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Abstract
This work describes the design and development of an optical, Computer Vision (CV)

based sensor for use as a Position Reference System (PRS) in Dynamic Positioning (DP).

Using a combination of robotics and CV techniques, the sensor provides range and heading

information to a selected reference object. The proposed optical system is superior to existing

ones because it does not depend upon special reflectors nor does it require a lengthy set-up

time.

This system, the Computer Vision and Inertial Position Reference Sensor System (CVIPRSS,

pronounced SeaVipers), combines a laser rangefinder, infrared camera, and a pan–tilt unit

with the robust TLD (Tracking–Learning–Detection) object tracker. In this work, a Sea-

Vipers prototype is evaluated, showing promising results as viable PRS with research, com-

mercial, and industrial applications.
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Chapter 1
Introduction

Computer Vision (CV) research has driven technological advances in important fields,

such as robotics and surveillance, through developments in areas like object recognition and

tracking, pattern matching, Simultaneous Localization and Mapping (SLAM), and motion

planning (just to name a few), all of which are based on Image Processing and Machine

Learning [1, 2, 3]. While the practical applications of such technologies are readily apparent

for military and law enforcement applications—facial recognition and target tracking for

surveillance; SLAM for Unmanned Aerial Vehicles (UAVs), search-and-rescue robots, etc.—

recent years have shown a heightened demand for CV based technologies in commercial,

industrial, and consumer products.

First debuted in 1992 by Volkswagen, self-parking and parking-assist systems are in-

creasingly available to consumers on automobiles from many major automakers [4]. Using

a combination of servo motors and many sensors, including cameras, these systems, ranging

from semi-autonomous to fully autonomous, can plan and execute parking maneuvers by

manipulating a vehicle’s steering, throttle, and brake systems under the supervision of a

small, on-board computer.

Inspired by interest within the commercial maritime community, we apply CV techniques

to a product similar to parking-assist systems in automobiles, i.e. Dynamic Positioning

Systems (DPS). Found primarily on large marine vessels, DPS use a variety of reference

systems in conjunction with a vessel’s maneuvering systems (often already automated to

some extent) to manipulate propellers and thrusters to maintain position and/or heading,

essentially parking a vessel on the water despite constant motion of waves and wind. Dynamic

Positioning (DP) can also be used to keep position in relation to a moving object, which

can be useful for pipe-laying or for vessels moving in formation. We propose an optics-based

Position Reference System (PRS), called Computer Vision and Inertial Position Reference
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Sensor System (CVIPRSS, pronounced SeaVipers), to serve as an improvement over current-

generation optical PRS.

Existing positional reference sensors (Cyscan, Fanbeam, etc.) require pre-positioned

reflectors as targets. These reflectors are not weatherproof; and are expensive; so they

cannot be left outdoors subject to the elements for long periods of time; particularly near

saltwater. So in order to maintain a fixed relative position to a target in/near the ocean,

a vessel must be painstakingly moved close enough to the target to send people over with

reflectors, without the aid of the dynamic positioning system. Only after this is done can

the vessel safely stay near the target with the aid of the DP. A vision based system like

CVIPRSS would eliminate the need for reflectors, as well as completely eliminate the initial

DP-less preparation time associated with setting them up, which can be several hours.

The remainder of this work is organized as follows. Section 2.1 describes Dynamic Posi-

tioning and examines existing Position Reference Systems, Sec. 2.2 investigates Computer

Vision, relevant subproblems and related works, and Sec. 2.3 examines TLD, the core CV

technology for this project. In Sec. 2.4, we explore various Autonomous Vehicles, discussing

development, use, and relevant works.

Chapter 3 details the problem description for developing the proposed system while Ch.

4 provides an overview of the system design. Finally, Ch. 5 discusses preliminary findings

based on an experiment using an early prototype of the proposed system, which is followed

by the conclusion in Ch. 6.

2



Chapter 2
Related Work
2.1 Dynamic Positioning

The ability to maintain a static position, otherwise known as position-keeping or station-

keeping, is a universal problem among seagoing vessels. While any vessel can tie-off to the

dock while in port, the question is “What to do while at sea?”. Historically, marine vessels

all over the world have simply used anchors, and this simple solution remains suitable for

vessels today in many applications.

However, anchoring comes with drawbacks, ones that can make it particularly ill-suited

for modern, advanced applications. For instance, maneuverability is severely limited once

an anchor is deployed and the time to reel it back in is directly proportional to water depth.

This can make the time to anchor out run from hours to days. Likewise, the station-keeping

accuracy of anchoring diminishes in proportion to water depth. Also, the utility of anchoring

is limited when the seabed is obstructed, either by natural formations or artificial features

like pipelines and utility cables. Finally, it can be difficult for multiple vessels to keep position

by anchoring close to each other due to safety concerns.

These drawbacks combine to make anchoring generally unsuitable for vessels attempting

to dock with offshore platforms like oil-drilling rigs. To overcome these limitations, new tech-

nologies for station keeping have emerged over the past half-century, technologies collectively

used for what is now called Dynamic Positioning.

2.1.1 Dynamic Positioning Systems

The American Bureau of Shipping (ABS) defines Dynamic Positioning as the practice

of a vessel automatically maintaining position and/or heading, in a fixed location or along

a predetermined track, by means of propeller/thruster force. A vessel employing DP is a

Dynamically Positioned Vessel (DPV). Likewise, the ABS defines Dynamic Positioning

Systems as “The complete installation necessary for dynamically positioning a vessel [that]

comprises the following subsystems” [5]. These subsystems are:
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• Power System

• Propulsion System

• DP Control System

The Power System includes all generators and or power plants responsible for the genera-

tion and distribution of electricity to the vessel, including cables and wiring. The Propulsion

System includes all propellers and thrusters along with rudders, etc. which provide force for

maneuvering the vessel. The DP Control System consists of all hardware and software that

coordinates between other systems. For the purposes of this discussion, we divide the DP

Control System into several subsystems.

• Operator Interface

• Command System

• Physical Sensors

• Position Reference Systems

The Operator Interface System handles input/output for the Dynamic Positioning

Operator (DPO), a DPV crew member specially trained to oversee the use of a DPS. Indi-

vidual reference systems can be accessed through a single, unified console, many separate,

individual consoles, or a mix, depending on the installation. Direct interaction with the

dynamic positioning process by the DPO is expected to be minimal.

The Command System (Fig. 2.1) is responsible for communication and coordination

between all other subsystems. It maintains a mathematical model of the ship which (ac-

counting for its mass, load balance, hull shape, and wind profile) describes the aerodynamic

and hydrodynamic qualities of the ship. As it gathers input from Physical Sensors, like

anemometers, compasses, or gyroscopes, the Command System will update its model with

data like current orientation (roll, pitch, yaw, i.e. motion about x-, y-, and z-axes), hull draft

4



Figure 2.1: Command System

Image from: http://en.wikipedia.org/wiki/File:Control-Kalman.svg
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Figure 2.2: Forces acting on a marine vessel

Image from: http://www.km.kongsberg.com

(distance between keel and waterline), heading, or wind speed and direction. The system

also tracks surge, sway, and heave. Next, after combining position estimates from each PRS,

the Command System updates the vessel’s current position. Finally, the Command System

calculates any necessary actions to move the vessel from its current position back to the

initial position, then communicates these actions with the Power System and the Propulsion

System.

Fig. 2.2 shows the motion of a marine vessel and typical forces that act on it. DP

is principally concerned with surge, sway, and yaw, i.e. position and orientation on the

x-y plane, shown as yellow arrows. Green arrows depict forces from different thrusters

(Propulsion System) and red arrows depict environmental forces.

2.1.2 Position Reference Systems

Position Reference Systems covers each PRS used on a DPV, each PRS comprised

of its own subsystems and sensors. Each PRS estimates the vessel’s absolute, global position

by somehow determining its relative position to some object or reference location with a

known position. Position Reference Systems can be categorized by sensor or reference type,

such as:

6



• Radar

• Hydroacoustic

• Light Taut Wire (LTW)

• Optical (Cameras, Lasers)

• Global Positioning System, Differential GPS (DGPS)

The oldest method of determining position is dead reckoning, which relies on a vessel’s

Physical Sensors. Current position is derived from the vessel’s speed and course (series of

heading changes), using the vessel’s previous position as its reference. This method can

be seriously error-prone, with errors propagating over time. Overall, dead reckoning is not

sufficient for practical DP tasks, though it can supplement other PRS during poor conditions

or take over as an emergency fail-safe during DPS failure.

Light Taut Wire (LTW) systems consist of a weighted sinker, a long spool of wire, a

motorized winch, and a ring-shaped electromagnet. The sinker is lowered over the side of

a vessel, connected by the metal wire, which passes through the electromagnet. Once the

sinker reaches the bottom, the system keeps uses the winch to automatically keep the wire

taut, but without lifting the sinker off of the bottom. While it does this, the system measures

the angle and direction of the wire as it passes through the electromagnet and the length

of wire that has been let out. This information is used to calculate the vessel’s position

relative to the sinker. LTW systems, though simple and effective, are limited to stationary

applications and are less useful in deep water, especially in the presence of strong currents.

Radar PRS, like the Artemis Mk V or the more recent RadaScan, use microwave band

radio transmissions to measure the range and heading of a prepared reference object. Artemis

uses two radar antennae, one on the vessel and another mounted on the target. It also has

the option of using one antennae on the vessel, with one or more active, powered beacons

mounted on the target. Though it has an operating range of up to 5 km [6], Artemis
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antennae are heavy in comparison to other PRS and it relies on prepared targets. Antennae

or beacons on the reference object, after requiring a significant installation process, must be

powered, are expensive, and require regular, non-trivial maintenance. RadaScan units, while

much smaller than Artemis, still require prepared targets. An array of passive (non-powered)

transponders are mounted on the reference object in advance of tracking operations. Reports

show that RadaScan units are limited to a range of 1 km [7], which is further limited by the

angle of incidence between the unit (fixed, non-rotating mount) and the transponders. This

limitation can reduce operating range from 500 m at 90 ◦, down to as low as 50 m at 170 ◦.

Furthermore, special care must be taken when placing transponders, otherwise performance

is significantly reduced. Though both radar PRS systems have the advantage of operating

in all weather and lighting conditions, they both require expensive preparation of reference

objects.

Hydroacoustic systems take range and angle measurements based on the known speed of

sound through water, adjusting for wavelength and density. One or more transducers located

on a vessel’s hull broadcast acoustic signals into the water. Then, any transponders within

range issue a reply. Transponders are placed on the floor of the body of water in advance

at known locations. Acoustic systems are vulnerable to noise interference from any number

of sources, such as the vessel’s own mechanical systems and thrusters, nearby vessels and

machinery, and any other acoustic systems operating in the same area.

Global Positioning Systems (GPS) would appear to make a fine candidate for PRS.

Unfortunately, the resolution of standard GPS ( 15 m) is to low to provide sufficient accuracy

for fine DP operations, which require sub-meter accuracy. However, there are enhancement

techniques, like Differential GPS (DGPS), which can overcome some weaknesses of traditional

GPS. DGPS leverages the assumption that multiple GPS receivers within close range of

each other should have the same or similar error in position readings. Fixed ground-based

reference stations take GPS position readings, compare them to their actual location, then

compute an offset. This offset is transmitted to nearby vessels using DGPS that use the

8



offset to correct the position reading taken from GPS. Proper DGPS can achieve an accuracy

between 3 m and 5 m. However, DGPS retains many of the same limitations as GPS, like

poor satellite coverage in the polar regions or disturbances in the ionosphere (e.g. sunspot

activity) which is common in equatorial zones. DGPS also suffers from the shadowing effect

caused by large metal structures which block radio and satellite signals. This is a serious

problem for smaller vessels, or for any operation where a vessel has to be close to larger

vessel (or platform, like an oil rig) for long periods.

(a) Fanbeam R© unit (b) CyScan unit

Figure 2.3: Fanbeam R© and CyScan units

(a) from: http://www.mdl-laser.com

(b) from: http://marine.guidance.eu.com

Optical PRS use light (usually infrared) to measure position. Two similar, commercially

available PRS products, Fanbeam R© and CyScan (Fig. 2.3), both operate by measuring

the time-of-flight of infrared laser light, projected as a wide, fan-shaped beam. To take

measurements, both systems rely on an array of reflectors mounted on the reference object

(reflective tape, retro-reflectors, or prism reflectors) with more reflectors required at longer

ranges, maximum range being approximately 2000 m.

However, existing optical systems suffer from limitations. According to the Interna-

tional Marine Contractors Association (IMCA), they both experience reduced operating

range during heavy precipitation [8]. Fanbeam R© can become confused by hits on errant re-

flective surfaces (reflective clothing, signs, etc.) or bright lights near the positioned reflectors

9



and does not tolerate sunlight hitting the lens directly. CyScan mitigates these problems

with improved optics and signal processing. The maximum range (2000 m) of each can only

be achieved under ideal conditions using the special reflectors. CyScan, in particular, has

difficulty operating beyond 400 m without use of its special prism reflectors, which are only

available from the system’s manufacturer, are expensive, and are also fragile. All things

considered, existing laser-optical PRS are effectively limited to a range < 500 m for practical

DP operations. Furthermore, reflectors need to be cleaned and maintained, with special care

given to where and how they are mounted.

2.2 Computer Vision

In simple terms, Computer Vision is the process of applying mathematical techniques

to electronic representations of visual data with the goal of deriving useful information about

the contents of the visual data. Traditionally, computer vision techniques have been applied

to color or monochrome versions of images captured by cameras sensitive to the range of

light visible to humans, approximately 400 to 700 nm. This is generally sufficient for most

common applications, though infrared light can be especially helpful in low-light situations.

With roots reaching back to the 1970s, Computer Vision is a rich and complex field with

numerous existing solutions to the multitude of subproblems that combine to make up a

typical computer vision based task. The remainder of this section examines relevant problems

in Computer Vision and their solutions, including related works and recent developments.

For additional reading or a more thorough survey, Szeliski [9] provides an excellent treatment

of the topics described herein.

2.2.1 Features and Matching

The ability to compare images to other images (or portions of images to portions of

other images) is central to many Computer Vision tasks, particularly a tracking task. The

näıve approach to Image Matching would involve comparing the Region of Interest (ROI)

of the sample image to the search image pixel by pixel at every possible location, which is

obviously inefficient and slow. This approach, called Template Matching, is still useful in
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specialized cases. Several important concepts can be applied to improve the efficiency and

speed of image matching.

In Computer Vision, Image Features are distinct regions within an image that are

easy to recognize and describe, often marked by sudden/drastic changes in color or intensity.

By first detecting features within an image, then limiting comparisons to only those features,

the number of comparisons is drastically reduced. See Fig. 2.5 for an example of feature-

based image matching. There are three main categories of image features: points, blobs, and

lines. Each type of feature, and a given algorithms that uses it, has particular strengths. In

fact, they are often complementary and higher level algorithms can use a variety of features

together for a more comprehensive understanding of an image. See Fig. 2.4 for examples of

each feature type.

(a) Original Image (b) Corner Features (c) Edge Features (d) Blob Features

Figure 2.4: Example of Different Types of Image Features on a Chicken

Point-style features (Fig. 2.4b), often called keypoints, interest points, or corners, de-

pending on the application, are the simplest type of features and the most widely used for

image matching. Line-style features (Fig. 2.4c) include edges, curves, and certain geometric

shapes like lines and circles. Algorithms using these features are often part of an image

segmentation task, i.e. dividing an image into distinct regions representing discrete objects

(Sec. 2.2.2). Blob-style features (Fig. 2.4d) are also referred to as regions. These features

represent a sort of hybrid between line and point features, corresponding to parts of an image
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that neither a keypoint nor curve would fit. The algorithms used for SeaVipers primarily

use point-style features.

For any given type of image feature, there can be many different ways to find that type

of feature within and image. An algorithm that locates image features within and image is

called a Feature Detector or Feature Extractor. Furthermore, there are different ways of

representing features in memory. Specialized data structures, called Feature Descriptors,

each contain the mathematical description of a particular image feature. Feature Matchers

are the algorithms that compare descriptors from different images, looking for similarities.

Just like image features, feature detectors, and feature descriptors, multiple feature matchers

can exist to work with a given type of descriptor, and many matchers can work with several

different types of descriptors, depending on the application in question.

Figure 2.5: Image Matching under affine transformation using ORB

Example of an image matching using ORB. Note that image is rotated, scaled, and tilted. Green

lines are drawn between matching keypoints while unmatched keypoints are red and have no

connecting lines. Image from [10].

All of these concepts are used in SIFT (Scale Invariant Feature Transform) [11], an early

and well-known feature-based image matching solution. SIFT detects keypoints within an

image and selects patches, fixed-sized groupings of pixels around a given point. These patches

are used as features. The most important innovation from SIFT is the way it leverages

feature descriptors to overcome the problem of affine transformations. The descriptors used
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in SIFT are scale-invariant, meaning that a large feature from an object in the foreground

of one image can match to a smaller feature from another image, possibly from the same

object pictured farther away. SIFT descriptors are also invariant under rotation and image

processing techniques can be used to overcome minor affine distortions.

SIFT has inspired numerous improvements and alternatives, like SURF (Speeded Up

Robust Features) [12], which combines a faster and more efficient detector, descriptor, and

matcher. SURF has the same scale-invariant and rotation-invariant properties of SIFT, but

with some implementations performing image matching in half the time. It combines a Fast-

Hessian Detector (using the determinant of a Hessian matrix) with a novel SURF descriptor

(using Haar-wavelets).

The BRIEF method for matching (Binary Robust Independent Elementary Features) [13]

builds upon SURF, replacing SURF descriptors with binary strings (called BRIEFs), which

are smaller in memory and compared with each other using Hamming distance instead of L2

norm. The Hamming distance comparison is more efficient. Image matching with BRIEF is

shown to be more accurate and faster than matching done with SURF or SIFT [13]. However,

BRIEF descriptors lack rotation-invariance.

The FAST (Features from Accelerated Segment Test) approach for feature description

is an improved method of keypoint detection that drastically outperforms previous methods

[14]. The improvement in speed is significant because this made FAST the first detector

capable of processing video in real-time (approximately 50 Hz). FAST leverages the Accel-

erated Segment Test to quickly generate corner-based keypoints. However, FAST is weak to

scale variations and does not have a measure of feature orientation like features in SIFT or

SURF.

Most recently, ORB (Oriented FAST and Rotated BRIEF) was developed, building upon

prior innovations [10]. ORB improves the feature detector from FAST by using pyramids

to account for variations in feature scale and the Harris corner measure to reject edge-

based features, which are “less interesting” than corner-based ones. ORB also includes a
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measure of corner orientation using intensity centroids. A machine learning based method is

used in ORB to decorrelate BRIEF descriptors, which approximates the rotation-invariance

property of previous descriptors. Using the new oFAST detector and rBRIEF descriptor,

ORB performs faster than SURF by a factor of 10 and faster than SIFT by a factor of 100

with similar matching performance to both while being drastically more efficient and less

affected by image noise. Refer back to Fig. 2.5 for an example of image matching using

ORB.

2.2.2 Image Segmentation

Image Segmentation is the process of dividing an image into one or more sets of pixels,

with each set containing pixels with similar characteristics, i.e. pixels that go together [9].

This is an old and widely studied problem in Computer Vision. As discussed in Sec. 2.2.1,

edge image features and curve image features (also sometimes called contours) are useful in

image segmentation because they can describe the boundaries between neighboring segments.

Likewise, blob features can describe the segments themselves. However, features represent

just one set of segmentation approaches.

The most simple approach is Thresholding, wherein each pixel is put into one of two

groups (usually black and white) based on whether its value for a certain property (red,

alpha, intensity, etc.) is above or below a certain threshold value. Though apparently

primitive, this method can yield valuable results when applied intelligently, e.g. in layers or

when done several times on a given image for different properties. More sophisticated forms

of Thresholding exist which correct for lighting gradients and image noise.

Clustering techniques are also popular for segmentation. Whether agglomerative (re-

gion merging) or divisive (region splitting), these techniques are some of the oldest. Early

methods use only local information when clustering, sometimes leading to unexpected re-

sults, such as when a histogram based method is caught in a local minimum or maximum.

More advanced clustering techniques, called Split and Merge techniques, can combine and

separate regions as necessary, leading to more accurate results.
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The K-means method takes a different approach to clustering [9]. Instead of splitting

or merging, a number of pixels, k, are chosen as segment centers either heuristically or

randomly. Next, each and every pixel is grouped with its nearest segment center based on

some distance function, usually based on color and/or intensity. After all pixels have been

grouped into one of k segments, the segment centers are reevaluated so that the new center

minimizes the distance function computed with every other pixel in its group. The process

repeats until it converges.

The Mean-Shift method for cluster analysis [15] is of particular interest. It implicitly

models the probability density function, similar to the K-means method, but instead uses a

smooth, continuous non-parametric model, efficiently finding peaks in high-dimensional data.

Mean-shift is used as the basis for some simple Object Tracing algorithms (Sec. 2.2.4).

2.2.3 Objects: Detection and Recognition

Objects hold a special place in the realm of Computer Vision. Since the general goal

of Computer Vision is to derive understanding of the physical, 3D world from digital, 2D

images, and given that the physical world is commonly understood to contain discrete 3D

objects, special care must be taken in how objects are defined and in how they are handled

in a given CV application. For Computer Vision in general, what an object is matters less

than how an object is represented. Initially, an object will be represented as a region within

an image containing only (or almost only) pixels with visual data about that object. Often,

an object is simplified to a collection of distinct features through feature extraction. This

collection of representational features can then be stored in memory.

• Object Detection

Object Detection is the process of finding a particular object or set of objects within

an image. This is done by using image matching techniques (Sec. 2.2.1) to match against

a stored collection of objects. Detection is an important part of many technologies, like

industrial quality control or automated surveillance. Näıve object detection would first

identify features within the query image, then compare each possible object in the search
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database with the query image, going feature by feature. This process can be sped up us-

ing an intelligent choice of data structures to store candidate objects and by using efficient

search algorithms that eliminate unnecessary feature descriptor comparisons during the im-

age matching step. Additional speed up can come from restricting the number of features

used or by restricting the search area to a particular region or regions. However, increases in

speed can come at the cost of accuracy, and increases in generality (reduced false negatives)

come with a decrease in accuracy (increased false positives).

Restricting the search area to a specific subregion of an image is an intuitive choice

and can be highly effective given sufficient domain knowledge. For example, if all candidate

objects in a search database are known to be light in color, darker regions of a query im-

age can be automatically ignored. Consider also a street/traffic camera at an intersection

that, instead of searching each entire frame for automobiles and pedestrians, only searches

subregions of frames where it has detected motion (Sec. 2.2.4).

• Object Recognition

According to Szeliski [9],“Of all the visual tasks we might ask a computer to perform, an-

alyzing a scene and recognizing all of the constituent objects remains the most challenging.”

This due to the numerous possible variations in pose, non-rigid transforms, lighting, occlu-

sions, color, pattern, contrast, background, etc. that can affect the appearance of objects

within a scene. Typically, domain knowledge about the environment and possible objects

within it can help simplify recognition, but it remains daunting.

Object Recognition is the process of finding and identifying objects within an image.

The recognition task occurs at different degrees of complexity, which Szeliski divides into

three levels:

1. Object Detection

2. Instance Recognition

3. Object Classification
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The first level, Object Detection, is the simplest. Images are searched for specific, individ-

ual objects that were encountered before and saved in a database, as described previously.

An object, once matched against the database, is identified as the same object that was

previously detected.

The second level, Instance Recognition, is more complex than the previous level.

Given a particular class, type, or category of object, images are searched for instances of

that object class. Class definitions vary by application and method, but they often rely on

an Object Model, which is a set of characteristic features (those typical of a given class)

arranged in a valid formation derived from the geometry and transformations typical to that

same class. Domain knowledge is important for selecting the right features for a model.

Machine Learning techniques often assist in model creation, taking in a large training

set of images containing valid instances of a class, and, by comparing them, learning what

features are most important for describing the class and how those features are typically

arranged.

The third level, Object Classification, is the most complex and relies most heavily

on machine learning. Classification is actually the reverse problem of instance recognition.

Given an image containing some instance(s) of some class(es) of object(s), the object must be

isolated and compared against various class definitions, then finally identified as belonging

to some class (usually just one class, but possibly more). One can see that classification is

comprised of multiple instance recognition tasks, with corresponding learning task for each

class that needs to be recognized. Instead of matching against a database of instances, like

an object detector, an object classifier would match against a database of models.

• Practical Application

To better understand each level and the distinctions between them, consider the practical

example of Human Facial Recognition. In the simplest form (level one), an Object

Detector considers images (like security photos or mugshots) that may or may not contain

human faces. The detector has a database of human faces, e.g. known criminals for a law-
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enforcement application or past customers for commercial and marketing applications. When

a specific face is positively identified, the recognition system can access database records

connected to the person associated with the detected face, going on to record information

and/or prompt another system to take actions, like moving a video game character on-screen.

Next, consider level two, Instance Recognition. Suppose a surveillance system tries to

automatically identify human faces in a cluttered environment with different types of moving

objects. After performing background subtraction and focusing only on new objects that

move into the scene, the system speeds up the search process by only considering new objects

that do actually contain human faces. It does this by performing Instance Recognition,

extracting only image features typical to human faces (facial features, like nose, mouth, etc.)

and considering human facial geometry, like distance between the eyes or shape of the jaw-

line. Done quickly, eliminating non-face objects enhances the process by eliminating costly,

useless searches by an object detector over regions that do not actually contain human faces.

Finally, consider level three, Object Classification. Continuing with facial recognition,

consider an advertisement system in a department store that must choose appropriate sales

and offers to display on a screen which is seen by customers as they first enter the store.

Known customers are easily dealt with using recognition techniques from the previous levels.

For example, frequent customers may have a photo-ID card with associated membership to

the store’s discount club. These customers’ purchases are logged, so whenever a member’s

face is detected, offers related their past purchases are displayed. Perhaps the system displays

athletic clothing or exercise gear to someone who previously bought running shoes. Making

these choices based on purchase history is a completely separate Machine Learning task that

goes beyond this discussion. But how does the system deal with new faces? It could simply

default to pre-selected and most popular ads, or it could attempt make a more informed

decision by classifying the new person based on facial characteristics. If the system had

previously learned that people with long faces are more likely to socks than people with wide

faces, it could attempt a binary-classification task. The system would label unrecognized
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faces as Long (likely to buy socks) or Wide (unlikely to buy socks), and then display an

advertisement for a discount on 12-packs of black socks to man with a long face that the

system had never encountered before.

For further examples, refer to [16] for a discussion of Optical Character Recognition.

2.2.4 Video and Motion: Object Tracking

Object Detection and Recognition seem like challenging enough tasks without consider-

ing the added difficulty of moving objects. However, while overall more challenging, deriving

information from moving objects and/or moving cameras provides additional opportunities

to learn about the structure and layout of objects within a scene. Furthermore, gathering

data from video, as opposed to an arbitrary collection of images focused on the same scene,

can actually simplify certain tasks. This is due to the spatiotemporal correlation between

subsequent video frames. Given a known, constant frame rate (e.g. 50 or 60 Hz), a Com-

puter Vision system can confidently assume that there is a constant interval of time between

when each frame was captured (temporal correlation). A system can also assume that every

frame was captured within a short distance d of the last one (d = 0 for stationary cameras)

and that any objects in the frame will be within a short distance of their previous location

(spatial correlation).

The correlation assumption allows the use of Object Tracking instead of object de-

tection. Since subsequent appearances of a given object are assumed to be nearby previous

ones, matching is constrained to the region or neighborhood immediately surrounding a pre-

vious known location. After a few initial frames, an object tracker can estimate the object

trajectory, then use that to search where a tracked object should appear next, instead of

where it last was.

The Mean-shift algorithm [15] can be repurposed to track a moving object across multiple

video frames. Given a bounding rectangle that defines the initial view of the target object,

the start window, along with the initial image frame, the algorithm computes a histogram

of the pixels within the window, then shifts the window center to the location of the mean
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value for the histogram, iterating until the window is over the target’s centroid for a given

frame. For subsequent frames, the algorithm passes the end location of the window from

the last frame as the new starting location. If the target object has not moved, then the

window will remain in-place. Otherwise, the algorithm will begin the shifting process anew,

until the object’s centroid is found again. In this way, the rectangular window follows the

tracked object’s centroid as the object moves.

However, an approach like Mean-shift is limited in several ways. First, it has no way

of handling scale changes or in-plane rotations. Second, it cannot handle occlusions, out-of-

plane rotations, or other transformations. The CAMshift approach (Continuous Adaptive

Meanshift) [17] addresses the first set of limitations, building upon Mean-shift by replacing

the static rectangle window with a best-fit rotated rectangle, which is re-sized after every

frame. Orientation is found using a best-fit ellipse.

Optical Flow is a concept from perceptual psychology that refers to the perceived

change in position of observed objects due to motion between those objects and the observer.

Applied to Computer Vision, this concept is useful for motion tracking and stereo matching.

Optic Flow based trackers compute flow vectors at some number of points, usually a set of

point features from a feature extractor, then use these vectors to compute the overall motion

of objects within an image relative to their positions in a previous image.

Several methods for computing optic flow exist, like the Horn–Schunk method [18] or

the popular Lucas–Kanade method, often called L–K Optical Flow [3, 19]. The LK method

assumes that flow is constant within a certain distance from any given pixel, thereby simpli-

fying the process and solving by method of least squares. However, if the motion between

two frames increases past a certain point, the flow equations cannot be solved. To overcome

this, so-called pyramidal implementations estimate the solution by applying the method to

a series of progressively shrunken copies of an original frame. These smaller, reduced qual-

ity images are thought of as stacked atop each other, forming a rectangular step pyramid,

hence the name pyramidal L–K Optical Flow. However, optical flow methods rely heavily
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on clearly distinguishable backgrounds, i.e. ones with texture, patterns, or other distinct

features.

2.3 Tracking–Learning–Detection

For any one difficult problem in Computer Vision, there exist multiple approaches to

solving that problem. Furthermore, a set of solutions to a given problem tends to have

members with complementary strengths and accompanying weaknesses. This is no different

for Object Tracking, which has two general families of solutions: Motion Tracking (e.g.

Optic Flow, CAMshift) and Track-by-Detection (i.e. “tracking” by applying detection at

each frame).

Figure 2.6: High-level view of TLD

Image from [20].

In a recent work, we see the powerful result of combining these two concepts along with

Machine Learning to produce a brand new approach. Known as Tracking–Learning–

Detection (TLD) [20], this method uses an independent Detector and Tracker working
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Figure 2.7: Detail view of TLD framework

Image from [20].

simultaneously, but separately Fig. 2.6. The strengths of the Detector (e.g. error recovery)

make up for weaknesses in the Tracker. Likewise, strengths of the Tracker (e.g. speed) make

up for weaknesses in the Detector. The Learning module, independent of and simultaneous

with the previous two, accounts for problems in long-term traking, i.e. model drift and

transformations.

2.3.1 Object Model

Selection of an appropriate object model is essential. TLD is an adaptive discriminative

tracker, which means that an object model can change over time and that it compares tracked

objects with their background. Therefore, in TLD, an Object is a data structure containing

a collection of normalized, labeled patches.

Positive patches, those depicting the object, are sampled from within the object bounding

box, and ordered by time of first detection. The ordering of positive patches is used in certain

similarity measures within TLD, effectively giving priority to earlier views of the object. This

causes the object detector to behave conservatively when confidence is low. Negative patches
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Figure 2.8: Learning process in TLD

Image from [20].

are those containing background, like sky or trees, and/or non-tracked objects. For instance,

if the task was Facial Tracking, a negative patch for Face A could contain the corresponding

person’s shoulder or hand, parts of another person, or sections of the image background.

Negative patches are sampled from outside the target bounding box and are not ordered.

In order to be adaptive during long-term tracking tasks, the TLD Object Model must

be periodically updated. This is handled by the Learner, which is covered later.

2.3.2 Tracker

Object Tracking in TLD is performed by the Tracker. Starting with the initial view of

the target, it estimates motion using Median Flow [21] tracking, extended to include failure

detection. Median Flow is based on pyramidal L–K Optical Flow with two levels and 10 x 10

pixel patches for image features. Median Flow tracking contributes the idea of Forward–

Backward Error, an error measure for inconsistencies in the trajectory of tracked points.

When estimating the tracker error, several video frames are reversed, then the trajectory of

each feature point is calculated on that short sequence. Features with trajectories that do

not match the majority of others, i.e. outliers, are rejected and not used when estimating
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the frame-to-frame motion of the tracked object. Outliers occur due to tracking failures,

usually from a mismatch of one feature to another, similar feature when the correct feature

is occluded.

When the Median Flow tracker has low confidence in its motion estimate, usually due

to rapid occlusion or rapid motion beyond the system threshold, Tracker signals tracking

failure by not returning a bounding box for the tracked object on the frame in question. This

guards against erroneous, low-confidence motion estimates. Instead of making a best effort

attempt, the system relies on the Detector to localize the tracked object and reinitialize

Tracker.

2.3.3 Detector

Object Detection in TLD is performed by the Detector, which does a complete search for

the tracked object at every frame because it assumes that all frames are unrelated. It uses

a scanning-window grid approach and a three level cascaded binary classifier that is trained

online.

First, the detector takes as input the last known bounding box for the object and then

generates a large number new bounding boxes ( 50 k, depending on aspect ratio) at different

possible scales and positions within the current frame. Each of these new boxes is then

converted to a normalized to a patch and then passed to the classifier, which determines

whether each box/patch candidate does or does not contain the object. To limit the number

of comparisons made to the object model, Detector works in a cascade, reducing the number

of candidates by a large factor before moving to the next stage. Higher level stages are simple

and fast/cheap to compute. Lower levels are more complex and slower or more expensive

to compute. At stage one, candidates pass a patch variance test, which typically rejects a

large number of patches containing large uniform areas, i.e. background regions like sky or

road. At stage two, patches pass through an ensemble classifier, which classifies the patch

as containing the object if the average of the posterior probabilities (ranging from 0 to 1)

resulting from the base classifiers of the ensemble is greater than 0.5, i.e. confidence exceeds
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50%. Patches not accepted at stage two (approximately 50) remain undecided and pass to

stage three, a Nearest Neighbor classifier that uses the the relative similarity metric defined

in [20]. After stage three, all candidate patches are classified and labeled. Zero, one, or

many matches can result.

Finally, the responses of Tracker and Detector are integrated with equal weight Fig. 2.7.

If neither returns a bounding box, the object is not visible within the frame and trajectory

is not updated. Otherwise, the box with highest confidence is used.

2.3.4 Learner

The idea of combining tracking with detection has been explored previously, in various

forms, but TLD is set apart by the addition of a Machine Learning method called P–N

Learning, first proposed in [22]. Output from the tracker is continuously used to improve

the detector through online retraining from the Learner (Fig. 2.8).

First, Learner initializes Detector with examples from the first frame, which are pro-

vided by two experts called P-expert (positive, Px) and N-expert (negative, Nx). At initial-

ization,Learner calls upon P+ to generate a set of synthetic positive examples of the target

object by sampling patches from the target’s bounding box and altering them with affine

transforms, warps, and the addition of Gaussian noise. Synthetic examples combined with

the actual examples form the starting patches used by Detector’s cascaded classifier. At the

same time, Nx produces negative examples, sampled from outside the target bounding box.

Afterwards, during run-time, Px and Nx strengthen the detector by providing additional

examples. At any given iteration, when the target has been located with high confidence, Px

generates a new set of synthetic positive examples ( 100). These are sampled from bounding

boxes (generated by the scanning grid window method) closest to the target bounding box.

At the same time, since the target can only be in one location in a given frame, Nx samples

patches from outside the known location of the target, particularly in places that the detector

had suggested as a location for the target, but that were not confirmed by the tracker. These

patches are given to the classifier as negative examples.
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2.4 Autonomous Vehicles

During the past decade, there has been a tremendous amount of research devoted to

building autonomous vehicles of every type, for every environment. As with most technolo-

gies, the primary drivers are military and industrial concerns, followed by commercial and

research interests. Autonomous vehicles are grouped by the area they are designed to oper-

ate in: sea, air, land, etc. Sometimes, they are grouped together under abbreviation UxV,

that stands for Unmanned x Vehicle, with another term substituted for x.

2.4.1 Terrestrial Vehicles

Terrestrial Vehicles are the most accessible form of autonomous vehicle, especially due

to the prevalence of automobiles in industrially developed regions. Many modern auto-

mobile makers (Audi, BMW, Volkswagen) offer vehicles with semi-autonomous systems,

like forward-collision warning, lane-departure warning, parking-assist, blind-spot monitor-

ing, adaptive cruise control, and pedestrian detection. Parking assist systems combine a

variety of sensors, along with knowledge of a vehicle’s physical properties, to maneuver an

automobile into an empty parking space. This is done without the intervention of a human

driver, all while avoiding static and dynamic obstacles. Systems are available to assist with

parallel and perpendicular parking.

The Defense Advanced Research Projects Agency (DARPA) regularly holds a Grand

Challenge, a research and development contest in robotics, originally focusing on Unmanned

Ground Vehicles (UGVs). Thrun [23] describes the hardware-software framework underlying

Stanley, an autonomous driving vehicle from Stanford. Stanley placed first in the 2005

DARPA Grand Challenge, a driving competition held in the Mojave Desert. In 2007, the

DARPA Urban Challenge was won by “Boss” (Fig. 2.9), fielded by Tartan Racing from

Carnegie Mellon University.

Google is famous for its development and use of self-driving cars for capturing data for

the popular Google Maps Web-based application. While employing a human driver for safety
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Figure 2.9: 2007 DARPA Urban Challenge winner, “Boss”

Image from: http://www.tartanracing.org/

and legal concerns, the cars navigate streets with ease while capturing images for Street View

feature of Google Maps.

In [24], the authors present a Computer Vision-based autonomous docking system for

the Mars Rover. They use pose estimation algorithms for identifying targets in an unknown

environment. In [25] the authors describe an autonomous driving framework that integrates

data from multiple sensors such as GPS, odometers, etc. To sense the environment, they

employ a combination of radar, LIDAR, and cameras.

2.4.2 Aerial Vehicles

Unmanned Aerial Vehicles (UAVs), sometimes simply called drones have garnered the

greatest attention in recent years, primarily due to their increased deployment for military

purposes like surveillance and missile strikes However, myriad other uses exist for UAVs,

deployed on a wide variety of platforms. Helicopter-like vehicles (Fig. 2.10) or quad-rotors

are useful for remote inspection of infrastructure, like checking bolts and welds on bridges

or inspecting the exterior of tall buildings. Fixed-wing, propeller driven vehicles are useful

for inspecting pipelines, power lines, etc. Any sort of UAV could be used to check forests or

plains for signs of drought and early detection of wild fires. Likewise, any sort of UAV could

be useful for monitoring migration patterns of far-ranging land animals.
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Figure 2.10: Northrup Grumman MQ-8B Fire Scout

Image from: http://www.northropgrumman.com

In recent work, PIXHAWK [26] provides a hardware-software framework for micro-air

vehicles that uses data obtained from an inertial measurement unit (IMU) and cameras that

are hardware synchronized to provide close coupling.

Several fast food companies, Internet giants like Google and Amazon, and delivery

companies, have recently been working with contractors to develop home-delivery drones

[27, 28, 29]. The technologies involved are mostly ready, with the main hurdles being cost-

effectiveness and regulatory concerns from the Federal Aviation Administration regarding

safety, privacy, and responsible use.

2.4.3 Marine Vehicles

Surface marine vessels, though one of mankind’s oldest technologies, remains a contin-

uous locus for development. Take the Saildrone for example [30], (Fig. 2.11). It combines

advanced composite materials with a streamlined design to make the most efficient use of

thrust generated by the sail. The key to the design is the “sail”, which is really more of a

wing, positioned vertically, with a tail protruding from the trailing edge. As wind pushes the

tail, it automatically turns the wing into the wind, so the wing is always positioned to gen-

erate thrust. Navigation and communication equipment was custom made with low power

consumption and sealed housing to keep out water and resist corrosion. All electronics are
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powered by solar panels on deck. The triple-hulled design (main hull with two outriggers) is

self-righting and fully submersible [31].

Figure 2.11: Saildrone on the water

Image from: http://saildrone.com

Many design components for Saildrone were inspired by similar developments in Au-

tonomous Underwater Vehicles (AUVs), also known as UUVs, or Unmanned Undersea Ve-

hicles. Aside from on-board control systems, UUVs have much in common with underwater

ROVs (Remotely Operated Vehicles), both of which are commonly used in research, ex-

ploration, and industry. Collectively, UUVs and USVs (Unmanned Surface Vehicles, e.g.

saildrone) are known as UMSs (Unmanned Maritime Systems).

Dynamically Positioned Vessels (as discussed in Ch. 2.1) fall under the category of

Autonomous Marine Vehicles, to an extent. Though for the majority of the time it would

be nonautonomous or semiautonomous, a DPV’s maneuvering capability is intended to be

fully automated with little or no human supervision, at least during DP operation.
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Chapter 3
Problem Description

After analyzing and comparing different types of existing Position Reference Systems,

we have observed a niche left unfilled by any current system. The oldest, simplest systems

are error prone, not precise enough for modern DP operations. Many are constrained by

water depth and/or unsuitable for mobile operations, e.g. pipe laying, moving in formation,

collision avoidance. Most of the recently developed systems require lengthy, expensive instal-

lations and maintenance, particularly systems that use specialized targets to track reference

objects.

In contrast, SeaVipers will be an inexpensive alternative. The system will be small, light-

weight, and easy to install. It will not require special, prepared targets (e.g. transponders,

reflectors) to be installed and maintained on reference objects. SeaVipers will be suitable

for both mobile and stationary applications in any water depth or lighting condition. It will

not be subject to interference from noise, reflective surfaces, direct sunlight, or the radio

shadowing effect of large metal structures. Neither will it be susceptible to interference from

other SeaVipers units operating nearby, either those installed on other vessels, or possible

extensions like cooperative, multi-unit installations on one vessel.

SeaVipers will operate in high seas and inclement weather, at least as well as existing

laser PRS like Fanbeam R© or CyScan. Due to it’s LWIR camera, it will penetrate rain,

fog, and other atmospheric obstructions better than existing optical systems, which only use

NIR. It will feature rapid system start-up, requiring only a few minutes at most to learn

new reference objects. After that, it will only take a few seconds to acquire the target, or

reacquire after target loss.

For this goal, SeaVipers must meet the following requirements. It should operate with

minimal start-up time, continuously for periods exceeding twenty-four hours, with minimal

supervision from the DPO, in moderate wind and wave conditions, in lighting conditions
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Table 3.1: Comparison of Optical PRS

SeaVipers Fanbeam CyScan

max range unknown 2000 m 800 m

reflectors no yes yes

optics NIR, LWIR NIR NIR

pan 360 360 360

tilt +/- 90 +/- 15 +/- 20

from full dark to direct sunlight, and in moderate to heavy precipitation (rain, fog, etc.). To

compete with Fanbeam R© and CyScan, SeaVipers should operate effectively in common DP

conditions from a range of at least 500 m to target. Under ideal conditions (calm seas, calm

winds, no clouds or precipitation, noon-time sunlight), we expect the max range to be much

greater, though this not critical.
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Chapter 4
System Overview

This section discusses the various components and functions of SeaVipers and how each

contributes to the operational goal of the system.

4.1 Hardware

4.1.1 Pan/Tilt Unit

For computer vision applications on a mobile, unstable platform, a suitable Pan–Tilt

Unit (PTU) is essential. In our application, the purpose of the PTU is to keep the camera

and rangefinder aimed at the target. Heading information is obtained from the PTU’s

internal orientation sensors. This version of SeaVipers uses a FLIR PTU-D47, shown in Fig.

4.1a. The D47 was chosen for its high pan/tilt speeds and fine pan/tilt resolution, which are

both important features for real-time operations which must respond to the constant motion

caused by wind and waves.

4.1.2 Rangefinder

To measure range to target, SeaVipers uses a LTI TruSense S210 Laser Sensor (Fig.

4.1b), which measures the time-of-flight of Near-Infrared (NIR) light pulses. Operating in

the NIR range allows the S210 to operate in all lighting conditions and allows it to penetrate

atmospheric precipitation (rain, fog, snow, etc.), which is critical for continuous, long-running

(a) Pan/Tilt Unit

(b) Laser Rangefinder (c) Infrared Camera

Figure 4.1: Hardware Components

(a) FLIR PTU-D47, (b) LTI TruSense S210 Laser Sensor, (c) Raytheon Thermal-Eye 300D
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operations (in excess of 24 hours) in marine environments. Also, the S210 does not require

reflectors to obtain measurements, which allows rapid start-up and operation of the system.

4.1.3 Camera

The optical sensor for SeaVipers is a 9 Hz Ratheon Thermal-Eye 300D infrared cam-

era. The 300D (Fig. 4.1c) uses an uncooled Barium Strontium Titanate detector, which is

unaffected by longterm exposure to direct solar radiation, a valuable feature for continuous,

long-running operation at sea. The detector has spectral response to Long-Wavelength In-

frared (LWIR) which allows operation in any lighting conditions and allows it to penetrate

atmospheric precipitation better than visible-light cameras [32].

4.1.4 Inertial Measurement Unit

To assist the PTU in video stabilization for the camera and aiming the rangefinder, Sea-

Vipers uses an Inertial Measurement Unit (IMU) to detect changes in roll, pitch, and yaw

(x-, y-, and z-axis movement). We use a 9DOF Razor IMU from SparkFun Electronics, which

has nine Degrees of Freedom (DOF), combining a triple-axis gyroscope, accelerometer, and

magnetometer. Inertial stabilization allows the tracking system focus on changes in overall

position instead of frequent back-and-forth rocking from waves and wind.

4.2 Software

SeaVipers is built on top of several existing, proven software resources. First, we use the

popular OpenCV (Open Computer Vision) library, version 2.4.6 [33]. This open-source li-

brary is well documented and provides powerful tools for rapid development of CV programs.

Second, we use G. Nebehay’s version of the OpenTLD (Open Tracking–Learning–Detection)

library [34], an open-source alternative to Z. Kalal’s original TLD program [35], and also an

alternative to Z. Kalal’s version of OpenTLD [36], which depends upon non-free software

tools (G. Nebehay’s version does not). Finally, for the Graphical User Interface (GUI), we

use Qt 5 [37], an open-source, cross-platform application and user-interface framework for

the C++ programming language.
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The GUI is designed with a simple, uncluttered main-view for ease-of-use and rapid

start-up by the DPO. The main-view presents the user with video from the camera, overlaid

with bounding-boxes and trajectory info from the tracker/detector. It also contains a top-

down diagram of the vessel and its position relative to the target, buttons to start/stop

or pause tracking, a summary graph of changes in range and heading, and a summary of

the most recent notifications or warning messages. Additional views are available to access

detailed graphs, precise configurations and settings, message logs, and system logs.

4.3 Operations

Possible use cases include station keeping near an offshore platform (Fig. 4.2), maintain-

ing a predetermined course during pipe laying or cable laying, or moving in tight formation.

Figure 4.2: Example use case: station keeping near offshore oil drilling platform
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SeaVipers accesses raw video input from the camera, preprocesses and performs video

stabilization, and then feeds video to the target tracker. To engage the tracker, the operator

must first manually select a bounding box containing the target. The tracking module

begins with a brief “Learning” phase wherein all views of the target are recorded as positive

examples. After learning the target model, the tracker begins the detection and tracking

phase wherein each incoming video frame is searched for the target.

Whenever the target is found, the tracker reports the target’s bounding box to the

control module. If the target is found to be in the correct position in frame (detected by

detector and near-center), the system is aimed at the target and therefore aligned properly

to take measurements. The control module will then request angle-of-heading from the

PTU’s orientation sensors and range-to-target from the rangefinder. If the the target is in

frame, but not aligned (detected, but not near-center), the control module calculates the

difference between target position and a good position, then issues an instruction for the

PTU to compensate orientation. If the target is not detected, the tracker does not update

its bounding box.

On subsequent frames, if the target comes back into view, the tracker can reacquire the

target and resume tracking. Finally, if the target cannot be reacquired after a prolonged

period, whether due to occlusion, or diminished visibility, or another condition, the system

will report target loss (tracking failure) to the DPO. At this point, the DPO can either

reinitialize tracking, adjust system settings, or disengage the system.

While tracking operations are going on, the control module regularly updates its own

internal model of ship position relative to target, taking measurements from each sensor and

modifying its position estimate based on its confidence in each sensor’s respective input. At

regular intervals, the control software module reports heading and range to the DP Control

System.
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Chapter 5
Evaluation of Prototype
5.1 Performance Evaluation

Table 5.1: Test Sequence Summary

name frames light distance

Lab 1431 bright 0 – 10 m

Office 131 bright 0 – 5 m

Car 1 1832 norm 0 – 35 m

Car 2 1599 norm 5 – 20 m

Truck 1773 norm 0 – 15 m

Crane 2249 bright 150 – 175 m

SeaVipers was evaluated over six sequences (Table 5.1) at different ranges and lighting

conditions. The first two, Lab (Fig. 5.1a) and Office (Fig. 5.1b), were conducted indoors,

with artificial light, at short range. The next four were conducted outdoors, facing a parking

lot from mid-afternoon to early evening (Fig. 5.1 c, d, e, f). Of the frames where the tracker

is active, each frame of each sequence was labeled by hand.

The object tracking task can be reduced to a binary classification task, with each in-

dividual frame as an input. Every frame receives one of four labels: True Positive, True

Negative, False Positive, or False Negative. A True Positive (TP) classification is one

wherein the tracker correctly identifies the location of the target by providing a bounding

box that contains an image of the target. A True Negative (TN) classification is one

where the tracker correctly determines that the target is not in view, either due to an oc-

clusion or the target having gone out of frame. False Positive (FP) denotes instances
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where the tracker provides a bounding box that does not contain the target. Finally, False

Negative (FN) represents instances where the tracker fails to locate the target even though

it is clearly in view within the frame.

Performance is summarized by two measures: Precision, the probability that the track-

ing system finds a target object (5.1), and Recall, the probability of the tracking system

correctly indicates the location of a target object (5.2).

Precision = TP/(TP + FP ) (5.1)

Recall = TP/(TP + FN) (5.2)

5.2 Evaluation Results

(a) Lab (b) Office (c) Car 1

(d) Car 2 (e) Truck (f) Crane

Figure 5.1: Tracking Sequences

Target bounding box shown in white.

As expected, based on the performance of the original implementation of TLD [20] and

the implementation of OpenTLD [38], the tracking implementation for SeaVipers shows high

recall and precision overall. Table 5.2 shows high precision due to the very low incidence of

false positives, with the exception of the Car 1 sequence. System lag during a quick, z-axis
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Table 5.2: Tracking Performance by Sequence

Sequence Frames FP FN TP TN Recall Prec.

Lab 742 0 53 689 0 0.929 1.000

Office 58 0 0 58 0 1.000 1.000

Car 1 1463 232 272 561 398 0.673 0.707

Car 2 1271 3 117 1142 9 0.907 0.997

Truck 1288 0 259 940 89 0.784 1.000

Crane 2216 1 90 1915 210 0.955 0.999

Average 0.875 0.951

rotation prevented the PTU from reorienting. When operation resumed, the system had

dropped several incomming frames, leaving the tracker disoriented, at which point it began

falsely identifying a similar object as the target. This sequence also had a high incidence of

false negatives, primarily due to motion blur.

The second sequence, Office, has no movement with a target at extreme close range. This

was done to demonstrate the stability of the system. All other sequences featured stationary

targets tracked by a moving vessel, with translations in the xy-plane and rotations on the

z-axis (yaw). Car 2 and Truck also feature roll and pitch (x-axis and y-axis rotations), which

the PTU adjusted for with little difficulty.

Observation of the experiments and analysis on the data collected shows that the primary

cause of tracking error for SeaVipers is rapid motion, beyond what the PTU can account

for, especially when the target goes off frame. (See Fig. 5.2 for examples.) The IMU, which

would have corrected for this limitation, was only partially implemented. The PRS was also

38



(a) Car 2 / Motion Blur / FN (b) Truck / Occlusion / FN
(c) Car 1 / Similar Object /
FP

Figure 5.2: Examples of Tracking Error

Sequence / Description / False Negative (FN) or False Positive (FP)

limited by its incomplete implementation of OpenTLD, which did not take full advantage of

the Learning aspect of TLD, resulting in overly rigid target models.

Occlusions, full and partial, were an unexpected source of error. When the object De-

tector in TLD failed due to an occlusion, the Tracker should have predicted the location, at

least when the target and PRS were both stationary. This suggests that our implementation

underutilizes the predictive capacity of the underlying tracking approach. In contrast, the

system did perform as expected during scale changes, showing zero tracking errors due to

scaling.

Environmental factors played only a small role in this evaluation. All tests were done in

clear weather with no dust or precipitation and bright or moderate, direct sunlight. However,

it is worth noting that a small number of errors occured (< 10) due to sudden changes in

illumination from passing clouds. This may need to be accounted for in future development.

Consistent with nature of TLD, there was low incidence of false positives, excpet for

the incident noted during the Car 1 sequence. Likewise, there was a high number of true

negatives in Car 1 and Crane, both having long periods where the target is off frame. This

is encouraging, as prompt and correct notification of target loss is important in DPS, either

to prompt the PRS to attempt reacquisition or to alert the DPO to intervene.

Relating to target reacquisition, we noted that our PRS rapidly picks up lost targets as

they become un-occluded or come back in frame, usually within 2 or 3 frames.
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Chapter 6
Conclusion

This document describes the design and proposes the development of an Optical Position

Reference System for use with Dynamic Positioning Systems. The proposed system, called

“Computer Vision and Inertial Position Reference Sensor System” (CVIPRSS, SeaVipers),

uses TLD to perform Object Tracking in a dynamic maritime environment, providing con-

tinuous position estimates to the Dynamically Positioned Vessel in relation to the tracked

reference object. Position estimates are derived from information gathered from a Far In-

frared Camera, a Near Infrared Laser Rangefinder, and 9DOF Inertial Measurement Unit,

all mounted atop a compact Pan/Tilt Unit. Unlike some current generation PRSs, Sea-

Vipers gathers information without a long setup time or expensive, prepared targets.

Preliminary evaluation of the SeaVipers prototype yields promising results while sug-

gesting further improvements on the system’s design and implementation.
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