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ABSTRACT

We study the identification problem for errors-in-variables (EIV) systems. Such an EIV

model assumes that the measurement data at both input and output of the system involve

corrupting noises. The least square (LS) algorithm has been widely used in this area. How-

ever, it results in biased estimates for the EIV-based system identification. In contrast, the

total least squares (TLS) algorithm is unbiased, which is now well-known, and has been

effective for estimating the system parameters in the EIV system identification.

In this dissertation, we first show that the TLS algorithm computes the approximate

maximum likelihood estimate (MLE) of the system parameters and that the approximation

error converges to zero asymptotically as the number of measurement data approaches in-

finity. Then we propose a graph subspace approach (GSA) to tackle the same EIV-based

system identification problem and derive a new estimation algorithm that is more general

than the TLS algorithm. Several numerical examples are worked out to illustrate our pro-

posed estimation algorithm for the EIV-based system identification.

We also study the problem of the EIV system identification without assuming equal noise

variances at the system input and output. Firstly, we review the Frisch scheme, which is

a well-known method for estimating the noise variances. Then we propose a new method

which is GSA in combination with the Frisch scheme (GSA-Frisch) algorithm via estimat-

ing the ratio of the noise variances and the system parameters iteratively. Finally, a new

identification algorithm is proposed to estimate the system parameters based on the sub-

space interpretation without estimating noise variances or the ratio. This new algorithm is

unbiased, and achieves the consistency of the parameter estimates. Moreover, it is low in

complexity. The performance of the identification algorithm is examined by several numeri-

cal examples, and compared to the N4SID algorithm that has the Matlab codes available in

Matlab toolboxes, and also to the GSA-Frisch algorithm.
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CHAPTER 1
INTRODUCTION

This dissertation is on system identification, focusing on errors-in-variables (EIV) models.

Such a model is extensively used in [7, 8, 57, 31, 77, 63, 39, 90, 91]. However, identification of

such a model is full of challenges. We will propose a subspace based identification algorithm,

and show its efficacy in estimation of the system parameters. Moreover, we will investigate

various issues encountered in identifying the EIV systems. In this chapter, we will begin

with the motivation of this dissertation work, followed by introducing the problem with

the concept of EIV system identification. The existing work in this problem area will be

reviewed and contributions of this dissertation will be presented, followed by organization

and notations of the dissertation.

1.1 Motivation

System identification has been a core problem in model-based feedback control design. It

is a methodology which uses statistical methods to build mathematical models of dynamical

systems from measured data [65]. Its importance lies, especially for the control engineers, in

the fact that it helps to not only figure out the unknown system but also predict the future

behavior of the system so that we can design an appropriate controller for the system. The

well-known books such as [41, 65] are standard texts providing treatise for identification of

linear dynamic systems.

The initial work in the area of system identification has been focused on the case when

output measurements are corrupted by noises, but the input signals are noise-free. The least-

squares (LS) algorithm and its variants are well-known, and have been especially effective in

identifying the linear system models. However, it becomes more interesting and harder when

both the input and output measurements are corrupted by noises, which is referred to as

errors-in-variables (EIV) system identification. It also has received great attention from this

research community [7, 31, 37, 57, 64]. One of the traditional system identification methods
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is LS estimation. However, the ordinary LS estimates are biased in general when employed

for EIV system identification. Our motivation lies in tackling the bias problem of the LS

estimates.

We are also motivated by the applications of EIV models in array signal processing for

direction of arrival (DOA) estimation, time series modeling, blind channel estimation and

equalization, astronomical data reduction, etc, in which the principle component analysis

is the key ingredient embodied by the subspace approach [77, 78]. Such an approach may

lead to the ML estimator under certain conditions. In fact even if the ML conditions do not

hold, the subspace approach often leads to good estimation performance evidenced by the

superresolution algorithm in DOA estimation [71] and by the popular second-order statistical

method in blind channel estimation and equalization [75]. However, there lacks similar de-

velopments in the area of system identification due to probably the input and output relation

of the measurement data that obscure the nature of the underlying estimation problem.

Another motivation is from the subspace based algorithms, such as the N4SID algorithm

[14, 32, 80, 82, 81], because of its root in the principle component analysis (PCA) [33, 51]

and canonical correlation analysis (CCA) [38, 36, 17], both being popular in statistical

analysis and in various engineering applications. Indeed for finite order linear systems, if the

noises in measuring the system input and output are Gauss white and have equal variances,

then the EIV model will be resulted in, and the total least-squares (TLS) algorithm is

applicable, leading to asymptotically unbiased estimates of the system parameters. Such a

TLS algorithm admits a subspace interpretation [28] (Chapter 8) and works if noise variances

are unequal but with the known ratio of the two variances. In fact, the maximum likelihood

algorithm can be developed in [63, 69]. However, in the absence of knowledge on the noise

variances, the system identification problem becomes a lot harder. Not only the maximum

likelihood, but also the consistent algorithms are difficult to develop. This is evidenced by

the BELS algorithm [31, 97, 93] and by the Frisch scheme [7, 57]. Both are viable methods,

but fail to work if the signal-noise-ratio (SNR) is low.
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1.2 Concept of EIV System Identification

The basic idea of system identification is the estimation of unknown system parameters

by modeling the system based on the observed data. A simple diagram of a system with

the input and output is illustrated in Figure 1.1. The system is assumed to be a finite

dimensional linear time-invariant (FDLTI).

-
u(t)

System -
y(t)

Figure 1.1. A system with input and output

If we know the collection of the input {u(t)} and output {y(t)} signals as an observed

or measured data set in the noise free environment, we can easily estimate the system

parameters by the well-known LS method. However, it is not easy to obtain the input and

output data set, which has no corrupted noise. In most cases, some noises are involved in

the measurement data. A diagram of the EIV signal and system model is depicted in Figure

1.2. Transfer function P (z) represents the system model, ũ(t) is the input measurement, ỹ(t)

-
u(t)

?⊕-
εin(t)

-
ũ(t)

P (z) -
y(t)

?⊕-
εout(t)

-
ỹ(t)

Figure 1.2. EIV system model

is the output measurement of the system, and εin(t) and εout(t) are the corrupting noises of

the input and output in Figure 1.2. The EIV system identification is aimed at estimation of

the parameters of P (z) based on the given measurement data set {ũ(t)} and {ỹ(t)}.
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1.3 Existing Work

In terms of the “errors-in-variables” problem as a research topic, not only the control

engineers but also people from various fields have been interested in it. Söderström says “The

area is therefore quite extensive and is also quickly growing with time. The vast majority of

papers are written from an application perspective and can deal with biomedicine, chemistry,

chemical engineering, earth sciences, econometrics, managements, mechanical engineering,

finance, ecology, geosciences, image systems, time series analysis, etc.” in his recent book

[60]. It should be mentioned that the standard EIV estimation problem has long been studied

in math literature, such as [26, 85, 23, 86, 48, 34, 10, 47, 35, 13, 20], due to the fact that it

uses a lot of mathematical tools.

There have been many research papers that contributed to the EIV system identification

problems historically. As an early work, a dynamic EIV model was developed in [40, 6],

followed by many extended new methods and different solutions. The survey papers such

as [58, 64, 59] give perspectives on the EIV system identification of the dynamic systems

providing some popular methods and examples. We introduce some well-known methods for

the EIV system identification next.

Least Square Estimation

One of the traditional methods in system identification is the least square (LS) estimation.

The pioneering work was done by the famous mathematician Carl Friedrich Gauss, followed

by [2, 3]. LS estimation is aimed at finding the argument that minimizes the output equation

error, which is the difference between the predicted output and the given measurement

output. Let us consider the simple equation given by

x = Ab (1.1)

where x is a known column vector, A is a known matrix and b is an unknown column vector.

Suppose that x is known only approximately, i.e., we have only x̃ 6= x. The LS solution to
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estimate b can be obtained by

b̂LS = (A′A)−1A′x̃. (1.2)

Similarly, in a dynamic system, the output equation can be written as

ỹ(t) = φ(t)′θ + v0(t), (1.3)

where φ(t) is a regressor, which is a column vector consisting of the input and output

measurements; θ is an estimated system parameter vector, which will be specifically defined

in Chapter 2, and v0(t) is a noise term. By packing ỹ(t) together, φ(t) together, and v0(t)

together from t = 1 to t = N , the LS solution can be computed by

θ̂LS =

[
1

N

N∑
t=1

φ(t)φ(t)′

]−1 [
1

N

N∑
t=1

φ(t)ỹ(t)

]
. (1.4)

It is easily understood and widely used in this field. However, the drawbacks of the LS

algorithm and its variants are quickly recognized, including the notable biased estimates in

the presence of disturbances and noises at the input. In other words, the estimates do not

converge to the true values as the number of sample measurement data goes to infinity. This

issue will be treated in Chapter 2 with a detailed analysis. So, many new algorithms are

proposed and developed to mitigate the weaknesses of the LS estimation.

Instrumental Variable

The instrumental variable (IV) has been studied by many researchers to overcome the

limitations of the LS estimation focusing on the bias issue to achieve estimation consistency.

The early work for this method was developed in [52, 88, 43, 87, 89, 21]. The modified

algorithms are described in [56, 79, 70, 73]. IV methods can be seen as generalizations of

the LS estimates [60]. To be specific, this method sets a correlation vector, of which the

elements are called instrument variables, in a formula similar to the LS algorithm. The IV
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estimation is computed by

θ̂IV =

[
1

N

N∑
t=1

z(t)φ(t)′

]−1 [
1

N

N∑
t=1

z(t)ỹ(t)

]
(1.5)

where z(t) is a correlation vector consisting of the instrument variables chosen by the user

under the specific conditions that the estimates tend to the true values for the large number

of sample data. These conditions are

• z(t) is strongly correlated with the regressor φ(t) so that the first term on the right-

hand side in (1.5) is nonsingular,

• z(t) is uncorrelated with v0(t).

The reasons those conditions are needed can be easily seen by substituting (1.3) with (1.5)

θ̂IV =

[
1

N

N∑
t=1

z(t)φ(t)′

]−1 [
1

N

N∑
t=1

z(t){φ(t)′θ + v0(t)}

]

= θ +

[
1

N

N∑
t=1

z(t)φ(t)′

]−1 [
1

N

N∑
t=1

z(t)v0(t)

]
.

(1.6)

If the conditions are true, the right-hand side in (1.6) is zero except θ. Hence,

θ̂IV = θ as N −→∞

unlike the LS estimation in general. In other words, IV estimation is a consistent estimator.

Some examples were introduced and discussed regarding the choice of z(t) and how to satisfy

the aforementioned conditions in [66, 65]. However, it turns out the standard deviation

of the estimates are huge, and it gives very low accuracy of the parameter estimates as

disadvantages [60].

Bias Compensation

In order to avoid the bias issue, the bias compensation method also has been developed
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by many researchers. There are two main estimation algorithms in this category, which are

the bias-eliminating least square (BELS) and the Frisch scheme, focusing on the estimation

of the noise variances.

• BELS: This algorithm was first developed in [97]. The basic concept of the algorithm is

to remove the bias from the LS estimation, using the property that the bias is closely

related to the noise variances. Basically, BELS first estimates the unknown noise

variances and subtracts the noise variances from the approximate covariance matrix.

Then, it estimates the system parameters using the LS algorithm iteratively with the

updated estimates of the noise variances. Several approaches, especially regarding how

to estimate the noise variances accurately or efficiently, were proposed in [92, 95, 93,

95, 72, 94, 96]. The disadvantage of BELS is the estimation of the noise variances is

not accurate when the measurement noise level is high, which affects the accuracy of

the system parameters [96].

• Frisch scheme: The early work of this algorithm was by the economist Ragnar Frisch

for the static problem in [22]. After his work, many studies have appeared to develop

the algorithm for the dynamic problem such as in [7, 11, 29, 70, 64, 8, 19, 61, 55].

It was also developed in the frequency domain mainly by Söderström in [62, 68, 69].

Similar to BELS, the Frish scheme is focused on estimates of the noise variances. The

difference between them is that they use different mathematical tools for estimating

the noise variances. Loosely speaking, BELS computes the estimates of the input and

output noise variances together in each iteration step. In contrast, the Frisch scheme

estimates the input noise variance first and then estimates the output noise variance

using the estimated input noise variance iteratively.

Maximum Likelihood

The maximum likelihood (ML) estimation is based on the probability theory. It considers

the probability density function of the observed data as a function of the unknown parameters

7



[41, 65, 60, 67, 12, 18]. Then it seeks the parameters that maximizes the probability function.

It is widely used in the system identification because of it is a consistent estimator. For

example, it has been developed for state space models such as in [53, 44] and also for the

identification in the frequency domain such as [63, 69]. However, the disadvantage lies in

the computational complexity that grows exponentially with the system order.

Total Least Squares

The total least squares (TLS) method has been studied in a bunch of papers, such as

[27, 76, 49, 50, 16, 15], and the proceedings, such as [77, 78]. There is also a survey paper

[42]. The TLS method is strongly related to the EIV model in light of the fact that TLS

considers the case when both the input and the output measurement data are perturbed

by the noises unlike the LS estimation. Thus, the TLS solution effectively works for the

EIV system identification. See [26] for lucid convergence analysis and derivation of the TLS

solution as a ML estimator. The detailed description will be provided in the next chapter.

1.4 Dissertation Work

1.4.1 Contribution

An attempt is made in this study to apply the results in [26] to identifying EIV systems.

Specifically, we introduce graph metric [25, 84] that is induced by the input and output

graph of the system. By suitable parameterization of the plant model, the system graph is

identified as a closed subspace, termed as graph subspace, of the second-order statistics of

the sample measurements which inherit the EIV structure albeit different from the standard

EIV model in the literature.

Different from the robust control, this study is aimed at estimating the system parameters

based on the finite measurement samples of the graph subspace of a given system. By

blocking the input and output measurement data into vectors of different lengths, finite

samples of the system graph subspace can be obtained, and their second order statistics

8



can be calculated. If the input data are persistently exciting, then the signal and noise

subspaces of the sampled graph space can be distinguished asymptotically via the eigenvalue

decomposition, leading to a consistent estimator. For finite measurements of the input and

output data, signal and noise subspaces can be approximately computed. The computation

procedure is similar to that of the TLS, and will be referred to as graph subspace algorithm

(GSA). In a special case of the minimum blocking size, our graph subspace algorithm reduces

to the TLS algorithm, and is thus more general. The contribution includes the proof of the

asymptotic MLE nature of the TLS algorithm, and the proposal of the graph subspace

algorithm that often outperforms the TLS, especially when the SNR is high. In addition, an

iterative procedure is developed in order to improve the estimation accuracy in the case of

a low SNR.

Also, in Chapter 4, we propose two methods for the EIV system identification, which

are aimed to estimate system parameters with consistency in the presence of the input and

output measurement noises when the noise variances are not only unknown but also not

equal. One of them is GSA combined with the Frish scheme. To be specific, we estimate

the ratio of the noise variances using the Frisch scheme, which is one of the well-known

methods to estimate noise variances. The estimated ratio is employed in the GSA algorithm

that is developed in Chapter 3, for the system parameter estimation. The contribution of

this method is that it can be employed in practical cases in general, considering the noise

variances are not equal and unknown.

The other method we propose is via defining the past and future inputs and outputs

following similar ideas found in [14, 32, 80, 82, 81]. In this method, we estimate the system

parameters without first estimating noise variances at both the input and the output. We

are able to successfully carry out the asymptotic analysis, and show that measurement noises

at both the input and output can be removed from system parameter estimates to achieve

the consistent estimation, if the system input is persistently exiting and the measurement

data increase asymptotically. Thus, the contribution of this new algorithm lies in a simple
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and efficient way to estimate the system parameters without assuming the information from

the noise variances.

1.4.2 Organization

In Chapter 2, we will present the mathematical background for the EIV system identi-

fication. It begins with the introduction of the basic concepts of random processes and the

dynamic system model, which will be used for the development of the EIV system identifi-

cation algorithm. In this chapter, the notation of the system identification problem will also

be presented, followed by a description of the LS algorithm, which is widely used but biased

in general, and the TLS algorithm in comparison with the LS algorithm. The standard EIV

estimation method will be described as well.

Chapter 3 focuses on developing the graph subspace algorithm for identifying the pa-

rameterized EIV system model. It begins with the introduction of the notion of the graph

subspace for dynamic systems and formulates the EIV identification problem using the con-

cept of the graph subspace. We will demonstrate the asymptotic MLE property for the TLS

estimate, and develop the graph subspace algorithm, which is more general than the TLS

algorithm, including an iterative procedure to improve the estimation performance. It also

contains an implementation procedure in the case when the input and output measurement

noises are unknown, but the ratio of the two noise variances is known. The performance of

the graph subspace algorithm is illustrated by several examples, presented in the simulation

study section.

In Chapter 4, we will study the EIV system identification when the noise variances at the

input and the output are unknown and unequal. This is a practical problem in EIV system

identification since they are not only unequal but also unknown in practice. The first section

introduces the Frisch scheme which is a well-known method to estimate the two different

and unknown noise variances, followed by the estimation of system parameters based on the

estimated noise variances and the TLS algorithm. Then the use of the Frisch scheme in

10



combination with the GSA will be studied, which has better performance, compared to that

of the TLS algorithm. Also, we will propose a new algorithm, which estimates the system

parameters directly without having to estimate the noise variances or using the ratio. Lastly,

we will demonstrate the performance of the new algorithm with some simulation results.

Chapter 5 concludes this dissertation with a summary of the dissertation research and the

proposed topics for future research.

1.4.3 Notations

The notation in this dissertation is more or less standard. Denote R as the collection

of all real numbers. Similarly, Rn denotes the collection of all real column vectors of size

n. A matrix in Rn×m is a finite two-dimensional array with elements from R. For random

variables, E{·} denotes the expectation operation. In addition, ′ denotes the transpose

operation. Other notations will be made clear as we proceed.

11



CHAPTER 2
MATHEMATICAL PREPARATION

This chapter presents the mathematical background for the EIV system identification.

In Section 2.1, we introduce the basic concepts of random processes for the system identifi-

cation and the dynamic system model that we use for the development of the EIV system

identification algorithm. In Section 2.2, the system identification problem is described, plus

the notation. Also we present the LS algorithm, widely used for the identification problem.

In Section 2.3, we describe the TLS algorithm in comparison with the LS algorithm. In

addition, the standard EIV estimation method is presented.

2.1 Signals and Systems

2.1.1 Random Processes

In light of [83], a deterministic signal is a signal about which there is no uncertainty with

respect to its value at any time. In contrast, a random signal is a signal about which there

is uncertainty before it occurs. A random variable is described as the possible numerical

outcomes of experiments whose results cannot be exactly predicted beforehand [41].

Probability density function

Let x be a scalar random variable. Define p(x) as the probability density function (PDF)

of x, which satisfies

p(x) ≥ 0,

∫ ∞
−∞

p(x)dx = 1,

for all x. Define µ and σ2 as the expected or mean value and the variance of the random

variable x respectively. Then the Gaussian distributed PDF of x can be written as

p(x) =
1√

(2π)σ2
exp

{
−(x− µ)2

2σ2

}
.
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Maximum likelihood estimator

Suppose that there is a group of N independent random variables x1:N . That is,

x1:N = {x1, x2, · · · , xN}.

Let µi and σ2
i be the expected value and variance of xi, respectively. Then, the PDF for xi

can be written as

p(xi) =
1√

2πσ2
i

exp

{
−(xi − µi)2

2σ2
i

}
. (2.1)

Since {x1, x2, · · · , xN} are independent each other, we can form a likelihood function L(x1:N)

that is the joint PDF of x1:N by products of (2.1) for 1 ≤ i ≤ N as follows:

L(x) =
N∏
i=1

1√
2πσ2

i

exp

{
−(xi − µi)2

2σ2
i

}
. (2.2)

If we set θ as an unknown parameter vector that describes the properties of the observed

variable, the maximum likelihood estimator (MLE) seeks θ which maximizes the likelihood

function as follows:

θ̂MLE = argmax
θ
L(θ;x).

Covariance

If x is a D dimensional vector-valued random vector, then its covariance matrix is defined

as

Σx = E{(x− µx)(x− µx)′},

where µx is a mean vector. If D components of x are independent and identically distributed

(i.i.d.), then Σx is a diagonal matrix, and the diagonal elements of Σx are the variance of

{xi} with xi the ith element of x. That is,

Σx = σ2
xID, (2.3)
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where σ2
x is the variance of each xi and ID denotes D dimensional identity matrix.

Power spectral density

A discrete-time vector random process {s(t)} is said to be quasi-stationary, if its auto-

correlation matrix

Rs(τ) = lim
N→∞

1

N

N∑
t=1

E{s(t)s(t+ τ)′} (2.4)

exists for each integer τ . Let Φs(ω) be the power spectral density (PSD) of {s(t)} defined

as the discrete time Fourier transform of Rs(τ):

Φs(ω) =
∞∑

τ=−∞

Rs(τ)e−jωτ =⇒ Rs(τ) =
1

2π

∫ π

−π
Φs(ω)e−jωτ dω.

Then the mean or average power is the expression

Ps := Tr {Rs(0)} = Tr

{
1

2π

∫ π

−π
Φs(ω) dω

}
. (2.5)

Define Sn as the set of all vector quasi-stationary {s(t)} with zero mean and bounded mean

power. Then as N →∞, there holds [41] (Theorem 2.3), w. p. 1,

1

N

N∑
t=1

s(t)s(t− τ)′ → Rs(τ). (2.6)

2.1.2 Dynamic System Model

In general, in the noise-free case, the dynamics of the single input and single output

(SISO) plant model are governed by the difference equation using auto regression with exo-

geneous variables (ARX) model

y(t) + a1y(t− 1) + · · · anay(t− na) = b0u(t) + b1u(t− 1) + b2u(t− 2) + · · ·+ bnbu(t− nb)

=⇒ y(t) = −
na∑
i=1

aiy(t− i) +

nb∑
i=0

biu(t− i), (2.7)
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where {u(t)} is the system input, {y(t)} is the system output and {ai}nai=1, {bi}bai=0 are the

system parameters with integers na ≥ 1 and nb ≥ 1. Note that we call

s(t) =

 y(t)

u(t)


as a system graph signal. This is the basis of the graph subspace algorithm which will be

studied and developed in Chapter 3.

2.2 System Identification Problem

2.2.1 Notations

Equation (2.7) can be written as

y(t) = φ(t)′θ, (2.8)

where

φ(t) =

[
−y(t− 1) · · · −y(t− na) u(t) u(t− 1) · · · u(t− nb)

]′
is the regressor and

θ =

 θa

θb

 , θa =



a1

a2

...

ana


, θb =



b0

b1

...

bnb


.

The goal of system identification is the estimation of θ based on noisy input and output

measurements. The system under our study described by (2.7) admits transfer function
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P (z), given by

P (z) =
b(z)

a(z)
, a(z) = 1 +

na∑
i=1

aiz
−i, b(z) =

nb∑
i=0

biz
−i. (2.9)

When the input and output data are corrupted by the noises, the input and output mea-

surements are described as

s̃(t) =

 ũ(t)

ỹ(t)

 =

 u(t)

y(t)

+ ε(t), ε(t) =

 εin(t)

εout(t)

 . (2.10)

A common assumption on measurement noises is that they are i.i.d. Gaussian processes with

the same variance for input and output noises, denoted by σ2
ε . Define

v(t) =
u(t)

a(q)
,

where q−1 is the unit delay operator. Then

 u(t)

y(t)

 =

 a(q)

b(q)

 v(t) =⇒ s̃(t) =

 a(q)

b(q)

 v(t) + ε(t).

The above shows that the estimation of θa and θb is equivalent to blind system identification

[74], due to the unknown nature of {v(t)}.

We have the linear regression model y(t) = φ(t)′θ for the noiseless data, yielding

ψ(t)′

 1

θ

 = 0, ψ(t) =

 −y(t)

φ(t)

 . (2.11)

So,

ψ(t) =

[
−y(t) −y(t− 1) · · · −y(t− na) u(t) u(t− 1) · · · u(t− nb)

]′
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can be regarded as the augmented regressor. We set

ΨN =


ψ(1)′

...

ψ(N)′

 =

[
−TY(N)

TU(N)

]
. (2.12)

The matrices TY(N)
∈ RN×(na+1) and TU(N)

∈ RN×(nb+1) are Toeplitz specified as

TY(N)
=



y(1) y(0) · · · y(1− na)
... y(1)

. . .
...

y(N − na)
. . . . . . y(0)

...
. . . . . . y(1)

...
. . . . . .

...

y(N) · · · · · · y(N − na)


,

TU(N)
=



u(1) u(0) · · · u(1− nb)
... u(1)

. . .
...

u(N − nb)
. . . . . . u(0)

...
. . . . . . u(1)

...
. . . . . .

...

u(N) · · · · · · u(N − nb)


.

The measurement data {ỹ(t), ũ(t)} are noisy and thus

Ψ̃N = ΨN + EN ⇐⇒
[
T̃Y(N)

T̃U(N)

]
=

[
TY(N)

TU(N)

]
+

[
EY(N)

EU(N)

]
.

The noise matrix EN ∈ RN×(na+nb+2) is given by EN =

[
EY(N)

EY(N)

]
of which both EY(N)
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and EY(N)
have the Toeplitz structure:

EY(N)
=



εout(1) εout(0) · · · εy(1− na)
... εout(1)

. . .
...

εout(N − na)
. . . . . . εout(0)

...
. . . . . . εout(1)

...
. . . . . .

...

εout(N) · · · · · · εout(N − na)


,

EU(N)
=



εin(1) εin(0) · · · εin(1− nb)
... εin(1)

. . .
...

εin(N − nb)
. . . . . . εin(0)

...
. . . . . . εu(1)

...
. . . . . .

...

εin(N) · · · · · · εin(N − nb)


.

2.2.2 LS Algorithm

Given predictor model ŷ(t) = φ̃(t)′θ̂ and measurements of {φ̃(t)}Nt=1, the least square

(LS) algorithm is aimed at finding the solution θ̂ = θ̂LS to minimize

J =
1

N

N∑
t=1

|ỹ(t)− ŷ(t)|2 =
1

N

N∑
t=1

|ỹ(t)− φ̃′(t)θ̂|2.

Define

Φ̃N =


φ̃(1)′

...

φ̃(N)′

 , ỸN =


ỹ(1)

...

ỹ(N)

 .

Then θ̂LS can be computed by θ̂LS = (Φ̃′N Φ̃N)−1Φ̃′N ỸN .
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In practice, the output equation error model, described by

ỹ(t) =
b(q)

a(q)
u(t) + e(t)

is widely used, which is different from the model shown in Figure 1.2 due to the assumption

on the noiseless input u(t). Regardless of the whiteness of e(t), there holds

ỹ(t) = [1− a(q)]ỹ(t) + b(q)u(t) + v0(t), v0(t) = a(q)e(t) =⇒ Ỹ = ΦNθ + v0,

where v0(t) is the additive measurement error. The LS algorithm is motivated by this model,

described by

ỹ(t) = φ(t)′θ + v0(t), (2.13)

where φ(t) does not involve noises. For instance, if na = 0 then the model in (2.13) agrees

with that in Figure 1.2 by taking

v0(t) = εout(t). (2.14)

In this case, θ̂LS is given by

θ̂LS :=

[
1

N

N∑
i=1

φ(i)φ(i)′

]−1 [
1

N

N∑
i=1

φ(i){φ(i)′θ + v0(i)}

]

= θ +

[
1

N

N∑
i=1

φ(i)φ(i)′

]−1 [
1

N

N∑
i=1

φ(i)v0(i)

]
.

Definition 1: The input is persistently exciting of order n0, if

rank{R∗} = n0,
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where n0 = length(φ) and

R∗ = lim
N→∞

RN , RN :=
1

N

N∑
i=1

φ(i)φ(i)′.

Suppose R∗ has rank n0 and v0(t) has zero mean and is independent of φ(t). Then there

holds

lim
N→∞

θ̂LS(N) = θ.

Definition 2: An estimate θ̂ is said to be unbiased, if

E{θ̂} = θ.

Suppose that the input is persistently exciting of order n0. Then the LS estimate is unbiased,

if na = 0, v0(t) has zero mean and independent of φ(t). While an unbiased estimate is often

desired, it does not mean a biased estimate is always abandoned. In fact people sometimes

prefer to use a biased estimate due to its smaller variance error. In general, there is a tradeoff

between bias and variance [41]. That is, the expected error can be decomposed as follows:

E{‖ θ0 − θ̂ ‖2} = bias2 + σ2
θ̂

+ σ2
e ,

where θ0 is the true value, bias2 denotes squared expected bias, σ2
θ̂

is the variance of θ̂, and

σ2
e is the variance of the error.

Definition 3: An estimate is called a consistent estimate, if it is asymptotically unbiased.

Clearly consistency is required in system identification.

If εin(t) = 0 ∀ t, na = 0, and v0(t) is white, the LS solution is MLE because ΦN does not

involve noises, which is known exactly. We can regard θLS as a solution to the perturbed

equation:

(Ỹ −∆N) = ΦN θ̂ (2.15)
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where ∆N has the smallest Euclidean norm for which θ̂ has a solution. If na > 0, then

the regressor φ̃(t) also depends on {v0(k)}k<t, and thus E{φ(t)v0(t)} 6= 0, leading to the

conclusion that the LS estimate is biased. In fact, the LS estimate is not consistent either.

Only if na = 0, which is not realistic, is the LS estimate unbiased.

2.3 EIV Estimation

2.3.1 TLS Algorithm

The total least square (TLS) algorithm considers a more general case when each entry

of Φ̃N involves noise, assuming i.i.d. noise process. In this case we need to perturb not

only ỸN but also Φ̃N in hope to “remove” the noise terms. For this purpose we rewrite the

approximate equation ỸN ≈ Φ̃Nθ into

[−ỸN Φ̃N ]

 1

θ

 ≈ 0. (2.16)

Denote that Ψ̃N = [ỸN Φ̃N ] ∈ RN×(n0+1) with n0 is the length of θ. We now would like to

perturb Ψ̃N to

Ψ̂N = Ψ̃N −∆Ψ,

where ∆Ψ = [−δYN δΦN ], δYN = ỸN − ŶN and δΦN = Ψ̃N − Ψ̂N , which is having the

smallest induced 2-norm, i.e., ‖ ∆Ψ ‖2:= σ(∆Ψ) such that,

ỸN − δYN ∈ R(Φ̃N − δΦN).

The above is equivalent to rank {Ψ̃N−∆Ψ} = n0, even though Ψ̃N−∆Ψ ∈ RN×(n0+1). Indeed

because rank {Ψ̃N −∆Ψ} = n0 < n0 + 1, the exact equality in (2.16) can be made true and

thus there exists some nonzero solution in the form of

[
1 θ̂′

]′
.
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In light of SVD, Ψ̃N = UΣV ′ where

Σ′Σ = diag(σ2
1, · · · , σ2

n0+1), U =

[
u1 · · · un0+1

]
, V =

[
v1 · · · vn0+1

]
.

The perturbation ∆Ψ with the smallest induced 2-norm is given by ∆Ψ = σn0+1un0+1v
′
n0+1.

Based on the solution ∆Ψ = σn0+1un0+1v
′
n0+1, there holds

(
Ψ̃N −∆Ψ

) 1

θ̂TLS

 =

(
n∑
i=1

σiuiv
′
i

)
vn0+1/v1,n0+1 = 0 =⇒

 1

θ̂TLS

 =
vn0+1

v1,n0+1

, (2.17)

by the orthogonality of {vi}n0
i=1 to vn+1 where v1,n0+1 6= 0 is the first element of vn0+1. In

summary, θ̂TLS can be obtained from vn0+1 ∈ Rn0+1 by taking the last n0 elements of vn0+1,

divided by its first element that is nonzero with probability 1 [41].

Alternatively, the TLS estimate can also be computed from eigenvalue decomposition

(EVD) of Ψ̃′NΨ̃N by computing its minimum eigenvalue (equal to σ2
n0+1) and the corre-

sponding eigenvector that is vn0+1 due to

Ψ̃′NΨ̃N = V S2V ′ ⇒ V S2V ′

 1

θ̂TLS

 = σ2
n+1

 1

θ̂TLS

 . (2.18)

Partition V ∈ R(n0+1)×(n0+1) according to

V =

v11 v12

V21 v22

 , V21 ∈ Rn0×n0 , v22 ∈ Rn0 , v′11 ∈ Rn0 .

Equality (2.18) implies θ̂TLS = v22v
−1
12 = −(V ′21)−1v′11 in light of v12 = v1,n+1, v22 = v2:n0+1,n0+1

and [
v′11 V ′21

] v12

v22

 = v′11v12 + V ′21v22 = 0.
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It is shown in [41] that by persistently exciting input the TLS estimate is unbiased

asymptotically. The following results are new.

Theorem 1. Assume that the input is persistently exciting and {ε(t)} are independent Gaus-

sian distributed random vectors with zero mean and known covariance σ2
εI2 for all t. If

na = nb, then the TLS estimate θ̂TLS is MLE asymptotically.

Proof: We follow the same procedure as in [26]. The hypothesis on the measurement

noise implies that its PDF is given by

fε({ε(t)}) =
N∏
t=1

1

2πσ2
ε

exp

{
− [ỹ(t)− y(t)]2 + [ũ(t)− u(t)]2

2σ2
ε

}
.

The MLE θ̂ML maximizes fε(·), which is equivalent to the minimization of

ε̂2
N :=

1

N

N∑
i=1

[ỹ(t)− y(t; θ̂ML)]2 + [ũ(t)− u(t; θ̂ML)]2 =
1

N

N∑
i=1

[ε̂out(t)
2 + ε̂in(t)2]

=
1

N(na + 1)

(
Tr
{
Ê ′Y(N)

ÊY(N)

}
−

na∑
k=1

k[ε̂out(k − na)2 + ε̂out(N − k + 1)2]

)

+
1

N(nb + 1)

(
Tr
{
Ê ′U(N)

ÊU(N)

}
−

nb∑
k=1

k[ε̂in(k − nb)2 + ε̂in(N − k + 1)2]

)
.

The above implies that if N >> 1, then there holds approximately

ε̂2
N ≈

1

N(na + 1)

(
Tr
{
Ê ′Y(N)

ÊY(N)

})
+

1

N(nb + 1)

(
Tr
{
Ê ′U(N)

ÊU(N)

})
.

In light of the Gaussian assumption and the TLS solution that minimizes ε̂2
N , as N → ∞,

there hold asymptotically

1

N
Ê ′U(N)

ÊU(N)
→ σ2

εInb+1,
1

N
Ê ′Y(N)

ÊY(N)
→ σ2

εIna+1.
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The above implies that ε̂2
N approaches asymptotically to

ε̂2
N →

1

na + 1
Tr
{
σ2
εIna+1

}
+

1

nb + 1
Tr{σ2

εInb+1} =
1

n0 + 1
Tr{σ2

εIn0+1} = σ2
ε .

It follows from [26] that the TLS is indeed approximately MLE, and approaches MLE as

N →∞. 2

In the case where nb 6= na, we can add dummy parameters into θa or θb so that nb = na

is true. These dummy parameters can be set to zero after estimation is done. Hence, the

case nb 6= na does not pose a serious issue.

2.3.2 Standard EIV Estimation

We present an overview on standard EIV estimation, and its ML estimator based chiefly

on the results in [26]. Let Θ ∈ Rp×n be the parameter matrix of interest satisfying

ΘX = Y, X ∈ Rn×N , Y ∈ Rp×N , (2.19)

where N > n+ p. This is a so-called multivariate problem (p ≥ 1), dual to the conventional

equation of XΘ = Y , due to the need for system identification in the multi-input and

multiple-output (MIMO) setting. The precise values of X and Y are unknown. Instead only

their measurements, denoted by X̃ and Ỹ , respectively, are available, giving rise to the EIV

model  Ỹ

X̃

 =

 Y

X

+ E, (2.20)

where elements of E are i.i.d. random variables. Denote

R̃ =
1

N

 Ỹ

X̃

[ Ỹ ′ X̃ ′
]
∈ R(n+p)×(n+p), (2.21)

which is the second-order statistics of the measurement samples. The following result holds.
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Theorem 2. Suppose that elements of E are normal i.i.d. with mean zero and variance σ2.

Let R̃ = KΛK ′ be the eigenvalue decomposition (EVD) with

Λ = diag(λ1, λ2, · · · , λn+p)

arranged in ascending order, and K of the same size as R̃ being orthogonal. Partition

K =

 K11 K12

K21 K22

 , Λ =

 Λ1 0

0 Λ2

 , (2.22)

where K11,Λ1 ∈ Rp×p. Then K11 and K22 are nonsingular with probability 1 (w. p. 1), and

Θ̂ = K12K
−1
22 = −(K ′11)−1K ′21, σ̂2 =

Tr{Λ1}
n+ p

, (2.23)

are ML estimators for Θ and σ2, respectively, with Tr{·} denoting the trace operation.

The above result is quoted from [26] (Lemma 2.2 and Theorem 2.3) with only minor

changes to fit the EIV identification. It is noted that the ML estimate Θ̂ is the TLS solution

to ΘX̃ ≈ Ỹ [77], different from the ordinary LS solution Θ̂LS = Ỹ X̃ ′(X̃X̃ ′)−1, assuming

det(X̃X̃ ′) 6= 0.

Remark 1. (a) There holds a strong consistency or Θ̂ → Θ w. p. 1 as N → ∞, provided

that

lim
N→∞

1

N
XX ′ = RX > 0. (2.24)

The condition for the weak consistency is also established in [24] that weakens 1
N

in (2.24)

to 1√
N

. It is noted that the ML estimates in (2.23) require to compute only the p smallest

eigenvalues of R̃ and their respective eigenvectors. If p = 1, both Λ1 and K11 are reduced to

scalars, and Λ1 = λmin is the minimum eigenvalue of R̃.

(b) The ML estimators in (2.23) are obtained based on the Gaussian assumption, but their

strong consistency is not. The ML estimate, denoted by Θ̂, is called the generalized LS
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solution to ΘX̃ ≈ Ỹ [26], which is independent of the ML estimate σ̂. Moreover, the ML

estimate Θ̂ is obtained by first computing the ML estimates (X̂, Ŷ ) to (X̃, Ỹ ) subject to the

rank condition

rank


 Ŷ

X̂


 = n, (2.25)

and then computing the ML estimate Θ̂ as the unique solution to linear equation Θ̂X̂ = Ŷ

[26, 77]. 2
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CHAPTER 3
GRAPH SUBSPACE APPROACH

This chapter is focused on developing the graph subspace algorithm for identifying the

parameterized EIV system model. The notion of the system graph has been employed in

[25, 84] for robust control. Its use in system identification will be proved to be productive.

In Section 3.1, we will introduce the notion of the graph subspace for dynamic systems, and

formulate the EIV identification problem using the concept of graph subspace. In Section 3.2,

we show the asymptotic MLE property for the TLS estimate and develop the graph subspace

algorithm which is more general than the TLS algorithm. In addition, an iterative procedure

is proposed to improve the estimation performance. In Section 3.3, we discuss how to modify

the algorithm for implementation in the case when the input and output measurement noises

are unknown, but the ratio of the two noise variances is known. In Section 3.4, we present the

numerical studies with several examples to illustrate the performance of the graph subspace

algorithm.

3.1 Preliminaries

3.1.1 Graph Subspace

For simplicity, we consider only single-input and single-output (SISO) systems, although

the results are applicable to multivariable systems. Let

P (z) =
b(z)

a(z)
,

 b(z)

a(z)

 =
n∑
k=0

 bk

ak

 zn−k, (3.1)

with a0 = 1, be the transfer function of a given discrete-time SISO system. Parameterized

model representation in (3.1) has no loss of generality for finite dimensional systems. Assume

that a(z) and b(z) are coprime. Suppose that a(z) is a Schur polynomial. Denote B as the

set of all bounded signals. Then for each input {u(t)} ∈ B, y(t) = P (q)u(t) ∈ B as well.
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That is, the SISO system represented by P (z) maps B into B. The graph associated with

P (z), denoted as GP , consists of all such pairs {u(t), y(t)} = {u(t), P (q)u(t)} that induce

the graph metric [84].

The graph associated with P (z) can be represented in an alternative way. Define

G(z) :=

 b(z)

a(z)

 z−n =
n∑
k=0

 bk

ak

 z−k. (3.2)

Then the graph of P (z) is given by GP = G(q)B that is a closed subspace [25, 84], and is

termed as graph subspace in this dissertation. Define v(t) := a(q)−1u(t). It is clear that by

the Schur stability of a(z),

u(t) ∈ B ⇐⇒ v(t) = a(q)−1u(t) ∈ B. (3.3)

It follows that s(t) := G(q)v(t) ∈ B2 := B ⊕ B for each v(t) ∈ B. More importantly,

GP =

s(t) =

 y(t)

u(t)

 = G(q)v(t) : v(t) ∈ B

 (3.4)

constitutes the graph subspace of P (z).

Alternatively, denote

TG(z) := z−n
[
−a(z) b(z)

]
= G(z)′

 0 1

−1 0

 . (3.5)

Then the graph subspace of P (z) can be defined as

GP = {s(t) ∈ B2 : TG(q)s(t) = 0} . (3.6)
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Let the true parameter vector θ, and blocked s(t) of (`+ 1)-fold be denoted respectively by

θ =

[
b0 −a1 b1 · · · −an bn

]′
,

ψs,`(t) =

[
s(t)′ s(t− 1)′ · · · s(t− `)′

]′
,

(3.7)

satisfying ` ≥ n. So ψs,`(t) ∈ R2(`+1). In the case of ` = n, the equality TG(q)s(t) = 0 in

(3.6) is equivalent to

[
−1 θ′

]
ψs,n(t) = 0 ⇐⇒ y(t) = φ(t)′θ

with φ(t) a permutated regressor:

φ(t) =

[
u(t) y(t− 1) u(t− 1) · · · y(t− n) u(t− n)

]′

As a result, there exists an invertible map from GP to

G
P

:=

{
ψs,n(t) ∈ B2(n+1) :

[
−1 θ′

]
ψs,n(t) = 0

}
.

3.1.2 EIV Identification

The input and output measurements are described by

s̃(t) =

 ỹ(t)

ũ(t)

 = s(t) + ε(t), ε(t) =

 εout(t)

εin(t)

 . (3.8)

A common assumption on measurement noises for EIV systems is that {εin(t), εout(t)} are

i.i.d. Gaussian distributed with common variance σ2
ε and independent of {u(t), y(t)}. Also,

we assume that a total of (N + `) pairs of noisy input-output measurements {ũ(t), ỹ(t)}tft=t0
are available where ` ≥ n and tf − t0 = N + ` − 1. The problem of EIV identification is

aimed at estimating the true parameter vector θ based on noisy input-output measurements
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{ũ(t), ỹ(t)}tft=t0 . Let t0,` = t0 + `. An N -column matrix

Ψ̃
(s)
`,N =

[
ψ̃s,`(t0,`) ψ̃s,`(t0,` + 1) · · · ψ̃s,`(tf )

]
(3.9)

can be formed. Clearly ψ̃s,`(t) ∈ R2(`+1) by

ψ̃s,`(t) = ψs,`(t) + ψε,`(t),

where ψε,`(t) is similar to ψs,`(t) with a difference in u(t) and y(t) being replaced by εin(t)

and εout(t), respectively. It follows that

Ψ̃
(s)
`,N = Ψ

(s)
`,N + Ψ

(ε)
`,N (3.10)

with Ψ
(s)
`,N consisting of noiseless input-output measurement data and Ψ

(ε)
`,N the error compo-

nent of Ψ̃
(s)
`,N . There holds [

−1 θ′
]

Ψ
(s)
n,N = 0. (3.11)

The input {u(t)} is said to be persistently exciting (PE), if

rank

{
1

N
Ψ

(s)
`,NΨ

(s)′

`,N

}
= `+ n+ 1, (3.12)

for sufficiently large N , in which case there exists an invertible map from the range space of

Ψ
(s)
`,N to the graph subspace of P (z). Recall the previous subsection. The PE condition is

assumed throughout the dissertation; otherwise the system parameters are not identifiable

even if N →∞.

Remark 2. It is beneficial to compare the EIV system identification with the standard EIV
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estimation. By taking

 Ỹ

X̃

 = Ψ̃
(s)
`,N ,

 Y

X

 = Ψ
(s)
`,N , E = Ψ

(ε)
`,N ,

and Θ = θ′ with Ỹ and Y one-dimensional row vectors, i.e., p = 1, both (2.19) and (2.20)

hold true in the case of ` = n in light of (3.11). Moreover, the PE condition in (3.12) is

equivalent to (2.24). More importantly, the procedure derived in [26] for computing the MLE

agrees with the TLS. Consequently the estimator associated with the TLS is a consistent

estimator. The difference lies in the Toeplitz structure for Ψ̃
(s)
`,N . That is, both Ψ

(s)
`,N and

E = Ψ
(ε)
`,N are (block) Toeplitz matrices. For this reason, the ML property for the standard

EIV estimation shown in [26] does not hold anymore in general for the EIV identification.

Nevertheless, the above observation will be useful in the next section. 2

3.2 Main Results

3.2.1 Asymptotic MLE Property

It is clear that the TLS algorithm is the same as the MLE algorithm in [26] in the case

of ` = n. Define

R̃n =
1

N
Ψ̃

(s)
n,NΨ̃

(s)′

n,N .

The TLS computes the EVD of R̃n and it estimates θ̂ using the eigenvector corresponding

to the smallest eigenvalue. Specifically, if the eigenvector corresponding to the smallest

eigenvalue of R̃n is

ṽη =

[
ṽη,1 ṽη,2 · · · ṽη,2(n+1)

]′
∈ R2(n+1),
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where η is the index of the eigenvector corresponding to the smallest eigenvalue of R̃n, for

example, η = 1 if the eigenvalues are in ascending order. Then the TLS algorithm sets

θ̂ = −
[
ṽη,2 · · · ṽη,2(n+1)

]′
ṽ−1
η,1 (3.13)

as the estimated parameter vector. Recall (2.23) in Theorem 2 and that ṽη,1 6= 0 w.p.1.

Because the eigen-matrix of R̃n is the same as the left singular matrix of 1√
N

Ψ̃
(s)
n,N , singular

value decomposition (SVD) can be used to compute the parameter estimate θ̂ as well. The

next result shows that the TLS produces an asymptotic MLE.

Theorem 3. Let {ỹ(t), ũ(t)}t=tft=t0 be noisy input-output measurements of the EIV system

described in (3.1) and (3.8), illustrated in Figure 1.2 with N = tf − t0 + 1 >> 1. For ` = n,

the estimated parameter vector θ̂ as obtained in (3.13) is an asymptotic MLE of the true

system parameter vector θ. Under the PE condition in (3.12) and ` ≥ n, there holds θ̂ → θ

as N →∞.

Proof: We follow the procedure in [26]. Let {ŷ(t), û(t)}t=tft=t0 be respective estimates of

{ỹ(t), ũ(t)}t=tft=t0 satisfying

rank
{

Ψ̂
(s)
n,N

}
= 2n+ 1, (3.14)

where Ψ̂
(s)
n,N is defined in the same way as Ψ̃

(s)
n,N except that {ỹ(t), ũ(t)}t=tft=t0 are replaced by

{ŷ(t), û(t)}t=tft=t0 , respectively. It follows from the hypotheses on Gaussian distribution and

i.i.d. of the EIV system model that the MLE seeks {ŷ(t), û(t)}t=tft=t0 to minimize the following

functional (that is the negative log-likelihood function, plus a constant):

f(·) =
1

2σ2
ε

(
tf∑
t=t0

[ũ(t)− û(t)]2 + [ỹ(t)− ŷ(t)]2

)
,

subject to rank condition (3.14). It can be verified that

f(·) =
1

2n+σ2
ε

[
Tr

{(
Ψ̃

(s)
n,N − Ψ̂

(s)
n,N

)(
Ψ̃

(s)
n,N − Ψ̂

(s)
n,N

)′}
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+
n∑
k=1

(n− k)
{
ε̂in(t0 + k)2 + ε̂in(tf − k)2

}
+

n∑
k=1

(n− k)
{
ε̂out(t0 + k)2 + ε̂out(tf − k)2

}]
,

where ε̂in(k) = ũ(k)− û(k), ε̂out(k) = ỹ(k)− ŷ(k), and n+ = n+ 1. As a result, the negative

log-likelihood function is dominated by the first term, and therefore

2n+σ
2
ε

N
f(·) ≈ Tr

{
1

N

(
Ψ̃

(s)
n,N − Ψ̂

(s)
n,N

)(
Ψ̃

(s)
n,N − Ψ̂

(s)
n,N

)′}

with an error in the order of O(n
2

N
) that approaches zero as N approaches infinity. It follows

that minimization of the above trace yields the TLS algorithm that minimizes the negative

log-likelihood function asymptotically. Consistency follows from the PE condition and

R̃`,σ := lim
N→∞

1

N
Ψ̃

(s)
`,NΨ̃

(s)′

`,N = E{ψs,`(t)ψs,`(t)′}+ σ2
ε I.

Hence, noise covariance can be removed asymptotically, even if σ2
ε is unknown. Indeed, the

ith eigenvalue of R̃`,σ is the same as σ2
ε for 0 < i ≤ `−n+1 if the eigenvalues are arranged in

ascending order, in light of (3.12). Therefore, σ2
ε can be estimated consistently, and removed

as N → ∞. It follows that parameter vector θ can be recovered asymptotically, which

concludes the proof. 2

Remark 3. The proof of Theorem 3 shows that the TLS algorithm minimizes an approxi-

mation of f(·) that is the negative log-likelihood function plus a constant, with the approx-

imation error in the order of O(n
2

N
). Therefore, the TLS algorithm can be regarded as an

approximate MLE for estimating the system parameters. 2

In the case of ` = n, the range space of eigenvector ṽη corresponding to the smallest

eigenvalue of R̃n can be regarded as a noise subspace, and the range space spanned by the

other (2n + 1) eigenvectors of R̃n can be regarded as a signal subspace. The notions of

these two subspaces are proposed and studied in [1, 46] in order to solve the problem of
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blind channel estimation. The parameter vector can be estimated by making use of the

orthogonality of the two subspaces.

In the case when ` 6= n, let

R̃` =
1

N
Ψ̃

(s)
`,NΨ̃

(s)′

`,N , ` > n. (3.15)

Under the hypotheses of the Gaussian distribution and i.i.d. of the EIV system model,

the asymptotic MLE, such as the one in Theorem 3, seeks block Toeplitz matrices Ψ̂
(s)
`,N to

minimize

Tr

{
1

N

(
Ψ̃

(s)
`,N − Ψ̂

(s)
`,N

)(
Ψ̃

(s)
`,N − Ψ̂

(s)
`,N

)′}
, (3.16)

subject to the rank condition

rank
{

Ψ̂
(s)
`,N

}
= `+ n+ 1, (3.17)

in light of (3.12). The restriction on the Toeplitz structure (the same as that of Ψ̃
(s)
`,N) in the

case of ` > n differs from the case of ` = n and renders the problem of approximate MLE

much harder.

3.2.2 GSA Algorithm

In this subsection, we formally introduce the GSA, the generalization of the TLS for EIV

identification. Let R̃` = K̃Λ̃K̃ ′ be the EVD. Then K̃ =

[
K̃η K̃s

]
of which columns of K̃η

span the (approximate) noise subspace, and columns of K̃s span the (approximate) signal

subspace. In addition, the noise subspace has dimension dη = ` − n + 1, and the signal

subspace has dimension ds = `+ n+ 1 [1, 46]. Similarly, Λ̃ = diag(Λ̃η, Λ̃s) with

Λ̃η = diag(λ̃1, · · · , λ̃dη), Λ̃s = diag(λ̃dη+1, · · · , λ̃2(`+1)),
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and {λ̃i} arranged in ascending order. Partition

K̃η =

[
ṽη1 · · · ṽηdη

]
∈ R2(`+1)×dη ,

K̃s =

[
ṽs1 · · · ṽsds

]
∈ R2(`+1)×ds .

(3.18)

Recall the true system parameter vector θ. Denote

θ =



−1

θ

0

...

0


, S =



0 · · · · · · · · · 0

1
. . . . . . . . .

...

0
. . . . . . . . .

...

...
. . . . . . . . .

...

0 · · · 0 1 0


(3.19)

as the length increased parameter vector of dimension 2(` + 1), and the shift matrix of

dimension 2(`+ 1)× 2(`+ 1), respectively. Define matrix function

Mη(θ) :=

[
θ S2θ · · · S2(dη−1)θ

]
∈ R2(`+1)×dη .

Then in the noise-free case, i.e., σε = 0, there holds

Mη(θ)
′Ks = 0, Ks := K̃s

∣∣∣
σε=0

.

In the noisy case of σε > 0, θ̂ is sought such that equation

Mη(θ̂)
′K̃s = 0 (3.20)

admits a unique solution θ̂, which imposes the block Toeplitz structure on Ψ̂
(s)
`,N .

Because of the lack of the mathematical tools, we remove the restriction on the block

Toeplitz structure for Ψ̂
(s)
`,N in minimizing cost functional (3.16), subject to condition (3.17).
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As such, there does not exist a unique solution to (3.20) in general, in contrast to the case

of ` = n. Consequently we search for θ̂ such that some cost functional of

Mη(θ̂)
′K̃sΛ̃

1/2
s

is minimized. Inclusion of Λ̃
1/2
s departs the subspace algorithm developed in [1, 46]. For this

purpose, partition

K̃sΛ̃
1/2
s =


S̃1

...

S̃`+1

 , S̃i ∈ R2×ds . (3.21)

It is easy to see that

Mη(θ̂)
′K̃sΛ̃

1/2
s ≈ 0

is equivalent to [
−1 θ̂′

]
TS̃ ≈ 0 (3.22)

where TS̃ is a block Toeplitz matrix with 2(n+ 1) rows, specified by

TS̃ =


S̃dη · · · S̃n+1 · · · S̃1

...
. . . . . .

...

S̃`+1 · · · S̃dη · · · S̃n+1

 (3.23)

in the case of dη > n+ 1. If dη = n+ 1, then

TS̃ =


S̃n+1 · · · S̃1

...
. . .

...

S̃dη · · · S̃n+1

 . (3.24)
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If dη < n+ 1, then

TS̃ =



S̃dη · · · S̃1

...
. . .

...

S̃n+1 · · · S̃dη
...

. . .
...

S̃`+1 · · · S̃n+1


. (3.25)

(3.21) can be written as [
−1 θ̂′

] β

A

 ≈ 0,

where β is the first row of TS̃ and A is the remaining part of TS̃. Then we use the LS solution

for the estimated system parameter. That is,

[
−1 θ̂′GSA

] β

A

 = 0 =⇒ θ̂GSA = (AA′)−1Aβ′. (3.26)

Prior to presenting the GSA algorithm, we restate the underlying assumption as follows.

Assumption: Input and output data in (3.8) satisfy the PE condition as specified in (3.12),

the measurement noises {εin(t), εout(t)} are i.i.d. with zero-mean, and the system transfer

function is given by

P (z) =
b(z)

a(z)

with coefficients shown in the parameter vector in (3.7).

The GSA is summarized next.

• Step 1: Choose the block size ` ≥ n, form the matrix Ψ̃
(s)
`,N as in (3.9), and compute

R̃` =
1

N
Ψ̃

(s)
`,NΨ̃

(s)′

`,N .

• Step 2: Compute the EVD for R̃` with the eigenvalues arranged in ascending order,
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and partition K̃sΛ̃
1/2
s in accordance with (3.21).

• Step 3: Form matrix TS̃ as specified in either (3.23) or (3.24) according to the value of

dη. Set

β = TS̃(1, :), A = TS̃(2 : 2(n+ 1), :),

using the Matlab notation. Compute the estimate

θ̂GSA = (AA′)−1Aβ′.

The above identification procedure for ` > n is referred to as GSA because of its connec-

tion to the system graph space. It is important to point out that this algorithm reduces to

the TLS algorithm, in light of

TS̃ = S̃1Λ̃1/2
s = K̃sΛ̃

1/2
s , Mη(θ̂) =

[
−1 θ̂′

]
,

and relation (2.23) in the case of ` = n. In Step 3 of the above GSA, θ̂ is the LS solution to

[
−1 θ̂′

]
TS̃ ≈ 0. (3.27)

We do not suggest the TLS solution in Step 3, because there are little noticeable changes

in the simulation studies between using the LS or TLS algorithm to solve for the estimate

θ̂ from (3.27). In fact ` > n does not need to be a very large number. See the simulation

studies section.

Remark 4. The results are also applicable to the case when measurement noises are not

i.i.d. but having the covariance matrix

Rε = E{ψε,`(t)ψε,`(t)′} = σ2
εΩΩ′ (3.28)
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where Ω is a known nonsingular matrix and σε > 0 is an unknown scalar. In this case, we

can add computing

R̃`Ω = Ω−1R̃`Ω
′−1

to the end of Step 1 of the GSA. Such a change transforms the noise vector ψε,`(t) into

ψ
(Ω)
ε,` (t) := Ω−1ψε,`(t)

that has mean-zero and covariance σ2
εI. If ψε,`(t) has the Gaussian distribution, so does

ψ
(Ω)
ε,` (t). In Step 2, we can replace R̃` with R̃`Ω, and K̃sΛ̃

1/2
s with K̃sΩΛ̃

1/2
sΩ to signify the

change due to Ω. At the end of Step 2, we add EVD for

ΩK̃sΩΛ̃sΩK̃
′
sΩΩ′ = K̃sΛ̃sK̃

′
s,

from which K̃sΛ̃
1/2
s is obtained. Step 3 of the GSA yields the GSA estimate θ̂. We comment

that components of {ψ(Ω)
ε,` (t)} become i.i.d. with mean-zero and variance σ2

ε , which helps to

recover the same EIV identification problem as studied. In particular, the asymptotic MLE

property in Theorem 2 holds if ` = n. 2

3.2.3 Iterative Method

The GSA is motivated by the subspace algorithm proposed in [1, 46] that shows improve-

ments of the estimation performance as the block size ` increases. However, the source signal

for blind channel estimation is assumed to be white, whereas v(t) as defined in (3.3) is not.

In fact, the non-whiteness of v(t) may degrade the estimation performance as ` increases in

the case of low SNR, as observed in the simulation studies. We thus propose an iterative

procedure to search for more accurate parameter estimates for the case of ` > n.

To be specific, consider first the TLS algorithm in the case of ` = n. It has the interpre-
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tation of seeking θ̂ to minimize the cost function

JN(θ̂) :=

∥∥∥∥∥∥∥∥
[
−1 θ̂′

]
√

1 + ‖θ̂‖2

Ψ̃
(s)
n,N

∥∥∥∥∥∥∥∥
2

.

There holds the inequality

E
{

min
θ̂
JN(θ̂)

}
≤ E


∥∥∥∥∥∥∥∥
[
−1 θ′

]
√

1 + ‖θ‖2
Ψ̃

(s)
n,N

∥∥∥∥∥∥∥∥
2


=

[
−1 θ′

]
1 + ‖θ‖2

E
{

Ψ̃
(s)
n,NΨ̃

(s)′

n,N

} −1

θ


= σ2

ε .

Next we consider use of a weighting matrix Wθ̂ such that Mη(θ̂)W
′
θ̂

is an orthogonal matrix

to minimize

JN(θ̂) =
∥∥∥Wθ̂Mη(θ̂)

′K̃sΛ̃
1/2
s

∥∥∥2

.

Similarly, it can be seen that

E
{

min
θ̂
JN(θ̂)

}
≤ E

{
min
θ̂

∥∥∥Wθ̂Mη(θ̂)
′Ψ̃

(s)
`,N

∥∥∥2
}

= σ2
ε .

Since minimization of JN(θ̂) leads to nonlinear optimization that is difficult to solve, a simple

iterative procedure is proposed:

• Step 1: Use the GSA as an initial value of the estimated system parameter vector

θ̂GSA =: θ̂0
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• Step 2: Compute θ̂i to minimize

JN(θ̂i) =
∥∥∥Wθ̂i−1

Mη(θ̂i)
′K̃sΛ̃

1/2
s

∥∥∥2

,

where i is the ith iteration for i = 1, 2, · · · , until ‖θ̂i − θ̂i−1‖ is suitably small.

Minimization of JN(θ̂i) is a linear problem. Let w
(i)
µ,ν be the (µ, ν)th entry of Wθ̂i−1

∈ Rdη×dη ,

and

S̃Wi
(µ+ 1, ν) =

dη∑
ν=1

w(i)
µ,νS̃µ+ν (3.29)

for µ = 0, 1, · · · , n and ν = 1, · · · , dη. Denote

S̃Wi
=


S̃Wi

(1, 1) · · · S̃Wi
(1, dη)

... · · · ...

S̃Wi
(n+ 1, 1) · · · S̃Wi

(n+ 1, dη)

 . (3.30)

Note that S̃Wi
is not a Toeplitz matrix in general. Then minimization of JN(θ̂i) is equivalent

to the minimization of

‖
[
−1 θ̂′i

]
S̃Wi
‖2.

Again, the LS algorithm can be used to compute θ̂i. We summarize Step 2 of the iterative

algorithm, which is aimed at minimization of JN(θ̂i) given θ̂i−1 for i ≥ 1 with θ̂0 = θ̂GSA

being the GSA estimate:

• Step 2-i: Form matrix Mη(θ̂i−1), and compute

Wθ̂i−1
= [Mη(θ̂i−1)′Mη(θ̂i−1)]−1/2.

• Step 2-ii: Form matrix S̃Wi
according to (3.30) with each sub-matrix specified in (3.29).

• Step 2-iii: Set

AW = S̃Wi
(2 : 2(n+ 1), :), βW = S̃Wi

(1, :),
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and compute

θ̂i = (AWA
′
W )−1AWβ

′
W .

• Step 2-iv: If

‖θ̂i − θ̂i−1‖ < ε

for some pre-specified tolerance ε > 0, then stop and choose θ̂i as the output. Other-

wise, set

i = i+ 1, θ̂i−1 = θ̂i,

and go to Step 2-i.

In Step 2-i, Wθ̂i−1
can be chosen as a symmetric and positive definite matrix for each i ≥ 1.

Remark 5. The GSA proposed in this dissertation differs from the subspace algorithm in

[1, 46] in that the signal subspace power represented by Λ̃
1/2
s is included in TS̃ for computing

the parameter estimate θ̂ via solving

[
−1 θ̂′

]
TS̃ ≈ 0.

Hence, in the case of high SNR, the identification performance for the GSA can be improved

more than that of the subspace algorithm. In the case of low SNR, the iterative procedure

developed in this section can be employed to improve the identification performance. The

simulation studies in the next section show that only a few iterations are needed. For the

above reason, the GSA as proposed is not only more general than the TLS algorithm but

also has more advantages than that of the subspace algorithm developed in [1, 46] for blind

channel estimation. 2

3.3 Implementation

In this section, we consider the implementation issue. While the GSA can be programmed

directly, the use of the graph signal {s(t)} may complicate the identification problem when
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the two noise variances are not equal. The basic idea is to group input and output data

separately so that the input and output noise variances will appear separately in the second

statistics. Such a way helps to estimate the noise variances when the two of them are

non-equal and unknown, which will be studied in the next chapter.

3.3.1 Modification

We define modified system parameter vector:

θ̄ =

 −θa
θb

 , θa =



a0

a1

...

an


, θb =



b0

b1

...

bn


, a0 = 1.

For the noisy measurements, we form the data vector as follows:

ψ`(t) =

 ψy`(t)

ψu`(t)

 , ψy`(t) =



y(t)

y(t− 1)

...

y(t− `)


, ψu`(t) =



u(t)

u(t− 1)

...

u(t− `)


.

Define the data matrix as

Ψ̃` =

[
ψ̃`(t0) ψ̃`(t0 + 1) · · · ψ̃`(t0 +N − 1)

]

with t0,` = t0 + `, tf = t0,` +N − 1. Similarly, we modify equation (3.9) to the following:

Ψ̃` = Ψ` + Ψε` ,
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specified by,

Ψ̃` =

[
ψ̃`(t0,`) ψ̃`(t0,` + 1) · · · ψ̃`(tf )

]
=

[
ψ`(t0,`) ψ`(t0,` + 1) · · · ψs`(tf )

]
+ Ψε` ,

Ψε` =

[
ψε`(t0,`) ψε`(t0,` + 1) · · · ψε`(tf )

]
,

where Ψε` consists of input-output measurement noises. It follows that θ̄′ψ`(t) = 0 ∀t ≥ 0,

if ` = n. In the case of ` > n, we pad zeros to form

θa` =

 θa

0`−n

 ∈ R`+1, θb` =

 θb

0`−n

 ∈ R`+1,

where 0k is a k-dimensional vector of zeros. Define the matrix

M`,η(θa` , θb`) =



−θ′a` 0 · · · 0 θ′b` 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . 0

0 · · · 0 −θ′a` 0 · · · 0 θ′b`



′

,

=



−a0 · · · −an 0 · · · 0 b0 · · · bn 0 · · · 0

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 · · · 0 −a0 · · · an 0 · · · 0 b0 · · · bn



′

∈ R2(`+1)×dη ,

where dη is the the dimension of noise subspace of the auto-covariance matrix of the input

and output measurement data:

R̃m` =
1

N
Ψ̃`Ψ̃

′
`.

Note that the subscript “m” indicates the modified forms for the measurement data to

distinguish it from the one which involved the unmodified forms. Accordingly, we need to
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replace (3.21) with the following

K̃m`
Λ̃1/2

m`
=



S̃y,1
...

S̃y,`+1

S̃u,1
...

S̃u,`+1


, S̃y,i ∈ R1×ds , S̃u,i ∈ R1×ds , (3.31)

where K̂ms and Λ̂ms are the eigenvectors and eigenvalues of the signal space of R̃m` respec-

tively. In light of

R̃m` = K̃msΛ̃msK̃
′
ms,

we can see that

M`,η(θ̂a` , θ̂b`)K̃msΛ̃
1/2
ms ≈ 0.

The above is equivalent to ̂̄θ′TmS̃ ≈ 0, (3.32)

where TmS̃ is given by

TmS̃ =



S̃y,dη · · · S̃y,n+1 · · · S̃y,1
...

. . . . . .
...

S̃y,`+1 · · · S̃y,dη · · · S̃y,n+1

S̃u,dη · · · S̃u,n+1 · · · S̃u,1
...

. . . . . .
...

S̃u,`+1 · · · S̃u,dη · · · S̃u,n+1


(3.33)
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in the case of dη > n+ 1. If dη = n+ 1, then

TmS̃ =



S̃y,n+1 · · · S̃y,1
...

. . .
...

S̃y,dη · · · S̃y,n+1

S̃u,n+1 · · · S̃u,1
...

. . .
...

S̃u,dη · · · S̃u,n+1


. (3.34)

If dη < n+ 1, then

TmS̃ =



S̃y,dη · · · S̃y,1
...

. . .
...

S̃y,n+1 · · · S̃y,dη
...

. . .
...

S̃y,`+1 · · · S̃y,n+1

S̃u,dη · · · S̃u,1
...

. . .
...

S̃u,n+1 · · · S̃u,dη
...

. . .
...

S̃u,`+1 · · · S̃u,n+1



. (3.35)

We can then solve (3.32) using LS and find the estimated system parameters. It will give us

the same values as those described in Section 3.2.

In addition, we also modify (3.29) for the iterative procedure as follows:

S̃Wy ,i(µ+ 1, ν) =

dη∑
ν=1

w(i)
µ,νS̃y,µ+ν , (3.36)

S̃Wu,i(µ+ 1, ν) =

dη∑
ν=1

w(i)
µ,νS̃u,µ+ν , (3.37)
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for µ = 0, 1, · · · , n and ν = 1, · · · , dη. Also (3.30) needs to be replaced with

S̃mWi
=



S̃Wy ,i(1, 1) · · · S̃Wy ,i(1, dη)

... · · · ...

S̃Wy ,i(n+ 1, 1) · · · S̃Wy ,i(n+ 1, dη)

S̃Wu,i(1, 1) · · · S̃Wu,i(1, dη)

... · · · ...

S̃Wu,i(n+ 1, 1) · · · S̃Wu,i(n+ 1, dη)


. (3.38)

Using the iterative procedure in Section 3.2.3 with the modified matrices and vectors, we

can obtain the estimated system parameters.

3.3.2 Use of the Ratio of Noise Variances

Under the assumptions of the unequal noise, there holds

lim
N→∞

1

N
Ψ̃′`Ψ̃` = lim

N→∞

1

N
Ψ′`Ψ` +

 σ2
yI`+1 0

0 σ2
uI`+1

 .
Define the root-squared ratio of the input and output noise variances as

ρ =

√
σ2
u

σ2
y

=
σu
σy
.

If the output measurements are multiplied by ρ, we can form

ψ̃
(ρ)
` (t) =

 ρψ̃y`(t)

ψ̃u`(t)

 ,
and

Ψ̃
(ρ)
` =

[
ψ̃

(ρ)
` (t0,`) ψ̃

(ρ)
` (t0,` + 1) · · · ψ̃

(ρ)
` (tf )

]
.
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If we know the ratio ρ, then asymptotically,

1

N
Ψ̃

(ρ)
` Ψ̃

(ρ)′

` → 1

N
Ψ

(ρ)
` Ψ

(ρ)′

` + σ2
uI2(`+1) (3.39)

as N → ∞. This is equivalent to the case when the input and output noise variances are

equal. Hence, the GSA can be applied to compute the estimate for θa and θb. Caution needs

to be taken on the scaling of ρ. That is, the GSA produces the estimate for θa and ρθb.

3.4 Simulation Studies

In this section, simulation studies on two different input cases will be presented, the white

input case and the colored input case. Each case has two different plant models. To evaluate

the performance of the proposed GSA, the root-mean-square error (RMSE), defined by

RMSE :=

√√√√ 1

T

T∑
i=1

‖θ̂i − θ‖
2

(3.40)

is used where T is the number of ensembles and θ̂i is the estimated parameter vector from

the ith simulation. For the iterative procedure, we set the tolerance ε = 10−8 which is

‖θ̂i − θ̂i−1‖ < 10−8.

A total of 2,000 ensembles are used in our simulation studies. Note that the character for

the block size ` is replaced with L in all figures. The solid line indicates the Cramér-Rao

lower bound (CRLB).

White Input

Two plant models from [69] are used to illustrate the performance of the GSA algorithm

in the case when the inputs {u(t)} are white signals.
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Example 3.1 : The plant model is described by

P (z) =
0.8× (1− 1.2488z−1 + 0.9604z−2)

1− 1.4491z−1 + 0.9604z−2
.

The SNR at the input and output is 3.0126dB and 5.9155dB, respectively, with σε = 0.5.

Figure 3.1 and Figure 3.2 show the simulation results for Example 3.1 with the white input

u(t).
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Figure 3.1. RMSEs for GSA in Example 3.1 without iteration

The RMSE curves for different L (`) values in Figure 3.1 show that the proposed GSA

does not improve the estimation performance as L (`) increases, contrasting to the subspace

algorithm for the blind channel estimation. The reason lies in that the corresponding v(t)

is not white for system identification based on the EIV model, whereas for blind channel

estimation its source signal v(t) is white. In addition, the SNR is relatively low. On the

other hand, Figure 3.2 shows that the GSA with the iterative procedure improves the RMSE

performance as L (`) increases. Table 3.1 shows the average number of iterations for the
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Figure 3.2. RMSEs for GSA in Example 3.1 with iteration

RMSE curves in Figure 3.2. In the case of ` = n, we only need one instance of the iteration to

reach the tolerance. As ` increases, more iterations are needed but not many, approximately

three or four, as shown in the table.

Table 3.1. Average number of iterations in Example 3.1

N 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
` = n 1 1 1 1 1 1 1 1 1 1 1

` = n+ 1 4.38 4.23 4.11 4.02 3.95 3.91 3.87 3.84 3.78 3.79 3.75
` = n+ 5 5.09 4.87 4.70 4.62 4.52 4.45 4.40 4.35 4.33 4.32 4.26

Example 3.2: The plant model is described by

P (z) =
1.5− 0.9z−1 − 0.45z−2

1− 0.5z−1 + 0.3z−2
.

The SNR at the input and output is 2.9927dB and 8.4103dB, respectively, and σε = 0.5.
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The input u(t) is again white. Figure 3.3 shows the RMSE in Example 3.2 without iteration.

Figure 3.4 shows the simulation results in Example 3.2 with the iterative procedure.
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Figure 3.3. RMSEs for GSA in Example 3.2 without iteration

Figure 3.3 shows that the RMSE decreases as L (`) increases even though the iterative

procedure is not used. Its reason lies in the greater SNR at the plant output than that

in Example 1, which helps to improve the identification error without iteration. Figure

3.4 shows that the iterative procedure helps to improve the RMSE performance further,

compared to those in Figure 3.3 especially when L = n+ 1, i.e., ` = n+ 1. Table 3.2 shows

the average number of iterations.

Table 3.2. Average number of iterations in Example 2

N 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
` = n 1 1 1 1 1 1 1 1 1 1 1

` = n+ 1 2.92 5.65 5.46 5.28 5.21 5.16 5.02 4.94 4.89 4.87 4.78
` = n+ 5 6.79 6.36 6.03 5.86 5.72 5.62 5.47 5.43 5.35 5.28 5.21
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Figure 3.4. RMSEs for GSA in Example 2 with iteration

Colored Input

Two plant models modified from the literature [60, 69] are used to illustrate the perfor-

mance of GSA algorithm with the colored input u(t) signals.

Example 3.3: The plant model is from [60], given by

P (z) =
2.6466z−1 + 1.3233z−2

1− 1.5z−1 + 0.7z−2
.

The input signal u(t) is the filtered signal, described by

u(t) =
1− 1.684q−1 + 0.7812q−2

1− 0.275q−1 − 0.2103q−2
un(t),

driven by the white Gaussian process {un(t)} with zero mean and variance one. The noise

variance for εin(t) is 0.3, and εout(t) is 1. Assuming that the ratio of the two variances is

known, we can multiply the output measurements by
√

0.3 to convert the EIV identification
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problem into that of the equal variance 0.3, keeping in mind that the estimated numerator

coefficients need to be scaled back by a factor of 1/
√

0.3 before evaluating the estimation

error. As a result, the SNR at the input and output is 10.56dB and 10.5dB, respectively.
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Figure 3.5. RMSEs for GSA in Example 3.3 without iteration

The RMSE curves for different L (`) values in Figure 3.5 show that the proposed GSA

improves the estimation performance as L (`) increases, owing to the high SNR. On the

other hand, Figure 3.6 shows that the GSA with the iterative procedure does not help to

improve the RMSE, compared with Figure 3.5. Table 3.3 shows the average number of

iterations.

Table 3.3. Average number of iterations in Example 3.3

N 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
` = n 1 1 1 1 1 1 1 1 1 1 1

` = n+ 1 4.28 4.02 3.82 3.71 3.64 3.59 3.52 3.48 3.42 3.39 3.34
` = n+ 5 5.65 5.31 5.09 4.96 4.85 4.79 4.72 4.66 4.69 4.54 4.49
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Figure 3.6. RMSEs for GSA in Example 3.3 with iteration

Example 3.4: The plant model is described by [69]

P (z) =
0.8× (1− 1.2488z−1 + 0.9604z−2)

1− 1.4491z−1 + 0.9604z−2
.

Similar to Example 3.3, the input u(t) is colored, generated by

u(t) =
1− 1.9837q−1 + 0.5852q−2

1− 0.1975q−1 − 0.238q−2
un(t),

with un(t) white Gaussian of zero mean and variance 1. Figure 3.7 and Figure 3.8 show the

simulation results for Example 3.4. The equal noise variances 1 are assumed. The SNRs

at the plant input and output are 6.51dB and 5.09dB, respectively, which are considerably

smaller compared with those in Example 3. This is probably the reason why the RMSE

performance in Figure 3.7 does not show improvement as L (`) increases. However, the

iterative procedure helps to reduce the RMSE as L (`) increases, as shown in Figure 3.8.
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Figure 3.7. RMSEs for GSA in Example 3.4 without iteration
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Figure 3.8. RMSEs for GSA in Example 3.4 with iteration
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The SNR seems to be a crucial factor in determining the GSA’s performance, highlighted in

Remark 5. Table 3.4 shows the average number of iterations.

Table 3.4. Average number of iterations in Example 3.4

N 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
` = n 1 1 1 1 1 1 1 1 1 1 1

` = n+ 1 4.37 1.20 4.13 4.01 3.98 3.93 3.84 3.83 3.81 3.78 3.77
` = n+ 5 5.41 5.12 4.99 4.84 4.73 4.65 4.54 4.49 4.43 4.40 4.35
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CHAPTER 4
IDENTIFICATION WITH UNEQUAL NOISE VARIANCES

In this chapter, we study the EIV system identification in the case where the noise

variances σ2
u and σ2

y are unknown and unequal. In practice, often outputs of the system

are more difficult to measure than the inputs. Therefore, this is a practical problem in EIV

system identification. Two different methods will be studied. The first relies on the Frisch

scheme, which estimates the two different noise variances, and then estimates the system

parameters. In the literature [57], Frisch scheme in combination with the TLS algorithm

has been investigated. We introduce the Frisch scheme in Section 4.1. The use of the GSA

algorithm in combination with the Frisch scheme (GSA-Frisch) is studied in Section 4.2,

which has better performance, compared with the TLS algorithm. Then we propose a new

algorithm in Section 4.3 without estimating the two noise variances. In addition, the state-

space formulation is presented for the N4SID algorithm, which is available in Matlab as a

built-in function so that we can compare the performance of the new algorithm with that of

the existing one in the simulation section. Finally, the results of this chapter are illustrated

by the simulation results.

4.1 Frisch Scheme

In this section, we first provide an overview for the Frisch scheme in the EIV system

identification based on the literatures [58], [7], [8], [57], focusing on how to estimate noise

variances. We will also show some simulation examples to describe the algorithm.

4.1.1 Concept of Frisch Scheme

Let us consider the simple algebraic case first before extending it to the EIV system

model. The equation is given by

Ψ
(x)′

n,Nα = 0, (4.1)
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where Ψ
(x)
n,N is a Toeplitz matrix, and α is a column vector, specified by

Ψ
(x)
n,N =



xn xn+1 · · · · · · · · · xN+n−1

xn−1
. . . . . . . . . . . .

...

...
. . . . . . . . . . . .

...

x1 · · · · · · xn · · · xN


, α =


α1

...

αn

 , N > n.

Define Rx as a covariance matrix

Rx = lim
N→∞

1

N
Ψ

(x)
n,NΨ

(x)′

n,N . (4.2)

By (4.1), it is clearly seen that

Rxα = 0. (4.3)

The relation (4.3) plays an important role in the Frisch scheme. Suppose that noises are

added into each element of Ψ
(x)
n,N . That is,

Ψ̃
(x)
n,N = Ψ

(x)
n,N + Ψ

(e)
n,N , (4.4)

where Ψ
(e)
n,N is the noise matrix that has a dimension of (n×N)

Ψ
(e)
n,N =



en en+1 · · · · · · · · · eN+n−1

en−1
. . . . . . . . . . . .

...

...
. . . . . . . . . . . .

...

e1 · · · · · · en · · · eN


.

Define covariance matrices of Ψ̃
(x)
n,N and Ψ

(e)
n,N as follows:

R̃x = lim
N→∞

1

N
Ψ̃

(x)
n,NΨ̃

(x)′

n,N , Rε = lim
N→∞

1

N
Ψ

(e)
n,NΨ

(e)
n,N

′
. (4.5)
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We assume that the given noise elements are Gaussian distributed with zero mean. The

Frisch scheme focuses on finding all possible diagonal matrix Rε such that

Rx = R̃x −Rε ≥ 0. (4.6)

Define σ2
i as the variance of the ith column of Ψ

(e)
n,N

′
. If we consider the case when Rε =

diag

[
0, · · · , 0, σ̂2

n

]
, (4.6) is written as

Rx = R̃x − diag

[
0, · · · , 0, σ̂2

n

]
. (4.7)

Then the equation is rewritten as

Rx =

 Rn τn

τ ′n σ2
n − σ̂2

n

 , (4.8)

where Rn is defined as a matrix eliminating the nth row and nth column of R̃x. We compute

the determinant of the both sides of the equation (4.8) and by the property of a block matrix

det(Rx) = det(Rn)[σ2
n − σ̂2

n − τ ′nR−1
n τn]. (4.9)

Then we can get the maximum noise variance using the relation (4.6):

σ̂2
max,n = det[R̃x]/det[Rn]. (4.10)

To obtain the above relation, we have used the fact that R̃x is singular, and thus σ2
n =

τ ′nR
−1
n τn. Using the same procedure for the different cases of the diagonal matrix, as a

result, we have a general expression

σ̂max,i = det[R̃x]/det[Ri], (4.11)
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where i = 1, · · · , n, Ri is as a matrix eliminating the ith row and ith column of R̃x. Thus

we get the range of the estimated noise variance in the i column of Ψ
(e)
n,N

′
as follows

0 ≤ σ̂2
i ≤ σ̂2

max,i. (4.12)

4.1.2 Frisch Scheme with TLS

In this section, we introduce the extended Frisch scheme for the EIV system model

developed by [7] and define the Toeplitz matrices using the data for EIV model using the

relation (3.8) and notation (3.9) as follows:

Ψ̃
(u)
n,N = Ψ

(u)
n,N + Ψ

(εin)
n,N ,

Ψ̃
(y)
n,N = Ψ

(y)
n,N + Ψ

(εout)
n,N .

Let Ψ̃ =

[
Ψ̃

(y)′

n,N Ψ̃
(u)′

n,N

]
. Then its covariance matrix is

R̃ =
1

N
Ψ̃′Ψ̃. (4.13)

Then R̃ can be partitioned as follows:

R̃ =

 R̃yy R̃yu

R̃uy R̃uu

 , (4.14)

where

R̃yy =
1

N
Ψ̃

(y)
n,NΨ̃

(y)′

n,N , R̃yu =
1

N
Ψ̃

(y)
n,NΨ̃

(u)′

n,N , R̃uy =
1

N
Ψ̃

(u)
n,NΨ̃

(y)′

n,N , R̃uu =
1

N
Ψ̃

(u)
n,NΨ̃

(u)′

n,N .
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The next relation holds by the assumption that the noise data are zero-mean, uncorrelated

with each other, and N approaches infinity.

R̃ = R +Rε, Rε =

 σ2
yIn+1 0

0 σ2
uIn+1

 , (4.15)

where

R =
1

N

[
Ψ

(y)′

n,N Ψ
(u)′

n,N

]′ [
Ψ

(y)′

n,N Ψ
(u)′

n,N

]
,

Rε =
1

N

[
Ψ

(εout)′

n,N Ψ
(εin)′

n,N

]′ [
Ψ

(εout)′

n,N Ψ
(εin)′

n,N

]
,

and σ2
u and σ2

y are the noise variance of input and output, respectively. Similar to the

algebraic case in the previous section, we focus on searching all possible Rε such that

R = R̃−

 σ2
yIn+1 0

0 σ2
uIn+1

 ≥ 0. (4.16)

Let us consider the case when σ2
u = 0. By [54], R̃− diag

[
σ2
yIn+1, 0

]
is equivalent to

diag
(
R̃yy − R̃′uyR̃−1

uu R̃uy − σ2
yIn+1, R̃uu

)
. (4.17)

Using the fact that the covariance matrix R̃uu is a positive definite matrix and the condition

(4.16),

R̃yy − R̃′uyR̃−1
uu R̃uy − σ2

yIn+1 ≥ 0. (4.18)

Hence, the maximum value of σ2
y is the smallest eigenvalue of the matrix

R̃yy − R̃′uyR̃−1
uu R̃uy (4.19)
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by the inequality of (4.18). Similarly, the maximum value of σ2
u can be determined by

computing the smallest eigenvalue of the matrix

R̃uu − R̃uyR̃
−1
yy R̃

′
uy. (4.20)

In short,

max(σ2
y) = min

(
eig
(
R̃yy − R̃′uyR̃−1

uu R̃uy

))
, (4.21)

max(σ2
u) = min

(
eig
(
R̃uu − R̃uyR̃

−1
yy R̃

′
uy

))
(4.22)

using the Matlab commands. Indeed, we can find the relation between σ2
u and σ2

y from the

above procedure, that is,

σ2
y = min

(
eig
(
R̃yy − R̃′uy

[
R̃uu − σ2

uIn+1

]−1

R̃uy

))
. (4.23)

Figure 4.1 confirms equation (4.23). It shows the computed value of σ2
y as a function of σ2

u,

assuming 0 ≤ σ2
u ≤ 1 for the test, using the system model in Example 3 in Chapter 3. In this

example, the true input and output noise variances are σ2
u = 0.3 and σ2

y = 1 respectively.

This figure illustrates that one of the pairs of {σ2
u, σ

2
y} crosses approximately the true value

point [0.3, 1] in all the cases when N = 1, 000, 2, 000 and 3, 000.

4.1.3 Determining Noise Variances and System Parameters

In this section, we follow the searching procedure for noise variances σ̂2
u and σ̂2

y suggested

in [8] and [57], except that we use the TLS method to estimate the system parameters as

initial values in the procedure.

The first step is to estimate the system parameter using each pair of {σ2
u(i), σ

2
y(i)} ob-

tained in the previous section. We choose the TLS method to obtain the estimated values.
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Figure 4.1. σ2
y computation corresponding to σ2

u

According to Chapter 3, we need to compute the eigenvalue decomposition of the matrix

R̃−

 σ2
y(i)In+1 0

0 σ2
u(i)In+1

 (4.24)

where σ2
u(i) and σ2

y(i) are the ith pair of {σ2
u(i), σ

2
y(i)} and the range of the pair can be decided

by the maximum value of σ2
u in the equation (4.22). If the eigenvector corresponding to the

smallest eigenvalue is

vR̃ =

[
vR̃,1 vR̃,2 · · · vR̃,2(n+1)

]′
,

the estimated system parameter can be obtained by the TLS algorithm

θ̂(i) =

[
vR̃,2 · · · vR̃,2(n+1)

]′
v−1

R̃,1
(4.25)
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which can be denoted as

θ̂(i) =

[
−1 −â1 · · · −ân b̂0 · · · b̂n

]′
.

The next step is to compute the residuals using the θ̂(i) for each i. Define {ri(k)} with

ri(k) =
1

N

N∑
t=1

φ̌(t)θ̂(i)φ̌(t+ k)θ̂(i), (4.26)

where

φ̌(t) =

[
ỹ(t) ỹ(t− 1) · · · ỹ(t− n) ũ(t) ũ(t− 1) · · · ũ(t− n)

]
.

Also define a theoretically computed noise covariance

ri,T(k) =
1

N

N∑
t=1

εT(t)θ̂(i)εT(t+ k)θ̂(i), (4.27)

where

εT(t) =

[
ε̌out(t) ε̌out(t− 1) · · · ε̌out(t− n) ε̌in(t) ε̌in(t− 1) · · · ε̌in(t− n)

]

is generated as i.i.d with the variances

E[ε̌out(t)
2] = σ2

y(i), E[ε̌in(t)2] = σ2
u(i).

Then we compare ri(k) with ri,T(k) by defining {ri,ε} as

ri,ε =


ri(0)− ri,T(0)

...

ri(m)− ρi,T(m)

 , (4.28)
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where m is a chosen number by the user. The first element in ri,ε is zero as shown in [57]

(Appendix I). Using a weighting matrix

Wr =



m+ 1 0 · · · · · · 0

0 2m 0 · · · 0

...
. . . 2(m− 1) 0

...

...
...

. . . . . .
...

0 · · · · · · 0 2


,

define Vr as

Vr(σ
2
u(i)) = r′i,εWrri,ε, (4.29)

which is the same form of the weighting matrix proposed in [57]. Then we search for the

minimum value of Vρ and choose the corresponding pair from {σ2
u(i), σ

2
y(i)} as the estimate

σ̂2
u and σ̂2

y. We made the Vr curves in terms of σ2
u since it is regarded as a function of

σ2
u in (4.29). Figure 4.2 shows the Vr curves with Example 3. The curves illustrate that

the minimum value of Vr is approximately at σ2
u=0.3 in all the cases when N=1,000, 2,000

and 3,000. That means we can estimate noise variances properly through the procedure we

described.

4.1.4 Simulation Studies

This section’s simulation studies are aimed at validating the Frisch scheme in combination

with the TLS algorithm.

Example 4.1: We used the same plant model and the input signal u(t), which is filtered

in the same way, as those in Example 3.3. Table 4.1 presents the average values of σ̂u, σ̂y

and r̂ when the TLS algorithm is used for the noise variance estimation as described in the

previous section. The number of ensembles is 1,000 for these simulation studies. It shows

that the estimated values are close to their true values σ2
u = 0.3, σ2

y = 1 and r = 0.5477. It
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Figure 4.2. Vr curves corresponding to σ2
u

also tends to be more accurate as the number of sample data N increases. Figure 4.3 shows

Table 4.1. Estimated values using the Frisch scheme with TLS

N 500 1000 1500 2000 2500 3000
σ̂u 0.2870 0.2929 0.2961 0.2967 0.2962 0.2872

±0.0502 ±0.0350 ±0.0281 ±0.0240 ±0.0232 ±0.0205
σ̂y 1.003 1.0061 1.0012 1.0014 1.0032 1.0054

±0.1393 ±0.1000 ±0.0819 ±0.0707 ±0.0657 ±0.0623
ρ̂ 0.5389 0.5415 0.5453 0.5454 0.5443 0.5446
±0.0772 ±0.0534 ±0.0437 ±0.0374 ±0.0357 ±0.0328

the RMSE for EIV system identification using the Frisch scheme in combination with the

TLS algorithm. It shows that the RMSE curve is similar to the curve in the case of L = n

(` = n) in Figure 3.5. The GSA algorithm reduces to the TLS algorithm when ` = n. Thus,

this simulation’s results show that the system parameter estimation works properly with the

Frisch scheme in combination with the TLS algorithm.
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Figure 4.3. RMSE curve in Frisch scheme in combination with TLS

4.2 GSA Combined with the Frisch Scheme

In this section, we investigate how to combine the GSA and Frisch scheme. Specifically,

we apply the GSA in the searching procedure for the ratio ρ. We also present how to estimate

the system parameters by the GSA-Frisch method using numerical examples in the case when

the noise variances are unknown and unequal.

4.2.1 Problem Formulation

For the given input and output measurement and the modified form of the data matrix

in Section 3.3, the auto-covariance matrix is obtained and partitioned as

R̃` =
1

N
Ψ̃`Ψ̃

′
` =

 R̃yy R̃yu

R̃uy R̃uu

 .
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Define the scaled auto-covariance matrix

R̃ρ` =

 ρ2R̃yy ρR̃yu

ρR̃uy R̃uu

 , ρ > 0.

Then (3.39) can be written in a different way:

R̃ρ0` →

 ρ2
0Ryy ρ0Ryu

ρ0Ruy Ruu

+ σ2
uI2(`+1),

where ρ0 is un unknown true ratio of the noise variances as N → ∞. Hence, we notice

again that GSA can be applied if the ratio of the noise variances is known. We propose a

modified Frisch scheme to search iteratively for ρ, such that it converges to ρ0. Without loss

of generality, assume that 0 < ρ0 ≤ 1 is the case in practice, because the output noise has a

larger variance than the input noise does.

Even if ρ 6= ρ0, R̃ρ0L > 0 generally. Hence we can apply GSA to estimate the system

parameter vector. Define the Toeplitz matrix

Tθ̄,ρ =



−θ′a` 0 · · · 0 ρθ′b` 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . 0

0 · · · 0 −θ′a` 0 · · · 0 ρθb`


,

=



−a0 · · · −an 0 · · · 0 ρb0 · · · ρbn 0 · · · 0

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 · · · 0 −a0 · · · −an 0 · · · 0 ρb0 · · · ρbn


∈ Rdη×2(`+1).

Then there holds

Tθ̄,ρΨ` =

[
0 · · · 0

]
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in the noise-free case.

Let ̂̄θ be the estimate obtained with the GSA. Then we have

T̂̄θ,ρΨ̃` =


ε̂ρ(k0) ε̂ρ(k0 + 1) · · · · · · ε̂ρ(k0 +N − 1)

...
. . . . . .

...

ε̂ρ(k0 − `+ n) · · · ε̂ρ(k0) ε̂ρ(k0 + 1) · · · ε̂ρ(k0 +N − `+ n− 1)

 .

If ̂̄θ = θ̄ and ρ = ρ0, then ε̂ρ(k) = ερ0(k), that is, the model prediction error is induced by

measurement errors. But if ̂̄θ 6= θ̄ and ρ 6= ρ0, then the error residue yields the following

auto-covariance matrix:

R̂ερ =
1

N
T̂̄θ,ρΨ̃`Ψ̃

′
`T
′̂̄θ,ρ =



r̂ε(0, 0) r̂ε(0, 1) · · · r̂ε(0,m)

r̂ε(1, 0)
. . . . . .

...

...
. . . . . . r̂ε(m− 1,m)

r̂ε(m, 0) · · · r̂ε(m,m− 1) r̂ε(m,m)



=



r̂ε(0) r̂ε(1) · · · r̂ε(m)

r̂ε(1)
. . . . . .

...

...
. . . . . . r̂ε(1)

r̂ε(m) · · · r̂ε(1) r̂ε(0)


, m = `− n.

Because N is finite, R̂ερ is not exactly a Toeplitz matrix, i.e.,

r̂ε(i− j) 6= r̂ε(i, j).

One may average the diagonal elements to obtain an exactly Toeplitz matrix. That is, we

can set

r̂ε(0) =
1

m+ 1

m∑
i=0

r̂ε(i, i), r̂ε(k) =
1

2(m+ 1− k)

∑
k=|i−j|

r̂ε(i, j), k 6= 0. (4.30)
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The summation for k = |i − j| means that the summation is over all possible integer pairs

(i, j) satisfying i 6= j and k = |i− j|. There are a total of 2(m+ 1− k) terms in the case of

k 6= 0.

Next we generate i.i.d. sequences {δu(k), δy(k)}N+m
k=1 with mean zero and variance σ2,

equal to the average of the m minimum eigenvalues of R̃ρ` , and form the blocked Toeplitz

matrix

Ψδρ =

 Ψδy

Ψδu

 , Ψδy =



δy(m+ 1) · · · δy(N) δy(N + 1) · · · δy(N +m)

δy(m)
. . . . . . . . .

...

...
. . . . . . . . . δy(N + 1)

δy(1) · · · δy(m) δy(m+ 1) · · · δy(N)


,

Ψδu =



δu(m+ 1) · · · δu(N) δu(N + 1) · · · δu(N +m)

δu(m)
. . . . . . . . .

...

...
. . . . . . . . . δu(N + 1)

δu(1) · · · δu(m) δu(m+ 1) · · · δu(N)


.

The theoretical autocavariance matrix can then be obtained as follows:

R̂δ =
1

N
T̂̄θ,ρΨ̃δρΨ̃

′
δρT

′̂̄θ,ρ =



r̂δ(0) r̂δ(1) · · · r̂δ(m)

r̂δ(−1)
. . . . . .

...

...
. . . . . . r̂δ(1)

r̂δ(−m) · · · r̂δ(−1) r̂δ(0)


.

Finally for each ρ ∈ (0, 1], we compute

J(ρ) =
m∑
k=0

wk[r̂δ(k)− r̂ε(k)]2

for some weights wk > 0. Soderstrom’s paper [57] chooses w0 = m+1 and wk = 2(m+1−k)

for 1 ≤ i ≤ m, which are the same as those in the denominators of (4.30), respectively.
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Hence, if this is what we choose for the weights, in light of (4.30), J(ρ) can be written as

J(ρ) =
m∑
i=0

[r̂ε(i, i)− r̂δ(i, i)]2 +
m∑
k=1

∑
k=|i−j|

[r̂ε(i, j)− r̂δ(i, j)]2.

We compute J(ρ) at each given ρ with

θ̂ρ =

[
−θ̂′a ρθ̂′b

]′

which is the corresponding scaled estimated parameter vector. The estimate ρ̂ for ρ0 is set

to be the minimizer of J(ρ). That is,

ρ̂ = arg min
0<ρ≤1

J(ρ).

4.2.2 Simulation Studies

In this section, we validate the estimate performance of the ratio using the search pro-

cedure described in the previous section. Also, we evaluate the performance of the system

parameter estimate when the estimated ratio is used.

Example 4.2: We again used the same plant model and the input signal u(t) as those in

Example 3.3. In this example, we used 1,000 ensembles and ρ ∈ [0.3, 0.8] with increments of

0.01 for the searching process. The true ratio of the noise variances is ρ0 =
√

0.3 = 0.5477.

Table 4.2 shows the average values of the estimated ratios according to the number of sample

data N and block size `.

Table 4.2. Average values of the estimated ratio ρ̂

N 500 1000 1500 2000 2500 3000
` = n 0.5299 0.5382 0.5394 0.5430 0.5433 0.5431

` = n+ 1 0.5328 0.5378 0.5416 0.5440 0.5430 0.5430
` = n+ 5 0.4846 0.5170 0.5255 0.5341 0.5344 0.5364
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Table 4.2 shows that the estimated values tend to close to the true value as N increases.

Figure 4.4 shows the RMSE between the true and estimated ratio. The RMSE is computed

with

RMSE :=

√√√√ 1

T

T∑
i=1

(ρ̂i − ρ0)2,

where ρ̂i is the estimated ratio from the ith simulation.
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Figure 4.4. RMSE between the true ratio and the estimated ratio

Figure 4.4 shows that the estimate performance of the ratio degrades as ` increases, especially

with small N . Nevertheless, Figure 4.5 shows that this method can be employed in the

system identification. Figure 4.5 shows the RMSE curves between the true and estimated

system parameter computed by (3.40) when the estimated ratios are applied for the GSA

algorithm. It shows similar RMSE curves compared to Figure 3.3 which uses the true ratio

value. It clearly shows that the performance improves as ` increases. Thus, it validates that

the GSA-Frisch scheme effectively works for the system parameter estimation.

72



500 1000 1500 2000 2500 3000

Time samples

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

R
M

S
E

L=n

L=n+1

L=n+5

Figure 4.5. RMSE for EIV identification based on the estimated ratio

4.3 New EIV Identification

In this section, a new EIV system identification algorithm is presented. It is motivated

by its success in blind channel estimation [1, 9, 46] and state-space model identification

[14, 32, 80, 82, 81]. Its consistency will be analyzed and demonstrated by numerical examples.

Also we compare the simulation results with those from GSA combined with the Frisch

scheme.

4.3.1 Notations

For input signal {u(t)} and ` ≥ n, define its `-blocked past and future signal vectors

respectively as

up(t) :=

[
u(t− 1) u(t− 2) · · · u(t− `− 1)

]′
,

uf(t) :=

[
u(t+ `) · · · u(t+ 1) u(t)

]′
.
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The subscripts p and f indicate the collection of past and future data, respectively. Next,

we form the following past and future Toeplitz matrices of dimension (`+ 1)×N as

UpN =

[
up(t) up(t+ 1) · · · up(t+N − 1)

]
,

UfN =

[
uf(t) uf(t+ 1) · · · uf(t+N − 1)

]
.

Similarly, define `-blocked past and future signal vectors for the output signal {y(t)} as

yp(t) :=



y(t− 1)

y(t− 2)

...

y(t− `− 1)


, yf(t) :=



y(t+ `)

...

y(t+ 1)

y(t)


,

and the Toeplitz matrices of dimension (`+ 1)×N as follows:

YpN =

[
yp(t) up(t+ 1) · · · yp(t+N − 1)

]
,

YfN =

[
yf(t) yf(t+ 1) · · · yf(t+N − 1)

]
.

In addition, past and future Toeplitz matrices for the noisy input and output measurements

{ũ(k), ỹ(k)}

ŨpN =

[
ũp(t) ũp(t+ 1) · · · ũp(t+N − 1)

]
,

ŨfN =

[
ũf(t) ũf(t+ 1) · · · ũf(t+N − 1)

]
,

ỸpN =

[
ỹp(t) ũp(t+ 1) · · · ỹp(t+N − 1)

]
,

ỸfN =

[
ỹf(t) ỹf(t+ 1) · · · ỹf(t+N − 1)

]
,

74



where

ũp(t) :=



ũ(t− 1)

ũ(t− 2)

...

ũ(t− `− 1)


, ũf(t) :=



ũ(t+ `)

...

ũ(t+ 1)

ũ(t)


,

ỹp(t) :=



ỹ(t− 1)

ỹ(t− 2)

...

ỹ(t− `− 1)


, ỹf(t) :=



ỹ(t+ `)

...

ỹ(t+ 1)

ỹ(t)


can be defined.

Alternatively, we introduce different forms of the past and future data, which revealed

better performance than the previous one from our simulation experiences. We form the

following past and future Toeplitz matrices of dimension (`+ 1)×N for the noise-free input

and output data as

UpN =

[
up(t−N + 1) · · · up(t− 1) up(t)

]
,

UfN =

[
uf(t) uf(t+ 1) · · · uf(t+N − 1)

]
,

YpN =

[
yp(t−N + 1) · · · yp(t− 1) yp(t)

]
,

YfN =

[
yf(t) yf(t+ 1) · · · yf(t+N − 1)

]
.

The Toeplitz matrices for the noisy input and output data, ŨpN , ŨfN , ỸpN , ỸfN , and for the

measurement noises, ∆
(u)
pN ,∆

(u)
fN
,∆

(y)
pN ,∆

(y)
fN

are formed in the same way.

Then the past and future noise Toeplitz matrices

∆(u)
pN

= ŨpN − UpN , ∆
(u)
fN

= ŨfN − UfN ,
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∆(y)
pN

= ỸpN − YpN , ∆
(y)
fN

= ỸfN − YfN ,

can also be defined, consistent with the EIV system and signal model in Figure 1.2, and

those described in (3.1) and the following input and output relation:

a(q)ỹ(t)− a(q)δy(t) = b(q)ũ(t)− b(q)δu(t). (4.31)

For the given noisy and noise-free measurement data, define the following correlation matrices

as

R̃N :=
1

N

 ỸfN

ŨfN

[ Ỹ ′pN Ũ ′pN

]
, (4.32)

RN :=
1

N

 YfN

UfN

[ Y ′pN U ′pN

]
. (4.33)

Similarly, for ` > n, define two Toeplitz matrices of dimension (` + 1− n)× (` + 1) for the

system parameters as

Ta :=



a0 a1 · · · an 0 · · · 0

0
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . 0

0 · · · 0 a0 a1 · · · an


, (4.34)

Tb :=



b0 b1 · · · bn 0 · · · 0

0
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . 0

0 · · · 0 b0 b1 · · · bn


. (4.35)
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4.3.2 Problem Formulation

In light of the EIV system and signal model in the previous chapter, there holds

θaYfN = θbUfN (4.36)

that is equivalent to

Ta[ỸfN −∆
(y)
fN

] = Tb[ŨfN −∆
(u)
fN

]. (4.37)

There also holds θaYpN = θbUpN , which is equivalent to

Ta[ỸpN −∆(y)
pN

] = Tb[ŨpN −∆(u)
pN

]. (4.38)

Therefore, in the noise-free case, there hold

[
Ta −Tb

] YfN

UfN

 = 0,

[
Ta −Tb

]
RN = 0.

(4.39)

Unfortunately, input and output measurement data are corrupted by noises. Hence, relations

in (4.37)-(4.39) do not help much to solve the EIV identification problem. The following

observation is instrumental.

Lemma 1. Consider the EIV system and signal model in Figure 1.2 and described in (3.1)

and (4.31). Suppose that measurement noises {εout(t), εin(t)} are independent white pro-

cesses, and uncorrelated to the uniformly bounded quasi-stationary input and output signals

{u(t), y(t)}. There holds the following asymptotic equality:

lim
N→∞

RN = lim
N→∞

R̃N . (4.40)
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Proof: Because {εout(t), εin(t)} are independent white processes, and uncorrelated to the

true input and output signal {u(t), y(t)} that are quasi-stationary, there hold

lim
N→∞

1

N
∆(y)

pN
∆

(u)′

fN
= lim

N→∞

1

N
∆

(y)
fN

∆(u)′

pN
= 0, (4.41)

lim
N→∞

1

N
∆(y)

pN
∆

(y)′

fN
= lim

N→∞

1

N
∆

(u)
fN

∆(u)′

pN
= 0. (4.42)

By the definitions in (4.32) and (4.33), we have

R̃N = RN +
1

N

 YfN

UfN

[ ∆
(y)′
pN ∆

(u)′
pN

]
+

1

N

 ∆
f
(y)
N

∆
(u)
fN

[ Y ′pN U ′pN

]

+
1

N

 ∆
(y)
fN

∆
(u)
fN

[ ∆
(y)′
pN ∆

(u)′
pN

]
.

The last product in the above expression approaches zero by the asymptotic relations in

(4.41) and (4.42). The hypotheses on the true input and output signals imply that the

second and third products are also zero asymptotically as N →∞. Hence the limit in (4.40)

holds true. 2

The result in Lemma 1 suggests that

[
Ta −Tb

]
R̃N ≈ 0 (4.43)

for large N .

4.3.3 Applying TLS Algorithm

In the case when ` = n, the TLS algorithm can be applied, considering that each element

of R̃N involves measurement noises that are close to white and have similar variances. For

` > n, a modified TLS algorithm can be developed. We present these two algorithms. The

TLS algorithm is summarized prior to the modified TLS algorithm step by step as follows.
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TLS Algorithm:

• Step 1: Given input and output data {ỹ(t), ũ(t)} as described in (3.1) and (3.8), form

the past and future Toeplitz matrices {Ỹp,N , Ỹf,N} and {Ũp,N , Ũf,N} with ` = n.

• Step 2: Form the correlation matrix R̃N as in (4.32) and compute its SVD as

R̃N = G̃N Σ̃N Ṽ
′
N , G̃N =

[
g̃1 g̃2 · · · g̃2(n+1)

]
.

• Step 3: Set θNEW =

[
θa −θb

]
. Let g̃2(n+1) be the last column of G̃N and set the

estimate in accordance with

θ̂NEW =

[
θ̂a −θ̂b

]
=

[
1 â1 · · · ân −b̂0 −b̂1 · · · −b̂n

]
= g̃′2(n+1)/g̃1,2(n+1), (4.44)

where g̃1,2(n+1) is the first element of g̃2(n+1). 2

In the SVD step, Σ̃N is diagonal with 2(n+ 1) singular values of R̃N in descending order. In

light of [26], g̃1,2(n+1) 6= 0 with probability 1.

In the case of ` > n, denote

R̃N,i = [R̃N(i : n+ i, 1 : 2(`+ 1)); R̃N(i+ `+ 1 : i+ `+ n+ 1, 1 : 2(`+ 1))],

where i = 1, · · · , `−n+1, and R̃N,i consists of the 2(n+1) rows of R̃N . Then the approximate

relation (4.43) implies that

θNEW

[
R̃N,1 R̃N,2 · · · R̃N,`−n+1

]
≈ 0.
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The previous TLS algorithm can be modified to compute the EVD for

M̃N =
1

2(`+ 1)

`−n+1∑
i=1

R̃N,iR̃
′
N,i = G̃N Σ̃2

NG̃
′
N . (4.45)

The modified TLS algorithm is presented next.

Modified TLS Algorithm:

• Step 1: Given input and output data {ỹ(t), ũ(t)} as described in (3.1) and (4.31), form

the past and future Toeplitz matrices {Ỹp,N , Ỹf,N} and {Ũp,N , Ũf,N} with ` > n.

• Step 2: Form the correlation matrix R̃N as in (4.32), M̃N as in (4.45), and compute

the EVD of M̃N as

M̃N = G̃N Σ̃2
NG̃

′
N , G̃N =

[
g̃1 · · · g̃2(n+1)

]
.

• Step 3: Let g̃2(n+1) be the last column of G̃N and set the estimate θ̂NEW in accordance

with the same expression as in (4.44). 2

We observe that if ` = n in the modified TLS algorithm, it reduces to the TLS algorithm.

The consistency of the estimate θ̂NEW from these two algorithms is summarized next.

Theorem 4. Under the same hypotheses as those of Lemma 1, plus the persistent excitation

for the input, let θ̂NEW be obtained in (4.44) with either the TLS algorithm for the case of

` = n, or the modified TLS algorithm for the case of ` > n, there holds θ̂NEW → θNEW as

N →∞. Moreover, these two algorithms are unbiased in the sense that E{θ̂NEW} = θNEW.

Proof: The unbiased property for the TLS and modified TLS algorithm follow from the

asymptotic result in (4.40) of Lemma 1. The consistency of the algorithm follows the same

reason and the persistent excitation assumption on the input signal. The detail is omitted.

2
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Remark 6. The TLS and its modified algorithms have similar subspace interpretations as

[1, 9, 46]. Indeed, in the case of ` = n, we can regard R{g̃2(n+1)} as the noise subspace, and

R{
[
g̃1 · · · g̃2n+1

]
} as the signal subspace. Such an interpretation holds for the case of

` > n.

4.3.4 State-space Formulation

This section presents an overview on N4SID algorithm based on [80]. We observed that

the EIV identification problem can be cast and solved by the subspace algorithm for the

state-space model, which refers to the N4SID algorithm [14, 32, 80, 82, 81]. To be specific,

assume that the system represented by P (z) admits a minimal state-space realization, i.e.,

P (z) =
b(z)

a(z)
= D + C(zI − A)−1B,

where A ∈ Rn×n, B ∈ Rn, C ∈ R1×n, and D ∈ R. Then by setting w(t) = −Bεin(t) and

v(t) = εout(t)−Dεin(t), we obtain the following state-space description:

x(t+ 1) = Ax(t) +Bũ(t) + w(t),

ỹ(t) = Cx(t) +Dũ(t) + v(t),

identical to that of the N4SID algorithm in the literature. Moreover, the covariances of the

process and measurement noises are given via the following expression:

 Q S

S ′ R

 = E


 w(t)

v(t)

[ w(t) v(t)

]
=

 σ2
uBB

′ σ2
uBD

′

σ2
uDB

′ σ2
y + σ2

uDD
′

 .
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However, caution needs to be taken by noting that input {ũ(t)} is correlated with {w(t), v(t)},

different from that assumed in the N4SID algorithm. Nevertheless, the N4SID algorithm

seems to be the only algorithm that is available in Matlab and can be used to solve the

EIV identification problem, compared with the proposed algorithm. In fact, the simulation

results suggest that the N4SID algorithm is a viable algorithm for EIV identification. We

will provide a brief review in this section.

In the N4SID algorithm, the past and future data of the input and output are defined a

little differently. Specifically, for signal {s(t)} and ` ≥ n, s(t) is termed as the present, and

sp(t) :=



s(t− `)
...

s(t− 2)

s(t− 1)


, sf(t) :=



s(t+ 1)

s(t+ 2)

...

s(t+ `)


,

as past and future, respectively, by an abuse of notation. As such, the Toeplitz matrices in

the previous section now have Hankel structure:

SpN =

[
sp(t) sp(t+ 1) · · · sp(t+N − 1)

]
,

StN =

[
s(t) s(t+ 1) · · · s(t+N − 1)

]
,

SfN =

[
sf(t+ 1) sf(t+ 2) · · · sf(t+N)

]
.

With the above notations for {u(t), y(t)} and {ũ(k), ỹ(k)}, respectively, we form Hankel

matrices of

ỸpN , ỸfN , ŨpN , ŨfN .

Next define the extended observability matrix

Γ` =

[
C CA · · · CA`−1

]′
,
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extended reversed controllability matrix as

∆` =

[
A`−1B A`−2B · · · AB B

]
,

and the lower block triangular Toeplitz matrix

H` =



D 0 . . . 0

CB D . . . 0

...
...

. . .
...

CA`−2B CA`−3B . . . D


.

Finally, the state matrix is denoted by

X` =

[
x` x`+1 x`+2 · · · x`+N−1

]
.

As the first step, N4SID algorithm carries out the RQ factorization of all the collection

of the data as follows: 

ŨpN

ŨkN

ŨfN

ỸpN

ỸkN

ỸfN


=



R11 0 · · · 0

...
. . . . . .

...

...
. . . . . . 0

R61 · · · · · · R66





Q′1

Q′2
...

Q′6


.
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For matrix Φ of the full row rank, denote

ΠΦ = Φ′(ΦΦ′)−1Φ, Φ =



ŨpN

ŨkN

ŨfN

ỸpN


,

as the orthogonal projection along the range space of Φ′. Then the following projection

Zk =

 ỸkN

ỸfN

ΠΦ = R5:6,1:4R
−1
1:4,1:4Φ

=:

[
L

(1)
k L

(2)
k L

(3)
k

]


ŨpN

ŨkN

ŨfN

ỸpN


can be computed where L

(1)
k , L

(2)
k , and L

(3)
k have dimension `× `, and the subscript of R indi-

cates the indexes of the block row and column similar to the notation in Matlab. Similarly,

Zk+1 = ỸfNΠΦ =



ŨpN

ŨkN

ŨfN

ỸpN


= R6:6,1:5R

−1
1:5,1:5



ŨpN

ŨkN

ŨfN

ỸpN


=:

[
L

(1)
k+1 L

(2)
k+1 L

(3)
k+1

]


ŨpN

ŨkN

ŨfN

ỸpN


,

where L
(1)
k+1, L

(2)
k+1 and L

(3)
k+1 have dimension (`− 1)× (`+ 1).

In light of equation (46) in [80],

Γ`X̂` = Zk − L(2)
k

 ŨkN

ŨfN

 = M`,
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where X̂` is the estimated state vector. The matrix Γ` and the system order n can be

determined by the following SVD of M with partition:

M` =

[
G1 G2

] Σ1 0

0 Σ2

V ′,
where Σ2 consists of insignificant singular values, and

Γ` ≈ G1Σ
1/2
1 .

The realization matrices (A,C) can be estimated based on Γ`. The other two realization

matrices (B,D) can be estimated via various ways, once the estimates of (A,C) are available.

We refer the readers to [80] for more details.

4.3.5 Simulation Studies

In this section, we present our simulation studies for the proposed EIV identification

algorithm, applicable to unequal noise variances at the input and output. Because Matlab has

the built-in function “n4sid”, we compare the proposed algorithm using the TLS estimation

with the N4SID algorithm in Example 4.3, 4.4, 4.6 and 4.7. We also compare the proposed

algorithm using the modified TLS estimation with the GSA-Frisch algorithm in Example 4.5

and 4.8. The plant models in the literature [69] are used for Example 4.3 and 4.4 with the

white input except at b0 = 0 because physical systems are strictly causal, and the Matlab

function “n4sid” defaults to b0 as 0. Also, the plant model in [57] is used for Example 4.6

with the colored input. We assume that the past input and future inputs are well correlated

not to make
∑∞

N=1 UfNU
′
pN = 0. A total of 500 ensembles are used for the examples.
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White input

Example 4.3: Consider transfer function

P (z) =
0.8× (−1.2488z−1 + 0.9604z−2)

1− 1.4491z−1 + 0.9604z−2
.

Identification of P (z) is carried out with the TLS estimation in the proposed algorithm and

with the N4SID algorithm. Figure 4.6 shows the RMSE plots with the solid line for the

TLS with the proposed algorithm and dashed line for the N4SID algorithm. Noise variances
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Figure 4.6. Proposed algorithm vs N4SID in Example 4.3

σ2
u = 0.32 and σ2

y = 0.62 are used. The SNR at the input and output is 10.2917dB and

15.4914dB, respectively. The RMSE curves in Figure 4.6 show that the TLS estimation in

the proposed algorithm results in much smaller errors between the true and estimated system

parameters.

Example 4.4: The plant model is described as

P (z) =
−0.9z−1 − 0.45z−2

1− 0.5z−1 + 0.3z−2
.
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Again, white inputs are used in this simulation study. The SNR at the plant input and output

is 10.239dB and 6.7497dB, respectively, with the noise variances σ2
u = 0.32 and σ2

y = 0.62.

Figure 4.7 shows the RMSE plots for the TLS and N4SID algorithm. In this example, the
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Figure 4.7. Proposed algorithm vs N4SID in Example 4.4

N4SID algorithm performs better than the TLS algorithm when N < 1500. However, the

TLS algorithm performs better when N > 1500. Although the N4SID algorithm is not a

consistent estimator for the EIV system and signal model, its performance for the small

number of sample data is good for this example.

Example 4.5: The plant model is described as

P (z) =
−0.9z−1 − 0.45z−2

1− 0.5z−1 + 0.3z−2
.

The input and output noise variances are σ2
u = 0.32 and σ2

y = 0.62, respectively. White inputs

are used again in this simulation study. The SNR at the input is 10.239dB and 6.7497dB at

the output. Figure 4.8 shows the RMSE plot with the new identification method in Example

5. Figure 4.9 shows the RMSE plot with the GSA-Frisch algorithm in Example 4.5. In the
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case of ` = n, the newly proposed identification algorithm performs worse than the GSA-

Frisch algorithm. However, in both ` = n+1 and ` = n+5 cases, the new algorithm performs

better than the GSA-Frisch algorithm. Moreover, the new algorithm is much simpler than

the GSA-Frisch algorithm because it does not need the search procedure for estimating the

ratio.
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Figure 4.8. RMSE for EIV identification based on the modified TLS in Example 4.5

500 1000 1500 2000 2500 3000

Time samples

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

R
M

S
E

L=n

L=n+1

L=n+5

Figure 4.9. RMSE for EIV identification based on the GSA-Frisch algorithm in Example 4.5
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Colored input

Example 4.6: The plant model is described as

P (z) =
2z−1

1− 0.8z−1
,

(1− 0.5q−1)u(k) = (1 + 0.7q−1)uo(k),

where u0(k) is the auxiliary input of the zero-mean white Gaussian process with variance

1. Hence u(k) is not white. Figure 4.10 shows the RMSE when the equal noise variances of

σ2
u = 1 and σ2

y = 1 are employed, which are the same as those in [57]. The SNR at the plant

input is 4.4693dB and 19.4588dB at the output. It can clearly be seen that the proposed

algorithm performs better than the N4SID algorithm.
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Figure 4.10. Proposed algorithm vs N4SID in Example 4.6

Example 4.7: In this example, we used the same plant model and the colored input

as those in Example 4.6 but unequal noise variances σ2
u = 0.32 and σ2

y = 0.62. The SNR at

the plant input and output is 14.9268dB and 23.8957dB, respectively. Figure 4.11 shows the

RMSE in Example 4.7. Once again, the TLS estimation in the proposed algorithm performs
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better than the N4SID algorithm.
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Figure 4.11. Proposed algorithm vs N4SID in Example 4.7

Example 4.8: In this example, the same plant model is used in Example 3.3. The colored

input is again used. The noise variances at the plant input and output are σ2
u = 0.3, σ2

y = 1.

The SNR at the input is 10.56dB and 10.5dB at the output. Figure 4.12 shows the RMSE

plot with the modified TLS algorithm in the proposed identification method. When we

compare it to the simulation results from the GSA-Frisch algorithm, which is Figure 4.5, the

performance of the modified TLS algorithm in the proposed method overall is worse. The

reason probably lies in the fact that the SNR in this example is higher than the SNR in

Example 4.2. Although the modified TLS algorithm is not completely better than the GSA-

Frisch algorithm in this example, it is still superior because of its low complexity, considering

no estimating procedure is needed.
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Figure 4.12. RMSE for EIV identification based on the modified TLS in Example 4.8
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation, the EIV system identification has been studied. Chapter 2 provided

some mathematical background and preparation for this study. A graph subspace method

is developed in Chapter 3 to tackle the problem of EIV identification. Specifically, finite

noisy samples of the system graph subspace are available by blocking the input and output

measurement data into vectors of different length, and by computing the EVD of the respec-

tive second order statistics. Under the persistent excitation condition, the signal and noise

subspaces of the sampled graph space can be obtained asymptotically. If the blocking size

is minimum, then it recovers the TLS algorithm that is shown to produce an approximate

MLE, and converges to the true MLE asymptotically. Compared to the TLS algorithm,

the GSA improves the identification performance as the block size increases in the case of

high SNR, and its iterative version improves the estimation accuracy in the case of low SNR.

Compared to the MLE algorithm in [63], the GSA mitigates the NP hard and local minimum

issues, while achieving the approximate and asymptotic MLE.

It is important to point out that the GSA assumes the same input and output noise

variances or the known ratio of the two variances. The MLE algorithm developed in [63]

has the same assumption. If such an assumption does not hold, then the Frisch scheme as

studied in [57] can be employed to estimate first the noise variance at the input, then the

noise variance at the output, and finally the system parameters iteratively. Alternatively,

the iterative BELS algorithm in [97] can also be employed to estimate the noise variances

and system parameters. While these two algorithms perform well in the case of high SNR,

they do not work well in the low SNR environment.

So, in Chapter 4, we have studied the EIV identification problem for the case when the

noise variance at the input differs from that at the output, and when the noise variances are
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unknown. We proposed the GSA combined Frisch scheme for the unequal and unknown noise

variances in Section 4.2. Specifically, a modified Frisch scheme was developed to estimate the

ratio of the noise variances so that it can be applied to the GSA. Furthermore, we proposed

identifying the EIV system directly without estimation of the noise variances or the ratio in

Section 4.3. A TLS algorithm and a modified TLS algorithm are proposed, and shown to be

asymptotically unbiased, and achieves the identifiability, if the input signal is persistently

exciting, and the number of measurement data goes to infinity. Our identification result is

validated with the simulation studies.

5.2 Future Work

In this dissertation, we proposed some efficient methods for the EIV system identification.

However, there are still some problems we need to consider. In the following, we present

three problems for future work.

1. Development of the EIV system identification without estimating the input and output

variances

• The use of Frisch scheme involves an iterative procedure and each iteration cycle

involves high computational complexity that is the weakness of the Frisch scheme.

On the other hand, Chapter 4 shows that there exist other approaches to deal with

the unequal and unknown input-output noise variances. In fact, the identification

performance for the algorithm developed in Section 4.3 exceeds the Frisch scheme for a

class of input-output noises with much lower computational complexity. However, the

estimation performance degenerates for other classes of input-output measurements.

Hence, it becomes a challenge to developing effective estimation algorithms for EIV

identification without estimating the two noise variances. A possible avenue in this

research direction is to exploit the N4SID and modify it to solve the EIV system

identification problem.
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2. Development of the EIV system identification using the quantized input-output mea-

surement data

• Networked control systems have become popular for more than one decade now

[4, 5]. For such control systems, the controller and plant situate in two different phys-

ical locations, and are connected via wireless communications. Because of the digital

technology, the received input and output measurement data are likely to be quantized.

How to estimate the system parameters using quantized measurement data becomes

a very interesting and challenging problem. There are at least two theoretical issues

here. The first one lies in the consistency of the TLS and GSA algorithms based on the

quantized measurement data. That is, it remains unknown for the convergence of the

estimated parameters to the true system parameters when the number of measurement

data increases to infinity, due to the existence of the quantization error. The second

issue is the model of the quantization error. In signal processing area, quantization

errors are often treated as white noises with uniform distribution. If this were the

case, then consistency would hold true, even if the input and output measurement

data are quantized. However, there does not exist such a proof for the whiteness of

the quantization error.

3. Development of the EIV system identification for Hammerstein-Wiener and Wiener-

Hammerstein nonlinear systems

• Almost all systems are nonlinear. How to identify nonlinear systems under the EIV

framework is a very difficult problem. For instance, Hammerstein-Wiener and Wiener-

Hammerstein systems are two of the most popular classes of parameterized nonlinear

systems. Our simulation studies show that the identification errors associated with the

TLS algorithm for these two classes of nonlinear systems indeed decrease as the number

of measurement data increases. However, it remains unknown for the consistency of the

TLS or GSA, when applied to these two classes of nonlinear systems. We suggest the
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use of the nonlinear coprime factorization results [45, 30] to analyze the coprimeness

of these two classes of parameterized nonlinear systems and to study the identifiability

issue first, aided by numerical studies. Because the parameterizaton for these two

classes of nonlinear systems is similar to that of the linear systems, we believe that the

consistency holds.
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[62] T. Söderström, K. Mahata, and U. Soverini. Identification of dynamic errors-in-variables
model: approaches based on two-dimensional arma modelling of the data. Automatica,
39(5):929–935, 2003.
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