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ABSTRACT

Kalman filtering is a widely used recursive algorithm for optimal state estimation of

linear stochastic dynamic systems. The recent advances of wireless sensor networks (WSNs)

provide the technology to monitor and control physical processes with a high degree of

temporal and spatial granularity. Several important problems concerning Kalman filtering

over WSNs are addressed in this dissertation. First we study data fusion Kalman filtering

for discrete-time linear time-invariant (LTI) systems over WSNs, assuming the existence of

a data fusion center that receives observations from distributed sensor nodes and estimates

the state of the target system in the presence of data packet drops. Following [77], we focus

on the single sensor node case and show that the critical data arrival rate of the Bernoulli

channel can be computed by solving a simple linear matrix inequality problem. Then a more

general scenario is considered where multiple sensor nodes are employed. We derive the

stationary Kalman filter that minimizes the average error variance under a TCP-like protocol.

The stability margin is adopted to tackle the stability issue. Second we study distributed

Kalman filtering for LTI systems over WSNs, where each sensor node is required to locally

estimate the state in a collaborative manner with its neighbors in the presence of data packet

drops. The stationary distributed Kalman filter (DKF) that minimizes the local average

error variance is derived. Building on the stationary DKF, we propose Kalman consensus

filter for the consensus of different local estimates. The upper bound for the consensus

coefficient is computed to ensure the mean square stability of the error dynamics. Finally

we focus on time-varying topology. The solution to state consensus control for discrete-

time homogeneous multi-agent systems over deterministic time-varying feedback topology

is provided, generalizing the existing results. Then we study distributed state estimation

over WSNs with time-varying communication topology. Under the uniform observability,

each sensor node can closely track the dynamic state by using only its own observation, plus

information exchanged with its neighbors, and carrying out local computation.

vi



CHAPTER 1
INTRODUCTION

This chapter introduces the significance, applications and existing research works of

Kalman filtering over wireless sensor networks (WSNs). The contribution and organization

of this dissertation are discussed, followed by the introduction of notations.

1.1 Motivation

Recent advances in micro-electro-mechanical systems, embedded microprocessor technol-

ogy, and wireless communications facilitate the massive production of cheap, low-power, and

long-lasting sensors of miniature sizes, integrated with the function of sensing, data com-

putation and processing, and wireless communications. A wireless sensor network usually

consists of a mesh of such sensor devices that are spatially distributed over an area of interest

for specific monitoring tasks. The fast and remarkable development of WSNs provides the

technology to monitor and control physical processes with a high degree of temporal and

spatial granularity. Indeed, individual sensors in a WSN can sense and process data locally

in real-time, provide resultant information concerning the observed events or processes, and

communicate with data fusion centers or other sensor nodes in the network for collaboration

tasks. In addition, the distributed nature of WSNs implies that the chance of a large number

of these hardware units failing simultaneously is quite low, leading to improved robustness

compared to traditional monitoring systems. Applications of WSNs are ubiquitous, ranging

from environmental surveillance [15] and biomedical health monitoring [24, 58], to mobile

sensing [52] and vehicle navigation and control [48, 75], along with many others [44].

Dynamic state estimation has its great importance in various applications such as de-

tection, tracking, and control. For discrete-time linear stochastic dynamic systems, Kalman

filtering [39, 4] is one of the most widely used recursive algorithms, which computes the

state estimate in the sense of minimum mean square error (MMSE) when the process and

measurement noises are Gaussian distributed.
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Implementing Kalman filtering with WSN technology has received increased and great

attention in recent research and literatures. One of the most influential and important

applications of Kalman filtering over WSNs is the localization and tracking of static or mobile

targets [76, 40, 97, 25, 65, 89], which is usually considered as a fundamental requirement in

other more sophisticated location-aware applications of WSNs, such as indoor positioning,

vehicle navigation, military security, etc.

Triangulation and trilateration [76] are two widely used techniques for localization and

tracking. The former uses distances, angles and trigonometric relationships to identify the

position of the object of interest, while the latter only relies on the distance measurements to

locate the target. The scenario for trilateration is illustrated in Figure 1.1a, where d1, d2, and

d3 are the distances from the fixed sensor nodes S1, S2, and S3 with known locations to the

mobile target node, respectively. Ideally the mobile node can be located at the intersection of

the three circles. However, in the presence of measurement noise, the distance measurement

can fluctuate within the margin of the ring. The task of tracking thus becomes more difficult

since the mobile node can be located anywhere in the dark overlapped region in Figure 1.1b.

(a) Trilateration (b) Trilateration with noise

Figure 1.1: [76] Trilateration Localization

Commonly used types of range (distance) measurements in WSNs include angle of arrival

(AOA) [19, 73], time of arrival (TOA) [51, 61], time difference of arrival (TDOA) [35, 40,

59], and received signal strength (RSS) [60, 61, 97]. Typically for TDOA, the transmitter

known as beacon disseminates information in a radio frequency (RF) signal, together with
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a concurrent ultrasound pulse. The receiver known as listener uses the time difference of

arrival of the two signals to compute its distance from the beacon by taking advantage of the

speed difference between ultrasound pulse (speed of sound) and RF signal (speed of light).

The RSS, measured in dB, typically depends on three key factors: path loss, shadow fading,

and fast fading, i.e., [82, 84, 97]

p = κ− 10γ log(d) + ψ,

where p is the RSS, κ is a constant determined by the transmitted power, wavelength,

antenna height, etc., γ denotes the slope index, d represents the distance between the signal

transmitter and the signal receiver, ψ is a Gaussian variable with mean zero.

Existing indoor location systems integrated with WSNs can be grouped into two classes

based on their architectures. For active mobile architecture, the mobile target is equipped

with an active transmitter that broadcasts a message, such as an RF signal coupled with an

ultrasound pulse, to all the sensor nodes in the WSN. The receiver deployed at each sensor

node extracts range measurement from the broadcast and sends this distance information to a

data fusion center for real-time tracking of the mobile target. Examples of this architecture

include the Active Badge system [90], the Bat system [34], along with several others. In

contrast, for passive mobile architecture, beacons deployed at fixed sensor nodes send their

location information to the moving node. The moving node then uses the set of range

measurements to estimate its own position in real-time. The Cricket system [63, 78] is a

widely used example that follows the passive mobile architecture.

Different dynamic models can be adopted for the mobile target based on its motion

pattern to achieve optimal tracking performance. The Position (P) model works well when

the position is mostly constant, and the velocity can be treated as noise. The Position-

Velocity (PV) model can be chosen when the velocity remains unchanged most of the time,
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and the acceleration can be regarded as noise. When the acceleration is mostly constant,

the Position-Velocity-Acceleration (PVA) model tends to provide the best tracking results.

Now we focus on the Cricket system to show how Kalman filtering over WSN can be

applied for indoor localization and tracking. Consider a Cricket system where each of the N

sensor nodes transmits its location in a RF signal with a concurrent ultrasound pulse to the

mobile node that then gathers a set of range measurements based on TDOA to estimate its

own location. We assume that the mobile node moves in a two dimensional space following

the PVA model. Let the state vector be specified by

x(k) = [x(k) y(k) ẋ(k) ẏ(k) ẍ(k) ÿ(k)]′ ,

where x(k) and y(k) respectively denotes the position of the mobile node in the x and y

directions at time stamp k. It follows that

x(k + 1) = Ax(k) + w(k),

where process noise w(k) follows Gaussian distribution with mean zero and covariance

Q(k) ≥ 0, Ts is the time-step for discretization (the time interval between previous time

instant and current time instant), and

A =


I2 TsI2

1
2
T 2
s I2

0 I2 TsI2

0 0 I2

.

It is noted that the real distance from the ith sensor node located at position (coordinates)

(xi, yi) to the mobile node at time k is given by

di[x(k)] =
√

[x(k)− xi]2 + [y(k)− yi]2.

4



Let observation vector z(k) be the collection of all the N distance measurements. It follows

that

z(k) = h[x(k)] + v(k), (1.1)

where measurement noise v(k) follows Gaussian distribution with mean zero and covariance

R(k) > 0, and

h[x(k)] =

[
d1[x(k)] . . . dN [x(k)]

]′
.

Kalman filtering generally provides a decent solution for tracking over WSNs since it is

capable of filtering out the process and measurement noises with low computation complexity

and memory requirement. However the measurement model in (1.1) is a nonlinear function of

the state vector, which implies that standard Kalman filtering cannot be applied in this case

since it is specifically proposed for linear systems. On the other hand, the extended Kalman

filtering (EKF) [76, 40] has been proposed and studied for state estimation of nonlinear

systems in recent years. EKF is derived from the standard Kalman filtering by linearizing the

nonlinear state and measurement model around the latest state estimate and the predicted

state, respectively. Let x̂(k) be the prediction of x(k) at time k − 1, and Σ(k) be the

corresponding error covariance. Similarly let x̂(k|k) be the estimation of x(k) at time k,

and Σ(k|k) be the corresponding error covariance. The measurement model in (1.1) can be

linearized as

z(k) = H(k)x(k) + v(k)

by taking the Jacobian matrix H(k) as

H(k) =
∂h[x(k)]

∂x(k)

∣∣
x(k)=x̂(k) =


x̂(k)−x1

d1[x(k)]
ŷ(k)−y1

d1[x(k)]
0 0 0 0

...
...

...
...

...
...

x̂(k)−xN
dN [x(k)]

ŷ(k)−yN
dN [x(k)]

0 0 0 0

 .

Then the time update phase of the EKF algorithm, which provides the estimated state for
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the next time instant, is specified by

x̂(k) = Ax̂(k − 1|k − 1),

Σ(k) = AΣ(k − 1|k − 1)A′ +Q(k − 1);

the measurement update phase of EKF, which corrects the estimated state by utilizing the

observation vector, is specified by

K(k) = Σ(k)H(k)′ [R(k) +H(k)Σ(k)H(k)′]
−1
,

x̂(k|k) = x̂(k) +K(k) {z(k)− h[x̂(k)]} ,

Σ(k|k) = Σ(k)−K(k)H(k)Σ(k).

The above equations can be evaluated iteratively to track the moving node.

Next we consider a different example in [16], which deals with the tracking of a projectile

with linear state and measurement models. Let the state vector be specified by

x(k) = [ẋ(k) ẏ(k) ż(k) x(k) y(k) z(k)]′ ,

where x(k), y(k), and z(k) denote the position of the projectile in the three spatial dimensions

respectively, with z(k) being the vertical one. The motion of the projectile is described by

state dynamics

x(k + 1) = Ax(k) + b+ w(k)

with w(k) being the process noise, g being the gravity constant, Ts being the discretization

time-step,

A =

 I3 0

TsI3 I3

, b =

[
0 0 − gTs 0 0 − 1

2
gT 2

s

]′
.

A WSN of N sensor nodes is employed to measure and estimate the position of the projectile.
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It is assumed that each node measures the position in either (i) the two horizontal dimensions,

or (ii) the combination of one horizontal dimension and the vertical dimension. Hence the

measurement zi(k) at the ith sensor node follows

zi(k) = Cix(k) + vi(k),

where C =

[
0 diag(1, 1, 0)

]
, which corresponds to case (i), or C =

[
0 diag(1, 0, 1)

]
,

which corresponds to case (ii), and vi(k) is the measurement noise at node i. In [16],

distributed Kalman filtering algorithms based on diffusion strategies are proposed for the

WSN, so that each sensor node is able to locally estimate the state of the projectile in a

collaborative manner, in spite of the restriction that individual nodes do not have direct

position measurements in all the three dimensions. This numerical example will be modified

and used for simulation in Chapter 3.

Although WSN presents attractive and compelling features, challenges associated with

its implementation have to be addressed. Implementing Kalman filtering with the WSN

technology normally requires the usage of wireless communication channels for data trans-

mission. However, due to the low power nature and requirement of long-lasting deployment,

communications between adjacent embedded sensors or between embedded sensors and data

fusion center are often affected by range and other environmental elements, inducing the

frequent presence of data drops and communication delays. This contrasts to the traditional

ways to implement Kalman filtering, and inevitably results in the deterioration of estimation

performance. Consequently, there has been a major development in the study of Kalman

filtering in the presence of data packet drops [77, 62, 46, 74, 95, 37, 94, 96, 47], distributed

Kalman filtering [53, 54, 55, 1, 16, 79, 41, 70, 88], distributed Kalman filtering with inter-

mittent observations [43], etc. Inspired by the aforementioned applications and challenges,

we are set to study several fundamental issues involved in Kalman filtering over WSN.
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1.2 Literature Survey

One important feature of Kalman filtering over WSNs is that measurement acquisition

and data processing may take place in different geographical locations, which motivates the

study of Kalman filtering schemes where intermittent observations have to be dealt with. The

basic problem of Kalman filtering in the presence of data packet drops was first formulated

and studied in [77], where the measurements (observations) obtained by a single sensor node

are transmitted over a data packet drop channel to the fusion center that then computes the

state estimate. Since then, many researchers have studied various aspects of the problem

by imposing different assumptions on communication channel model and system structure.

Channel model describes the stochastic properties of the observation dropouts.

• Many papers consider the channel distortion induced by data packet drops as an indepen-

dent and identically distributed (i.i.d.) Bernoulli random process. It is shown in [77] that

there exists an infimum for the data arrival probability of the communication channel,

referred to as critical arrival rate, below which the estimation error covariance becomes

unbounded. The lower and upper bounds of the critical arrival rate are derived, and

the two bounds coincide with each other when observation matrix C in the measurement

model is invertible. This condition was relaxed in [62] to only requiring C being invertible

on the observable subspace. Nevertheless these two invertibility conditions are hard to

satisfy in practice. In [46], the authors show that the critical arrival rate is a function of

system matrix A and observation matrix C, independent of the noise statistics and initial

conditions. It is further claimed that the lower bound in [77] is indeed the critical value

if (C,A) is detectable and the unstable eigenvalues of matrix A have distinct absolute

values. This conclusion turns out to be incorrect based on the results in [14] and [7],

which imply that for systems whose measurement has dimension one (scalar), the critical

rate can be expressed in a closed form as a function of the Mahler measure of matrix A.

More details concerning this result will be presented in Subsection 2.1.3.
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• Another channel model extensively used in existing literatures is the Gilbert-Elliott model

[26, 23], which was first introduced into the context of Kalman filtering with intermittent

observations in [37]. Sufficient condition for the peak covariance stability is derived in

[37], and turns out to be necessary for scalar systems. A simpler and less conservative

sufficient condition for the stability of the peak covariance process is provided in [94].

In [96], necessary and sufficient conditions for the peak covariance stability are derived

for second-order systems as well as higher-order systems of certain classes. In [47], a

class of non-degenerate systems is proposed, and the corresponding stability results are

established. Other network models are also investigated [17, 72].

In spite of the considerable effort in finding the stability conditions for Kalman filtering

in the presence of data packet drops, a complete answer is not available yet, even when

the simple Bernoulli channel model is used. It remains an open problem to compute the

exact value of the critical arrival rate for general dynamic systems where no restrictions are

imposed on the structure of system matrix A and observation matrix C. This problem will

be discussed and the corresponding solution will be provided in Chapter 2.

The recent advances in WSN technology also boost the use of multiple sensors for dis-

tributed Kalman filtering in various applications ranging from civil to military fields. Ideally,

all the raw measurements from distributed wireless sensor nodes can be gathered at a data

fusion center to compute the globally optimal state estimate. However this scheme may not

be feasible in some practical cases due to the limited channel bandwidth, restricted power

consumption, and significant communication delays. Therefore, many researchers start to

investigate the distributed Kalman filter (DKF), where each sensor node in the WSN can

compute local estimates via Kalman filtering based on its own observations and the infor-

mation sent from its neighboring sensors located within a predefined transmission radius.

Compared with Kalman filtering using fusion center, DKF improves the resilience of WSNs

to isolated points of failure. Moreover, DKF can be quite useful if individual sensor nodes are

required to execute multiple tasks and need real-time local estimates to make on-site deci-
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sions. DKF algorithms need to be devised to ensure the stability of the associated estimation

error dynamics.

• Several fundamental and enlightening approaches and strategies for distributed Kalman

filtering are proposed by Olfati-Saber in [53, 54, 55]. In [53], the author addresses the

DKF problem by reducing it to two separate consensus problems in terms of weighted

measurements and inverse-covariance matrices, which are then solved in a distributed way

using low-pass and band-pass consensus filters respectively. The resulting DKF algorithm

is only applicable to sensor nodes with identical observation matrix, which requires the

dynamic system to be observable by all the nodes in WSN. This DKF algorithm is modi-

fied in [54], where two identical high-pass consensus filters are used for the fusion of sensor

measurements and covariance information so that the DKF allows sensor nodes to have

different observation matrices. A continuous-time distributed Kalman-Bucy filter is intro-

duced in [54] as well, giving rise to a new DKF algorithm based on consensus of estimates.

A common defect of these two algorithms is that both are derived from the discretiza-

tion of continuous-time consensus filters. In fact consensus achieved by continuous-time

filters may not hold after discretization. Yet the author fails to validate the stability in a

rigorous way. In [55], Kalman consensus filter (KCF) is designed with the objective that

each sensor node can locally estimate the state of the target, and reach consensus on state

estimate. The author points out the computational unscalability of the optimal KCF, and

proposes a scalable suboptimal KCF with formal stability and performance analysis.

• Various results concerning DKF are presented in other works. The DKF algorithm pro-

posed in [1] is based on the standard Kalman filtering with one extended step where

sensor nodes merge their estimates by a weighted average approach. The weights are

optimized to yield a small estimation error covariance in the steady-state. Only state

estimates are exchanged among neighboring nodes so that the bandwidth requirements

are reduced. In [16], distributed Kalman filtering, fixed-lag smoothing and fixed-point

smoothing are studied, and diffusion strategies are adopted to address these problems.
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Well-defined expressions are provided for the steady-state mean square performance of

the proposed algorithms. In [79], the authors investigate the globally optimal distributed

Kalman filtering fusion where the covariance matrices of measurement noise and estima-

tion error are singular. The problem of distributed state estimation for linear time-varying

systems with intermittent observations is considered in [43]. An optimal KCF is derived

by minimizing the mean square estimation error at each sensor node, and a suboptimal

filter is proposed for scalability considerations.

1.3 Dissertation Contribution and Organization

Several fundamental problems concerning Kalman filtering over WSNs are addressed in

this dissertation. Chapter 1 briefly discusses the background knowledge and applications of

Kalman filtering over WSN, followed by the literature survey that motivates our research.

The main results and contributions are presented in Chapters 2 ∼ 4. In Chapter 2,

we study data fusion Kalman filtering for discrete-time linear time-invariant (LTI) systems

over WSN, assuming the existence of a data fusion center that receives measurements from

embedded sensor node(s) and estimates the state of the target system in the presence of

data packet drops. First we consider the case discussed in [77], where only one sensor node

is employed to obtain and transmit observations in a single packet to the data fusion center.

It is shown that the widely studied critical arrival rate of the Bernoulli channel can be

computed by solving a set of linear matrix inequalities (LMIs). Then a more generalized

setting is considered, where multiple sensor nodes transmit their measurements to the fusion

center through different communication channels. This scenario makes the problem harder to

analyze since the aforementioned arguments on critical arrival rates of individual channels are

no longer applicable. We derive the stationary Kalman filter that minimizes the average error

variance in the steady-state at the data fusion center, based on the stabilizing solution to a

modified algebraic Riccati equation (MARE). The stability margin, which can be computed
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by solving an LMI problem, is adopted to address the stability issue. It can serve as an

important reference to decide the number and disposition of the sensor nodes.

Although both distributed Kalman filtering and the effect of packet drops have been

widely studied in the past decades, only a few literatures consider the occurrence of data

packet drops in the design of DKF. Therefore, in Chapter 3, we investigate distributed

Kalman filtering over WSN, where each sensor node is required to locally estimate the

state of a discrete-time LTI system using its own observations and those transmitted from

its neighbors in the presence of data packet drops. This is an optimal one-step prediction

problem under the framework of distributed estimation, assuming the TCP-like protocol [74,

77]. We first examine a general MMSE estimation problem, and apply the results to derive

the stationary DKF that minimizes the local average error variance in the steady-state at each

sensor node. The optimal estimation gain is presented in terms of the stabilizing solution to

the corresponding MARE. The stability issue is addressed by adopting the stability margin.

Following [55], we also consider designing KCF in the presence of data packet drops for the

consensus of different local estimates. The KCF, consisting of the stationary DKF and a

consensus term of prior estimates, is proposed, followed by the stability analysis. It is shown

that the proposed KCF outperforms the stationary DKF in general.

In many practical applications, there are situations that the set of sensor nodes employed

for observation and state estimation changes as time proceeds. For example, some sensor

nodes join the set when the moving target comes closer to their locations, while others

drop out of the set as the target moves away. Sometimes the WSN follows a predefined

pattern to execute the observation and tracking tasks from time to time for the purpose

of energy saving and device maintenance. In these cases, the Bernoulli processes adopted

in Chapters 2 and 3 are no longer suitable for the modeling of communication channels.

Instead, the communication between sensor nodes can be encoded through a time-varying

topology (graph). In Chapter 4, based on the review of several restrictive state consensus

protocols in Xiao et al. (2005) [92] and Jadbabaie et al. (2003) [38], we provide the solution
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to state consensus control for discrete-time homogeneous multi-agent systems (MASs) over

deterministic time-varying feedback topology, which not only agrees with, but also generalizes

the results in [92] and [38]. Then we focus on the distributed state estimation over the WSN

with deterministic time-varying topology. In our proposed protocol, the observation about

the target system is required to be available at only one or a few nodes at each time instant

so that the communication overhead between the target system and individual sensor nodes

can be lowered to a large extent. Under the uniform observability of the time-varying graph,

each sensor can closely track the dynamic state only by using the observations if obtained,

exchanging information with its neighbors, and carrying out local computation.

Chapter 5 concludes the whole dissertation and presents some ideas about possible re-

search topics for future work.

1.4 Notations

The notations in this dissertation are fairly standard. The symbols In, and 1n stand

for the identity matrix of dimension n × n, and the column vector of dimension n with all

components one, respectively. Transpose and conjugate transpose are denoted by “′” and

the superscript of “∗”, respectively. The eigenvalue is denoted by λ(·). The spectral radius

is denoted by ρ(·). The Kronecker product and Hadamard product are denoted by“⊗” and

“◦” respectively. The expectation and covariance operations are denoted by E{·} and Cov{·}

respectively. Finally we denote diag{·} as the (block) diagonalization operation, vec{·} as

the vectorization operation, and col{·} as the columnization operation. Other notations will

be made clear as we proceed.
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CHAPTER 2
DATA FUSION KALMAN FILTERING

In this chapter we study data fusion Kalman filtering over WSN, where the data fusion

center is employed to estimate the state of a discrete-time dynamic system based on the

observations transmitted from distributed sensor node(s) in the presence of data packet

drops.

2.1 Single Data Packet Drop Channel

This section is focused on the case discussed in [77], where the measurement of the sensor

node is transmitted to the fusion center through a single data packet drop channel.

2.1.1 Mean Square Stability

We start by introducing the mean square (MS) stability for the feedback system config-

ured in Figure 2.1. The plant model is described by transfer matrix G(z) with state space

representation

G(z) = Cg(zI − Ag)−1Bg,

where Ag ∈ Rn×n, Bg ∈ Rn×m, and Cg ∈ Rm×n. The following assumptions are made, which

may be required in various situations.

Assumption 1. Ag is a Schur stability matrix.

Assumption 2. rank{Bg} = rank{Cg} = m.

Let the multiplicative noise (fading channel) in Figure 2.1 be specified by δ(k)Im where

{δ(k)} is a white random process with mean zero and variance σ2, i.e.,

E{δ(k)} = 0, E{δ(k)2} = σ2 ∀ k ≥ 0.

The MS stability is defined next.
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δ(k)Im

G(z)-

�

u(k)

Figure 2.1: Feedback system with multiplicative noise over single feedback channel

Definition 1. [13] Under Assumption 1, the closed-loop system in Figure 2.1 is said to be MS

stable, if the variance of {u(k)} is asymptotically bounded, i.e.,

lim
k→∞

E{‖u(k)‖2} <∞.

A well-known MS stability condition in [13] is presented in the next lemma.

Lemma 1. Under Assumption 1, the following statements are equivalent:

(i) The feedback system in Figure 2.1 is MS stable;

(ii) There exists Xg > 0 satisfying the LMI:

Xg > AgXgA
′
g + σ2BgCgXgC

′
gB
′
g; (2.1)

(iii) There exists Yg > 0 satisfying the LMI:

Yg > A′gYgAg + σ2C ′gB
′
gYgBgCg. (2.2)

It is easy to see that (2.1) and (2.2) are dual to each other. The following result provides

a closed-form test for the MS stability, which can be valuable in some applications.

Lemma 2. Let H = (Cg ⊗ Cg)(I −Ag ⊗Ag)−1(Bg ⊗Bg). Under Assumption 1, the feedback

system in Figure 2.1 is MS stable, if and only if ρ(H) < σ−2.

15



Proof. Suppose that the feedback system in Figure 2.1 is MS stable. Then LMI (2.1) in

Lemma 1 admits a solution Xg > 0 that has no loss of generality. Denote

Qε = Xg − AgXgA
′
g − σ2

εBgCgXgC
′
gB
′
g,

where σ2
ε = εσ2. Then Qε > 0 for ∀ ε ∈ (0, 1]. Taking the vectorization operation on both

sides of the above equation yields

vec(Qε) = [I − Ag ⊗ Ag − σ2
ε(Bg ⊗Bg)(Cg ⊗ Cg)]vec(Xg).

By Schur stability of Ag, there holds ρ (Ag ⊗ Ag) < 1. Then

ρ
{

(Ag ⊗ Ag) + σ2
ε(Bg ⊗Bg)(Cg ⊗ Cg)

}
< 1 ∀ ε ∈ (0, 1]

in light of the continuity argument and the hypothesis on MS stability. The above inequality

implies that

det
[
I − Ag ⊗ Ag − σ2

ε(Bg ⊗Bg)(Cg ⊗ Cg)
]
6= 0 (2.3)

for ∀ ε ∈ (0, 1] with det(·) denoting the determinant. Then we have

det
[
I − σ2

ε(Cg ⊗ Cg)(I − Ag ⊗ Ag)−1(Bg ⊗Bg)
]
6= 0.

Therefore det(I − εσ2H) 6= 0 for ∀ ε ∈ (0, 1], concluding ρ(H) < σ−2.

Conversely if ρ(H) < σ−2, then ρ(H) < (εσ2)−1 = σ−2
ε for ∀ ε ∈ (0, 1]. By the continuity

argument, there exists a sufficiently small εm > 0 such that the feedback system is MS

stable for multiplicative white noise {δε(k)} having variance σ2
εm . Hence there exists Xεg > 0

satisfying LMI

Xεg > AgXεgA
′
g + σ2

εBgCgXεgC
′
gB
′
g (2.4)

for ∀ ε ∈ (0, εm]. Recall that ρ (Ag ⊗ Ag) < 1. Hence inequality (2.3) holds for ∀ ε ∈ (0, εm]
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by making use of the previous arguments leading to (2.3). We claim that εm = 1. If εm 6= 1,

then there exists some ε0 ∈ (0, 1] satisfying ε0 > εm such that inequality (2.3) fails. That is,

det
[
I − Ag ⊗ Ag − σ2

ε0
(Bg ⊗Bg)(Cg ⊗ Cg)

]
= 0.

It follows from previous derivations that det(I − σ2
ε0
H) = 0, which contradicts to the hy-

pothesis that ερ(H) < σ−2 for ∀ ε ∈ (0, 1]. Therefore ε0 /∈ (0, 1] and LMI (2.4) admits a

solution Xεg > 0 for ε = 1, which reduces to (2.1),thereby concluding the MS stability. 2

Lemma 2 indicates that σsup := 1/
√
ρ(H) is a critical value in the sense that MS stability

holds for all σ < σsup. While both Lemma 1 and Lemma 2 provide an elegant MS stability

condition, neither one can be used in Kalman filtering synthesis directly, since the unknown

estimation gain is involved in G(z). One may follow the iterative algorithm in [22] to search

for σsup and estimator parameters in alternation by fixing the other, but it becomes a nonlin-

ear programming problem. Building on Lemma 1, we have the following MS stability result,

which is fundamental and more useful to the proof of the main results of this section.

Lemma 3. Under Assumptions 1 and 2, the following statements are equivalent:

(i) The feedback system in Figure 2.1 is MS stable;

(ii) There exists Φ > 0 such that

ρ

(
1

2π

∫ π

−π
GΦ(ejω)GΦ(ejω)∗dω

)
< σ−2, (2.5)

where GΦ(z) = Φ−1G(z)Φ;

(iii) There exists Ψ > 0 such that

ρ

(
1

2π

∫ π

−π
GΨ(ejω)∗GΨ(ejω)dω

)
< σ−2, (2.6)

where GΨ(z) = ΨG(z)Ψ−1.
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Proof. For (i) ⇒ (iii): There exists Yg > 0 satisfying LMI (2.2), if the feedback system in

Figure 2.1 is MS stable, in light of Lemma 1. Substituting

Yg = zA′gYg + z−1YgAg − A′gYgAg + (z−1I − A′g)Yg (zI − Ag)

into LMI (2.2) for |z| = 1 with rearrangement yields

σ2C ′gB
′
gYgBgCg < zA′gYg + z−1YgAg − 2A′gYgAg + (z−1I − A′g)Yg(zI − Ag)

= (z−1I − A′g)YgAg + A′gYg(zI − Ag) + (z−1I − A′g)Yg(zI − Ag).

Multiplying B′g(z
−1I−A′g)−1 from left and (zI−Ag)−1Bg from right to the above inequality

lead to

σ2G(z)∗B′gYgBgG(z) < B′gYgAg(zI − Ag)−1Bg +B′g(z
−1I − A′g)−1A′gYgBg +B′gYgBg.

Computing average over the unit circle gives

B′gYgBg >
σ2

2π

∫ π

−π
G(ejω)∗B′gYgBgG(ejω)dω.

Denote Ψ2 = B′gYgBg > 0. Then Ψ > 0 by rank{Bg} = m and Yg > 0. The above is

equivalent to

I >
σ2

2π

∫ π

−π
GΨ(ejω)∗GΨ(ejω)dω,

that is in turn equivalent to (2.6).

For (iii) ⇒ (i): By the Schur stability of Ag, there exists Yg ≥ 0 to the Lyapunov equation

Yg = A′gYgAg + C ′gΨ
2Cg. (2.7)
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Note that the power spectral density GΨ(ejω)∗GΨ(ejω) admits the decomposition

GΨ(ejω)∗GΨ(ejω) = Ψ−1B′gYgBgΨ
−1

+ Ψ−1B′gYgAg(e
jωI − Ag)−1BgΨ

−1 + Ψ−1B′g(e
−jωI − A′g)−1A′gYgBgΨ

−1.

If (2.6) holds, then Yg satisfies

σ2Ψ−1B′gYgBgΨ
−1 < Im. (2.8)

Substituting (2.8) into (2.7) yields

Yg > A′gYgAg + σ2C ′gΨ(Ψ−1B′gYgBgΨ
−1)ΨCg = A′gYgAg + σ2C ′gB

′
gYgBgCg,

which further implies Yg > 0, thereby concluding the proof for (2.6). Since (2.5) is dual to

(2.6), its proof is omitted. 2

2.1.2 Stationary Data Fusion Kalman Filter

The problem of Kalman filtering with intermittent observations was first formulated and

studied in Sinopoli et al (2004) [77]. Consider the networked system described by

x(k + 1) = Ax(k) + w(k), (2.9a)

y(k) = Cx(k) + v(k), (2.9b)

where x(k) ∈ Rn denotes the state of the dynamic target system, and y(k) ∈ Rm denotes

the measurement obtained by the sensor node at time index k. The process noise w(k) and

the measurement noise v(k) are independent white processes with mean zero and covariance

Q ≥ 0 and R > 0, respectively, uncorrelated to the initial state x(0) = x0 that has mean x0

and covariance Σ0. By convention, it is assumed that x0, w(k), and v(k) are jointly Gaussian
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distributed. Since the measurement information is transmitted from the sensor node to the

data fusion center over a packet drop channel, the signal at the receive end is given by

s(k) = γ(k)y(k) (2.10)

instead of y(k) itself, where γ(k) is imposed to represent the network distortion induced by

data packet drops. A simple Bernoulli model is adopted, assuming i.i.d. stationary process,

for {γ(k)} with probability

P{γ(k) = 1} = p > 0 ∀ k ≥ 0.

Moreover, γ(k) is independent of the noise and the initial state. Based on (2.10), observation

y(k) is received successfully by the fusion center at time k if γ(k) = 1; otherwise all the

components of y(k) are lost. The complete setup is depicted in Figure 2.2. The following

assumption is made without loss of generality.

Assumption 3. rank{C} = m.

Data Fusion Center

Sensor Node
?

e-
y(k)

v(k)

�
�

�


Dynamic System
x(k + 1) = Ax(k) + w(k)

?

?

Cx(k)

s(k) = γ(k)y(k)

Figure 2.2: Setup for data fusion Kalman filtering over single packet drop channel
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Denote x̂(k|t) as the MMSE estimate of x(k) and Σ(k|t) as the corresponding error

covariance at the data fusion center, conditioned on S(t) = {s(τ)}tτ=0, for k ≥ t ≥ 0,

respectively, i.e., x̂(k|t) = E[x(k)|S(t)], Σ(k|t) = Cov[x(k)|S(t)]. The following modified

Kalman filtering algorithm for the dynamic system in (2.9) and (2.10) is proposed in [77]:

L(k) = Σ(k|k − 1)C ′[R + CΣ(k|k − 1)C ′]−1,

x̂(k|k) = x̂(k|k − 1) + L(k)[s(k)− γ(k)Cx̂(k|k − 1)],

Σ(k|k) = Σ(k|k − 1)− γ(k)L(k)CΣ(k|k − 1),

x̂(k + 1|k) = Ax̂(k|k),

Σ(k + 1|k) = AΣ(k|k)A′ +Q.

Note that the above is derived based on the assumption that γ(k) is known at time k, in spite

of it being a random variable. It is also demonstrated in [77] that there exists an infimum

for p, denoted by pinf and called critical data arrival rate, below which the estimation error

covariance becomes unbounded. Under the TCP-like protocol, the successful transmission

of the measurement packet is acknowledged at the data fusion center. Specifically γ(k) is

known at the fusion center and can be used to estimate x(k+ 1). Therefore we consider the

data fusion Kalman filter as the optimal one-step predictor. Furthermore we are interested

in the stationary Kalman filter that minimizes the average error variance over the Bernoulli

process {γ(k)} in the steady-state at the data fusion center. Let x̂(k) be the linear MMSE

(LMMSE) estimate of x(k) at the fusion center, conditioned on S(k − 1) and averaged over

{γ(t)}k−1
t=0 . The stationary Kalman filter that minimizes the average estimation error variance

at the data fusion center is given by [74, 77]

x̂(k + 1) = Ax̂(k) +K [s(k)− γ(k)Cx̂(k)] , (2.11a)

K = AΣC ′ (R + CΣC ′)
−1
, (2.11b)
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where Σ is the stabilizing solution to MARE

Σ = AΣA′ +Q− pAΣC ′ (R + CΣC ′)
−1
CΣA′. (2.12)

2.1.3 Critical Data Arrival Rate

Stationary Kalman filter (2.11) requires the existence of the stabilizing solution to MARE

(2.12). It is important to observe that, different from the case of standard algebraic Riccati

equation (ARE), the detectability of (C,A) and the stabilizability of (A,Q1/2) on the unit

circle are not adequate for MARE (2.12) to admit the stabilizing solution. As pointed out

in [77], data arrival rate p plays a crucial role.

Denote the state estimation error at the data fusion center by

ex(k) = x(k)− x̂(k).

Taking the difference between (2.9a) and (2.11a) yields estimation error dynamics

ex(k + 1) = [A− γ(k)KC] ex(k) + w(k)− γ(k)Kv(k). (2.13)

The MS stabilizability is defined next.

Definition 2. Error dynamics (2.13) are said to be MS stabilizable, if for a given data arrival

rate p, there exists K such that (2.13) is MS stable, i.e.,

lim
k→∞

E
{
‖ex(k)‖2

}
<∞.

Such K is called an MS stabilizing gain.

Note that the two noise terms in (2.13) do not affect its MS stabilizability, and can be
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removed for stability analysis. We thus consider the error dynamics described by

ex(k + 1) = [A− γ(k)KC] ex(k). (2.14)

In light of [74, 103], MARE (2.12) admits a unique stabilizing solution if and only if error

dynamics (2.14) are MS stabilizable. Furthermore, MS stabilizability holds for (2.14) when

p > pinf , while it fails when p < pinf . Hence we can find the critical data arrival rate pinf by

investigating the MS stabilizability condition for the error dynamics. Specifically we adopt

γ(k) = p [1 + δ(k)] , (2.15)

where {δ(k)} is a white random process with mean zero and variance

E{δ(k)2} = ν2 =
p− p2

p2
= p−1 − 1 ⇐⇒ p =

1

1 + ν2
.

Substituting (2.15) into (2.14) yields the error dynamics in feedback form as

ex(k + 1) = (A+KpC)ex(k) +Kp[δ(k)Im]ey(k), ey(k) = Cex(k), Kp = −pK. (2.16)

Feedback system (2.16) can be schematically illustrated by the block diagram in Figure 2.3.

Now it is easy to see that the superium for variance ν2, denoted by ν2
sup, below which the

MS stabilizability holds for error dynamics (2.14), is related to pinf via ν2
sup = p−1

inf − 1. It has

been recognized [22, 93] that packet drop can be considered as a special case of multiplicative

noise (fading channel). Hence the MS stability results introduced in Subsection 2.1.1 can be

applied to study the stability issue of the error dynamics. The next result shows that the

MS stabilizability for (2.14) is governed by some LMI.

23



[
A I
C 0

] δ(k)Im

p −K-

-

- -?

6

c
Channel

ey(k)

Figure 2.3: Estimation error dynamics in feedback form over single packet drop channel

Lemma 4. Assume that (C,A) is detectable. Then for a given ν2, error dynamics (2.14) are

MS stabilizable, if and only if there exist Z > 0 and KpZ ∈ Rn×m satisfying the LMI:


Z ZA+KpZC KpZC

A′Z + C ′K ′pZ Z 0

C ′K ′pZ 0 ν−2Z

 > 0.

If there exists a feasible solution pair (Z,KpZ) to the above LMI, then Kp = Z−1KpZ achieves

MS stability for error dynamics (2.14).

Proof. The feedback system in Figure 2.3 can be converted to that in Figure 2.1 by taking

G(z) = C(zI − A−KpC)−1Kp.

By Lemma 1, the MS stabilizability is equivalent to the existence of Xg > 0 and Kp ∈ Rn×m

such that

Xg − (A+KpC)Xg(A+KpC)′ − ν2KpCXgC
′K ′p > 0.

Multiplying Z = X−1
g from both left and right to the above inequality yields

Z − (ZA+KpZC)Z−1(ZA+KpZC)′ − ν2KpZCZ
−1C ′K ′pZ > 0,

where KpZ = ZKp. By the well-known Schur Complement Lemma [98], the above inequality

and Z > 0 are in turn equivalent to the LMI in the lemma, thereby concluding the proof. 2
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Notice that Lemma 4 provides a way to verify if MS stabilizing gain exists for a given

variance ν2. However, in order to compute the critical data arrival rate pinf , we have to

search for the maximum ν2 over the feasible set of (Z,KpZ) subject to the LMI, using either

bisection or other algorithms iteratively. Upper and lower bounds of pinf from [47, 77] are

useful in such iterative searches. The following bounds

M(A)
2
m − 1 < ν−2 < M(A)2 − 1

can also be adopted, where M(A) :=
n∏
i=1

max{|λi(A)|, 1} is the Mahler measure of matrix A.

The next result presents a much more efficient algorithm to compute ν2
sup and pinf .

Theorem 1. Under Assumption 3 and detectability of (C,A), the superium ν2
sup can be com-

puted via the minimization of ν−2 subject to the following LMIs over matrix pair (X−1
Φ ,Φ−2):

(a) ν−2X−1
Φ > C ′Φ−2C,

(b) X−1
Φ + C ′Φ−2C ≥ A′X−1

Φ A,

(c) X−1
Φ > 0, Φ−2 > 0,

and the critical data arrival rate pinf = (1 + ν2
sup)−1.

Proof. Recall that G(z) = C(zI − A − KpC)−1Kp. Denote CΦ = Φ−1C, KΦ = KpΦ,

AK = A+KΦCΦ, and GΦ(z) = CΦ(zI−AK)−1KΦ. In light of Lemma 3, the MS stabilizability

of the closed-loop system in Figure 2.3 is equivalent to the existence of Φ > 0 such that

ρ

(
1

2π

∫ π

−π
GΦ(ejω)GΦ(ejω)∗dω

)
< ν−2.

Let ZΦ ≥ 0 be the solution to the Lyapunov equation

ZΦ = AKZΦA
′
K +KΦK

′
Φ.
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Note that decomposition can be applied to GΦ(ejω)GΦ(ejω)∗ to obtain

GΦ(ejω)GΦ(ejω)∗ = CΦZΦC
′
Φ + CΦ

(
ejωI − AK

)−1
AKZΦC

′
Φ + CΦZΦA

′
K

(
e−jωI − A′K

)−1
C ′Φ.

It follows that

1

2π

∫ π

−π
GΦ(ejω)GΦ(ejω)∗dω = CΦZΦC

′
Φ ≥ CΦXΦC

′
Φ, (2.17)

where XΦ ≥ 0 is the stabilizing solution to ARE

XΦ = AXΦ(I + C ′ΦCΦXΦ)−1A′.

Equality holds for (2.17), if and only if

KΦ = −AXΦC
′
Φ(I + CΦXΦC

′
Φ)−1 ⇐⇒ Kp = KΦΦ−1 = −AXΦC

′(Φ2 + CXΦC
′)−1.

Denote SK as the set of all KΦ such that AK is a Schur stability matrix. We thus have the

equivalence of the MS stabilizability to

inf
KΦ∈SK ,Φ>0

ρ

(
1

2π

∫ π

−π
GΦ(ejω)GΦ(ejω)∗dω

)
= inf

Φ>0,XΦ>0
ρ (CΦXΦC

′
Φ) < ν−2.

The above is in turn equivalent to the existence of XΦ > 0 and Φ > 0 subject to

CΦXΦC
′
Φ < ν−2I ⇐⇒ ν−2Φ2 > CXΦC

′ (2.18)

and the ARE inequality

XΦ ≥ A(X−1
Φ + C ′Φ−2C)−1A′. (2.19)

Although (2.18) and (2.19) are not LMIs in terms of XΦ > 0 and Φ > 0, they can be conver-
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ted equivalently to LMIs over X−1
Φ > 0 and Φ−2 > 0. Indeed (2.18) and (2.19) are equivalent

to (a) and (b) respectively, thereby concluding the proof. 2

Remark 1. The LMI problem in Theorem 1 belongs to the category of generalized eigenvalue

minimization [13], aimed at the minimization of ν−2, subject to linear fractional constraint

(a), and general positivity constraints (b) and (c). Well-defined algorithms for the generalized

eigenvalue minimization can thus be used to search for such a minimum value without lengthy

and tedious iterations. In addition, the search for the MS stabilizing gain is no longer needed.

However the algorithm presented in Theorem 1 does not yield the real superium ν2
sup due to

finite digits used in any digital computers. That is, the maximum of ν2, denoted by ν2
max

and computed via the LMIs, is very close, but not equal to ν2
sup. There holds ν2

max < ν2
sup.

As a result, the minimum of p, denoted by pmin and obtained via Theorem 1, is very close,

but not equal to the exact critical arrival rate pinf . There holds pmin > pinf . 2

Once pmin is obtained, the stabilizing solution to MARE (2.12) can be computed, provid-

ed that the MS stabilizability condition, i.e., p ≥ pmin, holds, and subsequently the optimal

MS stabilizing gain can be obtained following (2.11b). Given the MS stabilizability of er-

ror dynamics (2.14) and the detectability of (C,A), a sufficient condition for the existence

of the stabilizing solution to MARE (2.12) is the stabilizability of (A,Q1/2). Under both

detectability of (C,A) and stabilizability of (A,Q1/2), there exists a unique positive semi-

definite solution Σ to MARE (2.12), and iterative algorithms can be used to compute Σ. Set

the initial value Σ̂(0) = Σ̂0 ≥ 0, and compute Σ̂(k) iteratively using the following modified

difference Riccati equation (MDRE) [77]:

Σ̂(k + 1) = AΣ̂(k)A′ +Q− pAΣ̂(k)C ′[R + CΣ̂(k)C ′]−1CΣ̂(k)A′. (2.20)

Then Σ̂(k) approaches the stabilizing solution as k →∞, i.e.,

Σ = lim
k→∞

Σ̂(k).
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It becomes more complicated, if (A,Q1/2) is not stabilizable. In fact even for standard ARE,

if

rank

{[
zI − A Q1/2

]}
= n, ∀ |z| = 1,

then in general there exist more than one positive semi-definite solutions to the standard

ARE, but only one of them is the stabilizing solution. A sufficiently large initial value has to

be selected for the iterative process [30]. The iterative algorithm to compute the stabilizing

solution to MARE (2.12) will be more difficult to analyze. An easy fix is to consider solving

an approximate stabilizing solution to MARE (2.12) via computing iteratively the MDRE

(2.20) by replacing Q with Qφ = Q + φI for sufficiently small φ > 0. This way ensures the

controllability of (A,Q
1/2
φ ) and a unique positive definite solution in the limit.

2.2 Multiple Data Packet Drop Channels

In this section we consider the setting where distributed sensor nodes transmit their

observations to the fusion center through multiple data packet drop channels. This scenario

can be regarded as a generalization of the single packet drop channel case discussed in the

previous section.

2.2.1 Mean Square Stability

Again we start by presenting the preliminaries on the MS stability condition for feedback

systems with multiplicative noise over multiple feedback channels, which will be applied to

derive the main results of this section. Consider the feedback system configured in Figure

2.4 with the plant model described by transfer matrix G(z) = Cg(zI − Ag)
−1Bg, where

Ag ∈ Rn×n, Bg ∈ Rn×m, Cg ∈ Rm×n, specified by

Bg =

[
Bg;1 · · · Bg;N

]
, Bg;i ∈ Rn×mi , Cg =


Cg;1

...

Cg;N

 , Cg;i ∈ Rmi×n,
N∑
i=1

mi = m.
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Let N := {1, . . . , N}. The next assumption may be required in various situations.

Assumption 4. rank{Bg;i} = rank{Cg;i} = mi ∀ i ∈ N .

Dδ(k)

G(z)-

�

u(k)

Figure 2.4: Feedback system with multiplicative noise over multiple feedback channels

Let the multiplicative noise (fading channels) in Figure 2.4 be specified by

Dδ(k) = diag {δ1(k)Im1 , . . . , δN(k)ImN} ,

where {δi(k)}Ni=1 are mutually independent white random processes with mean zero and

variances {σ2
i }Ni=1, i.e.,

E{δi(k)} = 0, E{δi(k)2} = σ2
i ∀ i ∈ N , k ≥ 0.

The MS stability of the feedback system in Figure 2.4 is defined in Definition 1. The following

MS stability condition is introduced in [13] as a generalization of that in Lemma 1.

Lemma 5. Under Assumption 1, the following statements are equivalent:

(i) The feedback system in Figure 2.4 is MS stable;

(ii) There exists Xg > 0 satisfying the LMI:

Xg > AgXgA
′
g +

N∑
i=1

σ2
iBg;iCg;iXgC

′
g;iB

′
g;i; (2.21)

(iii) There exists Yg > 0 satisfying the LMI:

Yg > A′gYgAg +
N∑
i=1

σ2
iC
′
g;iB

′
g;iYgBg;iCg;i.
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Building on Lemma 5, we have the following MS stability result, which will be applied

directly to the derivation of the main results.

Lemma 6. Under Assumptions 1 and 4, the following statements are equivalent:

(i) The feedback system in Figure 2.4 is MS stable;

(ii) There exists Φ = diag (Φ1, . . . ,ΦN) > 0 with Φi ∈ Rmi×mi and i ∈ N such that

ρ

(
1

2π

∫ π

−π
GΦ;i(e

jω)GΦ;i(e
jω)∗dω

)
< σ−2

i , (2.22)

where GΦ;i(z) = Φ−1
i Cg;i(zI − Ag)−1BgΦ;

(iii) There exists Ψ = diag (Ψ1, . . . ,ΨN) > 0 with Ψi ∈ Rmi×mi and i ∈ N such that

ρ

(
1

2π

∫ π

−π
GΨ;i(e

jω)∗GΨ;i(e
jω)dω

)
< σ−2

i , (2.23)

where GΨ;i(z) = ΨCg(zI − Ag)−1Bg;iΨ
−1
i .

Proof. Denote Dσ = diag (σ1Im1 , . . . , σNImN ).

For (i) ⇒ (ii): There exists Xg > 0 satisfying LMI (2.21), if the feedback system in Figure

2.4 is MS stable, in light of Lemma 5. Substituting

Xg = z−1AgXg + zXgA
′
g − AgXgA

′
g + (zI − Ag)Xg(z

−1I − A′g)

into LMI (2.21) for |z| = 1 with rearrangement yields

Mg :=
N∑
l=1

σ2
lBg;lCg;lXgC

′
g;lB

′
g;l < (zI − Ag)Xg(z

−1I − A′g)− 2AgXgA
′
g + zXgA

′
g + z−1AgXg

= (zI − Ag)Xg(z
−1I − A′g) + (zI − Ag)XgA

′
g + AgXg(z

−1I − A′g).

Denote Gi,l(z) = Cg;i(zI−Ag)−1Bg;l. Then multiplying Cg;i(zI−Ag)−1 from left and (z−1I−
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A′g)
−1C ′g;i from right to the above inequality lead to

Tg(z) := Cg;i(zI − Ag)−1Mg(z
−1I − A′g)−1C ′g;i =

N∑
l=1

σ2
lGi,l(z)Cg;lXgC

′
g;lGi,l(z)∗

< Cg;iXgC
′
g;i + Cg;iXgA

′
g(z
−1I − A′g)−1C ′g;i + Cg;i(zI − Ag)−1AgXgC

′
g;i.

Computing average over the unit circle gives

J :=
1

2π

∫ π

−π
Tg(e

jω) dω =
N∑
l=1

σ2
l

2π

∫ π

−π
Gi,l(e

jω)Cg;lXgC
′
g;lGi,l(e

jω)∗dω < Cg;iXgC
′
g;i.

Denote Ω2
l = Cg;lXgC

′
g;l and Ω = diag (Ω1, . . . ,ΩN). Then Ωl > 0 and Ω > 0 by rank{Cg;l} =

ml and Xg > 0. The above inequality is equivalent to

Imi >
N∑
l=1

σ2
l

2π

∫ π

−π
Ω−1
i Gi,l(e

jω)Ω2
lGi,l(e

jω)∗Ω−1
i dω =

σ2
i

2π

∫ π

−π
GΦ;i(e

jω)GΦ;i(e
jω)∗dω,

where GΦ;i(z) = Φ−1
i Cg;i(zI−Ag)−1BgΦ with Φi = σiΩi and Φ = DσΩ = diag (Φ1, . . . ,ΦN) >

0. It follows that (2.22) holds ∀ i ∈ N .

For (ii) ⇒ (i): By the Schur stability of Ag, there exists Xg ≥ 0 to the Lyapunov equation

Xg = AgXgA
′
g +

N∑
l=1

Bg;lΦ
2
lB
′
g;l. (2.24)

Similar to the derivation for Tg(z), the power spectral density Ψg(ω) := GΦ;i(e
jω)GΦ;i(e

jω)∗

admits the decomposition

Ψg(ω) = Φ−1
i Cg;iXgC

′
g;iΦ

−1
i

+ Φ−1
i Cg;i(e

jωI − Ag)−1AgXgC
′
g;iΦ

−1
i + Φ−1

i Cg;iXgA
′
g(e
−jωI − A′g)−1C ′g;iΦ

−1
i .
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If (2.22) holds, then Xg satisfies

σ2
i Φ
−1
i Cg;iXgC

′
g;iΦ

−1
i < Imi , ∀ i ∈ N . (2.25)

Substituting (2.25) with i = l into (2.24) yields

Xg > AgXgA
′
g +

N∑
l=1

σ2
lBg;lΦl(Φ

−1
l Cg;lXgC

′
g;lΦ

−1
l )ΦlB

′
g;l

= AgXgA
′
g +

N∑
l=1

σ2
lBg;lCg;lXgC

′
g;lB

′
g;l,

which further implies Xg > 0, thereby concluding the proof for (2.22). Since (2.23) is dual

to (2.22), its proof is omitted. 2

2.2.2 Stationary Data Fusion Kalman Filter

We now study the data fusion Kalman filtering in the presence of packet drops for net-

worked system described by

x(k + 1) = Ax(k) + w(k), (2.26a)

yi(k) = Cix(k) + vi(k), i ∈ N , (2.26b)

where x(k) ∈ Rn denotes the state of the dynamic target system, and yi(k) ∈ Rmi denotes

the measurement obtained by the ith sensor node at time index k with Ci ∈ Rmi×n different

for each i ∈ N generally. The process noise w(k) and the measurement noise vi(k) are

independent white processes with mean zero and covariance Q ≥ 0 and Ri > 0, respectively,

uncorrelated to the initial state x(0) = x0 that has mean x0 and covariance Σ0. By convention

we assume that x0, w(k), {vi(k)}Ni=1 are jointly Gaussian distributed.
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Due to the nature of WSNs, the signal received at the data fusion center from the ith

sensor node is given by

si(k) = γi(k)yi(k), i ∈ N , (2.27)

where γi(k) is imposed to represent the network distortion induced by data packet drop-

s. Again we adopt a simple model of i.i.d. stationary Bernoulli process for {γi(k)} with

probability

P{γi(k) = 1} = pi > 0 ∀ k ≥ 0.

It follows that

E{γi(k)} = pi, µ2
i = E{[γi(k)− pi]2} = pi − p2

i .

It is also assumed that γi(k) is independent of the noise and the initial state. Based on

(2.27), measurement yi(k) reaches the data fusion center at time k if γi(k) = 1; otherwise

all the components of yi(k) are lost. The complete setup is depicted in Figure 2.5. Denote

y(k) = vec{y1(k), . . . , yN(k)}, v(k) = vec{v1(k), . . . , vN(k)},

s(k) = vec{s1(k), . . . , sN(k)}, C = col{C1, . . . , CN},

R = E{v(k)v(k)′} = diag(R1, . . . , RN), Dγ(k) = diag {γ1(k)Im1 , . . . , γN(k)ImN} .

Then the state space model in (2.26) and (2.27) can be written in a compact form as

x(k + 1) = Ax(k) + w(k), (2.28a)

y(k) = Cx(k) + v(k), (2.28b)

s(k) = Dγ(k)y(k). (2.28c)

Assumption 5. rank{Ci} = mi ∀ i ∈ N .

The above assumption is made without loss of generality. If rank{Ci} = m̃i < mi, then

measurement of Cix(k) at the ith sensor node has redundancies that can be removed in
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s1(k) = γ1(k)y1(k) s2(k) = γ2(k)y2(k) sN(k) = γN(k)yN(k)

Figure 2.5: Setup for data fusion Kalman filtering over multiple packet drop channels

order to reduce the sensing and transmitting cost. Specifically in this case, there exists an

orthogonal matrix Θi ∈ Rmi×m̃i , satisfying Θ′iΘi = Im̃i and Ci = ΘiC̃i, where rank{C̃i} = m̃i.

We can thus transmit measurement ỹi(k) = Θ′iyi(k) ∈ Rm̃i that has lower dimension.

Denote S(k) = {s(t)}kt=0, Dγ(k) = {Dγ(t)}kt=0. Let x̂(k) be the MMSE estimate of x(k)

and Σ(k) be the corresponding error covariance at the data fusion center, conditioned on

S(k − 1), respectively, i.e., x̂(k) = E[x(k)|S(k − 1)], Σ(k) = Cov[x(k)|S(k − 1)]. Under

the TCP-like protocol, the time-varying data fusion Kalman filter has the structure of an

optimal one-step predictor as

x̂(k + 1) = Ax̂(k) +K(k) [s(k)−Dγ(k)Cx̂(k)] . (2.29)

We are interested in deriving the stationary Kalman filter that minimizes the average error

variance over the Bernoulli processes {γi(k)}Ni=1 in the steady-state at the data fusion center.

Let x̂(k) be the LMMSE estimate of x(k) at the fusion center, conditioned on S(k − 1) and

averaged over Dγ(k−1), and Σ̂(k) be the average error covariance associated with x̂(k). The

stationary data fusion Kalman filter is presented in the following theorem.
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Theorem 2. For the system dynamics described in (2.28), assume that there exists a stabilizing

solution Σ to MARE

Σ = AΣA′ +Q− AΣC ′ [W ◦ (R + CΣC ′)]
−1
CΣA′, (2.30)

where W = 1m1
′
m +D−1

p Dµ2D−1
p with

Dp = E {Dγ(k)} = diag(p1Im1 , . . . , pNImN ), Dµ2 = diag(µ2
11m11

′
m1
, . . . , µ2

N1mN1
′
mN

).

The stationary Kalman filter that minimizes the average error variance at the data fusion

center is specified by

x̂(k + 1) = Ax̂(k) +K [s(k)−Dγ(k)Cx̂(k)] , (2.31a)

K = AΣC ′ [W ◦ (R + CΣC ′)]
−1
D−1
p . (2.31b)

Proof. Following the conventional method, the optimal time-varying estimation gain K(k) is

used in deriving MDRE prior to taking k →∞ to obtain the optimal stationary estimation

gain K and the associated MARE. Denote e(k) = x(k)− x̂(k) as the state estimation error.

Taking the difference between (2.28a) and (2.29) yields error dynamics

e(k + 1) = [A−K(k)Dγ(k)C] e(k) + w(k)−K(k)Dγ(k)v(k).

Evaluation of the average covariance of e(k) can be carried out in two steps. First, taking

covariance of e(k) by treating Dγ(k) as a deterministic time-varying matrix quantity yields

Σ(k + 1) = [A−K(k)Dγ(k)C] Σ(k) [A−K(k)Dγ(k)C]′ +Q+K(k)Dγ(k)RDγ(k)K(k)′
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in light of the independence of w(k), v(k), and x0. The above can be rewritten as

Σ(k + 1) = AΣ(k)A′ −K(k)Dγ(k)CΣ(k)A′ − AΣ(k)C ′Dγ(k)K(k)′ +Q

+K(k)Dγ(k) [R + CΣ(k)C ′]Dγ(k)K(k)′.

Denote Eγ{·} as the expectation with respect to Dγ(k). In the second step, the Eγ{·}

operation can be taken to the above equation, leading to

Σ̂(k + 1) = AΣ̂(k)A′ −K(k)DpCΣ̂(k)A′ − AΣ̂(k)C ′DpK(k)′ +Q

+K(k)Eγ

{
Dγ(k)

[
R + CΣ̂(k)C ′

]
Dγ(k)

}
K(k)′. (2.32)

Notice that Σ̂(k) = Eγ{Σ(k)}. By direct calculations,

Eγ

{
Dγ(k)

[
R + CΣ̂(k)C ′

]
Dγ(k)

}
= Dp

[
R + CΣ̂(k)C ′

]
Dp + Eγ

{
[Dγ(k)−Dp]

[
R + CΣ̂(k)C ′

]
[Dγ(k)−Dp]

}
= Dp

[
R + CΣ̂(k)C ′

]
Dp +Dµ2 ◦

[
R + CΣ̂(k)C ′

]
= Dp

{
W ◦

[
R + CΣ̂(k)C ′

]}
Dp. (2.33)

Substituting (2.33) into (2.32) yields

Σ̂(k + 1) = AΣ̂(k)A′ +Q− AΣ̂(k)C ′
{
W ◦

[
R + CΣ̂(k)C ′

]}−1

CΣ̂(k)A′

+ Π(k)
{
W ◦

[
R + CΣ̂(k)C ′

]}−1

Π(k)′, (2.34)

where

Π(k) = AΣ̂(k)C ′ −K(k)Dp

{
W ◦

[
R + CΣ̂(k)C ′

]}
.

Since the last term in (2.34) is nonnegative definite and is the only term involving the
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estimation gain, setting Π(k) = 0 yields the optimal time-varying estimation gain

K(k) = AΣ̂(k)C ′
{
W ◦

[
R + CΣ̂(k)C ′

]}−1

D−1
p .

Equation (2.34) is thus reduced to MDRE

Σ̂(k + 1) = AΣ̂(k)A′ +Q− AΣ̂(k)C ′
{
W ◦

[
R + CΣ̂(k)C ′

]}−1

CΣ̂(k)A′, (2.35)

which is the minimized error covariance. As k → ∞, MDRE (2.35) converges to MARE

(2.30), and K(k) converges to the estimation gain K in (2.31b). It follows that (2.31) is

indeed the stationary Kalman filter that minimizes the average error variance. 2

We claim that the stationary Kalman filter (2.31) is consistent with the existing results

on Kalman filtering with intermittent observations. When N = 1, the multiple sensor nodes

(packet drop channels) setting degrades to the single sensor node (packet drop channel) case

studied in Section 2.1, where only a single random process {γ(k)}, instead of {γi(k)}Ni=1, is

adopted. In that case, Dp = pIm, and W = (1 + p−2µ2)1m1
′
m = p−11m1

′
m. Then MARE

(2.30) reduces to MARE (2.12), and the optimal estimation gain in (2.31b) is equivalent to

that in (2.11b), which agree with the results in [77]. When mi = 1 for all i ∈ N , yi(k), the

data packet measured and transmitted by sensor node i, has dimension one for all i ∈ N .

Then our networked system reduces to the dual of the system studied in [102]. In that case,

Dp = diag(p1, . . . , pN),

W =



1 + SNR−1
1 1 · · · 1

1 1 + SNR−1
2

. . .
...

...
. . . . . . 1

1 · · · 1 1 + SNR−1
N


,
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where SNRi = p2
i /µ

2
i is the signal-to-noise ratio of the ith packet drop channel. Hence

the resulting MARE (2.30) and optimal gain (2.31b) are dual to the ones derived in [102].

2.2.3 Stability Margin

The stationary Kalman filter (2.31) proposed in Theorem 2 assumes the existence of the

stabilizing solution to MARE (2.30), which is hinged on the MS stabilizability of the esti-

mation error dynamics, similar to the case of MARE (2.12). The estimation error dynamics

associated to filter (2.31) are given by

ex(k + 1) = [A−KDγ(k)C] ex(k), (2.36)

with noise terms removed. Specially we adopt

Dγ(k) = Dp [I +Dδ(k)] , Dδ(k) = diag {δ1(k)Im1 , . . . , δN(k)ImN} , (2.37)

where {δi(k)}Ni=1 are mutually independent white random processes with mean zero and

variance

E{δi(k)2} = ν2
i =

µ2
i

p2
i

= p−1
i − 1 ⇐⇒ pi =

1

1 + ν2
i

.

Substituting (2.37) into (2.36) yields the error dynamics in feedback form as

ex(k + 1) = (A+KpC)ex(k) +KpDδ(k)ey(k), ey(k) = Cex(k), Kp = −KDp. (2.38)

Feedback system (2.38) can be schematically illustrated by the block diagram in Figure 2.6.

In light of [74, 103], MARE (2.30) admits a unique stabilizing solution if and only if

MS stabilizability holds for error dynamics (2.36). For the single sensor node case discussed

in the previous section, there exists a superium for ν2, denoted by ν2
sup, below which the

corresponding error dynamics are MS stabilizable. However when multiple packet drop

channels are involved, such superiums for individual ν2
i no longer exist. Alternatively, we
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Figure 2.6: Estimation error dynamics in feedback form over multiple packet drop channels

adopt the stability margin, termed as αmax > 0, to help to determine the MS stabilizability.

The next result presents an efficient algorithm to compute αmax.

Theorem 3. Under Assumption 5 and the detectability of (C,A), for a given set of variances

{ν2
i }Ni=1, the stability margin αmax = β−1

min can be computed via the minimization of β subject

to the following LMIs over matrix pair (X−1
Φ ,Φ−2):

(a) βν−2
i X−1

Φ > C ′iΦ
−2
i Ci, ∀ i ∈ N ,

(b) X−1
Φ + C ′Φ−2C ≥ A′X−1

Φ A,

(c) X−1
Φ > 0, Φ−2 > 0,

where Φ = diag(Φ1, . . . ,ΦN). Furthermore, error dynamics (2.36) are MS stabilizable, if and

only if αmax = β−1
min ≥ 1.

Proof. The feedback system in Figure 2.6 can be converted to that in Figure 2.4 by taking

G(z) = C(zI − A − KpC)−1Kp. Denote CΦ;i = Φ−1
i Ci, CΦ = Φ−1C, KΦ = KpΦ, AK =

A + KΦCΦ, and GΦ;i(z) = CΦ;i(zI − AK)−1KΦ, i ∈ N . In light of Lemma 6, the MS

stabilizability of the closed-loop system in Figure 2.6 is equivalent to the existence of Φ =

diag (Φ1, . . . ,ΦN) > 0 such that

ρ

(
1

2π

∫ π

−π
GΦ;i(e

jω)GΦ;i(e
jω)∗dω

)
< ν−2

i ∀ i ∈ N .
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Let ZΦ ≥ 0 be the solution to the Lyapunov equation

ZΦ = AKZΦA
′
K +KΦK

′
Φ.

Note that decomposition can be applied to GΦ;i(e
jω)GΦ;i(e

jω)∗ to obtain

GΦ;i(e
jω)GΦ;i(e

jω)∗ = CΦ;iZΦC
′
Φ;i + CΦ;i

(
ejωI − AK

)−1
AKZΦC

′
Φ;i

+ CΦ;iZΦA
′
K

(
e−jωI − A′K

)−1
C ′Φ;i.

It follows that

1

2π

∫ π

−π
GΦ;i(e

jω)GΦ;i(e
jω)∗dω = CΦ;iZΦC

′
Φ;i ≥ CΦ;iXΦC

′
Φ;i, (2.39)

where XΦ ≥ 0 is the stabilizing solution to ARE

XΦ = AXΦ(I + C ′ΦCΦXΦ)−1A′.

Equality holds for (2.39), if and only if

KΦ = −AXΦC
′
Φ(I + CΦXΦC

′
Φ)−1 ⇐⇒ Kp = KΦΦ−1 = −AXΦC

′(Φ2 + CXΦC
′)−1.

Denote SK as the set of all KΦ such that AK is a Schur stability matrix. We thus have the

equivalence of the MS stabilizability to

inf
KΦ∈SK ,Φ>0

ρ

(
1

2π

∫ π

−π
GΦ;i(e

jω)GΦ;i(e
jω)∗dω

)
= inf

Φ>0,XΦ>0
ρ
(
CΦ;iXΦC

′
Φ;i

)
< ν−2

i ∀ i ∈ N .

The above is in turn equivalent to the existence of XΦ > 0 and Φ > 0 subject to

CΦ;iXΦC
′
Φ;i < ν−2

i Imi ⇐⇒ ν−2
i Φ2

i > CiXΦC
′
i (2.40)
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and the ARE inequality

XΦ ≥ A(X−1
Φ + C ′Φ−2C)−1A′. (2.41)

Although (2.40) and (2.41) are not LMIs in terms of XΦ > 0 and Φ > 0, they can be

converted equivalently to LMIs over X−1
Φ > 0 and Φ−2 > 0. Indeed (2.40) is equivalent to

ν−2
i X−1

Φ > C ′iΦ
−2
i Ci, (2.42)

while (2.41) is equivalent to (b). Then the stability margin αmax = β−1
min can be obtained by

minimizing β subject to LMIs (a), (b), and (c) in the theorem. It is easy to see that there

exists a feasible solution pair (X−1
Φ ,Φ−2) to LMIs (2.42), (b), and (c), if and only if βmin ≤ 1,

i.e., αmax ≥ 1, which concludes the proof. 2

Remark 2. Similar to Theorem 1, Theorem 3 also provides an LMI based solution, which be-

longs to the category of generalized eigenvalue minimization. Hence well-defined algorithms

for the generalized eigenvalue minimization can be used for computation. We comment that

αmax < αsup. The gap between αmax and αsup is determined by numerical precision. For the

given variances {ν2
i }Ni=1, if αmax > 1, then the MS stabilizability holds even if the variances

are increased to {αmaxν
2
i }Ni=1, which explains why we call αmax stability margin. 2

In light of [103], given a set of variances {ν2
i }Ni=1, the stabilizing solution to MARE (2.30)

can be computed, provided that the MS stabilizability condition, i.e., αmax ≥ 1, holds,

and subsequently the optimal MS stabilizing gain can be obtained following (2.31b). The

procedure to compute the stabilizing solution to MARE (2.30) is basically identical to that

for MARE (2.12), thus is omitted here. Details can be referred to Subsection 2.1.3.

2.3 Numerical Examples

Two numerical examples are presented to illustrate how to apply Theorem 1 and Theorem

3 to address the MS stabilizability issue.
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Example 2.1. The first example is adapted from the example in [74]. We consider the

pendubot system: a classic control laboratory experiment. More details and references on

the pendubot can be found in [101]. The linearized and discretized state space model is

given by x(k + 1) = Ax(k) +Bu(k) + w(k) with

A =



1.001 0.005 0.000 0.000

0.350 1.001 −0.135 0.000

−0.001 0.000 1.001 0.005

−0.375 −0.001 0.590 1.001


.

Notice that the impact of input term Bu(k) on the state dynamics can always be offset by

adding this term to the estimator. Thus the input term will not affect the MS stabilizability

of the error dynamics, and can be disregarded for computation convenience. System matrix

A has two unstable eigenvalues, i.e., 1.061, 1.033. A single sensor node is employed to

observe the pendubot system and send its measurements to the data fusion center for state

estimation and tracking. The observation of the node follows model (2.9b) with

C =

1 0 0 0

0 1 0 0

.
The noise statistics are given by

Q = qq′, q =

[
0.003 1.000 −0.005 −2.150

]′
, R = 0.001I2.

It is easy to verify that (A,Q1/2) is controllable and (C,A) is observable.

Since only a single sensor node is used in this example, we can apply Theorem 1 to find

the critical data arrival rate for the communication channel from the sensor node to the

estimation center. Solving the LMI problem in Theorem 1 yields ν−2
max = 0.1262, and thus

pmin = 0.1121, which can be considered as the critical data arrival rate. Then we know that
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MARE (2.12) admits a unique stabilizing solution when p = 0.2 > pmin. Initialize MDRE

(2.20) with Σ̂(0) = 0 and take the limit. The resulting stabilizing solution is given by

Σ =



0.0205 0.4507 −0.1789 −2.0475

0.4507 14.2728 −6.6573 −75.3820

−0.1789 −6.6573 7.4484 69.1820

−2.0475 −75.3820 69.1820 665.8969


.

When p = 0.1 < pmin, Σ̂(k) becomes unbounded as k → ∞, implying that error dynamics

(2.14) cannot be made MS stable given any estimation gain if the actual data arrival rate of

the communication channel is lower than the critical rate. It is also worth noting that when

the arrival rate is higher than but close to the critical threshold, the convergence of Σ̂(k) to

Σ becomes very slow. In general, higher arrival rates lead to faster convergence.

Example 2.2. In the second example, we consider a system of dynamics (2.28a) with system

matrix A specified by

A =



2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1


.

Obviously A has four unstable eigenvalues. A total of N = 4 sensor nodes in a WSN are

employed to observe the dynamic system and send their measurements to the data fusion

center for state estimation. The observation matrix for each sensor node is specified by

C1 =

1 0 0 0

0 1 0 0

, C2 =

1 0 0 0

0 0 1 0

, C3 =

[
0 0 1 0

]
, C4 =

[
0 0 0 1

]
.

It is important to observe that each node can only observe a partial of the state, thus the
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target is undetectable by individual nodes. However the estimation center receives mea-

surement information from all the four nodes, which guarantees the detectability of (C,A),

where C = [C ′1 C
′
2 C

′
3 C

′
4]′. The noise statistics are given by

Q = 0.002I4, R1 =

 1 0.5

0.5 1

, R2 =
√

2

 1 0.5

0.5 1

, R3 =
√

3, R4 =
√

4,

which implies the stabilizability of (A,Q1/2).

Since multiple sensor nodes are used in this example, Theorem 3 can be applied to

find the stability margin given a set of packet drop statistics, which helps us to tell if MS

stabilizability holds for the corresponding error dynamics. Consider the case where

p1 = 0.9, p2 = 0.7, p3 = 0.5, p4 = 0.3.

Then we have ν−2
1 = 9, ν−2

2 = 2.3333, ν−2
3 = 1, ν−2

4 = 0.4286. Solving the LMI problem

in Theorem 3 yields αmax = 3.0000 > 1, which implies that error dynamics (2.36) are MS

stabilizable, and MARE (2.30) admits a unique stabilizing solution. Initializing MDRE

(2.35) with Σ̂(0) = 0 yields the limit that is the stabilizing solution to MARE, given by

Σ =



2.8181 1.4073 0.0234 0

1.4073 4.4578 0.0117 0

0.0234 0.0117 0.0493 0

0 0 0 0.1189


.

If the data arrival rates for individual communication channels are changed to

p1 = 0.7, p2 = 0.9, p3 = 0.5, p4 = 0.3,

then the resulting stability margin αmax = 0.7778 < 1, implying that error dynamics (2.36)
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cannot be made MS stable under the given statistics. Although the only difference between

these two sets of data arrival rates is that the values for p1 and p2 are switched, there is a

big gap between the two resulting stability margins. A close look at the structure of matrix

A shows that the second entry of the state is governed by the unstable eigenvalue 2, while it

is observable only by sensor node 1. Therefore a sufficiently large data arrival rate p1 should

be assigned to the first channel so that frequent observations from node 1 can be supplied

to the estimation center to track the fast-changing second state component. Otherwise the

estimation error may become unbounded as time proceeds. It is also worth noting that when

the stability margin is greater than but close to 1, the convergence of Σ̂(k) to Σ becomes

very slow. Generally a greater αmax leads to faster convergence.
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CHAPTER 3
KALMAN CONSENSUS FILTER OVER DATA PACKET

DROP CHANNELS

In this chapter we investigate distributed Kalman filtering over WSNs, where no data

fusion center exists and each sensor node is required to locally estimate the state of a discrete-

time dynamic system based on its own measurements and the information transmitted from

its neighbors in the presence of data packet drops. The stationary DKF is proposed first,

followed by the design of the KCF.

3.1 Distributed Kalman Filter

Prior to tackling the KCF, we examine a general MMSE estimation problem, and apply

the results to derive the stationary DKF, which can be regarded as a special case of the KCF

without the consensus term.

3.1.1 Distributed Estimation

We consider static distributed estimation of vector X ∈ Rn using a wireless sensor net-

work consisting of N nodes, indexed sequentially by the index set N := {1, . . . , N}. It is

assumed that sensor node i not only has local observation Yi ∈ Rmi , but also may receive

observations {Yj}j∈Ni , transmitted from its neighbors specified by index subset Ni ⊂ N .

Denote J i as the union of N i and node i itself, i.e., J i = N i ∪ {i}. It is assumed that, at

node i, X and YJi = vec{Yj}j∈Ji are modeled as two jointly Gaussian distributed random

vectors, having statistics

E


 X

YJi


 =

 X i

Y Ji

 , Cov


 X

YJi


 =

 Σxi,xi Σxi,yJi

ΣyJi
,xi ΣyJi

,yJi

 .
We aim at computing the MMSE estimate of X based on the collective observations YJi at

sensor node i. Due to the presence of data packet drops, the observed signal received at the
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ith sensor node from its neighboring nodes in Ni are given by {Si,j = γi,jYj}j∈Ni instead of

{Yj}j∈Ni , where {γi,j}j∈Ni represent the network distortion induced by data packet drops.

Specifically γi,j = 1, if Yj is received, and γi,j = 0, if Yj is not received by the ith node for

each j ∈ Ni. Because of the use of the TCP-like protocol, the value of γi,j is acknowledged at

the ith node; Thus it is treated as a deterministic quantity in deriving the MMSE estimate

of X. Since Yi is directly measured by the ith node without the need for transmission,

γi,i = 1 is assumed. Let Dγ;Ji
= diag{γi,jImj}j∈Ji with known {γi,j}j∈Ni . Then X and

SJi = vec{Si,j}j∈Ji = Dγ;Ji
YJi are two jointly Gaussian distributed random vectors, having

statistics

E


 X

SJi


 =

 X i

SJi

 =

 X i

Dγ;Ji
Y Ji

 ,
Cov


 X

SJi


 =

 Σxi,xi Σxi,sJi

ΣsJi
,xi ΣsJi

,sJi

 =

 Σxi,xi Σxi,yJi
Dγ;Ji

Dγ;Ji
ΣyJi

,xi Dγ;Ji
ΣyJi

,yJi
Dγ;Ji


at the ith node.

Denote X̂i as the local MMSE estimator of X at node i, conditioned on SJi . The Gaussian

assumption implies that X̂i = E{X|SJi}. Let Xe;i = X − X̂i be the estimation error. The

error covariance associated with X̂i is given by

Σ̂i = E
{
Xe;iX

′
e;i|SJi

}
.

Applying the results in [4] (page 30) yields the local MMSE estimator and its associated

error covariance, specified by

X̂i = X i + Σxi,sJi
Σ+
sJi

,sJi

(
SJi − SJi

)
, (3.1)

Σ̂i = Σxi,xi − Σxi,sJi
Σ+
sJi

,sJi
ΣsJi

,xi , (3.2)
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respectively, where the superscript of “+” denotes the pseudo-inverse. Although (3.1) pro-

vides the local MMSE estimator at node i, its error covariance in (3.2) depends on values

of {γi,j}j∈Ni that are random, and unknown in advance. We adopt the Bernoulli model and

assume the probability P{γi,j = 1} = pi,j > 0, j ∈ Ni, with its value determined by the

bandwidth and traffic. It follows that at node i and for each j ∈ Ni,

E{γi,j} = pi,j, µ2
i,j = E{(γi,j − pi,j)2} = pi,j − p2

i,j.

A natural question is the minimum average of error covariance Σ̂i, denoted by Σ̂i, over

{γi,j}j∈Ni , and the local estimator, denoted by X̂i, that minimizes the average error covari-

ance at node i. The answer to this question helps to derive the stationary DKF in the next

subsection. Denote Eγ{·} as the expectation with respect to {γi,j}. Then

Eγ


 Σxi,xi Σxi,sJi

ΣsJi
,xi ΣsJi

,sJi


 = Eγ


 Σxi,xi Σxi,yJi

Dγ;Ji

Dγ;Ji
ΣyJi

,xi Dγ;Ji
ΣyJi

,yJi
Dγ;Ji




=

 Σxi,xi Σxi,yJi
Dp;Ji

Dp;Ji
ΣyJi

,xi Dp;Ji

(
WJi
◦ ΣyJi

,yJi

)
Dp;Ji

 , (3.3)

where, by taking mJi =
∑

j∈Jimj, pi,i = 1, and µ2
i,i = 0,

Dp;Ji
= diag{pi,jImj}j∈Ji , Dµ2;Ji

= diag{µ2
i,j1mj1

′
mj
}j∈Ji ,

WJi
= 1mJi

1′mJi
+D−1

p;Ji
Dµ2;Ji

D−1
p;Ji

.

Since X and SJi = Dγ;Ji
YJi are not jointly Gaussian in general, we seek the local LMMSE

estimator among all linear estimators to minimize the average estimation error variance at

sensor node i. The following provides the answer.

Lemma 7. Among all the unbiased linear estimators, the local estimator that minimizes the

average error variance at sensor node i, and its associated minimum average error covariance
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are given respectively by

X̂i = X i + Σxi,yJi

(
WJi
◦ ΣyJi

,yJi

)−1

D−1
p;Ji

(
SJi −Dγ;Ji

Y Ji

)
, (3.4)

Σ̂i = Σxi,xi − Σxi,yJi

(
WJi
◦ ΣyJi

,yJi

)−1

ΣyJi
,xi . (3.5)

Proof. The local LMMSE estimator at node i has the form

X̂i = GiSJi + hi, Gi ∈ Rn×mJi , hi ∈ Rn. (3.6)

Setting expectation E{X − X̂i} = 0 yields

hi = X i −GiSJi . (3.7)

Thus X̂i = X i +Gi

(
SJi − SJi

)
, and error covariance

Σ̂i = E{(Xi − X̂i)(Xi − X̂i)
′} = Σxi,xi +GiΣsJi

,sJi
G′i −GiΣsJi

,xi − Σxi,sJi
G′i.

Taking expectation to the above with respect to {γi,j}j∈Ni yields the average error covariance

Σ̂i = Eγ{Σ̂i} = Eγ{Σxi,xi}+GiEγ{ΣsJi
,sJi
}G′i −GiEγ{ΣsJi

,xi} − Eγ{Σxi,sJi
}G′i

=
(
Gi − Eγ{Σxi,sJi

}Eγ{ΣsJi
,sJi
}−1
)

Eγ{ΣsJi
,sJi
}
(
Gi − Eγ{Σxi,sJi

}Eγ{ΣsJi
,sJi
}−1
)′

+ Eγ{Σxi,xi} − Eγ{Σxi,sJi
}Eγ{ΣsJi

,sJi
}−1Eγ{ΣsJi

,xi}. (3.8)

The variance, i.e., Tr{Σ̂i} with Tr{·} denoting the trace operation, is minimized by taking

Gi = Eγ{Σxi,sJi
}Eγ{ΣsJi

,sJi
}−1.
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Substituting the expression above and that in (3.7) into (3.6) and (3.8) leads to

X̂i = X i + Eγ{Σxi,sJi
}Eγ{ΣsJi

,sJi
}−1

(
SJi − SJi

)
, (3.9)

Σ̂i = Eγ{Σxi,xi} − Eγ{Σxi,sJi
}Eγ{ΣsJi

,sJi
}−1Eγ{ΣsJi

,xi}, (3.10)

which verify the local LMMSE estimator at node i in (3.4) and the associated minimum

average error covariance in (3.5), in light of the expressions in (3.3). 2

Remark 3. Let Z = FX with F a fixed matrix. Then the local LMMSE estimate of Z at

node i and its associated average error covariance can be obtained by modifying (3.4) and

(3.5), respectively, yielding

Ẑi = FX i + FΣxi,yJi

(
WJi
◦ ΣyJi

,yJi

)−1

D−1
p;Ji

(
SJi −Dγ;Ji

Y Ji

)
,

Σ̂z;i = FΣxi,xiF
′ − FΣxi,yJi

(
WJi
◦ ΣyJi

,yJi

)−1

ΣyJi
,xiF

′.

In the case when WJi
◦ΣyJi

,yJi
is singular, pseudo-inverse can be used in (3.4) and (3.5). 2

3.1.2 Stationary Distributed Kalman Filter

Data fusion Kalman filter for networked system (2.26) is proposed in Subsection 2.2.2.

In this subsection we derive the stationary DKF in the presence of data packet drops for

the same networked system described in (2.26). The system dynamics, noise statistics, and

initial conditions are all identical to those specified in the beginning of Subsection 2.2.2, thus

are not repeated here. In addition, Assumption 5 still holds. Our objective is to design a

local Kalman filter at each sensor node so that, via the exchange of sensor measurements

among neighboring nodes, the WSN provides a set of optimal local state estimates of the

target system. Such a network of local Kalman filters is usually referred to as distributed

Kalman filter.
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Due to the nature of WSNs, the signal received at the ith sensor node from its neighbor

j is given by

si,j(k) = γi,j(k)yj(k), i ∈ N , j ∈ Ni, (3.11)

where γi,j(k) is imposed to represent the presence of data packet drops. Again the Bernoulli

model is adopted, assuming i.i.d. stationary process for {γi,j(k)} with probability

P{γi,j(k) = 1} = pi,j > 0 ∀ k ≥ 0.

It follows that

E{γi,j(k)} = pi,j, µ2
i,j = E{[γi,j(k)− pi,j]2} = pi,j − p2

i,j.

We assume that γi,j(k) and γj,i(k) are independent of each other ∀ i 6= j, but pi,j = pj,i is

allowed. In addition, γi,j(k) is independent of the noise and the initial state. Based on (3.11),

measurement yj(k) reaches node i at time k if γi,j(k) = 1; otherwise all the components of

yj(k) are lost. Denote

yJi (k) = vec{yj(k)}j∈Ji , vJi (k) = vec{vj(k)}j∈Ji , sJi (k) = vec{si,j(k)}j∈Ji ,

CJi = col{Cj}j∈Ji , RJi = diag{Rj}j∈Ji , Dγ;Ji
(k) = diag{γi,j(k)Imj}j∈Ji , γi,i(k) = 1.

Then the state space model at the ith sensor node described in (2.26) and (3.11) can be

written in a compact form as

x(k + 1) = Ax(k) + w(k), (3.12a)

yJi (k) = CJix(k) + vJi (k), (3.12b)

sJi (k) = Dγ;Ji
(k)yJi (k). (3.12c)
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Denote SJi (k) = {sJi (t)}
k
t=0. Let x̂i(k) be the MMSE estimate of x(k), and Σi(k) be the

corresponding error covariance at node i, conditioned on observations SJi (k−1), respectively,

i.e., x̂i(k) = E[x(k)|SJi (k − 1)], Σi(k) = Cov[x(k)|SJi (k − 1)]. By convention, x̂i(0) = x0

and Σi(0) = Σ0. Similarly let x̂i(k|k) be the MMSE estimate of x(k), and Σi(k|k) be the

corresponding error covariance at node i, conditioned on observations SJi (k), respectively,

i.e., x̂i(k|k) = E[x(k)|SJi (k)], Σi(k|k) = Cov[x(k)|SJi (k)]. Set X = x(k) and SJi = sJi (k) =

Dγ;Ji
(k)yJi (k). Then direct calculations show that

 X i

SJi

 = E


 x(k)

sJi (k)


∣∣∣∣∣∣∣SJi (k − 1)


= E


 x(k)

Dγ;Ji
(k)[CJix(k) + vJi (k)]


∣∣∣∣∣∣∣SJi (k − 1)

 =

 x̂i(k)

Dγ;Ji
(k)CJi x̂i(k)

 ,
 Σxi,xi Σxi,sJi

ΣsJi
,xi ΣsJi

,sJi

 = Cov


 x(k)

sJi (k)


∣∣∣∣∣∣∣SJi (k − 1)


=

 Σi(k) Σi(k)C ′
Ji
Dγ;Ji

(k)

Dγ;Ji
(k)CJiΣi(k) Dγ;Ji

(k)[RJi + CJiΣi(k)C ′
Ji

]Dγ;Ji
(k)

 , (3.13)

X̂i = E
{
x(k)|SJi (k − 1), sJi (k)

}
= E

{
x(k)|SJi (k)

}
= x̂i(k|k),

Σ̂i = Cov
{
x(k)|SJi (k − 1), sJi (k)

}
= Cov

{
x(k)|SJi (k)

}
= Σi(k|k),

Substituting the above expressions into (3.1) and (3.2) yields the measurement update part

of the time-varying local Kalman filter at node i:

x̂i(k|k) = x̂i(k) +Gi(k)
[
sJi (k)−Dγ;Ji

(k)CJi x̂i(k)
]
,

Gi(k) = Σi(k)C ′
Ji
Dγ;Ji

(k)
{
Dγ;Ji

(k)[RJi + CJiΣi(k)C ′
Ji

]Dγ;Ji
(k)
}+

,

Σi(k|k) = Σi(k)−Gi(k)Dγ;Ji
(k)CJiΣi(k).
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In addition, the time update part of the time-varying local Kalman filter is given by

x̂i(k + 1) = Ax̂i(k|k),

Σi(k + 1) = AΣi(k|k)A′ +Q,

by the independence of w(k) and vj(k) ∀ j ∈ Ji. Notice that {γi,j(k)}j∈Ni are known and

used at time k + 1 under the TCP-like protocol. Combining the measurement update and

the time update yields the time-varying local Kalman filter that is the optimal one-step

predictor at node i:

x̂i(k + 1) = Ax̂i(k) +Ki(k)
[
sJi (k)−Dγ;Ji

(k)CJi x̂i(k)
]
,

Ki(k) = AΣi(k)C ′
Ji
Dγ;Ji

(k)
{
Dγ;Ji

(k)[RJi + CJiΣi(k)C ′
Ji

]Dγ;Ji
(k)
}+

,

Σi(k + 1) = AΣi(k)A′ +Q−Ki(k)Dγ;Ji
(k)CJiΣi(k)A′.

It is important to observe that the above time-varying local Kalman filter applies to

the case of time-varying A, Q, and {Ci, Ri}Ni=1 by adding time index k to the right hand

sides. However the random nature of the data packet drops is not taken into consideration.

We are interested next in deriving the stationary local Kalman filter that minimizes the

local average error variance over the Bernoulli processes {γi,j(k)} in the steady-state at each

local node. Denote Dγ;Ji
(k) = {Dγ;Ji

(t)}kt=0. Let x̂i(k) be the LMMSE estimate of x(k) at

node i, conditioned on SJi (k − 1) and averaged over Dγ;Ji
(k − 1), and Σ̂i(k) be the average

error covariance associated with x̂i(k). Similarly let x̂i(k|k) be the LMMSE estimate of x(k)

at node i, conditioned on SJi (k) and averaged over Dγ;Ji
(k), and Σ̂i(k|k) be the average

error covariance associated with x̂i(k|k). The stationary DKF is presented in the following

theorem.
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Theorem 4. For the system dynamics described in (3.12), assume that there exists a stabilizing

solution Σi to MARE

Σi = AΣiA
′ +Q− AΣiC

′
Ji

[
WJi
◦ (RJi + CJiΣiC

′
Ji

)
]−1

CJiΣiA
′, (3.14)

where, by letting Dp;Ji
and Dµ2;Ji

remain the same forms as specified in (3.3),

WJi
= 1mJi

1′mJi
+D−1

p;Ji
Dµ2;Ji

D−1
p;Ji

.

The stationary local Kalman filter that minimizes the local average error variance at sensor

node i is specified by

x̂i(k + 1) = Ax̂i(k) +Ki

[
sJi (k)−Dγ;Ji

(k)CJi x̂i(k)
]
, (3.15a)

Ki = AΣiC
′
Ji

[
WJi
◦ (RJi + CJiΣiC

′
Ji

)
]−1

D−1
p;Ji

. (3.15b)

Proof. Set X = x(k) and SJi = sJi (k) = Dγ;Ji
(k)yJi (k). Recall the expressions in (3.13).

Straightforward calculations yield

Eγ


 Σxi,xi Σxi,sJi

ΣsJi
,xi ΣsJi

,sJi




= Eγ


 Σi(k) Σi(k)C ′

Ji
Dγ;Ji

(k)

Dγ;Ji
(k)CJiΣi(k) Dγ;Ji

(k)[RJi + CJiΣi(k)C ′
Ji

]Dγ;Ji
(k)




=

 Σ̂i(k) Σ̂i(k)C ′
Ji
Dp;Ji

Dp;Ji
CJi Σ̂i(k) Dp;Ji

{
WJi
◦ [RJi + CJi Σ̂i(k)C ′

Ji
]
}
Dp;Ji

 . (3.16)

In addition, there hold

X i = x̂i(k), SJi = Dγ;Ji
(k)CJi x̂i(k), X̂i = x̂i(k|k), Σ̂i = Σ̂i(k|k).
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Substituting the expressions above and those in (3.16) into (3.9) and (3.10) yields the mea-

surement update part of the time-varying local Kalman filter at node i:

x̂i(k|k) = x̂i(k) + Ĝi(k)
[
sJi (k)−Dγ;Ji

(k)CJi x̂i(k)
]
,

Ĝi(k) = Σ̂i(k)C ′
Ji

{
WJi
◦ [RJi + CJi Σ̂i(k)C ′

Ji
]
}−1

D−1
p;Ji

,

Σ̂i(k|k) = Σ̂i(k)− Σ̂i(k)C ′
Ji

{
WJi
◦ [RJi + CJi Σ̂i(k)C ′

Ji
]
}−1

CJi Σ̂i(k).

In light of the independence of w(k) and vj(k) ∀ j ∈ Ji, the time update part of the time-

varying local Kalman filter is given by

x̂i(k + 1) = Ax̂i(k|k),

Σ̂i(k + 1) = AΣ̂i(k|k)A′ +Q.

Combining the measurement update and the time update yields the time-varying local

Kalman filter at node i:

x̂i(k + 1) = Ax̂i(k) + K̂i(k)
[
sJi (k)−Dγ;Ji

(k)CJi x̂i(k)
]
,

K̂i(k) = AΣ̂i(k)C ′
Ji

{
WJi
◦ [RJi + CJi Σ̂i(k)C ′

Ji
]
}−1

D−1
p;Ji

,

where the minimum local average error covariance follows MDRE

Σ̂i(k + 1) = AΣ̂i(k)A′ +Q−AΣ̂i(k)C ′
Ji

{
WJi
◦ [RJi + CJi Σ̂i(k)C ′

Ji
]
}−1

CJi Σ̂i(k)A′. (3.17)

As k → ∞, MDRE (3.17) converges to MARE (3.14), Σ̂i(k) → Σi, and K̂i(k) → Ki. The

hypothesis implies that the stabilizing solution to MARE (3.14) exists. It follows that (3.15)

is indeed the stationary local Kalman filter that minimizes the local average error variance

at the ith sensor node. 2
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Remark 4. If w(k) and vj(k) are correlated for some j ∈ Ji, then

MJi
= E{vJi (k)w(k)′} 6= 0,

in general. In this case (3.12a) can be written as

x(k + 1) = Ãix(k) +M ′
Ji
R−1
Ji
yJi (k) + w̃i(k),

where Ãi = A−M ′
Ji
R−1
Ji
CJi and w̃i(k) = w(k)−M ′

Ji
R−1
Ji
vJi (k). As a result, w̃i(k) and vJi (k)

are uncorrelated, and are thus independent of each other. Recall that w(k) and {vi(k)}Ni=1 are

all Gaussian distributed. The results in Theorem 4 can be applied to derive the stationary

local Kalman filter that has the same form as (3.15a); However the estimation gain Ki and

MARE are replaced by

Ki = (AΣiC
′
Ji +M ′

Ji
)
[
WJi
◦ (RJi + CJiΣiC

′
Ji

)
]−1

D−1
p;Ji

,

Σi = AΣiA
′ +Q− (AΣiC

′
Ji +M ′

Ji
)
[
WJi
◦ (RJi + CJiΣiC

′
Ji

)
]−1

(CJiΣiA
′ +MJi

),

respectively. Detailed derivations are skipped. It is noted that if MJi
= 0, the above

expressions collapse to those of Ki and MARE in Theorem 4, respectively. 2

3.2 Existence of Stabilizing Solution to MARE

In this section we investigate the necessary and sufficient condition for the existence of

the stabilizing solution to MARE (3.14), which is hinged on the MS stabilizability of the

corresponding estimation error dynamics. Denote the state estimation error at node i by

ex;i(k) = x(k)− x̂i(k). The estimation error dynamics associated to filter (3.15) are given by

ex;i(k + 1) =
[
A−KiDγ;Ji

(k)CJi

]
ex;i(k), (3.18)
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with noise terms removed. Specially we adopt

Dγ;Ji
(k) = Dp;Ji

[
I +Dδ;Ji

(k)
]
, Dδ;Ji

(k) = diag{δi,j(k)Imj}j∈Ji , (3.19)

where {δi,j(k)}j∈Ni are mutually independent white random processes with mean zero and

variance

E{δi,j(k)2} = ν2
i,j =

µ2
i,j

p2
i,j

= p−1
i,j − 1 ⇐⇒ pi,j =

1

1 + ν2
i,j

,

and δi,i(k) = 0, ν2
i,i = 0. Substituting (3.19) into (3.18) yields the error dynamics in feedback

form as

ex;i(k + 1) = (A+Kp;iCJi )ex;i(k) +Kp;iDδ;Ji
(k)ey;i(k), ey;i(k) = CJiex;i(k),

where Kp;i = −KiDp;Ji
. The above feedback system can be schematically illustrated by the

block diagram in Figure 3.1.

[
A I
CJi 0

] Dδ;Ji
(k)

Dp;Ji −Ki
-

-

- -?

6

c
Channels

ey;i(k)

Figure 3.1: Estimation error dynamics of DKF in feedback form

In light of [74, 103], MARE (3.14) admits a unique stabilizing solution if and only if

MS stabilizability holds for error dynamics (3.18). Again the stability margin, termed as

αi;max > 0, is adopted to help to determine the MS stabilizability. The next result presents

an efficient algorithm to compute αi;max.

Theorem 5. Under Assumption 5 and the detectability of (CJi , A), for a given set of variances

{ν2
i,j}j∈Ni, the stability margin αi;max = β−1

i;min can be computed via the minimization of βi
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subject to the following LMIs over matrix pair (X−1
Φ;i,Φ

−2
Ji

):

(a) βiν
−2
i,j X

−1
Φ;i > C ′jΦ

−2
j Cj, ∀ j ∈ Ni,

(b) X−1
Φ;i + C ′

Ji
Φ−2
Ji
CJi ≥ A′X−1

Φ;iA,

(c) X−1
Φ;i > 0, Φ−2

Ji
> 0,

where ΦJi = diag{Φj}j∈Ji. Furthermore, error dynamics (3.18) are MS stabilizable, if and

only if αi;max = β−1
i;min ≥ 1.

The proof for Theorem 5 is similar to that for Theorem 3 in Subsection 2.2.3, thus is

omitted here. The comments on the LMI problem and the stability margin in Remark 2

hold for Theorem 5 as well. Given a set of variances {ν2
i,j}j∈Ni , if αi;max ≥ 1, then Under

both detectability of (CJi , A) and stabilizability of (A,Q1/2), the stabilizing solution Σi to

MARE (3.14) can be obtained by computing Σ̂i(k) iteratively following MDRE (3.17), i.e.,

Σi = lim
k→∞

Σ̂i(k). More details can be referred to Subsection 2.1.3.

3.3 Kalman Consensus Filter

The previous two subsections are focused on the stationary DKF, and its MS stabili-

ty. The LMMSE estimates of these local Kalman filters differ from each other in general.

The KCF is proposed in [53, 54, 55] to coordinate the local Kalman filters and achieve the

consensus on state estimation among all nodes without taking data packet drops into con-

sideration. It has the advantage that any local node can provide its own state estimate with

high reliability; the price to be paid is that each sensor node j ∈ Ni needs to send not only

its measurement yj(k), but also its state estimate x̂j(k) to node i. In this section, we devise

the KCF in the presence of data packet drops as a generalization of the stationary DKF pro-

posed in previous subsections, followed by a formal MS stability analysis of the associated

estimation error dynamics.
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3.3.1 Preliminaries

Before presenting the main results, we need to introduce several key lemmas that will

help address the stability issue. Consider the stochastic feedback system configured in Figure

3.2. The discrete-time stochastic system Sδ(k) is described by

χ(k + 1) =

[
As;0 +

N∑
i=1

As;iδi(k)

]
χ(k) +

[
Bs;0 +

N∑
i=1

Bs;iδi(k)

]
u(k), (3.20a)

y(k) = Csχ(k) +Dsu(k), (3.20b)

where {δi(k)}Ni=1 are mutually independent white random processes with mean zero and

variances {σ2
i }Ni=1. The H∞ norm for stochastic systems is defined next.

d Sδ(k)-

∆(k)

6

u(k)

d(k)

y(k)r(k)
- -

�

Figure 3.2: Stochastic feedback system

Definition 3. [20, 21] Suppose that stochastic system Sδ(k) in (3.20) is MS stable. There exists

a constant h∞ ≥ 0 such that

√√√√ T∑
k=0

E {‖y(k)‖2} ≤ h∞

√√√√ T∑
k=0

E {‖u(k)‖2} ∀ T ≥ 0. (3.21)

The H∞ norm of Sδ(k), denoted by ‖Sδ(k)‖H∞, is defined as the minimal h∞ ≥ 0 such that

(3.21) is satisfied.

If Sδ(k) is MS stable, then its H∞ norm is bounded. Let h∞ > 0 be a strict upper bound

for ‖Sδ(k)‖H∞ . Theorem 2.5 of [20] provides the following characterization for the H∞ norm,

referred to as Bounded Real Lemma for discrete-time stochastic systems.
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Lemma 8. [20] System (3.20) is MS stable, and ‖Sδ(k)‖H∞ < h∞, if and only if there exists

Ps > 0 such that

Ps > A′s;0PsAs;0 + C ′sCs + Π′sΛ
−1
s Πs +

N∑
i=1

σ2
iA
′
s;iPsAs;i, (3.22)

Λs = h2
∞I −B′s;0PsBs;0 −D′sDs −

N∑
i=1

σ2
iB
′
s;iPsBs;i > 0, (3.23)

Πs = B′s;0PsAs;0 +D′sCs +
N∑
i=1

σ2
iB
′
s;iPsAs;i.

It is important to observe that (3.22) and (3.23) are equivalent to the following LMI [20]:

Ps − A′s;0PsAs;0 − C ′sCs −
N∑
i=1

σ2
iA
′
s;iPsAs;i Π′s

Πs Λs

 > 0,

in light of Schur Complement Lemma.

For the feedback system in Figure 3.2, we assume that r(k) is an arbitrary vector-valued

white process with mean zero, and is independent of χ(0) = χ0, the initial condition of

system (3.20), for all k ≥ 0. Its auto-covariance satisfies

E {r(k)r(k − τ)′} = δK(τ)σr(k)2I

with δK(·) denoting the Kronecker Delta function, and

pT [r(k)] :=

√√√√ 1

T

T−1∑
k=0

E {‖r(k)‖2}

being bounded for all T > 0, including T = ∞. The next lemma verifies that the above

nonnegative function pT (·) is a semi-norm [42].
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Lemma 9. Let {a(k)} and {b(k)} be vector-valued random processes of the same dimension.

There holds the triangle inequality

pT [a(k) + b(k)] ≤ pT [a(k)] + pT [b(k)].

Proof. Let x = [x1 . . . xN ]′ ∈ RN and y = [y1 . . . yN ]′ ∈ RN be random vectors of the same

dimension N . In light of the well-known Cauchy-Schwarz Inequality [81],

E{x′y} ≤ |E{x′y}| ≤
N∑
i=1

|E{xiyi}| ≤
N∑
i=1

√
E{x2

i }E{y2
i } ≤

√√√√ N∑
i=1

E{x2
i }

√√√√ N∑
i=1

E{y2
i }.

Then there holds

E{‖x+y‖2} = E{‖x‖2}+E{‖y‖2}+2E{x′y} ≤ E{‖x‖2}+E{‖y‖2}+2
√

E{‖x‖2}
√

E{‖y‖2}.

Taking square root on both sides of the above inequality yields

√
E{‖x+ y‖2} ≤

√
E{‖x‖2}+

√
E{‖y‖2}.

Denote a = vec{a(0), . . . , a(T−1)}, b = vec{b(0), . . . , b(T−1)}. In light of the above triangle

inequality, there holds

pT [a(k) + b(k)] =

√
1

T

√√√√E

{
T−1∑
k=0

‖a(k) + b(k)‖2

}
=

√
1

T

√
E
{
‖a+ b‖2}

≤
√

1

T

√
E
{
‖a‖2}+

√
1

T

√
E
{
‖b‖2} = pT [a(k)] + pT [b(k)],

which concludes the proof. 2

The next result is concerned with the MS stability of the feedback system in Figure 3.2.
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Lemma 10. Suppose that system Sδ(k) described in (3.20) is MS stable, ‖Sδ(k)‖H∞ < h∞, and

∆(k)′∆(k) ≤ h−2
∞ I for all k ≥ 0, where h∞ > 0. Then the feedback system in Figure 3.2 is

MS stable.

Proof. In light of the results in [20], the hypothesis on ‖Sδ(k)‖H∞ < h∞ implies the existence

of ε > 0 such that for each integer T > 0, there holds inequality

T−1∑
k=0

E{‖y(k)‖2} ≤ (h2
∞ − ε2)

T−1∑
k=0

E{‖u(k)‖2},

which is equivalent to

pT [y(k)] ≤
√
h2
∞ − ε2pT [u(k)], (3.24)

by the definition of pT (·). According to Figure 3.2, at each time index k, there hold u(k) =

r(k) + d(k) and d(k) = ∆(k)y(k). Since pT (·) is a semi-norm by Lemma 9, there holds

pT [u(k)] = pT [r(k) + ∆(k)y(k)] ≤ pT [r(k)] + pT [∆(k)y(k)] ≤ pT [r(k)] + h−1
∞ pT [y(k)].

Substituting (3.24) into the above triangle inequality yields

pT [u(k)] ≤ pT [r(k)] +
√

1− ε2/h2
∞pT [u(k)] ≤ pT [r(k)]/

(
1−

√
1− ε2/h2

∞

)

that is bounded for each T > 0. Therefore pT [y(k)] is also bounded for each T > 0 by (3.24).

Taking the limit T →∞ unveils the boundedness of

lim
T→∞

pT [u(k)] = lim
k→∞

√
E{‖u(k)‖2} and lim

T→∞
pT [y(k)] = lim

k→∞

√
E{‖y(k)‖2},

thereby concluding the MS stability of the closed-loop system in Figure 3.2. 2
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3.3.2 Main Results

Given the same networked system model, noise statistics, and initial conditions as spec-

ified in Subsection 3.1.2, we now include the exchange of prior estimates into the design of

local Kalman filter at node i, i ∈ N as

x̂i(k + 1) = Ax̂i(k) +Ki

[
sJi (k)−Dγ;Ji

(k)CJi x̂i(k)
]

+ ε
∑
j∈Ni

γi,j(k)A [x̂j(k)− x̂i(k)] , (3.25a)

Ki = AΣiC
′
Ji

[
WJi
◦ (RJi + CJiΣiC

′
Ji

)
]−1

D−1
p;Ji

, (3.25b)

where Σi is the stabilizing solution to MARE (3.14), and consensus coefficient ε > 0.

We assume that both sensor measurement yj(k) and prior estimate x̂j(k) are sent from

node j to its neighboring node i at time instant k, through the same communication channel.

Hence the aforementioned γi,j(k) is also imposed in the newly-added estimate term to indicate

the occurrence of packet drops in the transmission of prior estimate information. Although

{x̂j(k)}j∈Ni may help to improve the local estimation at sensor node i, they are primarily

used to achieve the consensus of state estimation from N different sensor nodes, following

the pioneering work in [53, 54, 55]. We call the above estimator Kalman consensus filter,

in accordance of [55]. Obviously, KCF (3.25) consists of two parts: the stationary DKF,

and an additional consensus term on the difference between local prior estimate and those

from neighboring nodes. Intuitively, adopting the consensus term can help to reduce the

disagreement among different local estimates.

Let

Lγ(k) = [li,j(k)] , li,j(k) =



∑
j∈Ni

γi,j(k), j = i,

−γi,j(k), j ∈ Ni,

0, j /∈ Ji,

be the stochastic Laplacian matrix associated with the stochastic time-varying graph G(k)
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derived from the sensor network in the presence of packet drops. Note that based on the

configuration of our sensor network of N nodes, there are only a finite number of possible

communication graphs, say a total of ϕ. Denote the set of all possible graphs by {G1, . . . ,Gϕ},

and the set of corresponding Laplacian matrices by {L1, . . . ,Lϕ}, i.e., G(k) ∈ {G1, . . . ,Gϕ},

Lγ(k) ∈ {L1, . . . ,Lϕ}, ∀ k ≥ 0. Then we can define

ξ? := max {σ (Li)}ϕi=1 ≥ max {σ [Lγ(k)]}k≥0 > 0 (3.26)

with σ{·} denoting the largest singular value.

The estimation error dynamics associated to KCF (3.25) at node i are given by

ex;i(k + 1) =
[
A−KiDγ;Ji

(k)CJi

]
ex;i(k) + ε

∑
j∈Ni

γi,j(k)A [ex;j(k)− ex;i(k)] , (3.27)

with noise terms removed. Define ex(k) := vec{ex;1(k), . . . , ex;N(k)}. For convenience, denote

L̃γ(k) = Lγ(k)⊗ In and ÃK = Ã− K̃D̃p;J C̃J , where

Ã = diag(A, . . . , A), C̃J = diag(CJ1
, . . . , CJN ),

K̃ = diag(K1, . . . , KN), D̃p;J = diag(Dp;J1
, . . . , Dp;JN

).

Furthermore, with D̃δ;J (k) = diag{Dδ;J1
(k), . . . , Dδ;JN

(k)}, the collective model for error

dynamics (3.27) can be written in a compact form as

ex(k + 1) =
[
ÃK − K̃D̃p;J D̃δ;J (k)C̃J

]
ex(k)− εL̃γ(k)Ãex(k). (3.28)

The above is equivalent to a feedback system in which the forward path is described by

ex(k + 1) =
[
ÃK − K̃D̃p;J D̃δ;J (k)C̃J

]
ex(k) + uε(k), eε(k) = Ãex(k) (3.29)
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with input uε(k) and output eε(k), and the feedback path is described by

uε(k) = −εL̃γ(k)eε(k). (3.30)

Moreover, we can rewrite the term K̃D̃p;J D̃δ;J (k)C̃J in (3.29) in a summation form as

K̃D̃p;J D̃δ;J (k)C̃J =
N∑
i=1

∑
j∈Ji

pi,jK̃(i,j)C̃
(i,j)
J

δi,j(k)

with K̃(i,j) being the columns of K̃ associated to δi,j(k), and C̃(i,j)
J

being the rows of C̃J

associated to δi,j(k). The sufficient condition for the MS stability of error dynamics (3.28)

is demonstrated in the following result.

Theorem 6. Suppose that (CJi , A) is detectable, Assumption 5 holds, and the error dynamics

described in (3.18) are MS stabilizable ∀ i ∈ N . Then MS stability holds for the error

dynamics (3.28) associated to KCF (3.25) ∀ i ∈ N , if the consensus coefficient ε in (3.28)

satisfies 0 < ε ≤ (ξ?h?∞)−1, where ξ? is defined in (3.26), and h?∞ can be computed via the

minimization of h∞ > 0 subject to the following LMI over P > 0:

 P − Ã′KPÃK − Ã′Ã−M Ã′KP

PÃK h2
∞I − P

 > 0 (3.31)

with M =
N∑
i=1

∑
j∈Ji

µ2
i,j

[
K̃(i,j)C̃

(i,j)
J

]′
PK̃(i,j)C̃

(i,j)
J

.

Proof. The hypotheses in Theorem 6 guarantee the existence of the stabilizing solution to

MARE (3.14) and the optimal estimation gain in (3.25b). Then by continuity argument, MS

stability holds for error dynamics (3.28) when ε is sufficiently small. By Schur Complement

Lemma, LMI (3.31) is equivalent to Λ = h2
∞I − P > 0 and

P > Ã′KPÃK + Ã′Ã+M + Ã′KPΛ−1PÃK . (3.32)
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In light of Lemma 8, h?∞ being the minimum of h∞ such that Λ = h2
∞I−P > 0 and inequality

(3.32) holds implies that the H∞ norm of system Sδ(k) in (3.20) with

As;0 = ÃK ,
N∑
i=1

As;iδi(k) = −K̃D̃p;J D̃δ;J (k)C̃J , Bs;0 = I, Bs;i = 0, Cs = Ã, Ds = 0,

is strictly upper bounded by h?∞. By the property of Kronecker product [9], we have

σ
[
L̃γ(k)

]
= σ [Lγ(k)] .

Thus, given 0 < ε ≤ (ξ?h?∞)−1, there holds

ε2L̃γ(k)′L̃γ(k) ≤ (ξ?h?∞)−2(ξ?)2I = (h?∞)−2I

for all k ≥ 0. Although L̃γ(k) is random, the finiteness of different L̃γ(k) allows computing

the upper bound before taking expectation for each of its entries. Hence the above inequality

implies the MS stability of feedback system described by (3.29) and (3.30) in light of Lemma

10 with ∆(k) = −εL̃γ(k), thereby concluding the proof. 2

While Theorem 6 provides an elegant way to compute the upper bound for the consensus

coefficient ε, the dimension and consequently the computation complexity of LMI (3.31) can

be quite high, especially when N , the total number of sensor nodes, is very large. Building

on Theorem 6, we consider P as a block diagonal matrix to decouple LMI (3.31). The result

is presented in the following corollary.

Corollary 1. Assume that the hypotheses in Theorem 6 hold. Then MS stability holds for the

error dynamics (3.28) associated to KCF (3.25) ∀ i ∈ N , if the consensus coefficient ε in

(3.28) satisfies 0 < ε ≤ (ξ?h?∞)−1, where ξ? is defined in (3.26), and h?∞ can be computed via
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the minimization of h∞ > 0 subject to the following LMIs over P = diag(P1, . . . , PN) > 0:

 Pi − A′K;iPiAK;i − A′A−Mi A′K;iPi

PiAK;i h2
∞I − Pi

 > 0, ∀ i ∈ N (3.33)

with AK;i = A−KiDp;Ji
CJi and Mi = C ′

Ji

[
Dµ2;Ji

◦ (K ′iPiKi)
]
CJi .

Proof. By Schur Complement Lemma, LMIs (3.33) are equivalent to

Pi > A′K;iPiAK;i + A′A+Mi + A′K;iPiΛ
−1
i PiAK;i,

Λi = h2
∞I − Pi > 0, ∀ i ∈ N ,

which can be written in a compact form as (3.32) and

Λ = diag(Λ1, . . . ,ΛN) = h2
∞I − P > 0,

respectively. The rest of the proof is the same as that for Theorem 6, thus is omitted here.

2

Since the minimum h∞ may be achieved when matrix P is not block diagonal, the upper

bound for ε obtained by Corollary 1 is usually more conservative than the one obtained by

Theorem 6. However the algorithm in Corollary 1 shows its great advantage in computation

complexity for large-scale WSNs due to the decoupled LMIs. In addition, although Theorem

6 and Corollary 1 provide elegant analytical methods to find the upper bound for ε, the

results can be quite conservative since the sufficient condition considered in the derivations

may not be necessary for the MS stability of the error dynamics. In other words, consensus

coefficients greater than the upper bound obtained by Theorem 6 or Corollary 1 may still

work well for KCF (3.25).

Theorem 6 and Corollary 1 provide the guidelines for implementing KCF (3.25). First

the stability margin αi;max can be computed by solving the LMI problem in Theorem 5 to
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determine the MS stabilizability of the error dynamics described in (3.18), and if necessary,

changes have to be made to variance set {ν2
i,j}j∈Ni in order to ensure the existence of the

stabilizing solution to MARE (3.14). Then the optimal gain Ki can be obtained following

(3.15b) or (3.25b), and consequently the MS stability holds for (3.18). Next we repeat the

above steps for all i ∈ N . Finally a sufficiently small ε > 0 can be chosen below the

corresponding upper bound given in Theorem 6 or Corollary 1 and applied to (3.25) to

complete the design of KCF for the entire sensor network.

3.4 Simulations

We demonstrate the performance of stationary DKF (3.15) and KCF (3.25) in the pres-

ence of data packet drops with two simulation examples.

Example 3.1. Consider a system of dynamics (3.12a) with system matrix A and initial state

x0 specified by

A =


1 0 0

0 0 −1

0 1 0

, x0 =


1

−1

0

, Σ0 = 10I3.

Note that A has three different unstable eigenvalues on the unit circle, i.e., 1, ±j. A sensor

network of N = 10 sensor nodes, represented by the undirected topology in Figure 3.3, is

employed for dynamic state estimation. The observation matrix for each sensor node is

specified by

Ci =


Co =

[
1 0 0

]
, i is odd,

Ce =

0 1 0

0 0 1

, i is even,

for i ∈ N . It is important to observe that the target state is undetectable by individual

sensor nodes, however each inclusive neighbor set Ji, i ∈ N contains nodes with observation

matrices Co and Ce, which guarantees the detectability of (CJi , A) ∀ i ∈ N . The noise
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Figure 3.3: Network topology with N = 10 nodes

statistics are

Q = 0.005625I3, Ri =

 25
√
i, i is odd,

25
√
iI2, i is even.

The factor of
√
i in the above expression allows individual nodes to have diverse noise

conditions.

The data arrival rates for different communication channels between the neighboring

nodes are selected as follows:

p1,2 = p2,1 = 0.3, p1,6 = p6,1 = 0.2, p2,3 = p3,2 = 0.25, p2,7 = p7,2 = 0.15,

p3,4 = p4,3 = 0.25, p3,9 = p9,3 = 0.1, p4,5 = p5,4 = 0.35, p4,9 = p9,4 = 0.1,

p6,7 = p7,6 = 0.35, p8,9 = p9,8 = 0.4, p9,10 = p10,9 = 0.4.

Note that γi,j(k) and γj,i(k) are independent of each other ∀ i 6= j despite that pi,j = pj,i is

adopted in our simulation setup. It is easy to verify by solving the LMI problem in Theorem

5 that, given the above statistics, the estimation error dynamics (3.18) are MS stabilizable,

and thus MARE (3.14) admits a unique stabilizing solution ∀ i ∈ N . Initializing MDRE

(3.17) with Σ̂i(0) = 0 yields the limit that is the stabilizing solution to MARE (3.14). Then

the optimal estimation gain Ki can be computed following (3.15b) or (3.25b) for both the

stationary DKF and the KCF.

Following [16], we use the mean square deviation (MSD) to evaluate the performance of

the algorithms. Let the MSD for node i at time index k be defined as

MSDi(k) := E
{
‖x(k)− x̂i(k)‖2

}
.

69



Then the MSD for the entire network is defined as the average MSD over all nodes, i.e.,

MSD(k) :=
1

N

N∑
i=1

MSDi(k).

In addition, the measurement [54]

diff(k) :=

√√√√ 1

N

N∑
i=1

‖x̂i(k)− x̂(k)‖2

is adopted to evaluate the disagreement among different local estimates, where

x̂(k) :=
1

N

N∑
i=1

x̂i(k)

is defined as the average state estimate over all nodes. In the simulations, the initial estimate

is set as the mean value of the initial state by convention, i.e., x̂i(0) = x0 ∀ i ∈ N . The

simulation results are averaged over 1000 independent trials.

The transient network MSD performance of different algorithms over time index k is

demonstrated in Figure 3.4. The algorithm marked by “SDKF” corresponds to the station-

ary DKF in (3.15), while the one denoted by “SDKF (No Packet Drops)” corresponds to a

conventional stationary DKF where each node has access to the observations of its neighbors

and no data packets are dropped during transmission. Similarly the algorithm marked by

“KCF” represents KCF (3.25) with ε = 0.25, while the one denoted by “KCF (No Packet

Drops)” is implemented by following the derivation of KCF (3.25) without including the

presence of data packet drops [55]. The two algorithms named with “No Packet Drops” are

included for comparison, which can help to evaluate the effect of frequent data drops on esti-

mation accuracy. It can be observed from the plots that KCF outperforms SDKF by about

2 dB in this example, thus validating the MSD improvement introduced by the consensus

term. In addition, KCF performs better than SDKF (No Packet Drops) as time proceeds,

which modestly implies that the use of consensus term compensates the disadvantage posed
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by the occurrence of data packet drops to some extent. Overall, KCF (No Packet Drops)

possesses the best MSD performance since no information is lost and the consensus term is

adopted.

Figure 3.4: Example 3.1: MSD performance of different algorithms

Figure 3.5 shows the transient network MSD performance of KCF (3.25) when ε = 0.02,

ε = 0.25, ε = 0.5, and ε = 0.75 are set respectively. Figure 3.6 compares the disagreement of

local estimates with respect to the above different consensus coefficients. It is revealed from

the plots that KCFs (3.25) with ε = 0.25 and ε = 0.5 have better MSD performance than

those with ε = 0.02 and ε = 0.75, which suggests that MSD is not a monotonic function of

the consensus coefficient. Another important feature is that although KCF with ε = 0.25

and that with ε = 0.5 give very close (almost the same) MSD performance, the latter

embraces a smaller disagreement of local estimates than the former, which leads to a set of

local estimates with higher cohesiveness. This result also corresponds to the aforementioned

comment that although the consensus term may help to improve estimation accuracy, it is

primarily used to achieve the consensus of estimates from different sensor nodes. A modest

71



Figure 3.5: Example 3.1: MSD performance of KCF with different ε

Figure 3.6: Example 3.1: Disagreement of local estimates under different ε

conclusion can be drawn from the above analysis that the consensus coefficient should be

chosen carefully as a tradeoff between estimation accuracy and cohesiveness, and stability.
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Example 3.2. The second example is adapted from the example in [16]. We consider the

problem of estimating and tracking the position of a projectile. The position, velocity, and

acceleration of the projectile are specified by

d =


d1

d2

d3

, v =


v1

v2

v3

, a =


a1

a2

a3


respectively, with the subscripts 1, 2 and 3 corresponding to the three spatial dimensions,

and 3 being the vertical one. Hence the motion of the projectile is described by

v = ḋ, a = v̇, a1 = a2 = 0, a3 = −g,

where g is the gravity constant. By taking

xc =

v
d

, Ac =

 0 0

I3 0

, bc =




0

0

−g


0


,

the above can be written as the following continuous-time state space model

ẋc = Acxc + bc.

Transforming the continuous-time model to discrete-time model with time-step Ts yields

xc(t+ Ts) = eTsAcxc(t) +

∫ t+Ts

t

e(t+Ts−τ)Acbcdτ = (I + TsAc)xc(t) + (TsI + T 2
sAc/2)bc.

Notice that the constant input (TsI + T 2
sAc/2)bc can always be added to the filters to offset

its impact on the state dynamics. Since we care about the estimation error instead of
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the real state, this constant term can be disregarded for simulation convenience. Letting

x(k) = xc(kTs), Ts = 0.1, A = I + TsAc, and taking into account the effect of process

noise, we arrive at the discrete-time state dynamics (3.12a). Note that A has six unstable

eigenvalues on the unit circle.

In this example, a sensor network of N = 20 sensor nodes, represented by the undirected

topology in Figure 3.7, is employed to estimate and track the position of the projectile. The

observation matrix for each sensor node is specified by

Ci =



Co =

0 0 0 1 0 0

0 0 0 0 1 0

, i is odd,

Ce =

0 0 0 1 0 0

0 0 0 0 0 1

, i is even,

for i ∈ N . It is important to note that odd nodes can only measure the position of the moving

target in the two horizontal dimensions, while even nodes can only observe the position in a

combination of one horizontal dimension and the vertical dimension. Therefore the target is

undetectable by individual sensor nodes. Nevertheless there is at least one node of each type

in each inclusive neighbor set Ji, i ∈ N , so that the detectability of (CJi , A) is guaranteed

for all i ∈ N . The initial conditions and the noise statistics are given by

x0 = [10 2 8 0.1 0.1 0.1]′, Σ0 = I6, Q = 0.001I6, Ri =



√
i

0.5 0

0 2

, i is odd,

√
i

0.5 0

0 3.5

, i is even.

The factor of
√
i in the above expression allows individual nodes to have diverse noise

conditions.
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Figure 3.7: Network topology with N = 20 nodes

By solving the LMI problem in Theorem 5, we know that MS stabilizability holds for

error dynamics (3.18) under the following data arrival rate setup for i ∈ N , j ∈ Ni:

pi,j =

 0.6, i is odd, j is even OR i is even, j is odd,

0.2, i is odd, j is odd OR i is even, j is even.

Thus MARE (3.14) admits a unique stabilizing solution, and the optimal gain Ki can be

computed for both the stationary DKF and the KCF. Again, in the simulations, we set the

initial estimate as the mean value of the initial state. The simulation results are averaged

over 1000 independent trials.

Similar to Example 3.1, the transient network MSD performance of four different algo-

rithms are compared. The simulation results shown in Figure 3.8 indicate that the proposed

KCF improves over the proposed SDKF by about 3 dB and it even outperforms SDKF (No

Packet Drops) in the steady-state by about 1.5 dB due to the presence of consensus term.

Figure 3.9 shows the transient network MSD performance of KCF (3.25) when ε = 0.02,

ε = 0.15, ε = 0.3, and ε = 0.45 are set respectively. The disagreement of local estimates with

respect to these consensus coefficients are depicted in Figure 3.10. It appears that KCF (3.25)
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Figure 3.8: Example 3.2: MSD performance of different algorithms

Figure 3.9: Example 3.2: MSD performance of KCF with different ε

with ε = 0.3 outperforms those with ε = 0.02, ε = 0.15, and ε = 0.45 since it produces not

only the smallest network MSD in the steady-state but also a set of local estimates with the
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Figure 3.10: Example 3.2: Disagreement of local estimates under different ε

highest cohesiveness. The results from the plots also agree with the understanding that on

one hand, the estimation performance may not be improved remarkably for small consensus

coefficients (i.e., ε = 0.02); on the other hand, KCF tends to be closer to the unstable region

with large consensus coefficients (i.e., ε = 0.45). These two situations should be balanced

when we select the consensus coefficient for the KCF.
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CHAPTER 4
DETERMINISTIC TIME-VARYING TOPOLOGIES

In this chapter we study state consensus control for discrete-time homogeneous MASs,

and distributed state estimation over WSNs. Deterministic time-varying communication

topologies are assumed in both problems.

4.1 Introduction

4.1.1 Elements of Graph Theory

Recall that in Chapter 3, the notions of neighbor set Ni, stochastic time-varying graph

G(k), Laplacian matrix Lγ(k), and more are adopted to address the issues of distribut-

ed Kalman filtering in the presence of data packet drops. All these notions are actually

adapted from the classic graph theory. We start this chapter by reviewing some important

terminologies and facts in graph theory in a detailed way, which will be employed to de-

rive the main results in later sections. We use the following references [10, 12, 11] for the

introduction. Other useful resources for graph theory will be cited as we proceed.

The communication between a network of interconnected systems (i.e., sensor nodes,

autonomous agents, etc.) can be encoded through a weighted graph. The graph can be

defined as directed or undirected. We focus on the introduction of directed graph (digraph),

which can cover undirected graph as a special case in general, in spite of some noticeable

difference. Let a weighted digraph be specified by G = (V , E) with V = {vi}Ni=1 denoting

the node set and E ⊂ V × V denoting the edge (arc) set, where an edge starting at node

j (the parent node) and ending at node i (the child node) is denoted by (vj, vi) ∈ E . Let

N := {1, . . . , N} denote the node index set. Then Ni = {j ∈ N|(vj, vi) ∈ E} denotes the set

of neighbors of node i, and degi = |Ni| stands for the degree (number of neighbors) of node

i, with | · | representing the number of elements in a set. A path on the digraph is an ordered

set of distinct nodes {vi1 , . . . , viκ} such that (vij−1
, vij) ∈ E for 2 ≤ j ≤ κ. If there is a path
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from vi to vj, then vj is said to be reachable from vi, which is denoted as vi → vj. A digraph

G is called connected if there exists a node vi in G such that vi → vj ∀ j 6= i, j ∈ N , and

vi is called a connected node in G. All the notions and notations mentioned above are also

applicable to undirected graphs. However it should be noted that, different from digraphs,

each edge in an undirected graph is an unordered pair of distinct nodes, i.e., edge (vi, vj) and

edge (vj, vi) represents the same edge in an undirected graph G. Therefore we can treat an

undirected graph G having edge (vi, vj) equivalently as a digraph G having both edge (vi, vj)

and edge (vj, vi). Then it is easy to understand that each node in a connected undirected

graph is a connected node.

Let A = [ai,j] ∈ RN×N be the weighted adjacency matrix associated with weighted

digraph or undirected graph G = (V , E), where ai,j > 0 represents the coupling strength of

edge (vj, vi) ∈ E , while ai,j = 0 if edge (vj, vi) /∈ E . Self edges do not exist in our discussion,

i.e., ai,i = 0 ∀ i ∈ N . Then the Laplacian matrix L = [li,j] ∈ RN×N associated with graph G

is defined as

li,j =


N∑
k=1

ai,k, j = i,

−ai,j, j 6= i.

It is easy to observe that L1N = 0, and thus L has at least one zero eigenvalue. In addition,

all the eigenvalues of the Laplacian matrix lie on the closed right half plane, i.e., Re{λi(L)} ≥

0 ∀ i ∈ N . In fact the only eigenvalues of L on the imaginary axis are zero in light of the

well-known Greshgorin Circle Theorem [36]. For undirected graph G, A and L are both

symmetric matrices since ai,j = aj,i ∀ i, j ∈ N , and thus L ≥ 0. Other properties of

Laplacian matrix can be found in [45, 56, 18]. The following fact holds for both digraphs

and undirected graphs.

Lemma 11. Let L be the Laplacian matrix associated with graph G. Then G is connected if

and only if 0 is a simple eigenvalue of L.
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4.1.2 Literature Survey

This subsection summarizes the main results in Xiao et al. (2005) [92] and Jadbabaie et

al. (2003) [38], which motivate the work in later sections.

• Xiao et al. (2005)

In [92] the authors study the estimation of an unknown (but constant) vector parameter

θ ∈ Rn using a network of N local sensor nodes. The noisy measurement yi ∈ Rmi obtained

by node i is specified by

yi = Aiθ + vi, i ∈ N , (4.1)

where Ai ∈ Rmi×n is a known observation matrix, different for each i ∈ N in general. The

measurement noise vi is a random variable with mean zero and covariance Σi. By convention

it is assumed that {vi}Ni=1 are independent and jointly Gaussian distributed. Denote

y = vec{y1, . . . , yN}, v = vec{v1, . . . , vN}, A = col{A1, . . . , AN}, Σ = diag(Σ1, . . . ,ΣN).

Then the collective measurements of all sensor nodes can be written as

y = Aθ + v.

Assume that
N∑
i=1

mi ≥ n and rank{A} = n. The maximum-likelihood (ML) estimate of θ

given measurement y is specified by

θ̂ML =
(
A′Σ−1A

)−1
A′Σ−1y =

(
N∑
i=1

A′iΣ
−1
i Ai

)−1 N∑
i=1

A′iΣ
−1
i yi, (4.2)

which is unbiased, i.e., E{θ̂ML} = θ, with error covariance

E
{

(θ̂ML − θ)(θ̂ML − θ)′
}

=
(
A′Σ−1A

)−1
.
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Note that if measurement noises {vi}Ni=1 are not jointly Gaussian distributed, (4.2) yields the

linear minimum variance unbiased estimate of θ.

The distributed sensor fusion scheme is studied, where no data fusion center exists and no

sensor nodes have the global knowledge of the time-varying network topology. Every node is

required to ultimately obtain a good estimate of θ, i.e., θ̂ML, only by exchanging information

with its neighbors and carrying out local computation. This scenario is quite useful since in

many practical cases, sensor nodes are asked to execute multiple tasks and need an accurate

estimate of the unknown parameter θ to make on-site decisions.

The difficulty of this problem also lies heavily on the fact that the communication topol-

ogy is time-varying and may be disconnected most of the time due to the mobility or power

constraints of the sensor network. Let the deterministic time-varying undirected graph rep-

resenting the sensor network be specified by G(k) = {V , E(k)}, where E(k) is the set of

active edges at time index k. Then the neighbor set of node i at time k can be denoted

by Ni(k) = {j ∈ N|(vj, vi) ∈ E(k)}, and the degree of nodes i at time k can be denoted

by degi(k) = |Ni(k)|. Since the sensor network consists of N nodes, there are only a finite

number of possible graphs, say a total of ϕ, that G(k) can take. Denote the collection of all

possible graphs by {Gi}ϕi=1, where Gi = (V , Ei). Their union is defined as a graph with node

set V and edge set that is the union of {Ei}ϕi=1, i.e., ∪ϕi=1Gi = (V ,∪ϕi=1Ei), where “∪” denotes

the union operation. The graphs in {Gi}ϕi=1 are called jointly connected if their union ∪ϕi=1Gi

is a connected graph [38].

A distributed iterative scheme, based on distributed average consensus in the network,

is first proposed and applied to a simplified case of (4.1) as

yi = θ + vi, i ∈ N ,

where θ is an unknown (but constant) scalar parameter to be estimated, and the measurement

noises {vi}Ni=1 are i.i.d. Gaussian variables with mean zero and variance σ2. In this case the
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ML estimate of θ happens to be the average of measurements obtained at all nodes, i.e.,

θ̂ML =
1

N
1′Ny.

Therefore, in order to obtain a local estimate of θ, each node have to compute the average

of all measurements {yi}Ni=1. By the distributed linear iterative scheme, each node initializes

its local state xi(k) as xi(0) = yi at time index k = 0, and then iteratively updates its state

following the distributed protocol

xi(k + 1) = wi,i(k)xi(k) +
∑

j∈Ni(k)

wi,j(k)xj(k), i ∈ N , k ≥ 0. (4.3)

Obviously the updated state at node i is a linear combination of its own prior state and the

prior states at its instantaneous neighbors. Let W (k) = [wi,j(k)] ∈ RN×N with wi,j(k) > 0

for j = i, j ∈ Ni(k), and wi,j(k) = 0 otherwise. By taking x(k) = vec{x1(k), . . . , xN(k)},

distributed protocol (4.3) can be written in a compact form as

x(k + 1) = W (k)x(k) (4.4)

with initial condition x(0) = y. Now the goal is to design weight matrix W (k) following the

sparsity pattern specified by the communication topology G(k), such that the states at all

the nodes reach average consensus, i.e.,

lim
k→∞

x(k) = θ̂ML1N =

(
1

N
1′Nx(0)

)
1N . (4.5)

Two simple rules for weight selection are proposed in [92], both of which lead to the aver-

age consensus (4.5), provided that the infinitely occurring communication graphs are jointly

connected. The main result is given below.
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Theorem 7. Assume that the collection of communication graphs that occur infinitely often are

jointly connected. Then iteration protocol (4.4) achieves convergence (4.5) for all x(0) ∈ RN

with either (i) the maximum-degree weights, specified by

wi,j(k) =


1
N
, j ∈ Ni(k),

1− degi(k)
N

, j = i,

0, otherwise,

or (ii) the Metropolis weights, specified by

wi,j(k) =



1
1+max{degi(k), degj(k)} , j ∈ Ni(k),

1−
∑

l∈Ni(k)

wi,l(k), j = i,

0, otherwise.

The scheme for distributed sensor fusion is then proposed, based on average consensus,

to tackle the ML estimation problem with the general setup in (4.1). In the scheme, each

node initializes its local composite information matrix Pi(k) ∈ Rn×n and local composite

information state qi(k) ∈ Rn as Pi(0) = A′iΣ
−1
i Ai and qi(0) = A′iΣ

−1
i yi at time index k = 0,

respectively. Then the average consensus can be conducted entry-wise for Pi(0) and qi(0) as

Pi(k + 1) = wi,i(k)Pi(k) +
∑

j∈Ni(k)

wi,j(k)Pj(k), qi(k + 1) = wi,i(k)qi(k) +
∑

j∈Ni(k)

wi,j(k)qj(k),

respectively. Either the maximum-degree rule or the Metropolis rule can be adopted for

weight selection. In light of Theorem 7, provided the joint connectedness of the infinitely

occurring communication graphs, there hold

lim
k→∞

Pi(k) =
1

N

N∑
j=1

A′jΣ
−1
j Aj, lim

k→∞
qi(k) =

1

N

N∑
j=1

A′jΣ
−1
j yj.
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As a result, sensor node i can compute the ML estimate in (4.2) asymptotically via

θ̂ML = lim
k→∞

Pi(k)−1qi(k), i ∈ N .

• Jadbabaie et al. (2003)

The consensus for MASs over time-varying communication topology has been widely

studied [38, 57, 49, 67, 69, 50, 68, 99]. Here we introduce the main results in Jadbabaie

et al. (2003) [38]. The authors study the coordination of a group of mobile autonomous

agents, focusing on the state consensus for discrete-time homogeneous MASs over time-

varying directed interaction graph G(k). The MAS consists of N dynamic agents described

by

xi(k + 1) = xi(k) + ui(k), xi(0) = xi0 (4.6)

for the ith agent, where xi(k) ∈ Rn is the state vector, ui(k) ∈ Rn is the control input, and

i ∈ N . We only present the analysis for the scalar case, i.e., n = 1, since it generalizes easily

to the vector case by using the Kronecker product. Selecting the control protocol as

ui(k) =
1

1 + degi(k)

∑
j∈Ni(k)

[xj(k)− xi(k)] ,

and substituting it into (4.6) yield

xi(k + 1) =
1

1 + degi(k)

xi(k) +
∑

j∈Ni(k)

xj(k)

 . (4.7)

Let W (k) = [wi,j(k)] ∈ RN×N follow the nearest neighbor rule, specified by

wi,j(k) =


1

1+degi(k)
, j ∈ Ni(k), j = i,

0, otherwise.
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By taking x(k) = vec{x1(k), . . . , xN(k)}, dynamic protocol (4.7) can be written in a compact

form as

x(k + 1) = W (k)x(k). (4.8)

The main result is given below.

Theorem 8. Assume that there exists an infinite sequence of contiguous, non-empty, bounded

time intervals [kj, kj+1), j ∈ {0, 1, . . .} starting at k0 = 0 such that ∪kj+1−1
k=kj

G(k) is connected

for all j ∈ {0, 1, . . .}. Then dynamic protocol (4.8) leads to state consensus with W (k)

following the nearest neighbor rule, and lim
k→∞

x(k) = c1N for some consensus value c.

Xiao et al. (2005) studies the distributed sensor fusion problem, while Jadbabaie et al.

(2003) focuses on the consensus of MASs, both works end up investigating the consensus of

states, governed by dynamic protocol (4.8), over deterministic time-varying communication

graph. Xiao et al. (2005) assumes the graph to be undirected, and the proposed maximum-

degree rule and Metropolis rule enable all the states to converge to the average of their initial

values. Jadbabaie et al. (2003) considers time-varying digraph, and the state dynamics

following the proposed nearest neighbor rule reach consensus at some value, but fail to

achieve average consensus. In spite of the different results, matrix W (k) is chosen to be

paracontracting with respect to the Euclidean norm in both works, which proves to be a key

point for consensus. A common drawback in Xiao et al. (2005) and Jadbabaie et al. (2003)

is that the form of the proposed state dynamics is too restrictive, and thus the consensus

protocols cannot be applied to systems of more general form. Generalized solutions to state

consensus for discrete-time homogeneous MASs will be discussed in the next section.

4.2 State Consensus Control

In this section we investigate state consensus control for discrete-time homogeneous MASs

over deterministic time-varying communication topology, which generalizes the work in Xiao

et al. (2005) and Jadbabaie et al. (2003).
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4.2.1 Problem Formulation and Preliminaries

The homogeneous MAS under our consideration consists of N discrete-time dynamic

agents described by

xi(k + 1) = Axi(k) +Bui(k), xi(0) = xi0, (4.9)

for the ith agent where xi(k) ∈ Rn is the state vector, ui(k) ∈ Rm is the control input, and

i ∈ N . A challenging problem is state consensus over the time-varying feedback topology

that may not be connected at any time k ≥ 0. For leaderless state consensus, we consider

the distributed state feedback control protocol

ui(k) = −F
N∑
j=1

ai,j(k)[xi(k)− xj(k)] (4.10)

for i ∈ N , assuming the accessability of the state vector and time-varying ai,j(k) ≥ 0

∀ i, j ∈ N as the entries of the adjacency matrix associated with the time-varying feedback

graph G(k). Substituting (4.10) into (4.9) yields

xi(k + 1) = Axi(k)−BF
N∑
j=1

ai,j(k)[xi(k)− xj(k)].

Let x(k) = vec{x1(k), . . . , xN(k)} be the global state vector. The feedback MAS admits the

state space description

x(k + 1) = [IN ⊗ A− L(k)⊗ (BF )]x(k) (4.11)

with L(k) being the Laplacian matrix associated with digraph G(k). The state consensus

control requires design of the state feedback gain F that achieves

lim
k→∞

[xi(k)− xj(k)] = 0 ∀ i, j ∈ N . (4.12)
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The eigenvalues of L(k) can be arranged in ascending order according to their absolute

values, i.e.,

0 = λ1{L(k)} ≤ |λ2{L(k)}| ≤ · · · ≤ |λN{L(k)}|.

The average of the Laplacian matrix over time interval [k, k + T ) with integer T > 0 is

defined by

L(k) :=
1

T

T−1∑
i=0

L(k + i). (4.13)

The graph G(k) corresponding to the average Laplacian matrix L(k) can be interpreted as

the union graph over time interval [k, k+ T ). The uniform connectedness is defined next in

light of Lemma 11.

Definition 4. A time-varying digraph is uniformly connected, if there exists a finite T > 0

such that the average Laplacian matrix defined in (4.13) satisfies |λ2{L(k)}| > 0 ∀ k ≥ 0.

For a time-varying digraph, its Laplace matrix L(k) is asymmetric and can have complex

eigenvalues and multiple zero eigenvalues. Nevertheless there always exists one eigenvector

v1 = 1N√
N

corresponding to one zero eigenvalue. Set {vi}Ni=2 such that {vi}Ni=1 form an or-

thonormal basis for RN . Denote V = [ v1 · · · vN ], V̂ = [ v2 · · · vN ] ∈ RN×(N−1). It

follows that

V ′L(k)V =

 v′1L(k)v1 v′1L(k)V̂

V̂ ′L(k)v1 V̂ ′L(k)V̂

 =

 0 `(k)

0 L̂(k)

 ∀ k ≥ 0,

where L̂(k) ∈ R(N−1)×(N−1) is a reduced Laplacian matrix, and `(k)′ ∈ RN−1. Recall the

property of Kronecker product [9]:

(M1 ⊗M2)(M3 ⊗M4) = (M1M3)⊗ (M2M4)
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whenever the dimensions make sense. Let Ṽ = V ⊗ In. Then

Ṽ ′[L(k)⊗BF ]Ṽ = (V ′ ⊗ In)[L(k)⊗ (BF )](V ⊗ In) = [V ′L(k)V ]⊗ (BF ).

Define

x(k) := (v′1 ⊗ In)x(k) =
1√
N

N∑
i=1

xi(k) ∈ Rn, x̃(k) := (V̂ ′ ⊗ In)x(k) ∈ R(N−1)n.

Applying similarity transform Ṽ ′ to the collective state space model in (4.11) yields

x(k + 1) = Ax(k)− [`(k)⊗ (BF )]x̃(k), (4.14)

x̃(k + 1) = [IN−1 ⊗ A− L̂(k)⊗ (BF )]x̃(k). (4.15)

The following is the main result of this subsection.

Theorem 9. Feedback MAS (4.11) achieves the state consensus defined in (4.12), if and only

if the dynamic system described in (4.15) is asymptotically stable.

Proof. Suppose that the dynamic system described in (4.15) is asymptotically stable. Then

lim
k→∞

x̃(k) = 0, lim
k→∞

x(k) = lim
k→∞

A(k−k0)x0

for some vector x0 6= 0 and integer k0 ≥ 0. That is, x(k) approaches the solution of

x(k + 1) = Ax(k) under initial condition x(k0) = x0. It follows that

lim
k→∞

x(k) = lim
k→∞

Ṽ

 x(k)

x̃(k)

 = lim
k→∞

Ṽ

 x(k)

0

 = lim
k→∞

(v1 ⊗ In)x(k)

= (v1 ⊗ In) lim
k→∞

A(k−k0)x(k0) = (1N ⊗ In) lim
k→∞

A(k−k0)

[
1

N

N∑
i=1

xi(k0)

]
.
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Hence xi(k)→ A(k−k0)

[
1
N

N∑
j=1

xj(k0)

]
∀ i ∈ N as k →∞, which validates the state consen-

sus defined in (4.12).

Conversely if state consensus is achieved, then the state vector of the dynamic system

described in (4.11) satisfies

lim
k→∞

x(k + 1) = lim
k→∞

(IN ⊗ A)x(k),

and xi(k)→ x(k)√
N

for each i ∈ N and some x(k) that is a solution to x(k+ 1) = Ax(k) under

an appropriate initial condition. Denote x̃(k) = x(k) − v1 ⊗ x(k) as the global consensus

error. Its dynamics are governed by

x̃(k + 1) = [IN ⊗ A− L(k)⊗ (BF )]x(k)− v1 ⊗ [Ax(k)]

= [IN ⊗ A− L(k)⊗ (BF )]x(k)− (IN ⊗ A)[v1 ⊗ x(k)] + [L(k)v1]⊗ [BFx(k)]

= [IN ⊗ A− L(k)⊗ (BF )]x(k)− [IN ⊗ A− L(k)⊗ (BF )][v1 ⊗ x(k)]

= [IN ⊗ A− L(k)⊗ (BF )] x̃(k)

that is the same as (4.11) except that x(k) is replaced by x̃(k). Applying the same similarity

transform Ṽ ′ to the above state space model yields two similar state space equations to those

of (4.14) and (4.15) respectively, with the latter given by

˜̃x(k + 1) = [IN−1 ⊗ A− L̂(k)⊗ (BF )]˜̃x(k).

The above is the same as (4.15) except that x̃(k) is replaced by ˜̃x(k). The hypothesis on the

state consensus implies that the consensus error x̃(k) → 0 and thus ˜̃x(k) → 0 as k → ∞.

It follows that the dynamic system described in (4.15) is asymptotically stable, thereby

concluding the proof. 2
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Denote Ã = IN−1⊗A, B̃ = IN−1⊗B, F̃ = IN−1⊗F , and L̂m(k) = L̂(k)⊗ Im. Then the

dynamic system described in (4.15) can be rewritten as

x̃(k + 1) =
[
Ã− B̃L̂m(k)F̃

]
x̃(k). (4.16)

Similarly denote transfer matrices G(z) = F (zI − A)−1B, and G̃(z) = IN−1 ⊗ G(z). Then

dynamic system (4.15) has the feedback form as configured in Figure 4.1. The state consensus

is now equivalent to the asymptotic stability of the time-varying feedback system in Figure

4.1 in light of Theorem 9.

f G̃(z)-

L̂m(k)

6−

ũ(k)
-

ỹ(k)
-

�

Figure 4.1: Time-varying dynamic system (4.15) in feedback form

The definition of semisimple eigenvalue is provided next.

Definition 5. [28] An eigenvalue of matrix A, denoted by λi(A), is said to be semisimple, if

the algebraic multiplicity of λi(A), which is its multiplicity as a root of the corresponding

characteristic polynomial, equals the geometric multiplicity of λi(A), which is the maximum

number of linearly independent eigenvectors associated with λi(A).

It follows that a simple eigenvalue is always semisimple, but not conversely. For conve-

nience, the next assumption is made throughout this section.

Assumption 6. All eigenvalues of the system matrix A lie on the unit circle.

Because stable eigenvalues do not require control actions, the assumption on the system

matrix A has no loss of generality. Under Assumption 6, the MAS described in (4.9) is

said to be neutrally stable if matrix A only has semisimple eigenvalues, and it is said to be

neutrally unstable if A contains non-semisimple eigenvalues. The state consensus results for
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neutrally stable MAS and neutrally unstable MAS will be given respectively in the following

two subsections.

4.2.2 Neutrally Stable MAS

While Theorem 9 provides an equivalent state consensus condition, the challenge remains

to design of the state feedback gain F that stabilizes dynamic system (4.15) over the time-

varying graph. In this subsection we restrict feedback graphs to the following set of time-

varying graphs.

Assumption 7. The time-varying graph G(k) with Laplacian matrix L(k) is undirected, sat-

isfying (a) 0 ≤ L(k) ≤ I ∀ k ≥ 0, and (b) G(k) is uniformly connected, i.e., there exists a

finite T > 0 such that

L̂m(k) :=
1

T

T−1∑
i=0

L̂m(k + i) > 0 ∀ k ≥ 0.

For (a), it is noted that L(k) ≥ 0 follows from the property of the undirected graph, and

L(k) ≤ I can be satisfied by appropriate (positive and symmetric) scaling. In addition, let

“⇒” stand for “implies”. There holds

0 ≤ L(k) ≤ IN ⇒ 0 ≤ V̂ ′L(k)V̂ ≤ IN ⇒ 0 ≤ L̂(k) ≤ IN−1 ⇒ 0 ≤ L̂m(k) ≤ I(N−1)m.

For (b), the uniform connectedness of G(k) implies that

V ′L(k)V =
1

T

T−1∑
i=0

V ′L(k + i)V =

 0 0

0 1
T

T−1∑
i=0

L̂(k + i)


satisfies λ2{V ′L(k)V } = λ2{L(k)} > 0 ∀ k ≥ 0. It follows that

L̂(k) :=
1

T

T−1∑
i=0

L̂(k + i) > 0 ∀ k ≥ 0,
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which is equivalent to the inequality in (b). For the agent system under state feedback

represented by G(z) = F (zI − A)−1B, the following assumption is made:

Assumption 8. The pair (A,B) is reachable, and there exists matrix X > 0 satisfying

(a) X = A′XA, (b) I −B′XB ≥ 0, (c) F = B′XA.

It is important to observe that the existence of X requires A only having semisimple

eigenvalues. Moreover, in light of [91], there is no loss of generality to consider system

matrix of form A = diag(A1, · · · , A`), where Ai = 1 or Ai = −1, or

Ai =

 cos(θi) sin(θi)

− sin(θi) cos(θi)

 , θi ∈ [0, 2π).

It follows from (a) that X is block diagonal with the ith diagonal block being ρi > 0 or

ρiI2 > 0, and {ρi}`i=1 can be chosen to satisfy (b). The feedback gain is highlighted by (c).

For A of general form, similarity transformation can be applied first for the diagonalization

of A. It is easy to verify that A−BF is a Schur stability matrix.

Lemma 12. Under Assumption 6 and 8, the transfer matrix G(z) + 1
2
I = F (zI−A)−1B+ 1

2
I

is positive real (PR), i.e.,

[
G(z) +

1

2
I

]∗
+

[
G(z) +

1

2
I

]
≥ 0 ∀ |z| ≥ 1,

and (F,A) is observable.

Proof. Under Assumption 6 and 8, there holds

G(z)∗ +G(z) + I ≥ G(z)∗ +G(z) +B′XB

= B′[(zI − A)∗]−1A′XB +B′XA(zI − A)−1B +B′XB

= B′[(zI − A)∗]−1 [A′X(zI − A) + (zI − A)∗XA+ (zI − A)∗X(zI − A)] (zI − A)−1B
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= B′[(zI − A)∗]−1 (z∗zX − A′XA) (zI − A)−1B

=
(
|z|2 − 1

)
B′[(zI − A)∗]−1X(zI − A)−1B ≥ 0 ∀ |z| ≥ 1.

For those z = λi(A), limit can be taken with respect to z → λi(A), and the above inequality

still holds. We thus conclude that G(z) + 1
2
I is PR.

To show the observability of (F,A), we let X = U ′U > 0 for some nonsingular U . Under

the similarity transform U , realization (A,B, F ) is transformed to (UAU−1, UB, FU−1). The

reachability of (A,B) is equivalent to that of (UAU−1, UB), which leads to the observability

of {(UB)′, (UAU−1)′}. Equations (a) and (c) in Assumption 8 lead to

U ′U = A′U ′UA ⇒ (UAU−1)′(UAU−1) = I, F = B′U ′UA ⇒ FU−1 = (UB)′(UAU−1).

We thus have the equivalence of the observability for {(UB)′, (UAU−1)′} to that for

{(UB)′(UAU−1), (UAU−1)−1(UAU−1)′(UAU−1)} = (FU−1, UA−1U−1)

under the similarity transform (UAU−1)−1. Then applying the similarity transform U−1

yields the observability for (F,A−1), which is equivalent to that for (F,A) given the nonsin-

gularity of A, thereby concluding the proof. 2

Denote ∆̂(k) = I − L̂m(k). Assumption 7 implies that

0 ≤ ∆̂(k) ≤ I ∀ k ≥ 0.

Hence the state equation in (4.16) can be rewritten as

x̃(k + 1) =
[(
Ã− B̃F̃

)
+ B̃∆̂(k)F̃

]
x̃(k),
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leading to the equivalent feedback system in Figure 4.2 where

T̃F (z) = F̃
(
zI − Ã+ B̃F̃

)−1

B̃. (4.17)

It is noted that ỹ(k) in Figure 4.2 is the same as that in Figure 4.1, while ṽ(k) in Figure 4.2

is related to ũ(k) in Figure 4.1 via ṽ(k) = ũ(k) + F̃ x̃(k).

f T̃F (z)-

∆̂(k)

6

ṽ(k)
-

ỹ(k)
-

�

Figure 4.2: Equivalent feedback system to that in Figure 4.1

Let ‖T‖H∞ := sup
|z|≥1

σ[T (z)] be the H∞ norm of a given transfer matrix T (z). The next

result shows that the transfer matrix T̃F (z) in (4.17) is bounded real [5, 86].

Lemma 13. Under Assumption 6 and 8, the transfer matrix T̃F (z) in (4.17) satisfies ‖T̃F‖H∞ =

1.

Proof. The expression of T̃F (z) in (4.17) implies that

T̃F (z) = IN−1 ⊗ TF (z), TF (z) = F (zI − A+BF )−1B.

Hence ‖T̃F‖H∞ = ‖TF‖H∞ . It is now a known fact [32, 64] that

inf
F
‖TF‖H∞ = M(A) :=

n∏
i=1

max{|λi(A)|, 1} = 1,

where M(A) is the Mahler measure of matrix A. To show that the infimum is achieved by

those F satisfying Assumption 8, we note first that

TF (z) = F (zI − A)−1B[I + F (zI − A)−1B]−1 = G(z)[I +G(z)]−1.
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We note next the equivalence of ‖TF‖H∞ = 1 to

TF (z)∗TF (z) ≤ I ∀ |z| ≥ 1. (4.18)

The proof of the lemma can then be completed by noting the following equivalent relations:

(4.18) ⇐⇒ G(z)∗G(z) ≤ [I +G(z)]∗[I +G(z)] ∀ |z| ≥ 1

⇐⇒
[
G(z) +

1

2
I

]∗
+

[
G(z) +

1

2
I

]
≥ 0 ∀ |z| ≥ 1.

The last inequality implies the PR of G(z) + 1
2
I, which holds in light of Lemma 12. 2

The next result is derived directly from the well-known Small Gain Theorem [27, 104].

Lemma 14. Consider the closed-loop system configured in Figure 4.2. Assume that the trans-

fer matrix T̃F (z) is internally stable. Then the feedback system in Figure 4.2 is internally

stable if ‖T̃F‖H∞‖∆̂(k)‖H∞ < 1.

Recall that we require the time-varying graphs to be uniformly connected in Assump-

tion 7. Nevertheless uniformly connected graphs are not adequate for achieving the state

consensus. Let Ĵ(k) ≥ 0 such that L̂m(k) = Ĵ(k)2. The following assumption is also made.

Assumption 9. The pair {Ĵ(k)F̃ , Ã} is uniformly observable in the sense that there exists a

finite To > 0 such that

To−1∑
i=0

[
F̃ Ãi

]′
L̂m(k + i)

[
F̃ Ãi

]
> 0 ∀ k ≥ 0. (4.19)

The state consensus result is presented below.

Theorem 10. Under Assumptions 6 ∼ 9, the feedback homogeneous MAS described in (4.11)

achieves the state consensus defined in (4.12).

Proof. Because of the equivalence of the state consensus to the asymptotic stability of the

feedback system in Figure 4.2, we will show that Assumptions 6 ∼ 9 ensure such a feedback
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stability. For this purpose we first make use of the fact that Assumption 6 and 8 implies

‖T̃F‖H∞ = 1 in light of Lemma 13, and the fact that Assumption 9 implies the existence of

a finite To such that inequality (4.19) holds. The proof can then be completed by showing

that ∆̂(k) is a strict contraction map from `m2 [k0, k0 + To − 1] to `m2 [k0, k0 + To − 1] for all

k0 ≥ 0, in light of Lemma 14. Since ∆̂(k) is symmetric satisfying 0 ≤ ∆̂(k) ≤ I for all k ≥ 0

by Assumption 7,

∆̂(k)2 =
[
I − L̂m(k)

]2

= I − Γ̂(k) ≥ 0 ∀ k ≥ 0,

where Γ̂(k) = 2L̂m(k)− L̂m(k)2 satisfying

Γ̂(k) = Ĵ(k)
[
2I − L̂m(k)

]
Ĵ(k) ≥ Ĵ(k)2 = L̂m(k)

in light of Assumption 7. It follows that

k0+To−1∑
k=k0

‖ṽ(k)‖2 =

k0+To−1∑
k=k0

ỹ(k)′∆̂(k)2ỹ(k)

=

k0+To−1∑
k=k0

ỹ(k)′ [I − Γ(k)] ỹ(k)

≤
k0+To−1∑
k=k0

ỹ(k)′
[
I − L̂m(k)

]
ỹ(k)

=

k0+To−1∑
k=k0

[
‖ỹ(k)‖2 − ỹ(k)′L̂m(k)ỹ(k)

]
<

k0+To−1∑
k=k0

‖ỹ(k)‖2 ∀ k0 ≥ 0.

The last inequality follows from the uniform observability in (4.19). Indeed this inequality

is violated only if

ỹ(k)′L̂m(k)ỹ(k) = 0 ∀ k ∈ [k0, k0 + To − 1],
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where ỹ(k) = F̃ Ã(k−k0)x̃0 according to Figure 4.1, with x̃0 6= 0 denoting the initial condition

at time index k0, and hence it contradicts to the uniform observability. The above proves

that ∆̂(k) is a strict contraction map from `m2 [k0, k0 + To − 1] to `m2 [k0, k0 + To − 1] for all

k0 ≥ 0, thereby concluding the proof. 2

Remark 5. While Theorem 10 establishes the state consensus, the convergence rate may not

be exponential, which requires the exponential stability for the feedback system in Figure

4.2, in general. The reason lies in the fact that the limit of inf ‖L̂(k)‖ can be zero. For

instance L(k) = (1 + k2)−1L with L a constant Laplacian matrix corresponding a connected

graph. In this case L(k)→ 0 as k →∞, which cannot achieve exponential rate for the state

consensus. If the exponential convergence rate is required, then the notion of the uniform

observability in (4.19) needs to be strengthened to

To−1∑
i=0

[
F̂ Âi

]′
L̂m(k + i)

[
F̂ Âi

]
≥ εoI ∀ k ≥ 0

and for some εo > 0, which in turn requires λ2{L(k)} ≥ εc ∀ k ≥ 0 and for some εc > 0. In

fact the above strengthened notion of uniform observability is adopted to address the state

consensus control for neutrally unstable MAS. More details will be discussed in the next

subsection. 2

It is important to point out that Theorem 10 also solves the state consensus problem

for x(k + 1) = W (k)x(k) over time-varying communication topology as discussed in Xiao et

al. (2005) [92] and Jadbabaie et al. (2003) [38]. Specifically we can adopt A = 1, B = 1,

F = 1, and thus the uniform observability in (4.19) reduces to the uniform connectedness

in Assumption 7. Then W (k) = IN − L(k) can be set with L(k) satisfying Assumption 7,

which not only agrees with, but also generalizes the weight selection rules for W (k) in [92].

It is shown in the proof of Theorem 9 that the average consensus required in [92] is also

achieved, i,e., xi(k)→ 1
N

N∑
j=1

xj(0) ∀ i ∈ N as k →∞.
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4.2.3 Neutrally Unstable MAS

Now we consider the case where A has at least one non-semisimple eigenvalue. Assump-

tion 7 is imposed again while Assumption 8 no longer holds. The following lemma is useful.

Lemma 15. [31, 33] Consider TF (z) = F (zI−A+BF )−1B as the complementary sensitivity

under state feedback where F ′, B ∈ Rn×m. If the pair (A,B) is stabilizable, then

M(A)
1
m ≤ inf

F
‖TF‖H∞ ≤M(A).

For each h∞ > inf
F
‖TF‖H∞, a stabilizing state feedback gain achieving ‖TF‖H∞ < h∞ is given

by [8, 29]

F =
[
I + (1− h−2

∞ )B′XB
]−1

B′XA,

where X ≥ 0 is the stabilizing solution to

X = A′X
[
I + (1− h−2

∞ )BB′X
]−1

A, B′XB < h2
∞I.

Recall that when system matrix A only has semisimple eigenvalues, the uniform observ-

ability of pair {Ĵ(k)F̃ , Ã} defined in (4.19) is sufficient for the MAS to achieve the state

consensus. However, when A contains non-semisimple eigenvalues, the notion of the uniform

observability needs to be strengthened. Hence the following assumption is made.

Assumption 10. The pair {Ĵ(k)F̃ , Ã} is uniformly observable in the sense that there exists

a finite To > 0 such that

To−1∑
i=0

[
F̃ Ãi

]′
L̂m(k + i)

[
F̃ Ãi

]
≥ εoI ∀ k ≥ 0 (4.20)

and for some εo > 0.

The state consensus result is demonstrated below.
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Theorem 11. Under Assumptions 6, 7, 10, and the reachability of (A,B), let the state feedback

gain be specified by

F = (I + ε∆B
′XB)

−1
B′XA, (4.21)

where ε∆ = εo/εs, εs = σ

{
To−1∑
i=0

(
F̃ Ãi

)′ (
F̃ Ãi

)}
, and X ≥ 0 is the stabilizing solution to

X = A′X (I + ε∆BB
′X)

−1
A, B′XB < (1− ε∆)−1 I. (4.22)

Then the feedback homogeneous MAS described in (4.11) achieves the state consensus defined

in (4.12).

Proof. Since the state consensus is equivalent to the asymptotic stability of the feedback

system in Figure 4.2 by Theorem 9, we will show that the given hypotheses ensure such

a feedback stability. It is first noted that 0 < 1 − ε∆ < 1. By Lemma 15, the state

feedback gain F given by (4.21) implies that the transfer matrix T̃F (z) in Figure 4.2 satisfies

‖T̃F‖H∞ = ‖TF‖H∞ < 1/
√

1− ε∆. The proof can then be completed by showing that

‖∆̂(k)‖H∞ ≤
√

1− ε∆ in light of Lemma 14. According to Figure 4.1, ỹ(k) = F̃ Ã(k−k0)x̃0

with x̃0 6= 0 denoting the initial condition at time index k0. Then it follows from the uniform

observability in (4.20) that

k0+To−1∑
k=k0

ỹ(k)′L̂m(k)ỹ(k) = x̃′0

{
k0+To−1∑
k=k0

[
F̃ Ã(k−k0)

]′
L̂m(k)

[
F̃ Ã(k−k0)

]}
x̃0

≥ εox̃
′
0x̃0 = ε∆εsx̃

′
0x̃0

≥ ε∆x̃
′
0

{
k0+To−1∑
k=k0

[
F̃ Ã(k−k0)

]′ [
F̃ Ã(k−k0)

]}
x̃0

= ε∆

k0+To−1∑
k=k0

‖ỹ(k)‖2 ∀ k0 ≥ 0.
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Thus we have

k0+To−1∑
k=k0

‖ṽ(k)‖2 =

k0+To−1∑
k=k0

ỹ(k)′∆̂(k)2ỹ(k)

≤
k0+To−1∑
k=k0

ỹ(k)′
[
I − L̂m(k)

]
ỹ(k)

=

k0+To−1∑
k=k0

[
‖ỹ(k)‖2 − ỹ(k)′L̂m(k)ỹ(k)

]
≤ (1− ε∆)

k0+To−1∑
k=k0

‖ỹ(k)‖2 ∀ k0 ≥ 0,

which implies that ‖∆̂(k)‖H∞ ≤
√

1− ε∆, thereby concluding the proof. 2

Remark 6. The existence of the stabilizing solution to the ARE in (4.22) requires the the

stabilizability of (A,B) and the detectability of (0, A) on the unit circle, the latter of which

does not hold, given the assumption that all eigenvalues of A lie on the unit circle. An easy

fix is to consider computing the stabilizing solution to ARE (4.22) with Q = φI added to its

right hand side for a sufficiently small φ > 0. This way ensures the detectability of (Q1/2, A)

on the unit circle, and the existence of an approximate stabilizing solution to the original

ARE. Moreover, since the stabilizing solution X is monotonically increasing with respect to

Q, the inequality in (4.22) can always be satisfied as long as φ > 0 is sufficiently small. 2

4.2.4 Simulations

To illustrate our design for state consensus control, we use the example of [83, 99] for the

MAS consisting of N = 4 agents with discretization and modification. Bilinear transform is

adopted to convert the continuous-time agent dynamics to the discrete-time agent dynamics,

given by

A =


1.0474 0.0474 −0.0524

−0.0524 0.9476 −0.0474

0.0998 0.0998 0.9950

 , B =


0.3064

0.2772

0.3292

 ,
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with time-step Ts = 0.1. The time-varying communication topology G(k) of the MAS is

shown in Figure 4.3, with the corresponding Laplacian matrix specified by

L(k) =



L0, k = 4κ,

L1, k = 4κ+ 1,

L2, k = 4κ+ 2,

L3, k = 4κ+ 3,

for κ ∈ {0, 1, . . .}, where

L0 = 0.5



1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0


, L1 = 0.5



0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0


,

L2 = 0.5



0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1


, L3 = 0.5



1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1


.

Assumption 6 holds since A has three different unstable eigenvalues on the unit circle,

i.e., 1, 0.9950± 0.0998j. Then Assumption 8 can be satisfied by selecting

X =


1.5 0.5 −0.5

0.5 1.5 0.5

−0.5 0.5 1.5

 , F =

[
0.4635 0.7635 0.4193

]
.

Note that G(k) is not connected at any time instant k. However the average of L0, L1, L2

and L3 corresponds to a connected graph, and L(k) repeats periodically, which indicate that

the uniform connectedness imposed in Assumption 7 is satisfied. In addition it is easy to
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Figure 4.3: Time-varying topology with N = 4 agent nodes

Figure 4.4: Consensus error for each agent

verify that the uniform observability defined in Assumption 9 holds for the given graph G(k).

Therefore the results in Theorem 10 can be applied for state consensus control.
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In the simulation, the initial condition x(0) = x0 of the MAS is set as a random vector

following Gaussian distribution. The consensus error ‖xi(k) − x̄(k)‖ for all the four agents

are shown in Figure 4.4, with x̄(k) denoting the average of the four agent state vectors. It

can be observed from the plots that the consensus error converges to 0 asymptotically for

each i ∈ N , indicating that state consensus is indeed achieved for the MAS.

4.3 Distributed State Estimation

Chapter 3 is focused on distributed Kalman filtering in the presence of data packet drops,

which are modeled as Bernoulli random processes. In this section we study distributed state

estimation over WSNs with deterministic time-varying communication topology.

4.3.1 Problem Formulation

A network of N sensor nodes is used to estimate and track the state of a dynamic target

system with state space description

x(k + 1) = Ax(k), x(0) = x0, (4.23a)

y(k) = Cx(k), (4.23b)

where x(k) ∈ Rn is the state vector, and y(k) ∈ Rm is the output signal. To lower the

communication overhead between the target system and individual sensor nodes, the output

signal is required to be transmitted to only one or a few nodes at each time instant. Each node

is supposed to locally estimate and track the dynamic state only by using the output signal

if received, exchanging information with its neighbors, and carrying out local computation.

We thus consider the distributed state estimation protocol

x̂i(k + 1) = Ax̂i(k) +Kai,0(k) [y(k)− Cx̂i(k)]−K
N∑
j=1

ai,j(k)C [x̂i(k)− x̂j(k)]
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for i ∈ N , where x̂i(k) is the local estimate of x(k) at the ith sensor node, ai,j(k) ≥ 0

∀ i, j ∈ N are the entries of the adjacency matrix associated with time-varying graph G(k),

which represents the interconnection of the sensor network, and ai,0(k) corresponds to the

transmission of the output signal. If y(k) is received by node i at time k, then ai,0(k) > 0;

otherwise ai,0(k) = 0. By a slight abuse of notation, we denote x̂0(k) = x(k). Then the

above estimation protocol can be rewritten as

x̂i(k + 1) = Ax̂i(k)−KC
N∑
j=0

ai,j(k) [x̂i(k)− x̂j(k)] , i ∈ N . (4.24)

We now construct an augmented graph GA(k) by adding to G(k) a node v0, which represents

the target system, and edges from v0 to vi for all i ∈ N satisfying ai,0(k) > 0, which mark

the information flow from the target system to the ith sensor node. Let L(k) and LA(k) be

the Laplacian matrices associated with graph G(k) and GA(k) respectively. It follows that

LA(k) =

 0 0

−
N∑
i=1

ai,0(k)gi M(k)

 , M(k) = L(k) +
N∑
i=1

ai,0(k)gig
′
i,

where gi ∈ RN is a vector with 1 in its ith entry and 0 elsewhere. Let ex;i(k) = x(k)− x̂i(k)

be the state estimation error at node i. Taking the difference between (4.23a) and (4.24)

yields

ex;i(k + 1) = Aex;i(k)−KC
N∑
j=0

ai,j(k) [ex;i(k)− ex;j(k)] .

Denote ex(k) = vec{ex;1(k), . . . , ex;N(k)}, Ã = IN ⊗ A, K̃ = IN ⊗ K, C̃ = IN ⊗ C, and

M̃(k) =M(k)⊗ Im. Then the collective estimation error dynamics are given by

ex(k + 1) =
[
Ã− K̃M̃(k)C̃

]
ex(k). (4.25)
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Similarly denote transfer matrices G(z) = C(zI−A)−1K, and G̃(z) = IN⊗G(z). Then error

dynamics (4.25) have the feedback form as configured in Figure 4.5. Hence our goal is to

design estimation gain K such that asymptotic stability holds for the time-varying feedback

system in Figure 4.5.

f G̃(z)-

M̃(k)

6−

eu(k)
-

ey(k)
-

�

Figure 4.5: Error dynamics (4.25) in feedback form

Similar to section 4.2, the next assumption is made throughout this whole section.

Assumption 11. All eigenvalues of A are restricted to lie on the unit circle.

The above assumption is made without loss of generality. On one hand, states governed

by stable eigenvalues usually do not require estimation actions since they will exponentially

converge to zero as time proceeds; on the other hand, states dominated by unstable eigenval-

ues outside of the unit circle go exponentially fast to infinity, which are hard and pointless

to track in many practical applications. Again we will study distributed state estimation

under two different situations: the target system described in (4.23) is neutrally stable, and

the target system is neutrally unstable. The corresponding results will be given respectively

in the next two subsections.

4.3.2 Neutrally Stable Target System

Recall the definition of uniform connectedness for time-varying graphs. The following

restrictions are imposed on communication graph G(k).

Assumption 12. The time-varying graph G(k) with Laplacian matrix L(k) is undirected, sat-

isfying (a) 0 ≤ M(k) ≤ I ∀ k ≥ 0, and (b) G(k) is uniformly connected, i.e., there exists a
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finite T > 0 such that

M̃(k) :=
1

T

T−1∑
i=0

M̃(k + i) > 0 ∀ k ≥ 0.

For (a), it is noted that M(k) = L(k) +
N∑
i=1

ai,0(k)gig
′
i ≥ L(k) ≥ 0 follows from the

property of undirected graph, and M(k) ≤ I can be satisfied by appropriate (positive and

symmetric) scaling. For (b), considering how we create GA(k) based on G(k), the uniform

connectedness of G(k) implies the uniform connectedness of GA(k), i.e.,

LA(k) :=
1

T

T−1∑
i=0

LA(k + i) =

 0 0

− 1
T

T−1∑
i=0

N∑
j=1

aj,0(k + i)gj
1
T

T−1∑
i=0

M(k + i)



satisfies |λ2{LA(k)}| > 0 ∀ k ≥ 0. It follows that 1
T

T−1∑
i=0

M(k + i) > 0 ∀ k ≥ 0, which is

equivalent to the inequality in (b).

The method to find a stabilizing estimation gain is provided next.

Assumption 13. The pair (C,A) is observable, and there exists matrix X > 0 satisfying

(a) X = AXA′, (b) I − CXC ′ ≥ 0, (c) K = AXC ′.

It is important to observe that the existence of X requires A only having semisimple

eigenvalues. The way to find a solution X is similar to that in Assumption 8. It is easy to

verify that A−KC is a Schur stability matrix. Denote ∆̃(k) = I − M̃(k). Assumption 12

implies that

0 ≤ ∆̃(k) ≤ I ∀ k ≥ 0.

Hence the error dynamics in (4.25) can be rewritten as

ex(k + 1) =
[(
Ã− K̃C̃

)
+ K̃∆̃(k)C̃

]
ex(k),

106



leading to the equivalent feedback system in Figure 4.6 where

T̃K(z) = C̃
(
zI − Ã+ K̃C̃

)−1

K̃. (4.26)

It is noted that ey(k) in Figure 4.6 is the same as that in Figure 4.5, while ev(k) in Figure

4.6 is related to eu(k) in Figure 4.5 via ev(k) = eu(k) + C̃ex(k).

f T̃K(z)-

∆̃(k)

6

ev(k)
-

ey(k)
-

�

Figure 4.6: Equivalent feedback system to that in Figure 4.5

Lemma 16. Under Assumption 11 and 13, the transfer matrix G(z)+ 1
2
I = C(zI−A)−1K+ 1

2
I

is PR, i.e., [
G(z) +

1

2
I

]∗
+

[
G(z) +

1

2
I

]
≥ 0 ∀ |z| ≥ 1,

and (A,K) is reachable.

Lemma 17. Under Assumption 11 and 13, the transfer matrix T̃K(z) in (4.26) satisfies

‖T̃K‖H∞ = 1.

The proofs for Lemma 16 and 17 are similar to those for Lemma 12 and 13 respectively,

thus are omitted here. The next result, similar to Lemma 14, is derived directly from the

Small Gain Theorem.

Lemma 18. Consider the closed-loop system configured in Figure 4.6. Assume that the trans-

fer matrix T̃K(z) is internally stable. Then the feedback system in Figure 4.6 is internally

stable if ‖T̃K‖H∞‖∆̃(k)‖H∞ < 1.

Recall that uniform connectedness is imposed on time-varying graph G(k) in Assumption

12. However uniformly connected graphs are not adequate to stabilize the error dynamics.

Let J̃(k) ≥ 0 such that M̃(k) = J̃(k)2. The following assumption is also made.
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Assumption 14. The pair {J̃(k)C̃, Ã} is uniformly observable in the sense that there exists

a finite To > 0 such that

To−1∑
i=0

[
C̃Ãi

]′
M̃(k + i)

[
C̃Ãi

]
> 0 ∀ k ≥ 0. (4.27)

The solution to distributed state estimation is illustrated below.

Theorem 12. Under Assumptions 11 ∼ 14, asymptotic stability holds for the error dynamics

in (4.25) associated to the distributed state estimation protocol in (4.24).

Proof. Assumption 11 and 13 implies that ‖T̃K‖H∞ = 1 in light of Lemma 17. The proof can

then be completed by showing that ∆̃(k) is a strict contraction map from `m2 [k0, k0 +To−1]

to `m2 [k0, k0 +To−1] for all k0 ≥ 0, in light of Lemma 18. Since ∆̃(k) is symmetric satisfying

0 ≤ ∆̃(k) ≤ I for all k ≥ 0 by Assumption 12,

∆̃(k)2 =
[
I − M̃(k)

]2

= I −
[
2M̃(k)− M̃(k)2

]
≤ I − J̃(k)

[
2I − M̃(k)

]
J̃(k)

≤ I − J̃(k)2 = I − M̃(k) ∀ k ≥ 0.

It follows that

k0+To−1∑
k=k0

‖ev(k)‖2 =

k0+To−1∑
k=k0

ey(k)′∆̃(k)2ey(k)

≤
k0+To−1∑
k=k0

ey(k)′
[
I − M̃(k)

]
ey(k)

=

k0+To−1∑
k=k0

[
‖ey(k)‖2 − ey(k)′M̃(k)ey(k)

]
<

k0+To−1∑
k=k0

‖ey(k)‖2 ∀ k0 ≥ 0.

The last inequality follows from the uniform observability in (4.27). Indeed this inequality
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is violated only if

ey(k)′M̃(k)ey(k) = 0 ∀ k ∈ [k0, k0 + To − 1],

where ey(k) = C̃Ã(k−k0)ex0 according to Figure 4.5, with ex0 6= 0 denoting the initial condition

at time index k0, and hence it contradicts to the uniform observability. The above proves

that ∆̃(k) is a strict contraction map from `m2 [k0, k0 + To − 1] to `m2 [k0, k0 + To − 1] for all

k0 ≥ 0, thereby concluding the proof. 2

4.3.3 Neutrally Unstable Target System

Now we discuss the case where A has at least one non-semisimple eigenvalue. Assumption

12 is imposed again while Assumption 13 fails to hold due to the structure of A. The following

lemma, which is dual to Lemma 15, can be useful to the design of estimation gain.

Lemma 19. Consider TK(z) = C(zI −A+KC)−1K where C ′, K ∈ Rn×m. If the pair (C,A)

is detectable, then

M(A)
1
m ≤ inf

K
‖TK‖H∞ ≤M(A).

For each h∞ > inf
K
‖TK‖H∞, a stabilizing estimation gain achieving ‖TK‖H∞ < h∞ is given

by

K = AXC ′
[
I + (1− h−2

∞ )CXC ′
]−1

,

where X ≥ 0 is the stabilizing solution to

X = A
[
I + (1− h−2

∞ )XC ′C
]−1

XA′, CXC ′ < h2
∞I.

Recall that when system matrix A only has semisimple eigenvalues, the uniform observ-

ability of pair {J̃(k)C̃, Ã} defined in (4.27) is sufficient for the estimation error to converge

to 0 asymptotically. Nevertheless, when A contains non-semisimple eigenvalues, the notion

of the uniform observability needs to be strengthened as follows.
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Assumption 15. The pair {J̃(k)C̃, Ã} is uniformly observable in the sense that there exists

a finite To > 0 such that

To−1∑
i=0

[
C̃Ãi

]′
M̃(k + i)

[
C̃Ãi

]
≥ εoI ∀ k ≥ 0. (4.28)

and for some εo > 0.

The solution to distributed state estimation is demonstrated below.

Theorem 13. Under Assumptions 11, 12, 15, and the observability of (C,A), let the estima-

tion gain be specified by

K = AXC ′ (I + ε∆CXC
′)
−1
, (4.29)

where ε∆ = εo/εs, εs = σ

{
To−1∑
i=0

(
C̃Ãi

)′ (
C̃Ãi

)}
, and X ≥ 0 is the stabilizing solution to

X = A (I + ε∆XC
′C)
−1
XA′, CXC ′ < (1− ε∆)−1 I. (4.30)

Then asymptotic stability holds for the error dynamics in (4.25) associated to the distributed

state estimation protocol in (4.24).

Proof. It is first noted that 0 < 1−ε∆ < 1. By Lemma 19, the estimation gain F obtained via

(4.29) implies that the transfer matrix T̃K(z) in Figure 4.6 satisfies ‖T̃K‖H∞ < 1/
√

1− ε∆.

The proof can then be completed by showing that ‖∆̃(k)‖H∞ ≤
√

1− ε∆ in light of Lemma

18. According to Figure 4.5, ey(k) = C̃Ã(k−k0)ex0 with ex0 6= 0 denoting the initial condition

at time index k0. Then it follows from the uniform observability in (4.28) that

k0+To−1∑
k=k0

ey(k)′M̃(k)ey(k) = e′x0

{
k0+To−1∑
k=k0

[
C̃Ã(k−k0)

]′
M̃(k)

[
C̃Ã(k−k0)

]}
ex0

≥ εoe
′
x0ex0 = ε∆εse

′
x0ex0

≥ ε∆e
′
x0

{
k0+To−1∑
k=k0

[
C̃Ã(k−k0)

]′ [
C̃Ã(k−k0)

]}
ex0
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= ε∆

k0+To−1∑
k=k0

‖ey(k)‖2 ∀ k0 ≥ 0.

Thus we have

k0+To−1∑
k=k0

‖ev(k)‖2 =

k0+To−1∑
k=k0

ey(k)′∆̃(k)2ey(k)

≤
k0+To−1∑
k=k0

ey(k)′
[
I − M̃(k)

]
ey(k)

=

k0+To−1∑
k=k0

[
‖ey(k)‖2 − ey(k)′M̃(k)ey(k)

]
≤ (1− ε∆)

k0+To−1∑
k=k0

‖ey(k)‖2 ∀ k0 ≥ 0.

which implies that ‖∆̃(k)‖H∞ ≤
√

1− ε∆, thereby concluding the proof. 2

Remark 7. Similar to the situation mentioned in Remark 6, the ARE in (4.30) does not admit

a stabilizing solution because (A, 0) is not stabilizable on the unit circle under Assumption

11. An easy way to fix this is to compute the stabilizing solution to ARE (4.30) with Q = φI

added to its right hand side for a sufficiently small φ > 0. This guarantees the stabilizability

of (A,Q1/2) on the unit circle, and thus the existence of an approximate stabilizing solution

to the original ARE. 2

4.3.4 Simulations

To illustrate our design of distributed state estimator, we consider the example of [3] with

discretization and modification for a dynamic target system moving in one spatial dimension.

The discrete-time system dynamics are given by

A =

 1 0.1

0 1

 , C =

[
1 0

]
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with time-step Ts = 0.1. A sensor network of N = 3 nodes is employed to estimate and track

the state (position and velocity) of the moving target. The time-varying augmented graph

GA(k) encoding the interconnection between the target node and the sensor nodes is shown

in Figure 4.7, with the corresponding M(k) = L(k) +
N∑
i=1

ai,0(k)gig
′
i specified by

M(k) =


M0, k = 3κ,

M1, k = 3κ+ 1,

M2, k = 3κ+ 2,

for κ ∈ {0, 1, . . .}, where

M0 =


0.8 −0.35 0

−0.35 0.35 0

0 0 0

 , M1 =


0 0 0

0 0.8 −0.35

0 −0.35 −0.35

 , M2 =


0.35 0 −0.35

0 0 0

−0.35 0 0.8

 .

2

1

0

3

0.
45

0.35

(a) GA(k), k = 3κ

2

1

0

3

0.45

0.
35

(b) GA(k), k = 3κ+1

2

1

0

3

0.45

0.35

(c) GA(k), k = 3κ+ 2

Figure 4.7: Time-varying topology with a target node and N = 3 sensor nodes

It is important to observe that A has a non-semisimple eigenvalue on the unit circle, i.e.,

1. Hence Assumption 11 holds while Assumption 13 cannot be satisfied. Although GA(k) is

not connected at any time instant k, the average of M0, M1 and M2 is positive definite,

and M(k) repeats periodically, which indicate that the uniform connectedness imposed in

Assumption 12 is satisfied. It can also be verified that the uniform observability defined in

Assumption 15 holds for εo = 0.3902 when To = 18. Therefore the results in Theorem 13 can

be applied to design the distributed state estimator. By direct calculations, εs = 33.2252,
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and thus ε∆ = 0.0117. Then the approximate stabilizing solution to the ARE in (4.30) and

the resulting estimation gain are given respectively by

X =

 1.0073 0.0588

0.0588 0.0069

 , K =

 1.0014

0.0581

 .
In the simulation, the initial condition ex(0) = ex0 is set as a random vector following

Gaussian distribution. The estimation error ‖ex;i(k)‖ at all the three sensor nodes are pre-

sented in Figure 4.8. It is revealed from the plots that the estimation error converges to 0

asymptotically for each i ∈ N , indicating a close tracking of the dynamic state.

Figure 4.8: Estimation error at each sensor node
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

Several basic but important issues concerning Kalman filtering over the WSN are studied

in this dissertation. Chapter 2 is focused on data fusion Kalman filtering for discrete-time

LTI systems in the presence of data packet drops. First we consider the case where only one

sensor node is employed to transmit its measurement in a single packet to the data fusion

center. Building on the mathematical foundations established in [77] and treating packet

drop as a special case of multiplicative noises, we show that the widely studied critical arrival

rate of the Bernoulli packet drop channel can be computed by solving a simple LMI problem.

Then we consider a more general scenario where multiple sensor nodes are used to obtain and

transmit observations to the fusion center through different packet drop channels. Under the

TCP-like protocol, the stationary Kalman filter that minimizes the average error variance

is studied in the form of an one-step predictor, and the optimal estimation gain is derived

in terms of the stabilizing solution to the corresponding MARE. The MARE admits the

stabilizing solution when the stability margin, which can be computed by solving a set of

LMIs, is greater than or equal to one.

Chapter 3 is focused on distributed Kalman filtering for discrete-time LTI systems, where

each node in the WSN is required to locally estimate the dynamic state in a collaborative

manner with its neighbors in the presence of data packet drops. We first present the station-

ary DKF that minimizes the local average error variance in the steady-state at each sensor

node, based on the stabilizing solution to the corresponding MARE. The stability issue is

again addressed by adopting the stability margin. Following [55], we then propose the KCF

by combining the stationary DKF with a consensus term of prior estimates to achieve con-

sensus among different local estimates. The upper bound for the consensus coefficient can be

computed by solving a simple LMI problem to ensure the MS stability of the estimation error
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dynamics associated to the KCF. Simulations show that the proposed KCF outperforms the

stationary DKF in general.

In Chapter 4 we consider the situation where the communication between a network of

interconnected nodes is represented by a deterministic time-varying topology. First we study

state consensus control for discrete-time homogeneous MASs over deterministic time-varying

feedback topology. The proposed solutions generalize the restrictive results for state consen-

sus in [92] and [38], and can be applied to MASs of more general form. Then we investigate

distributed state estimation over the WSN with deterministic time-varying communication

topology. This problem is addressed for neutrally stable target systems and neutrally unsta-

ble target systems respectively. The proposed estimation protocol allows low communication

overhead between the target system and distributed sensor nodes since the observation in-

formation is required to be transmitted to only one or a few nodes at each time instant.

Each sensor node can keep a close track of the target state in a collaborative manner with

its neighbors as long as uniform observability holds for the time-varying graph.

5.2 Future Work

In this section we highlight our points of view for future research work.

There are several technical issues in this dissertation that require our further considera-

tion.

• In Chapter 2 we show that the critical arrival rate can be computed by solving a simple

LMI problem. It is easy to see that when measurement y(k) has dimension one, i.e.,

m = 1, the critical arrival rate pinf is given by pinf = 1 −M(A)−2. However the closed-

form expression for pinf remains unknown when m > 1.

• Data packet drops are considered as a special case of fading channels and treated as

multiplicative noises. Then the necessary and sufficient condition for the MS stability of

feedback systems over fading channels is adopted to tackle the MS stabilizability of the

estimation error dynamics associated to the data fusion Kalman filter, and the existence of
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the stabilizing solution to MARE. It is reasonable and useful to consider how to generalize

these results for Kalman filtering over general fading channels instead of packet drop

channels. This problem can be quite challenging, especially when different fading channels

are correlated to each other.

• In Chapter 3 the H∞ norm of stochastic systems is adopted in pursuit of an upper bound

for the consensus coefficient ε of KCF. A drawback of the proposed solution is its conser-

vativeness. As pointed out in the simulation examples, MS stability may still holds for

the error dynamics associated to the KCF even if the selected ε is greater than the upper

bound obtained via Theorem 6 or Corollary 1. Hence more work needs to be done to find

a less conservative upper bound for ε.

• Our proposed KCF consists of the stationary DKF and a consensus term of prior estimates.

For future work we can consider another widely studied strategy in which the stationary

DKF is implemented first, followed by one extended step where each sensor node merges

its local estimate with those from its neighbors by a weighted average approach. In this

case the weights need to be optimized to yield minimum error variance at each sensor

node. The stability will be more difficult to analyze since two separate steps are included

in the filtering process. We can also compare this new filter with KCF to see which one

has a better performance.

• In Chapter 4 the distributed state estimation problem is addressed for neutrally unstable

target systems. It is claimed that the strengthened uniform observability in (4.28) has to

be satisfied, and the knowledge of εo value is essential to the design of estimation gain.

Although εo can be easily computed in our simulation example, it is hard to be obtained

in many practical cases. A possible solution is to adaptively estimate the value of εo using

real-time data. More work has to be done to establish a complete answer.

• Robust filtering can be studied for state space model with uncertainty. In addition, we

can consider the case where observations obtained at a set of consecutive time instants
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are grouped together in a batch for transmission. This problem can be investigated under

the framework of multirate system. Another direction for future work is filtering in the

presence of time delays. A preliminary solution can be established based on the well-

known Smith predictor.

Standard Kalman filtering is only applicable to linear systems. However most of the

physical systems are nonlinear in nature. Hence there is a need to study filtering algorithms

for nonlinear systems. A large number of nonlinear filters have been proposed over the years

[85]. Some are fairly general while other are tailored to particular applications. Widely

studied nonlinear filters can be grouped into three broad categories [71]: (i) analytic approx-

imations, (ii) Gaussian sum filters, and (iii) sampling approaches. Denote p[x(k)|Y(k)] as

the posterior probability density function (PDF) of the state x(k) based on the sequence of

measurements Y(k) := {y(t)}kt=0.

• The extended Kalman filter introduced in Chapter 1 is referred to as analytic approxima-

tions because the approximations (linearization) of the nonlinear functions in the state

dynamics and measurement model are conducted analytically. Notice that EKF always

approximates PDF p[x(k)|Y(k)] to be Gaussian. If the system model possesses severe non-

linearity, the non-Gaussianity of p[x(k)|Y(k)] will be more pronounced, and consequently

the performance of EKF will be degraded tremendously.

• The main feature of Gaussian sum filters [80] is that they approximate the posterior

density p[x(k)|Y(k)] by a weighted sum of different Gaussian density functions. The

approximation can be made as accurate as desirable via the choice of the total number

of different functions. The difficulty lies in the real-time computation of weights, means,

and covariances. This type of approximation poses great advantage over the other two

types, when the posterior density is multimodal.

• The sampling approach is adopted in the unscented Kalman filter (UKF) [87] and the

particle filter [6]. The UKF approximates the posterior PDF p[x(k)|Y(k)] by a Gaussian
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density, which is represented by a small number of deterministically chosen sample points.

The particle filter embraces a similar scenario, but uses a large number of random (Monte

Carlo) sample points. As a result, fairly high computation power is required for the

implementation of the particle filter.

It will be interesting to extend our research on the implementation and applications of

nonlinear filtering over WSNs by studying these nonlinear filters.

Future work can also be focused on practical applications of Kalman filtering over WSN.

As introduced in Chapter 1, Kalman filtering over WSN is extensively used for the local-

ization and tracking of moving targets. Another important application is state estimation

for smart grids [100, 66, 2], which claims a significant position in modern power system

operations. State estimation for smart grids usually serves as a critical prerequisite for oth-

er operation functions such as real-time monitoring, load forecasting, frequency control, etc.

Static state estimators are widely adopted in smart grids due to the modest traditional moni-

toring technology. Nowadays with the rapid development of phasor measurement technology,

there has been an explosion in the use of dynamic estimators for real-time monitoring and

control of highly complex and dynamic power systems.

Kalman filtering is one of the most popular dynamic state estimation techniques that

can recursively compute the optimal state estimate for smart grids, given the true state

and measurement models. However the exact noise statistics can hardly be obtained, and

measurement errors often occur due to device failure or malicious data attacks. In [100]

an adaptive Kalman filter with inflatable noise variances is proposed for smart grid state

estimation with real-time voltage phasor measurements, which demonstrates remarkable

advantage in dealing with various adverse conditions including inaccurate system models

and measurement errors.

In addition, most of the power systems in the real world are nonlinear. Hence the

implementation of nonlinear filters such as EKF and UKF in smart grids is also widely

studied in existing literatures.
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Recently, due to the concerns regarding global warming and energy crisis, people start

to integrate renewable distributed energy resources (DERs) such as solar and wind power

into the smart grid in their research. Since the power generation patterns of DERs are

mostly intermittent in nature and distributed over the grid, WSN provides a feasible and

cost-effective sensing and communication solution for smart grid operations. In [66] a set of

sensor nodes are deployed to get observations on DER, which are then transmitted to the

nearby base station. An accuracy-dependent Kalman filter is proposed to estimate the DER

states, which are then fed back to the DER for control purpose.

As a conclusion, there are many potential research directions in this area worthy of our

exploration in the near future.
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