
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

12-25-2018

Predicting Post-Procedural Complications Using
Neural Networks on MIMIC-III Data
Namratha Mohan
Louisiana State University and Agricultural and Mechanical College, namrathmohan@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems
Commons, and the Other Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Mohan, Namratha, "Predicting Post-Procedural Complications Using Neural Networks on MIMIC-III Data" (2018). LSU Master's
Theses. 4840.
https://digitalcommons.lsu.edu/gradschool_theses/4840

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/4840?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4840&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

PREDICTING POST-PROCEDURAL COMPLICATIONS USING NEURAL
NETWORKS ON MIMIC-III DATA

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science

in

Department of Computer Science

by
Namratha Mohan

B.E., Visvesvaraya Technological University, 2011
May 2019

Acknowledgments

First and foremost, I would like to express sincere gratitude to my advisor Dr. Thanos

Gentimis for being the best advisor I could have asked for. His invaluable insight, guidance

and support throughout the research journey has helped me become a better student.

I would like to thank Dr. Konstantin Busch for his help, advice and support throughout

my work and for agreeing to serve as my MS thesis committee chair. Special thanks to Dr.

Bijaya B. Karki for agreeing to serve on my thesis committee and contributing his time.

Most importantly, I would like to thank my parents Mohan Iyer and Sukanya Mohan,

and my friend Pavan Chandrashekar for letting me follow my dreams and for their love and

encouragement which has been a vital part of this research.

ii

Table of Contents

ACKNOWLEDGMENTS . ii

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . vi

CHAPTER
1. INTRODUCTION . 1

2. LITERATURE REVIEW . 3
2.1. Health Informatics . 3
2.2. Neural Networks General . 3
2.3. Predicting Post Procedural Complications . 5

3. EXPERIMENTAL SETUP . 7
3.1. System Hardware . 7
3.2. Python . 7
3.3. Stochastic Gradient Descent . 9
3.4. PostgreSQL Database System . 10
3.5. MIMIC-III Database. 11
3.6. Neural Networks . 12

4. IMPLEMENTATION . 15
4.1. Preprocessing . 15
4.2. Neural Network Implementation . 27

5. EXPERIMENTAL RESULTS . 32
5.1. Basic Statistics . 32
5.2. Feature Selection . 35
5.3. Results . 42

6. CONCLUSION-FUTURE WORK . 45

REFERENCES . 48

VITA . 50

iii

List of Tables

5.1. Patients with 996 and no 996 . 33

5.2. Count of Male vs Female . 35

5.3. Contingency table values for Age vs Complications . 37

5.4. Expected contingency table values for Age vs Complications 37

5.5. Contingency table values for Full los vs Complications . 38

5.6. Expected contingency table values for full los vs Complications 38

5.7. Contingency table values for Procedures vs Complications . 40

5.8. Expected contingency table values for Procedures vs Complications 40

5.9. Contingency table values for Gender vs Complications. 41

5.10. Expected contingency table values for Gender vs Complications 41

5.11. Accuracy Table . 42

6.1. Accuracy Table for relu. 46

iv

List of Figures

2.1. Working of a Neuron . 4

3.1. Single layer perceptron . 13

3.2. n-layer neural network . 14

4.1. Describing the Preprocessing flow . 16

4.2. Layer Visualization . 28

5.1. Histogram of the count of procedures performed for the patients 32

5.2. Histogram of the count of diagnoses performed for the patients 33

5.3. Box-plot for full los . 34

5.4. Box-plot for full los capped to 50 days . 34

5.5. Histogram of all the patients age . 35

5.6. Basic Histograms of the Accuracy for the four different optimizers 43

5.7. Scatter plot for the four optimizers . 44

6.1. Scatter plot for the four optimizers with relu activation function 46

v

Abstract

The primary focus of this paper is the creation of a Machine Learning based algorithm

for the analysis of large health based data sets. Our input was extracted from MIMIC-III,

a large Health Record database of more than 40,000 patients. The main question was to

predict if a patient will have complications during certain specified procedures performed

in the hospital. These events are denoted by the icd9 code 996 in the individuals’ health

record. The output of our predictive model is a binary variable which outputs the value

1 if the patient is diagnosed with the specific complication or 0 if the patient is not.

Our prediction algorithm is based on a Neural Network architecture, with a 90%-10%

training-testing ratio. Our preliminary analysis yielded a prediction accuracy above 80%,

outperforming various multi-linear models [2]. A comparative analysis of various optimizers

as well as time based performance measures is also included.

vi

Chapter 1.
Introduction

The use of neural networks to predict complications when certain specified procedures

are performed during the patient’s hospital stay, has not been attempted in the past as

per the literature review. Still, various computer assisted diagnostic (CAD) tools created

lately attempt to give similar answers, and some of them are based on ideas from Machine

Learning and specifically Deep Learning. It is imperative thus, to explore the question

both from a computer science perspective but also from a health informatics one.

Predicting post-procedural complications would be beneficial for all stakeholders in-

cluding hospital clinicians, doctors, administrators and of course the patients and their

families. For clinicians, these models can help in categorizing patients, allowing them to

take precautions and better manage those patients that are deemed more likely to have

complications. Administrators, would also find this an invaluable tool to justify the extra

expenses needed to manage these patients in a post-procedure hospital stay and help with

hospital resource management. The main benefit obviously, is the fore-knowledge that the

patient would receive, allowing them to be more mindful. Avoiding complications that can

be avoided, would shorten their stay at the hospital and help the recovery process.

The general icd9 code 996 defines complications particular to certain specified proce-

dures. Multiple categories fall under this code such as complications due to cardiac device,

vascular device, nervous system device, genitourinary device, complications of specified

prosthetic device, infection and inflammatory reaction due to internal prosthetic device,

complications due to internal orthopedic device and transplated organs and others. Each

of these categories subdivides further to different types of complications associated with

it [5].

Neural networks are used primarily for classifying information, predicting outputs and

clustering. Specifically, many applications of them exist in pattern recognition [27], image

processing, forecasting, classification [12] and others. Their use in health care ranges from

1

clinical diagnosis, image analysis and interpretation, to signal analysis, including drug

development and more [6].

In our work, we are primarily using MIMIC-III [28], which is a medical database con-

taining de-identified health related data of over forty thousand patients admitted in the

critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. 1

After the appropriate pre-processing phase, four different neural networks were created

using the keras package each with a different optimizer and averages over multiple runs

were computed. Although we did not monitor the memory allocation, we compared the

optimizers both on accuracy and time and discussed the results.

This thesis is organized as follows: In Chapter 1 we introduce the problem and discuss

it’s relevant parts. In Chapter 2, we analyze relevant literature and motivate the thesis. In

Chapter 3 we describe the experimental setup including the system hardware, programming

language, database, and the specific machine learning tools used. In Chapter 4, we talk

about the implementation, covering the pre-processing and machine learning model in

detail. Following that, we discuss the experimental results and the prediction accuracy in

Chapter 5. Finally, we present out conclusions and future work in Chapter 6.

1https://mimic.physionet.org

2

https://mimic.physionet.org

Chapter 2.
Literature Review

2.1. Health Informatics

Health Informatics is the collection of practices, algorithms and procedures for acquir-

ing, maintaining, retrieving and analyzing healthcare information. It makes use of infor-

mation technology to organize and analyze health records of patients, to improve various

healthcare outcomes with primary focus being that of patient care [9].

An Electronic Health Record (EHR) contains the digital version of a patient’s health

records. This includes information related to the patient’s demographic details, progress

notes, medications, vital signs, immunizations, past medical history, laboratory data and so

on. Since their establishment, EHRs have bridged the gap between patients and clinicians

allowing transparency and transferability . Various vendors who provide the patients with

such EHRs are Epic Systems Corporation, Allscripts, NextGen Healthcare, GE Healthcare,

Cerner Corporation, CureMD, practoce fusion, eClinicalWorks and so on.

New methodologies promoting the use of EHRs and cross platform interoperability

have been on the forefront of Health Informatics the past few years. This push has been

supported by the need for “meaningful use” of the Medicare and Medicate mandates es-

tablished during the latest health reform act. De-identified Electronic Health records for

research purposes have thus become abundant and more and more researchers from various

fields have been interested in analyzing and interpreting them.

2.2. Neural Networks General

Warren McCulloch, a neurophysiologist and a mathematician Walter Pitts created the

first neural network model in 1943 [16]. Their model initially tried to explain how neurons

in the brain work, and it was purely based on mathematics and logical algorithms. Later

on, in 1949, D.O Hebb introduced the concept of “Hebbian learning” which was a learning

hypothesis based on the neural plasticity and is now explaining the intuitions behind the

3

architecture of NN’s. In 1958, Frank Rosenblatt created the Perceptron, which is the key

element in basic NN designs and was the first ever model that could do pattern recognition.

Unfortunately, his model couldn’t be tested due to lack of information.

The first “real” neural network model with many layers was first tested and published

by Alexey and Lapa in 1965. Paul Werbos introduced the Backpropogration concept which

gave a solution to the XOR problem and made neural networks more efficient. More

recently, between the years 2009 and 2012, the deep feedforward neural networks and

recurrent neural networks that were developed by Schmidhuber won eight competitions

related to pattern recognition and machine learning [18]. The field of Machine learning,

which NN’s are the primary star, is now grown to include experts from various fields and

one can argue that it is on the forefront of Data Analytics this past decade.

Figure 2.1. Working of a Neuron

In many cases, rigid algorithms can do well what humans can do but even then, hu-

man brains are seemigly always a step ahead. An Artificial Neural Network mimics the

functionality of the structure of human brain in solving machine learning problems and

acts more like a human brain instead of a series of elaborate “if then” statements [31].

As shown is Figure 2.1 [30], our brain comprises neurons or nerve cells which are used in

transmitting and processing information received from our senses. Multiple neurons are

4

arranged together to form a network passing electrical impulses from one neuron to the

other.

The dendrites receive these electrical impulses from the synapses of the previous neuron

which is further carried to the soma (nucleus of the nerve cell). The electrical impulse is

processed in the soma and the output is then transferred to the axon. These axons are the

longer branches which transfer the electrical impulse from the soma to the synapse. These

synapses will later transfer the impulse to the dendrites of the second neuron [32]. One is

amazed when he/she realizes that the exact same concept is used in the working of neural

networks as we will discuss further below.

We note here that the adoption path of neural networks is unique when compared

to other technologies since they neither failed immediately nor became hits overnight but

instead their popularity rose gradually and remained the same ever since then.

2.3. Predicting Post Procedural Complications

As mentioned earlier, to our knowledge there is no neural network based model that uses

MIMIC-III Data to predict post-procedural complications during a patient’s hospital stay.

Some scientific papers attempt to predict post-procedural complications but are limited to

a particular health condition and/or use classical statistical tools.

On example of special focus is the paper “Prediction of Sepsis in the Intensive Care Unit

using MIMIC-III Data” by Thomas Desautels et al., [20]. The main purpose of this article

is to test a machine learning based system called Insight, in terms of predicting the onset of

sepsis based on the new Sepsis-3 definitions using a minimal set of electronic health record

variables from the MIMIC-III database. The performance of Insight is compared with

the already existing scoring systems: quick sequential organ failure assessment (qSOFA),

modified early warning score (MEWS), systemic inflammatory response syndrome (SIRS),

simplified acute physiology score (SAPS) II, and sequential organ failure assessment (SOFA)

to find whether or not the patients will become septic at a fixed period of time. Additionally,

the effects of data sparsity is investigated on the Insight performance.

5

Another example is the paper “Predicting Hospital Length of Stay using Neural Net-

works on MIMIC-III Data”, in which the authors attempted to predict the total length

of stay of a patient in hospital using various patient and admission data provided by the

MIMIC-III database [24]. Three different models were run on the data: neural network,

random forest, linear model. The neural network provided the most accurate results.

In their paper “A prognostic computer model to individually predict post-procedural

complications in interventional cardiology”, Budde et al., derived computer algorithms

from artificial intelligence to predict the individual risk of post-procedural complications

associated with coronary intervention and to explain the structural relationship between

risk factors and post-procedural complications [14].

6

Chapter 3.
Experimental Setup

In this chapter we will give an overview of all the software and hardware used in this

process, including the specific libraries and packages. We will also present an overview

of the mathematical underpinnings behind the ideas of Neural Networks and give a brief

description of the MIMIC-III database. Our goal was to create a “self-contained” document

as much as possible.

3.1. System Hardware

The experimentation was carried out in a workstation that was configured as a server

located at the LSU’s Computer Science Department. All the required documents, databases

and necessary computations were created and stored on that machine.

This server is an exceptionally powerful machine consisting of a Dual Intel Xeon Pro-

cessor E5-2697 v2 (Twelve Core HT, 2.7GHz Turbo, 30 MB) and 64 GB of memory.

3.2. Python

Early in our research we identified that the framework of the analysis was more com-

patible with Python [2], which is an easy to learn object-oriented programming language.

Python makes use of an elegant syntax, making it easier to read and understand scripts

written in it. During our analysis we made use of multiple Python Libraries such as NumPy,

Pandas, Keras and more. In the following subsections we describe those libraries in detail.

“Rather than having all of its functionality built into its core, Python was designed to be

highly extensible. This compact modularity has made it particularly popular as a means of

adding programmable interfaces to existing applications... ” Guido van Rossum, the creator

of the language explained in an interview about the language and its general philosophy.1

Python is the descendant of the ABC language which was conceived by Guido van

Rossum at Centrum Wiskunde and Informatica (CWI) in the Netherlands in the late

1The Making of Python

7

https://www.artima.com/intv/pythonP.html

1980s and is capable of exception handling and interfacing with the Amoeba operating

system [35]. Its first implementation began in late 1989 and it is generally recognized

that the Python syntax helps the programmers code in fewer steps when compared with

other general purpose programming languages. The Python programming language is now

widely used in bigger organizations due to the small learning curve and the plurality of

features [19]. The vibrant community of python is also a big plus, since most problems

and simple tasks can be addressed through the various python fora which are updated

constantly.2

In the rest of the section we will discuss the various packages we used when implement-

ing our codes.

3.2.1. NumPy

NumPy [3] is one of the most extensively used packages in Python with emphasis

on scientific computing. It provides several features such as: computationally efficient

and powerful multidimensional array object manipulation, linear algebra tools, Fourier

transforms, random number generation algorithms and more. The most important object

of NumPy is the homogeneous multidimensional array whose elements are most commonly

numbers, indexed by positive integers.

3.2.2. Pandas

Pandas [4] is probably the most essential package for basic data analysis in Python. It

provides high performing data structures and data analysis tools, with intuitive codes and

extensive examples. Pandas allowed us to treat our dataset as a relational database table

within Python. It is more effective to process and analyze ordered and unordered time

series data with Pandas, than any other library and many statistical analyses can be easily

performed with it. It provides two important data structures: series and dataframes; Series

are responsible for handling single dimensional data whereas dataframes handle two and

2https://stackoverflow.com

8

https://stackoverflow.com

above dimensional data (tables, tensors etc). Finally, It is built with many connections to

NumPy making the integration with scientific computation seamless.

3.2.3. Keras

Keras [15] is an easy to use machine learning library built on Tenserflow [10] and

Theano [11]. It provides many functional high level tools like Simple Neural Networks, Deep

Neural Networks, Convolutional Neural Networks as well as various API’s for developing

and evaluating deep learning models. Keras is one of the most user friendly and “pythonic”,

semi-automated machine learning libraries out there. The main unit in Keras is the module

which can be manipulated, extended and combined with other structures to match the

specifics of the problem.

3.3. Stochastic Gradient Descent

The training of the neural networks utilized the idea of the “Stochastic Gradient De-

cent” (SGD) iterative method [17]. SGD calculates the error for each training example

within the given dataset based on a set of parameters (weights) given to the inputs. Then

the parameters are updated for each training example sequentially by a prediscribed choice

vector. The updates of the parameters are then connected to the rate of improvement [21]

and the best ones are chosen. The process repeats until a predetermined maximum (or

minimum) is obtain on the error function, or the algorithm reaches a certain number of

steps. Stochastic gradient decent is one of the most well known algorithms for training a

variety of models in machine learning including logistic regression, support vector machines,

simple linear regression, neural networks and others.

There are many implementations of SGD each with its own strengths and weaknesses.

In our experiments, we made use of four optimizers: Adam, AdaGrad, RMSProp and

AdaMax which we explore more below.

1) RMSprop Optimizer - Root Mean Square Propagation(RMSProp) [23] is an opti-

mization algorithm which does well on non-stationary problems(noisy data) [26]. This

9

optimizer was proposed by Geoff Hinton.

2) AdaGrad Optimizer - AdaGrad stands for Adaptive Gradient. John Duchi, Elad

Hazan and Yoram Singer first proposed this optimizer in their paper in 2011 [22]. This

optimization algorithm is used to improve the performance on problems with sparse

gradients.

3) Adam Optimizer - Adam [29] is an optimization algorithm to train deep learning

models. Diederik Kingma and Jimmy Ba first came up with this optimizer in their 2015

paper. This optimizer combines the best results of RMSProp and AdaGrad to handle

sparse gradients and noisy data [13].

4) AdaMax Optimizer - AdaMax [29] is a variant of Adam optimizer based on the

infinity norm. Diederik Kingma and Jimmy Ba were the one’s who came up with this

optimizer. The infinite order norm makes the algorithm more stable which is best suited

for sparsely updated parameters.

3.4. PostgreSQL Database System

PostgreSQL [1] is an open source object-relational database system. It is compliant with

ANSI SQL Standards, which makes it easy to interact with most other database systems. In

conjunction with SQL, Postgres also provides additional capabilities to store and query even

the most complicated data workloads. Features like reliability, data integrity, extensibility

(PostgreSQL provides the option to define our own data types) and most importantly the

contributions from an open source community have made PostgreSQL one of the most

powerful database systems available. It is supported by almost all the operating systems

and is ACID compliant. 3

PostgreSQL was first derived from the POSTGRES package written at the University

of California at Berkeley and its first implementation is due to Professor Michael Stone-

3ACID stands for Atomicity (Each transaction is guaranteed either to succeed at once completely or
to fail completely), Consistent(Data integrity is maintained), Isolation (Multiple transactions can occur
concurrently without any data integrity issues) and Durability (once the transaction is completed, it will
remain committed even in case of system failure).

10

braker (1986). Postgres has gone through several major releases since then. In 1996, a

SQL language interpreter was added to Postgres by Andrew Yu and Jolly Chen. From

then, Postgres was renamed to PostgreSQL to reflect the relationship between the Postgres

and the newly implemented SQL interpreter. Postgres has been used in many applications

ranging from data analytics, to various automated monitoring packages, including an aster-

oid tracking database, medical information databases, and several geographic information

systems [1].

3.4.1. PgAdmin

PgAdmin [33] is an open source tool which is readily available in the PostgreSQL

package. It is designed as a powerful graphical user interface for visualizing the database

and making it easy to perform simple queries and data management, even for people with

minimal coding skills. A complete write up with instructions detailing the process of

creating a database through PgAdmin is included in the following section below.

3.5. MIMIC-III Database

In our work, we are making use of the MIMIC-III (Medical Information Mart for

Intensive Care III) Database for predicting complications to certain specified procedures

upon which the neural network is being trained. The MIMIC-III [28] dataset is a medical

database containing de-identified health related data of over forty thousand patients ad-

mitted in the critical care units of the Beth Israel Deaconess Medical Center between 2001

and 2012 and is freely available for research purposes.

The MIMIC-III dataset contains the following information, structured in more than 20

tables:

1) Patients: Unique characteristics about each patient such as demographic details and

more.

2) Admissions: Patient’s specific hospital admission data.

3) Diagnoses: List of diagnoses performed on each patient and its corresponding details

11

such as icd9 codes(International Classification of Diseases Version 9) and more.

4) Procedures: List of procedures performed on each patient and its corresponding details

such as icd9 code(International Classification of Diseases Version 9) and its descriptions

and more.

5) Callout: Information about patient’s Intensive Care Unit (ICU) summary.

As mentioned earlier, MIMIC is an openly available data set which is developed and

maintained by the Massachusetts Institute of Technology(MIT) Lab. MIMIC-III database

is updated periodically as more and more data becomes available. The updates to the

database are made in batch and are given a new version number. MIMIC provides an in-

house data querying tool for running SQL queries on the MIMIC-III database. The main

purpose of this querying tool is to provide the researchers who are new to MIMIC with a

light exploration of the data helping them better understand the structure.

3.6. Neural Networks

Artificial Neural Networks (ANN) or just Neural Networks (NN) are objectively the

main tool in machine learning appropriate for handling large data sets. Neural Networks

are a combination of “neurons” and “synapses” consisting of three main components: An

input layer, a number of hidden layers and an output layer. These three parts create what

is called an n-layer Neural Network. Each layer is connected with a set of weights and a

bias value to the next one. Also, in each hidden layer a choice of activation function must

be defined, but if that is fixed in the beginning of the analysis, only the weights and bias

values will affect the output, thus training a Neural Network is a process of fine tuning the

weights and bias values to get a better accuracy through a complicated Stochastic Gradient

Descent method.

Every iteration in training the neural network contains two main steps: Backpropaga-

tion and Feedforward. Feedforward is the process of calculating the predicted output and

Backpropagation is the process of updating weights and biases after a specified number of

iterations [34].

12

Figure 3.1 below shows the architecture of a single layer perceptron. This is the simplest

type of an artificial neural network, akin to the biological neuron presented in the literature

review.

Figure 3.1. Single layer perceptron

Below are the major components of a perceptron:

1) Inputs: All the features available in the training dataset become the input for a percep-

tron. Also, an extra value called a bias value is fed as one of the inputs. In the above

figure, inputs are represented by [x1, x2,.. xn] and the bias value is represented by “b”.

2) Weights: The value of weights are initiated randomly (most of the times zero for all)

and these values are updated accordingly by reviewing the training error. In the above

figure, weights are represented by [w1, w2,.. w3].

3) Weighted sum: This is the summation of all the values obtained after multiplying each

weight with its associated input value and adding the bias at the end.

4) Activation function: These functions convert an input signal of a node to an output

signal. Some of the commonly used activation functions are tanh, sigmoid, relu, softsign,

softplus, selu, softmax, elu, exponential and linear [7]. The flexibility of these activation

functions is one of the reasons neural networks perform better than traditional multi-

linear models.

5) Output: The weighted sum is passed into the activation function and becomes the input

13

value of the next layer.

As a first step, the weight vector is initialized. All the features available in the training

dataset are fed as input to the perceptron. These input features are then multiplied with

the corresponding weights and the values are summed up including the bias value. The

new computed value is fed to the activation function in order to get the predicted output.

If the predicted value doesn’t match with the actual value, the error is calculated and the

weights are updated in order to reduce the error for the next iteration. This process is

repeated until the error is reduced to a prescribed level, or if a certain number of steps is

achieved.

Figure 3.2. n-layer neural network

Multiple single layer perceptrons are stacked up into several layers to form a n-layer

neural network [25] as shown in Figure 3.2.

14

Chapter 4.
Implementation

As we mentioned earlier, our main goal was to predict if a patient will suffer from com-

plications after certain specified procedures are performed during their hospital stay. We

also wanted to explore the performance of the various implementations of Neural Networks

optimizers available to us with respect to predictability and resource allocation. In this

section we will describe all the procedures, review our codes and explain the structure of

each part of the algorithm.

4.1. Preprocessing

First we will describe the steps to set up a PostgreSQL-based clone of the MIMIC-III

database on a local machine, as well as the queries we performed to clean up our dataset

and make it suitable for the Neural Network implementation. As usual, real world data

are often incomplete, resulting in missing values, noisy data, inconsistencies and so on. For

us, data pre-processing is the collection of techniques that involves transformation of such

raw data into an understandable format.

The process splits into the following steps:

4.1.1. Steps to create a database in PostgreSQL

The first thing one has to do is create a Database in PostgreSQL as follows:

1) Once the PostgreSQL software is installed on the local machine, we get a folder con-

taining the following: Application Stack Builder, PgAdmin 4, Reload Configuration and

SQL Shell (psql).

2) Open the PgAdmin 4 tool and expand the Servers followed by the PostgreSQL on the

Left (It prompts to input a password and the default password is postgres).

3) Right click on the Login/Group Roles – Create – Login/Group. This is done in order

to create a new username. It is always better to create a new username and password

instead of using the default “postgres” username.

15

Figure 4.1. Describing the Preprocessing flow

4) Fill in the Preferred Name, move to the Definition tab and provide the desired password.

Next, switch to the Privileges tab, change all the privilege settings to “Yes” and click

on the Save button.

5) To create a new database, right click on the Databases and select – Create – Database.

6) Provide the Database Name, change the owner to the newly created username from the

dropdown and click on Save.

7) Finally to create tables using PostgreSQL queries, right click on the Database name and

click on the “Query Tool” option. The Query Tool will open on the right and through

this the queries can be executed.

4.1.2. Steps to create our clean Dataset

After setting up the database, we describe the generation of our dataset by gathering

input attributes from a combination of tables in the MIMIC-III Database listed below:

1) Admissions: hadm id, subject id, insurance, religion, martial status, ethnicity, admit-

time, dischtime

16

2) CPTEvents: costcenter

3) ICUStays: first careunit, last careunit, los

4) Services: prev service, curr service

5) Patients: dob, gender

6) diagnoses icd: seq num, icd9 code(truncated to first 3 characters)

7) procedures icd: seq num, icd9 code(truncated to first 3 characters)

We initially truncated the diagnoses icd9 code to the first 3 characters, as these corre-

spond to a “class of a disease” which was our objective, since we decided to try and predict

all post-procedural complications, independent of type.

Code 4.1. SQL Code for trimming the icd9 code to first 3 digits wrt d icd diagnoses
table

CREATE TABLE icd9Trunc_diagnoses AS

SELECT ROW_id , SUBSTRING(icd9_code , 1, 3) AS icd9_code ,

short_title

FROM d_icd_diagnoses;

The SQL code above creates the table named “icd9Trunc diagnoses” starting from the

original MIMIC-III table “d icd diagnoses” by selecting the variables, “Row id” containing

the joining identifier between the different tables corresponding to an individual patient,

the first three characters of the variable “icd9 code” and a short title corresponding to the

“icd9 code”.

As a next step, we removed all the diagnoses icd9 code whose count is less than 30.

There is no specific reason in choosing the number 30, but such a choice will ensure we

focus on the more common diseases and avoid skewed results due to outliers and over-fitting.

17

Code 4.2. SQL Code for keeping a count of each icd9 code wrt icd9Trunc diagnoses
table

CREATE TABLE icd9Trunc_diagnoses_count AS

SELECT icd9_code , COUNT(icd9_code) AS total_count

FROM icd9Trunc_diagnoses

GROUP BY icd9_code

ORDER BY icd9_code DESC;

The script above creates a table named “icd9Trunc diagnoses count” starting from the

previously created table “icd9Trunc diagnoses” by selecting the variables, “icd9 code” and

its corresponding count by grouping them together and ordering the icd9 code in descending

order.

Code 4.3. SQL Code for removing icd9 code with less than 30 counts

CREATE TABLE icd9Trunc_diagnoses_gt30

AS SELECT icd9_code , total_count

FROM icd9Trunc_diagnoses_count

WHERE total_count >= 30;

The SQL table above named “icd9Trunc diagnoses gt30” is created from the previously

created table “icd9Trunc diagnoses count” by selecting the variables, “icd9 code” whose

count is greater than 30.

Code 4.4. SQL Code for linking icd9Trunc diagnoses with icd9Trunc diagnoses gt30

CREATE TABLE icd9Trunc_diagnoses_gt30_full AS

SELECT a.ROW_id , a.icd9_code , b.icd9_code AS

(Code 4.4. cont’d.)

18

icd9_code_trunc , a.short_title

FROM d_icd_diagnoses As a, icd9Trunc_diagnoses_gt30 AS b

WHERE SUBSTRING(a.icd9_code ,1,3) = b.icd9_code;

The query above creates the table named “icd9Trunc diagnoses gt30 full” by link-

ing the original MIMIC-III table “d icd diagnoses” with the newly created table

“icd9Trunc diagnoses gt30” by selecting the variables, “Row id” containing the joining

identifier between the two tables corresponding to an individual patient, the “icd9 code”

from the original table and the newly truncated “icd9 code” from the new table.

Code 4.5. SQL Code for linking diagnoses icd with icd9trunc diagnose sgt30 full table

CREATE TABLE diagnoses_icd9Trunc AS

SELECT a.row_id , a.subject_id , a.hadm_id , a.seq_num , b.

icd9_code_trunc

FROM diagnoses_icd AS a, icd9trunc_diagnoses_gt30_full as b

WHERE a.icd9_code = b.icd9_code;

The table “diagnoses icd9Trunc” is joined by linking the original MIMIC-III table “di-

agnoses icd” with the newly created table “icd9trunc diagnoses gt30 full” by selecting the

variables, “Row id”, “Subject id” and “hadm id” containing the joining identifier between

the two tables corresponding to an individual patient, the “seq num ” and the truncated

“icd9 code”.

The same steps are followed for procedures icd9 code but this time we removed all the

procedures icd9 code whose count is less than 05. Again, the choice of 5 was inspired by the

average number of procedures performed on a patient. Routine check-ups were excluded

(few procedures) since the chance of having complications during them is extremely low.

19

Code 4.6. SQL Code for trimming to first 3 digits of the icd9 code wrt d icd procedures
table

CREATE TABLE icd9Trunc_procedures

AS SELECT ROW_id , SUBSTRING(icd9_code , 1, 3) AS icd9_code ,

short_title

FROM d_icd_procedures;

The SQL code above creates the table named “icd9Trunc procedures” starting from

the original MIMIC-III table “d icd procedures” by selecting the variables, “Row id” con-

taining the joining identifier between the different tables corresponding to an individual

patient, the first three characters of the variable “icd9 code” and a short title corresponding

to the “icd9 code”.

Code 4.7. SQL Code for keeping a count of each icd9 code wrt icd9Trunc procedures
table

CREATE TABLE icd9Trunc_procedures_count

AS SELECT icd9_code , COUNT(icd9_code) AS total_count

FROM icd9Trunc_procedures

GROUP BY icd9_code

ORDER BY icd9_code DESC;

The above query creates the table named “icd9Trunc procedures count” from the pre-

viously created table “icd9Trunc procedures” by selecting the variables, “icd9 code” and its

corresponding count by grouping them together and ordering the icd9 code in descending

order.

20

Code 4.8. SQL Code for removing icd9 code whose count is less than 05 wrt
icd9Trunc procedures count table

CREATE TABLE icd9Trunc_procedures_gt05

AS SELECT icd9_code , total_count

FROM icd9Trunc_procedures_count

WHERE total_count >= 5;

The table named “icd9Trunc procedures gt05” is created from the previously created

table “icd9Trunc procedures count” by selecting the variables, “icd9 code” whose count is

greater than 05.

Code 4.9. SQL Code for linking icd9Trunc procedures with icd9Trunc procedures gt05

CREATE TABLE icd9Trunc_procedures_gt05_full

AS SELECT a.ROW_id , a.icd9_code , b.icd9_code AS

icd9_code_trunc , a.short_title

FROM d_icd_procedures As a, icd9Trunc_procedures_gt05 AS b

WHERE SUBSTRING(a.icd9_code ,1,3) = b.icd9_code;

The snippet above creates the table named “icd9Trunc procedures gt05 full” by

linking the original MIMIC-III table “d icd procedures” with the newly created table

“icd9Trunc procedures gt05” by selecting the variables, “Row id” containing the joining

identifier between the two tables corresponding to an individual patient, the “icd9 code”

from the original table and the newly truncated “icd9 code” from the new table.

Code 4.10. SQL Code for linking procedures icd table with
icd9trunc procedures gt05 full table

CREATE TABLE procedures_icd9Trunc

(Code 4.10. cont’d.)

21

AS SELECT a.row_id , a.subject_id , a.hadm_id , a.seq_num , b.

icd9_code_trunc

FROM procedures_icd AS a, icd9trunc_procedures_gt05_full as

b

WHERE a.icd9_code = b.icd9_code;

The SQL code above creates the table named “procedures icd9Trunc” by link-

ing the original MIMIC-III table “procedures icd” with the newly created table

“icd9trunc procedures gt30 full” by selecting the variables, “Row id”, “Subject id” and

“hadm id” containing the joining identifier between the two tables corresponding to an

individual patient, the “seq num ” and the truncated “icd9 code”.

In the MIMIC-III database, the diagnoses are ordered with the variable seq num start-

ing from 1 upto seq num of n, where n is the maximum number of diagnoses recorded for

a patient against that particular admission id. For our work, we capped the value of n to

be 6, since the number of patients with more than 6 diagnoses was negligible compared to

the general population.

Code 4.11. SQL Code for trimming maximum seq num

CREATE TABLE diagnoses_icd9Trunc_seqnum_max6 AS

SELECT *

FROM diagnoses_icd9Trunc

WHERE seq_num <= 6;

The table “diagnoses icd9Trunc seqnum max6” is created from the previously created

table “diagnoses icd9Trunc” by selecting all the variables from “diagnoses icd9Trunc” table

whose “seq num” is less or equal to 6.

22

Code 4.12. SQL Code for extracting rows with seq num

CREATE TABLE diagnoses_seqnum_1 AS

SELECT row_id , subject_id , hadm_id , icd9_code_trunc AS

icd9_code_diagnoses_1

FROM diagnoses_icd9Trunc_seqnum_max6

WHERE seq_num = 1;

The query above creates the table named “diagnoses seqnum 1” from the previously

created table “diagnoses icd9Trunc seqnum max6” by selecting the variables, “Row id”,

“Subject id”, “hadm id” containing the joining identifier between the different tables cor-

responding to an individual patient, and the variable “icd9 code trunc” containing the

truncated icd9 code.

As above, five more tables are created for extracting rows with seq num 2, 3, 4, 5 and

6 from the diagnoses icd9Trunc seqnum max10 table.

A new binary column called “Complications” was created with the value 1 if any of the

diagnoses icd9 code row starting from seq num 1 to 6 contain the icd9 code 996 (icd9 code

996 provides us the complications to certain specified Procedures). Otherwise, the result

is 0. This attribute is considered to be the output variable that has to be predicted.

Code 4.13. Complications Column

Appends a column for complications and adds 0 to a row

with no 996 and 1 to a row containing 996 icd9code

Data[’Compl’] = np.where((Data[’icd9_code_diagnoses_1 ’]=="

996")|(Data[’icd9_code_diagnoses_2 ’] == "996")|(Data[’

icd9_code_diagnoses_3 ’] == "996")|(Data[’

icd9_code_diagnoses_4 ’] == "996")|(Data[’

(Code 4.13. cont’d.)

23

icd9_code_diagnoses_5 ’] == "996")|(Data[’

icd9_code_diagnoses_6 ’] == "996") ,1,0)

Once the Complications column is created, the icd9 code 996 was removed in all the

diagnoses icd9 code columns. This way, we wont be predicting the 996 occurrence, having

996 as input.

Code 4.14. 996 replaced to 0

Changes all 996 into 0

Data = Data.replace("996", 0)

To have a consistent data set, we replaced all the diagnoses icd9 code rows starting

with “V” and “E” to 0. This is a technicality of the ICD9 coding system, and we decided

to explore these specific diagnoses in a future publication.

Code 4.15. Replaced rows with alphabets

Replaces all the icd9codes starting with an alphabet into

0

Data = Data.replace (["E87", "V58", "E93", "E88", "V10", "

E93", "V45", "V49", "E91", "E94", "V15", "E81", "E84", "

E00"],0)

Once the complications column is created, we retained only the icd9 code with seq num

equal to 1 and the remaining seq num from 2 to 6 were removed. This is done because the

column with seq num equal to 1 generally gives us the primary diagnoses or the diagnoses

which is more relevant to the patient’s stay at hospital. Also, the count of seq num for

diagnoses computed, representing the total number of diagnoses performed for the patient

24

against that particular admission id. Again, we agree that removing this information may

be reducing the accuracy of our model, yet for the purposes of this thesis and to make

things easier to explain we decided to implement this simplification.

Code 4.16. Global replacements

Collapses all Icd9 to one

for i in range(0, len(Data.index)):

for j in range(2, 6):

if (Data.iloc[i,j] != 0):

Data.iloc[i,2] = Data.iloc[i,j]

break

Cleaning , removing column , change to numeric , rearrange

Data = Data.drop([’subject_id_x ’, ’hadm_id ’, ’

icd9_code_diagnoses_2 ’, ’icd9_code_diagnoses_3 ’, ’

icd9_code_diagnoses_4 ’, ’icd9_code_diagnoses_5 ’, ’

icd9_code_diagnoses_6 ’, ’icd9_code_procedures_1 ’, ’

icd9_code_procedures_2 ’, ’icd9_code_procedures_3 ’, ’

icd9_code_procedures_4 ’, ’icd9_code_procedures_5 ’, ’

icd9_code_procedures_6 ’], axis= 1)

Since the Complications column is our output variable, it was moved to the beginning

of our data set to make it easy for further implementations.

Code 4.17. Re-arranging Complications column

moves the Compl to first column

cols = Data.columns.tolist ()

(Code 4.17. cont’d.)

25

cols = cols [-1:] + cols [:-1]

Data = Data[cols]

As the final step of pre-processing, feature scaling was performed to scale all the vari-

ables in the range of 0 and 1.

Code 4.18. Feature Scaling

Making use of MinMax Scaler to scale all the variables in

the range of 0 and 1

min_max_scaler = MinMaxScaler ()

Data = min_max_scaler.fit_transform(Data)]

4.1.3. Variable manipulation-creation

To further analyze connections between our target variable and some characteristics of

the patients, three more input variables were considered: full los, age and procedures. The

variable full los was calculated as the difference between admittance and discharge time.

Age was calculated based on the admittance time and dob. The procedures variable was

calculated by taking into account the count of seq num for procedures, representing the

total number of procedures performed for the patient during that particular admission id.

All the string input attributes namely insurance, religion, martial status, ethnicity,

costcenter, first careunit, last careunit, prev service and curr service are encoded to nu-

meric values and since we are using Neural Networks, it is always better to scale all the

input attributes which will speed up all back propagation techniques.

Once all these computations, including the preliminary statistical analysis and feature

selection are performed (see Section 5, the normalized dataset is exported to our local

machine which serves as input to train the neural network.

26

4.2. Neural Network Implementation

As we mentioned earlier a Python script was written to develop and train the neural

network model using the pre-processed data. We are making use of the Keras package for

building and training the model while testing four different optimizers [8]: Adam, AdaGrad,

RMSProp and AdaMax.

Code 4.19. List of Optimizers

Defining a list of optimizers for training different

neural network models

optimizer = [’adam’, ’adagrad ’, ’rmsprop ’, ’adamax ’]

Our final data set had 4,311 data points in total. From this set, we created 100 subsets

of 3,500 data points chosen in random and from each subset, 90% of the data points were

used as training set and the remaining 10% were used as the test set to compute the

prediction accuracy.

Code 4.20. Training and Test set split

Defining the number of data points to be chosen in random

random_subset = NeuralNetworkModel.Data.sample(n = 3500)

Defining the Input variables as X and target variable as

y

X = random_subset.iloc[:, 1:]. values

y = random_subset.iloc[:, :1]. values

Splitting the Dataset into Training set and Test set with

the ratio 90:10

(Code 4.20. cont’d.)

27

X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size = NeuralNetworkModel.alpha)

Our model was a 3-layer neural network with two hidden layers of 8 and 5 nodes. We

came up with this final architecture after testing various possibilities as follows:

We picked a subset of 1,000 random data points from the cleaned dataset and created

various architectures by varying the first hidden layer from 5 to 10 nodes and the second

hidden layer from 5 to 10 nodes.

The above steps were written in a for loop repeating 100 times. The model with 8

nodes in the first hidden layer and 5 in the second hidden layer was the one with the higher

average accuracy. Once the number of nodes in the first two hidden layers were obtained,

a third hidden layer was created by changing the nodes from 1 to 10 and the same steps

were repeated for 100 trials.

Unfortunately, the accuracy did not improve by adding the third hidden layer. Hence,

the third hidden layer was removed and the two hidden layers with 8 and 5 nodes and the

output layer with one node were made final. Figure 4.2 provides a better visualization on

our 3-layer neural network with two hidden layers and an output layer.

Figure 4.2. Layer Visualization

28

With the architecture settled, the first algorithmic step to build a Neural network is

to define the model. The sequential model was chosen from the Keras package which train

the layers one after the other (linear stack of layers).

Code 4.21. Neural Network Initialization

Initializing Neural Network by defining the model

model = Sequential ()

The “Dense layer” is a command in Keras used to add a layer. Every neuron will

receive an input from all the neurons of the previous layer and hence the name Dense as

it is densely connected. The output dim is used to specify the number of output nodes

for each layer. init = ‘uniform’ is the way to define weights at each node; Here we chose

random weights to be are assigned to each node in the layer using a uniform distribution.

The input dim is nothing more than the number of input nodes. input dim should be

defined only for the first layer to specify the number of input variables. In the later layers,

the input variables are automatically calculated based on the output nodes of the previous

layer. The activation function is applied on the sum of weighted sum and bias value to

decide whether that particular node should be activated or not. We have made use of the

Sigmoid function to restrict the output values between 0 and 1.

Code 4.22. Adding layers

Defining the input layer and the first hidden layer

model.add(Dense(input_dim =16, activation="sigmoid", units

=8, kernel_initializer="uniform"))

Defining the second hidden layer

model.add(Dense(kernel_initializer="uniform", activation="

(Code 4.22. cont’d.)

29

sigmoid", units =5))

Defining the final output layer

model.add(Dense(kernel_initializer="uniform", activation="

sigmoid", units =1))

In the Initialization process, the “init method” sets the first value of the weights at

random. As a next step, each optimizer will apply a version of Stochastic Gradient Decent

to find the best suited (optimal) set of weights in order to better predict the output. The

Loss function is used to calculate the error between the truth and the prediction, and it is

the one the SGD will try to minimize. We are making use of the “Sum of Squared Error”

loss function here which is a typical choice for almost all predictive models. This is the

summation of all the differences between actual and predicted output squared.

Code 4.23. Neural Network Compilation

Compiling the Neural Network

model.compile(optimizer = opt , loss = ’mean_squared_error ’,

metrics = [’accuracy ’])

In the Optimization process, the weights are optimized in order to achieve the best

model accuracy. The batch size specifies the number of training examples in a batch after

which the weights need to be updated. The argument Epoch specifies the number of

iterations the algorithm will go through until it terminates. One epoch means the entire

dataset completing the backward and forward propagation through the neural network

once.

30

Code 4.24. Fitting the model

Fitting the model for further prediction

model.fit(X_train , y_train , batch_size = 100, epochs =

1000)

The Predicted test result is then computed and turned into a binary prediction, with

value 1 corresponding to some sort of complications and 0 to no complications.

Code 4.25. Test Result Prediction

Predicting the test data

y_pred = model.predict(X_test)

y_pred = y_pred > 0.5)

Finally, a confusion matrix is generated to explore the predictions of our model in the

test set. The final accuracy is also computed.

Code 4.26. Confusion matrix and Accuracy

Confusion matrix

conf_matrix = confusion_matrix(y_test , y_pred)

accuracy_score(y_test , y_pred)

The above steps were part of a for loop which repeated the process 100 times on the

four neural networks each for one optimizer. This created 100 accuracy scores for each

model (400 accuracy scores in total). The accuracy scores were saved in a .csv file for

further analysis.

31

Chapter 5.
Experimental Results

5.1. Basic Statistics

In this section, we present some of the basic numerical descriptors of our dataset and the

results of our initial analysis. After the pre-processing stage, our clean dataset contained

a total of 4311 datapoints.

The histogram in Figure 5.1 shows the count of procedures performed on each patient

with x-axis being the number of procedures performed and y-axis being the number of

patients.

Figure 5.1. Histogram of the count of procedures performed for the patients

As we can see, the majority of patients had up to 10 procedures performed on them

with an average of 6.32 procedures. As we see in table 5.1, 1166
4311

or about 27% of the patients

suffered from some form of complication during their hospital stay. This will be used to

calculate the “No Information Rate” that our prediction model will need to outperform.

The histogram in Figure 5.2 shows the count of diagnoses performed on each patient

with x-axis being the number of diagnoses performed and y-axis being the number of

32

Table 5.1. Patients with 996 and no 996

No Yes

Complications 3145 1166

patients.

Figure 5.2. Histogram of the count of diagnoses performed for the patients

As we can see, the majority of patients had up to 10 diagnoses, with an average of

12.73 diagnoses.

The Box-plots in Figure 5.3 show the full los of the patients with the icd9 code 996

versus the full los of the patients with no icd9 code 996. As we see in Figure 5.3, 11538
876

or

about 13% of the patients had their full los with the icd9 code 996.

The Box-plots in Figure 5.4 show the full length of stay of the patients with icd9 code

996 versus the full los of the patients with no icd9 code 996 if the full los is capped to

50 days(removing extreme outliers). As we see in Figure 5.4, 12161
844

or about 15% of the

patients had their full los with the icd9 code 996 if the full los is capped to 50 days.

It is obvious that the length of stay is on average longer if one has hospital complications

as expected.

33

(a) Box-plot for full los with icd9 code 996 (b) Box-plot for full los with no icd9 code 996

Figure 5.3. Box-plot for full los

(a) Box-plot for full los with icd9 code 996 (b) Box-plot for full los with no icd9 code 996

Figure 5.4. Box-plot for full los capped to 50 days

The Histogram in Figure 5.5 depicts the age of all patients in our dataset. The majority

of them were above 50 years with an average age of 62.69. All our patients’ ages are capped

to 89 years. Patients who were older than 89 years in the database have had their date of

birth shifted to obscure their age to comply with HIPAA regulations.

The majority of patients in the cleaned dataset were male as one can see from table

5.2. One of our future plans is to analyze those two populations separately and compare

the performance with the initial model.

34

Figure 5.5. Histogram of all the patients age

Table 5.2. Count of Male vs Female

Male Female

Age 2636 1675

5.2. Feature Selection

Most data analytics efforts start with some sort of “feature selection” to identify the

key input variables that will be used in the prediction model. Neural Networks don’t really

need this step since their architecture has the ability to tone down irrelevant information,

yet it is always a good practice to check what the right input variables are at the onset.

A contingency table summarizes the relationship between categorical variables in terms

of frequency counts. A chi-square test is conducted on the contingency table to test for

independence between the categorical variables involved. A value less than 0.05 implies

both the variables are dependent, following the classic hypothesis test work-flow.

5.2.1. Age vs Complications

35

Code 5.1. Chi-square Analysis for Age

Calculates the median value of Age

Age_median = Data[’Age’]. median ()

Appends a column for categorical value of Age. If the age

is greater than the median , AgeC is changed to 1. else

0

Data[’AgeC’] = np.where(Data[’Age’]>=Age_median ,1,0)

Table of AgeC vs. Compl

Cont_Age_Compl = pd.crosstab(index=Data[’AgeC’], columns=

Data[’Compl’])

Cont_Age_Compl.index= [0, 1]

Finds the chi -square value for Age

chi2 , Cont_Age_Compl_p , Cont_Age_Compl_dof ,

Cont_Age_Compl_expected = sc.chi2_contingency(

Cont_Age_Compl.values)

The following contingency table shows the relationship between the two categorical

variables Age and Complications, Age being the rows and Complications being the columns.

We discretized age by creating two groups below and above the median age.

Based on the chi-square test, the p-value for the above contingency table is 0.005327.

This value is much smaller than 0.05. This provides enough evidence to claim that the

categorical variables Age and Complications are dependent. The expected frequency counts

36

Table 5.3. Contingency table values for Age vs Complications

No Yes Total
Young 1531 624 2155
Old 1614 542 2156
Total 3145 1166 4311

for the two categorical variables was as follows:

Table 5.4. Expected contingency table values for Age vs Complications

No Yes Total
Young 1572.135 582.864 2154.999
Old 1572.864 583.135 2155.999
Total 3144.999 1165.999 4310.998

5.2.2. Full LOS vs Complications

Code 5.2. Chi-square Analysis for full los

Calculates the median value of full_los

full_los_median = Data[’full_los ’]. median ()

Appends a column for categorical value of full_los. If

the full_los is greater than the median , full_losC is

changed to 1. else 0

Data[’full_losC ’] = np.where(Data[’full_los ’]>=

full_los_median ,1,0)

Table of full_losC vs. Compl

Cont_LOS_Compl = pd.crosstab(index=Data[’full_losC ’],

columns=Data[’Compl ’])

Cont_LOS_Compl.index= [0, 1]

(Code 5.2. cont’d.)

37

Finds the chi -square value for full_los

chi2 , Cont_LOS_Compl_p , Cont_LOS_Compl_dof ,

Cont_LOS_Compl_expected = sc.chi2_contingency(

Cont_LOS_Compl.values)

The following contingency table shows the relationship between the variables full los

and Complications, full los being the rows and Complications being the columns.

Table 5.5. Contingency table values for Full los vs Complications

No Yes Total
Short 1674 481 2155
Long 1471 685 2156
Total 3145 1166 4311

Based on the chi-square test, the p-value for the above contingency table is 3.6274e-12

which is way smaller than 0.05. It is obvious that the categorical variables full los and

Complications are dependent on each other. T The expected frequency counts for the two

categorical variables was as follows:

Table 5.6. Expected contingency table values for full los vs Complications

No Yes Total
Short 1572.135 582.864 2154.999
Long 1572.864 583.135 2155.999
Total 3144.999 1165.999 4310.998

5.2.3. Procedures vs Complications

38

Code 5.3. Chi-square Analysis for procedures

Calculates the median value of procedures

proc_median = Data[’procedures ’]. median ()

Appends a column for categorical value of procedures. If

the procedures is greater than the median , procC is

changed to 1. else 0

Data[’procC’] = np.where(Data[’procedures ’]>=proc_median

,1,0)

Table of procC vs. Compl

Cont_proc_Compl = pd.crosstab(index=Data[’procC’], columns=

Data[’Compl’])

Cont_proc_Compl.index= [0, 1]

Finds the chi -square value for procedures

chi2 , Cont_proc_Compl_p , Cont_proc_Compl_dof ,

Cont_proc_Compl_expected = sc.chi2_contingency(

Cont_proc_Compl.values)

The following contingency table shows the relationship between two categorical vari-

ables Procedures and Complications, Procedures being the rows and Complications being

the columns.

Based on the chi-square test,the p-value for the above contingency table is 5.006e-07.

This value is much smaller than 0.05 which provides enough evidence to claim that the

39

Table 5.7. Contingency table values for Procedures vs Complications

No Yes Total
Few 1400 620 2020
Many 1745 546 2291
Total 3145 1166 4311

categorical variables Procedures and Complications are dependent on each other.

After performing a chi-square test on the above contingency table, the expected fre-

quency counts for the two categorical variables to be independent of each other are as

follows:

Table 5.8. Expected contingency table values for Procedures vs Complications

No Yes Total
Few 1473.648 546.351 2019.999
Many 1671.351 619.648 2290.999
Total 3144.999 1165.999 4310.998

5.2.4. Gender vs Complications

Code 5.4. Chi-square Analysis for gender

Calculates the median value of gender

gender_median = Data[’gender ’]. median ()

Appends a column for categorical value of gender. If the

gender is greater than the median , genderC is changed to

1. else 0

Data[’genderC ’] = np.where(Data[’gender ’]>=gender_median

,1,0)

Table of genderC vs. Compl

(Code 5.4. cont’d.)

40

Cont_gender_Compl = pd.crosstab(index=Data[’genderC ’],

columns=Data[’Compl ’])

Cont_gender_Compl.index= [0, 1]

Finds the chi -square value for gender

chi2 , Cont_gender_Compl_p , Cont_gender_Compl_dof ,

Cont_gender_Compl_expected = sc.chi2_contingency(

Cont_gender_Compl.values)

The following contingency table shows the relationship between Gender and Compli-

cations, Gender being the rows and Complications being the columns.

Table 5.9. Contingency table values for Gender vs Complications

No Yes Total
Female 1196 479 1675
Male 1949 687 2636
Total 3145 1166 4311

Based on the chi-square test, the p-value for the above contingency table is 5.006e-07.

This value is much smaller than 0.05. So, this provides enough evidence to claim that the

categorical variables Gender and Complications are dependent on each other.

Table 5.10. Expected contingency table values for Gender vs Complications

No Yes Total
Female 1473.648 546.351 2019.999
Male 1671.351 619.648 2290.999
Total 3144.999 1165.999 4310.998

Considering the above four chi-square values, all four input variables: Age, full los, pro-

cedures and gender seem to be connected to complications and hence these input variables

41

were definitely included in the prediction dataset. But, since we choose the non-parametric

method of Neural Networks, we decided to include all the input variables. In the future we

will explore further those relationships and try to determine if they are indeed factors that

influence complication or some sort of co-dependent variables on another hidden one.

5.3. Results

The Accuracy table 5.11 below shows the average accuracy of the four different op-

timizers: adam, adagrad, rmsprop and adamax. Each accuracy score is the average of a

100 runs on randomly chosen subsets common for all optimizers each time. The Neural

Networks built using these optimizers: adam, rmsprop and adamax produced models that

are approximately 80% accurate in predicting the post-procedural complications.

To be specific, the neural network model built using the adam optimizer had an average

accuracy score of 80.5% with an average processing time of 133.68 micro seconds. The

rmsprop optimizer had an average accuracy score of 80.4% with an average processing time

of 127.78 micro seconds. The adamax optimizer had an average accuracy score of 80.4%

with an average processing time of 132.27 micro seconds except for the adagrad optimizer

which had an average accuracy score of 73% with an average processing time of 126.06

micro seconds. The rmsprop optimizer had a better processing time when compared with

the adam and adamax optimizers.

Table 5.11. Accuracy Table

Average Accuracy Optimizer Processing time

80.50% adam 133.68
73.03% adagrad 126.06
80.44% rmsprop 127.78
80.43% adamax 132.27

In comparison with the neural network model, the multi-linear model had an accuracy

score of 73.84%. This proves that the neural network model outperformed the multi-linear

model.

42

0

5

10

15

20

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88

Accuracy

de
ns

ity

(a) Histogram for Adam Optimizer

0

5

10

15

20

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88

Accuracy

de
ns

ity

(b) Histogram for AdaGrad Optimizer

0

5

10

15

20

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88

Accuracy

de
ns

ity

(c) Histogram for RMSProp Optimizer

0

5

10

15

20

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88

Accuracy

de
ns

ity

(d) Histogram for AdaMax Optimizer

Figure 5.6. Basic Histograms of the Accuracy for the four different optimizers

Furthermore, Figure 5.6 pictorially represents the Accuracy scores of all the four op-

timizers: Adam, AdaGrad, RMSProp and AdaMax in the form of histograms. RMSProp

has a better accuracy and is much faster when compared with the other three optimizers:

Adam, AdaGrad and AdaMax. Though the Adam Optimizer has a higher accuracy when

compared with the RMSProp (0.06% more), it is slower than the RMSProp optimizer.

When the data is scaled up, the accuracy doesn’t vary much but the processing time will

be substantially different, with the Adam Optimizer being much slower than the RMSProp.

Considering all these factors, RMSProp is probably the one best suited for our prediction

algorithm.

The Accuracy table is represented in the form of a scatter plot as shown in Figure 5.7.

The x-axis is the Processing Time and the y-axis is the Average Accuracy. The red dotted

43

Figure 5.7. Scatter plot for the four optimizers

line represents the No Information Rate (NIR) of 72.95%. The No Information Rate (NIR)

acts as the base line representing the biggest class which is class 0(no complications) in our

case. Our output variable(Complications) is binary with classes 0 (no complications) and

1(with complications). The horizontal black dotted line represents the linear model with

an accuracy of 73.84%. When compared to the NIR, linear model just doesn’t work and

also the AdaGrad optimizer works poorly too. RMSProp provides the best processing time

(127.78 micro seconds) for its accuracy (80.44%) when compared with the other optimizers

and also beats the NIR by at least 7%. This is a non-negligible prediction improvement

especially for the medical field and if one considers the general purpose of the model. We

believe that a more specialized model will increase the accuracy scores even more.

44

Chapter 6.
Conclusion-Future Work

In this thesis, we have investigated the use of neural networks in predicting compli-

cations when certain specified procedures are performed during a patient’s hospital stay.

Various characteristics of the patient as well as specific details of the patient’s visit to

the hospital at that point in time were used to make the prediction. Predicting such post-

procedural complications provides better support for clinicians, hospital administrators and

patients.

The model was trained using part of the MIMIC-III database and four different SGD

optimizers Adam, AdaGrad, RMSProp and AdaMax on a Neural Network architecture.

Almost all, optimizers provided similar results which were stable both in terms of processing

time and accuracy. Our best model outperformed the linear model in terms of prediction

accuracy (80% vs 73%) which was also almost the NIR .

To conclude, this thesis provides a post-procedural complications prediction system

based on machine learning, an algorithm that has has not been reported till date.

All codes are available in our github repository found here

https://github.com/namrathamohan/Post-Procedural-Complications.

The dataset can be downloaded from the MIMIC-III website upon following certain

steps and completing the HIPAA certification. As a part of future work, an analysis based

on the activation functions is to be done. We performed a small part of it by replacing the

activation function in the first two layers with the “relu” activation function.

The Accuracy table 6.1 below shows the average accuracy of the four different opti-

mizers: adam, adagrad, rmsprop and adamax by using the “relu” activation function in

the first two layers and “Sigmoid” in the third layer. We noticed a slight improvement in

processing time and accuracy as one can see in figure 6.1. Thus our first priority would be

to explore other possible architectures like this one.

Another option is to repeat our analysis for a larger number of data points is to be

45

https://github.com/namrathamohan/Post-Procedural-Complications

Table 6.1. Accuracy Table for relu

Average Accuracy Optimizer Processing time

81.01% adam 130.11
78.97% adagrad 121.54
81.95% rmsprop 123.85
81.30% adamax 127.87

Figure 6.1. Scatter plot for the four optimizers with relu activation function

done. MIMIC is growing every year with new data points added to it periodically. As the

number of data points is scaled up, it would be interesting to monitor the performance of

the different optimizers and see if it will change or remain the same.

Also, an interesting future venue would be to utilize the trained algorithms on a com-

pletely different dataset if that becomes available in the future, and see if the algorithm is

transferable and scalable, or identify and perform necessary corrections for it to be so.

Further development also includes the comparison of our model with another predictive

algorithm using support vector machines on the same dataset. We are confident that the

NN’s will outperform SVM’s but the trade-off in time might be worth it, since SVM’s are

46

orders of magnitude faster thatn NN’s on the same number of datapoints.

Finally, we should note here that while this thesis was finalized, the new standard

(ICD10) came in to affect. Thus our code will need a slight update so that similar results

can be obtained based on the available translation table between the two standards. We

anticipate this to require minimal updates only on the pre-processing step.

47

References

[1] Postgresql database, Portions copyright 1996-2018, the postgresql global development group por-
tions copyright 1994, the regents of the university of california permission to use, copy, modify, and
distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the
following two paragraphs appear in all copies. in no event shall the university of california be liable
to any party for direct, indirect, special, incidental, or consequential damages, including lost profits,
arising out of the use of this software and its documentation, even if the university of california has
been advised of the possibility of such damage. the university of california specifically disclaims any
warranties, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. the software provided hereunder is on an ”as is” basis, and the university of cali-
fornia has no obligations to provide maintenance, support, updates, enhancements, or modifications.
https://www.postgresql.org.

[2] Python programming language, 2001. https://www.python.org.

[3] Numpy package, 2005. www.numpy.org/.

[4] Pandas: powerful python data analysis toolkit, 2011. https://pandas.pydata.org/pandas-docs/
stable/.

[5] Icd9 diagnosis codes, 2012. www.icd9data.com/2012/Volume1/800-999/996-999/996/default.htm.

[6] Artificial neural networks in healthcare: A short review (2013). http://www.openclinical.org/
neuralnetworksinhealthcare.html.

[7] Keras: Usage of activations (2015). https://keras.io/activations/.

[8] Keras: Usage of optimizers, 2015. https://keras.io/optimizers/.

[9] What is health informatics, USF Health (2018). https://www.usfhealthonline.com/resources/key-
concepts/what-is-health-informatics/.

[10] Martin Abadi et al., Tensorflow: Large-scale machine learning on heterogeneous systems (2015). http:
//tensorflow.org/.

[11] Rami Al-Rfou et al., Theano: A python framework for fast computation of mathematical expressions,
arXiv e-prints (2016). http://arxiv.org/abs/1605.02688.

[12] Sidath Asiri, Machine learning classifiers (2018). https://towardsdatascience.com/machine-
learning-classifiers-a5cc4e1b0623.

[13] Jason Browniee, Gentle introduction to the adam optimization algorithm for deep learning (2017).
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/.

[14] Budde et al., A prognostic computer model to individually predict post-procedural complications in
interventional cardiology; the intervent project, European heart journal 20 (1999), no. 5, 354–363.

[15] François Chollet et al., Keras: The python deep learning library, 2015. https://keras.io.

[16] Caroline Clabaugh et al., The intellectual excitement of computer science. (2000). https://

cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/index.html.

[17] Wikipedia contributor, Stochastic gradient descent (2018). https://en.wikipedia.org/wiki/
Stochastic gradient descent.

[18] Wikipedia contributors, Artificial neural network — Wikipedia, the free encyclopedia (2018). https:
//en.wikipedia.org/wiki/Artificial neural network.

[19] , Python (programming language) (2018). https://en.wikipedia.org/wiki/
Python (programming language).

48

https://www.postgresql.org
https://www.python.org
www.numpy.org/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
www.icd9data.com/2012/Volume1/800-999/996-999/996/default.htm
http://www.openclinical.org/neuralnetworksinhealthcare.html
http://www.openclinical.org/neuralnetworksinhealthcare.html
https://keras.io/activations/
https://keras.io/optimizers/
https://www.usfhealthonline.com/resources/key-concepts/what-is-health-informatics/
https://www.usfhealthonline.com/resources/key-concepts/what-is-health-informatics/
http://tensorflow.org/
http://tensorflow.org/
http://arxiv.org/abs/1605.02688
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://keras.io
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/index.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/index.html
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)

[20] Thomas Desautels et al., Prediction of sepsis in the intensive care unit with minimal electronic health
record data: A machine learning approach, JMIR Med Inform 4 (2016).

[21] Niklas Donges, Gradient descent in a nutshell (2018). https://towardsdatascience.com/gradient-
descent-in-a-nutshell-eaf8c18212f0.

[22] John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online learning
and stochastic optimization, July 2011, pp. 2121–2159. http://www.jmlr.org/papers/volume12/
duchi11a/duchi11a.pdf.

[23] Rohith Gandhi, A look at gradient descent and rmsprop optimizers (2018). https:

//towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-
f77d483ef08b.

[24] Thanos Gentimis et al., Predicting hospital length of stay using neural networks on mimic iii data, 2017
IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive
Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress(DASC/PiCom/DataCom/CyberSciTech) (2017), 1194–1201.

[25] gk, How neural networks work (2017). https://chatbotslife.com/how-neural-networks-work-
ff4c7ad371f7.

[26] Geoffrey Hinton et al., Neural networks for machine learning. http://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture slides lec6.pdf.

[27] Anil K. Jain, Anil K. Jain, Jianchang Mao, Robert P.W. Duin, and Jianchang Mao, Statistical pat-
tern recognition: A review (2000). http://www4.comp.polyu.edu.hk/~csajaykr/myhome/teaching/
biometrics/spr pami.pdf.

[28] Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo A. Celi, and Roger G. Mark, Mimic-iii, a freely ac-
cessible critical care database, Scientific Data 3 (May 2016), 160035+. https://mimic.physionet.org/
about/mimic/.

[29] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimization, 2014. https://
arxiv.org/pdf/1412.6980.pdf.

[30] Emma Lindberg, Light-up neuron (2017). https://www.brainfacts.org/For-Educators/For-the-
Classroom/2017/Light-Up-Neuron-092717.

[31] Bernard Marr, What are artificial neural networks - a simple explanation for absolutely anyone (2018).

[32] Shubham Panchal, Artificial neural network - mapping the human brain, 2018. https://medium.com/
predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160.

[33] The pgAdmin Development Team, pgAdmin an open source administration and development platform
for PostgreSQL. https://www.pgadmin.org.

[34] John Sullivan, 6 steps to write any machine learning algorithm (2018). https://

towardsdatascience.com/6-steps-to-write-any-machine-learning-algorithm-from-
scratch-perceptron-case-study-335f638a70f3.

[35] Wikipedia contributors, Amoeba (operating system) — Wikipedia, the free encyclopedia (2018). https:
//en.wikipedia.org/w/index.php?title=Amoeba (operating system)&oldid=847604296.

49

https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b
https://chatbotslife.com/how-neural-networks-work-ff4c7ad371f7
https://chatbotslife.com/how-neural-networks-work-ff4c7ad371f7
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www4.comp.polyu.edu.hk/~csajaykr/myhome/teaching/biometrics/spr_pami.pdf
http://www4.comp.polyu.edu.hk/~csajaykr/myhome/teaching/biometrics/spr_pami.pdf
https://mimic.physionet.org/about/mimic/
https://mimic.physionet.org/about/mimic/
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.brainfacts.org/For-Educators/For-the-Classroom/2017/Light-Up-Neuron-092717
https://www.brainfacts.org/For-Educators/For-the-Classroom/2017/Light-Up-Neuron-092717
https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160
https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160
https://www.pgadmin.org
https://towardsdatascience.com/6-steps-to-write-any-machine-learning-algorithm-from-scratch-perceptron-case-study-335f638a70f3
https://towardsdatascience.com/6-steps-to-write-any-machine-learning-algorithm-from-scratch-perceptron-case-study-335f638a70f3
https://towardsdatascience.com/6-steps-to-write-any-machine-learning-algorithm-from-scratch-perceptron-case-study-335f638a70f3
https://en.wikipedia.org/w/index.php?title=Amoeba_(operating_system)&oldid=847604296
https://en.wikipedia.org/w/index.php?title=Amoeba_(operating_system)&oldid=847604296

Vita

Namratha Mohan is from Bangalore, India. She obtained her Bachelor’s degree in

Electronics and Communication Engineering in 2011 from City Engineering College, Ban-

galore, affiliated to the Visveswaraya Technological University, Karnataka, India. She then

worked for about four years as a System Engineer with IBM India Pvt. Ltd. In Spring

2017, she began her masters program in the Department of Computer Science at Louisiana

State University. Her primary interests include Database Systems and Machine Learning.

50

	Louisiana State University
	LSU Digital Commons
	12-25-2018

	Predicting Post-Procedural Complications Using Neural Networks on MIMIC-III Data
	Namratha Mohan
	Recommended Citation

	 ACKNOWLEDGMENTS 12pt
	 LIST OF TABLES 12pt
	 LIST OF FIGURES 12pt
	 ABSTRACT
	Introduction
	Literature Review
	Health Informatics
	Neural Networks General
	Predicting Post Procedural Complications

	Experimental Setup
	System Hardware
	Python
	Stochastic Gradient Descent
	PostgreSQL Database System
	MIMIC-III Database
	Neural Networks

	Implementation
	Preprocessing
	Neural Network Implementation

	Experimental Results
	Basic Statistics
	Feature Selection
	Results

	Conclusion-Future Work
	 REFERENCES
	 VITA

