — rosettacommons, 2015.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms

(3. ed.). MIT Press, 2009.

[27] H. Coxeter. Introduction to Geometry. John Wiley, 1969.

[28] D.A. Gschwend, A.C. Good, and I.D. Kuntz. Molecular docking towards drug discov-

ery. J Mol Recognit, 9(2):175–86, 1996.

[29] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag, Berlin Heidelberg, third edition, 2008.

[30] C. Dobson. Chemical space and biology. Nature, 432(7019):824–8, 2004.

[31] B. Donald. Donald lab at duke university, 2015.

[32] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability

of propositional horn formulae. J. Log. Program., 1(3):267–284, 1984.

[33] Dude.docking.org. Dud-e: A database of useful (docking) decoys enhanced, 2015.

[34] D. Eberly. The minimal cycle basis for a planar graph, 2015.

[35] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

105

[36] A. P. Estrada, E. and R. Garcia-Domenech. Designing sedative/hypnotic compounds

from a novel substructural graph-theoretical approach. J Comput Aided Mol Des.,

12(6):583–95, 1998.

[37] C. for Disease Control, 2015.

[38] Y. Fujitsuka, G. Chikenji, and S. Takada. Simfold energy function for de novo protein

structure prediction: Consensus with rosetta. Proteins: Structure, Function, and

Bioinformatics, 62(2):381–398, 2006.

[39] X.-S. Gao and Q. Lin. Mmp/geometer a software package for automated geometric

reasoning. Automated Deduction in Geometry, 2004.

[40] M. Ghallab, D. S. Nau, and P. Traverso. Automated planning - theory and practice.

Elsevier, 2004.

[41] A. Gorse. Diversity in medicinal chemistry space. Curr Top Med Chem, 6(1):3–18,

2006.

[42] Gozalbes, R. and et al. Development and experimental validation of a docking strategy

for the generation of kinase-targeted libraries. J Med Chem, 51(11):3124–32, 2008.

[43] Gramatica, R. and et al. Graph theory enables drug repurposing–how a mathematical

model can drive the discovery of hidden mechanisms of action. PLoS One, 9(1):e84912,

2014.

[44] S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry constructions.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages

50–61, 2011.

[45] J. Handl, J. Knowles, R. Vernon, D. Baker, and S. C. Lovell. The dual role of fragments

106

in fragment-assembly methods for de novo protein structure prediction. Proteins:

Structure, Function, and Bioinformatics, 80(2):490–504, 2012.

[46] S. W. Heath, R.J. and C. Rock. Lipid biosynthesis as a target for antibacterial agents.

Prog Lipid Res,, 40(6):467–97, 2001.

[47] Holt, Rinehart, and Winston. Holt Geometry: Homework and Practice Workbook.

Holt, Rinehart, and Winston, Orlando, FL, 2007.

[48] J. Irwin and B. Shoichet. Zinc–a free database of commercially available compounds

for virtual screening. J Chem Inf Model, 45(1):177–82, 2005.

[49] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. Solving geometry problems us-

ing a combination of symbolic and numerical reasoning. In Logic for Programming,

Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stel-

lenbosch, South Africa, December 14-19, 2013. Proceedings, pages 457–472, 2013.

[50] D. T. Jones. Predicting novel protein folds by using fragfold. Proteins: Structure,

Function, and Bioinformatics, 45(S5):127–132, 2001.

[51] R. Jurgensen, R. Brown, and J. Jurgensen. Geometry. Houghton Mifflin Company,

Boston, MA, 1988.

[52] D. Kapur. Using gröbner bases to reason about geometry problems. J. Symb. Comput.,

2(4):399–408, 1986.

[53] T. Kawabata. Build-up algorithm for atomic correspondence between chemical struc-

tures. Journal of Chemical Information and Modeling, 51(8):1775–1787, 2011.

[54] T. Kawabata and H. Nakamura. 3d flexible alignment using 2d maximum common

substructure: Dependence of prediction accuracy on target-reference chemical similar-

ity. Journal of Chemical Information and Modeling, 54(7):1850–1863, 2014.

107

[55] Kitchen, D.B. and et al. Docking and scoring in virtual screening for drug discovery:

methods and applications. Nat Rev Drug Discov., 3(1):935–49, 2004.

[56] R. Larson, L. Boswell, T. Kanold, and L. Stiff. Geometry. McDougal Littel, Evanston,

IL, 2007.

[57] A. Lavecchia and C. D. Giovanni. Virtual screening strategies in drug discovery: a

critical review. Curr Med Chem, 20(23):2839–60, 2013.

[58] R. H. Lilien, B. W. Stevens, A. C. Anderson, and B. R. Donald. A novel ensemble-

based scoring and search algorithm for protein redesign, and its application to modify

the substrate specificity of the gramicidin synthetase a phenylalanine adenylation en-

zyme. In Proceedings of the Eighth Annual International Conference on Computational

Molecular Biology, 2004, San Diego, California, USA, March 27-31, 2004, pages 46–

57, 2004.

[59] Lowrie, J.F. and et al. The different strategies for designing gpcr and kinase targeted

libraries. Comb Chem High Throughput Screen, 7(5):495–510, 2004.

[60] I. C. Maly, D.J. and J. Ellman. Combinatorial target-guided ligand assembly: iden-

tification of potent subtype-selective c-src inhibitors. Proc Natl Acad Sci U S A,

97(6):2419–24, 2000.

[61] Massachusetts DOE, 2014.

[62] Mathworld.wolfram.com. Jordan curve – from wolfram mathworld, 2015.

[63] T. Matsuzaki, H. Iwane, H. Anai, and N. H. Arai. The most uncreative examinee: A

first step toward wide coverage natural language math problem solving. In Proceedings

of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,

Québec City, Québec, Canada., pages 1098–1104, 2014.

[64] Larson et. al. Geometry: Practice Workbook. McDougall Littell, Evanston, IL, 2007.

108

[65] Miller, J.R. and et. al. A class of selective antibacterials derived from a protein kinase

inhibitor pharmacophore. Proc Natl Acad Sci U S A, 106(6):1737–42., 2009.

[66] Mochalkin, I. and et al. Discovery of antibacterial biotin carboxylase inhibitors by

virtual screening and fragment-based approaches. ACS Chem Biol, 4(6):473–83, 2009.

[67] T. N. Nikolsky, Y. and A. Bugrim. Biological networks and analysis of experimental

data in drug discovery. . Drug Discov Today, 10(9):653–62, 2005.

[68] Noel M O’Boyle and et. al. Open babel: An open chemical toolbox. Journal of

Cheminformatics, 3(33), 2011.

[69] NY State Education Dept., 2014. http://www.nysedregents.org/regents$_$math.

html.

[70] R. A. Orry, A.J. and C. Cavasotto. Structure-based development of target-specific

compound libraries. Drug Discov Today, 11(5-6):261–6, 2006.

[71] R. O’Shea and H. Moser. Physicochemical properties of antibacterial compounds:

implications for drug discovery. J Med Chem, 51(10):2871–8, 2008.

[72] A. Peleg and D. Hooper. Hospital-acquired infections due to gram-negative bacteria.

N Engl J Med., 362(19):1804–13., 2010.

[73] S. Renner and G. Schneider. Scaffold-hopping potential of ligand-based similarity

concepts. ChemMedChem, 1(2):181–5, 2006.

[74] M. J. Seo, H. Hajishirzi, A. Farhadi, and O. Etzioni. Diagram understanding in ge-

ometry questions. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial

Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 2831–2838, 2014.

[75] P. Sinclair and G. Dikshit. Mathematics Textbook for Class IX. New Delhi, 2006.

http://www.ncert.nic.in/ncerts/textbook/textbook.htm?iemh1=0-15.

109

http://www.nysedregents.org/regents$_$math.html
http://www.nysedregents.org/regents$_$math.html
http://www.ncert.nic.in/ncerts/textbook/textbook.htm?iemh1=0-15

[76] P. Sinclair and G. Dikshit. Mathematics Textbook for Class X. New Delhi, 2006.

http://www.ncert.nic.in/ncerts/textbook/textbook.htm?jemh1=0-14.

[77] R. Singh, S. Gulwani, and S. K. Rajamani. Automatically generating algebra problems.

In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July

22-26, 2012, Toronto, Ontario, Canada., 2012.

[78] C. T.A. Synthesis of self-timed VLSI circuits from graph-theoretic specifications. PhD

thesis, MIT, 1987.

[79] G. Taubes. The bacteria fight back. Science, 321(5887):356–61., 2008.

[80] T. Vandermeersch, 2015. http://openbabel.org/wiki/Obgen.

[81] R. E. Villoutreix, B.O. and M. Miteva. Structure-based virtual ligand screening: recent

success stories. Comb Chem High Throughput Screen, 12(10):1000–16, 2009.

[82] W. Wen-Tsün. Basic principles of mechanical theorem proving in elementary geome-

tries. J. Autom. Reasoning, 2(3):221–252, 1986.

[83] Wikipedia. Protein design, 2015.

[84] L. R. o. F. Wikipedia, 2015. http://en.wikipedia.org/wiki/Lipinski%27s_rule_

of_five.

[85] T. S. Wikipedia and Distance, 2015. http://en.wikipedia.org/wiki/Jaccard_

index#Tanimoto_similarity_and_distance.

[86] U. C. Wikipedia, 2014. http://en.wikipedia.org/wiki/Unit_circle.

[87] S. Wilson and J. D. Fleuriot. Combining dynamic geometry, automated geometry the-

orem proving and diagrammatic proofs. In Workshop on User Interfaces for Theorem

Proving, 2005.

110

http://www.ncert.nic.in/ncerts/textbook/textbook.htm?jemh1=0-14
http://openbabel.org/wiki/Obgen
http://en.wikipedia.org/wiki/Lipinski%27s_rule_of_five
http://en.wikipedia.org/wiki/Lipinski%27s_rule_of_five
http://en.wikipedia.org/wiki/Jaccard_index#Tanimoto_similarity_and_distance
http://en.wikipedia.org/wiki/Jaccard_index#Tanimoto_similarity_and_distance
http://en.wikipedia.org/wiki/Unit_circle

[88] S. W. Zhang, Y.M. and C. Rock. Inhibiting bacterial fatty acid synthesis. J Biol

Chem, 281(26):17541–4, 2006.

111

Vita

Chris Alvin, a native of Madison, Wisconsin, received his bachelor’s degree from Ripon

College in 1999. He continued his study of computer science at the University of Wisconsin

at Madison acquiring a master’s degree in 2001. After two years as an associate software

engineer for a Department of Defense subcontractor in Laurel, Maryland, he switched

careers to teach high school mathematics, statistics, and engineering. Always seeking a

challenge, Chris acquired a master’s degree in Mathematics from Marquette University in

2011 while a full-time teacher and in 2012 decided to commit to a doctoral degree.

112

	Louisiana State University
	LSU Digital Commons
	2015

	Synthesis With Hypergraphs
	Christopher Thomas Alvin
	Recommended Citation

	 ACKNOWLEDGMENTS 12pt
	 ABSTRACT
	Introduction
	Geometry Problem and Solution Synthesis
	Molecular Synthesis

	Hypergraphs
	Graphs
	Synthesis Hypergraph
	Hyperpaths and Hyper-Reachability
	Sub-Hypergraph Selection through Pebbling

	Synthesis of Geometry Proof Problems and Their Solutions
	Introduction
	Informal Theoretical Foundations in Euclidean Geometry
	Formal Theoretical Foundations in Euclidean Geometry
	Geometric Classes
	Theories and Figures
	Synthesis Hypergraphs and Problems

	Algorithm for Problem Generation
	Step 1: Hypergraph Construction
	Step 2: Minimal Assumption Generation
	Step 3: Strictly Interesting Problem Synthesis

	Problem Generation Interface
	Features of a Geometry Problem
	Query Interface to Problem Generation

	Experimental Results
	Benchmark
	Evaluation of Algorithm GenProblem
	Effectiveness of Our Methodology

	Synthesis of Problems and Solutions for Shaded Area Geometry Reasoning
	Introduction
	Preprocessing: Constructing a Figure of Convex Components
	Implicit and Computable Properties of a Figure
	Polygon Identification

	Shaded Area Problem Formalization
	Theoretical Foundations for Shaded Area Geometry Reasoning
	Extending Theories of Figures with Area Computations with a Calculational Logic
	Synthesis Hypergraph and Problems

	Figure Synthesis
	Figure Synthesis with Templates and Snapping
	Constraint-Based Synthesis of Problem Assumptions From a Figure

	Solving Shaded Area Problems
	Atomic Region Identification
	Constructing the Analysis Hypergraph
	Finding a Path in the Hypergraph

	Problem Generation
	Experimental Results
	Related Work in Geometry Problem and Solution Synthesis
	Automated Tutoring Systems
	Technology for Geometry Education in Proof Synthesis
	Technology for Geometry Education in Shaded Area Synthesis
	Automatic Problem Generation

	Molecular Synthesis
	Significance of the Problem
	Molecular Fragments
	Synthesis
	Algorithms
	Molecular Filtration with Bloom Filters

	Molecular Hypergraph
	Definitions
	The Molecular Hypergraph

	On-Demand Molecular Hypergraph Construction and Traversal
	Experimental Results
	Self-Reconstruction
	Cross-Validation

	Related Techniques

	Conclusions and Future Work
	Generalizing the Hypergraph Approach
	Conclusions and Future Work in Geometry Problem Synthesis
	Conclusions and Future Work in Molecular Synthesis

	 REFERENCES
	 VITA

