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B.S., San José State University, 2014
May 2017



To God, my family, and friends.

ii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Dr. Anas (Nash) Mahmoud for his

help and guidance throughout this work. I also would like to thank Dr. Doris Carver and

Dr. Jianhua Chen for taking the time to review my thesis and serve on my committee. I also

thank Dr. Bijaya Karki, the head of the department of Computer Science and Engineering

for providing me with financial support throughout the course of my studies. Special thanks

to Ms. Allena McDuff for the opportunity to enroll into the program.

I would like to thank my co-authors, Nishant Jha, Grant Williams, Jazmine Staten,

and Miles Vesper for their assistance and contributions on this work. I also would like to

acknowledge my study participants for their time.

This accomplishment would have not been possible without my family and friends. I

thank my family for their love and support and for being an example of hard work, inspira-

tion, and dedication. I thank my parents Hollis and Lillian Poché for their encouragement
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ABSTRACT

Video coding tutorials enable expert and novice programmers to visually observe real

developers write, debug, and execute code. Previous research in this domain has focused

on helping programmers find relevant content in coding tutorial videos as well as under-

standing the motivation and needs of content creators. In this thesis, we focus on the link

connecting programmers creating coding videos with their audience. More specifically,

we analyze user comments on YouTube coding tutorial videos. Our main objective is to

help content creators to effectively understand the needs and concerns of their viewers,

thus respond faster to these concerns and deliver higher-quality content. A dataset of 6000

comments sampled from 12 YouTube coding videos is used to conduct our analysis. Im-

portant user questions and concerns are then automatically classified and summarized. The

results show that Support Vector Machines can detect useful viewers’ comments on coding

videos with an average accuracy of 77%. The results also show that SumBasic, an extrac-

tive frequency-based summarization technique with redundancy control, can sufficiently

capture the main concerns present in viewers’ comments.
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CHAPTER 1

INTRODUCTION

Since its launch in 2005, YouTube has quickly become the largest video sharing plat-

form on the Internet. As of the year 2016, YouTube has reported more than a billion users

with over 300 hours of video uploaded every minute1. YouTube relies on freely-contributed

user-generated content that covers a broad variety of subjects. Such content is made freely

available to the consumers. Similar to other social media platforms, the core of YouTube’s

philosophy is to support and promote collaboration between content creators (YouTubers)

and content consumers (viewers). YouTube enables community interaction through sev-

eral features such as thumps-up and thumps-down, video sharing, user text comments, and

video replies.

In recent years, YouTube has become a main source for programmers to learn new pro-

gramming skills [13, 41]. Coding tutorial videos typically take the form of a screencast—a

developer uploads a copy of his/her computer screen as code is typed along with an audio

narration to walk viewers through the process. A coding tutorial video can range from

a fundamental HELLO WORLD programming lesson to more advanced topics, describ-

ing personal development experiences, practices, and unique programming strategies [35].

Through these tutorials, viewers can visually follow source code changes and learn about
1https://www.youtube.com/yt/press/statistics.html
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the environment where the program is compiled, debugged, and executed. This provides

a unique and more interactive medium for sharing knowledge in comparison to traditional

text-based resources, such as manuals, programming books, and online platforms (e.g.,

Stack Overflow).

Previous research in this domain has focused on either viewers [43] or content cre-

ators [35]. MacLeod et al. [35] conducted a large-scale study to understand how and why

software developers create video tutorials. In a more recent work, Ponzanelli et al. [43]

proposed CodeTube, an approach which helps developers find coding content on YouTube

more effectively. In our work, we focus on the link connecting content creators to their

audience. More specifically, we analyze viewer’s feedback expressed through user com-

ments on coding videos. A comment is a textual description of a viewer experience with

the video [47]. Extensive analysis of YouTube comments in other domains has revealed

that they can be a viable source of descriptive annotations of videos, carrying socially sig-

nificant knowledge about users, videos, and community interests in general [51]. YouTube

comments have been analyzed to detect cyberbullying [19], drug abuse [52], and infer

people’s political affiliations.

Our main assumption in this thesis is that extracting, classifying, and summarizing

information in viewers’ comments on coding tutorial videos will help content creators to be

more engaged with their audience and plan more effectively for future videos. Ultimately,

boost their visibility, number of views, and number of subscribers [15, 53]. In particular,

in this thesis we document the following contributions:
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• Data collection: We collect and manually classify 6000 YouTube comments sam-
pled from 12 different coding tutorial videos. These videos cover a broad range of
programming tutorials at different levels of complexity.

• Comments classification: We investigate the performance of different text classifiers
to identify effective classification configurations that can automatically distinguish
viewers’ feedback that requires action from the content creator from other miscella-
neous comments (e.g., spam).

• Comment summarization: We investigate the performance of different text summa-
rization techniques in capturing the main topics raised in the content concern com-
ments on coding videos.

The remainder of this thesis is organized as follows. Chapter 2 discusses YouTube as

an educational tool, motivates our research, and lists our research questions. Chapter 3

describes our data collection protocol and discusses the information value of user com-

ments on coding tutorial videos. Chapter 4 investigates the performance of multiple text

classification techniques in capturing useful comments. Chapter 5 describes and evaluates

the performance of different comment summarization strategies in generating meaningful

summaries of useful viewers’ comments. Chapter 6 discusses the threats to the study’s

validity. Chapter 7 reviews related work. Finally, Chapter 8 concludes the thesis and dis-

cusses prospects for future work.
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CHAPTER 2

BACKGROUND, MOTIVATION, AND APPROACH

YouTube has been recently utilized as an effective educational tool across a variety of

subjects, such as literature [18, 16], health sciences [11], arts and humanities [18], language

learning [8], and STEM education [4]. Using YouTube in the classroom has been found

to motivate and increase student participation, critical awareness, and enhance their deep

learning skills [20, 12].

In computer science education, YouTube is mainly used in programming classes. Novice

and expert programmers use coding videos to visually learn new programming languages,

understand new programming structures and techniques, and expose themselves to other

programmers’ styles of coding and debugging [41]. Carlisle [13] examined the effect of

using YouTube for teaching Java at a college level. The author reported that students who

watched YouTube videos were more prepared for class and performed better on the test.

Furthermore, the results showed that YouTube videos provided a source of outreach for the

university by drawing the attention of younger demographics.

Similar to other major social media platforms (e.g., Facebook and Twitter), at its core,

YouTube encourages a participatory culture; YouTube viewers can share, rate, reply to, and

comment on videos. Comments represent a direct communication channel between content
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creators and their audience. Through comments, viewers can express their feelings toward

certain content, participate in active discussions with other viewers, and direct questions

to content creators. From a content creator’s perspective, comments provide a valuable

source of feedback to understand their viewers’ needs and alter their content accordingly.

Research has shown that the level of interaction between content creators and their

viewers is a main dimension of popularity on YouTube [14]. More specifically, YouTubers

who consistently read and respond to their viewers are more likely to retain subscribers and

gain more views [15, 53]. However, as videos become more popular, they tend to receive

more comments. Larger number of comments causes potentially valuable user feedback to

be buried within comments that do not provide any useful feedback about the content of the

video [2]. This makes it almost impossible for content creators and viewers to go through

these comments manually to respond to user concerns, or engage in useful discussions.

Furthermore, similar to other media platforms, spammers take advantage of the openness

and popularity of YouTube to spread unsolicited messages to legitimate users. These mes-

sages are used to launch phishing, advertising, or malware attacks on large demographics

of users or simply to advertise for other channels on the website [50, 6].

Motivated by these observations, we introduce a study aimed at separating and present-

ing useful user feedback on YouTube coding tutorial videos. Our presumption is that, gath-

ering, classifying, and then summarizing comments in an informative way helps content

creators respond more effectively to their viewers’ concerns [44]. To guide our research,

we formulate the following research questions:

• RQ1: How informative are comments on coding tutorial videos? YouTube is a
public service. Viewers typically come from different backgrounds with a broad
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spectrum of opinions. Therefore, the assumption that all comments carry useful
information is unrealistic. While some users may post comments that are beneficial
to both the content creators and viewers, others may post comments that are entirely
irrelevant or do not contain any useful information. Therefore, the first objective of
our analysis is to determine how informative are the comments on YouTube coding
videos. In other words, do such comments have enough information value that can
be useful for the content creators?

• RQ2: Can informative comments be automatically identified and classified? Filter-
ing massive amounts of comments manually can be a tedious and error-prone task.
Therefore, for any solution to be practical, an automated approach is needed to ef-
fectively filter through data and separate informative from uninformative comments
with a decent level of accuracy.

• RQ3: How to summarize and present informative comments? YouTube comments
can be lexically (e.g., abbreviations and colloquial terminology) and semantically
(i.e., lack of proper grammars) restricted. Furthermore, several comments might
raise similar concerns. Presenting such large, and maybe redundant, amounts of raw
comments to the content creator can cause confusion. This emphasizes the need for
automated methods to summarize informative comments to enable a more effective
data exploration process.
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CHAPTER 3

QUALITATIVE ANALYSIS

In this chapter, we answer our first research question regarding the potential value of

comments on YouTube coding tutorial videos. In particular, we describe our data collection

protocol along with the main findings of our manual qualitative analysis.

3.1 Data Collection

To conduct our analysis, we sampled 6000 comments from 12 coding tutorial videos

selected from multiple coding channels1. The data was collected on September 6, 2016.

Table 3.1 describes these videos, including each video’s unique identifier (ID) which ap-

pears at end of each YouTube video’s URL, the main topic of the video, the length of

the video in minutes, and the number of views and comments. To sample our dataset,

we collected all available comments from each video, a total of 41,773 comments. These

comments were retrieved from YouTube using the latest YouTube Data API2. This API

extracts comments and their metadata, including the author’s name, the number of likes,

and the number of replies. Results are returned in JSON format. 500 comments were then

randomly sampled from each video. The C# Random() function was used to sample the

data. This function uses a time-dependent default seed value from the C# System library.
1http://seel.cse.lsu.edu/data/icpc17.zip
2https://developers.google.com/youtube/v3/
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3.2 Qualitative Analysis

To answer our first research question, we manually analyzed the sampled data to iden-

tify comments that carry some sort of useful feedback to content creators and viewers.

To simplify the classification process, we categorized the comments into two general cate-

gories, including content concerns (informative) and other miscellaneous comments. These

categories can be described as follows:

• Content Concerns: These comments include questions or concerns about certain
parts of the video content that needs further explanation (e.g., “at 11:14 do i have
to use ‘this’ at all?”). This category also includes comments that point out errors
within the video (e.g., “At 27:10 there’s a small mistake. The first parameter is the
starting index, the second parameter is the number of chars”). Content concerns
can also include requests for certain future content (e.g., “Can you make a Arcpy
video?”). This category also includes comments which are suggestions to improve
the quality of the tutorial by giving advice to the programmer (e.g., “You are talking
way too fast”) or suggesting a change in the media settings (e.g., “The current font
is too small and the background is too dark cant see it”).

• Miscellaneous: This category includes all other comments that do not provide any
technical information about the content of the video. For instance, some comments
include praise (e.g., “Very well explained, many thanks!”), insults (e.g., “This tu-
torial is trash.”), or spam (e.g., “Learn Web Development Essentials and Become
a Web Developer From Scratch in this Complete HTML & CSS Beginner’s Course
learn more here!”). Such comments are not beneficial to the content creators or the
viewers.

The sampled comments in our dataset were manually examined and classified by a

team of five annotators. Our team of annotators included two PhD students in software

engineering, two undergraduate computer science students (senior level), and a professor

in software engineering. The team members have an average of 4 years of experience

in programming. A tool was created to aid in the manual classification process. Each

annotator classified each comment and saved the results to a separate database. The tool
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then merged the different classifications and majority voting was used to classify each

comment. No time constraint was enforced to avoid fatigue factors (i.e., the participant

becomes bored or tired and starts randomly classifying the comments). It took all five

annotators an average of 3 weeks to fully classify the data (6000 comments).

The results of the manual classification process is shown in Table 3.1. Around 30%

of the comments were found to be content-related, or useful, meaning that the majority of

comments are basically miscellaneous. These findings answer RQ1 and motivates RQ2 and

RQ3. More specifically, given that only one third of comments contain potentially useful

information, how can such comments be automatically identified and effectively presented

to the content creator?
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CHAPTER 4

COMMENTS CLASSIFICATION

The second phase of our analysis is concerned with automatically classifying our ground-

truth dataset into informative (technical concerns) and miscellaneous comments. In partic-

ular, the main research question at this phase is RQ2: Can informative content-relevant

comments be automatically identified and classified? This question can be further bro-

ken down into two sub-questions, first, what classifiers are most effective in the context of

YouTube comments, and second, what classification features generate the most accurate

results?

4.1 Classification Techniques

To answer the first part of RQ2, we investigate the performance of two text classi-

fication algorithms, including Naive Bayes (NB) and Support Vector Machines (SVM).

Both algorithms have been extensively used in related literature to classify YouTube com-

ments [47, 2, 50, 46, 54]. In detail, NB and SVM can be described as follows:

• Naive Bayes (NB): NB is an efficient linear probabilistic classifier that is based on
Bayes’ theorem [28]. NB assumes the conditional independence of the attributes of
the data. In other words, classification features are independent of each other given
the class. In the context of text classification, NB adopts the Bag-of-Words (BOW)
approach. More specifically, the features of the model are the individual words of the
text. The data is typically represented by a 2-dimensional word x document matrix.
In the Bernoulli NB model, an entry in the matrix is a binary value that indicates
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whether the document contains a word or not (i.e., {0,1}). The Multinomial NB, on
the other hand, uses normalized frequencies of the words in the text to construct the
word x document matrix [36].

• Support Vector Machines (SVM): SVM is a supervised machine learning algo-
rithm that is used for classification and regression analysis in multidimensional data
spaces [10]. SVM attempts to find optimal hyperplanes for linearly separable pat-
terns in the data and then maximizes the margins around these hyperplanes. Techni-
cally, support vectors are the critical instances of the training set that would change
the position of the dividing hyperplane if removed. SVM classifies the data by map-
ping input vectors into an N-dimensional space, and deciding on which side of the
defined hyperplane the data instance lies. SVMs have been empirically shown to be
effective in domains where the data is sparse and highly dimensional [24].

SVM and NB have been found to work well with short text. Short-text is a relatively

recent Natural Language Processing (NLP) type of text that has been motivated by the

explosive growth of micro-blogs on social media (e.g., Tweets and YouTube and Facebook

comments) and the urgent need for effective methods to analyze such large amounts of

limited textual data. The main characteristics of short-text include data sparsity, noisy

content, and colloquial terminologies. In what follows, we investigate the performance of

these two classifiers in detecting useful feedback present in coding videos’ comments.

4.2 Text processing

In the context of text classification, researchers typically use combinations of text pre-

processing strategies to remove potential noise and help the classifier to make more accu-

rate predictions [24]. These strategies include text reduction techniques such as stemming

(ST) and stop-word (SW) removal. Stemming reduces words to their morphological roots.

This leads to a reduction in the number of features (words) since only one base form of the

word is considered. Stop-word removal, on the other hand, is concerned with removing
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English words that are considered too generic (e.g., the, in, will). We also remove words

that appear in one comment only since they are highly unlikely to carry any generalizable

information [21]. Table 4.1 shows the different pre-processing steps in order.

Table 4.1

Pre-processing steps applied to the data

Original Comment “I don’t really understand the importance of an abstract class.
Isn’t it just a more limited version of a normal class?”

Stop-Word Removal “don’t understand importance abstract class Isn’t limited
version normal class”

Stemming “don understand import abstract cl isn lim ver norm cl”
vectorToStringFilter <abstract, cl, don, import, isn, lim, norm, understand, ver>
TF Weights <0.69, 1.09, 0.69, 0.69, 0.69, 0.69, 0.69, 0.69, 0.69>

Furthermore, in our analysis, we use Multinomial NB, which uses the normalized fre-

quency (tf ) of words in their documents [36]. tft,c can be defined as the number of times

a term t occurs in a comment c [45]. This value is often adjusted as ln(1 + tft,c) to ensure

that words that appear too frequently get penalized as they receive less weight than less

frequent words. Multinomial NB is known to be a robust text classifier, consistently out-

performing the binary feature model (Multi-variate Bernoulli) in highly diverse, real-world

corpora [36].

4.3 Implementation and Evaluation

To implement NB and SVM, we use Weka [1], a data mining suite that implements

a wide variety of machine learning and classification techniques. We also use Weka’s
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built-in stemmer (IteratedLovinsStemmer [33]) and stop-word list to pre-process

the comments in our dataset.

SVM is invoked through Weka’s SMO, which implements John Platt’s sequential mini-

mal optimization algorithm for training a support vector classifier [42]. Choosing a proper

kernel function can significantly affect SVM’s generalization and predictive capabilities

[49]. The kernel function of SVM transforms the nonlinear input space into a high dimen-

sional feature space. Therefore, the solution of the problem can be represented as being a

linear regression problem [29, 5]. In our analysis, the best results were obtained using the

universal kernel. Universal kernels have been found to be more effective than other kernels

when the data is noisy [49, 37].

To train our classifiers, we use 10-fold cross validation. This method of evaluation

creates 10 partitions of the dataset such that each partition has 90% of the instances as

a training set and 10% as an evaluation set. The evaluation sets are chosen such that

their union is the entire dataset. The benefit of this technique is that it uses all the data

for building the model, and the results often exhibit significantly less variance than those

of simpler techniques such as the holdout method (e.g., 70% training set, 30% testing

set) [26].

Recall, precision, and F-measure are used to evaluate the performance of the different

classification techniques used in our analysis. Recall is a measure of coverage. It represents

the ratio of correctly classified instances under a specific label to the number of instances

in the data space that actually belong to that label. Precision, on the other hand, is a

measure of accuracy. It represents the ratio of correctly classified instances under a specific

14



label to the total number of classified instances under that label. Formally, if A is the set

of data instances in the data space that belong to the label �, and B is the set of data

instances that were assigned by the classifier to that label, then recall (R) can be calculated

as R� = |A \ B|/|A| and precision (P) can be calculated as P� = |A \ B|/|B|. We also

use F = 2PR/(P +R) to measure the harmonic mean of recall and precision.

4.4 Results and Discussion

The results of our classification process are shown in Table 4.2. The results show that

SVM (F = 0.77) was able to outperform NB (F = 0.68). This difference in performance

can be explained based on the characteristics of our data space. More specifically, even

though YouTube comments are limited in size, the feature space (number of words) is

typically very large [24]. This can be attributed to the fact that people on social media

use informal language (e.g., slang words, acronyms, abbreviations) in their comments [48,

27]. This drastically increases the number of features that the classifier needs to process

and leads the vector representation of comments to be very sparse (i.e., only very few

entries with non-zero weights). While machine learning algorithms tend to over-learn

when the dimensionality is high, SVM has an over-fitting avoidance tendency—an inherent

behavior of margin maximization which does not depend on the number of features [9].

Therefore, it has the potential to scale up to high-dimensional data spaces with sparse

instances [24]. NB tends to be less accurate when dealing with sparse text spaces due the

unrealistic conditional independence assumption among the classification features.
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Table 4.2

Performance of different classification configuration

CLASSIFIER P R F
NB 0.63 0.71 0.67
NB + STEMMING 0.62 0.76 0.68
NB + STEMMING + STOP-WORD 0.61 0.73 0.67
SVM 0.79 0.75 0.77
SVM + STEMMING 0.77 0.73 0.75
SVM + STEMMING + STOP-WORD 0.75 0.65 0.70

Our results also show that removing English stop-words impacts the performance SVM

negatively (F = 0.70). This can be explained based on the observation that some of

the eliminated stop-words represent valuable features to our classification problem. For

example, the comment, “why did you leave space every time you started a new one eg

htmlbody Etc” was incorrectly classified as miscellaneous after the removal of the stop-

words <a, did, on, why, and you>. Similarly, the comment, “is it true that this video covers

95% of what we need to know about MySQL” was incorrectly classified as miscellaneous

after the removal of the stop-words <is, about, it, of, that, to, we, what>. In general,

comments related to the video content tend to take the form of questions. Removing words,

such as why or what, from the comment’s text changes the question to a statement, thus

leading to misclassification.

The slight decline of SVM performance after applying stemming (F = 0.75) can be

attributed to instances of over-stemming. For example, in the two comments: “You are

truly incredible” and “I think you could increase the quality of your instructional videos

by speaking in a less monotonous way” both words incredible and increase were stemmed
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to incr, thus corrupting the space of features by considering two different words as one and

causing the second comment to be incorrectly classified as miscellaneous.

17



CHAPTER 5

COMMENTS SUMMARIZATION

The third phase of our analysis is focused on generating succinct summaries of the

content concern comments. A summary can be described as a short and compact descrip-

tion that encompasses the main theme of a collection of comments related to a similar

topic [31, 25]. The main objective is to assimilate the perspectives of a large number of

user comments to focus the content creator’s attention on common concerns. In particular,

the research question at this phase of our analysis is, RQ3: How to summarize informative

comments on YouTube coding videos?

5.1 Summarization Behavior: A Pilot Study

The summarization task in our analysis can be described as a multi-document summa-

rization problem, where each comment is considered as a separate document. In general,

multi-document summarization techniques can be either extractive or abstractive. Extrac-

tive methods select specific documents, or keywords, already present within the data as

representatives of the entire collection. Abstractive methods, on the other hand, attempt

to generate a summary with a proper English narrative from the documents [31]. Gener-

ating abstractive summaries can be a very challenging task. It involves heavy reasoning

and lexical parsing to paraphrase novel sentences around information extracted from the
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corpus [22]. This problem becomes more challenging when dealing with the lexically

and semantically limited YouTube comments. In contrast, extractive summaries have the

advantage of being full sentences, thus carry more meaningful information [3, 25]. How-

ever, as only a limited number of representative comments are selected, important concerns

about certain topics might be missed.

To get a sense of how developers would identify the main concerns in a list of com-

ments, we conducted a pilot study using two participants. Our first study participant has

7 years of experience in HTML programming and the second has 5 years of experience in

C++ programming. Each participant was assigned two videos in their area of expertise and

asked to watch the videos, read the list of comments we provided, and select the top 10

comments that captured the viewers’ concerns raised in the comments. No time constraint

was enforced.

Our pilot study participants were interviewed after the experiment. Both of them im-

plied that they initially identified the main viewers’ concerns on the video after going

through the list of comments for 3-4 times. Once these topics were identified (stood out

due to their frequent appearance), they selected sample comments that they thought rep-

resented these topics, basically, included terms from the main topics identified. Our par-

ticipants also implied that, while it was not easy to pick these representative comments,

especially due to the very high degree of diversity in the language used by viewers, they

would still prefer to see full comment summaries over keyword summaries. For example,

the first video in Table 3.1 (bWPMSSsVdPk) provides a very basic tutorial of HTML lan-

guage. Examining the list of useful comments on this video shows that they revolve around
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three main concerns, including embedding images (<img></img>) in HTML pages, the

DOCTYPE tag, and questions about the browser used to parse the HTML code. Table 5.1

shows some of the comments related to the image and DOCTYPE topics, responding to

any of these comments would address majority of the concerns raised in other comments

about these topics. However, only displaying tags such as <img, DOCTYPE, browser>

might not be as informative to describe what these concerns actually are.

Table 5.1

Example of different comments related to similar topics

Comments related to the topic Comments related to the topic
‘‘image’’ ‘‘DOCTYPE’’

“I dont get the image i made “you dont need doctype html”
when i put Img srcimgbmp”
“how did u get the bitmap “not important to start with the
image thing i dont have it im DOCTYPE html tag”
using win10”
“btw my image is not showing “What about DocType”
on the webpage”

5.2 Automated Summarization

Given our observations during the pilot study, the main challenge at this point is to de-

termine the best strategies for generating summaries, or the comments that address major-

ity of the common concerns raised by the viewers. Formally, an extractive summarization

process can be described as follows: given a topic keyword or phrase T and the desired

length for the summary K, generate a set of representative comments S with a cardinality
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of K such that 8si 2 S, T 2 si and 8si, 8sj 2 S, si ⌧ sj . The condition si ⌧ sj is

enforced to ensure that selected comments provide sufficiently different information (i.e.,

not redundant) [23].

In the literature, several extractive comment summarization techniques have been pro-

posed [25, 23, 39, 38]. Majority of these techniques rely on the frequencies of words as an

indication of their perceived importance [39]. In other words, the likelihood of words ap-

pearing in a human generated summary is positively correlated with their frequency [23].

In fact, this behavior was observed in our pilot study where our participants indicated that

the frequency of certain terms was the main factor for identifying the general user concerns

and selecting their summary comments.

Based on these observations, in our analysis, we investigate the performance of a num-

ber of term frequency based summarization techniques that have been shown to work well

in the context of social media data. These techniques include:

• Term Frequency (TF): Term, or word, frequency is the most basic method for de-
termining the importance of a word. Formally, a word value to its document is
computed as the frequency of the word (fi) divided by the number of words in the
document N . In our analysis, the importance of a comment of length n is calculated
as the average of the weights of its individual words

Pn
i=1 fi/N . Note that unlike

classical TF, we compute TF as the proportion of times a word occurs in the entire
set of comments rather than individual comment. This change is necessary to capture
concerns that are frequent over the entire collection of comments [23].

• Hybrid TF.IDF: Introduced by Inouye and Kalita [23], the hybrid TF.IDF approach
is similar to the TF approach. However, term frequency (TF) is accompanied with
a measure of the term scarcity across all the comments, known as inverse document
frequency (IDF). IDF penalizes words that are too frequent in the text. An underlying
assumption is that such words do not carry distinctive value as they appear very
frequently. Formally, TF.IDF can be computed as:

TF.IDF = f(w,D)⇥ log

|D|
|di : w 2 di ^ di 2 D| (5.1)
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where f(w,d) is the term frequency of the word w in the entire collection, |D| is the
total number of comments in the collection, and |di : w 2 di^di 2 D| is the number
of comments in D that contains the word w. The importance of a comment can then
be calculated as the average TF.IDF score of its individual words.

To control for redundancy, or the chances of two very similar comments getting
selected, before adding a top comment to the summary, the algorithm makes sure
that the comment does not have a textual similarity above a certain threshold with the
comments already in the summary. Similarity is calculated using cosine similarity
between the vector representations of the comments.

• SumBasic: Introduced by Nenkova and Vanderwende [39], SumBasic uses the aver-
age term frequency (TF) of comments’ words to determine their value. However, the
weight of individual words is updated after the selection of a comment to minimize
redundancy. This approach can be described as follows:

1. The probability of a word wi in the input corpus of size N words is calculated
as ⇢(wi) = n/N , where n is the frequency of the word in the entire corpus.

2. The weight of a comment Sj is calculated as the average probability of its
words, given by

P|Sj |
i=1 ⇢(wi)/|Sj|

3. The best scoring comment is selected. For each word in the selected comment,
its probability is reduced by ⇢(wi)new = ⇢(wi) ⇥ ⇢(wi). This step is neces-
sary to control for redundancy, or minimize the chances of selecting comments
describing the same topic using high frequency words.

4. Repeat from 2 until the required length of the summary is matched.

5.3 Evaluation

We recruited 12 programmers (judges) to participate in our experiment, including 7

graduate students in computer science, 2 undergraduate computer science students, and 3

industry professionals. An interview was conducted prior to the experiment to determine

the programming experience of our study participants. 5 of our judges reported experience

in C++, 6 judges reported experience in Java, and 5 judges reported experience HTML

and CSS programming. Based on our judges’ area of expertise, 6 videos from Table 3.1

were selected to conduct our analysis. Each participant was then assigned 2-3 videos that
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matched their area of expertise. The main task was to watch the video, read the provided list

of content concern comments of the video, and identify 10 representative comments that

capture the common concerns raised by the viewers. The comments were randomized to

avoid any bias where users select comments from the top of the list. No time constraint was

enforced, but most of our participants responded within a two-week period. In summary,

each video was summarized by 5 judges, generating a total of 30 summaries. Table 5.2

describes our experimental setup.

Table 5.2

Experimental setup (Judges: Number of judges, Experience: Judges’ average years of
experience in the topic, Videos: videos from Table 3.1 used in the experiment)

TOPIC JUDGES EXPERIENCE (YEARS) VIDEOS
HTML 5 5.5 1, 2
C++ 5 4 3, 4
Java 5 4.5 8
CSS 5 4.5 7

The different summarization techniques proposed earlier were then used to generate

the summaries for the 6 videos included in our experiment. To enhance the accuracy of

the summarization techniques, in addition the list of dictionary stop-words, we compiled

a new list of English-like words or colloquial terms that appear frequently in our dataset

but do not carry any useful information. In general, we identified four categories of these

words, including: words that are missing apostrophes (e.g., whats, dont, theyre, ill), abbre-

viations (e.g., plz, pls, whatevs), acronyms (e.g., lol, btw, omg), and emotion words that
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do not contribute any technical value (e.g., love, hate, like). Stemming was also applied to

minimize the redundancy of different variations of words (e.g., show, showing, shown, and

shows). In what follows, we present and discuss our results.

5.4 Results and Discussion

To assess the performance of our summarization techniques, for each video, we cal-

culate the average term overlap between our study participants’ selected lists of comments

(reference summaries) and the various automatically generated summaries. Formally, a

recall of a summarization technique t is calculated as:

Recallt =
1

|S|

|S|X

i=1

match(t, si)

count(si)
(5.2)

where S is the number of reference summaries, match(t, si) is the number of terms that ap-

pear in the reference summary si and the automated summary generated by t, and count(si)

is the number of unique terms in the reference summary si. An automated summary that

contains (recalled) a greater number of terms from the reference summary is considered

more effective [30, 23, 39]. In our analysis, recall is measured over different length sum-

maries (5, 10, 15, and 20 comments included in the summary).
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The results are shown in Figure 5.1. Randomly generated summaries (comments were

selected randomly from each set using the .NET Random class) were used to compare the

performance of our proposed methods. Our results show that all methods outperformed the

random baseline. On average, SumBasic was the most successful in summarizing common

concerns found in viewers’ comments, followed by Hybrid TF.IDF, and finally TF which

achieved the lowest recall. Figure 5.2 shows that best Hybrid TF.IDF’s results were ob-

served at the lowest threshold value (0.2), which means that for a comment to be included

in the summary it should not be more than 0.2 similar to any other comment already in

the summary. In general, our results suggest that a simple frequency-based approach with

redundancy control can actually be sufficient to capture the common concerns in viewers

comments.

Figure 5.1

The performance of the different summarization techniques measured at different length
summaries (5, 10, 15, 20)
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Figure 5.2

The performance of Hybrid TF.IDF at different similarity thresholds measured at different
length summaries (5, 10, 15, 20)

We also observe that a major factor influencing the quality of the generated summaries

is the irrelevant words, or words that do not provide any useful information to the con-

tent creator. This problem becomes dominant when dealing with social media data. More

specifically, people tend to use a highly diverse set of vocabulary in their comments on plat-

forms such as YouTube, Twitter, and Facebook. Such rapidly evolving vocabulary includes

abbreviations, acronyms, emoticons, phonetic spellings, and other neologisms [48, 27].

Our expectation is that a continuous filtering of these words will significantly enhance the

performance of our summarization techniques. To verify this claim, we perform another

manual round of irrelevant word removal from the list of human generated summaries (e.g.,

the comment “how you do font colors plz hlp” is reduced to “font colors”). We then re-

peat our recall analysis. The results, shown in Figure 5.3, show more enhancement over
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the recall rates, confirming the ability of the proposed techniques of generating informative

summaries that actually capture the majority of users’ concerns. However, given the rapid

pace in which the language evolve online, creating and maintaining a generic up-to-date

list of uninformative words can be a challenging task. Therefore, any future implementa-

tion of our approach should give the content creator the ability continuously to update such

lists of words.

Figure 5.3

The performance of the different summarization techniques measured at different length
summaries (5, 10, 15, 20) after manually removing more irrelevant words

It is important to point out that other, more computationally expensive, techniques

such as Latent Dirichlet Allocation (LDA) [7] and text clustering have been employed in

the literature to generate comment summaries [25, 34]. However, such techniques typi-

cally require heavy calibration of multiple parameters in order to generate decent results.
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This limits the practicality of such techniques and their ability to produce meaningful

summaries [31, 3]. In our analysis, we rely on computationally inexpensive techniques

(frequency-based) that are relatively easier to implement and calibrate. This design deci-

sion was enforced to facilitate an easy transfer of our research findings to practice. The

ability to produce the output while keeping the operating cost as low as possible has been

found to be a major factor influencing tools adaptation in practice [32].
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CHAPTER 6

RELATED WORK

MacLeod et al. [35] conducted a large-scale study to understand how and why software

developers create video tutorials on YouTube. The authors conducted a set of interviews

with a number of content creators to understand their main motives and the challenges they

face when producing code-focused videos. The authors reported that videos can be a very

useful medium for communicating programming knowledge by complementing traditional

code documentation methods. In addition, the authors found that content creators typically

build their online reputation by sharing videos through their social media channels.

Ponzanelli et al. [43] presented CodeTube, an approach that facilitates the search for

coding videos on the web by enabling developers to query the content of these videos in

a more effective way. The proposed approach splits the video into multiple fragments and

returns only the fragments most related to the search query. CodeTube also automatically

complements the video fragments with relevant Stack Overflow discussions. Two case

studies were used to show the value of CodeTube and its potential benefits to developers.

Parnin et al. [40] conducted a set of interviews with several software bloggers to un-

derstand their motivations for blogging and the main challenges they face. The authors

reported that developers used blogging for documentation, technology discussion, and an-
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nouncing progress, where personal branding, knowledge retention, and feedback were the

main motivations for blogging. The authors also manually analyzed several blog posts to

understand the community interactions and social structures in software blogs. The results

showed that the most frequent types of comments blog authors received were questions

and expressions of gratitude. The results also showed that management of blog comments

was one of the main challenges that faced software bloggers.

Dinakar et al. [19] proposed an approach for detecting and modeling textual cyber-

bullying in YouTube comments. The authors applied a range of binary and multi-class

classifiers over a corpus of 4,500 manually annotated YouTube comments to detect sen-

sitive topics that are personal to individuals. The results showed that cyberbullying can

be detected by building individual topic-sensitive classifiers that capture comments with

topics related to physical appearance, sexuality, race, culture, and intelligence.

Momeni et al. [38] studied the properties and prevalence of useful comments on differ-

ent social media platforms. The authors used several classification models to detect pat-

terns of user-generated comments on different social media platforms including Flickr and

YouTube. The results showed that comments that contain a higher number of references,

a higher number of named entities, fewer self-references and lower sentiment polarity are

more likely to be inferred as useful.

Khabiri et al. [25] proposed a topic-based summarization algorithm to summarize com-

ments on YouTube videos. In particular, the authors used topic models to generate topics

over each video’s comments. The comments were then clustered by their topic assignments

into groups of thematically-related subjects. Within each cluster, a small set of key infor-
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mative comments is selected using a PageRank-style algorithm. The proposed approach

was evaluated over a dataset of YouTube comments collected from 30 videos and manu-

ally annotated by human judges. The analysis showed that topic-based clustering can yield

competitive results in comparison to traditional document summarization approaches.

Inouye and Kalita [23] compared the performance of different summarization algo-

rithms in summarizing social media micro-blogs. These algorithms were evaluated against

manually produced summaries and summaries produced using state-of-the-art summariza-

tion techniques. The results showed that Hybrid TF.IDF and SumBasic were able to gen-

erate the highest levels of agreement with the human generated summaries.

Siersdorfer et al. [47] investigated the relationship between the content and the ratings

of YouTube comments. The authors presented an in-depth study of commenting and com-

ment rating behavior on a sample of more than 10 million user comments on YouTube and

Yahoo. The authors used data mining to detect acceptance of comments by the community

and identify highly controversial and polarizing content that might spark discussions and

offensive commenting behavior.

Thelwall et al. [51] analyzed a large sample of comments on YouTube videos in an at-

tempt to identify patterns and generate benchmarks against which future YouTube research

can be conducted. The authors reported that around 23.4% of comments in their dataset

were replies to previous comments. Positive comments elicited fewer replies than negative

comments. The authors also reported that audience interaction with YouTube videos can

range from passive entertainment to active debating. In particular, videos about religion
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tend to generate the most intense discussions while videos belonging to the music, comedy,

and how to & style categories generated the least discussions in their comments sections.
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CHAPTER 7

THREATS TO VALIDITY

The study presented in this thesis has several limitations that might affect the validity

of the results [17]. A potential threat to the proposed study’s internal validity is the fact

that human judgment is used to classify our sample of YouTube comments and prepare our

ground-truth summaries. This might result in an internal validity threat as humans, espe-

cially students, tend to be subjective in their judgment. However, it is not uncommon in

text classification to use humans to manually classify the data, especially in social media

classification [25, 51]. Therefore, these threats are inevitable. However, they can be par-

tially mitigated by following a systematic classification procedure using multiple judges,

at different levels of programming experience, to classify the data.

Threats to external validity impacts the generalizability of the results [17]. A potential

threat to our external validity stems from the dataset used in our experiment. In particular,

our dataset is limited in size and was generated from a limited number of YouTube videos at

a certain point of time. To mitigate this threat, we ensured that our dataset of comments was

compiled from videos covering a broad range of programming languages (Java, C++, C#,

Python, HTML, CSS, and MySQL). Furthermore, we used randomization to sample 500

comments from the set of comments collected for each video. While considering all the
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data instances in the analysis might enhance the external validity of our results, manually

analyzing such large amounts of data can be a tedious and error-prone task which might

jeopardize the interval validity of the study. Other external threats might stem from the

tools we used in our analysis. For instance, we used Weka as our machine learning and

classification platform. Nonetheless, Weka has been extensively used in the literature and

has been shown to generate robust results across a plethora of applications. Furthermore,

using publicly available open source tool enables other researchers to replicate our results.

Construct validity is concerned whether the metrics used in the analysis capture the

aspect of performance they are supposed to measure [17]. In our experiment, there were

minimal threats to construct validity as the standard performance measures recall, preci-

sion, and F-Score, which are extensively employed in related research, were used to assess

the performance of the different methods investigated in our analysis.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This thesis presents an approach (summarized in Figure 8.1) for identifying, classify-

ing, and presenting useful user comments on YouTube coding tutorial videos. Our analysis

is conducted using 6000 comments sampled from 12 coding tutorial videos covering a

broad range of programming languages. A manual qualitative analysis was conducted to

determine the information value of sampled comments. Our results showed that around

30% of these comments contained useful information that can be beneficial to the content

creator. These comments included concerns related to the content of the video, such as

questions about a specific problem in the video or recommendations for future content.

The manually classified comments were then automatically classified using Naive Bayes

and Support Vector Machines. These two classifiers have been extensively used in short-

text classification tasks. The results showed that SVM was more effective than NB in

capturing and categorizing content request comments. Finally, content concern comments

were summarized using multiple automated summarization algorithms. A pilot study using

two expert programmers was conducted to understand the human summarization behav-

ior when dealing with YouTube comments. Our results showed that programmers prefer

extractive summaries over keyword-based abstractive summaries. Based on these obser-
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Figure 8.1

A summary of the proposed approach

vations, frequency-based summarization algorithms with redundancy protection were used

in our analysis. These algorithms, including TF, Hybrid TF.IDF and SumBasic, are known

for their simplicity (implementation, calibration, and computation overhead) and decent

performance in the context of social media data.

A human experiment using 12 programmers was conducted to assess the performance

of the different summarization techniques. The results showed that the summarization

algorithm SumBasic was the most successful in recalling the majority of common concerns

in viewers’ comments. The results also showed that the performance of the algorithm could

be enhanced by frequently eliminating lists of irrelevant words.

The long term goal of the proposed work is to help content creators respond faster

to their viewers concerns, deliver higher quality content, and ultimately gain more sub-
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scribers. To achieve this goal, the line of work in this thesis will be expanded along several

directions as follows:

• Data collection: A main part of our future effort will be devoted to collecting larger
datasets from a more devise set of programming languages. More data will enable
us to conduct in depth analysis of viewers’ commenting patterns on coding tutorial
videos, thus draw more robust conclusions.

• Tool support: A working prototype that implements our findings in this thesis will
be developed. This prototype will enable us to run usability studies to assess the
usefulness of our proposed approach for content creators.

• Human studies: Our future work will include conducting surveys and human exper-
iments with actual YouTubers to get a more in-depth understanding of their needs
and expectations as well as response patterns to their viewers.
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