
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2017

Succinct Data Structures for Parameterized Pattern
Matching and Related Problems
Arnab Ganguly
Louisiana State University and Agricultural and Mechanical College, ju.arnab@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Ganguly, Arnab, "Succinct Data Structures for Parameterized Pattern Matching and Related Problems" (2017). LSU Doctoral
Dissertations. 4370.
https://digitalcommons.lsu.edu/gradschool_dissertations/4370

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/4370?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

SUCCINCT DATA STRUCTURES FOR PARAMETERIZED PATTERN MATCHING
AND RELATED PROBLEMS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Arnab Ganguly

B.E., Jadavpur University, 2009
August 2017

Dedicated to Maa, Baba, and Kaku

ii

Acknowledgments
First, I express my sincere gratitude to Dr. Rahul Shah, my advisor, for inspiration and

continuous support. His brilliant intuition has helped me to solve difficult problems, leading

to important results. His constant urge to look into increasingly more challenging problems

has proved to be the source of improvement in my research aptitude. Without him, this

dissertation would not have been possible.

I thank my co-advisor Dr. Sukhamay Kundu for the guidance during my initial years

in LSU. His insightful questions and meticulous approach to writing has been pivotal in

the successful completion of this dissertation. Needless to say, I owe a lot to him.

I also thank Dr. Jianhua Chen for agreeing to be on my committee and for her careful

reading of this dissertation. A special token of gratitude goes to Sharma Thankachan, a

good friend and a faculty member at the University of Central Florida. Sharma, besides

being a collaborator on numerous papers, has been crucial in developing my interest and

aptitude in the world of pattern matching. Another special mention goes to Dr. Wing-

Kai Hon of National Tsing Hua University, for collaborating with me and for explaining

important concepts using the simplest of forms.

I feel truly blessed to have my parents and uncle for the wonderful people they are. I

thank Sudip, my collaborator, colleague, and friend. I will always cherish the wonderful

weekends, the awesome food, and the vacations that I shared with my friends Ananya,

Arghya, Ishita, Saikat, Satadru, Sayan, Subhajit, and Trina. A special note of gratitude is

reserved for my old friends Anik, Arko, and Vivek for being there through thick-and-thin.

Last but not the least, I would like to thank Sujana for putting up with me. She is clearly

my best discovery at LSU.

iii

Table of Contents
ACKNOWLEDGMENTS . iii

ABSTRACT . vi

CHAPTER
1 INTRODUCTION . 1

1.1 Motivation . 2
1.2 Contribution . 3
1.3 Roadmap. 10

2 PRELIMINARIES . 12
2.1 Linear vs Compact vs Succinct . 12
2.2 Suffix Tree and Suffix Array . 13
2.3 Burrows-Wheeler Transform and FM-Index . 14
2.4 Rank and Select on Bit-Vectors . 16
2.5 Wavelet Tree . 17
2.6 Succinct Trees with Full Functionality. 17
2.7 Succinctly Indexable Dictionaries . 18

3 SUCCINCT INDEX FOR NON-OVERLAPPING PATTERN
MATCHING . 19
3.1 Overview of Techniques . 20
3.2 Definitions . 21
3.3 The Querying Process . 21

4 SUCCINCT INDEX FOR PARAMETERIZED PATTERN MATCHING 26
4.1 Overview of Techniques . 27
4.2 Parameterized Suffix Tree . 29
4.3 Parameterized Burrows-Wheeler Transform. 30
4.4 Parameterized LF Mapping . 33
4.5 Implementing Parameterized LF Mapping . 35
4.6 Finding Suffix Range via Backward Search . 42

5 SUCCINCT INDEX FOR PARAMETERIZED DICTIONARY
MATCHING . 46
5.1 Overview of Techniques . 46
5.2 Idury and Schäffer’s Linear Index . 48
5.3 Representing States Succinctly . 49
5.4 Handling next Transitions Succinctly . 51
5.5 Handling failure and report Transitions Succinctly . 62
5.6 The Final Query Procedure . 63

6 COMPACT INDEX FOR ORDER-PRESERVING PATTERN
MATCHING . 64

iv

6.1 Overview of Techniques . 64
6.2 Order-preserving Indexing . 67
6.3 LF Successor . 69
6.4 Some Useful Definitions . 72
6.5 Successor Pair First Disagree Before their LCP . 74
6.6 Successor Pair First Disagree After their LCP . 75
6.7 Data Structure Toolkit . 82
6.8 Wrapping Up . 84

7 COMPACT INDEX FOR ORDER-PRESERVING DICTIO-
NARY MATCHING . 87
7.1 Overview of Techniques . 87
7.2 Linear Space Index . 89
7.3 Representing States Succinctly . 91
7.4 Handling next Transitions Compactly . 91
7.5 Handling failure and report Transitions Succinctly . 95
7.6 The Final Query Procedure . 95

8 OPEN PROBLEMS . 96
8.1 Compact Construction . 96
8.2 Compressed Indexes for 2D Pattern Matching . 96
8.3 Streaming Algorithms . 97

REFERENCES . 98

VITA . 106

v

Abstract
Let T be a fixed text-string of length n and P be a varying pattern-string of length |P | ≤ n.

Both T and P contain characters from a totally ordered alphabet Σ of size σ ≤ n. Suffix

tree is the ubiquitous data structure for answering a pattern matching query: report all the

positions i in T such that T [i + k − 1] = P [k], 1 ≤ k ≤ |P |. Compressed data structures

support pattern matching queries, using much lesser space than the suffix tree, mainly by

relying on a crucial property of the leaves in the tree. Unfortunately, in many suffix tree

variants (such as parameterized suffix tree, order-preserving suffix tree, and 2-dimensional

suffix tree), this property does not hold. Consequently, compressed representations of these

suffix tree variants have been elusive.

We present the first compressed data structures for two important variants of the

pattern matching problem: (1) Parameterized Matching – report a position i in T if T [i+

k − 1] = f(P [k]), 1 ≤ k ≤ |P |, for a one-to-one function f that renames the characters

in P to the characters in T [i, i + |P | − 1], and (2) Order-preserving Matching – report a

position i in T if T [i+ j − 1] and T [i+ k − 1] have the same relative order as that of P [j]

and P [k], 1 ≤ j < k ≤ |P |. For each of these two problems, the existing suffix tree variant

requires Θ(n log n) bits of space and answers a query in O(|P | log σ + occ) time, where

occ is the number of starting positions where a match exists. We present data structures

that require O(n log σ) bits of space and answer a query in O((|P |+ occ) poly(log n)) time.

As a byproduct, we obtain compressed data structures for a few other variants, as well

as introduce two new techniques (of independent interest) for designing compressed data

structures for pattern matching.

vi

Chapter 1
Introduction
Given a string T (called text) and a string P (called pattern), the pattern matching prob-

lem [Gus97] is to answer the following query: find all starting positions (or simply, occur-

rences) of substrings of T that match exactly with P . Earlier works [BM77, KR87, KJP77]

concentrated on the scenario in which both text and pattern were provided at query time.

Needless to say, in this scenario, the text had to be read entirely to report the occurrences.

In most cases, however, the text is a long fixed string and patterns are much shorter vary-

ing strings. This motivated the development of full-text indexes so as to facilitate pattern

matching efficiently. More specifically, the objective is to pre-process T and build a data

structure (called index), such that given a pattern P , all occurrences of P in T can be

reported without having to read the entire text T . Suffix tree [Ukk95, Wei73] (resp. Suffix

array along with Longest Common Prefix array (LCP array) [MM93]) are the classical full-

text indexes supporting pattern matching in time O(|P |+occ) (resp. O(|P |+log n+occ)1),

where n is the length of T , |P | is the length of P , and occ is the number of occurrences

of P in T . Although fast and arguably simple to implement, the suffix tree/array of the

text T occupies Θ(n) words or equivalently Θ(n log n) bits2 of space. This is linear in the

number of words (and hence called linear-space indexes), but not in number of bits, as

T itself can be stored in ndlog σe bits, where σ is the size of the alphabet Σ from which

characters in T and P are chosen3. Typically n � σ, leading to a complexity gap (when

log σ = o(log n)). In fact, suffix trees are too large for most practical purposes. For exam-

ple, the human genome (where σ = 4) occupies space ≈ 700 MB, whereas the suffix tree of

the genome, even with a space-efficient implementation such as in [Kur99], requires space

≈ 40 GB. Consequently, the main question was: “Can we design an index that occupies

space close to the size of T (i.e., ndlog σe bits), and yet supports pattern matching in time

1 All logarithms are in base 2.
2 We use the standard Word-RAM model with poly-logarithmic word size.
3 Each character in T is from an alphabet of size σ and can be encoded in dlog σe bits.

1

within poly-logarithmic penalty factors of the suffix tree/array?”. Grossi and Vitter [GV00],

and Ferragina and Manzini [FM00] answered this question by presenting succinct/compact

indexes4 named Compressed Suffix Array (CSA) and FM-Index respectively. Subsequently,

the field of compressed text indexing5 was established. We refer the reader to [NM07] for

a comprehensive survey on compressed text indexing.

1.1 Motivation

Pattern matching, in its traditional definition, is often not sufficient to capture many real-

world applications. This led to the formulation of many variants, such as

1. document indexing [Nav13], where we are given a collection of texts (called docu-

ments) and the objective is to report the (top-k) documents that contain the pattern,

2. parameterized pattern matching [Bak93], where two strings are a match if one can be

transformed to the other by using a one-to-one function that renames the characters

in the former string to those in the latter, and

3. order-isomorphic pattern matching [KEF+14], where two strings are a match if the

relative order of the characters at any two positions is the same for both the strings.

Following the discovery of the CSA and the FM-Index, the main challenge was to design

compressed indexes for other pattern matching variants (such as the ones listed above). On

a broad scale, these variants can be categorized based on two types of applications – Type

1 and Type 2. In Type 1 applications (such as document indexing), the underlying key

component of the index is often the suffix tree, which is typically augmented with additional

information to cater to the specific application. This allows the use of CSA and FM-Index to

design space-efficient indexes for these problems, which has led to rich developments [BN14,

Fis10, GST15, HPST13, MNN+14, Nav13, NM07, NT13, OGK10, RNO11]. The idea is to

4 Indexes that occupy space very close to the text itself are called succinct, whereas indexes that occupy
space within some constant multiplicative factor are called compact – a formal definition is in Section 2.1.
Often with such indexes, the query time must be within poly-logarithmic factors of the linear space index.

5 Collectively, we call succinct and compact indexes as space-efficient or compressed indexes.

2

first replace the suffix tree by a compressed text-index (such as FM Index or CSA), and

then to represent the augmenting information in minimal space. On the other hand, Type

2 applications require one to develop variants of the suffix tree. Designing space-efficient

data structures for such applications has remained elusive throughout the development of

compressed text indexes, primarily because these suffix tree variants do not possess some

properties of the classical suffix tree that are crucial for compression. Hence, CSA and

FM-Index no longer apply.

The motivation behind this dissertation is to design compressed indexes for a large

collection of important Type 2 variants of the pattern matching problem, which are not

only theoretically intriguing, but also have many practical consequences.

1.2 Contribution

We achieve positive breakthroughs on the following important Type 2 problems – Parame-

terized Pattern/Dictionary Matching [Bak93, IS94], and Order-preserving Pattern/Dictionary

Matching [CIK+13, KEF+14]. In most cases, other than a box-full of new ideas, we em-

ploy fairly complex succinct data structure tricks. Therefore, to aid the reader’s intuition

in pattern matching terminologies and (succinct) data structures, we start with a much

simpler Type 1 problem, known as Non-overlapping Pattern Matching [CP09]. For each

problem, the space-time complexities of our data structure versus the existing ones are sum-

marized at the end of this section in Table 1.1. Another (and probably the more) important

contribution lies in the introduction of two new compressed text indexing techniques –

• We heavily use the topology of the suffix tree variants, which is a balanced parenthesis

representation of the tree (for the particular Type 2 application) augmented with

other succinct data structures [NS14]. This technique forms the backbone of our

compressed data structures for all the Type 2 pattern matching problems.

• Efficiently evaluating the lexicographic rank of a suffix (among all the suffixes of T),

given the rank of the immediate next suffix in text-order, has been the single-most

3

important idea behind all the existing compressed text indexes [NM07]. Traditionally,

the approach to this is based on some sort of a reversible transformation of the text,

such as the Burrows-Wheeler Transform (BWT) [BW94]. In the Type 2 pattern

matching variants, typically a suffix (in the context of the suffix tree variant) is some

encoded form of the original suffix [Bak93, CIK+13, Gia93, KEF+14]. In this case, the

following property (unlike normal suffixes) may no longer hold: the (encoding of the)

suffix starting at position t is a suffix of the (encoding of the) suffix starting at position

t − 1. Consequently, a BWT-like approach no longer works (at least obviously) for

the Type-2 variants, necessitating alternate approaches. To this end, we present

a new line of attack, which we call LF Successor. As an example illustrating the

usefulness, we focus on order-preserving matching. Yet the most impressive aspect

of LF successor is that it gives us a generic technique for deriving compressed data

structures for all the Type 2 pattern matching problems discussed in this dissertation.

We believe that these techniques, besides being of independent interest, can be ex-

tended to obtain compressed representations of other suffix tree variants. We now discuss

our contributions to each problem separately.

Type 1 Applications

After the advent of compressed text indexing structures in the form of CSA and FM In-

dex, compressed suffix trees [RNO11, Sad07] replaced the older suffix tree required in these

applications. The focus was now on how to compress the augmenting data in informa-

tional theoretic minimal space. One of the first such work was by Sadakane [Sad02b] who

showed that given a (compressed) suffix array, the Longest Common Prefix (LCP) array

can be maintained in an additional 2n + o(n) bits. Fischer [Fis10] improved to this to

o(n) bits. The Range Minimum Query (RMQ) data structure is an integral component

to many applications related to suffix trees/arrays. Fischer and Heun [FH07] showed how

to maintain an RMQ index in 2n + o(n) bits. In another direction, Sadakane [Sad02a]

4

considered the problem of document retrieval, and presented succinct indexes. Later, other

improvements (see [Nav13] for a survey) culminated in the best-known document listing in-

dexes [NT13, Tsu13]. Other problems such as property matching [HPST13] and matching

statistics [OGK10] also fall under the same theme.

1.2.1 Non-overlapping Pattern Matching

The first problem we study (in Chapter 3) is popularly known as Non-overlapping Pattern

Matching [CP09]. The task is to report a set of the maximum number of non-overlapping

occurrences of P in T – two occurrences are non-overlapping if and only if they are sepa-

rated by at least |P | characters. Reporting such occurrences finds application in fields such

as speech recognition, data compression, etc. For instance, one can compress a text by

replacing each non-overlapping occurrence of P by a single character from a new alphabet,

where each symbol in the new alphabet is the image obtained by applying a hash-function

on P . Linear space (in words) and optimal query time index has been known for quite

a while [CP09]. We show that any text-index (such as the CSA or the FM-Index or the

suffix tree/array) can be used to report non-overlapping occurrences simply by using a dif-

ferent querying algorithm [GST15]. An immediate corollary of our result is a succinct index.

Type 2 Applications

In the remainder of the dissertation (Chapters 4 through 7), we focus on problems catering

to Type 2 applications that demand variants of the classical suffix tree. These variants

may not follow some of the structural properties of the classical suffix tree. One such

structural property, crucial to compressed text indexing, is called suffix link (resp. re-

verse suffix link), which has the following rank-preserving property – two suffixes hav-

ing the same first character (resp. preceding character) x retain their relative lexico-

graphic rank when x is truncated (resp. x is prepended). For numerous suffix tree vari-

ants [Bak93, CIK+13, Gia93, KKP03, Shi00, Shi10], called suffix trees with missing suffix

links [CH03], this rank-preserving property does not hold, primarily because instead of us-

5

ing the suffixes directly, we use some encoded form of them. This brings in new challenges

in how to represent these suffix tree variants space-efficiently (akin to CSA and FM-Index),

and even 15 years after the introduction of the CSA and the FM-Index, there has not been

any significant progress. Also, it has been largely unknown whether succinct/compact data

structures are even possible. We develop compressed indexes for numerous problems of this

category, thereby answering this long-standing question affirmatively.

1.2.2 Parameterized Pattern Matching

We begin in Chapter 4 with the Parameterized Pattern Matching problem [Bak93]. Here,

Σ is partitioned into two disjoint sets: Σs containing static characters (s-characters) and Σp

containing parameterized characters (p-characters). Two equal-length strings S and S ′ are

a parameterized match (p-match) iff S[i] ∈ Σs ⇐⇒ S ′[i] ∈ Σs, S[i] = S ′[i] when S[i] ∈ Σs,

and there exists a one-to-one function f such that S[i] = f(S ′[i]) when S[i], S ′[i] ∈ Σp. We

are interested in the indexing problem: given a fixed text T [1, n], find the starting positions

of all substrings of T that are a p-match with a pattern P .

Baker [Bak93] introduced the parameterized matching concept, with the main motiva-

tion being software plagiarism detection. Additionally, they introduced the Parameterized

Suffix Tree (p-suffix tree) for the indexing problem. The role of the problem and the use-

fulness of p-suffix trees was presented using a program called Dup [Bak95]. Subsequently,

the methodology became an integral part of various tools for software version management

and clone detection, where identifiers and/or literals are renamed. The state-of-the-art

approaches [BYdM+98, KFF06, RD04] to clone detection use a hybrid approach, such as

a combination of parse trees, which converts literals into p-characters, and a p-suffix tree

on top of these p-characters. Unfortunately, as with traditional suffix trees, the space oc-

cupied by p-suffix trees is too large for most practical purposes, bringing in the demand

for space-efficient variants. In fact, one of the available tools (CLICS [CLI]) for detecting

software clones clearly acknowledges that the major space consumption is due to the suffix

tree. Some other tools [HJHC10] are based on the inverted index. Although less space con-

6

suming, no theoretical guarantees are possible on query-times in these tools. Since p-suffix

trees accommodate substring match, they can also be used in recognizing smaller code

fragment clones. Following are a few other works that have used p-suffix trees: finding rel-

evant information based on regular expressions in sequence databases [dMRS05, dMRS07],

detecting cloned web pages [DLDPFG01], detecting similarities in JAVA sources from byte-

codes [BM98], etc. Further generalizations [AAC+03, Shi00] have found applications in

computational biology.

Parameterized matching (p-matching) has seen constant development since its incep-

tion by Baker [Bak93] in 1993. Baker presented a Θ(n log n)-bit index, known as the

Parameterized Suffix Tree, that can find all occ occurrences in O(|P | log σ+ occ) time. The

construction time was O(nσ) in the worst-case, which was later improved to O(n log σ)

by Kosaraju [Kos95]. Later, Cole and Hariharan [CH03] discovered an O(n) time random-

ized construction algorithm. Amir, Farach-Colton, and Muthukrishnan [AFM94] presented

an algorithm for the scenario when both T and P are provided at query time. Shibuya

[Shi00] considered additional requirements for applications in RNA structural matching.

Idury and Schäffer considered the parameterized dictionary matching problem [IS94]. Gan-

guly et al. [GHS+16a, GHS16b] presented compressed indexes for the dictionary problem

and for its dynamic variant. Amir et al. [AAC+03] considered the two-dimensional p-

matching problem. Hazay, Lewenstein, and Sokol introduced approximate version of the

problem [HLS04]. Amir and Navarro [AN09] gave an algorithm for p-matching on non-

linear structures. Jalsenius, Porat and Sach presented a solution for p-matching in the

streaming model [JPS13]. We refer the reader to [Lew15, MP15] for related surveys.

Although there have been attempts at solving p-pattern matching in compressed space,

such as in [BA13, HSSY10], none of these are truly “efficient”, i.e., they do not match the

querying time of the p-suffix tree within poly-logarithmic penalty factors. We present

the first succinct index [GST17] for this problem with provable poly-logarithmic penalty

guarantees. At the core of our index, lies a new Burrows-Wheeler-like transform, which we

7

call the Parameterized Burrows-Wheeler Transform. Our major contribution is the use of

the p-suffix tree topology to obtain the succinct index – a novel approach in compressed text

indexing. This technique proves invaluable in obtaining succinct/compact indexes for all of

the remaining problems in this dissertation. Additionally, we remark that the techniques

can be easily modified to obtain a succinct representation of the structural suffix tree of

Shibuya [Shi00], with similar guarantees.

1.2.3 Parameterized Dictionary Matching

In the parameterized dictionary indexing problem, we are given a collection of (fixed)

patterns {P1, P2, . . . , Pd} of total length n characters. The task is to pre-process them

and create a data structure such that given a text T , we can find all pairs 〈i, j〉, where

Pi is a parameterized match with T [j, j − |Pi| + 1]. Idury and Schäffer [IS94] presented

a Θ(n log n)-bit data structure that offers a query time of O(|T | log σ + occ), where occ

is the number of pairs to be reported. Recently, Ganguly et al. [GHS+16a] presented an

O(n log σ + d log n)-bit index with O(|T |(log σ + logσ n) + occ) query time (see [GHS16b]

for its dynamic version). By employing a reversible transform that closely resembles the

xBWT of Ferragina et al. [FLMM09] and the topology of the automaton of Idury and

Schäffer [IS94], we present a succinct data structure [GST17], which matches the time

complexity of Idury and Schäffer [IS94], but uses much lesser space. This also improves

the result in [GHS+16a], both in time and space.

1.2.4 Order-preserving Pattern Matching

Both CSA [GV05] and FM-Index [FM05] have relied (solely) on some sort of a reversible

transformation of the text (for e.g., the Burrow-Wheeler Transform [BW94]), coupled with

their key components: Ψ function of the CSA (which simulates suffix links) and LF map-

ping of the FM-index (which simulates reverse suffix links). Similar remarks hold for the

succinct index for the parameterized pattern matching problem discussed before [GST17].

Unfortunately, the techniques do not seem to generalize to other variants, such as order-

preserving pattern matching [KEF+14], leading us to the following question. “Can we

8

represent suffix trees with missing suffix links in o(n log n) bits of space and answer queries

in O((|P |+ occ) polylog(n)) time when log σ = o(log n)?”. We make the first progress to-

wards answering this question by presenting compressed data structures for some instances.

Our focus is on order-preserving matching – two strings S and S ′ over an integer al-

phabet are order-preserving iff |S| = |S ′|, and for any two positions i, j ∈ [1, |S|], the

relative order of S[i] and S[j] is the same as that of S ′[i] and S ′[j]. Although recently in-

troduced, the problem (and its variants) has received significant attention [CGT15, CT14,

CNPS15, CIK+13, GM16, GHS+16a, GU16, HKC+15, KEF+14], not only due to its sim-

plistic formulation, but also due to applications in music analysis and analyzing stock

prices, where the relative ordering of characters has to be matched. However, limited

progress has been made towards a space-efficient data structure for the indexing problem:

given a text T [1, n] over an integer alphabet Σ = {1, 2, . . . , σ}, find the occurrences of all

substrings of T that are order-preserving with a pattern P . The existing Θ(n log n)-bit

index [CIK+13], called the order-preserving suffix tree, can report all the occ occurrences

in time O(|P | log σ + occ). The only known data structure for this problem that occupies

o(n log n) bits (when log σ = o(log n)) is by Gagie and Manzini [GM16]. However, it can

only answer queries when |P | = O(polylog n). Moreover, it can only detect whether there

is an occurrence or not, and returns an arbitrary occurrence if there is one. The space

and time complexities are O(n log log n) bits (in addition to the space for storing T) and

O(|P | log4 n). We present the first compact data structure for the problem.

As opposed to the traditional reliance on reversible transforms, we employ a new line

of attack for implementing LF mapping. We call this LF Successor. Once LF successor

is implemented, standard techniques lead to LF mapping and the compact index. We

believe that our data structure for implementing LF successor is simple; the difficulty

lies in proving some of the key properties of order-preserving matching. The surprising

aspect of LF successor is its generality. Specifically, LF successor implementation for order-

preserving matching can be easily modified (in fact, simplified) to handle the previously

9

introduced parameterized pattern/dictionary matching problems [Bak93, IS94] and the

structural pattern matching problem [Shi00]. Unfortunately, the results are asymptotically

inferior to those attained via the reversible transform based techniques. Nevertheless,

we hope that our techniques can be generalized and/or improved to obtain compressed

representations of other suffix trees with missing suffix links, and the space can be improved

to attain the holy-grail of succinct indexes.

1.2.5 Order-preserving Dictionary Matching

In the order-preserving dictionary indexing problem [KEF+14], we are given a collection

of (fixed) patterns {P1, P2, . . . , Pd} of total length n characters. The task is to pre-process

them and create a data structure such that given a text T , we can find all pairs 〈i, j〉, where

Pi is an order-preserving match with T [j, j − |Pi| + 1]. Kim et al. [KEF+14] presented a

Θ(n log n)-bit data structure that offers a query time of O(|T | log σ+ occ), where occ is the

number of such pairs. Ganguly et al. [GHS+16a] presented an O(n log σ+d log n)-bit index

with O(|T | log n + occ) query time, which is based on a sparisification technique of Hon

et al. [HLS+08]. By slightly modifying the LF-successor approach for the order-preserving

pattern matching problem, we design a compact index for this problem and improve the

above results in terms of space occupied.

1.3 Roadmap

The rest of the dissertation is organized as follows. In Chapter 2, we revisit some standard

pattern matching terminologies and data structures. Chapter 3 focuses on non-overlapping

pattern matching. Chapter 4 introduces the parameterized pattern matching problem and

our succinct index for this problem. Chapter 5 discusses our succinct index for the param-

eterized dictionary matching problem. Chapter 6 presents our compact index for order-

preserving pattern matching. Chapter 7 discusses the compact index for order-preserving

dictionary matching. We conclude by presenting some open problems in Chapter 8.

10

11

Table 1.1: Our Contribution

Problem Previous Result Our Result

Non-overlapping

Pattern Matching

Time:

Space:

O(|P |+ occ)

Θ(n log n) bits

Time:

Space:

O(|P |+ occ · log1+ε n), ε ∈ (0, 1]

n log σ + o(n log σ) bits

Parameterized

Pattern Matching

Time:

Space:

O(|P | log σ + occ)

Θ(n log n) bits

Time:

Space:

O(|P | log σ + occ · log σ log n)

n log σ +O(n) bits

Parameterized

Dictionary Matching

Time:

Space:

O(|T | log σ + occ)

Θ(n log n) bits

Time:

Space:

O(|T | log σ + occ)

n log σ +O(n+ d log n
d
) bits

Order-preserving

Pattern Matching

Time:

Space:

O(|P | log σ + occ)

Θ(n log n) bits

Time:

Space:

O(|P | log σ log log n+ (log log n+ occ) log n logσ n)

O(n log σ) bits

Order-preserving

Dictionary Matching

Time:

Space:

O(|T | log σ + occ)

Θ(n log n) bits

Time:

Space:

O(|T | log n+ occ)

O(n log σ + d log n
d
) bits

Chapter 2
Preliminaries
We refer the reader to [Gus97] for standard definitions and terminologies. We employ the

standard Word-RAM model of computation with poly-logarithmic word size and unit cost

for simple CPU operations and memory access. Let T be a string (called text) having n

characters and P be a string (called pattern) having |P | characters. The characters in T

and P are chosen from a totally ordered alphabet Σ having σ characters. Thus, the space

occupied by the text is ndlog σe bits. We assume, without loss of generality, that σ ≤ n.

Also, assume that T terminates in a unique special character $. Let T [i, j] be the substring

of T from i to j (both inclusive) and T [i] be the ith character of T . Further, Ti is the circular

suffix that starts at i. Specifically, Ti = T if i = 1; otherwise, Ti = T [i, n] ◦ T [1, i − 1],

where ◦ denotes concatenation. Lastly, ε is an arbitrarily small positive constant.

The pattern matching problem asks to answer the following query: report the starting

positions (occurrences) i of all substrings of T such that T [i+ k − 1] = P [k], 1 ≤ k ≤ |P |.

In the indexing problem, the text T is fixed, and the objective is to pre-process it and then

create a data structure, such that we can answer the above query without having to read T

entirely. We now present some useful definitions and discuss some key data structures that

are pivotal in (compressed) text indexing. For dictionary matching, we leave the burden of

definitions to the respective chapters.

2.1 Linear vs Compact vs Succinct

An index of T is a data structure that allows efficient pattern matching queries on T . Here,

efficient means that the time to report all occ occurrences is O((|P |+ occ) polylog(n)). An

index is linear if it occupies Θ(n log n) bits (or equivalently, Θ(n) words), compact if it

occupies Θ(n log σ) bits, and succinct if it occupies n log σ + o(n log σ) +O(n) bits1.

1 We deviate, albeit very slightly, from the original definition of a succinct index in which the space is
n log σ+ o(n log σ) bits. If we wish to stick to the standard definition, for parameterized pattern matching,
assume σ = ω(1). Consequently, the aberration does not violate the original definition as n = o(n log σ).
In the case of a constant σ, we first create all possible copies of P , where each copy is obtained by replacing

12

2.2 Suffix Tree and Suffix Array

A suffix tree, denoted by ST, is a compact trie that stores all the (non-empty) suffixes of T .

Leaves in the suffix tree are numbered in the lexicographic order of the suffix they represent,

and each edge in ST is labeled by a substring of T . For any node u in the suffix tree, the

first character on each edge from u to its child (if any) is unique. Let path(u) be the string

formed by concatenating the edge labels from the root to u; let strDepth(u) = |path(u)|.

The locus of a pattern P , denoted by locus(P), is the highest node u such that P is a prefix

of path(u). The suffix range of P is denoted by [sp, ep], where sp (resp. ep) is the leftmost

(resp. rightmost) leaf in the subtree of ST rooted at the locus of P . (See Figure 2.1 for an

illustration.) Usually, each node is equipped with perfect hashing [FKS84] such that given

a character x, we can find the outgoing edge whose label begins with x in O(1) time. Then,

the locus node (or equivalently, the suffix range) of a pattern P is computed in time O(|P |).

Without hashing, the suffix range can be computed in time O(|P | log σ) via a binary search

on the first character of the outgoing edges (recall that leaves are arranged in lexicographic

order of the suffixes; hence edges are also arranged in lexicographic order).

The suffix array, denoted by SA, is an array of length n that maintains the lexicographic

arrangement of all the suffixes of T . More specifically, if the ith smallest suffix of T starts

at j, then SA[i] = j and SA−1[j] = i. The former is referred to as the suffix array value and

the latter as the inverse suffix array value. (See Table 2.1 for an illustration.) The suffix

value SA[·] and the inverse suffix value SA−1[·] can be found in constant time.

Thus, given the suffix tree and suffix array combination, we can find all occ occurrences

of a pattern P in O(|P |+ occ) time – first find the suffix range [sp, ep] of P using the suffix

tree, and then decode SA[i] for every i ∈ [sp, ep] to report the occurrences. The suffix tree

the symbols in P with a subset of the symbols in Σ in a one-to-one fashion. Now, for each copy issue an
exact pattern matching query on any traditional compressed index [NM07], and get the answers. Since
the copies are basically all possible parameterized matches of P to strings over Σ, we will get the desired
occurrences. Note that the number of copies is at most σ!. Hence, the query time is affected by a σ!
multiplicative factor, which is still a constant, resulting in succinct indexes with slightly different time
complexities (as compared to our results for these problems). Hence, we stick to the modified definition
and exclude ourselves from dealing with this rather “boring” case. For order-isomorphic matching, we
present a compact index; therefore, the succinct definition is irrelevant.

13

$ a na

1

na$ $ na$

$ na$

banana$

2

3 4

5

6 7v

Figure 2.1: Suffix Tree for text banana$. We assume $ ≺ a ≺ b ≺ n, where ≺ denotes
the total lexicographic order on the alphabet set {$, a, b, n}. Here, locus(an) = v and
path(v) = ana. Suffix range of an is [3, 4].

contains n leaves (one per each suffix) and at most (n− 1) internal nodes. The suffix array

is a permutation on n. Therefore, the space required by these data structures is Θ(n log n)

bits, or equivalently Θ(n) words.

2.3 Burrows-Wheeler Transform and FM-Index

Compressed Suffix Arrays/FM Index reduce the space occupancy of suffix trees/arrays from

Θ(n log n) bits to O(n log σ) bits (or close to the size of the text) with a slowdown in query

time. Using these data structures, for any pattern P , we can find all occ occurrences in

time O((|P | + occ) logc n) for some constant c > 0. We present a brief outline of the FM

Index (see [FM05] for more details).

Burrows and Wheeler [BW94] introduced a reversible transformation of the text, known

as the Burrows-Wheeler Transform (BWT). Recall that Tx is the circular suffix starting at

position x. Then, BWT of T is obtained as follows: first create a conceptual matrix M ,

such that each row of M corresponds to a unique circular suffix, and then lexicographically

sort all rows. Thus the ith row in M is given by TSA[i]. The BWT of the text T is the

last column L of M , i.e., BWT[i] = TSA[i][n]. (See Table 2.1 for an illustration.) Note that

BWT is essentially a permutation of T .

14

Table 2.1: Here the text is T [1, 7] = banana$, where Σ = {a, b, n}. The total lexicographic
order on Σ is $ ≺ a ≺ b ≺ n.

i Ti TSA[i] (Matrix M) SA[i] SA−1[i] BWT[i] = T [SA[i]− 1] LF(i)

1 banana$ $banana 7 5 a 2

2 anana$b a$banan 6 4 n 6

3 nana$ba ana$ban 4 7 n 7

4 ana$ban anana$b 2 3 b 5

5 na$bana banana$ 1 6 $ 1

6 a$banan na$bana 5 2 a 3

7 $banana nana$ba 3 1 a 4

2.3.1 Last-to-First Column Mapping

The underlying principle that enables pattern matching using an FM-Index [FM00] is the

last-to-first column mapping (in short, LF mapping). For any i ∈ [1, n], LF(i) is the row

j in the matrix M where BWT[i] appears as the first character in TSA[j]. Specifically,

LF(i) = SA−1[SA[i] − 1], where SA[0] = SA[n]. Once the BWT is obtained, LF(i) for any

suffix i is computed as:

LF(i) = count(1, n, 1,BWT[i]− 1) + count(1, i,BWT[i],BWT[i])

Here, count(i, j, x, y) counts the number of positions k ∈ [i, j] that satisfy x ≤ BWT[k] ≤

y. By maintaining a Wavelet-Tree [GGV03] over BWT[1, n] in n log σ+o(n) bits, count(i, j, x, y)

is computed in O(log σ) time (see Fact 2.3 for more details). Hence, we can implement LF

mapping in the same space-and-time bounds.

2.3.2 Simulating Suffix Array via LF Mapping

We can decode SA[i] in O(log1+ε n) time by using LF mapping and by maintaining a

sampled-suffix array, which occupies o(n log σ) bits in total. The idea is to explicitly store

SA[i] iff SA[i] ∈ {1, 1 + ∆, 1 + 2∆, . . . }, where ∆ = dlogσ n logε ne. The space needed is

O(n
∆

log n) = o(n log σ) bits. Then, SA[i] can be obtained directly if the value has been

15

Algorithm 1 Backward Search

1: procedure backwardSearch(P [1, p])
2: c← P [p], i← p
3: sp← 1 + count(1, n, 1, c− 1), ep← count(1, n, 1, c)
4: while (sp ≤ ep and i ≥ 2) do
5: c← P [i− 1]
6: sp← 1 + count(1, n, 1, c− 1) + count(1, sp− 1, c, c)
7: ep← count(1, n, 1, c− 1) + count(1, ep, c, c)
8: end while
9: if (sp < ep) then “no match found” else return [sp, ep]

10: end procedure

explicitly stored; otherwise, it can be computed via at most ∆ number of LF mapping

operations in time O(∆ · log σ) = O(log1+ε n).

2.3.3 Backward Search

Ferragina and Manzini [FM00] showed that using LF mapping, the suffix range [sp, ep] of

a pattern P [1, p] can be found by reading P starting from the last character. Specifically,

for i > 1, suppose the suffix range of P [i, p] is known. Then, the suffix range of P [i− 1, p]

can be obtained using LF mapping; see Algorithm 1 for details.

Once the suffix range [sp, ep] of P is known, each i ∈ [sp, ep] corresponds to an occurrence

of P in T . Each occurrence can be reported in time O(log1+ε n) as discussed before.

Therefore, we arrive at the following well-known result.

Fact 2.1 ([FM05, GV05]). By using an n log σ + o(n log σ)-bit index of T , we can find all

occurrences of P in T in O(|P | log σ + occ · log1+ε n) time.

2.4 Rank and Select on Bit-Vectors

Fact 2.2 ([Mun96]). Let B[1,m] be a bit-vector. By maintaining an o(m)-bit data structure,

we can find the answer to the following queries in O(1) time:

(a) rankB(i, x) = the number of occurrences of x in B[1, i].

(b) selectB(k, x) = the minimum position i ∈ [1,m] such that rankB(i, x) = k.

(c) rankB(i, j, x) = the number of occurrences of x in B[i, j].

16

(d) selectB(i, k, x) = the minimum position j in [i,m] such that rankB(i, j, x) = k.

We drop the subscript B when the context is clear.

2.5 Wavelet Tree

Fact 2.3 ([FM05, GGG+07, GGV03, Nav14]). The wavelet tree (WT) data structure gen-

eralizes the rank and select queries over bit-vectors. Specifically, given an array A[1,m]

over an alphabet Σ of size σ, by using a data structure of size m log σ + o(m) bits, the

following queries can be answered in O(1 + log σ
log logm

) time:

(a) A[i].

(b) rankA(i, x) = the number of occurrences of x in A[1, i].

(c) selectA(k, x) = the minimum position i such that rankA(i, x) = k.

(d) countA(i, j, x, y) = the number of positions k ∈ [i, j] such that x ≤ A[k] ≤ y.

Additionally, the following queries can be answered in O(log σ) time:

(a) predecessorA(i,W) = rightmost position j < i such that A[j] ≤ W .

(b) prevValA(L,R) = rightmost position j ∈ [L,R) such that A[j] equals the maximum

value in A[L,R− 1] that is at most A[R].

(c) nextValA(L,R) = rightmost position j ∈ [L,R) such that A[j] equals the minimum

value in A[L,R− 1] that is at least A[R].

We drop the subscript A when the context is clear.

2.6 Succinct Trees with Full Functionality

Fact 2.4 ([NS14]). A tree having m nodes can be represented in 2m+ o(m) bits, such that

if each node is labeled by its pre-order rank, we can compute the following in O(1) time:

(a) pre-order(u)/post-order(u) = pre-order/post-order rank of node u.

(b) parent(u) = the parent of node u.

(c) nodeDepth(u) = the number of edges on the path from the root to u.

17

(d) child(u, q) = the qth leftmost child of node u.

(e) sibRank(u) = number of children of parent(u) to the left of u.

(f) lca(u, v) = the lowest common ancestor (LCA) of two nodes u and v.

(g) lmostLeaf(u)/rmostLeaf(u) = the leftmost/rightmost leaf in the subtree rooted at u.

(h) levelAncestor(u,D) = the ancestor of u such that nodeDepth(u) = D.

(i) the pre-order rank of the ith leftmost leaf

(j) leafNumber(`) = the number of leaves that lie to the left of the leaf `.

2.7 Succinctly Indexable Dictionaries

Fact 2.5 ([RRS07]). A set S of k integer keys from a universe of size U can be stored in

k log(U/k) +O(k) bits of space to support the following two operations in O(1) time:

(a) return the key of rank i in the natural order of integers.

(b) If j ∈ S, return the rank of key j in the natural order of integers, else return −1.

18

Chapter 3
Succinct Index for Non-overlapping
Pattern Matching
We begin by formally defining the Non-overlapping Indexing problem.

Problem 3.1 (Non-overlapping Indexing). Two occurrences of a pattern P in a text T [1, n]

are non-overlapping iff they are separated by at least |P | positions, i.e., for two occurrences

t and t′, |t − t′| ≥ |P |. The task is to index T such that we can efficiently report a set

containing the maximum number of non-overlapping occurrences of P in T .

For example, if T = ababaxyaba and P = aba, then we have to report the position 8

and either 1 or 3 (but not both). We observe that there can be multiple sets of maximum

non-overlapping occurrences. Our objective is to report any one set.

Cohen and Porat [CP09] presented the first optimal time solution to this problem.

Their index, consisting of a suffix tree of T and an additional O(n)-word data structure,

can report all the nocc non-overlapping occurrences in time O(|P |+nocc). However, it was

left unanswered, whether Problem 3.1 can be handled in succinct (or, compact) space, or

not. We answer this affirmatively by showing that the problem can be solved efficiently

using any index of T alone, as summarized in the following theorem.

Theorem 3.1. Let CSA be a full-text index of T . Using CSA, let (i) search(P) = Ω(|P |) be

the time in which we can compute the suffix range of P , and (ii) tSA = Ω(1) be the time in

which we can compute a suffix array or inverse suffix array value. By using CSA alone, we

can find a set containing the maximum number, say nocc, of non-overlapping occurrences

of P in time O(search(P) + nocc · (tSA + log nocc)).

Thus, Problem 3.1 can be solved using any text-index (succinct, compact, or linear

space) for the traditional problem of reporting all occurrences. Furthermore, by avoiding

the use of any additional data structures, we ensure that various space and time trade-offs

19

can be easily obtained. For example, if we use a suffix tree, O(|P | + nocc log nocc) time

can be obtained. This is very similar to the result by Cohen and Porat [CP09], and in

fact, by using some additional O(n log n)-bit data structures (used by Cohen and Porat as

well), the query time can be improved to optimal O(|P | + nocc). On the other hand, an

n log σ+ o(n log σ)-bit and O(|P |+nocc · log1+ε n) time index can be obtained by using the

compressed suffix array of Belazzougui and Navarro [BN14]; note that nocc ≤ n. Recall

that σ is the size of the alphabet and ε > 0 is an arbitrary small constant.

3.1 Overview of Techniques

The non-overlapping occurrences can be found as follows: find all occ occurrences in sorted

order, report the last occurrence, then perform a right to left scan of the occurrences, and

report an occurrence if it is at least |P | characters away from the latest reported occurrence.

Consider the text in Figure 3.1. The occurrences (in sorted order) of the pattern

P = aba are the positions 4, 9, 11, 13, 21, 23. Following the procedure above, we first report

23. Then, skip 21, report 13, skip 11, and report 9. Finally, we report 4 and terminate.

The complexity of this procedure is O(search(P) + occ · tSA + occ · log occ); the first two

factors are for finding all the occurrences and the third one is for sorting the occurrences.

The idea behind reducing the complexity to that claimed in Theorem 3.1 is to consider at

most nocc occurrences (instead of occ occurrences) initially.

We break down the occ occurrences into maximal disjoint chains of occurrences – each

successive occurrence in a chain are regularly separated, say by x < |P | positions, but the

first and last occurrence of two successive chains are separated by at least |P | positions. We

repeat the following steps for each chain. Start from the rightmost occurrence in a chain,

and report it. Use x and |P | to find the closest occurrence which is at least |P | characters

to the left of the latest reported one. Now, we report this previous occurrence and repeat

until the entire chain is consumed.

It is not too hard to see that if we consider O(nocc) chains initially and spend O(tSA)

time in reporting each non-overlapping occurrence in a chain, we are done. This constitutes

20

our strategy – find the chains and then query each chain; Section 3.3 contains the details.

We begin with a few basic ingredients in Section 3.2.

3.2 Definitions

In what follows, we use CSA to denote a full-text index of T (not necessarily a compressed

index). Using CSA, let search(P) = Ω(|P |) be the time in which we can compute the suffix

range of P , and tSA = Ω(1) be the time in which we can compute a suffix array or inverse

suffix array value. We assume that search(P) is proportional to |P |.

Lemma 3.1. Given the suffix range [sp, ep] of pattern P , using CSA, we can verify in time

O(tSA) whether P occurs at a text-position t, or not.

Proof. The lexicographic position ` of the suffix T [t, n] (i.e., SA−1[t]) can be found in O(tSA)

time. The lemma follows by observing that P occurs at t iff sp ≤ ` ≤ ep. �

Definition 3.1 (Period of a Pattern). The period of a pattern P is its shortest non-empty

prefix Q, such that P can be written as the concatenation of several (say α > 0) number of

copies of Q and a (possibly empty) prefix Q′ of Q. Specifically, P = QαQ′.

The period of P can be computed O(|P |) time using the failure function of the KMP

algorithm [Gus97, KJP77].

For example, if P = abcabcab, then Q = abc, α = 2, and Q′ = ab. If P = aaa, then

Q = a, α = 3, and Q′ is empty. If P = abc, then Q = abc, α = 1, and Q′ is empty.

The following is an important observation related to periodicity of strings.

Observation 3.1. Two occurrences of a pattern P = QαQ′ are separated by at least |Q|

characters, i.e., if t is an occurrence, then the closest occurrence can be at t± |Q|.

3.3 The Querying Process

In this section, we present our solution to Problem 3.1. Moving forward, assume that P

has been decomposed as QαQ′, which can be computed in O(|P |) time using the failure

function of the KMP algorithm [Gus97, KJP77]. We also assume that the suffix range of

P has been computed in time search(P) = Ω(|P |). We consider the following two cases.

21

3.3.1 Aperiodic Patterns

If P does not occur in T , Problem 3.1 can be trivially answered using CSA in search(P)

time. Also, observe that P can overlap itself iff there is a proper suffix of P which is

also its (proper) prefix; in this case, Q is a proper prefix of P = QαQ′. If this condition

does not hold (i.e., if Q = P), which can be verified in O(|P |) time using the KMP

algorithm [Gus97, KJP77], then the desired non-overlapping occurrences are simply all the

occurrences of P (i.e., nocc = occ), which can be found in time O(search(P) + nocc · tSA).

Now, we consider the case when α = 1 (i.e., P = QQ′) and Q′ is not empty. In other

words, P has a proper prefix which is also its proper suffix. In this case, note that occ ≤

2nocc. Therefore, we can simply find all occurrences using CSA in O(search(P) + occ · tSA)

time. Then sort the occurrences and use the naive algorithm at the beginning of Section 3.1

to find the a set containing the desired nocc number of non-overlapping occurrences in

O(search(P) + nocc · (tSA + log nocc)) time. Summarizing, we get the following lemma

Lemma 3.2. Given a pattern P , we can check if it has any occurrence in T in O(search(P))

time. If there is no proper suffix of P which is also its proper prefix, then we can find all

the non-overlapping occurrences in O(search(P) + nocc · tSA) time. Lastly, if P = QQ′ and

Q′ is not empty, then we can find all the non-overlapping occurrences in O(search(P) +

nocc · (tSA + log nocc)) time.

3.3.2 Periodic Patterns

In this case, P = QαQ′, where α ≥ 2. We begin with the following definitions.

Definition 3.2 (Critical Occurrence). A position tc in T is called a critical occurrence of

P = QαQ′, where α ≥ 2, iff tc is an occurrence of P but the position tc + |Q| is not.

Definition 3.3 (Range of a Critical Occurrence). Let tc be a critical occurrence of P in

T . Let t′ ≤ tc be the maximal position such that t′, t′ + |Q|, t′ + 2|Q|, . . . , tc are occurrences

of P but the position t′ − |Q| is not. The range of tc is range(tc) = [t′, tc + |P | − 1].

22

For example, let the text T [1, 18] be xyzabcabcabcabxyx$. Then tc = 7 is a critical

occurrence of P = abcabcab, but tc = 4 is not. Also, range(7) = [4, 14].

Following are some crucial observations.

Observation 3.2. Let tc be a critical occurrence of P . Then, tc is the rightmost occurrence

of P in range(tc). Furthermore, the ranges of two critical occurrences are disjoint.

Observation 3.3. A critical occurrence of P in T corresponds to at least one non-overlapping

occurrence, i.e., nocc is at least the number of critical occurrences of P in T .

It follows from Observations 3.2 and 3.3 that to find the desired non-overlapping occur-

rences of P in T , it suffices to find the maximum number of non-overlapping occurrences

of P in the range of every critical occurrence. Clearly the following two components suffice

– (i) an algorithm that finds the maximum number of non-overlapping occurrences of P

in the range of a single critical occurrence, and (ii) an algorithm that can find all critical

occurrences of P . The first component is met by Lemma 3.3 and the second by Lemma 3.4.

Lemma 3.3. Given a pattern P = QαQ′ in the form 〈|Q|, α, |Q′|〉 for some α ≥ 2, and the

suffix range of P , we can find a set of the maximum number of non-overlapping occurrences

of P in range(tc) in time O(nocc′ · tSA), where nocc′ is the size of the set and tc is a critical

occurrence of P .

Proof. The proof is immediate from the following steps. See Figure 3.1 for an illustration.

1. Report tc as a non-overlapping occurrence of P .

2. Let t = tc − α|Q|. If t ≤ 0 or if P does not appear at t (which can be verified in tSA

time using Lemma 3.1), then terminate. Otherwise, t belongs to range(tc). If Q′ is

empty, then let t′ = t− |Q|, else t′ = t.

3. If t′ ≤ 0 or if P does not appear at t′, then terminate. Otherwise t′ belongs to

range(tc), and is the closest occurrence (in range(tc)) to tc such that t′ and tc are at

least |P | characters apart. Report t′ as a non-overlapping occurrence.

23

Figure 3.1: Illustration of Lemma 3.3. Top row shows the text, and bottom row shows
the corresponding text position. Shaded text positions mark the critical occurrences of the
pattern P = aba for which Q = ab and Q′ = a. Shaded text region shows the range of the
critical occurrences tc; t and t′ have the same meaning as in Lemma 3.3.

4. By letting tc = t′, repeat the process starting from Step 2.

Clearly, at the end of the process described above, the desired nocc′ occurrences of P in

range(tc) are reported in O(nocc′ · tSA) time. �

Our next task is to find all critical occurrences of P in T . The following lemma shows

how to achieve this.

Lemma 3.4. Given a pattern P = QαQ′, we can find all critical occurrences of P in T in

time bounded by O(search(P) + nocc · tSA).

Proof. The proof relies on the following observation: a critical occurrence of a pattern P

is the same as the text position of a leaf which belongs to the suffix range of P , but not of

QP . If this is not true, then there is a critical occurrence of P , say at position tc, such that

SA−1[tc] lies in the suffix range of QP = Qα+1Q′. But then there is an occurrence of P at

the position t = tc + |Q|, a contradiction.

Since Q′ is a prefix of Q, note that the suffix range of QP is contained within that of

P ; see Figure 3.2. Therefore, our objective translates to locating the suffix range of P , say

[sp, ep], and of QP , say [sp′, ep′]. This can be achieved in time search(QP), which can be

bounded by O(search(P)). (Recall that search(P) is proportional to |P |.)

For each leaf ` lying in [sp, sp′ − 1]∪ [ep′ + 1, ep], the text position SA[`] is a (distinct)

critical occurrence of P . Thus, the total number of these leaves is same as the number

of critical occurrences of P in T . By Observation 3.3, the number of critical occurrences

is at most the output size nocc. For every leaf `, we can find the corresponding critical

24

locus of P

locus of QP

sp sp′ ep′ ep

Figure 3.2: Illustration of Lemma 3.4. Since, Q′ is a prefix of Q, the locus of P = QαQ′

lies on the path from root to the locus of QP . For each leaf ` in [sp, sp′ − 1]∪ [ep′ + 1, ep],
the text position SA[`] is a critical occurrence of P .

occurrence (i.e., its text position) in time tSA using SA[`]. Therefore, once the suffix ranges

of P and QP are located, all the critical occurrences are found in time O(nocc · tSA). �

From Lemma 3.3, we conclude that given the suffix range of P (which can be found in

search(P) time) and every critical occurrence of P in T , we can find the desired nocc non-

overlapping occurrences of P in time O(search(P) + nocc · tSA). Every critical occurrence

of P can be found using Lemma 3.4 in O(search(P) + nocc · tSA) time. By combining these

lemmas with Lemma 3.2, we obtain Theorem 3.1.

25

Chapter 4
Succinct Index for Parameterized
Pattern Matching
We begin with the definition of the parameterized matching. Here, the alphabet Σ is the

union of two disjoint sets: Σs, the set of σs static characters (s-characters), and Σp, the set

of σp parameterized characters (p-characters). Thus, σ = |Σ| = σs + σp.

Definition 4.1 (Parameterized Matching [Bak93]). Two equal-length strings S and S ′ over

Σ are a parameterized match (p-match) iff

• S[i] ∈ Σs ⇐⇒ S ′[i] ∈ Σs,

• S[i] = S ′[i] when S[i] ∈ Σs, and

• there exists a one-to-one matching-function f that renames the p-characters in S to

the p-characters in S ′, i.e., S ′[i] = f(S[i]) when S[i] ∈ Σp.

For example, let Σs = {A,B,C, $} and Σp = {w, x, y, z}. Then, S = AxByCx p-

matches S ′ = AzBwCz, where the matching function f is: f(x) = z and f(y) = w. Also,

S p-matches S ′ = AyBxCy with f(x) = y and f(y) = x. However, S is not a p-match

with S ′ = AwBxCz as x in S would have to match with both w and z in S ′.

The Parameterized Text Indexing problem is a generalization of the standard text-

indexing problem, with the match between two strings replaced by a p-match. Specifically,

Problem 4.1 (Parameterized Text Indexing [Bak93]). Let T be a text of length n over

Σ = Σs ∪ Σp. We assume that T terminates in an s-character $ which appears only once.

Index T , such that for a pattern P (also over Σ), we can report all the p-occurrences of P ,

i.e., all the starting positions of the substrings of T that are a p-match with P .

For the above problem, Baker [Bak93] presented a linear-space index, known as the

Parameterized Suffix Tree. It occupies Θ(n log n)-bits of space (i.e., Θ(n) words), and can

26

find all the p-occurrences of P in O(|P | log σ + occ) time, where occ is the number of p-

occurrences of P . We present the following new result, which occupies (much) lesser space

for a slightly higher query time.

Theorem 4.1. By using an n log σ + O(n)-bit index of T , the p-occurrences of P can be

found in O(|P | log σ+occ · log n log σ) time, where occ is the number of such p-occurrences.

If we are allowed slightly higher space, then we can obtain the following result as an

immediate consequence of our techniques for proving Theorem 4.1 above.

Theorem 4.2. By using an O(n log σ)-bit index of T , the p-occurrences of P can be found

in O(|P | log σ + occ · log n) time, where occ is the number of such p-occurrences.

4.1 Overview of Techniques

The key idea to obtain the linear-space index of Baker [Bak93] for Problem 4.1 is an

encoding scheme, such that two strings are a p-match iff their encoded strings are a match

in the traditional sense. The encoding scheme was introduced by Baker [Bak93], which led

to the parameterized suffix tree (p-suffix tree) – encode each suffix of T and then create

a compact trie of these encoded suffixes. Reporting the occurrences of a pattern is now

trivial using the encoded P , the p-suffix tree, and the techniques introduced in Section 2.2.

We first find the highest node u in the p-suffix tree such that the string obtained by

concatenating the edge labels from root to u is prefixed by the encoded pattern. Then,

we report the starting positions of the encoded suffixes corresponding to the leaves in the

subtree of u. Although this uses lesser time than Theorem 4.1, the space required by the

p-suffix tree is much higher than the text itself. We present the details in Section 4.2.

At this point, one may be tempted to think that we can apply the techniques of the

FM-Index [FM05] to get a succinct equivalent of the p-suffix tree; see Section 2.3. The

FM-Index (as does the Compressed Suffix Array [GV05]) relies on a crucial property of

suffixes: any two suffixes which have the same preceding character c (in text order) will

retain their relative lexicographic rank when they are prepended by c. Unfortunately, in

27

case of Baker’s encoded suffixes, this property no longer holds. Consequently, FM-Index

and CSA no longer work. The reason why encoded suffixes do not follow this property is

that on prepending the preceding character, the encoding of the original suffix changes.

Fortunately, this change happens at exactly one position. The key idea is to identify this

position of change. However, we cannot explicitly store this position of change as it needs

≈ log n bits per suffix. Instead, we store the number of distinct p-characters upto this

position (from the start of the suffix). This information, which can be stored in ≈ log σ

bits per suffix, forms the backbone of our index. We call it the Parameterized Burrows-

Wheeler Transform (pBWT); the details are in Section 4.3.

The main ingredient after obtaining pBWT is to implement an analogous version of

the LF mapping of the FM-Index (see Section 2.3.1), which we call the Parameterized LF

mapping (pLF mapping); see Section 4.4 for details. Recall that using LF mapping, we can

simulate the suffix array without explicitly storing it; see Section 2.3.2. Similarly, using

pLF mapping, we can simulate the parameterized suffix array, which stores the starting

positions of the lexicographically arranged encoded suffixes; the techniques are standard

and Theorem 4.3 presents a formal description.

Summarizing our discussions this far, we can see that the key is to compute pLF

mapping. To this end, we use the pBWT and the topology of the p-suffix tree; the crucial

insight is provided in Lemma 4.1. Based on this lemma, we implement pLF mapping in

Section 4.5; space and time complexities are described in Theorem 4.4.

The last piece of the puzzle is to compute the suffix range of the encoded pattern (i.e.,

find the range of leaves under the node u defined at the beginning of this section). We

again use pLF mapping, the tree topology, and pBWT to implement an analogous version

of the backward search procedure of the FM Index (see Section 2.3.3). The details of the

backward search procedure for p-matching is in Section 4.6.

28

4.2 Parameterized Suffix Tree

We now present the following encoding scheme introduced by Baker [Bak93].

Definition 4.2 (Baker’s Encoding). We encode any string S over Σ into a string prev(S)

of length |S| as follows:

prev(S)[i] =


S[i] if S[i] is an s-character,

0 else if i is the first occurrence of S[i] in S,

i− j otherwise, where j is the last occurrence of S[i] before i in S.

In other words, prev(S) is obtained by replacing the first occurrence of every p-character

in S by 0 and any other occurrence by the difference in text position from its previous

occurrence. For example, prev(AxByCx) = A0B0C4, where A,B ∈ Σs and x, y ∈ Σp. The

time required to compute prev(S) is O(|S| log σ)1.

Fact 4.1 ([Bak93]). Two strings S and S ′ are a p-match iff prev(S) = prev(S ′). Also S is

a p-match with a prefix of S ′ iff prev(S) is a prefix of prev(S ′).

Note that prev(S) is a string over an alphabet set Σs ∪ {0, 1, . . . , |S| − 1}. Moving

forward, we follow the convention below.

Convention 4.1. The integer characters (corresponding to p-characters) are lexicograph-

ically smaller than s-characters. An integer character i comes before another integer char-

acter j iff i < j. Also, $ is lexicographically larger than all other characters.

Parameterized Suffix Tree (pST) is the compacted trie of all strings in {prev(T [k, n]) |

1 ≤ k ≤ n}. Clearly, pST consists of n leaves and at most n− 1 internal nodes. Each edge

is labeled with a sequence of characters from Σ′ = Σs∪{0, 1, . . . , n− 1}. See Figure 4.1 for

an illustration. We use path(u) to denote the concatenation of edge labels on the path from

1 Maintain a balanced binary search tree T , which is initially empty. Scan S from left to right, and
suppose x ∈ Σp appears in position k. If x /∈ T , then assign prev(S)[k] = 0, and insert x into T . Otherwise,
assign prev(S)[k] = k− k′, where k′ is the value associated with x in T . Associate the value k with x in T .

29

root to node u, and strDepth(u) = |path(u)|. The path of each leaf node corresponds to the

encoding (using Definition 4.2) of a unique suffix of T , and leaves are ordered according to

the lexicographic rank of the corresponding encoded suffixes. We use `i to denote the leaf

corresponding to the ith lexicographically smallest prev-encoded suffix, i.e., the ith leftmost

leaf in pST. Thus, path(`i) = prev(T [pSA[i], n]), where pSA[1, n] is the Parameterized Suffix

Array, which maintains the lexicographic arrangement of all the encoded suffixes of T . In

particular, pSA[i] = j and pSA−1[j] = i iff prev(T [j, n]) is the ith lexicographically smallest

string in {prev(T [k, n]) | 1 ≤ k ≤ n}.

Using pST, searching for all occurrences of P in T is straight-forward as follows. Simply

traverse pST from root by following the edges labels and find the highest node u (called

locus) with its path prefixed by prev(P). Then find the range [sp, ep] (called suffix range)

of leaves in the sub-tree of u and report {pSA[i] | sp ≤ i ≤ ep} as the output.

The space occupied by pST is Θ(n) words (or equivalently, Θ(n log n) bits), and the

query time is O(|P | log σ + occ), assuming perfect hashing [FKS84] at each node.

4.3 Parameterized Burrows-Wheeler Transform

We introduce a reversible transformation similar to that of the Burrows-Wheeler Trans-

form [BW94]. We call this the Parameterized Burrows-Wheeler Transform (p-BWT). To

obtain the p-BWT of T , we first create a conceptual matrix M , where each row corresponds

to a unique circular suffix of T . Then, we sort all the rows lexicographically according to

the prev(·) encoding of the corresponding unique circular suffix and obtain the last column

L of the sorted matrix M . Clearly, the ith row is equal to TpSA[i]. Moving forward, denote

by fi, the first occurrence of L[i] = TpSA[i][n] in TpSA[i]. (Note that fi is defined.)

The p-BWT of T , denoted by pBWT[1, n], is defined as follows:

pBWT[i] =


L[i], if L[i] is an s-character,

number of distinct p-characters in TpSA[i][1, fi], otherwise.

30

31

0 A0 B0C030A3$ C000A3$

11

$

1210

$

0B0C530A3$
A0$

8 9
B0C530A3$

C030A3$ $

4 5 6 7

0

0A3$
A3$ B0C530A3$

1 2 3

Figure 4.1: Parameterized Suffix Tree for text AxyBzCxzwAz$, where Σs = {A,B,C, $} and Σp = {w, x, y, z}. We assume
0 ≺ 1 ≺ · · · ≺ n−1 ≺ A ≺ B ≺ C ≺ $, where ≺ denotes the total lexicographic order on the set {0, 1, 2, . . . , n−1}∪{A,B,C, $}.

32

Table 4.1: Here the text is T [1, 12] = AxyBzCxzwAz$, where Σs = {A,B,C, $} and Σp = {w, x, y, z}

i Ti prev(Ti) prev(TpSA[i]) TpSA[i] pSA[i] L[i] fi pBWT[i] pLF(i)

1 AxyBzCxzwAz$ A00B0C530A3$ 000A3$A70B6C xzwAz$AxyBzC 7 C C 11

2 xyBzCxzwAz$A 00B0C530A3$A 00A3$A00B6C5 zwAz$AxyBzCx 8 x 7 3 1

3 yBzCxzwAz$Ax 0B0C030A3$A7 00B0C530A3$A xyBzCxzwAz$A 2 A A 8

4 BzCxzwAz$Axy B0C030A3$A70 0A0$A00B6C53 wAz$AxyBzCxz 9 z 3 2 2

5 zCxzwAz$AxyB 0C030A3$A70B 0B0C030A3$A7 yBzCxzwAz$Ax 3 x 5 3 3

6 CxzwAz$AxyBz C000A3$A70B6 0C030A3$A70B zCxzwAz$AxyB 5 B B 10

7 xzwAz$AxyBzC 000A3$A70B6C 0$A00B5C530A z$AxyBzCxzwA 11 A A 9

8 zwAz$AxyBzCx 00A3$A00B6C5 A00B0C530A3$ AxyBzCxzwAz$ 1 $ $ 12

9 wAz$AxyBzCxz 0A0$A00B6C53 A0$A00B5C530 Az$AxyBzCxzw 10 w 12 4 4

10 Az$AxyBzCxzw A0$A00B5C530 B0C030A3$A70 BzCxzwAz$Axy 4 y 12 4 5

11 z$AxyBzCxzwA 0$A00B5C530A C000A3$A70B6 CxzwAz$AxyBz 6 z 3 2 6

12 $AxyBzCxzwAz $A00B0C530A3 $A00B0C530A3 $AxyBzCxzwAz 12 z 6 3 7

In other words, when L[i] ∈ Σs, pBWT[i] = T [pSA[i] − 1] (define T [0] = T [n] = $

and T0 = Tn) and when L[i] ∈ Σp, pBWT[i] is the number of 0’s in the fi-long prefix

of prev(TpSA[i]). Thus, pBWT is a sequence of n characters over the alphabet set Σ′′ =

Σs ∪{1, 2, . . . , σp} of size σs +σp = σ. See Table 4.1 for an illustration of pSA and pBWT.

In order to represent pBWT succinctly, we map each s-character in Σ′′ to a unique

integer in [σp + 1, σ]. Specifically, the ith smallest s-character will be denoted by (i+ σp).

Moving forward, pBWT[i] ∈ [1, σp] iff L[i] is a p-character and pBWT[i] ∈ [σp + 1, σ] iff

L[i] is a s-character. We summarize the relation between prev(TpSA[i]) and prev(TpSA[i]−1) in

Observation 4.1.

Observation 4.1. For any 1 ≤ i ≤ n,

prev(TpSA[i]−1) =


pBWT[i] ◦ prev(TpSA[i])[1, n− 1], if pBWT[i] > σp,

0 ◦ prev(TpSA[i])[1, fi − 1] ◦ fi ◦ prev(TpSA[i])[fi + 1, n− 1], otherwise.

4.4 Parameterized LF Mapping

Based on our conceptual matrix M , the parameterized last-to-first column (pLF) mapping

of i is the position at which the character at L[i] lies in the first column of M . Specifically,

pLF(i) = pSA−1[pSA[i]− 1], where pSA−1[0] = pSA−1[n]; see Table 4.1. The significance of

pLF mapping is summarized in the following theorem.

Theorem 4.3. Assume pLF(i) for any i ∈ [1, n] is computed in tpLF time. For any param-

eter ∆, by maintaining an additional O((n/∆) log n)-bit data structure, we can compute

pSA[j] for any j ∈ [1, n] in O(∆ · tpLF) time.

Proof. Define, pLF0(i) = i and pLFk(i) = pLF(pLFk−1(i)) = pSA−1[pSA[i] − k] for any

integer k > 0. We employ perfect hashing [FKS84] to store the 〈j, pSA[j]〉 key-value pairs

for all j such that pSA[j] belongs to {1, 1 + ∆, 1 + 2∆, 1 + 3∆, . . . , n}. Using this, given a

j, one can check if pSA[j] has been stored (and also retrieve the value) in O(1) time. The

total space occupied is O((n/∆) log n) bits. To find pSA[i], repeatedly apply the pLF(·)

33

operation (starting from i) until we obtain a j such that pSA[j] has been explicitly stored.

If the number of pLF(·) operations invoked is k, then j = pLFk(i) = pSA−1[pSA[i] − k],

which gives pSA[i] = pSA[j] + k. Since k ≤ ∆, pSA[i] is computed in O(∆ · tpLF) time. �

To aid the reader’s intuition for computing pLF mapping, we present Lemma 4.1, which

shows how to compare the (new) lexicographic rank of two encoded suffixes when prepended

by their respective previous characters. This key concept is then implemented in Section 4.4

to arrive at Theorem 4.4.

Lemma 4.1. Consider two suffixes i and j corresponding to the leaves `i and `j in pST.

Then, pLF(i) and pLF(j) are related as follows:

(a) If L[i] ∈ Σp and L[j] ∈ Σs, then pLF(i) < pLF(j)

(b) If both L[i], L[j] ∈ Σs, then pLF(i) < pLF(j) iff one of the following holds:

• pBWT[i] < pBWT[j]

• pBWT[i] = pBWT[j] and i < j

(c) Assume both L[i], L[j] ∈ Σp and i < j. Let u be the lowest common ancestor of `i

and `j in pST, and z be the number of 0’s in the string path(u).

(1) If pBWT[i], pBWT[j] ≤ z, then pLF(i) < pLF(j) iff pBWT[i] ≥ pBWT[j]

(2) If pBWT[i] ≤ z < pBWT[j], then pLF(i) > pLF(j)

(3) If pBWT[i] > z ≥ pBWT[j], then pLF(i) < pLF(j)

(4) If pBWT[i], pBWT[j] > z, then pLF(i) > pLF(j) iff all of the following are true:

• pBWT[i] = z + 1,

• the leading character on the u to `i path is 0, and

• the leading character on the u to `j path is not an s-character.

Proof. (a) and (b): Follows immediately from Convention 4.1 and Observation 4.1.

(c) Recall that fi and fj are the first occurrences of the characters L[i] and L[j] in the

circular suffixes TpSA[i] and TpSA[j] respectively. Let d = strDepth(u). Clearly, the conditions

34

in (1)–(4) can be written as: (1) Both fi, fj ≤ d, (2) fi ≤ d and fj > d, (3) fi > d and

fj ≤ d, and (4) Both fi, fj > d. The claims in (1)–(4) also follow from Convention 4.1 and

Observation 4.1. The first three claims are trivial. To prove (4), observe that the suffixes

i and j swap order iff fi = d + 1, and the leading character on the u to `j path is not an

s-character. �

Theorem 4.4. We can compute pLF(i) in O(log σ) time by using an n log σ + O(n)-bit

data structure.

4.5 Implementing Parameterized LF Mapping

In this section, we prove Theorem 4.4. We begin with the following key components of the

data structure.

• Wavelet Tree over pBWT: The pBWT is an array of length n over the alpha-

bet {1, 2, . . . , σp, σp + 1, . . . , σ}; recall that the highest σs numbers in this alphabet

correspond to the s-characters, and the ith highest s-character is given by σp + i.

We maintain the Wavelet-Tree of Fact 2.3 in n log σ + o(n) bits to support the listed

operations for the pBWT.

• Succinct Representation of pST: We maintain the data structure of Fact 2.4 in

total 4n+ o(n) bits to support the listed operations for the parameterized suffix tree.

4.5.1 ZeroDepth and ZeroNode

For a node u, zeroDepth(u) is the number of 0’s in path(u). For a leaf `i with pBWT[i] ∈

[1, σp], we define zeroNode(`i) as follows. If fi ≤ n−pSA[i], then zeroNode(`i) is the highest

node z on the root to `i path such that zeroDepth(z) ≥ pBWT[i]. Thus, z is the locus

of path(`i)[1, fi] if fi ≤ n − pSA[i]; note that z exists as zeroDepth(`i) ≥ pBWT[i]. If

fi > n− pSA[i], then zeroNode(`i) is not defined.

To distinguish between the two cases, we maintain a bit-vector falseZero[1, n], where

falseZero[i] = 1 iff pBWT[i] ≤ σp and fi > n− pSA[i]. Moving forward, whenever we refer

35

to zeroNode(`i), we assume pBWT[i] ≤ σp and falseZero(i) = 0. To find zeroNode(`i), we

use the following lemma (proof deferred to Section 4.5.5).

Lemma 4.2. By using the wavelet tree over pBWT and an additional O(n)-bit data struc-

ture, we can find zeroNode(`i) in O(log σ) time.

We remark that the following components will be defined later: leafLeadChar(·), fSum(·)

and pCount(·); each can be computed in O(1) time using an O(n)-bit data structure.

4.5.2 Computing pLF(i) when pBWT[i] ∈ [σp + 1, σ]

Using Lemma 4.1, we conclude that pLF(i) > pLF(j) iff either j ∈ [1, n] and pBWT[j] <

pBWT[i], or j ∈ [1, i− 1] and pBWT[i] = pBWT[j]. Then,

pLF(i) = 1 + count(1, n, 1, pBWT[i]− 1) + count(1, i− 1, pBWT[i], pBWT[i])

4.5.3 Computing pLF(i) when pBWT[i] ∈ [1, σp] and falseZero[i] = 0

Let z = zeroNode(`i) and v = parent(z). Then, fi = (strDepth(v) + 1) if the leading

character on the edge from v to z is 0 and pBWT[i] = (zeroDepth(v) + 1); otherwise,

fi > (strDepth(v) + 1). For a leaf `j, leafLeadChar(j) is a boolean variable, which is 0 iff

fj = (strDepth(parent(zeroNode(`j))) + 1). Using this information, in O(1) time, we can

determine which of the following two cases is satisfied (see Figure 4.2).

Sub-case 1 (fi = strDepth(v) + 1). Note that the leading character on the edge from v

to z is 0; hence, applying Convention 4.1, z is the leftmost child of v (because leaves are

lexicographically ordered). Let w be the parent of v. We partition the leaves into four sets:

(a) S1: leaves to the left of the subtree of v.

(b) S2: leaves in the subtree of z.

(c) S3: leaves to the right of the subtree of v.

(d) S4: leaves in the subtree of v but not of z.

36

r

v

z

S1 S3S2

fi

`i

fi > |path(v)|+ 1

r

w

v

z

S1 S3S2 S4

fi

`i

q

q = pCount(v)

u

fi = |path(v)|+ 1

Figure 4.2: Various suffix ranges when pBWT[i] ≤ σp and falseZero(i) = 0

In case, v is the root node r, we take w = r; consequently, S1 = S3 = ∅.

Sub-case 2 (fi > strDepth(v) + 1). We partition the leaves into three sets:

(a) S1: leaves to the left of the subtree of z.

(b) S2: leaves in the subtree of z.

(c) S3: leaves to the right of the subtree of z.

We first compute z = zeroNode(`i) using Lemma 4.2, and then locate v = parent(z).

Using leafLeadChar(i) and the lmostLeaf(·)/rmostLeaf(·) tree operations, we find the de-

sired ranges. Let [Lx, Rx] denote the range of leaves in the subtree of any node x, i.e.,

Lx = lmostLeaf(x) and Rx = rmostLeaf(x). In order to compute pLF(i), we first compute

N1, N2, and N3, which are respectively the number of leaves `j in the ranges S1, S2, and S3

such that pLF(j) ≤ pLF(i). Likewise, we compute N4 (w.r.t S4) if we are in the first case.

Then, pLF(i) is computed as pLF(i) = N1 +N2 +N3 +N4. Now, we undertake the task of

computing N1 through N4. Computing these are simple applications of Lemma 4.1.

Computing N1. For any leaf `j ∈ S1, pLF(j) < pLF(i) iff fj > 1 + strDepth(lca(z, `j)) and

pBWT[j] ≤ σp. Thus, N1 is the number of leaves `j such that pBWT[j] ≤ σp, pre-order(`j) <

pre-order(z), and fj > 1 + strDepth(lca(z, `j)). Define, fCount(x) of a node x as the number

of leaves `j in x’s subtree such that strDepth(parent(x)) + 2 ≤ fj ≤ strDepth(x) + 1. If x is

37

the root node, then fCount(x) = 0. Define fSum(x) of a node x as
∑

fCount(y) of all nodes

y which come before x in pre-order and are not ancestors of x. Then,

N1 = rankfalseZero(Lz − 1, 1) + fSum(z),

where fSum(z) is computed as follows.

Lemma 4.3. By maintaining an O(n)-bit structure, we can compute fSum(x) in O(1) time.

Proof. Traverse the pST in DFS order. Append fCount(v) in unary2 to an initially empty

binary string B when exiting the subtree rooted at node v in the traversal, i.e., fCount(v)

is associated with post-order(v). Maintain the rank-select structure of Fact 2.2 on B. Since∑
v fCount(v) ≤ n, we have |B| ≤ 3n. Thus, the space occupied is 3n + o(n) bits. Note

that fSum(x) is same as the number of 1s in B up to the position corresponding to a node

y, where the node y is conceptually found as follows. Traverse from x to root until we get

a node y′ which has a child to the left of the path. Then y is the rightmost child of y′ that

lies to the left of the path. If Lx = 1, then y is not defined and fSum(x) = 0. Otherwise, we

use Facts 2.2 and 2.4 to compute y = levelAncestor(`Lx−1, nodeDepth(lca(`Lx , `Lx−1)) + 1)

and fSum(x) = rankB(selectB(post-order(y), 0), 1), both in O(1) time. �

Computing N2. Note that for any leaf `j ∈ S2, pLF(j) ≤ pLF(i) iff pBWT[j] ≤ σp and either

fj > fi or fj = fi and j ≤ i. Therefore, N2 is the number of leaves `j in S2 which satisfy

either (a) pBWT[i] < pBWT[j] ≤ σp, or (b) pBWT[i] = pBWT[j] and j ≤ i. Then,

N2 = count(Lz, Rz, pBWT[i] + 1, σp) + count(Lz, i, pBWT[i], pBWT[i])

Computing N3. For any leaf `j ∈ S3, pLF(j) > pLF(i). Thus, N3 = 0.

Computing N4. Note that pBWT[i] = zeroDepth(v) + 1. Consider a leaf `j ∈ S4 with

pBWT[j] ≤ σp. Since the suffix j deviates from the suffix i at the node v, we have fj 6= fi.

2Unary encoding of a number x is a string containing x number of 1s followed by a 0.

38

Therefore, pLF(j) < pLF(i) iff fj > fi, and the leading character on the path from v to `j

is not an s-character. For a node x, pCount(x) is the number of children y of x such that

the leading character from x to y is not an s-character. Note that
∑

x pCount(x) = O(n).

Therefore, we encode pCount(·) of all nodes in O(n) bits using unary encoding, such that

pCount(x) can be retrieved in constant time3. Let u be the pCount(v)th child of v. Then,

N4 is the number of leaves `j in S4 such that j ≤ Ru and σp ≥ pBWT[j] ≥ pBWT[i] i.e.,

N4 = count(Rz + 1, Ru, pBWT[i], σp)

4.5.4 Computing pLF(i) when pBWT[i] ∈ [1, σp] and falseZero[i] = 1

For any leaf `j, where j < i, we have pLF(j) < pLF(i) iff fj > 1 + strDepth(lca(`i, `j))

and pBWT[j] ≤ σp. For any leaf `j, where j > i, we have pLF(j) > pLF(i). Therefore,

pLF(i) = 1+N , where N is the number of leaves `j, such that pBWT[j] ≤ σp, pre-order(`j) <

pre-order(`i), and fj > 1 + strDepth(lca(`i, `j)). In other words,

pLF(i) = 1 + rankfalseZero(i− 1, 1) + fSum(`i)

We summarize the LF mapping procedure in Algorithm 2. The data structure occupies

n log σ + O(n) bits. If pBWT[i] > σp, then pLF(i) is computed in O(1 + log σ/ log log n)

time. Otherwise, if falseZero(i) = 0, we first compute zeroNode(`i) in O(log σ) time using

Lemma 4.2. Now, we find the desired ranges S1, S2, S3, and if required S4, all in O(1)

time. Then, N1 is computed in O(1) time, and both N2 and N4 are computed in O(1 +

log σ/ log log n) time. Lastly, if pBWT[i] ≤ σp and falseZero(i) = 1, we compute pLF(i)

in O(1) time. Thus, pLF(i) is computed in O(log σ) time when pBWT[i] ∈ [1, σp]. This

concludes the proof of Theorem 4.4.

3 Create a binary string S as follows. For each node u in the pre-order traversal of pST, append to S a
0 followed by pCount(u) number of 1s. Append a 0 at the end. Maintain a rank-select structure (refer to
Fact 2.2) over S. Then pCount(u) for a node u, having pre-order rank k, is the number of 1s between the
kth 0 and the (k+ 1)th 0. The value is given by rank(select(k+ 1, 0), 1)− rank(select(k, 0), 1) in O(1) time.

39

Algorithm 2 computes pLF(i)

1: c← pBWT[i]
2: if (c > σp) then
3: pLF(i)← 1 + count(1, n, 1, c− 1) + count(1, i− 1, c, c)
4: else
5: if (falseZero[i] = 1) then
6: pLF(i)← 1 + rankfalseZero(i− 1, 1) + fSum(`i)
7: else
8: z ← zeroNode(`i), v ← parent(z), Lz ← lmostLeaf(z), Rz ← rmostLeaf(z)
9: N1 ← rankfalseZero(Lz − 1, 1) + fSum(z)

10: N2 ← count(Lz, Rz, c+ 1, σp) + count(Lz, i, c, c)
11: if (leafLeadChar(i) is 0) then
12: u← child(v, pCount(v))
13: N4 ← count(Rz + 1, rmostLeaf(u), c, σp)

14: pLF(i)← N1 +N2 +N4

4.5.5 Finding ZeroNode

We prove Lemma 4.2 in this section. For a node x, let Lx = lmostLeaf(x) and Rx =

rmostLeaf(x). For a node x on the root to `i path π, let α(x) = the number of leaves `j, j ∈

[Lx, Rx] such that L[j] ∈ Σp and fj ≤ strDepth(x), and β(x) = count(Lx, Rx, 1, pBWT[i]).

Consider a node uk on π. Observe that zeroNode(`i) is below uk iff β(uk) > α(uk). Thus,

zeroNode(`i) is the shallowest node uk′ on this path that satisfies β(uk′) ≤ α(uk′). Equipped

with this knowledge, we can binary search on π (using nodeDepth and levelAncestor oper-

ations) to find the exact location. The first task is to compute α(x), which is handled by

Lemma 4.4. A normal binary search will have to consider n nodes on the path in the worst

case. Lemma 4.5 shows how to reduce this to dlog σe. Thus, the binary search has at most

dlog log σe steps, and the total time is log log σ × d log σ
log logn

e = O(log σ), as required.

Lemma 4.4. By maintaining an O(n)-bit data structure, we can find α(x) in O(1) time.

Proof. Let A[1, n] be a bit-vector such that A[i] = 1 iff pBWT[i] ≤ σp. Define γ(v) as

the number of leaves `j ∈ [Lv, Rv] that satisfy pBWT[j] ≤ σp and strDepth(parent(v)) <

fj ≤ strDepth(v). Traverse pST in DFS order. Append γ(v) in unary to an initially empty

binary string B when entering the subtree of node v in the traversal, i.e., γ(v) is associated

with pre-order(v). Since
∑

v γ(v) ≤ n, we have |B| ≤ 3n. Maintain the rank-select structure

40

of Fact 2.2 on the bit-vectors A and B. The total space needed is O(n) bits. Let α′(x) be

the number of leaves `j ∈ [Lx, Rx] such that pBWT[j] ≤ σp and fj > strDepth(x). Then,

l = selectB(pre-order(x), 0) and r = selectB(pre-order(`Rx), 0)

α′(x) = rankB(l, r, 1) + rankfalseZero(Lx, Rx, 1)

α(x) = rankA(Lx, Rx, 1)− α′(x)

Clearly, the space-and-time bounds are met. �

Lemma 4.5. Using the wavelet tree over pBWT and an additional O(n)-bit data structure,

in O(log σ) time, we can find an ancestor wi of `i such that zeroDepth(wi) < pBWT[i] and

wi is at most dlog σe nodes above zeroNode(`i).

Proof. Let g = dlog σe. We mark the nodes v in the pST such that nodeDepth(v) is a

multiple of g and the subtree of v has at least g nodes. Also, mark the root node. It is easy

to see that (i) between any two closest marked nodes (or a lowest marked node and a leaf

in its subtree) there are at most g nodes, and (ii) the number of marked nodes is O(n/g).

Maintain a bit-vector B such that B[k] = 1 iff the node with pre-order rank k is a marked

node. Also, maintain the rank-select structure of Fact 2.2 on B. The space needed is O(n)

bits. Let D be array, where D[k] equals the zeroDepth of the marked node corresponding to

the kth 1-bit in B. Given a marked node with pre-order rank k′, its corresponding position

in D is given by rankB(k′, 1). We maintain the wavelet tree of Fact 2.3 over D. The space

needed is O(n
g

log σ) = O(n) bits.

To find wi, we locate the lowest marked ancestor u of `i by traversing pST upwards using

the parent operation. We can check if a node is marked using B in O(1) time. The time re-

quired to find u is O(log σ). Let j = rankB(pre-order(u), 1) be the position corresponding to

u in D. If zeroDepth(u) = D[j] < pBWT[i], assign wi = u. Otherwise, we locate the right-

most position j′ < j in D such that D[j′] < pBWT[i] in O(log σ) time using the query j′ =

predecessorD(j, pBWT[i]−1). (Since the root r is marked and zeroDepth(r) = 0, the position

41

j′ exists.) Obtain the marked node v corresponding to the j′th 1-bit in B via selectB(j′, 1).

Assign wi = lca(u, v). The time required is O(log σ). To see the correctness, observe that

lca(u, v) is an ancestor of `i. For a node x, zeroDepth(x) ≥ zeroDepth(parent(x)). Thus,

zeroDepth(lca(u, v)) ≤ zeroDepth(v) < pBWT[i]. If wi has been incorrectly chosen, then

lca(u, v) is more than dlog σe nodes above zeroNode(`i). Hence, lca(u, v) has a marked

descendant u′ 6= u on the path to u such that zeroDepth(u′) < pBWT[i]. But u′ appears

after v and before u in pre-order, a contradiction. �

4.6 Finding Suffix Range via Backward Search

Since pLF mapping is computed in O(log σ) time (see Theorem 4.4), by using Theorem 4.3

with an appropriate choice of ∆, we can compute the parameterized suffix array values.

To complete pattern matching, we now need to compute the suffix range of prev(P). To

this end, we modify the backward search algorithm in the FM-index [FM05]. In particular,

given a proper suffix Q of P , assume that we know the suffix range [sp1, ep1] of prev(Q).

Our task is to find the suffix range [sp2, ep2] of prev(c◦Q), where c is the character previous

to Q in P . If we can carry out this operation, then by repeating the process until P is

entirely read, we can find the suffix range of prev(P). We note that any suffix i /∈ [sp1, ep1]

satisfies pLF(i) /∈ [sp2, ep2]. This is because Q is not a p-match with TpSA[i][1, |Q|]; hence,

c◦Q cannot be a p-match with TpSA[pLF(i)][1, 1+ |Q|]. Therefore, only suffixes from [sp1, ep1]

can belong to [sp2, ep2]. We consider the following two cases.

4.6.1 c is static

In this case, prev(c ◦ Q) = c ◦ prev(Q). Thus, pLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1] and

pBWT[i] = c. The backward search in this case is similar to that in FM-index. Specifically,

sp2 = 1 + count(1, n, 1, c− 1) + count(1, sp1 − 1, c, c)

ep2 = count(1, n, 1, c− 1) + count(1, ep1, c, c)

42

4.6.2 c is parameterized

We first identify all positions j, such that P [j] ∈ Σp and P [j] does not appear in P [j+1, |P |].

This pre-processing requires O(|P | log σ) time4. We have the following two cases.

Case 1 (c does not appear in Q). Note that pLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1],

pBWT[i] ≤ σp and fi > |Q|. This holds iff i ∈ [sp1, ep1] and pBWT[i] ∈ [d+ 1, σp]. Here, d

is the number of distinct p-characters in Q, which can be obtained in O(1) time by initially

pre-processing P in O(|P | log σ) time5. Thus,

(ep2 − sp2 + 1) = count(sp1, ep1, d+ 1, σp)

Additionally, pLF(i) > ep2 for any i > ep1 or for any i ∈ [sp1, ep1] and pBWT[i] ≤ d. In

other words, pLF(i) < sp2 iff i < sp1, pBWT[i] ≤ σp, and fi > 1 + strDepth(lca(u, `i)),

where u = lca(`sp1 , `ep1). Thus,

sp2 = 1 + rankfalseZero(sp1 − 1, 1) + fSum(u),

which is computed in O(1) time using Fact 2.2 and Lemma 4.3.

Case 2 (c appears in Q). Note that pLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1], pBWT[i] ≤ σp,

and fi equals the first occurrence of c in Q. This holds iff i ∈ [sp1, ep1] and pBWT[i] = d,

where d is the number of distinct p-characters in Q until (and including) the first occurrence

of c. We can compute d in O(1) time by pre-processing P in O(|P | log σ) time6.

4 Maintain a balanced binary search tree T for the symbols in Σp. Initially T is empty. If P [x] ∈ Σp,
then P [x] appears in P [x + 1, |P |] iff P [x] is present in T . If P [x] is not in T , insert it. Continue the
process. Since T has O(σp) nodes, search and insertion takes O(log σ) time.

5 Maintain a balanced binary search tree T for the symbols in Σp. Initially T is empty. Also, maintain
a counter C, initialized to 0. Scan P from right to left. If a p-character cp is encountered at position x,
the required count at x is C. If cp does not belong to T , then increment C by 1, and insert cp into T .
Continue the process. Since T has O(σp) nodes, search and insertion takes O(log σ) time.

6 Assume Σp is the integer alphabet {1, 2, . . . , σp}. Maintain an array F [1, σp], all values initialized to
0, and a balanced binary search tree (BST) T (initially empty). Scan P from right to left. If a p-character

43

Consider i, j ∈ [sp1, ep1] such that i < j and pLF(i), pLF(j) ∈ [sp2, ep2]. Now, both fi

and fj equals the first occurrence of c in Q. Based on Observation 4.1, we conclude that

pLF(i) < pLF(j). Therefore, where

sp2 = pLF(imin) and ep2 = pLF(imax), where

imin = min{j | j ∈ [sp1, ep1] and pBWT[j] = d} = select(rank(sp1 − 1, d) + 1, d)

imax = max{j | j ∈ [sp1, ep1] and pBWT[j] = d} = select(rank(ep1, d), d)

The backward search is summarized in Algorithm 3. Each wavelet tree operation (refer

to Fact 2.3) takes O(1+log σ/ log log n) time. The pLF operation takes O(log σ) time using

Theorem 4.4. All other operations need O(1) time (refer to Fact 2.4 and Lemma 4.3). The

initial pre-processing of P takes O(|P | log σ) time. Therefore, we find the suffix range of

prev(P) in O(|P | log σ) time. By choosing ∆ = dlog ne in Theorem 4.3, each parameterized

suffix array value can be computed in O(log σ log n) by using an O(n)-bit data structure,

in addition to the data structure in Section 4.4 for implementing Theorem 4.4. Thus, all

parameterized matches of a pattern P in the text T are found in O(|P | log σ+occ·log σ log n)

time using an n log σ+O(n)-bit data structure, which concludes the proof of Theorem 4.1.

To prove Theorem 4.2, simply chose ∆ = dlogσ ne in Theorem 4.3.

cp is encountered at a position x, check F [cp]. If F [cp] = 0, insert cp in T keyed by x, else the count at
x is the number of nodes in T with key at most F [cp]. Update F [cp] and the key of cp to x. Since T has
O(σp) nodes, search and update time is O(log σ).

If Σp is not the integer set, then the array F can be simulated via another balanced binary search tree,
where we store the p-characters associated with their latest occurrence. Since this BST will have at most
O(σp) nodes, search and update requires O(log σ) time.

44

Algorithm 3 computes Suffix Range of prev(P [1, p])

1: c← P [p], i← p,
2: if (c > σp) then
3: sp← 1 + count(1, n, 1, c− 1)
4: ep← count(1, n, 1, c)
5: else
6: sp← 1
7: ep← 1 + count(1, n, 1, σp)

8: while (sp ≤ ep and i ≥ 2) do
9: c← P [i− 1]

10: if (c > σp) then
11: sp← 1 + count(1, n, 1, c− 1) + count(1, sp− 1, c, c)
12: ep← count(1, n, 1, c− 1) + count(1, ep, c, c)
13: else if (c /∈ P [i, p]) then
14: d← number of distinct p-characters in P [i, p]
15: sp′ ← sp
16: sp← 1 + rankfalseZero(sp1 − 1, 1) + fSum(lca(`sp, `ep))
17: ep← sp+ count(sp′, ep, d+ 1, σp)− 1
18: else
19: f ← first occurrence of c in P [i, p]
20: d← number of distinct p-characters in P [i, f]
21: imin ← select(rank(sp− 1, d) + 1, d)
22: imax ← select(rank(ep1, d), d)
23: sp← pLF(imin)
24: ep← pLF(imax)

25: if (sp < ep) then “no match found” else return [sp, ep]

45

Chapter 5
Succinct Index for Parameterized
Dictionary Matching
Recall the parameterized matching of two strings as outlined in Definition 4.1. We consider

the Parameterized Dictionary Indexing problem of Idury and Schäffer [IS94].

Problem 5.1 (Parameterized Dictionary Indexing[IS94]). Let D be a collection of d pat-

terns {P1, P2, . . . , Pd} of total length n; each Pi contains characters from Σ. The task is to

index D, such that given a text T (also over Σ), we can report all pairs 〈j, Pi〉, such that

there exists a pattern Pi ∈ D which is a parameterized match with T [j − |Pi|+ 1, j].

Largely based on the Aho-Corasick (AC) automaton [AC75], Idury and Schäffer [IS94]

presented an automaton which occupies Θ(m logm) bits and reports all occ pairs in time

O(|T | log σ + occ); here, m ≤ n + 1 is the number of states in the automaton of Idury

and Schäffer. Ganguly et al. [GHS+16a] presented an O(n log σ + d log n)-bit index with

O(|T |(log σ+logσ n)+occ) query time (see [GHS16b] for its dynamic version). We improve

these results in the following theorem.

Theorem 5.1. By using an m log σ+O(m+ d log m
d

)-bit index of D, all pairs 〈j, Pi〉, such

that there exists a pattern Pi ∈ D which is a parameterized match with T [j−|Pi|+1, j], can

be found in O(|T | log σ + occ) time, where occ is the number of such pairs and m ≤ n + 1

is the number of states in the automaton of Idury and Schäffer [IS94].

5.1 Overview of Techniques

We begin with the linear-space index of Idury and Schäffer [IS94], which is an extension of

the classical AC automaton [AC75]. The idea is to first encode each pattern using Baker’s

encoding [Bak93] in Definition 4.2, and then create a trie T of these encode patterns. Each

node in the trie is associated with three components: a next link that says what is the next

node in the trie where we should go in case of a match, a failure link that says what is the

46

next node in the trie where we should go in case of a mismatch, and a report link that says

what are the patterns which have an occurrence ending at the current position of the text.

Section 5.2 contains the detailed description of the trie and the query process.

The first question is how to represent the nodes succinctly, in the sense that given a

node, we can quickly find out if there is a pattern which has the same encoding as the

path from root to this node; these nodes are termed final nodes. The other importance of

node representation is to quickly simulate the three transitions above. Given a node v in

the trie, let ←−−prev(v) = prev(
←−−−−−
Pi[1, δv]), where Pi is a pattern corresponding to a final node

in the subtree of v, δv is the node-depth of v, and
←−
S denotes the reverse of a string

S. We conceptually label a node u with the lexicographic rank of ←−−prev(u) in the set

{←−−prev(v) | v is a node in the trie}. Labels of final nodes are explicitly stored, enabling

us to find the pattern corresponding to any final node quickly. These ideas are borrowed

(and extended) from Belazzougui [Bel10]. Section 5.3 contains the details.

The next task (and arguably the most difficult one) is to simulate the next transition.

Here, given the label of u, we are seeking the label of a child v of u, where we should proceed

in case of a match. We make the following observations. If the edge (u, v) is labeled by a

p-character c, then ←−−prev(v) is obtained from ←−−prev(u) by prepending a 0 and appropriately

modifying (if required) ←−−prev(u) at the position that corresponds to the first occurrence of

c. Otherwise, if c is an s-character, then ←−−prev(v) = c ◦←−−prev(u). This is extremely similar to

Observation 4.1, and immediately paves way to a pBWT-like structure which can be used

to carry out this kind of transition. The crucial insights are presented in Observations 5.1

and 5.2. More specifically, we create another trie
←−
T of the strings ←−−prev(w) for each node w

in T . Now each node u in T can be mapped to a leaf `u in
←−
T , and the label of u can be

found by applying a pLF mapping-like transform on `u. Lemma 5.2 outlines the basic idea

on how to implement the pLF mapping-like transform. The details are in Section 5.4.

The final piece is to simulate the failure and report transitions. However, this is rather

simple and is immediate from Belazzougui [Bel10]; the details are in Section 5.5. Once,

47

we have all the above components, the final query procedure is largely a straightforward

extension of the query procedure of Idury and Schäffer; Section 5.6 contains the details.

5.2 Idury and Schäffer’s Linear Index

We recall the prev-encoding scheme of Baker [Bak93]: prev(S) for a string S is obtained by

replacing the first occurrence of every p-character in S by 0 and any other occurrence of a

p-character by the difference in text position from its previous occurrence; see Definition 4.2.

Two strings S and S ′ are a p-match iff prev(S) = prev(S ′), and S is a p-match with a

prefix of S ′ iff prev(S) is a prefix of prev(S ′); see Fact 4.1.

Note that prev(S) is a string over an alphabet set Σs ∪ {0, 1, . . . , |S| − 1}. We follow

Convention 4.1 when comparing characters in prev-encoded strings.

5.2.1 The 3 Main Components of the Linear Index

We create a trie T of the strings {prev(Pi) | Pi ∈ D}. Let the number of nodes in the trie

be m, where m ≤ n + 1. Each edge in the trie is labeled by a single encoded character.

For a node u in the trie, let path(u) be the string formed by concatenating the edge

labels from root to u; let strDepth(u) = |path(u)|. Mark a node u in the trie as final iff

path(u) = prev(Pi) for some Pi in D. Thus, the number of final nodes is d.

For any prev-encoded string prev(S) of a string S and an integer j ∈ [1, |S|], we let

ζ(prev(S), j) = prev(S[j, |S|]). Note that given prev(S), we can obtain ζ(prev(S), j) simply

by assigning prev(S)[i] = 0 for any i ≥ j, where prev(S)[i] > i− j and S[i] ∈ Σp.

Each node u in the trie T is associated with 3 links as defined below:

• next(u, c) = v iff the label on the edge from the node u to v is labeled by the character

c. This transition can be carried out in O(1) time using a perfect hash function.

• failure(u) = v iff path(v) = ζ(path(u), j), where j > 1 is the smallest integer for which

such a node v exists. If no such j exists, then failure(u) points to the root node.

Conceptually, this is the smallest shift to be performed in T in case of a mismatch.

• report(u) = v iff v is a final node and path(v) = ζ(path(u), j), where j > 1 is the small-

48

est integer for which such a node v exists. If no such j exists, then report(u) points

to the root node. Conceptually, this represents a pattern which has an occurrence

ending at the current symbol of the text.

Summarizing, the total space needed by the index is Θ(m logm) bits. Moving forward,

we use the terms node and state interchangeably. Likewise, for links and transitions.

5.2.2 The Querying Algorithm

To find the occurrence pairs, we follow the steps below:

(a) First obtain T ′ = prev(T).

(b) Suppose, we are at the position j in T ′ (initially, j = 1), and we are at a node u, i.e.,

we have matched T [j, j + path(u)− 1] in the trie T .

(c) Repeatedly follow report-links starting from u until the root node is reached. Effec-

tively, we report all patterns with a p-match ending at (j + path(u)− 1).

(d) Now, look at the character c = T ′[j + path(u)] to match. If T ′[j + path(u)] ≥ path(u)

and T [j + path(u)] /∈ Σs, then take c = 0.

(e) If next(u, c) is defined, then follow next(u, c) to a node v, and repeat the process

starting from Step (b), by letting j = j + strDepth(u)− strDepth(v).

(f) If next(u, c) is not defined or j + path(u) > |T |, follow failure(u) to a node w, assign

j = j + strDepth(u)− strDepth(w), and repeat the process starting from Step (b).

The time required to report all occurrence pairs is O(|T | log σ + occ)1.

5.3 Representing States Succinctly

Belazzougui [Bel10] obtained a succinct representation of the AC automaton for the classical

dictionary indexing problem [AC75]. Among other techniques, the main idea is to use a

Succinctly Indexable Dictionary (SID); see Fact 2.5. The edges in the trie T are labeled

from an alphabet of size Θ(m) in the worst case. This proves to be the primary bottleneck

1 Initially T ′ is obtained in O(|T | log σ) time. On following a report link, either we report an occurrence,
or we reach the root. Following this, either we take a next transition or we follow a failure link; the number
of such operations combined is at most 2|T |. Since each transition takes O(1) time, the total time required
is O(|T | log σ + occ).

49

that prevents us from directly applying the technique of Belazzougui [Bel10] to obtain a

succinct representation of Idury and Schäffer’s linear space index. More specifically, the

SID in this case will need m logm+O(m) bits of space, which is not desirable.

To alleviate this problem, we first modify the label in the trie T . Assign a bit to every

edge, which is set to 1 iff the labeling on this edge corresponds to a p-character. This can

be easily achieved while building T . Accordingly, we categorize an edge as a p-edge or an

s-edge. Every p-edge is in one of two states: visited or new. Initally all p-edges are new.

Initialize a counter C = 1. Traverse from the root node to the leftmost leaf (the ordering

of the leaves can be arbitrary), and modify the labeling as follows:

• Suppose, we are at a node u (initially the root), and we will traverse to the node v.

• For an s-edge (u, v), store the value of C at v, and move to the next edge on the path.

• If a p-edge (u, v) is labeled by 0, then label it by the Cth character in Σp (characters

in Σp may be arbitrarily ordered). Store the value of C at v, and then increment C

by 1. Move to the next edge on the path.

• If a p-edge (u, v) is labeled by c > 0, then assign it the same label (from Σp) as the

(c + 1)th edge on the path from v to root. Store the value of C at v, and move to

the next edge on the path.

After the ith leftmost leaf `i is reached, find x = lca(`i, `i+1), and use the stored value

of C at x to label the edges on the path from x to `i+1. By pre-processing the trie with the

data structure of Fact 2.4, the entire process can be carried out in O(m) time.

Observe that each edge is now labeled by a character from Σ. Let
←−−
pathΣ(u) (resp.

pathΣ(u)) denote the concatenation of the new edge labels on the path from u to root

(resp. from root to u). With slight abuse of notation, let ←−−prev(u) = prev(
←−−
pathΣ(u)). Each

state u is conceptually labeled by the lexicographic rank of ←−−prev(u) in the set {←−−prev(v) |

v is a node in T }. Thus, each state is labeled by a number in [1,m], where the root node

is labeled by 1. To distinguish the final states, we use the following convention.

50

Convention 5.1. For any two patterns Pi[1, pi] and Pj[1, pj] in the dictionary D, we let

i < j iff prev(Pi[pi]◦Pi[pi−1]◦ · · · ◦1) is lexicographically smaller than prev(Pj[pj]◦Pj[pj−

1]◦· · ·◦1). We follow the lexicographic order of Convention 4.1 when comparing characters.

We explicitly store the labels of the final states using Fact 2.5. Since there are d final

nodes, the space required is d log(m/d) + O(d) bits. Now, given the label of a final state,

we first find its rank among all the final states using Fact 2.5. If the rank is r, then the

final state corresponds to the pattern Pr by Convention 5.1. Thus, given the label of a final

state, we can find the corresponding pattern in O(1) time, leading to the following lemma:

Lemma 5.1. Given the label of a final state, we can find the corresponding pattern in O(1)

time by using an d log(m/d) +O(d)-bit data structure.

Lastly, we maintain a bit-vector leaf[1,m] such that leaf[j] = 1 iff the state with label

j is a leaf in T . The total space for representing the states is m+ d log(m/d) +O(d) bits.

5.4 Handling next Transitions Succinctly

We begin with a few notations. For any p-edge e = (w, x) in T , w = parent(x), we define

Z(x) = the number of 0’s in←−−prev(w)[1, fx], where fx is the first occurrence of the p-character

labeling e in the string
←−−
pathΣ(w). If fx is not defined, Z(x) = −z, where z is the number

of 0’s in ←−−prev(x). For any s-edge e = (w, x) in T , w = parent(x), we define Z(x) = the

s-character labeling the edge e. We map the s-characters to the interval [σp + 1, σ], where

the ith smallest s-character has value (σp + i).

Observation 5.1. Let xi and xj be any two children of a node x in T . Then, Z(xi) 6= Z(xj).

Also, ←−−prev(xi) is lexicographically smaller than ←−−prev(xj) iff one of the following holds:

• σp < Z(xi) < Z(xj)

• Z(xi) ≤ σp < Z(xj)

• 0 < Z(xj) < Z(xi) ≤ σp or Z(xi) < 0 < Z(xj) ≤ σp

Observation 5.2. Suppose we are at a node u and have matched the substring T [j, j +

path(u) − 1] in T . Now, we want to match c = T [j + path(u)] and select the correct edge

51

(if any). If c ∈ Σs, then clearly we need to select the s-edge (u, v) such that Z(v) = c. Now,

assume that c ∈ Σp. Let j′ be the last occurrence of c in T [1, j + path(u) − 1]; if j′ is not

defined, then j′ = 1. Let z be the number of distinct p-characters in T [j′, j + path(u)− 1].

Then, we select the edge (u, v) iff one of the following is satisfied:

• Z(v) = z; in this case, j ≤ j′ ≤ j + path(u)− 1,

• −z ≤ Z(v) < 0; in this case, j′ < j

We create a compressed trie
←−
T as follows. Initially

←−
T is empty. For each non-leaf node

u in T and each child ui of u, we add the string ←−−prev(u) ◦ $u,i to
←−
T . Clearly, the string

corresponds to a unique leaf, say `u,i, in
←−
T . For any node u ∈

←−
T , we define path(u) as the

concatenation of the prev-encoded edge labels from the root to u.

Let `u,i denote the ith leftmost leaf in
←−
T , where ui is the non-root node in T that

corresponds to `u,i, i.e., path(`u,i) =←−−prev(u) ◦ $u,i, and u = parent(ui). We order the leaves

in
←−
T as follows. Consider the leaves `u,i and `u,j in

←−
T such that the corresponding nodes ui

and uj in T share the same parent u. (Note that `u,i and `u,j also share the same parent in

←−
T .) Then, the leaf `u,i lies to the left of `u,j in

←−
T (i.e., i < j) if←−−prev(ui) is lexicographically

smaller than ←−−prev(uj). Now, consider two leaves `u,i and `v,j in
←−
T with the corresponding

nodes ui and vj in T having different parents u and v. Then, `u,i lies to the left of `v,j (i.e.,

i < j) if ←−−prev(u) is lexicographically smaller than ←−−prev(v).

Note that the number leaves in
←−
T is same as the number of edges in T . Therefore, it has

(m−1) leaves and at most (m−2) internal nodes. Maintain the array Z of Observation 5.1,

corresponding to the leaves in
←−
T , as a wavelet tree of Fact 2.3. Specifically, Z[i] = Z(ui),

where ui is the node in T corresponding to the ith leftmost leaf `u,i in
←−
T . Also, maintain

a succinct representation of
←−
T ; see Fact 2.4. The space required is m log σ +O(m) bits.

Define leafRank(i) as the rank of the string ←−−prev(ui) among the strings {←−−prev(x) | x ∈

T is a non-root node}. Since the label of the root node is 1, the label of a node ui ∈ T is

given by 1+ leafRank(i); recall that ui corresponds to the ith leftmost leaf in
←−
T . Therefore,

the main task is to compute leafRank(i). To facilitate this, we begin with Lemma 5.2.

52

Lemma 5.2. Let u and v be two nodes (not necessarily distinct) in T . Let ui and vj be

their respective children (necessarily distinct) in T , which correspond respectively to the ith

and the jth leftmost leaves `u,i and `v,j in
←−
T .

(a) If Z[i] ≤ σp < Z[j], then leafRank(i) < leafRank(j).

(b) If both Z[i],Z[j] > σp, then leafRank(i) < leafRank(j) iff one of the following holds:

• Z[i] < Z[j]

• Z[i] = Z[j] and i < j. (Note that in this case u 6= v.)

(c) Assume both Z[i],Z[j] ≤ σp and i < j. Let x = lca(`u,i, `v,j) and z be the number of

0’s in path(x).

(1) If Z[i] < 0, then leafRank(i) < leafRank(j)

(2) If 0 < Z[i],Z[j] ≤ z, then leafRank(i) < leafRank(j) iff Z[i] ≥ Z[j]

(3) If 0 < Z[i] ≤ z < Z[j], then leafRank(i) > leafRank(j)

(4) If 0 < Z[j] ≤ z < Z[i], then leafRank(i) < leafRank(j)

(5) If Z[i],Z[j] > z, then leafRank(i) > leafRank(j) iff all of the following are true:

• Z[i] = z + 1,

• the leading character on the path from x to `u,i is 0, and

• the leading character on the path from x to `v,j is not an s-character

(6) If Z[j] < 0, then leafRank(i) > leafRank(j) iff either 0 < Z[i] ≤ z or if all of the

following are true:

• Z[i] = z + 1,

• the leading character on the path from x to `u,i is 0, and

• the leading character on the path from x to `v,j is not an s-character

Proof. The lemma is a direct consequence of how the leaves are arranged in
←−
T in conjunc-

tion with Observation 5.1 and Convention 4.1. �

53

Crucially, Lemma 5.2 is similar to Lemma 4.1 with the following changes:

• pBWT replaced by Z

• pLF mapping replaced by leafRank, and

• pST replaced by
←−
T .

Computing leafRank(i) is handled by the following lemma (proof is similar to that for

computing pLF-mapping and is deferred to Section 5.4.1):

Lemma 5.3. By using the wavelet tree over Z and an additional O(m)-bit data structure,

we can compute leafRank(i) for the ith leftmost leaf in
←−
T in O(log σ) time.

Suppose, we are at a node u in T . Given a c ∈ [1, σ], our next task is to select (if

exists) the leaf `u,i in
←−
T that corresponds to the child ui of u, where Z(ui) = c. This is

handled by the following lemma:

Lemma 5.4. Let u be a non-leaf node in T having label k. By using the wavelet tree over Z

and an additional O(m)-bit data structure, we can support the following in O(log σ) time:

• find the node v in
←−
T such that path(v) =←−−prev(u)

• given z ∈ [1, σ], we can detect if u has a child ui such that Z(ui) = z. We can also

find the leaf `u,i ∈
←−
T corresponding to ui.

Proof. We create a binary string B as follows. Traverse the leaves from left to right in
←−
T ,

and append a 1-bit for each leaf, followed by a 0-bit whenever we switch from a leaf to the

next which has a different parent. Append a 0 both at the beginning and at the end, and

maintain the rank-select structure of Fact 2.2. The space needed is O(m) bits.

Consider the nodes V = {v1, v2, . . . , vt} in
←−
T in increasing order of their pre-order rank,

where each vx is the parent of a leaf in
←−
T . Let ux be the node in T corresponding to vx, i.e.,

path(vx) =←−−prev(ux). Then, the label of ux is smaller than the label of uy iff 1 ≤ x < y ≤ t.

Therefore, the desired node v is the k′th node in V , where k′ is the number of non-leaf

nodes in T with label at most k, i.e., k′ = rankleaf(k, 0) > 0 (follows from the way leaves

54

are arranged in
←−
T). Also, ui exists iff Z[x] = z for some x ∈ [lmostLeaf(v), rmostLeaf(v)].

If ui exists then `u,i is the xth leftmost leaf in
←−
T .

We locate the leaves `sp and `ep in
←−
T , where sp = rankB(selectB(k′, 0), 1) + 1, and ep =

rankB(selectB(k′+1, 0), 1). Then v = parent(`sp). Obtain q = selectZ(1+ rankZ(sp−1, z), z)

in O(log σ) time. If q > ep, then ui does not exist. Otherwise, the desired leaf `u,i is given

by child(parent(`sp), q − sp+ 1). �

We now have sufficient arsenal to prove the following lemma.

Lemma 5.5. Let T0 = T [j0, |T |], 1 ≤ j0 ≤ |T |. Suppose we are at a node u in T and have

matched T0[1, j]. Given the label k of u, we can find the label (if any) of next(u, prev(T0)[j+

1]) in O(log σ) amortized time by using an m log σ +O(m)-bit data structure.

Proof. If u is a leaf (i.e., leaf[k] = 1), then u does not have a child and the lemma trivially

follows. So, assume otherwise. Let c = T0[j + 1]. If c is a p-character, then let z be the

number of distinct p-characters in T [j′, j0 +j], where j′ = 1 if (j0 +j) is the first occurrence

of c in T , else j′ is the maximum position where c occurs in T [1, j0 + j − 1]. Note that z

can be computed in O(log σ) time per character2. If c is an s-character, then let z = c.

Now, we apply Observation 5.2 to find the label k′ of u′ = next(u, prev(T0)[j + 1]), if

exists. Using Lemma 5.4, we first detect if u has a child ui such that Z(ui) = z. If ui exists,

then u′ = ui. To compute the label of u′ = ui, we first find the corresponding leaf `u,i using

Lemma 5.4, and then compute k′ = 1 + leafRank(i) using Lemma 5.3. If ui does not exist

and c ∈ Σp, we find the node v in
←−
T corresponding to u by using Lemma 5.4. Now, u′

exists iff −z ≤ Z(u′) < 0. Also, based on how leaves are arranged in
←−
T , if u′ exists, then it

2 Assume Σp is the integer alphabet {1, 2, . . . , σp}. We maintain an array A[1, σp], where A[c] is the
position of the last occurrence of the p-character c ∈ Σp. Initially, A[c] = −1 for every c ∈ [1, σp]. Maintain
a balanced binary search tree Tbin containing only the p-characters c indexed by A[c]. Note that the size
of Tbin is O(σp), which implies update and search operation requires O(log σp) time.

Suppose we are looking at a p-character c = T [k]. If A[c] = −1, we add c to Tbin, and find the number
of characters in Tbin, which gives us the desired encoding. Otherwise, find the number of entries in Tbin
with key at least A[c], which gives us the desired encoding. Finally, update A[c] = k and proceed.

If Σp is not the integer set, then the array A can be simulated via another balanced binary search tree,
where we store the p-characters associated with their latest occurrence. Since this BST will have at most
O(σp) nodes, search and update requires O(log σ) time.

55

corresponds to the leftmost leaf in v’s subtree. Let l = lmostLeaf(v). If −z ≤ Z[l] < 0, then

k′ = 1 + leafRank(l), else u′ does not exist. The time required is amortized O(log σ). �

5.4.1 Computing leafRank

Recall that in the data structure to compute pLF mapping, we only use the property that

pST is a compressed trie (i.e., marking scheme, and the structure for computing fSum and

zeroNode only use this property). Hence, our techniques for computing leafRank remains

largely similar to that for computing pLF mapping. We include the details for completion.

We define fj as the first occurrence (if any) of the p-character labeling the p-edge

(uj, parent(uj)) on the path from parent(uj) to the root in T . For any node u ∈
←−
T , we

define zeroDepth(u) as the number of 0’s in path(u).

For a leaf `u,i ∈
←−
T , let zeroNode(`u,i) be the highest node v on the root to `u,i path

that satisfies zeroDepth(v) ≥ Z[i]. Note that zeroNode(`u,i) is the root when Z[i] < 0. We

shall need the following (proof deferred to Section 5.4.2):

Lemma 5.6. We can find zeroNode(`u,i) in O(log σ) time by using a wavelet tree over the

array Z and an additional O(m)-bit data structure.

We will define the following additional functionality later: leafLeadChar(·), fSum(·) and

pCount(·). Each of these can be computed in O(1) time using an O(n)-bit data structure.

Computing leafRank(i) when Z[i] ∈ [σp + 1, σ]. Using Lemma 5.2, we conclude that leafRank(i) >

leafRank(j) iff either j ∈ [1, n] and Z[j] < Z[i], or j ∈ [1, i− 1] and Z[i] = Z[j]. Then,

leafRank(i) = 1 + count(1, n, 1,Z[i]− 1) + count(1, i− 1,Z[i],Z[i])

Computing leafRank(i) when Z[i] ∈ [1, σp]. Let z = zeroNode(`u,i) and v = parent(z).

Then, fi = (strDepth(v)+1) if the leading character on the edge from v to z is 0 and Z[i] =

(zeroDepth(v) + 1); otherwise, fi > (strDepth(v) + 1). For a leaf `u′,j in
←−
T , leafLeadChar(j)

56

r

w

v

z

S1 S3S2 S4

fi

`u,i

q

q = pCount(v)

v′

fi = |path(v)|+ 1

r

v

z

S1 S3S2

fi

fi > |path(v)|+ 1

`u,i

Figure 5.1: Computing leafRank(i) when 0 < Z[i] ≤ σp

is a boolean variable, which is 0 iff fj = (strDepth(parent(zeroNode(`u′,j))) + 1). Now, we

can determine which of the following two cases is satisfied in O(1) time (see Figure 5.1):

Sub-case 1 (fi = strDepth(v) + 1). In this case, z is the leftmost child of v. Let w be

the parent of v. We partition the leaves into four sets:

(a) S1: leaves to the left of the subtree of v.

(b) S2: leaves in the subtree of z.

(c) S3: leaves to the right of the subtree of v.

(d) S4: leaves in the subtree of v but not of z.

In case, v is the root node r, we take w = r; consequently, S1 = S3 = ∅.

Sub-case 2 (fi > strDepth(v) + 1). We partition the leaves into three sets:

(a) S1 (resp. S3): leaves to the left (resp. right) of the subtree of z.

(b) S2: leaves in the subtree of z.

We first compute z = zeroNode(`u,i) using Lemma 5.6 and then locate v = parent(z).

Using leafLeadChar(i) and the lmostLeaf(·)/rmostLeaf(·) tree operations, we find the desired

ranges. Let [Lx, Rx] denote the range of leaves in the subtree of any node x, i.e., Lx =

lmostLeaf(x) and Rx = rmostLeaf(x). In order to compute leafRank(i), we first compute

57

N1, N2, and N3, which are respectively the number of leaves `j in the ranges S1, S2, and

S3 such that leafRank(j) ≤ leafRank(i). Likewise, we compute N4 (w.r.t S4) if we are in the

first case. Then, leafRank(i) is computed using leafRank(i) = N1 +N2 +N3 +N4.

Now, we undertake the task of computing N1 through N4. In each case, the claims are

direct consequences of Lemma 5.2.

Computing N1. For any leaf `u′,j ∈ S1, leafRank(j) < leafRank(i) if either (1) fj > 1 +

strDepth(lca(z, `j)) and 0 < Z[j] ≤ σp, or (2) Z[j] < 0. Therefore, N1 is the number of

leaves `u′,j, such that either (1) 0 < Z[j] ≤ σp and `u′,j comes before z in pre-order with

fj > 1 + strDepth(lca(z, `j)), or (2) Z[j] < 0.

Define, fCount(x) of a node x as the number of leaves `u′,j in x’s subtree such that

strDepth(y) + 2 ≤ fj ≤ strDepth(x) + 1, where y = parent(x) and 0 < Z[j] ≤ σp. If x is the

root node, then fCount(x) = 0. Define fSum(x) of a node x as
∑

fCount(y) of all nodes y

which come before x in pre-order and are not ancestors of x. Then,

N1 = fSum(z) + count(1, Lz − 1,−σp,−1),

where fSum(z) is computed as follows.

Lemma 5.7. By maintaining an O(n)-bit structure, we can compute fSum(x) in O(1) time.

Proof. Traverse
←−
T in DFS order. Append fCount(v) in unary3 to an initially empty binary

string B when exiting the subtree rooted at node v in the traversal, i.e., fCount(v) is

associated with post-order(v). Maintain the rank-select structure of Fact 2.2 on B. Since∑
v fCount(v) ≤ n, we have |B| ≤ 3n. Thus, the space needed is 3n+ o(n) bits. Note that

fSum(x) is same as the number of 1s inB up to the position corresponding to a node y, where

the node y is conceptually found as follows. Traverse upwards from x to the root node until

we reach a node y′ which has a child to the left of the path. Then y is the rightmost child of y′

3Unary encoding of a number x is a string containing x number of 1s followed by a 0.

58

that lies to the left of the path. If Lx = 1, then y is undefined and fSum(x) = 0. Otherwise,

use Facts 2.2 and 2.4 to compute y = levelAncestor(`Lx−1, nodeDepth(lca(`Lx , `Lx−1)) + 1)

and fSum(x) = rankB(selectB(post-order(y), 0), 1) in O(1) time. �

Computing N2. For any leaf `u′,j ∈ S2, leafRank(j) ≤ leafRank(i) iff one of the following is

satisfied: (1) 0 < Z[j] ≤ σp and fj > fi, or (2) 0 < Z[j] ≤ σp, fj = fi, and j ≤ i, or (3)

Z[j] < 0. Therefore, N2 is the number of leaves `u′,j in S2 which satisfy one of the following

conditions: (1) Z[i] < Z[j] ≤ σp, or (2) Z[i] = Z[j] and j ≤ i, or (3) Z[j] < 0. Then,

N2 = count(Lz, Rz,Z[i] + 1, σp) + count(Lz, i,Z[i],Z[i]) + count(Lz, Rz,−σp,−1)

Computing N3. For any leaf `u′,j ∈ S3, leafRank(j) > leafRank(i). Thus, N3 = 0.

Computing N4. Note that Z[i] = zeroDepth(v)+1. Consider a leaf `u′,j ∈ S4 with Z[j] ≤ σp.

Since the root to `u′,j path deviates from the root to `u,i path at the node v, we have fj 6= fi.

Therefore, leafRank(j) < leafRank(i) iff the leading character on the path from v to `j is

not an s-character and either (1) fj > fi, or (2) Z[j] < 0. For a node x, pCount(x) is the

number of children y of x such that the leading character from x to y is not an s-character.

Note that
∑

x pCount(x) = O(n). Therefore, we encode pCount(·) of all nodes in O(n) bits

using unary encoding, such that pCount(x) can be retrieved in constant time4. Let u be

the pCount(v)th child of v. Then, N4 is the number of leaves `j in S4 such that j ≤ Ru and

either (1) σp ≥ Z[j] ≥ Z[i], or (2) Z[j] < 0. Thus,

N4 = count(Rz + 1, Ru,Z[i], σp) + count(Rz + 1, Ru,−σp,−1)

4 Create a binary string S as follows. For each node u in the pre-order traversal of pST, append to S a
0 followed by pCount(u) number of 1s. Append a 0 at the end. Maintain a rank-select structure (refer to
Fact 2.2) over S. Then pCount(u) for a node u, having pre-order rank k, is the number of 1s between the
kth 0 and the (k+ 1)th 0. The value is given by rank(select(k+ 1, 0), 1)− rank(select(k, 0), 1) in O(1) time.

59

Algorithm 4 computes leafRank(i)

1: c← Z[i]
2: if (c > σp) then
3: leafRank(i)← 1 + count(1, n, 1, c− 1) + count(1, i− 1, c, c)
4: else if c < 0 then
5: leafRank(i)← 1 + fSum(`u,i) + count(1, i− 1,−σp,−1)
6: else
7: z ← zeroNode(`i), v ← parent(z), Lz ← lmostLeaf(z), Rz ← rmostLeaf(z)
8: N1 ← fSum(z) + count(1, Lz − 1,−σp,−1)
9: N2 ← count(Lz, Rz, c+ 1, σp) + count(Lz, Rz,−σp,−1) + count(Lz, i, c, c)

10: if (leafLeadChar(i) is 0) then
11: u← child(v, pCount(v)), Ru ← rmostLeaf(u)
12: N4 ← count(Rz + 1, Ru, c, σp) + count(Rz + 1, Ru,−σp,−1)

13: leafRank(i)← N1 +N2 +N4

Computing leafRank(i) when Z[i] < 0. Consider a leaf `u′,j. If j < i, then leafRank(j) <

leafRank(i) iff either (1) fj > 1 + strDepth(lca(`u′,j, `u,i)), or (2) Z[j] < 0. If j > i, then

leafRank(j) > leafRank(i). Thus,

leafRank(i) = 1 + fSum(`u,i) + count(1, i− 1,−σp,−1)

We summarize the leafRank computation procedure in Algorithm 4. The data structure

occupies m log σ + O(n) bits. If Z[i] > σp or Z[i] < 0, then leafRank(i) is computed in

O(1 + log σ/ log logm) time. Otherwise, we first compute zeroNode(`u,i) in O(log σ) time

using Lemma 5.6. Now, we find the desired ranges S1, S2, S3, and if required S4, all

in O(1) time. Then, N1 is computed in O(1) time, and both N2 and N4 are computed

in O(1 + log σ/ log logm) time. Thus, leafRank(i) is computed in O(log σ) time when

Z[i] ∈ [1, σp]. This concludes the proof of Lemma 5.3.

5.4.2 Finding ZeroNode

We prove Lemma 5.6 in this section. For any node x, let Lx = lmostLeaf(x) and Rx =

rmostLeaf(x). For any node x on the root to `u,i path π, define α(x) = the number

of leaves `v,j, j ∈ [Lx, Rx] such that Z[j] ≤ σp and fj ≤ strDepth(x), and β(x) =

count(Lx, Rx, 1,Z[i]). Consider a node w on π. Observe that zeroNode(`u,i) is below w

60

iff β(w) > α(w). Therefore, zeroNode(`u,i) is the shallowest node w′ on this path that sat-

isfies β(w′) ≤ α(w′). Equipped with this knowledge, now we can binary search on π (using

nodeDepth and levelAncestor operations) to find the exact location. The first question is

to compute α(x), which is handled by Lemma 5.8. A normal binary search will have to

consider m nodes on the path in the worst case. Lemma 5.9 shows how to reduce this to

dlog σe. Note that m ≥ σ. Thus, the binary search has at most dlog log σe steps, and the

total time is log log σ × d log σ
log logm

e = O(log σ), as required.

Lemma 5.8. By maintaining the wavelet tree over Z and an additional O(m)-bit data

structure, we can find α(x) in O(1 + log σ
log logm

) time.

Proof. Let A[1,m] be a bit-vector such that A[i] = 1 iff 0 < Z[i] ≤ σp. Define γ(v) as the

number of leaves `j, j ∈ [Lv, Rv] that satisfy 0 < Z[j] ≤ σp and strDepth(parent(v)) < fj ≤

strDepth(v). Traverse
←−
T in DFS order. Append γ(v) in unary to an initially empty binary

string B when entering the subtree of node v in the traversal, i.e., γ(v) is associated with

pre-order(v). Since
∑

v γ(v) ≤ m, we have |B| ≤ 3m. Maintain the rank-select structure of

Fact 2.2 on the bit-vectors A and B. The total space needed is 4m+ o(m) bits. Let α′(x)

be the number of leaves `j ∈ [Lx, Rx] such that 0 < Z[j] ≤ σp and fj > strDepth(x). Then,

l = selectB(pre-order(x), 0) and r = selectB(pre-order(`Rx), 0)

α′(x) = rankB(l, r, 1) + count(Lx, Rx,−σp,−1)

α(x) = rankA(Lx, Rx, 1)− α′(x)

Clearly, the space-and-time bounds are met. �

Lemma 5.9. Using the wavelet tree over Z and an additional O(m)-bit data structure, in

O(log σ) time, we can find an ancestor wi of `u,i such that zeroDepth(wi) < Z[i] and wi is

at most dlog σe nodes above zeroNode(`u,i), where σp ≥ Z[i] > 0.

Proof. Let g = dlog σe. We mark the nodes v in the
←−
T such that nodeDepth(v) is a multiple

of g and the subtree of v has at least g nodes. Also, mark the root node. It is easy to

61

see that (i) between any two closest marked nodes (or a lowest marked node and a leaf in

its subtree) there are at most g nodes, and (ii) the number of marked nodes is O(m/g).

Maintain a bit-vector B such that B[k] = 1 iff the node with pre-order rank k is a marked

node. Also, maintain the data structure of Fact 2.2 on B. The space needed is O(m) bits.

Let D be an array, such that D[k] equals the zeroDepth of the marked node corresponding

to the kth 1-bit in B. Given a marked node with pre-order rank k′, its corresponding

position in D is given by rankB(k′, 1). We maintain the wavelet tree of Fact 2.3 over D.

The space needed is O(m
g

log σ) = O(m) bits.

To find the desired node wi, we locate the lowest marked ancestor u of `i by traversing

the tree upwards via the parent operation. We can check if a node is marked using B

in O(1) time. The time to find u is O(log σ). Let j be the position corresponding to

u in the array D, i.e., j = rankB(pre-order(u), 1). If zeroDepth(u) = D[j] < Z[i], assign

wi = u. Otherwise, we locate the rightmost position j′ < j in D such that D[j′] < Z[i] in

O(log σ) time using the query j′ = predecessorD(j,Z[i] − 1). (Since the root r is marked

and zeroDepth(r) = 0, the position j′ exists.) Obtain the marked node v corresponding to

the j′th 1-bit in B via a selectB(j′, 1) operation. Assign wi = lca(u, v). The time required

is O(log σ). To see the correctness, observe that lca(u, v) is an ancestor of `i. For a node

x, zeroDepth(x) ≥ zeroDepth(parent(x)). Thus, zeroDepth(lca(u, v)) ≤ zeroDepth(v) < Z[i].

If wi has been incorrectly chosen, then lca(u, v) has a marked descendant u′ 6= u on the

path to u such that zeroDepth(u′) < Z[i]. But u′ appears after v and before u in pre-order,

which is a contradiction. �

5.5 Handling failure and report Transitions Succinctly

Note that for any two nodes u and v, if failure(u) = v, then it ←−−prev(v) is the longest prefix

of ←−−prev(u) that appears in T . Similar remarks hold for report(u) = v, where v is a final

node. Therefore, these transitions behave exactly in the same manner as in the case of

traditional pattern matching, and we can simply use the idea of Belazzougui to perform

these transitions (see Sections 3.3 and 3.4 in [Bel10]). We get the following lemma.

62

Lemma 5.10. By using an O(m+ d log(m/d))-bit data structure, given the label of a node

u, we can find the label of failure(u) or report(u) in O(1) time.

5.6 The Final Query Procedure

Suppose we are at a node u in T with label k. (Initially we are at the root node with

label 1.) Suppose, we have matched T [j′, j − 1]. First repeatedly apply Lemma 5.10 to

find the label of the final states reached by the report links. The occurrences of all the

patterns ending at the position j − 1 corresponding to these final states are found using

Lemma 5.1. Now, use Lemma 5.5 to find the label kv of the node (if any) v such that

v = next(u, T ′[j − j′ + 1]), where T ′ = prev(T [j′, |T |]). If v exists, then repeat the process

with node v and label kv. If v does not exist, then find the label kw of the node (if any)

w such that w = failure(u), and repeat the process with node w and label kw. The total

time required is O(|T | log σ+occ)5. The total space needed to implement Lemmas 5.1, 5.5,

and 5.10 is m log σ +O(m+ d log m
d

) bits. This concludes the proof of Theorem 5.1.

5 When we follow a failure link we remove at least one character from the beginning of the text. When
we follow a next link we advance one character at the beginning of the text. The number of such operations
is at most 2|T |. On following each report link, we report an occurrence. Each failure and report transition
needs O(1) time, and each next transition needs O(log σ) time.

63

Chapter 6
Compact Index for Order-preserving
Pattern Matching
We begin with the definition of order-preserving matching. For the sake of simplicity, we

assume Σ = {1, 2, . . . , σ}.

Definition 6.1 (Order-preserving Matching [KEF+14]). Two equal-length strings S and

S ′ over Σ are an order-preserving match (o-match) iff for any two positions i, j ∈ [1, |S|],

• S[i] < S[j] ⇐⇒ S ′[i] < S ′[j]

• S[i] = S[j] ⇐⇒ S ′[i] = S ′[j]

• S[i] > S[j] ⇐⇒ S ′[i] > S ′[j]

Thus, the strings S = 12231 and S ′ = 37793 are order-preserving. However, S = 12231

and S ′ = 34452 are not order-preserving (because S[1] = S[5] = 1 and S ′[1] > S ′[5]).

Introduced by Crochemore et al. [CIK+13], we consider the following problem:

Problem 6.1 (Order-preserving Text Indexing [CIK+13]). Let T be a text of length n over

Σ = {1, 2, . . . , σ}. Index T , such that given a pattern P (also over Σ), we can report all

the o-occurrences of P , i.e., all the starting positions of the substrings of T that are an

o-match with P .

Crochemore et al. [CIK+13] presented a Θ(n log n)-bit index for this problem with a

query time of O(|P | log σ + occ). We present the following compact index.

Theorem 6.1. By using an O(n log σ)-bit index of T , all the o-occurrences of P can be

found in O(|P | log σ log log n+ (log log n+ occ) log n logσ n) time, where occ is the number

of such o-occurrences.

6.1 Overview of Techniques

For the parameterized text indexing problem, we have seen that the main component of

the linear-space index is an encoding scheme such that two strings are a p-match iff the

64

corresponding encoded strings are a match in the traditional sense. Using the encoding

scheme, we can design a suffix tree variant (p-suffix tree), which allows us to answer a

pattern matching query efficiently. Likewise, for Problem 6.1, a similar encoding scheme is

not only desirable, but is in some sense necessary, as without such an encoding scheme, it

is almost inconceivable that we can even get a suffix-tree like solution, let alone compressed

indexes. Luckily, for order-preserving matching, there exists two encoding schemes, one by

Kim et al. [KEF+14] and the other by Crochemore et al. [CIK+13]. Needless to say, both

the schemes can be computed efficiently for any input string. Therefore, a suffix-tree like

solution is immediate. First encode each suffix with either of the encoding schemes, and

then create a compacted trie (called the order-preserving suffix tree, or o-suffix tree) with

this encoded suffixes. To find the occurrences, search the o-suffix tree with the encoded

pattern to first find the highest node u in the o-suffix tree such that the string obtained

by concatenating the edge labels from root to u is prefixed by the encoded pattern. Then,

we report the starting positions of the encoded suffixes corresponding to the leaves in the

subtree of u; this is obtained using the order-isomorphic suffix array (o-suffix array) which

stores the starting positions of the lexicographically arranged encoded suffixes. A linear-

space index using the encoding of Crochemore et al. [CIK+13] is presented in Section 6.2.

Recall that LF mapping of a leaf i in the suffix tree is a leaf j, i.e., LF(i) = j iff

SA[j] = SA[i]−1; see Section 2.3.1 for more details. The key component behind compressing

the p-suffix tree is a modified form of LF mapping. One may think that to compress the

o-suffix tree, we again need some version of LF mapping, and that is indeed the case. The

main importance of LF mapping lies in the fact that it allows us to simulate the suffix

array, which is crucial for text-indexing data structures. In fact, once we can simulate the

o-suffix array, we can find the suffix range of the encoded pattern, essentially by employing a

binary-search based approach (see Theorem 6.4). Therefore, the holy grail is to implement

LF mapping. For order-preserving text indexing, we introduce a new way of implementing

LF mapping, which we call LF Successor : if the LF successor of a leaf i in the o-suffix tree

65

is the leaf j, then LF(j) = LF(i) + 1. A sampling technique, similar to the one used for LF

mapping to suffix array transition in Theorem 4.3, is employed to make transition from LF

successor to LF mapping. Therefore, we have reduced the problem to that of computing LF

successor. See Theorem 6.3 for details on how to simulate o-suffix array from LF successor.

Theorem 6.1 is now a simple corollary. Section 6.3 contains the details.

At this point, one might wonder why we need an alternate way of implementing LF

mapping, and why will a pBWT-like approach not work. We provide some insight into

this. Recall that in the encoding scheme of Baker [Bak93], when we prepend a character

to a suffix, the encoding of at most one position in the suffix changes. Unfortunately, for

the o-matching problem, such an encoding scheme does not exist, and in fact, does not

even seem likely. In retrospect, the encoding scheme for p-matching problem is possible

because of the following phenomenon. Suppose, two strings S and S ′ are a p-match and

we want to check whether cS and c′S ′ are a p-match for some p-character c. Then, all

we have to do is make sure that the first occurrence (if any) of c in S is the same as that

of c′ in S ′. Hence, an encoding scheme which changes only one position on prepending a

character seems possible, and indeed such an encoding scheme exists for p-matching. For

o-matching, when we prepend the characters c and c′ to the already o-matched strings S

and S ′, we have to ensure that for any position i in S, S[i] has the same order w.r.t c as

S ′[i] has w.r.t to c′. Therefore, existence of a scheme that changes only one position on

prepending seems unlikely.

Luckily, for o-matching, an encoding scheme is conceivable, where the change on

prepending only occurs on the first occurrence of a distinct character. We provide the

insight behind this. Suppose, we are prepending c to S and c′ to S ′. Consider two po-

sitions i and j, such that i < j and S[i] = S[j]. Due to the order-preserving property,

we have S ′[i] = S ′[j]. Clearly, to verify if cS is an o-match with c′S ′, it suffices to verify

that the relative order between c and the first occurrence of each distinct character in S

is same as that between c′ and the first occurrence of the corresponding distinct character

66

in S ′. Indeed the encoding scheme of Crochemore et al. [CIK+13] guarantees that changes

only occur on the first occurrence of a character. This crucial insight, along with other

important definitions are presented in Section 6.4.

To implement LF successor, we first make an important observation. Assume j is the

LF successor of i, i.e., LF(j) = LF(i) + 1. Then, LF(j) is the suffix that shares the longest

prefix with LF(i) and lies to the right of LF(i). In other words, we can say that j is the

suffix that agrees the most with i when prepended by their respective previous characters

in the text, i.e., the suffixes i and j have similar points of change when prepended. Thus

in some sense, it becomes important to identify the first point of disagreement between

i and j, i.e., the first position where one suffix changes and the other one does not. We

divide the LF successor pairs i and j into two categories based on whether the first point

of disagreement between them is before or after their longest common prefix length. These

two cases are implemented in Sections 6.5 and 6.6. Lemmas 6.3, 6.11, and 6.12 are the

most important takeaways from these sections.

At this point, we have gathered enough information to identify j, given i and a suitable

range of leaves in the o-suffix tree. The question is how to identify j efficiently. We store

enough information, still only O(log σ) bits per suffix, so that locating j becomes rather

an arguably straight-forward exercise in (succinct) data structures. However, not all the

data structures that we use come in a box. Hence, we design a few in Section 6.7. Finally,

in Section 6.8, we combine these data structures, along with Lemmas 6.3, 6.11, 6.12, to

obtain a compact index for implementing LF successor.

6.2 Order-preserving Indexing

6.2.1 Encoding Scheme

We convert a string S to a string order(S) as follows. Let i ∈ [1, |S|] and p− (resp. p+)

be the highest value (resp. lowest value) in S[1, i − 1] that is at most S[i] (resp. at least

S[i]). Let j− (resp. j+) be the rightmost occurrence of p− (resp. p+) in [1, i). If p− (resp.

p+) does not exist, then assign j− = i (resp. j+ = i). Assign, order(S)[i] = 〈i− j−, i− j+〉.

67

Thus, order(43665) = 〈0, 0〉〈0, 1〉〈2, 0〉〈1, 1〉〈4, 1〉. Although we can compute order(S) in

O(|S| log σ) time using a balanced binary search tree, we employ the more general method

of Lemma 6.1, which shall be required later.

Lemma 6.1. Given a string S over Σ, let S ′ = S[j, k] be an arbitrary substring of S. We

can compute order(S ′)[i], 1 ≤ i ≤ |S ′|, in O(log σ) time after an initial pre-processing of S

in O(|S| log σ) time.

Proof. We first construct the wavelet tree of Fact 2.3 over S. Using the algorithm of

Grossi et al. [GGV03], this can be achieved in O(|S| log σ) time. Then, order(S ′)[i] =

〈i− prevValS(j, j + i− 1), i− nextValS(j, j + i− 1)〉 is computed in O(log σ) time. �

Two pairs 〈xi, yi〉 and 〈xj, yj〉 in this encoding scheme are the same iff xi = xj and

yi = yj. Lexicographic order is defined first by comparing xi and xj and then (if xi = xj)

by comparing yi and yj. As a convention, we use the lexicographic order: 0 ≺ 1 ≺ · · · ≺ $.

Fact 6.1 ([CIK+13]). Two strings X and Y are order-preserving iff order(X) = order(Y).

Also, X is order-preserving with a prefix of Y iff order(X) is a prefix of order(Y).

6.2.2 Order-preserving Suffix Tree

Let P = {order(T [i, n])〈$, $〉 | 1 ≤ i ≤ n}, where $ /∈ Σ. The order-preserving suffix tree

oST of T is the compacted trie of the strings in P . The suffix tree occupies Θ(n log n) bits,

has one leaf per suffix, and each edge (u, v) is labeled by a substring of order(T [j, n])〈$, $〉,

where T [j, n] is a suffix corresponding to a leaf in the subtree of v. We assume that leaves

are arranged from left to right in the lexicographic order of the corresponding order-encoded

suffix. We use `i to denote the ith leftmost leaf. To find all occ occurrences of P , first

compute order(P) in O(|P | log σ) time using Lemma 6.1. Now, trace the path to the highest

node u (called locus) such that order(P) is a prefix of path(u), the concatenation of edge

labels from the root to u. Each occurrence is given by oSA[i], sp ≤ i ≤ ep, where [sp, ep]

is the suffix range of P , i.e., the leaves under u. Here, oSA is the order-preserving suffix

68

array, i.e., oSA[i] = j and i = oSA−1[j] iff i is the lexicographic rank of order(T [j, n])〈$, $〉

in P . The time needed to report all the occ occurrences is O(|P | log σ + occ).

6.3 LF Successor

As discussed in the previous section, for supporting pattern matching, we need to (a)

compute the suffix range of order(P) and (b) decode suffix array values. By using the

wavelet tree over T (see Fact 2.3) and an additionalO(n)-bit data structure, we can compute

the suffix range efficiently, provided that we can decode suffix array values. Therefore, the

main task is to simulate the suffix array. To this end, we store a sampled suffix array, i.e.,

we store oSA[i] if oSA[i] ∈ {1, 1 + ∆, 1 + 2∆, . . . , n}. Now, the original suffix array can be

simulated via order-preserving LF mapping. For any two leaves `i and `j, LF mapping is

defined as:

j = oLF(i) and i = oLF−1(j) iff j = oSA−1[oSA[i]− 1], where oSA−1[0] = oSA−1[n]

To find oSA[i], we repeatedly apply LF mapping starting from i until we reach j such

that oSA[j] has been sampled; then, oSA[i] = oSA[j] + k, where k is the number of oLF

operations applied. By choosing ∆ = logσ n, we can bound k by ∆ and the sampled suffix

array size by O(n log σ) bits. Thus, we have reduced the problem to that of computing

oLF(i). We present a new way of computing oLF(i), called LF successor, defined as:

j = oLFs(i), i.e., j is the order-preserving LF successor of i iff

j = oLF−1(oLF(i) + 1), where oLF(i) < n

To compute LF mapping from LF successor, we again use a sampling technique as

above. Thus, the problem has been reduced to computing LF successor. Our approach to

compute LF successor is via Theorem 6.2; note that lexRank(i) closely resembles oLFs(i)

when X is the set of suffixes of T and xi is the previous character of each suffix.

69

Theorem 6.2. Let X be a collection of κ strings {X1, X2, . . . , Xκ} over Σ. Each Xi is

associated with a character xi ∈ Σ. We assume that X is prefix free, i.e., Xi is not an

o-match with a prefix of any other Xj.

Define lexRank(i) to be the lexicographic rank of order(xiXi) in {order(xkXk) | 1 ≤ k ≤ κ}.

Define succ(i) = j iff lexRank(j) = lexRank(i) + 1, where lexRank(i) < κ. By using an

O(κ log σ)-bit data structure, we can compute succ(i) in O(log σ) time.

We defer the proof of the above theorem to Sections 6.4 through 6.8. Instead, we now

focus on how to compute LF successor using Theorem 6.2. Following this, we decode suffix

array values using the techniques discussed previously; Theorem 6.3 presents the details.

Theorem 6.3. By using an O(n log σ)-bit data structure, we can compute

(a) oLFs(i) in O(log σ) time, and

(b) oSA[i] in O(logσ n log n) time.

Proof. (a) We use Theorem 6.2 with X = {T [i, n]$ | 1 < i ≤ n}, where $ /∈ Σ is lex-

icographically larger than any integer. For any string S over Σ, we have order(S$) =

order(S)〈$, $〉. Note that X is prefix-free and does not contain the string T [1, n]. Let p be

the leaf in the order-preserving suffix tree ST that corresponds to T [1, n], i.e., p = oSA−1[1].

We number the strings in X according to the lexicographic order of the corresponding order-

encoded suffix of T . Thus, the ith string in X corresponds to the jth leaf in oST as follows:

i = j if j < p and i = j − 1 if j > p. Let γ(i) = j and i = γ−1(j) if the ith string in X

corresponds to the jth leaf in oST. Clearly, both γ and γ−1 operations can be implemented

in O(1) time. For every i ∈ [1, n − 1], we associate the character xi = T [oSA[γ(i)] − 1]

with the string Xi = T [oSA[γ(j)] − 1, n]$ ∈ X . For the leaf `p ∈ oST, we explicitly store

oLFs(p). Also, we explicitly store q with oLFs(q) = p. The space needed is O(log n) bits.

Therefore, given p or q, we can return oLFs(p) or oLFs(q) in O(1) time. For any other i,

we compute oLFs(i) = γ−1(succ(γ(i))) via Theorem 6.2 in O(log σ) time. The total space

usage is O(n log σ + log n) = O(n log σ) bits.

70

(b) We employ perfect hashing [FKS84] to store the 〈j, oLF(j)〉 key-value pairs for all j such

that oLF(j) belongs to {1, 1 + ∆, 1 + 2∆, 1 + 3∆, . . . , n}, where ∆ = dlogσ ne. Using this,

given a j, one can check if oLF(j) has been stored (and also retrieve the value) in O(1) time.

The space needed is O((n/∆) log n) bits. Then oLF(i) is computed in O(1) time if its value

has been explicitly stored. Otherwise, we apply successive oLFs operations starting from i

until we reach an index j such that oLF(j) has been explicitly stored. Let the number of

oLFs operations be k, and let the indexes yielded be i1, i2, . . . , ik = j in that order. We have

the following telescoping series: oLF(i1) = oLF(i) + 1, oLF(i2) = oLF(i1) + 1, . . . , oLF(ik) =

oLF(ik−1) + 1. Then, oLF(ik) = oLF(j) = oLF(i) + k. Clearly, k ≤ ∆ and the time required

is O(∆·log σ). To compute oSA[i], maintain a ∆-sampled suffix array as in the case of LF. If

oSA[i] has not been explicitly stored, then starting from i, apply oLF operation k times until

we hit an index j such that oSA[j] has been explicitly stored. We have oSA[j] = oSA[i]−k.

Since k ≤ ∆, the time required is O(∆2 · log σ) = O(logσ n log n). The total space occupied

by the data structure is O((n/∆) log n) = O(n log σ) bits. �

At the beginning of this section, we claimed that if we can compute suffix array values,

then we can find the suffix range of order(P). The technique is rather standard and the

details are presented in Theorem 6.4.

Theorem 6.4. Assume oSA[i] is computed in time toSA and for any substring S of T or

P , order(S)[i] in time torder. By using an additional O(n)-bit data structure, we can find all

occ occurrences of P in T in time O(|P |torder log log n+ (log log n+ occ) · toSA).

Proof. Given a range R = [x, y] of leaves in oST, we can compute the maximal subrange of

R such that for each `i in this subrange, order(P) is a prefix of order(T [oSA[i], n]). This is

achieved via a binary search on R using oSA (see e.g., [Gus97] for more details on how this

binary search is performed). The time needed is O((|P |torder + toSA) · log |R|). Thus, if the

range is R = [1, n], we can find the suffix range of P in time O(|P |torder log n+ toSA · log n).

We show that by maintaining slightly more additional information, we can improve this. We

71

maintain a compacted trie oST∆ of the strings order(T [oSA[i], n]), where i ∈ {1, 1 + ∆, 1 +

2∆, . . . , n} and ∆ = dlog ne. Given P , we match order(P) in oST∆ until we reach a position

on an edge (u, v), where either P is completely matched or a mismatch is found. Searching

in oST∆ can be performed in O(|P |torder) time if the internal nodes in oST∆ are equipped

with perfect hashing [FKS84] for selecting the correct outgoing edge (if any) in O(1) time.

Then, the desired suffix range in oST corresponds to the leaves under v (if P was completely

matched), and at most 2∆ leaves on either side of the leaves under v. Clearly, the desired

suffix range [sp, ep] of order(P) is found in time O(|P |torder+(|P |torder+toSA)·log ∆). Finally,

each occurrence is given by oSA[i], sp ≤ i ≤ ep, and is reported in O(toSA) time. The total

space occupied is O((n/∆) log n) = O(n) bits. �

6.3.1 Proof of Main Result

Now, we have the ingredients to prove Theorem 6.1.

The data structure comprises of a wavelet tree over T ; see Fact 2.3. The space required

is n log σ + o(n) bits. Applying Theorem 6.3, oSA[i] is computed in toSA = O(logσ n log n)

time via an O(n log σ)-bit data structure. By invoking Lemma 6.1, for any substring S of

T or P , order(S)[i] is computed in time torder = O(log σ). Thus, using Theorem 6.4, we can

find the suffix range of order(P) in O((|P | log σ+logσ n log n) · log log n) time. Theorem 6.1

follows immediately.

The remaining challenge in this chapter is to prove Theorem 6.2. The proof is technical

and requires numerous supporting lemmas and data structures. We split the proof over

Sections 6.4 – 6.8.

6.4 Some Useful Definitions

Let TX be the compacted trie of the strings {order(Xi) | 1 ≤ i ≤ κ}. Note that TX has κ

leaves (since X is prefix free, each string in X corresponds to a unique leaf in TX). Let the

ith leftmost leaf correspond to Xi.

72

Definition 6.2. Define α(S) to be the number of distinct symbols in a string S. Let `i

denote the ith leftmost leaf in TX , which is associated with the string Xi and the char-

acter xi; we use “leaf i” to denote `i. Define path(u) to be the string formed by con-

catenating the edge-labels from the root to u, strDepth(u) = |path(u)| and zeroDepth(u) =

α(Xi[1, strDepth(u)]), where `i lies in the subtree of u. Let lcp(i, j) be the length of the

longest common prefix (LCP) of order(Xi) and order(Xj), i.e., lcp(i, j) = strDepth(lca(`i, `j)).

Definition 6.3. d is a point of change of i iff order(Xi)[d] 6= order(xiXi)[d + 1]. d is a

point of disagreement of i and j iff order(xiXi)[d+ 1] 6= order(xjXj)[d+ 1]. Let δ(i, j)

denote the first point of disagreement of i and j; then, we say i and j agree upto the

position δ(i, j)− 1.

We present some important properties, which can be easily derived from the definition

of order and the definitions above.

Observation 6.1. Given a string S, let |S| ≥ q > p ≥ 1, 〈p−, p+〉 = order(S)[p], and

〈q−, q+〉 = order(S)[q]. Define line segments L−(S, p) = (p, S[p]) → (p′−, S[p′−]) and

L+(S, p) = (p, S[p]) → (p′+, S[p′+]), where p′− = i − p− and p′+ = i − p+. Likewise, define

L−(S, q) and L+(S, q). Let LS,q be the projection of L−(S, q) or L+(S, q) onto the y-axis.

(The projection of a line from (x1, y1)→ (x2, y2) onto the y-axis is the line (0, y1)→ (0, y2).)

Likewise, define LS,p. Then, LS,q is either contained in LS,p, or they are disjoint except

(possibly) at the end points.

Observation 6.2. Let S and S ′ be two strings such that order(S) = order(S ′). Consider

the line segments LS,q, LS′,q, LS,p, and LS′,p, as defined in Observation 6.1, where |S| ≥

q > p ≥ 1. Then, the line segment LS,q is contained in LS,p iff LS′,q is contained in LS′,p.

Observation 6.3. Let d be a point of change of i, and 〈d−, d+〉 = order(Xi)[d]. Then the

horizontal line through xi intersects at least one of the lines L−(Xi, d) or L+(Xi, d). Also,

xi and Xi[d] do not appear in Xi[1, d− 1]; hence, α(Xi[1, d]) = α(Xi[1, d− 1]) + 1.

73

The main idea is to classify the LF-successor pairs 〈i, j = succ(i)〉 based on their first

point of disagreement δ(i, j) and lcp(i, j). The first case, when δ(i, j) ≤ lcp(i, j), follows

directly from Observations 6.1 and 6.3; the details are in Section 6.5. The other case,

when δ(i, j) > lcp(i, j), needs much more machinery; the details are in Section 6.6. At this

point, we have gathered enough information for identifying j. Now, we transform this into

a data structure problem. By using existing data structures (Fact 2.3 and 2.4), along with

standard encoding tricks, we prove Theorem 6.2; the details are in Sections 6.7 and 6.8.

6.5 Successor Pair First Disagree Before their LCP

Let j = succ(i), where δ(i, j) ≤ lcp(i, j). We note that δ(i, j) is a point of change of j

(follows from lexicographic convention 0 ≺ 1 ≺ · · · ≺ $). Assume δ(i, j) lies on the edge

from u to its parent. Using Lemmas 6.2 and 6.3, we show that there cannot be a leaf `l,

such that l 6= i, l ∈ [lmostLeaf(u), rmostLeaf(u)] and δ(i, j) = δ(l, succ(l)). Thus, j is a leaf

in the subtree of u, which first disagrees with i at δ(i, j). By storing α(Xi[1, δ(i, j)]) at

both i and j, we can identify j.

Definition 6.4. Let j = succ(i). Define two arrays αDisagree and αDisagree as follows. If

δ(i, j) ≤ lcp(i, j), αDisagree[i] = αDisagree[j] = α(Xi[1, δ(i, j)]). Otherwise, αDisagree[i] =

αDisagree[j] = 0.

Lemma 6.2. If q ≤ lcp(s, t) is a point of change of s and t, then δ(s, t) ≥ q.

Proof. Since lcp(s, t) ≥ q, order(Xs[1, q]) = order(Xt[1, q]). Consider a position p < q.

Let 〈p−, p+〉 = order(Xs)[p] = order(Xt)[p], 〈ps−, ps+〉 = order(xsXs)[p + 1] and 〈pt−, pt+〉 =

order(xtXt)[p+ 1]. Let LXs,q be the projection of the line L+(Xs, q) or L−(Xs, q) onto the

y-axis (see Observation 6.1). Likewise, define LXt,q, LXs,p, and LXt,p. By Observation 6.2,

LXs,q is contained in LXs,p iff LXt,q is contained in LXs,p. Since q is a point of change for

both s and t, applying Observation 6.3, we get ps− 6= p− iff pt− 6= p− and ps+ 6= p+ iff

pt+ 6= p+. Hence, the lemma follows. �

74

Lemma 6.3. Let αDisagree[i] > 0 and j = succ(i). Let u be the highest node on the root to

`i path such that zeroDepth(u) ≥ αDisagree[i]. There is exactly one k ∈ [lmostLeaf(u), rmostLeaf(u)]

such that αDisagree[k] = αDisagree[i]. Moreover, j = k.

Proof. Since j ∈ [lmostLeaf(u), rmostLeaf(u)], it suffices to show there is exactly one k ∈

[lmostLeaf(u), rmostLeaf(u)], where αDisagree[k] = αDisagree[i]. Assume there exists k, k′ ∈

[lmostLeaf(u), rmostLeaf(u)], where αDisagree[i] = αDisagree[k] = αDisagree[k′]. Then

there exists l, l′ ∈ [lmostLeaf(u), rmostLeaf(u)] satisfying k = succ(l), k′ = succ(l′), and

αDisagree[l] = αDisagree[l′] = αDisagree[k]. Applying Observation 6.3, δ(k, l) = δ(k′, l′);

otherwise α(Xk[1, δ(k, l)]) 6= α(Xk′ [1, δ(k
′, l′)]), a contradiction. Since lexRank(k) > lexRank(l)

and lexRank(k′) > lexRank(l′), d = δ(k, l) is a point of change for k and k′. Applying

Lemma 6.2, δ(k, k′) ≥ d. Consequently, l, l′, k, and k′ agree upto d− 1 characters. Hence,

the strings order(xkXk) and order(xk′Xk′) are both lexicographically larger than the strings

order(xlXl) and order(xl′Xl′), i.e., min{lexRank(k), lexRank(k′)} > max{lexRank(l), lexRank(l′)}.

Consequently, k = succ(l) and k′ = succ(l′) do not simultaneously hold, a contradiction. �

6.6 Successor Pair First Disagree After their LCP

Let j = succ(i), where δ(i, j) > lcp(i, j). We consider two cases: i < j and i > j. Under

the respective cases, given i, we will first find a range of leaves such that j is the leftmost

(or the only leaf) in this range that agrees with i upto their LCP. To identify j, we will

record zeroDepth(lca(i, j)) with both i and j; this is handled in Sections 6.6.1 and 6.6.2 for

the two cases respectively. The only remaining question is to filter out the leaves in this

range that disagree with i before their LCP; Section 6.6.3 handles this.

Definition 6.5. Let j = succ(i). If j > i then let c = zeroDepth(lca(i, j)), else c =

−zeroDepth(lca(i, j)). Define two arrays αLCP and αLCP as follows. If δ(i, j) > lcp(i, j),

αLCP[i] = αLCP[j] = c, else αLCP[i] = αLCP[i] = 0.

Lemma 6.4. Consider two leaves `s and `t, and let d = lcp(s, t). Furthermore, let

〈p−, p+〉 = order(Xs)[d+ 1] and 〈q−, q+〉 = order(Xt)[d+ 1]. Then, p− 6= q− and p+ 6= q+.

75

Proof. Since d = lcp(s, t), p− = q− and p+ = q+ do not simultaneously hold. Let p− = q−

but p+ 6= q+. A simple analysis shows that this contradicts the definition of order(Xs)[d+1]

or order(Xt)[d+ 1]. The case when p+ = q+ but p− 6= q− does not hold by symmetry. �

Lemma 6.5. Consider two leaves `s and `t, and let d = lcp(s, t). Furthermore, let

〈p−, p+〉 = order(Xs)[d + 1], 〈q−, q+〉 = order(Xt)[d + 1], 〈p′−, p′+〉 = order(xsXs)[d + 2],

and 〈q′−, q′+〉 = order(xtXt)[d + 2]. If p− 6= p′− and q− 6= q′− (or, p+ 6= p′+ and q+ 6= q′+),

then δ(s, t) ≤ d.

Proof. We invoke Lemma 6.4 to establish p− 6= q− and p+ 6= q+. Now, consider the lines

L−(Xs, d + 1) and L−(Xt, d + 1) in Observation 6.1. Let Ls/Lt be the horizontal lines

through xs/xt. It can be shown via a simple (but tedious) case-by-case analysis that if Ls

and Lt intersect L−(Xs, d+1) and L−(Xt, d+1) respectively, then there is a position d′ ≤ d

where Ls will intersect L+(Xs, d
′) (resp. L−(Xs, d

′)) but Lt will not intersect L+(Xt, d
′)

(resp. L−(Xt, d
′)); now, we apply the first part of Observation 6.3 to establish our claim.

Similar remarks hold if Ls and Lt intersect L+(Xs, d+1) and L+(Xt, d+1) respectively. �

6.6.1 Case When i < succ(i)

Let i < j = succ(i). We record αi = zeroDepth(lca(i, j)) for both i and j. Using Lemma 6.6,

we find a range of leaves [L,R] which contains the rightmost leaf `k, i < k < j, such that

αLCP[k] = αLCP[i] and δ(k, i) > lcp(i, j). Given this range, j > R is the leftmost leaf that

has αi recorded with itself and agrees with i upto their LCP. We find j using Lemma 6.7.

Lemma 6.6. Let j = succ(i) and αLCP[i] > 0. Let k be the rightmost leaf in [i+ 1, j − 1]

satisfying αLCP[k] = αLCP[i] and δ(i, k) > lcp(i, j). Then, (a) lcp(i, k) > lcp(i, j), and

(b) 1 + lcp(i, j) < δ(i, k) ≤ lcp(i, k) + 1, and δ(i, k) is a point of change of i.

Proof. Let k = succ(l). Since αLCP[k] > 0, we have l < k and δ(l, k) > lcp(l, k).

(a) We show contradiction in the following cases, which leads to the claim.

• Assume lcp(i, k) = lcp(k, j) = lcp(i, j). Let, d = lcp(i, j) + 1. Since j = succ(i), either

lexRank(k) > lexRank(j) or lexRank(k) < lexRank(i). If d is not a point of change of

76

k, either j = succ(i) is violated or δ(i, j) > lcp(i, j) is violated (applying Lemma 6.5).

Hence, d is a point of change of k, implying lexRank(k) > lexRank(j) and α(Xk[1, d]) =

1 + zeroDepth(lca(i, j)). If lcp(l, k) < lcp(i, j), then i, j, l, and k agree upto lcp(l, k),

implying k 6= succ(l), a contradiction. If lcp(l, k) = lcp(i, j), then either k 6= succ(l) or

δ(l, k) < lcp(i, j) = lcp(l, k) applying Lemma 6.5, a contradiction. If lcp(l, k) > lcp(i, j),

then zeroDepth(lca(k, l)) = αLCP[k] ≥ α(Xk[1, d]) > zeroDepth(lca(i, j)) = αLCP[i], a

contradiction. Therefore, our assumption is false.

• Assume lcp(k, j) > lcp(i, j). Using arguments as in the previous case, we first conclude

that δ(k, j) ≤ lcp(k, j) + 1 is a point of change of k. Then we use this conclusion to

contradict at least one of the following: j = succ(i), or δ(i, j) < lcp(i, j), or k = succ(l),

or δ(l, k) < lcp(l, k), or αLCP[k] = αLCP[i].

(b) Note that lcp(i, j) + 1 is not a point of change of k or i; otherwise, applying arguments

as above, at least one of the following is violated: k = succ(l), or αLCP[k] = αLCP[i], or

δ(l, k) < lcp(l, k). Since j = succ(i), the claim follows. �

The following lemma is our main result in this subsection.

Lemma 6.7. Let αLCP[i] > 0 and j = succ(i). Let k be the rightmost leaf in [i+ 1, j − 1]

such that αLCP[k] = αLCP[i] and δ(i, k) > lcp(i, j). If k does not exist, then assign u = `i.

Otherwise, let d = δ(i, k) lie on the edge (v, w), v = parent(w). If d = strDepth(v)+1, then

assign u = v, else assign u = w. Let k′ be the leftmost leaf in [rmostLeaf(u) + 1, n], where

αLCP[k′] = αLCP[i] and δ(i, k′) > lcp(i, k′). Then, we claim that j = k′.

Proof. Assume k exists. Applying Lemma 6.6, d is a point of change of i. If d =

strDepth(v) + 1, then j /∈ [lmostLeaf(v), rmostLeaf(v)]; otherwise, d = lcp(i, j) + 1, a contra-

diction (applying Lemma 6.6). If d > strDepth(v) + 1, then j does not lie in the subtree of

w as δ(i, k) ≤ lcp(i, j), a contradiction. Hence, j must be leaf to the right of the subtree of

u. Assume j 6= k′. Then j = k′′ for some k′′ ∈ [k′ + 1, n] that satisfies αLCP[k′′] = αLCP[i]

and δ(i, k′′) > lcp(i, k′′). Note that lcp(i, k′) ≥ lcp(i, k′′). Thus, i, k and k′′ all agree upto

77

lcp(i, k′′), i.e., δ(i, k′) > lcp(i, k′′) = lcp(i, j). But this violates the definition of k and node

u. A similar argument satisfies the claim when k does not exist. �

6.6.2 Case When i > succ(i)

Let i > j = succ(i). We record αi = −zeroDepth(lca(i, j)) for both i and j. Let u be the

child of lca(j, i) on the path to `j. Using Lemma 6.8, the first position after lcp(i, j) must

be a point of change of j, and u has only leaf (which is the desired leaf j) that has αi

recored with itself and agrees with i upto their LCP. Lemma 6.9 shows how to find j.

Observation 6.4. Let i > j = succ(i) and d = lcp(j, i) < δ(j, i). Then, d is a point of

change of j. Also, p− 6= p′−, where 〈p−, p+〉 = order(Xj)[d+1] and 〈p′−, p′+〉 = order(xjXj)[d+

2]. Applying Lemma 6.5, since δ(j, i) > lcp(j, i), we have q− = q′−, where 〈q−, q+〉 =

order(Xi)[d+ 1] and 〈q′−, q′+〉 = order(xiXi)[d+ 2].

Lemma 6.8. Let j = succ(i) and αLCP[i] < 0. Let u be the child of lca(j, i) on the

path to `j. Then, lcp(j, i) + 1 is a point of change for j and there is no other k ∈

[lmostLeaf(u), rmostLeaf(u)] that satisfies αLCP[k] = αLCP[i] and δ(k, i) > lcp(k, i).

Proof. Since δ(j, i) > lcp(j, i) and j = succ(i), it follows that δ(j, i) = lcp(j, i) + 1 is

a point of change of j. For contradiction, assume k 6= j satisfies the above conditions,

and let k = succ(l). Clearly, lcp(k, i) = lcp(j, i); hence, i, j and k agree upto lcp(i, j).

Note that lcp(k, l) ≤ lcp(k, i) = lcp(j, i); otherwise, αLCP[k] = −zeroDepth(lca(k, l)) ≤

−α(Xj[1, 1 + lcp(j, i)]) = −(1 + zeroDepth(lca(j, i))) < αLCP[i], a contradiction (refer to

Observation 6.3). Since αLCP[k] < 0, l > k and lcp(k, l) + 1 is a point of change of k. If

lcp(k, l) < lcp(j, i), then αLCP[i] = −zeroDepth(lca(j, i)) ≤ −(1 + zeroDepth(lca(k, l))) <

αLCP[k], a contradiction. If lcp(k, l) = lcp(j, i), then applying Observation 6.4, at least one

of k = succ(l) or j = succ(i) is violated. �

Now, we proceed to the prove our main result in this subsection, summarized in the

following lemma.

78

Lemma 6.9. Let αLCP[i] < 0 and j = succ(i). Let v be the lowest ancestor of `i that has

a child u such that pre-order(u) < pre-order(`i), u is not an ancestor of `i, and there is a

k ∈ [lmostLeaf(u), rmostLeaf(u)] with (a) αLCP[k] = αLCP[i], (b) δ(k, i) > lcp(k, i), and

(c) strDepth(v) + 1 is a point of change of k. Then, u and k are both unique, and j = k.

Proof. We first assume that u is unique, and we show that k is unique and j = k. In the

second part of the proof, we show that u is indeed unique.

Applying Lemma 6.8, we conclude that if j ∈ [lmostLeaf(u), rmostLeaf(u)] then k is

unique and j = k. Therefore, it suffices to show that j ∈ [lmostLeaf(u), rmostLeaf(u)].

Consider the set W of all nodes w such that parent(w) is an ancestor of `i but w is not,

pre-order(w) < pre-order(`i), and there exists a k′ ∈ [lmostLeaf(w), rmostLeaf(w)] with

αLCP[k′] = αLCP[i], δ(k′, i) > lcp(k′, i) and the leading character on the edge (parent(w), w)

is a point of change of k′. Clearly, j ∈ [lmostLeaf(w′), rmostLeaf(w′)] for a node w′ ∈ W

and u ∈ W . If u 6= w′, then nodeDepth(w′) < nodeDepth(u); otherwise, v = parent(u) has

lower node-depth than parent(w′). Let k = succ(l). Since pre-order(w′) < pre-order(u), we

get j < k and lcp(j, i) < lcp(k, i). Now, i and j agree upto lcp(j, i), and lcp(j, i) is a point

of change of j (applying Observation 6.4). Also, i and k agree upto lcp(k, i), and lcp(k, i)

is a point of change of k. Applying Observation 6.4, we get lexRank(j) > lexRank(k) >

lexRank(i), which contradicts j = succ(i). Hence, j ∈ [lmostLeaf(w′), rmostLeaf(w′)].

Suppose, v has two children u1 and u2, neither of which is an ancestor of `i. For t ∈

{1, 2}, assume pre-order(ut) < pre-order(`i), there exists a kt ∈ [lmostLeaf(ut), rmostLeaf(ut)]

with (i) αLCP[kt] = αLCP[i], (ii) δ(kt, i) > lcp(kt, i), and (iii) the leading character on

the edge (v, ut) is a point of change of kt. Let kt = succ(lt). First observe that lcp(j, i) ≤

lcp(kt, t); otherwise nodeDepth(lca(j, i)) > nodeDepth(v) which contradicts the definition of

node v (since j will end up satisfying (a)-(c) in the lemma statement by replacing k with

j). Now observe that lcp(kt, lt) ≤ lcp(kt, i); otherwise, αLCP[kt] = −zeroDepth(lca(kt, lt)) ≤

−(1 + zeroDepth(v)) ≤ −(1 + zeroDepth(lca(j, i))) < αLCP[i], a contradiction (refer to

Observation 6.3). Since k1 and k2 agree upto strDepth(v) and both have a point of change

79

at strDepth(v) + 1, applying Observation 6.4, we will contradict either k1 = succ(l1) or

k2 = succ(l2). Hence, there exists only such node u. �

6.6.3 Eliminating Rogue Candidate Leaves

At this point, we are equipped with Lemmas 6.7 and 6.9 for finding j = succ(i) for a given

i, where αLCP[i] 6= 0. Specifically, given some appropriate leaf range (determined by the

node u in the two lemmas), we have to find the (leftmost) leaf k in the range that satisfies

αLCP[k] = αLCP[i] and δ(k, i) > lcp(k, i). The first task is to find the proper range (which

we will handle later), and the other is to ignore leaves k′ that satisfy δ(k′, i) ≤ lcp(k′, i).

We now concentrate on the second and introduce the following definition.

Definition 6.6. For any string S[1, s] and a character c, we let χ(S, c) = 〈x, y〉, where x

(resp. y) is the number of distinct symbols in S that are smaller than c (resp. greater than

c), i.e., x = |{S[i] | S[i] < c and i ∈ [1, s]}| and y = |{S[i] | S[i] > c and i ∈ [1, s]}|.

Lemma 6.10. Consider two strings S and S ′, where order(S) = order(S ′). Then, for any

two characters c, c′ ∈ Σ, order(cS) = order(c′S ′) iff χ(S, c) = χ(S ′, c′).

Proof. Consider the line segments L−(S, p) and L−(S ′, p) in Observation 6.1. Since order(S) =

order(S ′), for any p, L−(S, p) has the same x-ordinate at the two ends as that of L−(S ′, p).

Since χ(S, c) = χ(S ′, c′), the line L−(S, p) is intersected by the horizontal line through c iff

L−(S, p′) is intersected by the horizontal line through c′. Similar remarks hold for the lines

L+(S, p) and L+(S ′, p). Hence, the claim. �

Consider the node u in Lemmas 6.7 and 6.9. Also, consider a leaf `k, where k >

rmostLeaf(u) in Lemma 6.7 and k ∈ [lmostLeaf(u), rmostLeaf(u)] in Lemma 6.9. In both

the lemmas, let k 6= j and αLCP[k] = αLCP[i]. Then, δ(k, i) ≤ lcp(k, i) in both the lemmas.

Let k = succ(l). Then, l and k agree upto lcp(l, k), but they disagree with i and j before

d = min{lcp(i, j), lcp(l, k)}. Applying Lemma 6.10, χ(Xl[1, d], xl) 6= χ(Xi[1, d], xi). With

this intuition,

80

Definition 6.7. Define two arrays Group and Group as follows. For any i with αLCP[i] 6= 0

and j = succ(i), Group[i] = Group[j] = χ(Xi[1, lcp(i, j)], xi) = χ(Xj[1, lcp(i, j)], xj).

We rewrite Lemmas 6.7 and 6.9 as Lemmas 6.11 and 6.12 respectively.

Lemma 6.11. Let αLCP[i] > 0 and j = succ(i). Let k be the rightmost leaf in [i+ 1, j− 1]

such that αLCP[k] = αLCP[i] and δ(i, k) > lcp(i, j). If k does not exist, then assign u = `i.

Otherwise, let d = δ(i, k) lie on the edge (v, w), v = parent(w). If d = strDepth(v)+1, then

assign u = v, else assign u = w. Let k′ be the leftmost leaf in [rmostLeaf(u) + 1, n], where

αLCP[k′] = αLCP[i] and Group[k′] = Group[i]. Then, we claim that j = k′.

Proof. Assume there exists a leaf k′′ ∈ [rmostLeaf(u) + 1, j − 1] satisfying αLCP[k′′] =

αLCP[i] and Group[k′′] = Group[i]. By Lemma 6.7, δ(k′′, i) ≤ lcp(i, j). Let k′′ = succ(l′′).

Let w be lca(i, j) or lca(l′′, k′′), whichever has lower node-depth, breaking ties arbitrar-

ily. Since αLCP[l′′] = αLCP[i], it follows that zeroDepth(lca(i, j)) = zeroDepth(lca(l′′, k′′)).

Therefore, no position on the path between lca(i, j) and lca(l′′, k′′) is a point of change (refer

to Observation 6.3). Let w = lca(l′′, k′′). Then, χ(Xi[1, strDepth(w)], xi) = χ(Xi[1, lcp(i, j)], xi) =

Group[i] = Group[k′′] = χ(Xk′′ [1, strDepth(w)], xk′′). This implies δ(k′′, i) > lcp(i, j), a con-

tradiction. Similarly, choosing w = lca(i, j) yields a contradiction. �

Lemma 6.12. Let αLCP[i] < 0 and j = succ(i). Let v be the lowest ancestor of `i that has

a child u, where pre-order(u) < pre-order(`i), u is not an ancestor of `i, and there exists a

k ∈ [lmostLeaf(u), rmostLeaf(u)] with (a) αLCP[k] = αLCP[i], (b) Group[k] = Group[i] and

(c) strDepth(v) + 1 is a point of change of k. Then, we claim that both u and k are unique.

Moreover, j = k.

Proof. We first note that j ∈ [1, rmostLeaf(u)]; otherwise, this contradicts the definition

of v and u. Let k = succ(l) for some l. Since l > k and strDepth(v) + 1 is a point of

change of k, we have lcp(k, l) ≤ lcp(k, i); otherwise, αLCP[k] = −zeroDepth(lca(k, l)) ≤

−(1 + zeroDepth(lca(k, i))) ≤ −(1 + zeroDepth(lca(j, i))) < αLCP[i], a contradiction. Also,

1 + lcp(k, l) is a point of change of k (applying Observation 6.4). If lcp(k, l) < lcp(j, i),

81

then zeroDepth(lca(j, i)) > zeroDepth(lca(k, l)), which contradicts αLCP[l] = αLCP[i]. If

lcp(j, i) ≤ lcp(k, l) < lcp(k, i), then applying Observations 6.4, it is straightforward to show

that either j = succ(i) or k = succ(l) is violated. Hence, lcp(j, i) ≤ lcp(k, i) = lcp(k, l).

Since αLCP[l] = αLCP[i], we have zeroDepth(lca(j, i)) = zeroDepth(lca(k, l)). Therefore,

no position on the path between lca(j, i) and lca(k, l) is a point of change (refer to Obser-

vation 6.3). Then, χ(Xi[1, lcp(k, i)], xi) = χ(Xi[1, lcp(j, i)], xi) = Group[i] = Group[k] =

χ(Xk[1, lcp(k, l)], xk) = χ(Xk[1, lcp(k, i)], xk). Now, by applying Lemma 6.10, we get

δ(k, i) > lcp(k, i). Using Lemma 6.9, we have j = k. �

6.7 Data Structure Toolkit

Moving forward, any array (where required) has been pre-processed with Fact 2.3. Trees are

pre-processed using Fact 2.4. We also need a few supporting data structures, summarized

in Lemmas 6.13, 6.14, 6.15, and 6.16.

Lemma 6.13. By using an O(n log σ) bit data structure, given a leaf `i and an integer W ,

we can find the highest ancestor w of `i satisfying zeroDepth(w) ≥ W in O(log σ) time.

Proof. Create an array A such that A[k] = zeroDepth(u), where u is the node with pre-

order rank k. We maintain a wavelet tree over A; see Fact 2.3. Given the leaf `i,

we first find the rightmost entry l < pre-order(`i) in A such that A[l] < W by using

predecessorA(pre-order(`i),W − 1). (Note that since the root node r has zeroDepth(r) = 0,

the position l exists.) Let v′ = lca(`i, v), where v is the node with pre-order rank l. Then,

w = levelAncestor(`i, nodeDepth(v′) + 1). To see correctness observe that zeroDepth(v′) ≤

zeroDepth(v) < W . If zeroDepth(w) < W , the predecessor-query should have returned w

instead of v (since pre-order(v) < pre-order(w) ≤ pre-order(`i)). �

Lemma 6.14. Let C be a positive integral constant. Consider a collection of arrays Xi[1, t],

i ∈ [1, C], with elements from [σ]. By using an O(t log σ)-bit data structure, we can compute

the following in O(log σ) time:

82

• rankX1,X2,...,XC (L,R, α1, α2, . . . , αC) = the number of positions k ∈ [L,R], where

Xi[k] = αi,∀i ∈ [1, C].

• selectX1,X2,...,XC (L,R, q, α1, α2, . . . , αC) = the qth (if exists) position k ∈ [L,R], where

Xi[k] = αi,∀i ∈ [1, C].

Proof. Let τi = 〈X1[i], X2[i], . . . , XC [i]〉, i ∈ [1, t]. Note that τi can be mapped uniquely to

a symbol from an alphabet Σ′ of size σC ; the mapping is computed in O(1) time. Let X[1, t]

be an array, where X[i] ∈ Σ′ corresponds to τi. Now, the required operations are computed

easily via rank and select operations on X, which is facilitated by Fact 2.3. The space needed

is O(t log σC) = O(t log σ) bits. The time for each operation is O(log σC) = O(log σ). �

Lemma 6.15. Consider a tree having t nodes, where each non-leaf node has at least two

children. Also, each node is associated with a 0 or 1. By using an O(t)-bit data structure,

in O(1) time, we can find the lowest ancestor of a leaf that is associated with a 1.

Proof. Starting from the leftmost leaf, every g = cdlog te leaves form a group, where c is

a constant to be decided later. (The last group may have fewer than g leaves.) Mark the

lowest common ancestor of the first and last leaf of each group. At each marked node,

write the node-depth of its lowest ancestor which is associated with a 1. The space needed

is O(t
g

log t) = O(t) bits. Let τu be the subtree rooted at a marked node u; note that τu

has at most 2g nodes. Since each node in τu is associated with a 0 or 1, the number of

possible trees is 22g. We store a pointer from u to τu. The total space needed for storing

all pointers is O(t
g

log 22g) = O(t) bits.

For each possible τu, store the following satellite data in an additional array. Consider

the kth leftmost leaf `k in τu. Let v be the lowest node on the path from u to `k associated

with a 1. If v exists, store the node-depth of v relative to u, else store −1. The space

needed for each τu is O(2g log g) = O(g log log t) bits. Therefore, the total space for all

such trees is O(22gg log log t). By choosing c = 1/4, this space is bounded by o(t) bits.

Thus, the total space is bounded by O(t) bits.

83

Given a query leaf `k, we first locate the lowest marked node u∗ of `k; this is given

by u∗ = lca(1 + gbk/gc,max{t, g(1 + bk/gc)}). Let d∗ be the depth stored at u∗. Let

k′ = k−gbk/gc. Check the k′th entry of the satellite array of u∗, and let it be d. If d = −1,

then assign D = d∗, else assign D = nodeDepth(u∗) + d. The desired ancestor of `k is given

by the query levelAncestor(`k, D). �

Lemma 6.16. Consider a tree of t nodes, where each node is either special or normal. By

using an O(t)-bit data structure, in O(1) time, given a node v, we can find a node u (if

any) such that u is the rightmost special child of parent(v) and pre-order(u) < pre-order(v).

Proof. For each node w, we store a bit-vector Bw[tw], where tw is the number of children of

w. Assign Bw[i] = 1 iff child(w, i) is special. The space needed is O(t) bits. Given the query

node v, we go to the bit vector Bv′ , where v′ = parent(v). Let k = rankBv′ (sibRank(v), 1).

If k = 0, then u does not exist; otherwise, u = child(v′, selectBv′ (k, 1)). �

6.8 Wrapping Up

In this section, we prove Theorem 6.2 by combining the data structure tools in Section 6.7

with Lemmas 6.3, 6.11, and 6.12. Specifically, in Lemma 6.17 we show that in each of

the three scenarios of Sections 6.5, 6.6.1, and 6.6.2, we can compute succ(i) in O(log σ)

time by using an O(n log σ)-bit data structure. As a straightforward consequence, we get

Theorem 6.2.

Lemma 6.17. By maintaining an O(κ log σ)-bit data structure, we can find the j = succ(i)

in O(log σ) time when either (a) αDisagree[i] > 0, or (b) αLCP[i] > 0, or (c) αLCP[i] < 0.

Proof. We treat Group as two separate arrays G< and G>, where Group[i] = 〈G<[i], G>[i]〉.

Similarly, Group is maintained as Ḡ< and Ḡ>. We use rankαLCP,Group(L,R, α, β) to denote

rankαLCP,G<,G>(L,R, α, β<, β>) query of Lemma 6.14, where β = 〈β<, β>〉. The select oper-

ation in Lemma 6.14 is analogously defined; so are the operations on αLCP and Group.

84

(a) Using Lemma 6.13, in O(log σ) time, we first find the highest node u on the root to

`i path such that αDisagree[i] ≤ zeroDepth(u). Then j = selectαDisagree(c + 1, αDisagree[i]),

where c = rankαDisagree(lmostLeaf(u)−1, αDisagree[i]); both j and c are computed in O(log σ)

time using Facts 2.3 and 2.4. The correctness follows from Lemma 6.3.

(b) Let u and w be the nodes corresponding to `i as defined in Lemma 6.11. We store

a bit-vector B[1, κ] to determine whether u = `i, or not. If u 6= `i, then by storing an-

other bit-vector B′[1, κ] we can identify whether u = w or u = parent(w). We store the

αi = α(Xi[1, δ(i, k)]) with the leaf `i, where k is defined in Lemma 6.11. Then, node w

is the highest node w′ on the root to `i path such that zeroDepth(w′) ≥ αi; we can find

w in O(log σ) time using Lemma 6.13 and αi. Finally, j = selectαLCP,Group(rmostLeaf(u) +

1, κ, 1, αLCP[i],Group[i]) is computed using Lemma 6.14 in O(log σ) time.

(c) Strip the tree TX into several compacted tries as follows. Consider a leaf `k such

that αLCP[k] = α < 0 and Group[k] = β. Keep only the leaves `l in the tree for which

either αLCP[l] = α and Group[l] = β or αLCP[l] = α and Group[l] = β. Transform the tree

into a compacted trie, and denote it by τα,β having κα,β nodes and mα,β leaves.

Given a leaf p in TX , let leafα,β(p) be the equivalent leaf in τα,β. Likewise, given a leaf q

in τα,β, let leaf−1
α,β(q) be its equivalent leaf in TX . We store a bit-vector Bα,β[1,mα,β] (resp.

B̄α,β[1,mα,β]) as follows. We set Bα,β[q] = 1 (resp. B̄α,β[q] = 1) iff αLCP[leaf−1
α,β(q)] = α

and Group[leaf−1
α,β(q)] = β (resp. αLCP[leaf−1

α,β(q)] = α and Group[leaf−1
α,β(q)] = β). Using

Bα,β, B̄α,β, and Lemma 6.14, we compute leafα,β and leaf−1
α,β in O(log σ) time as follows.

leafα,β(p) =


selectBα,β(rankαLCP,Group(1, p, α, β), 1) if αLCP[p] = α and Group[p] = β

selectB̄α,β(rankαLCP,Group(1, p, α, β), 1) if αLCP[p] = α and Group[p] = β

85

leaf−1
α,β(q) =


selectαLCP,Group(1, n, rankBα,β(q, 1), α, β) if Bα,β[q] = 1

selectαLCP,Group(1, n, rankB̄α,β(q, 1), α, β) if B̄α,β[q] = 1

Since the number of possible trees τα,β is at most σ3, a pointer from a leaf in TX to its

corresponding tree τα,β needs d3 log σe bits. Since each leaf in TX appears in at most two

trees (once for αLCP and Group, and once for αLCP and Group), we have
∑
κα,β = O(κ).

We associate a node u in τα,β with 1 iff parent(u) has a child v before u in pre-order,

such that there is a leaf q in v’s subtree satisfying the following conditions: αLCP[q] = α,

Group[q] = β, and the leading position on the edge (parent(u), v) is a point of change of q

(i.e., strDepth(parent(u)) + 1 is a point of change of leaf−1
α,β(q)). Also we denote the node v

as a special node. Pre-process τα,β with Lemmas 6.15 and 6.16.

Consider two leaves k and k′ in TX , where k′ < k, αLCP[k] = αLCP[k′] = α and

Group[k] = Group[k′] = β. We observe that there is a node u in τα,β such that strDepth(u) =

lcp(k, k′). Moreover, if 1+ lcp(k, k′) is a point of change of k′, then the child of u on the u to

leafα,β(k′) path is a special node, and the child of u on the u to leafα,β(k) path is associated

with a 1. Hence, given the query i, we can find j as follows. We first jump to the leaf

` = leafαLCP[i],Groupi in ταLCP[i],Group[i]. Using Lemma 6.15, locate the lowest ancestor u

of ` associated with a 1. We find the special sibling v of u to its left using Lemma 6.16.

Finally, j = leaf−1
αLCP[i],Group[i](selectB̄(rankB̄(rmostLeaf(v), 1), 1). The total time to locate j

is O(log σ) time, as desired. �

86

Chapter 7
Compact Index for Order-preserving
Dictionary Matching
Recall the order-preserving matching (o-match) of two strings as outlined in Definition 6.1.

We consider the Order-preserving Dictionary Indexing problem of Kim et al. [KEF+14].

Problem 7.1 (Order-preserving Dictionary Indexing [KEF+14]). Let D be a collection

of d patterns {P1, P2, . . . , Pd} of total length n; each Pi contains characters from Σ =

{1, 2, . . . , σ}. The task is to index D, such that given a text T (also over Σ), we can report

all pairs 〈j, Pi〉, such that there exists a pattern Pi ∈ D which is an order-preserving match

with T [j − |Pi|+ 1, j].

Largely based on the Aho-Corasick (AC) automaton [AC75], Kim et al. [KEF+14]

presented a Θ(m logm)-bit index, wherem ≤ n+1 is the number of states in the automaton,

that can report all occ pairs in time O(|T | log σ + occ). We present the following space-

efficient alternative.

Theorem 7.1. By using an O(m log σ+d log m
d

)-bit index, all pairs 〈j, Pi〉, such that there

exists a pattern Pi ∈ D which is an order-preserving match with T [j − |Pi| + 1, j], can be

found in O(|T | logm + occ) time, where occ is the number of such pairs and m ≤ n + 1 is

the number of states in the automaton of Kim et al. [KEF+14].

7.1 Overview of Techniques

We begin with a linear-space based on the classical AC automaton [AC75] and the encoding

scheme of Crochemore et al. [CIK+13]. The idea is to first encode each pattern using

Crochemore et al.’s encoding defined in Section 6.2.1, and then create a compacted trie

T of these encode patterns. Each node in the trie is associated with three components:

a next link that says what is the next node in the trie where we should go in case of a

match, a failure link that says what is the next node in the trie where we should go in case

87

of a mismatch, and a report link that says what are the patterns which have an occurrence

ending at the current position of the text. Section 7.2 contains the detailed description.

The first question is how to represent the nodes succinctly, in the sense that given a

node, we can quickly find out if there is a pattern which has the same encoding as the

path from root to this node; these nodes are termed final nodes. The other importance

of node representation is to quickly simulate the three transitions above. Given a node v

in the trie, let
←−−
order(v) = order(

←−−−−−
Pi[1, δv]), where Pi is a pattern corresponding to a final

node in the subtree of v, δv is the node-depth of v, and
←−
S denotes the reverse of a string

S. We conceptually label a node u with the lexicographic rank of
←−−
order(u) in the set

{
←−−
order(v) | v is a node in the trie}. Labels of final nodes are explicitly stored, enabling us

to find the pattern corresponding to any final node quickly. These ideas are borrowed (and

extended) from Belazzougui [Bel10]. Section 7.3 contains the details.

The next task (and arguably the most difficult one) is to simulate the next transition.

Here, given the label of u, we are seeking the label of a child v of u, where we should proceed

in case of a match. We create another trie
←−
T of the strings

←−−
order(w) for each node w in T .

Now each node u in T can be mapped to a leaf `u in
←−
T , and the label of u can be found by

applying a LF mapping-like transform on the corresponding leaf `u. The central question

is how to implement this transform. We observe that in essence what we are trying to do

is as follows. There is a collection of strings (corresponding to the nodes in T) and each

string is associated with a character (labeling the edge from a node to one of its child).

Now, we are trying to find what is the lexicographic rank of a string (corresponding to a

node) when prepended by its associated character (labeling the edge to its child). Clearly,

one may apply Theorem 6.2 to achieve this. Section 7.4 contains the details.

The final piece is to simulate the failure and report transitions. However, this is rather

simple and is immediate from Belazzougui [Bel10]; the details are in Section 7.5. Once,

we have all the above components, the final query procedure is largely a straightforward

extension of the query procedure of the linear index; Section 7.6 contains the details.

88

7.2 Linear Space Index

We first present a linear space index, which is based on the AC automaton [AC75]. Recall

the following encoding scheme of Crochemore et al. [CIK+13], outlined in Section 6.2.1.

We convert a string S to a string order(S) as follows. Let i ∈ [1, |S|] and p− (resp. p+) be

the highest value (resp. lowest value) in S[1, i− 1] that is at most S[i] (resp. at least S[i]).

Let j− (resp. j+) be the rightmost occurrence of p− (resp. p+) in [1, i). If p− (resp. p+)

does not exist, then assign j− = i (resp. j+ = i). Assign, order(S)[i] = 〈i− j−, i− j+〉.

Two pairs 〈xi, yi〉 and 〈xj, yj〉 in this encoding scheme are the same iff xi = xj and

yi = yj. Two strings X and Y are order-preserving iff order(X) = order(Y). Also, X is

order-preserving with a prefix of Y iff order(X) is a prefix of order(Y). See Fact 6.1.

7.2.1 The 3 Main Components of the Linear Index

Compute order(Pi) for every Pi in D, and then create a trie T for all the encoded patterns.

Let the number of nodes in the trie be m, where m ≤ n + 1. For a node u, denote

by order(u) the string formed by concatenating the edge labels from root to u. Mark a

node u in the trie as final iff order(u) = order(Pi) for some Pi in D. Clearly, the number

of final nodes is d, i.e., the number of patterns in the dictionary. For any node u, define

strDepth(u) = |order(u)| and ζ(u, j) = order(Pi[j, strDepth(u)]), where Pi is a pattern whose

corresponding final node lies in the subtree rooted at u. Each node u is associated with 3

links as defined below:

• next(u, c) = v iff the label on the edge from u to v is labeled by the character c.

• failure(u) = v iff order(v) = ζ(u, j), where j > 1 is the smallest index for which such

a node v exists. If no such j exists, then failure(u) points to the root node. This

represents the smallest shift to be performed in T in case of a mismatch.

• report(u) = v iff v is a final node and order(v) = ζ(u, j), where j > 1 is the smallest

index for which v exists. If no such j exists, then report(u) points to the root node.

This represents a pattern with an occurrence ending at the current text position.

89

The total space needed is Θ(m logm) bits. We note that the number of states in T is

the same as the number of states in the trie of Kim et al. [KEF+14] for the collection D.

7.2.2 The Querying Algorithm

To find the occurrences, we use a balanced binary search tree (BST) that stores the symbols

in Σ that appear within a certain sliding window of T . To this end, we maintain an array

A[1, σ] such that A[c] equals the position of the latest occurrence of c ∈ Σ. Now, match T in

the trie as follows. Suppose, we are considering the position j in T (initially, j = 1), and we

are at a node u, i.e., we have matched T [j− strDepth(u)+1, j] in the trie. First, repeatedly

follow report-links starting from u until the root node is reached, thereby, reporting all

patterns with a match ending at j. Now, look at the character T [j+ 1] to match. We have

to obtain cj,u = order(T [j− strDepth(u) + 1, |T |])[strDepth(u) + 1]. Using the BST, find the

largest (resp. smallest) number within the window that is at most (resp. at least) T [j+ 1].

Now, use the array A to find the rightmost occurrence of these numbers within the window

to obtain the desired encoding. If v = next(u, cj,u) is defined, follow it, update the BST (by

including T [j+1] if it is already not present) and the array A (by letting A[T [j+1]] = j+1)

to incorporate the symbol T [j+ 1]. Repeat by letting v = u and j = j+ 1; in this case, the

right boundary of the sliding window has slid by one position. Otherwise if v = next(u, cj,u)

is not defined, follow failure(u) to a node w and repeat by letting w = u; in this case, the

left boundary of the sliding window is going to change. Specifically, we are going to slide

over strDepth(u) − strDepth(w) characters. For each character c slid over, we check A[c]

to check if it is in the current sliding window. If it is not, we remove c from the BST.

We continue this process until the last character of T is read. The number of all deletion,

search, and insertion operations in the BST is at most 3|T |, each requiring O(log σ) time.

Hence, each character in T is encoded in O(log σ) amortized time. On following a report

link, either we report an occurrence or we reach the root. Then, either we take a next

transition or we follow a failure link; the number of such operations combined is ≤ 2|T |.

Each transition takes O(1) time. Therefore, the total time required is O(|T | log σ + occ).

90

7.3 Representing States Succinctly

Broadly speaking, we use Belazzougui [Bel10]’s succinct representation of the AC automa-

ton [AC75]. Let T be the trie in Section 7.2. We observe that any node u ∈ T has a final

node in its subtree T (u). Let
←−−
order(u) = order(Pi[strDepth(u)] ◦ Pi[strDepth(u) − 1] ◦ · · · ◦

Pi[1]), where Pi is the pattern corresponding to a final node in T (u) and pi = |Pi|. Each

state u is conceptually labeled by the lexicographic rank of
←−−
order(u) in the set {

←−−
order(v) |

v is a node in the trie}. Thus, each state is labeled by a number in [1,m], where the root

is labeled by 1.

Convention 7.1. Without loss of generality, assume that no two patterns Pi and Pj exist

such that order(Pi) = order(Pj). Also, assume that i < j iff
←−−
order(Pi) precedes

←−−
order(Pj) in

the lexicographic order, where
←−−
order(P) = order(P [p] ◦ P [p− 1] ◦ · · · ◦ P [1]) and p = |P |.

We explicitly store the labels of the final states using the SID of Fact 2.5. Since there

are d final nodes, the space required is d log(m/d) + O(d) bits. Given the label of a final

state v, we first find the rank of v among all the final states using Fact 2.5. If the rank is

r, then v corresponds to the pattern Pr by Convention 7.1. Thus, given the label of a final

state, we can find the corresponding pattern in O(1) time, leading to the following lemma:

Lemma 7.1. Given the label of a final state, we can find the corresponding pattern in O(1)

time by using an d log(m/d) +O(d)-bit data structure.

Lastly, we maintain a bit-vector leaf[1,m] such that leaf[j] = 1 iff the state with label

j is a leaf in T . The total space for representing the states is m+ d log(m/d) +O(d) bits.

7.4 Handling next Transitions Compactly

We create a compressed
←−
T as follows. Initially

←−
T is empty. For each non-leaf node u

in T and each child ui of u, we add the string
←−−
order(u) ◦ $u,i to

←−
T . Clearly, the string

corresponds to a unique leaf, say `u,i, in
←−
T . For any node u ∈

←−
T , we define path(u) as the

concatenation of the order-encoded edge labels from the root to u.

91

Let `u,i denote the ith leftmost leaf in
←−
T , where ui is the non-root node in T that

corresponds to `u,i, i.e., path(`u,i) =
←−−
order(u) ◦ $u,i, and u = parent(ui). We order the leaves

in
←−
T as follows. Consider the leaves `u,i and `u,j in

←−
T such that the corresponding nodes ui

and uj in T share the same parent u. (Note that `u,i and `u,j also share the same parent in

←−
T .) Then, the leaf `u,i lies to the left of `u,j in

←−
T (i.e., i < j) if

←−−
order(ui) is lexicographically

smaller than
←−−
order(uj). Now, consider two leaves `u,i and `v,j in

←−
T with the corresponding

nodes ui and vj in T having different parents u and v. Then, `u,i lies to the left of `v,j (i.e.,

i < j) if
←−−
order(u) is lexicographically smaller than

←−−
order(v).

Note that the number leaves in
←−
T is same as the number of edges in T . Therefore, it

has (m− 1) leaves and at most (m− 2) internal nodes.

Lemma 7.2. Consider the ith leftmost leaf `u,i in
←−
T . By using an O(m log σ)-bit data

structure, we can compute the label of the corresponding node ui ∈ T in O(logm) time.

Proof. Define leafRank(i) as the rank of the string
←−−
order(ui) among the strings {

←−−
order(x) |

x ∈ T is a non-root node}. Note that the root node in T is the only node that does not

have a corresponding leaf in
←−
T . Since the label of the root node is 1, this definition implies

that the label of a node ui ∈ T is given by 1 + leafRank(i); recall that ui corresponds to

the ith leftmost leaf in
←−
T . Therefore, the main task is to compute leafRank(i).

Let u = parent(ui). Define the collection of strings X = {X1, X2, . . . , Xm−1} as defined

in Theorem 6.2, such that Xi = Pk[strDepth(u)] ◦ Pk[strDepth(u) − 1] ◦ · · · ◦ Pk[1] ◦ $u,i

and xi = Pk[strDepth(ui)], where Pk is a pattern corresponding to a final node in the

subtree of ui in T . By letting order(Xi) = order(Xi[1, |Xi| − 1])〈$u,i, $u,i〉, we ensure that

the collection is prefix-free. It follows that leafRank(i) = lexRank(i) of Theorem 6.2. To

compute lexRank(i), we use the following procedure.

We employ perfect hashing [FKS84] to store the 〈j, lexRank(j)〉 key-value pairs for all j

such that lexRank(j) belongs to {1, 1 + ∆, 1 + 2∆, 1 + 3∆, . . . ,m− 1}, where ∆ = dlogme.

Using this, given a j, one can check if lexRank(j) has been stored (and also retrieve the value)

in O(1) time. The space needed is O((m/∆) logm) bits. Then lexRank(i) is computed in

92

O(1) time if its value has been explicitly stored. Otherwise, we apply the succ operation

of Theorem 6.3 starting from i until we reach an index j such that lexRank(j) has been

explicitly stored. Let the number of succ operations be k, and let the indexes yielded be

i1, i2, . . . , ik = j in that order. We have the following telescoping series: lexRank(i1) =

lexRank(i) + 1, lexRank(i2) = lexRank(i1) + 1, . . . , lexRank(ik) = lexRank(ik−1) + 1. Then,

lexRank(ik) = lexRank(j) = lexRank(i) + k. Clearly, k ≤ ∆ and the time required is

O(∆ · log σ) = O(logm). �

Since explicitly storing the order-encoded label of an edge in T requires O(logm) bits,

we are stuck with the question of uniquely identifying an outgoing edge of a node v. To

this end, we introduce the following terminologies.

Definition 7.1. For any string S and a character c, recall the definition of χ(S, c) in Defini-

tion 6.6. For a non-root node u, we define β(u) = χ(Pr[1, strDepth(u)−1], Pr[strDepth(u)]),

where Pr is a pattern corresponding to a final node in the subtree of u.

Lemma 7.3. For any two children vi and vj of a node v ∈ T , we have order(vi) 6= order(vj)

implying β(vi) 6= β(vj). Therefore, for any string S[1, s], we have order(S) = order(v) iff

β(v) = χ(S[1, s− 1], S[s]) and order(S[1, s− 1]) = order(parent(v)).

Proof. Follows from Lemma 6.10. �

Hence, an equivalent way of checking if the next transition of a node u points to v is

by checking β(v). We formalize the notion in the following lemma.

Lemma 7.4. Let u be a node in T having label k. By using an O(m log σ)-bit data structure,

in O(log σ) time, we can detect if u has a child ui such that β(ui) = 〈x, y〉 for two integers

0 ≤ x, y ≤ σ. If ui exists, we can find the leaf `u,i ∈
←−
T that corresponds to ui.

Proof. If u is a leaf node, i.e., leaf[k] = 1, then u does not have a child and the lemma

trivially holds. So, assume otherwise. Maintain a bit-vector B[1,m−1] such that B[1] = 1,

and for r > 1, B[r] = 1 iff rth leftmost leaf in
←−
T has a different parent than the previous

93

leaf. Maintain two arrays A<[1,m− 1] and A>[1,m− 1] such that 〈A<[r], A>[r]〉 = β(wr),

where wr ∈ T is the node corresponding to `w,r ∈
←−
T . We pre-process the arrays A< and

A> with Lemma 6.14.

Given the node u ∈ T , we can find the node u′ ∈
←−
T such that path(u′) =

←−−
order(u)

as follows. Note that u′ is the parent of the (k − rankleaf(k, 1))th leftmost leaf in
←−
T that

has a different parent than the previous leaf. Based on this, u′ = parent(`j), where j =

selectB(k − rankleaf(k, 1), 1). Find j′ = selectA<,A>(1,m − 1, 1 + rankA(1, j − 1, x, y), x, y)

using Lemma 6.14. Then ui exists iff j′ ∈ [lmostLeaf(u′), rmostLeaf(u′)]. If ui exists, by

applying Lemma 7.3, we conclude that the desired leaf `u,i is the j′th leftmost leaf in
←−
T . �

Now we have the ingredients to prove the following main result in this section.

Lemma 7.5. Let T0 = T [j0, |T |], 1 ≤ j0 ≤ |T |. Suppose we are at a node u in T and have

matched T0[1, j]. Given the label k of u, we can find the label (if any) of next(u, order(T0)[j+

1]) in O(log σ) amortized time by using an O(m log σ)-bit data structure.

Proof. Based on Lemma 7.3, the task is to detect whether there exists a child ui of u such

that β(ui) = xj, where xj = χ(T0[1, j], T0[j + 1]). Once xj is known, we use Lemma 7.4 to

test this condition, and if ui exists, find the leaf `u,i ∈
←−
T corresponding to ui. Then apply

Lemma 7.2 to compute the label of ui in O(logm) time.

Since storing strDepth requires mdlogme bits in total, we cannot directly store it for

computing β(ui). Instead, we store an array Z such that Z[r] equals the number of distinct

characters in Px[1, strDepth(u)], where Px is a pattern corresponding to a final node in the

subtree of u and u is the node with label r. The total space needed is O(m log σ) bits.

To compute β(ui), we make sure that only Z[k] distinct symbols remain in the current

sliding window of T (recall the query procedure in Section 7.2.2). Crucially, observe that

xj can now be computed by finding the number of symbols within the window that are

less/more than T [j + 1]. Therefore, xj is computed in O(log σ) amortized time, and the

proof follows. �

94

7.5 Handling failure and report Transitions Succinctly

Note that for any two nodes u and v, if failure(u) = v, then it
←−−
order(v) is the longest prefix

of
←−−
order(u) that appears in T . Similar remarks hold for report(u) = v, where v is a final

node. Therefore, these behave exactly in the same manner as in the case of traditional

pattern matching, and we can simply use the idea of Belazzougui [Bel10] to perform these

transitions (see Sections 3.3 and 3.4 in [Bel10]). We get the following lemma.

Lemma 7.6. By using an O(m+ d log(m/d))-bit data structure, given the label of a node

u, we can find the label of failure(u) or report(u) in O(1) time.

7.6 The Final Query Procedure

Suppose we are at a node u in T with label k. (Initially we are at the root node with

label 1.) Suppose, we have matched T [j′, j − 1]. First repeatedly apply Lemma 7.6 to

find the label of the final states reached by the report links. The occurrences of all the

patterns ending at the position j − 1 corresponding to these final states are found using

Lemma 7.1. Now, use Lemma 7.5 to find the label kv of the node (if any) v such that

v = next(u, T ′[j − j′ + 1]), where T ′ = order(T [j′, |T |]). If v exists, then repeat the process

with node v and label kv. If v does not exist, then find the label kw of the node (if any)

w such that w = failure(u), and repeat the process with node w and label kw. The total

time required is O(|T | logm+occ)1. The total space needed to implement Lemmas 7.1, 7.5,

and 7.6 is O(m log σ + d log m
d

) bits. This concludes the proof of Theorem 7.1.

1 When we follow a failure link we remove at least one character from the beginning of the text. When
we follow a next link we advance one character at the beginning of the text. The number of such operations
is at most 2|T | and at least one of the operations is executed in each step. On following each report link,
we report an occurrence. Each failure and report transition needs O(1) time, and each next transition needs
O(logm) time.

95

Chapter 8
Open Problems

8.1 Compact Construction

Perhaps the first question that comes to mind is to construct a succinct index for the pa-

rameterized pattern matching problem efficiently. For classical full text indexes, designing

linear time construction algorithm in compact space has been an active area as seen from

the seminal work of Hon, Sadakane, and Sung [HSS03] and the more recent work of Belaz-

zougui [Bel14]. Can we design a (possibly randomized) construction algorithm of a succinct

index for the p-pattern matching problem that attains the same bounds of the best-known

construction algorithm for p-suffix trees [CH03, Kos95]? More specifically,

Problem 8.1 (Compact Space Construction for Parameterized Text Indexing). Construct

a succinct index for the p-pattern matching problem using O(n log σ)-bits of working space.

8.2 Compressed Indexes for 2D Pattern Matching

Consider the two-dimensional pattern matching problem. Let M be square matrix of

dimension n × n. Each cell in M contains characters from an alphabet Σ of size σ. The

task is to index M such that given any square matrix P having dimensions m×m, where

m ≤ n, we can find all positions (top-left corner) in M where P appears as a sub-matrix.

An O(n2 log n)-bit index with O(m2 log σ + occ) query time solution for the above

problem is known due to Giancarlo [Gia93]. However, no compressed space indexes are

known. Although, the notion of a suffix/prefix is known [Gia93], the crucial understanding

of suffix links, and its preserving property is not obvious.

Can we design a succinct (or, compact) index for this problem? More specifically,

Problem 8.2 (Two-Dimensional Pattern Matching). Can we solve the two-dimensional

pattern matching problem using an index that occupies O(n2 log σ) bits and answers queries

in time O((m2 + occ) polylog n) time?

96

8.3 Streaming Algorithms

A well-known result [CEPP08] says that for any pattern P , at least Ω(|P |) words are

required to answer pattern matching queries in the streaming model, i.e., when the text

characters arrive in a stream. Porat and Porat [PP09] showed that randomized algo-

rithms can be used to break the space barrier and presented an algorithm that requires

O(log |P |) words. Their index can report all matches in O(log |P |) per incoming charac-

ter, with the probability of reporting a false positive (or, negative) being 1
n3 . They also

showed that k-mismatch version of the problem can be solved in O(k2 polylog |P |) time

and O(k3 polylog |P |) space. This promulgated the study of streaming problems using ran-

domized algorithms. Unfortunately, in [CJPS11], it was shown for a large class of problems

that it is not possible to break the Ω(|P |) words barrier, even using randomized algorithms.

To the best of our knowledge, the only other pattern matching variant that has been

solved in the streaming model setting is the p-pattern matching problem [JPS13].

Problem 8.3. Can we solve the order-isomorphic pattern matching problem in the stream-

ing model using O(|Σ| polylog(|P |, |Σ|)) space? Can we close the (upper bound and lower

bound) space-gap in [JPS13] for the parameterized pattern matching problem? Can k-

mismatch version of these problems be solved in the streaming model?

97

References

[AAC+03] Amihood Amir, Yonatan Aumann, Richard Cole, Moshe Lewenstein, and
Ely Porat. Function matching: Algorithms, applications, and a lower bound.
In Automata, Languages and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceed-
ings, pages 929–942, 2003.

[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid
to bibliographic search. Commun. ACM, 18(6):333–340, 1975.

[AFM94] Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet depen-
dence in parameterized matching. Inf. Process. Lett., 49(3):111–115, 1994.

[AN09] Amihood Amir and Gonzalo Navarro. Parameterized matching on non-linear
structures. Inf. Process. Lett., 109(15):864–867, 2009.

[BA13] Richard Beal and Donald A. Adjeroh. Compressed parameterized pattern
matching. In 2013 Data Compression Conference, DCC 2013, Snowbird,
UT, USA, March 20-22, 2013, pages 461–470, 2013.

[Bak93] Brenda S. Baker. A theory of parameterized pattern matching: algorithms
and applications. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA,
pages 71–80, 1993.

[Bak95] Brenda S. Baker. On finding duplication and near-duplication in large soft-
ware systems. In 2nd Working Conference on Reverse Engineering, WCRE
’95, Toronto, Canada, July 14-16, 1995, pages 86–95, 1995.

[Bel10] Djamal Belazzougui. Succinct dictionary matching with no slowdown. In
Combinatorial Pattern Matching, 21st Annual Symposium, CPM 2010, New
York, NY, USA, June 21-23, 2010. Proceedings, pages 88–100, 2010.

[Bel14] Djamal Belazzougui. Linear time construction of compressed text indices in
compact space. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 148–193, 2014.

[BM77] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Commun. ACM, 20(10):762–772, 1977.

[BM98] Brenda S Baker and Udi Manber. Deducing similarities in java sources from
bytecodes. In USENIX Annual Technical Conference, pages 179–190, 1998.

[BN14] Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent com-
pressed text indexing. ACM Transactions on Algorithms, 10(4):23, 2014.

98

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, 1994.

[BYdM+98] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract syntax trees.
In 1998 International Conference on Software Maintenance, ICSM 1998,
Bethesda, Maryland, USA, November 16-19, 1998, pages 368–377, 1998.

[CEPP08] Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A black
box for online approximate pattern matching. In Combinatorial Pattern
Matching, 19th Annual Symposium, CPM 2008, Pisa, Italy, June 18-20,
2008, Proceedings, pages 143–151, 2008.

[CGT15] Tamanna Chhabra, Emanuele Giaquinta, and Jorma Tarhio. Filtration al-
gorithms for approximate order-preserving matching. In String Processing
and Information Retrieval - 22nd International Symposium, SPIRE 2015,
London, UK, September 1-4, 2015, Proceedings, pages 177–187, 2015.

[CH03] Richard Cole and Ramesh Hariharan. Faster suffix tree construction with
missing suffix links. SIAM J. Comput., 33(1):26–42, 2003.

[CIK+13] Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Ku-
bica, Alessio Langiu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter,
and Tomasz Walen. Order-preserving incomplete suffix trees and order-
preserving indexes. In String Processing and Information Retrieval - 20th In-
ternational Symposium, SPIRE 2013, Jerusalem, Israel, October 7-9, 2013,
Proceedings, pages 84–95, 2013.

[CJPS11] Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Space
lower bounds for online pattern matching. In Combinatorial Pattern Match-
ing - 22nd Annual Symposium, CPM 2011, Palermo, Italy, June 27-29,
2011. Proceedings, pages 184–196, 2011.

[CLI] CLoning Analysis and Categorization System (CLICS). http://www.swag.
uwaterloo.ca/clics/. Accessed: 2015-11-01.

[CNPS15] Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. A
fast algorithm for order-preserving pattern matching. Inf. Process. Lett.,
115(2):397–402, 2015.

[CP09] Hagai Cohen and Ely Porat. Range non-overlapping indexing. In Algorithms
and Computation, 20th International Symposium, ISAAC 2009, Honolulu,
Hawaii, USA, December 16-18, 2009. Proceedings, pages 1044–1053, 2009.

[CT14] Tamanna Chhabra and Jorma Tarhio. Order-preserving matching with fil-
tration. In Experimental Algorithms - 13th International Symposium, SEA
2014, Copenhagen, Denmark, June 29 - July 1, 2014. Proceedings, pages
307–314, 2014.

99

http://www.swag.uwaterloo.ca/clics/
http://www.swag.uwaterloo.ca/clics/

[DLDPFG01] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, Anna Rita Fasolino,
and Pasquale Granato. Clone analysis in the web era: An approach to
identify cloned web pages. In Seventh IEEE Workshop on Empirical Studies
of Software Maintenance, pages 107–113, 2001.

[dMRS05] Cédric du Mouza, Philippe Rigaux, and Michel Scholl. Efficient evaluation
of parameterized pattern queries. In Proceedings of the 2005 ACM CIKM
International Conference on Information and Knowledge Management, Bre-
men, Germany, October 31 - November 5, 2005, pages 728–735, 2005.

[dMRS07] Cédric du Mouza, Philippe Rigaux, and Michel Scholl. Parameterized pat-
tern queries. Data Knowl. Eng., 63(2):433–456, 2007.

[FH07] Johannes Fischer and Volker Heun. A new succinct representation of rmq-
information and improvements in the enhanced suffix array. In Combina-
torics, Algorithms, Probabilistic and Experimental Methodologies, First In-
ternational Symposium, ESCAPE 2007, Hangzhou, China, April 7-9, 2007,
Revised Selected Papers, pages 459–470, 2007.

[Fis10] Johannes Fischer. Wee LCP. Inf. Process. Lett., 110(8-9):317–320, 2010.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with O(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[FLMM09] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan.
Compressing and indexing labeled trees, with applications. J. ACM, 57(1),
2009.

[FM00] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with
applications. In 41st Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA,
pages 390–398, 2000.

[FM05] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM,
52(4):552–581, 2005.

[GGG+07] Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and
S. Srinivasa Rao. On the size of succinct indices. In Algorithms - ESA
2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007,
Proceedings, pages 371–382, 2007.

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore,
Maryland, USA., pages 841–850, 2003.

[GHS+16a] Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V.
Thankachan, and Yilin Yang. Space-efficient dictionaries for parameterized

100

and order-preserving pattern matching. In 27th Annual Symposium on Com-
binatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel,
pages 2:1–2:12, 2016.

[GHS16b] Arnab Ganguly, Wing-Kai Hon, and Rahul Shah. A framework for dynamic
parameterized dictionary matching. In 15th Scandinavian Symposium and
Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reykjavik,
Iceland, pages 10:1–10:14, 2016.

[Gia93] Raffaele Giancarlo. The suffix of a square matrix, with applications. In Pro-
ceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, 25-27 January 1993, Austin, Texas., pages 402–411, 1993.

[GM16] Travis Gagie and Giovanni Manzini. Toward a succinct index for order-
preserving pattern matching. CoRR, abs/1610.02865, 2016.

[GST15] Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Succinct non-
overlapping indexing. In Combinatorial Pattern Matching - 26th Annual
Symposium, CPM 2015, Ischia Island, Italy, June 29 - July 1, 2015, Pro-
ceedings, pages 185–195, 2015.

[GST17] Arnab Ganguly, Rahul Shah, and Sharma V Thankachan. pBWT: Achiev-
ing succinct data structures for parameterized pattern matching and related
problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 397–407. Society for Industrial and
Applied Mathematics, 2017.

[GU16] Pawel Gawrychowski and Przemyslaw Uznanski. Order-preserving pattern
matching with k mismatches. Theor. Comput. Sci., 638:136–144, 2016.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[GV00] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suf-
fix trees with applications to text indexing and string matching (extended
abstract). In Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 397–406,
2000.

[GV05] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suf-
fix trees with applications to text indexing and string matching. SIAM J.
Comput., 35(2):378–407, 2005.

[HJHC10] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code
clone detection: incremental, distributed, scalable. In Software Maintenance
(ICSM), 2010 IEEE International Conference on, pages 1–9, Sept 2010.

101

[HKC+15] Myoungji Han, Munseong Kang, Sukhyeun Cho, Geonmo Gu, Jeong Seop
Sim, and Kunsoo Park. Fast multiple order-preserving matching algorithms.
In Combinatorial Algorithms - 26th International Workshop, IWOCA 2015,
Verona, Italy, October 5-7, 2015, Revised Selected Papers, pages 248–259,
2015.

[HLS04] Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parame-
terized matching. In Algorithms - ESA 2004, 12th Annual European Sympo-
sium, Bergen, Norway, September 14-17, 2004, Proceedings, pages 414–425,
2004.

[HLS+08] Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott
Vitter. Compressed index for dictionary matching. In 2008 Data Compres-
sion Conference (DCC 2008), 25-27 March 2008, Snowbird, UT, USA, pages
23–32, 2008.

[HPST13] Wing-Kai Hon, Manish Patil, Rahul Shah, and Sharma V. Thankachan.
Compressed property suffix trees. Inf. Comput., 232:10–18, 2013.

[HSS03] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-
and-space barrier in constructing full-text indices. In 44th Symposium on
Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cam-
bridge, MA, USA, Proceedings, pages 251–260, 2003.

[HSSY10] W.K. Hon, K. Sadakane, R. Shah, and S.M. Yiu. Unpublished Manuscript,
2010.

[IS94] Ramana M. Idury and Alejandro A. Schäffer. Multiple matching of param-
eterized patterns. In Combinatorial Pattern Matching, 5th Annual Sympo-
sium, CPM 94, Asilomar, California, USA, June 5-8, 1994, Proceedings,
pages 226–239, 1994.

[JPS13] Markus Jalsenius, Benny Porat, and Benjamin Sach. Parameterized match-
ing in the streaming model. In 30th International Symposium on Theoretical
Aspects of Computer Science, STACS 2013, February 27 - March 2, 2013,
Kiel, Germany, pages 400–411, 2013.

[KEF+14] Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Il-
iopoulos, Kunsoo Park, Simon J. Puglisi, and Takeshi Tokuyama. Order-
preserving matching. Theor. Comput. Sci., 525:68–79, 2014.

[KFF06] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using ab-
stract syntax suffix trees. In 13th Working Conference on Reverse Engineer-
ing (WCRE 2006), 23-27 October 2006, Benevento, Italy, pages 253–262,
2006.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM J. Comput., 6(2):323–350, 1977.

102

[KKP03] Dong Kyue Kim, Yoo Ah Kim, and Kunsoo Park. Generalizations of suffix
arrays to multi-dimensional matrices. Theor. Comput. Sci., 302(1-3):223–
238, 2003.

[Kos95] S. Rao Kosaraju. Faster algorithms for the construction of parameterized
suffix trees (preliminary version). In 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, pages 631–
637, 1995.

[KR87] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development, 31(2):249–
260, 1987.

[Kur99] Stefan Kurtz. Reducing the space requirement of suffix trees. Softw., Pract.
Exper., 29(13):1149–1171, 1999.

[Lew15] Moshe Lewenstein. Parameterized pattern matching. In Encyclopedia of
Algorithms. 2015.

[MM93] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line
string searches. volume 22, pages 935–948, 1993.

[MNN+14] J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, and
Sharma V. Thankachan. Top- k term-proximity in succinct space. In Al-
gorithms and Computation - 25th International Symposium, ISAAC 2014,
Jeonju, Korea, December 15-17, 2014, Proceedings, pages 169–180, 2014.

[MP15] Juan Mendivelso and Yoan J. Pinzón. Parameterized matching: Solutions
and extensions. In Proceedings of the Prague Stringology Conference 2015,
Prague, Czech Republic, August 24-26, 2015, pages 118–131, 2015.

[Mun96] J Ian Munro. Tables. In International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, pages 37–42. Springer
Berlin Heidelberg, 1996.

[Nav13] Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of
document retrieval on sequences. ACM Comput. Surv., 46(4):52:1–52:47,
2013.

[Nav14] Gonzalo Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20,
2014.

[NM07] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Comput. Surv., 39(1), 2007.

[NS14] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dy-
namic succinct trees. ACM Trans. Algorithms, 10(3):16:1–16:39, 2014. An
extended abstract appeared in SODA 2010.

103

[NT13] Gonzalo Navarro and Sharma V. Thankachan. Faster top-k document re-
trieval in optimal space. In String Processing and Information Retrieval -
20th International Symposium, SPIRE 2013, Jerusalem, Israel, October 7-9,
2013, Proceedings, pages 255–262, 2013.

[OGK10] Enno Ohlebusch, Simon Gog, and Adrian Kügel. Computing matching
statistics and maximal exact matches on compressed full-text indexes. In
String Processing and Information Retrieval - 17th International Sympo-
sium, SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceedings,
pages 347–358, 2010.

[PP09] Benny Porat and Ely Porat. Exact and approximate pattern matching in
the streaming model. In 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia,
USA, pages 315–323, 2009.

[RD04] Filip Van Rysselberghe and Serge Demeyer. Evaluating clone detection tech-
niques from a refactoring perspective. In 19th IEEE International Conference
on Automated Software Engineering (ASE 2004), 20-25 September 2004,
Linz, Austria, pages 336–339, 2004.

[RNO11] Lúıs M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully com-
pressed suffix trees. ACM Transactions on Algorithms, 7(4):53, 2011.

[RRS07] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct in-
dexable dictionaries with applications to encoding k -ary trees, prefix sums
and multisets. ACM Transactions on Algorithms, 3(4), 2007. An extended
abstract appeared in SODA 2002.

[Sad02a] Kunihiko Sadakane. Space-efficient data structures for flexible text retrieval
systems. In Algorithms and Computation, 13th International Symposium,
ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings,
pages 14–24, 2002.

[Sad02b] Kunihiko Sadakane. Succinct representations of lcp information and im-
provements in the compressed suffix arrays. In Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002,
San Francisco, CA, USA., pages 225–232, 2002.

[Sad07] Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory
Comput. Syst., 41(4):589–607, 2007.

[Shi00] Tetsuo Shibuya. Generalization of a suffix tree for RNA structural pattern
matching. In Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop
on Algorithm Theory, Bergen, Norway, July 5-7, 2000, Proceedings, pages
393–406, 2000.

104

[Shi10] Tetsuo Shibuya. Geometric suffix tree: Indexing protein 3-d structures. J.
ACM, 57(3):15:1–15:17, 2010.

[Tsu13] Dekel Tsur. Top-k document retrieval in optimal space. Inf. Process. Lett.,
113(12):440–443, 2013.

[Ukk95] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–
260, 1995.

[Wei73] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Sympo-
sium on Switching and Automata Theory, Iowa City, Iowa, USA, October
15-17, 1973, pages 1–11, 1973.

105

Vita
Arnab Ganguly was born in Kolkata, India in 1986. He obtained his Bachelor’s degree in

Computer Science from Jadavpur University, Kolkata in 2009. During his doctoral stud-

ies at the Louisiana State University, Arnab has co-authored 10 papers in peer-reviewed

conferences. His research interest falls in the areas of compressed data structures, com-

putational geometry, and graph algorithms. During the final year of his doctoral studies,

Arnab was awarded with the Graduate School Dissertation Fellowship.

106

	Louisiana State University
	LSU Digital Commons
	2017

	Succinct Data Structures for Parameterized Pattern Matching and Related Problems
	Arnab Ganguly
	Recommended Citation

	 ACKNOWLEDGMENTS 12pt
	 ABSTRACT
	Introduction
	Motivation
	Contribution
	Roadmap

	Preliminaries
	Linear vs Compact vs Succinct
	Suffix Tree and Suffix Array
	Burrows-Wheeler Transform and FM-Index
	Rank and Select on Bit-Vectors
	Wavelet Tree
	Succinct Trees with Full Functionality
	Succinctly Indexable Dictionaries

	Succinct Index for Non-overlapping Pattern Matching
	Overview of Techniques
	Definitions
	The Querying Process

	Succinct Index for Parameterized Pattern Matching
	Overview of Techniques
	Parameterized Suffix Tree
	Parameterized Burrows-Wheeler Transform
	Parameterized LF Mapping
	Implementing Parameterized LF Mapping
	Finding Suffix Range via Backward Search

	Succinct Index for Parameterized Dictionary Matching
	Overview of Techniques
	Idury and Schäffer's Linear Index
	Representing States Succinctly
	Handling next Transitions Succinctly
	Handling failure and report Transitions Succinctly
	The Final Query Procedure

	Compact Index for Order-preserving Pattern Matching
	Overview of Techniques
	Order-preserving Indexing
	LF Successor
	Some Useful Definitions
	Successor Pair First Disagree Before their LCP
	Successor Pair First Disagree After their LCP
	Data Structure Toolkit
	Wrapping Up

	Compact Index for Order-preserving Dictionary Matching
	Overview of Techniques
	Linear Space Index
	Representing States Succinctly
	Handling next Transitions Compactly
	Handling failure and report Transitions Succinctly
	The Final Query Procedure

	Open Problems
	Compact Construction
	Compressed Indexes for 2D Pattern Matching
	Streaming Algorithms

	 REFERENCES
	 VITA

